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Abstract

Fine Particle Charging Rate Limit Modification to Grain Dynamics in
Abrupt and Gradual Inhomogeneities

Jeffrey J. Walker

Gyro-phase drift is a guiding center drift that is directly dependent on the charging rate limit
of dust grains. The effect of introducing a gyro-phase-dependence on the grain charge leads to
two orthogonal components of guiding-center drift. One component, referred to here as grad-q
drift (v∇qeq), results from the time-varying, gyro-phase angle dependent, in-situ-equilibrium grain
charge, assuming that the grain charging is instantaneous. For this component, the grain is assumed
to be always in its in-situ-equilibrium charge state and this state gyro-synchronously varies with
respect to the grain’s average charge state. The other component, referred to here as the gyro-
phase drift, arises from any non-instantaneous-charging-induced modification of the grad-q drift
and points in the direction of −∇RL,d (where RL,d is the grain gyro-radius) i.e., the direction
associated with increasing magnitude of in-situ-equilibrium charge state. Gyro-synchronous grain
charge modulation may arise from either abrupt or gradual inhomogeneity in plasma conditions.
In the abrupt inhomogeneity, q1 is the in-situ-equilibrium charge on one side of the inhomogeneity,
q2 is the in-situ equilibrium charge on the other side, q1 < q2 < 0, and the the capacitive effects of
charging and discharging of the dust grain can result in a modification to the particle trajectory, i.e.,
gyro-phase drift. Abrupt inhomogeneity may arise in the wakes and shadows of planets, moons,
and other airless bodies. In the gradual inhomogeneity, a plasma parameter such as electron
temperature or relative ion flow varies during a dust grain gyro-orbit, and the finite, non-zero
charging time of dust grains can also result in gyro-phase drift.

In this work, a single-particle trajectory tracker was developed using the option of either a
modified Boris scheme or iterative leapfrog scheme with fixed timestep for grain motion and an
adaptive time step for grain charging. This single-particle trajectory code resolves dust grain
motion for abrupt or gradual inhomogeneity in the plasma profile. A semi-analytical method
was also developed to specifically analyze the abrupt inhomogeneity by modeling the charging and
discharging of the dust grain as a capacitor. This semi-analytical method was used to find the gyro-
phase drift magnitude and direction of a dust grain in abrupt inhomogeneity for a wide range of dust
and plasma parameters, charge model choice (orbit motion limited, Patacchini-Hutchinson, and
Gatti-Kortshagen), dust-neutral collisionality, and choice of drifting Maxwell-Boltzmann or mono-
energetic ion distribution function. The semi-analytical technique developed in this dissertation
is particularly useful as compared to simulations for the abrupt inhomogeneity because it allows
predictions for many orders of magnitude. For the abrupt inhomogeneity, the simulation and semi-
analytical results agreed to high precision, validating the semi-analytical approach. For the gradual
inhomogeneity, Northrop’s analytical results are confirmed by the single-particle trajectory tracker
for the conditions analyzed by Northrop. The three grain-charging models were compared with
each other and with the single-particle trajectory tracker and found to predict distinctly different
trajectories depending on the treatment of neutral drag and flowing ions. Northrop’s prediction
for the case of ions flowing faster than the ion thermal speed in the frame of dust grain is correct
within a factor of two. The effect of the ratio of the gyro-period to the charging time (τg/τc) on the
magnitude and direction of the gyro-phase drift for abrupt and gradual inhomogeneity is evaluated
using the semi-analytical technique and simulations, and it is found that the gyro-phase drift is
largest when τg ≈ τc. Additionally, the analysis for abrupt and gradual inhomogeneity demonstrates
that gyro-phase drift is a sensitive indicator of sheath mechanisms and ion distribution function.



Applications to the Auburn Magnetized Dusty Plasma Experiment (MDPX) and Enceladus
were investigated. For MDPX, gyro-phase drift from gradual inhomogeneity is predicted to be
undetectable due to the small degree of inhomogeneity of the plasma across a typical dust gyro-orbit.
The thresholds for detecting gyro-phase drift from abrupt inhomogeneity in MDPX are evaluated,
and it is found that large UV photoelectron fluxes (fuv/(nevthe) > 0.01) and low neutral gas
pressures (less than one mTorr) are necessary for distinguishing between the Patacchini-Hutchinson
and the Gatti-Kortshagen charge models. Near Enceladus, gyro-phase drift is predicted to not be
responsible for structuring, observed or not observed, in the orbiting dust population.
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sumed, q1/q2 = 1.74, Te/Ti = 200, a/RLe = 0.1, λD/a = 105, λi/a = 5, NDe = 103,

md/me ≈ 1012, and τg/τc ≈ 20 (non-instantaneous charging). . . . . . . . . . . . . . 480

5.4 Charge evolution for a = 0.05µm grain in the OML and capacitor approximation. A:

Charge evolution of a dust grain as it transitions from the UV-absent to UV-present

region. The UV flux is 4 × 1018m−2s−1, which yields a photo-electron current of

5.03×10−15A. The capacitor model reaches 1
e (q2− q1) at the same time as the OML

charge model, although it is a different function of time. B: Charge evolution of a

dust grain as it transitions from the UV-present to UV-absent region. . . . . . . . . 481
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5.5 Example trajectory of a grain that starts at the origin, but does not transition back to

the x < 0 or q1 region due to excessive drag. In this example, ω1/νdn = 3, so when the

grain goes from x < 0 to x > 0 when t ≈ 0, this ratio is barely above unity. For this

plot, Argon ions are assumed, q1/q2 = 1.74, Te/Ti = 200, a/RLe = 0.1, λD/a = 105,

λi/a = 5, NDe = 103, md/me = 1020, and τg/τc ≈ 20 (non-instantaneous charging). 482

5.6 Simulated example trajectory of a grain that starts at the origin, transitions to the

x < 0 half-plane, and does not re-enter the x > 0 region. This situation generally

occurs for small values of τg/τc. Argon ions are assumed for this drag-absent simu-

lation plot, and a = 10−7m, ρd = 90 kg m−3, n0 = 1014 m−3 Te = 5 eV, Ti = 0.025

eV. The dimensionless numbers for this trajectory are q1/q2 = 1.74, Te/Ti = 200,

a/RLe = 0.1, λD/a = 103, λi/a = 105, NDe = 103, md/me = 1012, and τg/τc ≈ 20

(non-instantaneous charging). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

5.7 This figure shows the possibility of dust grains re-entering the x = 0 region when

drag is present. This is shown clearly in the solid blue trajectory ωcd/νdn = 10,

while it does not occur for the drag-absent trajectory with ωcd/νdn = 104. Other

than ωcd/νdn ratios, both cases have identical parameters; Argon ions are assumed,

q1/q2 = 2, Te/Ti = 200, a/RLe = 0.1, λD/a = 105, λi/a = 5, NDe = 103, md/me =

1022, and log(τg/τc) = 5.3. When drag is present, this situation generally occurs for

larger values of τg/τc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484

5.8 Guiding center drift magnitude dependence on the gyration parameter ωcd/νdn for

the parameters Te/Ti=200, q1/q2 = 1.74, a/RLe = 0.1, λD/a = 105, λi/a = 5,

NDe = 103, md/me = 1012, and log(τg/τc) = 1. The abscissa is mislabelled; τg/τc

should be ωcd/νdn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485

5.9 Guiding center drift magnitude and direction dependence on the initial gyro-phase

angle θ0. In this figure, drag is absent (ωcd/νdn = 104), UV illumination is the

source of abrupt inhomogeneity, q1/q2 = 2, Argon ions are assumed, Te/Ti = 200,

a/RLe = 0.1, λD/a = 103, λi/a = 105, NDe = 2× 104, and md/me = 1012. The top

panel shows the guiding center drift magnitudes, the middle panel shows the guiding

center drift angle relative to the x-axis, and the bottom panel shows the τg/τc ratio

as a function of the initial gyro-phase angle. . . . . . . . . . . . . . . . . . . . . . . 486
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5.10 Gyro-phase drift magnitude and direction for the first gyro-cycle as a function of the

ratio τg/τc for the abrupt theory and Northrop’s prediction. The absolute values of

the velocities are plotted in the topmost plot, while the direction is supplied by the

bottom panel. In this figure, UV illumination is the source of inhomogeneity, Argon

ions are assumed, Te/Ti = 200, a/RLe = 0.1, λD/a = 103, λi/a = 105, NDe = 2×104,

q1/q2 = 2, and 1010 ≤ md/me ≤ 1020. The grain drifts in the negative ŷ-direction

for 10−2 < τg/τc ≤ 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

5.11 This figure shows examples of fitting a sinusoidal charge variation to q(t) in or-

der to obtain the gyro-phase drift vector using Northrop’s method for the case of

abrupt inhomogeneity. In this figure, the dimensionless surface potential χe(t) =

eq(t)/(CdkbTe) is shown instead of q(t). Each plot shows q(t) and a sinusoidal fit to

a selected data point from figure 5.10. . . . . . . . . . . . . . . . . . . . . . . . . . . 488

5.12 Radial distance from the origin is the gyro-radius as a function of gyro-angle in me-

ters. The grain size is a = 0.05µm. In the semi-analytical model, q(t) is continuous,

while for the simulations, q(t) is discrete. Despite this major difference, the semi-

analytical model and the simulation closely agree. The quantitiy dq
dt is discontinuous

at 0◦ and ≈ 80◦ because the current to the grain abruptly changes at both of these

phase angles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

5.13 Gyro-phase drift magnitude and direction for the first gyro-cycle as a function of

the ratio τg/τc with an electric field. In this figure, drag is absent (ωcd/νdn = 104),

UV illumination is the source of abrupt inhomogeneity, q1/q2 = 2, Argon ions are

assumed, Te/Ti = 200, a/RLe = 0.1, λD/a = 103, λi/a = 105, NDe = 2 × 104, and

md/me is swept from 1010 to 1020. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490

5.14 Gyro-phase drift magnitude and direction for the first gyro-cycle as a function of the
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5.15 Gyro-phase drift magnitude for the first gyro-cycle as a function of the ratio τg/τc

for different values of me/mi when q1/q2 = 2 is held constant. The top panel

corresponds to the guiding center velocity along the x̂-direction and the bottom

panel corresponds to the guiding center velocity along the ŷ-direction. The values

of me/mi chosen correspond to Hydrogen, Nitrogen, Argon, and Xenon plasmas in

ascending order. Evident in this figure is that all of the plots have exactly the same

shape and same values, but lower values of me/mi allow access to smaller values

of τg/τc. For this plot, λD/a = 103, λi/a = 105, NDe = 104, a/RLe = 10−1, and

Te/Ti = 200. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492

5.16 Gyro-phase drift magnitude for the first gyro-cycle as a function of the ratio τg/τc

for different values of me/mi when the normalized photo-current fuv/(nevthe) = 0.25

is held constant. The top panel corresponds to the guiding center velocity along the

x̂-direction and the bottom panel corresponds to the guiding center velocity along

the ŷ-direction. The values of me/mi chosen correspond to Hydrogen, Nitrogen,

Argon, and Xenon plasmas in ascending order, which produce q1/q2 values of 1.4,

1.61, 1.74, and 1.93 respectively. Like in figure 5.15, lower values of me/mi allow

access to smaller values of τg/τc, but in these plots the lower values of me/mi also

produce greater drift amplitudes. For this plot, λD/a = 103, λi/a = 105, NDe = 104,

a/RLe = 10−1, and Te/Ti = 200. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

5.17 Gyro-phase drift magnitude for the first gyro-cycle as a function of the ratio τg/τc for

different values of Te/Ti when q1/q2 = 2 is held constant. The top panel corresponds

to the guiding center velocity along the x̂-direction and the bottom panel corresponds

to the guiding center velocity along the ŷ-direction. The temperature ratios Te/Ti =

10−1, Te/Ti = 100, Te/Ti = 2 × 101, and Te/Ti = 2 × 102 are shown in ascending

order on the log(Te/Ti) axis. Higher values of Te/Ti allow access to smaller values of

τg/τc, in a much more dramatic way than seen in smaller values of me/mi in 5.15.

For this plot, hydrogen plasma assumed, λD/a = 103, λi/a = 105, NDe = 104, and

a/RLe = 10−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
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5.18 Gyro-phase drift magnitude for the first gyro-cycle as a function of the ratio τg/τc for

different values of Te/Ti when fuv/(nevthe) = 0.25 is held constant. The top panel

corresponds to the guiding center velocity along the x̂-direction and the bottom panel

corresponds to the guiding center velocity along the ŷ-direction. The temperature

ratios Te/Ti = 10−1, Te/Ti = 100, Te/Ti = 2 × 101, and Te/Ti = 2 × 102 are shown

in ascending order on the Te/Ti axis, and these temperature ratios produce q1/q2

ratios of 2, 1.94, 1.57, and 1.4 respectively. Higher values of Te/Ti for constant UV

photo-current allow access to smaller values of τg/τc, in a much more dramatic way

than seen in smaller values of me/mi in figure 5.16. For this plot, hydrogen plasma

assumed, λD/a = 103, λi/a = 105, NDe = 104, and a/RLe = 10−1. . . . . . . . . . . 495

5.19 Gyro-phase drift magnitude for the first gyro-cycle as a function of the ratio τg/τc for

different values of NDe when υ = fuv/(nevthe) = 0.25 is held constant. The top panel

corresponds to the guiding center velocity along the x̂-direction and the bottom panel

corresponds to the guiding center velocity along the ŷ-direction. Higher values of

NDe allow access to smaller values of τg/τc. For this plot, hydrogen plasma assumed,

λD/a = 103, λi/a = 105, Te/Ti = 200, and a/RLe = 10−1. . . . . . . . . . . . . . . . 496

5.20 Gyro-phase drift magnitude for the first gyro-cycle as a function of the ratio τg/τc for

different values of NDe when fuv/(nevthe) = 0.25 is held constant. In the top panel,

solid curves correspond to |vxgc|, the guiding center velocity long the x̂-direction,

and the dashed curves correspond to |vxgc|, the guiding center velocity along the ŷ-

direction. The plots of |vxgc| and |vxgc| overlap and are identical for different values

of NDe, showing that the gyro-phase drift magnitude and direction is not affected

by the NDe parameter. The bottom panel shows the guiding center drift angle with

respect to the x-axis in the dust grain trajectory configuration space. The guiding

center drift is calculated for electron magnetization parameter values a/RLe = 10−2,

10−1, 100, 101, and 102, and the q1/q2 ratios are given by 1.74, 1.74, 2.57, 2.57, and

10.14 respectively. The q1/q2 ratios are increasing because the current collection

regime changes at certain values of the a/RLe parameter. Higher values of NDe

allow access to smaller values of τg/τc. For this plot, hydrogen plasma assumed,

λD/a = 103, λi/a = 105, Te/Ti = 200, and a/RLe = 10−1. . . . . . . . . . . . . . . . 497

xxi



5.21 Gyro-phase drift magnitude for the first gyro-cycle as a function of the ratio τg/τc for

different values of a/RLe when fuv/(nevthe) = 0.25 is held constant. The top panel

corresponds to the guiding center velocity along the x̂-direction and the bottom

panel corresponds to the guiding center velocity along the ŷ-direction. For this plot,

Argon plasma assumed, ωcd/νdn = 104, NDe = 104, λD/a = 103, λi/a = 105, and

Te/Ti = 200. The OML and Patacchini-Hutchinson charge models produce the same

guiding center drift magnitudes for these parameters. . . . . . . . . . . . . . . . . . 498

5.22 Gyro-phase drift magnitude for the first gyro-cycle as a function of the ratio τg/τc

for different values of ωcd/νdn when fuv/(nevthe) = 0.25 is held constant. The top

panel corresponds to the guiding center velocity along the x̂-direction and the bottom

panel corresponds to the guiding center velocity along the ŷ-direction. For this plot,

hydrogen plasma assumed, NDe = 104, λD/a = 103, λi/a = 105, Te/Ti = 200, and

a/RLe = 10−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

5.23 Gyro-phase magnitude and direction dependence on τg/τc for the three different

charging models for several values of the Knudsen number (λi/a). Solid (dashed) red

line corresponds to the Patacchini-Hutchinson model guiding center drift vxgc (vygc),

solid (dashed black line corresponds to the OML model guiding center drift vxgc

(vygc), and the solid (dashed) cyan line corresponds to the Gatti-Kortshagen model

guiding center drift vxgc (vygc). The other parameters chosen for an Argon plasma

include fUV /(nevthe) = 0.25, ωcd/νdn = 10, NDe = 104, a/RLe = 0.1, λD/a = 103,

and Te/Ti = 200. The OML and Patacchini-Hutchinson charge models predict the

same guiding center drift for these parameters. . . . . . . . . . . . . . . . . . . . . . 500

5.24 Gyro-phase magnitude and direction dependence on τg/τc for the three different

charging models for several values of the Knudsen number (λi/a). The abscissa is

τg/τc, not log10
τg
τc
. Solid (dashed) red line corresponds to the Patacchini-Hutchinson

model guiding center drift vxgc (vygc), solid (dashed black line corresponds to the

OML model guiding center drift vxgc (vygc), and the solid (dashed) cyan line corre-

sponds to the Gatti-Kortshagen model guiding center drift vxgc (vygc). The other pa-

rameters chosen for an Argon plasma include υ = fUV /(nevthe) = 0.25, ωcd/νdn = 10,

NDe = 104, a/RLe = 1.1, λD/a = 103, and Te/Ti = 200. . . . . . . . . . . . . . . . . 501
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5.25 Gyro-phase magnitude and direction dependence on τg/τc for the three different

charging models for several values of a/RLe. Solid (dashed) red line corresponds

to the Patacchini-Hutchinson model guiding center drift vxgc (vygc), solid (dashed

black line corresponds to the OML model guiding center drift vxgc (vygc), and the

solid (dashed) cyan line corresponds to the Gatti-Kortshagen model guiding cen-

ter drift vxgc (vygc). The other parameters chosen for an Argon plasma include

fUV /(nevthe) = 0.25, ωcd/νdn = 10, NDe = 104, λi/a = 105, λD/a = 103, and

Te/Ti = 200. The OML and Patacchini-Hutchinson charge models produce the same

guiding center drift magnitudes, producing overlapping plots except for the values

a/RLe = 1 and a/RLe = 10. In the limit of very large or very small values of a/RLe,

the OML and Patacchini-Hutchinson models predict the same guiding center drift

magnitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

5.26 Guiding center drift magnitude dependence on τg/τc for the three different charging

models for several values of the parameter λD/a. Solid (dashed) red line corre-

sponds to the Patacchini-Hutchinson model guiding center drift vxgc (vygc), solid

(dashed black line corresponds to the OML model guiding center drift vxgc (vygc),

and the solid (dashed) cyan line corresponds to the Gatti-Kortshagen model guiding

center drift vxgc (vygc). The other parameters chosen for an Argon plasma include

υ = fUV /(nevthe) = 0.25, ωcd/νdn = 10, NDe = 104, a/RLe = 0.1, λi/a = 105, and

Te/Ti = 200. The OML and Patacchini-Hutchinson charge models predict the same

guiding center drift for all parameters, and the Gatti-Kortshagen charge model pre-

dicts the same guiding center drift as the OML and Patacchini-Hutchinson models

for λi/λD � 1 and λi/λD � 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
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5.27 Guiding center drift magnitude dependence on τg/τc for the three different charging

models for several values of the parameter λD/a. Solid (dashed) red line corresponds

to the Patacchini-Hutchinson model guiding center drift vxgc (vygc), solid (dashed

black line corresponds to the OML model guiding center drift vxgc (vygc), and the

solid (dashed) cyan line corresponds to the Gatti-Kortshagen model guiding center

drift vxgc (vygc). The other parameters chosen for an Argon plasma include υ =

fUV /(nevthe) = 0.25, ωcd/νdn = 10, NDe = 104, a/RLe = 1.1, λi/a = 105, and

Te/Ti = 200. The OML and Patacchini-Hutchinson charge models predict the same

guiding center drift for these parameters. . . . . . . . . . . . . . . . . . . . . . . . . 504

5.28 Guiding center x-component drift magnitude dependence on λD/a and τg/τc for

the three different charging models as a function of the parameter λD/a. In the

leftmost plot, the abscissa is actually λD/a instead of log10
λD
a , and in the rightmost

plot, the abscissa is actually τg/τc instead of log10
τg
τc
. Here, a grain with a = 10−7

m made out of carbon has a mass ratio md/me = 1013, and it is the variation

of λD/a that produces the τg/τc variation of the guiding center drift. Solid red line

corresponds to the Patacchini-Hutchinson model guiding center drift vxgc, solid black

line corresponds to the OML model guiding center drift vxgc, and the solid cyan line

corresponds to the Gatti-Kortshagen model guiding center drift vxgc. The parameter

λD/a is swept while all other parameters are held constant. The other parameters

chosen for an Argon plasma are υ = fUV /(nevthe) = 0.25, ωcd/νdn = 10, NDe = 104,

a/RLe = 1.1, λi/a = 105, and Te/Ti = 200. . . . . . . . . . . . . . . . . . . . . . . . 505
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5.29 Guiding center x-component drift magnitude dependence on λD/a and τg/τc for the

three different charging models for several values of the parameter λD/a. In the

leftmost plot, the abscissa is actually λD/a instead of log10
λD
a , and in the rightmost

plot, the abscissa is actually τg/τc instead of log10
τg
τc
. Here, a grain with 10−7 mmade

out of carbon has a mass ratio md/me = 1013, and this is held constant while λD/a

is swept. Solid red line corresponds to the Patacchini-Hutchinson model guiding

center drift vxgc, solid black line corresponds to the OML model guiding center drift

vxgc, and the solid cyan line corresponds to the Gatti-Kortshagen model guiding

center drift vxgc. When λD/a = 102, the other parameters are a/RLi = 0.12, λi/a,

and md/me = 1013, and these parameters are swept consistently throughout the

values of λD/a shown. The other parameters chosen for an Argon plasma include

υ = fUV /(nevthe) = 0.25, ωcd/νdn = 10, NDe = 104, and Te/Ti = 200. . . . . . . . . 506

5.30 Gyro-phase magnitude and direction dependence on τg/τc for the three different

charging models with drifting Maxwellian ions for several values of the Mach number

Mi = vi/vb, which is the flow speed normalized by the Bohm speed vb =
√

kbTe

mi
. Solid

(dashed) red line corresponds to the Patacchini-Hutchinson model guiding center

drift vxgc (vygc), solid (dashed black line corresponds to the OML model guiding

center drift vxgc (vygc), and the solid (dashed) cyan line corresponds to the Gatti-

Kortshagen model guiding center drift vxgc (vygc). The other parameters chosen

for an Argon plasma include υ = fUV /(nevthe) = 0.25, ωcd/νdn = 10, NDe = 104,

a/RLe = 0.1, λi/a = 105, λD/a = 103, Te/Ti = 200, and 108 ≤ md/me ≤ 1022. The

OML and Patacchini-Hutchinson charge models predict the same guiding center drift

for these parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
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5.31 Gyro-phase magnitude and direction dependence on τg/τc for the three different

charging models with drifting Maxwellian ions for several values of the Mach number

Mi = vi/vb, which is the flow speed normalized by the Bohm speed vb =
√

kbTe

mi
. Solid

(dashed) red line corresponds to the Patacchini-Hutchinson model guiding center

drift vxgc (vygc), solid (dashed black line corresponds to the OML model guiding

center drift vxgc (vygc), and the solid (dashed) cyan line corresponds to the Gatti-

Kortshagen model guiding center drift vxgc (vygc). The other parameters chosen

for an Argon plasma include υ = fUV /(nevthe) = 0.25, ωcd/νdn = 10, NDe = 104,

a/RLe = 0.1, λi/a = 105, λD/a = 103, Te/Ti = 200, and 108 ≤ md/me ≤ 1022. . . . 508

5.32 Gyro-phase magnitude and direction dependence on τg/τc for the three different

charging models with mono-energetic ions for several values of the Mach num-

ber Mi = vi/vb, which is the flow speed normalized by the Bohm speed vb =√
kbTe

mi
. Solid (dashed) red line corresponds to the Patacchini-Hutchinson model

guiding center drift for mono-energetic (drifting Maxwellian) ions, solid (dashed

black line corresponds to the OML model guiding center drift for mono-energetic

(drifting Maxwellian) ions, and the solid (dashed) cyan line corresponds to the Gatti-

Kortshagen model guiding center drift for mono-energetic (drifting Maxwellian) ions.

The other parameters chosen for an Argon plasma include υ = fUV /(nevthe) = 0.25,

ωcd/νdn = 10, NDe = 104, a/RLe = 0.1, λi/a = 105, λD/a = 103, Te/Ti = 200, and

108 ≤ md/me ≤ 1022. The OML and Patacchini-Hutchinson charge models predict

the same guiding center drift for these parameters. . . . . . . . . . . . . . . . . . . 509

5.33 Gyro-phase magnitude and direction dependence on τg/τc for the three different

charging models with mono-energetic ions for several values of the Mach number

Mi = wi/wb, which is the flow speed normalized by the Bohm speed vb =
√

kbTe

mi
.

Solid (dashed) red line corresponds to the Patacchini-Hutchinson model guiding cen-

ter drift vxgc (vygc), solid (dashed black line corresponds to the OML model guiding

center drift vxgc (vygc), and the solid (dashed) cyan line corresponds to the Gatti-

Kortshagen model guiding center drift vxgc (vygc). The other parameters chosen

for an Argon plasma include υ = fUV /(nevthe) = 0.25, ωcd/νdn = 10, NDe = 104,

a/RLe = 0.1, λi/a = 105, λD/a = 103, Te/Ti = 200, and 108 ≤ md/me ≤ 1022. . . . 510
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5.34 Gyro-phase magnitude and direction dependence on τg/τc for the three different

charging models for different values of the Mach numberMi = vi/vb, which is the flow

speed normalized by the Bohm speed vb =
√

kbTe

mi
. This figure shows a direct compar-

ison between mono-energetic and drifting Maxwellian ions. All solid lines correspond

with mono-energetic ions, while all dashed lines correspond to drifting Maxwellians.

The colors black, red, and light blue correspond to the OML, Patacchini-Hutchinson,

and Gatti-Kortshagen charge models respectively. The other parameters chosen

for an Argon plasma include fUV /(nevthe) = 0.25, ωcd/νdn = 10, NDe = 104,

a/RLe = 0.1, λi/a = 105, λD/a = 103, Te/Ti = 200, and 108 ≤ md/me ≤ 1022. . . . 511

5.35 Comparison of simulation and theory results for the gyro-phase magnitude and direc-

tion dependence on τg/τc for the three charging models. The colors black, red, and

light blue correspond to the OML, Patacchini-Hutchinson, and Gatti-Kortshagen

charge models respectively. Other parameters chosen for an Argon plasma in-

clude fUV /(nevthe) = 0.25, ωcd/νdn ≈ 10, drifting Maxwell-Boltzmann ions with

Mi = vi/vb = 10, NDe = 103, a/RLe = 0.1, λi/a = 105, λD/a = 103, Te/Ti = 200,

and 108 ≤ md/me ≤ 1013. The ratios of the in-situ equilibrium grain charge on the

shadowed side and the illuminated side of the abrupt inhomogeneity are q1/q2 = 2.65,

q1/q2 = 2.65, and q1/q2 = 1.38 for the OML, Patacchini-Hutchinson, and Gatti-

Kortshagen charge models respectively. The OML and Patacchini-Hutchinson charge

models predict the same guiding center drift for these parameters. . . . . . . . . . . 512

5.36 Linear profile used for simulations. All of the grain trajectories modelled using this

inhomogeneity do not include the effect of the electric field that would be produced

by this inhomogeneity. The electron and ion densities, ne, ni, are normalized to

n0 = 1016m−3. The ratio ne/ni is also plotted, as is the dimensionless quantity

qeq(x)/qeq(x = 0), which is proportional to the number of electrons on the grain. The

discrete steps of qeq(x)/qeq(x = 0) correspond to an addition or subtraction of one

electron. The abscissa is scaled to the gyro-radius corresponding to the equilibrium

charge of a 0.015µm radius grain at x = 0, which is 43 electrons [RLd(t = 0) = 0.572
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5.37 Grain trajectories for a = 0.015µm and B = Bẑ, where B = 4 T, using the profile

from figure 5.36 and the effects of an electric field are not included in the trajectories.

The dashed and solid lines correspond to a charging rate parameter of α = 1 and

α = 0.0105, respectively. Squares and diamonds indicate the gyro-averaged guiding

centers of the trajectories for α = 1 and α = 0.0105, respectively. The instantaneous

guiding centers are represented by the solid (α = 1) and dashed (α = 0.0105) helical

lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514

5.38 Linear fit to the in-situ equilibrium grain charge as a function of the inhomogeneous

coordinate x. The solid line represents the in-situ equilibrium grain charge, which

has a step-like appearance because it changes in increments of 1e. The dashed line

shows the linear fit to qeq(x). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515

5.39 Northop fit to q(t) = q0 + q1 cos(φ − φ1). The quantity q0 represents the in-situ

equilibrium grain charge at the gyro-averaged guiding center, and q1 represents the

amplitude of charge modulation. The solid black line shows q(t), the dashed gray

line shows the Northrop style fit to q(t), and the circle indicates the gyro-phase angle

where the grain is most negatively charged during its gyro-orbit. . . . . . . . . . . . 516

5.40 Radial distance from origin is grain charge normalized to the instantaneous in-situ

equilibrium grain charge (q0 = −43e, in this case) as a function of gyro-angle for

α = 1 (solid line) and α = 0.0105 (dashed line). In this figure, the effects of

the electric field produced by the density gradient are not included. Lines appear

thickened because multiple gyro-periods are displayed and gyrophase angle at which

single-electron charging events occur are not unique and because the thickness reflects

charge fluctuation +1,−0 electron. The gyro-angle φ = 0 refers to the +x̂ axis here. 517

xxviii



5.41 Gyro-phase drift magnitude and direction dependence on the adjustable charge-rate

parameter α. In this plot, the abscissa is actually α instead of log10α. In this figure,

the effects of the electric field produced by the density gradient are not included. A:

The magnitude is normalized by the perpendicular velocity, v⊥ = 11 m/s. B: The

angle θdrift, in degrees, is relative to the x̂-direction. An angle of 180◦ corresponds to

a drift direction that is entirely along the −x̂, and an angle of 90◦ corresponds to a

drift direction that is entirely along the ŷ-direction. Above α = 0.02, no gyro-phase

drift occurs for this case. Below α = 10−4, neither gyro-phase nor grad-q drift occurs

for this case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518

5.42 Gyro-phase drift magnitude and direction dependence on τg/τc. In this figure, the

effects of the electric field produced by the density gradient are not included. This

figure uses the same data as figure 5.41, but has been recast in terms of τg/τc instead

of the adjustable charge-rate parameter α. . . . . . . . . . . . . . . . . . . . . . . . 519

5.43 Gyro-phase drift magnitude and direction dependence on τg/τc for a = 1.5 × 10−8

m grain in the linear profile. In this plot, the abscissa is actually τg/τc instead of

log10
τg
τc
. In this figure, the effects of the electric field produced by the density gradient

are not included. Electron and ion number density varies between n0 = 109m−3 and

n0 = 1020 m−3 to produce τc variation. The large disparity between Northrop’s

theory and the simulation near τg/τc < 10−1 is a result from taking the arctangent

of two numbers very close to zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520

5.44 Gyro-phase drift magnitude and direction dependence on τg/τc for a = 5 × 10−7 m

grain in the linear profile. In this figure, the effects of the electric field produced

by the density gradient are not included. Electron and ion number density varies

between n0 = 109m−3 and n0 = 1020m−3 to produce τc variation. . . . . . . . . . . 521

5.45 Gyro-phase drift magnitude and direction dependence on τg/τc for a = 1.5× 10−6m

grain in the linear profile. In this figure, the effects of the electric field produced

by the density gradient are not included. Electron and ion number density varies

between n0 = 109m−3 and n0 = 1020m−3 to produce τc variation. . . . . . . . . . . 522

xxix



5.46 Gyro-phase drift magnitude and direction dependence on τg/τc for a = 10× 10−6m

grain in the linear profile. In this figure, the effects of the electric field produced

by the density gradient are not included. Electron and ion number density varies

between n0 = 109m−3 and n0 = 1020m−3 to produce τc variation. . . . . . . . . . . 523

5.47 The ratio of charge variation to equilibrium charge q1/q0 dependence on τg/τc for

a = 10−6 m grain in the linear profile. This plot of q1/q0 corresponds to figure

5.46. The ratio of dimensionless surface potential variation amplitude to the in-situ

equilibrium dimensionless surface potential at the gyro-center χ
(1)
e /χ0e is also shown.

Electron and ion number density varies between n0 = 109m−3 and n0 = 1020m−3 to

produce τc variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

5.48 Grain trajectory in a linear-profile for drag-absent conditions in cylindrical geometry

with constant charge. The coaxial blue circles correspond to the limits of the linear

profile; outside this region, the plasma is quasi-neutral. The electric field is 100 V/m,

directed radially-inward, and is not consistent with the density gradient. . . . . . . 525

5.49 Grain trajectory in a linear-profile for drag-absent conditions in cylindrical geometry

with instantaneous charging. The coaxial blue circles correspond to the limits of the

linear profile; outside this region, the plasma is quasi-neutral. The electric field is

100 V/m, directed radially-inward, and is not consistent with the density gradient. 526

5.50 Grain trajectory in a linear-profile when drag is present in cylindrical geometry with

non-instantaneous charging. The coaxial blue circles correspond to the limits of the

linear profile; outside this region, the plasma is quasi-neutral. The electric field is

100 V/m, directed radially-inward, and is not consistent with the density gradient. 527

5.51 This shows a comparison between the guiding center drift for abrupt and gradual

inhomogeneity for the λD/a parameter. The data shown for the abrupt inhomogene-

ity use the parameters from figure 5.29. For the gradual inhomogeneity, the effects

of the electric field are not included. . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

6.1 Spectrum of Osram Xeradex lamp used in the experiments of Dove et al. (2012), and

used to make predictions for guiding center drift in an abrupt inhomogeneity. . . . 529

6.2 Photo-electron yield as a function of wavelength for selected Carbon allotropes.

Taken from Feuerbacher and Fitton (1972). The inset shows the reflectance. . . . . 530

xxx



6.3 Photo-electron yield as a function of wavelength for Zirconium. Taken from Eastman

(1971). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531

6.4 Photo-electron yield as a function of wavelength for Platinum. Taken from Lin et al.

(1971). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532

6.5 Guiding Center drift for spherical Platinum grains, assuming an initial gyro-phase

of −90◦ and the UV spectrum shown in figure 6.1 but with 10 times as much power

output. Additional parameters include a = 200 nm, Tn = 0.025eV, Te = 5eV,

ωcd/νdn = 4, drifting Maxwellian ions flowing at the Bohm speed, and an Argon

plasma. The solid black, red, and cyan curves correspond to the results for the OML,

Patacchini-Hutchinson, and Gatti-Kortshagen charging models respectively. There

is virtually no difference between the OML and Pattacchini-Hutchinson charging

models. The smaller dotted lines indicate the upper and lower bounds of the guiding

center drift, assuming that Te = 5eV, with an uncertainty of ±0.5eV. . . . . . . . . 533

6.6 The υ = fuv/(nevthe) parameter as a function of plasma density used in figure 6.5.

The smaller dashed lines indicate the upper and lower bounds of υ, assuming that

Te = 5eV, with an uncertainty of ±0.5eV. . . . . . . . . . . . . . . . . . . . . . . . . 534

6.7 The ratio of in-situ equilibrium surface potentials χ
(1)
e /χ

(2)
e corresponding to figure

6.5. The smaller dashed lines indicate the upper and lower bounds of χ
(1)
e /χ

(2)
e ,

assuming that Te = 5 eV with an uncertainty of ±0.5 eV. . . . . . . . . . . . . . . . 535

6.8 Guiding Center drift for spherical Platinum grains, assuming an initial gyro-phase of

−90◦ and the UV spectrum shown in figure 6.1 but with 10 times as much power out-

put. Additional parameters include a = 200nm, Tn = 0.025eV, Te = 5eV, ωcd/νdn =

4, mono-energetic ions flowing at the Bohm speed, and an Argon plasma. The

solid black, red, and cyan curves correspond to the results for the OML, Patacchini-

Hutchinson, and Gatti-Kortshagen charging models respectively. There is virtually

no difference between the OML and Pattacchini-Hutchinson charging models. The

smaller dotted lines indicate the upper and lower bounds of the guiding center drift,

assuming that Te = 5eV with an uncertainty of ±0.5eV. . . . . . . . . . . . . . . . . 536

xxxi



6.9 The ratio of in-situ equilibrium surface potentials χ
(1)
e /χ

(2)
e corresponding to figure

6.8. The smaller dashed lines indicate the upper and lower bounds of χ
(1)
e /χ

(2)
e ,

assuming that Te = 5 eV with an uncertainty of ±0.5eV. . . . . . . . . . . . . . . . 537

6.10 Guiding Center drift for spherical Zirconium grains, assuming an initial gyro-phase

of −90◦ and the UV spectrum shown in figure 6.1 but with 10 times as much power

output. Additional parameters include a = 200nm, Tn = 0.025eV, Te = 5eV,

ωcd/νdn = 4, drifting Maxwellian ions flowing at the Bohm speed, and an Argon

plasma. The solid black, red, and cyan curves correspond to the results for the

OML, Patacchini-Hutchinson, and Gatti-Kortshagen charging models respectively.

There is virtually no difference between the OML and Pattacchini-Hutchinson charg-

ing models. The smaller dotted lines indicate the upper and lower bounds of the

guiding center drift, assuming that Te = 5 eV with an uncertainty of ±0.5eV. . . . . 538

6.11 The υ = fuv/(nevthe) parameter as a function of plasma density, used in figure 6.10.

The smaller dashed lines indicate the upper and lower bounds of υ, assuming that

Te = 5eV with an uncertainty of ±0.5eV. . . . . . . . . . . . . . . . . . . . . . . . . 539

6.12 The ratio of in-situ equilibrium surface potentials χ
(1)
e /χ

(2)
e corresponding to figure

6.10. The smaller dashed lines indicate the upper and lower bounds of χ
(1)
e /χ

(2)
e ,

assuming that Te = 5 eV with an uncertainty of ±0.5eV. . . . . . . . . . . . . . . . 540

6.13 Guiding Center drift for spherical Zirconium grains, assuming an initial gyro-phase

of −90◦ and the UV spectrum shown in figure 6.1 but with 10 times as much power

output. Additional parameters include a = 200 nm, Tn = 0.025 eV, Te = 5

eV, ωcd/νdn = 4, mono-energetic ions flowing at the Bohm speed, and an Argon

plasma. The solid black, red, and cyan curves correspond to the results for the

OML, Patacchini-Hutchinson, and Gatti-Kortshagen charging models respectively.

There is virtually no difference between the OML and Pattacchini-Hutchinson charg-

ing models. The smaller dashed lines indicate the upper and lower bounds of the

guiding center drift, assuming that Te = 5 eV with an uncertainty of ±0.5 eV. . . . 541

6.14 The ratio of in-situ equilibrium surface potentials χ
(1)
e /χ

(2)
e corresponding to figure

6.13. The smaller dashed lines indicate the upper and lower bounds of χ
(1)
e /χ

(2)
e ,

assuming that Te = 5 eV with an uncertainty of ±0.5 eV. . . . . . . . . . . . . . . . 542

xxxii



6.15 Measured profiles from an ECR plasma (Nunomura et al., 1997). . . . . . . . . . . 543

6.16 An example of an equilibrium profile assuming a gaussian electric field. In this figure,

the electric field is consistent with the density gradient. Compare these modelled

profiles with experimental data from figure 6.15 . . . . . . . . . . . . . . . . . . . . 544

6.17 A possible equilibrium profile, assuming a gaussian electric field, using the profiles

from figure 6.15 as a model. The electric field is consistent with the density gradient

and it is centered at r0 = 5cm, with a FWHM of 4cm. In the bottom plot of

this figure, the red line represents the in-situ-equilibrium charge for the Patacchini-

Hutchinson and OML models, while the cyan line represents the in-situ-equilibrium

charge as calculated using the Gatti-Kortshagen model. . . . . . . . . . . . . . . . . 545

6.18 Trajectory of a zirconium grain with a = 0.05µm, started at the dust thermal speed

in the x-direction at (x, y) = (0.1, 0)m for the profile shown in figure 6.17; the

grain charge is kept constant at q = −695e. This trajectory includes the effects of an

electric field that is consistent with the density gradient. The solid red circle indicates

the boundary of the vacuum vessel, the smaller, solid magenta circle indicates the

uniform magnetic field region, and the black line shows the grain trajectory. . . . . 546

6.19 Radial excursion of the grain and grain charge corresponding to the trajectory in

figure 6.18 when the grain has a constant charge q = −695e. The radial excursion

includes the effects of an electric field that is consistent with the density gradient. . 547

6.20 Trajectory of a zirconium grain with a = 0.05µm, started at the dust thermal speed

in the x-direction at (x, y) = (0.1, 0)m for the profile shown in figure 6.17 and the

grain is forced to charge instantaneously. The trajectory includes the effects of an

electric field that is consistent with the density gradient. The solid red circle indicates

the boundary of the vacuum vessel, the smaller, solid magenta circle indicates the

uniform magnetic field region, and the black line shows the grain trajectory. . . . . 548

6.21 Radial excursion of the a = 0.05µm grain and grain charge corresponding to the

trajectory in figure 6.20 when the grain is forced to charge instantaneously. The

radial excursion includes the effects of an electric field that is consistent with the

density gradient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549

xxxiii



6.22 Trajectory of a zirconium grain with a = 0.05µm, started at the dust thermal speed

in the x-direction at (x, y) = (0.1, 0)m for the profile shown in figure 6.17 using

the OML model with no drag forces are present. The solid red circle indicates

the boundary of the vacuum vessel, the smaller, solid magenta circle indicates the

uniform magnetic field region, and the black line shows the grain trajectory. The

grain charges non-instantaneously for the plasma conditions specified in figure 6.17

and the trajectory includes the effects of an electric field that is consistent with the

density gradient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550

6.23 Radial excursion of the a = 0.05µm grain and grain charge corresponding to the

trajectory in figure 6.22 when the grain is started with the in-situ equilibrium grain

charge, using the OML model, and no drag forces are present. The grain charges

non-instantaneously for the plasma conditions specified in figure 6.17 and the radial

excursion includes the effects of an electric field that is consistent with the density

gradient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551

6.24 Trajectory of a zirconium grain with a = 0.05µm, started at the dust thermal speed

in the x-direction at (x, y) = (0.1, 0)m for the profile shown in figure 6.17 using the

OML model. The solid red circle indicates the boundary of the vacuum vessel, the

smaller, solid magenta circle indicates the uniform magnetic field region, and the

black line shows the grain trajectory. The grain charges non-instantaneously for the

plasma conditions specified in figure 6.17 and the trajectory includes the effects of an

electric field that is consistent with the density gradient. Neutral drag is assumed,

but ion drag is not. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552

6.25 Radial excursion of the grain and grain charge corresponding to the trajectory in

figure 6.24 when the a = 0.05µm grain is started with the in-situ equilibrium grain

charge and using the OML model. The grain charges non-instantaneously for the

plasma conditions specified in figure 6.17 and the radial excursion includes the effects

of an electric field that is consistent with the density gradient. Neutral drag is

assumed, but ion drag is not. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553

xxxiv



6.26 Radial excursion of the grain and grain charge corresponding to the trajectory in

figure 6.24 when the a = 0.05µm grain is started with q(t = 0) = 0 and using

the OML model. The grain charges non-instantaneously for the plasma conditions

specified in figure 6.17 and the radial excursion includes the effects of an electric field

that is consistent with the density gradient. Neutral drag is assumed, but ion drag

is not. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554

6.27 Radial excursion of the a = 0.05µm grain and grain charge is compared for instan-

taneous and non-instantaneous charging, using the OML model. The grain charges

non-instantaneously for the plasma conditions specified in figure 6.17 and the radial

excursion includes the effects of an electric field that is consistent with the density

gradient. Neutral and ion drag are considered for this trajectory. . . . . . . . . . . 555

6.28 Trajectory of a zirconium grain with a = 0.05µm, started at the dust thermal speed

in the x-direction at (x, y) = (0.1, 0)m for the profile shown in figure 6.17 using the

Gatti-Kortshagen model. The solid red circle indicates the boundary of the vacuum

vessel, the smaller, solid magenta circle indicates the uniform magnetic field region,

and the black line shows the grain trajectory. The grain charges non-instantaneously

for the plasma conditions specified in figure 6.17 and the grain trajectory includes

the effects of an electric field that is consistent with the density gradient. Neutral

drag is assumed, but ion drag is not. . . . . . . . . . . . . . . . . . . . . . . . . . . 556

6.29 Radial excursion of the grain and grain charge corresponding to the trajectory in

figure 6.28 when the grain is started with the in-situ equilibrium grain charge and

using the Gatti-Kortshagen model. The grain charges non-instantaneously for the

plasma conditions specified in figure 6.17 and the radial excursion includes the effects

of an electric field that is consistent with the density gradient. Neutral drag is

assumed, but ion drag is not. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557

6.30 A profile of the Saturnian system to a radial distance of 10Rsat. . . . . . . . . . . . 558

6.31 Trajectory of an a = 0.015µm grain launched from Enceladus in the co-rotating

frame of Saturn when no UV is considered. In the leftmost panel, the trajectory is

depicted by the solid black line, while the outer cyan circle shows the geosynchronous

orbit and inner red circle shows the radial extent of Saturn’s surface. . . . . . . . . 559

xxxv



6.32 Trajectory of an a = 0.015µm grain launched from Enceladus in the co-rotating frame

of Saturn when UV is considered. In the leftmost panel, the trajectory is depicted

by the solid black line, while the outer cyan circle shows the geosynchronous orbit

and inner red circle shows the radial extent of Saturn’s surface. . . . . . . . . . . . 559

6.33 Comparison between the radial excursion and grain charge as a function of time for

the trajectories from figures 6.31 and 6.32. The solid line represents the grain trajec-

tory when UV is not considered and the dashed line represents the grain trajectory

when UV is considered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560

6.34 Trajectory of an a = 0.015µm grain launched from Enceladus in the co-rotating frame

of Saturn when UV is considered and there is an electron temperature gradient. In

the leftmost panel, the trajectory is depicted by the solid black line, while the outer

cyan circle shows the geosynchronous orbit and inner red circle shows the radial

extent of Saturn’s surface. The rightmost panel shows the radial excursion of the

dust grain. Neutral and ion drag forces are not considered for this grain trajectory. 561

6.35 Trajectory of an a = 0.025µm grain launched from Enceladus in the co-rotating

frame of Saturn when UV is considered and there is an electron and ion temperature

gradient. Neutral drag force is considered for this grain trajectory. In the leftmost

panel, the trajectory is depicted by the solid black line, while the outer cyan cir-

cle shows the geosynchronous orbit and inner red circle shows the radial extent of

Saturn’s surface. The rightmost panel shows the radial excursion of the dust grain. 561

6.36 Trajectory of an a = 0.025µm grain launched from Enceladus in the co-rotating

frame of Saturn when UV is considered and there is an electron and ion temperature

gradient. Neutral and ion drag forces are considered for this grain trajectory. In the

leftmost panel, the trajectory is depicted by the solid black line, while the outer cyan

circle shows the geosynchronous orbit and inner red circle shows the radial extent of

Saturn’s surface. The rightmost panel shows the radial excursion of the dust grain.

This figure is not noticeably different from 6.35, which shows that the effect of ion

drag on this grain trajectory is negligible. . . . . . . . . . . . . . . . . . . . . . . . . 562

xxxvi



xxxvii



List of Symbols

a =Dust grain radius

Cd =4πε0 (1 + a/λD) = Dust grain capacitance

Cn =Dust-neutral collision frequency

Cs =
√
8kbTn/(πmn) = Mean speed of plasma species s

e =Elementary charge

fuv =UV photoelectron flux

g =Local acceleration due to gravity

Is =Collected current of species s

kb =Boltzmann constant

Kna =λi/a = Knudsen number

KnR0 =λi/ [2 (1.22)R0] = Knudsen capture radius number

Mths =vs/vths = Thermal Mach number of plasma species s

Ms =vs/vb = Mach number of plasma species s

ms =Mass of species s

N =Number of charges on a dust grain

NDe =4/3πneλ
3
D = Number of electrons per Debye sphere

n0 =ne = ni = Density of quasineutral plasma

ns =Density of species s

P0 =Probability for an ion to have no collisions with neutral gas atoms in the dust grain sheath

P1 =Probability for an ion to have approximately one collision with a neutral gas atom in the dust

grain sheath

P>1 =Probability for an ion to have many collisions with neutral gas atoms in the dust grain

sheath

q1 =The in-situ equilibrium grain charge in abrupt inhomogeneity corresponding to the minimum

(more negative) charge state

xxxviii



q2 =The in-situ equilibrium grain charge in abrupt inhomogeneity corresponding to the maximum

(less negative) charge state

qa =Amplitude of charge state modulation during a gyro-orbit

qeq =In-situ equilibrium grain charge

R0 =Capture radius

RLs =Gyro-radius of species s

Ts =Temperature of species s

Vd =Vsurf − Vs = qd/Cd = Dust grain surface potential

Vs =Space potential

Vsurf =Surface potential

vb =

√
kbTe
mi

= Bohm speed, ion acoustic speed

vs =Fluid drift speed of plasma species s

vths =

(
2kbTs
ms

)2

= Thermal speed of plasma species s

ws = |v − vs| = Relative drift speed between a dust grain and plasma species s

xxxix



Greek Symbols

α =Adjustable charging rate parameter

δ =Coefficient for dust-neutral collisions

δq =RMS grain charge fluctuation

ε0 =Permittivity of free space

λD =Debye length

ζ =Cd (φ1) /Cd (φmax) = Amplitude of dust grain capacitance modulation during gyro-orbit

θ =θ0 +

∫ 0

τg

ωcd

(
t′
)
dt′ = Integral of dust gyro-frequency

λi =Mean free path for ion-neutral collisions

νin =
32σexnn

√
kbTi
mi

3
√
π

= Ion-neutral charge exchange frequency

νdn =δ
4π

3
a2nn

mn

md
= Dust-neutral collision frequency

ρd =Dust grain mass density

σex =Ion-neutral charge exchange cross-sectional area

τc =Charging time

τg =
2π

ωcd
= Dust grain gyro-period

τpe =
2π

ωpe
= Electron plasma period

υ =fuv/ (nevthe) = Normalized UV photo-electron flux

φ =Gyro-phase angle

φ1 =Gyro-phase angle where dust grain is most negatively charged

φmax =Gyro-phase angle where dust grain is least negatively charged

χe =eVd/(kbTe) = Normalized dust grain surface potential

υ =fuv/ (nevthe)Normalized UV photoelectron flux

ωcs =Angular gyro-frequency of species s

ωps =Angular plasma frequency of species s

Ω =Angular frequency of co-rotating reference frame
xl



List of Acronyms and Initialisms

GK −Gatti-Kortshagen charging model

MDPX −Magnetized Dusty Plasma Experiment

MPE −Max Planck Institute for Extraterrestrial Physics

OML −Orbit Motion Limited

PH −Patacchini-Hutchinson charging model

PIV −Particle Imaging Velocimetry

PTV −Particle Tracking Velocimetry

RMS −Root Mean Squared

SCEPTIC −Specialized-Coordinate Electrostatic Particle and Thermals in Cell

UV −Ultraviolet

xli



xlii



Chapter I

Introduction

Multi-phase systems involving small particulate matter, neutral atoms and molecules, and ionized

gas exist in many space, laboratory, and industrial regimes. This small particulate matter is called

dust. The presence of dust in ionized gas modifies the collective behavior of the ionized gas. In

this chapter, the multi-phase case of solid particulates in partially-ionized gas is presented and

the utility for studying the non-instantaneous charging of macroscopic particles in these types of

systems is discussed.

A Multi-Phase Case of Solid Particulates in Ionized Gas

Plasma, or ionized gas, is ubiquitous in nature and comprises nearly 99% of the visible matter in

the universe (Gurnett and Bhattacharjee, 2005). The terms plasma and ionized gas both refer to a

medium where free electrons and ions are present with approximately equal charge densities, with

the possible presence of neutral gas atoms. The degree of ionization is represented by the ionization

fraction nn/n0, where nn is the neutral gas atom number density and n0 is the number density

of electrons. Small values of nn/n0 indicate weakly ionized plasma, while large values of nn/n0

indicate strongly ionized plasma. When the temperature of a gas is raised high enough, neutral gas

atoms become sufficiently energetic that collisions between gas atoms strip off electrons, forming a

mixture of unbound electrons and ions in addition to the presence of the neutral gas atoms. Because

the process of ionization takes place above a well-defined temperature, plasma is often referred to as

the fourth state of matter (Gurnett and Bhattacharjee, 2005; Chen, 2006). Additionally, when an
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electric field is present, the electric field accelerates free electrons to ionize neutral gas atoms upon

impact, producing plasma. Photons with sufficient incident energy can also ionize neutral gas atoms

to produce plasma. Electrons are always singly charged but ions can have multiple ionization states.

With increasingly energetic photons incident on neutral gas, ions can lose additional electrons. The

process of recombination in partially ionized plasma can also occur during electron-ion collisions,

leading to newly formed neutral gas atoms. In order for the plasma to exist in a steady state, the

rate at which gas atoms are ionized must be equal to or greater than the rate of recombination.

Dust grains are small pieces of particulate matter. In the context of this dissertation, particulate

matter with radii smaller than 100 µm are considered dust grains. As discussed by Goertz (1989),

dust is quite common throughout the universe. This natural dust exists in supernova remnants,

planetary nebulae, molecular clouds, and it is also scattered throughout galaxies in the interstellar

medium. Dust comprises 1% of the interstellar medium by mass (Boulanger et al., 2000). The

presence of dust in molecular clouds and the interstellar medium blocks visible light from the

Milky Way. Dust does not radiate in the visible spectrum because the black body temperature

of dust is too small, approximately 10 K, which corresponds to radiation in the infared spectrum.

The presence of dust can significantly affect the behavior of the plasma or other systems. As an

example, Draine and Sutin (1987) discuss how charged dust grains become the dominant coupling

agent between the neutral gas and the background magnetic field in molecular clouds when the

ratio of ion density to neutral gas atom density is small. The motion of charged dust grains is

thus of great importance for understanding the behavior of dense molecular clouds throughout the

interstellar medium. Dust can also affect equilibrium plasma conditions. For example, water ice

near Enceladus causes electron density to decrease significantly near this Saturnian moon (Farrell

et al., 2009). Dust grains are also formed in the manufacturing process of silicon wafers for the

semiconductor industry. The formation of dust grains from the reactive gases used in etching

plasmas is an unavoidable part of semiconductor manufacture. The study of charged dust formation,

growth, and transport is necessary to mitigate the damaging effects of dust on semiconductors.

There have been many dust experiments and observations done to understand multi-phase

dusty plasma systems in the presence of magnetic fields. These experiments can be subdivided

into regimes where the dust grains do not have magnetized orbits and those experiments where

magnetized orbit dust grains should exist or have been observed. For dust grains to have magnetized
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orbits, their gyro-radii must be small enough to fit inside some observational scale length and the

gyro-frequency is greater than the frequency of collisions with neutral gas atoms or ions. The

dust-electron collision frequency is not relevant because the electron mass is small enough that

collisions with plasma electrons do not change the dust grain momentum appreciably. Table 1.1

gives an overview of the plasma parameters present in selected dusty plasma experiments and

regimes. Table 1.2 puts some of the parameters from table 1.1 into the context of the dimensionless

parameters discussed throughout this dissertation. Some examples of experiments where dust

grains are not magnetized inside the observational volume include the experiments performed by

Nunomura et al. (1997), Thompson et al. (1997), and Trottenberg et al. (2006). Nunomura et al.

