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Abstract

Aerodynamic Parameter Identification
of a Venus Lander

Robert A. Sykes

An analysis was conducted to identify the parameters of an aerodynamic model for a
Venus lander based on experimental free-flight data. The experimental free-flight data were
collected in the NASA Langley 20-ft Vertical Spin Tunnel with a 25-percent Froude-scaled
model. The experimental data were classified based on the wind tunnel run type: runs where
the lander model was unperturbed over the course of the run, and runs were the model was
perturbed (principally in pitch, yaw, and roll) by the wind tunnel operator. The pertur-
bations allow for data to be obtained at higher wind angles and rotation rates than those
available from the unperturbed data. The model properties and equations of motion were
used to determine experimental values for the aerodynamic coefficients. An aerodynamic
model was selected using a priori knowledge of axisymmetric blunt entry vehicles. The least
squares method was used to estimate the aerodynamic parameters. Three sets of results
were obtained from the following data sets: perturbed, unperturbed, and the combination
of both. The combined data set was selected for the final set of aerodynamic parameters
based on the quality of the results. The identified aerodynamic parameters are consistent
with that of the static wind tunnel data. Reconstructions, of experimental data not used in
the parameter identification analyses, achieved similar residuals as those with data used to
identify the parameters. Simulations of the experimental data, using the identified param-
eters, indicate that the aerodynamic model used is incapable of replicating the limit cycle
oscillations with stochastic peak amplitudes observed during the test.
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Chapter 1: Introduction

1.1 Motivation and Objectives

Motivation

Atmospheric entry vehicles, such as aeroshells and landers, often enter the subsonic flight
regime as a part of the entry, descent and landing (EDL) sequence. Such vehicles are some-
times tested in free flight to observe their subsonic dynamic behavior. The NASA Langley
20-ft Vertical Spin Tunnel (VST) provides a controlled environment for free flight testing
of atmospheric entry vehicles scale models in the subsonic flight regime. The VST’s airflow
opposes gravity allowing the vehicle to enter a terminal descent, free fall orientation. The
instrumentation housed in the VST collects data that allows for a complete characterization
of the state of the vehicle. See section 2.1.1 for more information on the VST. The scale
models are typically Froude-scaled such that the dynamic behavior can be directly related to
the full-scale vehicle in their operating environment. See section 2.1.2 for more information
on Froude scaling.

The Surface and Atmosphere Geochemical Explorer (SAGE) Venus lander was tested
free flight in the VST using a Froude-scaled model. See the next section for a more detailed
description the SAGE mission and lander. In the initial analysis of the VST data collected
on the SAGE lander only the motion of the lander was analyzed without regard for the
underlying aerodynamics. This was done to meet mission proposal needs. NASA had a later
interest in analyzing the test data further, to determine the static and dynamic aerodynamic
coefficients of the lander. To do this a parameter identification (PID) analysis needed to be
conducted. The code was to be assembled using new and existing components to create a
complete, beginning-to-end analysis that: smoothed the raw data, calculated the state and
additional required variables, and identified the aerodynamic parameters of the lander. The
analysis was to be general enough that it could be applied to other vehicles tested in the
VST. The motivation of this research was to meet this need and provide NASA this PID
capability for spin-tunnel test data.

1



CHAPTER 1. INTRODUCTION 2

Objectives

The research required for this thesis was driven by the following objectives:

• Integrate, verify, and validate a PID code, assembled using existing and new compo-
nents, to identify aerodynamic parameters of descent vehicles based on data collected
in the VST. The code should be capable of identifying all aerodynamic parameters
present in the modeled aerodynamic coefficients.

• Identify the aerodynamic parameters for the SAGE Venus lander as an exercise of the
code.

• Evaluate the resulting aerodynamic parameters by comparing the results in three ways.
The identified static parameters are compared to static wind tunnel tests conducted
on the SAGE lander. Reconstructions of the coefficients, of dynamic data not used in
the PID analyses, are compared to the experimental values. Finally, flight simulations,
using the identified parameters, are compared to experimental data.

1.2 Venus Surface and Atmosphere Geochemical Ex-

plorer

1.2.1 Mission

SAGE is a proposed mission to Venus which is intended to study the atmosphere, climate and
surface of the planet [1]. The mission consists of a carrier, which acts as a communication
link, and a lander. The lander will collect atmospheric and meteorological data during the
descent stage and upon landing collect scientific information on the geology and chemistry
of the planetary surface. The EDL sequence is expected to take approximately one hour and
the lander will survive on the planetary surface for around three hours.

1.2.2 Entry, Descent and Landing Sequence

The lander is initially packaged in an aeroshell. Figure 1.1 shows an artists concept of the
landing sequence. The expected EDL sequence∗ is as follows:

Hypersonic Entry The EDL sequence begins E = 0 seconds when the aeroshell enters the
atmosphere. At this point the aeroshell is at an altitude of approximately 140 km, and
traveling at about 11,500 m/s.

Parachute Deployments At E = 136 seconds the first of two parachutes deploys. A
pilot parachute is initially deployed; this removes the backshell which triggers the

∗Expected EDL sequence of events information obtained from mission proposal documents which are
currently unpublished.
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deployment of the main parachute. At this point the vehicle is at an altitude of
approximately 65 km and descending at approximately 165 m/s.

Heat Shield Separation At E = 151 seconds the heat shield is separated from the lander
exposing it to the atmosphere. At this point the lander is at an altitude of approxi-
mately 63 km and descending at a rate of approximately 46 m/s.

Outrigger Deployment At E = 181 seconds the outriggers are deployed from the initial
stowed position. At this point the lander is at an altitude of approximately 62 km and
descending at a rate of approximately 35 m/s.

Main Parachute Release At E = 301 seconds the lander is released from the main
parachute and begins an uncontrolled terminal descent free-fall to the surface of the
planet. The release occurs when the lander is at an altitude of approximately 58 km
and descending at approximately 26 m/s.

Landing The lander is expected to impact the surface of the planet at E = 3414 seconds.
The impact velocity is to be <10 m/s.

The terminal descent free-fall phase between the main parachute release and the landing
is an important part of the EDL sequence. This phase takes the most time, around 50
minutes, and is where 58 km of the total 140 km altitude for the descent is lost. This is
partly because the Venusian atmosphere is much denser than earth’s at the surface, around
53 times. This allows the lander to lose most of its kinetic energy in the upper atmosphere
and then descend at a relatively slow rate through the rest of the atmosphere where it will
be collecting scientific data.

During this phase the lander must possess adequate aerodynamic characteristics to achieve
mission goals. The lander must possess both static and dynamic aerodynamic stability.
There are mission requirements on the angular rotation rate of the lander so that cameras
can obtain clear images, free of motion blur. Additionally the angle at which the lander
impacts the surface cannot be too high or the energy absorption system will not function
as designed. The lander makes use of devices to improve these aerodynamic characteristics
and aid in impact worthiness. These devices can be seen in Figure 1.2. A drag plate is
used to keep the descent rate under 10 m/s near the surface. A crushable energy absorber
is used to cushion the impact with the planetary surface. Outriggers are to keep the lander
upright upon impact. The lander is uncontrolled so it is up to the lander’s passive stability
characteristics to ensure the mission goals are accomplished.

1.2.3 Lander

Figure 1.2 shows the components that comprise the lander. The main component is a pressure
vessel which houses all electronics and acts as a mounting point for all other components. A
crushable energy absorber aids in the reduction of the shock of impact with the planetary
surface upon landing. Five outriggers, mounted at equidistant angles around the pressure



CHAPTER 1. INTRODUCTION 4

vessel, act to stabilize the lander upon impact with the surface and provide additional drag
in the terminal descent phase. A drag plate is mounted to the top of the pressure vessel and
is used to control the descent rate and increase stability. There is an excavation arm that is
mounted on the side of the lander that is intended to analyze soil samples. The lander, as
designed, has a mass of around 850 kg and a maximum diameter of 3.9 m.

1.2.4 Wind Tunnel Testing

Wind tunnel tests were conducted in support of the SAGE mission development with a
purpose of exploring the mission design space of the drag plate and its relation to the drag
and stability of the lander. These tests were conducted by Juan R. Cruz of NASA Langley
Research Center (LaRC). Static wind tunnel tests were conducted to explore the drag and
static stability of various configurations of the drag plate. The best configurations were
selected for dynamic wind tunnel testing in the VST. The dynamic wind tunnel testing
was conducted to obtain information on the dynamic motions of the lander. The present
research exploits the data collected for one of the drag plate configurations used in the
dynamic testing. More detailed information on both the static and dynamic wind tunnel
tests is presented in Chapter 2.

1.3 Thesis Outline

This thesis is organized as follows:

• In Chapter 2 the wind tunnel tests conducted in support of the SAGE lander are
discussed. The static and dynamic tests are described and the results presented. The
dynamic test, being the most relevant to the present research, is presented in greater
detail.

• In Chapter 3 the preprocessing of the raw data is examined. The smoothing routine is
described and the equations required for the calculation of the state variables presented.

• In Chapter 4 the aerodynamic modeling is discussed. The method for determining
the most appropriate model is examined and the final chosen model is presented. The
parameter identification method is defined and the necessary equations developed. The
methods to determine the accuracy of the identified parameters are presented.

• In Chapter 5 the results of the PID analyses on the SAGE wind tunnel data are
presented and discussed. The parameters and their values are examined and validated
against reconstructions of dynamic test runs not used in the PID analyses, static wind
tunnel tests, and flight simulations.

• In Chapter 6, conclusions of the analysis are discussed and recommendations of further
work given.
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Figure 1.1: Artist’s concept of the SAGE EDL sequence. [1]

Figure 1.2: SAGE lander with major components labeled. Note that the excavation arm is
in the operation position, it is stowed during flight. [1]



Chapter 2: Wind Tunnel Testing

To evaluate the aerodynamic and dynamic characteristics of the SAGE lander it was sub-
jected to both static and dynamic wind tunnel testing.∗ The purpose of these tests was to
investigate the aerodynamic behavior of various configurations of the lander. The results
were used to make lander configuration design decisions. The size and geometry of the drag
plate was varied to determine which would yield the desired descent rate and acceptable
dynamic characteristics. The presence and diameter of the outriggers were also varied in the
static wind tunnel test. The static wind tunnel test was conducted prior to the dynamic test
and served to downselect the configurations for dynamic testing. Of the 39 configurations
tested in the static test only 5 were tested in the VST. For the purposes of this thesis, only
one of the five will be analyzed; the model configuration with the large drag plate. Although
these tests were not conducted by the author as a part of the research for this thesis, this
chapter is included for completeness.

2.1 Dynamic Wind Tunnel Testing

2.1.1 Test Facility

Specifications

The NASA 20-ft VST is a closed-throat, annular-return vertical wind tunnel that operates
with air at ambient conditions (sea level). Figure 2.1 shows a schematic of the wind tunnel.
The test section has a 12-sided regular polygon cross section that is 20 ft across and 25 ft
high. A three bladed fan at the top of the test section forces air through turning vanes
to the annular-return passage. A flow straitening grid mitigates flow angularity, from the
merging of the airstreams around the return passage, upon the airstream entering the test
section. The airstream velocity in the test section can reach 85 ft/s and a dynamic pressure
of 8.6 psf. For more details on the VST see Table 2.1. The test section is partially lined
with observation windows which may be opened to launch models into the airstream. Safety
nets on the top and bottom of the test section keep the model contained and the walls are
padded to reduce model damage in case of accidental contact with the walls.

∗Both the static and dynamic wind tunnel tests were conducted by Juan R. Cruz of NASA LaRC. The
test plan and report for each test were used as references for this chapter. These documents are internal
NASA documents and are unpublished.

6
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Table 2.1: NASA LaRC VST specifications. [2]

Test section dimensions 25 ft high by 20 ft wide
Cross section 12-sided regular polygon, 300 ft2

Contraction ratio 5:1
Max speed 85 ft/s
Max dynamic pressure 8.6 psf
Max Reynolds number 0.55× 106 per ft
Drive power 400 hp continuous and 1300 hp in short bursts

Tether

The dynamically scaled models used in the VST are built to meet mass and geometric
requirements, and can be quite delicate. Contact with the test section walls could damage
the model causing a delay in testing and requiring model repairs. As a safety precaution
a lightweight, small diameter tether is sometimes attached to the models so they may be
pulled away from danger. From the model, the tether is threaded through a ring suspended
in the center of the test section with guy wires. The tether is connected to an electric winch
which is activated if the model approaches the wall. The tether geometry and components
are shown in Figure 2.1. The aerodynamic drag on the tether keeps it out of the way of
the free-flying model. For SAGE lander testing, this tether system was used. The effect of
the tether on the free flight characteristics of the SAGE lander model is discussed in section
2.1.2.

