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Abstract

The Effect of a Missing at Random Missing Data Mechanism on a Single
Layer Artificial Neural Network with a Sigmoidal Activation Function and the

Use of Multiple Imputation as a Correction

Taron Dick

Missing data is a common problem encountered in statistical analysis. How-
ever, little is known about how bias inducing missing at random missing data
mechanisms affect predictive model performance measures such as sensitivity,
specificity, error rate, ROC curves, and AUC. I investigate the effect of missing
at random missing data mechanisms on a single layer artificial neural network
with a sigmoidal activation function, equivalent to a binary logistic regression.
Binary logistic regression is frequently used in health research and so it is a
logical starting point to understand the effects of missing data on statistical
learning models that could be used in health research. I then examine whether
multiple imputation is a useful analytic correction for improving the predictive
model performance measures relative to performing a complete case analysis.

Two simulation studies are conducted to understand how the complexity of
the missing data mechanism, type of covariate missing, and rate of missing
values affect the measures of interest and whether multiple imputation is robust
to the various scenarios investigated. It was found that sensitivity, specificity,
and error rate estimates were biased for all scenarios and the magnitude of
bias increased as the missing rate increased. However, the AUC remained
unbiased. Multiple imputation was observed to be an effective correction for
missing values by decreasing the bias of the performance measures relative to
the complete case analysis.

I conclude that missing at random missing data mechanisms do affect per-
formance measures such as sensitivity, specificity, and error rate estimates,
but multiple imputation is a useful analytic correction for reducing the bias
of these measures. It is advised that caution should be taken when reporting
AUC and it should be reported alongside other measures such as sensitivity
and specificity.
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Chapter 1

Introduction

Statistical learning techniques are increasingly popular for understanding
data and can therefore be useful when analyzing various data sources such as
EMR data. Depending upon the research question, this may be through finding
associations between variables or building models to make predictions for
future observations. These techniques may also be used for exploring data to
generate hypotheses for new experiments, examine trends, or identify clusters
of related patients within the data.

Statistical learning can be classified into two categories – unsupervised and
supervised [17]. Unsupervised learning refers to finding relationships between
different input variables (eg. predictors) with no corresponding output variable
(eg. response) such as through clustering similar observations together. Super-
vised learning refers to building a statistical model for predicting an output
(response) Y based on p different inputs (predictors) X1, X2, ..., Xp. This is
accomplished by estimating a function f(X) that maps the values of the input
variables X to a value of the output variable Y . The focus of this thesis is on
supervised learning.

For supervised learning, suppose a dataset has p independent variables X1, X2,

..., Xp and a dependent variable Y . The relationship between X = (X1, X2, ..., Xp)
and Y can be written as

Y = f(X) + ε (1.1)

where f(X) is some function of X1, X2, ..., Xp and ε is a random error term
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independent of X . The function f(X) may be estimated for inference or pre-
diction. I will focus on prediction only so there are p predictors X1, X2, ..., Xp

and the response Y can be predicted by

Ŷ = f̂(X) (1.2)

since it is assumed the error term averages to zero (eg. E[ε | X] = 0) [17].

An important measurement to take into account is the accuracy of Ŷ because
f̂(x) is not a perfect estimate of f . This is because Y is a function of an error
term ε (Equation 1.1) which cannot be predicted using X and represents a
source of irreducible error. Another type of error, reducible error, can also play
a role, but this type of error can be eliminated by using appropriate statistical
techniques. Therefore, the goal is to estimate f while minimizing the reducible
error in order to get the most accurate prediction possible.

While EMR data may have many missing values, little is known about how this
missing data affects the predictive ability of these techniques. One challenge
with EMR data is not knowing whether information is missing due to lack of
documentation (eg., a value is not recorded because it is not perceived to be rel-
evant) or if it is missing due to lack of collection (eg., a test is not performed).
Missing data has the potential to bias results and lead to incorrect conclusions
[5].

This thesis examines the impact of missing at random missing data mech-
anisms on neural network prediction. The focus is on a single layer neural
network with a sigmoidal activation function, which is the equivalent of a bi-
nary logistic regression. The utility of multiple imputation (MI) as a correction
is also assessed. The main hypothesis is that multiple imputation will correct
the prediction accuracy from machine learning classifications models relative
to performing a complete case analysis, measured by sensitivity, specificity,
receiver operating characteristic (ROC) curve, and area under the ROC curve
(AUC).

A simulation study is conducted to examine how missing data affects pre-
diction and if multiple imputation improves the performance of predictive
models. If the results show that a complete case analysis is sufficient, then
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researchers may not have to worry about implementing more complex tech-
niques. However, if the results show a complete case analysis is insufficient,
then researchers should consider using MI techniques because many software
programs already have this capability built in (eg., jomo [18], mice [25], and
norm [16] in R [19]; PROC MI in SAS[24]).

This thesis is organized as follows: Chapter 1 finishes with a literature review;
Chapter 2 describes common methods for handling missing data, different
types of missing data mechanisms, the theoretical effect missing data has on
a complete case analysis, and the process of multiple imputation; Chapter 3
describes the single layer neural network with a sigmoidal activation function
equivalent, the logistic regression model, and how to assess predictive model
performance; Chapter 4 describes the simulation study design and results;
Chapter 5 provides a discussion of the results as well as implications for future
research.

1.1 Literature Review

Prior research examines the effect of missing data mechanisms on logistic
regression complete case analysis with Bartlett, Harel, and Carpenter [2] show-
ing a logistic regression complete case analysis can provide unbiased estimates
of the exposure odds ratio expressed through the model coefficients β under a
wide range of missing data mechanisms. They found that 1) when missingness
depends on the outcome only, the intercept β0 is biased while βx, the coeffi-
cients of the regressors, are unbiased; 2) when missingness depends on the
covariates only, no β are biased; 3) when the missingness depends on both
the outcome and the covariates, both β0 and βx are biased. However, these re-
sults are not known to be extended to a prediction setting nor is the utility of
multiple imputation as a correction within that setting known.

However, other research does examine the utility of multiple imputation (MI)
as a correction for missing data in logistic regression models. Numerous clini-
cal studies have shown that MI produces less biased estimates than a complete
case analysis. Choi, Nam, and Kwak [6] discuss how varying rates of missing
data (10-50%) in a clinical dataset affect logistic regression coefficient esti-
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mates. It was found that the bias of parameter estimates when performing a
complete case analysis increases as the rate of missing data increased but mul-
tiple imputation as a correction can reduce the bias of the parameter estimates.
It is further shown that multiple imputation reduces the bias more than single
imputation. However, this study does not examine the effect of missing data in
the prediction setting.

Hallgren et al. [11] used logistic regression to estimate the effect of a drug
on heavy drinking outcomes. They performed a complete case analysis and
compared it with results from imputation techniques such as last observation
carried forward, worst case scenario, and multiple imputation. They found
MI yielded the least biased estimates and suggested this method to correct for
missing data when analyzing binary outcomes for alcohol clinical trials.

van der Heijden et al. [37] investigated handling missing data via complete
case analysis, missing indicator method, single imputation, and multiple im-
putation finding that complete case analysis and missing indicator methods
should be avoided in multivariate diagnostic research. They did not find MI
to be more effective than single imputation due to the low number of missing
values but acknowledge that MI is often superior based on previous research.

Bounthavong, Watanabe, and Sullivan [4] examined MI use for correcting
missingness in EMR data assuming values for covariates were missing at ran-
dom (MAR). Unlike the previous studies, MI did not alter the results compared
to performing a complete case analysis despite having missing data for 22%
of the subjects. Furthermore, this study does not examine how missingness in
electronic health records data affects predictive performance.

Some studies have examined missingness in a prediction setting but have not
assessed the effect on sensitivity, specificity, ROC curves, and AUC through
simulation studies with mechanisms of varying complexity, different types of
missing covariates, and various missing rates nor has the utility of multiple im-
putation across various scenarios been examined. For example, Peng, Lei, and
Naijun [24] found that the prediction accuracy is affected when >20% of data
is missing but do not examine the utility of MI as a correction. Williams et al.
[38] examined incomplete data classification for logistic regression but use



5

an estimated conditional density function and claim it is better than standard
imputation techniques. Baneshi and Talei [1] examined 4 categorical covari-
ates and used Cox regression models to compare how different imputation
methods affected modeling of breast cancer specific death. They found that the
multiple imputation by chained equations (MICE) model produced the highest
sensitivity and specificity over median, regression, and EM imputation. Finally,
Masconi et al. [21] examined imputation techniques for missing data in undi-
agnosed diabetes risk prediction using a specific subset of study patients and
found that deletion methods resulted in the lowest concordance statistic while
single imputation yielded similar results as multiple imputation.
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Chapter 2

Missing Data

2.1 Common Methods for Handling Missing Data

There are several common methods for handling missing data including dele-
tion methods and single imputation. The two following sections provide a brief
summary of deletion methods and single imputation techniques to emphasize
reasons for MI consideration. Missing data mechanisms are then discussed
before introducing the multiple imputation procedure in greater detail.

2.1.1 Deletion Methods

Deletion refers to removing subjects with missing data from the analysis data
set. One deletion method is listwise deletion or complete case analysis in
which any subject with a missing value in any variable of interest is removed
from the dataset and excluded from all analyses [7, 39]. The advantage is
that it is simple and the same data set is used across all analyses. However,
a disadvantage is a reduced sample size and statistical power. Furthermore,
there is a loss of information from the other variables that were not missing for
the subject. The impact of listwise deletion depends on why data is missing.
If data are not missing completely at random (MCAR) as defined in section
2.2.1, a complete case analysis could result in biased estimators [20]. This
is important because complete case analysis is the most popular method of
handling missing data and often is the default option in statistical software
packages. Therefore, if a data analyst ignores the missing data mechanism
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and blindly runs a complete case analysis, it is possible that the results will be
biased.

Another deletion method is pairwise deletion [7,39]. Pairwise deletion is also
known as available case analysis because with this method an observation
or subject is deleted when it is missing a variable required for a particular
analysis. However, this observation may be included in another analysis when
all required variables for that particular analysis are present. The advantage
of available case analysis over complete case analysis is that each analysis
will have as many cases as possible. It attempts to maximize the available
information to be used for each separate analysis. However, the disadvantage
of available case analysis is that a different subsample is used for each analysis
so analyses may not be comparable.

2.1.2 Single Imputation

Rather than removing observations with missing data, single imputation is
an alternative method for dealing with missing data by replacing a missing
value with a well chosen value. For example, mean imputation replaces a
missing value with the mean of the nonmissing values for that variable [7,28].
This produces a complete dataset for analysis but ignores the relationship
between variables so the covariance and correlation estimates in the data are
underestimated. Furthermore, the distribution of the mean is distorted so the
underestimated standard errors can lead to incorrect inferences [13,33].