(1997) used a relatively small magnetic field of 0.0875 T to observe the effects of ion flow on dust

grain trajectories in simulation and experiment. In this experiment, the magnetic field indirectly

affected the trajectories of dust grains via the motion of plasma ions. Thompson et al. (1997)

investigated dust acoustic waves, and the presence of a magnetic field of 0.09 T assisted with plasma

production in the DC glow discharge plasma. The magnetic field was not large enough throughout

the volume of the experiment to affect grain motion. Likewise, the experiments performed by

Trottenberg et al. (2006) used a magnetic field of 0.02 for the purpose of plasma production, rather

than modification to grain trajectories.

Examples of experiments where magnetized orbit dust grains should be possible or have been

observed include the experiments of Sato et al. (2001), Amatucci et al. (2004), Schwabe et al.

(2011), Carstensen et al. (2012), and Thomas et al. (2012). Sato et al. (2001) had an apparatus

that was capable of producing magnetic fields of up to 4 T, which should be sufficient to allow for

magnetized orbit dust grains in the experiment. However, stable discharges were not possible for

field strengths greater than 1 T, and the neutral gas pressures were too large to permit magnetized

orbit dust grains. The global rotation of the dusty plasma cloud was solely due to the presence of

the magnetized orbit plasma ions and the effects of magnetized orbit dust grains were too small

to measure. Amatucci et al. (2004) claim to have observed magnetized orbit dust grains in the

DUPLEX experimental device at the Naval Research Laboratory. Measurements with a CCD

camera unambiguously show a horizontal oscillation for a few distinctly different dust grains which

could be consistent with gyro-motion. However, for the neutral gas pressures in these experiments,

the dust-neutral collision frequency is much greater than the gyro-frequency as predicted using
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the Epstein drag formula. As shown in table 1.2, the ratio of dust gyro-frequency to dust-neutral

collision frequency should be quite small for the experiments performed by Amatucci et al. (2004),

ωcd/νdn = 10−4. If their intrepretation of the horizontal oscillation as evidence of gyro-motion is

correct, then the Epstein drag model may be incorrect and gyro-motion should be easily detected

in MDPX. Schwabe et al. (2011) used magnetic field strengths of up to 2 T in the Magnetized Dusty

Plasma Experiment (MDPX) at the Max Planck Institute for Extraterrestrial Physics. In these

experiments, gyration is nominally possible (ωcd/νdn ≈ 1), but there were no direct observations

or evidence of dust grain gyration. The Suleiman Device at Kiel University is capable of fields

up to 4 T, and Carstensen et al. (2012) looked at the effect of strong magnetic fields on the ion

wakes on dust grains. Ion wakes are formed around dust grains or other solid objects when plasma

ions have a fluid drift speed, and this situation occurs whenever dust grains levitate in a planar

sheath. Carstensen et al. (2012) aligned the magnetic field along the direction of the ion flow. Even

though Carstensen et al. (2012) used a large magnetic field of 4 T, the dust grains and neutral gas

pressures were too large to permit gyration (ωcd/νdn � 1). Future experiments with the Suleiman

device might be used to see if ion rotation couples to the neutral gas, and how this affects the motion

of charged dust grains. Similar to this line of inquiry, Kählert et al. (2012) successfully magnetized

a dusty plasma without a magnetic field. By rotating an electrode, Kählert et al. (2012) produced

a Coriolis force using the neutral drag force, coupling the neutral gas atom motion to the dust

grains. Experiments like Carstensen et al. (2012) and Kählert et al. (2012) suggest the possiblity

of studying how dust grain motion can couple with the neutral gas motion, or to quantify how

charged dust grains couple the neutral gas to the background magnetic field, which is a situation

that can arise in dense molecular clouds (Draine and Sutin, 1987).

The MDPX at Auburn should be the first experiment to deliver a strong enough magnetic

field, low enough neutral gas pressures, and small enough dust grains to convincingly demonstrate

grain gyration (Thomas et al., 2012). For careful choice of experiment parameters, grain gyration

should be possible in MDPX, as shown in table 1.2. Additionally, MDPX has the advantage of

a larger diameter and experimental volume than other, similar high magnetic field devices. This

larger diameter in the plane perpendicular to the magnetic field attempts to accommodate the

gyro-radii of charged dust grains, which are much greater than the gyro-radii of plasma electrons or

ions. Despite these all of these favorable conditions, Bonitz et al. (2013) claim that it is practically
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impossible to magnetize a strongly coupled dusty plasma, because the ratio of dusty gyro-frequency

to the dust plasma frequency is too large for imagible grains. By imagible grains, we refer to grains

that are sufficiently large enough to permit standard imaging techniques like Particle Tracing

Velocimetry (PTV) and Particle Imaging Velocimetry (PIV). These concerns might be addressed

by using a lower dust grain density so that the intergrain spacing is large enough to prevent a

strongly coupled system. Ultimately, experiments in the Auburn MDPX will reveal whether these

criticisms are valid.

B Motivation

Because dust-in-plasma or dusty-plasma multi-phase systems are frequently encountered in space,

laboratory, and industrial settings, it is of interest to build intuitive models of how grains modify the

plasmas they inhabit and how charging affects the dynamics of single grains. Just as single-particle

analysis leads to important intuition about collective plasma effects in confinement in toroidal

fusion devices, single-particle analysis is a precursor to developments in the collective behavior of

many grains. Analysis of the behavior of a single dust grain can also provide knowledge about

its in-situ plasma environment. The effect of non-stationary charging in the charging processes

of grains that affect grain dynamics in multi-phase systems can be used to study properties of

complex plasmas (Nunomura et al., 1999), and as a sensitive diagnostic for sheath mechanisms or

other plasma processes.

1 Applications of Dusty Plasma

Grains act as in-situ probes in plasmas (Samarian and James, 2005; Wang and Ticos, 2008; Basner

et al., 2009), diagnostics for plasma surface interaction (Kersten et al., 2003), and point scatterers of

starlight. Direct analysis of dust trajectories in particular has proven to be a valuable diagnostic tool

for high temperature fusion plasma (Wang et al., 2007; Wang and Ticos, 2008). Injected Aerosols

have also been shown to suppress Edge Localized Mode disruptions in Tokamaks (Mansfield et al.,

2010).
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2 State of Knowledge of Grain Charging

The origin of charging models for dust grains is Langmuir probe theory, which described electron

and ion current collection to conducting objects immersed in plasma. Mott-Smith and Langmuir

(1926) developed the Orbit Motion Limited (OML) charging model, valid for spheres or cylinders,

that is still used unmodified in dusty plasma literature today. Allen et al. (1957) developed a radial

motion theory for collisionless plasmas for situations in which the electron temperature is much

greater than the ion temperature. The radial motion theory is equivalent to presuming that ions

start nearly from rest far away from the probe surface while electron motion is thermal and electron

density obeys the Boltzmann relation.

The OML approach separates the plasma around an object into distinct sheath and plasma

regions. Bernstein and Rabinowitz (1959) were able to employ mono-energetic ions to numerically

calculate the space potential around spherical or cylindrical probes without having to distinguish the

sheath boundary. This approach was used to produce numerical predictions for arbitrary shielding

length by Laframboise (1966), who included thermally-distributed ions. Other refinements to OML

theory include flowing plasma for spheres and cylinders (Kanal , 1962, 1964). The problem of

arbitrary probe shape in this framework was treated by Laframboise and Parker (1973). Northrop

and Birmingham (1996) found the equilibrium surface potential and equilibrium surface charge

for spheres and cylinders in flowing plasmas. The spherical case is readily applicable to grains in

flowing plasma. Concurrently with the development of the OML approach, Boyd (1951) presented

a theory for a high plasma density discharge that was refined by Su and Lam (1963) and Kiel (1969)

to produce the hydrodynamic model for grain charging in collisional plasma. The ion current is

limited by mobility in the hydrodynamic framework for the continuum (fluid) limit. Su and Kiel

(1966) considered ellipsoidal probe shapes for mobility-limited ion current, permitting deviation

from spherical and cylindrical probes. Chang and Laframboise (1976) offered further refinements

in this model for the limit of large shielding length and for non-flowing plasma.

Recent developments in grain charging have concerned the certain peculiarities of ion-neutral

collisions within grain sheaths, the effect of arbitrary magnetic field magnitude on the grain, and the

dust grain shape. Inherent shortcomings with the OML model pertaining to ion-neutral collisions

and probes were first theorized by Talbot and Chou (1969). The OML model is designed for

6



CHAPTER I. INTRODUCTION

situations where there are no collisions between ions and neutrals in the grain sheath, and the

hydrodynamic model is designed for situations where there are many collisions between ions and

neutrals in the grain sheath. The opposite case of few collisions between ions and neutrals in

the sheath is predicted to have very different results than the predictions from the OML and

hydrodynamic models. Zakrzewski and Kopiczynski (1974) showed experimental evidence for the

case of relatively few ion-neutral collisions in a DC glow discharge plasma. Ion-neutral charge

exchange generates a population of trapped ions around spherical grains in plasma (Goree, 1992),

and these trapped ions lead to a marked increase in ion current (Lampe et al., 2001). This feature

of trapped ions was ultimately exploited by Lampe et al. (2003) to produce an analytical model

of collision-enhanced ion current for the regime of weak collisionality in the grain sheath. The

molecular dynamics simulations of Zobnin et al. (2000) demonstrated the profound effect that even

a few ion-neutral collisions can have on surface charge. Gatti and Kortshagen (2008) developed a

particularly useful analytical model for grain charging that describes charging along a continuum of

ion collisional mean free path, reducing to OML for collisionless plasma and to the hydrodynamic

approach for collisional plasma. At present, the Gatti-Kortshagen charge model provides the most

comprehensive description for ion current over all collisionality regimes.

Magnetized-orbit electrons and ions are a problem within the OML framework because the

magnetic field complicates the theory of collection and renders analytical solutions intractible.

Rubinstein and Laframboise (1982) found well-defined upper and lower limits of electron collection

in a collisionless, magnetized plasma. Patacchini et al. (2007) developed an analytical theory, based

empircally on simulations, for electron current with arbitrary magnetic fields and arbitrary shielding

length. The Patacchini-Hutchinson model offers a complete description for electron collection in

the presence of magnetic fields, including the motions of electrons in the grain sheath. As of this

writing, a similar comprehensive description for magnetized ions does not exist.

In addition to the advancements that have been made in understanding the basic charging pro-

cesses present in magnetized plasmas, there has also been an incorporation of charging processes

to account for Ultra-Violet illumination, secondary emission, and thermionic emission. These pro-

cesses have long been known to laboratory scientists in such forms as the photo-electric effect and

Richardson’s law (Edison effect) for hot surfaces. Secondary electron emission has long been ex-

ploited for plasma generation and for use in photomultiplier tubes. An early application of UV
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charging came in the form of spacecraft charging, discussed by Guernsey and Fu (1970); Feuer-

bacher and Fitton (1972); Whipple (1981). Sternglass (1957) developed a theory for secondary

electron emission that closely matched experimental observations. Secondary electron emission

and thermionic electron emission are important to understanding dust in Tokamaks (Pigarov et al.,

2005; Smirnov et al., 2007; Bacharis et al., 2010; Gunn, 2012; Vaverka et al., 2014).

While tribo-electric charging was known to the ancient Greeks, many questions about these

charging process are not completely resolved (Castle, 1997). Desch and Cuzzi developed a com-

putational model for contact charging in order to simulate lightning in the solar nebula. Farrell

et al. (2006) used contact-charging principles to develop a successful proof of concept for predicting

Ultra Low Frequency waves from dust devils on Mars, supported by the earlier experimental and

observational work of Farrell et al. (2004).

3 Utility of examining nonstationary charging effects

Dust grain motion is influenced by the grain charge, which is a variable parameter. When im-

mersed in plasma, grains easily attain a net charge through the collection and emission of ions

and electrons. Unlike electrons, which cannot change charge state, or ions, which can only change

charge state through absorption of energy above ionization thresholds, grains change charge state

as a result of changes in the local plasma conditions that affect the stochastic as well as coherent

collection and emission of electrons and ions. Like uncharged grains that are introduced into a

plasma, all macroscopic particles require a finite time to reach an equilibrium charge (Choi and

Kushner , 1994; Goree, 1994), with both the equilibrium charge and the relaxation time predicted

by a charging model that takes into account the surrounding plasma conditions. Charging models

describe how the local plasma parameters determine the collection currents and the equilibrium

grain charge. Inhomogeneous plasma is characterized by spatial variation of the plasma condi-

tions, such as density, magnetic field, electron or ion temperature, electron or ion flow speed, the

collisional mean free path of plasma species, ionization state of ions, ion species composition, or

UV illumination, and we expect that grain charge changes if the grain were to move through the

plasma. The in-situ-equilibrium grain charge is the charge state associated with a stationary grain

at a given spatial location. A grain reaches the in-situ-equilibrium grain charge if stationary at a

given spatial location for a long time. The charging time is the time it takes for an uncharged grain
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to reach some fraction of the in-situ-equilbrium grain charge, where this fraction is generally given

by q(t = τc) = (1−1/e)q0, q is the dust charge as a function of time, τc is the charging time, and q0

is the in-situ-equilibrium grain charge. Even under equilibrium conditions in homogeneous plasma,

grain charge fluctuates imperceivably due to the stochastic nature of electron and ion bombardment

(Cui and Goree, 1994). Charge-state fluctuations can be modelled having a characteristic timescale

based on the dust and plasma parameters. Gyro-synchronous modulation of grain charge will lead

to a gyro-phase-averaged diamagnetic drift of the grain’s guiding center.

Northrop and Hill (1983) discussed variable grain charge in the context of producing gyro-

phase drift, an adiabatic guiding center drift motion for magnetized-orbit dust grains. Northrop

et al. (1989) then used gyro-phase drift induced by non-stationary charging to explain fundamental

structuring of dust in Jupiter’s Gossamer ring. Nunomura et al. (1999) later used the concept of

non-stationary charging to explain unstable vertical oscillations of grains in a laboratory planar

sheath. Nunomura discussed the mechanism by which dust grains can gain energy as a result of

phase-lagged charge modulation in inhomogeneous plasma. Nunomura convincingly showed that

delayed charging that occurs when the grain does not immediately reach the in-situ-equilibrium

grain charge is responsible for dynamic instability. Walker et al. (2014) used gyro-synchronously

modulated grain charge to describe guiding center drift for the case of an abrupt inhomegeneity,

while Koepke et al. (2013) and Walker et al. (2014), as a part of this dissertation work, suggested

that non-stationary charging might be used as a diagnostic for planar and dust sheath mechanisms

and, potentially as a testbed for comparing and validating charge models. One of the goals of this

dissertation is to show how the non-stationary charging feature of dust grains manifests itself in

guiding center drift for different charging models and sheath mechanisms over a broad range of

plasma and grain parameters. Another goal is to reassert that charging dynamics matter when

it comes to grain trajectories, and to show examples where grain dynamics for the case of non-

stationary charging significantly deviate from grain dynamics for the case of instantaneous charging.

C Scope of Dissertation

In this dissertation, a semi-analytical treatment for the guiding center motion of a magnetized-orbit

dust grain in an abrupt inhomogeneity in the presence of neutral drag is developed to study how
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charging-model and sheath mechanisms affect gyro-phase drift over a range of dust and plasma

parameters. Comparisons are made model-to-model, and within each model. Also, a single-particle

trajectory tracking code is developed that permits corroboration of the semi-analytic treatment

of the abrupt inhomogeneity and, very importantly, it allows the study of grain trajectories in

gradual inhomogeneity where analytical results are not possible. Guiding center drift is analyzed

for some un-realistic conditions to illustrate important features, but is also analyzed for the specific

applications of evaluating charge models in Auburn’s MDPX. A major point of this dissertation is

that how a grain’s charge evolution affects its trajectory can reveal difficult-to-measure aspects of

mechanisms that affect grain charging and electric field profiles in electrostatic plasma sheaths.

Chapter II describes basic parameters in homogeneous and inhomogeneous plasma that are

important in the context of grain charging. Chapter III discusses the grain-charging process, the

charging models that describe these processes, the forces that act on dust grains, and how these

forces result in guiding center drift for magnetized-orbit dust grains. Chapter IV discusses the

simulation and analysis codes developed for this dissertation, while chapter V presents the semi-

analytical and simulation results. Applications of these results to the Auburn Magnetized Dusty

Plasma Experiment (MDPX) and to the Saturnian environment are discussed in chapter VI, with

further discussion on the quantitative error bars of these results given in chapter VII. Conclusions

are outlined in chapter VIII.
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Chapter II

Description of Plasma

A plasma is an ensemble of partially ionized gas that can be described by several parameters.

Properties of quasi-neutral homogeneous plasma include the shielding length, relaxation of charges

due to charge separation, collisional mean free path, and charged particle gyro-radius. All of

these parameters are important for characterizing plasma in general and further, inhomogeneity in

these parameters have implications for grain charging. This chapter reviews the homogeneous and

inhomogeneous plasma parameters that are important in the context of grain charging.

A Parameters of Homogeneous Plasma

In homogeneous plasmas, the plasma is quasi-neutral, meaning that the number density of the ions,

including all species, is nearly equal to the number density of electrons, to the extent consistent with

thermal motion of the particles. For singly ionized single ion species plasma, this is mathematically

expressed by the relation ni ≈ ne. Non-neutral plasma is found where electric fields expel one

charged species and attract the other. In many plasmas, including astrophysical settings, more

than one ion species can be present. In all cases investigated here, the following relationship will

hold:

∑
s

Zs (r, t)ns (r, t) ≈ ne (r, t) , (2.1)
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where s denotes the ion species, and Zs (r, t) represents the spatially-dependent charge state of ion

species. In this dissertation, assume that the ion charge state is homogenenous and unity, expressed

as Zs (r, t) = Zs = 1. Additionally, species s generally refers to Argon in this dissertation, with

a few exceptions. Dust grains are often considered as a separate plasma species, but the finite

spectrum of dust grain charge state Zd and the orders of magnitude disparity of scales between

plasma particles and dust grains suggests that dust needs to be treated differently than electrons,

which have one value of Ze, and ions which have very few values of Zi (Shukla, 2001). When

negatively charged single-charge-state dust is present in a singly-ionized plasma, equation 2.1 is

modified to

ni (r, t) ≈ ne (r, t) + Zd (r, t)nd (r, t) , (2.2)

where Zd (r, t) is the number of charges on each grain, and nd (r, t) is the number density of dust

grains. The regimes ne
nn

� 1 and ne
nn

� 1 correspond to weakly ionized and strongly ionized

plasmas, respectively, and nn is the neutral gas atom density. Glow discharges (Nunomura et al.,

1999; Amatucci et al., 2004) and radio-frequency (RF) plasmas (Schwabe et al., 2011; Thomas et al.,

2012) generally produce weakly ionized plasmas (ne/nn ≈ 10−6 or smaller), while Q-machines (196)

produce strongly ionized plasmas (ne/nn ≈ 0.99).

An unbounded, quasi-neutral plasma has an approximately uniform potential everywhere in

space, in the absence of plasma waves. This can be demonstrated through Poisson’s equation:

∇2Vs (r) = − ρ

ε0
= − e

ε0
(ni − ne) , (2.3)

where Vs is the space potential, ρ is the charge density, which is approximately zero due to quasi-

neutrality, e = 1.602× 10−19 C is the elementary charge, and ε0 = 8.854× 1012 Farad/meter is the

permittivity of free space. Because ni ≈ ne, the Laplacian of Vs is approximately equal to zero,

and since the plasma is unbounded, the only solution is for Vs ≈constant everywhere. Because

the space potential is approximately constant everywhere, it necessarily follows that the electric

field is approximately zero everywhere, by E(r) = −∇Vs(r). The principle of quasi-neutrality will

be exploited in the following sub-sections to determine the important scale lengths and relaxation
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times that characterize homogeneous plasmas. Inhomogeneous plasma is treated in section B of

this chapter.

1 Debye Length

Conducting or non-conducting spheres (such as spherical dust grains) charge negatively when placed

within an unbounded, homogeneous plasma because free electrons with non-zero temperature have

a higher mobility than free ions. This is true as long as Ti ≥ Te
mi
me

, which is the case for most

situations of interest. When given enough time to relax to equilibrium, the sphere attains a surface

potential that is negative relative to the local space potential, or in other words, Vsurf (t)− Vs < 0

when t → ∞. This difference, Vfl = Vsurf (t → ∞) − Vs, is called the floating potential (Mott-

Smith and Langmuir , 1926). The symbol Vd(t) = Vsurf (t) − Vs will be used to describe the, in

general, time-dependent potential difference between a dust grain’s surface and the unperturbed

space potential. The criterion Vd(t → ∞) = Vfl = Vsurf (t → ∞) − Vs holds for stationary grains

allowed to reach equilibrium conditions in the plasma.

Quasi-neutrality dictates that far away from the conducting sphere, the equilibrium potential

is given by Vs. The region of space where the potential deviates from Vs in proximity of the grain

surface is called the sheath. The sheath’s electrostatic potential profile Vsh(r) is resolved through

Poisson’s equation and appropriate boundary conditions and varies a function of radial distance

from the sphere, according to Poisson’s equation,

∇2Vsh (r) =
1

r2
∂

∂r

(
r2
∂Vsh
∂r

)
= − e

ε0
[ni(r)− ne(r)] . (2.4)

The electron and ion densities as function of space are given by ne(r) = ne0 exp
(
eVsh(r)
kbTe

)
and

ni(r) = ni0 exp
(
− eVsh(r)

kbTi

)
respectively, assuming Maxwell-Boltzmann distributed electrons and

ions. Electron and ion densities far from the sphere are given by ne0 and ni0 respectively. When

the electron and ion temperatures are not equal, the two species are not thermalized with respect

to each other and the plasma is referred to as non-equilibrium (Bonitz et al., 2010).

The assumption of Maxwell-Boltzmann distributed electrons and ions in equation 2.4 leads to
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the differential equation

2

r

∂

∂r
Vsh (r) +

∂2

∂r2
Vsh (r) =

e

ε0
ne exp

(
eVsh (r)

kbTe

)
− e

ε0
ni exp

(
−eVsh (r)

kbTi

)
≈ 0. (2.5)

This non-linear differential equation can be solved by assuming that the magnitude of potential

variation in the sheath is small compared to the temperature of electrons or ions. Quasi-neutrality

implies that ne0 ≈ ni0, and this simplifies the linear differential equation to

2

r

∂

∂r
Vsh (r) +

∂2

∂r2
Vsh (r)−

e2

ε0kb

(
ne0
Te

+
ni0
Ti

)
Vsh (r) = 0. (2.6)

The factor e2

ε0kb

(
ne0
Te

+ ni0
Ti

)
has units m−2, and the association of this quantity with 1/λ2D, where

λD is the Debye length is expressed

λD =

√
ε0kb
e2

(
ne0
Te

+
ni0
Ti

)−1

=

√
ε0kbTeTi

e2 (ne0Ti + ni0Te)
. (2.7)

In the literature, λD is often referred to as the linearized Debye length, since this length scale results

from linearizing equation 2.5. The Debye length is equivalent to the reciprocal sum of electron and

ion Debye lengths, or

1

λ2D
=

1

λ2De

+
1

λ2Di

, (2.8)

where λDe =
√

ε0kbTe

e2ne0
is the electron Debye length, and λDi =

√
ε0kbTi

e2ni0
is the ion Debye length.

The smaller of the two length scales dominates the size of the linearized Debye length. Because

ne0 ≈ ni0, the species with the smaller temperature dominates the effective value of Debye length,

for eVsh/(kbTs) � 1.

The solution for the differential equation in equation 2.6, using the appropriate boundary con-

ditions Vsh(r = a) = Vsurf and Vsh(r → ∞) = Vs, is given by (Debye and Huckel , 1923)

Vsh (r) = Vd
a

r
exp

(
−r − a

λD

)
+ Vs. (2.9)

Equation 2.9 satisfies the differential equation and the boundary conditions, and is called the
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Debye-Hückel, or Yukawa, potential, which decreases more rapidly than for a point charge, or

Coloumbic, potential (Daugherty et al., 1992). Figure 2.1 shows a comparison between Coloumbic

and Debye-Hückel sheath potential models when a/λD � 1.

There are some limitations for using λD to describe the characteristic shielding length of a small

sphere or dust grain. In order to achieve this characteristic length scale and the sheath potential

variation in equation 2.9, it is necessary to assume eVsh(r)/(kbTe) � 1 and eVsh(r)/(kbTi) � 1, and

Maxwell-Boltzmann ion and electron distribution functions. Both electrons and ions participate in

the shielding when assuming ne = n0 exp
(
eVsh(r)
kbTe

)
and ni = n0 exp

(
− eVsh(r)

kbTi

)
. Many introductory

texts on Debye shielding (Gurnett and Bhattacharjee, 2005; Chen, 2006) assume constant ion den-

sity in their derivations, which modifies equation 2.9, replacing λD with λDe. In other words, only

the electrons contribute to the shielding and ions are not stratified. In a low temperature or weakly

ionized plasma, λD � λDe, which means we need to be careful to assign the correct parameter for

the shielding length. The results of Daugherty et al. (1992) suggest that using ni = n0 exp
(
− eVsh

kbTi

)
is perfectly acceptable, and the shielding length is given by λD, when a/λD � 1. As the ratio a/λD

increases, the shielding length in the exponential factor of equation 2.9 increases and λD becomes

a poor description for the shielding length. When a/λD ≈ 1, Daugherty et al. (1992) found that

the shielding length is accurately described by λDe instead of λD. A planar sheath begins to form

when a/λD � 1, or when the dust grain radius is much larger than the linearized Debye length

(Daugherty et al., 1992). The separate but related topic of planar sheaths is discussed further in

section B. Numerically solving the coupled Poisson and Vlasov equations, Daugherty et al. (1992)

found that the Debye-Hückel solution in equation 2.9 does not accurately predict the potential

variation in the grain sheath when a/λD � 1. Because of these problems, the condition aλD < 1 is

generally imposed for dust grains, unless stated otherwise. Another concern regarding the deriva-

tion of equation 2.9 is when the ions are mono-energetic, or have some flow speed, instead of being

purely a Maxwell-Boltzmann distribution. For mono-energetic ions, equation 2.9 changes so that

the Debye length is given by λD =
√

ε0(2E0Te)
e(2E0ne0+Teni0)

(Bernstein and Rabinowitz , 1959; Daugherty

et al., 1992), where E0 is the energy of the mono-energetic ions. The shielding length has also been

discussed for other non-Maxwell-Boltzmann distributions, such as the Kappa distribution often

encountered in space physics (Bryant , 1996). More specific considerations of the sheath will follow

in chapter III, section B.
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2 Number of Electrons in a Debye Sphere

In homogeneous plasma, with a characteristic shielding length λD described in section 1, the number

of electrons in a Debye sphere is given by

NDe = ne0

(
4

3
π

)
λ3D. (2.10)

Collective effects dominate over binary collisions for NDe � 1 (Chen, 2006). Binary collisions

dominate over collective effects when NDe � 1. The criterion NDe > 1 is imposed as a requirement

for plasma, and the parameter NDe will show up later in this dissertation when important quantities

are placed into dimensionless form. The criterion NDe > 1 will not be violated in this dissertation.

The effect of many successive, small angle collisions is described by the Coloumb logarithm

ln

(
bm
b0

)
= ln

(
λD
b0

)
= ln (9NDe) , (2.11)

where bm is the maximum impact parameter, generally taken to be the Debye length because

electric fields are screened outside of this distance, and b0 = qs
qs′

4πε0µss′ |v − v′| is the distance

of closest approach or Coloumb impact parameter, where µss′ = msms′/(ms +ms′), q is particle

charge, s and s′ represent the two different species. The plasma parameter is given by Λ = 9NDe,

and lnΛ ranges from 10-40 for nearly all plasmas of interest (Gurnett and Bhattacharjee, 2005).

3 Electron Plasma frequency

For a cold (Ts ≈ 0), quasi-neutral, bounded, homogeneous plasma, a separation of charges caused

by displacing the positions of electrons from equilibrium relative to a fixed background of ions

produces an electric field, which in turn acts as a restoring force to bring the electrons back to

their equilibrium position in the plasma. As the electrons return to equilibrium, they gain energy

from the electric field and overshoot their equilibrium position. Describe the oscillating perturbed

position of the electrons as x = xeq +∆x, where xeq is the equilibrium position of the cold electron

slab. The equation of motion for the cold slab of electrons is given by (Gurnett and Bhattacharjee,
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2005)

d∆x

dt
= −e

2ne0
ε0me

∆x, (2.12)

where the electric field Ex = en0∆x
ε0

is along the direction of perturbation, ∆x.

In equation 2.12, the harmonic perturbation ∆x has angular frequency

ωpe =

√
e2ne0
ε0me

. (2.13)

The analysis can be repeated with mobile ions to obtain

ω2
p = ω2

pe + ω2
pi, (2.14)

where ωp is the angular frequency of the plasma oscillations and ωpi =
√

e2ni0
ε0mi

is the ion plasma

frequency. Equation 2.14 shows that the larger of the two quantities ωpe or ωpi dominates the

general plasma oscillation. Because electrons are much less massive than ions, ωp ≈ ωpe.

For the plasma relevant to this dissertation, 2π
ωpe

will always correspond to the shortest time

scale in the system. Because the plasma period corresponds to the shortest dynamical time scale in

the dust in plasma system, normalizing by ωpe represents the best choice for accurately resolving

the time-dependent grain charge and producing dimensionless charging equations for all charging

models in this investigation. Note that the electron plasma frequency, electron Debye length, and

electron thermal speed are related by ωpeλDe = vthe/
√
2.

4 Mean Free Path and Knudsen Number

The collisional mean free path is the average distance traveled by a particle in a given species

between collisions with another particle. The Knudsen number Kn is defined as the ratio of a

collisional mean-free-path length scale λmfp and the grain radius a. Specifically,

Kna =
λmfp

a
. (2.15)
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In this dissertation, the length scale a is the dust grain radius, and λmfp is the average collisional

length for the more collisional species pair. For low temperature or weakly ionized plasmas, the

most collisional species pair is the ion-neutral collisional pair, specifically the ion-neutral charge-

exchange mean free path, so λmfp = λi refers to the ion-neutral charge-exchange mean free path

in this dissertation. The grain radius a is a sensitive parameter in the charging models (Patac-

chini et al., 2007; Gatti and Kortshagen, 2008) being assessed for gyro-phase drift in gradual and

abrupt inhomogeneity. It is also meaningful to discuss whether or not a plasma source is colli-

sional over the length scale of the plasma size L. Collisional processes cause plasma species to

assume Maxwell-Boltzmann distributions, therefore plasma constituents should be expected to be

Maxwell-Boltzmann distributions if λi < L. Since plasma sources are much larger than dust grains,

the Knudsen number of a dust grain (λi/a) is much larger than the Knudsen number characterizing

the size of the plasma itself (λi/L). Goree (1994) and, later, Lampe et al. (2001) showed that the

Knudsen parameter is not the best way to distinguish collisionless and collisional regimes for grain

charging because the trapped charged particles travel far enough in their many orbits around a

spherical conductor or grain to make a charge-exchange collision with a neutral gas atom. The

details of this problem is further discussed in chapter III, section C.

5 Electron, Ion Gyro-frequency and gyro-radius

Magnetized-orbit charged particles within homogeneous plasma gyrate around the direction of the

magnetic field. The Lorentz force equation describes the motion of a charged particle in a magnetic

field in the absence of an electric field, given by

FLorentz = ms
dv

dt
= qsv ×B (r) , (2.16)

where the qs is the charge of the particle species. The magnetic field is along the ẑ direction, and

has a magnitude B.

The equation of motion for a magnetized-orbit particle’s x-position in a uniform magnetic field

is

ẍ+

(
eB

ms

)2

x =

(
eB

ms

)((
eB

ms

)
x0 ± v0y

)
(2.17)
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and the y-component is

ÿ +

(
eB

ms

)2

y =

(
eB

ms

)[(
eB

ms

)
y0 ∓ v0x

]
, (2.18)

where the zero subscript denotes initial values. The resulting equations 2.17 and 2.18 are identical

to the harmonic oscillator equation, with terms on the right hand side that depend on the initial

conditions. These terms ensure that circular motion or gyration will result, with the characteristic

gyro-frequency of the gyration given by

ωcs =
eB

ms
. (2.19)

The gyro-radius of each species RLs is given by RLs = v⊥
ωcs

, where v⊥ =
√
v2x + v2y . The

mean gyro-radius is
√
πvths/(2ωcs), where the thermal speed is given by vths =

√
2kbTs

ms
. The

dimensionless magnetization number for each species is βs =
a

RLs
(Patacchini et al., 2007), where a

is the dust grain radius, or some other scale size of interest. A plasma species s is not magnetized

on the length scale a if βs � 1. By contrast, when a
RLs

is much larger than unity, then that

plasma species s is magnetized on the length scale a. It is also important to note that as an

additional criterion for magnetization, the gyro-frequency of a species must be larger than the

collision frequency, or ωcs > ν. When judging magnetization, the effective collision frequency ν

is the largest collision frequency for a given species in the plasma. In this dissertation, ωcs > ν

will be assumed for electrons and ions, because this condition is satisfied in relevant laboratory

experiments (Konopka et al., 2000; Schwabe, 2006; Schwabe et al., 2011; Thomas et al., 2012) and

space conditions (Khurana et al., 2008).

6 Mach numbers

The thermal Mach number of a plasma species s is expressed (Horányi , 1996) as

Mths =
vs
vths

, (2.20)

where vs is the species fluid speed and vths =
√

2kbTs

ms
is the thermal speed of the same species. A

suitable thermal speed can be established for non-Maxwellian distributions, defined as a measure
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of the average energy Ts = (2/3)〈εs〉 (Godyak and Demidov , 2011). The thermal Mach number

is a natural parameter for describing fluid drifts for a continuous distribution of particle energies,

but it is insufficient for describing cold, mono-energetic particles. Instead, use the parameter

Ms = vs/vB, where vs still describes the fluid drift of the mono-energetic particles, but it is now

scaled to vB =
√

(eZiTe + γiTi)/mi, called the ion acoustic speed, ion sound speed, or Bohm speed,

where γi = 1 for isothermal ions, and γi = 3 for ions with one degree of freedom. In this dissertation,

Te � Ti is assumed unless otherwise noted, which means vB =
√

(eZiTe)/mi. This Mach number

Ms is analagous to the Mach number from fluid mechanics.

B Inhomogeneous Plasmas

This section discusses some sources of inhomogeneous plasma, and some of the properties that might

potentially be measured by gyro-phase drift in space plasma and in sheaths. As discussed by Wang

and Ticos (2008), grains can be effectively used as probes for inhomogeneous high temperature

fusion plasmas, while Samarian and James (2001); Basner et al. (2009) used grains to measure

properties of sheaths. Homogeneous-plasma parameters will be modified, if needed, for use with

inhomogeneous plasma.

1 Planar Sheaths

Real plasma is necessarily confined to a finite-sized region of space, such as the extent of the

vacuum chamber. Electrons are more mobile than plasma ions and leave the plasma, reaching the

chamber walls faster than the ions. The chamber walls of an experimental device charge negatively

with respect to the plasma until electron and ion net currents to the walls are balanced and the

plasma electrically floats with respect to the boundary. The sheath separates the boundary and

the electrically floating plasma. The surface floats below the potential in the center of the plasma,

and is given by (Gurnett and Bhattacharjee, 2005)

Vfl = −kbTe
2e

[
ln

(
mi

me

)
+ ln

(
Te
Ti

)]
. (2.21)
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The potential variation in the plasma at a distance z from the surface in contact with the plasma

becomes

Vsh (z) = Vfl exp

(
− z

λDe

)
, (2.22)

as discussed many standard introductory texts (Chen, 2006; Chabert and Braithwaite, 2011) when

|eVsh|/(kbTe) < 1, L/λDe > 1, and constant ion density are assumed. Note that |eVsh|/(kbTe) < 1

does not actually hold very close to the planar surface, because (eVfl)/(kbTe) = −1
2

[
ln
(

mi
me

)
+ ln

(
Te
Ti

)]
,

and mi/me � 1. Equation 2.22 becomes more accurate as z increases. This is a similar solution to

equation 2.9, but a slab geometry has been assumed for the planar sheath and the shielding length

is characterized by the electron Debye length λDe rather than the Debye length λD. The potential

profile in equation 2.22 indicates that plasmas are inhomogeneous near boundaries.

Biasing the planar surface negatively with respect to the plasma results in a Child-Langmuir

sheath (Child , 1911), specifically when |eV0|/(kbTe) � 1 and V0 < Vfl < 0, where V0 is the bias

voltage. The sheath size increases as a function of the applied bias voltage V0. The formation of

a planar sheath produces inhomogeneous space potential profiles near the plasma boundaries and

it also produces inhomogeneous space potential in the plasma bulk. The electric field produced

by the inhomogeneous space potential is important for dusty laboratory plasma, since this field

permits the levitation of dust grains (Nunomura et al., 1999; Arnas et al., 1999; Fortov et al.,

2001; Sickafoose et al., 2002; Robertson et al., 2003; Thomas et al., 2012, 2013). This electric

field also accelerates ions in the plasma bulk so that they obtain the Bohm speed at the sheath

edge. Properties of the sheath, such as ion-neutral collisionallity, modify the ion energy distribution

function. Controlling the ion energy distribution is important for industrial concerns, specifically

in plasma etching reactors. Much work has been done to produce anisotropic ion beams for this

purpose. One of the goals of the Department of Energy’s Low Temperature Plasma Science Center

was to measure and control distribution functions in laboratory and industrial plasma, listed as

priority 1 in (Graves and Kushner , 2008). Samarian and James (2001); Basner et al. (2009)

established that dust can be used as a plasma diagnostic by measuring planar sheath properties

through the levitation height. Following in this spirit, dust grain guiding center motion, specifically

gyro-phase drift, might be used to measure other properties in planar sheaths such as ion energy
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distribution function.

There are many models in the literature to describe planar sheath properties for glow dis-

charges, radio frequency plasmas, collisionallity regimes, negative ions, and other plasma processes.

Tomme et al. (2000) provides a brief, graphical overview of the potential profiles for many dif-

ferent sheath models. In this dissertation, the focus on planar sheaths will be restricted to the

collisionless and weakly collisional Child-Langmuir sheaths, producing mono-energetic and drifting

Maxwell-Boltzmann ions, respectively. The mechanism of ion-neutral charge exchange determines

this difference between these energy distribution functions. Radovanov et al. (1995) convincingly

showed that the neutral gas pressure in an Argon-Hydrogen gas mixture plasma controls the shape

of the ion energy distribution function through collisionality. In the absence of collisions, the cold

ions are mono-energetic and have a fluid drift equal to the Bohm speed. Ion-neutral collisions in the

sheath cause the ion distribution function, initially mono-energetic in the plasma bulk, to assume

a drifting Maxwell-Boltzmann distribution with the Bohm speed as the drift speed. In reality, the

distribution functions are more complicated for collisionless ions, which have a cusp-like shape with

a peak in the energy distribution function near ε = kbTe (Tonks and Langmuir , 1929; Sheridan,

2001), although the simplistic model of unidirectional mono-energetic ions has been used in some

studies of dust charging (Nunomura et al., 1999). Likewise, collisions produce ion distribution

functions with an increased number of ions at lower energies as compared to the collisionless ion

case (Chabert and Braithwaite, 2011), and are not necessarily a simple drifting Maxwell-Boltzmann

distribution. The simplistic generalization of mono-energetic ions for collisionless conditions and

drifting Maxwell-Boltzmann ions for collisional conditions is imposed to show the sensitivity of

gyro-phase drift to ion distribution function shape and hence as a useful testbed for measuring

sheath properties. As shown later in chapter V, when test grains levitate in a planar sheath, gyro-

phase drift acts as a sensitive indicator for the planar sheath mechanisms of ion flow, flow-shifted

Maxwellian ions versus mono-energetic ions, ion-neutral charge-exchange collisions [via the charg-

ing model developed by Gatti and Kortshagen (2008)], and plasma species magnetization [via the

charging model developed by Patacchini et al. (2007)]. All of these mechanisms have relevance to

dust charging in experimental devices (Konopka et al., 2005a; Thomas et al., 2012).

To obtain the collisionless Child-Langmuir solution for flat, planar sheaths in plasma, assume

that ne = ni at the boundary z = zsh between the sheath and the plasma bulk, the potential in the
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sheath satisfies |eVsh|/(kbTe) � 1 and Vsh < 0, the Maxwell-Boltzman electrons are nearly absent

in the sheath (ne � ni), ions are cold (Ti � Te), and all ions are accelerated by the potential profile

in the sheath because ion flux and energy are conserved. Conservation of ion flux means that the

density of ions decreases because they are accelerated in the sheath. The following solutions for

collisionless, weakly collisional, and fully collisional sheaths are one-dimensional models that are

valid for partially or fully ionized plasma. Two-dimensional sheath models do exist, but Luginsland

et al. (1996) showed that when the sheath inhomogeneity direction aligns with the magnetic field

direction, the sheath properties along this direction are not appreciably altered by magnetic field

strength.

The potential profile of a collisionless Child-Langmuir sheath is given by (Chabert and Braith-

waite, 2011)

Vsh (z) = −

−3

2

√
eni(z = zsh)vi(z = zsh)

ε0

√
mi

2e

 z + (−V0)3/4
4/3

(2.23)

where z corresponds to the distance above the planar surface, zsh > 0 is the location of the plasma

sheath boundary, while ni(z = zsh) and vi(z = zsh) correspond to the ion density and ion flow

speed at the plasma sheath boundary, respectively. The solution given in equation 2.23 provides

Vsh(z = zsh) = 0. The sheath potential Vsh(z) < 0 for z < zsh, and accelerates ions from the

sheath edge. The ion flow speed as a function of space is easily predicted from the potential profile

in equation 2.23 using conservation of energy, and is given by vi(z) =
√
vi(z = zsh)2 − 2e

mi
Vsh(z).

In the collsionless Child-Langmuir model of the planar sheath, the ions enter the sheath with a

mono-energetic distribution, and they remain mono-energetic when they strike the surface. The

upper panel of figure 2.2 shows the resulting profile along the sheath direction for a collisionless

Child-Langmuir sheath.

When the ion-neutral mean free path is not large with respect to the size of the sheath, a

collisional model is more valid than the description given by equation 2.23. Collisions act as a drag

term in the ion momentum equation, and the ion flow becomes limited by mobility. Ion flux is

still conserved, and the ion drift speed is given by µiE(z), where E(z) is the electric field in the

sheath and the ion mobility is given by µi =
e

miνin
, where νin is the ion-neutral charge exchange
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collision frequency. The resulting space profile for the collisional Child-Langmuir sheath is given

by (Chabert and Braithwaite, 2011)

Vsh (z) = −

√
2eni(z = zsh)vi(z = zsh)

ε0µi
((zsh − z))3/2 + V0. (2.24)

While the ions still enter the sheath at the sound speed vi(z = zsh) = vB, the presence of ion-

neutral collisions imply that the ion energy distribution function must be a flow-shifted or drifting

Maxwellian (Meige et al., 2007).

As discussed by Chabert and Braithwaite (2011), the ion fluid speed always exceeds the ion

thermal speed, which means that the above description is inaccurate for high pressure sheaths.

The solution to this problem is to correct the ion mobility by using µi =
2eλi

πmi|vi| , where λi is the

ion-neutral mean free path. The resulting space profile for the weakly collisional Child-Langmuir

sheath is given by (Chabert and Braithwaite, 2011)

Vsh (z) = −3

2

(
2eni(z = zsh)

3ε0

√
πTe
2λin

)2/3

(zsh − z)5/3 + V0. (2.25)

Again, the ions enter the sheath at the sound speed but collisions produce a flow-shifted or drifting

Maxwellian ion energy distribution function. The lower panel of figure 2.2 shows the resulting

profile along the sheath direction for a weakly collisional, partially-ionized Child-Langmuir sheath.

To summarize this section briefly, ion-neutral charge exchange collisions shape the ion energy

distribution function in planar sheaths. Mono-energetic and drifting Maxwell-Boltzmann ions are

adopted in this dissertation to measure the effect of different ion distribution functions on guiding

center drift magnitude and direction. The presence of neutral gas atoms also manifests in the

effect of ion-neutral charge exchange in the grain sheath, enhancing the ion current to dust grains,

lowering grain charge. This change in grain charge and the presence of neutral drag should affect

grain trajectories.

2 Space Plasma

Northrop and Hill (1983) established the analytical foundations for the adiabatic drifts in the

co-rotating frame of a planet and the gyro-phase drift for dust grains orbiting a planet within
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a magnetic field. Further, Northrop and Hill (1983) explained how grain gyration in a plasma

co-rotating with the planet leads to inhomogeneous ion flow relative to the dust grain during a

gyro-orbit. In other words, for ions in the co-rotating plasma with temperature Ti, vi(r)/vthi =Mi

is spatially inhomogeneous because |vi(r)| = Ωr, where Ω corresponds to the angular speed of the

planet. An analytical solution for gyro-phase drift is possible for the condition |vd − vi| � vthi,

where vd is the dust grain speed perpendicular to the magnetic field direction. As a side note, in

homogeneous slab geometry, gyro-phase drift can still occur even if the ion flow is homogeneous,

provided |vd − vi| ≈ vthi or |vd − vi| > vthi, because the gyration of the grain means that the

relative ion flow will not be constant during a gyro-orbit, leading to charge-state modulation (Bliokh

et al., 1994). Figure 2.3 shows an example trajectory of a grain around Saturn with no other

inhomogeneities except for the relative velocity between the grain and the co-rotating plasma. For

simplicity, this situation will also be referred to as inhomogeneous. Possible inhomogeneities present

in space plasmas include ion mass composition, magnetic field, plasma density, neutral gas atom

density, and inhomogeneous UV illumination. These inhomogeneities are summarized below.

Northrop and Morfill (1984) established that sub-micron dust grains can be radially transported

by inhomogeneous temperature or ion mass composition. A temperature gradient exists in the Io

plasma torus in Jupiter’s plasmasphere, as discussed by Northrop et al. (1989), which can plausibly

transport grains radially. The magnetic field of a planet can be approximately characterized as a

dipole. Because a dipole field is spatially inhomogeneous, the magnetic field surrounding a planet

in space is spatially inhomogeneous. Surrounding a planet, the co-rotating plasma can also have a

density gradient. Because the density of neutral gas can also have a gradient, the ion-neutral mean-

free path can change during a grain gyro-orbit. In space it is also possible to have inhomogeneous

UV illumination. As an example, grains can transit into and out of UV illumination when orbiting

a celestial body such as a planet or moon, which is best modelled as an abrupt inhomogeneity.

3 Basic parameters of Inhomogeneous Plasma

The basic parameters outlined in section A were for homogeneous plasmas. These parameters can

also be extended for inhomogeneous plasmas with some caution. Because plasma inhomogeneity

is necessary for gyro-phase drift to occur (Northrop and Hill , 1983), it is imperative to correctly

modify these basic parameters. Debye length, number of electrons in a Debye sphere, electron
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plasma frequency, mean free path, and gyro-frequency are extended to inhomogeneous plasma.

The plasma conditions far from the sheath surrounding a small spherical conductor or dust

grain determine the Debye length in an inhomogeneous plasma. Small here means that L � a, or

that the plasma is much larger than the grain size. With the assumption of electron, ion densities

and temperatures ni, ne, and Te, Ti respectively, the definition in equation 2.7 will be relatively

unchanged and is given by

λD =

√
ε0kb
e2

(
ne
Te

+
ni
Ti

)−1

=

√
ε0kbTeTi

e2 (neTi + niTe)
. (2.26)

Even though ne and ni are not required to be equal, this solution is still valid if we assume

Maxwell-Boltzman distributed electrons and ions and that eV (r)/(kbTs) � 1. When performing

the expansion on the right hand side of equation 2.5, we obtain the result to first order

2

r

∂

∂r
Vsh (r) +

∂2

∂r2
Vsh (r)−

e

ε0

(
ne0
Te

+
ni0
Ti

)
Vsh (r) +

e

ε0
(ne − ni) . (2.27)

Notice that the only difference from equation 2.6 is that we have an offset e
ε0
(ne − ni), which means

that the solution is essentially the same as the solution given in equation 2.9, except that there is

an offset:

Vsh (r) = Vd
a

r
exp

(
−r − a

λD

)
+ Vs − λ2D

e

ε0
(ne − ni) . (2.28)

By inspection, the solution in equation 2.28 satisfies the differential equation in equation 2.27. Note

also that the electron or ion Debye length can be written:

λDe = λD

√
1 +

ni
ne

Te
Ti

(2.29)

and

λDi = λD

√
1 +

ne
ni

Ti
Te
. (2.30)
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When ions are best described by a drifting Maxwellian with flow speed vi � vthi, then

λD = λDe

√√√√1 +
Te
Ti

2ne
ni
M2

thi

, (2.31)

where Mthi = vi/vthi is the ion thermal Mach number. When ions are best described as a mono-

energetic, then

λD = λDe

√
1 +

1
ne
ni
M2

i

, (2.32)

where Mi = vi/
√

kbTe

mi
now corresponds to the regular Mach number, i.e., the ratio of the ion flow

speed to the acoustic or Bohm speed (Daugherty et al., 1992). The definition for the number of

electrons in a Debye sphere in equation 2.10 will remain unchanged for inhomogeneous plasma,

except that this number need not be constant everywhere in the plasma.

The electron plasma frequency varies spatially when the electron density varies. The local

electron plasma frequency is a proxy for electron number density. Despite the possibility for elec-

tron density variation, the electron plasma frequency generally remains the shortest time scale for

inhomogeneous plasmas, which is true for all cases presented in this dissertation.

The mean free path can also vary spatially. For ion-neutral charge exchange collisions, the

primary mean free path length scale in this dissertation, this quantity is dependent on the neutral

gas atom number density. The neutral gas atom number density will be considered constant in the

surrounding plasma throughout this dissertation.

The gyro-frequency of a plasma species varies spatially when an inhomogeneous magnetic field

is present. The simplest, lowest order description of this change is given by ωcs(r) =
eB(r)
ms

, where

the magnetic field varies spatially. However, as first demonstrated by Parker (1958), the plasma

particles move in a more complicated fashion in the plane perpendicular to the magnetic field

direction than described by equations 2.17 and 2.18 when the magnetic field is homogeneous and

the electric field is inhomogeneous. The original derivation assumes that there is shear in the plasma

flow, but because the flow speed u, the electric field E, and the magnetic field B are related by

E = −u ×B, the treatment can also be done when the electric field is inhomogeneous along the

electric field direction.
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To summarize the effects of inhomogeneous electric field on charged particle motion, the equa-

tions of motion for a charged particle in the plane perpendicular to the magnetic field direction

become

ẍ = ±ωcsẏ (2.33)

and

ÿ = ±ωcs
Ey (y, t)

B0
∓ ωcsẋ, (2.34)

assuming B0 is constant, the perpendicular electric field Ey is inhomogeneous in the field coordinate

y, perpendicular to the magnetic field direction ẑ, and the upper signs indicate positively charged

plasma particles while the lower signs indicate negatively charged plasma particles. Integrate

equation 2.33 to get ẋ = ±ωcs (y − y0), where y0 = y(t = 0) is the initial position of the plasma

particle in the y-direction. Substitute the integration of equation 2.33 into equation 2.34 to yield

ÿ = ±ωcs

(
Ey (y, t)

B0
∓ ωcsy ± ωcsy0

)
, (2.35)

which can be solved using the WKB approximation to produce elliptical equations of motion. The

frequency for oscillation ω in the E ×B-direction is given by

ω = ωcs

(
1− ξ (y, t)

ωcs

)1/2

, (2.36)

where ξ =
∂Ey(y,t)

∂y

∣∣∣
y=y0

/B0, evaluated at the particle’s initial position in the y-direction, is called

the shear parameter (Parker , 1958; Ganguli , 1995; Gavrishchaka, 1996). Whenever the electric

field is inhomogeneous, the gyro-frequency is no longer equal to ωcs, and the particle travels in

an ellipse. Likewise, the gyro-radius is no longer given by the simple relation v⊥/B0, and instead

the semi-major axes of the ellipse are given by v⊥/(ωcs (1− ξ(t)/ωcs)
3/4) for the x-direction and

v⊥/(ωcs (1− ξ(t)/ωcs)
1/4) for the y-direction. These effects were important for the experiments and

simulations of Reynolds et al. (2006).

Lastly, the standard and thermal Mach numbers (Ms and Mths) are inhomogeneous in the
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presence of inhomogeneous electron or ion flow. This situation of inhomogeneous Mach number

in also encountered whenever the difference between the grain velocity and plasma flow changes

during a gyro-orbit. Inhomogeneous Mach numbers permit charge state modulation of gyrating

dust grains, elaborated in subsequent chapters.
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Chapter III

Description of Dust in Plasma

Particulate matter in ionized gas becomes charged, so electromagnetic forces become relevant. In

this chapter, the basics of the charging process for dust grains and the forces on dust grains are

introduced.

A Distinction between Dust in Plasma and Dusty Plasma

Dust in plasma means the density of dust grains is small enough that dust grains are, on average,

sufficiently distant from one another that their Debye sheaths do not overlap. This average inter-

grain spacing d is predicted by d = [3/4 (πnd)]
1/3, where nd is the dust number density. Shukla

and Mamun (2002) provide a robust definition to distinguish two distinct possibilities, noting that

the situation a� λD < d (in which charged dust particles are considered as a collection of isolated

screened grains) corresponds to the dust in a plasma condition, while the situation a � d < λD

(in which charged dust particles participate in the collective behavior) corresponds to the dusty

plasma condition.

When considering the charging of grains in a dusty plasma, the background plasma of electrons

and ions cannot be treated as being dust-absent. The coupling parameter Γ, the ratio of Coloumb

energy to thermal energy of dust grains, further characterizes the regime of dusty plasma, and is

given by

Γ =
q2d

4πε0dkbTd
, (3.1)
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where qd is the average charge on the grains and Td is the kinetic temperature of dust (Merlino,

2006). When Γ exceeds the critical value Γ ≈ 170, the dust grains are arranged in an approximate

lattice and is called a plasma crystal or Coloumb crystal (Ikezi , 1986). This dissertation will focus

exclusively on dust in plasma, which means the criterion a � λD < d is used, rather than dusty

or coupled plasma. The assumption of dust in plasma simplifies the calculation of grain charge for

test particle trajectories in abrupt and gradual inhomogeneity.

