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Abstract 

Genet-CNV: Boolean Implication Networks for Modelling Genome-Wide Co-

occurrence of DNA Copy Number Variations 

Salvi Singh 

Lung cancer is the leading cause of cancer-related death in the world. Lung cancer can be categorized as 
non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). NSCLC makes up about 80% to 
85% of lung cancer cases diagnosed, whereas SCLC is responsible for 10% to 15% of the cases. It 
remains a challenge for physicians to identify patients who shall benefit from chemotherapy. In such a 
scenario, identifying genes that can facilitate therapeutic target discoveries and better understanding 
disease mechanisms and their regulation in different stages of lung cancer, remains an important topic of 
research. 

In this thesis, we develop a computational framework for modelling molecular gene interaction networks, 
called Genet-CNV, to analyse gene interactions based on DNA Copy Number Variations (CNV). DNA 
copy number variation is a phenomenon in which sections of the genome are repeated and the number of 
repeats in the genome varies between individuals in the human population. These variations can be used 
to study the activity of genes in cancerous cells, compared with that of the normal population. Genet-
CNV uses Boolean implication networks to investigate genome-wide DNA CNV to identify relationships 
called rules, that could potentially lead to the identification of genes of significant biological interest. 
Boolean implication networks are probabilistic graphical models that express the relationship between 
two variables terms of six implication rules that can describe if the genes are co-amplified, co-deleted or 
differentially amplified and deleted. Genet-CNV is run on three publicly available NSCLC genomic 
datasets. We further evaluate the results obtained with Genet-CNV by comparing them with the 
benchmark dataset, The Molecular Signatures Database (MSigDB). We identified several genes of 
interest that are present in survival, apoptosis, proliferation and immunologic pathways. The relationships 
obtained from this analysis can be tested for biological validations, or to confirm experimental results, 
thus facilitating the identification of genes playing a significant role in the causation and progress of 
NSCLC. 
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Chapter 1 

Introduction 

1.1 Problem and Motivation 

Lung cancer is the leading cause of cancer-related death in the world (Torre et al., 2015). Lung cancer can 
be categorized as non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). NSCLC makes 
up about 80% to 85% of lung cancer cases diagnosed, whereas SCLC is responsible for 10% to 15% of the 
cases. NSCLC has two major subtypes of histology: squamous cell lung carcinoma and lung 
adenocarcinoma, with certain DNA mutations causing further molecular stratification (Herbst, Heymach, 

& Lippman, 2008). NSCLC can have a favorable prognosis if diagnosed at an early stage, with a 5-year 
survival rate of 70-90% for small localized tumors (stage I) (Goldstraw et al., 2016; Nesbitt, Putnam, Walsh, 
Roth, & Mountain, 1995; Shah, Sabanathan, Richardson, Mearns, & Goulden, 1996). However, 
approximately 75% of the patients are diagnosed when they have reached stage III/IV (Walters et al., 2013) 
and despite significant developments in the oncological management of late stage lung cancer over recent 
years, survival remains poor (Blandin Knight et al., 2017). SCLC is more aggressive than NSCLC and has 
a much worse prognosis, with overall 5-year survival around 5% (Blandin Knight et al., 2017).  

It remains a challenge for physicians to identify patients who shall benefit from chemotherapy. In such a 
scenario, identifying genes that can facilitate therapeutic target discoveries and better understanding of 
disease mechanisms and their regulation in different stages of lung cancer, remains an important topic of 
research. In this thesis, we develop a computational framework for modelling molecular gene interaction 
networks, called Genet-CNV, to analyse gene interactions based on DNA Copy Number Variations (CNV) 

and further investigate genes of significant interest. 

DNA copy number variation is a phenomenon in which sections of the genome are repeated and the number 
of repeats in the genome varies between individuals in the human population. These variations can be used 
to study the activity of genes in cancerous cells, compared with that of the normal population. The CNV 
data can be classified into five states, depending upon the number of copies of each gene. The five states 

are normal, gain, amplification, loss, and double loss.  

Implication networks based off of prediction logic were first proposed by Guo et al in 2003 (L. Guo, Cukic, 
& Singh, 2003). Boolean implication networks have been used to examine gene regulation and control 
previously (Jansen et al., 2003; Milo et al., 2002; Sachs, Perez, Pe'er, Lauffenburger, & Nolan, 2005; Sahoo, 
Dill, Gentles, Tibshirani, & Plevritis, 2008).  For this study, we are using an implication network based on 
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prediction logic (L. Guo, Cukic, & Singh, 2003). A previous implementation was previously used for 
genome-wide gene expression modelling by Guo et al in 2011 (N. L. Guo & Wan, 2012). 
Boolean implication networks are probabilistic graphical models that express the relationship between two 
variables (genes in this case) in terms of six implication rules that can describe if the genes are co-amplified, 

co-deleted or differentially amplified and deleted. In prior work, Guo et al have used implication networks 
to model gene co-expression networks from publicly available datasets. This study extends the previous 
implication networks implemented in Genet (N. L. Guo & Wan, 2012) to model genome-scale CNV 
networks. In this study, however, the variable under analysis, instead of limited to being dichotomous, is 
now allowed to have numerous discrete values, corresponding to CNV states, in logic relations.  A software 
package (Genet-CNV) was developed in this study to model genome-wide CNV networks. 
 

1.2 Thesis Contributions 

● Creation of Genet-CNV, a software package developed in C to detect Boolean implication 
relationships from whole genome DNA CNV data. 

● Processing and analysis of three publicly available NSCLC DNA CNV data sets to discover 
genome wide Boolean implication relationships  

● Detection and visualization of results pertaining to seven NSCLC prognostic biomarker genes 
identified from a previously published study 

● Analysis of results to discover results common in datasets, and evaluation of results with the 
benchmark dataset MSigDB 

● Comparison of Genet-CNV’s performance on whole genome DNA CNV with algorithms 
proposed in previous studies 
 

1.3  Thesis Outline 

The second chapter presents a brief overview of previous works where Boolean implication networks were 
employed in genome wide studies. The first section discusses the first application of Boolean implication 
algorithm to microarray data. The following section describes mining The Cancer Genome Atlas (TCGA) 
data from various patient cohorts and using Boolean implication networks to generate correlation results. 
This study looks at gene expression, mutation, methylation and DNA copy number alteration data to 

discover Boolean implications. It uses a modified version of the algorithm used in the first study that makes 
up this section. The third section discusses the combined application of self-organizing maps and Boolean 
implication algorithm to analyse data at various levels of abstraction, including genes, metagenes 
(representations of similarly expressed genes) and similarly behaving metagene groups (spots). 
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In chapter 3, we introduce the three datasets used in this study, and describe the processing of the data to 
prepare it for evaluation with Genet-CNV. We then present the details of the methodology associated with 
the Boolean implication algorithm.  This is followed by a discussion of the development of Genet-CNV to 
analyse whole genome DNA CNV data for discovering Boolean implication rules in the genome. The 

performance of genet-CNV is compared with a previously described algorithm.  

In chapter 4, we summarize the results obtained from the three datasets. We present the Boolean implication 
rules that were common across datasets. We further evaluate the results obtained by Genet-CNV against 
the bench mark dataset called The Molecular Signatures Database (MSigDB), which is a collection of 
annotated genes that have previously been found to be significant biologically. We preset gene interactions 

discovered in our datasets and matched with the proliferation, survival, apoptosis and immunology 
pathways as present in MSigDB. Heatmaps demonstrating clustering of genes present in these four 
pathways from two of the three datasets have also been presented. 

Lastly, in chapter 5, we present our concluding remarks, and the future directions in which this work can 
be extended for further discoveries. 

1.4 Publications Related to this Study 

Papers 

● Nancy Lan Guo, Afshin Dowlati, Rebecca A. Raese, Chunlin Dong, Guoan Chen, David G. Beer, 
Justine Shaffer, Salvi Singh, Ujala Bokhary, Lin Liu, John Howington, Thomas Hensing, and Yong 
Qiane, “A Predictive 7-Gene Assay and Prognostic Protein Biomarkers for Non-small Cell Lung 
Cancer”, EBioMedicine (N. L. Guo et al., 2018) 

● Dymacek JM1, Snyder-Talkington BN, Raese R, Dong C, Singh S, Porter DW, Ducatman B, 
Wolfarth MG, Andrew ME, Battelli L, Castranova V, Qian Y, Guo NL, “Similar and Differential 
Canonical Pathways and Biological Processes Associated with Multiwalled Carbon Nanotube and 
Asbestos-Induced Pulmonary Fibrosis: A 1-Year Postexposure Study.” (Dymacek et al., 2018) 

● Brandi N. Snyder-Talkington, Chunlin Dong, Salvi Singh, Rebecca Raese, Yong Qian, Dale Porter, 
Michael G. Wolfarth, and Nancy L. Guo, “Multi-walled Carbon Nanotube-Induced Gene 
Expression Biomarkers for Medical and Occupational Surveillance”, Submitted for Publication 

 
Poster 

 
● Salvi Singh, Nancy Lan Guo, “Genet-CNV: Boolean Implication Networks for Modelling 

Genome-Wide Co-occurrence of DNA Copy Number Variations”, BCB '18 Proceedings of the 
2018 ACM International Conference on Bioinformatics, Computational Biology, and Health 
Informatics 

 

The content of this study shall be divided into two parts, one highlighting the clinical implications of this 
work, and the other focusing on the algorithm developed and evaluated herein. These are to be submitted 
for peer-reviewed publication. 
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Chapter 2 

Background and Related Work 

2.1 DNA Copy Number Variations (CNVs) 

The human genome is made up of 6 billion base pairs of complementary nucleotides, divided into two 
sets of 23 chromosomes each. The human DNA encodes approximately 30,000 genes. These genes are 

not always present with two copies in the genome. Large sections of the DNA, ranging from thousands to 
millions of base-pairs long, can vary in their copy number. They can either have a number of copies 
which is greater than the norm or have one or more copies lesser than the norm. Sometimes these sections 
of the DNA can correspond to genes, in which case, it might interfere with the normal functioning of the 
genes in the genome. Such sections of the DNA comprise Copy Number Variations (CNVs) and are 
defined as structural repeats in the genome that are larger in size than 1 kilobase (kb).  