Regression mean imputation uses the complete cases to estimate a regression
equation [7,10,39]. For each variable with missing values, the complete cases
are regressed on the other variables in the data set. Now the missing value for
an incomplete case can be predicted by using the non-missing information for
that incomplete case. The advantage is using information from other observed
data so estimates of means will vary rather than the same value being repeated
as in mean imputation. However, this method does not account for the variabil-
ity surrounding the predicted mean so standard errors are still underestimated
[8]. A form of single imputation for longitudinal studies is last observation car-
ried forward where missing values are replaced by the previous value observed,
but this type of imputation also introduces error [7,8,39].
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2.2 Missing Data Mechanisms

The notation used for missing data follows that of Carpenter and Kenward [5].
Suppose there is a sample of n units (subjects) from a population that is used
to make inferences about a set of p population parameters θ = (θ1, ..., θp)

T .
Let Yi = (Yi,1, Yi,2, ..., Yi,p)

T represent the p variables collected on subject i,
i = 1, ..., n. The subset of p variables observed for each subject i is denoted
Yi,O and the subset of p variables missing for each subject i is denoted Yi,M ,
hence Yi = (Yi,O,Yi,M). Let Ri = (Ri,1, ..., Ri,p)

T be an indicator for item
response such that, for each individual i = 1, ..., n and variable j = 1, ..., p,
Ri,j = 1 if Yi,j is observed and Ri,j = 0 if Yi,j is missing.

The missing data mechanism is then defined as the probability of observing
data for subject i given the values of Yi,

Pr(Ri | Yi). (2.1)

This probability statement differs depending on the cause of the missing data.
Rubin (1976) defines three common missing data mechanisms: missing com-
pletely at random, missing at random, and missing not at random [20].

2.2.1 Missing Completely at Random

Data are missing completely at random (MCAR) if the probability of miss-
ingness does not depend on any observed or unobserved data for that subject,

Pr(Ri | Yi) = Pr(Ri). (2.2)

When data are MCAR, the observed data are a representative subset of the
population so a complete case analysis will not bias estimates. However, in-
formation has still been lost; there is a loss of efficiency and standard errors of
estimates will be larger [5,15,28].

MCAR is a strong assumption that cannot always be validated since there is
often no obvious way of determining whether the probability of observing a
variable depends on the value of the unobserved variable. Despite the exis-
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tence of an MCAR test [19], this remains a challenge as Schafer showed some
mechanisms may be untestable [34].

2.2.2 Missing at Random

It is often more reasonable to assume data are missing at random where the
missingness can be accounted for by a subset of variables where there is com-
plete information [5,15,28]. That is, given the observed data, Yi,O, the proba-
bility of missingness does not depend on the unobserved data, Yi,M , written as

Pr(Ri | Yi) = Pr(Ri | Yi,O). (2.3)

For example, let Yi,1 be a continuous response of total cholesterol and Yi,2 be
a covariate of sex that is always observed such that Ri,2 = 1 for all i subjects.
Now assume males have higher total cholesterol than females and males are
less likely to report their total cholesterol. However, within males and females
the probability of observing the total cholesterol does not depend on the value
of total cholesterol. Thus, within categories of sex, the total cholesterol is
MCAR. This implies that total cholesterol is MAR dependent on sex and the
probability of observing the total cholesterol given sex is expressed as

Pr(Ri,1 = 1 | Yi,1, Yi,2) = Pr(Ri,1 = 1 | Yi,2). (2.4)

Now this can be rearranged to find the distribution of total cholesterol given
sex can be expressed as

Pr(Yi,1 | Yi,2, Ri,1 = 1) =
Pr(Yi,1, Yi,2, Ri,1 = 1)

Pr(Yi,2, Ri,1 = 1)

=
Pr(Ri,1 = 1 | Yi,1, Yi,2)Pr(Yi,1, Yi,2)

Pr(Ri,1 = 1 | Yi,2)Pr(Yi,2)

= Pr(Yi,1 | Yi,2)

(2.5)

by using the definition of conditional probability, Pr(B | A) = Pr(A|B)Pr(B)
Pr(A) .

Thus, 2.5 verifies the distribution of total cholesterol within sex categories is
MCAR since it is the same in the population, observed data, and unobserved
data.

The MAR mechanism assumption is untestable [34], thus we should have
reasonable justification before using multiple imputation as a correction. First,
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we need the conditional distributions of partially observed variables given
fully observed variables to be the same in subjects who have data observed
and subjects who do not have data observed. Second, we need to be able to
piece together the marginal distributions of the observed patterns to estimate
the joint distribution of the data [5]. If these two conditions are satisfied then it
is reasonable to proceed under the assumption that these data are MAR.

2.2.3 Missing Not at Random

The final missing data mechanism is missing not at random where the missing-
ness is related to the values of the unobserved data [5]. That is, the probability
of a missing value depends on the underlying value. Thus, unlike MAR, the
dependence still remains given the observed data, such that

Pr(Ri | Yi) 6= Pr(Ri | Yi,O). (2.6)

Carpenter et. al [5] indicate that multiple imputation is further complicated
since we must explicitly specify the joint distribution of subject i’s variables
and the response indicator for observing those variables, Pr(Ri,Yi), as either a
selection model

Pr(Ri | Yi)Pr(Yi) (2.7)

or a pattern mixture model

Pr(Yi | Ri)Pr(Ri). (2.8)

As 2.7 shows, a selection model specifies the marginal distribution of Yi and
the conditional distribution of Ri given Yi. On the other hand, 2.8 shows a
pattern mixture model specifies the marginal distribution of Ri and the con-
ditional distribution of Yi given Ri [5]. It is important to remember that the
MCAR, MAR, and MNAR assumptions are made for specific analyses and not
a characteristic of the dataset itself [5].

2.3 Consequences of Missing Data Mechanisms
for Regression Analyses

I present the effects of missing data mechanisms on parameter estimates in
terms of bias and loss of information for three different situations: missing
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response only, missing covariates only, or missing both response and covari-
ates. If a complete case analysis produces valid estimates then the missing
data mechanism is considered ignorable and does not need to be included in
the model. Situations where estimates are biased require the mechanism to be
specified and it is considered nonignorable. I will present these observations
within the context of linear regression, Y = Xβ + ε.

2.3.1 Partially Observed Response

Suppose there is a fully observed variable X but the response Y is only par-
tially observed. The contribution from unit i to the likelihood for the parame-
ters, β, of a linear regression model is [5]

Li(β, θ | Yi, Xi, Ri) = Pr(Ri, Yi | Xi, θ) = Pr(Ri | Yi, Xi, θ)Pr(Yi | Xi,β).

(2.9)
The first term on the right hand side of 2.9 is the missing data mechanism
model and contains information about parameters θ while the second term is
the outcome model containing information about β.

If Yi is MAR given Xi then the contribution for an individual with a missing
response is ∫

YM

n∏
i=1

Pr(Ri | Yi,O, Xi, θ)Pr(Yi | Xi,β)dYi,M

=
n∏
i=1

Pr(Ri | Yi,O, Xi, θ)

∫
YM

Pr(Yi | Xi,β)dYi,M

=
n∏
i=1

Pr(Ri | Yi,O, Xi, θ).

(2.10)

Thus, units with missing response only contribute 1 to the likelihood and do
not affect the MLE of β. This is because when integrating 2.9 the first term
becomes a constant in the log-likelihood function when optimizing for β since
it only includes information about θ and the second term integrated over the
range of all possible values for Yi given Xi is 1 when data is missing. There-
fore, performing a complete case analysis when a response is MAR given a
fully observed covariate will not bias parameter estimates and is considered
valid [5].
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However, this is not the case when the response Yi in MNAR. If Yi is MNAR
then the contribution from unit i is∫ n∏

i=1

Pr(Ri | Yi,O, Yi,M , Xi, θ)Pr(Yi | Xi,β)dYi,M . (2.11)

In this instance the likelihood contribution for β is caught up with the missing
data mechanism. This suggests a complete case analysis will result in biased
inference for β.

2.3.2 Missing Covariates

Now suppose the response Y is fully observed but the covariate X is only par-
tially observed. Carpenter et. al [5] show that the distribution of the response
Y for a regression using only the complete records is written as

Pr(Yi | Xi, Ri = 1) =
Pr(Yi, Xi, Ri = 1)

Pr(Xi, Ri = 1)

=
Pr(Ri = 1 | Yi, Xi)Pr(Yi, Xi)

Pr(Ri = 1 | xi)Pr(Xi)

=

{
Pr(Ri = 1 | Yi, Xi)

Pr(Ri = 1 | Xi)

}
Pr(Yi | Xi).

(2.12)

The final form of 2.12 suggests that a complete case analysis will result in
biased estimates when the missing data mechanism involves the response Y .
Thus, if X is MAR given Y or X is MNAR depending on both X and Y then
a complete case analysis will yield a biased estimator for β. However, if X
is MNAR and only depends on X then a complete case analysis will yield an
unbiased, but inefficient estimator for β [5,20].

2.3.3 Missing Covariates and Response with Auxiliary
Information

Finally, suppose there is a partially observed covariate X , partially observed
response Y , and fully observed covariate Z where Y and X are MAR given Z.
If Y is regressed on X and Z then units with missing X and Y contribute∫

Pr(Y | β;X,Z)dY = 1 (2.13)

to the likelihood and a complete case analysis will be unbiased [5].
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2.3.4 Summary of Effects on Parameter Estimation

This section summarizes the main results of the previous sections. In general,
the common theme seen throughout this chapter is that if the missing data
mechanism depends on the response then a complete case analysis will result
in biased parameter estimates for the intercept coefficient. Further, if the mech-
anism depends on both the response and a covariate then the intercept and
corresponding covariate parameters will be biased. Table 2.1 provides more de-
tails about which specific parameter estimates will be biased when performing
a complete case analysis where the missing data mechanism depends on differ-
ent combinations of variables. It should be noted that the bias does not depend
on which variable has missing data but instead on the variable the mechanism
depends on. However, the variable with missing values will be important when
determining an appropriate approach for handling missing data [5].

Table 2.1: Summary of missing data mechanisms and bias of coefficient es-
timates when performing a complete case analysis using linear and logistic
regression

Variable Biased Coefficients
mechanism Linear Logistic
depends on Regression Regression
Y β0, βx, βz β0
X - -
Z - -
Y, X β0, βx, βz β0, βx
Y, Z β0, βx, βz β0, βz
X, Z - -
Y, X, Z β0, βx, βz β0, βx, βz
X = covariate, Y = response
Z = fully observed variable correlated with Y
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2.4 Multiple Imputation

Imputation is an approach used to fill in missing values in a dataset. This is
useful as imputation maintains the full sample size and eliminates the bias
caused by complete case analysis. However, imputation methods may intro-
duce other kinds of bias. The standard error of estimates are typically too
low when single imputation techniques are used. This is because the imputed
values are treated as if they are the actual values although there is always un-
certainty. Thus, multiple imputation can be used to eliminate this potential bias.
The following steps for conducting multiple imputation were created by Rubin
in 1987 [21]:

1. Imputation – Impute the missing entries K times to create K complete
data sets.

2. Analysis – Analyze each of the K complete data sets using standard
procedures.

3. Pooling – Combine all K results to produce a single MI estimator and to
draw inferences.

For step 3, let β̂k denote the estimate of β for each kth completed data set, k ε
(1,...,K). The MI estimate of β is the average of these estimates,

β̂MI =
1

K

K∑
k=1

β̂k. (2.14)

The variance of β̂MI takes into account both between and within imputation
variance. Let V̂ k denote the covariance matrix of the kth completed data set.
The average within-imputation covariance matrix is the average of these esti-
mates

Ŵ =
1

K

K∑
k=1

V̂ k (2.15)

and the between-imputation covariance matrix is given by

B̂ =
1

K − 1

K∑
k=1

(β̂k − β̂MI)(β̂k − β̂MI)
T . (2.16)
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An estimate of the covariance of β̂MI is

V̂MI = Ŵ +

(
1 +

1

K

)
B̂. (2.17)

An advantage of MI is that variability is more accurate for each missing value
because it considers variability due to sampling and variability due to imputa-
tion [5]. Thus, there is less uncertainty in the estimates and standard errors. A
historical disadvantage of MI was that it could require extensive programming
and computational resources, but many statistical software programs now have
packages built in with this capability (eg., jomo [26], mice [36], and norm [23]
in R [27]; PROC MI in SAS [32]) [13,14].