1 Unmagnetized-orbit and Magnetized-orbit Dust grains

As discussed earlier in chapter II, section 5, a charged particle species s is considered magne-

tized with respect to the grain radius a if RLs < a or with respect to the plasma volume L if

RLs < L and the collision frequency of the species is smaller than the gyro-frequency. For a weakly

ionized plasma, the highest collisional timescale for dust is the dust-neutral collision frequency

(Thomas et al., 2012). In a fully ionized plasma, neutral gas atoms are not present, so the high-

est collisional timescale is the dust-ion collision frequency. Dust collisions with electrons produce

negligible changes to dust grain motion, and are not considered. The dust-neutral collision fre-

quency will be discussed at greater length in section 4. In order for the gyro-motion of grains to

exist, magnetized-orbit grains are required. In other words, the gyro-frequency of dust must be

larger than the dust-neutral collision frequency (ωcd > νdn) and the dust-ion collision frequency

(ωcd > νdi). Because neither grad-q nor gyro-phase drift occurs in the absence of dust gyration,

this dissertation will focus on magnetized-orbit grain trajectories. Some example trajectories are

shown later in chapter V for when the dust-neutral collision frequency is greater than the dust

gyro-frequency to illustrate that gyration does not occur.

B Physics of the Grain Sheath in Dusty Plasma

1 Debye-Huckel Grain Sheath Potential Profile

As discussed earlier in chapter II, section 1, and given by equation 2.9, the sheath potential profile

around a spherical conductor is given by Vsh (r) = Vd
a
r exp

(
− r−a

λD

)
+ Vs, where Vs is the space

potential far away from the grain, or outside of the grain’s Debye sphere. The spatial variation of

Vs outside of the grain’s Debye sphere does not pose any problems, provided the inhomogeneity
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scale length of Vs is much larger than the grain radius a. Importantly, Daugherty et al. (1992)

showed that the Debye-Huckel solution is no longer valid when the grain size is comparable to or

greater than any of the Debye lengths. It becomes impossible to fit a Debye length to the solution

in 2.9 when the grain size is larger than the electron Debye length. As a is increased beyond λDe,

the grain sheath becomes planar-like. Equation 2.9 and a . λD will be assumed for negatively

charged grains and will pervade this dissertation. Here, the profile for a spherical conductor will

hold for dust grains.

2 Non-monotonic Grain Sheath Potential Profiles

For emitting grains, which includes photo-emitting, thermionic emitting, and secondary electron

emitting grains, the potential profile surrounding spherical surface can be non-monotonic. That

is to say, the sheath may have a local minimum (or maximum) in the potential profile. This is

also refered to as a virtual cathode or space charge-limited sheath (Intrator et al., 1988; Guernsey

and Fu, 1970; Poppe and Horányi , 2010). Guernsey and Fu (1970) first predicted the formation

of a non-monotonic planar sheath. Poppe and Horányi (2010) simulated a photo-electric planar

sheath, relevant to the lunar surface, which produced a non-monotonic profile. For grain sheaths,

Delzanno et al. (2004) demonstrated that non-monotonic sheaths can form around a thermionically

emitting grain. The presence of a non-monotonic grain sheath should affect current collection for

the charging models of Patacchini et al. (2007) and Gatti and Kortshagen (2008), because these

models consider the profile of the sheath when determining the collected currents. The orbit motion

limited charge model is not prepared to take this into account, although Delzanno et al. (2005)

provide an extension to OML for emitting surfaces. The emitted photo-electron currents in this

dissertation are generally small, so the effect on the grain sheath is expected to be negligible.

3 Ion-Neutral Charge-Exchange Collisions in the Dust Grain Sheath

Goree (1992) explained that ion-neutral charge-exchange collisions alter the sheath potential profile

through the process of creating trapped ion orbits. Lampe et al. (2001) was the first to provide

a self-consistent model for the dust grain sheath potential, and showed how this differed from a

pure Debye-Hückel solution. The sheath potential profile is still monotonic, although Vsh deviates

significantly from the Debye-Hückel solution after 5 Debye lengths away from the grain. Lampe
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et al. (2003); Gatti and Kortshagen (2008) incorporated trapped ions to predict the enhanced ion

current to the dust grain, but they assumed a Debye-Hückel solution when calculating the capture

radius R0. Hence, in this dissertation, this strategy is used and deviations to the Debye-Hückel

solution, although present, are neglected.

4 Grain Capacitance and Dimensionless Surface Potential

The capacitance of a spherical grain immersed in a plasma is given by (Whipple et al., 1985; Barnes

et al., 1992)

Cd = 4πε0a

(
1 +

a

λD

)
. (3.2)

This is easily derived using Gauss’ law and evaulating the electric field at the surface, starting with

the equation

Er (r = a) =
qd

4πε0a2
, (3.3)

where qd is the net charge on the grain. Proceed by equating the electric field with the negative

gradient of the Debye-Hückel solution to the sheath potential profile given in equation 2.9 to obtain

Er (r = a) = −∂Vsh
∂r

∣∣∣∣
r=a

= Vd

(
a

r2
+

a

rλD

)
exp

(
−r − a

λD

)∣∣∣∣
r=a

= Vd

(
λD + a

λDa

)
=

qd
4πε0a2

. (3.4)

Capacitance is defined by C ≡ q/∆V , and here, ∆V = Vd = Vsurf − Vs is the potential difference

between the surface of the sphere and the potential outside of the Debye sheath. Applying the

definition of capacitance to equation 3.4 produces the result given in equation 3.2. A dimensionless

surface potential χe can then be defined

χe =
eVd
kbTe

=
eqd

CdkbTe
. (3.5)

Whenever the quantity eVd/(kbTi) arises in a charging model, this reduces to Te
Ti
χe.
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C Charging of Dust Grains in the Plasma

The relative flux of electrons and ions to the grain surface determines grain charge. Secondary

electron emission occurs for electron temperatures as small as Te ≈ 2 to 5 eV. Secondary electron

emission from the dust grain surface yields a positive current contribution. Thermionic emission

from sufficiently hot dust grain surfaces and photo-electron emission due to ultra-violet light also

modifies the in-situ equilibrium dust charge to a more positive value. Photo-emission of dust grains

is of particular importance in the background of a tenuous quasi-neutral plasma (Colwell et al.,

2005). A background magnetic field alters the electron collection of a grain (Patacchini et al.,

2007). The presence of ion-neutral charge exchange collisions in the dust sheath (Lampe et al.,

2001, 2003) is an example of a mechanism where ion current is enhanced and the dust charges to

a more positive value.

Non-equilibrium conditions such as plasma inhomogeneity are responsible for additional charg-

ing processes. The distribution function determines the flux of electrons or ions to the dust grain

surface, and the distribution functions are not necessary Maxwell-Boltzmann, as indicated earlier

in section II. When the plasma inhomogeneity scale length is much smaller than the electron energy

relaxation length, the electron distribution function is non-local (Tsendin, 1995; Demidov et al.,

2002). Filippov et al. (2003) has developed a dust charging model for non-local electrons. As shown

in chapter II, section 1, ions can be modelled as mono-energetic or a drifting Maxwell-Boltzmann at

the planar sheath edge, which implies a deviation from Maxwell-Boltzmann distribution functions.

Additionally, grains with large grain speed relative to ion thermal speed collect a modified current

(Northrop and Hill , 1983).

In this section, the charging processes relevant for dust grains in space and laboratory are

discussed. Emphasis will be placed on the OML model (Mott-Smith and Langmuir , 1926) including

both mono-energtic and drifting Maxwell-Boltzmann ion flow, the charging model of Patacchini

et al. (2007), the charging model of Gatti and Kortshagen (2008), and UV photo-electron emission

because these are the processes investigated in this dissertation. Secondary electron emission and

thermionic electron emission are also important grain charging processes, but these will not be

considered for the work done in this dissertation because these effects should be negligible in

MDPX.
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1 Charging Time

The charging time of dust grains is a crucial parameter in this dissertation. In Cui and Goree

(1994) and Goree (1994), the characteristic charging time (τch) of a dust grain is given by

τcharge = Kτ
(kbTe)

1/2

ane
(3.6)

is used, where kb is the Boltzmann constant, ne corresponds to the background plasma density, Te

is the electron temperature in eV, and Kτ is a function of both Ti/Te and mi/me. As is clear by

inspection of equation 3.6, τch decreases with increasing dust grain radius or plasma density. Larger

dust grains charge faster, with the collection area scaling as ∝ a2. Higher density implies a greater

flux of incident charge carriers to the dust grain, and it follows intuitively that this must bring the

dust grain to its equilibrium value at a greater rate (smaller τch.) For OML theory in a homogeneous

plasma, the background density will not affect the total charge; density only affects the charging

rate. Electron temperature also increases the charging time, since the equilibrium charge for a

dust grain will be a larger value for a hotter plasma. The charging time can be specified for other

charging models and can include other charging processes such as photo-electron emission, etc.

A different, but related concept to the charging time is the time for a grain to gain or lose one

electron. This is given by

t1e =
1

3

λD
a

√
1 + Te

Ti

ni
ne
NDe

2π
ωpe

d|χe|
dt

, (3.7)

where χe = eVd/ (kbTe) is the dimensionless surface potential. When the charging model currents

are made dimensionless, the resulting differential equation is given by dχe

dt = Itot (χe) /
(
2
√
πenevthea

2
)
.

The charging equation can be solved numerically at each timestep by computing the currents, eval-

uating the time to gain or lose an electron t1e, and adding the change to the dimensionless surface

potential by one electron using χn+1
e = χn

e + dχe

dt t1e, where χ
n is the present value of the dimen-

sionless surface potential. For the next time step, the process is repeated. Note that t1e changes

because the current changes as a function of χe, so this is an adaptive timestep that cares only

about the time necessary to gain or lose an electron based on grain and plasma conditions. Once

the grain flips between neighboring charge states, or when χn+2
e = χn

e , the grain has reached the
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in-situ-equilibrium charge.

Using molecular dynamics simulations, Cui and Goree (1994) found that grain charge varies

stochastically, especially when the grain charge is close to the in-situ equilibrium charge. Larger

grains have smaller fractional charge fluctuations, as compared to smaller grains. Because of these

charge fluctuations, small enough grains can even charge positively if the in-situ equilibrium grain

charge is negative. For this dissertation, the larger fractional charge fluctuations of smaller grains

implies that the uncertainty in grain charge due to stochastic variation and hence the resulting grain

trajectories and drifts is more important for smaller grains. Cui and Goree (1994) explain that

while the stochastic collection of charges is related to counting statistics (Morfill et al., 1980), it is

not straightforward to apply Poisson stastics because the probabilities for electron or ion collection

depends in part on the dust grain surface potential Vd. From simulations, Cui and Goree (1994)

determined that the fractional root-mean-square square fluctuation level is given by

∆q

qeq
=

√
[qeq − q(t)]2

qeq
=

1

2
|N |−1/2 , (3.8)

where qeq is the in-situ-equilibrium charge, q(t) is the charge on the grain as a function of time,

and N is the number of charges on the grain. The timescale for charge fluctuations is an impor-

tant timescale to consider. Cui and Goree (1994) stress that the coefficient 1
2 cannot necessarily

be predicted using Poisson statistics, but this coefficient describes the fluctations for the specific

parameters chosen in their simulations.

2 Specifics of OML Model

The Orbit Motion Limited (OML) charging model (Mott-Smith and Langmuir , 1926) is the simplest

form of the more general Orbit Motion (OM) theory; the full OM theory involves simultaneously

solving the non-linear Possion equation and the particle trajectories (Delzanno et al., 2005). The

Orbit Motion Limited (OML) charging model is valid for negligible collisionality, in other words,

for high Knudsen number Kna, λmfp/a � 1, where λmfp is some characteristic collisional length

scale. and a is the characteristic length scale of the probe or object. In this dissertation, the mean

free path is determined by the ion-neutral charge-exchange mean free path and λmfp = λi. In the

OML model, the plasma is treated as being collisionless on a lengthscale a. Also in OML theory,
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it is assumed that λD � a. Specifically, OML is valid for a/λD ≤ 3 (Zakrzewski and Kopiczynski ,

1974).

In OML theory the collection of unmagnetized ions and electrons is treated as a central force

problem. An impact parameter, h, determines the maximum approaching distance at which an ion

will be collected by the dust grain, and this is determined solely by the conservation of energy and

angular momentum, and whether incident ions or electrons experience an attractive or retarding

potential. Collection here means that the ion or electron will at least graze the surface of the probe

or dust grain. The table 2.1 clarifies attractive and retarding potentials.

For the attracted species, the collection is limited by the angular momentum of the species

about the probe or dust grain; large velocity components transverse to the sphere’s surface normal

vector will have too much angular momentum to be collected by the dust grain.

For the species being repelled by the probe, the collection is still limited by angular momentum

considerations but it is also limited by the energy of the species. The particles (electrons for a

negatively charged sphere, ions for a positively charged sphere) must have enough energy to make

it to the probe surface.

i Unmagnetized Stationary grain

The derivation is briefly summarized in the appendix A, section 1, with the main assumptions

and results quoted here. The grain is assumed to be stationary with respect to the plasma. The

electron and ion distribution functions do not have to be Maxwellian, but this will be assumed for

simplicity and provides a baseline description of charging currents in plasma. A non-Maxwellian

distribution function may entail a more difficult integration in the energy and angular momentum

space. Also, assume that the grain is negatively charged, so that ions are the attracted species and

electrons are the repelled species. In all the dissertation results, this will be the case. The sphere

is a spherically symmetric collector.

Far from the grain surface, where the plasma is unperturbed by the dust sheath, the energy of

the ions with respect to the grain surface is given by

E∞ =
1

2
miv∞

2 + eVs, (3.9)
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where Vs is the space potential of the plasma several Debye lengths from the grain where the sheath

has no effect to attract or retard particles. The energy of an ion that just grazes the surface of the

grain of radius a is given by

Ea =
1

2
mi [vt(r = a)]2 + eVsurf , (3.10)

where mi is the ion mass, v∞ = vt + vr is the velocity very far away from the grain, vt(a)

is the velocity of the ion that grazes the grain surface, vt is the velocity component transverse

or perpendicular to the grain’s radial direction and vr is the velocity component parallel to the

grain’s radial direction. The velocity far from the grain is specified by the distribution function

in the plasma bulk, which does not necessarily have to be Maxwellian. Because OML assumes no

collisions occur in the sheath, conservation of energy tells us that equations 3.9 and 3.10 are equal

to each other. Also, the angular momentum of the ions with respect to the grain must be conserved.

Because the angular momentum is given by J = ri ×miv, only the transverse velocity component

contributes to the angular momentum in this coordinate system, where ri is the position of ions

and v is the velocity of ions. This results in an expression for the current density collected in terms

of the distribution function in the plasma bulk,

J∞ = mivt(r → ∞)h (3.11)

and

Ja = mivt(a)a, (3.12)

where h is a yet-to-be determined impact parameter. The values of J∞ and Ja are equivalent, and

when the two expressions in equations 3.11 and 3.12 are combined with the conservation of energy,

the impact parameter is given by (Allen, 1992)

h = a

√
1 +

2 (Vs − Vsurf )

miv2∞
. (3.13)

The parameter Vd ≡ Vs − Vsurf was defined earlier in chapter II, section 1.
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The complete derivation, including the integration over energy and momentum space is carried

out in the appendix A, section 1. Assuming the ion density far from the grain is ni, the ion current

is given by (Mott-Smith and Langmuir , 1926; Laframboise, 1966; Allen, 1992)

Ii = e4πa2ni
vthi
2
√
π

(
1− eVd

kbTi

)
. (3.14)

Non-Maxwellian ion distribution functions will modify the result given by equation 3.14. As is

evident in equation 3.14, increases in ion temperature correspond to decreases in the (negative)

quantity eVd
kbTi

, which results in reduced ion current, even though vthi increases. This is entirely

a consequence of angular momentum conservation; higher energy ions have a smaller value of

maximum impact parameter for collection. This is demonstrated in figure 3.2, whereMerlino (2006)

shows that raising the ion temperature relative to electron temperature raises the dimensionless

surface potential. However, the effect is not monotonic, and near Te/Ti ≈ 0.1 the dimensionless

surface potential becomes less negative because the increasing ion temperature results in a larger

thermal flux of ions, even though the angular momentum corresponding to the thermal speed

increases.

Electrons are repelled from the (negatively-charged) spherical grain, and the description in

equation 3.10 is modifed by:

Ea =
1

2
mevt(a)

2 + eVsurf =
1

2
mev∞

2 + eVs = E∞. (3.15)

We note also that for the repelled electrons, only particles with energy E > eV (r = a) can be

collected. Like the ions, the electrons are assumed to have a Maxwellian distribution far from the

probe, and electron energy and momentum are conserved. Using the procedures described in the

appendix A and elsewhere (Allen, 1992; Laframboise, 1966; Mott-Smith and Langmuir , 1926), the

electron current to the probe is given by

Ie = −e4πa2ne
vthe
2
√
π
exp

(
eVd
kbTe

)
. (3.16)

Equilibrium charge scales linearly with electron temperature in the stationary OML model, which

reinforces the utility of the dimensionless surface potential, χe = eqd/(CdkbTe). The results from
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equations 3.14 and 3.16 correspond to currents for a negatively charged grain. The currents are

switched when the grain is positively charged, that is to say, equation 3.16 describes ion current

collection for Vd > 0 if we change all the subscripts from e to i and there is a minus sign in the

argument of the exponential but no minus sign in front of the prefactor e4πa2ni
vthi
2
√
π
, and equation

3.14 describes electron current collection for Vd > 0 if we change all the subscripts from i to e

and there is no minus sign in front of the eVd
kbTe

term but there is a minus sign in the prefactor

−e4πa2ne vthe
2
√
π
. All of these possibilities are addressed in table 2.1. The dimensionless charging

equation for the stationary OML model is given by

2π

ωpe

dχe

dt
= −

√
2π

λd
a

√
1 + niTe

neTi

(
1 + a

λd

) exp (χe)+

√
2π ni

ne

λd
a

√
1 + niTe

neTi

(
1 + a

λd

)√meTi
miTe

(
1− Te

Ti
χe

)
, (3.17)

where χe ≡ eVd/(kbTe) = qd/(CdkbTe) is the dimensionless surface potential.

ii Unmagnetized Non-stationary Granule

The results in the previous section i can be extended to the case of a moving grain, or whenever

there is a relative velocity between attracted/repelled plasma constituents and a dust grain. It is

straightforward to obtain a solution for the special case of mono-energetic, unidirectional ion flow

using the techniques discussed in section i, without the need for integration. The result for this

simple case is given by (Nunomura et al., 1999),

Ii = eπa2nivi

(
1− 2eVd

miv2i

)
. (3.18)

Because the ions are mono-energetic and unidirectional, the collection area is πa2. For planar

sheaths in low pressure discharges, mono-energetic ion flow to the planar sheath surface can provide

a satisfactory model of ion current collection (Nunomura et al., 1999). If the ion flow speeds are

to be replaced with ion thermal Mach numbers in equation 3.18, the most sensible scaling is the

Bohm speed or ion-acoustic speed which is vb =
√

kbTe

mi
.

The solution for drifting Maxwellian populations is more involved. Kanal (1962) first obtained

the result for attractive and retarded currents to a spherical object in warm flowing plasma, later

extended to cylindrical objects by Kanal (1964) and summarized byWhipple (1981), while Northrop
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and Birmingham (1996) discussed at length the equilibrium solutions for spheres and cylinders.

Nagy et al. (1963) used these results to make measurements in the ionosphere. Patacchini (2007)

provides a very clear derivation in an appendix. This result will not be derived here, but the main

results for Maxwellian ion and electron distributions will be quoted.

Just as in the stationary case, we are not limited to drifting Maxwellian-Boltzmann ions; as

long as a suitable distribution function in energy and angular momentum f(E, J, ϕ) can be con-

structed from the velocity distribution function f(v), an expression for the current from attracted

and repelled particles can be derived. The resulting integrals may not necessarily be analytically

tractable, but it is possible to numerically integrate them using gaussian quadrature or other nu-

merical methods.

The ion current to a negatively-charged dust grain in warm flowing plasma is given by (Northrop

and Birmingham, 1996; Horányi , 1996)

Ii = e
√
πa2nivthi

[(
M2

thi +
1

2
− eVd
kbTi

) √
π

Mthi
erf (Mthi) + exp

(
−M2

thi

)]
(3.19)

while the electron current to a negatively-charged dust grain in flowing plasma is given by (Hin-

teregger , 1961; Kanal , 1962)

Ie =− e

√
π

2
a2ne

vthe
Mthe

{
√
π

(
M2

the +
1

2
+

eVd
kbTe

)[
erf

(
Mthe +

√
− eVd
kbTe

)
+ erf

(
Mthe −

√
− eVd
kbTe

)]

+

(√
−Mthe

eVd
kbTe

+Mthe

)
exp

−

(
Mthe −

√
− eVd
kbTe

)2


−

(√
−Mthe

eVd
kbTe

−Mthe

)
exp

−

(
Mthe +

√
− eVd
kbTe

)2
 ,

(3.20)

where erf is the error function, Mths = ws/vths = |vs − v| /vths corresponds to the normalized

relative velocity between grain and plasma. As discussed by Northrop and Hill (1983), the electron

thermal speed vthe is typically much larger than any relative plasma flow, or vthe � ws, where

ws = |vs − v| is the relative fluid drift speed between a plasma species and the dust grain. This

condition vthe � ws means that equation 3.20 reduces to the form given in equation 3.16, and so
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this form is often used even in the case of a relative electron drift (Horányi , 1996). Equation 3.20

describes ion current if the sphere is positively charged, all of the subscripts are changed from i to

e, and there is no minus sign in front of the ratio eVd
kbTe

or the prefactor e
√
π
2 a

2ne
vthe
Mthe

. Equation 3.19

describes electron current if all of the subscripts are changed from i to e and there is no minus sign

in front of the ratio eVd
kbTe

, but there is a minus sign in front of the prefactor −e
√
πa2nevthe. Drifting

Maxwell-Boltzmann ions are used in throughout this work to characterize ion flow in collisional

planar sheaths, and to describe collection current when there is a relative drift motion between dust

grains and Maxwell-Boltzmann ions. Meige et al. (2007) also suggest that drifting Maxwellian ion

populations can exist even in lower pressure plasmas. Grains might be used as a diagnostic tool to

discriminate between mono-energetic and drifting Maxwellian ions.

iii Magnetized Grain

The OML model cannot readily describe arbitrary electron or ion magnetization, but it is possible

to express results for the B → ∞ limit. The helical orbits of electrons and ions as they approach a

probe imply an upper and lower limit to current collection, as shown by Rubinstein and Laframboise

(1982). Arbitrary electron magnetization is in the purview of the charging model developed by

Patacchini et al. (2007), which is discussed later in section 4 For the B → ∞ limit, the equation

3.16 is modified by the introduction of a prefactor 1
2 . Infinite magnetic field means that the gyro-

radii of electrons is zero, so only the electrons directly above or below the grain along the field line

can contribute to the current, so that the effective collecting area is πa2. The exponential eVd
kbTe

is

retained because a negatively charged sphere will repel any incoming electrons along the field line

unless the kinetic energy is greater than Vd. Also in this same limit, only ions above or below the

grain along the field line can contribute to the current, and the ion current is described by

Ii = e
π

2
nia

2vthi. (3.21)

Magnetized electron or ion currents will be assumed if the gyro-radius of the species is less than

the radius of the dust grain.
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3 Specifics of Gatti-Kortshagen Model

In the context of grain charging, the Kortshagen charging model (Gatti and Kortshagen, 2008) is

valid for negatively charged grains, but it is applicable to the entire range of collisionality. The

effects of electron or ion magnetization on current collection were not originally treated by this

model because RLs/a > 1, so they will be neglected here. For this dissertation, the magnetized

OML electron and ion currents will be assumed if RLs/a < 1. The electron current used is the same

as for the case of electron collection in a retarding potential, i.e., Ie = 4πa2neevthe exp (eVd/kbTe),

where Vd is the difference between the grain surface potential and the ambient plasma potential.

The collected ion current however is split into three parts, with contributions from three separate

charging models. These are represented by IOML
i (collected ion current from the OML model),

ICEC
i (enhanced ion current due to ion-neutral collisions in the grain sheath), and IHyd

i (ion current

from the Hydrodynamic model.) Characteristic of the enhanced current due to ion-neutral charge-

exchange collisions is a capture radius R0 which was developed by Zobnin et al. (2000); Lampe

et al. (2003); Khrapak et al. (2005), following the ideas of Zakrzewski and Kopiczynski (1974). If

ions with kinetic energy 3
2kbTi pass within this length, it will likely be collected by the dust grain

with probability P1. Assuming that λD � a, the capture radius (Gatti and Kortshagen, 2008) is

defined as:

R0 =
e |∆V | a

(
1 + a

λD

)
3
2kbTi + e |∆V | a

λD

. (3.22)

In this charging model, all of the currents are added together, and each one is weighted with the

probability of an ion to undergo no collisions inside the capture radius sphere (P0 corresponding

to the OML term), exactly one collision inside the capture radius sphere (P1 corresponding to the

collision-enhanced current term), and more than one collision inside the capture radius sphere(P>1

corresponding to the Hydrodynamic term.) This can be written succinctly as:

Ii = P0I
OML
i + P1I

CEC
i + P>1I

Hyd
i , (3.23)

where IOML
i is given equation 3.14, 3.18, or 3.19, depending on whether the ions are stationary,
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mono-energetic, or drifting Maxwell-Boltzmann ions, respectively,

ICEC
i = e4π (αR0)

2 ni
vthi
2
√
π
, (3.24)

and

IHyd
i = e

3

2
πani

vthi√
π
λi

∣∣∣∣ eVdkbTi

∣∣∣∣ . (3.25)

Khrapak et al. (2005); Gatti and Kortshagen (2008) define a Knudsen capture radius number,

KnR = λi/ (2αR0), where λi is the mean free path for ions, and α ≈ 1.22 is the constant obtained

by averaging equation 3.22 over a Maxwell-Boltzmann energy distribution:

αR0 =

∫ ∞

0
R0 (E) f (E) dE = 1.22R0

(
3

2
eTi

)
. (3.26)

This allows the probabilities to be written:

P0 = exp

(
− 1

KnR

)
(3.27)

P1 =
1

KnR
exp

(
− 1

KnR

)
(3.28)

P>1 = 1− (P0 + P1) . (3.29)

The Gatti-Kortshagen charging model is thus an extension of the Collision-Enhanced current

charge models developed by Zakrzewski and Kopiczynski (1974); Zobnin et al. (2000); Lampe et al.

(2003); Khrapak et al. (2005), because it allows a smooth transition between the three major ion

regimes of collisionless, weakly collisional, and collisional. It should be noted that for the IHyd
i

term, the estimate for Rcapture relies on using a Yukawa potential with Debye length λD (Gatti

and Kortshagen, 2008). This model is therefore valid only when the dust grain radius is smaller

than the shielding length, or a < λD. In principle, a non-linearized Yukawa potential can be

used to determine Rcapture, although this results in a transcental expression for the capture radius
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(Khrapak et al., 2005) and so an analytical expression for R0 would be unavailable. Because the

capture radius was derived using a Yukawa potential, the Kortshagen charging model has an implicit

dependence on this sheath profile, in contrast to the OML model where the sheath profile was not

considered. The normalized surface potential χe = eqd/(CdkbTe) for the charging model of Gatti

and Kortshagen (2008) is shown in figure 3.3.

Note that equation 3.23 is valid only in the limit of small grain velocity with respect to neutral

thermal velocity, or |vn − vd|/vthn � 1. The capture radius given by equation 3.22 assumes

a Maxwell-Boltzmann neutral gas atom distribution, which needs to be recalculated for other

distribution functions. Maxwell-Boltzmann neutral gas atom distributions are assumed throughout

this dissertation because this is a good approximation for laboratory experiments, but the procedure

to obtain the capture radius is instructive. An ion resulting from charge-exchange with a thermal

neutron is captured when its kineitc energy is equal to its potential energy in the grain sheath,

expressed by

eVsh(r = R0) = E. (3.30)

When the grain sheath is not the given by the Debye-Hückel solution, such as in a non-monotonic

sheath which may arise from photo-emission (Poppe and Horányi , 2010), equation 3.22 is no longer

valid. Equation 3.30 needs to be inverted in order to determine the capture radius as a function

of energy, which may not lead to a closed form solution when the grain sheath potential profile

deviates from the Debye-Hückel solution. Throughout this dissertation, the deviation from the

Debye-Hückel solution is considered small because the photo-electric current is considered small.

To determine the capture radius, integrate over the neutral gas distribution function to obtain

R0 ≡ 〈R0〉 =
∫ ∞

0
R0 (E) fn (E) dE, (3.31)

and the Knudsen capture radius number becomes KnR = λi/(2R0). As an additional caveat,

equation 3.23 is only valid for the case of unmagnetized ions, i.e., the ion gyro-radius is larger than

the size of the dust grain.
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4 Specifics of Patacchini and Hutchinson Model

An analytical model for electron collection to a spherical probe was developed by Patacchini et al.

(2007) for arbitrary a/RLe ratios. The model described by Patacchini et al. (2007) does not consider

arbitrary a/RLi ratios, and the OML ion current is assumed. The model is briefly described by

Patacchini et al. (2007), while Patacchini (2007) provides a description of this theory in even greater

depth. Below are quoted the major results with some of the necessary background. Patacchini et al.

(2007) fitted empirical polynomial fits to output from the SCEPTIC code (Hutchinson, 2002).

In section i, the unmagnetized current for B = 0 is described by equation 3.16 as

Ie = −e4πa2ne
vthe
2
√
π
exp

(
eVd
kbTe

)
, (3.32)

while in section iii the magnetized current for B → ∞ is half of this quantity, or

Ie = −e2πa2ne
vthe
2
√
π
exp

(
eVd
kbTe

)
. (3.33)

The upper and lower bounds for electron curent collection are given by Rubinstein and Laframboise

(1982) if the magnetic field is not considered zero or infinite. If the grain is at the local space

potential, or Vd = 0, Patacchini et al. (2007) provide an empirical estimate for ι∗ to within 0.3%

for the electron current collection, which is given by

ι∗ = −e4πa2ne
vthe
2
√
π

(
1.000− 0.0946z − 0.305z2 + 0.950z3 − 2.200z4 + 1.150z5

)
, (3.34)

where z = a
RLe

/
(
1 + a

RLe

)
. Sonmor and Laframboise (1991) calculated the exact numerical solution

for the collected electron current for large shielding radius compared to the grain radius or λD � a,

corroborated by Patacchini et al. (2007). Through dimensional analysis, Patacchini et al. (2007)

determined that the only relevant parameter for the electron current when λD � a is given by the

dimensionless number

η = − eVd
kbTe

RLe

a
. (3.35)
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Once again, a fit can be made to results of the SCEPTIC simulations over this parameter to yield

Ie = −e4πa2ne
vthe
2
√
π
[A∗(w) + (1−A∗(w))ι∗(z)] exp

(
eVd
kbTe

)
, (3.36)

where

A∗(w) = 0.678w + 1.543w2 − 1.212w3, (3.37)

and w = η/(1 + η).

Patacchini et al. (2007) extend the result in equation 3.36 even further, to the case of arbitrary

shielding length. The requirement that λD � a is lifted by adjusting the parameter η in equation

3.35, so that it is described by

η = − eVd
kbTe

RLe

a

[
1 +

1

4

RLe

a
− exp

(
−4

a

RLe

a

λD

)]
. (3.38)

In this dissertation, all references to the Patacchini-Hutchinson charging model will refer to OML

ions and the electron current given by equation 3.36, where A∗(w) is given by 3.37, using the

definition of η given by equation 3.38.

5 Photoemission and Grain Work Function

The photo-emission of electrons has been reviewed extensively by Horányi (1996); Shukla (2001),

but a brief summary is presented here. UV radiation performs the role of abrupt inhomogeneity

which is analyzed in chapters V and VI. Because the grains are in a quasi-neutral plasma, a non-

neutral photo-electric sheath (Sickafoose et al., 2000; Poppe and Horányi , 2010) will not be assumed.

Photo-electrons charge the grain less negatively, but regimes where Vd > 0 are not considered and

the grain charge will always be negative. For the case of single-sided UV illumination when Vd > 0,

IUV = eπa2fUV exp
(

eVd
kbTpe

)
, where fUV is the flux of photo-electrons from the surface and Tpe is

the temperature of the Maxwell-Boltzmann distribution of photo-electrons.

If Vd < 0, the current due to single-sided UV illumination is given by

IUV = eπa2fUV , (3.39)
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which is a positive current because electrons leave the surface of the grain, charging it less negatively.

If the UV illumination is double sided, then a prefactor of 2 must be included in equation 3.39,

and if the UV illumination is isotropic, a prefactor of 4 is required. The flux fUV is dependent

on properties of the source spectrum and the material properties of the emitting surface. More

precisely, this flux is determined by

fUV =

∫ λ1

0
F (λ)Y (λ) dλ, (3.40)

where F (λ) is the flux of UV photons as a function of wavelength λ for a UV source, Y (λ) is

the quantum efficiency of photoemission for the grain material, and λ1 is the wavelength cutoff,

representing the longest wavelength capable of producing a photo-electron for a given work function

(Colwell et al., 2005).

As an example, lunar regolith in the presence of solar UV radiation produces a photo-electron

flux of

fUV = 2.5× 1014
κ

d2
, (3.41)

where d is the distance of an object from the sun in astronomical units, κ is the efficiency, close to

0.1 for dielectrics, nearly unity for conductors, and fUV is given in units of m−2s−1 (Colwell et al.,

2005; Whipple, 1981; Horányi , 1996).

This flux can take on an infinitude of values for different properties of UV source and material

composition (work function), so the approach for this dissertation is to consider the UV current as

some fraction of the thermal electron current, or

IUV =

(
e4πa2ne

vthe
2
√
π

)(√
πfUV

2nevthe

)
=

(
e4πa2ne

vthe
2
√
π

) √
π

2
υ, (3.42)

where υ = IUV /(nevthe) is the dimensionless quantity of photo-electron current normalized by the

thermal electron flux. For stationary plasma, the grain attains a negative in-situ equilibrium grain

charge when υ < 2/
√
π, and a positive charge when υ > 2/

√
π. The work in this dissertation is

restricted to the υ < 2/
√
π regime, and furthermore no considerations for UV photons with energies

greater than 12 eV are made, to ensure that the UV illumination ionization of neutral gas atoms
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can be neglected (Rosenberg and Mendis, 1995).

D Forces acting on a Solid-State particle in Plasma

A solid state particle, or dust grain, is subject to numerous forces when it is in a plasma. In

a homogeneous plasma, dust grains acquire a net negative charge due to the higher mobility of

electrons, as discussed earlier in section 1 Because grains have much larger mass than ions or

electrons, the gravitational force can not be ignored. In the case of larger grains it can be the

dominant force. However, the small size of dust grains means that grains are typically light enough

that electromagnetic forces are also important, and so these forces must be included when describing

the dynamics of grains in plasma. Additionally, due to the much larger collision cross-sections of

grains, drag forces are important for the dust dynamics, especially in gas discharges. There are

also other forces, such as the thermophoretic force and others which are treated as distinct forces

in their own right which are absent for particles such as electrons and ions. In this section, we

will review the important forces acting on a dust grain. Not all of these forces will be in the scope

of this dissertation, but they are included for completeness. I will assess the applicability of each

force to the work provided in this dissertation. Many of these forces can be neglected under certain

conditions.

1 Gravity

For dust grains that are of micron or submicron size, the gravitational force is an important force

that must be included in order to obtain grain trajectories (Nunomura et al., 1997). Because grains

have larger mass than ions or electrons, dust grains are subject to the g×B drift, which is described

later in appendix A, section 4. It is for this reason that magnetized dusty plasma experiments

(Konopka et al., 2005a; Schwabe et al., 2011; Thomas et al., 2012) are typically designed to allow

for rotation of the vacuum vessel relative to the direction of the gravitational field in order to

produce or eliminate the g ×B drift. The levitation height of dust grains in a planar sheath is in

part determined by the gravitational force. The gravitational force on a dust grain is given by

Fg = mdg (r) , (3.43)
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where the g (r) is the local gravitational acceleration. For laboratory experiements on the surface

of earth, g ≈ 9.8 m s−2. In general, the local gravitational acceleration will be given by

g (r) =
GM

|rd − rb|3
(rg − rb) (3.44)

where M is the mass of a celestial body, such as a star, planet, moon, comet, or asteroid that is

sufficiently large enough to produce a gravitational field, rb is the position of this celestial body in

a chosen coordinate system, and rd is the position of the dust grain in this coordinate system.

When dealing with dust grains in orbit around a celestial body, it is often easier to choose a

coordinate system that is co-located with the celestial body’s center of mass (Northrop and Hill ,

1983). In this case, rb = 0, and we are free to choose r = rd, and equation 3.44 reduces to

g (r) = GMb
r2

r̂.

2 Electric Force

The force on a charged grain in a plasma due to the electric force is computed in the same way as

for electrons in the plasma (Bliokh et al., 1994),

FE = qdE (rd, t) , (3.45)

where qd is the charge on the dust grain, and E (rd, t) is the electric field measured at the grain

position rd. Quasi-neutral plasmas tend to shield electric fields from penetrating the volume of the

plasma, generally preventing the charge separation of electrons and ions. For many dusty plasma

experiments (Nunomura et al., 1999), the ion-rich planar sheath provides a vertical electric field

that levitates grains against gravity. In the co-axial plasma described by Zimmermann et al. (2010),

sheaths develop on the inner and outer concentric cylinders, and there is a radial electric field in

the quasi-neutral pre-sheath or plasma bulk.
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3 Magnetic Force

The force on a charged dust grain in a static, uniform magnetic field is the same as for ions and

electrons, and is given by (Bliokh et al., 1994; Gurnett and Bhattacharjee, 2005)

FB = qd [vd ×B (r, t)] . (3.46)

Evident from equation 3.46 is that the magnetic force is zero if the grain has no velocity. In

the absence of other forces and for constant grain charge qd, the dust grain gyrates in a circle in

the plane perpendicular to the magnetic field direction. The radius of this circle is (Gurnett and

Bhattacharjee, 2005)

RLd =
mdv⊥
|qdB|

, (3.47)

where v⊥ is the constant component of the dust grain velocity perpendicular to the magnetic field

direction. This is the same description as for more elementary plasma constituents, such as ions

and electrons.

The definition given by equation 3.47 is an important scale length for electrons, ions, and dust

grains. This parameter was discussed for electrons and ions in chapter II, section 5, and in the

same way we use the term magnetized-orbit dust to describe dust grains that have L > RLd, where

RLd is the gyro-radius of dust grains and L is the size of the plasma or region of space in question.

Because dust grains are more massive than electrons or ions, it is necessary to employ larger fields

to achieve the magnetized-orbit dust condition compared to the magnetized plasma condition. The

larger collision cross-section of dust grains also means that the frequency of momentum-changing

binary collisions with neutral gas atoms is much higher, which also poses a problem for maintaining

the magnetized-orbit dust condition; the details of this are explored in greater depth in section E.

4 Neutral Drag Force

The neutral drag force is of particular importance for laboratory dust experiments and in space

regimes where there are significant populations of neutrals present (Northrop and Birmingham,

1996). There are three important regimes for characterizing the neutral drag force on grains: the
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hydrodynamic regime, the kinetic regime with relative dust-neutral velocity much less than the

neutral thermal speed, also known as Epstein drag (Epstein, 1924), and the kinetic regime with

the relative dust-neutral velocity much greater than the neutral thermal speed. All three regimes

can be explored by the test particle code supplied by this dissertation, but the Epstein drag regime

is the focus for this dissertation. I will briefly review the three regimes.

For small Knudsen numbers Kna = λi
a the dust grain is in the collisional or hydrodynamic

regime. For small Reynolds numbers av/ν, where v is the speed of the grain relative to the fluid

and ν is the kinematic viscosity of the fluid, viscous forces are much greater than inertial forces.

When both the Knudsen and Reynolds numbers are small, the neutral drag force is given by Stokes’

law

Fn = −6πηa (vd − vn) , (3.48)

where η is the dynamic viscosity of the gas, and the quantity (vd − vn) is the relative velocity

between the dust grain vd and the neutral fluid speed vn (Paeva, 2005). For large Reynolds num-

bers, equation 3.48 is no longer valid. Because the Knudsen numbers considered in this dissertation

exceed unity, the hydrodynamic drag will not be considered. The neutral drag force on dust grains

will be evaluated using a kinetic treatment, which determines the momentum transferred from a

statistical ensemble of neutral gas atoms. Because of this kinetic treatment, the Reynolds number

is irrelevant for grains in this dissertation because the viscosity is not defined.

For large Knudsen numbers, the dust grain is in the collisionless or kinetic regime. The kinetic

neutral drag force must further be divided into categories of large relative velocity of dust grains

to neutrals compared with the neutral thermal speed, or small relative velocity of dust grains to

neutrals compared with the neutral thermal speed. For the former case, |vd−vn|
vthn

� 1, and the

neutral drag force is given by

Fn = −πa2mnnnvthn (vd − vn) |vd − vn| , (3.49)

where mn is the mass of neutrals, nn is the neutral atom density, and vthn =
√

2kbTn

mn
(Paeva,

2005). In this case, the drag force is proportional to the square of relative velocity of dust grains to
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neutrals. Grains do not generally satisfy |vd−vn|
vthn

� 1 under laboratory conditions, but it is possible

for this situation in space (Northrop et al., 1989; Northrop, 1992; Northrop and Birmingham, 1996).

Because the drag force is quadratic in the relative velocity of dust grains to neutrals, it is not possible

to incorporate it into a Boris computational scheme. However, it can be treated using the iterative

leapfrog method provided in this dissertation. Additionally, quadratic drag does permit analytic

solutions for grain trajectories in some cases.

For the last case, or small relative velocity of dust grains to neutrals compared with the neutral

thermal speed, the Epstein drag force (Epstein, 1924) can be used. Epstein drag is given by

Fn = −δ4
3
πa2mnnnCn (vd − vn) , (3.50)

where δ ≈ 1 is a coefficient that accounts for the collision between gas atoms and the dust grain.

For melamine grains, δ = 1.6± .13 (Liu et al., 2003). It should be noted that the average thermal

speed of neutrals, Cn =
√

8kbTn

πmn
, is used, rather than the thermal speed vthn. In this case, the

drag force is linear in the relative velocity of dust grains to neutrals, so it is straightforward to

incorporate into the Boris computational algorithm. The Epstein drag readily permits analytic

solutions for grain trajectories.

5 Ion Drag Force

Just as the neutral drag force is the force on a dust grain due to collisions with neutral gas atoms,

the ion drag force is the force on a dust grain due to collisions with ions. Because electrons are much

less massive than ions, dust-electron collisions do not appreciably alter the dust grain’s momentum.

There are two components to the ion drag, ion collection force and ion orbit force. When ions strike

the dust surface, they are collected by the grain and the ions impart their momentum to the grain,

which corresponds to the ion collection force. If ions pass close enough for the central field of

the dust grain to deflect the ion but it is not collected, a force is exerted on the grain which

corresponds to the ion orbit force (Merlino, 2006). Like the neutral drag, in the kinetic limit there

are expressions for the ion drag force for large relative dust ion velocity |vd − vi| /vthi � 1, and

small relative dust ion velocity |vd − vi| /vthi � 1.

In the high velocity limit |vd − vi| /vthi � 1, the ion collection force is given by (Barnes et al.,
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1992; Merlino, 2006)

Fic = −nimi (vd − vi) vsπb
2
c , (3.51)

where vi is the directed or fluid ion flow, vs =
√

8kbTi
πmi

+ (vd − vi)2, and bc = a
√

1− 2eVd
miv2s

is the

impact parameter for ion collection. Recall that a similar impact parameter was encountered earlier

in section 2 This impact parameter is determined by charge model, so the ion collection drag force

is charge model dependent. The ion orbit force is given by (Barnes et al., 1992)

Fio = −nimi (vd − vi) vs (4π) b
2
90Γ, (3.52)

where b90 = eqd
4πε0miv2s

is the impact parameter for 90◦ collisions, and Γ = 1
2
λ2
D+b290
b2c+b290

is the Coloumb

logarithm integrated from b90 to λD. These integration limits are used because b90 is the closest

distance ions can approach without being collected, and the central field of the dust grain does not

affect ions at distances greater than λD. This Coloumb logarithm is essentially the same as the one

discussed in section 2, except that bc and b90 are different for dust when compared to electrons and

ions. The impact parameter b90 is not charge model dependent, unlike bc. The total ion drag force

is the sum of the two components in equations 3.51 and 3.52, or Fi = Fic + Fio.

Note that in the high velocity limit, both the collection and orbit forces vary non-trivially on

the dust velocity relative to ion flow. It is only possible to achieve analytical results for magnetized-

orbit grain trajectories if the grain charge does not change with time. The high velocity limit of the

ion drag force cannot be included into a Boris scheme, but the iterative leapfrog solver provided in

this dissertation can handle these complications.

Barnes et al. (1992); Fortov et al. (2005) provide a description for the ion drag in the low

velocity limit |vd − vi| /vthi � 1. The ion collection force in this limit is given by (Bacharis et al.,

2010)

Fic = πa2mini

√
8kbTi
πmi

(vd − vi)

(
1− eVd

kbTi

)
, (3.53)
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and the ion orbit force is given by (Fortov et al., 2005; Bacharis et al., 2010)

Fio =

√
32π

3

(vd − vi)

vthn
ε0T

2
i Λβ

2
T , (3.54)

where the Coloumb logarithm is approximated by Λ ≈ exp(βT /2)Ei(−βT /2), Ei is the exponential

integral, βT = a |eVd| /(λDkbTi) is the thermal scattering parameter. As discussed by Bacharis

et al. (2010) and demonstrated by Hutchinson (2006) through simulations, the low velocity version

of the ion orbit drag force described by Fortov et al. (2005) is valid for thermal Mach numbers up

to |vd − vi| /vthi = 1.5.

Unlike in the high velocity limit, the low velocity limit drag force is linear rather than quadratic

in (vd − vi), and it can be included into a Boris scheme. Analytic solutions to magnetized-orbit

grain trajectories are permitted if grain charge is constant, but it may be possible to find approx-

imate analytical solutions if the grain charge changes slowly enough during a gyro-orbit, and the

dependence on grain charge is weak.

For dust experiments using planar sheaths, ion flow into the sheath provides a force on the

grain that points from the bulk plasma to the biased planar surface (Nunomura et al., 1999). The

ion drag force affects the levitation height, though it can often be neglected in the vertical (sheath)

direction when compared to gravity and the electric force in laboratory experiments (Nunomura

et al., 1999). If a vertical magnetic field is present along with a radial electric field, an azimuthal

flow of ions is present, which alters dust dynamics because the ion drag is now in the plane rather

than a simple change in the levitation height. For fusion relevant plasmas, the ion drag can be the

dominant force present (Smirnov et al., 2007).

6 Thermophoretic Force

The thermophoretic force arises from a neutral gas temperature gradient. This force is a result of

the higher random thermal flux of neutral gas atoms from the hotter side of a temperature gradient

when compared to the flux of neutral gas atoms on the colder side of the temperature gradient. The

thermophoretic force is given by (Rohatschek , 1985, 1995; Rosenberg et al., 1999; Merlino, 2006)

Fth =
16
√
π

15

a2κT
vthn

∇Tn, (3.55)
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where κT is the translational component of the thermal conductivity. As discussed by Merlino

(2006), the thermophoretic force can be induced by heating one of the electrodes in a planar

discharge. In this dissertation, there will be no gradients in the neutral gas background, so this

force will not be considered.

7 Photo-electron Recoil and Radiation Pressure Forces

Electrons can leave the surface of the grain if UV photons incident on a grain surface have sufficient

energy. As an example, if photons with frequency νUV and energy hνUV illuminate a grain with

work function W , then electrons leave the surface with energy W −hνUV . When an electron leaves

the surface, conservation of momentum implies that the grain recoils in the opposite direction

from where photo-electron leaves the surface. An upper limit to this photo-electron recoil force for

single-sided illumination is given by (Rosenberg and Mendis, 1995)

Frc ≈
1

2
κJUVmevpeπa

2, (3.56)

where κ is the efficiency of photo-electrons, close to 0.1 for dielectrics, nearly unity for conductors

as mentioned earlier in section 5, JUV is the flux of UV photons, and vpe is an ensemble averaged

velocity of photo-electrons. Alternatively, the product κJUV vpe can be replaced by integrating

κJUV vpe =

∫ λ1

0
F (λ)χ (λ)

√
2

me

(
hc

λ
−W

)
dλ, (3.57)

to obtain the ensemble average of all quantities. When UV illumination is along the magnetic field

or planar sheath direction, the photo-electron recoil force only changes the levitaiton height. When

UV illumination is perpendicular to the magnetic field direction, an Frc ×B drift results, where

Frc is the photo-electron recoil force. There is also a radiation pressure force, but because UV

illumination is assumed to be along the magnetic field direction and the radiation pressure force is

two orders of magnitude smaller than the photo-electron recoil force (Rosenberg and Mendis , 1995),

it is not considered.
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E Gyration and Charge Model Parameter Space

In order to characterize gyro-phase drift in the context of the charge models in section C, specifically

the subsections 2, 3, and 4, some perspective is necessary. These charge models all lie along

a spectrum of collisionallity and ion or electron magnetization number. While collisionality is

interesting from a charge model perspective, for gyro-phase drift it brings with it the inevitable

complication of dust grain collisions with neutral atoms. For laboratory experiments with |vn −

vd|/vthn � 1, the Epstein drag force (Epstein, 1924) can destroy gyro-motion if the collision

frequency of a gyrating dust grain is greater than the dust gyro-frequency (Thomas et al., 2012).

Because the collisionality of the plasma with respect to the dust grain is best parameterized

by the Knudsen capture radius number KnR, it is useful to determine the capture radius number

dependence on the ratio of dust grain gyro-frequency to dust-neutral collision frequency. Starting

with equation 3.22, it is possible to reduce factors within this expression to some fundamental

scaling parameters. The Knudsen capture radius number is given by (Gatti and Kortshagen, 2008)

KnR =
Kna

(2)(1.22)

(
3
2
CdkbTi

e|qd|
λD
a + 1

λD
a + 1

)
=

Kna
(2)(1.22)

(
3
2 |χe|−1 Ti

Te

λD
a + 1

λD
a + 1

)
, (3.58)

where Ti =
1
2miv

2
thi/kb is the ion temperature and qd < 0 is the charge on the dust grain. If the

dust-neutral collision frequency described in section 4 is given by (Epstein, 1924; Thomas et al.,

2012)

νdn = δ
4π

3
a2nn

mn

md
Cn, (3.59)

where Cn =
√

8kbTn/(πmn) is the mean speed of neutrals if Tn is the temperature of neutrals,

mn ≈ mi is the mass of neutrals, and the dust gyro-frequency is given by |qd|B/md, then

ωcd

νdn
=

3 |qd|B
4πa2nnCnmn

, (3.60)

where nn is the neutral atom density in the plasma. Rearranging equation 3.60 in terms of qd allows

substitution of equation 3.60 into equation 3.59 and if the relationships Te � Ti and ne ≈ ni = n0
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hold, this yields

KnR =
9π

(1.22) (8)

(
1 + neTi

niTe

)(
1 + a

λD

)
a

RLi

ni
nn

√
me
mn

√
Te
Tn

Kna

(
λD
a

)3
(
λD
a + 1

) (
ωcd

νdn

)−1

+
Kna

(2) (1.22)
(
λD
a + 1

) ,
(3.61)

where λi is the mean free path for ion-neutral charge exchange collisions, ni
nn

is the ionization fraction

of the plasma, and βi =
a

RLi
is the ion magnetization number. The ion magnetization number is

related to the electron magnetization number, βe =
a

RLe
. This relation is given by βi = βe

√
meTe
miTi

.

Note that equation 3.61 is truly only applicable for stationary grains in homogeneous plasmas, but

it serves as an approximation for the grain when considering its gyro-averaged plasma parameters

during one gyro-orbit. The parameter space diagram is shown in figure 3.1. Of course, a grain can

transition through different parameter space regimes during a gyro-orbit, which is an issue we will

explore later in this dissertation.

At first sight, it is unclear what has been gained by writing KnR in this new and different

way, especially since so many free parameters appear in equation 3.61. However, many of these

dimensionless fractions are constrained. The dimensionless number λD
a is allowed to vary, but it

can only take on values much greater than unity, meaning λD
a + 1 ≈ λD

a . For most dusty plasma

laboratory experiments, Ti
Tn

≈ 1, and since we take the square root of this quantity this ratio is

nearly unity. It is possible to approximate equation 3.61 by

KnR ≈ 9π

(1.22) (8)

(
a

RLi

)(
ni
nn

)
Kn3a

(
1 +

neTi
niTe

)−1( λi
λD

)−2(ωcd

νdn

)−1

+
1

(2) (1.22)

(
λi
λD

)
. (3.62)

For quasineutral plasma, ne ≈ ni.

We are left to discuss the free parameters ni
nn

, a
RLi

, Kna, and λi
λD

. In general, all of these

parameters can be controlled in some part in experiments, although it is clear that some of these

parameters are inter-related. For example, ni
nn

and λi are related through the neutral gas pressure.

For weakly ionized plasmas, especially glow discharge plasmas, the ionization fraction ni
nn

can be

0.01 or lower while in Q-machines the ionization fraction is near unity. The ionization fraction

represents how much quasi-neutral plasma exists compared to the background gas. For many glow-
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discharge and RF plasma laboratory experiments, the ionization fraction can be changed by the

appropriate adjustment of input power. For the purposes of these parameter space diagrams, treat

the ionization fraction as a free parameter. The parameter a
RLi

(or a
RLi

=
√

meTe
miTi

a
RLe

) represents

the magnetization of ions (or electrons), which is an important parameter in all charging models.

Arbitrary electron magnetization a
RLe

is only fully treated by the charging model of Patacchini et al.

(2007). The Knudsen number Kna will still be used as a parameter to characterize the collisionality

of the plasma. The final free parameter, λi
λD

= Kna/
λD
a , describes the ratio between the ion-neutral

collision scale length and the Debye length. If this ratio is near unity, and for a� λD, there is, on

average, approximately one ion-neutral charge exchange collision in the dust sheath. This actually

corresponds to having slightly more than ion-neutral charge exchange collision, because the size

of the entire dust sheath s might be s ≈ 5λD. The collision enhanced ion current is at a near

maximum when this is the case, and the left hand side of equation 3.62 trends toward KnR = 100

for large values of
(
ωcd
νdn

)−1
, which is shown in figure 3.1. This parameter is notable in that it also

strongly affects the behavior of equation 3.62 for smaller values of
(
ωcd
νdn

)−1
. By increasing λi

λD
in

an effort to obtain higher KnR values, the slope of the resulting KnR((
ωcd
νdn

)−1) curves is flattened

at the smaller values of (ωcd
νdn

)−1. This is demonstrated in figure 3.1.

The product of ni
nn

, a
RLi

, and Kn2a can be used to adjust the behavior of the KnR((
ωcd
νdn

)−1)

curves without affecting the behavior as the gyration parameter gets very large, or in other words,(
ωcd
νdn

)−1
→ ∞. Specifically, this number product is given by

Number Product =
9
√
π

8 (1.22)

√
miTi
meTe

βe
ni
nn

Kn3a

(
1 +

neTi
niTe

)
(3.63)

This is evident in figure 3.1, where the different values of this number product do not affect the

Knudsen capture parameter at large values of the gyration parameter. However, these different

values of the number product yield very different parameter curves at smaller values of the gyration

parameter. Note that all connection to the particle charge has been eliminated from the description

given in equation 3.62; the particle charge must be eliminated in order to get an expression in terms

of the gyration ratio, ωcd
νdn

. The expression in equation 3.62 is not necessarily fundamental, but it

allows us to more readily understand the relevant parameter space for a specific charge model.