Operation

During testing the model is flown at the level of the observation windows. The tunnel velocity
is controlled by an operator and is varied in an attempt to keep the model vertically centered
in the test section. To begin a wind tunnel run, the model is suspended in the center of the
test section by the tether and the tunnel is turned on. The drag on the model lifts it in
front of the observation windows and data acquisition is initiated. After the run the model
is returned to a suspended state and data acquisition ended.

2.1.2 Lander Scale Model

Scaling

A dynamically scaled model of the lander was constructed for testing in the VST. The model
was geometrically a quarter scale model of the SAGE lander and its mass properties were
Froude scaled to give similitude with the conditions that the SAGE lander would encounter
at 20 km altitude in the Venus atmosphere. Table 2.2 presents the dimensions and mass
properties of the full-scale and scale model SAGE landers.
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Table 2.2: SAGE full-scale and model landers.

Full-Scale Model-Scale Units

Scale 100 25 %
Pressure vessel diameter, d 0.850 (2.7887) 0.2125 (0.6972) m (ft)
Pressure vessel frontal area, S 0.567 (6.108) 0.0355 (0.3818) m2 (ft2)
Outrigger diameter, dor 101.6 (4.000) 25.4 (1.00) mm (in)
Lander mass, m 840.4 (57.59) 0.7873 (0.0539) kg (slug)

Roll mass moment of inertia, Ixx
3.609× 108 2.113× 104 kg·mm2

2.662× 102 1.558× 10−2 slug·ft2

Pitch mass moment of inertia, Iyy
2.357× 108 1.380× 104 kg·mm2

1.738× 102 1.018× 10−2 slug·ft2

Yaw mass moment of inertia, Izz
2.356× 108 1.379× 104 kg·mm2

1.738× 102 1.017× 10−2 slug·ft2

Construction

The model was constructed from 3-D printed plastic and Mylar. The pressure vessel, exca-
vator arm, crushable energy absorber and outrigger end pads were fabricated as individual
components from 3-D printed plastic. The cylindrical outriggers were fabricated from rolled
Mylar sheet; its ends were braced by thin nylon line. The drag plates are fabricated from
3-D printed frames covered with Mylar. The drag plates can be replaced, allowing for testing
with different drag plates using the same model core (i.e., pressure vessel, energy absorber,
and outriggers). The model mass properties were adjusted by a system including an internal
movable mass, and small masses attached to the outrigger end pads.

2.1.3 Test Description

Five SAGE configurations were tested during the course of the dynamic wind tunnel testing.
For this thesis the only configuration analyzed is for a large drag plate with outriggers.
Figure 2.2 shows the SAGE lander model configuration selected for use in the PID analysis.

Unperturbed and Perturbed Test Runs

For each configuration tested there were runs where the model was perturbed, by an external
force, and left unperturbed, allowing the model to determine its own motion. The SAGE
lander displays significant damping, as a result on runs where the lander is unperturbed the
total angle of attack seldom rises above six degrees. In an effort to obtain aerodynamic data
at higher angles of attack the model was perturbed. To perturb the model, a wind tunnel
technician contacts the side of the model with a pole to increase the angle of attack. This
event causes the model to oscillate and often requires the operator to throttle the tunnel
up or down to keep the model vertically centered in the test section. Several perturbations
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could be performed during a given run. Sometimes, after a perturbation, the model needed
to be rescued by activating the tether to keep the model from striking the wall. In such a
case the run was terminated.

Tether Force Determination

The tether imposes forces and moments on the model that are absent in true free flight.
In past programs the effect of the tether has been neglected in post-test analyses. This
assumption is only valid if the magnitude of the tether forces and moments imposed on
the model are sufficiently small as compared to the aerodynamic and inertial forces and
moments encountered by the model. In determining the contributions of small dynamic
moments to the stability of the vehicle the tether may have a comparatively large effect.
The tether acts on the model as if it were a drogue parachute, affecting the stability of the
model. To differentiate the tether force from the model aerodynamic forces and moments
more information needs to be known about the magnitude of the tether force.

To determine the tether force a streamlined lead mass was attached to the tether in place
of the model. The wind tunnel was powered up until the mass was lifted. The velocity was
adjusted to hold the mass in equilibrium at a desired vertical position. At this point the
velocity was recorded. This process was repeated with five different masses (see Figure 2.3).
The length of the tether was the same from run to run. The aerodynamic drag on the mass
was assumed to be negligible. The equilibrium conditions, at which the velocity is recorded,
means that the tether force was assumed to be equal to the weight of the streamlined mass.
The results of this test, given in Table 2.3 in Section 2.1.5, were used to generate a tether
force model which is detailed in Appendix B.2.

2.1.4 Data Acquired

Coordinate Systems

The tunnel fixed coordinate system is oriented such that the positive X axis is directed verti-
cally downwards. The Y and Z axes form the horizontal plane. Figure 2.1 shows the tunnel
fixed coordinate system in a cross section of the tunnel. Note that the coordinate system is
adapted from a standard coordinate system which has the Z axis pointing downwards. The
data collected using the standard coordinate system suffered from singularity issues with the
Euler angles necessitating the change to the tunnel fixed coordinate system.

There are two body fixed coordinate systems used in the PID analysis: a geometric model
fixed coordinate system and a center of mass fixed coordinate system. The geometric model
fixed coordinate system origin is defined as the geometric center of the pressure vessel. The
x axis is out the nose of the vehicle, the y axis is along the outrigger opposite the excavation
arm. The geometric model fixed coordinate system is used for data collection by the motion
capture system. The center of mass fixed coordinate system origin is at the center of mass
and its axes are parallel to those of the geometric model fixed coordinate system. The center
of mass is defined with respect to the geometric model fixed coordinate system. The two
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systems were necessitated by the fact that model was constructed with the ability to change
the center of mass along the axis of symmetry. The position data, collected at the geometric
origin, is converted to the center of mass in preprocessing (see Chapter 3) for analysis. The
Euler angles and rates are the same regardless of where the coordinate system is centered.
Figure 2.4 shows the geometric model fixed coordinate system.

Motion Capture System

The position and attitude of the vehicle was recorded via a motion capture system at a rate
of 150 Hz. The model was fitted with reflective dots which were observed by a number of
cameras in the tunnel. The tunnel’s computer calculates the position of each reflective dot
by triangulating the view of the cameras. The coordinates of the geometric model fixed
coordinate system origin relative to the tunnel fixed coordinate system is then calculated
based on the known locations of the reflective dots on the model. In a similar manner the
Euler angles are determined. The data collected by the motion capture system are:

• The position of the origin of the geometric model fixed coordinate system relative to
the tunnel fixed coordinate system, (X, Y and Z).

• The Euler angles of the vehicle in an x–y–z rotation sequence, (Rx, Ry and Rz).

Other Recorded Variables

In addition to the position and attitude data other variables important to the analysis are
recorded at the same 150 Hz data rate. These variables are:

• The wind dynamic pressure in the tunnel, qW .

• The free stream static pressure in the tunnel, ps.

• The magnitude of the upward wind velocity, VW .

• The static temperature in the tunnel, Ts.

Documentation Camera

The runs were documented with a high definition video camera. In circumstances where the
motion of the vehicle cannot be fully understood from the motion data the video data can
be observed to see the actual motion of the model. The video data can also be synchronized
with the motion data to better determine the time window of the data to be used in the PID
analysis.
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2.1.5 Test Results

Lander

Several minutes of data were collected using the large drag plate with outriggers configura-
tion. The data were organized into two blocks: unperturbed and perturbed. Figures 2.5a -
2.5d show the typical results for an unperturbed run of 60 seconds. Note that the pitch and
yaw (Ry and Rz) Euler angles are very small and rarely exceed seven degrees (or an angle
of attack of approximately six degrees upon further analysis). Data at higher Euler angles
were collected during the perturbed runs. Figures 2.6a - 2.6d show a typical perturbation.
The data used for the PID analysis is collected immediately after the contact with the lander
model has ended. At this point the lander model is at its maximum state of perturbation.
The dynamic wind tunnel data used in the PID analysis is displayed in Appendix A.

The recovery period immediately following the perturbation gives insight to the lander’s
dynamic damping capabilities. Figure 2.6b shows that the oscillations due to the perturba-
tion, in which the lander model reached ∼30 degrees, are damped out after ∼2 oscillations.
The lander model then enters a period of very low angle oscillations, returning to the behavior
observed in an unperturbed state.

Tether Force

The weight of each streamlined mass was recorded as well as the velocity of the wind tunnel.
The dynamic pressure was calculated using an atmospheric density of 0.00229 slug/ft3. The
weight of the masses was measured on a digital scale with an uncertainty of ±0.0001 lb. The
uncertainty in the velocity measurements was estimated to be ±1 ft/s. The magnitude of
the tether force, Ftr, is assumed to equal to the weight of the streamlined mass. Table 2.3
shows the results of this test. These results were used to generate a tether force model which
is detailed in Appendix B.2.

Table 2.3: Tether force wind tunnel experiment results. The weight numbers correspond to
the weights shown in Figure 2.3.

Weight # Ftr (lb) V∞ (ft/s) q∞ (psf)

1 0.0040 22 0.6
2 0.0068 26 0.8
3 0.0115 31 1.1
4 0.0148 33 1.2
5 0.0229 41 1.9
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2.2 Static Wind Tunnel Testing

2.2.1 Test Facility

The static wind tunnel test was conducted in the NASA Ames Research Center (ARC) Fluid
Mechanics Laboratory’s (FML) subsonic wind tunnel. The facility is an open-circuit indraft
wind tunnel with a test section that measures 48 in tall by 32 in wide with a contraction
ratio of 9:1. The tunnel is capable of an airstream velocity of 165 ft/s (Mach 0.15) with a
Reynolds number of 1.1× 106 per ft.

2.2.2 Lander Scale Model

An 11.58% scale model of the lander was used in the testing. Various sizes and configurations
of the drag plate and outriggers were tested. Only the configuration that has similitude with
the lander model configuration used in the PID analysis is reported here.

2.2.3 Test Description

The model lander was mounted to a L-sting fixed to a floor-mounted turntable. This table
was rotated to change the azimuth of the model with respect to the incoming freestream
(see Figure 2.7). The roll angle of the model lander was adjusted to obtain data at various
total angles of attack, αT , to show variation of the aerodynamic forces and moments on the
model with respect to the total angle of attack clock angle, φαT .

2.2.4 Data Acquired

All three force and moment components were obtained from the internal wind tunnel balance
for multiple values of αT and φαT . The force and moment components reduce to the aerody-
namic coefficients: CX , CY , CZ , Clo , Cmo , Cno . By imposing the assumption of axisymmetry,
an axisymmetric model was devised in which the value varies with αT but remained constant
with φαT .

2.2.5 Test Results

The axisymmetric aerodynamic model data, relevant to the model under consideration in
this thesis, are shown in Figure 2.8. These data are used to partially validate results of the
parameter identification analyses.
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Figure 2.1: NASA LaRC 20-ft VST. Adapted from image provided by NASA LaRC.

Figure 2.2: SAGE lander dynamic wind tunnel Froude scaled model. Image provided by
NASA LaRC.
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Figure 2.3: Tether force testing weights. Image provided by NASA LaRC.

Figure 2.4: The geometric model-fixed coordinate system with origin at the geometric center
of the pressure vessel. Adapted from image provided by NASA LaRC.
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Figure 2.5: Typical set of data collected during an unperturbed run. These data are from
Test Block 2 Run 2.
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Figure 2.6: Typical set of data collected during a perturbed run. These data are from Test
Block 3 Run 2.
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Figure 2.7: SAGE lander static wind tunnel scale model.
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Figure 2.8: Axisymmetric static aerodynamic model derived from static wind tunnel data
for the lander with the large drag plate.