 
Figure 3.1 DNA Copy Number Variation: Deletion and Amplification 

While CNVs exist in healthy members of the population, they can still be linked to certain genetic mutations 
and diseases. Most CNVs are relatively benign, however, sometimes they may affect important 
developmental genes in the genome and thus cause diseases. Many studies have been conducted which have 
identified certain CNVs having an association with multiple diseases. It has also been observed that CNVs 
can encompass multiple genes, and that the effect of a potentially disease-causing CNV is not restricted to 

the genes it includes and may affect other genes as well. Genome wide studies of CNV datasets are carried 
out to identify more such CNVs and their potential implications on the rest of the human genome and human 
health in general. The genomic instability and structural dynamism of cancer cells necessitates that CNV 



 

 

5 

data be examined in order to discover any underlying associations. The prevalence of next-generation DNA 
microarray-based technologies generate ample data and facilitate the detection of CNVs and further analysis 
of correlations in the data. 

In this study, we have used genome wide non-small cell lung cancer (NSCLC) DNA CNV data and firstly 
converted it to copy number calls using specialised packages that help generate copy number variation 
values for each probe in the dataset. Once the calls have been generated, then a Boolean implication network 
has been created to detect and analyse correlation amongst genes. Copy number variations have thus been 
used to generate gene correlations which may play a role in identifying genes significant in the cause and 
course of NSCLC. 

2.2 Network-based Methods 

Molecular network analysis using computational network models has led to promising applications in 
identifying new disease genes (Emilsson et al., 2008), discovering disease-related sub-networks (Calvano 

et al., 2005), and classifying diseases (Chuang, Lee, Liu, Lee, & Ideker, 2007). In this study, we are 
implementing a novel computational network model using microarray data to analyse gene association 
relationships, using Boolean Implication Networks. In this section, we discuss and compare two other 
network models that can be used to carry out a similar analysis. 

2.2.1 Artificial Neural Networks [ANN] 

ANNs are inspired by the biological nervous system and comprise of several highly interconnected nodes. 
These nodes are organized into a minimum of three layers, the input layer, the output layer, and the hidden 
layer. Often, ANNs will have more than one hidden layer. The hidden layers are where the processing is 
done. The nodes and edges have weights and biases attached to them, which are adjusted when the algorithm 
is run, to obtain a function that best describes the data.  

The backpropagation algorithm is the most commonly used method to iterate over the data and adjust the 
weights and biases till the error rate between the observed and the expected value has been minimized 
(Mitchell, 1997). 

Neural networks, however, are very complex often acting like black-boxes, and it is very difficult to 
determine the significance of weights and biases in a biological context, or to compare it with other rule-
based methods (Mitchell, 1997). Neural networks also need a huge amount of trained data, in order to 
successfully model the underlying function. With smaller sample sizes, they lead to over-fitting of the data, 
and the results do not generalize well to new inputs. 
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2.2.2 Bayesian Belief Networks 

Bayesian Networks are Directed Acyclic Graphs (DAGs), where each node represents a hypothesis or a 

random variable, and the edges represent direct relationships between the variables. They model the joint 
probability distributions of random variables. The conditional dependence relationships of the variables are 
based upon Bayesian probabilities.  

Bayesian networks have been used commonly in molecular network analysis, due to their ability to provide 
causal relationships between pairs of genes, specifically to predict genome wide protein-protein interactions 

and model cellular networks (Jansen et al., 2003). The Bayesian structure, however, cannot always yield 
causal relationships. Bayesian networks, being acyclic in nature, cannot accommodate feedback loops 
(Sachs et al., 2005).  

 

2.4  Studies Using Boolean Implication Networks Algorithm with Cancer Data 
2.4.1 Boolean implication networks derived from large scale, whole genome microarray datasets 

(Sahoo et al., 2008) 

This study was the first attempt to discover Boolean implications for the full genome on large-scale gene 

expression data. Boolean implication rules can be used to identify a larger set of relationships between pairs 
of genes across the whole genome using data generated from microarray experiments. In this study done 
using microarray data, the gene expression level of each gene on each of the arrays has been classified as 
low or high, depending on a threshold determination method applied to each gene. The identified 
implication rules make up a labeled directed graph, where the vertices are the genes, and the edges are the 
implication rules, labeled with their type. The authors mention that a Boolean implication relation is an 
empirical observation and does not imply any causality. However, it can serve as a starting point to examine 
certain gene interactions and their biological significance. 

The study also found that Boolean implications capture a number of relationships that are not identified by 
other existing methods for large scale data, and most of these methods find only symmetric relationships, 
whereas with Boolean implication, asymmetric relationships can also be identified. There may exist 
significant Boolean relationships between genes whose expression is not very strongly correlated. In their 
study, the authors discovered that the network identifies Boolean implications that describe known 

biological interactions, and many new relationships that can be used to generate new hypotheses. Many of 
the new relationships identified in humans by this methodology are common across humans, mice, and fruit 
flies. 
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A comparative study on a small set of biologically interesting genes in humans was done to examine the 
properties of Boolean implications networks with correlation-based networks. Boolean networks captured 
more rules. The symmetric Boolean relationships almost always had  

Publicly available microarray data from humans, mice and fruit-flies was used in this study, with 
approximately 3 billion probe set pairs examined for possible Boolean implication rules in the human 
dataset itself. A large number of Boolean implications were found for each individual species. 

Some of the findings of this study included the appearance of implication between genes expressed during 

differentiation of specific tissue types. In the human network, hundreds of genes related to the cell-cycle 
were found to be co-expressed. Several Boolean implications were also discovered amongst 
developmentally regulated genes. Many Boolean implication relationships were conserved across multiple 
species, with about 41,000 of the identified relationships being common across all three species. 

The StepMiner (Sahoo, Dill, Tibshirani, & Plevritis, 2007) algorithm was used to determine a threshold 

level for each gene, and depending on the threshold, the genes were classified as having high expression 
levels or having low expression levels. Scatter plots were generated for each gene pair for visualization. 
Depending on the sparsity of the quadrants, Boolean implications were discovered. The number of 
expression values in a sparse quadrant must be less than the number expected under an independence model. 
This was followed by the calculation of the error rate in each case. If the first statistic was greater than 3.0 
and the error rate less than 0.1, then the implication would be deemed significant. 

 

2.4.2 Mining TCGA Data Using Boolean Implications (Sinha 2014) 

In this study, Boolean implications are applied to find relationships between variables of different data 
types, including mutation, copy number alteration, DNA methylation, and gene expression. The data in 
this study has been taken from glioblastoma (GBM) and ovarian serous cystadenoma (OV) data sets from 
The Cancer Genome Atlas (TCGA). Several hundred thousand Boolean implications were discovered in 
these datasets.  

The GBM dataset had 126 patients with mutation and copy number data, 235 with methylation and 
expression data and 86 patients with mutation, copy number and expression data. The OV dataset used has 
314 patients with mutation and copy number data and 286 patients with mutation, copy number, 
methylations and expression data.  
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The different data types (gene expression, methylation, copy number alteration, mutation) needed to be 
discretized into Boolean values in order to discover Boolean implications amongst them. This was the 
preliminary step before pairwise association relationships could be extracted. The process of extracting 
Boolean implications between gene pairs involved two major steps: firstly, the chi-square test for 

independence was used to discover nonrandom associations, and secondly, for the cases where nonrandom 
associations were found, the sparsity test mentioned in the previous related work was used to produce the 
final results. An implication was considered significant if the first statistic was greater than a cutoff 
threshold (typically, between 2.0 and 3.0) and the error rate was less than 0.1.  

The chi-square independence test does not generate a good measure for association for when any of the 

categorical variables have a frequency less than 5. Therefore, in this study, the Fisher’s Exact test was used 
for detection of nonrandom associations, followed by the sparsity check test, for low frequency events such 
as mutations and copy number alterations. 

On further examining the Boolean implications discovered by this process, it was found that these rules 
accurately capture several known biological phenomena, such as cis-regulatory mechanisms of gene 

regulation, temporal ordering, interactions of multiple pathways, loss-of-heterozygosity of tumor 
suppressors and mutation-specific epigenetic states. Many of these relationships were found between 
different data types of the same gene pairs. Further analysis using GSEA showed that the genes obtained 
by these Boolean implications were biologically meaningful and had overlaps with known cancer genes. 
The authors mention that the plethora of diverse biological insights generated by examining these 
relationships indicates that Boolean implications are a very useful tool for mining relationships from cancer 
data sets to gain further insights. 

The authors also compared the Boolean implications relationships generated from the data with 
relationships discovered by three other techniques used commonly to find pairwise association. These three 
techniques included the t test, correlation, ad Fisher’s exact test. It was found that Boolean implications 
resulted in the maximum number of relationships out of all the four methods applied. The most significant 
n rules generated by each of the three other statistical methods were compared with the most significant n 

rules generated by Boolean implications, and it was found in all three cases that there was very little overlap 
between Boolean relationships and the relationships generated by any one of the three other methods. The 
authors therefore concluded that the relationships found by Boolean implications were unique and would 
be missed by other methods. 

In conclusion, the authors state that Boolean implications can be used to explore large datasets and expose 

numerous symmetric and asymmetric Boolean relationships, which can then lead to new hypotheses and 
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novel biological insights. A potential future application identified in this study is to generate high-order 
relationships for biologically meaningful variable combinations. In general, apart from generating new 
result for formulating new hypotheses, relationships found by Boolean implications can be used in 
conjunction with other data to investigate specific biological questions.  

 

2.4.3 Profiling of Genetic Switches using Boolean Implications in Expression Data (Çakır, 2016) 

In this study, a combined approach is used where SOM (self-organizing maps), a machine learning 

methodology and Boolean implication network are used to identify relations between genes at various levels 
of abstraction, including genes, metagenes (representations of similarly expressed genes) and similarly 
behaving metagene groups (spots). Boolean implications can discover weakly correlated entities as well 
and categorize the relationships obtained into six different types. According to the authors, this method 
allows them to validate and identify various potential relationships between genes and functional modules 
of interest, and their switching behavior. This methodology allows the construction and analysis of the 
network of genes. 

The data used in this study was obtained from a publicly available microarray study on 221 mature 
aggressive B-cell lymphomas. The preliminary step once again entails obtaining gene expression data and 
converting it into discretized high and low values. For this purpose, the StepMiner (Sahoo et al., 2007) 
algorithm devised by Sahoo et al (Sahoo et al., 2008) in the first work is utilized. The Boolean implication 
relationships are calculated using the same workflow and thresholds as used in the first related work by 

Sahoo et al (Sahoo et al., 2008). 