The figure 3.1 shows where the OML and hydrodynamic models are relevant. For KnR > 102,
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the grain is effectively in a collisionless regime and the OML theory is sufficient to describe the

charging process. For KnR = 1, the grain is in the regime where there is approximately one ion-

neutral collision in the grain sheath, which results in an enhanced ion current to the grain. For

KnR < 10−2, there are many ion-neutral charge-exchange collisions, and the ion current is limited

by ion mobility, which means that the ion current decreases with decreasing Knudsen capture

parameter and the charge on the grain becomes more negative. Figure 1 of Gatti and Kortshagen

(2008) shows this specific relationship quite clearly. It should be noted that the charging model

of Gatti and Kortshagen (2008) yields the asymptotic results of the hydrodynamic, OML, and

collision-enhanced current charging models, but distinguishes itself from all of these in that it

offers predictive power over all Knudsen capture parameter values. Hence, the charging model of

Gatti and Kortshagen (2008) claims to predict in-situ equilibrium grain charge in the range of

102 > KnR > 10−2. Also in this range of the Knudsen capture parameter number, the charging

rates of these models may be different. It is of interest therefore to see if gyro-phase drift, which

is charging-rate dependent, can distinguish between the Gatti-Kortshagen charging model and

another charge model, such as OML, in a region where the effects of orbit-motion-limited ion

current, collisionally-enhanced ion current, and hyrodynamic current are all non-negligible, such as

KnR ≈ 101.

As mentioned earlier, gyro-motion exists if ωcd
νdn

> 1, but this does not guarantee that the

charging-rate feature of dust grains gives rise to gyro-phase drift. A grain can exist anywhere in

the parameter space but if there is no charge modulation, then there can be no gyro-phase drift.

Additionally, the charge state modulation must be sufficiently large to measure gyro-phase drift.

Since the ratio of gyro-averaged gyro-period to gyro-averaged charging time (τg/τc) ≈ 1 produces

the maximum amplitude of the gyro-phase drift, it is necessary to determine τg/τc ratios near unity

using the free parameters.
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Chapter IV

Methodology for Test Particle

Investigation

Test particle simulations elucidate the motions of charged particles and particulate matter in the

presence of electric, magnetic, and other force fields. In order to obtain trajectories and drift

motions for grains in arbitrary plasma profiles, and to provide independent corroboration of guiding

center drift predicted by Northrop’s adiabatic approach in a gradual inhomogeneity and later for

the new approach for an abrupt inhomogeneity in chapter V, we require a computational method

for solving the equations of motion and the charge evolution of the dust grain. Predicting the

guiding center drift motions using Northrop’s adiabatic approach a priori is not possible for the

most general descriptions of grain charging because the charge modulation q1 is not known and

the relationship to the DC offset q0 may not be known due to the non-stationary charging effects.

Guiding center drifts can be completely predicted using Northrop’s simplified charging model, where

grain velocity relative to ions is much larger than the ion thermal speed, limiting the scope of the

theory sufficiently that a more general approach is needed. Numerical simulations provide a tool

to solve grain motion for analytically intractible situations. Simulation codes such as the Dust

in TOKamakS (DTOKS) developed at Imperial College London (Martin et al., 2008), the DUST

Transport (DUSTT) developed at University of San Diego (Pigarov et al., 2005), and the DEMON

code developed at Auburn (Jefferson et al., 2010) provide sophisticated treatment of forces and

charging mechanisms, but these codes treat the charging process instantaneously. Treating grain
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charging as instantaneous leads to inaccuracies in determining grain motion when the charging time

is small compared to gyro-period, or other grain dynamical time scales. The code described in this

chapter provides an energy conserving leapfrog integrator and incorporates drag forces that are

non-linear in velocity, a feature not seen in codes mentioned earlier. An adaptive time step handles

the grain charging process, allowing the ramifications of non-stationary charging on grain motion

and guiding center drifts, specifically gyro-phase drift, to be investigated. This code is also the

first to incorporate the Gatti-Kortshagen and Patacchini-Hutchinson charging models, including

the effects of a drifting Maxwellian and mono-energetic ion flow. In this chapter, the simulation

code is described, and analytically tractable examples are compared to simulation results to provide

confidence in the approach.

A Numerical Treatment of Forces

The treatment of forces is synonomous here with the evolution of the grain trajectory in phase

space, or solving the equations of motion resulting from the sum of all forces on the grain. All of

the applicable forces, including electric, magnetic, gravitational, neutral drag, and ion drag were

described in chapter III, so this will not be repeated here. There are many numerical options avail-

able to solve the resulting equations of motion, such as explicit or implicit Runge-Kutta, velocity

Verlet, and leapfrog schemes. Implicit solvers have an advantage over explicit solvers in that they

are resistant to numerical instabilities. Velocity Verlet and leapfrog methods inherently conserve

energy, a useful feature. For this reason, and because of the straightforward implementation, a

leapfrog method based on the Boris scheme (Boris, 1970) was chosen, and an iterative leapfrog

was also developed. Both of these numerical methods used a fixed timestep at the beginning of

the simulation, and had a separate, adaptive timestep for grain charging. Examples of different

numerical methods used in other dust simulation codes include the DEMON code, which uses

the explicit Runge-Kutta scheme RK4 (Jefferson et al., 2010), and the DTOKS code, which uses

leapfrog integration (Martin et al., 2008; Bacharis et al., 2010). The Boris method, as applied to

dust grains, will be discussed in greater detail in section 1, but the basic scheme is outlined below.

The leapfrog method for updating velocity in one spatial dimension can be illustrated with the
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scheme

dvx
dt

=
Fx (x)

md
→ vn+1/2

x = vn−1/2
x +

Fx (x
n, yn)

md
∆tNwt, (4.1)

where Fx (x
n) is the force on the particle evaluated at the full time step n, m is the mass of the

particle, and ∆tNwt is the Newton time step. The position in one dimension is updated according

to

dx

dt
= vx → xn+1 = xn + vn+1/2

x ∆tNwt. (4.2)

To make the first computation of the velocity at v
1/2
x requires that the term v

−1/2
x is known. Because

the initial conditions are specified at n = 0, equation 4.1 is modified according to

v−1/2
x = v0x −

Fx

(
x0, y0

)
md

(
1

2
∆tNwt

)
, (4.3)

so that the simulation can be started with a known value for v
−1/2
x . The procedure for computing

equation 4.3 is equivalent to running the simulation backwards by a half time step. An important

technique used in the Boris method is to add half the electric impulse before applying the rotation

from the magnetic field, and adding the other half of the electric impulse afterward. For more

details on the Boris method, see Boris (1970); Birdsall and Langdon (2005). The next subsection

will describe how the Boris method was modifed in this dissertation to find trajectories of dust

grains in the presence of Epstein drag.

1 Modification to Boris Algorithm

For the case of dust grains, the presence of the neutral drag force requires slight modification to the

Boris method. The code in this dissertation is restricted to grain motion in two dimensions, since

we are exclusively interested in the grain motion in the plane perpendicular to the magnetic field

direction. This adaptation to the Boris method uses a fixed timestep for the grain motion, and is

not adaptive. Updating the position is the same as in the Boris algorithm, but the drag force term
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is included in the two-dimensional, finite difference equation for velocity,

vn+1/2 − vn−1/2

∆tNwt
=
qn

md

(
E (xn, yn, tn) +

vn+1/2 + vn−1/2

2
×B (xn, yn, tn)

)
+ g (xn, yn)

− νdn (x
n, yn, tn)

vn+1/2 + vn−1/2

2
+ νdn (x

n, yn, tn)vn (xn, yn, tn) ,

(4.4)

where qn is the grain charge at the nth timestep, md is the grain mass, E (xn, yn, tn) is the tem-

porally and spatially dependent electric field, B (xn, yn, tn) is the temporally and spatially depen-

dent magnetic field which is taken to be parallel to the ẑ-direction, g (xn, yn) corresponds to the

spatially-dependent gravitational force term, νdn (x
n, yn, tn) is the dust-neutral collision frequency,

and vn (xn, yn, tn) is the temporally and spatially dependent neutral flow velocity. The last two

terms in equation 4.4 arise from the neutral drag force, Fn = mdνdn (x
n, yn, tn) (vn (xn, yn, tn)− v).

In equation 4.4, velocity-dependent forces use the average velocity of the new and old time steps,

given by (vn+1/2 + vn−1/2)/2. This average value is used instead of vn−1/2 in order to improve

the accuracy of the solver. Following the Boris scheme, a velocity vector v− is defined by

v− =vn−1/2 +
∆tNwt

2

qn

md

(
E (xn, yn, tn) +

∆tNwt

2
g (xn, yn)

+
∆tNwt

2
νdn (x

n, yn, tn)vn (xn, yn, tn)

)
.

(4.5)

The point of this definition is to add half the impulse due to all force terms except the magnetic

and grain-velocity-dependent drag forces because these are velocity dependent. The velocity vector

v+ is defined by

v+ =vn+1/2 − ∆tNwt

2

qn

md

(
E (xn, yn, tn)− ∆tNwt

2
g (xn, yn)

−∆tNwt

2
νdn (x

n, yn, tn)vn (xn, yn, tn)

)
.

(4.6)

Equation 4.4 can then be rewritten with linear combinations of v− and v+, resulting in the equation

v+ − v−

∆tNwt
=

qn

2md

(
v+ + v−)×B (xn, yn, tn)−

(
v+ + v−) νdn (xn, yn, tn)

2
. (4.7)
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Inserting the definitions from equations 4.5 and 4.6 into equation 4.7 produces the original finite

difference representation of dv
dt in equation 4.4.

The procedure continues by solving equation 4.7 for v+. Once v+ is known, then vn+1/2 can

be computed using equation 4.6, which is equivalent to adding the remaining half impulse from all

force terms except the magnetic and grain-velocity-dependent drag forces. Because the magnetic

field is assumed to be along the ẑ direction, equation 4.7 can be written in matrix form

 v+x

v+y

 =

 v−x

v−y

+

(
∆tNwt

qnB (xn, yn, tn)

2md

) v+y

−v+x


+

(
∆tNwt

qnB (xn, yn, tn)

2md

) v−y

−v−x


−
(
∆tNwt

νdn (x
n, yn, tn)

2

) v+x + v−x

v+y + v−y

 .
(4.8)

Defining A = ∆tNwtqd(t
n)B(xn, yn, tn)/ (2md) and some algebraic manipulation results in the so-

lutions for v+

v+x =

(
1−A2 −

(
∆tNwtνdn(x

n,yn,tn)
2

)2)
v−x + 2Av−y(

1 + ∆tNwtνdn(xn,yn,tn)
2

)2
+A2

(4.9)

and

v+y =

(
1−A2 −

(
∆tNwtνdn(x

n,yn,tn)
2

)2)
v−x − 2Av−x(

1 + ∆tNwtνdn(xn,yn,tn)
2

)2
+A2

. (4.10)

Now that the solutions for v+x and v−y are known, equation 4.6 can be used to solve for v
n+1/2
x and

v
n+1/2
y . In this process, v

n+1/2
x and v

n+1/2
y effectively only depend on v

n−1/2
x and v

n−1/2
y , making

this an explicit method.

The user must specify the value for the Newton timestep ∆tNwt The default option is to use

the in-situ-equilibrium dust gyro-period at t = 0 with ∆tNwt = 2π/(ωcd(t = 0)N), where N is

the user input number of points per gyro-cycle at the in-situ-equilibrium plasma conditions. This
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Newton timestep, unlike the charging timestep, is not adaptive, and remains fixed throughout the

simulation. A smaller time step is recommended if the conditions or the dust grain charge change

dramatically over the course of a simulation.

2 Iterative Velocity Solver

The iterative method developed in this dissertation is capable of solving force terms that are non-

linear in velocity, such as ion drag, or neutral drag for large relative dust-neutral drift speeds

compared to the neutral thermal speed. This iterative method uses a fixed timestep for the grain

motion, and is not adaptive. Computation of position, grain charge, and position-dependent forces

is no different than in the Boris method, but the non-linear equation for velocity must be solved

and, here, the half-impulse is not added before and after velocity is calculated as it is done in the

Boris scheme. The finite difference scheme for the velocity is illustrated with the equation

vn+1/2 − vn−1/2

∆tNwt
=
qn

md

(
E (xn, yn, tn) +

vn+1/2 + vn−1/2

2
×B (xn, yn, tn)

)

+ g (xn, yn) + βn

(
xn, yn,

(
v
n−1/2
x + v

n+1/2
x

2

)
,

(
v
n−1/2
y + v

n+1/2
y

2

)
, tn

)

+ βi

(
qn, xn, yn,

(
v
n−1/2
x + v

n+1/2
x

2

)
,

(
v
n−1/2
y + v

n+1/2
y

2

)
, tn

)
,

(4.11)

where βn (r,v, t) = Fn/md, when Fn can be defined by either equation 3.50 or 3.49 depending

on whether dust-neutral relative velocity compared to the neutral thermal speed is small or large,

respectively, and βi (q, r,v, t) = (Fic + Fio)/md, when Fic and Fio are defined by equations 3.51

and 3.52 respectively.

All velocity-dependent quantities in equation 4.11 use the average velocity of the n − 1/2 and

n+ 1/2 time steps to improve accuracy and stability of the solver. Because drag terms depend on

both vn−1/2 and vn+1/2 in equation 4.11, this is an implicit method for velocity. This results in a

set of coupled, non-linear equations for vn+1/2. In matrix form, we encounter an equation for the
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velocity vector that looks like

 v
n+1/2
x

v
n+1/2
y

 =

 v
n−1/2
x + ∆tNwt

md
Fx

(
qn, xn, yn,

(
v
n−1/2
x +v

n+1/2
x

2

)
,

(
v
n−1/2
y +v

n+1/2
y

2

))
v
n−1/2
y + ∆tNwt

md
Fy

(
qn, xn, yn,

(
v
n−1/2
x +v

n+1/2
x

2

)
,

(
v
n−1/2
y +v

n+1/2
y

2

))
 , (4.12)

where Fx corresponds to all force terms in the x-direction and Fy corresponds to all force terms in

the y-direction.

To solve equation 4.12, note the velocity components on the left hand side can be subtracted

from the right hand side to equal zero, producing

f1 = −ux + u0x +
∆tNwt

md
Fx

(
qn, xn, yn,

(
u0x + ux

2

)
,

(
u0y + uy

2

))
= 0 (4.13)

and

f2 = −uy + u0y +
∆tNwt

md
Fy

(
qn, xn, yn,

(
u0x + ux

2

)
,

(
u0y + uy

2

))
= 0, (4.14)

where we have replaced vn+1/2 with u and vn−1/2 with u0 for clarity when applying the iterative

method to this system of equations. If we can find the values of ux and uy that make f1 = 0 and

f2 = 0, then we have solved the equations of motion for the dust grain. The values u0x and u0y are

from the previous timestep and are treated like constants. Because f1 and f2 constitute a system

of equations in variables ux and uy, solving the coupled equations 4.13 and 4.14 corresponds to the

Newton method for root-finding as applied to matrices. In operator notation, the procedure can

be expressed by

Ĵδ = −f , (4.15)

where Ĵ is the Jacobian matrix, f is a vector function of u, δ = u(k+1) − u(k) is the vector

describing the error, and (k) denotes the kth iteration. The non-linear vector function of velocity f

approaches zero with successive iterations to an error that is within a user-defined tolerance. The

velocity calculated at the kth iteration is simply u(k) + δ. In matrix notation, solve an equation of

69



the form

 ∂f1

∂u
(k)
x

∂f1

∂u
(k)
y

∂f2

∂u
(k)
x

∂f2

∂u
(k)
y


 δ1 = u

(k+1)
x − u

(k)
x

δ2 = u
(k+1)
y − u

(k)
y

 =

 f1

(
u
(k)
x , u

(k)
y

)
f2

(
u
(k)
x , u

(k)
y

)
 . (4.16)

The matrix on the left hand side of equation 4.16 is technically a tri-diagonal matrix, so the fast

and efficient Thomas algorithm readily finds the δ vector. This nice tri-diagonal property does not

hold for three dimensions, because the non-linear drag terms couple all three velocity components

together. Because this method requires an initial guess for u(0), this is set to the velocity vector

from the last time step, u(0) = u0 = vn−1/2. The method generally converges very quickly with

this choice of u(0), because the velocity vector changes slowly when ∆tN is based on the gyro-period.

In other words, while vn+1/2 and vn−1/2 are different, the velocities at successive time levels are

not substantially different. This method can be used to obtain arbitrary precision in velocity during

a timestep, provided the maximum number of iterations is not exceeded. The new positions are

computed by rn+1 = rn + vn+1/2∆tNwt, which is the same procedure used for the Boris method.

For the results quoted in this dissertation that use the iterative leapfrog method, a maximum of

1000 iterations was used, a limit that can be adjusted. The code for the iterative leapfrog method

is included in appendix B, section iv.

3 Adjustments for Non-Inertial Reference Frames

Some of the results in this dissertation and in the context of space applications are best studied in

a co-rotating reference frame. Co-rotating reference frames require the Boris and iterative leapfrog

schemes to be rewritten slightly. In the co-rotating reference frame, E = B × (Ω × r), where Ω

corresponds to the angular velocity vector of the rotating system, g and B are no longer functions

of time, and the relative motion between grain and plasma is determined solely by grain motion

in this frame (we do not need to account for vi terms). This results in an equation of motion

(Northrop and Hill , 1983)

(
dv

dt

)
c

= vc ×
(
q (t)

md
B (r) + 2Ω

)
−Ω× (Ω× r) + g (r) (4.17)
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where the c subscripts now indicate quantities calculated in the co-rotating frame. No restrictions

need to be placed on the magnetic field; it can have arbitrary spatial dependence. The penultimate

term of equation 4.17, Ω × (Ω× r), reduces to −(xx̂ + yŷ)Ω2 because analysis occurs in the co-

rotating frame. For treatment using the Boris scheme, add the half impulse for all of the spatially-

dependent psuedo-forces in equation 4.17 before applying velocity dependent forces, and add the

other half impulse afterward. These fictitious forces produce an E×B-like drift in the co-rotating

frame.

4 Adjustments for Ion Flow along Magnetic Field Direction

As a final note, the Boris and iterative leapfrog schemes are also configured for the possibility of ion

flow in the planar sheath of a laboratory experiment, assumed to be parallel or anti-parallel to the

magnetic field direction. In the simulation code, the grain charge qn+1 is computed after rn+1 and

vn+1/2 have been calculated, using the plasma conditions at rn+1 and the relative drift between

the dust grain and the electrons and ions. The relative drift between dust grain and electrons or

ions is the flow speed we,i and it is given by

we,i

(
xn+1, yn+1, tn+1

)
=
∣∣∣vn+1/2 − ve,i (x

n, yn, tn)
∣∣∣ , (4.18)

where ve,i is the electron or ion drift speed. Even when grains are constrained to two dimensions,

electron and ion flow can have components in three dimensions. In order for the flow to be correct,

it is necessary to account for both the electron or ion flow relative to the grain in the plane

perpendicular to the magnetic field direction and the ion flow along the magnetic field. Because

the code is two dimensional, there is no specified third component of ion flow, so the sheath

particle-moving schemes use the electron flow in the x-direction to store this third component, and

the electron flow in the y-direction is associated with a flow in the ϕ-direction, where ϕ is the

azimuthal angle in cylindrical geometry. In a planar sheath there is little or no electron flow along

the magnetic field, so we do not need to worry about treating this component. Nothing changes

with respect to the calculation of forces; the sheath particle-moving schemes reconfigure the flow

output so that it is correct when this information enters the charging algorithm.
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B Numerical Treatment of Charging

When a magnetized dust grain samples different plasma conditions (temperature, space potential,

ultraviolet photons, species, etc.) along its gyro-orbit, the dust grain’s floating potential will

adjust to the new in-situ parameters. Because dust grains have capacitance, they do not respond

instantaneously to each new set of plasma conditions at each location if (τc/τg) 6≈ 1. Just as a

capacitor has a characteristic charging time, dust grains have characteristic charging times based

on their size and the local plasma conditions (Goree, 1994), so if the dust grain moves fast enough

through these varying conditions it never reaches the in-situ equilibrium charge. In the literature,

this situation is referred to as delayed charging (Nunomura et al., 1999). Currently, no major

dust simulation codes treat non-instantaneous charging, instead relying on the in-situ equilibrium

value for their equations of motion. Failure to account for non-instantaneous charging produces

erroneous grain trajectories under certain conditions, as shown in chapters V and VI. The option

to use instantaneous charging is included with the charging code, described in appendix B.

The integration schemes described in section A solve the equations of motion, and the charging

algorithm described in this section updates grain charge. During each charging timestep ∆tc, the

analytical currents for the selected charging model are applied to the dust grain using ∆qn = Itot∆tc.

This is an adaptive timestep ∆tc to ensure that the non-linear differential equation for the grain

charge is solved correctly in accordance with the specified model simultaneously with the coupled

differential equations for the grain motion from the Lorentz force.

At the beginning of the simulation, and at the beginning of each Newton timestep, ∆tc is

calculated according to ∆tc = e/|Itot|, which is the time for the grain to gain or lose 1 electron. If

∆tc > ∆tNwt, then q(t) is held fixed at its current value and a timer is started with tacc = ∆tNwt.

This timer tacc keeps track of the accumulated time that has passed since the last charge update.

During subsequent timesteps, if tacc < ∆tNwt, then another Newton timestep is added to tacc. In

other words, if tacc < ∆tc, then tacc = tacc +∆tNwt. When the condition tacc ≥ ∆tNwt is satisfied,

then 1 electron is added or subtracted to q(t), depending on the sign of Itot, and the accumulated

time is set to tacc = ∆tNwt − Remainder(∆tc/∆tNwt). This way, when ∆tc is calculated from the

new value of Itot at the next Newton timestep, the exact value since the last charge update is

known. For this numerical scheme, q(t) is only recorded at the end of every Newton timestep.
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The total current becomes very small when the grain surface is near the in-situ equilibrium grain

charge, and ∆tc becomes large. The grain fluctuates between neighboring charge states because

in general, CdVd is not an exact integer multiple of the elementary charge e. As a precaution to

prevent wasted computation, if the grain charge equals the value it had two iterations previously

(q(n) = q(n−2)), the charging procedure stops because it will only flip back and forth between these

charge states. This implies that the equilibrium grain charge has been reached, within ±1 electron.

The charging rate can also be arbitrarily controlled in this model by introducing an adjustable

charging parameter α used in the following way: qn+1 = qn + ∆q′n, where ∆q′n = α∆q as is done

in Koepke et al. (2013). This is equivalent to calculating ∆tc = e
αItot

. For α = 1, the dust grain

charges without restriction, while α < 1 implies that the grain charges more slowly. This adjustable

charging rate parameter is discussed here only insofar as α can be used as a possible way of changing

the value of τch in simulations when other plasma parameters, such as the background plasma

density n0 are fixed. Examining a particular charging model in terms of non-stationary charging

by introducting parameter α permits differences in the prediction sensitivity to be assessed within

the model’s own validity regime.

C Gyro-averaged Quantities

When discussing guiding center drifts, we need a good way of discussing how grain charge, position,

velocity, gyro-radius, etc. change over successive gyro-cycles. An analysis code was developed for

the simulation program described in the previous sections that finds instantaneous guiding center

positions and calculates gyro-averaged quantities. The code’s main features are highlighted in this

section. The entire code can be found in appendix B.

Gyro-phase averaging poses some computational challenges. The relationship dφ
dt = q(t)B(t)

m =

ωcd(t) holds only for trivial of cases of magnetized-orbit motion in homogeneous plasma, where

φ is the gyro-phase, and does not even hold for regular E × B motion. It is not possible to use

the gyro-frequency alone to specify the gyro-phase for many cases of interest. Additionally, the

expression RLd = v⊥m
qB is invalid for many cases of interest, so more consistently valid working

definitions are needed for use in discussing instantaneous guiding center position and gyro-motion.

Describing the gyrating particle about its guiding center starts by finding the angle of the grain in
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velocity space, or the arctangent of the ratio of two velocity vectors in the plane perpendicular to

the magnetic field. The arctangent function needs to be extended beyond the domain of [-1,1] and

treated correctly so that a full 360◦ is swept out in configuration space during a gyro-cycle. The

details of this geometric treatment are handled in the code descriptions in B. Examples are given

in the paragraphs below, where the gyro-radius can then be defined by

RLd =
v⊥
dφ
dt

, (4.19)

which is effectively a consequence of the Frenet-Serret formulas. This expression holds for every

case of interest, including the case of a net force F acting on the grain at time t, and it reduces

to non-drifting gyro-motion in the trivial case of dφ
dt = ωcd(t). Computing gyro-phase allows us to

look at grain quantities as functions of gyro-phase instead of just as functions of time, and this

ultimately permits accurate calculation of gyro-period and guiding center drifts from simulation

data.

In slab geoemetry, the gyro-phase angle is best defined by

φ = arctan

(
vy
vx

)
, (4.20)

where φ is the gyro-phase angle of the grain in velocity space and the x and y components are

defined after the choice of coordinate system, but not necessarily the guiding center, is made.

Whereas the gyro-phase angle is determined by the ratio of velocity components, the gyro-radius

magnitude is determined by how these components are changing with respect to each other. To

illustrate how the result of this calculation maps correctly in configuration space, or in the x, y-

plane, consider as an example when vx = 0 and vy > 0. Even though arctan∞ = π, this velocity

pair corresponds to φ = 0, for clockwise or counter-clockwise gyrating grains, because the tangent

line to the trajectory (the velocity vector) would correspond to an angle of 0 on the unit circle. See

figure 4.1 for clarity. The direction of gyration does not affect the calculation, it merely produces

positive values for dφ
dt for counter-clockwise rotation and negative values for clockwise rotation.
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This leads to the expression for the gyro-radius

RLd (t) =
(v⊥ (t))3

vxv̇y − vyv̇x
. (4.21)

Instantaneous guiding center positions are now readily calculated with

xc (φ) = x (φ)−RLd (φ) cosφ (4.22)

and

yc (φ) = y (φ)−RLd (φ) sinφ. (4.23)

Ultimately, these relations are a consequence of rc = r− ρg described earlier in chapter III, where

ρg plays the role of the vector that points from the grain’s position in configuration space to the

grain’s guiding center.

D Benchmarking Simulations to Analytical Examples

Analytical results can be compared to simulation results for simple cases, such as E×B drift with

constant grain charge, that serve both to benchmark or validate the simulations to build intuition

on the way to more complex cases. Where an analytical solution is tractable, it will be compared

to simulation results. It should be noted that because the particle motion simulations can be

done using either the Boris method or the iterative leapfrog method developed in this dissertation,

the results for both will be presented and compared simultaneously in cases where both methods

are valid. This section starts with the familiar, simplistic models for gyro-motion and increasing

complexity is added incrementally to illustrate features of the simulation code. Some minor, but

important details will be shown along the way that have important implications for grain trajectories

and confinement.
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1 E ×B Drift in slab Geometry

The general solution for the position xd and yd of a grain having fixed charge state and in the

presence of electric and magnetic fields is given by (Chen, 2006)

xd (t) =

(
v0xd
ωcd

− E0y

ωcdB0

)
sin (ωcdt)∓

(
v0yd
ωcd

+
E0x

ωcdB0

)
cos (ωcdt)+

E0y

B0
t±
(
v0yd
ωcd

+
E0x

ωcdB0

)
+ x0d

(4.24)

and

yd (t) =

(
v0yd
ωcd

+
E0x

ωcdB0

)
sin (ωcdt)±

(
v0xd
ωcd

− E0y

ωcdB0

)
cos (ωcdt)−

E0x

B0
t∓
(
v0xd
ωcd

− E0y

ωcdB0

)
+ y0d.

(4.25)

Figure 4.2 shows a comparison between the analytical prediction and the solution from the Boris

time evolution and iterative leapfrog time evolution for a 1µm diameter grain with crossed E and

B fields. We see close agreement among all solutions, providing confidence in the computational

methods. The E ×B drift is 0th order in the parameter md/qd, so drift motion will always be the

same. However, as md/qd increases, the effective gyro-radius becomes very large. For a grain that

starts at the origin with a velocity in the x̂ direction, E0 along −x̂ and B along ẑ, the maximum

distance from the line x = 0 is given by 2mdE0

qdB2 . More generally, using the definition for gyro-radius

from equation 4.19, we get the gyro-radius of the grain as a function of time

RLd =
md

qdB

v3⊥
v2⊥ + E0

B vy
. (4.26)

Bear in mind that even for constant fields and grain charge, equation 4.26 involves the time de-

pendent quantities vy(t) and v⊥(t). Figure 4.3 shows how the ambient electric field enlarges the

effective gyro-radius of dust grains.

2 F ×B Drift in slab Geometry with Epstein Drag

The addition of drag into the situation provides some more complexity, and an additional test of

the computational approach. The analytical solution of xd and yd for E, B fields and neutral drag
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(including flows) for fixed charge state are given by

xd (t) =

(
v0xd −

C1

ν2dn + ω2
cd

)
exp (−νdnt)

ωcd sin (ωcdt)− νdn cos (ωcdt)

ν2dn + ω2
cd

∓(
v0yd −

C2

ν2dn + ω2
cd

)
exp (−νdnt)

νdn sin (ωcdt) + ωcd cos (ωcdt)

ν2dn + ω2
cd

+
C1

ν2dn + ω2
cd

t+

νdn
ν2dn + ω2

cd

(
v0xd −

C1

ν2dn + ω2
cd

)
± ωcd

ν2dn + ω2
cd

(
v0yd −

C2

ν2dn + ω2
cd

)
+ x0d

(4.27)

and

yd (t) =

(
v0yd −

C2

ν2dn + ω2
cd

)
exp (−νdnt)

ωcd sin (ωcdt)− νdn cos (ωcdt)

ν2dn + ω2
cd

±(
v0xd −

C1

ν2dn + ω2
cd

)
exp (−νdnt)

νdn sin (ωcdt) + ωcd cos (ωcdt)

ν2dn + ω2
cd

+
C2

ν2dn + ω2
cd

t+

νdn
ν2dn + ω2

cd

(
v0yd −

C2

ν2dn + ω2
cd

)
∓ ωcd

ν2dn + ω2
cd

(
v0xd −

C1

ν2dn + ω2
cd

)
+ y0d,

(4.28)

where

C1 = ν2dnvxn ± νdnωcdE0x

B0
± νdnωcdvyn +

ω2
cdE0y

B0
, (4.29)

C2 = ν2dnvyn ± νdnωcdE0y

B0
∓ νdnωcdvxn −

ω2
cdE0x

B0
, (4.30)

νdn is the dust-neutral collision rate, vn corresponds to the velocity of neutrals as measured in

a stationary reference frame, and the top signs correspond to positively charged grains while the

bottom signs correspond to negatively charged grains.

Figure 4.4 demonstrates that flowing neutrals produce an F × B guiding center drift by in-

troducing a neutral flow along the −x̂ direction. The neutral gas pressure is very small, about

0.01 mTorr so that this grain can perform multiple gyrations. Using 1
qd

F×B
B2 , produces a value of

vygc = −1.0068m/s, while analysis from simulation yields the close agreement of vygc = −1.0064m/s.

The two values do not agree completely, because in addition to the F ×B drift from the flowing

neutrals, there is an inherent drift from the gyro-synchronously modified gyro-radius; as the grain

moves through the plasma the gyro-motion damps so that v⊥ decreases. It is noted that gyro-phase

drift results from the gyro-radius being modulated gyro-synchronously with a phase offset, and that
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gyro-synchronously modulated gyro-radius results in a guiding center drift

Figure 4.5 shows a trajectory where neutral gas flow is present, but the neutral gas pressure

is much higher, about 1 mTorr. The grain does not even perform a visible gyration because the

neutral drag force dominates. This is in stark contrast to the results of Amatucci et al. (2004),

ωcd/νdn = 10−4. If their intrepretation of the horizontal oscillation as evidence of gyro-motion is

correct then the Epstein drag model may be incorrect, which means that the trajectory shown in

figure 4.5 would not be overdamped.

Figure 4.6 shows an example trajectory for 1µm diameter grain in crossed E = 100V/m, B = 4T

fields, flowing neutrals, and a small enough pressure so that grain gyration is not completely

damped, like in figure 4.4. For this case, the electric field is along −x̂ and is strong enough to

overcome the F ×B drift from the neutral drag force so that the grain drifts along ŷ. Calculating

the E × B and F × B drifts separately yields vygc = 25m/s and vygc = −1.0068m/s for the

electric and drag forces respectively, which add together to produce a combined F × B drift of

vygc = 23.99m/s. The simulation analysis produces a result of vygc = 23.860m/s.

3 F ×B Drift with Flowing Ions

Just as neutral drag produces F × B drift, flowing ions produce an F × B drift from the ion

drag force. However, the Boris scheme cannot treat non-linear drag forces, so as an alternative the

iterative leapfrog method can be used to simulate grain trajectories. Exact, analytical predictions

for the grain trajectory cannot be made without assuming constant grain charge, vi � v, and

|vi − v| /vthi � 1. This restriction results in a limited range of applicability, and suggests the

necessity of using simulations for most situations. As discussed in chapter III, the work done by

Barnes et al. (1992); Fortov et al. (2005); Hutchinson (2006) paved the way for using linear ion drag

in simulations (Pigarov et al., 2005; Smirnov et al., 2007; Martin et al., 2008; Bacharis et al., 2010),

valid for the conditions listed above. The iterative leapfrog scheme in this dissertation extends the

computational determination of ion drag beyond these the linear regime of ion drag.

Figure 4.7 shows an example trajectory using the iterative leapfrog method when the ion flow

is vxi = −200m/s, the ion density is 1012m−3, the magnetic field is B = 4T, and no other forces

are present. The ion drag force causes the grain to drift along −ŷ, because this is the direction

of F ×B drift. Computing 1
qd

F×B
B2 predicts a drift vygc = −0.0420m/s, while simulation analysis
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yields vygc = −0.044m/s. The iterative leapfrog method provides a valid approach to compute ion

drag forces.
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Chapter V

Analytical and Simulation Results

Gyro-synchronous dust grain charge modulation from a spatially-dependent plasma parameter leads

to a dynamic grain gyro-center. The grain’s gyro-center drifts over the course of a gyro-cycle, with

a velocity predicted using the adiabatic theory for charged-particle motion. Analysis of charged

particle motion has been used to infer field quantities, and in the case of variable grain charge,

monitoring the gyro-phase drift can be used to measure plasma non-uniformities because the gyro-

phase drift component is sensitive to grain charging rate, with the added benefit that the gyro-phase

drift component is exclusively perpendicular to diamagnetic drifts such as E × B, grad-B, mag-

netic curvature drift, and grad-q drift. Gyro-phase drift, therefore, serves as a sensitive, untainted

indicator for phenomena that depend on charging rate. In this chapter, the semi-analytical and

simulation results for an abrupt inhomogeneity quantify how gyro-phase drift is used to discrimi-

nate among charge models for planar sheath mechanisms, and both the semi-analytical results for

abrupt inhomogeneity and simulation results for gradual inhomogeneity reveal that the maximal

gyro-phase drift amplitude occurs when the charging time is comparable to the gyro-period. Prior

to this research, there has been no attempt to find the gyro-phase drift in abrupt inhomogeneity,

and the dependence of gyro-phase drift magnitude and direction has not been demonstrated over

a wide range of gyro-period to charging time ratios. Furthermore, gyro-phase drift has not been

characterized for a wide range of parameters and sheath mechanisms, and its ability to measure

plasma sheath properties has not been demonstrated. The semi-analytical results for abrupt in-

homogeneity show that, under certain regimes, gyro-phase drift discriminates charge model and

planar sheath mechanisms.
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A General Solutions

This section will expand upon the derivation of Walker et al. (2014), with discussions regarding

the presence of an electric field and the Epstein drag. Ion drag in the plane perpendicular to the

magnetic field direction is considered negligible compared to electric, magnetic, and neutral drag

forces, so it is not included. The grain trajectory and gyro-phase drift can be computed once an

analytical expression for the dust grain velocity vector is in hand. Start with the Lorentz force

equation, including the Epstein drag force (Epstein, 1924) to obtain the grain trajectory, and permit

the grain charge to be time-dependent,

F = q(t)E + q(t)v ×B +−mdνdn (v − vn) , (5.1)

where q(t) is the time-dependent grain charge, md is the dust grain mass, vn is the neutral-gas

fluid flow velocity, v is the dust grain velocity, and νdn is the dust-neutral collision frequency. It

is assumed that the fields E and B are uniform in space, B is along the ẑ-axis with magnitude

B, so that the time-evolution of the grain charge can be conveniently described. The equation

of motion can be obtained exactly for some conditions when the grain charge is an arbitrary but

known function of time, but not for all conditions. The value of q(t) must be inserted at each

time step in order to obtain grain trajectories, and this procedure will be explained after general

solutions for the grain velocity vector are obtained. The prediction for q(t) for the case of abrupt

inhomogeneity is a new result of this dissertation.

Using the Lorentz force equation, differential equations for the x and y velocities of the grain

can be found in the plane perpendicular to the magnetic field,

dvx
dt

= ±qE0x

md
± qB

md
vy − νdn (vx − vnx) (5.2)

dvy
dt

= ±qE0y

md
∓ qB

md
vx − νdn (vy − vny) , (5.3)

where E0x is the electric field along the x̂-axis, E0y is the electric field along the ŷ-axis, vnx is the

neutral gas flow along the x̂-axis, vny is the neutral-gas flow along the ŷ-axis, and the top signs

correspond to the motion for a positively charged grain while the bottom signs correspond to the

motion for a negatively charged grain. These two differential equations for vx and vy are coupled,
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but they can be decoupled using the substitution (Taylor , 2005)

ψ = vx + ivy, (5.4)

where ψ describes the grain velocity in the complex plane. It is also possible to make the substitution

ωcd(t) =
q(t)B
md

, noting that ωcd(t) is a function of time, which results in the differential equation

ψ̇ = ±ωcd (t)

B
(E0x + iE0y) + νdn (vnx + ivny) + (∓iωcd (t)− νdn)ψ. (5.5)

The differential equation 5.5 cannot be solved in general, but it can be solved exactly for

several cases. The difficulty is that the parameter ωcd is time-dependent. The general problem

can be treated using the simulation codes included in this dissertation. For the exact case where

E0x/B = vny and E0y/B = −vnx, the single-grain solution is given by

ψ = A exp (∓i (θ (t)− θ0)− νdnt) +

(
−i
E0x

B
+
E0y

B

)
, (5.6)

where the constant A is determined using the initial conditions, θ is defined by ωcd ≡ dθ
dt , and θ0 is

a constant. The constant θ0 can be associated with the initial gyro-phase of the grain, and θ(t) can

be associated with the gyro-phase angle only in the absence of an electric field. The dependence

of guiding center drift on the initial gyro-phase angle is explored in the subsequent sections B and

C. This distinction between θ and the real-time gyro-phase angle φ will be important in later

discussions. Because the case where E0x/B = −vny and E0y/B = −vnx is contrived, unique, and

of limited utility, it will not be discussed further.

In the presence of an electric field in the plane to which the magnetic field direction is normal

and in the absence of neutral drag (ωcd � νdn), the solution for the differential equation 5.5 is

ψ = A exp (∓i (θ (t)− θ0)) +

(
−i
E0x

B
+
E0y

B

)
, (5.7)

which is very similar to the solution in equation 5.6 except that there is no assumed time-dependence

on the dust-neutral collision frequency. The constant A is determined by the initial conditions,
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assuming θ0 = θ(t = 0), ψ(t = 0) = vx(0) + ivy(0), and we have the solution

A =

(
vx0 −

E0y

B

)
+ i

(
v0y +

E0x

B

)
(5.8)

vx (t) = Re [ψ (t)] =
E0y

B
+

(
v0x −

E0y

B

)
cos (θ − θ0)±

(
v0y +

E0x

B

)
sin (θ − θ0) (5.9)

vy (t) = Im [ψ (t)] = −E0x

B
+

(
v0y +

E0x

B

)
cos (θ − θ0)∓

(
v0x −

E0y

B

)
sin (θ − θ0) , (5.10)

where v0x ≡ vx(t = 0), and v0y ≡ vy(t = 0). It is interesting to note that for this solution, retracing

gyro-orbits will not occur unless (
√
E2

0x + E2
0y)/B ≈

√
v20x + v20y. Here, retracing means that the

grain spends some of its time moving in the opposite direction of the diamagnetic drift vector

during a gyro-orbit. The solutions in equations 5.9 and 5.10 may be applicable for grains in some

space situations where neutral drag is absent (ωcd � νdn) and the slab geometry is satisfied. These

solutions are applicable for a fully ionized plasma, assuming that the ion drag force is also considered

negligible. Figure 5.1 shows an example of a retracing trajectory in an abrupt inhomogeneity where

drag is absent. In this example, E0x/(Bv⊥) = −1, to ensure a retracing gyro-orbit and to provide

an E ×B drift in the +ŷ direction. The instantaneous guiding center is correctly represented in

figure 5.1 by using v⊥(t)/
dφ
dt .

The most elucidating application for the results of this dissertation, is the absence of perpen-

dicular electric field and neutral gas flow, but neutral gas is present. Zero perpendicular electric

field might be achieved in the laboratory through boundary conditions provided by the use of a

multi-disk electrode that can compensate the natural tendency for a non-zero radial potential pro-

file to form in a plasma column (Carroll et al., 1994; Koepke et al., 2008). With these restrictions,

it is straightforward to show that the general solution to the differential equation 5.5 becomes

Re (ψ) = vx (t) = v0x cos (θ − θ0) exp (−νdnt)± v0y sin (θ − θ0) exp (−νdnt) (5.11)

Im (ψ) = vy (t) = v0y cos (θ − θ0) exp (−νdnt)∓ v0x sin (θ − θ0) exp (−νdnt) . (5.12)

The specific case where νdn = 0 is shown in figure 5.2. An example where νdn 6= 0 is shown in figure

5.3, and this is compared to a νdn = 0 trajectory. The decreasing gyro-radius, due to decreasing v⊥

over the course of the gyro-orbit, results in a trajectory with a smaller guiding center drift along
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the x̂ direction compared to the νdn = 0 trajectory. In principle, the grain continues to gyrate but

the gyro-radius decreases exponentially so that there are practically no magnetized-orbit effects.

In summary, closed form solutions are possible for the conditions E 6= 0, ωcd � νdn, or for

the separate case E = 0 and vn = 0. If the grain charge q(t) can be specified, then θ(t) can

be specified and analytical results are possible for the guiding center drift. This is problematic

for the use of gyro-phase drift monitoring to diagnose sensitively the sheath mechanisms or other

plasma processes in that q(t) depends on the grain motion through inhomogeneous plasma, so

θ(t) is not necessarily known and may change over the course of several gyro-cycles. Northrop

and Hill (1983) assumed a sinusoidal charge modulation around some DC offset, but it is clear

that q(t) must change over successive gyro-orbits and so the gyro-phase drift must change over

time. Furthermore, Northrop’s theory only predicts behavior md/qd > 1 kg/C. By using the direct

solutions to the equation of motion, gyro-phase drift can be established for arbitrary md/qd ratios.

B Abrupt Inhomogeneity

In this section, both theoretical and simulation results for an abrupt inhomogeneity will be pre-

sented. The semi-analytical method developed here for a dust grain in an abrupt inhomogeneity

allows the prediction of the gyro-phase drift vector over many orders of magnitude of plasma con-

ditions, which offers a significant advantage over simulations. The result from Walker et al. (2014)

is extended from the drag-absent limit to include Epstein drag (low relative velocity between dust

and neutral gas atoms), with the stipulation that gyration occurs, or ωcd/νdn > 1 (Thomas et al.,

2012). Trajectories are assessed for ωcd/νdn < 1, but they are not particularly interesting because

gyration does not properly exist for ωcd/νdn < 1. An abrupt inhomogeneity is characterized by a

plasma parameter having a very small, compared to the size of the dust gyro-radius, transition re-

gion between two parameter values. This analysis is possible for two neighboring regions of plasma

that are individually homogeneous, with each region having different plasma parameters and hence

different in-situ equilibrium charge states (Walker et al., 2014) for a given dust grain. Associate

q1 with the more negative in-situ charge state and q2 with the less negative in-situ charge state.

For simplicity and without loss of generality, assume that x = 0 in the plane perpendicular to

the magnetic field direction divides these two regions, so that for x < 0, q = q1, and for x > 0,
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q = q2. The in-situ equilibrium grain charge values q1 and q2 can also be associated with in-situ

equilibrium dimensionless dust surface potential values χ
(1)
e and χ

(2)
e . The quantities grain charge

and dimensionless grain surface potential are equivalently useful for describing the non-stationary

state of the dust grain. From a theoretical standpoint, working with dimensionless grain surface

potential is easier, but thinking in terms of grain charge is more intuitive. In order to obtain

closed-form solutions for the grain’s velocity components, it is necessary to know the charge state

as a function of time. When Itot includes all of the relevant charging currents for a given charge

model and relevant mechanisms, dq
dt = Itot yields this function.

In general, this differential equation is non-linear and cannot be solved analytically, largely

because the electron current contains a term proportional to exp(q/C) in most charging models.

However, it is possible to approximate the grain charge relaxation with the familiar equations for

a discharging/charging capacitor. When the grain discharges or loses electrons to go from q1 to q2,

q (t) = (q1 − q2) exp (−t/τ2) + q2, (5.13)

where τ2 is the discharging time. Similar to the definition of charging time used by Goree (1994) for

the case of a grain going from q = 0 to the in-situ equilibrium charge state, τ2 is defined as the time

elapsed between q(t = 0) = q1 and q(t = τ2) = q1 +
1
e (q1 − q2) for a given charge model. To clarify,

τ2 is obtained by numerically solving the non-linear differential equation for q(t) for a given charge

model, and q(t) is approximated as a discharging capacitor with τ2 as the time constant. Figure 5.4

shows this process. The analytical model shows a reasonably close agreement with the numerical

solution to the non-linear charging equation, although the discharging capacitor approximation

overestimates the grain charge when t < τ2, and underestimates the grain charge when t > τ2.

The characteristic time for the grain to discharge τ2 is different among charging models, which has

implications on the resulting gyro-phase drift. Using the definition dθ
dt = ωcd, the quantity θ(t) can

be calculated according to

θ (t)− θ0 =
B

md

∫ t′=t

t′=0
|q (t)|dt. (5.14)

Likewise, if the grain starts with q(t = 0) = q2 and moves into the region where the in-situ-
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equilibrium charge is q1, the grain charges more negatively with a characteristic charging time τ1.

In general, τ1 6= τ2. The theoretical approach is valid for arbitrary starting angle θ0 and initial

charge q1 or q2, provided the grain undergoes a sudden transition between the two neighboring

homogeneous regions. In the absence of an electric field or ion drag, the quantity θ from equation

5.14 is the same as the gyro-phase angle φ. The method is illustrated for one gyro-cycle.

Assume that the grain starts at the origin with grain charge q(t = 0) = q1 and with gyro-phase

angle θ0 =
3π
2 (this starting angle means that the grain’s initial velocity is only in the x̂-direction).

Assuming the grain is negatively charged and the magnetic field is along the ẑ-direction or out of the

page, the grain gyrates counterclockwise and enters the x > 0 region, where the in-situ equilbrium

grain charge is q2. As it gyrates, the grain continuously adusts to the new in-situ equilibrium

charge q2. The quantity θ(t) can be obtained by integrating |q(t)|,

θ (t) =

∫ t′=t

t′=0

dθ (t′)

dt′
dt′ + θ (t = 0) =

∫ t′=t

t′=0

(
|q (t′)|B
md

)
dt′ + θ0 (5.15)

θ (t) = ω2

[
τ2

(
q2 − q1
q2

)(
exp

(
− t

τ2

)
− 1

)
+ t

]
+ θ0, (5.16)

where ω2 = |q2|B/md. The equation for θ(t) given by equation 5.16 can be inserted into the analytic

expressions for the grain motion in the presence of electric field without drag (equations 5.9, 5.10),

or for grain motion in the absence of electric field but including drag (equations 5.11 and 5.12).

Ideally, the next step would be to integrate the grain velocity components to obtain the grain

trajectory. Unfortunately, the expressions for vx and vy cannot be analytically integrated due to

terms involving sinusoidal functions of exponentials, so it is necessary to integrate these expressions

numerically. The grain has a guiding center drift in the positive x̂-direction due to the presence of

neutral drag force, and the grad-q and gyro-phase drifts cease when the ratio ωcd/νdn ≈ 1. For this

scenario, the grain never transitions back to the q1 region, i.e., x(t) is positive for all times t, and

an example trajectory is shown in figure 5.5.

A new θ(t) must be prescribed if the grain does make a transition to the q1 region. Call t2f

the time at which the grain leaves the q2 region. The charge state q(t) from equation 5.13 gives

the result q(t = t2f ) = q2f , and so q2f is the initial charge for the next part of the gyro-cycle. This

distinction is necessary because q2f may not necessarily equal q2 due to the time-dependent charge

modification to the grain trajectory. For instantaneous charging, q2f = q2, but we are interested in
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the more general case. Likewise, equation 5.18 says that the gyro-phase angle of the grain is given

by θ(t = t2f ) = θ2f , which becomes the initial angle for the next part of the gyro-cycle. The charge

as a function of time is given by

q (t) = (q2f − q1) exp (−t/τ1) + q1, (5.17)

where τ1 characterizes the amount of time needed to attain the charge q2f +
1
e (q2f − q1) for a given

charge model. The gyro-phase angle as a function of time for this next part of the gyro-cycle is

then given by

θ (t) = ω1

[
τ1

(
q1 − q2f
q1

)(
exp

(
− t

τ1

)
− 1

)
+ t

]
+ θ0, (5.18)

where ω1 is the in-situ-equilibrium gyro-frequency in the q1 region and θ0 = θ2f as explained earlier.

Because θ0 can be an arbitrary value, it is important to note that the initial velocity for this next

part of the gyro-cycle can have x and y components. Equation 5.18 can be inserted into the analytic

expressions for the grain motion in the presence of electric field without drag (equations 5.9, 5.9),

or for grain motion in the absence of electric field but including drag (equations 5.11 and 5.12).

Again, numerically integrate the resulting grain velocity components to obtain grain trajectories.

It is important to note that the grain does not transition back to the x > 0 half-plane when τg ≈ τc,

and an example trajectory is shown in figure 5.6. The gyro-phase drift is sufficiently large enough

that the grain leaves the region of inhomogeneity, and the gyro-center becomes stationary.

In the absence of drag, the grain will not transition from the q1 region to the q2 region before

θ = 7π
2 . In other words, the grain only goes from x < 0 to x > 0 once during one gyro-orbit. When

Epstein drag is present, this is not necessarily true and the grain can go into the q2, i.e., x > 0,

region again. In this case, repeat the general procedure by using t1f to denote the time at which

the grain leaves the q1 region, use equation 5.17 to obtain the charge on the grain as it leaves the

q1 region q(t = t1f ) = q1f , and use the equation 5.18 to obtain the gyro-phase angle as it leaves the

q1 region θ(t = t1f ) = θ1f . The grain discharges when it reaches the q2 region, so q(t) is given by

q (t) = (q1f − q2) exp
(
−t/τ (Re−entry)

2

)
+ q2, (5.19)
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where τ
(Re−entry)
2 characterizes the time necessary for the grain to attain the charge q1f+

1
e (q1f−q2)

using a given charge model. Insert equation 5.16 into the analytic expressions for the grain motion

in the absence of electric field but including drag (equations 5.11 and 5.12) after subsituting q1 =

q1f . This produces the last possible section of the gyro-orbit. The time it takes for the grain

to go from x = 0 to θ = 7π
2 is given by t

(Re−entry)
2f . Hence, the entire gyro-period is given by

τg = t2f + t1f + t
(Re−entry)
2f because this is the time required for the grain to go from θ = 3π

2 to

θ = 7π
2 , or 2π in gyro-phase. Figure 5.7 shows an example of this re-entry phenomenon. A code

that fulfils the entire procedure outlined in the last few paragraphs is included appendix B.

The dependence on individual trajectories on the gyration parameter ωcd/νdn has been demon-

strated for a few specific cases (figures 5.5 5.6, 5.7), but it is instructive to witness the behavior for a

wide range of this parameter. Figure 5.8 shows the behavior of guiding center drift magnitude and

direction dependence on the gyration parameter ωcd/νdn. The gyro-phase drift magnitude increases

as ωcd/νdn decreases.

The guiding center drift depends on the initial gyro-phase, even when the initial starting position

is held constant. Changing the initial gyro-phase angle indirectly alters the amount of time the

grain spends on either side of the UV inhomogeneity. Figure 5.9 shows the dependence of the

guiding center drift magnitude and direction on the initial gyro-phase angle θ0 with the maximum

amplitude of the gyro-phase drift occurring near θ0 = 270◦.

It is now a natural question to ask: how do grain trajectories and guiding center drifts for

this abrupt inhomogeneity depend on the charging time? When do the components of the guiding

center drifts reach a maximum value, and how does this min-max interval depend on the charging

time and gyro-period? The guiding center drift in the x̂ and ŷ directions are given by

vxgc =
x(t = τg)− x(t = 0)

τg
−

[
v⊥(t = τg)
dφ(t=τg)

dt τg
cos (φ (t = τg))−

v⊥(t = 0)
dφ(t=0)

dt τg
cos (φ (t = 0))

]
, (5.20)

and

vygc =
y(t = τg)− y(t = 0)

τg
−

[
v⊥(t = τg)
dφ(t=τg)

dt τg
sin (φ (t = τg))−

v⊥(t = 0)
dφ(t=0)

dt τg
sin (φ (t = 0))

]
, (5.21)

where v⊥(t) =
√
v2x(t) + v2y(t), which is not necessarily constant throughout a gyro-orbit, and φ(t)
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is the actual gyro-phase angle in configuration space. In the absence of an electric field, φ(t) and

θ(t) are equivalent. In the presence of an electric field, equations 5.16, 5.18, 5.19, and the grain

velocity equations are still valid, but θ(t) no longer describes the gyro-phase angle. In order to get

the correct value of the instantaneous gyro-radius in the presence of an electric field, the relationship

φ(t) = arctan
(
vy
vx

)
must be used, and RLd = v⊥(t)/(

dφ
dt ) instead of v⊥/(

dθ
dt ). This description is

always correct, whether an electric field, drag, or any other forces are present, and this method is

used exclusively when analyzing simulation data.

For the entire gyro-period, characterize the gyro-averaged charging time using

τc = τ2f
t2f
τg

+ τ1f
t1f
τg

+ τ
(Re−entry)
2f

t
(Re−entry)
2f

τg
. (5.22)

The most natural parameter to probe here is τg/τc, which is shown in figure 5.10, in the absence

of drag or an electric field. It is assumed that single-sided UV illumination provides the |q2| < |q1|

region, although the details will be left to the following sections. For now, we only assume that

UV illumination produces a q2/q1 < 1 ratio, although if another plasma parameter can be made

suitably abrupt over the course of a grain’s gyro-orbit, this approach would also be valid. We see

in figure 5.10 that, in the absence of neutral drag, the x-component of the guiding center drift

is at a maximum when τg/τc ≈ 1. The x-component of the guiding center drift becomes zero as

τg/τc → ∞, or when the charging is instantaneous. It also becomes zero as τg/τc → 0, because as τc

increases, the grain charge hardly changes over the course of a gyro-period. We unequivocally see

that the x-component of the guiding center drift velocity depends on charging rate and we associate

this guiding center drift with gyro-phase drift.