Chapter 3: Data Preprocessing

In order to estimate the aerodynamic coefficients required for the parameter identification
analysis the state variables must be calculated from the data collected in the VST. To do this
the velocities, accelerations, etc. of the lander must be determined in the inertial coordinate
system and then converted to the body coordinate system. This means that the first and
second time derivatives are required from the raw data signals. The raw wind tunnel data
contained noise that yields unreliable derivatives when finite differencing is used. Therefore,
the raw data signals must be smoothed to remove noise prior to the calculation of the time
derivatives. This chapter will discuss the smoothing routine, calculation of the derivatives,
and determination of the state variables.

3.1 Global Smoothing Routine

There are multiple methods available for separating noise from a signal. Global Fourier
smoothing was chosen for this application for two reasons. First, the global view of the data
is available to give the best estimate of the frequencies contained therein. Some filtering
methods only use the past history to smooth the signal and there is an associated phase
shift based on the cutoff frequency selected. Second, the smoothed signal is defined by an
analytical equation for which closed form derivatives can be obtained thus giving accurate
estimates of the time derivatives.

To show the process, consider the signal for the X component of the position of the
lander model for Test Block 2 Run 2 shown in Figure 3.1a. The raw signal, X̌i, contains N
data points at constant time interval, ∆t, and is composed of the true signal, Xi, and noise,
νi.

X̌i = Xi + νi i = 0, 1, 2, . . . N − 1 (3.1)

The goal of the smoothing routine is to estimate Xi from X̌i. To do this the raw signal is
rebuilt as a Fourier series. By examining the frequency spectrum of the Fourier series an
estimate can be made of which frequencies are noise and which represent the true signal.
A filter is designed to remove unwanted frequencies and a smooth signal is constructed.
This smoothing routine is covered in detail in reference [3]. The SIDPAC software, included
with reference [4], was implemented for the smoothing. This decision was made because the
SIDPAC software had been verified and validated.

18
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3.1.1 Fourier Reconstruction

The raw signal, including noise, is reconstructed with a Fourier series. This series is a sum
of sine and cosine terms at discrete frequencies and magnitudes that can replicate periodic
functions. To obtain a periodic function from the raw signal the following transformation,
shown in Eqs. (3.2) and (3.3), is applied.

ξ̌i = X̌i − X̌0 − i
(
X̌N−1 − X̌0

N − 1

)
i = 0, 1, 2, . . . N − 1 (3.2)

ξ̌−i = −ξ̌i i = 0, 1, 2, . . . N − 1 (3.3)

The transformation in Eq. (3.2) removes any linear trend present in the signal by setting
the endpoints equal to zero. Eq. (3.3) reflects the signal about both its vertical and horizontal
axes. These transformations are shown in Figures 3.1b and 3.1c. The result is a repeating
signal the has the property that:

ξ̌−(N−1) = ξ̌0 = ξ̌N−1 = 0 (3.4)

Note that ξ̌i is an odd periodic function, thus it can be represented as a Fourier series
consisting of only sine terms. This sine series has the form given in Eq. (3.5).

ξ̃i =
N−1∑
k=1

bk sin [ωki∆t] i = 0, 1, 2, . . . N − 1 (3.5)

where the amplitudes of the terms, bk, are,

bk =
2

N − 1

N−2∑
i=1

ξ̌i sin

[
kπ

(
i

N − 1

)]
k = 0, 1, 2, . . . N − 1 (3.6)

and the angular frequencies, ωk, are,

ωk =
kπ

(N − 1)∆t
k = 0, 1, 2, . . . N − 1 (3.7)

The discrete frequencies, fk, and periods, Tk, can be calculated using Eqs. (3.8) and (3.9)
respectively. The maximum frequency as calculated in Eq. (3.8) is the Nyquist frequency.

fk =
ωk
2π

=
k

2(N − 1)∆t
k = 0, 1, 2, . . . N − 1 (3.8)

Tk =
1

fk
=

2(N − 1)∆t

k
k = 0, 1, 2, . . . N − 1 (3.9)

The raw signal can be reconstructed via Eq. (3.10) by adding the linear trend back to the
periodic function.

X̃i = ξ̃i + X̌0 + i

(
X̌N−1 − X̌0

N − 1

)
i = 0, 1, 2, . . . N − 1 (3.10)
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The reconstructed signal, X̃i, is shown in Figure 3.1d. The signal still contains the
noise that was present in the raw data. To remove the noise a filter must be designed and
implemented in the Fourier series. This process is described in the next section.

3.1.2 Filter Design and Implementation

A filter is used to remove the noise from the signal and obtain an estimate of the true signal,
Xi. A Wiener filter is used in the current analysis because it allows for some cushion in the
cutoff frequency selection. The series can be truncated at the cutoff frequency but often the
line separating the true signal from the noise is not clearly identifiable. The Wiener filter
tapers the signal over this region and takes some of both sides of the cutoff frequency into
consideration.

The first step in the filter design is selecting a cutoff frequency, fo. By examining a plot
of |bk| versus fk a cutoff frequency can be determined. Figure 3.2a shows the frequency
spectrum for X̌i. Figure 3.2b is a zoomed in view of Figure 3.2a, the cutoff frequency of 1.5
Hz was selected for this signal. The filter can then be designed specifically for this signal.
The Wiener filter has the mathematical form given in Eq. (3.11). Figure 3.2c shows the
shape of the filter as a function of the frequency. Note that at the cutoff frequency the filter’s
value is 0.5.

Φk =
η2k

η2k + 1
k = 0, 1, 2, . . . N − 1 (3.11)

where,

ηk =

{
(fo/fk)

3 if (fo/fk)
3 > 0.01

0 if (fo/fk)
3 ≤ 0.01

k = 0, 1, 2, . . . N − 1 (3.12)

Note that the exponent in Eq. (3.12) determines the sharpness of the transition is across
the cutoff frequency. The exponent can be increased for a shaper transition. The filter is
truncated after 0.01 or 1% of the signal amplitude. The smoothed signal, Xi, is constructed
using Eq. (3.13) by inserting the filter term into the Fourier series expansion.

Xi = ξi + X̌0 + i

(
X̌N−1 − X̌0

N − 1

)
i = 0, 1, 2, . . . N − 1 (3.13)

where the smoothed periodic function is,

ξi =
N−1∑
k=1

Φkbk sin [ωki∆t] i = 0, 1, 2, . . . N − 1 (3.14)

The signal noise, νi, is determined from Eq. (3.15) and gives insight to the noise level of
the smoothed signal. Figure 3.3 compares the raw and smoothed signals and shows the noise.
Note that the Figures 3.3a and 3.3b look very similar but the smoothed signal yields cleaner
and more consistent derivatives. See the Section 3.2 for the calculation of the smoothed
derivatives. It is assumed that the noise has a Gaussian distribution with an expected value
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and variance as in Eqs. (3.16) and (3.17). The expected value of the noise should be very
close to zero. For the current analysis it was assumed that an expected value of the noise
on the order of 10−4 or smaller was adequate. If this condition is not met the smoothing
routine is repeated with a higher cutoff frequency.

νi = X̌i −Xi i = 0, 1, 2, . . . N − 1 (3.15)

ν̄ =
1

N

N−1∑
i=0

νi (3.16)

s2ν =
1

N − 1

N−1∑
i=0

(νi − ν̄) (3.17)

The process described by Eqs. (3.2)–(3.17) should be repeated for all variables collected
in the VST as described in section 2.1.5.

3.1.3 Cutoff Frequencies

The cutoff frequencies for the motion data is given in Table 3.1. These values were determined
to meet the requirements of expected value of the noise. The quality of the derivatives were
taken into account in the selection of the cutoff frequency as well. The signals for static
pressure and temperature are typically given a constant value as variability in the signal is
very small over the course of the wind tunnel run.

Table 3.1: Cutoff frequencies for the motion data collected in the VST.

Variable fo (Hz)

X 1.5
Y 1.5
Z 1.5
Rx 1.5
Ry 2.5
Rz 2.5
VW 1.5

3.2 Smoothed Derivatives

The first and second time derivatives of the position and attitude variables as well as the
first derivative of the wind velocity are required for the equations of motion. Because the
smoothed signal is a Fourier series the closed form solution of the time derivative can be
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determined by taking the derivative of Eq. (3.13). These derivatives are shown in Eqs.
(3.18) and (3.19).

Ẋi =
N−1∑
k=0

ωkΦkbk cos (ωki∆t) +

(
X̌N−1 − X̌0

N − 1

)
i = 0, 1, 2, . . . N − 1 (3.18)

Ẍi = −
N−1∑
k=0

ω2
kΦkbk sin (ωki∆t) i = 0, 1, 2, . . . N − 1 (3.19)

3.3 Calculation of State Variables

The following equations are used to calculate the state variables for the model lander from
the smoothed wind tunnel data and its first and second derivatives. The angular velocity
(p, q, r) and the angular acceleration (ṗ, q̇, ṙ) in the body fixed coordinate system are de-
termined from the recorded Euler angles’ first (Ṙx, Ṙy, Ṙz) and second (R̈x, R̈y, R̈z) time
derivatives using Eqs. (3.20)–(3.23). The rotational translation matrix [T1] is used for the
transformation. Note that Eq. (3.22) is the derivative of Eq. (3.20).

p
q
r

 = [T1]


Ṙx

Ṙy

Ṙz

 (3.20)

[T1] =

 cosRy cosRz sinRz 0
− cosRy sinRz cosRz 0

sinRy 0 1

 (3.21)


ṗ
q̇
ṙ

 =
[
Ṫ1

]
Ṙx

Ṙy

Ṙz

+ [T1]


R̈x

R̈y

R̈z

 (3.22)

[
Ṫ1

]
=

 −Ṙy sinRy cosRz − Ṙz cosRy sinRz Ṙz cosRz 0

Ṙy sinRy sinRz − Ṙz cosRy cosRz −Ṙz sinRz 0

Ṙy cosRy 0 0

 (3.23)

The velocity at the center of mass is defined in vector notation by Eq. (3.24). The
location of the center of mass is specified by the vector rcm from the center of the pressure
vessel (i.e., the origin of the geometric body fixed coordinate system) to the center of mass.
The components of rcm are xcm, ycm and zcm.

U = Uo + ω × rcm (3.24)

The center of mass velocity components (u, v, w) are calculated from Eq. (3.25) based on
the velocity of the origin of the geometric model fixed coordinate system (uo,vo, wo), defined
by Eq. (3.26).
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u
v
w

 =


uo
vo
wo

+

 0 −r q
r 0 −p
−q p 0


xcm
ycm
zcm

 (3.25)

where, 
uo
vo
wo

 =
[
TBEF

]T 
Ẋ

Ẏ

Ż

 (3.26)

The acceleration (u̇,v̇, ẇ) at the center of mass is determined by Eq. (3.27). The

transformation matrix,
[
TBEF

]
, and its derivative,

[
ṪBEF

]
, are defined in Appendix B in

Eqs. (B.13) and (B.42).
u̇
v̇
ẇ

 =


u̇o
v̇o
ẇo

+

 0 −ṙ q̇
ṙ 0 −ṗ
−q̇ ṗ 0


xcm
ycm
zcm

 (3.27)

where, 
u̇o
v̇o
ẇo

 =
[
ṪBEF

]T 
Ẋ

Ẏ

Ż

+
[
TBEF

]T 
Ẍ

Ÿ

Z̈

 (3.28)



CHAPTER 3. DATA PREPROCESSING 24

0 10 20 30 40 50 60
−1 .2

−1 .0

−0 .8

−0 .6

−0 .4

−0 .2

0

0 .2

0 .4

0 .6

t (s)

X̌
(m

)

(a) Raw signal, X̌.
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(d) Reconstructed signal, X̃.

Figure 3.1: Reconstruction of a signal via Fourier series.
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(b) Zoomed in frequency spectrum.
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(c) Wiener filter shape.

Figure 3.2: Frequency spectrum and filter shape. The selected cutoff frequency for this signal
is 1.5 Hz.
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(b) Smoothed wind tunnel data, X.
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(c) Noise filtered out of X̌ signal.

Figure 3.3: Comparison of raw and smoothed data.



