
Graduate Theses, Dissertations, and Problem Reports

2012

A Work-Pattern Centric Approach to Building a Personal A Work-Pattern Centric Approach to Building a Personal

Knowledge Advantage Machine Knowledge Advantage Machine

Daniel Sloan
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Sloan, Daniel, "A Work-Pattern Centric Approach to Building a Personal Knowledge Advantage Machine"
(2012). Graduate Theses, Dissertations, and Problem Reports. 4919.
https://researchrepository.wvu.edu/etd/4919

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F4919&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/4919?utm_source=researchrepository.wvu.edu%2Fetd%2F4919&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

A Work-Pattern Centric Approach to Building a Personal Knowledge Advantage
Machine

Daniel Sloan

Thesis submitted to the
College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Master of Science
in

Computer Science

Yenumula V. Reddy, Ph.D., Chair
Bojan Cukic, Ph.D.

Cynthia D. Tanner, MS.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2012

Keywords: Work-patterns, file usage, semantic desktop, machine learning

Copyright c© 2012 Daniel Sloan

Abstract

A Work-Pattern Centric Approach to Building a Personal Knowledge Advantage Machine

Daniel Sloan

A work pattern, also known as a usage pattern, can be broadly defined as the methods by which
a user typically utilizes a particular system. Data mining has been applied to web usage patterns
for a variety of purposes. This thesis presents a framework by which data mining techniques could
be used to extract patterns from an individual’s work flow data in order facilitate a new type of
architecture known as a knowledge advantage machine. This knowledge advantage machine is a
type of semantic desktop and semantic web application that would assist people in constructing
their own personal knowledge networks, as well as sharing that information in an efficient manner
with colleagues using the same system. A knowledge advantage machine would be capable of
automatically discovering new knowledge which is relevant to the user’s personal ontology.

Through experimentation, we demonstrate that a user’s file usage patterns can be utilized by
software in order to automatically and seamlessly learn what is ”important” as defined by the
user. Further research is necessary to apply this principle to a more realized knowledge advantage
machine such that decisions can be fueled by work patterns as well as semantic or contextual
information.

Dedication

I dedicate this work to my grandfather.

Spoczywaj w pokoju.

iii

Acknowledgments

I would like to thank my colleagues and friends who have inspired me, motivated me, and overall

have been there for me even when things seemed bleak. To those who have inspired my best and

weathered my worst: Bryan Lemon, Jonathan Lynch, Brian Cain, Alex Dauphin, Lisa Soros.

I would also like to thank Dr. Reddy, without whom this thesis would not have been possible.

He has taught me the importance of lateral thinking, especially when dealing with such complex

and pervasive problems as the ones described in this work.

Thanks are given to all of my wonderful volunteers, who gave up their valuable time and hard

drive space to help me obtain the empirical data that drives this thesis.

I give thanks to those instructors that I’ve worked under in the capacity of teaching assis-

tantship: Mrs. Tanner, Mrs. Hayhurst, and, again, Dr. Reddy. I have learned as much in the

process of teaching computer science as I did in my time as an undergraduate.

I must thank all of the truly excellent professors I have had the pleasure of learning from

throughout my years at WVU. The professionalism, character, and strength of personality within

the Lane Department of Computer Science and Electrical Engineering cannot possibly be over-

stated.

Finally, I thank Dr. Katerina Goseva-Popstojanova, whose Empirical Methods class provided

me with the extra kick I needed to get this thing done.

iv

Contents

1 Introduction 1
1.1 Problem Statement . 3

1.1.1 Sample Scenario . 3
1.2 Knowledge Advantage Machine . 5
1.3 KAM Architectural View . 9
1.4 Contributions of Thesis . 9
1.5 Outline of Thesis . 9

2 Research Objectives 11
2.1 Method of Inquiry . 11
2.2 Research Questions . 12
2.3 Summary . 13

3 Background and Related Work 15
3.1 Semantic Web . 16
3.2 Semantic Desktop . 17
3.3 Web Usage Mining . 17

3.3.1 Preprocessing . 18
3.3.2 Pattern Discovery . 19
3.3.3 Pattern Analysis . 20

3.4 Graph Based Induction . 21
3.5 Ontological Research . 22
3.6 Classifiers . 23

3.6.1 Naive Bayes . 24
3.6.2 J48 . 26
3.6.3 LWL . 26
3.6.4 Hyperpipes . 28
3.6.5 OneR . 31

3.7 Summary . 31

4 Work Pattern Centric Knowledge Advantage Machine 33
4.1 WPCKAM Architectural View . 34
4.2 File Usage Prediction . 34

v

4.3 Technologies . 36
4.3.1 Windows Auditing . 36
4.3.2 WEKA . 36

4.4 How the Advantage is Gained . 36
4.4.1 Context Awareness . 37
4.4.2 Presenting Predicted Files . 38
4.4.3 Measuring JAN Importance . 38

4.5 Summary . 39

5 Experimental Setup and Analysis of Results 40
5.1 Overview of Setup . 41
5.2 Preprocessing . 41
5.3 Results . 42
5.4 Classification . 48

5.4.1 Hyperpipes . 48
5.4.2 Naive Bayes Classification . 48
5.4.3 J48 Classification . 48
5.4.4 LWL Classification . 49
5.4.5 OneR Classification . 49

5.5 Analysis . 50
5.6 Summary . 51

6 Conclusions 52
6.1 Hypotheses . 52
6.2 How the Advantage is Gained . 53

6.2.1 Context Awareness . 54
6.2.2 Presenting Predicted Files . 54
6.2.3 Measuring JAN Importance . 55

6.3 Future Work . 55

A Reproducing the Experiments 56
A.1 Acquiring the Software . 56
A.2 Obtaining Data . 57
A.3 Running your Experiments . 57

B Raw Data and Charts 59
B.1 Various Charts . 59

vi

List of Figures

1.1 KAM Objective Map . 6
1.2 Vijjana Architecture [30] . 8
1.3 KAM Architecture . 8

3.1 Pairwise Chunking [26] . 22
3.2 Pseudo code for Naive Bayes [20] . 25
3.3 Symmetry Principle for Probability Ratios [17] 25
3.4 Naive Bayes Classifier [44] . 26
3.5 Pseudo code for C4.5 [20] . 27
3.6 Pseudo code for K-Means [18] . 28
3.7 Pseudo code for Locally Weighted Naive Bayes [20] 29
3.8 Pseudo code for Hyperpipes [11] . 30
3.9 Pseudo code of OneR [20] . 31

4.1 WPCKAM Architecture . 34

5.1 Example Comma Separated Values File . 42

vii

List of Tables

5.1 Prediction success rates by k-value for all datasets 44
5.2 Prediction success rates by classifier for all datasets 44
5.3 Prediction success rates by dataset for all datasets 44
5.4 Filtering success rates by k-value for all datasets 45
5.5 Filtering success rates by classifier for all datasets 45
5.6 Filtering success rates by dataset for all datasets 45
5.7 Prediction data with number of predictions by k-value for all datasets 46
5.8 Prediction data with number of predictions by classifier for all datasets 46
5.9 Prediction data with number of predictions by dataset for all datasets 46
5.10 Filtering data with number of predictions by k-value for all datasets 47
5.11 Filtering data with number of predictions by classifier for all datasets 47
5.12 Filtering data with number of predictions by dataset for all datasets 47

B.2 Prediction success rates by all factors for all datasets 59
B.1 Values of k . 59
B.3 Filtering success rates by all factors for all datasets 73
B.4 List of document file extensions allowed through preprocessing whitelist 87
B.5 List of programming source code file extensions allowed through preprocessing

whitelist . 97
B.6 Record counts across datasets . 107

viii

Chapter 1

Introduction

Knowledge workers’ jobs continue to increase in both their complexity and their plenitude of

associated information; this is sometimes referred to as ”information overload” [3], and is a well

known problem, especially in technical fields. Therefore, a need for a mechanism capable of

semantically organizing that information is apparent. In order to combat this problem we must

develop a technology which we will refer to as a Knowledge Advantage Machine.

The ”knowledge advantage” of a KAM comes from the similar but better-known idea of a ”me-

chanical advantage,” [9] wherein the force one uses to accomplish some physical task is reduced

through the clever use of some mechanism or tool. A KAM would utilize a semantic link net-

work [45] in order to better organize and utilize information for a given knowledge worker. Such

a system would probably require some initial work on the user’s part [40] to set up, but the goal

would be that the resulting ”knowledge advantage” would counteract this effort.

A KAM would consist of several functional parts, referred to as ”agents.” Agents are simply

modules which act to perform some task; for a KAM, the most important agents are called Selec-

tion, Organization, Context Map, Display, and Collaboration. An envisioning of a KAM consisting

of these five major agents is detailed in depth in §1.2.

The necessary building blocks of a Knowledge Advantage Machine exist in an emerging field;

1

for example, the semantic link networking model which works to establish semantic links across a

variety of resources and is meant to be used as a semantic representation model for the Semantic

Web, Semantic Grid, and the Knowledge Grid [45]. Long before this, however, the concept of an

ontology itself was examined, such as in Gruber’s 1995 work wherein methods of representing an

ontology were explored [13].

A semantic link network, in its semantic organization of information for knowledge workers,

would allow knowledge workers to perform their jobs with added ease and efficiency [40]. It

follows logically that any properly designed Knowledge Advantage Machine would, in theory,

facilitate the semantic link network in a manner which is more comfortable for knowledge workers

to use than the traditional methods of information gathering and application.

The idea of monitoring usage patterns has long been used for websites, especially commerce

sites, in order to present a more user-tailored experience [38]. File usage has also been recorded

and statistically analyzed [39], but little has been done in the vein of examining or exploiting these

file usage patterns for the sake of a knowledge advantage.

To this end, the purpose of this thesis is to present a framework for a KAM system which

focuses upon desktop usage patterns in order to intuit ontological importance. This framework

is constructed in order to demonstrate one possible basis for a knowledge advantage machine’s

ability to accelerate and enrich the daily tasks of any general knowledge worker, while providing

an overview of the current state-of-the-art research into the various ”building blocks” of the KAM.

Most specifically, this thesis offers a work pattern recognition tool which is capable of monitor-

ing and recording file usage data, and make predictions about future file usage. I will empirically

show the amount of accuracy that these classification learning based predictions offer.

2

1.1 Problem Statement

The problem addressed by this thesis can be expressed as follows: ”How can work-pattern centric

agents augment the KAM’s ability to provide its eponymous knowledge advantage?” If accurate,

these predictions could be used to assist in the identification of context. Because the KAM is

predicated upon being able to determine needed JANs1 for a given context, alternative methods of

context identification could prove very useful.

The problem that this thesis addresses is not that of creating a generic knowledge advantage

machine, though the concept will be explored and a case will be made for its importance. Instead,

the problem requires us to specifically explore the data collection and pattern discovery agents of

a KAM which is capable of functioning partially or wholly based on work patterns. This thesis

therefore addresses the problem of implementing and testing what we refer to as a ”Work-Pattern

Centric Approach to Building a Personal Knowledge Advantage Machine” with the ultimate main

goal of improving context prediction.

1.1.1 Sample Scenario

It is perhaps easiest to explan the concept of a knowledge advantage machine by presenting a

scenario in which it assists an average knowledge worker. Let us take the example of a professor,

”Dr. Doe.” Like most professors, Dr. Doe does research, but he also teaches. These categories

- teaching and researching - would constitute two high-level ”contexts” of his overall knowledge

base. Within the context of research, Dr. Doe might be examining several different papers of

varying topics such as nanotechnology or microprocessors; these would also constitute contexts,

or, alternately, sub-contexts.

A fully idealized knowledge advantage machine would be aware of these contexts at any given

time. This awareness could be achieved in a variety of ways; for the purposes of this example, we

1See §1.2

3

assume it exists and is more or less accurate. Therefore, if Dr. Doe was currently using his personal

computer to perform research into nanotechnology, he would be considered to be currently in

the ”research” context. While these contexts represent states, they are not mutually exclusive;

for example, a person can be doing research and writing a syllabus at the same time. Ideally,

contexts could be tracked on-the-go, perhaps via mobile-devices, as well; Dr. Doe’s personal

KAM would be aware of his presence at a nanotechnology research meeting, therefore identifying

him as currently residing in both the research and nanotechnology contexts. This idea is called

”context aware computing” [5] and while it is true that several context-aware applications have

been been built as demonstrations, mass-availability of this sort of technology is currently rare.

Some exceptions do exist, such as mobile phone applications which alter phone behavior based on

location [23].

Because Dr. Doe’s KAM is constantly aware of his context, and the context of documents

within his personal ontology, it is able to to perform several useful tasks. When Dr. Doe sits

down to write a paper concerning nanotechnology, his KAM is constantly performing semantic

analysis on his emerging document and concurrently searching for papers most related to that

specific content. When Dr. Doe receives an email from a student requesting a syllabus for a

particular class, a fully realized KAM would be ”smart” enough to send the appropriate reply. This

is because the KAM would, after examining the email, be privy to several facts; most importantly,

the sender’s email address identifies the sender as a student in a particular class, and the semantic

content of the email points to the user requesting a syllabus document.

By combining context aware computing with a semantically understood personal ontology, a

KAM would be able to perform many such time-saving knowledge-intensive tasks. However, this

is a complicated and vast problem, so the purpose of this thesis is limited to examining one possible

way in which context could be determined. Under the system detailed in this research, Dr. Doe’s

context would be identified by his patterns of file access. With accurate file usage prediction, Dr.

Doe might also be offered a pane of files that he is likely to access in the near future.

4

1.2 Knowledge Advantage Machine

The concept of a Knowledge Advantage Machine is a combination of several other discrete ideas.

In 2011 Luyi Wang et al. [40] published a context-centric approach to creating a knowledge ad-

vantage machine. This paper provides a basis for the problem; a KAM can be succinctly defined

as any device which increases the efficiency at which a knowledge worker performs daily tasks.

Likewise, we aim to reduce the force exerted by a knowledge worker to accomplish tasks in

their fields. Applications of a KAM are broad: a chemical engineer’s KAM might automatically

discover exciting new research papers in the field of chemistry and insert them into his ontology

for perusal, while an instructor’s KAM might automatically prepare draft email replies to students

who have sent requests for syllabi or assignments. A fully realized KAM would allow for increased

collaboration; for example, two computer scientists might share their ontological knowledge bases

and end up padding their ontologies with extra knowledge in the context of algorithmic analysis.

Figure 1.1 depicts an objective map wherein we might divide a generic idealized KAM into

five basic modules, or ”agents”: selection, organization, context map, display, and collaboration.

Here, we also introduce the concept of a ”JAN,” or atom of knowledge, described by Wang et

al. [40] as an ”abstract object for all the general resources”. The idea of a JAN is not entirely new,

and, indeed, has existed under different names in the past; one might liken a JAN to a ”knol” from

Google’s eponymous Knol project [2]. This project was intended to provide user-written scholarly

articles, and ”knols” were literally defined by Google as ”a unit of knowledge.” The term was also

used to refer simply to an article within the Knol project. However, as of May, 2012, the Knol

project has been discontinued [19] in favor of an upcoming project called Annotum.

The Selection Agent would be primarily concerned with how the user selects and views por-

tions of the personal ontology, including JANs. This agent represents the ”user interface” by which

one directly interacts with the KAM system.

The Organization Agent would be concerned with intelligently organizing these JANs into

5

Figure 1.1: KAM Objective Map

semantically meaningful relationships within the personal ontology. This organization, in an ide-

alized KAM, would be entirely (or mostly) automated, with manual organization being possible

but generally unnecessary.

The Context Map Agent would be concerned with mapping information so as to assist in the

intelligent identification of contexts. In an idealized KAM this would also be fully automated; for

example, if a scientist has several research papers concerning nanotechnology within their personal

ontology, the KAM should be able to automatically identify that these JANs are related and in the

same context. The means of this identification vary; we might compare the semantic meaning of a

6

set of documents, or we may (as in the focus of this thesis) examine file usage patterns, or another

method entirely. An idealized KAM’s Context Map Agent would also be capable of identifying

which contexts a user is currently engaged in; for example, a researcher taking part in a meeting

about nanotechnology would be identified as being in the ”nanotechnology” context.

The Display Agent would be concerned with how the various aspects of the KAM are displayed

to the user. This agent represents the other half of the user interface, and is primarily concerned

with the method of displaying the user’s personal ontology. One KAM prototype called ”GKAM”

[21] used a radial graph to implement the Display Agent.

Finally, the Collaboration Agent would be concerned with providing ways of sharing personal

ontology information between users. This is perhaps the most important portion of a fully realized

KAM, as ”knowledge” must come from somewhere. A subsection of this agent, called the Discov-

ery Agent, would be concerned with the automated discovery of new JANs which are associated

with a user’s personal ontology.

This is just one brief overview of how a KAM could operate; countless other ”agents” could be

envisioned for a functional KAM. Furthermore, each of these agents has complex implementation

problems associated with it, and so for the purposes of this work we must focus on very specific

aspects. This thesis therefore focuses on developing a portion of a functional Context Map Agent

which, instead of examining the semantics of JANs in a user’s personal ontology, attempts to

identify a user’s work-patterns by examining his or her file usage. This data can then be used

to identify contexts and predict future file usage. The difference between these two approaches is

simple, but crucial: both are attempting to gain a knowledge advantage, but the former concentrates

on using domain information [40] to do so, and the second focuses on user-specific work-patterns.