The SOM algorithm is used to transform the expression matrix comprising of thousands of probes 
representing genes and their expression values for each patient sample into meta-data of reduced 
dimensionality. This means that groups of genes having similar expression profiles are organized into meta-
genes, which are independent cluster representations of these similar genes. No primary information is lost, 

as none of the features are precluded from the analysis. After this, the expression state of each sample is 
visualized by color-coding two-dimensional grids of metagenes according to their expression values in the 
respective samples. This generates colour-gradient map for each sample; since the order of the metagenes 
is the same for each sample, the expression profiles in case of each sample can be compared directly with 
that of another sample. Individual expression patterns emerge as spots of similar colored tiles in these color-
gradient maps. These spots are groups of co-expressed metagenes for each sample. The two percent 
metagenes that show the highest and the lowest expression levels respectively for each sample are kept for 

analysis. 
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An important consideration in this study was at what level is the extraction of Boolean implications 
relationships most beneficial. There were three possible pathways of executions identified and compared 
with each other. In the first approach, the SOM method can be utilized to aggregate single genes to 
metagenes and further to detect spot clusters and the corresponding spot expression profiles. After that, spot 

level Boolean implications could be detected. Secondly, the metagenes obtained from SOM are used for 
pairwise implication analysis, and then spot relationships are discovered from these. And the third approach 
could be where Boolean implications are found first for the single genes and there pairwise relationships 
are mapped and aggregated to obtain metagenes and spots.  

After comparing these three approaches, this study found that obtaining Boolean implications at the lowest 

level of single gene-pairs conserved the most information by giving the greatest number of relationships. 
Under the other two approaches, the number of significant relationships was much fewer. Therefore, the 
detection of implication relationships, followed by their aggregation to obtain metagene and spot 
relationships should be used.  

This study concludes that the metagenes and spot profiles generated by SOM provide an overview of the 

data at different levels and reduce the dimension of the data, thus avoiding being bottlenecked by invariant 
genes present in the data. The uninteresting elements are thus filtered out, and the Boolean implication 
relationships detected are of a more significant nature. The resulting implication relationships yield a 
network of genes where the genes/metagenes/spots make up the nodes, while the edges indicate the 
implication relationship amongst them, which is not possible in case of other methods, such as correlation-
based networks. Also, unlike correlations-based networks, not only symmetric but asymmetric relationships 
are also captured via Boolean networks. 

The output of Boolean implication analysis are logical relations of pairs that in turn provides a network of 
implications where genes/metagenes/spots constitute the nodes and edges stand for the relations between 
genes/metagenes/spots. Essentially resultant implication networks have a different structure than 
correlation networks because of their six different edge types. Besides, given a temporal ordering in the 
feature set of the data an implication network is a directed network i.e. an implication is not necessarily a 

two-way logical relation. 

In the future, Boolean implication networks can be used as modelling approaches for gene states and their 
interactions. Furthermore, an analysis of the Boolean implications of the genes that take part in lymphoma 
in a given data set can lead to estimation of the biological fate of the system and identify processes that that 
can be manipulated and adjusted to observe desired results. This approach can prove useful in the fields of 

cancer biology, systems biology and clinical applications. 
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Chapter 3 

Genet-CNV: Boolean Implication Networks for Modeling Genome Wide Co-Occurrence of 

DNA CNV  

3.1 Boolean Implications Networks  

A probabilistic graphical model is a graph structure where each node of the graph is a representation of a 
random variable and the edges encode the relationships between these variables. Based on whether the 
graph is directed or undirected, there are two major types of probabilistic graphical models: Bayesian model 

(directed) and Markov model (undirected). 

Implication networks are also probabilistic graphical models, where each node represents a variable, and 
the connecting edge between any two nodes describes the implication relationship between them. One major 
advantage that implication networks have over Bayesian models is that they can be used to represent cyclic 

relationships as well, whereas Bayesian networks are acyclic in nature. 

The first formalism of implication networks was proposed by Liu and Desmarais (Liu and Desmarais, 1997) 
and was based on binomial distribution.  

3.2 Implementation by Sahoo et al (Sahoo et al., 2008) 

Another form of implication networks, Boolean implication networks, were constructed by Sahoo et al to 
model gene interactions networks in a meta-analysis of microarray data for multiple species. The 
implication relations in the Boolean implication networks were induced based on scatter plots of expression 
between two genes. On the scatter plots of gene expressions, a threshold was automatically determined 

using StepMiner (Sahoo et al., 2007) algorithm to discretize the gene expression level as ‘high’ or ‘low’. 
Based on the discretized levels, the scatter plot is partitioned into four quadrants and the implication relation 
between the two genes is derived based on the number of data points in the quadrants. In the partitioned 

scatter plot with four quadrants, the ‘low’ and ‘high’ expression of gene A corresponds to ¬A and A 

respectively. In order to derive a successful implication rule between the pair of genes for the Boolean 
implication networks, two statistics were tested. The first statistic tests if the observed number of 

occurrences in the sparse quadrant (error cell) is significantly less than the expected number of occurrences 
under an independent model, given the relative distribution of low and high values of both genes. The 
second statistic estimates the maximum likelihood of the error rate for the number of occurrences in the 
error cell. More details about this study have been described in the related works section. 
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3.3 Boolean Implication Networks Based on Prediction Logic 

Implication networks based off of prediction logic were proposed by Guo et al. In this methodology, 

implication rules were obtained by using prediction logic based on formal logic rules. There can be six 
possible implication rules between any pair of dichotomous variables, as described in the figure that 
follows. In the figure, all shaded cells represent the error cells for each rule.  

The first rule is that of positive implication, where if A is true, then B is also true. The error in this case 
would be if A were to be true but B false. The second rule is of forward negative implication, where if A is 

true, then B is not true; the error case being if A is true, but B is also true. The third rule is that of inverse 
negative implication, where if A is not true, then B is true; here the error occurs if when A is not true, B is 
also not true. The fourth rule is negative implication, if A is not true, then B is also not true; the error 
occurring when if A is not true, but B is true. 

 

 

Figure 3.2 Six implication rules relating two dichotomous variables (shaded cells represent error) 
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Figure 3.3 Contingency table of two variables for N empirical samples. 

 

The fifth and sixth rule presented in the Fig 3.2 are equivalence rules. Rule 5, or positive equivalence occurs 
when rule 1 and rule 4 are true, i.e. if A is true, then B is true, and if B is true, then A is true. The error in 
this case comprises cases where if A is true, but B is not, and also if B is true, but A is not. The sixth rule 
is that of negative equivalence and is applicable when both rule 2 and rule 3 are valid, i.e. if A is true, then 
B is not true, and when A is not true, B is true. The error in this case is counted when A is true and B is also 
true, and also if A is not true and B is not true.   

In the contingency table in Fig 3.3, each cell represents the number of co-occurrences for a particular 
implication. For example, cell NA˄B indicates the number of samples where both variables A and variable 
B are true. The shaded cells of the contingency table represent the errors for the corresponding implication 

rule. For example, A˄¬B is the error cell for the implication rule A ⇒ B, NA˄¬B represents the number 

of error occurrences. Cell A˄¬B is erroneous for the rule A ⇒ B because in an ideal case, if the implication 

A ⇒ B is the true relationship between A and B, then we would never expect to find the contradiction case 

where A is true but not B. It is to be noted that in the context of DNA copy number data, the states of true 
and false default to amplified and deleted. 
In the original implication induction algorithm, a modified U-optimality method was used to obtain the 
implication rules between each pair of variables: 
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Figure 3.4 Implication induction algorithm based on prediction logic 

In the contingency table Mij of the induction algorithm, N11 indicates number of samples where both i and j 

occur to be true, N12 is when i is true but not j, N21 is when j is true but not i, and N22 is when both i and j 

are not true.  

In the induction algorithm, Up is the scope of the implication rule, representing the portion of the data 

covered by the implication relation, and ∇p is the precision of the implication rule, representing the 

prediction success of the corresponding implication relation. For a single error cell, where Nij is the 

number of error occurrences, the scope Up and the precision ∇p are defined as: 

Scope: 

𝑈$ = 𝑈&' =
𝑁&.∗ 𝑁.'
𝑁+ 	
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Precision: 

𝛻$ = 	𝛻&' 	= 1 −
𝑁&'

𝑁 ∗ 𝑈$
		

For the rule types where there are multiple error cells, they are defined as:  

Scope: 

𝑈$ =00	
'

ω23 ∗ 𝑈&'	
2

	

Precision: 

∇4	=00	
'

5
ω23 ∗ 𝑈&'
𝑈$

	6
2

∇23	

where ωij = 1 for error cells; otherwise, ωij = 0.  

Based on the contingency table for variable A and B (MAB) (Figure 3.3), the scope and precision for each of 

the six implication rules in Fig. 3.2 are defined as follows.  

For positive implication, A ⇒ B, 

𝑈7⇒8 = 	𝑈7^¬8 	=
𝑁7 ∗ 𝑁¬8
𝑁+ 	

𝛻7⇒8 = 	𝛻7^¬8 	= 1 −	
𝑁7^¬8

𝑁 ∗ 𝑈7⇒8
	

Similarly, for forward negative implication, A⇒¬B,  

𝑈7⇒¬8 = 	𝑈7^8 	=
𝑁7 ∗ 𝑁8
𝑁+ 	

𝛻7⇒¬8 = 	𝛻7^8 	= 1 −	
𝑁7^8

𝑁 ∗ 𝑈7⇒¬8
	

For inverse negative implication, ¬ A ⇒ B,  
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𝑈¬7⇒8 = 	𝑈¬7^¬8 	=
𝑁¬7 ∗ 𝑁¬8

𝑁+ 	

𝛻¬7⇒8 = 	𝛻¬7^¬8 	= 1 −	
𝑁¬7^¬8

𝑁 ∗ 𝑈¬7⇒8
	

For negative implication, ¬ A⇒ ¬B, 

𝑈¬7⇒¬8 = 	𝑈¬7^8 	=
𝑁¬7 ∗ 𝑁8
𝑁+ 	

𝛻¬7⇒¬8 = 	𝛻¬7^8 	= 1 −	
𝑁¬7^8

𝑁 ∗ 𝑈¬7⇒¬8
	

For positive equivalence, A ⇔ B, 

𝑈7⇔8 = 𝑈7^¬8 +	𝑈7^¬8 = 	
𝑁7 ∗ 𝑁¬8		+		𝑁¬7 ∗ 𝑁8	

𝑁+ 			

𝛻7⇔8 	= 1 −	
𝑁7^¬8 	+	𝑁¬7^8

𝑁7 ∗ 𝑁¬8		+		𝑁¬7 ∗ 𝑁8	
∗ 𝑁	

 