Chapter 4: System Identification

A system identification analysis involves both aerodynamic model structure determination
and estimation of the parameters therein. For the SAGE lander, the mathematical form
of the aerodynamic model was chosen based on a priori knowledge but model optimization
was performed which yielded insight to the aerodynamic behavior. The PID analysis was
conducted to estimate the values of constant parameters contained within the aerodynamic
model for the lander. This is done by optimizing the parameter values such that the difference
between the experimental and modeled aerodynamic coefficients is minimized. In this chapter
the aerodynamic model and the parameter estimation method used is discussed.

4.1 Aerodynamic Modeling

4.1.1 Model Structure Determination

Much work has been devoted to understanding the aerodynamic behavior of blunt entry
vehicles in the subsonic flight regime. Most of the research is centered around the dynamic
stability of the vehicle in the pitch and yaw planes. These planes are important because
they are the most likely to induce tumbling of the vehicle and thus, are of primary interest
in the PID analysis. Mitcheltree, et al. in Reference [5] point out the following about the
pitch and yaw aerodynamics:

“The oscillatory motion of a blunt entry vehicle in subsonic terminal descent is
analogous to that of a nonlinear mass-spring-damper system. In this analogy,
static stability corresponds to the spring stiffness and dynamic stability corre-
sponds to the damper’s characteristics. The dynamic damping of an aeroshell is
highly nonlinear and can be destabilizing at small angle-of-attack and stable for
larger angles which (if statically stable) leads to limit cycle behavior.”

The SAGE lander displays this type of limit cycle behavior. The lander is known to be
statically stable throughout the total angle of attack range up to 30◦ from the static wind
tunnel testing. Therefore, any instabilities come from the dynamic stability of the lander.
The lander possesses high levels of static and dynamic stability at higher angles of attack
achieved when perturbed but is noticeably less stable at lower angles of attack. The static
stability of the lander as observed from the static wind tunnel test data is nearly linear.

27
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It is assumed that the static stability is a odd function of the angle of attack or sideslip
and is therefore represented as polynomial expansion of odd terms. Likewise, the dynamic
stability is assumed to be an even function of angle of attack or sideslip and is represented
as a polynomial expansion of even terms. Due to the near axisymmetry of the lander, the
values of the aerodynamic parameters obtained in the pitch and yaw expansions should have
similar values. The two are solved separately and checked against each other for consistency.

Since the results of the static wind tunnel test were known beforehand, the form of the
static force coefficients were tailored to the available data. The axial force coefficient varies
with the total angle of attack. The total normal force similarly varies with the total angle
of attack and can be split into the y and z components using the total angle of attack clock
angle. Due to the lander’s near axisymmetry, the values of aerodynamic parameters for the
normal and side forces should be similar. The roll moment of the vehicle is assumed to have
a constant static component and a damping component.

A model optimization analysis was conducted in an attempt to mathematically determine
an optimal formulation of the aerodynamic model based on the VST data. A multivariate
orthogonal function generation code, contained in the SIDPAC software included with ref-
erence [4], was used to determine which regressor variables had the highest correlation with
the aerodynamic coefficient. The user could then include or exclude any regressor in the
current model and the coefficient would be reconstructed. Fit error of the model would
decrease with the addition of each regressor to a point. Theoretically, there exists an opti-
mal number of parameters in a model that minimizes the mean squared error of the model
without obtaining an over-parameterized model. A problem that was encountered was that
there was no consistency between runs for the regressors with the highest correlation to
the coefficient. A regressor that seemed very important for one run seemed to have little
to no impact on the next run. Many of the models generated with this code would make
no physical sense and when used in a simulation — the lander would immediately tumble.
This analysis was therefore abandoned. Conclusions were drawn from this analysis and are
discussed in Chapter 6.

4.1.2 Aerodynamic Model

The aerodynamic model used for the SAGE lander model for the PID analysis is represen-
tative of the research discussed above. All aerodynamics are modeled at the origin of the
geometric model fixed coordinate system and its corresponding axes. The static aerodynamic
models use the total angle of attack, αT , and total angle of attack clock angle, φαT , to define
wind angle as an alternate to angle of attack, α, and angle of sideslip, β. These variables
are defined in Appendix B. The model in each of the six axes of motion are assumed to be
as follows:

Axial Force

CA is strongly correlated with the total angle of attack and is assumed not to possess a
dynamic component. It is assumed to be modeled as seen in Eq. (4.1). The only aerodynamic
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parameter to be identified is CAT,0 and represents the axial force at αT = 0. This simple
model agrees well with the static wind tunnel data.

CA = CAT,0 cosαT (4.1)

Normal and Side Forces

The CY and CN coefficients are related due to the nearly axisymmetric nature of the SAGE
lander. Like the axial force, the normal and side forces are assumed to have no dynamic
component. The total normal force coefficient is calculated using Eq. (4.2) and is the
opposite sign of the total side force due to the sign conventions used for entry vehicles. The
y and z components are determined by using the total angle of attack clock angle as seen in
Eq. (4.3) and (4.4). The aerodynamic parameters CNsinαT

and CNsin3 αT
are determined by

the PID code.
CNT = CNsinαT

sinαT + CNsin3 αT
sin3 αT (4.2)

CY = −CNT sinφαT (4.3)

CN = CNT cosφαT (4.4)

Note that this model has the property that,

CNT =
√
C2
N + C2

Y (4.5)

An experimental value for CNT can be obtained by the property shown in Eq. (4.5). The
PID analysis is then performed on Eq. (4.2) and one set of parameters is obtained for both
CN and CY . For low angle of attack cases, such as unperturbed cases, the cubic term may
be dropped from the model because nonlinearities at low angles are sufficiently small.

Roll Moment

The aerodynamic roll moment coefficient is assumed to have a both static and dynamic
components. The static component, Clo,T , is constant and the dynamic component, Clp , is
a function of the non-dimensional roll rate. This model will allow the model to spin in one
direction until the dynamic component counteracts it, reaching a steady state roll rate. This
behavior is seen in the wind tunnel data. The aerodynamic parameters Clo,T and Clp are
determined by the PID code.

Clo = Clo,T + Clp

[
p

(
d

2V∞

)]
(4.6)
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Pitch and Yaw Moments

Like the normal and side forces the pitch and yaw moments are related by calculating a total
static moment, Cmo,T , and then splitting it into components with the total angle of attack
clock angle. The static moment coefficient curve is an odd function that is represented as a
cubic in Eq. (4.7). Due to sign conventions the total static moments about the y and z axes
have opposite signs. The damping terms, Cmq+α̇ and Cnr−β̇ , are assumed to be functions of

the angles of attack and sideslip respectively, see Eqs. (4.8) and (4.9). The Cmo and Cno
moment coefficients are the sum of the static and dynamic components given in Eqs. (4.10)
and (4.11). The aerodynamic parameters CmsinαT

, Cmsin3 αT
, Cm1 , Cm2 , Cn1 , and Cn2 are

determined by the PID code.

Cmo,T = CmsinαT
sinαT + Cmsin3 αT

sin3 αT (4.7)

Cmq+α̇ = Cm1 + Cm2α
2 (4.8)

Cnr−β̇ = Cn1 + Cn2β
2 (4.9)

Cmo = Cmo,T cosφαT + Cmq+α̇

[(
q + α̇

2

)(
d

2V∞

)]
(4.10)

Cno = −Cmo,T sinφαT + Cnr−β̇

[(
r − β̇

2

)(
d

2V∞

)]
(4.11)

Unlike the normal and side forces, the pitch and yaw moment coefficients, (4.10) and
(4.11) respectively, must be solved individually. Due to the axisymmetric assumptions al-
ready stated, Cm1 ' Cn1 and Cm1 ' Cn1 is assumed to be true. The two sets of parameters
identified for Cm and Cn respectively. The set deemed superior is selected as the value of the
parameters for both. The cubed term may be disregarded for wind tunnel runs with very
low angles of attack where the coefficient curve is nearly linear.

4.2 Parameter Identification

There are many parameter estimation methods available of varying complexity. The best
method will depend on the mathematical form of the aerodynamic model and the available
statistical information about the aerodynamic parameters. If the model is nonlinear with
respect to the parameters then the best method would be a multidimensional solver such as
the simplex method. If the uncertainty of the aerodynamic coefficients or the parameters is
known then a maximum likelihood method would be best. For the current case an ordinary
least squares estimator is used because the aerodynamic model is linear with respect to
the aerodynamic parameters and the uncertainty of the coefficients and the parameters is
unknown.

Regardless of the parameter identification method used, an objective function is to be
minimized. This objective function, J , is the error between the experimentally determined
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aerodynamic coefficient, Cexp, and the modeled aerodynamic coefficient, C, which is a func-
tion of the aerodynamic parameters, p. This is seen in Eq. (4.12).

J(p) =
1

2
(Cexp −C(p))T (Cexp −C(p)) (4.12)

The time history of Cexp is determined from the VST data using the flight mechanics equa-
tions in Appendix B. The parameter vector, p, is the optimization variable. This vector
contains np parameters to be identified. The parameter identification method presented in
this chapter are covered in further detail in Chapter 5 of Reference [4] and in Reference
[6]. The SIDPAC software, included with reference [4], was implemented for the parameter
identification. This decision, like the smoothing, was made because the SIDPAC software
had been verified and validated.

4.2.1 Ordinary Least Squares Estimator

The aerodynamic model used for the lander is linear with respect to the parameters therefore
the model can be represented and solved via matrix algebra. The modeled aerodynamic
coefficients can then be defined as follows:

C(p) = Rp (4.13)

Where, R is the regressor matrix, of size np × N , made up of experimentally determined
variables, and p is the parameter vector, of size 1× np, containing the aerodynamic param-
eters that are to be estimated. By inserting Eq. (4.13) into the objective function shown in
Eq. (4.12) the new ordinary least squares objective function is obtained.

J(p) =
1

2
(Cexp −Rp)T (Cexp −Rp) (4.14)

The minimum of the cost function is where dJ(p)/dp = 0. Solving then for p gives its
estimated value, p̂, at the functional minimum as seen in Eq. (4.15).

p̂ =
(
RTR

)−1
RTCexp (4.15)

Thus the reconstruction of the modeled aerodynamic coefficients using the estimated param-
eter vector is:

Ĉ = Rp̂ (4.16)

By using Eq. (4.15) the aerodynamic parameters for each coefficient can be obtained inde-
pendently of one another.

4.2.2 Accuracy Estimates

The uncertainty of the estimate can be determined from the results assuming a normal
distribution. The reconstruction of the aerodynamic coefficient has the following statistics
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relative to the experimental values. The variance of the reconstruction is obtained from Eq.
(4.17) and the coefficient of determination is determined from Eq. (4.18). These metrics
give a measure of the overall fit of the modeled aerodynamics.

s2 =

(
Cexp − Ĉ

)T (
Cexp − Ĉ

)
N − np

(4.17)

R2 =
p̂TRTCexp −NC

2

exp

CT
expCexp −NC

2

exp

(4.18)

The uncertainty estimate of the parameters themselves are obtained from the following
equations. The covariance matrix can be determined using Eq. (4.19). The standard error
for each aerodynamic parameter is in the square root of the diagonal of the covariance matrix.
The relative standard error, Eq. (4.21), is used to determine the significance of the parameter
relative to its estimated value. This value is the same as the coefficient of variation but given
as a precent.

Cov (p̂) = s2
(
RTR

)−1
(4.19)

s(p̂) =
√

Diag(Cov(p̂)) (4.20)

RSE(p̂i) =
s(p̂i)

p̂i
× 100 i = 1, 2, . . . np (4.21)



Chapter 5: Results

The PID results of three SAGE VST data sets are presented in this chapter. The data sets
consist of an unperturbed run, two perturbed runs, and both data types combined into one
data set. Results were generated using the aerodynamic model and PID methods described
in Chapter 4. The state variables among other variables important to the PID analysis are
determined using the equations presented in the flight mechanics equations in Appendix B.
An overall final set of aerodynamic parameters was chosen from the results based on the
accuracy estimates and the dynamics of the SAGE model observed in the wind tunnel. This
set of aerodynamic parameters was validated by comparing them to the combination of: the
static wind tunnel test results, the prediction of the aerodynamic coefficients for wind tunnel
runs not included in the analysis, and a simulation of steady state conditions.