7

Vijjana-X {J, T, R, dA, oA, cA, vA, sA, rA}
X the domain name
J the collection of Jans in the Vijjana-X
T the Taxonomy used for classification of Jans
R the domain specific relations

dA the discovery agent which find relevant Jans
oA the organizing agent which interlinks the Jans based on R
cA the consistency/completeness agent
vA the visualization agent
sA the search agent
rA the rating agent

Figure 1.2: Vijjana Architecture [30]

KAM-X {J, T, R, sA, dA, oA, cA, dsA, coA}
X the domain name
J the collection of Jans in the KAM-X
T the Taxonomy used for classification of Jans
R the domain specific relations

sA the selection agent
dA the discovery agent which finds relevant Jans
oA the organization agent which interlinks the Jans based on R and other factors
cA the context map agent which classifies Jans within contexts based on semantic data

dsA the display agent
coA the collaboration agent

Figure 1.3: KAM Architecture

8

1.3 KAM Architectural View

The architectural model for the KAM could be described in many ways. A good basis for this

model is found within Vijjana [30]. Vijjana, presented by Reddy et. al, is a model which constructs

a semantic-based knowledge network out of URLS2. Described in Figure 1.2, the Vijjana model

introduces the concept of a JAN, and might be considered a predecessor to the KAM since it seeks

to provide a knowledge advantage through a self-organizing knowledge network.

The architectural view of a generic idealized KAM model might similarly be described as seen

in Figure 1.3. This model presents a view of how the agents described in §1.2 interact to facilitate

the KAM. In §4.1 this will be expanded to include work-pattern centric concepts.

1.4 Contributions of Thesis

The most salient contributions of this thesis follow:

• An overview of the KAM problem, its previous incarnations (such as the Context-Centric

Knowledge Advantage Machine [40]), and its constituent parts

• An alternative model to the KAM’s context predictor which instead functions through file

access prediction

1.5 Outline of Thesis

The organization of the proceeding sections of this thesis is as follows:

• Chapter 2 offers the concrete objectives of this thesis. The method of inquiry and the actual

research questions are described.

2Uniform Resource Locators

9

• Chapter 3 examines the existing related literature. This includes literature concerning the

semantic desktop, semantic web, web usage patterns, and ontological research. A description

of a fully realized KAM is given. Finally, the main objectives of this research are revealed.

• Chapter 4 presents a detailed overview of the inner workings of the WPCKAM (Work Pat-

tern Centric Knowledge Advantage Machine) file usage agent. This chapter describes how

collected workflow patterns could be used to produce a knowledge advantage. Technologies

used to create this agent are also described.

• Chapter 5 presents statistical data collected from running the passive monitoring agent on

volunteers’ computers for a period of one week. An analysis of the data is given, and an

assessment of prediction metrics is performed.

• Chapter 6 details conclusions gathered from the analysis of the data. A commentary on

the effectiveness of predicting work patterns is given. Afterwards, there is a discussion

of the various avenues that could be pursued in future KAM-related research, as well as

descriptions of several technologies which will likely prove useful for continued research.

• Appendix A explains how to replicate the experiments performed in this thesis. The means

to acquire the actual program code and scripts are provided.

• Appendix B consists of various tables and charting of raw data.

10

Chapter 2

Research Objectives

There are many avenues of research that could be pursued in regards to Knowledge Advantage

Machines. This thesis focuses on work-patterns because they might act as an interesting alternative

model to the KAM’s context predictor [40] and they have yet to be utilized in that fashion. Thus,

the purpose of this thesis is to create the basis for the WPCKAM: a type a KAM which is created

with respect to work patterns. This thesis also aims to develop a roadmap towards scientifically

examining this sort of system’s impact on knowledge workers’ efficiency in their everyday tasks.

The sections of this chapter are divided as follows:

• §2.1 details the method of inquiry used to examine the efficacy of the WPCKAM learning

and prediction tasks.

• §2.2 explores the actual research questions that this thesis offers. Null and alternative hy-

potheses are offered which relate to these research questions.

2.1 Method of Inquiry

It is paramount to empirically demonstrate the results of our methods of examining and exploiting

work patterns. We refer to this as the method of inquiry. Having collected a great deal of file usage

11

data, we apply several different learning classifiers1 to it. We first select the training set, which we

define as the previous ”k” file accesses. The classifier is then trained on this set, and attempts to

learn (i.e. predict) the next member of the set. In this way each file access ”n” is trained on a set

consisting of n-1, n-2, and so forth, up to n-k.

Next, the number of successful predictions versus failed predictions is tallied, and the process is

repeated for various values of ”k”. Therefore, put simply, this research’s core testing metric is how

successful it is at predicting file usage. Our method of inquiry will therefore allow us to determine

two important factors: which learning classifier is best at predicting file usage, and which value of

”k” is ideal for predicting file usage.

Next, the number of successful filterings versus failed filterings is tallied. The top five predic-

tions for a given classifier are examined, and if the correct prediction is within them, the prediction

is considered a success. This secondary method of inquiry allows us to determine if the context

can be ”narrowed down” even if it cannot be predicted with good accuracy.

More specific information on the experimental design will be given in Chapter 5.

2.2 Research Questions

The questions this research addresses follow:

• How accurate are file usage predictions based on work patterns using various classifiers?

• How accurate is filtering predictions for file usage based on work patterns using various

classifiers?

As such, we identify our hypotheses as follows:

• Null Hypothesis 1: There is no difference in accuracy between predictions of file usage

among various classifiers.

1Naive Bayes, J48, LWL, Hyperpipes, and OneR; see §3.6

12

• Alternative Hypothesis 1: There is a difference in accuracy between predictions of file usage

among various classifiers.

• Null Hypothesis 2: There is no difference in accuracy between predictions of file usage

among various k-values.

• Alternative Hypothesis 2: There is a difference in accuracy between predictions of file usage

among various k-values.

• Null Hypothesis 3: There is no difference in accuracy between filtering predictions of file

usage among various classifiers.

• Alternative Hypothesis 3: There is a difference in accuracy between filtering predictions of

file usage among various classifiers.

• Null Hypothesis 4: There is no difference in accuracy between filtering predictions of file

usage among various k-values.

• Alternative Hypothesis 4: There is a difference in accuracy between filtering predictions of

file usage among various k-values.

2.3 Summary

This chapter has examined the objectives of the this thesis. The data mining techniques which

serve as the method of inquiry were identified as the following classifiers:

• Naive Bayes

• J48

• LWL

13

• Hyperpipes

• OneR

The means by which these classifiers are used to perform file prediction were explained. Fi-

nally, the research questions and their associated hypotheses were identified in this chapter.

14

Chapter 3

Background and Related Work

The background of the ”Knowledge Advantage Machine” concept resides mainly in the existing

research behind the Semantic Web [4] and the Semantic Desktop [35]. The ”jumping-off point”

of KAM research is an attempt to create a middle-man between those two existing areas; we are

concerned with semantically understanding both the web-content that knowledge workers might

encounter, and the data-rich contents of their personal computers.

However, the main goal of this thesis is to be able to identify and exploit a given knowledge

worker’s ”work patterns.” We do this in order to facilitate one possible knowledge advantage ma-

chine. Other research has gone in different directions [40] [26]; this will be explored fully in the

proceeding chapter.

In addition to examining existing Semantic Web and Semantic Desktop research, we must also

establish a background for the ”work-patterns” which we intend to study and harness for efficiency;

in this way, a robust definition of a ”work-pattern” can be defined. We will do this by making use

of various data mining techniques; we will also attempt to gain insight into work pattern discovery

by drawing comparisons to existing research into ”web usage patterns” [38].

This chapter is therefore divided as follows:

• §3.1 explains the background of the Semantic Web and how it relates to the Knowledge

15

Advantage Machine.

• §3.2 explains the background of the Semantic Desktop and how it relates to the Knowledge

Advantage Machine. The ”Semantic Desktop 2.0” is also described.

• §3.3 offers a description of web usage mining [38] and how its constituent components are

analogous to the sort of work pattern mining that the WPCKAM aims to achieve. Its sub-

sections explore the three main steps of web usage mining: preprocessing, pattern discovery,

and pattern analysis.

• §3.4 offers exposition on Graph Based Induction, a learning model [26] which was used for

various learning tasks including file prefetching.

• §3.5 gives a background for ontological research, and how the concept of a personal ontology

is core to the Knowledge Advantage Machine.

• §3.6 explains what is meant by ”classification learning” and how it pertains to this thesis.

Each of the subsections explores an individual classifier used for this research.

3.1 Semantic Web

The Semantic Web, which introduces services which allow for machine-understanding of seman-

tics on the Web, can be defined as something which ”provides the infrastructure for the semantic

interoperability of Web Services.” Thus, with a Semantic Web in place, various Semantic Web

Services can be developed to aid in automated discovery of information [4]. More recently, in

2008, the idea of using mobile devices in conjunction with the Semantic Web was explored [43];

as we have already shown, this is also a concept that is of interest in KAM research with respect to

context aware computing.

16

3.2 Semantic Desktop

An overview of the idea of the ”Semantic Desktop” was published in 2005. This paper defined

a semantic desktop as an attempt to ”transfer the Semantic Web to desktop computers” - not just

its actual technology, but the philosophy as well. The Semantic Desktop, therefore, attempts to

accomplish the same goals as the Semantic Web via a desktop computer; specifically, the purpose

is to give machines a semantic understanding of the contents of ones computer or files [35].

In 2006, the Semantic Desktop 2.0 was discussed, as was the idea of using metadata to organize

data resources. This proposed ”second edition” of the Semantic Desktop attempted to improve on

the original design by using PIMO, the Personal Information model, as an approach for ontology

organization. This model made it possible for tagging services to be created on the desktop. [34]

3.3 Web Usage Mining

In 1995, Letizia was implemented as an agent which worked with web browsers, specifically

Netscape. It attempted to remember a user’s patterns with concern to web browsing, taking note of

things that user is interested in and using this information to recommend certain online documents

that pertain to previous searches [22].

A great deal of research has been done in the area of applying data mining techniques in order

to establish ”web-usage patterns” - this is sometimes referred to as ”web-usage mining” [38].

Accordingly, within this section I will explore the feasibility of using a similar plan in order to

perform what we will refer to as ”work-pattern mining.”

In an idealized KAM, work patterns could be discovered in a manner based on the web usage

mining techniques used by Srivastava et al [38]. In their paper, usage patterns are shown to be

”mined” in three phases: preprocessing, pattern discovery, and pattern analysis.

17

3.3.1 Preprocessing

Preprocessing is described [38] as consisting of taking content, structure, and usage information

and abstracting them into metadata which allows for pattern discovery. Therefore, preprocessing

happens in three stages, which I will first describe, then explore how these concepts might be used

as analogues that are viable in the WPCKAM framework.

In web usage mining, usage preprocessing generally consists of identifying the user and divid-

ing the click-stream into sessions. In an idealized KAM framework, the user might not need to be

identified, but information analogous to a ”click-stream” could be useful. In a WPCKAM system,

the analogue to a clickstream could be described as the timestamps, filenames, and other metadata

associated with the files a user is accessing and editing.

Content preprocessing consists of converting the actual content (text, images, multimedia, etc)

into other forms which are more useful for web usage mining. Likewise, the various file content

which an idealized KAM user interacts with on a regular basis must be converted into forms which

are useful for work pattern mining. This content might not just consist of the actual contents of

the files which have been altered, but also the differences between the newly modified file and the

original. Specifically, [16] made use of vector space model to place the content in a quantifiable

format, and one might likewise use a semantic space and Latent Semantic Analysis [7] to examine

the actual content of files.

Structure preprocessing consists of examining the structure (i.e. the ”hypertext links between

page views”) of a site, then preprocessing it in a similar manner as content preprocessing above.

Since the WPCKAM framework is primarily concerned with filesystem access and content rather

than web content, there is no real analogue. Thus, this preprocessing step is omitted in our system.

18

3.3.2 Pattern Discovery

The second step of web usage mining, ”pattern discovery,” is described as drawing upon method-

ologies from many fields, including pattern recognition, data mining, and statistics [38]. We will

likewise draw from the same base of methods (especially data mining) in order to perform our

”work-pattern mining.” This step consists of several sub-steps: statistical analysis, association rule

generation, clustering, classification, sequential pattern discovery, and dependency modeling.

In the WPCKAM framework, statistical analysis of the work patterns is performed via classifi-

cation learning techniques. [38] refers to basic statistical techniques used to find the mean, median,

etc for values such as the most frequently accessed page views, viewing time, etc. Likewise, when

searching for work patterns we might also record most frequently accessed files, access times, and

so forth.

Association rule generation is intended to relate pages which are referenced together in one

server session. The analogue here is that we will instead relate files which are accessed together in

one ”session” or ”K-set”1. Specifically, [38] attempts to identify sets of pages which are commonly

accessed together at rates above some specified value. Thus, using statistical analysis or data

mining techniques we might also specify some threshold which will allow us to determine whether

we can consider two files to be typically accessed ”together” by a particular user.

Clustering is an establish data mining technique which simply groups together items which

have similar characteristics. For web usage, [38] was primarily concerned with establishing two

clusters: usage clusters and page clusters. Usage clusters were clusters of users which apparently

had similar browsing habits, and page clusters are clusters of pages with related content. Both

clusters are directly analogous to our KAM framework; in an idealized KAM we might find clusters

of users with similar work patterns, and clusters of files with related content. However, for the

WPCKAM, we are already performing a form of clustering by virtue of using the Locally Weighted

1The previous ”K” file accesses which act as the current training set for the learning classifier.

19

Learning2 classifier which makes use of the k-means clusterer.

Classification learning is another data mining technique which will be detailed extensively in

§3.6. For web usage, [38] sought to classify users. In the WPCKAM framework we instead attempt

to perform classification on files in order to predict future file usage. An idealized KAM might also

classify users into various categories.

Sequential pattern discovery is defined as an attempt to find ”inter-session” patterns. In web

usage mining, this might consist of some specific set of items which is proceeded by some other

specific item within an overall set of sessions. Likewise, we might find sequential patterns in work-

pattern mining; this is essentially the core concept insofar as we are attempting to predict which

files within the user’s personal ontology are most likely to be accessed in the near future.

Dependency modeling is the sixth and final step of pattern discovery. This consists of at-

tempting to build models which are ”capable of representing significant dependencies among the

various variables in the Web domain. [38]” An example given is the stages a potential customer

might go through whilst shopping online; these might be used to identify a casual visitor or an

actual buyer. Since this is primarily concerned with navigation, there may be no good analogue in

the WPCKAM framework. On the other hand, in an idealized KAM (with full knowledge of the

user’s activities) we might liken this to the actual steps a user takes while working; for example, the

user first searches and researches a subject, then a document is accessed, then the same document

is edited.

3.3.3 Pattern Analysis

The third and final step of web usage mining, ”pattern analysis,” focuses on the filtering of patterns

or rules which are ”uninteresting.” Anything that was found within the pattern discovery phase

is examined and discarded if it is deemed to be useless. This is our exact goal in work-pattern

2See §5.4.4

20

mining. [38] describes various methods of accomplishing this, such as the use of data cubes3,

which allow for On-Line Analytical Processing (OLAP) operations.

OLAP is known to be an effective method of analyzing very large amounts of data [27]. How-

ever, [38] ultimately asserts that the analysis method should be governed by the application one

is performing web mining on. Thus, in our analysis of work-patterns, we will design our own

methodology wherein analysis is performed through data mining classification techniques.

3.4 Graph Based Induction

In 1998 Graph Based Induction [26], or GBI, was proposed as a learning model in order to per-

form various learning tasks, including file prefetching via a user-obscured ”Prefetch daemon” tool.

File prefetching is a potent technique which works by predicting soon-to-be-used disk blocks so

that they can be ”prefetched” into memory, increasing efficiency. Shriver et al. [36] showed that

application throughput can be improved by up to fifty percent via file prefetching.

GBI is able to ”extract regularities” from a graph of user-dependent data using top-down in-

duction. It was originally designed to examine inference patterns and extract any patterns which

appear frequently within the inference trace. GBI is, therefore, looking for ”regularities” in input

traces, allowing the algorithm to hasten tasks such as learning and classification.

The algorithm works finding patterns, then contracting the graph after replacing the found

pattern with single new node. However, the graph cannot ever contract so far as to become a single

node, because the graph size is defined by both the sizes of extract patterns and the size of the

contracted graph. This core ”contraction” technique used in GBI is called pairwise chunking, and

is shown in Figure 3.1. Pairwise chunking works within the overall GBI algorithm to ”chunk”

appropriated linked pairs of nodes at each step of any search.

GBI’s ”extracted regularities” come in the form of subpatterns. The algorithm only returns sub-

3Sometimes known as OLAP cubes.

21

Figure 3.1: Pairwise Chunking [26]

patterns where the graph size was ultimately minimum; these are considered to be the ”interesting”

patterns.

3.5 Ontological Research

Ontology is defined as the study of the nature of existence. A ”formal ontology” can be described

as a designed structure or graph whose purpose is supporting knowledge sharing activities; this

concept could be used in such knowledge-intensive work as engineering and mathematics [13].