When charging is instantaneous, the y-component of the guiding center drift is non-zero. We

Associate this guiding center drift with the grad-q drift because it arises from charge-state modu-

lation even when charging is instantaneous. The grad-q drift is certainly affected by the charging

rate, but in the limit of instantaneous charging, in the absence of drag, and with θ0 = 3π/2, it is

described by

v∇q = 2
v⊥
π

(
|q1| − |q2|
|q1|+ |q2|

)
ŷ. (5.23)
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The figure 5.2 compares the instantaneous charging grain (τg/τc → ∞) to a non-instantaneous

charging grain with τg/τc ≈ 20. For the case of the abrupt UV inhomogeneity and instantaneous

charging (τg/τc → ∞), the grad-q drift is given by equation 5.23. Because the grain instantaneously

reaches the in-situ equilibrium grain charge, in the absence of drag the grain velocity as a function

of time for the first gyro-cycle can be written as

v =

 vx = v⊥ cos (ω2t) vy = v⊥ sin (ω2t) 0 < t < π
ω2

vx = v⊥ cos
(
ω1t− ω1+ω2

ω2
π
)

vy = v⊥ sin
(
ω1t− ω1+ω2

ω2
π
)

π
ω2
< t < π

ω1
+ π

ω2

(5.24)

The gyro-radius as a function of gyro-phase angle for instantaneous and non-instantaneous charging

is shown in figure 5.12.

When the charging is not instantaneous, the gyro-period τg can be controlled by ratio of the

dust grain mass to electron mass md/me. This is evident when looking at the dimensionless form

of the dust gyro-period in electron plasma periods,

τg =
2

3
√
π a
RLe

|χe|
(
1 + a

λD

)(
1 + Te

Ti

ni
ne

)3/2
NDe

(
md

me

)
. (5.25)

The gyro-period described by equation 5.25 does not include initial gyro-phase or other effects

but shows to lowest order how the gyro-period depends on the dimensionless parameters. This

affirms that the approximate gyro-period of dust grains is proportial to dust mass, and inversely

proportional to the electron magnetization a/RLe, dimensionless surface potential χe = eVd/(kbTe),

and number of electrons in a Debye sphere or the plasma parameter NDe. Also note that ne/ni

and Te/Ti provide non-trivial dependence. The only one of these parameters which does not enter

into every charging model is the parameter md/me. Because the dimensionless gyro-period is linear

with the ratio md/me, this ratio is a proxy for the gyro-period, and the md/me parameter can be

swept without directly affecting charging processes from a model perspective. In summary, less

massive dust grains gyrate faster, and only the parameter md/me allows control of the gyro-period

without affecting charging processes, and it is for this reason that τg/τc sweeps will generally be

produced by sweeping this parameter in the range 108 ≤ md/me ≤ 1022. The semi-analytic method

readily permits solutions for this large range, which would be prohibitive with simulations.
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In inhomogeneous plasma, the dimensionless dust grain surface potential varies over the course

of a gyro-period, and the quantity τg in equation 5.25 is time-dependent. The gyro-period is not

actually known until the grain travels 2π in gyro-phase. To plot the semi-analytical trajectory,

a gyro-period must be chosen before numerically integrating vx and vy. The in-situ-equilibrium

dimensionless surface potential corresponding to the UV-present condition is chosen to ensure that

the grain reaches either the x = 0 or φ = π/2 condition; using q(t = 0) = q2 produces the smallest

gyro-frequency possible and hence gives the grain ample time to reach either the x = 0 or φ = π/2

condition. As an example for why this is necessary, consider the case τc � τg and q1/q2 = 10. Using

the dimensionless surface potential corresponding to the UV-absent condition, i.e., q(t = 0) = q1 for

the gyro-period prevents the condition φ = π/2 from being attained because the grain only moves

until t = τ1/2, when it needs to at least move until t = τ2/2, and τ2 = 10τ1. Despite uncertainties,

equation 5.25 establishes that the parameter md/me can be swept to produce a range of τg values

without directly affecting τc. While τc does depend on grain radius a, and md depends on grain

radius a through md = 4/3πρda
3, using the parameter md/me alone to change τg without affecting

τc is permissible because it is possible to use a wide range of material densities ρd. A range of

materials and grain sizes should be considered in order to best determine the range of md/me.

A reasonable lower cutoff might be a = 5 nm, while the least dense material possible for grains

would be aerogel (ρd = 1 kg m−3). A reasonable upper cutoff might be a = 50 µm using the

element Osmium, the densest known material with ρd = 22 × 103 kg m−3. This choice of bounds

produces 6× 108 ≤ md/me ≤ 1022, slightly more than 13 orders of magnitude. The upper limit is

not as relevant to gyro-phase drift, because, as md/me gets larger, the charging of a grain crossing

an abrupt inhomogeneity is more instantaneous because the grain surface area increases, and this

trend does not change as τg continues to increase. The lower limit is more relevant to gyro-phase

drift and for any set of other parameters chosen, md/me = 6 × 108 should be seen as a practical

lower limit.

To produce the plot shown in figure 5.10, the ratio md/me was swept from 1015 to 1020 and

the surface properties were assumed to remain constant. Keeping the surface properties constant

assumes that the interaction between UV illumination and surface material produces the same

photo-electric current and hence the same in-situ equilibrium grain charge. This requirement is

imposed so that q1/q2 ratios do not change as md/me changes, which would otherwise obscure the
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dependence of gyro-phase drift on the τg/τc ratio. One could imagine coating spherical grains of

disparate materials with the same functional material, so that for a given UV flux, the photo-current

should be the same. It is also possible to imagine that the UV flux could be changed in tandem with

the photo-electric yield and work function of the grain surface so that the photo-electric current

remains constant across the range of materials, fixing the q1/q2 ratio. For plots featuring variable

τg/τc, it will be assumed that the grain surface and q1/q2 ratio are considered constant for the

abrupt inhomogeneity unless otherwise noted.

Also included in figure 5.10 is the prediction for guiding center drift using Northrop’s method.

As demonstrated in figure 5.11 for a few different values of τg/τc, the grain charge as a function

of time is not sinuisoidally varying in an abrupt inhomogeneity. Undeterred, we can model the

grain charge using Northrop’s adiabatic theory for dust grains to see the comparison with the semi-

analytic method. As discussed in appendix A, section 4, the gyro-phase drift vector for grains in

slab geometry is given by

Ṙ⊥ =
qav⊥
qeq

(x̂ sinφ1 − ŷ cosφ1) , (5.26)

where qa corresponds to the amplitude of the sinuisoidal charge modulation during a gyro-orbit

around some gyro-averaged value qeq, and φ1 corresponds to the angle at which the grain is most

negatively charged. In principle, the charge as a function of time can be Fourier decomposed, so

that that the capacitor-like charge dependence can be expressed exactly as a function of cosines,

q(t) = q0+qa cos(φ−φ1)+q2 cos(φ−φ2)+ . . . . The amplitude for each Fourier component could be

obtained and the guiding center averaging technique for adiabatic grain motion from appendix A,

section 4 can be used to find the resulting guiding center drift. However, such a procedure is tedious

and impractical compared to the method outlined in this section, and it does not immediately

lend itself to producing a charging time, an important result of the method of this dissertation.

When q(t), calculated using the procedure outlined in this chapter, is fitted with a sinuisoidal

approximation, the Northrop prediction in figure 5.10 is obtained. The Northrop prediction offers

a reasonable approximation to the more accurate method of directly integrating the analytically-

derived velocity vector. However, in order to make a prediction based on Northrop’s method, the

grain charge q(t) must be known, which was only possible through the use of the abrupt theory
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developed in this dissertation.

Figure 5.13 shows the dependence of the gyro-phase drift magnitude and direction when an

electric field is present and drag is absent. In this figure, md/me is swept from 1010 to 1020, and

E0x/(Bv⊥(t = 0)) = −1, where v⊥(t = 0) signifies the perpendicular velocity of the grain at the

start of the gyro-orbit, which is v⊥ =
√
v20x + v20y = v0x. The electric field is chosen along −x̂ so

that the E×B drift is in the ŷ-direction, and the E0x/(Bv0x) ratio is kept relatively small so that

the retracing gyro-orbit is evident, but neither of these conditions are required. In the presence

of an electric field, the grain trajectory is still modified by the time-dependent charging of the

grain, and we see again that for high τg/τc ratios that there is no charging-rate modification to the

trajectory. The grain drifts with only the grad-q and E×B drift when τg/τc → ∞. Also apparent

in the bottom panel of figure 5.13 is that the guiding center angle does not deviate far from 90◦,

or from the ŷ direction. The addition of an electric field enhances the drift along the ŷ-direction

and exaggerates the x̂-direction excursion during the gyro-orbit.

The ratio of in-situ equilbrium grain charges on either side of the inhomogeneity q1/q2 has a

strong effect on both grad-q and gyro-phase drift, as demonstrated in figure 5.14 in the absence of an

electric field and neutral drag. For small values of q1/q2, the grad-q and gyro-phase drifts are small.

When q1/q2 increases, grad-q and gyro-phase drifts increase. For large enough values of q1/q2, the

grad-q drift behaves non-monotonically in that it does not achieve a maximum amplitude when

τg/τc → ∞. The dependence of the guiding center drift on the ratio q1/q2 is shown in figure 5.14 for

four different values of q1/q2. As the q1/q2 ratio increases, the x-component of the guiding center

drift, i.e., the charging rate component of guiding center drift, increases and the peak of vxgc shifts

toward smaller values of τg/τc. This happens because as q1/q2 increases, the gyro-averaged quantity

of dimensionless surface potential χe increases, and the gyro-period is inversely proportional to χe,

shown clearly in equation 5.25. The dimensionless surface potential also determines the charging

rate, and while the charging time increases as χe increases, this dependence is weak. Hence, the

decreasing values of τg win out, and the ratio τg/τc decreases, shifting the entire graph to lower

values of this ratio as q1/q2 increases.

The ratio me/mi is another important parameter, and we will determine how gyro-phase drift

depends on this quantity. The ratiome/mi helps to determine charging rate and in-situ equilibrium

charge, but makes no contribution to the gyro-period. Figure 5.15 shows how the gyro-phase drift
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magnitudes change when the me/mi ratio is varied, and q1/q2 = 2 is kept constant. It is apparent

from figure 5.15 that me/mi makes no difference to the guiding center drift magnitude dependence,

making it is clear that lower values of me/mi allow access to smaller values of τg/τc.

Figure 5.16 shows guiding center drift magnitudes for varying me/mi ratios, but the UV photo-

current is kept constant. Again, a lower me/mi ratio allows access to lower values of τg/τc, but

the drift magnitudes are also larger. This is because lower me/mi ratio reduces the ion current,

meaning the charge variation over the course of a gyro-orbit is larger, and the q1/q2 ratio is larger.

The ratio of Te/Ti determines both grain charge and to an extent, charging time. Unlike the

ratio me/mi, the parameter Te/Ti does make a direct contribution to the gyro-period, and it is also

important for grain charging. Figure 5.17 shows how the gyro-phase drift magnitudes change when

the Te/Ti varies, and q1/q2 = 2 is kept constant. Like me/mi, the parameter Te/Ti does not affect

the guiding center drift dependence, but it does allow access to different regions of τg/τc. Higher

values of Te/Ti allow access to lower values of τg/τc in a much more dramatic fashion than seen due

to lower me/mi ratios. According to equations 5.25 and 3.7, higher values of Te/Ti decrease the

gyro-period and decrease the time for the grain to gain or lose one electron. However, in equation

5.25 the dependence on the temperature ratio goes like (1 + Te
Ti

ni
ne
)−3/2, while in equation 3.7, the

time interval needed to gain or lose one electron has a dependence that goes like (1 + Te
Ti

ni
ne
)−1.

Hence, the gyro-period wins out over the charging time which leads to smaller values of τg/τc.

Figure 5.18 shows the affect of Te/Ti ratio on guiding center drift magnitudes with a constant

photo-current for each temperature ratio. Notice that smaller Te/Ti ratios produce greater gyro-

phase drift magnitude, but at the cost of reducing the range of accessible τg/τc values. Lower Te/Ti

ratios lead to more negative grain charge, and hence greater charge modulation over a gyro-orbit.

So while a lower Te/Ti ratio produces a greater gyro-phase drift magnitude, larger values of Te/Ti

permit lower τg/τc values when all other plasma parameters are kept constant. Ultimately, we want

as much access to these lower values to ensure that gyro-phase drift exists. I will generally use

40 < Te/Ti < 200 in the ensuing plots to ensure access to these lower values, which is a perfectly

valid range for glow discharge and RF discharge plasmas.

The plasma parameter NDe affects charging time and gyro-period. Figure 5.19 shows the

dependence of guiding center drift on the plasma parameter or number of electrons per Debye

sphere. Higher values of NDe allow access to lower values of τg/τc, as is evident in this figure.
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Figure 5.20 demonstrates that guiding center drift magnitude and direction is the same for all

values of NDe. Note that NDe only affects τg/τc ratios but not grain charge. Along with the mass

ratio md/me, NDe helps determine τg/τc.

Figure 5.21 shows the resulting guiding center drifts when the a/RLe parameter is varied for

constant UV photocurrent. Higher values of this parameter allow access to lower τg/τc values,

which is evident in equation 5.25 because the gyro-period is inversely proportional to the electron

magnetization parameter. Additionally, the gyro-phase drift magnitude increases with this param-

eter; this is because the current collection regime goes from unmagnetized electron and ion current

collection at very low values of a/RLe < 1 (the first two plots), to the magnetized electron and

unmagnetized ion current collection regime (the next two plots), and finally to the magnetized

electron and ion current collection regime. The general trend is that as a/RLe increases, the gyro-

phase drift magnitude and direction change because the charge modulation becomes greater. For

the a/RLe > 1 but a/RLi < 1 regime, the electron current decreases because the collection area

of the sphere for electrons becomes 2πa2. When nearing a/RLi > 1, the impact parameter for

ions no longer depends on the grain surface potential and the ion current is simply the thermal

flux along the magnetic field lines. This drastic reduction in ion current produces the greatest

charge modulation during a gyro-orbit. Electrons generally become magnetized before ions as the

magnetic field is increased, unless Ti >> Te. For the OML model, shown in figure 5.25, the change

among these regimes is abrupt, or not generally considered. The model of Patacchini et al. (2007)

allows the a/RLe parameter to vary gradually, although a/RLi is not considered.

Figure 5.22 shows the resulting guiding center drifts for ωcd/νdn = 104, 103, 102, and 10. Figure

5.8 already showed the guiding center drifts for variable ωcd/νdn ratio at a fixed value of md/me.

For large values, the drag force is absent and has no effect on grain trajectories. There is very little

difference between the ωcd/νdn = 103 and ωcd/νdn = 104 trajectories, and larger ratios will produce

the same guiding center drift magnitudes. As this parameter decreases to 100 or less, changes

to the guiding center drift magnitudes in both directions are evident. The x-component of the

guiding center drift begins to have a positive component for large values of τg/τc. Hence, there is

an inherent drift in the positive x̂-direction solely due to the drag force decreasing the gyro-radius

of the grain. This inherent drift can be overcome by gyro-phase drift in the negative x̂-direction for

values τg/τc ≈ 1. At some value of τg/τc, the gyro-phase drift and the inherent drift due to neutral
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drag will match, which is seen near τg/τc = 10 in figure 5.22. In terms of relevant parameters, the

gyration ratio ωcd/νdn from equation 3.60 can be rewritten

ωcd

νdn
=
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ni
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ne
nn

|χe| . (5.27)

Because χe = χe(t), the gyration ratio can vary over a gyro-orbit. This ratio is dependent on a few

other parameters, such as the mass ratio of electrons to ions, the electron magnetization parameter,

the ratios of electron to ion and neutral temperatures, the size of the Debye length relative to the

grain radius λD/a, and the electron to neutral gas density. These last two parameters are important

since they correspond to dust grain size and ionization fraction respectively; for large enough values

of λD/a and ne/nn, the drag force becomes negligible. It should also be noted that the ωcd/νdn

values in figure 5.22 should be seen as approximate values, because the grain charge changes during

a gyro-orbit and so the ratio ωcd/νdn also changes.

1 Charging Model Comparisons with Sheath Mechanisms

In this section, the OML charging model, the Patacchini et al. (2007) charging model, and the Gatti

and Kortshagen (2008) charging model will be assessed for a wide range of plasma parameters and

for the sheath mechanisms of ion flow including both mono-energetic ions and drifting Maxwellian

ions, ion-neutral charge exchange, dust-neutral drag, and electron magnetization. In order to study

the effect of the Gatti-Kortshagen charging model on grain trajectory for the abrupt inhomogeneity,

the neutral gas pressure must be non-zero. In order to compare all three models for regimes where

ion-neutral charge exchange effects might be important, neutral drag will be present, and it is for

this reason, and also the presence of neutral drag in the MDPX (Thomas et al., 2012, 2013), that it

is necessary to include drag in the analysis. Assume that ωcd > νdn as before, since the trajectories

where gyro-motion occurs comprise the interesting cases. In order to restrict the analysis to the

analytically tractable regime, it is necessary to enforce the condition that E = 0, which might be

achieved in a laboratory plasma through the use of a multi-disk electrode (Carroll et al., 1994;

Koepke et al., 2008). The ion-neutral charge exchange in the dust sheath mechanism can be

analyzed for low drag situations, but such an analysis is not very realistic or relevant to experiment

because grain gyration ratio ωcd/νdn is marginal for experimentally-achievable values of KnR0.
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Figure 5.23 shows the dependence of guiding center drift upon the Knudsen number λi/a. We

see that while the Patacchini-Hutchinson and OML models are in complete agreement throughout

this large range of Knudsen numbers, the Gatti-Kortshagen charging model differs from both of

these greatly, with a minimum drift seen near λi/a ≈ 103. This is no coincidence; as stated

earlier, the Knudsen capture radius parameter is near unity when λi ≈ λD, and this corresponds

to the region where the collision-enhanced current is largest. In figure 5.23, λD/a = 103. The

enhanced ion current reduces charge state modulation during a gyro-orbit, and so the gyro-phase

drift decreases. Also note that the Gatti-Kortshagen charging model is different from the OML and

Patacchini-Hutchinson models for all of the Knudsen numbers shown; for λi/λD � 1 or λi/λD � 1

the Gatti-Kortshagen charging model should give the same results as the other two models. In a

laboratory experiment where gyro-motion occurs, λi/λD ≥ 102 is a reasonable expectation. The

high value of this ratio is a consequence from the need to have a small enough neutral gas pressure

so that the neutral drag force does not dominate the grain dynamics. Even when λi 6= λD, figure

5.23 unequivocally displays that the enhanced current due to ion-neutral charge exchange changes

the character of the gyro-phase drift dramatically. Indeed, even when the ion mean free path

λi/a = 104, the plasma is collisionless yet the effect of ion-neutral charge exchange on guiding

center trajectory is quite pronounced. Because λi/a does not exist as a parameter in the OML

model or Patacchini-Hutchinson models, we see no change in the gyro-phase or grad-q drift for

these models over a broad range of τg/τc values. Figure 5.24 shows a similar style of plot, but here

a/RLe = 1 and we see pronounced differences among the three charging models throughout the

range of collisionality.

Figure 5.25 shows how the guiding center drifts depend on the electron magnetization number

a/RLe for λi/λD = 102. Note that Gatti-Kortshagen generally never agrees with either the OML

or Patacchini-Hutchinson models because the ion-neutral charge exchange mean free path and the

Debye length are dissimilar, i.e., λi/λD = 102 for figure 5.25. As mentioned earlier, if λi/λD � 1

or λi/λD � 1 then we do not expect significant enhanced ion current due to ion-neutral charge

exchange and, in these limits, the Gatti-Kortshagen charge model will produce the same results as

OML. Large and small values of the a/RLe parameter produce nearly identical plots for OML and

Patacchini-Hutchinson, but for 1 < a/RLe < 10, there is some deviation between them. The OML

and Gatti-Kortshagen charging models are described by the magnetized electron charging regime
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at a/RLe = 1, which reduces electron current on both sides of the abrupt inhomogeneity. So, while

electron magnetization produces a less negative in-situ equilibrium grain charge on both sides of

the inhomogeneity, the presence of UV illumination has not changed so that the grain charges much

less negatively when it is in the UV-absent region. This means that the q1/q2 ratio has increased.

We are left to discuss the role of the λD/a parameter as it concerns gyro-phase drift for all

three models. Figures 5.26 and 5.27 show the dependence of the guiding center drift magnitudes

on λD/a for a/RLe = 10−1 and a/RLe = 1.1 respectively.

There is more to the story for the λD/a parameter, however. All three of the charging models

have a different response to this parameter as shown in figure 5.28 since this parameter is important

for determining charging time. Sweeping the λD/a parameter results in a τg/τc sweep, even though

the ratio of md/me is kept constant. Fluctuations seen at small values of τg/τc happen because the

charging time is so much smaller than the gyro-period, and the fact that grain charge can be off

by up to one electron causes this problem in the graph. Figure 5.28 demonstrates, with all other

parameters unchanged, that gyro-phase drift discriminates the three charge models. Gyro-phase

drift may permit a direct measurement of λD/a for a given charge model, which is discussed later

in chapters VI and VII.

Figure 5.28 shows what happens when λD/a is varied, assuming all other important parameters

such as λi/a, a/RLe, and md/me are kept constant. The only way to vary the λD/a parameter is to

change the size of the dust grain a if the plasma conditions are kept constant, such as electron/ion

temperature or electron density. This can be done self-consistently by noting that if λD/a changes

by some factor rfact, defined as λD/a = rfact (λD/a)0, where (λD/a) is pre-specified. In this case,

(λD/a)0 = 100. Likewise, λi/a = rfact (λi/a)0, RLe/a = rfact (λD/a)0 (RLe/λD), and md/me =

(md0/me) /r
3
fact. By adopting idealized assumptions for grain uniformity and shape, we gain the

convenience of linking parameter scans to the quantity rfact.

Figure 5.29 shows the results when λD/a, λi/a, a/RLe, and md/me all vary self consistently,

assuming that ωcd/νdn ≈ 10 still holds. The sharp discontinuity in the OML and Gatti-Kortshagen

models immediately jumps out in these plots, and this occurs near λD/a = 103 (rfact = 1000) in

figure 5.29. This discontinuity is simply due to each of these two models treating electrons as being

either unmagnetized in one regime and magnetized in another regime with no smooth variation be-

tween the two regimes. Because the Patacchini-Hutchinson model has a smooth transition between
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electron magnetization regimes, this discontinuity is absent. For sufficiently large λD/a (> 105)

values, there is little difference between the models, but smaller values of λD/a (< 100) show a

difference between all charge models. The λD/a parameter still discriminates one charge model

from each another.

An important point that should be made here is that because the guiding center drift is sensitive

to the λD/a parameter, gyro-phase drift permits measurement of the shielding length λD, assuming

the dust grain size a is readily adjustable. This allows the possibility to test different models of the

grain sheath. For example, Daugherty et al. (1992), in the presence of ion flow, the Debye length

is given by

λD =

√
ε0
e2n0

(
1

kbTe
+

1

2Ei

)−1

, (5.28)

where Ei is the ion energy. For grains levitating near the sheath edge, ions flow at the Bohm speed

so therefore Ei =
1
2kbTe. The ion term in equation 5.28 depends on electron temperature instead

of ion temperature, which indicates that the shielding length is much larger than if we assumed

Ei =
1
2kbTi.

In a laboratory experiment, dust grains levitate at or near a planar sheath boundary, which

implies that flowing ions are present. The ion population is either mono-energetic if the DC glow

discharge plasma is collisionless on the length scale of the planar sheath size, or a drifting Maxwell-

Boltzmann distribution if the DC glow discharge plasma is collisional on the length scale of the

planar sheath size. The presence of flowing ions modifies ion current, and modifies the grain sheath

size because the ion kinetic energy is no longer accurately represented by the random thermal

energy Ti in the plasma. Instead, Ti ≈ Te better represents ion kinetic energy near the planar

sheath edge. In the ensuing paragraphs, we show that the inherent planar sheath mechanism of

flowing ions also affects the gyro-phase drift magnitude and direction for dust grains. The flowing

ions can be treated as mono-energetic, which is consistent with dust suspended in a collisionless

Child-Langmuir sheath, or the flowing ions can be treated as a drifting Maxwellian population,

which should be consistent with a weakly-collisional Child-Langmuir sheath. Gyro-phase drift

distinguishes these models based on this planar sheath mechanism.

Figures 5.30 and 5.31 show how the guiding center drifts depend on the thermal Mach number
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for drifting Maxwellian ion populations in the case of electron magnetization parameters of a/RLe =

10−1 and a/RLe = 1.1, respectively. In these figures, the ion flow speed has been normalized to the

Bohm speed; this differs by a factor of
√

Te
2Ti

from the thermal Mach number. The Bohm speed

is a natural parameter to use, since the ion flow speed is equal to the Bohm speed at the sheath

edge where dust grains levitate. Also for both of these figures, λi/λD = 102 so that the effect

of ion-neutral charge exchange collisions is non-negligible, but not at its largest value. In figure

5.30, OML and Patacchini-Hutchinson are indistinguishable as far as ion flow speed is concerned,

but Gatti-Kortshagen is quite different for most values. For high enough values of vi/vthi, the

Gatti-Kortshagen charge model will produce the same results as the other two models, because the

high flux of ions is sufficient to dominate all other charging processes. The OML and Patacchini-

Hutchinson models have the highest increased charge-state modulation, hence largest gyro-phase

drift magnitudes for thermal Mach numbers < 102.

When considering magnetized electrons or a/RLe = 1.1 as in figure 5.31, the picture is different.

None of the models consistently agree with each other throughout the full range of ion thermal

Mach number. The OML and Patacchini-Hutchinson models never agree, while OML and Gatti-

Kortshagen models agree for very large thermal Mach numbers.

Figures 5.32 and 5.33 show how the guiding center drifts depend on the thermal Mach number

with mono-energetic ions for the electron magnetization parameters of a/RLe = 10−1 and a/RLe =

1.1, respectively. Again, the ion flow speed has been normalized to the Bohm speed. The qualitative

differences between mono-energetic and drifting Maxwellian ions are substantial when all other

parameters are equal. The peak in the x-component of the guiding center drift velocity occurs at

much lower values than for the drifting Maxwellian ion case. In figure 5.32, the Gatti-Kortshagen

charging model shows almost no charging-rate modifications to guiding center motion. In figure

5.32, the OML and Patacchini-Hutchinson models cannot be distinguished, but they are clearly

quite different when a/RLe = 1.1, as shown in figure 5.33.

Figure 5.34 offers a comparison among the three charge models for drifting Maxwellian ions and

mono-energetic ions. We see that the guiding center drift magnitudes differ within a charge model

for mono-energetic or drifting Maxwellian ion flow. Gyro-phase drift thus discriminates between

mono-energetic or drifting Maxwellian ion flow within a charge model.

Figure 5.35 shows a comparison between simulation and the semi-analytical theory, using drift-
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ing Maxwell-Boltzmann ions and other parameters similar to the conditions present in MDPX. Both

simulation and theory suggest that the OML and Patacchini-Hutchinson charge models are indis-

tinguishable for these conditions, but the Gatti-Kortshagen charge model is different. In this plot,

the reasonable agreement between theory and simulation validates the semi-analytical approach.

C Gradual Inhomogeneity

The analytical description for guiding center velocity components shown in section A are still valid

for a gradual inhomogeneity, although specifying q(t) a priori and hence θ(t) can be difficult. The

solutions in equations 5.9, 5.10, 5.11, 5.12 from section A demonstrate that the grain velocity

components vx and vy only vary linearly with v0x or v0y; guiding center drift is proportional to

the perpendicular velocity components. This is still true for the gradual inhomogeneity. However,

for a gradual inhomogeneity, grain charge modulation depends on gyro-radius, which in turn does

depend on the velocity perpendicular to the magnetic field direction.

In the case of sinusoidal variation of grain charge, in a gradual inhomogeneity the approach of

(Northrop and Hill , 1983) suffices to describe the gyro-phase drift as long as md/q � 1kg/C and

the amplitude of charge modulation during a gyro-orbit is much less than the in-situ equilibrium

grain charge evaluated at the guiding center. With simulations, it is possible to explore regimes

where md/q � 1kg/C and md/q � 1kg/C and compare these to the Northrop prediction, shown in

equation A.80. Many types of gradual inhomogeneities can be postulated, such as inhomogeneous

electron or ion temperature, magnetic field, or ion mass composition, but the focus here will be on

the inhomogeneous ne/ni ratio. An example of a radial electric field and varying ne/ni ratio in a

magnetized plasma column is described analytically by Zimmermann et al. (2010), although it is

apparent that ne/ni only changes significantly inside the sheath, and the plasma is quasineutral

(ne/ni ≈ 1) outside the sheath. Inhomogeneous ne/ni ratio produces an electric field, but the

electric field is ignored in this section to focus on the properties of guiding center drift that are

dependent on charging rate.

The results from section B provide a source of intuition for the gradual inhomogeneity case. The

idea of the guiding center drift sensitivity to the τg/τc ratio, because the grain does not immediately

reach the in-situ equilibrium grain charge, can also be applied to a gradual inhomogeneity. Here,
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q(t) is no longer described by an exponential function as in the abrupt inhomogeneity case. As a

means to artificially delay charging, and force the charging to not be instantaneous regardless of the

plasma conditions, an adjustable charging parameter α can be used like in the abrupt inhomogeneity

case qn+1 = qn+∆q′n, where ∆q
′
n = α∆qn. For α = 1, the dust grain charges and discharges without

artificial restriction to what the model otherwise would predict. A problem with this parameter, is

that fractional elementary charge is introduced, which is a small nuisance.

1 Linear Profile

The single-grain trajectory in a dust-absent plasma using a linear profile of electron and ion densities

is computed, assuming an inertial lab frame. We examine the case of a gradual change in the ratio

between ion and electron densities, as shown in figure 5.36, with each species characterized by

a Maxwellian velocity distribution having a temperature Ti and Te, respectively. It is evident

that figure 5.36 shows an unrealistic profile for a quasi-neutral plasma, but this profile serves to

demonstrate how a gradual inhomogeneity in the ne/ni ratio can lead to charge state modulation

and hence gyro-phase drift. We also ignore the complicating factor of electric field in this profile

to focus on the gyro-synchronous charging/de-charging modulation required for gyro-phase drift.

The parameter α is used to adjust the rate of charge evolution much like how density can be

used to adjust the rate of charge evolution. Unlike in Northrop’s case (Northrop and Hill , 1983;

Northrop et al., 1989), we examine a laboratory relevant scenario where the dust thermal speed is

much smaller than the ion thermal speed. For this specific case, the electric field in the plane of

the gyro-motion is taken to be zero. The ion drag force, neutral drag force, gravitational force, and

other typical forces on a dust grain are ignored for simplicity in this section. The magnetic field is

4T. We assume room-temperature ions (T [Ar+] = 0.0025eV) and atoms and 1.6 eV temperature

electrons for the sake of modeling the Auburn Magnetized Dusty Plasma Experiment (MDPX)

(Thomas et al., 2012). The initial grain speed is oriented in the inhomogeneity direction. We also

use n0 = 1016m−3 as the background density for a = 0.015µm radius dust grains.

The simulation code is described in chapter IV and appendix B. It is a symplectic, leapfrog

integrator which solves the equations of motion resulting from the Lorentz force. Within the larger

Newton timestep, an adaptive charging step was used to ensure that only an integer number of

charges were collected at a time. It is necessary to include this timestep within the larger Newton

103



timestep because, for our choice of parameters, the dust grain will have undergone many charging

timesteps during each Newton timestep. Within the charging timestep, the analytical currents for a

given charging model are applied to the dust grain. We will focus on OML first before investigating

other charging models.

The grain is fully charged in a matter of microseconds for our set of parameters, while the

gyro-period is two to three times larger. The grain charges to the in-situ-equilibrium charge at

each spatial location during a gyro-orbit for charging time much less than gyro-period. The grad-q

drift takes place, but no gyro-phase drift occurs for a = 0.015µm, n0 = 1016m−3, and α = 1. The

dust grain charge effectively never changes if α = 0, no matter how large the current may be to

the dust grain. It should be noted that the numerical method does not assume any particle drifts

or charge modulation of the dust grain a priori ; the integrator solves the equation of motion of

the dust grain resulting from the Lorentz force during the Newtonian time step while it computes

the ion and electron currents, which are both functions of the dust grain charge, i.e., dust grain

surface potential, at each charging timestep. For the Newtonian time step, 2000 points/gyrocycle

was used.

Figure 5.37 shows a comparison of different grain trajectories for the gradual ne/ni inhomo-

geneity (figure 5.36) using the OML model with instantaneous (α = 1) and non-instantaneous

(α = 0.0105) grain charging. All trajectories start at x = 0, y = 0, with an initial velocity of

vx = −11, vy = 0 (in units of meters/second). Also at t = 0, the particle charge and gyro-

radius for this dust grain is -43e and 5.7 mm, respectively. The grain was initialized with the

in-situ-equilibrium charge in order to avoid complications involved with the unwanted and irrele-

vant transient effects. The trajectory of the instantaneous gyro-centers are also plotted, which are

represented by the helical lines having smaller radial excursions than the actual grain trajectories.

The gyro-averaged guiding centers are along these lines, depicted as squares for the α = 1 grain

trajectory, and diamonds for the α = 0.0105 trajectory. A density of 1000 kg m−3 was chosen

for the dust grain, which means that md/qd ≈ 2 × 10−3 kg/C, meaning that we can expect the

adiabatic approximation for guiding center drift to be valid.

To accurately predict guiding center drift components by using Northrop’s adiabatic drift ap-

proximation, it is necessary to fit q(t) to a function of the form q0 + q1 cos(φ − φ1), where φ1 is

the gyro-phase angle at which the grain is most negatively charged. Performing this fit allows us
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to use equation A.80 to determine guiding center drifts for one gyro-cycle, but we should keep in

mind that q0 and q1 are not generally known a priori based on the plasma conditions, and hence

predictions offered by Northrop’s theory can only be made a posteri. Figure 5.39 demonstrates this

process for the grain with α = 0.0105, although this process can be applied to any grain where

the charge modulation is strictly sinusoidal, or nearly so, during a gyro-orbit. The sinuisoidal fit

does not perfectly match q(t) for this a = 0.015 × 10−6m, α = 0.0105 grain. For the grain with

α = 1 with v⊥ = 11 m/s, this results in a predicted grad-q drift of 0.775 m/s, while the value

obtained from gyro-averaging the trajectories from the simulation is 0.726 m/s. For the α = 0.0105

grain with v⊥ = 11 m/s, the sinusoidal fit or Northrop prediction produces guiding center drift

components vxgc = −0.278 m/s, vygc = 0.58 m/s, while the simulation produces guiding center

drift components vxgc = −0.21 m/s, vygc = 0.49 m/s. It is important to note that only the terms

from equation A.80 were used, while the grad-q drift mentioned in equation A.71 was not used,

and that including the grad-q drift term from A.71 causes erroneous results. Equation A.80 makes

predictions consistent with the simulation results for the guiding center drift vector even in the

limit of instantaneous grain charging.

The grain charge as a function of gyro-phase for the two different trajectories in figure 5.37 is

shown in figure 5.40. For both trajectories, the grain charge at each gyro-phase angle is normalized

by the in-situ, equilibrium grain charge that the same grain would attain at the instantaneous

guiding-center corresponding to this gyro-phase angle, which can be expressed as q(θ)/qeq(x =

xgc(t)). A grain having a fixed, gyro-phase independent, grain charge would be displayed as a circle

with radius of 1 in this kind of plot. The evolution of particle charge is tracked for approximately

5 gyro-periods. For the α = 1 trajectory, the resulting plot in gyro-phase angle is nearly circular

in shape, although its center is offset from the origin, as expected for the inhomogeneous-plasma

case. During a gyro-orbit, the grain has the fewest number of electrons at φ = 0, and the grain

is maximally charged negatively at φ = π. The discrete steps apparent in this plot, which yields

a circular sawblade-like appearance, are representative of a net loss or a gain of 1 electron from

the previous, discrete, circular-arc step. Additionally, between these sudden transitions, the grain

continuously gains and loses an electron, causing its charge state to fluctuate rapidly between each

new pair of neighboring charge states. This fluctuation increases the line thickness δq = |qn+1 − qn|

to be e. During each gyro-cycle, the same pattern is retraced in the q versus gyro-phase angle plot
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for a dust grain having α = 1. The choice of initial gyro-phase does change the in-situ-equilibrium

charge at the guiding center q0, but it does not appreciably alter the plots in figure 5.40.

In contrast, for the α = 0.0105 polar plot in figure 5.40, the same pattern is not retraced for each

gyro-cycle. If both α = 1 and α = 0.0105 grains start at θ = π/2 in gyro-phase, the α = 0.0105 grain

will subsequently become undercharged with respect to α = 1 as both grains follow trajectories

in physical space that go into increasingly non-neutral (negative) plasma. As θ increases past

θ = π, both grains are leaving the region where the ne/ni ratio is highest. However, because the

α = 0.0105 grain does not immediately reach the in-situ-equilibrium, it stays undercharged with

respect to α = 1 past θ = π, reaching a maximum value at θ = 200◦ with standard deviation of 9◦

in figure 5.40. This maximum charge state for the α = 0.0105 grain is between the θ = π charge

states of the two grains. The α = 0.0105 grain is now overcharged with respect to α = 1 after

θ = 200◦. For θ > 3
2π, both grains are entering the region where the ne/ni ratio is decreasing,

and are becoming less negatively charged. The α = 0.0105 grain does not immediately reach

the lower in-situ-equilibrium charge state, achieving its smallest charge state when the two grains

again match, at θ ≈ 20◦ with a standard deviation of 1◦. The capacitive effects of grain charging

that are inherently present in the OML model ensure that the dust grain never reaches the in-

situ-equilibrium charge during a gyro-orbit if the charging rate is low enough, as is qualitatively

demonstrated in figure 5.41.

The magnitude of the gyrophase drift velocity and the direction with respect to the inhomo-

geneity direction varies with the value of the charge delay parameter α, reaching a peak near 10−2

(figure 5.41). For the chosen electron density, the no-delay case of α = 1, the grain charges to the

in-situ equilibrium charge much faster than it completes a gyro-orbit, so there is no modification

to the particle trajectory beyond the effect of the grad-q drift (which is an effect arising only from

gyro-synchronous charge variation). As α is lowered, the gyro-phase drift reaches a peak when

the charging timescale is comparable to the gyro-period timescale (Walker et al., 2014). As α is

further lowered, the grain changes charge state sufficiently slowly during a gyro-orbit that it does

not change charge state enough during a gyro-orbit that negligible modification of the α = 1 gyro-

motion occurs and both gyro-phase and grad-q drift become negligible. This is reflected in figure

5.41, in that the gyro-phase drift magnitude steadily decreases and the direction of the guiding

center drift approaches θdrift = π/2 (using the same polar coordinates) as α is lowered beyond
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α = 10−2, consistent with the grad-q drift also steadily decreasing.

The gyro-phase drift magnitude and direction sensitivities can be recast in terms of the τg/τc

parameter instead of α. Figure 5.42 shows this dependence for the same data as figure 5.41, but

for each data point τc is calculated in the following way: τc is the amount of time for a grain

with starting no charge to reach [1 − exp(−1)]qeq(xgc) for the plasma conditions at the grain’s

gyro-averaged guiding center, where qeq is the in-situ equilibrium grain charge. In figure 5.42, this

method produces a peak for τg/τc values between 1 and 10. This behavior is very similar to the τg/τc

plots seen earlier for the abrupt inhomogeneity. It may seem that τc is an unsatisfactory parameter

for grain charging time in a gradual inhomogeneity since the charge varies gyro-synchronously for

a gradual inhomogeneity and the charging process does not involve a monotonic incrementation

of charge. Nevertheless, figure 5.42 demonstrates that casting the sensitivities in terms of τg/τc

produces results that are consistent with the intuition developed for the abrupt inhomogeneity.

It is also possible to modulate certain plasma parameters, such as number density, temperature,

and also grain size to provide a range of the τg/τc parameter. For the figures 5.43, 5.44, 5.45, and

5.46, corresponding to grain sizes a = 0.0105, a = 0.5, a = 5, and a = 10 microns, the plasma

density n0 varies to produce a range of τg/τc. These figures show the trend of both the x and y

components of guiding center drift go to zero for very small values of τg/τc because the charging

time is so long that the grain does not appreciably change charge during a gyro-orbit. Figure 5.43

has a rough appearance since charge modulation is a significant proportion of the grain’s in-situ

equilibrium charge at the gyro-averaged guiding center. The Northrop fit for the q0 or q1 value

may be off by 1 electron, which causes the uncertainty.

Also in all of these figures, both the x and y components of guiding center drift reach zero or

start to aproach zero for very large values of τg/τc. The x and y components of guiding center drift

approach zero together because the charge state modulation approaches zero, as shown in figure

5.47. There is a very large range of τg/τc over which the ratio of charge state modulation to in-situ

equilibrium charge at the gyro-averaged guiding center q1/q0 is flat. Koepke et al. (2013) refers to

this regime as instantaneous charging, but for very large values of τg/τc (even more-instantaneous

charging), the q1/q0 ratio decreases to zero. This happens because the grain capacitance is described

by C = 4πε0a(1 + a/λD), where λD was described earlier in equation 2.7 and depends on electron

and ion temperature and electron and ion density. This decrease in q1/q0 is impossible to avoid
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for a gradual inhomogeneity in density or temperature, because plasma density and temperature

parameters affect the Debye length and hence the grain capacitance, so the qualitative appearance

for figures 5.43, 5.44, 5.45, and 5.46 will remain unchanged. An inhomogeneity in ion species

composition should not cause this kind of effect because the Debye length has no dependence on

ion mass. The change in the q1/q0 ratio can be expressed

q1
q0

=
qmax − qmin

qmax + qmin
=
χe0 + χe1 − Cd(φmax)

Cd(φ1)
(χe0 − χe0)

χe0 + χe1 +
Cd(φmax)
Cd(φ1)

(χe0 − χe1)
, (5.29)

where Cd corresponds to the gyro-phase-dependent capacitance of the grain, we assume changes to

the sheath thickness are nearly instantaneous compared to the grain gyro-frequency, φmax corre-

sponds to the angle where the grain is least negatively charged (q = q0+ q1), φ1 corresponds to the

angle where the grain is most negatively charged (q = q0 − q1), χe0 corresponds to the DC-offset of

the dimensionless surface potential variation, and χe1 is the amplitude of the dimensionless surface

potential variation. Equation 5.29 also determines the q1/q0 ratio if only the dimensionless sur-

face potential is known. While the dimensionless surface potential variation, or the ratio χ1e/χ0e

does not change appreciably as the density increases further, the q1/q0 ratio changes because the

capacitance is gyro-phase dependent due to the spatial variation in ne and ni. An important

consequence here is that charge modulation can occur if only the quasi-neutral plasma density is

inhomogeneous, because this will change the grain capacitance and hence change the grain charge

during a gyro-orbit. In other words, the grain capacitance is gyro-phase dependent, and if we define

ζ = Cd(φ1)/Cd(φmax), then

q1
q0

=
1− ζ

1 + ζ
. (5.30)

A caveat here is that the change in plasma density over the course of a gyro-orbit must be large

to appreciably alter the grain charge, and microscopic charging models assume a/λD � 1. Addi-

tionally, as explained by Daugherty et al. (1992), the regime where a/λD � 1 imply that the grain

sheath becomes a Child-Langmuir sheath, so the OML model is not necessarily accurate for these

regions of high a/λD or very high τg/τc.
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2 Cylindrical Geometry

The addition of cylindrical geometry presents some complications, but it is important to explore

the consequences of this geometry since all magnetized-orbit dusty plasma experiments are done

in cylindrical machines (Konopka et al., 2005b; Schwabe et al., 2011; Thomas et al., 2012), and

because magnetized-orbit dusty plasmas in space will generally exist in a dipole-like magnetic field

surrounding a celestial body. The two salient classes of cylindrical geometries are cylindrical devices

with inhomogeneities in the laboratory frame, and co-rotating reference frames of a celestial body.

Producing radial gradients in plasma parameters with gradient-scale-length comparable to the

gyro-radius of grains to produce charge-state modulation in a laboratory plasma is difficult, as will

be discussed. It is much easier to find comparable gradient-scale-length and gyro-radius in space

(Northrop et al., 1989). Northrop and Hill (1983) have already explored the case of gyrating grains

in plasma gradients within the co-rotating frame of a planet, so the focus is on grain trajectories

in the laboratory frame of a magnetized cylindrical discharge.

To demonstrate how charging rate effects might affect trajectories in cylindrical geometry, the

model cases of constant charge, non-instantaneous charging, and non-instantaneous charging when

drag is present are examined. To produce the charge modulation, the linear profile discussed earlier

is adapted to cylindrical geometry. Figure 5.48 shows the grain trajectory when grain charge is

constant and drag is absent. Figure 5.49 shows the trajectory for the same grain when charging

is non-instantaneous, and the introduction of non-instantaneous charging leads to radial transport

and v⊥ increases over successive gyro-orbits. When drag is introduced in figure 5.50, the radial

excursion steadily decreases over many gyro-orbits as v⊥ steadily decreases. Grain trajectories in

self-consistent electric field and electron density profiles are discussed further in chapter VI.

3 Gradual versus Step-Function Inhomogeneity

Having explored the ramifications of gradual and abrupt inhomogeneity in terms of gyro-phase

drift, we can draw some comparisons. Both the abrupt and gradual inhomogeneities show a similar

peak in the gyro-phase drift when τg ≈ τc, even when using τc to characterize the time needed

to reach in-situ equilibrium charge state for the gradual inhomogeneity. The peak at τg ≈ τc

in figures 5.41, 5.42, 5.43, 5.44, 5.45, and 5.46 validate this use of τc. All of these figures used
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gradual density to make the plots, so we can immediately compare this to the results of the abrupt

inhomogeneity for the λD/a parameter that was shown earlier in figure 5.28. The results for the

gradual inhomogeneity compared to the abrupt inhomogeneity are shown in figure 5.51.

The gradual inhomogeneity has a much smaller guiding center drift amplitude, and this is

largely due to the gradual inhomogeneity producing less charge state modulation during a gyro-

orbit. The best way to compare the gradual and abrupt inhomogeneities is to compare the values

of χ1e/χ2e from the abrupt inhomogeneity to the same values of (q0−q1)/(q0+q1) from the gradual

inhomogeneity. In this way, there is the same amplitude of charge state modulation for both. It

is difficult to produce the same amplitude of charge state modulation and consequently the gyro-

phase drift magnitude in a gradual inhomogeneity as compared to the abrupt inhomogeneity. More

discussions about abrupt and gradual inhomogeneity as applied to MDPX follow in chapter VI.
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Chapter VI

Applications

Measuring dust grain motion provides information about the background plasma. Predictions are

most useful when a relevant case can be observed or replicated in a laboratory or space setting,

so that classes of models might be discarded or improved so that the models are more consistent

with observations. The Auburn Magnetized Dusty Plasma Experiment and the dusty environment

in the Saturn-Enceladus system provide two regimes of application where dust grain motion can

provide clues to plasma processes and grain charging. To solidify the utility of gyro-phase drift for

discriminating among charge models and sheath mechanisms, specific behavior must be predicted in

space and laboratory plasmas where evidence of the behavior can be documented by measurement.

In this chapter, we argue the predicted gyro-phase drift in an abrupt inhomogeneity discriminates

among charge models in the Auburn Magnetized Dusty Plasma experiment (MDPX) for ideal

conditions. The predicted gyro-phase drift, while present in a gradual inhomogeneity, does not

discriminate among charge models in MDPX. The resulting experimental evidence for gyro-phase

drift of a gradual inhomogeneity would be outside the limits of detection, but it should reduce dust

grain transport of very small grains (a < 0.1 µm) out of MDPX. Previous to this research, the

viability of gyro-phase drift experiments in the laboratory has not been assessed.

A Application to Auburn Magnetized Dusty Plasma Experiment

The Auburn Magnetized Dusty Plasma Experiment (MDPX) is described in Thomas et al. (2012,

2013), and the relevant parameters are shown in table 1.1. It is important to consider how measure-
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ments can be or will be made in order to determine or document guiding center drift magnitudes and

to match up with theory and simulation in some way. Grains can be directly imaged using Particle

Tracking Velocimetry (PTV) for a sparsely seeded grain population (dust in plasma condition), or

using Particle Imaging Velocimetry (PIV) for a densely seeded grain population (dusty plasma con-

dition) (Boessé et al., 2004). Imaging grain trajectories provides the most information and would

be the ideal candidate to study dust dynamics, and this method can provide an immediate, direct

comparison between different charging models and planar sheath mechanisms. However, there are

certain limitations to the imaging method that must be considered. The imaging that takes place

in PTV and PIV uses visible light to image dust grains, so a ≈ 200 nm is a reasonable lower limit

on dust grain size that can be imaged unless shorter wavelength light is used, which has practical

inconveniences. Friedel and Greulich-Weber (2006) were able to reliably produce pyrolized carbon

spheres as small as 100 nm in diameter, so it is possible to produce mono-disperse spherical grains

with a ≈ 200 nm for experiments.

Extremely small grains (a < 100 nm) possess a much higher value of ωcd/νdn, as discussed later

in section A, subsection 1 and they also have a much slower charging rate. The slower charging rate

makes sub-micron grains ideally suited for studying charging rate modification to grain motion, but

there is a penalty - these small grains cannot be imaged using the standard PTV or PIV techniques

or any other established method. Experiments that use grains too small to image with PIV require

probe techniques (Barkan et al., 1994).

For a collection of dust grains for a dust-in-plasma situation, the guiding center drift will vary

as a function of grain size, so details of the size distribution is important. As far as making

predictions for gyro-phase drift consistent with experimental conditions, it is necessary to account

for the grain size distribution. It would be easiest to work with mono-disperse grains, so that the

dust parameters are the same for all grains in a dust in plasma situation. The synthesis results

of Friedel and Greulich-Weber (2006) suggests that a mono-disperse dust population is feasible for

dust experiments.

To restrict grains to move only in the plane perpendicular to B, an electric field is necessary to

levitate the dust grains, which is provided by a planar sheath. The planar sheath results in a flow

of ions to the planar electrode; charging models must include ion flow to be accurate. Additionally,

predictions should be made for both mono-energetic and drifting Maxwellian ion flow, with the
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expectation that gyro-phase drift may distinguish between them.

1 Accessible Parameter-Space Regimes in MDPX

An important consideration, discussed by Kählert et al. (2012); Thomas et al. (2012) is that gyro-

motion does not formally exist when ωcd/νdn < 1. This was also demonstrated earlier in this

dissertation with figures 4.5 and 5.8. Another important result is that the dust-dust collision

frequency must be much smaller than the dust gyro-frequency. The limit where ωcd/νdn > 1 is

a valid regime for tracking the grain over many successive gyro-periods. The gyration ratio was

discussed earlier in chapter V, but is rewritten here to rely on parameters that are more useful

from an experimenter’s perspective, resulting in the expression,

ωcd

νdn
=

3πε0

(
1 + a

λD

)
B
√

8eTn
πmn

Te |χe|

8aPn
, (6.1)

where Pn is the neutral gas pressure. Note that the gyration ratio depends on dust grain size, and

not explicitly on the dust grain’s mass. From an experimenter’s perspective of DC glow and RF

Discharges, only Pn is easily controlled, a can reasonably be controlled, B can be controlled but is

limited to a practical DC maximum of 4 T (Thomas et al., 2012), and only weak variation over a

small range of Te or Tn is possible. The absorbed RF power can be adjusted to change Te, and also

ne and ni, for an RF discharge plasma. Beyond the gyration ratio, the plasma densities ne and

ni are important parameters because they determine charging rate. These ne and ni densities, in

combination with dust grain size, alter a trajectory when the densities are small enough to limit

charging rate enough for gyro-phase drift to exist.

The dimensionless surface potential, χe = eVd/(kbTe), cannot be easily controlled and, due to

the presence of planar and grain sheath mechanisms, is not typically known to great precision.

Also, due to non-stationary charging, the dimensionless surface potential felt by the grain can

change with time or during a gyro-orbit, which means that the gyration ratio can change during a

gyro-orbit. We can use the result from OML theory, using an equlibrium in-situ charge, to get an

estimate for the dimensionless surface potential.

For analyzing magnetized-orbit dust in MDPX, the DC magnetic field must be as large as

the device allows (4T), while the dust grain size and neutral gas pressure must be as small the
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diagnostics allow (a > 0.2 µm). For the evaluation of charge models, this poses a problem. The

requirement for small neutral gas pressures means that there is access to a limited region of ion-

neutral collisionallity for gyro-phase drift experiments.

A good compromise of parameters can be made for B = 4T: a ≈ 0.2µm, Pn ≈ 1 mTorr,

Te = 5 eV, Tn = 0.025 eV (room temperature neutrals), and ne = 1014 m−3. This ensures non-

instantaneous charging (τg/τch < 1), ωcd/νdn > 1, a/RLe ≈ 0.1, and the effects of ion-neutral

charge exchange in the dust sheath are still important. Variation in these parameters is considered,

both to allow for variation in these plasma parameters and to predict a range of guiding center

drift. A ratio of ωcd/νdn = 4 is obtained if |χe| ≈ 2 is assumed in equation 6.1. Access to

a/RLe = 1 and larger is desirable for comparing the Patacchini-Hutchinson model to the OML and

Gatti-Kortshagen models, but this is not feasible with MDPX at this time. For the parameters

discussed, RLe = 1.67× 10−6 m, so a/RLe = 0.12. Larger grains will easily satisfy the magnetized-

electron-current condition, which is an interesting regime to examine as seen earlier in chapter V,

but gyration will not occur because ωcd/νdn < 1. To satisfy a/RLe ≈ 1 for a ≈ 0.2 µm grains, a

magnetic field of nearly 40 T is required.

A consequence of all these issues is that the gyro-phase drift for a wide range of parameters

shown in chapter V is not possible in Auburn MDPX. Certain parameters are effectively restricted,

and these restrictions will be discussed in the following sections.

2 Abrupt Inhomogeneities in Auburn MDPX

For the abrupt inhomogeneity, some plasma condition must be discontinuous across a boundary.

While an inhomogeneity in ne, Te, or other parameters is possible or can possibly be constructed in

the lab with an electron cathode or by other means, we will again rely on an abrupt inhomogeneity in

UV illumination. An abrupt inhomogeneity in UV illumination has an advantage in that important

parameters, such as grain shielding length, mean free path, and gyro-radius will be independent of

the inhomogeneity, simplifying the problem. It is important that the UV spectrum does not exceed

the ionization energy of the neutral gas species, otherwise this can increase electron and ion density,

and the semi-analytical and simulation results will be erroneous. Additionally, we will assume that

the UV source is aligned with the magnetic field direction, so that the photo-recoil force is along

the magnetic axis and does not perturb the motion of the grain in the plane perpendicular to B.
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The grain will experience an additional F ×B drift due to the photo-electron recoil force when the

UV source is not aligned with the magnetic axis, which can be a significant effect.