2.4.1 Continuous Variable Imputation

Assuming data are missing at random and there is not a pattern of missingness,
the imputation model is the multivariate normal model

Y ∼ N(β,Ω). (2.18)

A Gibbs sampler is used to estimate the joint model by sampling from the
conditional distribution of each variable and to impute the missing data [5].
As before, partition the response Y into an observed vector,YO, and missing
vector, YM . The Gibbs sampler is initialized by estimating values for β and
Ω using the observed data. Further, a value for each missing variable YM is
drawn by sampling with replacement from the observed values of the corre-
sponding variable. These initial values are denoted by β0, Ω0, and Y0

M . Next,
calculate the sample mean, Y

0
, and variance, S0, using Y0

M and YO [5].

At iteration r of the Gibbs sampler [5],

1. Draw Ω−1,r ∼W{n + v, (S−1p + Sr−1)−1}, where W denotes a Wishart
distribution.

2. Draw βr ∼ N(Y
r−1

, n−1Ωr);

3. Draw Yr
M ∼ f(YM |βr,Ωr,YO). See Appendix B for more details.

4. Update Y
r

and Sr using Yr
M ,YO. This completes iteration r.
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5. Repeat steps 1-4.

Since the sampler is initialized with biased estimates, the samples generated
in the beginning may not be representative of the true posterior distribution.
Therefore, the samples from this ‘burn in’ period should be discarded. This
burn in period allows the sample to converge to a good approximation of the
sampling distribution from which samples may be drawn. Further, a Markov
chain of samples is generated since each sample is based on approximations
from the previous sample. This means each sample is correlated with nearby
samples. As a result, there is typically a ‘burn between’ period if independent
samples are desired.

For example, a Gibbs sampler with a burn in of 5000 and burn between of
1000 works as follows:

1. 5000 YM samples are generated but are discarded (burn in).

2. The next YM sample generated is then combined with YO to form im-
puted dataset Y1.

3. 1000 new YM samples are generated but are discarded (burn between).

4. The next YM sample generated is then combined with YO to form im-
puted dataset Y2

5. Steps 3-4 are repeated until the desired number of imputed datasets are
created, Yk, k = 3, ..., K.

2.4.2 Binary Variable Imputation

Assume there is a nonmonotone missingness pattern and missing binary co-
variates. A latent variable approach can be used in order to use a multivariate
normal model as the imputation model as described in section 2.4.1 [5]. A
latent normal variable Zi is defined such that

Zi > 0⇐⇒ Yi = 1

Zi ≤ 0⇐⇒ Yi = 0,
(2.19)
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where Zi ∼ N(β, 1). The general steps for binary variable imputation are
similar to continuous variable imputation. The sampler is initialized with val-
ues using the complete data and then a series of succesive draws are made to
update these values. See Appendix B for detailed steps.
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Chapter 3

Statistical Learning

Binary outcomes are common in health research where outcomes are often
classified as “diseased” or “not diseased”, or "event" or "no event". Further,
EMR data can be useful in predicting whether a patient will be classified into a
diseased (or event) category based on demographic and clinical characteristics
and medical test results.

The statistical learning model of interest is a neural network, the focus of
which is a single layer neural network with a sigmoidal activation function.
This model is chosen because there is a general lack of knowledge about the
impact of bias inducing MAR mechanisms on prediction models and their as-
sociated metrics (eg., sensitivity and specificity). As this model is equivalent
to a binary logistic regression, it is a logical starting point to understand the ef-
fects of missing data on statistical learning models that could be used in health
research.

3.1 Modeling Binary Outcomes

3.1.1 Generalized Linear Model Overview

Recall the multiple linear regression model y = Xβ+ ε is used to model the lin-
ear relationship between a continuous variable Y and p predictors X1, ..., Xp.
An issue with the linear model is that it does not model nonnormal responses
well. Therefore, a class of models known as generalized linear models (GLM)
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were developed to represent other response types from the exponential family
such as categorical or binary responses. A GLM is made up of three compo-
nents [22]:

• Random component - the probability distribution of the response Y . For
linear regression, Y ∼ N(µ, σ2).

• Systematic component, η - a linear combination of X1, ..., Xp known as
the linear predictor. For linear regression, the linear predictor is η =

Xβ.

• Link function, g(µ) - a function that links the random and systematic
components by describing how the mean of the response, E(Y ) = µ,
relates to the linear predictor. Linear regression has the simplest link
function, g(µi) = ηi, the identity link function.

For GLM, it is assumed the response Y is a member of the exponential family
with the general form

f(y | θ, φ) = exp

[
yθ − b(θ)
a(φ)

+ c(y, φ)

]
(3.1)

where θ is known as the canonical parameter representing location and φ is the
dispersion parameter representing scale. Members of the exponential family
are defined through the functions a(φ), b(θ), and c(y, φ) [22]. The mean and
variance for a GLM are found by

E(Y ) = µ = b′(θ)

Var(Y ) = b′′(θ)a(φ).
(3.2)

Furthermore, parameters of the GLM models can be fit to data using a form of
iteratively reweighted least squares. See Appendix B for more details.



20

3.1.2 Logistic Regression

One GLM for modeling the relationship between a binary response Y ,
Y ε {0,1}, where Y follows a binomial distribution

Y ∼ Binomial(n, π), (3.3)

and regressors X1, ..., Xp is known as logistic regression. This relationship is
measured in terms of the probability that Y = 1 given X , π = Pr(Y = 1 | X)

. While a normal linear regression model with a dummy variable approach
(coded as 0/1) would produce an estimate of this probability, it would also be
possible for π to be less than 0 or greater than 1, complicating the interpreta-
tion of these values as probabilities. To ensure the estimated probabilities are
restricted to the range [0,1], the logistic function is used [17] and takes the
form

π =
eXβ

1 + eXβ
(3.4)

where β = (β0, β1, ..., βp), which is equivalent to the sigmoidal function

π =
1

1 + e−Xβ
. (3.5)

It is seen from Equation 3.4 that π approaches 0 as Xβ approaches negative
infinity and π approaches 1 as Xβ approaches positive infinity. Thus, the
logistic function successfully limits the range of π to [0,1]. Equation 3.4 can
be manipulated to find

π

1− π
= eXβ (3.6)

where [π/(1 − π)] represents the odds of an event occurring. Odds can range
from [0,∞], with values close to 0 indicating a low relative probability of an
event occurring and values approaching∞ indicating a high relative proba-
bility of an event occurring [17]. Equation 3.6 can be further manipulated by
taking the logarithm of both sides to find

log

(
π

1− π

)
= Xβ. (3.7)

The left side of Equation 3.7 is the link function for logistic regression referred
to as the logit. The logit link models the log-odds of the mean, π. It is seen by
Equation 3.7 that the logit is linear in X. Thus, an example interpretation for
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this model is that a one-unit increase in X1 while holding X2, ..., Xp constant
changes the log-odds by β1 [17].

Since the binomial distribution is a member of the exponential family, this can
be written in exponential family notation,

f(y | θ, φ) =

(
n

y

)
πy(1− π)n−y

= exp
[
ylog(π) + (n− y)log(1− π) + log

(
n

y

)]
= exp

[
ylog

(
π

1− π

)
+ nlog(1− π) + log

(
n

y

)]
.

(3.8)

From 3.8 we see that θ = log
(

π
1−π

)
, a(φ) = 1, b(θ) = −nlog(1 − π),

and c(y, φ) = log
(
n
y

)
. Thus, we now see the canonical link has g such that

η = g(µ) = θ. Also, using Equation 3.2 the variance can be expressed as
π(1− π).

The coefficients β0, β1, ..., βp are estimated using the maximum likelihood
approach. See Appendix B for more details. For logistic regression, the param-
eters of interest for this process are

η = log

(
π

1− π

)
dη

dπ
=

1

π(1− π)

V (µ) = π(1− π)

w = π(1− π).

(3.9)

In general, there are three assumptions of the logistic regression model. The
first assumption was introduced in the beginning of this section; that is, the
response Yi has a binomial distribution Yi ∼ B(ni, πi). Second, there should
not be any outliers in the data. Third, the model should have little or no mul-
ticollinearity among the predictors. These are important assumptions that are
taken into account when generating data for the simulation studies [35].
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3.2 Assessing Model Performance

Measures of classification performance can be found by looking at a confusion
matrix as shown in Table 3.1. The possible outcomes are correctly predicting
a positive outcome (eg., Y = 1) (true positive), correctly predicting a negative
outcome (eg., Y = 0) (true negative), incorrectly predicting positive (false
positive), and incorrectly predicting negative (false negative) [17].

Table 3.1: Confusion matrix depicting four possible classification outcomes

Actual
+ -

+ True Positive False Positive
Predicted (TP) (FP)

- False Negative True Negative
(FN) (TN)

Sensitivity is a measure of the true positive rate calculated as the proportion of
actual positives that are correctly predicted as positive [17],

TP

TP + FN
. (3.10)

Specificity is a measure of the true negative rate calculated as the proportion of
actual negatives that are correctly predicted as negative [17],

TN

TN + FP
. (3.11)

The classification accuracy is calculated as the proportion of predicted out-
comes that are correctly predicted [17],

TP + TN

TP + FP + TN + FN
, (3.12)

and likewise the error rate is calculated as the proportion of predicted out-
comes that are incorrectly predicted [17],

FP + FN

TP + FP + TN + FN
. (3.13)

A method of visualizing the performance of the classifier graphically is a re-
ceiving operating characteristic (ROC) curve by plotting the true positive rate



23

(sensitivity) against the false positive rate (1 - specificity) for all possible clas-
sification thresholds. For each classification threshold, if the probability of
response is greater than the threshold then the predicted response is classified
as an event that occurred and if the probability is lower than the threshold then
the predicted response is classified as an event that did not occur [17]. For
example,

π̂ > c→ Ŷ = 1

π̂ < c→ Ŷ = 0
(3.14)

for all c ε [0, 1], where c is the threshold for classification.