Chen et al. [6] described ”COBRA-ONT4,” a type of ontology specifically designed to sup-

port systems which are context-aware. [6] describes the movement of computing towards these

context-aware systems and the need for an ontology that supports them. ”Intelligent agents” are

4Context Broker Architecture Ontology

22

described, such as the ones described in §1.2, which are capable of intelligently understanding

context information and using this information to support various applications.

When referring to KAM research, it is important to be familiar with the concept of a ”personal

ontology,” which is an overall description of an individual via his or her interests. This thesis uses

the phrase ”knowledge base” interchangeably with ”personal ontology”; put as simply as possible,

we view a personal ontology as the sum total of an individual’s collected knowledge, which can

be discretized into clusters called contexts and tagged with metadata to describe the semantic

contents.

3.6 Classifiers

Several classifiers were tested in order to perform learning tasks for this research. Statistical classi-

fication is defined as the process in which a training set of data is examined, and a new observation

is placed into one of a set of several existing ”categories.” Likewise, classification learning in data

mining examines a set of classified examples (generally still referred to as the training set), with

the intent of learning how to classify unknown examples. Throughout this thesis we will refer to

the ”K” value, which is the number of previous examples in the training set that will be examined

to prepare for classification. The experimental design significance surrounding this ”K” value will

be described in Chapter 5.

Classification learning in data mining is considered a kind of ”supervised” learning [42]; this

simply means that, unlike unsupervised learning methods such as clustering, classification training

sets always provide the true outcome (or ”class”) of each training example.

In this research, we are concerned with predicting file usage, and so our categories are defined

as the files which are being accessed, and the new observation is/are the file(s) which have yet to

be accessed. While ”multilabeled instances” do exist for some scenarios - that is, classification

examples which belong to multiple classes - for the purposes of this thesis every example must

23

exist in only one class because each item may only have one file location.

Classification algorithms are ubiquitous in data mining research. As shown by Giudici [12],

classification learning and other data mining techniques have been applied real world scenarios,

such as business and industry problems. The ”Bayes’ Theorem” that Naive Bayes classification

employs has been used in myriad fields [25], including codebreaking, DNA de-coding, and Home-

land Security tasks. Bayesian approaches have even been used in order to filter through junk

mail [33].

The efficiency of these classifiers in extracting relevant file usage patterns will be examined in

Chapter 5; here, I provide a brief overview of how each of the studied classifiers functions. The

following classifiers were not implemented directly; instead, implementations from WEKA [14]5

were used.

3.6.1 Naive Bayes

Naive Bayes is a type of probabilistic classifier which works around Bayes’s theorem. Bayes’

theorem, also known as ”Bayes’ rule” [17], specifies a relationship between the probability of

some conditional hypothesis on some set of data with the inverse probability of some conditional

data on the hypothesis. The theorem can be expressed in several ways, such as with the symmetry

principle for probability ratios seen in Figure 3.3.

Naive Bayes itself is a simple and efficient [41] classifier which, despite its power, operates on

an ostensibly ”naive” principle: observed events occur entirely independently of each other. This

assumption is considered naive because it is generally false. The Naive Bayes classifier calculates

probabilities of examples being in a particular class [44]; the classifier can ultimately be depicted

as seen in Figure 3.4.

Naive Bayes which has been empirically shown by Rish [31] to typically be extremely effective

in comparison to other more advanced classifiers, despite its generally flawed assumption of in-

5Described in §4.3.2.

24

function Training(data)
counts = array()
classes = array()

for(row in data)
for(column in row)

counts[column.index][column.value][row.class]++
classes[row.class]++

return {classes, counts}

function Testing(data, model)
classes = model.classes
counts = model.counts

for(row in data)
scores = array()
for(class in classes)

score = classes[class] / training.length

for(column in row)
score *= counts[column.index][row[column.index]][row.class] / classes[class]

scores[class] = score

classWithMaxScore = maximum(scores)
results += (classWithMaxScore == row.class)

return results

function NaiveBayes(data)
model = Training(data)
return Testing(data, model)

Figure 3.2: Pseudo code for Naive Bayes [20]

PR(H, E) = PR(E, H)

Figure 3.3: Symmetry Principle for Probability Ratios [17]

25

Figure 3.4: Naive Bayes Classifier [44]

dependence. This empirical study showed that, in spite of inaccurate probability estimates, Naive

Bayes’s classification decisions were often correct.

It was also demonstrated that the best performance of Naive Bayes occurs when features are

completely independent (i.e. the ”naive” assumption of independence is actually true) and, inter-

estingly, when features are functionally dependent. When features are only partially dependent,

Naive Bayes has poorer performance. Therefore, we might expect Naive Bayes to perform well

for file usage prediction if each atom of file usage is totally unrelated to the others, or if they are

totally dependent on each other.

3.6.2 J48

J48 is WEKA’s open source Java implementation [14] of Ross Quinlan’s decision tree generating

algorithm called C4.5 [29]. As with most classifiers, a training set of previously classified samples

is provided to the algorithm. C4.5 then builds decision trees based on this training data. One

attribute of data is chosen for each node of the tree, based on which attribute best separates the

sample set into subsets of classes. Information gain is measured for the purposes of this separation;

that is, the attribute that has the highest information gain is used to create the separation, and the

algorithm proceeds recursively until it reaches one of three base cases, shown in Figure 3.5.

3.6.3 LWL

LWL stands for Locally Weighted Learning, and functions as a locally weighted version of Naive

Bayes [10]. This local weighting serves to ”relax” the typically naive assumption of attribute

26

function Training(data)
if allSameClass(data)

return Node(data.row.class)

for(attribute in data)
informationGain = InfoGain(attribute)

bestAttribute = attribute with maximum informationGain

if bestAttribute is continuous
threshold = value which, if bestAttribute is split on will have the highest informationGain

across the two subsets of the data
nodes.push(Training(data given bestAttribute value > threshold))
nodes.push(Training(data given bestAttribute value ≤ threshold))

else
for(value in bestAttribute)

nodes.push(Training(data given bestAttribute == value))

nodes = Prune(nodes, data)

return nodes

function Prune(nodes)
errorOfChilderen = 0
for each node in nodes

errorOfChilderen += ClassifyByMajorityClass(data given attribute == value)

errorOfParent = ClassifyByMajorityClass(data)

if errorOfParent < errorOfChilderen
return {}

else
return nodes

function Testing(data)
for(row in data)

results += Classify(row, tree)
return results

function Classify(row, tree)
if(IsLeaf(tree))

return tree.class

return Classify(row, tree.nodeForValue(row[tree.attribute]))

Figure 3.5: Pseudo code for C4.5 [20]

27

function K-Means(data)
Centroids = A random subset of K instances from data

for each row in data
m(row) = the cluster closest to row

while m has changed
for each centroid in Centroids

centroid = the centroid of the current instances assigned to that centroid

for each row in data
m(row) = the cluster closes to row

return Centroids

Figure 3.6: Pseudo code for K-Means [18]

independence, as local models are learned at prediction time. This is sometimes called a ”lazy”

learning approach because of how the learning effort is deferred. LWL’s performance is typically

not impacted by the k6 value of the inherent k-means clustering algorithm used to perform the local

weighting. The ”k” in k-means clustering represents the number of clusters that the observations

will be divided into. [24].

3.6.4 Hyperpipes

Hyperpipes is a learning classifier created by Lucio de Souza Coelho and Len Trigg [42]. This

is a rule-based learner, and is based on having only one simple rule per class. For each category

attribute in the training data, a range of values is observed. The ”rule” is then to decide which

ranges have the attribute values of a particular test instance; the category that has the most correct

ranges is then chosen.

Because of its simplicity, Hyperpipes performs classification quickly when there are large num-

bers of attributes [8]. It was shown in [8] that Hyperpipes outperformed several other classifiers.

6Not to be confused with the K value described at the beginning of this section.

28

function Training(data)
training = data

function Testing(data)
for(row in data)
knn = k nearest neighbors from training to row
knn = ApplyWeighting(knn, row)
results += Classify(knn, row)

return results

function ApplyWeighting(data, testRow)
for(row in data)
row.weight = row.distanceFrom(testRow) / maxDistanceFromTest

function Classify(training, testingRow)
counts = array()
classes = array()

for(row in training)
for(column in row)

counts[column.index][column.value][row.class]++
classes[row.class]++

for(class in classes)
score = classes[class] / training.length

for(column in testingRow)
score *= counts[column.index][testingRow[column.index]][testingRow.class] /

classes[class]

return classWithMaxScore == testingRow.class

Figure 3.7: Pseudo code for Locally Weighted Naive Bayes [20]

29

function train() {
klass = $Klass # get the class attribute
Klasses[k] = 1 # remember we have one more class
for(i=1;i<=Attr;i++)

value=$i;
if (i != Klass)
if (value !˜ /\?/)

if (numericp(i) {
if (value > Max[klass,i]) Max[klass,i]= value
if (value < Min[klass,i]) Min[klass,i]= value

} else Seen[klass,i,value]= 1 }
}

function contains(klass,i,value) {
if (numericp(i) {

if ((Max[klass,i] >= value) && (Min[klass,i] <= value))
return 1

} else { if (Seen[klass,i,value])
return 1 }

return 0
}

function mostContained() {
best = -1;
for(klass in Klasses) {

count=0;
for(i=1;i<=Attr;i++) {

value=$i
if (i != Klass)

if (value !˜ /\?/)
count += contains(klass,i,value)

count = count / (Attr - 1)
if (count >= best) {

best = count; what=klass
}
return what

}

Figure 3.8: Pseudo code for Hyperpipes [11]

30

function Training(data)
for(attribute in data)
for(value in attribute)

rule.push(attribute, value, majorityClass(data given attribute and value)
rules.push(rule)

for(rule in rules)
subset = data given rule.attribute == rule.value
rule.score = frequencyOf(rule.class in subset) / subset.length

return rules for the attribute with the

function Testing(data)
for(row in data)
results += row.class == rule.class for row.attributeValue

Figure 3.9: Pseudo code of OneR [20]

3.6.5 OneR

OneR, or ”One Rule” classification has been shown to work well for most commonly used datasets

[15]. This classifier works by creating only one rule for each attribute. This is a rule based learner

which states that the majority class is C for any attribute A and value V. After training, the accura-

cies associated with the created rules are then examined with respect to hypothesis H. Accuracies

below the majority class C are eliminated.

The algorithm is such that a singular poor choice of rules can drastically reduce classification

accuracy. This learner is therefore not expected to perform well; it is included for comparison

purposes only. Pseudo code for OneR can be found in Figure 3.9.

3.7 Summary

This chapter has reviewed the literature pertaining to the Knowledge Advantage Machine and

the building blocks that have made it possible. The Semantic Web and Semantic Desktop were

31

reviewed, as well as the background of ontological research. Web usage mining was examined

piece-by-piece and its constituent steps were compared to the KAM framework.

Various learning techniques were explored, including:

• Graph Based Induction

• Naive Bayes

• J48

• LWL

• Hyperpipes

• OneR

32

Chapter 4

Work Pattern Centric Knowledge

Advantage Machine

In this chapter, we describe the WPCKAM framework, its goals, and its associated technologies.

Thoughts on how the WPCKAM’s contributions could be used to help implement an idealized

KAM are also offered.

This chapter is therefore divided as follows:

• §4.1 presents the architectural model for the WPCKAM.

• §4.2 offers a brief description of file usage prediction techniques.

• §4.3 and its subsections describe the technologies used to create and analyze various aspects

of a prototype WPCKAM, including WEKA [14], the data mining suite.

• §4.4 shows examples of how a knowledge advantage can be more easily gained through

work-pattern centric elements. This section demonstrates how WPCKAM concepts relate

back to the greater problem of creating an idealized KAM.

33

WPCKAM-X {J, T, R, sA, dA, oA, wpdA, cA, dsA, coA}
X the domain name
J the collection of Jans in the WPCKAM-X
T the Taxonomy used for classification of Jans
R the domain specific relations

sA the selection agent
dA the discovery agent which finds relevant Jans

oA the organization agent which interlinks the Jans based on R and other factors, including
workflow data

wpdA the work pattern discovery agent

cA the context map agent which classifies Jans within contexts based on semantic and work-
flow data

dsA the display agent
coA the collaboration agent

Figure 4.1: WPCKAM Architecture

4.1 WPCKAM Architectural View

The architectural view for the WPCKAM necessarily differs from the KAM’s model, as we must

now account for file prediction. This model therefore demonstrates how workflow pattern predic-

tion could be used within a KAM to produce a knowledge advantage. We see in Figure 4.1 that the

model is similar to the one presented in §1.3, with the utilization of workflow knowledge added.

A new agent, the ”Work Pattern Discovery Agent,” is introduced; this module would be re-

sponsible for passively monitoring the filesystem (or the user’s personal ontology) as described

throughout this thesis, and storing statistical data or training sets pertaining to the collected data.

The context and organization agents would now be responsible for properly husbanding this data

in various ways.

4.2 File Usage Prediction

In this thesis, ”file usage prediction” is centered around the idea that knowing what has been used

before can predict what will be needed. As a simple example, we might examine the case of a

person getting ready for work: on a daily basis, they wake up, shower, eat breakfast, and brush

34

their teeth in that order. While this pattern might exhibit some fluctuation, such as if a person

is running late and skips breakfast, the overall pattern will remain the same. We could therefore

expect similar patterns to arise from workflow data.

In this thesis, file usage prediction is meant to primarily act as an alternative context predictor.

It could therefore be described as an alternative context map agent1 Because file usage predic-

tion is one of the main goals of this research, it is imperative to examine appropriate methods of

implementing it.

A decision making process such as MDP2 [28] would, at first, seem to be the ideal solution

for these sorts of predictions. However, our system fails to obey the ”Markov Property” - that

is, a property that demands our system be ”memoryless.” This stochastic process makes decisions

based solely on the current state and on how far we intend to look ahead; for the WPCKAM, our

goal is to instead base the decision process on past file usage choices.

GBI [26] has also been used, as described in §3.4, but was interwoven with interface and

command data, and was designed for alternate purposes.

We therefore instead choose to use a variety of classifiers, described in §3.6, to perform file

usage prediction via classification learning. In Chapter 5 the complete experimental setup of these

classifiers is described, as well as an analysis of the resulting data.

The motivation for using a variety of classifiers is simple: each represents a different approach

to learning from the data. We survey various classifiers in order to discover which will be ”best”

for workflow prediction and the WPCKAM overall. As described in §3.6, classifiers tend to work

differently on different types of sets. Furthermore, some classifiers are known for their speed, such

as Hyperpipes [14], and others are shown to be superior for their general prediction accuracy [31].

It is therefore important to take a variety of criteria into account, and using multiple classifiers

allows a more robust survey of prediction metrics.

1See §1.2.
2Markov Decision Process

35

4.3 Technologies

The proceeding subsections will explore various pertinent technologies that were used to assist

in workflow prediction activities. These technologies could also prove useful in an idealized

WPCKAM system.

4.3.1 Windows Auditing

Various versions of Windows contain an auditing system [37]. This system can be used for a

variety of purposes to track various activites on a computer. For this research, file auditing was

used to keep track of file usage data, therefore monitoring workflow. This workflow data was

saved in XML format. Finally, before analysis, a variety of preprocessing steps are applied to the

XML; this process will be described in depth in §5.2. The end result of these preprocessing steps,

however, is a simple list of file accesses.

4.3.2 WEKA

WEKA [14] is a Java-based open source software package designed to provide various data mining

utilities. This package offers implementations of various classifiers, clusterers, assocation learning

utilities, and other learning tools. It also contains implementations of various experimentation and

statistical tools such as paired t-tests. For this thesis, WEKA’s implementations of the classifiers

J48, Naive Bayes, Hyperpipes, and LWL were used to perform classification learning on the file

usage data sets in order to learn work patterns.

4.4 How the Advantage is Gained

The core concept of the KAM is producing the aforementioned ”knowledge advantage.” Therefore,

when describing a WPCKAM, we are primarily concerned with identifying how the ”work-pattern

36

centric” elements are producing that advantage. In a fully realized KAM, work-patterns discovered

within the WPCKAM framework could be utilized in several ways. This section will examine

several areas where this strategy could be employed to produce a knowledge advantage.

The subsections are therefore divided as follows:

• §4.4.1 shows how workflow prediction could be utilized.

• §4.4.2 examines the possibility of presenting predictions directly to the user as an alternative

route to file access.

• §4.4.3 discusses how file usage data can be used to establish a metric for the importance of

JANs within a personal ontology.

4.4.1 Context Awareness

As demonstrated in the sample scenario in §1.1.1, context awareness is integral for a KAM to

produce a knowledge advantage. File usage prediction offers an interesting alternative to a typical

KAM’s context prediction. Typically a KAM identifies similarity between JANs by semantically

analyzing a user’s entire knowledge-base and comparing the content in order to establish a metric

of comparison; for example, one project called GKAM [21]3 used TFIDF4 calculations to accom-

plish this.

Instead, the WPCKAM could identify a JAN’s ”contextually similar” JANs as those that are

most frequently accessed together. Alternately, these contextually similar JANs could be identified

as the ”N” JANs that are most likely to be predicted after a particular access.