For laboratory experiments, the UV source specifics need to be assumed. Electromagnetic

sources are described by their spectral irradiance as a function of wavelength, so that integration

over the entire spectrum produces the intensity of the radiation. In this dissertation, a spectrum

comparable to the UV lamps described by Dove et al. (2012) is assumed, because it is readily

obtainable and has been used successfully to produce photo-emitting grains. More about their

results will be discussed shortly. The Osram Xeradex 20 lamp is so named because it consumes 20

W of electrical power. The Osram Xeradex 20 lamp emits 8 W of power in the ultraviolet, centered

around λc = 172 nm, corresponding to a photon energy of 7.21eV. The resulting spectrum has a

FWHM of λFWHM = 14 nm, and this is shown in figure 6.1. Although this lamp provides insufficient

power for charge state modulation, it serves as a known baseline for the ensuing predictions. The

radiation intensity at the lamp surface is 45 mW cm−2, or 450 Wm−2. The integral described

by Colwell et al. (2005), discussed earlier and provided in equation 3.40, can be performed by

approximating the spectrum as a Gaussian centered at 172 nm. Using the Gaussian fit, and

declaring λFWHM = 2
√
2 ln 2∆λ, where ∆λ is taken as the standard deviation, the intensity of light

as a function of wavelength is given by

I(λ) = I0
1(

λFWHM

2
√
2 ln 2

)√
2π

exp

(
− (λ− λc)

2

16FWHM2 ln 2

)
, (6.2)

where λc = 172nm is the peak wavelength, and I0 = P/(4πr2) is UV flux intensity, assuming the

UV lamp is a point source, P is the power of the source, and r is the distance of grains away

from the source. Alternatively, I0 can be the intensity measured at some distance from the UV

source. Integration of equation 6.2 over λ results in the value I0, as expected. The careful reader

may notice that equation 6.2 gives an expression for the spectral irradiance I(λ), when the flux

of photons as a function of wavelength F (λ) is sought. Replace P with P = λ/(hc), where h is

Planck’s constant, and c is the speed of light, which transforms equation 6.2 into the photon flux

F (λ) needed to evaluate equation 3.40.

The lower integration cutoff in equation equation 3.40 is given by λ = 0. To determine the upper

cutoff λ1, consider the material being irradiated with UV photons. Only a few different materials
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are considered for this section, with reasons given for their inclusion. These materials are Carbon

(W = 4.81 eV, λ1 = 258 nm, ρd ≈ 2000 kg m−3), Zirconium (W = 4.05 eV, λ1 = 306 nm, ρd ≈ 4600

kg m−3), and Platinum (W = 5.65 eV, λ1 = 219 nm, ρd ≈ 21.45 × 103 kg m−3). As discussed

in chapter III, a dimensionless photo-electron current fraction is used to represent the magnitude

of the photo-current normalized to the electron saturation current, or υ = fuv/(nevthe) because

the assignment of this number determines the in-situ-equilibrium grain charge in the UV-present

region of plasma. Because simply quoting the photo-electron current fraction υ in this way hides

information about the UV spectrum and the grain material properties, photo-electron flux fuv will

also be quoted. For the results in chapter V, the coefficient of UV illumination was held constant

while the ratio τg/τch varied but, if UV flux is held constant, then υ must change throughout the

range of electron plasma density ne values, and hence τch values change. As a consequence, the

dependence of υ on density will be shown for each case examined.

The pyrolyzed melamine spheres (Friedel and Greulich-Weber , 2006) are included here because

the resulting grains are smooth spheres of pure carbon and the grains are monodisperse. The

smooth nature of the surface and the spherical shape of these grains makes them a perfect testbed

for the guiding center drift study in this dissertation. These spheres provide the idealized spherical

shape assumed in the main charging and grain sheath models. The photo-electron yield must

be characterized to determine the outward photo-electron flux. Feuerbacher and Fitton (1972)

performed experiments to determine the photo-yield for graphite, vitreous (glassy) carbon, and

Aquadag, a colloidal dispersion of graphite in water. These measurements, shown in figure 6.2,

form the basis for an analytical expression for the yield as a function of wavelength. We assume

that the yield curve for graphite approximates the work function for pyrolized melamine spheres,

because the grains are allowed to cool slowly, allowing crystallization to occur. The yield curve

for graphite serves as graphite’s work function lower limit for photo-electrons even if the pyrolyzed

spheres do not exactly have the same properties as graphite.

Zirconium and Platinum are also included. Eastman (1971) measured the photo-electron yield

of Zirconium, shown in figure 6.3, while Lin et al. (1971) measured the photo-electron yield of

Platinum, shown in figure 6.4. Zirconium easily forms into spheres. Platinum also forms easily into

spheres of arbitrary size even as small as a = 2.5 nm. Platinum spheres can be made with a narrow

size distribution, which is another useful property for studies of grain charging. Although the size
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distribution for Platinum spheres may be narrow, there is still a size distribution so this must be

considered in the analysis. Dove et al. (2012) measured a photo-electron flux of FUV = 1.57× 1016

em−2s−1 for Zirconium, and FUV = 1.87 × 1016 em−2s−1 for Platinum at a distance of 17 cm

from the UV lamp. Even though Zirconium has a lower work function, Platinum has a much

higher photo-electron yield which results in a higher photo-electron flux. Earlier, we assumed that

2 ≤ Te ≤ 5 eV and 1013 ≤ ne ≤ 1016 m−3 as practical limits for Auburn, which means we have

1.41×10−6 ≤ υ ≤ 2.23×10−3 for Platinum grains, and 1.18×10−6 ≤ υ ≤ 1.87×10−3 for Zirconium

grains. Earlier in chapter V fraction values as large as υ = 0.25 were used for plots, though we see

now that this is very large compared to the measurements provided by Dove et al. (2011, 2012).

Grain velocity perpendicular to the magnetic field direction is another important consideration,

because this implicitly determines the size of the gyro-orbit. The abrupt inhomogeneity approach

is not valid if the UV transition region cannot be made small with respect to the size of a grain’s

gyro-orbit. Small gyro-orbits also pose a problem for PIV and PTV measurements because the

error bars on grain velocity and position may become larger than the gyro-orbits themselves. Note

also that the shapes of the gyro-orbits depend on the ratio v⊥/(E0/B) when an electric field is

present, as discussed in chapter V and demonstrated in figure 5.1. An assumption of small or large

must be made for the grain velocity component that is perpendicular to the magnetic field direction

compared to the neutral-atom thermal velocity. The most straightforward approach is to assume

that the population of dust in plasma is in thermal equilibrium with the neutral gas atoms. In

a DC glow or RF discharge, the ions and neutral gas atoms are in thermal equilibrium with each

other, and both species are near room temperature. Even though low dust density invokes the

dust-in-plasma rather than dusty-plasma condition, a statistical ensemble of grain velocities still

exists, with a thermal speed characterized by vthd.

Assume that for the population of grains used in an experiment, little control can be placed

over their initial position and gyro-phase; the grains may be dropped into the plasma (Thomas,

1999, 2001), after which PIV measurements begin. Because the neutral drag force for a = 400

nm grains quickly reduces the grain’s perpendicular speed, the size of gyro-orbits decays noticably

after only a few gyro-cycles. Therefore, it is of paramount importance that PIV measurements are

started quickly after the grains are introduced into the plasma, near the UV illumination region.

UV illumination should be turned on when the grains have reached the in-situ-equilibrium charge
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(after several charging periods τ1). With enough grains and with a large enough gyro-radius, there

will be grains near the boundary between UV-present and UV-absent regions of plasma. Unlike in

chapter V, grains will in general have a random assortment of initial gyro-phase, meaning that they

do not necessarily encounter the boundary between UV absent and present plasma at 270◦. Grains

will charge negatively in the plasma, so the grains will gyrate in a counter-clockwise direction when

viewed from above, and the grain trajectories will look like those described in chapter V. It is

necessary to consider the range of initial gyro-phase angles −180 ≤ θ0 ≤ 0 in order to allow grains

starting with positions x < 0 to reach the transition region before analyzing their trajectories using

the PIV data from the hypothetical experiment. Also, because the UV-present region will be of

finite size, there will be grains “on the other side of the inhomogeneity” that start in the UV-present

region and transition to UV-absent plasma during a gyro-orbit. As long as the boundaries of the

UV region are known, the position, velocity and hence gyro-phase information for grains in an

experiment can be determined through PIV analysis.

Acknowledging that dust grains with size a = 200 nm are the smallest grains that can be imaged

and that either mono-energetic or drifting Maxwellian ion flow exists, it is possible to make some

predictions for guiding center drift, addressing the issues of grain material and varying strengths

of UV source, type of ion flow for a range of electron temperatures and densities. The results are

discussed one at a time for each grain material for the range of experimental parameters considered

earlier, 2 ≤ Te ≤ 5eV, 1013 ≤ ne ≤ 1016 m−3, and mono-energetic or drifting Maxwell-Boltzmann

ions, along with some discussion about the confidence in the results. The three charge models

(OML, Patacchini-Hutchinson, and Gatti-Kortshagen) are considered.

Figure 6.5 shows the guiding center drift for the three different charging models for a Platinum

grain and a range of electron plasma densities ne = n0 and drifting Maxwell-Boltzmann ions. The

coefficient of UV illumination υ = fuv/(nevthe) used for figure 6.5 is shown in figure 6.6, which

corresponds to ten times the amount produced by a Xeradex UV lamp 17 cm away from a grain.

The smaller dotted lines indicate the upper and lower bounds of the guiding center drift, assuming

that Te = 5eV, with an uncertainty of ±0.5 eV. The experimental parameters are insufficient to

discriminate between OML and Patacchini-Hutchinson charge models, but these two models are

quite different from the predictions offered by the Gatti-Kortshagen charge model, especially at

lower densities. Grains that charge according to the Gatti-Kortshagen model travel in the −y-
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direction, another notable difference distinguishing it from the OML and Pattacchini-Hutchinson

models. The ratio of the in-situ-equilibrium grain surface potentials χ
(1)
e /χ

(2)
e is shown in figure

6.7.

Figure 6.8 shows the guiding center drift for the three different charging models for a Platinum

grain and a range of electron plasma densities ne = n0, assuming mono-energetic ions and using

the same coefficient of UV illumination shown in figure 6.6, which also corresponds to ten times the

amount produced by a Xeradex UV lamp 17cm away from a grain. Again, OML and Patacchini-

Hutchinson models are indistinguishable. The mono-energetic results show different values for

the guiding center drift magnitudes as compared to the flow-shifted Maxwellian ions, especially

for the Gatti-Kortshagen charge model. The other two models can be compared for the planar

sheath mechanism of mono-energetic versus flow-shifted Maxwellian ions using their y-component

of guiding center drift. The ratio of the in-situ-equilibrium grain surface potentials χ
(1)
e /χ

(2)
e is

shown in figure 6.9.

Zirconium is not as efficient at producing photo-electrons as Platinum, resulting in a photo-

current that is 84% that of Platinum (Dove et al., 2012). This is still sufficient to produce charge

state modulation. Zirconium is also much less dense than Platinum, so the important ratio md/me

will be smaller. Figure 6.10 shows the guiding center drift for drifting Maxwellian ions, with the

coefficient for UV illumination over the range of densities shown in figure 6.11. At n0 = 1013 m−3,

zirconium grains have a small enough md/me ratio that they have τg/τch ≈ 1 and they drift in

the negative x-direction. As before, the Patacchini-Hutchinson and OML models agree closely, but

these two both disagree with the predictions for the Gatti-Kortshagen model. The ratio χ
(1)
e /χ

(2)
e

shown in figure 6.12 is slightly smaller for the platinum grain throughout the range of densities,

owing to the lower photo-electric yield of zirconium.

Figure 6.13 shows the guiding center drift for the three charging models for the Zirconium grain

through the range of plasma densities, and the ratio χ
(1)
e /χ

(2)
e is shown in figure 6.14. There is a

considerable difference between the guiding center drifts for the flowing Maxwellian ions of figure

6.10 as compared to the mono-energetic ions of figure 6.13, revealing that this sheath mechanism

can be compared within a given model.

The initial gyro-phase of grains was held at θ0 = 3π/2 and the initial position was chosen as

x0 = xb for all of the trajectories shown in the preceding figures. This restriction is not strictly
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necessary, and it is possible to consider any set of initial conditions. The preceding figures provide

the most direct representation for testing guiding center drifts, but the analysis can easily be

extended to any initial starting angle with no difficulty.

The intensity of UV illumination is a large factor in producing guiding center drift, but it has no

effect unless there is sufficient photo-electric yield. Thus, the photo-electric yield function and the

UV spectrum determine in large part the resulting guiding center drift in a quasi-neutral plasma.

Both of these properties affect the UV photo-electron flux and hence determine in-situ-equilibrium

grain charge. As shown earlier in figure 5.14, larger q1/q2 ratios produce greater gyro-phase and

grad-q drift magnitude. As long as the photo-electron flux is not so large to make the grain charge

positively, guiding center drift will increase as the ratio q1/q2 increases. The analysis above shows

that in order to maximize the photo-electron flux, a grain material with a high photo-electric yield

function is desirable. Cesium or Cesium-coated surfaces, for example, have very large photo-electric

yields. Having a UV spectrum that is peaked at higher photon energies is also beneficial for all

materials, because the yield increases with UV photon-energy, up to some maximum. The work

function is not so important for producing gyro-phase drift; as long as the energy of UV photons is

greater than the work function, the yield curve determines the photo-electric flux. Carbon grains

have a much lower work function than platinum, but drift less than platinum grains because the

photo-electron yield is so much smaller for Carbon. It should be noted however that for materials

with high yields and high work functions (such as Platinum), having a peak in the UV spectrum

near the work function produces photo-electrons that leave the surface with very little kinetic

energy, and these electrons might readily form a Space-Charge-Limited sheath.

In MDPX, the prediction made by the Gatti-Kortshagen charging model should produce the

correct results. The electron current is effectively the same in all three models, but only Gatti-

Kortshagen accounts for ion-neutral charge exchange collisions in the grain sheath. An experiment

set up in accordance with this section should provide a crucial test for the validity of the Gatti-

Kortshagen charging model.

3 Gradual Inhomogeneities in MDPX

There are a few possibilities for gradual inhomogeneities in MDPX that we might use as candi-

dates for observing gyro-phase drift. These possibilities are summarized, with an assessment for
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each of these in MDPX. An immediate consequence of a gradual inhomogeneity is that an elec-

tric field is generally present, which enlarges grain gyro-orbits (chapters IV and V) and leads to

problems with dust confinement for larger size grains (a > 200 nm). Furthermore, the grain-size

dependent drag forces damp the gyro-motion, which gives even further reason to use small grains

(a < 200 nm). The use of small grains prevents observation of any differences between the OML

and Patacchini-Hutchinson models because the magnetization parameter a/RLe will be extremely

small. A complete list of gradual inhomogeneities of which we can conceive for the Auburn MDPX

is inhomogeneous ne/ni, inhomogeneous Te or Ti, inhomogeneous ion mass composition, inhomoge-

neous ion charge state, inhomogeneous quasi-neutral plasma density, and inhomogeneous electron

or ion flow during a gyro-orbit. Inhomogeneous ion mass composition is discarded due to the

technical challenges required to produce an ion mass composition gradient in an experiment. In-

homogeneous ion charge state may be present with a meaningful spatial dependence in Tokamaks

or other high temperature plasma, but this is ignorable in MDPX and singly-ionized ions are a

justifiable assumption. Inhomogeneous electron or ion temperature profiles are present in Toka-

maks and Stellerators, but they do not arise in any meaningful way in a magnetized RF discharge

such as MDPX. This leaves three sources of gradual inhomogeneity that may give rise to charge

modulation during a gyro-orbit and possibly grad-q and gyro-phase drift, which are inhomogeneous

quasi-neutral plasma density, inhomogeneous ne/ni ratio, and inhomogeneous electron or ion flow.

These inhomogeneities merit further discussion.

As discussed in chapter V, a guiding center drift is present when only the quasi-neutral plasma

density is inhomogeneous, which is a common feature of many magnetized plasma experiments.

However, in order for grain charge to change appreciably during gyro-motion due to plasma den-

sity, the ratio λD/a must change substantially during gyro-motion, which generally requires either

very dense plasma or very large grains. Very dense plasma increases charging time, limiting the

magnitude of the gyro-phase drift, and very large grains will experience very large neutral drag

forces that spoil gyration. Hence, inhomogeneous quasi-neutral plasma density has insignificant

effect on charge modulation during gyro-motion in MDPX, on the basis that the λD/a parameter

is a very large number for any conceivable dust experiment.

Typical laboratory plasma, a few Debye lengths from foreign material objects, is quasineutral.

Some of the electrons are lost due to the walls due to the higher thermal speeds of electrons as
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compared to ions. Although no deviation from quasi-neutrality is to be expected in MDPX, find

an electric field self-consistent with ion and electron densities in cylindrical geometry relevant to

MDPX by assuming a plasma with a radial and vertical electric field, which arises naturally in

many laboratory experiments. For azimuthal symmetry, Gauss’ law becomes

1

r

∂ [rEr)

∂r
+
∂Ez

∂z
=

e

ε0
(ni(r, z)− ne(r, z)] . (6.3)

Only the values of these quantities when they are evaluated at z = zsh are pertinent, because this

corresponds to the vertical distance above the electrode where the grains levitate. According to

Child-Langmuir theory of planar sheaths, the plasma potential varies slowly or is constant with

respect to z at z = zsh, so the ∂Ez/∂z = ∂2Vs/∂z
2 term is dropped from equation 6.3. As long

as two of the three quantities ne, ni, or E(r) are known, the missing quantity can be determined

using equation 6.3. The assumption of Maxwell-Boltzmann electrons translates into the ability to

obtain ion and electron densities if Er is known. Consider the radial profiles for an ECR plasma

with a biasing ring shown in figure 6.15 (Nunomura et al., 1997). Approximate the radial electric

field profile from figure 6.15 as a gaussian function centered at r0 = 4 cm with a FWHM of 3

cm. The plots shown in figure 6.16 show the plasma profile when assuming Maxwell-Boltzmann

electrons, which provides a reasonable approximation to figure 6.15. Note that the ratio ne/ni

does vary spatially, although it is nearly unity throughout the plasma. As the plasma density n0

increases, according to equation 6.3, the ne/ni variation must decrease unless the relative strength

of the electric field increases. An assessment of gyro-phase drift for the profiles like those shown in

figures 6.15 and 6.16 will be provided.

The last inhomogeneity to discuss is that of inhomogeneous ion flow during the course of a gyro-

orbit. Inhomogeneous ion flow happens naturally when a dust grain has very high speed relative

to the plasma, or in other words |vi − vd|/vthi, where vi is the ion drift velocity in the lab frame,

and vd is the dust grain velocity in the lab frame. This can also arise in the presence of a magnetic

field gradient, because the grad-B drifts for electrons and ions are different, and a diamagnetic

current is carried through the plasma. The background uniform-plasma E × B drift does not

carry a current, so it cannot cause charge state modulation, but the drifting ions do produce a

drag force which must be considered when determining grain trajectories. The root-mean square
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or thermal speed of dust grains is proportional to a−3/2, so small grains offer an advantage here

for producing charge modulation because the ratio vg/vthi is larger for smaller grains. The dust

thermal speed is vthd = 0.54 m/s for zirconium grains with a = 0.01 µm in thermal equilibrium

with room temperature neutral gas atoms, which hardly approaches the thermal speed of neutrals

vthn = 346 m/s. One might consider grains with velocities much greater than the dust thermal

speed because such grains will be present in a statistical ensemble. Additionally, the presence of a

radial electric field increases the maximum perpendicular speed experienced by a dust grain during

its E ×B drifting gyro-orbit, so modulated ion flow during a dust grain gyro-orbit is unavoidable.

Figure 6.17 shows a possible profile of self-consistent plasma parameters, using a gaussian

electric field centered at r0 = 0.1m with FWHM=0.03m and Boltzmann electrons. The equilibrium

charge is shown for all three charge models. Such a large deviation from quasi-neutrality is not very

realistic, and this exact electric field profile might not be possible for the plasma density on axis

n0 = 1014 m−3. Bear in mind, however, that this profile serves as an upper limit for the detection of

gyro-phase drift in MDPX. The OML and Patacchini-Hutchinson models give the same answer for

equilibrium grain charge, as expected for small grains and small a/RLe ratios. These equilibrium

charge profiles include the effects of the drifting Maxwellian ions in the z-direction that enter the

planar sheath at the Bohm speed, and also the azimuthal electron and ion flow due to the E ×B

flow. The ions that enter the sheath in the z-direction dominate the ion flow because
√

kbTe

mi
� E/B

for this profile. There is a smaller quasi-neutral plasma density than in figure 6.15, n0 = 1014m−3.

The plasma density is not exactly 1014 m−3 at x = 0 in this figure because grains will levitate at

the sheath edge in the z-direction, where ne(r = 0) = ni(r = 0) = n0 exp(−1/2). The profile in

figure 6.17 is notable in that ne/ni varies considerably near r = 7.5 cm, so this profile is a good

candidate for charge state modulation. The gaussian, hence inhomogeneous, shape of the electric

field means that there is an additional drift in the ϕ-direction associated with this non-uniformity.

Grain charge also varies considerably near r = 7.5 cm in this kind of profile, so there is a possibility

for gyro-phase drift.

Before including ion drag and neutral drag, it is instructive to see some example grain trajec-

tories for the gaussian electric field profile. Constant grain charge constitues the simplest example.

The grain charge q = −695e is chosen because this corresponds to the in-situ equilbrium grain

charge for the OML model at r = 0.1 m. Figure 6.18 shows the grain trajectory for 80 gyro-cycles.
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This trajectory closely matches figure 5.17a on page 289 of Gavrishchaka (1996), suggesting that

the axis-encircling trajectory of this grain is consistent with regular E × B drift in cylindrical

geometry. Figure 6.19 shows the radial excursion of the grain. The grain does not drift inward or

outward; the radial excursion is bounded as expected for pure E ×B drift.

We add more complexity to the situation by allowing the grain to change charge state instan-

taneously. Figure 6.20 shows approximately 10 gyro-cycles of the grain trajectory for a grain that

charges instantaneously to the in-situ-equilibrium grain charge. Figure 6.20 is very similar in ap-

pearance to figure 6.18. The radial excursion shown in figure 6.21 is similar to figure 6.19, but

there is now a grad-q drift term that changes the pattern of radial excursion slightly, although the

upper bound of r = 0.1m (the initial position of the grain) remains the same.

As the final step before adding drag terms, we examine what happens when the grain does

not charge instantaneously. Figure 6.22 presents a different picture for the grain trajectory when

non-instantaneous charging is permitted. The radial excursion in figure 6.23 shows that non-

instantaneous charging significantly alters the grain trajectory and, ultimately, the grain drifts out

of the plasma in this gaussian electric field profile, in contrast to the bounded radial excursion seen

in figure 6.19. In figure 6.23, both the lower and upper bound of the radial excursion are increasing,

even though it is difficult to see the small increase for the lower bound in this figure. Armed with

this intuition from the drag-absent scenarios, it is now time to add drag forces and analyze the

resulting grain trajectories.

Figure 6.24 shows an example trajectory for non-instantaneous charging for the profile shown

earlier in figure 6.17 when only the neutral drag is included from the drag force terms. The

many gyro-orbits present in figure 6.24 make it difficult to see anything quantitatively and a more

illuminating visualization is needed to diagnose the grain motion. Figure 6.25 shows the radial

excursion of the grain and the charge-state as a function of time. The charge state modulation

and the radial excursion of the grain decreases in time. The grain in figure 6.25 starts with the

in-situ-equilibrium charge. Next consider what happens when the grain starts with no grain charge,

a possibility when grains are first introduced to the plasma. The transient charging case is shown in

figure 6.26. Except for the beginning of the trajectory, where the grain starts charging negatively,

the radial excursion exhibits similar behavior and their radial positions are nearly identical after

the same amount of time.
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However, when both the ion and neutral drag are included as drag force terms, a different picture

for the grain position and charge evolution emerges. As implied by figure 6.17, the ion flow causes

an ion drag force in the ϕ-direction, meaning that there is a F ×B force, and negatively charged

grains drift radially outward. The concurrent presence of neutral drag may ameliorate this effect

somewhat, because this force acts to decrease the gyro-radius of grains. Figure 6.27 suggests that

the radial transport of grains is different for instantaneous charging and non-instantaneous charging,

and non-instantaneous charging leads to grain confinement in MDPX for the inhomogeneity profile

discussed in this chapter.

An obvious question to ask is whether the charging model choice can make a difference to grain

trajectories. Figure 6.17 shows that the Gatti-Kortshagen charge model produces very different

values for the in-situ-equilibrium grain charge as compared to Patacchini-Hutchinson and OML

models, so one might expect some difference in the grain trajectories. Figure 6.28 shows an example

trajectory for the Gatti-Kortshagen charging model, which seems promising since it visually looks

different. The trajectory shown includes neutral drag, but not ion drag. Figure 6.29 shows the

radial excursion and charge state for the grain for the trajectory shown in figure 6.28. A very

different pattern of charge evolution emerges when the Gatti-Kortshagen charge model is used in

figure 6.28 as compared to figures 6.25 and 6.26. Unfortunately, the grain reaches the same final

radial position for both models at about the same time, so it is too difficult to distinguish these

models in a real experiment.

B Application to Enceladus

Saturn and its rings and moons form a dusty plasma system. Given the presence of dust grains

of all sizes throughout Saturn’s plasmasphere, it is natural to ask whether non-stationary charging

processes can lead to stratification of dust. Northrop et al. (1989) answered this question for the

case of Jupiter and explaining the formation and structure of Jupiter’s gossamer ring, although no

treatment was offered for UV illumination or ion-neutral charge exchange processes. Khurana et al.

(2008) provide a useful collection of parameters for the Saturnian moons, shown in table 6.1. Note

that the increase in electron and ion temperatures strongly suggests the presence of temperature

gradients, and an attempt to model this profile of the Saturn system is shown in figure 6.30. The
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electron temperature is modelled as exponentially increasing with increasing radius from Saturn’s

center in a similar fashion as Northrop et al. (1989) and Northrop (1992). The magnetic field of

Saturn is treated as a dipole field and the magnetic field axis is closely aligned with its rotation axis.

As discussed by Farrell et al. (2009), near Enceladus in the E-ring in Saturn’s gas torus, neutral

gas atoms and molecules also exist, with concentrations as large as nn ≈ 1011 m−3. Näıvely, one

might suspect that these neutral gas atoms lead to ion-neutral charge exchange collisions in the

grain sheath and affect grain dynamics. However, λi/λD � 1 in the Saturn-Enceladus system,

which suggests that ion-neutral charge exchange collisions do not play a role in grain charging. The

presence of neutral gas does mean dust-neutral collisions occur, damping gyro-motion which affects

grain dynamics.

Figure 2.3 gives an example trajectory for conditions present near Enceladus in Saturn’s magne-

tosphere for a grain with a = 0.025 µm, but with no inhomogeneities except for ion flow modulation

during grain gyrorbit. Given the conditions near Enceladus including the weak magnetic field of

B ≈ 370nT, only very small grains are magnetized with respect to Saturn’s magnetosphere, and

the grain gyro-orbits are generally larger than Enceladus’ diameter. Nonetheless, it is possible

to observe the difference that the presence of UV can make on grain trajectories, specifically the

change in UV illumination that occurs when a grain transits from a UV-present region to a UV-

absent region. Figure 6.31 shows an example trajectory of a water ice grain (a = 0.025µm) that has

sufficient energy to escape the gravity of Enceladus, and so travels at the Kepler speed around the

equatorial plane of Saturn. The grain has an inward radial drift. No UV illumination is considered

in figure 6.31. Figure 6.32 shows the same grain, but this time considering UV illumination, with

the UV flux being modelled by assuming the Solar UV spectrum and regolith as the grain mate-

rial (Colwell et al., 2005). The astute observer may notice that the trajectory is slightly different

from figure 6.31. Because the grain may transit behind Saturn, a UV-absent region or cylindrical

shadow sweeps around Saturn like a “darkhouse” in the co-rotating frame. Grains are close enough

to Saturn that the region of shadow should be the diameter of Saturn, and no penumbral effects are

considered. This constitutes an abrupt inhomogeneity in UV illumination. Figure 6.33 shows the

direct comparison between the UV and no-UV grain trajectories. The differences in grain charge

modulation lead to differences in radial excursion in figure 6.33. The abrupt inhomogeneity enlarges

the radial excursion of the grain.
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It is also possible to examine grain trajectories for a temperature gradient. Figure 6.34 shows

a temperature gradient and the UV “darkhouse” function is also included, but no drag forces are

considered. There is an obvious drift toward larger radial excursions from Saturn; the grain gets

transported towards Rhea and the outer moons of the Saturnian system. The gyro-radius increases

as the grain drifts radially outward because the magnetic field is decreasing. Figure 6.35 refines this

picture by including neutral drag. The grain still drifts in the radial direction, but the gyro-radius

is decreasing due to the neutral drag. Figure 6.36 introduces ion drag, but the results are the same

as found in figure 6.35 because the ion drag force on this a = 0.025 µm grain is so small in Saturn’s

plasmasphere.
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Chapter VII

Discussion

The main issue in this chapter is to discuss whether or not gyro-phase drift is observable in labo-

ratory experiments and to evaluate the limits on its detection based on predictions of observables

from the model for abrupt and gradual inhomogeneities.

A Optimizing the Detection of Gyro-phase Drift in MDPX

The following considerations can be made regarding uncertainty quantification of guiding-center

drift for the abrupt inhomogeneity. Discrepancy between theory and experimental observation of

guiding center drift caused by over-simplification or inaccuracy of the theoretical models can be

called model error. Measurement uncertainty concerning dust grain trajectories and measurements

concerning plasma dimensionless parameters will be discussed here.

The grain position and grain velocity sampling rate serve as important parameters when dis-

cussing possible error in grain trajectories, represented by the capability of laser strobing and CCD

frame capture rate. Thomas (1999) discussed a PIV system where 0.0005ms < ∆tlaser < 30ms.

For the a = 2× 10−7m grains discussed in chapter VI, the gyro-period corresponds to ≈ 0.1− 10s.

A sampling rate of 1 kHz yields a minimum of ≈ 30 data points per gyro-orbit, which should be

sufficient for documenting the velocity of the grain. As an example of the spatial resolution of the

CCD camera used in typical PIV studies, Thomas and Watson (1999) provide a reasonable bound

on grain position by using a pixel size of 25µm.

In order to measure single grain trajectories in a way that is consistent with the predicted grain
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trajectories in this dissertation, particle tracking velocimetry is needed because PIV measures the

dust population as an ensemble rather than individual particles. PTV allows tracking of individual

grains for many successive frames (Feng et al., 2011). With PTV, a sparsely seeded field is necessary

to maintain a relatively large interparticle spacing, otherwise PTV algorithms are inefficient (Boessé

et al., 2004). In the context of this dissertation, a sparsely seeded field refers to the dust-in-plasma

condition, where the Debye sheaths of individual dust grains do not overlap. A sparsely seeded

field has another advantage in that the dust-dust collision frequency is reduced. The velocity at a

time halfway between two video frames can be calculated using

vn+1/2 =
rn+1 − rn

∆t
, (7.1)

where ∆t refers to the time between video frames and the subscripts represent time steps. Using

the propogation of errors, Feng et al. (2011) showed that the error in velocity is given by

(δv)2 = 2

(
δr

∆t

)2

, (7.2)

where δr is the inherent error in grain position and δv is the error in velocity.

A consequence of equation 7.2 is that faster frame rates increase the error in velocity. However,

Feng et al. (2011) showed that by skipping some image frames for the velocity calculation, ∆t

is increased, resulting in smaller errors in velocity but lowering the sampling rate for velocity

measurements. To further discuss the possibilities for measurement error using PTV, it is instructive

to look at some PTV observations in dust experiments in the literature. Feng et al. (2011) obtained

a pixel width of 31 µm at a capture rate of 250 frames per second, successfully imaging a = 4 µm

grains having a thermal speed of 1 mm/s, which is comparable to the perpendicular velocities

assumed in chapter VI. The gyro-period for the dust grains in chapter VI is approximately 1 s,

so a 250 hz sampling rate results in 250 images per gyro-period. Feng et al. (2007) used a setup

where the pixel width was 7.4 µm for imaging a = 4 µm grains. Feng et al. (2007) point out that

the image size is not necessarily given by the pixel size due to diffraction by the camera aperature

and imperfect focusing. The 8 µm dust grains used by Feng et al. (2007) produced images that

were larger than one pixel, even though the pixel size was 7.4 µm. With their grain and optical
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parameters, Feng et al. (2007) obtained accuracy in grain position to within 0.017 pixel using

their technique. Setting the uncertainy in grain position δr = (0.017)7.4 µm = 0.126 µm with a

representative sampling rate of 250 frames per second results in a velocity error of δv = 4.5 µm/s,

which corresponds to 4.5% of the grain velocity perpendicular to the magnetic field. In figures

6.10, 6.9, 6.12, and 6.14, the largest difference between models is comparable to this number, which

suggests that a higher UV flux is needed in order to directly observe gyro-phase drift.

However, if a similar algorithm to the one developed in appendix B, section 3 of this dissertation

is used to find quantities such as the gyro-period, gyro-phase angles, and guiding center drift

magnitudes from the PTV data that relies only on the grain position, rather than using the velocity,

this error might be reduced by using relationships of the form xgc = [x(t = 0) − x(t = τg)]/τg.

Assuming the gyro-period τg can be determined to within ±1/SamplingRate, dividing the initial

and final positions by the longer timescale τg, rather than the time between successive images, has

the effect of decreasing the error in vxgc. In other words, δvxgc ≈
√
2δx/τg. For the best case

scenario, this results in δvxgc/v⊥ ≈ 0.1% for τg ≈ 1 s, which should be sufficient to distinguish

charging models and ion distribution functions for the UV fluxes used in figures 6.7, 6.9, 6.12, and

6.14.

To address the issue of the possible photo-electron currents that might be produced for the

abrupt inhomogeneity, Dove et al. (2012) measured UV photo-currents of FUV = (1.87± 0.3) ×

1016em−2s−1 for Platinum and FUV = (1.57± 0.3)×1016em−2s−1 for Zirconium using the Xeradex

lamp. These photo-current amplitudes are not enough to produce a measurable gyro-phase drift for

the abrupt inhomogeneity in UV illumination for typical plasma parameters in MDPX. Gyro-phase

drift is predicted to be visible when the luminosity is increased by a factor of 10 for the same UV

spectrum, which might be achieved through the use of multiple UV lamps or a more powerful UV

lamp. Higher UV output is advantageous for observing gyro-phase drift.

Measuring electron temperature using Langmuir probes poses some difficulty, and in chapter VI

an uncertainty of ±0.5eV was assumed to correspond with the inherent uncertainty of electron tem-

perature for Maxwell-Boltzmann electrons. For electron distributions that have heavier tails than a

Maxwell-Boltzmann distribution, such as a Kappa distribution, the in-situ-equilibrium grain charge

increases, the charging time increases, and the gyro-phase drift magnitude increases as compared

to the Maxwell-Boltzmann case with all other parameters being identical. The ion temperature is
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assumed to be room temperature (Ti = 0.025eV), and because grains are at the sheath edge, the

flow velocity, perpendicular to both gyro-phase and grad-q drifts, should be considered to be at

the Bohm speed. The speed of ions does depend on the electron temperature here, uncertain by

±0.5eV, with this feature already factored into the plots shown in chapter VI. Plasma instabili-

ties, such as streaming instabilities, might increase the ion temperature or modify the flow velocity

near the sheath edge. In general, higher electron temperatures and ion temperatures increase the

magnitude of gyro-phase drift.

A challenge in implementing the abrupt inhomogeneity experimentally is maintaining suffi-

ciently sharp isolation of the two inhomogeneity regions. To ensure that the transition between

UV absent and present regimes is abrupt, a cylindrical tube surrounding the UV light source and

leading into the plasma would be recommended, maintaining collimated light and producing a

well-defined UV-illuminated region. As mentioned many times throughout this dissertation, the

collection of electrons and ions is an inherently stochastic process, and hence charge fluctuations

(Jana et al., 1993; Cui and Goree, 1994) can be expected during charge-state evolution as grains

move between regions of different plasma conditions. Addressing these concerns requires a random

component in the charge state evolution on top of a spatial profile, instead of the exponential

approximation used in the theory. Vaulina et al. (1999) note that charging flucutations lead to

changes in dust ensemble temperature, causing uncertainty in Td. This should not be a practical

problem for experiment because v⊥ is typically decoupled from the dust population thermal speed

and because velocities will be determined from the PIV analysis.

In summary, to optimize the detection of gyro-phase drift in MDPX for abrupt and gradual

inhomogeneity, some general guidelines can be prescribed. Lower neutral gas atom densities de-

crease the neutral drag force on dust grains, which increases the signature of gyro-phase drift. The

presence of more grains is helpful for PIV analysis, but the resolution of individual grain motion

is not possible and the dust-in-plasma criterion is not applicable when the inter-particle spacing

is smaller than the Debye length. Zirconium and Carbon both have smaller work functions than

Platinum but, as was demonstrated in chapter VI, the combination of photo-electric yield function

and UV source spectrum is the most important factor for achieving higher q1/q2 = χ1e/χ2e ratio

in the abrupt inhomogeneity, which in turn increases the observed gyro-phase drift magnitude.

Platinum and Zirconium make better choices than Carbon for a gyro-phase drift experiment with
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abrupt inhomogeneity in UV luminosity. Zirconium is an ideal choice for dust grain material,

since the photo-electric yield function is high enough that the grain’s new in-situ-equilibrium grain

charge is significantly lowered by commercially-available UV-illumination (≈ 10% less electrons on

the grain surface for the conditions discussed in this dissertation), and because grains have mass

density sufficiently low enough that the ratio τg/τch ≈ 1 is attainable. A UV lamp with a similar

spectrum, but with higher radiation intensity than the Xeradex lamp used by Dove et al. (2012)

should be sufficient to produce a measurable gyro-phase drift.

B Model Uncertainty

To make predictions for gyro-phase drift in MDPX, reliance on models for the dust grain sheath,

the planar sheath, and charging currents are necessary. For the abrupt inhomogeneity, gyro-phase

drift was predicted for an uncertainty in the electron temperature of ±0.5eV and for a density

range of 1013 < n0 < 1015m−3. The very small grain sizes required, so that grain orbits fit inside

MDPX, implies that charge fluctuations will be even more dominant in MDPX when considering

a gradual inhomogeneity. Charge fluctuations should lead to an increase in gyro-phase drift. At

every timestep, the iterative leapfrog solver has a maximum error of 10−10 m/s; this can easily be

adjusted in the simulation code for additional accuracy. Moving the particle in simulations should

not be a significant source of error; rather, it is the uncertainty in the grain charge and other

transient plasma conditions that would cause deviation in grain trajectories.

To accurately model the Debye length of the dust grain, the temperature or average kinetic

energy of each species must be known, and the species with the smallest temperature controls

the shielding length because the temperatures are added reciprocally. For grains suspended in a

planar sheath, electrons have a well-defined temperature, but ions flow toward the biasing electrode

so that they have higher kinetic energy than is represented by their thermal energy. When a

magnetic field is introduced into the plasma with the field lying along the planar sheath direction,

there is a pronounced anisotropy between the parallel and perpendicular ion temperature, with

Ti,‖ � Ti,⊥. In this dissertation, the parallel ion temperature was used in computations for the

Debye length of the dust grain, and the possibility of an elipsoidal grain sheath was not accounted

for. Additional complications come from the fact that Gatti and Kortshagen (2008) assume a

133



Debye-Huckel potential profile, when we know from the work of Goree (1992) and Lampe et al.

(2001) that the trapped ions produce changes to the potential profile of the grain sheath. For the

plots using the Gatti-Kortshagen charge model, these deviations are assumed to be small, so that

the effect on the capture radius is small.

The discrete and stochastic nature of charge collection by a dust grain implies that the grain

charge is not a continuous function of time. The semi-analytical method used for the abrupt

inhomogeneity in this dissertation does not take into account either the discrete or stochastic

nature of charge collection, while the simulations only treat the discrete nature of charge collection.

In the simulations, the grain charge fluctuates around the in-situ-equilibrium grain charge by one

electron, but this does not entirely represent the stochastic nature of charge collection. Despite the

fact that the semi-analytical method does not use discrete charging, the semi-analytical method

agrees very closely with the simulation results, which is evident in figure 5.12. Cui and Goree (1994)

found in their stochastic grain charging simulations that for the OML model, the RMS grain charge

fluctuation normalized to the in-situ-equilibrium charge is given by

∆q

qeq
=

1

2

1

|〈N〉|1/2
=

1

2

1∣∣∣3NDe
a
λD

(
1 + a

λD

)
〈χe〉

∣∣∣1/2 , (7.3)

where ∆q is the RMS grain charge fluctuation, qeq is the in-situ equilibrium charge, 〈χe〉 is the

in-situ equilibrium dimensionless dust grain surface potential, and |〈N〉| corresponds to number

of charges on the dust grain at in-situ equilibrium conditions. Equation 7.3 is the same as 3.8,

but has been included here again, recast in terms of the in-situ-equilibrium dimensionless dust

grain surface potential. This allows an estimation for the RMS grain charge fluctuation when

dimensionless parameters are used, such as in the semi-analytical method. For smaller grains,

|〈N〉| is a smaller number and so the grain experiences greater charge fluctuations around the

in-situ-equilibrium charge.

The stochastic model of Cui and Goree (1994) does not deviate greatly from a continuous model

for 0 < t < τc, where τc is the charging time, which is shown in figure 4 of (Cui and Goree, 1994). It

is when the grain charge is close to the in-situ-equilibrium grain charge that the deviations from the

continuous model become significant. This is a problem for the gradual inhomogeneity, since the

grain charge does not deviate greatly from the in-situ equilibrium grain charge during a gyro-orbit.
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As an example, the very small grains a = 0.05µm used for the gradual inhomogeneity in MDPX

in figures 6.23, 6.25, 6.27, |〈N〉| ≈ 700, which implies ∆q
qeq

≤ 0.02. This corresponds to an RMS

fluctuation of 14 electrons, which is larger than the amplitude of charge state modulation during a

gyro-orbit (qa ≈ 3e).

For the dust grains used in the abrupt inhomogeneity, much larger grains were considered. For

these grains, the in-situ-equilibrium grain charge exceeds 2000 electrons, so that ∆q
qeq

≤ 0.01, or

∆q ≤ 20 when t > τc. When n0 = 1013 m−3, figures 6.10, 6.9, 6.12, and 6.14 show a charge

state modulation of ≈ 10% for the Patacchini-Hutchinson and OML models. This charge state

modulation due to the abrupt inhomogeneity should be sufficient to distinguish it from the Gatti-

Kortshagen model in a possible experiment in MDPX. The ratio of stochastic charging to the charge

state modulation during a gyro-orbit is best described by the relations ∆q
qa

> 1 for the gradual

inhomogeneity investigated, and ∆q
qa

> 1 for the abrupt inhomogeneity, which implies that gyro-

phase drift is easier to detect in an abrupt inhomogeneity. According to Northrop and Hill (1983),

stochastic charging introduces a randomness or diffusive behavior superposed on the unidirectional

radial drift. Hence, the stochastic nature of grain charging does not eliminate gyro-phase drift, it

just reduces the gyro-phase drift magnitude and manifests statistically among participating dust

grains.

C Confinement in MDPX

Just as the vertically-aligned sheath electric field (along the direction of the magnetic field) provides

vertical confinement for dust grains, a radial electric field controls dust confinement properties. In

unmagnetized dusty plasma, radial confinement is achieved through a combination of the radial

electric field, ion drag force, and thermophoretic forces resulting in formation of dusty disk in a

plasma discharge. In magnetized dusty plasma, a radial electric field enlarges the gyro-radius and

the radial excursion of a dust grain, which was demonstrated in figure 4.3. This puts limits on the

grain size that can be successfully confined in a gradual inhomogneity in MDPX, with a reasonable

upper limit given by a = 0.1µm for Er = 100 V/m.

In MDPX, there is a greater radial excursion for negatively charged grains in a radially-inward

electric field as compared to a radially-outward electric field. This can be explained as follows:
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the grain trajectory has a higher radius of curvature in regions of smaller or more negative space

potential whenever the ratio of electric and magnetic fields is much greater than the initial grain

velocity, which is satisfied in MDPX for non-zero electric field. The “small” loop of the gyro-orbit

lies on the high-potential side, while the “large” loop of the gyro-orbit lies on the low-potential

side. Electric fields that are radially-outward offer better confinement properties because the grain

trajectory’s radius of curvature enlarges as it travels radially inward, leading to confined, spirograph

trajectories like in figures 6.19 and 6.20. Contrast these plots with grain trajectories with radially-

inward electric fields in figures 5.48, 5.49, and 5.50 to see why outwardly directed electric fields

are advantageous to grain confinement. Because neutral drag damps gyro-motion, the presence

of neutrals allows the possibility of confinement although the neutral drag ultimately destroys the

grain gyration that we are interested in observing. Ion drag poses a confinement problem, because

the resulting E ×B drift for ions from an outwardly-directed electric field produce an azimuthal

ion drag, which in turn produces an F ×B drift that is outwardly-directed.

The ratio of τg/τch is grain-size dependent. Therefore, when all other plasma parameters are

kept constant, a non-monodisperse dust population has a spread in normalized gyro-phase drift

magnitude owing to the inherent spread in τg/τch values. Irregular grain shape is another concern

worth consideration for gyro-phase drift. Irregular grain shape can lead to increased capacitance,

especially in the case of fractal or cauliflower-shaped grains. Increased capacitance leads to an

increase in the in-situ-equilibrium grain charge q0 and charging time τch. Because τg ∝ q−1
0 and

τch increases with increasing grain charge, τg/τch ratios decrease. This may either increase or

decrease the gyro-phase drift magnitude of irregularly-shaped dust as compared to spherical dust

with the plasma parameters kept constant, depending on whether τg/τch > 1 or τg/τch < 1. For

the a = 100nm Zirconium and Platinum grains and plasma conditions (ne ≈ 1014, Te ≈ 5eV,

Ti ≈ 0.025eV) discussed in the context of abrupt inhomogeneity in chapter VI, the gyro-phase drift

magnitude should increase compared to the spherical case. In addition to the increased capacitance,

irregularly-shaped grains also rotate and have magnetic moments. Tsytovich et al. (2003) were the

first to explain that dust shape asymetry leads to grain rotation from charging processes. Because

spinning dust grains have magnetic moments, there is a magnetic interaction force between grains in

a dusty plasma, but it is orders of magnitude smaller than the Coloumb interaction force between

grains. For a single irregularly-shaped grain in dust-absent conditions, the dust grain magnetic
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moment aligns with the magnetic field. Apart from this alignment, there should be no noticable

effect on gyro-phase drift due to the dust grain’s inherent magnetic moment.

D Gyro-phase Drift in Space

A common theme throughout this dissertation is that gyro-phase drift causes dust grains to leave

regions of inhomogeneity. Gas giants such as Jupiter and Saturn are known to have a radial

temperature gradient where both electron and ion temperatures increase with radial distance. For

example, the tabulated temperature measurements in table 6.1 clearly indicate that the electron

and ion temperatures increase with radial distance from Saturn. When both electron and ion

temperatures increase with radial distance, the in-situ-equilibrium grain charge also increases with

radial distance. The presence of these temperature gradients around gas giants implies that gyro-

phase drift transports magnetized-orbit dust grains radially outward. Plasma drag decreases the

radial excursion of sub-micron grains over time. The combined effect of gyro-phase drift and plasma

drag causes gyro-centers to accumulate in a radial band that is directed radially outward from their

place of origin.
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Chapter VIII

Conclusions

In this dissertation, a semi-analytical solution was presented for guiding center drift resulting

from an abrupt inhomogeneity for a broad range of parameters, and predictions were made for

grain trajectories in both abrupt and gradual inhomogeneities in the Auburn Magnetized Dusty

Plasma Experiment. The gyro-phase drift resulting from the adiabatic theory of Northrop and

Hill (1983) has been extended to include abrupt inhomogeneties, and a simulation code has been

developed to study non-stationary charging effects when grain charge state modulation is not known

a priori. The inclusion of non-stationary charging and non-linear drag force terms distinguish this

code from other simulation schemes (Pigarov et al., 2005; Martin et al., 2008; Jefferson et al.,

2010). The semi-analytical method developed in this dissertation permits modelling over a large

range of parameter space, which is an advantage over simulations. In this dissertation, gyro-phase

drift, when detectable, is predicted to be a sensitive indicator of sheath mechanisms. The non-

instantaneous charging feature of dust grains also allows discrimination of charging models based

on the resulting gyro-phase drift. This dissertation also provides the first quantitative prediction

that gyro-phase drift is at a maximum when the ratio of gyro-period to charging timescale is near

unity for both abrupt and gradual plasma inhomogeneities.

For the abrupt inhomogeneity, the dependence of guiding center drift on ion-neutral collisions,

the planar sheath mechanisms of flowing ions (drifting Maxwellian or mono-energetic) and ion-

neutral charge exchange were demonstrated semi-analytically in the presence of Epstein or linear

neutral drag for a broad range of parameters. Simulations corroborate these semi-analytical results

and demonstrate the utility of analyzing grain motion to discriminate among charge models. The
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exhaustive treatment using all relevant parameters that affect grain charging in standard charging

models provides an intuitive qualitative picture for how different charging mechanisms alter charge

state modulation, the ratio of gyro-period to charging time, and consequently guiding center drift. A

range of predictions are offered for the case of the abrupt inhomogeneity in the Auburn Magnetized

Dusty Plasma Experiment including uncertainty in the electron temperature of ±0.5eV and several

orders of magnitude in the electron density. Disparate results are obtained when comparing the

guiding center drift magnitudes of dust grains for mono-energetic ions to flow-shifted Maxwellian

ions for all charge models tested in this dissertation. This suggests that experiments can use dust

grains to assess the validity of either sheath mechanism, but the constraints on realistic dusty plasma

measurments make this unlikely in the near future. The consistent differences in guiding center drift

between the Gatti-Kortshagen charging model and OML/Patacchini-Hutchinson models, even for

the low gas pressures expected in MDPX, suggest that MDPX-like experiments should be capable of

assessing the validity of the Gatti-Kortshagen charging model if large photo-electron fluxes are used

(fuv/(nevthe) > 0.01). The electron current is not greatly affected by the magnetic field and other

parameters for imagible grains in MDPX, which cause the OML and Patacchini-Hutchinson charge

models to be indistinguishable. Because neither OML and Patacchini-Hutchinson charge models

includes the ion-neutral charge exchange grain sheath mechanism, the Gatti-Kortshagen charging

model, adjusted for ion flow, should make the most accurate prediction for grain trajectories. The

abrupt inhomogeneity was also shown to have particular relevance when investigating sub-micron

grains around Saturn, maximizing the chance of a significant role in the resulting single-grain

dynamics in the absence of other plasma gradients.

The gradual inhomogeneity has also been analyzed in the context of planar sheath mechanisms

and charge model choice and compared to the features of the abrupt inhomogeneity. It was shown

that grain capacitance modulation, as a result of changes in the Debye length during a gyro-orbit

can lead to charge state modulation and gyro-phase drift, even when the dimensionless surface

potential χe = eVd/ (kbTe) is constant during the gyro-orbit. Predictions were made for grain

trajectories assuming dust-in-plasma conditions in plausible plasma profiles for MDPX, including

the full effects of neutral drag and non-linear ion drag, made possible by the development of an

iterative leapfrog method in this dissertation. Sub-micron grains are predicted to not drift out

of the plasma when non-instantaneous charging is assumed in a gaussian electric field in MDPX,
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whereas these grains will drift radially outward with almost negligible magnitude for radial electric

fields that point inward when instantaneous charging is assumed. For the profiles from chapter VI,

the ion drag force produces a drift that is in the opposite direction to the gyro-phase drift, meaning

grains will not drift out of the plasma.

Analysis of the guiding center drifts for gradual and abrupt inhomogeneities demonstrates the

utility of considering non-stationary charging. Even when these dust grains cannot directly be

measured, their motions are affected by non-stationary charging. Non-stationary charging mech-

anisms, first discussed by Nunomura et al. (1999) for grain oscillation in a planar sheath, can be

used under certain conditions to measure plasma parameters and validate charge models.
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Appendix A

Derivations

1 Orbit-motion Limited Charge Model derivation

As the de facto charge model used extensively for collisionless plasmas, the straightforward deriva-

tion of Orbit-Motion-Limited charge model is summarized here. The derivation was originally for

the application of probes in plasma (Mott-Smith and Langmuir , 1926; Laframboise, 1966), but it

is readily applicable to a dust grain under certain assumptions (Shukla, 2001). For a stationary

grain, assume a spherically symmetric collector and consider an attracted species with charge Ze

and mass m. The sphere is unmagnetized with respect to the attracted particle species, meaning

that the gyro-radius RL is larger than the grain radius a. The sphere is immersed in a plasma, and

the attracted particles move isotropically toward the small grain. Knowing that the energy and

angular momentum of an attracted particle approaching the spherical grain from far away must

be conserved, we seek to find the largest angular momentum of an attracted particle that can be

collected. Because the particles are attracted to the spherical grain, particles of all energies can be

collected. The energy of the attracted particle far away from the spherical grain is given by

E∞ =
1

2
mv∞

2 + ZeVs, (A.1)

where Vs is the space potential of the plasma several Debye lengths from the grain, m is the mass

of the attracted species, v∞ = vt+vr is the velocity very far away from the grain, vt is the velocity

component transverse the grain’s radial direction, and vr is the velocity component parallel to the
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grain’s radial direction. The energy of the attracted particle as it just grazes the grain surface must

be given by:

Ea =
1

2
mvt(a)

2 + ZeVsurf (a), (A.2)

where r = a is the radius of the spherical grain and Vsurf is the potential on the surface of the grain.

Note that because we are considering an attracted particle whose trajectory just grazes the grain

surface, there is no radial velocity component. If we set E∞ from equation A.1 to Ea in equation

A.2, we can derive an expression for the transverse velocity vt(a) for this attracted particle:

vt(a) =

√
2

m

(
1

2
mv2∞ − ZeVd

)
, (A.3)

where Vd = Vs − Vsurf , and
1
2mv

2 equates to the kinetic energy E of the attracted species far from

the grain, described by the distribution function. The critical magnitude of the angular momentum

Jc for this attracted particle that just grazes the spherical grain surface is given by

Jc = m |vt(a)| a = a
√

2m(E − ZeVd). (A.4)

Only those attracted particles whose angular momentum satifies 0 < J < Jc will be collected by

the spherical grain.

The current to the grain from the attracted species Ia, through current closure, is given by

Ia = e
{
S

r2 sinφdϕdφ
y

v · (−r̂)f(r,v)d3v (A.5)

where the surface integral is carried out at some radius r � a, f(r,v) is the velocity distribution

function, and the minus sign in the product v · (−r̂) indicates that we are interested in attracted

particles that are travelling radially inward to the spherical grain. We will associate u(r), the inward

radial velocity of attracted particles at some radial distance r > a from the spherical grain, with

v · (r̂). Additionally, because we have v∞ = vt + vr, the appropriate velocity volume integration
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element is given by

d3v = vtdvtdvrdϕ (A.6)

We can therefore rewrite equation A.5 as

Ia = −e
∫ ϕ=2π

ϕ=0
r2dϕ

∫ φ=π

φ=0
sinφdφ

∫ ϕ=2π

ϕ=0
dϕ

∫ vt=∞

vt=0
vtdvt

∫ vr=∞

vr=−∞
u(r)f(r, vr, vt, ϕ) (A.7)

Because the limit on energy and angular momentum has been defined earlier intuitively, we will

transform from vt, vr velocity space into energy E and angular momentum J space. The integral

and velocity volume integration elements in A.7 will be transformed into a dependence on energy

and momentum through the use of the Jacobian (Kennedy and Allen, 2003). Before making this

transformation, define U = v2t , so that dU = 2vtdvt. Hence, d3v = 1
2dvrdUdϕ. Because the angular

momentum is given by

J = m |vt(r)| r, (A.8)

our subsitution U = v2t means that

U =
J2

m2r2
. (A.9)

It should also be noted that

u(r) = vr =

√
2

m
[E − eV (r)]− J2

m2r2
, (A.10)

where V (r) is the potential variation anywhere in space, contrasted with Vs, the space potential

several Debye lengths from the spherical grain. As shown in the subsequent steps, the dependence

on potential variation disappears when the integral of equation A.7 is transformed into an integral

over kinetic energy and angular momentum space.