The area under the curve (AUC) is a measure of the ability to correctly classify
positive and negative outcomes and is the integral of the ROC curve over the
false positive rate. An AUC close to 1 is indicative of near perfect prediction
whereas an AUC near 0.50 is no better than a random coin flip at correctly
predicting an outcome [17].
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Chapter 4

Simulation Studies

The first goal of the simulation study is to determine whether missing values
affect prediction accuracy, sensitivity, specificity, ROC curves, and AUC. This
is accomplished by analyzing a dataset with no missing values, applying a
missing data mechanism, and then analyzing the dataset with missing values
to compare the corresponding results. The second goal is to determine if mul-
tiple imputation is a useful analytic correction for improving the prediction
accuracy, sensitivity, specificity, ROC curves, and AUC relative to these values
from the missing values dataset. I use two simulation studies to explore both
goals with a simple and more complex missing data mechanism.

4.1 Study Design

4.1.1 Data Generating Mechanism

The general format of the simulation study begins by first generating a dataset
with no missing values designated as the "full dataset". The simulation study
uses a dataset of sample size 1000 units with two continuous predictors, two
binary predictors, and one binary outcome. Data for the continuous predictors
X1, X2 are generated from a multivariate normal distribution with mean 0,
variance 1, and a low level of correlation,

X1, X2 ∼ N2(0,Σ),Σ =

[
1.00 0.05

0.05 1.00

]
(4.1)
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The continuous variable X1 represents a demographic variable such as age
and X2 represents a nearly uncorrelated continuous baseline measurement.
The binary variable X3 represents a binary treatment assignment or exposure
that was randomly applied to the subjects. X3 is generated from a binomial
distribution with probability π = 0.5. The binary variable X4 represents a
binary baseline measurement and is generated from a binomial distribution
with probability π = 0.3. Hence, X4 emulates an unconditional prevalence rate.
For both simulation studies, I set the coefficients for β = (β0, β1, β2, β3, β4)

to be (0, 3, 2, 4, 1). Equation 3.4 is used to generate estimated probabilities πi.
The binary response variable Yi is generated as a Bernoulli random variable
taking the value 1 with probability πi.

Full Data

Using the full dataset with no missing values, I randomly split the data 80/20
into training and test datasets, respectively. For simplicity, I use a single split
rather than implement bootstrap or methods of data re-use, and for consistency
in methodology as outlined in the following sections. The training set obser-
vations are used to build a predictive model and then the test set observations
are applied to this model to make predictions. This is completed by fitting a
logistic regression model regressing Ytrain on Xtrain to estimate β̂train. The
test set covariates Xtest are then applied to this model to make predictions for
Ŷtest. This allows us to create a confusion matrix by comparing the known
values of Ytest to the predicted values of Ŷtest. This confusion matrix is used
to estimate accuracy, sensitivity, and specificity for a naive split for being clas-
sified as having the outcome (eg., Pr(Y = 1 | X) ≥ 0.50 → Ŷtest = 1). An
ROC curve and the AUC are obtained.

Imperfect and Complete Case Data

Next, a missing data mechanism is applied to the full dataset to create the
imperfect dataset. The imperfect dataset is randomly split 80/20 into training
and test datasets. Some studies split this dataset prior to the introduction of
missing values into the training dataset only, but this implies that the data
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testing the model is from a different population than the population whose data
trains the model [24].

The training set builds the predictive model and the test set makes predictions.
However, due to missing values, there is now less information available to
train the model as well as test the model since a complete case analysis is
performed. Once again, the prediction error, sensitivity, specificity, ROC curve,
and AUC are calculated. These results are compared to the corresponding
results from the full dataset to determine if missing values have affected any of
the measures of interest.

Missing Data Mechanisms

There are two missing data mechanisms investigated through the simulation
study. The first missing data mechanism examined is a covariate MAR on
the response and is designed such that the probability of the current covariate
of interest being missing for those with the outcome of interest (Y =1) is two
times the probability of missingness for those who do not have the outcome of
interest (Y =0). The probability of missingness for each missing rate is shown
in Table 4.1.

Table 4.1: Missing Data Mechanism 1 Design - Probability of X2, X4, and X2

and X4 being missing for both levels of the outcome for each missing rate.

Target
Missing Rate (Y = 0) (Y = 1)

10% 0.06 0.12
30% 0.18 0.36
50% 0.30 0.60

The second missing data mechanism examined is a covariate MAR on the
response as well as the other covariates X1 and X3. This mechanism is ap-
plied through a logistic regression process by creating a combination of Y ,
X1, and X3 as shown in Table 4.2. The logit function is then used to create a
probability of a value being observed. These probabilities are then applied to a
binomial distribution to determine whether a value is observed (1) or missing
(0).
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Table 4.2: Missing Data Mechanism 2 Design - Equations for creating missing
rates of 10%, 30%, and 50% and the probability of X2, X4, and X2 and X4

being missing for both levels of the outcome when X1 = 0 and X3 = 0.

Target X1 = 0, X3 = 0
Missing Rate Equation Y = 0 Y = 1

10% 2.00 + 2Y + 0.50X1 - X3 + 0.25X1X3 0.12 0.02
30% 0.25 + 2Y + 0.50X1 - X3 + 0.25X1X3 0.44 0.10
50% -0.80 + 2Y + 0.50X1 - X3 + 0.25X1X3 0.69 0.23

Within each missing data mechanism, there are three missing covariate situa-
tions examined:

1. Only continuous covariate X2 missing

2. Only binary covariate X4 missing

3. Both X2 and X4 missing

Further, for each of these three situations, there are also three varying missing
rates examined to determine whether the amount of missingness is important:
10%, 30%, and 50%. All 18 possible scenarios are depicted by the tree in
Figure 4.1 where the first split displays the two missing data mechanisms, the
3 splits for each of the missing data mechanisms represents the variable that is
missing, and then the 3 splits for each missing variable represents the percent
of that variable that is missing.

Missing Data Mechanism

MAR on Y

X2

10 30 50

X4

10 30 50

X2, X4

10 30 50

MAR on Y , X1, X3

X2

10 30 50

X4

10 30 50

X2,X4

10 30 50

Figure 4.1: Tree depicting all 18 scenarios investigated through the simulation
studies.
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Multiple Imputation Data

Next, multiple imputation is applied to the imperfect dataset to determine if us-
ing this method improves the results from the missing data situation. The jomo
function in the ‘jomo’ package [26] in R [27] is used for performing multiple
imputation. This approach handles both continuous covariates and categorical
covariates as long as they are binary indicator variables. Based on parameters
shown to be efficient in Multiple Imputation and its Application, there are 5
imputations performed with a burn in of 5000 samples and burn between of
1000 samples [5]. The results of these five imputations are combined using
Rubin’s Rules.

This process from generating a full dataset, applying missing data mechanisms
to create the imperfect and complete case datasets, and then using MI to create
an imputed dataset completes one simulation. This is repeated 500 times. The
results of all 500 simulations are combined to obtain simulation study averages.
For the ROC curves, the final curve for each scenario is created by taking the
vertical average of all 500 curves for that specific scenario [9].

4.2 Simulation Study Assessment

The estimated coefficients of the predictive model for the full data and com-
plete case data are calculated as the average of the coefficients over all simula-
tions,

β̂ =
1

S

S∑
i=1

β̃i. (4.2)

For this study, the coefficients from each of the five imputations are combined
using Equation 2.15 to generate β̃MI,i. The simulation study coefficients are
then calculated as the average of the β̃MI coefficients over all simulations,

β̂ =
1

S

S∑
i=1

β̃MI,i. (4.3)

A more convenient way of viewing these results is by examining the bias of β̂0,

Bias(β̂0) = E[β̂0]− β0, (4.4)
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and the percent relative bias of β̂j , for j ε {1, 2, 3, 4}, relative to the true coeffi-
cient values,

% relative bias(β̂j) =
β̂j − βj
βj

× 100. (4.5)

The sensitivity, specificity, and error rate for each simulation iteration are
calculated using Equations 3.14, 3.15, and 3.17, respectively, to obtain values
for ˜Sensitivityi, ˜Specificityi, and Ẽrrori. The AUC of each ROC curve is also
found, ÃUCi. The final results for each of these measures are then the average
value over all simulation iterations,

̂Sensitivity =
1

S

S∑
i=1

˜Sensitivityi

̂Specificity =
1

S

S∑
i=1

˜Specificityi

Êrror =
1

S

S∑
i=1

Ẽrrori

ÂUC =
1

S

S∑
i=1

ÃUCi

(4.6)

The percent relative bias of each of these measures for the complete case data
and imputed data are calculated relative to the full data,

% relative bias( ̂SensitivityM) =
̂SensitivityM − ̂Sensitivityfull̂Sensitivityfull

× 100

% relative bias( ̂SpecificityM) =
̂SpecificityM − ̂Specificityfull̂Specificityfull

× 100

% relative bias(ÊrrorM) =
ÊrrorM − Êrrorfull

Êrrorfull
× 100

% relative bias(ÂUCM) =
ÂUCM − ÂUCfull

ÂUCfull

× 100,

for M = {Complete Case, Imputed}.

(4.7)
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4.3 Results

4.3.1 Missing Data Mechanism 1

The estimated coefficients of the predictive model for each missing variable
and missing rate scenario investigated for missing data mechanism 1 are found
in Table A.1 in Appendix A.

Table 4.3 displays the bias of β̂0 and the percent relative bias of β̂1, β̂2, β̂3, β̂4
for each of these scenarios relative to the true values. It is shown that β̂0 of a
complete case analysis is biased for each missing variable scenario. Further,
the bias is shown to increase as the missing rate increases. When X2 is miss-
ing, β4 has the largest increase in bias as the missing rate increases. When X4

is missing, the bias of each coefficient increases as the missing rate increases,
but β̂4 is consistently the most biased coefficient. Finally, when X2 and X4 are
missing, the bias consistently increases as the missing rate increases for β̂0,
β̂1, β̂2, and β̂3 but not for β̂4. When multiple imputation is used as a correction
for the missing data, the bias of β̂0, β̂1, β̂2, and β̂3 decreases for each missing
variable and missing rate scenario investigated. However, there are 3 instances
where the bias of β̂4 actually increases when multiple imputation is used: 10%
X2 missing, 10% X2, X4 missing, and 50% X2, X4 missing.

Table 4.4 summarizes the sensitivity, specificity, error rate, and AUC when
the test data is applied to the predictive model. For the values of the confusion
matrices used to calculate the sensitivity and specificity, see Table A.2 in Ap-
pendix A. Table 4.5 displays the percent relative bias of these measures for the
complete case dataset and imputed dataset relative to the full dataset. Regard-
less of which variable is missing, the sensitivity from a complete case analysis
is attenuated relative to the full dataset. The magnitude of this effect increases
as the missing rate increases such that the more missing values there are, the
greater the sensitivity is underestimated.