It would also be possible to use the probablility as a modifier for relatedness detection within

the context map or organization agent. Access probability could be coupled with a semantic-centric

3Graphical Knowledge Advantage Machine
4Term Frequency Times Inverse Document Frequency

37

metric (such as TFIDF as in GKAM [21]) in order to weight probable related documents without

eliminating related but under-accessed documents.

These alternative methods for identification of context could prove more effective than context

awareness accomplished solely through semantic analysis, and therefore bear further investiga-

tion. This thesis establishes a basis for that investigation by providing empirical results from file

prediction via classification.

4.4.2 Presenting Predicted Files

With an agent capable of predicting file accesses with a high degree of success, some new methods

of producing a knowledge advantage become possible for the KAM. One simple way to harness file

prediction would be providing the WPCKAM’s user with a small application which continuously

shows likely-to-be-accessed files within a panel. This potential application offers a centralized

location where files can be accessed more conveniently and quickly, providing a small but relevant

advantage.

An alternative, less intrusive method of presenting these predictions would be to populate a

folder with links to files which are predicted to be accessed in the near future.

4.4.3 Measuring JAN Importance

With access to file usage data, we might proceed with the reasonable assumption that the most

frequently accessed JANs are more ”important” to the user. A KAM with access to this data could

therefore automatically know the elements of a user’s personal ontology which are most important

to them. These ”important” JANs could be tagged as such, and semantic analysis agents could later

be employed to glean the semantic significance of those particular JANs. Some form of discovery

agent5 could then be used to discover related JANs from outside the personal ontology, offering

5See §1.2.

38

them to the user and potentially producing a knowledge advantage.

4.5 Summary

This chapter has described the Work Pattern Centric Knowledge Advantage Machine and its archi-

tectural model. The motivations behind the choice of file usage prediction metrics were discussed.

Technologies used to create this thesis’s experimental contribution were also examined. Finally,

this chapter explored how work-pattern centric elements could be used to leverage a knowledge

advantage within a fully realized KAM.

In the following chapters, the discussion will move to research objectives, the experimental

setup, and the findings for the various classifiers when used for the purposes that have been de-

scribed in the previous chapters.

39

Chapter 5

Experimental Setup and Analysis of Results

This chapter offers an overview of the experimental methods, some raw results across data sets,

and how these results were analyzed.

This chapter is therefore divided as follows:

• §5.1 gives a brief overview of the experimental setup,

• §5.2 displays an in-depth view of the preprocessing steps that the collected data was sub-

jected to before classification.

• §5.3 demonstrates the actual results of the data collection. Several tables of data are pro-

vided, as well as box plot charting

• §5.4 offers thoughts on the performance of the individual classifiers based on the data across

all sets. This section also gives some implementation-specific details for these classifiers.

• §5.5 consists of more in-depth statistical analysis performed on the data.

40

5.1 Overview of Setup

The experimental setup for this research consists of three main parts: data collection and prepro-

cessing, classification/prediction, and data analysis. Data collection is accomplished using Win-

dows object access auditing [37]. The means for this have been described in §4.3. The data was

collected from a group of volunteers gathered from various science and information fields. These

volunteers were all running Windows 7 Professional.

In order to attempt to find interesting results, various values of ”k” (§5.2) are examined in

various increments from k=1 to k=17. These values of ”k” were generated using an xlog(x) scale,

starting at x=2 and incrementing. The ”k” values used in this, extend as seen in Table B.1. This

table also offers a view at which data sets have been run for each classifier and value of K. The

significance of k-values has been described §2.1.

In order to determine the efficacy of these techniques for filtering, we define a number ”T”

which represents the number of predictions we are narrowing the selection to. As described in

§2.1, the ”T” value used in this thesis is T=5. Therefore, a successful filtering is considered to be

a case where the correct prediction was within the top five predictions offered by the classifier.

5.2 Preprocessing

Preprocessing of the raw XML data is done in several steps. A series of scripts perform the fol-

lowing tasks:

• Strip out any record which only occurs once in the data set. This step is performed in order to

eliminate any chance of predicting access for a JAN which will only ever occur once within

the workflow. This is done post-hoc for this data, but could easily be done on-the-fly in an

actual implementation of a WPCKAM via manipulation of the training sets.

• Strip out any record which is not part of the whitelist seen in Table B.4. This eliminates any-

41

Figure 5.1: Example Comma Separated Values File

thing that is not considered a document or a programming source code file. These extensions

were gathered from [1]. This action is performed so that we are specifically searching for

knowledge-work-related patterns.

• Convert each record into an MD5 hash. The purpose of this step is simply to avoid any

sensitive user data from being displayed in plaintext.

The final step of the preprocessing is to construct a CSV1 from the collected data. These CSV

files consist of records (lines) and fields (each value, separated by commas). A small sample CSV

file is shown in Figure 5.1. The first line of this file is a listing of the attribute names. Every other

record is a series of digits, then the attribute value. This attribute value represents the filename.

The digits represent whether the various files were seen in the last ”k” records of the training set;

a ”1” indicates that the corresponding attribute value was seen within the last k units, and a ”0”

indicates that it was not. Several values of ”k” were used for this experimental setup, shown in

Table B.1. Note that the example CSV file in Figure 5.1 is constructed using a k value of ”2”.

5.3 Results

This section offers description of charting for global results.

1Comma-separated values

42

• Table 5.1 shows various statistical data for predictions across all datasets for values of k, as

well as a box plot of this data.

• Table 5.2 shows various statistical data for predictions across all datasets for classifiers, as

well as a box plot of this data.

• Table 5.3 shows various statistical data for predictions across all datasets for each dataset, as

well as a box plot of this data.

• Table 5.4 shows various statistical data for filtering across all datasets for values of k, as well

as a box plot of this data.

• Table 5.5 shows various statistical data for filtering across all datasets for classifiers, as well

as a box plot of this data.

• Table 5.6 shows various statistical data for filtering across all datasets for each dataset, as

well as a box plot of this data.

• Table 5.7 demonstrates prediction counts across all values of k, as well as prediction means.

• Table 5.8 demonstrates prediction counts across all classifiers, as well as prediction means.

• Table 5.9 demonstrates prediction counts across all datasets, as well as prediction means.

• Table 5.10 demonstrates filter counts across all values of k, as well as filtering means.

• Table 5.11 demonstrates filter counts across all classifiers, as well as filtering means.

• Table 5.12 demonstrates filter counts across all datasets, as well as filtering means.

43

Results
k-value min q1 median q3 max Quartile
1 0 16 52 67 78 u
3 0 29 44 62 80 u
6 0 25 52.5 63 79 u
8 0 25 49.5 59 79 u
11 0 20 42.5 58 77 u
14 0 19 36.5 52 69 u

Table 5.1: Prediction success rates by k-value for all datasets

Results
Classifier min q1 median q3 max Quartile
Hyperpipes 8 23 33.5 56.5 70 u
Naive Bayes 6 46 58 67 79 u
OneR 0 11 14.5 33 63 u
J48 6 37 56.5 69.5 80 u
LWL 5 25 48 59.5 78 u

Table 5.2: Prediction success rates by classifier for all datasets

Results
Dataset min q1 median q3 max Quartile
Set 1 10 21 33 41 53 u
Set 2 38 56 59 63 67 u
Set 3 27 48 54 63 68 u
Set 4 14 30 62.5 75 77 u
Set 5 1 5.5 8 11.5 18 u
Set 6 0 6 20 35.5 55 u
Set 7 12 52 56.5 62 68 u
Set 8 10 24 39 51 60 u
Set 9 21 33 48.5 70 75 u
Set 10 14 34 58.5 77 80 u

Table 5.3: Prediction success rates by dataset for all datasets

44

Results
k-value min q1 median q3 max Quartile
1 24 74.5 93 99 100 u
3 27 73.5 94 100 100 u
6 23 82 94 99 100 u
8 25 85.5 94.5 99 100 u
11 25 83.5 94.5 99.5 100 u
14 22 75.5 91 99 100 u

Table 5.4: Filtering success rates by k-value for all datasets

Results
Classifier min q1 median q3 max Quartile
Hyperpipes 24 79 94 98 100 u
Naive Bayes 27 86 94 98 100 u
J48 27 86.5 99 100 100 u
LWL 22 66 89 95 100 u

Table 5.5: Filtering success rates by classifier for all datasets

Results
Dataset min q1 median q3 max Quartile
Set 1 64 72.5 81.5 86 100 u
Set 2 100 100 100 100 100 u
Set 3 87 92 94 99 100 u
Set 4 66 88 93.5 96 100 u
Set 5 22 26.5 29.5 74 96 u
Set 6 27 33 63 81.5 90 u
Set 7 98 98 99 100 100 u
Set 8 69 86.5 91.5 94 100 u
Set 9 91 93.5 98 100 100 u
Set 10 70 89 96 97 100 u

Table 5.6: Filtering success rates by dataset for all datasets

45

k-value Successes Failures Average of Success Rates
1 15850 23115 44.6%
3 15471 23494 42.74%
6 16352 22613 44.78%
8 15728 23237 43.02%
11 14130 24835 39.46%
14 12558 26407 35.32%

Table 5.7: Prediction data with number of predictions by k-value for all datasets

Classifier Successes Failures Average of Success Rates
Hyperpipes 15028 31682 36.45%
Naive Bayes 24105 22665 54.02%
OneR 8939 37831 23.05%
J48 23455 23315 51.78%
LWL 18562 28208 42.97%

Table 5.8: Prediction data with number of predictions by classifier for all datasets

Dataset Successes Failures Average of Success Rates
Set 1 5251 11759 31%
Set 2 3208 2522 55.9%
Set 3 1938 1782 52.1%
Set 4 8471 7369 53.53%
Set 5 2747 29443 8.47%
Set 6 7246 23984 23.17%
Set 7 15055 14135 51.53%
Set 8 12493 22097 36.13%
Set 9 15851 15529 50.47%
Set 10 17829 15081 54.23%

Table 5.9: Prediction data with number of predictions by dataset for all datasets

46

k-value Successes Failures Average of Success Rates
1 24323 6847 82.02%
3 26014 5156 86.37%
6 26108 5062 86.57%
8 25925 5245 86.1%
11 26352 4818 87%
14 24746 6424 82.52%

Table 5.10: Filtering data with number of predictions by k-value for all datasets

Classifier Successes Failures Average of Success Rates
Hyperpipes 37602 9108 83.95%
Naive Bayes 40941 5829 88.85%
J48 41839 4931 91.82%
LWL 33086 13684 75.78%

Table 5.11: Filtering data with number of predictions by classifier for all datasets

Dataset Successes Failures Average of Success Rates
Set 1 10965 2643 80.62%
Set 2 4572 0 100%
Set 3 2820 156 94.75%
Set 4 11595 1077 91.46%
Set 5 11860 13892 46.04%
Set 6 14897 10087 59.63%
Set 7 23174 178 99.04%
Set 8 24601 3071 88.96%
Set 9 24379 725 97%
Set 10 24605 1723 93.5%

Table 5.12: Filtering data with number of predictions by dataset for all datasets

47

5.4 Classification

For all of the tested classifiers, training sets are required. We begin by acquiring a basis of ”N”

records which will be used as the initial training set. The first ”N” records will therefore not be a

part of the predictive algorithm. The algorithm then attempts to classify record ”R”, the first record

after the basis ”N”. The classifier’s prediction is then compared to ”R”, and the number of correct

and incorrect classifications is tallied up. At this point, the algorithm also tallies up the number of

”correctly filtered” predictions; we consider a record ”correctly filtered” if the actual record ”R”

was within the classifier’s top five predictions.

After the results are recorded, the algorithm adds R to the training set, and moves on to classify

R+1. This process continues until the entire data set has been classified.

5.4.1 Hyperpipes

Hyperpipes’s performance as a predictor was poor, outperforming only OneR with respect to the

other classifiers across all data sets. While its performance as a filterer could be considered ade-

quate, it was still outperformed by all of the other classifiers across all data sets.

5.4.2 Naive Bayes Classification

Naive Bayes’s performance as a predictor was superb, outperforming all over the other tested

classifiers. Its performance as a filterer was adequate, as it was outperformed only by J48.

5.4.3 J48 Classification

This research’s implementation of J48 had the following attributes:

• Confidence threshold for pruning: 0.25

• Minimum number of instances per leaf: 2

48

• Number of folds for reduced error pruning: 3

J48’s performance as a predictor was adequate, outperforming OneR, Hyperpipes, and LWL.

Its performance as a filterer was superb, as it outperformed all other tested classifiers.

5.4.4 LWL Classification

This research’s implementation of LWL had the following attributes:

• Inputs are normalized.

• All neighbors are used to set kernel bandwidth.

• Weighting kernel is linear.

LWL’s performance as a predictor was adequate, outperforming OneR and Hyperpipes, but

being outperformed by J48 and Naive Bayes. As a filterer, LWL performed well, but was outper-

formed by every other tested classifier except Hyperpipes.

5.4.5 OneR Classification

This research’s implementation of OneR had the following attributes:

• Minimum bucket size is 6.

As stated in §3.6.5, OneR is a classifier that is not typically expected to perform well. It is

therefore no surprise that OneR was outperformed by all of the other tested classifiers when used

as a predictor. Due to the nature of OneR’s implementation, data could not be collected for its

efficacy as a predictor.

49

5.5 Analysis

Statistical analysis and graphing was done using ezANOVA [32]’s implementation of ANOVA.

ANOVA stands for Analysis of Variance, and, in this case, consists of a ”repeated measures”

design in that it uses the same subjects repeatedly. ANOVA’s F-Test seeks to compare the ratio of

explained variance to unexplained variance.

For prediction, the following p-values were calculated:

• k-value: p=0.159987

• Classifier: p=0.000001

For filtering, the following p-values were calculated:

• k-value: p=0.079020

• Classifier: p=0.001818

In terms of the hypotheses2, these results indicate:

• We fail to reject null hypothesis 1 at the 0.05 level of significance. The k-value is not a

significant factor for predictions.

• We reject null hypothesis 2 at the 0.05 level of significance. The classifier is a significant

factor for predictions.

• We fail to reject null hypothesis 3 at the 0.05 level of significance. The k-value is not a

significant factor for filtering.

• We reject null hypothesis 4 at the 0.05 level of significance. The classifier is a significant

factor for filtering.

2See §2.2

50

5.6 Summary

This chapter has consisted of an in-depth look at the experimental portion of this thesis. Infor-

mation was given about how data was collected, as well as how the data was preprocessed and

analyzed. The importance of values of ”k” was explained, as well as how these k-values were

generated.

This chapter has also directly presented the most interesting and pertinent data for this research.

A statistical analysis of this data has been given.

51

Chapter 6

Conclusions

This chapter provides conclusions garnered from the resulting data found in Chapter 5.

This chapter is therefore divided as follows:

• §6.1 reviews the hypotheses laid out in §2.2 and offers conclusions based on the ANOVA

tests performed on §5.3 and shown in §5.5.

• §6.2 explores how the specific results of this research could be applied to producing a knowl-

edge advantage, with respect to the concepts detailed in §4.4.

• A future work section is provided in§6.3, which offers an overview of the possible ”next

steps” that this research could take in the pursuit of the implementation of a fully realized

KAM.

6.1 Hypotheses

As seen in §5.5, the following conclusions were reached through ANOVA testing:

• The k-value is not a significant factor for predictions.

• The classifier is a significant factor for predictions.

52

• The k-value is not a significant factor for filtering.

• The classifier is a significant factor for filtering.

One interesting result is that the choice of k-value does not appear to be a factor in both predic-

tion and filtering. However, upon examining the charting in §5.3, it becomes obvious that this is

for two separate reasons. In predictions, the data indicates that the k-value is not a factor because,

across classifiers, they universally perform poorly. However, in filtering, the data indicates that the

k-value is not a factor because they universally perform very well.

The statistical analysis indicates that classifiers are a significant factor for both prediction and

filtering. We see in Table 5.8 that, on average, Naive Bayes and J48 were the only classifiers to

perform with higher than 50 percent accuracy. Likewise in Table 5.11, we find that Naive Bayes

and J48 are the highest performing classifiers, though all classifiers (aside from OneR) performed

with above 75 percent accuracy. Regardless, if this workflow prediction concept were to be used

for a KAM, it follows that more testing would be useful to determine if there are classifiers which

prove superior to the ones tested in this research.

Finally, we see in Table 5.12 that a few sets of data appear significantly less efficient for fil-

tering. This suggests that certain patterns of file access exist which are less copacetic with the

type of prediction-filtering-via-classification-learning which is presented within this research. Put

simply, some workflow patterns do not lend themselves to workflow analysis. For sets with such

patterns, it might become more prudent to place more importance on alternate forms of context

identification, such as semantic analysis.

6.2 How the Advantage is Gained

As seen in §4.4 and its subsections, we have explored many areas in which an advantage might

be gained through the use of this technology. Now that we have empirically shown the efficacy of

53

filtering over prediction, each of these concepts can be reexamined with the promising results of

filtering in mind.

6.2.1 Context Awareness

As discussed in §4.4.1, context awareness is necessary for any KAM and workflow prediction’s

main goal is to assist in this awareness of context. With filtering, a WPCKAM may be able to

identify contextually similar JANs. Since this thesis has empirically shown that filtering works,

one might start by tallying up occurences of JANs appearing with other JANs in the sets of ”top T”

predictions.