And for negative equivalence, A ⇔ ¬B, 

𝑈7⇔¬8 = 𝑈7^8 +	𝑈¬7^¬8 = 	
𝑁7 ∗ 𝑁8		+		𝑁¬7 ∗ 𝑁¬8	

𝑁+ 			

𝛻7⇔8 	= 1 −	
𝑁7^8 	+	𝑁¬7^¬8

𝑁7 ∗ 𝑁8		+		𝑁¬7 ∗ 𝑁¬8	
∗ 𝑁	

 

In the implication induction algorithm, the minimum requirements for the scope (Umin) and precision (∇min) 

must be positive values for an implication rule. They are the parameters used to control the significance 
level for an implication rule. In our study, we defined the minimum requirement for these two parameters 

to be at least 95% significant (P < 0.05) from one-tail Z- test based on the sample size. In this induction 

algorithm, a threshold is established individually for both precision and scope, whereas in the original U-
Optimality method, a minimum requirement was established for precision alone. 
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3.4 Genet-CNV 

In this study’s implementation, called Genet-CNV, we are using Boolean implication networks to examine 

implication relationships between genes that look at co-amplification, co-deletion, amplification-deletion, 
and deletion-amplification. The Boolean implication algorithm uses the error cells’ count for a particular 
rule while calculating the scope and precision for that rule. This is a key factor in our approach which 
enables us to observe relationships between two genes despite the fact that for a given gene, each sample 
can assume not two but multiple values, representing the CNV state for that sample. For instance, while 

looking for co-amplification in a pair of genes (A⇒B), Genet-CNV checks if a gene is amplified, and the 

remaining two states of deletion and normalcy become simply the negate of amplification; the error would 
be when gene A is amplified but gene B is not amplified. In this manner, Genet-CNV can use the same 
fundamental principle to create implication relations amongst genes, irrespective of the number of states 
for each gene.  

Genet-CNV allows the user to tune the network in several ways to reach predefined scope and precision 
threshold, and statistical significance of each implication rule. The threshold values of scope and precision 
are calculated separately using one-tailed Z-test based on the sample size. All the results presented in this 

study were obtained at a 95% significance level (P < 0.05), unless specified otherwise. The threshold for 

scope and precision and significance level can be tuned as needed by the user. 

The mean precision and scope values have been obtained, they can be used in the test for significant 
threshold. Alternatively, the user can also use an arbitrary mean for precision and scope, depending on how 
stringently significant they want the Boolean implications obtained to be. The higher the mean value of 
precision and scope used, the lower is the number of the resulting significant rules.  

After the mean has been decided upon, and the significance level set, the actual Boolean implication 
detection portion of the algorithm runs on the dataset and produces the number of rules and their types 
obtained amongst the interacting genes. 

We ran Genet-CNV four times on each dataset, each time focusing on one of the four possible interaction 
types: amplification-amplification, deletion-deletion, amplification-deletion and deletion-amplification. 

The maximum time taken by Genet-CNV to analyse a dataset was 110 minutes, on a system running the 
64-bit version of Windows 10 Enterprise OS, with an Intel® Xeon 3104 CPU @ 1.70 GHz, and 16.0 GB 

RAM. This was in the case of whole genome comparison with whole genome for dataset GSE31800, 
yielding approximately 33 million rules. When discovering implication rules for seven genes with the rest 
of the genome, Genet-CNV would typically take less than a minute on the same configuration. 
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3.5 Workflow for Generating Rules and Analysis 

 

 

Figure 3.5 Workflow: Data, Pre-processing, Modeling and Evaluation 
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3.6 Datasets 

There were two different types of data used in this study, CGH Microarray data and SNP Microarray data. 

The first two datasets, GSE31800 and GSE72194, were generated using CGH microarrays, whereas the 
third dataset created on a SNP microarray platform.  

CGH Microarray Data [GSE31800, GSE72194] 

Three datasets were used in this study. The first dataset contains 271 NSCLC tumor samples with DNA 
copy number profiles. These 271 samples are histologically divided into lung AC (n = 179) and squamous 
cell carcinoma (SQCC; n = 92). This dataset also contains GE profiles for 49 samples (n = 29 for AC; n = 
20 for SQCC). The patient data was collected using Custom Rosetta-Affymetrix Human platform. Two-
channel microarrays were used, with lung tumor tissue analyzed in channel one and normal tissue used as 
reference in channel two. To obtain the final intensity values, the data was normalized using the algorithm 
described by Khojasteh et al (Khojasteh, Lam, Ward, & MacAulay, 2005). This dataset is available in NCBI 

Gene Expression Omnibus (GEO) with accession number GSE31800 (Starczynowski et al., 2011).  

The second dataset contains 64 NSCLC tumor samples with DNA copy number profiles. The samples are 
collected from 64 early stage Non-Small Cell Lung Cancer (NSCLC) patients, which includes lung AC (n 
= 50), and lung SQCC (n = 14). The patient data was analyzed using Agilent-014693 Human Genome CGH 
Microarray 244A. Two-channel microarrays have been used for this analysis. The data for every sample 

was normalized and the intensity was background corrected, in order to obtain log2 ratios for each probe. 
This dataset is also publicly available in NCBI Gene Expression Omnibus (GEO) with accession number 
GSE72194 (Aramburu et al., 2015). 

DNA copy number profiles of the first dataset were quantified for each sample with whole-genome tiling 

path array comparative genomic hybridization (aCGH). aCGH is a technique for measuring the changes in 
chromosomal segments (Solinas-Toldo et al., 1997). The test and reference DNAs are differentially 
fluorescent labeled and hybridized together to the array in aCGH. The resulting fluorescent ratio is then 
measured, clone by clone, and plotted relative to each clone’s position in the genome (Carter, 2007). 

DNA copy number profiles for the second dataset were quantified using Agilent's Oligonucleotide Array-

Based CGH for Genomic DNA Analysis protocol, which is also an aCGH technique. 

Both GSE31800 and GSE72194 use two channel microarrays, which are hybridized with cDNA from two 
samples to be compared, for example, diseased tissue and healthy tissue. These two types of tissues are 
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colored using two different fluorescent dyes, Cy3 and Cy5, where Cy3 corresponds to the green part of the 
spectrum and Cy5 corresponds to the red part. 

SNP Microarray Data [GSE28572] 

The third dataset comprises a 101 NSCLC patient samples, divided into short-term survivors (<20 months; 
n=53) and long-term survivors (>58 months; n=47), and one normal sample. The 100 samples are 
histologically divided into lung adenocarcinoma (n = 51), squamous cell carcinoma (n = 28) and large cell 
carcinoma (n = 21). The dataset was analyzed on Affymetrix Mapping 250K Nsp SNP Array, and protocols 

corresponding to this platform were used for pre-processing. The log2 ratios were obtained by using the 
Copy Number Analysis Tool (CNAT). This dataset is available in NCBI Gene Expression Omnibus (GEO) 
with accession number GSE28572 (Micke et al., 2011). 

Data for the third sample set was collected by using Genome variation profiling by single nucleotide 
polymorphisms (SNP) arrays. SNPs represents a difference in a single DNA building block, i.e. a 

nucleotide, resulting in a sequence variation at the single nucleotide. For example, a SNP may replace the 
nucleotide cytosine (C) with the nucleotide thymine (T) in a certain stretch of DNA. SNPs occur normally 
throughout a person’s DNA. They occur almost once in every 1,000 nucleotides on average, which means 
there are roughly 4 to 5 million SNPs in a person's genome. SNPs can serve as markers for various genomic 
phenomena and high-throughput array technologies are used for SNP genotyping (Genetics Home 
Reference, 2019, February 3).  

The table on the following pages summarize the clinical information available for the patient cohorts 
analyzed in this study. The table describes the clinical information for GSE28572, where the patient samples 
are further categorized according to their survival status. It also presents a summary of the clinical 
information for the two CGH microarray datasets, GSE72194 and GSE31800 respectively. 
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Table 3.1 Clinical Information of Patient Samples from GSE31800, GSE72194 and GSE28572 

 

 

VARIABLES 

 

GSE31800, n = 271 

 

GSE72194, n = 64 

 

 

Long-Term Survivors 

(n = 47) [GSE28572] 
Short-Term Survivors 

(n =53) [GSE2852] 

Gender     

Male - - 24  30  

Female - - 23  23  

Race     

White - - NA NA 

Black or African-American - - NA NA 

Asian - - NA NA 

NA - - NA NA 

Histological Type     

Lung adenocarcinoma 179 - 24  26  

Lung squamous cell carcinoma 92 - 15  13  

Lung large-cell carcinoma None - 8  14  

Age     

Age, median (range), yr - - 63  66 

Survival, median (range), mo - - 107  9  

Vital Status     

Alive - - NA NA 

Dead - - NA NA 

Tumor State     

IA–IIB - - 38  40  

IIIA–IV - - 6  12  

Missing -- - 3 1  

Ethnicity     

Not Hispanic or Latino - - NA NA 

Hispanic or Latino - - NA NA 

NA  - NA NA 

Tobacco Smoking History     

 Never smoker - - 3  4 

 Ex-smoker - - 20  22  

 Current smoker - - 22  25  

 Missing - - 2  2  
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3.7 Obtaining Discretized DNA CNV Calls and Gene-Probe Matching 

The usage of three different datasets required employment of different methods of data processing, before 

Boolean implication relationships could be detected in a cohort. However, the sequential flow of the 
procedure used can be generalized in the following steps: 

● Processing sample data to obtain DNA CNV calls for each sample in every probe. 

● Converting probe names to gene names in order to examine the interaction amongst genes. 

● Running the Genet-CNV algorithm on processed data to finally obtain Boolean implication 
interactions  

 

 

 

 

Figure 3.6 Workflow for Obtaining Input for Gene-CNV from Raw CNV microarray data 

3.7.1 GSE31800 
 
Dataset GSE31800 comprises aCGH data with log2 normalized ratios of Cy3/Cy5. For this dataset, 
CGHcall (van de Wiel et al., 2007) package was implemented in R in order to obtain discrete calls for CNV 
for each instance in the dataset. CGHcall is a software tool to classify aCGH data into copy number states 
(deletion, loss, normal, gain or amplification). CGHcall has certain advantages over other tools with similar 

functionality. It uses DNACopy (Venkatraman & Olshen, 2007), a circular binary segmentation algorithm, 
which has been shown to be one of the strongest segmentation algorithms for CNV analysis. CGHcall also 
analyzes for six states, instead of the usual three states of gain, loss and normal that most segmentation 
algorithms do. The six states reflect double deletion, single deletion, normal, gain, double gain and 
amplification. 