5.1 Source Data

The wind tunnel runs used in the PID analysis were selected based on the run type (i.e.
perturbed or unperturbed) because of the range of the total angle of attack and rotation
rates encountered for each run type. One data set of each type was used in the analysis. The
data sets consisted of wind tunnel data cropped to a certain time range to remove unwanted
sections of data. For the unperturbed data this is usually a few seconds at the beginning
and end of the run when the model is in a transitional phase from the tunnel speeding up
at the beginning, or being rescued by pulling on the tether to avoid impacting the wall. For
the perturbed data individual perturbations are cropped and combined into a single data
set. The initial time is selected by observing the wind tunnel data and the video data of the
run and choosing the point in which the pole used to perturb the model was removed from
contact with the model. This is usually the point of highest perturbation and the model will
oscillate until a steady state is reached again. The end time of the perturbation is somewhat
arbitrary. It is selected once steady state is reached but may be extended until the next
perturbation is initiated or the run is terminated. The lander model was usually perturbed
multiple times during a single run. The perturbed and unperturbed data sets were combined
into a single mixed data set in an attempt to obtain a balanced result that took both data
types into account.

Smoothed data from individual wind tunnel runs were combined into a single data set by
stacking the runs. This means that a data set is created by placing the data from one wind
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tunnel run immediately after the selected end of another wind tunnel run such that there is
one time domain with multiple wind tunnel runs contained therein. The stacked data sets
contain discontinuities but the equations of motion and the PID analysis both solve point
by point with no regard for the discontinuities. In fact, the data points could be randomly
scrambled and the PID analysis would yield the same solution. The main advantage of using
stacked data sets is that one value can be generated for multiple wind tunnel runs. This
method is used for the perturbed data set by stacking individual perturbations as well as
the mixed data set.

The perturbed and unperturbed runs have different ranges of the regressors that the
aerodynamic coefficients are a function of. The range of the data affects the range for which
the solution is valid, beyond which is an extrapolation of the aerodynamic model. The
perturbed data contains higher angles of attack and higher rotation rates, when compared
to the unperturbed data, which lends itself to better estimates of the coefficients. The
problem is that the time window is shorter and the lander model is in an excited state for
most of the available time leading to estimates that are tailored to the specific perturbations
analyzed. The unperturbed runs do not have as wide a range of wind angles and rotation
rates, but they yield more accurate parameter results at the lower values of these variables.
In an attempt to get the best of both data types the perturbed and unperturbed data were
combined and analyzed as a mixed data set. A problem with this is that the unperturbed
data may overpower the high angle estimates with the extended low angle time. The general
information of the data sets used to generate the results is presented in Table 5.1.

The actual wind tunnel runs included in each data set are as follows. The unperturbed
data set consists of the data collected during Test Block 2 Run 2. This is a 60 second run that
is cropped at the end to remove the rescue of the lander model due to wall encroachment.
This creates a 55 second run where the lander stays at a relatively low total angle of attack
where nothing of note occurs. The Perturbed data set consists of data collected during
perturbations in Test Block 3 Runs 2 and 3. The two perturbations were selected as the
highest quality perturbations because they have the highest initial total angle of attack, and
pitch and yaw rotation rates. The first perturbation lasts approximately 15 seconds and the
second only lasts about 3 seconds. The mixed data set features the runs described above
stacked into a single data set. The total run time is approximately 73 seconds and the
maximum total angle of attack and rotation rates are the same as the perturbed data.

Table 5.1: Wind tunnel run breakdown.

Run Type Time (s) Max αT (deg) Max |q| (deg/s) Max |r| (deg/s)

Unperturbed 55.0 8.6 26.8 54.4
Perturbed 18.3 38.8 46.9 98.3
Combined 73.3 38.8 46.9 98.3
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5.2 PID Results

The following are the results for the analyzed data sets. The results are presented for the
three data sets described in the previous section and a final set of parameters are selected
using the best of the results from each data set.

5.2.1 Unperturbed Results

The results of the unperturbed data set are presented in Table 5.2. Figure 5.1 presents the
regressors, reconstructions, and residuals of the axial and total normal force coefficients, and
pitch and yaw moment coefficients. The total angle of attack (Figure 5.1a) stays relatively
low, with only peaks above αT = 6◦, which is also observable in the angles of attack and
sideslip plots (Figure 5.1g). The pitch and yaw rotation rates (Figure 5.1h) also remain
relatively low, in the range of 30 deg/s. There are two visible oscillation modes observable in
the run, a low angle oscillation followed by a larger angle oscillation which begins at about
the 30 second mark. This can be seen in the total angle of attack and clock angle plots
(Figures 5.1a and 5.1b respectively) but when decomposed into angles of attack and sideslip
it can be seen that the larger oscillation is primarily about the yaw axis (Figure 5.1j). The
pitch axis (Figure 5.1i) does not have the same mode and stays constant through out the run.
This implies that better results can be determined from the higher, more varied oscillations
in the yaw plane than that of the pitch plane.

As seen in Table 5.2, the linear static aerodynamic parameters are identified with very
high accuracy, usually at or below ∼ 1% RSE. Due to the low maximum total angle of
attack the the estimates of the sin3 αT and damping terms (Cm1 , Cm2 , Cn1 , and Cn2) have
large standard errors. The terms CNsin3 αT

and Cmsin3 αT
are over estimated, upon comparison

to the static wind tunnel data, in an attempt to account for nonlinearities over the small
angle window. The Cn1 damping term is very close to zero with a relative standard error of
93% and therefore could be assumed zero. The roll moment coefficient has poor accuracy,
70.2% RSE, and the static and damping parameters appear to have the opposite sign than
would be expected. The positive damping means that the lander would possibly spin up in
a simulation, overcoming the constant negative static term. With the exception of the linear
static parameters the results have poor parameter estimates for the selected aerodynamic
model with the unperturbed data. This data set could possibly yield better results with
a linear aerodynamic model, by disregarding all squared and cubed terms, because of the
lower oscillations and associated rates.

The reconstructions of the axial force coefficient (Figure 5.1c) yields a near–constant
value, as expected from Eq. (4.1) and the limited total angle of attack range (Figure 5.1a).
The test data shows significantly greater variation due to either noise or an un-modeled
regressor. The error could be due to inadequacies in the tether model or to unsteady airflow
around the irregularly shaped lander model. The reconstruction of the total normal force
(Figure 5.1d) is accurate, only missing the peaks of the of the oscillations and the residual
(Figure 5.1f) is evenly dispersed with a slight bias in the last 20 seconds. The reconstruction
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Table 5.2: Unperturbed PID results.

Coefficient Parameter p̂ s(p̂) RSE (%)

CA CAT 6.6640 2.4× 10−3 0.04

CNT
CNsinαT

3.5625 2.1× 10−2 0.59

CNsin3 αT
31.6751 2.4× 100 7.63

Clo
Clo,T -0.0003 2.0× 10−4 70.20
Clp 0.5865 8.4× 10−2 14.36

Cmo

CmsinαT
-2.0898 3.2× 10−2 1.52

Cmsin3 αT
60.3896 4.7× 100 7.74

Cm1 -2.7136 3.0× 10−1 11.12
Cm2 308.2425 1.6× 102 50.47

Cno

CmsinαT
-2.3525 2.5× 10−2 1.07

Cmsin3 αT
29.8734 2.7× 100 9.10

Cn1 0.2603 2.4× 10−1 92.95
Cn2 -648.4724 6.3× 101 9.67

of the pitching moment coefficient (Figure 5.1i) is generally underestimated. Low angle
values are seem accurate but the higher angle values have errors. The yawing moment
(Figure 5.1j) fares slightly better, the first thirty seconds of the data set contains only low
angles of sideslip and it is similar to the pitching moment reconstruction. During the final
25 seconds, once the second oscillation mode is achieved, the reconstruction improves. The
peaks of the reconstruction are closer but there is a slight bias in the residual (Figure 5.1l).

5.2.2 Perturbed Results

The results of the perturbed data set are presented in Table 5.3. Figure 5.2 presents the
regressors, reconstructions, and residuals of the axial and total normal force coefficients,
and pitch and yaw moment coefficients. The perturbations can be seen as the spikes in the
total angle of attack plot (at zero seconds and approximately 15 seconds), a transitional
phase is included after the perturbation before steady state is reached again. The total
angle of attack (Figure 5.2a) oscillations are seen to damp out over the course of the first
perturbation. The second perturbation is damped out quickly reaching steady state soon
after the selected end. The perturbations peak at αT ' 40◦ and there is more data above
the 8◦ maximum of the unperturbed data. There is an observable dead area immediately
following the first perturbation between 2.5 and 5 seconds. This likely marks the transition
from perturbed to steady state. The damping of the large scale oscillations is still in control
and the small angle instabilities have not yet taken effect. As with the unperturbed data,
the yawing plane seems to have a majority of the oscillations and will therefor yield better
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results than those of the pitching moment.
The linear static aerodynamics are estimated with less accuracy, by observing the RSE

values in Table 5.3, than that of the unperturbed data set. This can be attributed to the
length of the run, as there are fewer data points than in the unperturbed data set. The
nonlinear terms are estimated with higher accuracy, a lower RSE, than in the unperturbed
data. The issues with over estimating the CNsin3 αT

and Cmsin3 αT
terms are resolved due to

the larger number of data points at higher angles of attack. The CNsin3 αT
term has a higher

relative standard error of 14.6%, compared to 7.6% for unperturbed, but the estimated value
of the parameter is much more believable despite having a larger relative standard error. The
roll moment coefficient is estimated with better accuracy, by observing the RSE values in
Table 5.3, than with the unperturbed data and with the expected sign. The parameters for
the pitching moment coefficient have lower relative standard errors than those for the yawing
moment coefficient. Overall the results are improved from those of the unperturbed data.

The axial force coefficient reconstruction (Figure 5.2c) matches well at the peaks of the
perturbations but the experimental value varies at lower total angles of attack. This same
behavior was observed in the unperturbed results. There appears to be two modes present
in the experimental axial force coefficient: a modeled mode that covers higher total angle of
attack perturbations, and an un-modeled mode that is present at low total angle of attack
during steady state. The normal force coefficient reconstruction (Figure 5.2d) matches well
during the perturbations with smaller differences in the sections approaching steady state.
The reconstruction of the pitching moment coefficient (Figure 5.2i) has a poor fit to the

Table 5.3: Perturbed PID results.

Coefficient Parameter p̂ s(p̂) RSE (%)

CA CAT 6.6557 6.8× 10−3 0.10

CNT
CNsinαT

3.0643 1.5× 10−2 0.48

CNsin3 αT
-0.4802 7.0× 10−2 14.61

Clo
Clo,T 0.0125 9.0× 10−4 7.44
Clp -5.6816 2.8× 10−1 4.91

Cmo

CmsinαT
-1.0213 2.2× 10−2 2.16

Cmsin3 αT
0.7685 2.8× 10−1 36.94

Cm1 -5.1048 4.1× 10−1 7.93
Cm2 -89.2280 3.2× 101 35.34

Cno

CmsinαT
-1.9508 3.0× 10−2 1.56

Cmsin3 αT
2.4853 1.5× 10−1 5.84

Cn1 -7.4801 3.7× 10−1 4.98
Cn2 -162.7648 7.1× 100 4.39
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experimental values but most of the oscillations are in the yaw plane. The reconstruction
of the yawing moment coefficient (Figure 5.2j), like the normal force coefficient, fits best
in the perturbed section of the data with larger errors in the sections approaching steady
state. Similar to the unperturbed data there is a slight bias in the steady state section of
the reconstruction as seen in the residuals (Figure 5.2l).

5.2.3 Combined Results

The results of the combined data set are presented in Table 5.4. Figure 5.3 presents the
regressors, reconstructions, and residuals of the axial and total normal force coefficients,
and pitch and yaw moment coefficients. This data set is a concatenation of the perturbed
and unperturbed data sets. The regressors are thus the same as described in the previous
sections. This is to give results that lie between the two extremes. Note that the amount
of time for the data type plays into the values obtained in the PID analysis. If less time of
the unperturbed data set is used then the results will be closer to the perturbed results, the
opposite is also true. For this analysis the full time of both data sets is used. resulting in 72
seconds of data with two perturbations.