Contextually similar JANs might be defined as JANs who appear concurrently within the ”top

T” predictions beyond a certain threshold of times. Once an awareness of conextual similarity is

established, we might then proceed to use this information for any task which requires context

awareness. Furthermore, we might semantically analyze the JANs which have been identified as

contextually similar through workflow prediction; this combination of methods might lead us to a

more robust and accurate context prediction mechanic.

6.2.2 Presenting Predicted Files

Because filtering has been shown to work, prediction presentation could be accomplished without

any further research. This thesis has provided an agent capable of filtering file accesses with a high

degree of success; therefore, a tool could be created which simply pushes these ”top T” predictions

to a pane or folder as described in §4.4.2. This is a simple example of a knowledge advantage which

could be quickly and easily be created using only the methods described in this research.

54

6.2.3 Measuring JAN Importance

Using filtering, JAN importance could be assessed by tallying up how frequently various JANs

appear in the ”top T” predicted results. Various thresholds of importance could be arbitrarily set,

and once a JAN crosses one of these thresholds, it might be selected for semantic analysis. As

described in §4.4.3, we might then have the discovery agent search for similar JANs and place

them into the user’s personal ontology.

6.3 Future Work

A great abundance of future work waits to be explored in the area of KAM research. For future

work pertaining specifically to work-patterns, however, there are some interesting research avenues

that the results of this thesis point towards. These include:

• Test more learning techniques. Five classifiers were tested in this thesis; many other clas-

sification techniques exist. Furthermore, learning techniques such as clustering could be

employed and examined for efficacy.

• Examine other types of workflow patterns aside from file usage data, using techniques similar

to those used in this thesis. One example would be applying classification techniques to web

usage data.

• Combine the work-pattern centric approach to context prediction with other context iden-

tification techniques. Algorithms which perform semantic analysis, for example, could be

augmented by examining the filtered predictions provided by workflow prediction.

• Examine these concepts as they pertain to predicting application use in addition to file usage,

such as seen in [26].

55

Appendix A

Reproducing the Experiments

This appendix provides information on how to replicate the described experiments via the same

methods used in this thesis. Various scripts and instructions are provided. Sample data is not

provided, due to privacy concerns; however, specific instructions on how to collect data are shown.

A.1 Acquiring the Software

The scripts used to preprocess the data are available at the WVU’S CERC server. It is suggested

that these tools be used on a Unix system, as some of the preprocessing is done using Unix com-

mand line utilities. A zip file of all the software is available at cerc.wvu.edu/kam/wpckam.zip.

This contains:

• Two pdf files, ”auditingbegin.pdf” and ”auditingend.pdf.” These are instructions on how to

start and stop file usage auditing via Windows 7 Pro.

• One PHP script, ”auditing.php”. This will take in an XML file and print out filenames in

sequence. Output should be sent to a text file.

• One extensionless script, ”preprocess”. This performs some preliminary whitelisting on the

56

cerc.wvu.edu/kam/wpckam.zip

output file generated with auditing.php.

• Two Java sourcecode files, FileUsageDataAnalyzer.java and Main.java. These should be

jarred up and run. Using the preprocessed file, they apply more preprocessing, generate

MD5 hashed CSV files, and perform classifications in sequence.

• Two jar files, ”commons-lang3-3.1jar” and ”weka.jar”. These are included for convenience,

and are necessary for running the Java files listed above.

A.2 Obtaining Data

After running the provided Java code, a file will be generated based on the name of the dataset file,

the value of k used, and the classifier used. The first line of this file will consist of the number

of successful predictions using that classifier, then a comma, then the number of unsuccessful

predictions using that classifier. The second line of this file will consist of the number of successful

filterings using a ”T” value of 5, then a comma, then the number of unsuccessful filterings using

that classifier.

From the resultant data, whatever statistical analysis you deem appropriate can be performed.

A.3 Running your Experiments

After XML datasets have been acquired using the instructions found in the two hosted pdf files

described in §A.1, classification can begin. The provided suite of tools can be used on a Unix

system as follows:

• Run ”auditing.php” from the command line, using the syntax ”php auditing.php filename.XML

CSV”. Send the output of this command to an extensionless text file, ”output”.

57

• Run ”preprocess” from the command line. This will generate a preprocessed file, outputFi-

nal.txt.

• After jarring the sourcecode files, run the jar with the outputFinal file in the same folder.

– The first command line argument is the name of the dataset file.

– The second command line argument is the number of records to use as the basis training

set.

– The third command line argument is the ”x” in the xlogx scale used to generate the

k-value.

– The fourth command line argument is the classifier: options are ”PIPES”, ”BAYES”,

”LWL”, ”J48”, and ”ONER”. It is also important to provide the Java virtual ma-

chine with enough memory. Therefore, a sample command line run would be: ”java

-Xms256m -Xmx1500m -jar Analyzer.jar outputFinal 100 2 PIPES”.

58

Appendix B

Raw Data and Charts

B.1 Various Charts
Table B.2: Prediction success rates by all factors for all datasets

Successes Failures Average of Success Rates

Set 1 k1 Hyperpipes 173 394 31%

Set 1 k1 Naive Bayes 272 295 48%

Set 1 k1 OneR 62 505 11%

Set 1 k1 J48 210 357 37%

Continuing next page

k-values
Classifiers 1 3 6 8 11 14 17
Hyperpipes 1-5 1-5 1-5 1-5 1-5 1-5 1-5
Naive Bayes 1-5 1-5 1-5 1-5 1-5 1-5 1-5
OneR 1-5 1-5 1-5 1-5 1-5 1-5 1-5
J48 1-5 1-5 1-5 1-5 1-5 1-5 1-5
LWL 1-5 1-5 1-5 1-5 1-5 1-5 1-5