For the first dataset, DNA copy number profiles of 271 samples, with log2 normalized ratios given across 
53,856 probes were provided as input to CGHcall, in order to yield the number of calls as the processed 
output. The output resulted in 49,710 probes for the 271 samples in the dataset. Approximately 4000 of the 
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probes were excluded from CNV calls evaluation due to missing data or errors arising during pre-
processing. 

This was followed by the process of translation of probe IDs to obtain gene names. This dataset had DNA 
copy number data and gene expression profile on the same microarray platform, thus enabling the usage of 
gene probes as mentioned in the gene expression data to obtain gene names for the probes used in DNA 
CNV data generation. 

MatchMiner was used in Batch Lookup mode to acquire the corresponding cytogenetic locations of the list 

of genes used in the gene expression analysis. The list of probe names from the RNA samples were 
converted by MatchMiner to Gene symbols. A list of chromosome base pair starting and ending positions, 
along with their corresponding cytogenetic bands for hg19, the human genome references as used by the 
UCSC Genome Browser, was obtained. The list of gene symbols obtained from MatchMiner was matched 
with its corresponding list of cytogenetic bands over NCBI database. Thus, using cytogenetic bands as the 
common factor, gene symbols were matched with chromosome base-pair starting and ending positions. 
This final list of gene symbols with their chromosome base-pair starting and ending positions was processed 

along with the chromosome base-pair locations provided in GSE31800 DNA CNV samples, using the R 
package sigaR. This package is based on the Distance Matching algorithm (van Wieringen, Belien, Vosse, 
Achame, & Ylstra, 2006; van Wieringen et al., 2012). Thus, we had gene symbols for most of the probes 
in GSE31800 DNA CNV data. Most gene symbols corresponded to two sets of probes in the dataset, and 
in such cases, only the probe set with the higher value of CNV calls was included in the final analysis. This 
led to the final matrix of DNA CNV calls with 271 samples and 19,720 genes, to be analyzed using the 
Boolean Implication algorithm. 

3.7.2 GSE71294 

For the second dataset, CGHcall was used for obtaining the DNA CNV calls. The procedure was similar to 
that followed for the second database. For this dataset, the gene name corresponding with each probe was 

provided in the microarray platform information [GPL4091]. After removing all the repeated probe names, 
and any probes with missing data removed during CNV analysis, the final matrix was created. It comprised 
16,122 unique genes, for 64 given patient samples. 

3.7.3 GSE28572  

The third dataset is based off an SNP array and as such required a different package and methodology for 
processing for DNA CNV calls. PennCNV-Affy (Wang et al., 2007), which is a software for Copy Number 
Variation (CNV) detection from SNP genotyping arrays, was used to obtain CNV calls. Instead of using a 
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segmentation-based algorithm, it uses a Hidden Markov Model (HMM), to infer CNV calls (Wang et al., 
2007). 

The raw data in the form of CEL files available publicly was required for this analysis. Affymetrix Power 
Tools (Scientific, 2019, January 13) application was used to process the CEL files and gather the normalized 
signal intensity data. The PennCNV-Affy tool is then applied to obtain the final calls. The output is in the 
form of a table that lists all the CNVs discovered. The table has fields that list how many SNPs are contained 
within each CNV and the length of the CNV. There is also a field to identify the CN state of the CNV, 
where CN < 2 is classified as a deletion, whereas CN > 2 means there is a duplication. A program was 
written to integrate this data into a matrix with the CN state of for each probe and each sample.  

 

Figure 3.7 Workflow for the Application of PennCNV-Affy Algorithm to SNP microarray data 
(PennCNV, 2019) 

The SNP probes were converted into gene names by using rsIDs given in the microarray platform data, and 
converting them into gene IDs using ‘ensembledb’ library in ‘Bioclite’ package in R. Since an SNP 
represents one nucleotide, multiple consecutive SNPs translated into the same gene names. For most of 
these SNPs falling within the same gene, the distribution of CNVs was the same. In cases where such was 
not the case, the probes with the maximum intensity were selected. 
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This matrix was further broken down into sub sets of 47 samples (long survival) and 53 samples (short 
survival) for differential analysis of genes in long and short survival patient samples. 

3.8 Analysis with Genet-CNV 

After generating CNV calls, Genet-CNV was used to discover pairwise gene-association rules from the 
three patient cohorts. All the results obtained were at a 95% significance level, unless mentioned otherwise. 

3.8.1 Exclusion of Rules with Precision Levels Close to Zero 

In order to carry out one-tailed Z-test based on the sample size, the mean value of precision and scope for 
all possible rules from a given a dataset is calculated.  

 A remarkable observation was made while calculating the mean precision value in all three datasets. It was 
noticed that the value of average precision tended to be less than 0.10 when no rules were excluded when 
averaging the precision. When the 5% rules with the lowest precision values were excluded, the average 
precision value rose up to approximately 0.50. The trend continued when the 10% rules with the lowest 
precision values were excluded while calculating mean precision. The average precision value rose up 
slightly in this case. However, when all rules were included, the average precision value showed a sheer 

drop to around 0.10. 

We speculate that the reason for the average precision of the rules coming out to be so low when all the 
rules are included could be because of the housekeeping genes present in the datasets. These genes are not 
actively involved in any interactions, and therefore lower the mean precision value for all the genes present 
in the dataset. However, when at least the bottom-most 5% of the rules are filtered out, most of these 

housekeeping genes must be getting filtered out and the average precision value rises up to around 0.50.  

In the table below, the first column denotes the percentage of rules with the minimum precision values that 
were excluded for calculating the mean precision for Co-amplification and Co-deletion interactions in each 
of the three datasets. The other cells in the table display the average precision obtained at each threshold.  
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Table 3.2 Mean Precision at Different Thresholds for Exclusion 

Threshold 

for Exclusion 
Mean Precision 

GSE31800 GSE72194 GSE28572 

 Amp Del Amp Del Amp Del 

0% 0.071682 0.082772 0.137554 0.244195 0.062087 0.082722 

5% 0.599896 0.553061 0.702721 0.588192 0.747988 0.553061 

10% 0.66374 0.615929 0.742394 0.642396 0.778604 0.615929 

 

We continued calculating the mean precision value for different thresholds of exclusion at intervals of 10%, 
and plotted the curve obtained for each of the four cases: co-amplification, co-deletion, amplification-deletion 
and deletion-amplification. Following is the curve obtained for GSE72194: 

 

 

Fig 3.8 Mean Precision at Different Threshold of Exclusion [GSE72194] 
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Fig 3.9 Mean Precision at Different Threshold of Exclusion [GSE31800] 

 

 

Fig 3.10 Mean Precision at Different Threshold of Exclusion [GSE28572] 
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Fig 3.11 Precision Histogram [GSE31800, co-amplification] 

It was observed that the precision value with the maximum frequency was 1.0, for the three patient cohorts. 

A precision of 1 is calculated when the number of error cells is equal to zero. In DNA CNV data, the number 
of samples that show a variation from normal copy number (1 for amplified and -1 for deleted) are very 
small. Therefore, it is quite likely that the number of error cells, and hence the precision calculates to zero. 
This is explained with the assistance of an example rule that was observed in GSE31800 co-amplification 
rules. 

The gene pair CD27-MBD2 were evaluated to be of the negative implication rules, i.e. rule type 4. The 
following is a contingency table for the given rule: 

Table 3.3 Contingency Table for CD27-MBD2 

 

A⇒B A⇒¬B  

5 6 

¬A⇒B ¬A⇒¬B 
0 260 
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Since this was evaluated as rule type 4, therefore the number of error cells in this case would be the 
frequency for A’B, which is 0 in this case. According to the formula for precision for rule 4, precision is 1 
if the number of error cells is zero: 

𝛻¬7⇒¬8 = 	𝛻¬7^8 	= 1 −	
𝑁¬7^8

𝑁 ∗ 𝑈¬7⇒¬8
	

Therefore, the precision is given as 1.  

With our sparse data, it is very likely to get the number of error cells as 0, and hence perfect precision, 
and Genet-CNV picks the rule with the highest precision in all cases. 

3.8.2 Logical Equivalence of Rules 

In Boolean logic, if we have a proposition such as A⇒ B, then applying modus tollens on this, we also have 

¬B ⇒ ¬ A. The following table summarizes the logical equivalence of the four rules used in Boolean 

implication algorithm, when modus tollens is applied to these rules: 

Table 3.4: Logical Equivalence of Rules when Modus Tollens is Applied 

Rule Logical Equivalence 
using Modus Tollens 

A⇒B ¬B ⇒	¬A 

A⇒¬B B ⇒	¬A 

¬A⇒B ¬B ⇒	A 

¬A ⇒ ¬ B B ⇒	A 

 

In figures 3.8, 3.9, and 3.10, It is observed that there are only three different curves visible in the graph, 
even though we are plotting four sets of interactions: co-amplification, co-deletion, amplification-
deletion, and deletion-amplification.  
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Fig 3.12: Only three of the four series of data are visible 

Using Genet-CNV on DNA CNV dataset, we notice that the rules for amplification-deletion and for 
deletion-amplification are logical equivalents of each under when applying modus tollens. Thus, we get 
the same set of rules for both amplification-deletion, and deletion-amplification, even though they fall 
under different rule types in the two interactions. The following table details the rules as applicable to our 
datasets, and their logical equivalents using modus tollens. 

Table 3.5: Logical Equivalence Using Modus tollens for Amplification-Deletion and Deletion-
Amplification 

Interaction  
Type 

 
Rule Type 

Total Rules 

Rule 1  Rule 2 Rule 3 Rule 4 

 

Amplification 
-Deletion 

Rules 1 & -1 1 & !-1 !1 & -1 !1 & !-1 

Logical 
Equivalents 

!-1 & !1 -1 & !1 !-1 & 1 -1 & 1 

 
Deletion 

-Amplification 

Rules -1 & 1 -1 & !1 !-1 & 1 !-1 & !1 

Logical 

Equivalents 

!1 & !-1 1 & !-1 !1 & -1 1 & -1 

From the table it is clear that the logical equivalent for rule 1 for amplification-deletion is the same as rule 
4 for deletion-amplification, and the logical equivalent for rule 1 for deletion-amplification is the same as 
the rule 4 for amplification-deletion. The logical equivalent for rule 2 for amplification-deletion is the 
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same as rule 2 for deletion-amplification, and the logical equivalent of rule 3 in one interaction 
corresponds to rule 3 in the other.  