The opposite effect is seen with specificity. The specificity from a complete
case analysis is augmented relative to the full dataset and the magnitude of the
effect increases with the missing rate such that the specificity is overestimated
more as there are more missing values present in the dataset. The classification
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error rate from a complete case analysis is always greater than the error rate of
the full dataset but there is no trend as the missing rate increases. Finally, the
AUC is unchanged relative to the full dataset when a complete case analysis is
performed. When multiple imputation is applied, the bias of sensitivity and the
error rate is always decreased. The same is shown for specificity except for one
scenario where 10% X4 is missing.

The ROC curves for each simulation are combined by taking the vertical aver-
age of the curves. This is done by choosing fixed false positive rates and then
averaging the corresponding true positive rates [8]. The full data, complete
case, and imputed data ROC curves for 10%, 30%, and 50% X2 MAR on Y
are shown by Figures 4.2-4.4. Figures 4.5-4.7 display the full data, complete
case, and imputed data ROC curves for 10%, 30%, and 50% X2, X4 MAR on
Y. It is seen that as the missing rate increases, the full data and complete case
curves separate farther apart. Further, when both X2 and X4 are missing, the
distance between the curves is greater than when only one variable is missing.
The ROC curves for X4 MAR on Y are similar to the curves when X2 is MAR
on Y so these curves are shown in Figures A.1-A.3 in Appendix A.
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Table 4.3: Missing Data Mechanism 1: Bias of β̂0 and percent relative bias of
β̂1, β̂2, β̂3, β̂4 of the predictive model created by the training data for the full
data, complete case, and imputed data for each missing variable and missing
rate investigated.

Missing Bias % Relative Bias
Variable Scenario β̂0 β̂1 β̂2 β̂3 β̂4

X2

10% Missing
Full Data 0.016 2.83 2.75 2.30 0.10
Complete Case -0.050 2.83 2.85 2.33 -0.10
Imputed 0.023 2.23 1.95 1.53 -0.80

30% Missing
Full Data 0.003 1.70 2.15 2.45 0.60
Complete Case -0.166 2.20 2.60 3.10 2.00
Imputed 0.019 0.00 -0.65 0.20 -1.00

50% Missing
Full Data -0.003 2.50 2.30 1.73 4.10
Complete Case -0.352 4.30 4.45 3.50 9.40
Imputed 0.016 -0.20 -2.35 -1.40 1.70

X4

10% Missing
Full Data -0.009 1.90 1.85 2.10 4.70
Complete Case -0.076 2.40 2.30 2.48 4.60
Imputed -0.006 1.87 1.80 2.05 3.50

30% Missing
Full Data -0.008 1.67 1.95 1.75 3.80
Complete Case -0.184 3.10 2.75 2.85 4.90
Imputed -0.003 1.63 1.90 1.70 1.80

50% Missing
Full Data -0.003 2.00 2.15 2.08 2.10
Complete Case -0.357 4.17 4.10 4.58 5.00
Imputed 0.001 1.97 2.05 2.03 -2.20

X2,X4

10% Missing
Full Data -0.002 2.27 2.20 2.08 1.40
Complete Case -0.137 2.67 2.10 2.48 0.80
Imputed 0.009 1.57 1.10 1.25 -1.00

30% Missing
Full Data 0.007 2.20 1.80 1.58 3.80
Complete Case -0.335 3.53 3.45 2.55 3.90
Imputed 0.031 0.63 -0.15 -0.43 -1.10

50% Missing
Full Data -0.002 1.70 1.75 1.90 1.60
Complete Case -0.697 8.47 7.65 7.15 1.90
Imputed 0.039 -0.70 -2.45 -1.43 -8.90
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Table 4.4: Missing Data Mechanism 1: Estimated sensitivity, specificity, error
rate, and AUC results of the testing data for the full data, complete case, and
imputed data for each missing variable and missing rate investigated.

Missing
Variable Scenario Sensitivity Specificity Error Rate AUC

X2

10% Missing
Full Data 0.891 0.758 0.152 0.955
Complete Case 0.884 0.759 0.156 0.955
Imputed 0.891 0.758 0.153 0.954

30% Missing
Full Data 0.891 0.746 0.155 0.955
Complete Case 0.879 0.771 0.159 0.955
Imputed 0.891 0.746 0.156 0.953

50% Missing
Full Data 0.891 0.758 0.152 0.956
Complete Case 0.869 0.789 0.160 0.955
Imputed 0.885 0.742 0.157 0.953

X4

10% Missing
Full Data 0.891 0.758 0.152 0.955
Complete Case 0.885 0.759 0.154 0.955
Imputed 0.891 0.754 0.153 0.955

30% Missing
Full Data 0.891 0.758 0.153 0.956
Complete Case 0.879 0.776 0.158 0.956
Imputed 0.891 0.758 0.153 0.956

50% Missing
Full Data 0.891 0.758 0.154 0.955
Complete Case 0.869 0.789 0.161 0.955
Imputed 0.891 0.758 0.152 0.955

X2,X4

10% Missing
Full Data 0.891 0.758 0.152 0.956
Complete Case 0.879 0.764 0.156 0.955
Imputed 0.891 0.758 0.153 0.955

30% Missing
Full Data 0.884 0.758 0.154 0.955
Complete Case 0.867 0.789 0.166 0.954
Imputed 0.891 0.742 0.155 0.953

50% Missing
Full Data 0.891 0.758 0.153 0.956
Complete Case 0.852 0.833 0.162 0.953
Imputed 0.884 0.746 0.157 0.953
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Table 4.5: Missing Data Mechanism 1: Percent relative bias of sensitivity,
specificity, error, and AUC Results of the testing data for the full data, com-
plete case, and imputed data for each missing variable and missing rates inves-
tigated.

Missing % Relative Bias
Variable Scenario Sensitivity Specificity Error Rate AUC

X2

10% Missing
Full Data - - - -
Complete Case -0.79 0.13 2.63 0.00
Imputed 0.00 0.00 0.66 -0.10

30% Missing
Full Data - - - -
Complete Case -1.35 3.35 2.58 0.00
Imputed 0.00 0.00 0.65 -0.21

50% Missing
Full Data - - - -
Complete Case -2.47 4.09 5.26 -0.10
Imputed -0.67 -2.11 3.29 -0.31

X4

10% Missing
Full Data - - - -
Complete Case -0.67 0.13 1.32 0.00
Imputed 0.00 -0.53 0.66 0.00

30% Missing
Full Data - - - -
Complete Case -1.35 2.37 3.27 0.00
Imputed 0.00 0.00 0.00 0.00

50% Missing
Full Data - - - -
Complete Case -2.47 4.09 4.55 0.00
Imputed 0.00 0.00 -1.30 0.00

X2,X4

10% Missing
Full Data - - - -
Complete Case -1.35 0.79 2.63 -0.10
Imputed 0.00 0.00 0.66 -0.10

30% Missing
Full Data - - - -
Complete Case -1.92 4.09 7.79 -0.10
Imputed 0.79 -2.11 0.65 -0.21

50% Missing
Full Data - - - -
Complete Case -4.38 9.89 5.88 -0.10
Imputed -0.79 -1.58 2.61 -0.31
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Figure 4.2: ROC Curves for 10% X2 MAR on Y - full data, complete case,
and imputed data.
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Figure 4.3: ROC Curves for 30% X2 MAR on Y - full data, complete case,
and imputed data.
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Figure 4.4: ROC Curves for 50% X2 MAR on Y - full data, complete case,
and imputed data.
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Figure 4.5: ROC Curves for 10% X2, X4 MAR on Y - full data, complete case,
and imputed data.
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Figure 4.6: ROC Curves for 30% X2, X4 MAR on Y - full data, complete case,
and imputed data.
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Figure 4.7: ROC Curves for 50% X2, X4 MAR on Y - full data, complete case,
and imputed data.
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4.3.2 Missing Data Mechanism 2

Due to ’perfect prediction’ no results were obtained for the 50% X2, X4 miss-
ing scenario. When both covariates have 50% missingness, the total cases with
missing values is approximately 65%. Therefore, since there are only 70 cases
available to test with compared to 200 for the full dataset, there were instances
where the model completely separated observations into the correct categories.

The results for the remaining scenarios of the second missing data mechanism
with covariates MAR on Y,X1, and X3 are summarized in Tables 4.6-4.8. The
estimated coefficients of the predictive model for each missing variable and
missing rate scenario investigated can be found in Table A.3 in Appendix A.
Table 4.6 displays the bias of β̂0 and the percent relative bias of β̂1, β̂2, β̂3, β̂4
for each of these scenarios relative to the true values. It is shown that β̂0 of a
complete case analysis is biased for each missing variable scenario. Further,
the bias is shown to increase as the missing rate increases. For all missing
scenarios investigated, β̂3 has the greatest percent relative bias and it also has
the greatest increase in percent relative bias as the missing rate increases. The
percent relative bias of β̂2 and β̂4 also increase as the missing rate increases.
However, the percent relative bias of β̂1 increases in magnitude as the missing
rate increases from 10% to 30% but then decreases in magnitude from 30% to
50%.

In general, the magnitude of bias and percent relative bias for each coefficient
in each imputed data scenario is less than that of the values for the correspond-
ing complete case dataset. There is one instance where this is not the case:
β̂1 when 10% X4 is missing. However, the percent relative bias of the im-
puted dataset is similar in magnitude and direction to the value for the full
data. Thus, while the magnitude of the percent relative bias for the imputed
dataset relative to the full data is greater than that for the complete case dataset,
the bias for the imputed data relative to full data is less than the bias of the
complete case data relative to the full data.

Table 4.7 summarizes the sensitivity, specificity, error rate, and AUC when
the test data is applied to the predictive model. For the values of the confu-
sion matrices used to calculate the sensitivity and specificity, see Table A.4
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in Appendix A. Table 4.8 displays the percent relative bias of these measures
for the complete case dataset and imputed dataset relative to the full dataset.
Regardless of which variable is missing, the sensitivity from a complete case
analysis is augmented relative to the full dataset. This may be due to the rel-
ative proportion of missing data for Y = 0 and Y = 1 being opposite that
compared to study 1. The magnitude of this effect increases as the missing rate
increases such that the more missing values there are, the greater the sensitivity
is overestimated.

The specificity from a complete case analysis is attenuated relative to the full
dataset and the magnitude of the effect increases with the missing rate such
that the specificity is underestimated more as there are more missing values
present in the dataset. The classification error rate from a complete case anal-
ysis is always lower than the error rate of the full dataset. As the missing rate
increases, the error decreases. Finally, the AUC is unchanged relative to the
full dataset when a complete case analysis is performed.

The full data, complete case, and imputed data ROC curves for 10%, 30%,
and 50% X2 MAR on Y,X1, and X3 are shown by Figures 4.8-4.10. Figures
4.11-4.13 display the full data, complete case, and imputed data ROC curves
for 10%, 30%, and 50% X2, X4 MAR on Y,X1, and X3. It is seen that as the
missing rate increases, the full data and complete case curves separate farther
apart. Further, when both X2 and X4 are missing, the distance between the
curves is greater than when only one variable is missing. The ROC curves
for X4 MAR on Y,X1, and X3 are similar to the curves when X2 is MAR on
Y,X1, and X3 so these curves are shown in Figures A.4-A.6 in Appendix A.
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Table 4.6: Missing Data Mechanism 2: Bias of β̂0 and percent relative bias of
β̂1, β̂2, β̂3, β̂4 of the predictive model created by the training data for the full
data, complete case, and imputed data for each missing variable and missing
rate investigated.