The overall effect of analyzing both runs is that the aerodynamic parameters have the
accuracy of the unperturbed data set but the more appropriate values at high angles of
attack seen in the perturbed data set, see the results in Table 5.4. This is true for the
static forces; all parameters having the same or better relative standard error than with

Table 5.4: Perturbed and unperturbed PID results.

Coefficient Parameter p̂ s(p̂) RSE (%)

CA CAT 6.6620 2.5× 10−3 0.04

CNT
CNsinαT

3.5129 9.8× 10−3 0.28

CNsin3 αT
-2.0035 6.1× 10−2 3.03

Clo
Clo,T 0.0023 3.0× 10−4 11.98
Clp -1.1080 9.4× 10−2 8.49

Cmo

CmsinαT
-1.3572 1.3× 10−2 0.96

Cmsin3 αT
2.1824 2.2× 10−1 10.03

Cm1 -3.6522 2.2× 10−1 6.07
Cm2 -72.4599 2.4× 101 33.77

Cno

CmsinαT
-2.0655 1.3× 10−2 0.64

Cmsin3 αT
2.5278 1.0× 10−1 4.12

Cn1 -3.3025 1.8× 10−1 5.40
Cn2 -205.4289 5.2× 100 2.55
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the data sets analyzed individually. The nonlinear CNsin3 αT
achieves lower relative standard

error than in either of the source data sets. The roll moment coefficient parameters are less
accurate because the unperturbed data yielded incorrect values for the parameters meaning
that the perturbed data set gives results more inline with what would be expected. The
yawing moment coefficient parameters are estimated with high accuracy, higher than either
of the source data sets. The pitching moment is not as accurate due to the majority of the
oscillations being in the yaw plane.

The quality of the reconstructions of the coefficients doesn’t change much as compared to
the unperturbed and perturbed data sets. The axial force coefficient reconstruction (Figure
5.3c) fits in a similar manner but has a slightly higher standard error. The normal force
coefficient (Figure 5.3d) has a similar reconstruction as the other data sets but retains ap-
proximately the same standard error. The bias of the residual (Figure 5.3f) present in the
latter half of the unperturbed data set and in the steady state sections of the perturbed data
set are still there but are not as noticeable. The pitching moment coefficient reconstruction
(Figure 5.3i) is quite poor but consistent with the results from the other data sets. The
yawing moment coefficient reconstruction (Figure 5.3j) is fair with a smaller standard error
than the perturbed data, closer to the unperturbed. The overall results from the combined
data set are superior to the results of either data set individually.

5.2.4 Selected Parameters

Taking the three sets of aerodynamic parameters into account a final set of parameters was
chosen that will best represent the aerodynamics of the SAGE lander. This final set of
aerodynamic parameters is presented in Table 5.5. The axial force coefficient parameter
was chosen from the combined data set because of the high accuracy and the quality of the
reconstructed data at large angles of attack. The normal force parameters are also selected

Table 5.5: Selected aerodynamic parameter set.

Coefficient Data Set Parameter p̂ s(p̂)

CA Combined CAT 6.6620 2.5× 10−3

CNT Combined
CNsinαT

3.5129 9.8× 10−3

CNsin3 αT
-2.0035 6.1× 10−2

Clo Perturbed
Clo,T 0.0125 9.0× 10−4

Clp -5.6816 2.8× 10−1

Cmo and Cno Combined

CmsinαT
-2.0655 1.3× 10−2

Cmsin3 αT
2.5278 1.1× 10−1

Cm1 = Cn1 -3.3025 1.8× 10−1

Cm2 = Cn2 -205.4289 5.2× 100
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from the combined data set because they are the best results of all three data sets. The roll
moment coefficient parameters were chosen from the perturbed data set because it offers the
highest roll rates and gives results that are more inline with a priori knowledge (i.e., having
negative damping). The pitch and yaw moment coefficient parameters are selected from the
combined data set because it gives the best accuracy and the best estimates for the nonlinear
cubic terms at larger angles of attack. The pitch and yaw parameters were selected to be
equal due to the near axisymmetric shape of the lander.

5.3 Validation

The following methods were used to validate the results. The static wind tunnel data is com-
pared to the results for consistency. A comparison of the reconstructions of the coefficients
using data that was not used in the PID analysis is conducted. Steady state values achieved
in flight simulations using the parameters are compared with those observed in dynamic
wind tunnel test data.

5.3.1 Static Comparison

By comparing the estimated static parameters to the results of the static wind tunnel testing
it is possible to validate the static portion of the aerodynamic coefficients. Figure 5.4 shows
the results of the static wind tunnel test and the functions estimated from the PID analysis.
The experimental data is a model that assumes axisymmetry and combines the values for
all roll angles. This is the same way that the aerodynamic model for the PID analysis
works, so it is an apples to apples comparison. The axial and normal force coefficients,
and the static portion of the pitch and yaw coefficient are plotted against the total angle
of attack. The axial force coefficient curve has a slight difference at total angles of attack
below ∼ 5◦ but the fit over the rest of the angle range is good. The normal force coefficient
is slightly over estimated at high total angles of attack but fits well below ∼ 10◦. The
same can be said about the pitching and yawing moment coefficient which fits well in the
initial linear section to ∼ 15◦ at which point there is a change in slope and a second linear
section. In the second linear section the modeled coefficient is under estimated although the
function is curving upwards to become consistent the static data. Overall, the estimated
static aerodynamic models match very well to the static wind tunnel data thus validating
the static aerodynamic parameters.

5.3.2 Predictive Comparison

The selected set of aerodynamic parameters was used to reconstruct the aerodynamic coef-
ficients of a run not used in the PID analyses. The purpose of doing this was to evaluate
the generality and applicability of the aerodynamic parameters identified. Figure 5.6 shows
the reconstruction of one of the perturbations in Test Block 3 Run 3. The perturbation
has a moderate maximum total angle of attack of approximately 18◦ which quickly dies out,
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consistent with the other perturbed data sets. Overall, the reconstruction quality is compa-
rable with that of the reconstruction of the source data set in Figure 5.3. Areas where the
reconstruction falls short include: the CA reconstruction, and the bias in the Cno reconstruc-
tion; seen in Figures 5.6c and 5.6j respectively. The standard error on the CA coefficient is
almost twice as large as that seen in the source data set and there is an associated bias in
the residual. The yaw moment coefficient has a larger standard error and a significant bias.
The bias is consistent with those seen in the perturbations in the source data set. The total
normal force and pitching moment have similar characteristics as the fit to the source data
set with comparable standard errors and little bias to the residuals.

5.3.3 Simulation Comparison

The model behavior during Test Block 2 Run 2 (unperturbed) was simulated using the
SAGE aerodynamic model, as described in section 4.1.2, which incorporated the selected
aerodynamic parameters in Table 5.5. The unperturbed run was selected because it repre-
sents the lander’s flight dynamics in quasi-steady state flight. The results of this simulation
were compared against the wind tunnel test data to evaluate the validity of the aerodynamic
models, parameter identification, and the simulation. The initial conditions and tunnel wind
velocity time history for the simulated run was used so as to yield data that would allow for
a valid comparison. The simulation used for this analysis has been independently verified
and validated for correctness and was also used to verify the correctness of the PID code
(see Appendix C). The off-vertical angle, Θ, (see Figure 5.7) and the pitch and yaw rotation
rate, ωq,r, were used as the primary comparison between the data sets. The two values are
determined by Eqs. (5.1) and (5.2). These values give insight to both the static and dynamic
portions of the oscillations of the model lander. The metrics were also used by the SAGE
proposal team to evaluate possible landing impact angles and oscillation rates for imaging.

Θ = arccos(cos(Ry) cos(Rz)) (5.1)

ωq,r =
√
q2 + r2 (5.2)

Table 5.6: Comparison of test data against simulation results.

Test Simulation

Θ (deg)
Mean 2.5653 1.3257
Median 2.3575 1.2761
Std Err 1.4957 0.2028

ωq,r (deg/s)
Mean 14.8574 1.3210
Median 12.3386 0.2489
Std Err 9.8990 2.3376
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Figure 5.8 shows the results of this analysis. By examining the time histories of Θ and
ωq,r, it can be determined that the simulation does not yield a good representation of the
experimental data. There is significant damping in the aerodynamic model that removes
the oscillation caused by the initial conditions. The SAGE lander model has low total
angle of attack instabilities that are not captured by the current model. Histograms yield
a better comparison to the steady state behavior than a time history comparison (Figures
5.8c and 5.8d). The mean, median, and standard error were determined for Θ and ωq,r in
both the experimental and simulated data. These values are presented in Table 5.6. The
Θ angle settles on a mean steady state value of approximately 2.5◦ for the test data and
approximately 1.3◦ for the simulation. The value for the data is almost twice as large for the
simulation. The ωq,r rotation rate has a mean value of approximately 14.9◦/s where as in the
simulation all rotation is damped out so there is no, or very little, pitch or yaw rotations.
These results imply that there is a low angle instability to the lander which is not captured
by the simulation.
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(d) Normal force coefficient.
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(e) Axial force coefficient residual.
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(f) Normal force coefficient residual.

Figure 5.1: Unperturbed results.
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(i) Pitch moment coefficient.
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(j) Yaw moment coefficient.
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(k) Pitch moment coefficient residual.
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(l) Yaw moment coefficient residual.

Figure 5.1: Unperturbed results.
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(d) Normal force coefficient.
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(e) Axial force coefficient residual.
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(f) Normal force coefficient residual.

Figure 5.2: Perturbed results.
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(k) Pitch moment coefficient residual.
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(l) Yaw moment coefficient residual.

Figure 5.2: Perturbed results.
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(e) Axial force coefficient residual.
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(f) Normal force coefficient residual.

Figure 5.3: Combined results.
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(k) Pitch moment coefficient residual.
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(l) Yaw moment coefficient residual.

Figure 5.3: Combined results.
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Figure 5.4: Static wind tunnel data for the selected lander configuration as compared to the
results of the PID analysis.
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Figure 5.6: Reconstruction of wind tunnel data not used in PID analysis.
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(j) Yaw moment coefficient.
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Figure 5.6: Reconstruction of wind tunnel data not used in PID analysis.
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Figure 5.7: Definition of the off-vertical angle, Θ. Adapted from image provided by NASA
LaRC.
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(c) Θ histogram.

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ωq,r (deg/s)

N
o
rm

a
li
ze
d
C
a
se
s

 

 

Data
Simulation

(d) ωq,r histogram.

Figure 5.8: Comparison of test data against simulation results.



Chapter 6: Conclusions and Future Work

6.1 Conclusions

A parameter identification analysis was conducted to determine the parameters present in
an aerodynamic model of the SAGE lander. The aerodynamic coefficients were determined
from experimental wind tunnel data collected in the NASA 20-ft VST. An ordinary least
squares estimator was used to identify the parameters and their accuracies. The aerodynamic
parameters identified by the current PID analysis represent the best estimates for the selected
aerodynamic model. Conclusions can be drawn from the results that give insight into the
dynamics of the SAGE lander and the behavior and accuracy of the aerodynamic model.
The following conclusions about the SAGE Venus lander can be reached based on the current
aerodynamic model and PID analysis of the dynamic wind tunnel data:

• The SAGE lander is statically and dynamically stable in the pitch and yaw planes. The
static aerodynamic coefficients determined using the PID code were in agreement with
those obtained from the static wind tunnel test. This gives credibility to the estimated
dynamic aerodynamic parameters. The functional form of the static aerodynamic
terms was known a priori due to previous testing but if the functional form is unknown
static testing is preferred.

• There is a low total angle of attack limit cycle oscillation with random peak amplitudes
that is not modeled by the aerodynamic model. This limit cycle oscillation is stochastic
in nature and is likely caused by unsteady airflow around the lander. It is not known
whether this limit cycle oscillation is due to the flow separating stochastically from the
lander, wind tunnel turbulence, or a combination of both.

• The statistics of the experimental data as compared to simulated data shows that
the off-vertical angle, Θ, has an accurate mean steady state value for the simulation.
However, the pitch and yaw rotation rate, ωq,r, is damped out and has a steady state
value of zero. This difference can be attributed to the stochastic limit cycle oscillation
discussed in the above bullet.