Thus, the same set of total rules is obtained for both these interaction types, and therefore, the curve for 
mean precision is precisely the same at different thresholds for amplification-deletion and deletion-
amplification. The curves in the figures therefore get superimposed upon one another. 

3.8.3 Biological Significance of Rules 1 and 5 

Rule 1 and Rule 5 obtained by Genet-CNV, which stand for positive implication and positive equivalence 
respectively, are rich in biological information. Depending upon the case in question, they describe co-
amplification, co-deletion, amplification-deletion and deletion-amplification relationships, etc. Looking at 
co-amplification for example, if rule 1 is found to be true for a pair of rules, gene A and gene B, then this 
implies that if gene A is amplified, then gene B is also amplified. If rule 5 is found for the same pair, then 
this implies that if gene A is amplified, then gene B is amplified, and also if gene A is not amplified, then 

gene B is not amplified. Both these rules have straightforward biological interpretations and are of 
significant interest when looking at genes in network analysis. Rule four which stands for negative 
implications, is not of significant biological interest, as it is looking at a non-occurrence event. If rule 4 is 
found to be true for a pair of genes, when looking at co-amplification once again, that this means if gene 
A is not amplified, then gene B is not amplified. Events where both the genes are not amplified are not of 
particular note to us, since it gives no information about amplification. 

3.8.4 Comparison of Total Number of Rules at Different Significance Levels 

We then examined the total number of rules obtained at different significance levels. As expected, 
decreasing the significance yields a much larger number of rules and vice versa. The following table gives 

the number of rules obtained at different significance levels for the network of seven genes with the genome:  

Table 3.6 Total number of rules obtained [seven genes] for three different significance levels 

 
Datasets 

Total Rules 

p-value =   0.025  p-value = 0.05 p-value = 0.10 

GSE31800 5108 12091 20522 

GSE72194 13288 23975 29573 

GSE28572 383 3074 5871 
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3.9 Data Analysis Using Python over Spruce Knob Cluster for High Performance Computing 

A very large number of rules were identified using Genet-CNV, with the largest number of rules being 33 
million for whole genome interaction in GSE31800. In order to compile lists of rules common amongst the 
datasets, and in further evaluation of results obtained by Genet-CNV with the MSigDB database, scripts 
were written in Python to be run over Spruce Knob HPC clusters. Pandas and Numpy libraries in Python 
were used for sorting through the gene interaction tables and identifying common rules and in evaluation 

with MSigDB. 

Code written in python was run on Spruce Knob High Performance Computing Clusters. Compute 
resources for one cluster node with 6 processors and 16 GB memory per processor were utilized to run the 
code. It took 4 minutes for the largest datasets to be compared. This same comparison could not be 
replicated on macOS Mojave with a 2.3GHz Intel Core i5 processor and 8 GB 2133 MHz LPDDR3 RAM. 

Not enough memory resources were available to hold the datasets in the memory and perform computations 
on them. 
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Chapter 4 

Results and Evaluation 

4.1 Rules for Seven Genes and Whole Genome 

Genet-CNV was used to generate implication rules between gene pairs for genome-wide data. The result 
was a large number of rules which could be mined and analyzed to discover pertinent ones and further 

validate them using biological experiments. The datasets under scrutiny were analyzed to generate rules 
with two separate outcomes in mind. In the first approach, the interaction of seven specifically identified 
genes with the rest of the genome was observed to generate implication rules between each of these seven 
genes and the genes in the rest of the genome. In the second approach, all the genomes present in a cohort 
were compared with every other gene present in the same cohort. This second approach resulted in the 
generation of a huge number of rules, sometimes numbering in the millions. This was further used to 
compare genetic interactions common across all three of the datasets.  

4.1.1 Selection of Seven Genes that Serve as Prognostic Biomarkers for NSCLC 

The first approach, i.e. the examination of seven genes with the rest of the genome, was based on a study 
conducted by Guo et al. This study presented “a predictive multi-gene assay and prognostic protein 

biomarkers clinically applicable for improving NSCLC treatment, with important implications in lung 
cancer chemotherapy and immunotherapy” (N. L. Guo et al., 2018). The genome-wide transcriptional 
profiles and qRT-PCR were used to generate a multi-gene assay, for predicting the prognosis of NSCLC 
cases, and benefits of chemotherapy. This multi-gene assay was further validated by examining protein 
cohorts from independent data. The protein expression of the seven genes in this assay was correlated with 
the mRNA expression and DNA copy number variation from patient tissue samples for validation of 
functional involvement and potential as therapeutic targets in chemotherapy and immunotherapy. 

The prognostic biomarkers used in this study were evaluated using Cox proportional hazard model. The 
hazard ratio of each biomarker was calculated. A hazard ratio of greater than 1 meant that the gene under 
scrutiny is associated with poor outcome when down-regulated, but up-regulation of the same gene is 
associated with a good outcome in NSCLC patients. A hazard ratio of less than 1 implied that down-
regulation is associated with good outcome, and up-regulation with poor outcome. Finally, seven genes 
were selected as prognostic classifier based on decision trees. These seven genes are: ABCC4, CCL19, 

SLC39A8, CD27, FUT7, DAG1 and ZNF71.  This seven-gene prognostic model was further validated on 
independent patient cohorts. 
Considering that these seven genes have been identified as prognostic biomarkers in the case of NSCLC, 
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their interactions with other genes in the genome could help prepare hypothesis for further investigation of 
biologically significant genes and interactions in NSCLC cases. 

In the GSE31800 dataset, all seven of these prognostic biomarkers were present. In GSE72194, 6 of the 
seven genes were present, FUT7 was absent. In GSE28572, three out the seven genes, ABCC4, ZNF71 
and SLC39A8 were found. The following tables display the number of DNA CNV found for each gene in 
each of the three patient cohorts: 

 

Table 4.1 CNV States of Seven Genes in the Three Patient Cohorts (Seven Genes) 

 
Gene Name 

GSE31800 [n = 271] GSE72194 [n= 64] GSE28572 [n = 100] 

Gain Loss Normal Gain Loss Normal Gain Loss Normal 

CD27 11 2 258 4 7 53 - - - 

FUT7 2 51 218 - - - - - - 

ZNF71 5 19 247 3 4 57 7 4 89 

DAG1 0 20 251 0 19 45 - - - 

ABCC4 3 3 265 3 14 47 5 4 91 

CCL19 1 34 236 4 4 56 - - - 

SLC39A8 3 4 264 0 0 64 0 1 99 

Table 4.2 CNV States of Seven Genes for Long and Short Survival patient samples in GSE28572 

 
Gene Name 

GSE28572, Long Survival 
[n = 47] 

GSE28572, short Survival 
[n = 53] 

Gain Loss Normal Gain Loss Normal 

CD27 - - - - - - 

FUT7 - - - - - - 

ZNF71 1 1 45 6 3 44 

DAG1 - - - - - - 

ABCC4 4 1 42 1 3 49 

CCL19 - - - - - - 

SLC39A8 0 0 47 0 1 52 
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4.1.2 Whole Genome Comparison 

The second approach was to compare the whole genome with the whole genome. This led to the discovery 
of a significantly larger number of rules than in the prior case, as the number of comparisons involved was 
so much larger. 

4.2 All Rules Obtained with Genet-CNV 

4.2.1 Rules from Three Patient Cohorts 

The following two tables list the total number of rules obtained for the three patient cohorts, firstly with the 
seven genes previously identified, followed by whole-genome interactions. The significance level for all 
following results henceforth, is 95% (p < 0.05), unless specified otherwise. The number of rules for each 
rule type in each patient cohort is listed in Appendix A. 

Table 4.3 Number of rules for each interaction type in each data set (Seven Genes) 

 
Type of Interaction 

Datasets 

GSE31800 GSE72194 GSE28572 

Co-Amplification 1524 2816 324 

Co-Deletion 7320 20506 2492 

Amplification-Deletion 514 97 113 

Deletion-Amplification 2733 556 145 

Total 12091 23975 3074 

Table 4.4 Rule Types for GSE31800 (Seven Genes) 

GSE31800 Rule 1 Rule 2 Rule 3 Rule 4 
Rule 

5 
Rule 

6 Total 
Co-

Amplification 1393 0 0 60 71 0 1524 
Co-Deletion 3030 169 0 3296 825 0 7320 

Amplification-
Deletion 484 0 0 30 0 0 514 
Deletion-

Amplification 659 1962 0 112 0 0 2733 
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Table 4.5 Rule Types for GSE72194 (Seven Genes) 

GSE72194 Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Total 
Co-

Amplification 2322 0 0 397 97 0 2816 

Co-Deletion 7656 0 0 9823 3027 0 20506 
Amplification-

Deletion 38 0 0 0 59 0 97 

Deletion-
Amplification 20 413 0 123 0 0 556 

Table 4.6 Rule Types for GSE28572 (Seven Genes) 

GSE28572 Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Total 
Co-

Amplification 148 0 0 172 4 0 324 

Co-Deletion 64 0 0 2106 322 0 2492 
Amplification-

Deletion 0 0 0 113 0 0 113 

Deletion-
Amplification 110 0 0 35 0 0 145 

 

Table 4.7 Number of rules for each interaction type in each data set (Whole Genome) 

 
Type of Interaction 

Datasets 

GSE31800 GSE72194 GSE28572 

Co-Amplification 12184526 2605585 3353315 

Co-Deletion 14443017 26584060 4090758 

Amplification-Deletion 4647520 471845 384439 

Deletion-Amplification 4647520 471845 384439 

Total 35922583 30133335 8212951 
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Table 4.8 Rule Types for GSE31800 (Whole Genome) 

GSE31800 Rule1  Rule2 Rule3 Rule4 Rule5 Rule6 Total 
Co-

Amplification 6456569 294304 0 4999054 434599 0 12184526 

Co-Deletion 6077814 593030 0 6077814 1694359 0 14443017 
Amplification-

Deletion 670347 3561985 0 414528 660 0 4647520 

Deletion-
Amplification 414528 3561985 0 670347 660 0 4647520 

Table 4.9 Rule Types for GSE72194 (Whole Genome) 

GSE72194 Rule1  Rule2 Rule3 Rule4 Rule5 Rule6 Total 
Co-

Amplification 1551716 742 0 873760 179367 0 2605585 

Co-Deletion 10936327 1540 0 10936327 4709866 0 26584060 
Amplification-

Deletion 45100 306004 0 73691 47050 0 471845 

Deletion-
Amplification 73691 306004 0 45100 47050 0 471845 

Table 4.10 Rule Types for GSE28572 (Whole Genome) 

GSE28572 Rule1  Rule2 Rule3 Rule4 Rule5 Rule6 Total 
Co-

Amplification 1822103 3316 0 1341863 186033 0 3353315 

Co-Deletion 999126 0 0 999126 2092506 0 4090758 
Amplification-

Deletion 28162 0 0 344235 12042 0 384439 

Deletion-
Amplification 344235 0 0 28162 12042 0 384439 

 

All the rules found for the seven genes were also present amongst the rules discovered when comparing 
the whole genome. Therefore, it can be said that the rules in Table 4.3 are a subset of the rules in Table 
4.7. 