Missing Bias % Relative Bias
Variable Scenario β̂0 β̂1 β̂2 β̂3 β̂4

X2

10% Missing
Full Data -0.002 1.77 2.25 2.28 3.60
Complete Case 0.113 -1.50 2.50 9.00 3.50
Imputed -0.001 1.13 1.10 1.23 2.80

30% Missing
Full Data -0.004 2.13 2.05 2.18 1.20
Complete Case 0.489 -3.63 3.80 16.83 3.90
Imputed -0.009 0.30 -0.85 -0.150 -0.20

50% Missing
Full Data -0.009 2.07 1.95 1.45 1.00
Complete Case 0.935 -1.90 5.80 23.85 8.50
Imputed -0.037 -1.13 -4.90 -2.60 -1.30

X4

10% Missing
Full Data 0.002 1.97 2.45 2.05 2.10
Complete Case 0.115 -1.30 2.95 8.53 2.60
Imputed 0.005 1.90 2.40 2.03 1.20

30% Missing
Full Data -0.001 2.10 2.15 1.60 0.50
Complete Case 0.487 -2.97 4.30 17.20 4.10
Imputed 0.007 2.13 2.20 1.58 -1.20

50% Missing
Full Data 0.004 1.60 2.30 1.88 2.60
Complete Case 0.961 -2.20 6.50 25.00 9.20
Imputed 0.032 1.60 2.20 1.60 -4.10

X2,X4

10% Missing
Full Data 0.002 2.17 1.95 2.03 1.70
Complete Case 0.227 -3.73 2.50 14.98 3.10
Imputed 0.004 1.77 1.20 1.13 0.90

30% Missing
Full Data 0.002 2.20 2.60 2.08 1.10
Complete Case 0.985 -6.50 6.30 77.80 8.70
Imputed 0.000 0.60 -0.80 -0.35 -2.40

50% Missing
Full Data NA NA NA NA NA
Complete Case NA NA NA NA NA
Imputed NA NA NA NA NA
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Table 4.7: Missing Data Mechanism 2: Estimated sensitivity, specificity, er-
ror, and AUC Results of the testing data for the full data, complete case, and
imputed data for each missing variable and missing rates investigated.

Missing
Variable Scenario Sensitivity Specificity Error Rate AUC

X2

10% Missing
Full Data 0.891 0.754 0.153 0.955
Complete Case 0.903 0.723 0.142 0.955
Imputed 0.891 0.754 0.154 0.954

30% Missing
Full Data 0.891 0.758 0.151 0.956
Complete Case 0.922 0.680 0.120 0.956
Imputed 0.884 0.742 0.156 0.954

50% Missing
Full Data 0.891 0.758 0.153 0.954
Complete Case 0.946 0.615 0.098 0.953
Imputed 0.884 0.742 0.161 0.951

X4

10% Missing
Full Data 0.891 0.754 0.153 0.955
Complete Case 0.902 0.723 0.144 0.955
Imputed 0.891 0.758 0.152 0.956

30% Missing
Full Data 0.891 0.754 0.153 0.955
Complete Case 0.922 0.680 0.120 0.954
Imputed 0.891 0.758 0.152 0.955

50% Missing
Full Data 0.891 0.742 0.153 0.955
Complete Case 0.946 0.615 0.099 0.952
Imputed 0.891 0.754 0.153 0.955

X2,X4

10% Missing
Full Data 0.891 0.758 0.152 0.954
Complete Case 0.914 0.711 0.133 0.955
Imputed 0.891 0.746 0.154 0.954

30% Missing
Full Data 0.891 0.758 0.151 0.956
Complete Case 0.949 0.583 0.091 0.952
Imputed 0.891 0.754 0.156 0.954

50% Missing
Full Data NA NA NA NA
Complete Case NA NA NA NA
Imputed NA NA NA NA
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Table 4.8: Missing Data Mechanism 2: Percent relative bias of sensitivity,
specificity, error, and AUC Results of the testing data for the full data, com-
plete case, and imputed data for each missing variable and missing rates inves-
tigated.

Missing % Relative Bias
Variable Scenario Sensitivity Specificity Error Rate AUC

X2

10% Missing
Full Data - - - -
Complete Case 1.35 -4.11 -7.19 0.00
Imputed 0.00 0.00 0.65 -0.08

30% Missing
Full Data - - - -
Complete Case 3.48 -10.29 -20.53 0.00
Imputed -0.79 -2.11 3.31 -0.24

50% Missing
Full Data - - - -
Complete Case 6.17 -18.87 -35.95 -0.10
Imputed -0.79 -2.11 5.23 -0.36

X4

10% Missing
Full Data - - - -
Complete Case 1.23 -4.11 -5.88 0.00
Imputed 0.00 0.53 -0.65 0.02

30% Missing
Full Data - - - -
Complete Case 3.48 -9.81 -21.57 -0.10
Imputed 0.00 0.53 -0.65 0.00

50% Missing
Full Data - - - -
Complete Case 6.17 -17.12 -35.29 -0.31
Imputed 0.00 1.62 0.00 -0.01

X2,X4

10% Missing
Full Data - - - -
Complete Case 2.58 -6.20 -12.50 0.10
Imputed 0.00 -1.58 1.32 -0.01

30% Missing
Full Data - - - -
Complete Case 6.51 -23.09 -39.73 -0.42
Imputed -0.79 -0.53 3.31 -0.22

50% Missing
Full Data NA NA NA NA
Complete Case NA NA NA NA
Imputed NA NA NA NA
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Figure 4.8: ROC Curves for 10% X2 MAR on Y,X1, and X3 - full data, com-
plete case, and imputed data.
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Figure 4.9: ROC Curves for 30% X2 MAR on Y,X1, and X3 - full data, com-
plete case, and imputed data.
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Figure 4.10: ROC Curves for 50% X2 MAR on Y,X1, and X3 - full data, com-
plete case, and imputed data.
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Figure 4.11: ROC Curves for 10% X2, X4 MAR on Y,X1, and X3 - full data,
complete case, and imputed data.
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Figure 4.12: ROC Curves for 30% X2, X4 MAR on Y,X1, and X3 - full data,
complete case, and imputed data.
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4.4 Discussion

4.4.1 Parameter Estimates

As expected, the intercept coefficient β0 is biased when a complete case anal-
ysis is performed because both missing data mechanisms depend on the re-
sponse Y . It is also shown that the bias of β0 increases as the missingness
increases regardless of the variable missing or the complexity of the missing
data mechanism. The magnitude of bias of β0 from a complete case analysis
is greater for missing data mechanism 2 than missing data mechanism 1 for
each scenario. This suggests that a more complex missing data mechanism that
includes other covariates will lead to more biased parameter estimates than
a simple mechanism that includes the response only when a complete case
analysis is performed.

The direction of bias is opposite between mechanisms as mechanism 1 un-
derestimates β0 and mechanism 2 overestimates β0. This is likely due to the
design of the mechanisms. As shown in Table 4.1, the probability of missing
when Y = 1 is two times greater than when Y = 0 for mechanism 1. However,
mechanism 2 is designed such that the probability of missing when Y = 0

is greater than when Y = 1 (see Table 4.2). For both mechanisms, multiple
imputation decreases the bias of β0 for all scenarios.

Further, the bias of β3 from a complete case analysis is greater for missing
data mechanism 2 than mechanism 1. This bias is present because mechanism
2 includes X3 but mechanism 1 does not. However, there is not a noticeable
difference in bias for X1 between the mechanisms. For most scenarios in both
mechanisms, multiple imputation decreases the bias of β1, β2, β3, and β4.

4.4.2 Sensitivity, Specificity, and Error Estimates

For both missing data mechanisms, a complete case analysis results in biased
estimates of sensitivity and specificity. It is further seen that the magnitude of
bias for both measures increases as the missing rate increases for both mech-
anisms. The direction of the bias for sensitivity is always opposite that of the
bias for specificity. However, the direction of bias is not constant between the
missing data mechanisms. For mechanism 1, the sensitivity is underestimated
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and the specificity is overestimated; however, for mechanism 2, the sensitivity
is overestimated and the specificity is underestimated.

To understand what is causing these measures to be biased, I examine the true
positives (TP), false positives (FP), false negatives (FN), and true negatives
(TN) for each scenario in both missing data mechanisms (see Tables A.2 and
A.4 in Appendix A). The number of false positives and false negatives for
missing data mechanism 1 are always slightly greater than the number for the
corresponding scenario in mechanism 2. There is a minimum difference of 1
and maximum difference of 3 for these values between the two mechanisms.
Considering there is only a slight difference, these measures do not appear to
be the reason the sensitivity (affected by FN) and specificity (affected by FP)
are so biased.

However, the number of true positives for mechanism 1 are lower than the
number for the corresponding scenario in mechanism 2. Likewise, the number
of true negatives for mechanism 1 are higher than the number for the corre-
sponding scenario in mechanism 2. For example, when 30% X2 and X4 are
missing, mechanism 1 only has 52 TP but mechanism 2 has 93 TP. In the same
scenario, mechanism 1 has 30 TN but mechanism 2 only has 7.

It appears that the probability of missing data for both levels of the response is
what is causing the direction of bias in sensitivity and specificity. Missing data
mechanism 1 underestimates sensitivity because the probability of missing
"positives" (Y = 1) is greater than the probability of missing "negatives"
(Y = 0). Therefore, there will not be as many positives to classify into the true
positive category. Likewise, mechanism 2 underestimates specificity because
there will not be as many negatives to classify since the probability of missing
"negatives" (Y = 0) is greater than the probability of missing "positives"
(Y = 1).

When multiple imputation is used to correct the missing data, the magnitude of
bias for sensitivity and specificity decrease for both missing data mechanisms.
This suggests multiple imputation is a useful method for correcting the bias of
these estimates across different MAR mechanisms, different types of missing
covariates, and varying missing rates.
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Lastly, the error rate is also biased when performing a complete case analysis.
The error rate is always biased relative to the full dataset. However, the error
rate increases for missing data mechanism 1 but decreases for mechanism 2.
For missing data mechanism 1, the error rate is higher because the value in the
denominator decreases more than the values in numerator. This means the true
positives and true negatives are affected by the mechanism more than the false
positives and false negatives.

For mechanism 2, the error rate decreases when a complete case analysis is
performed. This implies that the false positives and false negatives are most
affected by this mechanism. Comparing mechanism 1 to mechanism 2, it has
already been stated that mechanism 1 always has a higher total number of false
positives and false negatives than the corresponding scenario in mechanism 2.
However, while it appears that a decrease in the error rate would be ideal, we
must realize that other measures are severely biased.

I return to further explore the sensitivity and specificity estimates of the two
missing data mechanisms. Simply stated, missing data mechanism 2 is overes-
timating sensitivity and severely underestimating specificity. Since there are
more positive responses in the complete case dataset based on the design of
missing data mechanism 2, small increases in sensitivity decrease the error rate
more than large decreases in specificity would increase the error rate.