Table B.1: Values of k

59

Successes Failures Average of Success Rates

Set 1 k1 LWL 231 336 41%

Set 1 k3 Hyperpipes 175 392 31%

Set 1 k3 Naive Bayes 236 331 42%

Set 1 k3 OneR 61 506 11%

Set 1 k3 J48 210 357 37%

Set 1 k3 LWL 168 399 30%

Set 1 k6 Hyperpipes 219 348 39%

Set 1 k6 Naive Bayes 300 267 53%

Set 1 k6 OneR 62 505 11%

Set 1 k6 J48 241 326 43%

Set 1 k6 LWL 196 371 35%

Set 1 k8 Hyperpipes 202 365 36%

Set 1 k8 Naive Bayes 290 277 51%

Set 1 k8 OneR 60 507 11%

Set 1 k8 J48 233 334 41%

Set 1 k8 LWL 186 381 33%

Set 1 k11 Hyperpipes 151 416 27%

Set 1 k11 Naive Bayes 185 382 33%

Set 1 k11 OneR 61 506 11%

Set 1 k11 J48 166 401 29%

Set 1 k11 LWL 154 413 27%

Set 1 k14 Hyperpipes 133 434 23%

Continuing next page

60

Successes Failures Average of Success Rates

Set 1 k14 Naive Bayes 251 316 44%

Set 1 k14 OneR 59 508 10%

Set 1 k14 J48 197 370 35%

Set 1 k14 LWL 107 460 19%

Set 2 k1 Hyperpipes 70 113 38%

Set 2 k1 Naive Bayes 129 64 67%

Set 2 k1 OneR 121 72 63%

Set 2 k1 J48 126 67 65%

Set 2 k1 LWL 129 64 67%

Set 2 k3 Hyperpipes 69 114 38%

Set 2 k3 Naive Bayes 115 78 60%

Set 2 k3 OneR 112 81 58%

Set 2 k3 J48 110 83 57%

Set 2 k3 LWL 116 77 60%

Set 2 k6 Hyperpipes 69 114 38%

Set 2 k6 Naive Bayes 127 66 66%

Set 2 k6 OneR 118 75 61%

Set 2 k6 J48 122 71 63%

Set 2 k6 LWL 122 71 63%

Set 2 k8 Hyperpipes 69 114 38%

Set 2 k8 Naive Bayes 115 78 60%

Set 2 k8 OneR 112 81 58%

Continuing next page

61

Successes Failures Average of Success Rates

Set 2 k8 J48 114 79 59%

Set 2 k8 LWL 113 80 59%

Set 2 k11 Hyperpipes 69 114 38%

Set 2 k11 Naive Bayes 113 80 59%

Set 2 k11 OneR 109 84 56%

Set 2 k11 J48 112 81 58%

Set 2 k11 LWL 113 80 59%

Set 2 k14 Hyperpipes 70 113 38%

Set 2 k14 Naive Bayes 111 82 58%

Set 2 k14 OneR 109 84 56%

Set 2 k14 J48 111 82 58%

Set 2 k14 LWL 113 80 59%

Set 3 k1 Hyperpipes 75 49 60%

Set 3 k1 Naive Bayes 84 40 68%

Set 3 k1 OneR 37 87 30%

Set 3 k1 J48 78 46 63%

Set 3 k1 LWL 82 42 66%

Set 3 k3 Hyperpipes 78 46 63%

Set 3 k3 Naive Bayes 82 42 66%

Set 3 k3 OneR 38 86 31%

Set 3 k3 J48 66 58 53%

Set 3 k3 LWL 65 59 52%

Continuing next page

62

Successes Failures Average of Success Rates

Set 3 k6 Hyperpipes 77 47 62%

Set 3 k6 Naive Bayes 80 44 65%

Set 3 k6 OneR 39 85 31%

Set 3 k6 J48 66 58 53%

Set 3 k6 LWL 60 64 48%

Set 3 k8 Hyperpipes 76 48 61%

Set 3 k8 Naive Bayes 78 46 63%

Set 3 k8 OneR 37 87 30%

Set 3 k8 J48 68 56 55%

Set 3 k8 LWL 59 65 48%

Set 3 k11 Hyperpipes 81 43 65%

Set 3 k11 Naive Bayes 74 50 60%

Set 3 k11 OneR 35 89 28%

Set 3 k11 J48 63 61 51%

Set 3 k11 LWL 59 65 48%

Set 3 k14 Hyperpipes 78 46 63%

Set 3 k14 Naive Bayes 68 56 55%

Set 3 k14 OneR 34 90 27%

Set 3 k14 J48 64 60 52%

Set 3 k14 LWL 57 67 46%

Set 4 k1 Hyperpipes 367 161 70%

Set 4 k1 Naive Bayes 394 134 75%

Continuing next page

63

Successes Failures Average of Success Rates

Set 4 k1 OneR 83 445 16%

Set 4 k1 J48 398 130 75%

Set 4 k1 LWL 404 124 77%

Set 4 k3 Hyperpipes 344 184 65%

Set 4 k3 Naive Bayes 404 124 77%

Set 4 k3 OneR 78 450 15%

Set 4 k3 J48 398 130 75%

Set 4 k3 LWL 333 195 63%

Set 4 k6 Hyperpipes 331 197 63%

Set 4 k6 Naive Bayes 399 129 76%

Set 4 k6 OneR 77 451 15%

Set 4 k6 J48 396 132 75%

Set 4 k6 LWL 301 227 57%

Set 4 k8 Hyperpipes 330 198 62%

Set 4 k8 Naive Bayes 385 143 73%

Set 4 k8 OneR 76 452 14%

Set 4 k8 J48 394 134 75%

Set 4 k8 LWL 292 236 55%

Set 4 k11 Hyperpipes 326 202 62%

Set 4 k11 Naive Bayes 374 154 71%

Set 4 k11 OneR 74 454 14%

Set 4 k11 J48 385 143 73%

Continuing next page

64

Successes Failures Average of Success Rates

Set 4 k11 LWL 263 265 50%

Set 4 k14 Hyperpipes 160 368 30%

Set 4 k14 Naive Bayes 219 309 41%

Set 4 k14 OneR 78 450 15%

Set 4 k14 J48 274 254 52%

Set 4 k14 LWL 134 394 25%

Set 5 k1 Hyperpipes 86 987 8%

Set 5 k1 Naive Bayes 159 914 15%

Set 5 k1 OneR 15 1058 1%

Set 5 k1 J48 66 1007 6%

Set 5 k1 LWL 72 1001 7%

Set 5 k3 Hyperpipes 106 967 10%

Set 5 k3 Naive Bayes 115 958 11%

Set 5 k3 OneR 15 1058 1%

Set 5 k3 J48 82 991 8%

Set 5 k3 LWL 57 1016 5%

Set 5 k6 Hyperpipes 175 898 16%

Set 5 k6 Naive Bayes 192 881 18%

Set 5 k6 OneR 15 1058 1%

Set 5 k6 J48 111 962 10%

Set 5 k6 LWL 65 1008 6%

Set 5 k8 Hyperpipes 165 908 15%

Continuing next page

65

Successes Failures Average of Success Rates

Set 5 k8 Naive Bayes 186 887 17%

Set 5 k8 OneR 16 1057 1%

Set 5 k8 J48 120 953 11%

Set 5 k8 LWL 68 1005 6%

Set 5 k11 Hyperpipes 103 970 10%

Set 5 k11 Naive Bayes 117 956 11%

Set 5 k11 OneR 18 1055 2%

Set 5 k11 J48 76 997 7%

Set 5 k11 LWL 74 999 7%

Set 5 k14 Hyperpipes 130 943 12%

Set 5 k14 Naive Bayes 160 913 15%

Set 5 k14 OneR 17 1056 2%

Set 5 k14 J48 101 972 9%

Set 5 k14 LWL 65 1008 6%

Set 6 k1 Hyperpipes 181 860 17%

Set 6 k1 Naive Bayes 66 975 6%

Set 6 k1 OneR 0 1041 0%

Set 6 k1 J48 62 979 6%

Set 6 k1 LWL 68 973 7%

Set 6 k3 Hyperpipes 316 725 30%

Set 6 k3 Naive Bayes 294 747 28%

Set 6 k3 OneR 0 1041 0%

Continuing next page

66

Successes Failures Average of Success Rates

Set 6 k3 J48 322 719 31%

Set 6 k3 LWL 198 843 19%

Set 6 k6 Hyperpipes 577 464 55%

Set 6 k6 Naive Bayes 539 502 52%

Set 6 k6 OneR 0 1041 0%

Set 6 k6 J48 312 729 30%

Set 6 k6 LWL 203 838 20%

Set 6 k8 Hyperpipes 514 527 49%

Set 6 k8 Naive Bayes 525 516 50%

Set 6 k8 OneR 0 1041 0%

Set 6 k8 J48 317 724 30%

Set 6 k8 LWL 196 845 19%

Set 6 k11 Hyperpipes 206 835 20%

Set 6 k11 Naive Bayes 504 537 48%

Set 6 k11 OneR 0 1041 0%

Set 6 k11 J48 321 720 31%

Set 6 k11 LWL 174 867 17%

Set 6 k14 Hyperpipes 415 626 40%

Set 6 k14 Naive Bayes 475 566 46%

Set 6 k14 OneR 0 1041 0%

Set 6 k14 J48 315 726 30%

Set 6 k14 LWL 146 895 14%

Continuing next page

67

Successes Failures Average of Success Rates

Set 7 k1 Hyperpipes 362 611 37%

Set 7 k1 Naive Bayes 635 338 65%

Set 7 k1 OneR 596 377 61%

Set 7 k1 J48 637 336 65%

Set 7 k1 LWL 644 329 66%

Set 7 k3 Hyperpipes 313 660 32%

Set 7 k3 Naive Bayes 601 372 62%

Set 7 k3 OneR 546 427 56%

Set 7 k3 J48 624 349 64%

Set 7 k3 LWL 580 393 60%

Set 7 k6 Hyperpipes 128 845 13%

Set 7 k6 Naive Bayes 649 324 67%

Set 7 k6 OneR 589 384 61%

Set 7 k6 J48 663 310 68%

Set 7 k6 LWL 605 368 62%

Set 7 k8 Hyperpipes 128 845 13%

Set 7 k8 Naive Bayes 557 416 57%

Set 7 k8 OneR 548 425 56%

Set 7 k8 J48 601 372 62%

Set 7 k8 LWL 565 408 58%

Set 7 k11 Hyperpipes 120 853 12%

Set 7 k11 Naive Bayes 502 471 52%

Continuing next page

68

Successes Failures Average of Success Rates

Set 7 k11 OneR 531 442 55%

Set 7 k11 J48 566 407 58%

Set 7 k11 LWL 548 425 56%

Set 7 k14 Hyperpipes 137 836 14%

Set 7 k14 Naive Bayes 485 488 50%

Set 7 k14 OneR 516 457 53%

Set 7 k14 J48 542 431 56%

Set 7 k14 LWL 537 436 55%

Set 8 k1 Hyperpipes 322 831 28%

Set 8 k1 Naive Bayes 666 487 58%

Set 8 k1 OneR 126 1027 11%

Set 8 k1 J48 593 560 51%

Set 8 k1 LWL 612 541 53%

Set 8 k3 Hyperpipes 356 797 31%

Set 8 k3 Naive Bayes 534 619 46%

Set 8 k3 OneR 126 1027 11%

Set 8 k3 J48 601 552 52%

Set 8 k3 LWL 375 778 33%

Set 8 k6 Hyperpipes 434 719 38%

Set 8 k6 Naive Bayes 659 494 57%

Set 8 k6 OneR 126 1027 11%

Set 8 k6 J48 689 464 60%

Continuing next page

69

Successes Failures Average of Success Rates

Set 8 k6 LWL 475 678 41%

Set 8 k8 Hyperpipes 402 751 35%

Set 8 k8 Naive Bayes 643 510 56%

Set 8 k8 OneR 125 1028 11%

Set 8 k8 J48 657 496 57%

Set 8 k8 LWL 457 696 40%

Set 8 k11 Hyperpipes 280 873 24%

Set 8 k11 Naive Bayes 458 695 40%

Set 8 k11 OneR 124 1029 11%

Set 8 k11 J48 522 631 45%

Set 8 k11 LWL 337 816 29%

Set 8 k14 Hyperpipes 238 915 21%

Set 8 k14 Naive Bayes 558 595 48%

Set 8 k14 OneR 121 1032 10%

Set 8 k14 J48 584 569 51%

Set 8 k14 LWL 293 860 25%

Set 9 k1 Hyperpipes 280 766 27%

Set 9 k1 Naive Bayes 776 270 74%

Set 9 k1 OneR 354 692 34%

Set 9 k1 J48 772 274 74%

Set 9 k1 LWL 786 260 75%

Set 9 k3 Hyperpipes 307 739 29%

Continuing next page

70

Successes Failures Average of Success Rates

Set 9 k3 Naive Bayes 750 296 72%

Set 9 k3 OneR 349 697 33%

Set 9 k3 J48 742 304 71%

Set 9 k3 LWL 632 414 60%

Set 9 k6 Hyperpipes 264 782 25%

Set 9 k6 Naive Bayes 721 325 69%

Set 9 k6 OneR 350 696 33%

Set 9 k6 J48 728 318 70%

Set 9 k6 LWL 520 526 50%

Set 9 k8 Hyperpipes 263 783 25%

Set 9 k8 Naive Bayes 700 346 67%

Set 9 k8 OneR 350 696 33%

Set 9 k8 J48 746 300 71%

Set 9 k8 LWL 490 556 47%

Set 9 k11 Hyperpipes 266 780 25%

Set 9 k11 Naive Bayes 692 354 66%

Set 9 k11 OneR 349 697 33%

Set 9 k11 J48 763 283 73%

Set 9 k11 LWL 480 566 46%

Set 9 k14 Hyperpipes 216 830 21%

Set 9 k14 Naive Bayes 645 401 62%

Set 9 k14 OneR 349 697 33%

Continuing next page

71

Successes Failures Average of Success Rates

Set 9 k14 J48 718 328 69%

Set 9 k14 LWL 493 553 47%

Set 10 k1 Hyperpipes 687 410 63%

Set 10 k1 Naive Bayes 841 256 77%

Set 10 k1 OneR 161 936 15%

Set 10 k1 J48 849 248 77%

Set 10 k1 LWL 851 246 78%

Set 10 k3 Hyperpipes 636 461 58%

Set 10 k3 Naive Bayes 867 230 79%

Set 10 k3 OneR 157 940 14%

Set 10 k3 J48 873 224 80%

Set 10 k3 LWL 739 358 67%

Set 10 k6 Hyperpipes 623 474 57%

Set 10 k6 Naive Bayes 851 246 78%

Set 10 k6 OneR 153 944 14%

Set 10 k6 J48 869 228 79%

Set 10 k6 LWL 665 432 61%

Set 10 k8 Hyperpipes 626 471 57%

Set 10 k8 Naive Bayes 814 283 74%

Set 10 k8 OneR 151 946 14%

Set 10 k8 J48 862 235 79%

Set 10 k8 LWL 647 450 59%

Continuing next page

72

Successes Failures Average of Success Rates

Set 10 k11 Hyperpipes 619 478 56%

Set 10 k11 Naive Bayes 802 295 73%

Set 10 k11 OneR 151 946 14%

Set 10 k11 J48 842 255 77%

Set 10 k11 LWL 618 479 56%

Set 10 k14 Hyperpipes 255 842 23%

Set 10 k14 Naive Bayes 482 615 44%

Set 10 k14 OneR 163 934 15%

Set 10 k14 J48 605 492 55%

Set 10 k14 LWL 370 727 34%

Table B.3: Filtering success rates by all factors for all datasets

Successes Failures Average of Success Rates

Set 1 k1 Hyperpipes 453 114 80%

Set 1 k1 Naive Bayes 393 174 69%

Set 1 k1 OneR N/A N/A N/A

Set 1 k1 J48 479 88 84%

Set 1 k1 LWL 463 104 82%

Set 1 k3 Hyperpipes 473 94 83%

Set 1 k3 Naive Bayes 487 80 86%

Set 1 k3 OneR N/A N/A N/A

Set 1 k3 J48 491 76 87%

Set 1 k3 LWL 392 175 69%

Continuing next page

73

Successes Failures Average of Success Rates

Set 1 k6 Hyperpipes 464 103 82%

Set 1 k6 Naive Bayes 490 77 86%

Set 1 k6 OneR N/A N/A N/A

Set 1 k6 J48 530 37 93%

Set 1 k6 LWL 385 182 68%

Set 1 k8 Hyperpipes 459 108 81%

Set 1 k8 Naive Bayes 475 92 84%

Set 1 k8 OneR N/A N/A N/A

Set 1 k8 J48 537 30 95%

Set 1 k8 LWL 374 193 66%

Set 1 k11 Hyperpipes 448 119 79%

Set 1 k11 Naive Bayes 451 116 80%

Set 1 k11 OneR N/A N/A N/A

Set 1 k11 J48 567 0 100%

Set 1 k11 LWL 361 206 64%

Set 1 k14 Hyperpipes 435 132 77%

Set 1 k14 Naive Bayes 432 135 76%

Set 1 k14 OneR N/A N/A N/A

Set 1 k14 J48 565 2 100%

Set 1 k14 LWL 361 206 64%

Set 2 k1 Hyperpipes 183 0 100%

Set 2 k1 Naive Bayes 193 0 100%

Continuing next page

74

Successes Failures Average of Success Rates

Set 2 k1 OneR N/A N/A N/A

Set 2 k1 J48 193 0 100%

Set 2 k1 LWL 193 0 100%

Set 2 k3 Hyperpipes 183 0 100%

Set 2 k3 Naive Bayes 193 0 100%

Set 2 k3 OneR N/A N/A N/A

Set 2 k3 J48 193 0 100%

Set 2 k3 LWL 193 0 100%

Set 2 k6 Hyperpipes 183 0 100%

Set 2 k6 Naive Bayes 193 0 100%

Set 2 k6 OneR N/A N/A N/A

Set 2 k6 J48 193 0 100%

Set 2 k6 LWL 193 0 100%

Set 2 k8 Hyperpipes 183 0 100%

Set 2 k8 Naive Bayes 193 0 100%

Set 2 k8 OneR N/A N/A N/A

Set 2 k8 J48 193 0 100%

Set 2 k8 LWL 193 0 100%

Set 2 k11 Hyperpipes 183 0 100%

Set 2 k11 Naive Bayes 193 0 100%

Set 2 k11 OneR N/A N/A N/A

Set 2 k11 J48 193 0 100%

Continuing next page

75

Successes Failures Average of Success Rates

Set 2 k11 LWL 193 0 100%

Set 2 k14 Hyperpipes 183 0 100%

Set 2 k14 Naive Bayes 193 0 100%

Set 2 k14 OneR N/A N/A N/A

Set 2 k14 J48 193 0 100%

Set 2 k14 LWL 193 0 100%

Set 3 k1 Hyperpipes 115 9 93%

Set 3 k1 Naive Bayes 108 16 87%

Set 3 k1 OneR N/A N/A N/A

Set 3 k1 J48 124 0 100%

Set 3 k1 LWL 116 8 94%

Set 3 k3 Hyperpipes 118 6 95%

Set 3 k3 Naive Bayes 116 8 94%

Set 3 k3 OneR N/A N/A N/A

Set 3 k3 J48 124 0 100%

Set 3 k3 LWL 116 8 94%

Set 3 k6 Hyperpipes 118 6 95%

Set 3 k6 Naive Bayes 117 7 94%

Set 3 k6 OneR N/A N/A N/A

Set 3 k6 J48 123 1 99%

Set 3 k6 LWL 114 10 92%

Set 3 k8 Hyperpipes 119 5 96%

Continuing next page

76

Successes Failures Average of Success Rates

Set 3 k8 Naive Bayes 117 7 94%

Set 3 k8 OneR N/A N/A N/A

Set 3 k8 J48 124 0 100%

Set 3 k8 LWL 112 12 90%

Set 3 k11 Hyperpipes 117 7 94%

Set 3 k11 Naive Bayes 115 9 93%

Set 3 k11 OneR N/A N/A N/A

Set 3 k11 J48 124 0 100%

Set 3 k11 LWL 113 11 91%

Set 3 k14 Hyperpipes 118 6 95%

Set 3 k14 Naive Bayes 115 9 93%

Set 3 k14 OneR N/A N/A N/A

Set 3 k14 J48 123 1 99%

Set 3 k14 LWL 114 10 92%

Set 4 k1 Hyperpipes 490 38 93%

Set 4 k1 Naive Bayes 479 49 91%

Set 4 k1 OneR N/A N/A N/A

Set 4 k1 J48 507 21 96%

Set 4 k1 LWL 489 39 93%

Set 4 k3 Hyperpipes 497 31 94%

Set 4 k3 Naive Bayes 498 30 94%

Set 4 k3 OneR N/A N/A N/A

Continuing next page

77

Successes Failures Average of Success Rates

Set 4 k3 J48 528 0 100%

Set 4 k3 LWL 469 59 89%

Set 4 k6 Hyperpipes 498 30 94%

Set 4 k6 Naive Bayes 506 22 96%

Set 4 k6 OneR N/A N/A N/A

Set 4 k6 J48 528 0 100%

Set 4 k6 LWL 458 70 87%

Set 4 k8 Hyperpipes 498 30 94%

Set 4 k8 Naive Bayes 509 19 96%

Set 4 k8 OneR N/A N/A N/A

Set 4 k8 J48 528 0 100%

Set 4 k8 LWL 459 69 87%

Set 4 k11 Hyperpipes 493 35 93%

Set 4 k11 Naive Bayes 499 29 95%

Set 4 k11 OneR N/A N/A N/A

Set 4 k11 J48 528 0 100%

Set 4 k11 LWL 464 64 88%

Set 4 k14 Hyperpipes 467 61 88%

Set 4 k14 Naive Bayes 398 130 75%

Set 4 k14 OneR N/A N/A N/A

Set 4 k14 J48 454 74 86%

Set 4 k14 LWL 351 177 66%

Continuing next page

78

Successes Failures Average of Success Rates