4.2.2 Rules from Long-Term and Short-Term Survival Patient Samples [GSE28572] 

As mentioned previously, for one of the datasets, GSE28572, the patient samples were classified into two 
categories: long survival and short survival. Looking at both, genes that are common, and genes that are 
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unique in the two categories, could be used to further investigate the correlation of certain genes with 
survival status in NSCLC patients. As a result, we ran two analyses on GSE28572, running Genet-CNV on 
long survival patients and short survival patients separately. We then compared the rules found in short 
survival patient samples with those found in long survival patient samples. The tables below give the 

number of rules obtained for each interaction type, in the case of the seven genes, followed by that of the 
whole genome. 

Table 4.11 Number of rules for each interaction type in Survival Cohort (Seven Genes) 

 
Type of Interaction 

GSE28572 

Long Survival Short Survival 

Co-Amplification 137 133 

Co-Deletion 0 317 

Amplification-Deletion 0 0 

Deletion-Amplification 0 9 

Total 137 459 

 

Table 4.12 Rule Types for Long Survival, GSE28572 (Seven Genes) 

Long Survival, 
GSE28572 

Rule 
1  

Rule 
2 

Rule 
3 

Rule 
4 

Rule 
5 

Rule 
6 Total 

Co-
Amplification 121 3 0 0 16 0 137 

Co-Deletion 0 0 0 0 0 0 0 
Amplification-

Deletion 0 0 0 0 0 0 0 

Deletion-
Amplification 0 0 0 0 0 0 0 
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Table 4.13 Rule Types for Short Survival, GSE28572 (Seven Genes) 

Short 
Survival, 

GSE28572 

Rule 
1  

Rule 
2 

Rule 
3 

Rule 
4 

Rule 
5 

Rule 
6 Total 

Co-
Amplification 61 0 0 72 0 0 133 

Co-Deletion 9 0 0 1 308 0 317 
Amplification-

Deletion 0 0 0 0 0 0 0 

Deletion-
Amplification 1 0 0 0 8 0 9 

 

Table 4.14 Number of rules for each interaction type in Survival Cohort (Whole Genome) 

 
Type of Interaction 

GSE28572 

Long Survival Short Survival 

Co-Amplification 1003363 888696 

Co-Deletion 481662 4732 

Amplification-Deletion 8939 7324 

Deletion-Amplification 8939 7324 

Total 1502903 908076 

 

Table 4.15 Rule Types for Long Survival, GSE28572 (Seven Genes) 

Long Survival, 
GSE28572 Rule1  Rule2 Rule3 Rule4 Rule5 Rule6 Total 

Amplification 530157 6 0 259982 98551 0 888696 

Deletion 37 0 0 37 4658 0 4732 

Amplification-
Deletion 95 0 0 6596 633  7324 

Deletion-
Amplification 6596 0 0 95 633 0 7324 
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Table 4.16 Rule Types for Long Survival, GSE28572 (Seven Genes) 

Short 
Survival, 

GSE28572 
Rule1  Rule2 Rule3 Rule4 Rule5 Rule6 Total 

Amplification 593956 56 0 307716 101635 0 1003363 

Deletion 5831 0 0 5831 470000 0 481662 

Amplification-
Deletion 1163 0 0 4931 2845 0 8939 

Deletion-
Amplification 4931 0 0 1163 2845 0 8939 

 

 

4.3 Identification of Common Rules 

In order to identify gene interactions with a strong correlation, the rules generated by Genet-CNV were 
mined to detect the ones that were common in any two databases or common across all. The following 
tables list the number of common rules found amongst all three datasets, and the number of common rules 
between long term survival samples and short-term survival samples for the GSE28572 Cohort. 

4.3.1 Identification of Common Rules for three Patient Cohorts 

Table 4.17 Number of Common Rules (Seven Genes with Whole Genome) 

 

Type of Interaction 

Datasets 

GSE31800 & 
GSE72194 

GSE72194 & 
GSE28572 

GSE28572 & 
GSE31800 

All Datasets 

Co-Amplification 52 50 28 20 

Co-Deletion 294 81 20 0 

Amplification-Deletion 0 0 0 0 

Deletion-Amplification 0 0 1 0 

Total 346 131 49 20 
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Table 4.18 Number of Common Rules (Whole Genome with Whole Genome) 

 
Type of Interaction 

Datasets 

GSE31800 & 
GSE72194 

GSE72194 & 
GSE28572 

GSE28572 & 
GSE31800 

All Datasets 

Co-Amplification 294032 85835 96294 15641 

Co-Deletion 1080948 20146 23040 2572 

Amplification-Deletion 6606 21 292 0 

Deletion-Amplification 6606 21 292 0 

Total 1388192 106023 119918 18213 

 

4.3.2 Identification of Common Rules for Long and Short Survival [GSE28572] 

There were no common rules found between the set of long-term survival patient samples and short-term 
survival patients in patient cohort GSE28572. The following graph visualizes the network of gene 
interactions discovered for long-term survival in GSE28572. There were 137 rules discovered, with 121 
rules denoting co-amplification between ABCC4 and other genes, and 16 equivalence rules between 
ABCC4 and other genes.  
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Figure 4.1 Long Survival [GSE28572]: All Rules 
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Figure 4.2 Short Survival [GSE28572]: Amplification and Deletion 
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4.4 Comparison with MSigDB 

The implication rules thus obtained from the three datasets after using Genet-CNV, were further compared 

with the Gene Sets in the Molecular Signature Database (MSigDB) (Liberzon et al., 2015; Liberzon et al., 
2011). The Molecular Signatures Database (MSigDB) is a collection of annotated gene sets for use with 
GSEA software. The datasets in MSigDB detail the gene interaction pathways that have been compiled 
from studies and other published works, and as such, is the benchmark dataset for gene associations.  
 MSigDB is organized into eight major gene sets, which include the following: 

● Hallmark Gene Sets (H) 

● Positional Gene Sets (C1) 

● Curated Gene Sets (C2) 

● Motif Gene Sets (C3) 

● Computational Gene Sets (C4) 

● GO Gene Sets (C5) 

● Oncogenic Signatures (C6) 

● Immunologic Signatures (C7) 

Each of these gene set further comprises several sub-collections.  

We compared all the Boolean implication rules yielded by the application of Genet-CNV on each dataset 
with the all the sub-collections present in all the right gene sets in MSigDB. The following table lists the 
number of interactions found to be common between the gene interactions from our three datasets and the 
genes present in the MSigDB gene sets. 
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Table 4.19: Number of Matches Found Between Genet-CNV Results and MSigDB Results for the Seven 
Genes with Whole Genome 

Datasets Total Unique Rules 
Obtained by 
Genet-CNV 

Unique Rules 
Present in MSigDB 

GSE31800 11176 6283 

GSE72194 22981 11703 

GSE28572 2954 1055 

GSE28572 (Long Survival) 139 83 

GSE28572 (Short Survival) 459 137 

 

For the interactions amongst seven genes and the rest of the genome, out of the 20 rules common in all 
three datasets, 18 were validated with MSigDB as well. The following figure describes the network. 

 

Figure 4.3 Common Rules for Seven Genes Validated with MSigDB 

The number of comparisons for the whole genome results with MSigDB are not listed, as tens of millions 
of rules and to compare them with MSigDB would be beyond the scope of this study. 
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We did, however, compare the set of rules common to all three datasets in whole genome comparison, and 
validated them against MSigDB. 15,436 out of the 18,213 common rules identified were validated with 
MSigDB.  

4.5 Proliferation, Apoptosis, Survival and Immunologic Pathways 

The set of rules common in all three datasets for whole genome comparisons was matched with MSigDB. 
15,436 out of the 18,213 common rules identified were validated with MSigDB. From these common and 
validated rules, we identified gene associations that were present in four specific pathways which are of 

special interest in understanding the disease mechanisms of NSCLC. These four pathways included 
apoptosis, proliferation, survival and immunologic pathways.  

Apoptosis, or programmed cell-death, occurs as a normal and controlled part of a cell’s life cycle. 
Interference or malfunction in this process plays an instrumental role in cancer. Proliferation, survival, and 
immunologic processes are all important factors to be investigated when it comes to cause and treatment of 

cancer. Thus, the gene associations thus identified for these pathways, which were present in all three 
datasets and were also validated with MSigDB, could be very useful in generating insights for biologists to 
validate.  