We see that while the sensitivity and specificity are both biased for mechanism
1, the magnitude of bias for the two measures are similar and always lower
than 10% relative to the full data. This means that the the decrease in the num-
ber of true positives correctly being identified is similar to the increase in the
number of true negatives correctly being identified.

However, for missing data mechanism 2 the magnitude of bias for specificity
is greater than 10% for 4 of the 9 scenarios investigated and goes as high as
23% biased relative to the full data. This means that the predictive model is
classifying less negative responses as negative and more positive responses
as positive. Therefore, since there are more positive responses in the dataset
and more of them are correctly being classified as positive, the error rate will
decrease. This comes at a huge cost to the specificity of the predictive model
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since there are less negative responses in the dataset and they are also being
identified as negative less frequently.

Once again, multiple imputation is useful for decreasing the bias of the com-
plete case error rate relative to the full data error rate. While this corresponds
to an increase in error rate for missing data mechanism 2, we have already seen
that the lower error rate came at a cost of the specificity.

4.4.3 ROC Curves and AUC

The vertical averaged ROC curves for the full data and complete case data tend
to spread further apart as the missing rate increases. However, the difference is
not as evident in missing data mechanism 1 as it is in missing data mechanism
2. For both missing data mechanisms, the ROC curve of the imputed data is
always slightly above the full data ROC curve. Overall, there appears to be
regions in the ROC curves where the full data and complete case data curves
are spread apart but the significance of the difference is unknown.

The AUC values reported in this thesis are the average of the AUC values from
each ROC curve created over the simulations, not of the vertically averaged
ROC curves. The AUC is shown to be negligibly affected by missing data
regardless of the complexity of the missing data mechanism, type of covariate
missing, or the missing rate. Therefore, the AUC may not be the best measure
for determining the accuracy of prediction when there is missing data because
we know that other values such as sensitivity and specificity are affected. It is
possible that the AUC was not affected due to setting the beta coefficients to
have such a strong signal but this would need to be examined in another study.
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Chapter 5

Conclusion

An important observation from this thesis is that the AUC was not found to
be biased when performing a complete case analysis, even when the missing
rate was as high as 50%. Oftentimes researchers report the AUC to describe
the performance of their predictive model, but the results of this thesis show
that the AUC is unaffected even if sensitivity and specificity are biased. Thus,
caution must be taken when reporting results and the AUC should only be
reported alongside other measures such as sensitivity and specificity.

It was found that performing a complete case analysis logistic regression when
data are missing at random on the response leads to biased coefficient, sensitiv-
ity, specificity, and error rate estimates with increasing bias as the missingness
increases. Further, a more complex missing data mechanism that includes co-
variates leads to estimates of coefficients, sensitivity, specificity, and error rates
that are more biased than a simple missing data mechanism that only includes
the response.

Multiple imputation was found to be effective in reducing the bias of coeffi-
cient, sensitivity, specificity, and error rate estimates. Since many statistical
programs include multiple imputation methods, it is suggested that multiple
imputation be used as a correction when data are assumed to be missing at
random. The methods and results from this thesis can be helpful in making bet-
ter predictions if used appropriately. For example, if a researcher is exploring
EMR data to generate a hypothesis for conducting a new research study and
the outcome is known for all subjects, then multiple imputation can be used to
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correct for missing values in the covariates. This allows the researcher to use
more available information than a complete case analysis and the predictive
model will result in less biased estimates for sensitivity, specificity, and error
rate.

Once a predictive model has been created with these data, the researcher then
conducts a study that requires values for all independent variables of interest
to be collected (eg., the system used for collecting medical test results requires
a value to be entered). The newly collected data can then be applied to the
predictive model to make predictions for each person’s probability of having
an outcome (or event) in the future. The results of this thesis show that using
multiple imputation to correct for missing data can improve the utility of a
predictive model. Therefore, the predictions for the newly collected data will
be classified more accurately than if multiple imputation was not used when
building the model.

5.1 Future Work

There are a number of routes that can be explored for future research. First, it
would be worthwhile to apply these methods to a real dataset. An EMR dataset
with similar covariate structure would be the best initial choice for comparing
results. Other types of datasets could then be investigated to see if the results
are more generalizable. Further, a natural extension of these methods is for
multilayer neural networks.

A number of other scenarios could also be investigated. The magnitude of
the beta coefficients could be decreased to determine if the measures are still
biased when the signal is not as strong as in this thesis. The amount of cor-
relation between the covariates could be increased or the sample size could
vary to assess finite sample properties. The multiple imputation parameters of
nburn, nbetween, and K datasets can also be changed. This multiple imputation
step requires the most computational time so if nburn can be decreased and
achieve similar results this would serve a practical purpose. A 5-fold cross
validation could also be investigated instead of the 80/20 split into training and
test datasets as used in this thesis.
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The entire simulation study can also be redesigned to further break down the
sources of bias. Rather than generating a new full dataset for each iteration,
one full dataset can be generated in the beginning and then missing values can
be introduced to create multiple imperfect datasets from the same full dataset.
This would help partition the sources of error.

For evaluating results, the AUC of the vertically averaged ROC curves could
be calculated. The vertically averaged ROC curves appear to show that the
AUC of these would be different than simulation study average AUC reported;
this should be investigated further. Threshold averaged ROC curves can also
be examined to see if this is a useful method for combining ROC curves in this
setting.

This thesis does not present new information for handling missing values in
the test dataset, but handling missing values in a real life test set needs to be
explored. If the value for the outcome is unknown and the missing data mech-
anism is dependent upon the outcome, multiple imputation can not be used
because this is now an MNAR mechanism, hence the missing data mechanism
would be inconsistent across datasets.
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Appendix A

Additional Results

The β̂ coefficients of the full data, complete case, and imputed data for missing
data mechanism 1 are shown in Table A.1. The true positives, false positives,
false negatives, and true negatives used to calculate sensitivity and specificity
for missing data mechanism 1 are shown in Table A.2. Figures A.1-A.3 display
the 10%, 30%, and 50% X4 MAR on Y ROC curves.

The β̂ coefficients of the full data, complete case, and imputed data for missing
data mechanism 2 are shown in Table A.3. The true positives, false positives,
false negatives, and true negatives used to calculate sensitivity and specificity
for missing data mechanism 1 are shown in Table A.4. Figures A.4-A.6 display
the 10%, 30%, and 50% X4 MAR on Y,X1, andX3 ROC curves.
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Table A.1: Missing Data Mechanism 1: β̂ coefficients of the predictive model
created by the training data for the full data, complete case, and imputed data
for each missing variable and missing rates investigated.

Missing Variable Scenario β̂0 β̂1 β̂2 β̂3 β̂4
Truth 0 3 2 4 1

X2

10% Missing
Full Data 0.016 3.085 2.055 4.092 1.001
Complete Case -0.050 3.085 2.057 4.093 0.999
Imputed 0.023 3.067 2.039 4.061 0.992

30% Missing
Full Data 0.003 3.051 2.043 4.098 1.006
Complete Case -0.166 3.066 2.052 4.124 1.020
Imputed 0.019 3.000 1.987 4.008 0.990

50% Missing
Full Data -0.003 3.075 2.046 4.069 1.041
Complete Case -0.352 3.129 2.089 4.140 1.094
Imputed 0.016 2.994 1.953 3.944 1.017

X4

10% Missing
Full Data -0.009 3.057 2.037 4.084 1.047
Complete Case -0.076 3.072 2.046 4.099 1.046
Imputed -0.006 3.056 2.036 4.082 1.035

30% Missing
Full Data -0.008 3.050 2.039 4.070 1.038
Complete Case -0.184 3.093 2.055 4.114 1.049
Imputed -0.003 3.049 2.038 4.068 1.018

50% Missing
Full Data -0.003 3.060 2.043 4.083 1.021
Complete Case -0.357 3.125 2.082 4.183 1.050
Imputed 0.011 3.059 2.041 4.081 0.978

X2,X4

10% Missing
Full Data -0.002 3.068 2.044 4.083 1.014
Complete Case -0.137 3.080 2.042 4.099 1.008
Imputed 0.009 3.047 2.022 4.050 0.990

30% Missing
Full Data 0.007 3.066 2.036 4.063 1.038
Complete Case -0.335 3.106 2.069 4.102 1.039
Imputed 0.031 3.019 1.997 3.983 0.989

50% Missing
Full Data -0.002 3.051 2.035 4.076 1.016
Complete Case -0.697 3.254 2.153 4.286 1.019
Imputed 0.039 2.979 1.951 3.943 0.911
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Table A.2: Missing Data Mechanism 1: Confusion matrices displaying the
number of true positives (TP), false positives (FP), false negatives (FN), and
true negatives (TN) used for calculating the sensitivity and specificity.

Missing
Variable Scenario TP FP FN TN Sensitivity Specificity

X2

10% Missing
Complete 123 15 15 47 0.891 0.758
Missing 107 14 14 44 0.884 0.759
Imputed 123 15 15 47 0.891 0.758

30% Missing
Complete 122 16 15 47 0.891 0.746
Missing 80 11 11 37 0.879 0.771
Imputed 122 16 15 47 0.891 0.746

50% Missing
Complete 123 15 15 47 0.891 0.758
Missing 53 8 8 30 0.869 0.789
Imputed 123 16 16 46 0.885 0.742

X4

10% Missing
Complete 123 15 15 47 0.891 0.758
Missing 108 14 14 44 0.885 0.759
Imputed 123 15 15 46 0.891 0.754

30% Missing
Complete 123 15 15 47 0.891 0.758
Missing 80 11 11 38 0.879 0.776
Imputed 122 15 15 47 0.891 0.758

50% Missing
Complete 123 15 15 47 0.891 0.758
Missing 53 8 8 30 0.869 0.789
Imputed 123 15 15 47 0.891 0.758

X2,X4

10% Missing
Complete 123 15 15 47 0.891 0.758
Missing 94 13 13 42 0.879 0.764
Imputed 123 15 15 47 0.891 0.758

30% Missing
Complete 122 15 16 47 0.884 0.758
Missing 52 8 8 30 0.867 0.789
Imputed 122 16 15 46 0.891 0.742

50% Missing
Complete 122 15 15 47 0.891 0.758
Missing 23 4 4 20 0.852 0.833
Imputed 122 16 16 47 0.884 0.746
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Figure A.1: ROC Curves for 10% X4 MAR on Y - full data, complete case,
and imputed data.
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Figure A.2: ROC Curves for 30% X4 MAR on Y - full data, complete case,
and imputed data.
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Figure A.3: ROC Curves for 50% X4 MAR on Y - full data, complete case,
and imputed data.
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Table A.3: Missing Data Mechanism 2: β̂ coefficients of the predictive model
created by the training data for the full data, complete case, and imputed data
for each missing variable and missing rates investigated.