Set 5 k1 Hyperpipes 255 818 24%

Set 5 k1 Naive Bayes 337 736 31%

Set 5 k1 OneR N/A N/A N/A

Set 5 k1 J48 287 786 27%

Set 5 k1 LWL 293 780 27%

Set 5 k3 Hyperpipes 321 752 30%

Set 5 k3 Naive Bayes 992 81 92%

Set 5 k3 OneR N/A N/A N/A

Set 5 k3 J48 716 357 67%

Set 5 k3 LWL 291 782 27%

Set 5 k6 Hyperpipes 319 754 30%

Set 5 k6 Naive Bayes 987 86 92%

Set 5 k6 OneR N/A N/A N/A

Set 5 k6 J48 558 515 52%

Set 5 k6 LWL 244 829 23%

Set 5 k8 Hyperpipes 314 759 29%

Set 5 k8 Naive Bayes 967 106 90%

Set 5 k8 OneR N/A N/A N/A

Set 5 k8 J48 417 656 39%

Set 5 k8 LWL 270 803 25%

Set 5 k11 Hyperpipes 301 772 28%

Set 5 k11 Naive Bayes 872 201 81%

Continuing next page

79

Successes Failures Average of Success Rates

Set 5 k11 OneR N/A N/A N/A

Set 5 k11 J48 1023 50 95%

Set 5 k11 LWL 264 809 25%

Set 5 k14 Hyperpipes 279 794 26%

Set 5 k14 Naive Bayes 289 784 27%

Set 5 k14 OneR N/A N/A N/A

Set 5 k14 J48 1032 41 96%

Set 5 k14 LWL 232 841 22%

Set 6 k1 Hyperpipes 400 641 38%

Set 6 k1 Naive Bayes 382 659 37%

Set 6 k1 OneR N/A N/A N/A

Set 6 k1 J48 539 502 52%

Set 6 k1 LWL 507 534 49%

Set 6 k3 Hyperpipes 661 380 63%

Set 6 k3 Naive Bayes 706 335 68%

Set 6 k3 OneR N/A N/A N/A

Set 6 k3 J48 713 328 68%

Set 6 k3 LWL 289 752 28%

Set 6 k6 Hyperpipes 658 383 63%

Set 6 k6 Naive Bayes 939 102 90%

Set 6 k6 OneR N/A N/A N/A

Set 6 k6 J48 744 297 71%

Continuing next page

80

Successes Failures Average of Success Rates

Set 6 k6 LWL 300 741 29%

Set 6 k8 Hyperpipes 657 384 63%

Set 6 k8 Naive Bayes 922 119 89%

Set 6 k8 OneR N/A N/A N/A

Set 6 k8 J48 789 252 76%

Set 6 k8 LWL 304 737 29%

Set 6 k11 Hyperpipes 655 386 63%

Set 6 k11 Naive Bayes 893 148 86%

Set 6 k11 OneR N/A N/A N/A

Set 6 k11 J48 832 209 80%

Set 6 k11 LWL 296 745 28%

Set 6 k14 Hyperpipes 645 396 62%

Set 6 k14 Naive Bayes 862 179 83%

Set 6 k14 OneR N/A N/A N/A

Set 6 k14 J48 926 115 89%

Set 6 k14 LWL 278 763 27%

Set 7 k1 Hyperpipes 966 7 99%

Set 7 k1 Naive Bayes 965 8 99%

Set 7 k1 OneR N/A N/A N/A

Set 7 k1 J48 970 3 100%

Set 7 k1 LWL 967 6 99%

Set 7 k3 Hyperpipes 967 6 99%

Continuing next page

81

Successes Failures Average of Success Rates

Set 7 k3 Naive Bayes 969 4 100%

Set 7 k3 OneR N/A N/A N/A

Set 7 k3 J48 967 6 99%

Set 7 k3 LWL 958 15 98%

Set 7 k6 Hyperpipes 967 6 99%

Set 7 k6 Naive Bayes 968 5 99%

Set 7 k6 OneR N/A N/A N/A

Set 7 k6 J48 971 2 100%

Set 7 k6 LWL 966 7 99%

Set 7 k8 Hyperpipes 967 6 99%

Set 7 k8 Naive Bayes 967 6 99%

Set 7 k8 OneR N/A N/A N/A

Set 7 k8 J48 966 7 99%

Set 7 k8 LWL 956 17 98%

Set 7 k11 Hyperpipes 967 6 99%

Set 7 k11 Naive Bayes 968 5 99%

Set 7 k11 OneR N/A N/A N/A

Set 7 k11 J48 965 8 99%

Set 7 k11 LWL 961 12 99%

Set 7 k14 Hyperpipes 967 6 99%

Set 7 k14 Naive Bayes 968 5 99%

Set 7 k14 OneR N/A N/A N/A

Continuing next page

82

Successes Failures Average of Success Rates

Set 7 k14 J48 962 11 99%

Set 7 k14 LWL 959 14 99%

Set 8 k1 Hyperpipes 1046 107 91%

Set 8 k1 Naive Bayes 992 161 86%

Set 8 k1 OneR N/A N/A N/A

Set 8 k1 J48 1065 88 92%

Set 8 k1 LWL 1053 100 91%

Set 8 k3 Hyperpipes 1083 70 94%

Set 8 k3 Naive Bayes 1083 70 94%

Set 8 k3 OneR N/A N/A N/A

Set 8 k3 J48 1079 74 94%

Set 8 k3 LWL 895 258 78%

Set 8 k6 Hyperpipes 1079 74 94%

Set 8 k6 Naive Bayes 1083 70 94%

Set 8 k6 OneR N/A N/A N/A

Set 8 k6 J48 1105 48 96%

Set 8 k6 LWL 864 289 75%

Set 8 k8 Hyperpipes 1067 86 93%

Set 8 k8 Naive Bayes 1065 88 92%

Set 8 k8 OneR N/A N/A N/A

Set 8 k8 J48 1117 36 97%

Set 8 k8 LWL 853 300 74%

Continuing next page

83

Successes Failures Average of Success Rates

Set 8 k11 Hyperpipes 1052 101 91%

Set 8 k11 Naive Bayes 1046 107 91%

Set 8 k11 OneR N/A N/A N/A

Set 8 k11 J48 1153 0 100%

Set 8 k11 LWL 833 320 72%

Set 8 k14 Hyperpipes 1035 118 90%

Set 8 k14 Naive Bayes 1008 145 87%

Set 8 k14 OneR N/A N/A N/A

Set 8 k14 J48 1152 1 100%

Set 8 k14 LWL 793 360 69%

Set 9 k1 Hyperpipes 1029 17 98%

Set 9 k1 Naive Bayes 1017 29 97%

Set 9 k1 OneR N/A N/A N/A

Set 9 k1 J48 1036 10 99%

Set 9 k1 LWL 1026 20 98%

Set 9 k3 Hyperpipes 1029 17 98%

Set 9 k3 Naive Bayes 1022 24 98%

Set 9 k3 OneR N/A N/A N/A

Set 9 k3 J48 1042 4 100%

Set 9 k3 LWL 957 89 91%

Set 9 k6 Hyperpipes 1029 17 98%

Set 9 k6 Naive Bayes 1028 18 98%

Continuing next page

84

Successes Failures Average of Success Rates

Set 9 k6 OneR N/A N/A N/A

Set 9 k6 J48 1041 5 100%

Set 9 k6 LWL 971 75 93%

Set 9 k8 Hyperpipes 1029 17 98%

Set 9 k8 Naive Bayes 1021 25 98%

Set 9 k8 OneR N/A N/A N/A

Set 9 k8 J48 1046 0 100%

Set 9 k8 LWL 956 90 91%

Set 9 k11 Hyperpipes 1028 18 98%

Set 9 k11 Naive Bayes 1009 37 96%

Set 9 k11 OneR N/A N/A N/A

Set 9 k11 J48 1045 1 100%

Set 9 k11 LWL 957 89 91%

Set 9 k14 Hyperpipes 1027 19 98%

Set 9 k14 Naive Bayes 1002 44 96%

Set 9 k14 OneR N/A N/A N/A

Set 9 k14 J48 1044 2 100%

Set 9 k14 LWL 988 58 94%

Set 10 k1 Hyperpipes 1053 44 96%

Set 10 k1 Naive Bayes 1037 60 95%

Set 10 k1 OneR N/A N/A N/A

Set 10 k1 J48 1072 25 98%

Continuing next page

85

Successes Failures Average of Success Rates

Set 10 k1 LWL 1051 46 96%

Set 10 k3 Hyperpipes 1062 35 97%

Set 10 k3 Naive Bayes 1056 41 96%

Set 10 k3 OneR N/A N/A N/A

Set 10 k3 J48 1092 5 100%

Set 10 k3 LWL 993 104 91%

Set 10 k6 Hyperpipes 1064 33 97%

Set 10 k6 Naive Bayes 1066 31 97%

Set 10 k6 OneR N/A N/A N/A

Set 10 k6 J48 1097 0 100%

Set 10 k6 LWL 967 130 88%

Set 10 k8 Hyperpipes 1064 33 97%

Set 10 k8 Naive Bayes 1067 30 97%

Set 10 k8 OneR N/A N/A N/A

Set 10 k8 J48 1096 1 100%

Set 10 k8 LWL 975 122 89%

Set 10 k11 Hyperpipes 1059 38 97%

Set 10 k11 Naive Bayes 1055 42 96%

Set 10 k11 OneR N/A N/A N/A

Set 10 k11 J48 1097 0 100%

Set 10 k11 LWL 979 118 89%

Set 10 k14 Hyperpipes 1023 74 93%

Continuing next page

86

Successes Failures Average of Success Rates

Set 10 k14 Naive Bayes 868 229 79%

Set 10 k14 OneR N/A N/A N/A

Set 10 k14 J48 941 156 86%

Set 10 k14 LWL 771 326 70%

Table B.4: List of document file extensions allowed through preprocessing whitelist

$$p 0 0 1 1sp 2 2

212 3 3 301 3d 3d 3d6

3df 3dg 3dz 4 4w7 4wt 602

a5r a5w a7p a7r aa aad ab65

abicollab abs abw aca acc accdp acp

acp acp acrypt ada adb adc ade

adn ados adp adt adv adx aep

aepx af2 af3 afd aff afp aft

agldei aglsl agp agr ahf alb3 alb4

alb5 ald ald5 alg ali ali all

alt3 alt5 alt6 amsm amst amx and

anl ans ans ansr anx apa apf

apf apo applocalize apr apr apt apw

asd asn asp asp asp ast asv

at2 at65 ath aup av aw aw

awp aws awt aww awwp axg axr

Continuing next page

87

b26 b27 b4s b4u bbl bbprojectd bc5

bcp bdsproj bdt2 bdt3 bean bfx bibtex

bil bina biz biz bizdocument bk bkg

bkr bks bld blg blg blg blt

bmm bobo boc bok boo book book

bookexport ?booktemplate brh bro bsb btd btf

btw btx burn burntheme bwp bxx bzabw

c00 c2e cap cap cap cap cap

cap cap cap cap cap cbf cbl

cbs cbt ccc cch cd2 cdc cdc

cdc cdd cdd cdf cdk cdl cdmz

cdp cds cdt cdt6 cdx cdz cer

cer cfd cfl cfl cfm cfr cgdc

ch4 che chi chm cho chp chp

chs cht cht cht cht cht cht

cht cht cif cipo cit cl4 clb

clbx cld clg cml cmp cmp cmr

cms cmx cnq cns cnt cod comicdoc

converterx cov cp cpf cpf cpi cpi

cpl cpp cpr cpt cpt cptx cpy

crf crp crwl cs csa csd csd

cse csf csk csp cst ctd ctk

Continuing next page

88

ctp ctx cty cvj cvl cvr cvt

cw3 cwk cwks cwwp cxl cxp da

da11 daf dal dbc dbi dbi dbm

dbp dcf dcf dcs dd ddc ddif

ddt dfl dft dfv dgpd dgr dgr

dgrh dgs dhe dia dic dict disco

dj dk@p dl dnt do d?4d doc

doc doc doc doc doc doc dochtml

docm docmhtml docx docxml dor dot dothtml

dotm dotx dox dox dox dox dp

dpd dpe dpg dpgraph dpo dproj dps

dpt drd drf drg drm drmx drt

dsf dsn dtf dtp dtp dtp dtr

dtr dvb dvi dwz dx dxd dxn

dxstudio dzm easmx eb ebh ebkproj ebs

ec4 ecg edd edm edml edn edn

edoc edrwx edt efp efx egt ehp

emd eml emlx emr enex enm env

enx enyd epdf epp eprtx ept epub

es esd esp ess et ete eth

evo evt evt evy ewb ewl exc

exc exp ez f96 fan faq far

Continuing next page

89

fax fbd fbl fbok fcs fd2 fdb

fdf fdm fdr fds fdt fdx fee

ffdata fff ffs fft fft fhz fig

fil fin fire flb flg flm flo

flo flp flp fls flw flw fly

fly fm fmap fmd fmp fmp3 fmt

fmt fmt fmt fodp fodt fp fpage

fpc fpj frg frm fsd fsif ftil

ftl ftp ftpl ftr ftr fts fts

fwk fwrt fx fx2 fxd fxr gam

gca3 gca4 gca4base gca4party gcf gcx gda

gdc gdf gdoc gen gexf gfc gform

gif2 gks gmk gmp gmx gna gnd

gno gp1 gp3 gp4 gp5 gph gpn

gpx gra grade grf grf grf grk

grv grx gs gsa gsc gsp gsp

gsw gtable gtd gtp gui gwb gwb

h2o hcr hcx hda hdc hdt hed

help hfd hft hhp hhp hht his

his hlf hlp hlp hlp hlp hm2

hm3 hmk hmp hmx hmxp hmxz hnc

hnd hot hpd hpd hpj hpo hpt

Continuing next page

90

hqz hsp hst hw3 hw3 hwp hxc

hxs hxv hyp hype i3d i3f iaf

ibatemplate ibcd ic icalevent icaltodo icodeproj icst

idc idml idx if iff ifo igx

ila ildoc imf imm imp imp imr

ims imsp imv inct ind ind indb

indn indt infopathxml ini ink inp inrs

insx inter inx iof ipf ipr ipr

iqp ish1 it itp its iv-vrml ivt

ivt iw iwp iwprj iwzip ix ix2

ixf ixi ixv jnl jnt jpx jrf

jsd jsd jtd jtp jtt jtx jw

jw jwl jwrp kbd kcl kdc kdd

key keynote kfl kfm kht kid kjv

kmp knt kpr kpt kwd la lab

latex lax lb lbl lch ldf ldf

let lgc lgf lgf lgpl lic lic

lix ll ll3 lma lnt loc loc

lof lof logonxp lp2 lpc lpd lrp

lsd lsl lsp lst lst lst lth

ltx lwp lwp lyr lyx m!93 m11

m13 maca mag manu map markdn mars

Continuing next page

91

maw max mbbk mbd mbox mbp mbx

mc mcbn mcc mcd mcr mcs mcsp

mcw mdb mdbhtml mdf mdhtml mdk mdr

me me meb med mell mellel met

mfa mfg mfo mfp mfp mft mhe

mhp mht mif mindnode mio mjdoc mla

mlj mlp mls mm mm mmap mmas

mmat mmd mmf mml mmo mmp mmpr

mmsw mol mon mp mp2 mpc mpj

mpls mpp mpp mpp_ mpr mpt mpv

mpw mpwd mpwr mpx mrf ms ms

msd msdvd mse msf msg mso mst

mst msw mswd mswmm mtp mtp mtx

mtx mtx mug mvb mvt mvw mw

mw mwd mwpd mwpp mwpr mwt mx2

mx3 nb nb nb nbp ncb ncd

ncf nct ncw ne3 nfo ng njx

?nmbtemplate nml not not not note note

np npd npf npi npl npl npp

nrp ns nst nte nvd nxd nxˆd

nx__ oa2 oa3 oas obd obd obr

obx ocdc oda odc odccubefile odf odif

Continuing next page

92

odm odo odp ods odt odt# ofl

ofm ofm ofn oft ogc ohw ole

ole2 olv oml omp omp one oos

op2 opd opd opj opj opn opt

opw opx opx or3 osc otc otf

otg oth otl otp otp ott out

ova ovd ovs owm ows oxps oxt

p2bp p2s p3 p65 pac pad pag

pag pages pat pb1 pbd pbk pbproj

pc pc pcb pcr pcr pd pdf

pdfxml pdf_ pdf_tsid pdi pdl pdp pdp

pdt pez pfd pfd pfl pfp pgs

ph phb pj4 pj5 pjt pkg pkp

pl plb plf plg plp pls plx

ply pm pm3 pm4 pm5 pm6 pm?

pmd pml pmp pmt pmw pmx pod

pol pot pothtml potx ppd ppf ppg

ppj ppl ppnt ppot pps ppsm ppsx

ppt ppt3 ppthtml pptm pptmhtml pptv pptx

pptxml ppv ppv pr2 pr3 pr4 prc

prd pre pre prel prf prn prn

prnx pro4 project prproj prs prs prs1

Continuing next page

93

prs2 prt prt1 prt2 prv prx ps

ps2 psf psf psg psmd psn psr

pss psw pt pt3 pt4 pt5 pt6

ptg ptm pto ptx pub pub pub

pubf pubhtml pubmhtml pve pw pwd pwd

pwi pwp pwt pwt pwt px pxp

pxt pxt pzfx pzt qbl qcd qct

qdf qhcp qhp qht qhtm qprj qpt

qrc qrf qrt qu2 qw qwd qwt

qxb qxt r0c r0f r0h r0z r3t

ra rap rav rcl rcp rdf rdf

rdf rdl rdlx rec ref rels rep

rep rep rep rep ret rev rf

rft rgn rit rmd rmd rmr ro

roff rosa rpc rpl rpmsg rpn rpt

rptr rrd rrpa rs rs rsf rt

rtf rtfd rvc rvf rw3 rxf rzb

s6bn s85 s8bn sa5 sam sam sbk

sbp sbz sc sc scb scd scr

scriv scrivx sct scw scw sd sdbn

sdbz sdc sdd sdd sdf sdg sdi

sdl sdm sdp sdp sdv sdw se

Continuing next page

94

se seek sem seo sff sff sff

sfs sgf sgl sgm sgm sgm sgml

sgml sgp shb shb shf shr shs

shw si sid sig sig sil sim

sla sld3 sld8 slds sle slf slf

slf slp slt sm smf smf smf

smh smm smm smp smp sms snf

snf snp sod soi sox sp4 spam

spd spdf spf spf spj spk spl

spo spp spp spr sps sps sql

ss4 ssc ssiw sskd ssx st sta

stc stc std std stg sti sti

stl stl stm stm stp stp stw

stw stx stx stx stx sty sty

sty su sub sum svs swd swe

swe swp sws sxg sxg sxi sxi

sxm sxm sxml sxw sy3 t t2k

t3001 t65 tab tabula-doc tah tal tbf

tcd tch tdoc tds tef tex texi

tg1 thr tip tip tk tld tlt

tlx tmb tmb tmd tmd tmd tml

tmv tns top topc tp tp tp

Continuing next page

95

tp3 tpl tpl tpl tpl tpl tpl

tpo tpt tpx tr5 tre tsm tst

tst tud tun tut tv4 tvc twbx

tww txk txm txn txt txt txt

txt u98 udf udt ulys uml uof

uop uot updf uxf vac vai vap

vbd vbp vbproj vcal vcard vce vcg

vcp vcproj vcxproj vdi vdoc vdproj vdx

vfc vh vhd vip vm vmc vmm

vmr vmx vor vsd vsp vst vsw

vsx vthought vts vtx vup vxml w

w w51 w60 w61 w6bn w6w w8bn

w8tn wb wbk wbk wcl wcl wcm

wcp wd0 wd1 wd2 wdbn wdcd wdf

wdl wdm wdoc ?webtemplate wgm wht whtt

wid wis wizhtml wkb wlf wlp wls

wmc wor word word wp wp4 wp42

wp5 wp50 wp6 wp7 wp? wpa wpc2

wpd wpd0 wpd1 wpd2 wpd3 wpf wpf

wpf wph wpl wpm wpost wpostx wpr

wps wps wpt wpw wpw wrd wrf

wrg wri wrlk wrt ws ws ws

Continuing next page

96

ws ws1 ws2 ws3 ws4 ws5 ws6

ws7 wsa wsd wsm wsq wsr wss

wt0 wtbn wtp wts wwcx wwh wwk

wws wxmx wxp wzn x40 x50 xa0

xap xav xbk XBRL xdoc xdp xdw

xe0 xej xel xfdf xfdl xft xgmml

xhp xlc xlc3 xlc4 xlc_ xlr xls

xlshtml xlsmhtml xlthtml xlw xmind xmls xmmas

xmmat xms xmt xpf xpf xpr xpr3

xprj xps xsc xsf xsn xtg xy4

xy4v xy? xzfx yar ybhtm ymg ywp

zif zn zoi zpt zrn

Table B.5: List of programming source code file extensions allowed through preprocessing
whitelist

11 19 2clk 3rf 4ge 4gl 4th

8 8xk a a a2w a2x a51

a66 a80 a86 aas abap abc abl

abs abt acgi acm acr act act

action actionscript actproj actx acu ad ad

ad2 ada ?adiumscripts ads adt adx aep

aex agc agi agls ago ags ahk

ahtml aidl akp akt alb alg alw

alx aml amos amw anm ap ap?