The velocity volume integration elements are related to the energy and angular momentum
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volume elements by

d3v =
1

2
dvrdUdϕ =

1

2
ĴdEdJdϕ, (A.11)

where Ĵ is the Jacobian. The Jacobian is given by the absolute value of the determinant:

Ĵ =

∣∣∣∣∣∣∣
∂vr
∂E

∂vr
∂J

∂U
∂E

∂U
∂J

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

1
mu(r)

J
m2r2u(r)

0 2J
m2r2

∣∣∣∣∣∣∣ =
2J

m3r2u(r)
. (A.12)

We can now integrate over the angles ϕ and φ and rewrite equation A.7 in terms of energy and

momentum with appropriate limits, which yields

Ia = −e4πr2
∫ ϕ=2π

ϕ=0

∫ E=∞

E=0

∫ J=Jc

J=0
u(r)f(r, E, J, ϕ)

J

m3r2u(r)
dJdEdϕ. (A.13)

Notice that the sphere of attracted plasma constituents characterized by radius r → ∞ cancels,

as does u(r); we have removed all dependence on the radial position and the radial velocity. The

distribution function no longer has dependence on r because we have taken r → ∞, meaning

that we are using the distribution function far outside the dust sphere sheath, corresponding to

the conditions of the attracted species within the plasma. We will now make some restrictions

on the energy and momentum distribution function. We assume spherical symmetry, so that the

distribution function has no dependence on ϕ and integrate over ϕ, which produces a factor of 2π.

The current to the grain from the attracted particles is given by:

Ia = −e4π
∫ E=∞

E=0

∫ J=Jc

J=0
f(E, J)

2πJ

m3
dEdJ. (A.14)

For simplicity, we will assume that the attracted particles are in a Maxwellian distribution far

away from the dust grain, and a suitable energy and momentum distribution function is given by

f(v) = na

(
m

2πkbTa

)3/2

exp

(
− mv2

2kbTa

)
= na

(
m

2πkbTa

)3/2

exp

(
− E

kbTa

)
, (A.15)

where v is the velocity of attracted particles far away from the sphere, na is the number density

of particles far away from the sphere, and Ta is the temperature of the particles. Note that this
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simple Maxwell-Boltzmann distribution has no dependence on the angular momentum J . In the

OML approach, we are not limited to Maxwell-Boltzmann distributions. Any suitable distribution

function can be chosen, but here we assume a Maxwell-Boltzmann distribution to illustrate how to

reach the common result given by Allen (1992).

Using the energy distribution defined in equation A.15, we can put this into equation A.14 and

integrate over J to obtain

Ia = −e4πna
∫ E=∞

E=0

(
m

2πkbTa

)3/2

exp

(
− E

kbTa

)
2πJ2

c

m3
dE. (A.16)

When we use the critical value for the angular momentum of an attracted particle that just grazes

the probe that was given in equation A.4, we get

Ia = −e4πa2na
√
2

2
√
πm

(
1

kbTa

)3/2 ∫ E=∞

E=0
(E − eVd) exp

(
− E

kbTa

)
dE. (A.17)

Integration of equation ?? yields

Ia = e4πa2na

√
2eTa
m

1

2
√
π

(
1− eVd

kbTa

)
. (A.18)

If we associate the thermal speed of the attracted particles with vth,a =
√

2kbTa

m , then we can rewrite

Ia = e4πa2na
vtha
2
√
π

(
1− eVd

kbTa

)
, (A.19)

which gives the familiar result for an attracted species to a spherical probe (Mott-Smith and Lang-

muir , 1926; Laframboise, 1966; Allen, 1992).

For particles that are repelled from the spherical grain, the description in equation A.2 is

modifed by:

Er =
1

2
mvt(a)

2
∞ + eVsurf . (A.20)

We note also that for the repelled species, only particles with energy E > eVd can be collected.

The closure of current to the grain has a similar form to that of the attracted species, and is given
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by

Ir = −e4π
∫ ϕ=2π

ϕ=0

∫ E=∞

E=eVd

∫ J=Jc

J=0
f(r, E, J, ϕ)

J

m3
dϕdEdJ. (A.21)

The current due to the repelled particles is in terms of an arbitrary distribution function in

energy, angular momentum, and azimuthal velocity about the grain. As before, we will assume

spherical symmetry and use a Maxwellian distribution of energies to obtain

Ir = −e4πa2nr
√
2

2
√
πm

(
1

eTr

)3/2 ∫ E=∞

E=eVd

(E + eVd) exp

(
− E

eTa

)
dE. (A.22)

When equation A.22 is integrated, we obtain

Ir = −e4πa2nr

√
2eTa
m

1

2
√
π
exp

(
Vd
Tr

)
, (A.23)

and using vth,r =
√

2eTr
m , then we can rewrite

Ir = −e4πa2nr
vth,r
2
√
π
exp

(
Vp
Tr

)
, (A.24)

which gives the familiar result for a repelled species to a spherical probe (Laframboise, 1966; Allen,

1992).

2 E ×B Drift in Slab Geometry

In this section, the simple case of E × B drift with a constant grain charge is investigated, and

sample trajectories are computed for the analytical theory, Boris scheme, and iterative scheme.

These trajectories are qualitatively the same as for the E ×B drift for particles such as ions and

electrons, although the much lower charge to mass ratio of dust grains necessitates that the gyro-

radius will be greatly enlarged, as is implied by RLd = mdv⊥
qdB

. Also, as demonstrated in figure 4.3,

the much larger mass of dust grains (compared to ions or electrons) means that in the presence of

an electric field, the dust grain will have an effective gyro-radius that is much larger than in the

E = 0 case.
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The motion for a dust grain in electric and magnetic fields and no other forces can be solved

analytically for constant grain charge. This amounts to finding the equations of motion that satisfy

the Lorentz force equation:

F = qdE + qdvd ×B. (A.25)

Without loss of generality, we can specify that the magnetic field is solely along the ẑ-axis.

Any electric field that is parallel or anti-parallel to the magnetic field will not affect the grain’s

trajectory in the plane of gyration. The effect of an electric field along the magnetic field is to

accelerate the particle along magnetic field lines. For this derivation, we consider only the motion

in this plane of gyration, and not the grain motion along the magnetic field. This leaves us with

md
dvd
dt

= qdExx̂+ qdEyŷ + qdBvydx̂− qdBvxdŷ, (A.26)

where Ex and Ey are the x and y components of the electric field, respectively, which can be positive

or negative and B is the magnitude of the magnetic field at a given spatial location. If we restrict

the motion to uniform fields E = E0xx̂ + E0yŷ and B = B0ẑ, we are left with the coupled set of

differential equations

˙vxd =
qdE0x

md
+
qdB0vyd
md

(A.27)

and

˙vyd =
qdE0y

md
− qdB0vxd

md
. (A.28)

To solve this coupled set of ordinary differential equations, use the substitution

ψ = vxd + ivyd. (A.29)

Taking one time derivative, recognizing that ωcd = |q|B0

md
and B0 is defined as being always positive,
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because +ẑ has been chosen as the magnetic field direction yields the result

ψ̇ = ˙vxd + i ˙vyd = ±ωcd

B0
(E0x + iE0y)± ωcdvyd ∓ iωcdvxd = ± iωcd

B0
(E0y − iE0x)∓ iωcdψ, (A.30)

where the upper sign corresponds to a positively charged grain, and the lower sign corresponds to

a negatively charged grain. Hence, we have a simple (uncoupled) differential equation for ψ,

ψ̇ ± iωcdψ = ± iωcd

B0
(E0y − iE0x) . (A.31)

We can assume a solution of the general form:

ψ = A exp (∓iωcdt) +
1

B0
(E0y − iE0x) , (A.32)

where A is a constant determined by the initial conditions of the dust grain, the upper sign again

signifies positive grain charge, and the lower sign signifies negative grain charge. By inspection, the

definition of ψ given in equation A.32 is the solution to the differential equation in A.31. Evident

in equation A.32 is that the sign of the grain charge affects only the direction of gyration, not the

direction of the E ×B drift.

It now remains to determine A, which is achieved by setting

ψ (t = 0) = vxd (t = 0) + ivyd (t = 0) . (A.33)

Represent vxd (t = 0) with v0xd and vyd (t = 0) with v0yd. The constant A is then given by:

A = v0xd −
E0y

B0
+ i

(
v0yd +

E0x

B0

)
, (A.34)

where again the lower sign signifies positive grain charge, and the upper sign signifies negative grain

charge.

The x-component of the dust grain velocity must be given by Re(ψ), while the y-component of
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the dust grain velocity must be given by Im(ψ). This results in

vxd (t) = Re (ψ) =

(
v0xd −

E0y

B0

)
cos (ωcdt)±

(
v0yd +

E0x

B0

)
sin (ωcdt) +

E0y

B0
(A.35)

and

vyd (t) = Im (ψ) =

(
v0yd +

E0x

B0

)
cos (ωcdt)∓

(
v0xd −

E0y

B0

)
sin (ωcdt)−

E0x

B0
. (A.36)

The expression for the x-component of the dust grain trajectory is obtained by integrating equation

A.35. If we represent xd (t = 0) with x0d and yd (t = 0) with y0d, xd(t) can be written

xd (t) =

(
v0xd
ωcd

− E0y

ωcdB0

)
sin (ωcdt)∓

(
v0yd
ωcd

+
E0x

ωcdB0

)
cos (ωcdt)+

E0y

B0
t±
(
v0yd
ωcd

+
E0x

ωcdB0

)
+ x0d

(A.37)

and yd(t) can be written

yd (t) =

(
v0yd
ωcd

+
E0x

ωcdB0

)
sin (ωcdt)±

(
v0xd
ωcd

− E0y

ωcdB0

)
cos (ωcdt)−

E0x

B0
t∓
(
v0xd
ωcd

− E0y

ωcdB0

)
+ y0d.

(A.38)

An example trajectory for E0x = −100 V/m, E0y = −100 V/m, and B = 4 T is shown in

figure 4.2. Evident in this figure is the close agreement between the simulated (Boris and iterative

leapfrog) and analytically derived trajectories of a 1 µ-m dust grain with qd ≈ 1400 electrons. The

gyro-radius for E = 0 is ≈ 0.6 mm. It is clear that the presence of an electric field has greatly

enlarged the gyro-radius of the dust grain several orders of magnitude larger than RLd.

Although the gyro-radius is näıvely given by RLd = mdv⊥
qdB

, the presence of an electric field

enlarges the excursion of a dust grain during a gyro-orbit. Even when assuming that v0xd = 0,

v0yd = 0, which guarantees that the dust grain’s gyro-radius is as small as possible, a grain that

starts at the origin will be at a significantly greater distance from the origin than RLd when the

grain attains an angle of φ = π
4 in gyro-phase. In the slab geometry, the direction of the electric

field can be chosen as one of the basis vectors so that only one vector component is needed. So

for simplicity and to correspond with A.37, if we assume E0x = −100 V/m, B = 4 T, v0xd = 0,
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v0yd = 0, and a dust grain that starts at the origin, at φ = π
2 xd(t) is given by

xd

(
t =

π

2ωcd

)
= − 2E0x

ωcdB0
=

2md |E0x|
qdB

2
0

= Reff . (A.39)

Figure 4.3 shows how the ambient radial electric field enlarges the effective gyro-radius of dust

grains for a variety of grain sizes and electric fields.

3 E ×B Drift with Linear Drag in Slab Geometry

In this section, the case of E × B drift along with a linear (Epstein) drag is investigated. The

analytical result is similar to the results from the previous section, although now there is a damping

term that causes the amplitude of the gyro-radius of the dust grain to decay exponentially at the

dust-neutral collision frequency.

As discussed by Thomas et al. (2012), the requirement ωcd > νdn is necessary for dust grain

gyration, where ωcd is the dust-cylotron frequency and νdn is the dust-neutral collision frequency.

The dust-neutral collision frequency is given by

νdn = δ
4π

3
a2nn

mn

md
Cn, (A.40)

which is achieved by setting the Epstein drag force 3.50 equal to

F n = −mdνdn (vd − vn) . (A.41)

To obtain the equation of motion for a dust grain with neutral drag in addition to electric and

magnetic forces, we start with the Lorentz force equation, which results in the following coupled

differential equations for vxd and vyd

˙vxd = ±ωcdE0x

B0
± ωcdvyd − νdn (vxd − vxn) (A.42)

and

˙vyd = ±ωcdE0y

B0
∓ ωcdvxd − νdn (vyd − vyn) , (A.43)
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where the upper sign corresponds to positive dust grain charge, and the lower sign corresponds to

negative dust grain charge. The terms vxn and vyn, which are the velocity of neutrals in the x and

y direction respectively in the lab frame, are retained to include the effect of arbitrary neutral flow.

If we use the definition of ψ given by equation A.29, then we ultimately arrive at a new differ-

ential equation for ψ:

ψ̇ =

(
νdnvxn ± ωcdE0x

B0

)
+ i

(
νdnvyn ± ωcdE0y

B0

)
+ (−νdn ∓ iωcd)ψ. (A.44)

It is readily apparent from equation A.44 that the solution is damped oscillatory motion due to

the presence of νdnψ in this differential equation. Velocities will be damped at the dust-neutral

collision frequency, while the dust grain will gyrate at the dust gyro-frequency.

The general solution for the differential equation A.44 is

ψ = A exp (−νdnt∓ iωcdt) +
C1 + iC2

ν2dn + ω2
cd

, (A.45)

where

C1 = ν2dnvxn ± νdnωcdE0x

B0
± νdnωcdvyn +

ω2
cdE0y

B0
, (A.46)

and

C2 = ν2dnvyn ± νdnωcdE0y

B0
∓ νdnωcdvxn −

ω2
cdE0x

B0
. (A.47)

We determine the constant A by the same method shown in equation A.33 and we obtain

A = v0xd −
C1

ν2dn + ω2
cd

+ i

(
v0yd −

C2

ν2dn + ω2
cd

)
. (A.48)

The x and y components of the dust grain velocity are then given by

vx = Re (ψ) =

(
v0xd −

C1

ν2dn + ω2
cd

)
exp (−νdnt) cos (ωcdt)±(

v0yd −
C2

ν2dn + ω2
cd

)
exp (−νdnt) sin (ωcdt) +

C1

ν2dn + ω2
cd

(A.49)
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and

vy = Im (ψ) =

(
v0yd −

C2

ν2dn + ω2
cd

)
exp (−νdnt) cos (ωcdt)∓(

v0xd −
C1

ν2dn + ω2
cd

)
exp (−νdnt) sin (ωcdt) +

C2

ν2dn + ω2
cd

.

(A.50)

Integrating equations A.49 and A.50 with repsect to time gives us the x and y components of the

dust grain trajectory:

xd (t) =

(
v0xd −

C1

ν2dn + ω2
cd

)
exp (−νdnt)

ωcd sin (ωcdt)− νdn cos (ωcdt)

ν2dn + ω2
cd

∓(
v0yd −

C2

ν2dn + ω2
cd

)
exp (−νdnt)

νdn sin (ωcdt) + ωcd cos (ωcdt)

ν2dn + ω2
cd

+
C1

ν2dn + ω2
cd

t+

νdn
ν2dn + ω2

cd

(
v0xd −

C1

ν2dn + ω2
cd

)
± ωcd

ν2dn + ω2
cd

(
v0yd −

C2

ν2dn + ω2
cd

)
+ x0d

(A.51)

and

yd (t) =

(
v0yd −

C2

ν2dn + ω2
cd

)
exp (−νdnt)

ωcd sin (ωcdt)− νdn cos (ωcdt)

ν2dn + ω2
cd

±(
v0xd −

C1

ν2dn + ω2
cd

)
exp (−νdnt)

νdn sin (ωcdt) + ωcd cos (ωcdt)

ν2dn + ω2
cd

+
C2

ν2dn + ω2
cd

t+

νdn
ν2dn + ω2

cd

(
v0yd −

C2

ν2dn + ω2
cd

)
∓ ωcd

ν2dn + ω2
cd

(
v0xd −

C1

ν2dn + ω2
cd

)
+ y0d.

(A.52)

As discussed b efore, the upper sign corresponds to positive grain charge, and the lower sign

corresponds to negative grain charge. The descriptions in equations A.51 and A.52 give the most

general solution for dust grain motion in the plane perpendicular to a magnetic field in slab geometry

for arbitrary electric field, particle charge, magnetic field strength, and relative flow between the

dust grain and neutrals. The relative flow in a direction parallel to the magnetic field acts to slow

the dust grain only in the ẑ direction, while the velocity components perpendicular to the magnetic

field remain unchanged from equations A.49 and A.50.

4 Northrop’s Adiabatic Approximation to Guiding Center Motion

The adiabatic approach developed by Kruskal (1959); Berkowitz and Gardner (1959); Northrop

(1961, 1963); Northrop and Rome (1978); Northrop and Hill (1983) to describe guiding center drifts
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in gradual inhomogeneity is summarized here. The new semi-analytical approach to the guiding

center motion for grains in abrupt inhomogeneity is shown in chapter V. The basic approach used

by Northrop (1961) yields solutions for the guiding center drift of an elementary particle (an ion or

electron) in a plane perpendicular to the background magnetic field, culminating with the results

of Northrop and Hill (1983), which yield gyro-phase and grad-q drifts for dust grains with large

charge to mass ratios. Drag forces have been included in this treatment. Because the case of dust

grains immersed in the co-rotating frame of a planet has been treated previously and completely,

(Northrop and Hill , 1983; Northrop et al., 1989; Northrop, 1992), it will only be summarized briefly

here. The drift motions discussed in this section, with the exception of drag, grad-q, and gyro-phase

drifts, are applicable to ions and electrons, so these constituents will not be discussed separately.

i Adiabatic Approximation to Guiding Center Motion in Arbitrary Geometry

A complete description for dust grain gyro-motion including drag forces comes from solutions to

the Lorentz force equation,

F = qd (rd)E (rd)+qd (rd)vd×B (rd)+mdg (rd)+Fdn (rd, (vn − ṙd))+Fdi (rd, (vi − ṙd) , qd) ,

(A.53)

where rd is the position of the dust grain, Fdn is the drag force on the dust grain due to collisions

with neutral atoms, dependent on grain position and the velocity of neutrals vn relative to the

dust grain velocity ṙd as measured in some reference frame (vn − ṙd), Fdi is the drag force on the

dust grain due to collisions with ions, including both ion collection and ion-orbit collisions, which

is dependent on grain position, the velocity of ions vi relative to the dust grain velocity ṙd as

measured in some reference frame (vi − ṙd), and grain charge, and the gravitational acceleration

g (rd) has been retained because gravitational forces can be non-negligible for dust grains. The

equation for the dust grain motion is then given by

r̈d =
qd (rd)

md
E (rd)+

qd (rd)

md
ṙd×B (rd)+g (rd)+

1

md
Fdn (rd, (vn − ṙd))+

1

md
Fdi (rd, (vi − ṙd) , qd) .

(A.54)
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For now, assume instantaneous charging, so that the grain charge qd (rd) can be a function of

the grain position only, because it is always at the local in-situ equilibrium charge state. If the dust

grain charge varies spatially, it follows necessarily that it must be changing with respect to time,

which seems to contradict the assumption that grain charge qd has no time dependence. This issue

of grain charge time dependence will be explored in the next section.

If the magnetic field B is chosen as a preferred direction, with b̂ = B/ |B|, tangent to the local

magnetic field direction, the grain gyrates in a plane perpendicular to this direction. It is also

convenient to define a unit vector, perpendicular to the local magnetic field direction and which

is directed away from the local center of curvature of the magnetic field line ĉ. Define also an

azimuthal unit vector, â. These symbols are chosen for the unit vectors due to their association

with their repsective directions, such as ĉ for the direction away from the center of the magnetic

field curvature, â is in an azimuthal direction, while b̂ is a unit vector along B, and these three unit

vectors satisfy the relationships

â× b̂ = ĉ (A.55)

ĉ× â = b̂ (A.56)

b̂× ĉ = â, (A.57)

which are easy to remember. Note that Northrop (1961) choose a coordinate system with a unit

vector pointing toward the center of magnetic field curvature, so this is in a direction opposite to

ĉ as defined in A.55. Northrop (1961) also chooses the third unit vector so that if ê1 = b̂ and

ê2 = −ĉ, ê1 × ê2 = ê3, which means that the unit vector â from A.55 is commensurate with the

unit vector −ê3 given by Northrop (1961). In slab geometry, with ẑ chosen along B, ĉ = x̂, â = ŷ,

b̂ = ẑ. In such a geometry (strictly parallel magnetic field lines,) no center of curvature exists but

this association is still valid. In cylindrical geometry, where ẑ is again along B, ĉ = r̂, â = ϕ̂,

b̂ = ẑ. As with slab geometry, if all magnetic field lines are considered to be strictly parallel, there

will again be no center of curvature, but the association holds. In arbitrary geometry, these unit

vectors might in general be functions of field coordinates, i.e., b̂ = b̂(rd).

It is possible to separate the motion of the grain into motion parallel to the magnetic field,

and perpendicular to the magnetic field. The postion vector rd can be separated into a gyro-
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averaged guiding center position R, and a phase-dependent gyro-vector from this gyro-averaged

guiding center position ρ. This vector has the same length as the time-dependent gyro-radius, so

ρ = v⊥(t)/φ̇. Assuming the magnetic field is along +b̂, as mentioned earlier, the gyro-vector can

be entirely described by

ρ = ĉρ cosφ+ âρ sinφ, (A.58)

where φ is the gyro-phase angle. Equation A.58 should apply even in cases where the gyro-orbit

is not circular; in such cases the gyro-radius of the dust grain becomes gyro-phase dependent, or

ρ = ρ(φ). Rosenbluth and Longmire (1957) established that ρ is first order in the parameter md/qd.

The relationship between these three vectors is described by

rd = R+ ρ. (A.59)

Substituting equation A.59 for rd into equation A.54 yields

R̈+ ρ̈ =
qd (ρ+R)

md
E (ρ+R) +

qd (ρ+R)

md

(
Ṙ+ ρ̇

)
×B (ρ+R) + g (ρ+R)+

1

md
Fdn

(
ρ+R,

(
vn − Ṙ− ρ̇

))
+

1

md
Fdi

(
ρ+R,

(
vi − Ṙ− ρ̇

)
, qd

)
.

(A.60)

It is possible to completely recast equation A.54 from an equation in the dust grain position rd

into an equation of motion for the dust grain guiding center R if equation A.60 is averaged over

gyro-phase φ and the fields E, B, and g are Taylor expanded about the guiding center R. The

result of doing the Taylor expansion yields

R̈+ ρ̈ =

(
qd (R)

md
+ (ρ ·∇R)

qd (R)

md
+ . . .

)
[E (R) + (ρ ·∇R)E (R) + . . . ] +(

qd (R)

md
+ (ρ ·∇R)

qd (R)

md
+ . . .

)[(
Ṙ+ ρ̇

)
×B (R) +

(
Ṙ+ ρ̇

)
× (ρ ·∇R)B (R) + . . .

]
+

[g (R) + (ρ ·∇R) g (R) + . . . ] +

1

md
Fdn

(
R,
(
vn − Ṙ

))
+

1

md

(
ρ ·∇R − ρ̇ ·∇Ṙ

)
Fdn

(
R,
(
vn − Ṙ

))
+

1

md
Fdi

(
R,
(
vi − Ṙ

)
, qd

)
+

1

md

(
ρ ·∇R − ρ̇ ·∇Ṙ

)
Fdi

(
R,
(
vi − Ṙ

)
, qd

)
,

(A.61)
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where ∇R has components that correspond to the coordinate-component gradient in the guiding

center averaged cooridinate system, and ∇Ṙ has components that correspond to the velocity-

component gradients in the guiding center averaged coordinate system. The R subscript will be

dropped from the gradient operator in the ensuing discussion and it will be assumed that gradients

will be with respect to the guiding center averaged coordinate system. The drag terms with the

∇Ṙ operator will be dropped, demonstrated later.

After doing this Taylor expansion, average both sides of the equation over a period in gyro-

phase φ, i.e., 〈f(φ)〉 = 1
2π

∫ 2π
0 f(φ)dφ. The terms Ṙ and R̈ refer to the velocity and the acceleration

of the gyro-averaged guiding center, respectively, which means that these quantities are not gyro-

phase dependent. Likewise, the field quantities are evaluated at the gyro-averaged guiding center

position. Although the field quantities are, in general, gyro-phase dependent, the expansion in

equation A.61 evaluates field quantities at the gyro-averaged guiding center position, so these

quantities do not depend on the gyro-phase angle. Keep terms up to first in the parameter md/qd

or ρ from equation A.61. This is a valid adiabatic expansion parameter, provided md/qd � 1

Kg/C, which may not hold for all dust grain sizes of interest. Knowing that ρ ∝ md/qd, gyro-

averaging (ρ ·∇)E (R), Ṙ × (ρ ·∇)B (R), (ρ ·∇) g (R), 1
md

(ρ ·∇R)Fdn

(
R,
(
vn − Ṙ

))
, and

1
md

(ρ ·∇R)Fdi

(
R,
(
vi − Ṙ

)
, qd

)
yields zero for each term.

To handle the terms with ρ̇ or ρ̈ in equation A.61, it is necessary to compute the time derivatives

of ρ in order to determine the order of md/qd within each term. The first time derivative of the

gyro-vector ρ is given by

ρ̇ = (ρ̇ cosφ− v⊥ sinφ) ĉ+ (ρ̇ sinφ+ v⊥ cosφ) â+ cosφ
d (ĉρ)

dt
+ sinφ

d (âρ)

dt
. (A.62)

Terms involving ρ̇, dĉρ
dt , or

dâρ
dt are first order in the parameter md/qd, so these terms are dropped

if they are not multiplied by another quantity that is at least first order in qd/md anywhere within

equation A.61. Additionally, the presence of drag in equation A.61 implies that v⊥ = v⊥(t) = v⊥(φ),

because the drag forces will cause the grain to gain or lose energy over a gyro-orbit depending

on the orientation of the drag forces with respect to the background magnetic field. This fact

must be acknowledged when including drag forces in the analysis, and the following steps in this

section are taken with the assumption that d/dt(v⊥) ≈ 0, which will have to be re-assessed later.
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Discard the terms 1
md

(
ρ̇ ·∇Ṙ

)
Fdn

(
R,
(
vn − Ṙ

))
and 1

md

(
ρ̇ ·∇Ṙ

)
Fdi

(
R,
(
vi − Ṙ

)
, qd

)
from

equation A.62 because the highest order terms are only 0th order in md/qd, which are ≈ v⊥ sinφ

and ≈ v⊥ cosφ, and these terms integrate to zero. The factor of 1/md beside the drag terms

does not affect anything, because the neutral and ion drag must be linear in md, as discussed

earlier in chapter III, sections 4 and 5, so the relative “smallness” of md is unimportant here when

determining the order of terms.

The second time derivative of the gyro-radius vector ρ is given by

ρ̈ =−
v2⊥
ρ

cosφĉ− sinφ
d (ĉv⊥)

dt
−
v2⊥
ρ

sinφâ+ cosφ
d (âv⊥)

dt

− v⊥
ρ

sinφ
d (ĉρ)

dt
+ cos

d2 (ĉρ)

dt2
+
v⊥
ρ

cosφ
d (âρ)

dt
+ sin

d2 (ĉρ)

dt2
.

(A.63)

This allows the elimination of ρ̈ from equation A.61 because all the terms up to 0th order in md/qd

gyro-average to zero.

The term ρ̇× (ρ ·∇)B (R), related to the grad-B drift, can be simplified by

〈ρ̇× (ρ ·∇)B (R)〉 = v⊥ρ

2

(
â× b̂ (ĉ ·∇)B − ĉ× b̂ (â ·∇)B

)
= −v⊥ρ

2
∇B (R) , (A.64)

which is the result from Northrop (1961). The term 1
md

ρ ·∇qd (ρ̇×B), related to the grad-q drift,

can be simplified to

1

md
〈ρ ·∇qd (ρ̇×B)〉 =

v2⊥
2qd

∇qd. (A.65)

Some of the steps have been left out for these results, see the references. The expansion in A.61

can now be written as

R̈ =
qd
md

E (R) +
qd
md

Ṙ×B (R)−
v2⊥
2B

∇B (R) +
v2⊥
2qd

∇qd (R) + g (R)+

1

md
Fdn

(
R,
(
vn − Ṙ

))
+

1

md
Fdi

(
R,
(
vi − Ṙ

)
, qd

)
.

(A.66)

The result given by equation A.66 gives a differential equation for the guiding center equation of

motion. We are only interested in the guiding center velocity, and we will not attempt to solve this

differential equation. Rather, to achieve our goal of obtaining all drift motions for the dust grain,
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we need to isolate an expression for the guiding center velocity Ṙ. Henceforth, the dependence of

grain charge and field quantities on R will be assumed, e.g., B (R) = B, etc. We can take the

vector product of B with both sides of A.66, using the definition for the guiding center drift velocity

in the plane perpendicular to B which is Ṙ⊥ = Ṙ−B(Ṙ ·B)/B2, divide by B2 and obtain

Ṙ⊥ =
E ×B

B2
+
mdv

2
⊥

2qdB

B ×∇B

B2
+
mdv

2
⊥

2q2d

∇qd ×B

B2
+
md

qd

g ×B

B2
+

1

qd

Fdn ×B

B2
+

1

qd

Fdi ×B

B2

− md

qd

R̈×B

B2
.

(A.67)

We need to remove the R̈ term. To do this, we drop all terms that are above 0th order in md/qd.

Recall from chapter III, sections 4 and 5 that the drag terms are linear inmd, meaning that the drag

terms are of order md/qd. So even though the drag forces are functions of Ṙ, they are multiplied

by the factor md/qd, so we can ignore their Ṙ dependence and these terms are dropped. We are

left with only

Ṙ⊥ =
E ×B

B2
. (A.68)

The full vector Ṙ, not just the perpendicular component, is given by

Ṙ = v‖b̂+
E ×B

B2
. (A.69)

Take one time derivative of A.69 and we have

R̈ =
dv‖

dt
b̂+ v‖

∂b̂

∂t
+ v2‖

∂b̂

∂s‖
+ v‖

(
E ×B

B2
·∇
)
b̂

+
∂

∂t

(
E ×B

B2

)
+ v‖

∂

∂s‖

(
E ×B

B2

)
+

(
E ×B

B2
·∇
)

E ×B

B2
,

(A.70)

where s‖ is the distance along the magnetic field. See Northrop (1961) for the details on how to go

from A.69 to A.70, but to summarize the procedure briefly, the process is achieved by taking the

total time derivative of all quantities in A.69. We put the result for R̈ from A.70 into A.67 and
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obtain the final result (Northrop, 1961)

Ṙ⊥ =
E ×B

B2
+
mdv

2
⊥

2qdB

B ×∇B

B2
+
mdv

2
⊥

2q2d

∇qd ×B

B2

+
md

qd

g ×B

B2
+

1

qd

Fdn ×B

B2
+

1

qd

Fdi ×B

B2

+
md

qdB
v2‖ b̂×

∂b̂

∂s‖
+
md

qdB
v‖b̂×

∂b̂

∂t
+
md

qdB
v‖b̂×

(
E ×B

B2
·∇
)
b̂

+
md

qdB
b̂× ∂

∂t

(
E ×B

B2

)
+
md

qdB
v‖b̂×

∂

∂s‖

(
E ×B

B2

)
+
md

qdB
b̂×

(
E ×B

B2
·∇
)

E ×B

B2
.

(A.71)

The first term in A.71 is the familiar E×B drift, the second term is the grad-B drift, the third

term is the grad-q drift, the fourth term is the g ×B drift, while the neutral and ion drag forces

give rise to generic F × B drifts, which are the fifth and sixth terms respectively. The general

F ×B drift is described by Chen (2006). The seventh term of A.71, the curvature drift, combined

with the rest of the third line of A.71 comprise the total inertial drift. The terms in the fourth line

of A.71 are explained by Northrop (1961).

In the scope of this dissertation, the fields E and B will be assumed to be constant in time.

Additionally, v‖ will be taken as zero, because we are interested in grains levitated in a planar

sheath or launched along the equitorial plane of a planet. This means that the curvature drift and

other inertial drift terms can be ignored, which greatly simplifies the expression in A.71. The third

line in the expression can be discarded, as can the final line of the expression except for the very

last term, md
qdB

b̂ ×
(
E×B
B2 ·∇

)
E×B
B2 . For most of the applications in this thesis, this term will be

zero, however.

ii Adiabatic Approximation to Guiding Center Motion for Time-dependent

Grain Charge

In section i, we obtained all of the familiar guiding center drifts for dust grains, including a few

obscure terms such as the grad-q drift and the F ×B drift due to drag forces. We will now admit

time-dependence of the dust grain, allowing the dust grain to vary gyro-synchronously. Following

Northrop and Hill (1983); Northrop et al. (1989); Northrop (1992), we will assume that the grain
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charge oscillates sinusoidally around some constant value q0 < 0 during its gyro-orbit and write the

grain charge qd (R, t) as a Fourier decomposition

qd (rd, t) = qd (rd, φ) = q0 (rd)+q1 cos (φ− φ1) = q0 (rd)+q1 (cosφ1 cosφ+ sinφ1 sinφ) , (A.72)

where q1 < 0 is the coefficient of the charge state modulation, q1/q0 � 1, φ1 is the gyro-phase angle

where the grain is most negatively charged, and we have used gyro-phase dependence as a proxy

for time-dependence. A time-dependent grain charge is equivalent to a gyro-phase-dependent grain

charge.

The description of qd given by equation A.72, as discussed by Northrop and Hill (1983), is

somewhat simplistic, because the grain charge can be any arbitrary function of gyro-phase. As

mentioned by Northrop and Hill (1983), higher harmonics (q2 cos 2(φ − φ2) + . . . ) of grain charge

modulation are possible, but are neglected by this truncated expression. Additionally, we are

specifying the grain’s gyro-phase dependence and the angle at which it is most negatively charged

a priori, when in actuality these pieces of information might not be available unless there is some

manner of predicting φ1 based on the charging rate and gyro-period of the dust grain. The angle

during its gyro-orbit when it is most negatively charged φ1 can also in general be time-dependent,

changing with each successive gyro-cycle; we will ignore this complication for now. However, the

gyro-phase dependence of A.72 is simple and intuitive enough to illustrate some qualitative features

of gyro-phase drift, and we will proceed with this definition for this section.

We start with equation A.61, but this time we include the gyro-phase dependent term q1 cos (φ− φ1).

For the sake of brevity, we will discard all of the same terms that we did in section i when we as-

sumed qd = q0(rd) and performed gyro-averages and ordering of terms in md/qd, and only show

the new terms. This leaves us with

R̈ =
q0
md

E +
q1 cos (φ− φ1)

md
(E + (ρ ·∇)E)

+
q0
md

(
Ṙ+ ρ̇

)
×B +

q1
md

cos (φ− φ1)
(
Ṙ+ ρ̇

)
×B +

(
ρ ·∇q0
md

)(
Ṙ+ ρ̇

)
×B

+
q0
md

(
Ṙ+ ρ̇

)
× (ρ ·∇)B +

q1
md

cos (φ− φ1)
(
Ṙ+ ρ̇

)
× (ρ ·∇)B +

(
ρ ·∇q0
md

)(
Ṙ+ ρ̇

)
× (ρ ·∇)B

+ g +
1

md
Fdn +

1

md
Fdi.
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(A.73)

We can tidy up equation A.73 quickly by using the properties of ρ and ρ̇ that were used in section i,

because the definition in equation A.58 allows arbitrary phase dependence of the gyro-phase vector.

Note, however, that now

ρ (φ) =
v⊥md

[q0 + q1 cos (φ− φ1)]B
≈ v⊥md

q0B
. (A.74)

Performing the gyro-average and discarding terms of order md/qd and higher thus leaves us with

the terms:

R̈ =
q0
md

E +

〈
q1 cos (φ− φ1)

md
(ρ ·∇)E

〉
+

q0
md

Ṙ×B +

〈
q1
md

cos (φ− φ1) ρ̇×B

〉
+

〈
ρ ·∇q0
md

(ρ̇×B)

〉
+

〈
q0
md

ρ̇× (ρ ·∇)B

〉
+

〈
q1
md

cos (φ− φ1) (ṙd + ρ̇)× (ρ ·∇)B

〉
+ g +

1

md
Fdn +

1

md
Fdi.

(A.75)

Two of these gyro-averaged terms were described in section i, i.e., grad-B and grad-q drift. We seek

to handle the three new terms which do not obviously disappear when gyro-averaging or keeping

terms up to 0th order in md/qd or q1/q0, namely

q1
md

〈cos (φ− φ1) ρ̇×B〉, (A.76)

q1
md

〈cos (φ− φ1) ṙd × (ρ ·∇)B〉, (A.77)

and

q1
md

〈cos (φ− φ1) ρ̇× (ρ ·∇)B〉. (A.78)

The terms given by A.77 and A.78 can be discarded because they are actually of order q1/q0.
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In the adiabatic limit, we only need to deal with A.76. We get:

q1
md

〈cos (φ− φ1) ρ̇×B〉 =

q1
md

〈(cosφ1 cosφ+ sinφ1 sinφ)×(
−v⊥ sinφĉ+ v⊥ cosφâ+ cosφ

d (ĉρ)

dt
+ sinφ

d (âρ)

dt

)
×Bb̂〉

= q1Bv⊥
md

〈(cosφ1 cosφ+ sinφ1 sinφ) (sinφâ+ cosφĉ)〉

= q1Bv⊥
md

〈
(
1
2 cosφ1 sin 2φ+ sinφ1 sin

2 φ
)
â+

(
1
2 sinφ1 sin 2φ+ cosφ1 cos

2 φ
)
ĉ〉

= q1Bv⊥
2md

(sinφ1â+ cosφ1ĉ) .

(A.79)

The d(ĉρ)
dt and d(âρ)

dt terms seen in the first line of A.79 are discarded because they are first order in

q1/q0 while being first order in md/qd. Because we are left with one new extra term from A.79, we

append this term to A.71 and obtain

Ṙ⊥ =
q1v⊥
2q0

(ĉ sinφ1 − â cosφ1) + . . . other terms (A.80)

One can also consider the vector â sinφ1 + ĉ cosφ1 = n̂, as done by Northrop and Hill (1983);

Northrop (1992). If φ1 = 0, nπ, where n is any integer number, then there is only a drift component

along â. Likewise, if φ1 = nπ
2 , where n is any integer number, then there is only a drift component

along ĉ. The ĉ component of A.80 gives the exact same expression for the radial drift as Northrop

(1992), in the limit where B = B, i.e., a non-rotating reference frame.
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Appendix B

Computer codes

To analyze the effect of charging rate on the trajectory of a single dust grain, a code, dust trajectory.m

has been written and developed using MATLAB. The single particle code contains the main pro-

gram and moves the dust grain in configuration space, but it also requires several other subroutines,

which will be explained. The main program uses either the Boris algorithm or an iterative method

to update the particle position and velocity, which is a good compromise of speed, accuracy, and

stability. This code only supports trajectories in two dimensions, which is all that is needed to

model a magnetized orbit dust grain. Motion of the dust grain is given with reference to a coordi-

nate system where the z-axis is defined as the magnetic field direction. The main program is capable

of modeling particle trajectories in inhomogeneous plasma, where the inhomogeneity is described

analytically. An Inhomogeneous ne/ni ratio can, for example, lead to an in-situ grain charge that

varies as a function of space. This changing in-situ grain charge can lead to an alteration of the

grain trajectory, which we call the grad-q drift. The free parameter α is used as an input to the

program to artificially delay the charging of the dust grain. When α < 1, the dust grain is made

to charge more slowly than the natural charging rate. When the charging rate of the dust grain

is significant when compared to the gyro-period, this leads to an alteration of the grain trajectory

which we refer to as the gyro-phase drift. In this appendix, examples of MATLAB code used for

the simulations is reproduced.

The dust trajectory code relies on a suite of other sub-functions that have been written specifi-

cally to support dust trajectory.m in the purpose of tracking the dust grains charge and trajec-

tory. Also, some helpful scripts have been written that take advantage of the sub-functions to plot
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information regarding in-situ grain charge, ne/ni profiles, etc. Starting with dust trajectory.m,

each of these components will be described in turn, starting with the larger scope functions and

working down to the functions which are smaller in scope. These sub-functions can and may need

to be modified if additional situations are to be modeled. The shortcomings of any sub-function

will be addressed in the summary of each one. Codes used for analysis of the simulation data, such

as gyrophaser.m will also be included.

1 Grain Motion

This section contains brief descriptions along with the Matlab codes for the necessary routines

and subroutines needed to obtain grain trajectories. The subroutines from section 4 are also needed

for grain trajectories.

i Main Simulation Routine

The program dust trajectory.m is the main simulation routine, which uses several parameters as

inputs, allows the user to specify the number of gyro-cycles and number of Newton timesteps per

gyro-cycle. There are various error-checking procedures to make sure that negative temperatures

and other spurious quantities cannot be entered.

This routine uses the inputs: ion species (a positive integer), a charge model selection (which

must be entered as a string, e.g., “oml”), a profile type (which must be entered as a string, e.g.,

’uniform E’), the plasma density n0 which is given in units of m−3, a representative electron tem-

perature Te0 which is given in units of Volts, a representative ion temperature Ti0 which is given in

units of Volts, the ionization number of the ion species Z (which is a positive integer), the neutral

gas pressure P which must be input in units of Pascals, and αm, which is the charging rate control

parameter (a number, generally between 0 and 1 which delays or slows down the charging rate of

dust grains.) The main program outputs the following data arrays when a simulation is run:

1.) t, which is an array for the time data where tn+1 = tn + ∆t where n is the Newton timestep

number

2.) q, which is an array containing the discretized representation of q(t)

3.) x is an array containing the discretized particle position x(t) for the x-direction of the grain at
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integer multiples of ∆t

4.) y is an array containing the discretized particle position y(t) for the y-direction of the grain at

integer multiples of ∆t

5.) vx is an array containing the discretized particle velocity of the grain in the x-direction at half

integer multiples of ∆t. It should be noted that vx(1) is the velocity at t = −∆t/2, due to the

nature of the Boris or leapfrog method that is used

6.) vy is an array containing the discretized particle velocity of the grain in the x-direction at half

integer multiples of ∆t. It should be noted that vy(1) is the velocity at t = −∆t/2, due to the

nature of the Boris or leapfrog method that is used

7.) RLd is an array containing the discretized particle

8.) s

9.) ne time

10.) ni time

11.) ne s

12.) ni s

13.) E xt

14.) E yt

15.) E sx

16.) E sy

As an additional feature, dust trajectory.m saves nearly all the data arrays and constants

used in the main body of the program into a .mat file; this is coded in the last line. To save the file

into a different format, such as ASCII, the last line of the program should be changed accordingly.

The flow of the main program is as follows: the initial values and local plasma parameters are

calculated based on the block of user input at the beginning of the program and from the output

of profiles.m (assuming a valid profile has been chosen). Based on the local plasma parameters,

the equilibrium dust charge is found using charging models.m, and q(t = 0) is given this value.

Choosing q(t = 0) = qeq is the preferred option since it starts the dust grain out at the in-situ

equilibrium grain charge, but other choices can be made which will result in transient behavior of

q(t). Such a choice will need to be input manually into the program, by setting q(1) equal to the
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desired initial dust grain charge. Arrays for t, q(t), x(t), y(t), vx(t), vy(t), RL(t), ne(t), ni(t),

Ex(t), Ey(t), fx(t), fy(t), and lambda d(t) are allocated and initialized. The last step before the

main time loop begins is to run the Boris algorithm backwards to obtain vx(-∆t/2) and vy(-∆t/2).

In the main loop, the particle position x and y are calculated at the full timestep, meaning for

example that in the first time through this loop, x(t = ∆t) and y(t = ∆t) are calculated. Any field

or parameter that is a function of x or y is computed at this time as well. Velocities are calculated

at half timesteps, meaning that in the first time through the main loop, vx(t = ∆t) and vy(t = ∆t)

are computed. It is possible to configure the code so that velocities and positions are calculated at

the same timestep, which means that the velocities must be given a half rotation backward due to

the magnetic field, and a half backward acceleration must be applied. If this is done, then there

will be one less element in the velocity arrays than in the position arrays. Currently, velocities

are offset by half a timestep from the position and field quantities. The positions, field quantities,

profile quantities, grain charge, and velocities are computed using the Boris algorithm, which is

explained below:

1.) Velocities are calculated according to:

2.) Positions are calculated according to:

3.) Profile quantities, such as electric field, densities as function of space, and other quantities are

calculated using profiles.m

4.) With the local plasma parameters now specified via profiles.m, the grain charge is updated in

time using accumulate charge.m.

5.) The time array is updated according to tnew = told + dt.

% % dust trajectory.m

% %

% % Jeffrey Walker, 2012−2014, latest major revision: January 3 2014.

function [t,q,x,y,vx,vy,RLd,ne,ni,V time,E xt,E yt,B t,f ix,f iy,...

f nx,f ny,lambda D,lambda i,Kn R0,P0,P1,Pg1,Vgrain]=...

dust trajectory(a,rho,r initial,v initial,species,ch model,...

profile type,n0,Te0,Ti0,Z,P,alphm,cycles,points,filename,...
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particle pusher)

% explanation of inputs:

% species = atomic mass number of ion species

% ch model = string which specifies charging model; 'oml',

% 'hyd', are your options.

% profile type = string which sets up the inhomogenous plasma

% profile of choice. IF THIS IS SOME KIND OF

% CYLINDRICAL PROFILE, MAKE SURE THE STRING HAS *cyl*

% SOMEWHERE IN THE LABEL YOU USE IN profiles.m

% n0 = background density in mˆ−3

% Te0 = electron thermal temperature

% Ti0 = ion thermal temperature

% Z = ion charge state; generally Z=1. If the

% 'constant q' profile is chosen, then Z denotes the

% number of elementary charges on the dust grain.

% P = neutral gas pressure in Pascals

% alphm = charge delay, where alphm<<1 means a high charge

% delay

% a = dust grain radius in meters. Alternatively, the user can input

% the string 'electron', or 'ion', and dust trajectory will

% calculate the trajectory for an electron or ion respectively

% for the plasma profile specified by profiles.m

% rho = dust grain mass density in kg/mˆ−3; water is 1000 while

% melamine is 1574. Lunar Regolith is ¬3000 kg/mˆ−3, see

% lunar stratigraphy textbook for reference. Additionally, the

% user can specify a string 'electron' or 'ion' to see resulting

% particle trajectories for a given plasma profile specified in

% profiles.m

%

%

% particle pusher = A string that specifies how you will push the

% dust grain. Allowable options: (remember to use

% single quotes for strings!) boris pusher,

% corotating boris pusher, sheath boris pusher,

% iterative pusher, sheath iterative pusher, and
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% I still need to make a

% corotating iterative pusher as of Aug 29 2014

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% Explanation of outputs:

% Please Note that you can call dust trajectory.m without specifying the

% outputs. E.g., you use:

% dust trajectory(a,rho,r initial,v initial,species,ch model,...

% profile type,n0,Te0,Ti0,Z,P,alphm,cycles,points,filename,...

% particle pusher);

%

% Instead of:

% [t,q,x,y,vx,vy,RLd,ne,ni,V time,E xt,E yt,B t,f ix,f iy,f nx,f ny,...

% lambda D,lambda i,Kn R0,P0,P1,Pg1,Vgrain]=dust trajectory(a,rho,...

% r initial,v initial,species,ch model,profile type,n0,Te0,Ti0,Z,P,...

% alphm,cycles,points,filename,particle pusher);

%

% The output variables will be saved to the target filename, so you don't

% need to keep the output variables in memory.

% Here is the list of inputs with explanations:

% t = time in seconds

% q = charge of dust grain in coloumbs

% x = x position of dust grain in meters

% y = y position of dust grain in meters

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% some fundamental constants:

qe=1.6e−19;

me=9.1e−31;

mp=1.67e−27;

eps0=8.854e−12;

%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% % Error checking

% % do some error checking on the ion species specified by user

if rem(species,1)6=0 | | species≤0 | | species >300

exception='species must be an integer value and less than 300';
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error(exception)

end

% % Now that we've checked that the species chosen is marginally valid,

% % compute ion mass and neutral atom mass

mi = species*mp;

mr=me/mi;

% assumption that neutral gas atoms have the same mass as ions.

m neut=mi;

% % do some error checking on the r initial and v initial arrays to make

% % sure they are the right size, then load the arrays into the x0, y0,

% % v 0x, and v 0y constants.

[m,n]=size(r initial);

if m6=1 | | n6=2

tempchar = 'Initial position array is in the wrong dimensions.';

tempchar = strcat(tempchar,' Please use r initial=[xi yi].');

exception = tempchar;

clear tempchar;

error(exception)

end

x0=r initial(1);

y0=r initial(2);

[m,n]=size(v initial);

if m6=1 | | n6=2

tempchar='Initial velocity array is in the wrong dimensions.';

tempchar=strcat(tempchar,' Please use v initial=[vxi vyi].');

exception=tempchar;

clear tempchar;

error(exception)

end

v 0x=v initial(1);

v 0y=v initial(2);

if points<0 | | cycles≤0

tempchar='Choose positive definite values for the number of';

tempchar=strcat(tempchar,' gyrocycles and points/gyrocycle');
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exception=tempchar;

clear tempchar;

error(exception)

end

% check to make sure background plasma density, electron temperature, ion

% temperature, and adjustable charge rate parameter are all greater than

% zero.

if n0≤0 | | Te0≤0 | | Ti0≤0 | | alphm≤0

tempchar='Choose positive definite values for plasma density,';

tempchar=strcat(tempchar,' ion/electron temperatures (in eV), and');

tempchar=strcat(tempchar,' adjustable charge rate parameter alpha,m.');

exception=tempchar;

clear tempchar;

error(exception)

end

% % now that we now Ti0 is okay, set Tn=Ti0.

% May 2014: Maybe this should be set as an input??

Tn=Ti0;

% determine if a is input as a number (the usual state of affairs) or as a

% string. If 'electron' or 'ion' are input for a, the code will run using

% the electron or ion mass as the dust grain mass. Hence, it can be used to

% produce electron/ion trajectories for a given profile.

if ischar(a)==0

if a≤0 | | a>0.01

tempchar='Choose positive definite values for the dust grain';

tempchar=strcat(tempchar,' radius. Also, choose a<0.01 m');

exception=tempchar;

clear tempchar;

error(exception)

end

% if the user has chosen a floating value for a, or a numerical value

% for a, and has not specified 'constant q' as the charge model, then

% the ion charge number Z must be restricted to positive definite

% values, and probably less than 118, since that is the atomic number

% of the heaviest known element.

% if (Z≤0 | | Z>118 | | floor(Z)6=Z) && ...
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% strcmp(ch model,'constant q')==0

% tempchar='You must chose an integer number for the ion charge';

% tempchar=strcat(tempchar,' state, which is positive definite,');

% tempchar=strcat(tempchar,' greater than zero, and less than 118.');

% exception=tempchar;

% clear tempchar;

% error(exception)

% % can I replace this end with an else?

% end

% If we have gotten this far, then 'constant q' has been chosen for the

% charge model, and we must ensure that an integer value has been

% chosen for the charge state.

if floor(Z)6=Z

tempchar='You must chose an integer number for the number of';

tempchar=strcat(tempchar,' elementary charges on the dust grain.');

exception=tempchar;

clear tempchar;

error(exception);

end

% Since we have safely passed all of the tests, set the dust

% temperature to the neutral temperature:

Td=Tn;

else

% user has input either 'ion' or 'electron' for the dust grain size

% a, so set the "dust grain mass" to the ion or electron mass. The

% code will continue along, calculating the trajectory for a test

% elementary particle (ion or electron).

if strcmp(a,'ion')==1 | | strcmp(a,'electron')==1

if strcmp(a,'ion')

% the mass we should use for the "dust mass" is the mass of an

% ion.

md=mi;

% May as well set "dust temperature" to the ion temperature

% here:

Td=Ti0;

% may as well set rho='ion' just in case user made a mistake
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rho='ion';

if Z≤0 | | Z>118 | | floor(Z)6=Z

tempchar='You must choose 118>Z≥1 for the ion charge';

tempchar=strcat(tempchar,' state.');

exception=tempchar;

clear tempchar;

error(exception)

end

end

if strcmp(a,'electron')

% the mass we should use for the "dust mass" is the mass of an

% electron.

md=me;

% May as well set "dust temperature" to the electron

% temperature here:

Td=Ti0;

% may as well set rho='electron' just in case user made a

% mistake

rho='electron';

if Z6=−1

tempchar='The charge state for an electron is −1';

tempchar=strcat(tempchar,' elementary charge.');

exception=tempchar;

clear tempchar;

error(exception)

end

end

% user has input a string value for a, but the string is not 'ion'

% or 'electron'.

else

tempchar='If you are inputting a string for dust grain radius';

tempchar=strcat(tempchar,' a, then the only permissible');

tempchar=strcat(tempchar,' options are ion or electron');

exception=tempchar;

clear tempchar;

error(exception);
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end

end

% determine the dust grian mass density rho has been input as a string. If

% not, then ischar(rho)==0.

if ischar(rho)==0

if rho≤0 | | rho>3e7

tempchar='Choose positive definite values for the dust grain';

tempchar=strcat(tempchar,' density. Also, choose rho<30,000,000');

tempchar=strcat(tempchar,'kg/mˆ3');

exception= tempchar;

clear tempchar;

error(exception)

end

% Since we have passed the test above, we can now calculate the mass of

% the dust grain, in kg mˆ−3

md=rho*(4*pi*aˆ3/3);

% ischar(rho)==1, which means that the user must specify either ion or

% electron.

else

if strcmp(a,'ion')==1 | | strcmp(a,'electron')==1

if strcmp(a,'ion')

% set the ion radius equal to the bohr radius in meters for

% now; obviously this needs to be changed based on whatever

% species is chosen.

a=5.29e−11;

% use mi/(4/3*pi*aˆ3) for ion density.

rho=mi/(4/3*pi*a.ˆ3);

end

if strcmp(a,'electron')

% set the electron radius equal to the classical electron

% radius in meters:

a=2.282e−15;

% use me/(4/3*pi*aˆ3) for electron density.

rho=me/(4/3*pi*a.ˆ3);

end

% user has input a string value for rho, but the string is not 'ion'
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% or 'electron'.

else

tempchar='If you are inputting a string for dust grain density';

tempchar=strcat(tempchar,' rho, then the only permissible');

tempchar=strcat(tempchar,' options are ion or electron');

exception=tempchar;

clear tempchar;

error(exception);

end

end

% Make sure the user does not input a negative value for the neutral gas

% pressure!

if P<0

tempchar='Choose positive definite values for the neutral gas';

tempchar=strcat(tempchar,' pressure (P≥0).');

exception=tempchar;

clear tempchar;

error(exception)

end

% This segment of code may no longer be necessary.