Missing Variable Scenario β̂0 β̂1 β̂2 β̂3 β̂4
Truth 0 3 2 4 1

X2

10% Missing
Complete -0.002 3.053 2.045 4.091 1.036
Missing 0.113 2.955 2.050 4.360 1.035
Imputed -0.001 3.034 2.022 4.049 1.028

30% Missing
Complete -0.004 3.064 2.041 4.087 1.012
Missing 0.489 2.891 2.076 4.673 1.039
Imputed -0.009 3.009 1.983 3.994 0.998

50% Missing
Complete -0.009 3.062 2.039 4.058 1.010
Missing 0.935 2.943 2.116 4.954 1.085
Imputed -0.037 2.966 1.902 3.896 0.987

X4

10% Missing
Complete 0.002 3.059 2.049 4.082 1.021
Missing 0.115 2.961 2.059 4.341 1.026
Imputed 0.005 3.057 2.048 4.081 1.012

30% Missing
Complete -0.001 3.063 2.043 4.064 1.005
Missing 0.487 2.911 2.086 4.688 1.041
Imputed 0.007 3.064 2.044 4.063 0.988

50% Missing
Complete 0.004 3.048 2.046 4.075 1.026
Missing 0.961 2.934 2.130 5.000 1.092
Imputed 0.032 3.048 2.044 4.064 0.959

X2,X4

10% Missing
Complete 0.002 3.065 2.039 4.081 1.017
Missing 0.227 2.888 2.050 4.599 1.031
Imputed 0.004 3.053 2.024 4.045 1.009

30% Missing
Complete 0.002 3.066 2.052 4.083 1.011
Missing 0.985 2.805 2.126 7.112 1.087
Imputed 0.000 3.018 1.984 3.986 0.976

50% Missing
Complete NA NA NA NA NA
Missing NA NA NA NA NA
Imputed NA NA NA NA NA
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Table A.4: Missing Data Mechanism 2: Confusion matrices displaying the
number of true positives (TP), false positives (FP), false negatives (FN), and
true negatives (TN) used for calculating the sensitivity and specificity.

Missing
Variable Scenario TP FP FN TN Sensitivity Specificity

X2

10% Missing
Complete 123 15 15 46 0.891 0.754
Missing 121 13 13 34 0.903 0.723
Imputed 123 15 15 46 0.891 0.754

30% Missing
Complete 123 15 15 47 0.891 0.758
Missing 107 8 9 17 0.922 0.680
Imputed 122 16 16 46 0.884 0.742

50% Missing
Complete 123 15 15 47 0.891 0.758
Missing 87 5 5 8 0.946 0.615
Imputed 122 16 16 46 0.884 0.742

X4

10% Missing
Complete 123 15 15 46 0.891 0.754
Missing 120 13 13 34 0.902 0.723
Imputed 123 15 15 47 0.891 0.758

30% Missing
Complete 123 15 15 46 0.891 0.754
Missing 107 8 9 17 0.922 0.680
Imputed 123 15 15 47 0.891 0.758

50% Missing
Complete 123 16 15 46 0.891 0.742
Missing 87 5 5 8 0.946 0.615
Imputed 123 15 15 46 0.891 0.754

X2,X4

10% Missing
Complete 123 15 15 47 0.891 0.758
Missing 117 11 11 27 0.914 0.711
Imputed 123 16 15 47 0.891 0.746

30% Missing
Complete 123 15 15 47 0.891 0.758
Missing 93 5 5 7 0.949 0.583
Imputed 122 15 16 46 0.884 0.754

50% Missing
Complete NA NA NA NA NA NA
Missing NA NA NA NA NA NA
Imputed NA NA NA NA NA NA
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Figure A.4: ROC Curves for 10% X4 MAR on Y,X1, and X3 - full data, com-
plete case, and imputed data.
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Figure A.5: ROC Curves for 30% X4 MAR on Y,X1, and X3 - full data, com-
plete case, and imputed data.
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Figure A.6: ROC Curves for 50% X4 MAR on Y,X1, and X3 - full data, com-
plete case, and imputed data.
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Appendix B

Additional Theory

B.1 provides detailed steps of the Gibbs Sampler used in continuous and bi-
nary variable imputation. B.2 explains the method of estimating coefficients in
generalized linear models.

B.1 Gibbs Sampler

B.1.1 Continuous Variable Imputation

The following steps explain how to draw Yr
M ∼ f(YM |βr,Ωr,YO):

1. For each unit i = 1, ..., n, re-order the variables such that Yi,1, ..., Yi,p1
are observed and Yi,p1+1, ..., Yp are missing.

2. Re-order β and partition such that β = (βT1 ,β
T
2 )T where βT1 = (β1, ..., βp1)

and βT2 = (βp1+1, ..., βp)

3. Re-order Ω and partition such that Ω =

(
Ω1,1 Ω1,2

Ω2,1 Ω2,2

)

4. Draw Yi,M ∼ N{β2 + (Yi,O − β1)
TΩ−11,1Ω1,2, Ω2,2 −Ω2,1Ω

−1
1,1Ω1,2}
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B.1.2 Binary Variable Imputation

Using a latent normal variable approach designed such that

Pr(Yi = 1) = Pr(Zi > 0) = Pr(Zi − β > −β)

= 1− Φ(−β)

= Φ(β).

(B.1)

is equivalent to regressing a binary variable Y on a constant in a probit model
[5],

Φ−1{Pr(Yi = 1)} = β, i ε (1, ..., n). (B.2)

The fitted probabilities from probit and logit models are only slightly different
so a probit model can be used to impute missing values and a logit model can
still be fit. Therefore, the multivariate normal model can be used to model both
the latent normal variables and continuous variables, with the restriction that
the variance of the latent normal variable must be 1 [5].

Suppose there is a continuous variable Y1 and binary variable Y2. The joint
model using a latent normal approach is

Yi,1 = β0,1 + ei,1

Zi,2 = β0,2 + ei,2

where

(
ei,1

ei,2

)
∼ N2

[
0,Ω =

(
σ2
1 σ1,2

σ1,2 1

)] (B.3)

and Zi,2 is the latent variable associated with Y2. Following the general outline
of the Gibbs sampler in section 2.4.1, use the complete data to set initial values
for β0

0,1, β
0
0,2, and Ω0. At iteration r of the Gibbs sampler [5],

1. For i = 1, ..., n, draw Z̃i,2 from the conditional normal given Yi,1,

Z̃i,2 ∼ N{β0,2 + (Yi,1 − β0,1)Ω−11,1Ω1,2, 1−Ω2,1(Ω1,1)
−1Ω1,2} (B.4)

If Yi,2 = 1 and Z̃i,2 > 0 or Yi,2 = 0 and Z̃i,2 ≤ 0 then accept and set
Zr
i,2 = Z̃i,2. Otherwise draw a new Z̃i,2.

2. Update elements of Ω to obtain Ωr using a Metropolis Hastings algo-
rithm.
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a) Draw Ω̃k,l from a symmetric proposal distribution.

b) Ensure Ω is positive definite when Ωk,l is updated with Ω̃k,l. If not,
draw a new Ω̃k,l.

c) Accept Ω̃k,l with probability

min

(
1,
L(β, Ω̃k,l,Ω−k,l)p(Ω̃k,l,Ω−k,l)

L(β,Ω)p(Ω)

)
(B.5)

where L is the bivariate normal likelihood,

L(β,Ω) ∝ |Ω|−n/2

× exp

{
−1

2

n∑
i=1

(Yi,1 − β0,1, Yi,2 − β0,2)Ω−1(Yi,1 − β0,1, Yi,2 − β0,2)

}
,

(B.6)

Ω−k,l refers to elements of Ω excluding the (k, l)th, and p(.) is the
prior distribution for Ω. See Appendix B in Multiple Imputation

and Its Application for more information [5].

d) If Ω̃k,l is accepted, set Ωr
k,l = Ω̃k,l. Otherwise, keep Ωr

k,l = Ωr
k,l.

3. Draw (βr0,1, β
2
0,2) from N2[(Ȳ1, Z̄

r
2), n

−1Ωr]

If data are missing, draw a value for each missing variable by sampling with
replacement from the observed values of the corresponding variable. Step 1 of
the Gibbs sampler is modified as follows [5]:

1. If binary Yi,2 is missing, draw Zr
i,2 from (2.24). If Zr

i,2 > 0 then set Y r
i,2 =

1; otherwise, Y r
i,2 = 0.

2. If continuous Yi,1 is missing, draw Zr
i,2 from the marginal normal N(βr−10 , 1).

Follow the steps for accepting or rejecting this proposal. Y r
i,1 is then

drawn from the conditional normal given Zr
i,2,

N{βr−10,1 + (Zr
i,2 − βr−10,2 )(Ωr−1

2,2 )−1Ωr−1
2,1 ,Ω

r−1
1,1 −Ωr−1

1,2 (Ωr−1
2,2 )−1Ωr−1

2,1 }
(B.7)
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B.2 Generalized Linear Model

B.2.1 Iteratively Reweighted Least Squares

For the iteratively reweighted least squares procedure, the dependent variable
is a linearized form of the link function applied to y, denoted as z. To linearize
g(y), let η = g(µ) and µ =E(Y ) and perform a Taylor expansion such that [22]

g(y) ≈ g(µ) + (y − µ)g′(µ)

= η + (y − µ)
dη

dµ

≡ z.

(B.8)

The regression of z on X uses weights wi that are inversely proportional to
Var(g(y))

V̂ar(z) =

(
dη

dµ

)2

V (µ) =
1

w
(B.9)

in order to estimate the new estimates for β [22]. The process is iterative be-
cause the adjusted dependent variable z and the weights wi are functions of the
fitted values µ̂. The iteratively reweighted least squares procedures is then as
follows [22]:

1. Set initial estimates for η̂0 and µ̂0.

2. Form the adjusted dependent variable z0 = η̂0 + (y − µ̂0)
dη
dµ

.

3. Form the weights w−10 =
(
dη
dµ

)2 ∣∣∣
η̂0
V (µ̂0).

4. Re-estimate β to get η̂1.

5. Iterate steps 2-4 until convergence.

The above steps represent how these parameters are estimated in statistical
software packages. See Generalized Linear Models by McCullagh and Nelder
for more details [22].
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B.2.2 Logistic Regression Maximum Likelihood

The coefficients β0, β1, ..., βp are estimated such that the predicted probability
πi for each individual is as close as possible to their true outcome status. This
is accomplished by maximizing the likelihood function [17], written as

L(β0, β1, ..., βp) =
n∏
i=1

πyii (1− πi)1−yi . (B.10)

This is transformed by taking the log of both sides to create the log-likelihood,

l(β0, β1, ..., βp) =
n∑
i=1

yilog(πi) + (1− yi)log(1− πi)

=
n∑
i=1

yilog(πi) + log(1− πi)− yilog(1− πi)

=
n∑
i=1

log(1− πi) +
n∑
i=1

yilog
(

πi
1− πi

) (B.11)

Typically maximum likelihood problems are solved by differentiating the
log-likelihood with respect to each βp+1 separately, setting it equal to 0, and
then solving for the respective β. However, logistic regression does not have a
closed form. Thus, it is best to follow the iteratively reweighted least squares
method highlighted in the previous section.
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