The following table lists the number of genetic interactions identified for each of the four pathways: 

Table 4.20 Number of Common Rules Present in the Four Pathways  

Pathways Unique Rules Unique Genes 

Survival 78 81 

Apoptosis 459 319 

Proliferation 412 194 

Immunology [C7] 7262 1652 

 

The following figure depicts the network of interactions for the survival pathways. 
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Figure 4.4 Common Rules in the MSigDB Survival Pathways 
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Figure 4.5 Representation of the Common Rules in the MSigDB Apoptosis Pathways 
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Figure 4.6 Representation of the Common Rules in the MSigDB Apoptosis Pathways with Rule Four 
Removed 
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Figure 4.7 Representation of the Common Rules in the MSigDB Proliferation Pathways 
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Figure 4.8 Representation of the Common Rules in the MSigDB Proliferation Pathways with Rule Four 
Removed 
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Figure 4.9 Representation of the Common Rules in the MSigDB Immunology Pathways 
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Figure 4.10 Representation of the Common Rules in the MSigDB Immunology Pathways with Rule Four 
Removed 
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Figure 4.11 Magnification of a Sub-Network from Apoptosis Pathway Network 

 

Figure 4.12 Magnification of a Sub-Network from Proliferation Pathway Network 
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Figure 4.13 Magnification of a Sub-Network from Immunology Pathway Network 
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4.6 Analysis of PDL1 Interactions 

PD1, present in the three patient cohorts as SNCA, and PDL1, present as CD274, have been shown to 
play a significant role in the immune system mechanisms of cancer cells, and have led to the development 
of immunotherapy drugs to treats many kinds of cancers. CTLA-4, similarly was also discovered to have 

a significant role in cell signaling and immune system mechanisms in the case of cancer cells. These two 
discoveries were recognized with the Nobel Prize in Medicine in 2018 (Boutros et al., 2016; Herbst et al., 
2014).  The interactions of PD1, PDL1 and CTLA-4 with other genes are of great biological interest, due 
to the role of these three genes in cancer mechanisms. We looked for Genet-CNV rules involving PDL1, 
PD1 and CTLA-4 that were common to two or more patient cohorts. We didn’t find any interactions 
involving PD1 and CTLA-4 that were present in more than one patient cohort. The findings for PDL1 are 
summarized herein. The table below lists the rules involving the interaction of PDL1 found to be present 
in all three patient cohorts and validated with MSigDB: 

Table 4.21 Interaction Rules for CD274 [PDL1]  

Rule Type Gene A State  Gene B State  

Co-amplification CD274 amplified KIAA1432 amplified 

Co-amplification CD274 amplified KIAA2026 amplified 

Co-amplification AK3 amplified CD274 amplified 

Co-amplification INSL4 amplified CD274 amplified 

Co-amplification JAK2 amplified CD274 amplified 

Co-amplification KIAA1432 amplified CD274 amplified 

Table 4.22 CD274 [PDL1] Rules and their MSigDB Gene Sets 

Rules MSigDB 

CD274 KIAA1432 C1, C2 

CD274 KIAA2026 C1, C7 

AK3 CD274 C1, C2, C7 

INSL4 CD274 C1, C7 

JAK2 CD274 C1, C2, C5, C7 

KIAA1432 CD274 C1, C2 
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We provide the contingency tables for each of these gene pairs for each patient cohort. In these 
contingency tables, the number of patient samples for each of the four possible scenarios, A˄B, A˄¬B, 
¬A˄B and ¬A¬B is provided. 

Table 4.23 Contingency Table for PDL1 Rules from Patient Cohort GSE72194 

 

Table 4.24 Contingency Table for PDL1 Rules from Patient Cohort GSE31800 

 

Table 4.25 Contingency Table for PDL1 Rules from Patient Cohort GSE31800 
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PDL1 interactions common in any two datasets were also identified and visualized using Cytoscape.  

 

Fig 4.14 CD274 Interactions Common in all Datasets and Verified with MSigDB 

 

 

 

Fig 4.15 CD274 Interactions Common in GSE28572 and GSE72194 and Verified with MSigDB 
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Fig 4.16 CD274 Interactions Common in GSE28572 and GSE31800 and Verified with MSigDB 

 

 

 

Fig 4.17 CD274 Interactions Common in GSE72194 and GSE31800 and Verified with MSigDB 



 

 

60 

4.7 Analysis of ZNF71 and CD27 Interactions 
Out of the seven genes that were identified as prognostic biomarkers, CD27 and ZNF71 are of special 
significance. Therefore, the networks of ZNF71 and CD27 were analyzed. ZNF71 and CD27 were not 
present in all three datasets, but the rules present in any two datasets have been included in the networks 

of both genes. The figures also mark the rules in the networks validated with MSigDB. 

 
 

 

Figure 4.18 CD27 Interaction Network 
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Figure 4.19 ZNF71 Interaction Network 
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4.10 Sensitivity, Specificity and Accuracy 

The number of rules identified for seven genes were validated with MSigDB. The number of true positives, 

true negatives, false positives and false negatives was counted, and the accuracy was calculated for each of 
the three datasets. 

In order to get the values for true positives, false positives and so on, we first calculated the total number 
of rules that could be obtained from the dataset. This was given by multiplying the total number of genes 
in a patient cohort, with the seven genes, and subtracting the seven possible rules where one of the seven 

genes was interacting with itself. True Positive refers to the unique rules identified by Genet-CNV that were 
also present in MSigDB. False Positive rules were those that were identified by Genet-CNV, but they were 
not present in MSigDB resources. False Negative rules were those that were not identified by Genet-CNV 
but were present in MSigDB. True Negative rules were those that were not identified by Genet-CNV as a 
rule and were also not present in MSigDB. 

 The formulae for calculating sensitivity, specificity and accuracy are given as follows: 

Sensitivity = =>
=>?@A

 
 

Specificity = =A
=A?@>

 
 

Accuracy = =>?=A
=>?=A?@>?@A

 
 

where TP = True Positive, FP = False Positive, TN = True Negative and FN = False Negative. 

The following tables shows the results obtained. 

Table 4.26: Total Rules, Genet-CNV Rules and MSigDB Rules for Seven Genes 

Dataset Total 
Possible 

Rules 

Unique Rules 
from Genet-

CNV 

Rules in 
MSigDB (TP) 

GSE31800 138033 11176 6283 

GSE72194 96762 22981 11703 

GSE28572 50037 2954 1055 
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Table 4.27: Sensitivity, Specificity and Accuracy Levels for Seven Genes  

Dataset True 
Positive 

False 
Positive 

True 
Negative 

False 
Negative 

Sensitivity Specificity Accuracy 

GSE31800 6283 4893 56505 70352 0.08 0.92 0.45 

GSE72194 11703 11278 35829 37952 0.24 0.76 0.49 

GSE28572 1055 1899 27352 19731 0.05 0.94 0.57 

 
We also checked our calculations to see if on adding up all the true positives, true negatives, false positives 
and false negatives, we get the total possible number of rules. We found that the sum of TP, TN, FP and 

FN rules was always equal to the total number of rules possible, does validating our calculations. 

Table 4.28: Comparison of All Possible Rules with Rules Counted in All Four Categories  

Dataset Total Possible 
Rules 

Sum of TP, FP, 
TN and FN 

GSE31800 138033 138033 

GSE72194 96762 96762 

GSE28572 50037 50037 

4.9 Comparison with BooleanNet 

Using Genet-CNV, the accuracy is around 50 per cent for each patient cohort. This is significantly better 
than the results obtained using BooleanNet, which does not evaluate a single rule for any of the three patient 
cohorts.  

BooleanNet is the algorithm developed by Sahoo et al (Sahoo et al., 2008) referenced in section 2.2.1 This 
algorithm uses a variation of the Boolean Implication network algorithm to count the number of Boolean 

implication rules found in genome wide gene expression data from microarrays. The details of the 
implementation of the algorithm are mentioned in section 2.2.1. 

We did a run of BooleanNet on our data input files and did not find any rules for any of the three datasets. 
We also used a sample file available with BooleanNet to test both Genet-CNV and BooleanNet (Gene 
Expression Omnibus). 
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Table 4.29: Comparison of Rules from BooleanNet and Genet-CNV 

Dataset No. of Rules 

with 
BooleanNet/Rul

es Confirmed 

with MSigDB 

Accuracy No. of Unique Rules 

with Genet 
CNV/Rules 

Confirmed with 

MSigDB 

Accuracy 

with Genet-
CNV 

GSE31800 0/0 0 11176/6283 0.45 

GSE72194 0/0 0 22981/11703 0.49 

GSE28572 0/0 0 2954/1055 0.57 

Sample File 

given with 
BooleanNet 

1841/- - 47/- - 

 

DNA CNV is an anomaly, and as such, only a very small percentage of the samples analyzed will have an 
amplified or deleted state for any given gene. Most of the samples will have a normal state, denoted by 0. 

With gene expression datasets, however, most samples will show a high or low value, denoting upregulation 
or downregulation respectively for any given genes, and very few samples will have an intermediate value 
(0) for any given gene.  

As a result, the dataset we are using, representing DNA CNV data, make up very sparse matrices, with most 
values as 0, and very few as 1 (amplification) or -1 (deletion). The input data used in BooleanNet, being 

gene expression data, will have a much denser matrix, with most values as 1 or -1. The inability of 
BooleanNet to yield any rules for the datasets used in this study can be cited to the sparseness of the input 
matrices. With the same dataset, Genet-CNV identifies thousands of rules, thus proving to be much more 
sensitive than BooleanNet for DNA-CNV data.  

It took BooleanNet 19 minutes to go through GSE31800, whereas it took Genet-CNV 12 minutes to go 

through the same dataset on a macOS Mojave with a 2.3GHz Intel Core i5 processor and 8 GB 2133 MHz 
LPDDR3 RAM. Therefore, Genet-CNV is also faster than BooleanNet. 
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Chapter 5 

Conclusions and Future Work 

Genet-CNV is a computational framework for modelling genome wide co-occurrences of DNA 

CNV data, and as a development over its previous implementation, it has eliminated the constraint 

that allows only binomial variable to be used. Multinomial variables can be represented as the 

variable and its complement, and therefore can be generalized to further analyses.  

NSCLC is a very complicated disease to establish causal relations for, and the need for molecular 

network analysis tools that can indicate cellular pathways and gene interactions in various cellular 

processes, which might be of interest to biologists and clinicians. Genet-CNV is an effective 

framework to carry out such analyses. Furthermore, the results obtained by Genet-CNV across 

three patient cohorts have been mined and analyzed for common associations, and the common 

associations can serve as launching points for biological investigation. The validation of rules with 

the benchmark dataset, MSigDB, further establishes the significance of an association, and the 

results thus generated can yield various insights for investigating disease mechanisms and 

therapeutic targets. 

In the future, we intend to compare the performance of Genet-CNV with that of a modified 

implementation of BooleanNet, which also incorporates the usage of Fisher’s Test (Sinha 2014). 

Currently, the association networks of ZNF71, an important prognosis biomarker obtained by 

Genet-CNV are being used to generate hypotheses and seek biological validation from them in 

Guo Labs at the WVU Cancer Institute. Another direction of future work is to develop an algorithm 

to carry out integrated analysis of genome wide DNA CNV and gene expression data to discover 

genes of importance for clinical and therapeutic processes. Another student in Dr. Guo’s laboratory 

is seeking to develop this integrated analysis computational framework. 
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