• Despite the fact that the static aerodynamics of the lander are estimated quite accu-
rately by the PID code, static wind tunnel tests should still be performed for similar
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analyses. The existing static wind tunnel data was used in the aerodynamic model
determination and helped to validate the results of the PID analysis.

Many issues with the current analysis can be attributed to behaviors of the PID code.
The accuracy of the code factors into the conclusions made about the results of the SAGE
lander. The following conclusions can be made about the PID code and its impact on the
results:

• The code has difficulty identifying the aerodynamics at low total angles of attack, and
low pitch and yaw rotation rates. This is true even for simulated data where the answer
is known and the aerodynamic coefficients are determined with the same aerodynamic
model that the PID code uses. The squared and cubic terms are overestimated and
exaggerated to capture small curvatures in the functions for the coefficients given the
small range of wind angles present in the test data. The larger range of wind angles
in the perturbed data lend themselves much better to parameter identification.

• The tether model is an approximation and may have errors. The current tether model
assumes a force that only varies with the free stream velocity in the tunnel but does
not account for the motion of the model in the tunnel. For example if the model is
moving vertically downwards in the tunnel the tether carries momentum that tends
to oppose this motion. Such small effects are neglected in the current model but may
have a larger impact that initially thought.

6.2 Recommendations for Future Work

The current PID analysis could be improved upon in several areas to increase the overall
accuracy and obtain better results. The following represent the areas that have the largest
potential for improvement:

• A more in-depth aerodynamic model optimization analysis should be conducted to
possibly identify a better aerodynamic model for the lander. This would give a best
model that can be proven mathematically as such. Although such an analysis was
conducted to a limited extent, the results were inconclusive. A more thorough model
identification analysis investigation may yield better results. In the current analysis
parameters that relied on terms such as airspeed displayed strong correlations but
were neglected because they did not physically make sense. The more in-depth system
identification analysis may remedy these issues.

• Other PID methods should be considered. The ordinary least squares used in the
analysis works well but there may be better methods. The only other parameter
identification method that was considered in the current analysis was a simplex opti-
mization method which worked but was not as repeatable. Ordinary least squares is
an equation error method of which its results have strong predictive capabilities (e.g.
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situations where the current values of the regressors are known at each instant, such as
the reconstructions) but have difficulty in simulations where it is used to estimate the
values the next time step. Methods such as output error minimize the error between
the state variables instead of the aerodynamic coefficient equation. Such methods may
yield results that are better suited to simulations.

• The tether force model could be improved. The current tether model is a function
of only the dynamic pressure. The model is presented in Appendix B. Other effects
that could affect the tether force, for example the model’s position in the test section,
are not considered in the present tether force model. Improving the tether model will
remove errors that will otherwise show up as errors in the aerodynamic coefficients.

• Improved testing techniques could yield data that lends itself better to PID analyses.
This could include testing the SAGE lander in the VST without the use of the tether.
A drop test of the lander should be conducted to remove the possibility that turbulence
in the tunnel is interfering with the dynamics of the lander.
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Appendix A: Wind Tunnel Test Data

The following are the static and dynamic wind tunnel data collected during testing of the
SAGE lander. Only the data that applies to the current PID analyses are included. The
static data were collected in NASA ARC’s FML 48 in by 32 in subsonic wind tunnel. The
dynamic wind tunnel data was collected in NASA LaRC’s 20-ft Vertical Spin Tunnel. These
dynamic data are further separated into unperturbed and perturbed data types.

A.1 Static Data

All three force and moment components were obtained from the internal wind tunnel balance
for multiple values of αT and φαT . The force and moment components reduce to the aerody-
namic coefficients: CX , CY , CZ , Clo , Cmo , Cno . By imposing the assumption of axisymmetry,
an axisymmetric model was devised in which the value varies with αT but remained constant

0 5 10 15 20 25 30
−1

0

1

2

3

4

5

6

7

αT (deg)

C
o
e
ffi
c
ie
n
t
V
a
lu
e

 

 

CA
CN T

Cm T

Figure A.1: Static wind tunnel test data.
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with φαT .

A.2 Dynamic Data

A.2.1 Unperturbed Data

These are the raw data used in the analysis of the unperturbed data set. It is the first 55
seconds of Test Block 2 Run 2 of the dynamic wind tunnel test.
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Figure A.2: Raw unperturbed wind tunnel data.
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A.2.2 Perturbed Data

Perturbation 1

These are the raw data used in the first perturbation of the perturbed data set. It consists
of the first perturbation of Test Block 3 Run 2 of the dynamic wind tunnel test during the
time window from 5.14 to 20 seconds.
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Figure A.3: Perturbation 1 raw wind tunnel data.
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Perturbation 2

These are the raw data used in the second perturbation of the perturbed data set. It consists
of the sixth perturbation of Test Block 3 Run 3 of the dynamic wind tunnel test during the
time window from 186.56 to 190 seconds.
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Figure A.4: Perturbation 2 raw wind tunnel data. Note the fuzzy appearance of VW due to
noise content of the raw data.
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Perturbation 3

These are the raw data used for the predictive validation of the PID results in section 5.3.3.
It consists of the first perturbation of Test Block 3 Run 3 of the dynamic wind tunnel test
during the time window from 9.8 to 20.3 seconds.
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Figure A.5: Perturbation 3 raw wind tunnel data.
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A.3 Noise Content of the Dynamic Data

The following figures show the frequency spectrum typical of the raw data. Table 3.1 shows
the cutoff frequencies used in the smoothing routine to construct the Wiener filter. The
figures are of the data in the unperturbed data set and are typical of the perturbed data
set as well. The signal noise presented here only includes precision error. The mean and
standard error of the noise are used as accuracy estimates.
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Figure A.6: Typical noise content of VW data. The noise has a standard error of sν =
2.57× 10−3 m/s.
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Position Data
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(a) Frequency spectrum for X.

0 10 20 30 40 50 60
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

t (s)

X
(m

)

 

 

Raw
Smooth

(b) X signal comparison.
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Figure A.7: Typical noise content of X position data. This is also representative of the noise
content of the Y and Z data. The noise has a standard error of sν = 7.50× 10−4 m.
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Pitch and Yaw Data
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(a) Frequency spectrum for Rz.
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(b) Rz signal comparison.
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0 10 20 30 40 50 60
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

t (s)

R
z
N
o
is
e

(d) Rz signal noise.

Figure A.8: Typical noise content of pitching angle, Rz, data. This is also representative
of the noise content of the yaw angle, Ry, data. The noise has a standard error of sν =
1.10× 10−1 degrees.
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Roll Data
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(a) Frequency spectrum for Rx.

0 10 20 30 40 50 60
100

200

300

400

500

600

700

800

t (s)

R
x
(d

eg
)

 

 

Raw
Smooth

(b) Rx signal comparison.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fk (Hz)

Φ
k

(c) Wiener filter designed for Rx.

0 10 20 30 40 50 60
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

t (s)

R
x
N
o
is
e
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Figure A.9: Typical noise content of roll angle, Rx, data. The noise has a standard error of
sν = 6.23× 10−2 degrees.



Appendix B: Flight Mechanics Equations

B.1 Introduction

The following are the flight mechanics equations used in the parameter identification analysis.
The equations of motion use the state variables described in Section 3.4. This appendix
presents the equations with minimum explanation or commentary. The symbols used are
described in the front matter of this thesis. The equations were presented by Juan R. Cruz
in the document “Equations of Motion for an Entry Vehicle.” The equations were modified
to suit the coordinate systems used in the VST data and to include the tether force.

B.2 Assumptions

The following assumptions were made in the derivation of the equations:

• Any effects of planetary rotation or curvature of the planetary surface are neglected.

• The planet fixed coordinate system is the same as defined in section 2.1.4 of this thesis.

• The origin of the body centered coordinate system is located at the center of mass and
uses the state variables determined in section 3.3 of this thesis.

• The lander is axisymmetric in shape but not in mass distribution (i.e. the center of
mass may be offset from the axis of symmetry).

B.3 Rigid Body Equations of Motion

The forces and moments on the lander are due to gravity, aerodynamics, and the tether.
The vectorial sum of forces and moments are:

F = Fg + Ftr + FA (B.1)

M = Mtr + MA (B.2)

Note that there are no gravitational moments because the gravitational force acts at the
center of mass. The inertial force and moment vectors are defined as:
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F = Fxi + Fyj + Fzk (B.3)

M = Mxi +Myj +Mzk (B.4)

The components of the vectors are calculated with the rigid body equations of motion, Eqs.
(B.5) - (B.10).

Fx = m (u̇+ qw − rv) (B.5)

Fy = m (v̇ + ru− pw) (B.6)

Fz = m (ẇ + pv − qu) (B.7)

Mx = Ixxṗ− Ixy q̇ − Ixz ṙ − Iyzq2 + Iyzr
2 − Ixzpq + Ixypr + (Izz − Iyy) qr (B.8)

My = −Ixyṗ+ Iyy q̇ − Iyz ṙ + Ixzp
2 − Ixzr2 + Iyzpq + (Ixx − Izz) pr − Ixyqr (B.9)

Mz = −Ixzṗ− Iyz q̇ + Izz ṙ − Ixyp2 + Ixyq
2 + (Iyy − Ixx) pq − Iyzpr + Ixzqr (B.10)

B.4 Gravitational Forces

The gravity force vector is defined as:

Fg = Fg,xi + Fg,yj + Fg,zk (B.11)

The components of the force vector are calculated with Eq. (B.2). The transformation
matrix, Eq. (B.13), converts the gravity vector from the inertial coordinate system to the
body fixed coordinate system. 

Fg,x
Fg,y
Fg,z

 =
[
TBEF

]T 
mg
0
0

 (B.12)∗

The transformation matrix is defined as:

[
TBEF

]
=

 TBEF11 TBEF12 TBEF13

TBEF21 TBEF22 TBEF23

TBEF31 TBEF32 TBEF33

 (B.13)

and the elements are:
TBEF11 = cosRz cosRy (B.14a)

TBEF12 = − sinRz cosRy (B.14b)

TBEF13 = sinRy (B.14c)

∗Note that in the SAGE VST test the inertial coordinate system is oriented with the positive X axis
down, parallel to the acceleration of gravity. The value of mg in Eq. (B.2) is the magnitude of the force
along the X, axis, with the Y and Z components being zero.
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TBEF21 = cosRz sinRy sinRx + sinRz cosRx (B.14d)

TBEF22 = cosRz cosRx − sinRz sinRy sinRx (B.14e)

TBEF23 = − cosRy sinRx (B.14f)

TBEF31 = sinRz sinRx − cosRz sinRy cosRx (B.14g)

TBEF32 = sinRz sinRy cosRx + cosRz sinRx (B.14h)

TBEF33 = cosRy cosRx (B.14i)

B.5 Aerodynamic Forces and Moments

The aerodynamic force and moment coefficients are required to estimate the aerodynamic
parameter which they are a function of. The aerodynamic forces and moments are defined
as shown in Eqs. (B.15) - (B.20).

FA,x = q∞CXS (B.15)

FA,y = q∞CY S (B.16)

FA,z = q∞CZS (B.17)

MA,x = q∞ClSd (B.18)

MA,y = q∞CmSd (B.19)

MA,z = q∞CnSd (B.20)

Using Eqs. (B.1) and (B.2) in conjunction with Eqs. (B.15) - (B.20), the force and
moment coefficients are calculated.

CX = −CA =
1

q∞S
(Fx − Fg,x − Ftr,x) (B.21)

CY =
1

q∞S
(Fy − Fg,y − Ftr,y) (B.22)

CZ = −CN =
1

q∞S
(Fz − Fg,z − Ftr,z) (B.23)

Cl =
1

q∞Sd
(Mx −Mtr,x) (B.24)

Cm =
1

q∞Sd
(My −Mtr,y) (B.25)

Cn =
1

q∞Sd
(Mz −Mtr,z) (B.26)
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B.6 Tether Forces and Moments

The tether force and moment vectors are defined as:

Ftr = Ftr,xi + Ftr,yj + Ftr,zk (B.27)

Mtr = Mtr,xi +Mtr,yj +Mtr,zk (B.28)

The tether only exerts a force at the tether attachment point and the moment is due
to the offset of this point with the models center of mass. The geometry of the tether is
presented in Figure B.1. The components of the tether force are:

Ftr,x
Ftr,y
Ftr,z

 =
Ftr
|rtr|


xtr
ytr
ztr

 (B.29)

The tether force acts along the vector between the attachment point and the centering
ring, rtr, and has a magnitude, Ftr. The values of these terms are defined in Eqs. (B.32)
and (B.33). The moment vector is the cross product of the force vector with the location of
the tether attachment point relative to the center of mass, rt, as defined in the Eq. (B.35).