Continuing next page

97

apg apl aplt app applescript aps armx

aro arq art artproj ary as as3

as? asax asbx asc asc asc ascx

asf ash asi asic asm asm asmx

aso aso asp asp asp+ asproj aspx

asr ass asx asz atl atomsvc atp

atp au3 au? aut avs awk awl

axb axd axe axs b b b24

b2d bas bas bat bb bbc bbf

bcc bcf bcp bdt beam bet bgm

bhs bi bil bin bks bli bml

bml bml bmo bms boo borland box

bp bpk bpo bpr bps bpt brk

brml brs brt brx bs bs2 bsc

bsc bsh bsh bsm bsv ?bufferedimage bxb

bxl bxp bzs c c c c

c# c++ c– c– c86 cal cap

cap car cas cb cba cbl cbp

cbq cbs cc cc ccs cd cel

cfi cfo cfs cg cgi cgi cgvp

cgx ch chd cl cla cla class

clm clp cls cls clss clu clw

Continuing next page

98

clw cma cmake cmd cml cmm cmp

cms cob cod cod cod cod coffee

cola common con config configure cos coverage

?coveragexml cp cp cp cp? cpb cpp

cpr cpy cpy cpz cr crd cs

cs cs csattr csb csc csc csf

csgrad csh csh csh csh cshtml csm

csm csm csp csp csproj css csview

csx ctl ctp cx cxs cxt cxx

c__ d d d2j d4 datasource db2

db2tbl db2tr db2vw dba dbg dbheader dbml

dbo dbp dbpro dbproj dc dcd dcf

dcp dct dd ddb ddp deb def

def def def def def def defi

dep depend des des des dev devpak

dfb dfd dfm dfm dfn dg dgml

dht dhtml dia dic dif dil dkc

dlg dlg dmc dml dml dml dms

do do dob docstates dor dot dpd

dpj dpk dpk dplt dpq dpr dpr

dpr dqy drc dro ds ds dsa

dsb dsd dsl dso dsp dsr dsym

Continuing next page

99

dsym dt dtd dto dts dtx dvb

dwarf dwp dws dwt dwt dxl e

e e e ebc ebs ebs ebs

ebs2 ebuild ebx ec ecore ecorediag edge

edml egg el elc enml ens epj

epl epp eps2 epsf epsi ept eql

eqn es es esp ex exc exe

exp exp exu exw f f f40

f77 f90 f95 fasl fcgi fdml fdt

ff fgl fil flm fmb fmt for

for for fpc fpi fpp frbd frj

frs frt fs fsi fsproj fsproj fsscript

fsx ftn fus fwx fxl galaxy gas

gbap gbl gc1 gc3 gch generictest gfe

gg gitignore gl glade gld glf glf

gls gml gml gnt goh gp gq

gs gs gsb gss gst gsym gus

gv gyp h h++ h– h16 h2o

h6h h86 hal has hbx hbz hc

hcw hh hic hkp hks hlsl hms

hom hp? hpf hpp hrh hs hsc

hsdl hsm ht4 htc htd htm htr

Continuing next page

100

hxa hxml hxp hxx hydra h__ i

i iap iba ic ice icl icn

idb idb idc ide idl idl ifp

ig ii ijs ik il il ilk

image iml imp inb inc inc inc

inc inf ini ino inp ins ins

io io ipb ipch ipf ipp ipproj

ips iqy irc irobo is isa ism

iss iss isu isym ix j jacl

jad jav java javajet jbc jcl jcm

jdp jks jl jlc jomproj jpage jpd

js js js js jsa jsb jse

jsf jsfl jsh jsm json jsp jss

jsx jsxinc judo kb kcl kdevprj ked

kex kix kmdi kml kmt komodo kon

kpl ksc ksh kst kumac l l

l l1i lamp lap lasso lay lbi

lds lds less lex lex lgt lhs

li$ lib lib_ licx lisp lit ll

ll lml lmp lmv lng lng lng

lng lng lng lnk lnp lnx lo

loc lol lp lpr lpx lrf lrs

Continuing next page

101

ls1 lsp lsp lss lst lua luca

lwa lxk lxsproj lzco m m m

m m2 m2r m3 m4 m4x mac

mac magik mak mak mak make make

maki mal maml map mash master mat

max mb mbs ?mbtemmplate mc mc mc

mcl mcm mcml mcp mcr mcr md

mdex mdf mdf mdp mdp mdp mec

mel mem mex mfcribbon-ms mfl mg mi

mingw mingw32 mis mix mk mke ml

mli mli mln mls mlsxml mlts mm

mm mmb mmch mmjs mml mnd mo

moc mod mod mod moo mp? mpd

mpm mpp mpx mqt mrc mrd mrl

mrs ms ms msc mscr msdev msha

msil msl msl msl msm mso msp

mss mss mst msvc msym mt mtp

mtx mtx mv mvc mwp mx mxe

mxmf myapp mzp nbin nbk ncb ncx

nes netboot nlc nml nms npi nqc

nrs nse nsi nt nxc o obj

obj obr obs ocb odc odh odl

Continuing next page

102

odl ods ogl ogr ogs ogx oks

oplm opt opx oqy orc osas osax

osg ow owd owl ox p p

pag pal palm param pas pas pas

pas pas pb pba pbi pbl pbl

pbp pbq pbxbtree pbxproj pc pcd pch

pcm pcs pd pdb pdb pdb pde

pdl pdl pdl pdo pdp pds pem

perl pf0 pf1 pf2 pf4 pf? pfa

pfx pgm pgm pgml ph ph ph3

phl php php1 php2 php3 php4 php5

phps phs phtml pjt pjt pjx pkb

pkg pkh pl pl pl1 plc plc

plex pli plm pls plx plx pm

pm pmp pnproj pnpt poc policy pom

pp pp ppa ppam ppo prg prg

prg pri pri prl prm pro pro

proto prx psc1 psd psf psl psl

psl psm1 psn pspscript psu ptb ptl

ptl ptx ptxml pun pvs pwn pxl

pxl pxo pxt py py pyc pyo

pyw pyx qcf qdl qlc qml qpr

Continuing next page

103

qrc qry qx r r raf rap

rapc rb rb rb rb rbc rbf

rbp rbs rbt rbw rbx rc rc2

rcc rdf rdf rdoff rdv reb res

res resources resx rex rexx rfs rfx

rgs rguninst rh rip rlz rml rng

rob robo robo rpg rpj rptproj rpy

rpyc rqy rrc rrh rsm rsp rss

rssc rsym rts rul run rvb rvt

rws rxs rxs s s s2s s43

s4e sal sar sas sas sax sb

sbi sbl sbr sbs sc sc sc

sca scb scb scm scm scm scp

scp scpt scptd scr scr scr scs

sct sct sct scx scz sda sdef

sdl seman sen sfx sh si sim

sim simple sit sjava sjc sjs skp

sl sl slf sln slt sm sm

sma smd sml sml smm smw smx

snippet sno sp? spi spk spr sps

spt spt spt spx sqb sql ?sqldataprovider

sqljet src src src srp srz ss

Continuing next page

104

ss ssc ssc ssc ssc ssh2 ssi

ssq st sti stl stm sts stx

sus svc svx sw swg swt sxs

sxt sym sym sym t t t

t t2w tab tag tal tal targets

tcl tcl tcsh tds tec tem template

texinfo text tgml thtml ti tig tik

til tiprogram tk tla tlc tld tlh

tlh tli tli tmh tokend tpl tpm

tps tpt tpx tql tql tra triple-s

trs trt tru tsc tsq tst ttl

tu tur turboc3 txc txl txml txt

txx udf ufdl ui uit uix ulp

umlclass unx uvproj v v18 v4e v4s

vad vap vb vba vbe vbg vbi

vbp vbproj vbs vbw vbx vc1 vc15

vc2 vc4 vc5 vc6 vc7 vce vcp

vcproj vcwin32 vcxproj vd vddproj vdp vdproj

vgc vi vic vim vip viw vls

vmx vpc vpj vps vre vrw vsmacros

vspolicy vssscc vstemplate vtm vtml vup vx

vxml w w waf was wax wbc

Continuing next page

105

wbt wch wcm wdl wdx9 wfs win

?win32manifest wis wix wixout wmc wml wml

wmlc wmls wmlsc woa wod wowproj wpj

wpk wpm wpm ws wsc wsd wsdd

wsdl wsf wsrc wsym wx wxi wxl

wxs wxs wzs x x x xaml

xap xbap xbc xbd xbl xbn xcl

xcodeproj xcp xdo xds xfm xgl xhtm

xib xin xjb xl xla xlm xlm3

xlm4 xlm_ xlv xmap xme xml xmljet

xms xmta xn xoml xpl xr xrc

xsc xsc xsc xsd xsl xslt xsql

xst xtx xtxt xu xui xul xwc

y yab yml2 yxx z zasm zbi

zcls zero zfd zfrm zfs zh_tw zms

zpk zpl zsc zsh zsrc zts zws

˜1˜ ˜df ˜pa

106

Dataset Number of Records
Set 1 567
Set 2 193
Set 3 124
Set 4 528
Set 5 1073
Set 6 1041
Set 7 973
Set 8 1153
Set 9 1046

Set 10 1097

Table B.6: Record counts across datasets

107

Bibliography

[1] The source for fire extensions information. Website, 2012. http://www.file-extensions.
org/.

[2] Barman Badan. Knol: a gateway to encyclopedic article.
http://badanbarmanknol.wordpress.com/article/knol-a-gateway-to-encyclopedic-article-
3bexxvrdm2i7n-13/, March 2010.

[3] M. Baez, A. Birukou, F. Casati, and M. Marchese. Addressing information overload in the
scientific community. Internet Computing, IEEE, 14(6):31 –38, nov.-dec. 2010.

[4] Liliana Cabral, John Domingue, Enrico Motta, Terry Payne, and Farshad Hakimpour. Ap-
proaches to semantic web services: An overview and comparisons. pages 225–239, 2004.

[5] Guanling Chen and David Kotz. A Survey of Context-Aware Mobile Computing Research.
Technical report, Hanover, NH, USA, 2000.

[6] Harry Chen, Tim Finin, and Anupam Joshi. An ontology for context-aware pervasive com-
puting environments. Special Issue on Ontologies for Distributed Systems, Knowledge Engi-
neering Review, 18:197–207, 2003.

[7] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and Richard
Harshman. Indexing by latent semantic analysis. Journal of the American Society for Infor-
mation Science, 41:391–407, 1990.

[8] Jacob Eisenstein and Randall Davis. Visual and linguistic information in gesture classifi-
cation. In ACM SIGGRAPH 2007 courses, SIGGRAPH ’07, New York, NY, USA, 2007.
ACM.

[9] L. Fisher. How to Dunk a Doughnut: The Science Of Everyday Life. Arcade Pub., 2003.

[10] Eibe Frank, Mark Hall, and Bernhard Pfahringer. Locally weighted naive bayes. In Pro-
ceedings of the Conference on Uncertainty in Artificial Intelligence, pages 249–256. Morgan
Kaufmann, 2003.

[11] Gregory Gay, Tim Menzies, Bojan Cukic, and Burak Turhan. How to build repeatable exper-
iments. In Proceedings of the 5th International Conference on Predictor Models in Software
Engineering, PROMISE ’09, pages 15:1–15:9, New York, NY, USA, 2009. ACM.

108

http://www.file-extensions.org/
http://www.file-extensions.org/

[12] Paolo Giudici. Applied Data Mining: Statistical Methods for Business and Industry (Statistics
in Practice). Wiley, 2003.

[13] Thomas R. Gruber. Toward principles for the design of ontologies used for knowledge shar-
ing. Int. J. Hum.-Comput. Stud., 43(5-6):907–928, December 1995.

[14] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H.
Witten. The weka data mining software: an update. SIGKDD Explor. Newsl., 11(1):10–18,
November 2009.

[15] Robert C. Holte. Very simple classification rules perform well on most commonly used
datasets. In Machine Learning, pages 63–91, 1993.

[16] Xin Jin, Yanzan Zhou, and Bamshad Mobasher. Web usage mining based on probabilistic
latent semantic analysis. In Proceedings of the tenth ACM SIGKDD international conference
on Knowledge discovery and data mining, KDD ’04, pages 197–205, New York, NY, USA,
2004. ACM.

[17] James Joyce. Bayest́heorem. In Edward N. Zalta, editor, The Stanford Encyclopedia of
Philosophy. Fall 2008 edition, 2008.

[18] M.W. Kadous, Mohammed Waleed Kadous, and Supervisor Claude Sammut. Temporal clas-
sification: Extending the classification paradigm to multivariate time series. Technical report,
University of New South Wales, 2002.

[19] Marziah Karch. Annotum definition. Website, 2012. http://google.about.com/od/
experiment_graveyard/g/Annotum-Definition.htm/.

[20] Bryan Lemon. The effect of locality based learning on software defect prediction . ProQuest,
UMI Dissertation Publishing, 2011.

[21] Bryan Lemon and Daniel Sloan. Graphical knowledge advantage machine. 2012.

[22] Henry Lieberman. Letizia: an agent that assists web browsing. In Proceedings of the 14th
international joint conference on Artificial intelligence - Volume 1, IJCAI’95, pages 924–929,
San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

[23] Pamela J. Ludford, Dan Frankowski, Ken Reily, Kurt Wilms, and Loren Terveen. Because i
carry my cell phone anyway: functional location-based reminder applications. In Proceedings
of the SIGCHI conference on Human Factors in computing systems, CHI ’06, pages 889–898,
New York, NY, USA, 2006. ACM.

[24] J. B. MacQueen. Some methods for classification and analysis of multivariate observations.
In L. M. Le Cam and J. Neyman, editors, Proc. of the fifth Berkeley Symposium on Mathe-
matical Statistics and Probability, volume 1, pages 281–297. University of California Press,
1967.

109

http://google.about.com/od/experiment_graveyard/g/Annotum-Definition.htm/
http://google.about.com/od/experiment_graveyard/g/Annotum-Definition.htm/

[25] Sharon Bertsch McGrayne. The Theory That Would Not Die: How Bayes’ Rule Cracked
the Enigma Code, Hunted Down Russian Submarines, and Emerged Triumphant from Two
Centuries of Controversy. Yale University Press, 2011.

[26] Hiroshi Motoda and Kenichi Yoshida. Machine learning techniques to make computers easier
to use, 1998.

[27] Tapio Niemi, Marko Niinimäki, Jyrki Nummenmaa, and Peter Thanisch. Constructing an
olap cube from distributed xml data. In Proceedings of the 5th ACM international workshop
on Data Warehousing and OLAP, DOLAP ’02, pages 22–27, New York, NY, USA, 2002.
ACM.

[28] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1994.

[29] J. Ross Quinlan. C4.5: Programs for Machine Learning (Morgan Kaufmann Series in Ma-
chine Learning). Morgan Kaufmann, 1992.

[30] R. Reddy, L. Wang, S. Reddy, S. Devalapalli, G. Sasanka, S. Macha, S. Teja, R. Doppalapudi,
J. Yu, and J. Yu. Vijjana: A pragmatic model for collaborative, self-organizing, domain
centric knowledge networks. In IKE, pages 116–121, 2008.

[31] Irina Rish. An empirical study of the naive Bayes classifier. In IJCAI-01 workshop on
”Empirical Methods in AI”.

[32] Chris Rorden. ezanova free statistical software. Website, 2012. http://www.
mccauslandcenter.sc.edu/mricro/ezanova/index.html.

[33] Mehran Sahami, Susan Dumais, David Heckerman, and Eric Horvitz. A bayesian approach
to filtering junk e-mail, 1998.

[34] Leo Sauermann, Gunnar Aastr, Malte Kiesel, Heiko Maus, Dominik Heim, Danish Nadeem,
Benjamin Horak, and Andreas Dengel. A.: Semantic desktop 2.0: The gnowsis experience. In
International Semantic Web Conference. Volume 4273 of Lecture Notes in Computer Science,
pages 887–900. Springer, 2006.

[35] Leo Sauermann, Ansgar Bernardi, and Andreas Dengel. Overview and outlook on the se-
mantic desktop. In In Proc. of Semantic Desktop Workshop at the ISWC, 2005.

[36] Elizabeth Shriver, Christopher Small, and Keith A. Smith. Why does file system prefetching
work? In Proceedings of the annual conference on USENIX Annual Technical Conference,
ATEC ’99, pages 6–6, Berkeley, CA, USA, 1999. USENIX Association.

[37] Randy Franklin Smith. The Windows Server 2003 Security Log Revealed. Monterey Tech-
nology Group, Incorporated, USA, 2nd edition, 2007.

110

http://www.mccauslandcenter.sc.edu/mricro/ezanova/index.html
http://www.mccauslandcenter.sc.edu/mricro/ezanova/index.html

[38] Jaideep Srivastava, Robert Cooley, Mukund Deshpande, and Pang-Ning Tan. Web usage
mining: discovery and applications of usage patterns from web data. SIGKDD Explor. Newsl.,
1(2):12–23, January 2000.

[39] Werner Vogels. File system usage in windows nt 4.0. SIGOPS Oper. Syst. Rev., 33(5):93–109,
December 1999.

[40] Luyi Wang, Ramana Reddy, Sumitra Reddy, and Asesh Das. A context centric model for
building a knowledge advantage machine based on personal ontology patterns. In SWWS,
pages 99–105, 2011.

[41] Geoffrey I. Webb, Janice R. Boughton, and Zhihai Wang. Not so naive bayes: Aggregating
one-dependence estimators. Machine Learning, 58:5–24, 2005. 10.1007/s10994-005-4258-6.

[42] Ian H. Witten and Eibe Frank. Data Mining, Second Edition: Practical Machine Learning
Tools and Techniques, Second Edition (The Morgan Kaufmann Series in Data Management
Systems). Morgan Kaufmann, 2005.

[43] Wolfgang Woerndl and Georg Groh. A social item filtering approach for a mobile semantic
desktop application. In AAAI Spring Symposium: Social Semantic Web: Where Web 2.0
Meets Web 3.0, pages 82–83, 2009.

[44] Harry Zhang. The Optimality of Naive Bayes. In Valerie Barr and Zdravko Markov, editors,
FLAIRS Conference. AAAI Press, 2004.

[45] Hai Zhuge. Autonomous semantic link networking model for the knowledge grid. Concur-
rency and Computation: Practice and Experience, 19(7):1065–1085, 2007.

111

	A Work-Pattern Centric Approach to Building a Personal Knowledge Advantage Machine
	Recommended Citation

	Introduction
	Problem Statement
	Sample Scenario

	Knowledge Advantage Machine
	KAM Architectural View
	Contributions of Thesis
	Outline of Thesis

	Research Objectives
	Method of Inquiry
	Research Questions
	Summary

	Background and Related Work
	Semantic Web
	Semantic Desktop
	Web Usage Mining
	Preprocessing
	Pattern Discovery
	Pattern Analysis

	Graph Based Induction
	Ontological Research
	Classifiers
	Naive Bayes
	J48
	LWL
	Hyperpipes
	OneR

	Summary

	Work Pattern Centric Knowledge Advantage Machine
	WPCKAM Architectural View
	File Usage Prediction
	Technologies
	Windows Auditing
	WEKA

	How the Advantage is Gained
	Context Awareness
	Presenting Predicted Files
	Measuring JAN Importance

	Summary

	Experimental Setup and Analysis of Results
	Overview of Setup
	Preprocessing
	Results
	Classification
	Hyperpipes
	Naive Bayes Classification
	J48 Classification
	LWL Classification
	OneR Classification

	Analysis
	Summary

	Conclusions
	Hypotheses
	How the Advantage is Gained
	Context Awareness
	Presenting Predicted Files
	Measuring JAN Importance

	Future Work

	Reproducing the Experiments
	Acquiring the Software
	Obtaining Data
	Running your Experiments

	Raw Data and Charts
	Various Charts