Mtr = Ftr × rt (B.30)
Mtr,x

Mtr,y

Mtr,z

 =


ytFtr,z − ztFtr,y
ztFtr,x − xtFtr,z
xtFtr,y − ytFtr,x

 (B.31)

B.6.1 Force Magnitude

The model for the tether force magnitude was determined from experimental measurements
(see Chapter 2). The model is a linear fit of the tether force versus the dynamic pressure.

Ftr = q∞ (CDS)tr −Wtr (B.32)

Table B.1: Tether force model parameters

Parameter Value Units

(CDS)tr 0.0140 (0.0013) ft2 (m2)
Wtr 0.0037 (0.0037) lb (N)

The tether force model parameters in Table B.1 are for the specific test described by
this thesis and should be applied with caution to data collected in other wind tunnel tests.
Chapter 2 describes the testing method so it may be repeated.
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B.6.2 Tether Geometry

The tether force is directed toward the centering ring at all times. This vector is defined as
shown in Eq. (B.33).

rtr = xtri + ytrj + ztrk (B.33)

The components can be determined with Eq. (B.34) from the ring position, model position
and tether attachment point (or vectorally: rr, ro, and rt,o respectively) as defined in Figure
B.1. 

xtr
ytr
ztr

 =
[
TBEF

]T 
Xr −X
Yr − Y
Zr − Z

−

xt,o
yt,o
zt,o

 (B.34)

The location of the tether attachment point is defined as shown in Eq. (B.35).

rt = xti + ytj + ztk (B.35)

The components are determined with Eq. (B.36) from the locations of the tether attachment
point and the center of mass with regard to the origin (or vectorialy: rt,o and rcm respectively)
also defined in Figure B.1. 

xt
yt
zt

 =


xt,o
yt,o
zt,o

−

xcm
ycm
zcm

 (B.36)

B.7 Auxiliary Equations

The following are the auxiliary equations required for the PID code. These variables are
used both in the above force calculations and as regressors for the aerodynamic coefficients.

B.7.1 Airspeed and Wind Components
u∞
v∞
w∞

 =


u
v
w

−

uW
vW
wW

 (B.37)


uW
vW
wW

 =
[
TBEF

]T 
−VW

0
0

 (B.38)†
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V∞ =
√
u2∞ + v2∞ + w2

∞ (B.39)
u̇∞
v̇∞
ẇ∞

 =


u̇
v̇
ẇ

−

u̇W
v̇W
ẇW

 (B.40)


u̇W
v̇W
ẇW

 =
[
TBEF

]T −V̇W0
0

+
[
ṪBEF

]T 
−VW

0
0

 (B.41)

[
ṪBEF

]
=

 ṪBEF11 ṪBEF12 ṪBEF13

ṪBEF21 ṪBEF22 ṪBEF23

ṪBEF31 ṪBEF32 ṪBEF33

 (B.42)

ṪBEF11 = −Ṙz sinRz cosRy − Ṙy cosRz sinRy (B.43a)

ṪBEF12 = −Ṙz cosRz cosRy + Ṙy sinRz sinRy (B.43b)

ṪBEF13 = Ṙy cosRy (B.43c)

ṪBEF21 = Ṙz (cosRz cosRx − sinRz sinRy sinRx)

+Ṙy (cosRz cosRy sinRx)

+Ṙx (cosRz sinRy cosRx − sinRz sinRx)

(B.43d)

ṪBEF22 = −Ṙz (cosRz sinRy sinRx + sinRz cosRx)

−Ṙy (sinRz cosRy sinRx)

−Ṙx (sinRz sinRy cosRx + cosRz sinRx)

(B.43e)

ṪBEF23 = Ṙy sinRy sinRx − Ṙx cosRy cosRx (B.43f)

ṪBEF31 = Ṙz (sinRz sinRy cosRx + cosRz sinRx)

−Ṙy (cosRz cosRy cosRx)

+Ṙx (cosRz sinRy sinRx + sinRz cosRx)

(B.43g)

ṪBEF32 = Ṙz (cosRz sinRy cosRx − sinRz sinRx)

+Ṙy (sinRz cosRy cosRx)

−Ṙx (sinRz sinRy sinRx − cosRz cosRx)

(B.43h)

ṪBEF33 = −Ṙy sinRy cosRx − Ṙx cosRy sinRx (B.43i)

†Note that in the SAGE VST test the inertial coordinate system is oriented with the positive X axis
down anti-parallel to the wind velocity flow field. The flow field is assumed to uniform over the area of the
test section, thus the value of VW , in Eq. (B.37), is the magnitude of the wind to reflect this. The Y and Z
wind components are assumed to be zero.
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B.7.2 Dynamic Pressure and Wind Angles

q∞ =
1

2
ρ∞V

2
∞ (B.44)

α = arctan

(
w∞
u∞

)
− π < α ≤ π (B.45)

β = arcsin

(
v∞
V∞

)
− π

2
≤ β ≤ π

2
(B.46)

αT = arccos

(
u∞
V∞

)
0 ≤ αT ≤ π (B.47)

φαT = arctan

(
v∞
w∞

)
− π < φαT ≤ π (B.48)

α̇ =
u∞ẇ∞ − u̇∞w∞

u2∞ + w2
∞

(B.49)

β̇ =
v̇∞V

2
∞ − v∞ (u∞u̇∞ + v∞v̇∞ + w∞ẇ∞)

V 2
∞
√
u2∞ + w2

∞
(B.50)

α̇T =
u∞ (u∞u̇∞ + v∞v̇∞ + w∞ẇ∞)− u̇∞V 2

∞

V 2
∞
√
v2∞ + w2

∞
(B.51)

φ̇αT =
v̇∞w∞ − v∞ẇ∞

v2∞ + w2
∞

(B.52)

α = arctan

(
sinαT cosφαT

cosαT

)
− π < α ≤ π (B.53)

β = arcsin (sinαT sinφαT ) − π

2
≤ β ≤ π

2
(B.54)

αT = arccos (cosα cos β) 0 ≤ αT ≤ π (B.55)

φαT = arctan

(
sin β

sinα cos β

)
− π < φαT ≤ π (B.56)

B.7.3 Additional Equations

h = −X (B.57)

M∞ =
V∞
a∞

(B.58)

Re∞ =
ρ∞V∞d

µ∞
(B.59)
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B.8 Shifting the Static Aerodynamic Moment

Coefficients

The aerodynamic forces and moments at the lander coordinate system origin are given in
Eqs. (B.60) and (B.61) respectively.

FA=


FA,x
FA,y
FA,z

 = q∞S


−CA
CY
−CN

 (B.60)

MA,o=


MA,xo

MA,yo

MA,zo

 = q∞Sd


Clo
Cmo
Cno

 (B.61)

The center of mass of the lander is offset from the lander geometric coordinate system
origin. At the center of mass the aerodynamic force remains the same but the aerodynamic
moment will have a contribution from the force. The moment arm that is defined as the
location of the center of mass relative to the lander coordinate system origin, (rcm = xcmi +
ycmj + zcmk). The aerodynamic moment at the center of mass is given in Eqs. (B.62) and
(B.63).

MA = MA,o + FA × rcm (B.62)

q∞Sd


Cl
Cm
Cn

 = q∞Sd


Clo
Cmo
Cno

+ q∞S


CNycm + CY zcm
−CNxcm + CAzcm
−CY xcm − CAycm

 (B.63)

By dividing through by q∞Sd gives the final form of the aerodynamic moment coefficients
at the center of mass.

Cl = Clo + CN
ycm
d

+ CY
zcm
d

(B.64)

Cm = Cmo − CN
xcm
d

+ CA
zcm
d

(B.65)

Cn = Cno − CY
xcm
d
− CA

ycm
d

(B.66)

B.9 Transformation of Coordinate Systems and

Euler Angles

The data collected in the VST is done so with a modified inertial coordinate system and
nonstandard Euler angles, (Rx, Ry, Rz). This is done to avoid the singularities associated
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with the standard aerospace Euler angles, (ψ, θ, φ). The spin tunnel data also uses a modified
Euler angle sequence (X, Y , Z rotation sequence) as opposed to a conventional aircraft (Z,
Y , X rotation sequence). Simulations, operating on the conventional coordinate system and
Euler angles, were used to verify PID code. The following is the equations required for the
conversion between the spin tunnel coordinates and the conventional coordinate system used
in simulations.

Xsim = Y
Ysim = Z
Zsim = X

(B.67)

ψ = arctan

(
sinRz sinRx − cosRz sinRy cosRx

cosRz sinRy sinRx + sinRz cosRx

)
− π < ψ ≤ π (B.68)

θ = arcsin (− cosRz cosRy)
−π
2
≤ θ ≤ π

2
(B.69)

φ = arctan

(− sinRz cosRy

sinRy

)
− π < φ ≤ π (B.70)

Rx = arctan

(− cosφ sin θ cosψ − sinφ sinψ

cosφ sin θ sinψ − sinφ cosψ

)
− π < Rx ≤ π (B.71)

Ry = arcsin (cosφ cos θ)
−π
2
≤ Ry ≤

π

2
(B.72)

Rz = arctan

(
sinφ cos θ

sin θ

)
− π < Rz ≤ π (B.73)
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Figure B.1: Tether geometry within VST.



Appendix C: Code Verification

This appendix presents simulated data, with the aerodynamic model identified in Chapter
5, which is entered into the PID code to compare the results to that of the simulation. The
simulation has been independently verified.

C.1 Simulated Data

Figure C.1 shows the simulated data that was entered into the PID code. The signal was
assumed to be perfect and thus was not smoothed. A derivative function included in the
SIDPAC software of reference [4] in order to obtain the necessary derivatives of the data.
The simulation used all the mass and geometric properties of the SAGE lander described in
Chapter 2. The simulated run is similar to a perturbed run in that the SAGE lander model
is given an initial total angle of attack of αT = 25◦. The oscillations die out over the course
of the simulated run.

C.2 Equations of Motion

Figures C.2 and C.3 show the comparisons of the PID code results to the related simulation
results. The most important values to the PID analysis are those that are used for the force
and moment coefficients and the regressors. Many other values are obtained for comparison,
all of which match up in a similar manner as those in the figures. The equations of motion
subroutine used in the PID code is capable of calculating these with little error.

C.3 Parameter Identification of Simulated Data

The estimates of the aerodynamic parameters are given in Table C.1 and are compared to
the values used in the simulation (these are the selected parameters also presented in Table
5.5). The aerodynamic parameters are estimated with high accuracy. The least accurate
aerodynamic parameters are the squared and cubed parameters. Using low angle simulated
data the PID code has similar issues seen in the unperturbed data set analysis where the
cubed terms were greatly overestimated. This means that the best results are achieved from
the perturbed and combined data sets.

76
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Table C.1: Results of PID analysis on simulated data.

Coefficient Parameter PID Estimate Simulation Actual % Error

CA CAT 6.6622 6.6620 0.00

CN
CNsinαT

3.4740 3.5129 1.11

CNsin3 αT
-2.1405 -2.0035 6.84

Clo
Clo,T 0.0118 0.0125 5.60
Clp -5.3758 -5.6816 5.38

Cmo

CmsinαT
-2.0706 -2.0655 0.25

Cmsin3 αT
2.5067 2.5278 0.83

Cm1 -3.3947 -3.3025 2.79
Cm2 -200.7541 -205.4289 2.28

Cno

CmsinαT
-2.0688 -2.0655 0.16

Cmsin3 αT
2.4105 2.5278 4.64

Cn1 -3.3710 -3.3025 2.07
Cn2 -202.3803 -205.4289 1.48
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Figure C.1: Simulated data for validation of the PID code.
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Figure C.2: Comparison of simulated and reconstructed dynamic values used in the PID
code.
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Figure C.3: Comparison of simulated and reconstructed force and moment coefficients used
in the PID code.
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