% if Z≤0 | | Z>200

% tempchar='Choose a positive definite value for the ion charge state.';

% tempchar=strcat(tempchar,' Also, Z is restricted to <200.');

% exception=tempchar;

% clear tempchar;

% error(exception)

% end

% % if a filename is not specified, then the output will be written to

% % test.mat

if length(filename)==0 | | ischar(filename)==0

filename='test';

tempchar='A valid filename was not chosen, so data will be written';

tempchar=strcat(tempchar,' to test.mat');

disp(tempchar);

clear tempchar;

end
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% % Check to see which particle mover the user has chosen.

if strcmp(particle pusher,'boris pusher')==0 && ...

strcmp(particle pusher,'iterative pusher')==0 && ...

strcmp(particle pusher,'corotating boris pusher')==0 && ...

strcmp(particle pusher,'corotating iterative pusher')==0 && ...

strcmp(particle pusher,'sheath boris pusher')==0 && ...

strcmp(particle pusher,'sheath iterative pusher')==0

% % current options are the boris pusher, and the iterative pusher.

% % If you want anything else, you'll have to build it!

tempchar='Choose a valid way of time−advancing the dust grain. Your';

tempchar=strcat(tempchar,' options are: boris pusher,');

tempchar=strcat(tempchar,' iterative pusher, corotating boris pusher');

tempchar=strcat(tempchar,', corotating iterative pusher');

tempchar=strcat(tempchar,', sheath iterative pusher,');

tempchar=strcat(tempchar,', or sheath boris pusher.');

tempchar=strcat(tempchar,' Make sure to put single quotes around');

tempchar=strcat(tempchar,' your choice of time−advancement pusher,');

tempchar=strcat(tempchar,' i.e., it must be input as a string.');

exception=tempchar;

clear tempchar;

error(exception)

end

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% % A few quick definitions and constants:

% % Initial perp−temperature of the dust; vi should be comparable to this.

%Td=Ti0; % Td¬Ti¬Tn; unless Td¬100 eV (this is measured in some

% experiments)

% compute the expected thermal speed of the test particle/grain, assuming a

% kinetic temperature of Td (determined during the error checking above).

vd=sqrt(2*qe*Td/md) % the resulting velocity, based on Tdust.

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% %

% % Initial conditions for the plasma parameters and other derived

179



% % quantities; initialize some parameters and DEFINE THE TIMESTEP.

% % Make sure that there is at least one point per gyrocycle. Maybe this

% % can be put up at the beginning with the other error checks?

if points<1

points=1;

end

H=1/points; % what fraction of a gyroperiod or bounce period do we

% increment by?

% % compute the number of timesteps needed to execute the number of

% % gyro−cycles if we are at the equilibrium charge. Also depends on how

% % many points we want per gyro−cycle.

nsteps=round(cycles*points); % I added a rounding feature in case the

% user selects a fraction of a gyrocycle.

% % it is occaisionally useful to short circuit the main loop and only get

% % one timestep; if that is the case and nsteps=0, then only compute 2

% % timesteps.

if nsteps==0 | | nsteps==1

nsteps=2;

disp('Only computing one time step.')

end

% estimate equilibrium charge Q0 and use it to define Newton timestep.

% First, call profiles to get the right plasma conditions. Use t=0 in

% profil

[V space,Ex,Ey,B,vix,viy,vex,vey,vnx,vny,gx,gy,ni0,ne0,alph,Ti0,Te0,...

nneut,lambda i0,lambda D0,corot period]=...

profiles(Ti0,Te0,n0,0,x0,y0,profile type,P,species);

% % Compute the capacitance after profiles!

C0=4*pi*eps0*a*(1+a/lambda D0);

%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% % some extra stuff added in here.

% Tr=Te0/Ti0;

% mr=me/mi;
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% M=[0 0];

% eta=ne0/ni0;

% Kna=1e5;

% KnD=lambda D0/a;

% R le=sqrt(pi/4)*me*sqrt(2*qe*Te0/me)/qe/B;

% e mag=a/R le;

% mag ratio=1;

% NDe=4/3*pi*n0.*lambda D0.ˆ3;

% % initialize counters and stuff

% Z=0;

% cnt=1;

% tchg=0;

% % find in situ equilibrium charge:

% while Z≤0

% dZdt=dimensionless charger(ch model,Z,Tr,mr,M,eta,Kna,KnD,alph,...

% e mag/mag ratio);

% dt = 1/3*KnD/(1+1/KnD)/(1+Tr/eta)/NDe/abs(dZdt);

% dZ=1/3*KnD/(1+1/KnD)/(1+Tr/eta)/NDe*sign(dZdt);

% Zarr(cnt)=Z;

% tarr(cnt)=tchg;

% if cnt>2&&Zarr(cnt)==Zarr(cnt−2)

% % break out of the loop when the charge begins oscillating back

% % and forth between two values.

% break

% end

% cnt=cnt+1;

% tchg=tchg+dt;

% Z=Z+dZ;

% %disp(num2str(Z))

% % drawnow;

% % figure(1);clf;plot(tarr,Zarr)

%

% end

% clear Zarr;clear tarr;

% Zeq=Z

% Q0 different=Zeq*C0*Te0/qe;
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% disp(strcat('Number of charges using different method:',num2str(Q0 different)));

%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% % Compute the initial grain speed with respect to electrons and ions;

% % needed when the dust grain is moving in a given charge model. If the

% % simulation is done in a sheath, then the following workaround is used.

if strcmp(particle pusher,'sheath boris pusher') | | ...

strcmp(particle pusher,'sheath iterative pusher')

% use vey to store information about the flow velocity of electrons in

% the phi direction, i.e., vey=(r d/dt phi) e

phi=improved arctan(x0,y0);

we = sqrt((v 0x−(vey)*sin(phi)).ˆ2+(v 0y+(vey)*cos(phi)).ˆ2);

% use vex to store information about the flow velocity of ions in the z

% direction

wi=sqrt((v 0x−vix).ˆ2+(v 0y−viy).ˆ2 + (vex).ˆ2);

w=[we wi];

else

% the regular, non−convoluted method which works for everything else

we=sqrt((v 0x−vex).ˆ2+(v 0y−vey).ˆ2);

wi=sqrt((v 0x−vix).ˆ2+(v 0y−viy).ˆ2);

w=[we wi];

end

% % first argument of charging models is qflag variable; if it is 1,

% % then you are calculating equilibrium charge, but if it is 0 then do not

% % calculate equilibrium charge; base the timestep off of this.

% % Get predicted equilibrium charge, starting with a grain charge of 0 for

% % simplicity.

[Itoti,Q0,Kn R0i,P0i,P1i,Pg1i]=...

charging models(1,ch model,a,alph,Te0,Ti0,ne0,ni0,B,Z,C0,0,...

lambda D0,lambda i0,w,species);

% % display the equilibrium charge

number of charges=(Q0/qe);

disp(strcat('number of charges:',num2str(number of charges)));

% % The initial gyro frequency:

w cdi=abs(Q0*B/md)
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% % August 2013: may want to base the timestep off of the dust−neutral

% % collision frequency if that is a larger quantity than the dust

% % gyro−frequency. Additionally, if a gravitational field is present, one

% % also needs to pick a relevant timescale for gravity as well.

cn=sqrt(8*qe*Tn/pi/m neut);

vxdriftn=v 0x−vnx;

vydriftn=v 0y−vny;

vn=sqrt(vxdriftn.ˆ2+vydriftn.ˆ2);

% % Using the Knudsen number, decide to use hyd. or kinetic regime for

% % dust−neutral drag. Figure out whether to use Epstein drag force, or if

% % it should go as velocityˆ2.

if vn<cn

∆=1.26; % coefficient for melamine??

% % dust−neutral collision frequency for epstein drag force

nu dn=∆*nneut*cn*m neut/a/rho

else

∆=1.26;

% Not sure about what to do if w>cn; how do I characterize the neutral

% dust collision frequency if the drag force is dependent on vˆ2

% instead of v?

nu dn=∆*nneut*cn*m neut/a/rho

end

% % determine which is the larger quantity: neutral−dust collision

% % frequency, or gyro frequency.

% % Base the time step off of whichever quantity is largest.

% % But first: check to see if both frequecies are zero!

if w cdi==0 && nu dn==0

% % This section of code is for error checking; if B=0, also check to

% % see if Ex or Ey is zero.

disp('Warning! No background magnetic field or neutral gas!')
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% % right below this comment is where the electric field should be

% % checked. it may be possible to define some frequency which relies

% % on |E |.

% % attempt to find a bounce period in order to specify a time step.

dtNwt=0.001; % Just a guess right now

end

% % Now check which is the largest freqency, and choose the smallest

% % timescale for the timestep. If all quantities are zero, you will bypass

% % this loop and dtNwt will be fixed according to the if statement above.

if w cdi>nu dn

if corot period == 0

dtNwt=H*2*pi/w cdi

else

if w cdi>2*pi/corot period

dtNwt=H*2*pi/w cdi

else

dtNwt=H*corot period

end

end

else

if corot period == 0

% for this case, check to see if B=0; this next set of statements

% is used for small oscillations in a sheath. This requires that

% ion flow must be non−zero. Dust charge must also be non−zero. See

% notebook #7, page 53.

if B==0 && w(2)6=0 && Q06=0

tempchar1='Using small oscillation frequency.';

tempchar2=' Make sure grain starts slightly below the sheath';

tempchar3=' boundary.';

disp(strcat(tempchar1,tempchar2,tempchar3));

%dtNwt=H*2*pi/nu dn/50

% use profiles again to find out what is the potential

% difference between the plasma and the lower electrode:

[V0,¬,¬,¬,¬,¬,¬,¬,¬,¬,¬,¬,¬,¬,¬,¬,¬,¬,¬,¬,¬]=...

profiles(Ti0,Te0,n0,0,0,0,profile type,P,species);
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% small oscillation frequency around a stable levitation

% height:

w small=sqrt(abs(Q0/md))*sqrt(qe*ni0*abs(viy)/...

eps0*sqrt(mi/2/qe))/(−1.5*sqrt(qe*ni0*abs(viy)*...

sqrt(mi/2/qe))*y0+(−V0)ˆ(3/4))ˆ(1/3)

dtNwt=H*2*pi/w small;

else

dtNwt=H*2*pi/nu dn

end

else

if nu dn>2*pi/corot period

dtNwt=H*2*pi/nu dn

else

dtNwt=H*corot period

end

end

end

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% %

% % NOW initialize or declare arrays, after nsteps has been defined based

% % on the user inputs cycles*points, which leads to arrays of size nsteps:

t=zeros(1,nsteps);

q=zeros(size(t));

Itot=zeros(size(t));

x=zeros(size(t));

y=zeros(size(t));

vx=zeros(size(t));

vy=zeros(size(t));

C=zeros(size(t));

% % profile variables:

ne=zeros(size(t));

ni=zeros(size(t));

Te=zeros(size(t));

Ti=zeros(size(t));

Tn=zeros(size(t));
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E xt=zeros(size(t));

E yt=zeros(size(t));

B t=zeros(size(t));

v ex=zeros(size(t));

v ey=zeros(size(t));

v ix=zeros(size(t));

v iy=zeros(size(t));

v nx=zeros(size(t));

v ny=zeros(size(t));

f ix=zeros(size(t));

f iy=zeros(size(t));

f nx=zeros(size(t));

f ny=zeros(size(t));

lambda D=zeros(size(t));

lambda i=zeros(size(t));

V time=(size(t));

Vgrain=(size(t));

Kn R0=(size(t));

P0=(size(t));

P1=(size(t));

Pg1=(size(t));

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% %

% % Initial conditions for the plasma parameters and other derived

% % quantities.

% % Intialize arrays with their starting values.

t(1)=0;

cntarr(1)=1;

x(1)=x0;

% % set x(1)=v 0y*md/Q0/B to make sure the dust grain goes through "both

% % sides" of the inhomogeneity.

%x(1)=−v 0y*md/Q0/B;

y(1)=y0;

vx(1)=v 0x;

vy(1)=v 0y;

% Make q(1)=equilibrium charge if desired, to prevent transient
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q(1)=Q0;

% otherwise, use q(1)=0 or q(1)=some other value, but this will produce a

% transient. Sometimes, this is particularly useful, other times not as

% much. q(1)=0 is quite useful for the case of an initially uncharged grain

% becoming charged after falling into plasma, such as in the case of an ice

% crystal being launched from Enceladus.

%q(1)=0;

% initialize capacitance and other quantities.

C(1)=C0;

Itot(1)=Itoti;

E xt(1)=Ex;

E yt(1)=Ey;

B t(1)=B;

V time(1)=V space;

Vgrain(1)=q(1)/C0/Te0;

ni(1)=ni0;

ne(1)=ne0;

Ti(1)=Ti0;

Te(1)=Te0;

Tn(1)=Ti0;

v ex(1)=vex;

v ey(1)=vey;

v ix(1)=vix;

v iy(1)=viy;

v nx(1)=vnx;

v ny(1)=vny;

lambda D(1)=lambda D0;

lambda i(1)=lambda i0;

Kn R0(1)=Kn R0i;

P0(1)=P0i;

P1(1)=P1i;

Pg1(1)=Pg1i;

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% % advance the particle backward in time by half a timestep. this gets the

% % velocities at t=−dtNwt/2, which is necessary for any leapfrog style
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% % method.

switch particle pusher

case 'iterative pusher'

%dtNwt=H*2*pi/abs(Q0);

%dtNwt=dtNwt*md/abs(B)

[xtemp,ytemp,vx(1),vy(1),w]=...

iterative pusher(−dtNwt/2,a,rho,q(1),x(1),y(1),vx(1),vy(1),...

species,E xt(1),E yt(1),B t(1),gx,gy,ne(1),ni(1),nneut,...

vnx,vny,vex,vey,vix,viy,Te(1),Ti(1),lambda D(1),ch model);

case 'sheath iterative pusher'

%dtNwt=H*2*pi/abs(Q0);

%dtNwt=dtNwt*md/abs(B)

[xtemp,ytemp,vx(1),vy(1),w]=...

sheath iterative pusher(−dtNwt/2,a,rho,q(1),x(1),y(1),vx(1),...

vy(1),species,E xt(1),E yt(1),B t(1),gx,gy,ne(1),ni(1),...

nneut,vnx,vny,vex,vey,vix,viy,Te(1),Ti(1),lambda D(1),...

ch model);

case 'corotating iterative pusher'

[xtemp,ytemp,vx(1),vy(1),w]=...

corotating iterative pusher(−dtNwt/2,a,rho,q(1),x(1),y(1),vx(1),...

vy(1),species,E xt(1),E yt(1),B t(1),gx,gy,ne(1),ni(1),...

nneut,vnx,vny,vex,vey,vix,viy,Te(1),Ti(1),Tn(1),lambda D(1),...

ch model,corot period);

case 'boris pusher'

[xtemp,ytemp,vx(1),vy(1),w]=...

boris pusher(−dtNwt/2,md,q(1),x(1),y(1),vx(1),vy(1),...

E xt(1),E yt(1),B t(1),nu dn,gx,gy,vex,vey,vix,viy,vnx,vny);

case 'corotating boris pusher'

[xtemp,ytemp,vx(1),vy(1),w]=...

corotating boris pusher(−dtNwt/2,md,q(1),x(1),y(1),...

vx(1),vy(1),E xt(1),E yt(1),B t(1),nu dn,gx,gy,vex,vey,...

vix,viy,vnx,vny,corot period);
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case 'sheath boris pusher'

[xtemp,ytemp,vx(1),vy(1),w]=...

sheath boris pusher(−dtNwt/2,md,q(1),x(1),y(1),...

vx(1),vy(1),E xt(1),E yt(1),B t(1),nu dn,...

gx,gy,vex,vey,vix,viy,vnx,vny);

end

% % xtemp and ytemp are not needed when we go back just a half step.

% % you will get the wrong answer if you try to get x(1) and y(1) from the

% % command written above.

clear xtemp; clear ytemp;

% % Now, all the initial values have been assigned, time to start the main

% % loop.

% %¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% % The Main loop.

t acc=0; % the accumulated time since a charge update starts at zero.

for k=2:nsteps

%tic;

% % display progress.

if ¬mod(k−2,nsteps/20)

disp([num2str((k−2)/nsteps*100,'%.2f') '%'])

end

% diagnostic stuff

% r sat = 60268000;

% drawnow;

% subplot(1,2,1);

% plot(x,y,'.b');hold on;

% phi sat = linspace(0,2*pi,1e2);

% x sat = r sat*cos(phi sat);

% y sat = r sat*sin(phi sat);

% xlim([−10*r sat 10*r sat]);

% ylim([−10*r sat 10*r sat]);

% plot(x sat,y sat,'−−r');
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% subplot(1,2,2);

% plot(t,q/qe,'.g');hold on;

%pause

%q(k−1)

%%¬¬¬¬#1 and #2:

% % Use iterative leapfrog method, sheath iterative

% % leapfrog method, Boris method, corotating Boris method,

% % sheath Boris method to push the dust grain.

% %

switch particle pusher

case 'iterative pusher'

[x(k),y(k),vx(k),vy(k),w]=...

iterative pusher(dtNwt,a,rho,q(k−1),x(k−1),y(k−1),...

vx(k−1),vy(k−1),species,E xt(k−1),E yt(k−1),B t(k−1),...

gx,gy,ne(k−1),ni(k−1),nneut,vnx,vny,vex,vey,vix,viy,...

Te(k−1),Ti(k−1),lambda D(k−1),ch model);

% % if using the iterative pusher:

t(k)=t(k−1)+dtNwt;

%%¬¬¬¬#3

% % final step in leapfrog method: calculate qd(t), E(t), and ion

% % drag force. These quantities are computed at the full timestep

% % Use profiles to calculate E(t) and E(space), and update plasma

% % conditions. (they are spatially dependent.) NOTE: should

% % profiles be called before or after chargeup??

% % 7/16/2013 −−>BEFORE.

[V time(k),E xt(k),E yt(k),B t(k),vix,viy,vex,vey,vnx,vny,...

gx,gy,ni(k),ne(k),alph,Ti(k),Te(k),nneut,lambda i(k),...

lambda D(k),corot period]=...

profiles(Ti0,Te0,n0,t(k),x(k),y(k),profile type,P,species);

%figure(1);drawnow;plot(t,q/1.6e−19);%plot(x,y);%

% Compute the capacitance after profiles!

C(k)=4*pi*eps0*a*(1+a/lambda D(k));
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[q(k),Itot(k),Kn R0(k),P0(k),P1(k),Pg1(k),t acc]=...

accumulate charge(0,ch model,a,alph,Te(k),Ti(k),...

ne(k),ni(k),B t(k),Z,C(k),q(k−1),dtNwt,alphm,...

lambda D(k),lambda i(k),w,t acc,species);

clear cntarr;

% Vgrain is the difference between the grain surface potential

% and the local space potential, normalized to the electron

% temperature (Te is in volts.)

Vgrain(k)=q(k)/C(k)/Te(k);

% store the electron, ion, and neutral flows for each time

% step.

v ex(k)=vex;

v ey(k)=vey;

v ix(k)=vix;

v iy(k)=viy;

v nx(k)=vnx;

v ny(k)=vny;

% % put the 1/2 velocity update timestep here if you want to

% % calculate vx and vy at the same timesteps as the positions.

% % The time axis would no longer be staggered. Essentially,

% % you are rotating and accelerating half a timestep

case 'sheath iterative pusher'

[x(k),y(k),vx(k),vy(k),w]=...

sheath iterative pusher(dtNwt,a,rho,q(k−1),x(k−1),y(k−1),...

vx(k−1),vy(k−1),species,E xt(k−1),E yt(k−1),B t(k−1),...

gx,gy,ne(k−1),ni(k−1),nneut,vnx,vny,vex,vey,vix,viy,...

Te(k−1),Ti(k−1),lambda D(k−1),ch model);

% % if using the iterative pusher:

t(k)=t(k−1)+dtNwt;
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%%¬¬¬¬#3

% % final step in leapfrog method: calculate qd(t), E(t), and ion

% % drag force. These quantities are computed at the full timestep

% % Use profiles to calculate E(t) and E(space), and update plasma

% % conditions. (they are spatially dependent.) NOTE: should

% % profiles be called before or after chargeup??

% % 7/16/2013 −−>BEFORE.

[V time(k),E xt(k),E yt(k),B t(k),vix,viy,vex,vey,vnx,vny,...

gx,gy,ni(k),ne(k),alph,Ti(k),Te(k),nneut,lambda i(k),...

lambda D(k),corot period]=...

profiles(Ti0,Te0,n0,t(k),x(k),y(k),profile type,P,species);

%figure(1);drawnow;plot(t,q/1.6e−19);%plot(x,y);%

% Compute the capacitance after profiles!

C(k)=4*pi*eps0*a*(1+a/lambda D(k));

[q(k),Itot(k),Kn R0(k),P0(k),P1(k),Pg1(k),t acc]=...

accumulate charge(0,ch model,a,alph,Te(k),Ti(k),...

ne(k),ni(k),B t(k),Z,C(k),q(k−1),dtNwt,alphm,...

lambda D(k),lambda i(k),w,t acc,species);

clear cntarr;

% Vgrain is the difference between the grain surface potential

% and the local space potential, normalized to the electron

% temperature (Te is in volts.)

Vgrain(k)=q(k)/C(k)/Te(k);

% store the electron, ion, and neutral flows for each time

% step.

v ex(k)=vex;

v ey(k)=vey;

v ix(k)=vix;

v iy(k)=viy;

v nx(k)=vnx;

v ny(k)=vny;
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% % put the 1/2 velocity update timestep here if you want to

% % calculate vx and vy at the same timesteps as the positions.

% % The time axis would no longer be staggered. Essentially,

% % you are rotating and accelerating half a timestep

case 'corotating iterative pusher'

[x(k),y(k),vx(k),vy(k),w]=...

corotating iterative pusher(dtNwt,a,rho,q(k−1),x(k−1),...

y(k−1),vx(k−1),vy(k−1),species,E xt(k−1),E yt(k−1),...

B t(k−1),gx,gy,ne(k−1),ni(k−1),nneut,vnx,vny,vex,vey,...

vix,viy,Te(k−1),Ti(k−1),Tn(k−1),lambda D(k−1),ch model,...

corot period);

% % if using the iterative pusher:

t(k)=t(k−1)+dtNwt;

%%¬¬¬¬#3

% % final step in leapfrog method: calculate qd(t), E(t), and ion

% % drag force. These quantities are computed at the full timestep

% % Use profiles to calculate E(t) and E(space), and update plasma

% % conditions. (they are spatially dependent.) NOTE: should

% % profiles be called before or after chargeup??

% % 7/16/2013 −−>BEFORE.

[V time(k),E xt(k),E yt(k),B t(k),vix,viy,vex,vey,vnx,vny,...

gx,gy,ni(k),ne(k),alph,Ti(k),Te(k),nneut,lambda i(k),...

lambda D(k),corot period]=...

profiles(Ti0,Te0,n0,t(k),x(k),y(k),profile type,P,species);

%figure(1);drawnow;plot(t,q/1.6e−19);%plot(x,y);%

% Compute the capacitance after profiles!

C(k)=4*pi*eps0*a*(1+a/lambda D(k));

[q(k),Itot(k),Kn R0(k),P0(k),P1(k),Pg1(k),t acc]=...

accumulate charge(0,ch model,a,alph,Te(k),Ti(k),...

ne(k),ni(k),B t(k),Z,C(k),q(k−1),dtNwt,alphm,...

lambda D(k),lambda i(k),w,t acc,species);
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clear cntarr;

% Vgrain is the difference between the grain surface potential

% and the local space potential, normalized to the electron

% temperature (Te is in volts.)

Vgrain(k)=q(k)/C(k)/Te(k);

% store the electron, ion, and neutral flows for each time

% step.

v ex(k)=vex;

v ey(k)=vey;

v ix(k)=vix;

v iy(k)=viy;

v nx(k)=vnx;

v ny(k)=vny;

% % put the 1/2 velocity update timestep here if you want to

% % calculate vx and vy at the same timesteps as the positions.

% % The time axis would no longer be staggered. Essentially,

% % you are rotating and accelerating half a timestep

case 'boris pusher'

[x(k),y(k),vx(k),vy(k),w]=...

boris pusher(dtNwt,md,q(k−1),x(k−1),y(k−1),...

vx(k−1),vy(k−1),E xt(k−1),E yt(k−1),B t(k−1),nu dn,...

gx,gy,vex,vey,vix,viy,vnx,vny);

% % update the time array.

t(k)=t(k−1)+dtNwt;

%%¬¬¬¬#3

% % final step in leapfrog method: calculate qd(t), E(t), and ion

% % drag force. These quantities are computed at the full timestep

% % (they are spatially dependent.) Use profiles to calculate E(t)

% % and E(space), and update plasma conditions. NOTE: should

% % profiles be called before or after chargeup??

% % 7/16/2013 −−>BEFORE.
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[V time(k),E xt(k),E yt(k),B t(k),vix,viy,vex,vey,vnx,vny,...

gx,gy,ni(k),ne(k),alph,Ti(k),Te(k),nneut,lambda i(k),...

lambda D(k),corot period]=...

profiles(Ti0,Te0,n0,t(k),x(k),y(k),profile type,P,species);

% Compute the capacitance after profiles!

C(k)=4*pi*eps0*a*(1+a/lambda D(k));

[q(k),Itot(k),Kn R0(k),P0(k),P1(k),Pg1(k),t acc]=...

accumulate charge(0,ch model,a,alph,Te(k),Ti(k),...

ne(k),ni(k),B t(k),Z,C(k),q(k−1),dtNwt,alphm,...

lambda D(k),lambda i(k),w,t acc,species);

clear cntarr;

% Vgrain is the difference between the grain surface potential

% and the local space potential, normalized to the electron

% temperature (Te is in volts.)

Vgrain(k)=q(k)/C(k)/Te(k);

% store the electron, ion, and neutral flows for each time

% step.

v ex(k)=vex;

v ey(k)=vey;

v ix(k)=vix;

v iy(k)=viy;

v nx(k)=vnx;

v ny(k)=vny;

% % For ion and neutral drag, you have to assume vions−vdust>>vthi,

% % and v neut−vdust>>vthn in order for Boris method to work.

% % If you want to compute the drag forces as functions of time,

% % put them here.

% % I think the ion drag should actually use q(k) instead of

% % q(k−1), because q should be evaluated at a spatial location −
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% % 5/23/2013

%[f ix(k),f iy(k)]=ion drag(q(k),a,Te(k),Ti(k),ni(k),C,lambda D(k),lambda i(k),vix,viy,0,0,ch model,Kn R0(k),P0(k),P1(k),Pg1(k),Z,B,gx,gy,species);

%[f nx(k),f ny(k),nu dn]=neutral drag(a,rho,nneut,0,0,vx(k−1),vy(k−1),Tn,gx,gy,species);

% % put the 1/2 velocity update timestep here if you want to calculate

% % vx and vy at the same timesteps as the positions. The time axis

% % would no longer be staggered. Essentially, you are rotating and

% % accelerating half a timestep

% use corotating boris pusher when you are dealing with dust and a

% planet or moon, or other celestial body.

case 'corotating boris pusher'

[x(k),y(k),vx(k),vy(k),w]=...

corotating boris pusher(dtNwt,md,q(k−1),x(k−1),y(k−1),...

vx(k−1),vy(k−1),E xt(k−1),E yt(k−1),B t(k−1),nu dn,...

gx,gy,vex,vey,vix,viy,vnx,vny,corot period);

% % update the time array.

t(k)=t(k−1)+dtNwt;

%%¬¬¬¬#3

% % final step in leapfrog method: calculate qd(t), E(t), and ion

% % drag force. These quantities are computed at the full timestep

% % (they are spatially dependent.) Use profiles to calculate E(t)

% % and E(space), and update plasma conditions. NOTE: should

% % profiles be called before or after chargeup??

% % 7/16/2013 −−>BEFORE.

[V time(k),E xt(k),E yt(k),B t(k),vix,viy,vex,vey,vnx,vny,...

gx,gy,ni(k),ne(k),alph,Ti(k),Te(k),nneut,lambda i(k),...

lambda D(k),corot period]=...

profiles(Ti0,Te0,n0,t(k),x(k),y(k),profile type,P,species);

% Compute the capacitance after profiles!

C(k)=4*pi*eps0*a*(1+a/lambda D(k));
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[q(k),Itot(k),Kn R0(k),P0(k),P1(k),Pg1(k),t acc]=...

accumulate charge(0,ch model,a,alph,Te(k),Ti(k),...

ne(k),ni(k),B t(k),Z,C(k),q(k−1),dtNwt,alphm,...

lambda D(k),lambda i(k),w,t acc,species);

clear cntarr;

% Vgrain is the difference between the grain surface potential

% and the local space potential, normalized to the electron

% temperature (Te is in volts.)

Vgrain(k)=q(k)/C(k)/Te(k);

% store the electron, ion, and neutral flows for each time

% step.

v ex(k)=vex;

v ey(k)=vey;

v ix(k)=vix;

v iy(k)=viy;

v nx(k)=vnx;

v ny(k)=vny;

% % For ion and neutral drag, you have to assume vions−vdust>>vthi,

% % and v neut−vdust>>vthn in order for Boris method to work.

% % If you want to compute the drag forces as functions of time,

% % put them here.

% % I think the ion drag should actually use q(k) instead of

% % q(k−1), because q should be evaluated at a spatial location −

% % 5/23/2013

%[f ix(k),f iy(k)]=ion drag(q(k),a,Te(k),Ti(k),ni(k),C,lambda D(k),lambda i(k),vix,viy,0,0,ch model,Kn R0(k),P0(k),P1(k),Pg1(k),Z,B,gx,gy,species);

%[f nx(k),f ny(k),nu dn]=neutral drag(a,rho,nneut,0,0,vx(k−1),vy(k−1),Tn,gx,gy,species);

% % put the 1/2 velocity update timestep here if you want to
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% % calculate vx and vy at the same timesteps as the positions.

% % The time axis would no longer be staggered. Essentially, you

% % are rotating and accelerating half a timestep

% January 2014: use sheath boris pusher if you want work with dust

% grains levitated in a planar sheath.

case 'sheath boris pusher'

[x(k),y(k),vx(k),vy(k),w]=...

sheath boris pusher(dtNwt,md,q(k−1),x(k−1),y(k−1),...

vx(k−1),vy(k−1),E xt(k−1),E yt(k−1),B t(k−1),nu dn,...

gx,gy,vex,vey,vix,viy,vnx,vny);

% % update the time array.

t(k)=t(k−1)+dtNwt;

%%¬¬¬¬#3

% % final step in leapfrog method: calculate qd(t), E(t), and ion

% % drag force. These quantities are computed at the full timestep

% % (they are spatially dependent.) Use profiles to calculate E(t)

% % and E(space), and update plasma conditions. NOTE: should

% % profiles be called before or after chargeup??

% % 7/16/2013 −−>BEFORE.

[V time(k),E xt(k),E yt(k),B t(k),vix,viy,vex,vey,vnx,vny,...

gx,gy,ni(k),ne(k),alph,Ti(k),Te(k),nneut,lambda i(k),...

lambda D(k),corot period]=...

profiles(Ti0,Te0,n0,t(k),x(k),y(k),profile type,P,species);

% Compute the capacitance after profiles!

C(k)=4*pi*eps0*a*(1+a/lambda D(k));

[q(k),Itot(k),Kn R0(k),P0(k),P1(k),Pg1(k),t acc]=...

accumulate charge(0,ch model,a,alph,Te(k),Ti(k),...

ne(k),ni(k),B t(k),Z,C(k),q(k−1),dtNwt,alphm,...

lambda D(k),lambda i(k),w,t acc,species);

clear cntarr;
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% Vgrain is the difference between the grain surface potential

% and the local space potential, normalized to the electron

% temperature (Te is in volts.)

Vgrain(k)=q(k)/C(k)/Te(k);

% store the electron, ion, and neutral flows for each time

% step.

v ex(k)=vex;

v ey(k)=vey;

v ix(k)=vix;

v iy(k)=viy;

v nx(k)=vnx;

v ny(k)=vny;

% % For ion and neutral drag, you have to assume vions−vdust>>vthi,

% % and v neut−vdust>>vthn in order for Boris method to work.

% % If you want to compute the drag forces as functions of time,

% % put them here.

% % I think the ion drag should actually use q(k) instead of

% % q(k−1), because q should be evaluated at a spatial location −

% % 5/23/2013

%[f ix(k),f iy(k)]=ion drag(q(k),a,Te(k),Ti(k),ni(k),C,lambda D(k),lambda i(k),vix,viy,0,0,ch model,Kn R0(k),P0(k),P1(k),Pg1(k),Z,B,gx,gy,species);

%[f nx(k),f ny(k),nu dn]=neutral drag(a,rho,nneut,0,0,vx(k−1),vy(k−1),Tn,gx,gy,species);

% % put the 1/2 velocity update timestep here if you want to calculate

% % vx and vy at the same timesteps as the positions. The time axis

% % would no longer be staggered. Essentially, you are rotating and

% % accelerating half a timestep

end

% % if you want to see the trajectory evolve in real time, here is the

% % code below, just uncomment it:
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%figure(1);drawnow;plot(x,y)

% % July 2013: I had originally intended to allow for a variable

% % timestep even in the main loop that reflects the variable

% % gyroperiod; I have abandoned this however because Boris and other

% % leapfrog algorithms require a fixed timestep. I have left this

% % vestigal code below.

% % update the newton timestep to reflect the possibility that the

% % gyrofrequency is varying in time. should I include a varying newton

% % timestep? This means that:

%dtNwt=H*2*pi*md/abs(q(k))/B;

%toc;

%disp(k);

%pause;

end

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% %

% % figure out whether we have used a cylindrical or non−cylindrical

% % profile, and order the densities, fields, etc. accordingly.

%cyl type=strfind(profile type,'cyl');

%

%if length(cyl type)==0

% % put the E,ni,ne profiles in order, where s will become the ordered

% % set of x−positions (low to high x values)

%[s,i]=sort(x);

%E sx = E xt(i);

%E sy=E yt(i);

%%V s = V time(i);

%ni s=ni time(i);

%ne s=ne time(i);

%

%% % optional: produce a quick diagnostic figure

%h1=figure;clf;

% % This plot (2/27/2013) shows the density profiles and on top of
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% % this, shows the motion of the dust grain.

%%subplot(2,1,1);

%%fill([0 0.02 0.02 0],[0 0 0.2 0.2],'y')

%hold on;

%plot(x,y,'−b','LineWidth',2);

%set(gca,'fontsize',16);

%xlabel('x position');

%ylabel('y position');

%title('Slab Profile')

%% subplot(2,1,2);

%% plot(s,ni s,'−r','LineWidth',1);hold on;plot(s,ne s,'−−g','LineWidth',2);

%% set(gca,'fontsize',16);

%% axis square;

%% xlabel('x position (m)')

%% ylabel('density (mˆ{−3})')

%% legend('Ion Density','Electron Density')

%

%% % here is a diagnostic plot to show the electric field and density profiles.

%% h2=figure;clf

%% subplot(1,2,2);

%% %set(gca,'fontsize',16);

%% [AX,H1,H2]=plotyy(s,E s,s,V s,'plot');

%% %set(gca,'fontsize',16);

%% set(get(AX(1),'Ylabel'),'String','Electric Field (V/m)')

%% set(get(AX(2),'Ylabel'),'String','V {space} (V)')

%% xlabel('x position (m)')

%% % xlabel('x position (m)')

%% % ylabel('Electric Field (V/m)')

%% subplot(1,2,1);

%

%% % This plot (4/18/2013) is for showing the x and y componenets of the

%% % ion drag force.

%%h3=figure;

%%plot(t,f x,'−c')

%%hold on;

%%plot(t,f y,':m')
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%%set(gca,'fontsize',16);

%%xlabel('time');

%%ylabel('Force (N)');

%%legend('Ion Drag Force, x−direction','Ion Drag Force, y−direction')

%

%else

%%% if cyl type gives us any value other than an empty array, then we have

%%% a cylindrical profile of some type. organize things according.

%r=sqrt(x.ˆ2+y.ˆ2);

%[s,i]=sort(r);

%E sx = E xt(i);

%E sy=E yt(i);

%E sr=sqrt(E sx.ˆ2+E sy.ˆ2);

%%V s = V time(i);

%ni s=ni time(i);

%ne s=ne time(i);

%s=[−s,s];

%E sr=[−E sr,E sr];

%ni s=[ni s,ni s(end:−1:1)];

%ne s=[ne s,ne s(end:−1:1)];

%

%% % optional: produce a quick diagnostic figure

%figure(1)

%hold on;

%plot(x,y,'−b','LineWidth',2);

%set(gca,'fontsize',16);

%xlabel('x position');

%ylabel('y position');

%title('Cylindrical Profile')

%R=0.225;

%xleft=−1.1*R;

%xright=1.1*R;

%ylower=−1.1*R;

%yupper=1.1*R;

%

%phi circ=linspace(0,2*pi,1e4);
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%xcirc=R*cos(phi circ);

%ycirc=R*sin(phi circ);

%plot(xcirc,ycirc,'−−r', 'LineWidth',2);

%axis equal;

%end

% % save some memory by trashing old time series:

%clear E time;

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

%%

% % KE needs to be reworked so that it's calculated at the full step;

% % currently this is the KE at the half step.

%KE=md*(vx.ˆ2+vy.ˆ2)/2;

% % PE of the dust grain in the field; plug into PE the desired spatial

% % dependence of the electric field

%PE = q.*E time;

% % RLd also needs to be reworked for the same reasons as KE

% zero B = find(B t==0)

% zero q = find(q==0)

% finite q or B = find(B t 6=0)

% if length(zero q)6=0 | | length(zero B)6=0

% RLd(zero q)=inf;

% RLd(zero B)=inf;

%

% Maybe get rid of this definition of larmor radius, because it's wrong.

% if B==0

% RLd=inf; % Infinite gyro−radius if there is no magnetic field.

% else

% % make sure you take the absolute value of the gyro−frequency!

% RLd=md.*sqrt(vx.ˆ2+vy.ˆ2)./abs(q)./abs(B t);

% end

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% %

% % Use the following command to save the output variables and the

% % parameters. Save all variables; almost all quantities here should be
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% % saved. It is faster and easier to clear the unnecessary ones.

clear Q0;clear i;clear k;clear nsteps;

save(strcat(filename,'.mat'));

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

end

i Example Input Script

It is generally easiest to run the main program by setting up a script .m file. Input the necessary

parameters, as shown in the code below. The script file example dust trajectory script.m

names an output file based on input parameters and saves the data in .mat format. By default,

gyrophaser.m is enabled, but this command can be commented out if desired.

% example dust trajectory script.m

% This is just a script function that runs dust trajectory.m and

% gyrophaser.m. Just replace all of the variables or strings with your

% desired inputs, press f5 in matlab and this script will run the

% simulation, then it will run gyrophaser.m, which appends the target

% filename with the gyro−averaged quantities. After this file is created,

% you can analyze the data in gyro−phase or in time.

% Here are the variables:

% dust grain radius in meters

a=5e−6; % to make sure a¬1.6 microns in diameter.

% density of the dust grain in kg/mˆ3

rho=1e3; % density of water

% initial position of the grain, with the units given in meters

r initial=[0 0];

% initial velocity of the grain, with the units given in meters/second

v initial=[0.003 0];

% mass number of ions in the plasma

species=40; % argon mass number = 40

% choose a charge model, can be 'oml', 'hutchinson', 'kortshagen', or
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% 'phgk'.

ch model='oml';

% choose a profile type; look at profiles.m for examples. must be entered

% as a string.

profile type='uniform';

% baseline density, in units of ions/electrons mˆ{−3}

n0=1e14;

% baseline electron temperature in units of eV

Te0=1.6;

% baseline ion temperature in units of eV

Ti0=1/40;

% ionization of plasma

Z=1; % Z=1 means singly ionized ions

% neutral gas pressure in mTorr

P mtorr=0;

% convert pressure in mTorr to Pa

P=P mtorr/7.5;

% ADJUSTABLE CHARGING RATE PARAMETER: alphm=1 means there is no

% restriction; alphm<1 implies that the grain charges more slowly than

% normal.

alphm=1;

% approximate number of gryocycles

cycles=10;

% approximate number of points per gyrocycle

points=2e3; % 2000 points/cycle is a reasonable number to work with;

% a smaller number will make simulations run quicker but with

% less accuracy, while a larger number will make simulations

% run slower but with greater accuracy.

% pick a filename for your output; do not need to include .mat extension

% because the code does this for you.

filename='test';

% choose a method of advancing the trajectory of the dust grain; your

% options are 'boris pusher', 'iterative pusher',

% 'corotating boris pusher', 'sheath boris pusher',
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% still need to add: 'corotating iterative pusher'! ¬ April 9 2014

particle pusher='boris pusher';

%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% alternative: concatenate all of the relevant information into the data

% file. comment these lines out if you don't want to use them.

% append the dust size information to the file, in units of um.

a string = num2str(a/1e−6);

a string(find(a string=='.'))=' ';

% append the density information to the file (in units of mˆ−3).

n string = num2str(n0);

indices = find(n string=='0');

n string = strcat(' n ',n string(1),n string(2:indices(1)−1),...

'e',num2str(length(n string)−1));

p string=num2str(P mtorr);

p string(find(p string=='.'))=' ';

p string=strcat(' P ',p string,'mTorr');

filename=strcat(ch model,' ',profile type,' ',particle pusher,' a',...

a string,'um',n string,p string);

%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% Now that all the inputs are given, run the simulation.

% The '...' ellipses are used to make the function call more readable.

% Please Note that you can call dust trajectory.m without specifying the

% outputs. E.g., you use:

% dust trajectory(a,rho,r initial,v initial,species,ch model,...

% profile type,n0,Te0,Ti0,Z,P,alphm,cycles,points,filename,...

% particle pusher);

%

% Instead of:

% [t,q,x,y,vx,vy,RLd,ne,ni,V time,E xt,E yt,B t,f ix,f iy,f nx,f ny,...
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% lambda D,lambda i,Kn R0,P0,P1,Pg1,Vgrain]=...

% dust trajectory(a,rho,r initial,v initial,species,ch model,...

% profile type,n0,Te0,Ti0,Z,P,alphm,cycles,points,filename,...

% particle pusher);

%

% The output variables will be saved to the target filename, so you don't

% need to keep the output variables in memory. Thus, you can use the line

% below:

dust trajectory(a,rho,r initial,v initial,species,ch model,...

profile type,n0,Te0,Ti0,Z,P,alphm,cycles,points,filename,...

particle pusher);

load(strcat(filename,'.mat'));

plot(x,y);

% make the graph background transparent

set(gcf, 'Color', [1,1,1]);

% Now run gyro phaser.m. Pick a starting angle in degrees.

% If vx>0 and vy=0, then use 270 as a starting angle.

% If vy>0 and vx=, then use 0 as a starting angle, etc.

phi start=270;

gyrophaser(filename,phi start);

load(strcat(filename,' gyrophased.mat'));

ii Miscellaneous Subroutines

The subroutine improved arctan.m is included here, since it is required for computation of electric

fields or other quantities in cylindrical geometry. This is a simple function that expands the range

of the function so that it can produce the correct values between 0 and 360◦, instead of being

limited to -90◦ and 90◦.

% % improved arctan.m

% % May 2013, Jeffrey Walker

% %
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% % This function computes the arctangent of an (x,y) coordinate pair

% % originally in Cartesian coordinates. The atan function has been

% % expanded here to allow for angles greater than 90 degrees

function [phi]=improved arctan(x,y);

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% % Brief Explanation of inputs and how this program works

% % x − x−coordinate

% % y − y−coordinate

% %

% % The output phi will be between 0 and 2*pi RADIANS. If you want to have

% % it in degrees, you will have to do the necessary coding where/whenever

% % you call this function.

if x≥0 && y==0

phi=0;

end

if x==0 && y≥0

phi=pi/2;

end

if x≤0 && y==0

phi=pi;

end

if x==0 && y≤0

phi=1.5*pi;

end

if x>0 && y>0

quadrant='upper right';

phi=atan(y/x);

end

if x<0 && y>0

quadrant='upper left';
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phi=atan(abs(x)/y)+pi/2;

end

if x<0 && y<0

quadrant='lower left';

phi=atan(abs(y)/abs(x))+pi;

end

if x>0 && y<0

quadrant='lower right';

phi=atan(abs(x)/abs(y))+1.5*pi;

end

ii Position and Velocity Advancement

The dust trajectory.m code allows for the use of several different ways of time-stepping the grain,

finding the resulting position and velocity based on the forces on the grain. All of these methods

use a leapfrog integration scheme, but each has certain unique features that are discussed below.

As a caveat, these algorithms were written to determine the grain motion in a two-dimensional

plane perpendicular to the magnetic field direction.

i Boris Solver

The function boris pusher.m uses the standard Boris method (Boris, 1970) to advance the grain

position and velocity. The Boris algorithm has been slightly modified to include the velocity-

dependent, linear, Epstein drag force. Gravitational forces are also included, because this force can

be significant for dust grains.

% % boris pusher.m

% %

% % boris pusher.m is a function that uses the boris algorithm to advance

% % the positions and velocities of a particle. This function was written

% % for the purpose of dust grains.
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function [x,y,vx,vy,w]=...

boris pusher(dtNwt,md,q,x0,y0,vx0,vy0,E x,E y,B,nu dn,g x,g y,...

vex,vey,vix,viy,vnx,vny)

% below is the version of inputs that I intend to use. (sept 2013)

% I have probably more inputs than necessary, because I intend on treating

% the linear approximation to ion drag 2010 Bacharis PRE??

%[x,y,vx,vy,w]=boris pusher(dtNwt,md,q,x0,y0,vx0,vy0,E x,E y,B,g x,g y,ni,nu dn,vnx,vny,vex,vey,vix,viy,Ti,lambda D,ch model);

% % uncomment the line below if you want to turn neutral drag off.

%nu dn=0;

% % compute grain speed relative to an electron flow:

we=sqrt((vx0−vex).ˆ2+(vy0−vey).ˆ2);

% % compute grain speed relative to an ion flow:

% % velocity of the grain is relative to the ions:

% % e.g., if vx = 0, but the ions are streaming towards the grain in the

% % −x direction with velocity vix, then it is equivalent to the grain

% % moving at a velocity +vix in the +x−direction.

wi=sqrt((vx0−vix).ˆ2+(vy0−viy).ˆ2);

% % make a w−vector; the first element is the grain speed relative to

% % electron flow, the second is the grain speed relative to ion flow.

w=[we wi];

% % begin definition of some quantities for the linear ion drag. These are

% % from 2010 Baccharis PRE.

%beta T=a*abs(q/C)/lambda D/Ti; % from 1992 Barnes PRL and 2005 Fortov

% % modified Coloumb logarithm

%C log mod=−exp(beta T/2)*expint(−beta T/2); from 2005 Fortov

% % Damping frequency from ion−collection force:

%nu ic=pi*a.ˆ2*mi*ni*sqrt(8*qe*Ti/pi/mi)*(1−q/C/Ti);

% % Damping frequency from ion−orbit force: DOES NOT CURRENTLY HAVE THE

% % RIGHT UNITS!!! (OCT. 14 2013)

%nu io=sqrt(32*pi)/3*sqrt(mi/2/qe/Ti)*eps0*Ti.ˆ2*C log mod*beta T.ˆ2;

%%¬¬¬¬#1

% % first step in boris method: calculate vx,vy at the half step, apply
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% % half the electric impulse. Half step calculations of velocity are

% % offset by dt/2 from quantities calculated at spatial locations;

% % velocities are dt/2 BEHIND position calculations.

% % ¬3/18/2013: I've make an adjustment to allow for Ex and Ey componenets;

% % I think this is correct.

% % ¬4/17/2013: I've included the ion drag force term, assuming that it

% % has no dependence on the grain velocity. Essentially, this means that

% % ion drag is being calculated at a specific spatial location.

% % ¬7/18/2013: fi x or fi y are the ion drag force components, and

% % fn x and fn y are the neutral drag force components

vx minus = vx0+dtNwt*q*E x/2/md + dtNwt*g x/2+...

dtNwt*nu dn*vnx/2;%+dtNwt*nu ic*vix/2+dtNwt*nu io*vix/2;

vy minus = vy0+dtNwt*q*E y/2/md + dtNwt*g y/2+...

dtNwt*nu dn*vny/2;%+dtNwt*nu ic*viy/2+dtNwt*nu io*viy/2;

% % Next four lines are old, vestigal code that includes drag force in a

% % different, but incorrect way.

%vx minus = vx0+dtNwt*q*E x/2/md +dtNwt*fi x/2/md+dtNwt*fn x/2/md+...

%dtNwt*g x/2;

%vy minus = vy0+dtNwt*q*E y/2/md +dtNwt*fi y/2/md+dtNwt*fn y/2/md+...

%dtNwt*g y/2;

% A is simply a factor related to the gyro frequency

A = dtNwt*q*B/(2*md);

v1 = ((1−dtNwt*(nu dn)/2)*vx minus+A*vy minus);

v2 = ((1−dtNwt*(nu dn)/2)*vy minus−A*vx minus);

% % at the end of this step, calculate the velocities and apply the

% % other half of the electric impulse

vx=((1+dtNwt*(nu dn)/2)*v1+A*v2)/((1+dtNwt*(nu dn)/2).ˆ2+A.ˆ2)+...

dtNwt*q*E x/2/md + dtNwt*g x/2 +...

dtNwt*nu dn*vnx/2 ;%+dtNwt*nu ic*vix/2+dtNwt*nu ic*vix/2;

vy=((1+dtNwt*(nu dn)/2)*v2−A*v1)/((1+dtNwt*(nu dn)/2).ˆ2+A.ˆ2)+...

dtNwt*q*E y/2/md + dtNwt*g y/2 +...

dtNwt*nu dn*vny/2 ;%+dtNwt*nu ic*viy/2+dtNwt*nu ic*viy/2;

% % compute grain speed:

%w=sqrt(vx.ˆ2+vy.ˆ2);

% % compute grain speed relative to an electron flow:
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we=sqrt((vx−vex).ˆ2+(vy−vey).ˆ2);

% % compute grain speed relative to an ion flow:

% % velocity of the grain relative to the ions:

% % e.g., if vx = 0, but the ions are streaming towards the grain in the

% % −x direction with velocity vix, then it is equivalent to the grain

% % moving at a velocity +vix in the +x−direction.

wi=sqrt((vx−vix).ˆ2+(vy−viy).ˆ2);

% % make a w−vector; the first element is the grain speed relative to

% % electron flow, the second is the grain speed relative to ion flow.

w=[we wi];

%%¬¬¬¬#2

% % second step in boris method: calculate positions at the full timestep

% % based on the velocities calculated at the half timestep. (The positions

% % will be half a timestep ahead of the velocities)

x=dtNwt*vx+x0;

y=dtNwt*vy+y0;

end

ii Boris Solver for Grains in Sheaths

The function sheath boris pusher.m is nearly identical to boris pusher.m, except that it assumes

that the variable vex is used to store the information about the ion flow along the z-direction. This

is necessary because the code is only 2-dimensional. When grains levitate in a plasma sheath, there

can be an ion flow in the plane perpendicular to the magnetic field, but there can also be ion flow

along the magnetic field. Because vex is used for viz, it cannot be used to specify electron flow

along the x-direction. If electron flow is azimuthally symmetric, then all of the flow information

can be specified by vey, which is a feature used for cylindrical profiles. In the sheaths encountered

in laboratory situations, the flow of electrons along the z-direction is generally negligible.

% % sheath boris pusher.m

% %

% % sheath boris pusher is a way of "cheating" around the 2d nature of this
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% % particle pusher to only include ion flows along the magnetic field

% % direction. Assuming that the electron flow is negligible in the plasma,

% % and that only the ions are flowing, use vex to store viz information!

% % The viz information does not affect the motion of dust, but it does get

% % used in the output vector w

% If desired, set this up so that vey can be used for ve phi, or the

% azimuthal electron drift velocity in the event of sheared electron flow

% in the plane perpendicular to B.

function [x,y,vx,vy,w]=...

sheath boris pusher(dtNwt,md,q,x0,y0,vx0,vy0,E x,E y,B,nu dn,...

g x,g y,vex,vey,vix,viy,vnx,vny);

% below is the version of inputs that I intend to use. (sept 2013)

% I have probably more inputs than necessary, because I intend on treating

% the linear approximation to ion drag 2010 Bacharis PRE??

%[x,y,vx,vy,w]=boris pusher(dtNwt,md,q,x0,y0,vx0,vy0,E x,E y,B,g x,g y,ni,nu dn,vnx,vny,vex,vey,vix,viy,Ti,lambda D,ch model);

% % uncomment the line below if you want to turn neutral drag off.

%nu dn=0;

% % compute grain speed relative to an electron flow; for sheath

% applications vex = viz and vey = ve phi

%we=abs(vey);

% % compute grain speed relative to an ion flow:

% % velocity of the grain is relative to the ions:

% % e.g., if vx = 0, but the ions are streaming towards the grain in the

% % −x direction with velocity vix, then it is equivalent to the grain

% % moving at a velocity +vix in the +x−direction.

%wi=sqrt((vx0−vix).ˆ2+(vy0−viy).ˆ2);

% % make a w−vector; the first element is the grain speed relative to

% % electron flow, the second is the grain speed relative to ion flow.

%w=[we wi];

% % begin definition of some quantities for the linear ion drag. These are

% % from 2010 Baccharis PRE.
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%beta T=a*abs(q/C)/lambda D/Ti; % from 1992 Barnes PRL and 2005 Fortov

% % modified Coloumb logarithm

%C log mod=−exp(beta T/2)*expint(−beta T/2); from 2005 Fortov

% % Damping frequency from ion−collection force:

%nu ic=pi*a.ˆ2*mi*ni*sqrt(8*qe*Ti/pi/mi)*(1−q/C/Ti);

% % Damping frequency from ion−orbit force: DOES NOT CURRENTLY HAVE THE

% % RIGHT UNITS!!! (OCT. 14 2013)

%nu io=sqrt(32*pi)/3*sqrt(mi/2/qe/Ti)*eps0*Ti.ˆ2*C log mod*beta T.ˆ2;

%%¬¬¬¬#1

% % first step in boris method: calculate vx,vy at the half step, apply

% % half the electric impulse. Half step calculations of velocity are

% % offset by dt/2 from quantities calculated at spatial locations;

% % velocities are dt/2 BEHIND position calculations.

% % ¬3/18/2013: I've make an adjustment to allow for Ex and Ey componenets;

% % I think this is correct.

% % ¬4/17/2013: I've included the ion drag force term, assuming that it

% % has no dependence on the grain velocity. Essentially, this means that

% % ion drag is being calculated at a specific spatial location.

% % ¬7/18/2013: fi x or fi y are the ion drag force components, and

% % fn x and fn y are the neutral drag force components

vx minus = vx0+dtNwt*q*E x/2/md + dtNwt*g x/2+...

dtNwt*nu dn*vnx/2;%+dtNwt*nu ic*vix/2+dtNwt*nu io*vix/2;

vy minus = vy0+dtNwt*q*E y/2/md +dtNwt*g y/2+...

dtNwt*nu dn*vny/2;%+dtNwt*nu ic*viy/2+dtNwt*nu io*viy/2;

% % Next two lines are old, vestigal code that includes drag force in a

% % different, but incorrect way.

%vx minus = vx0+dtNwt*q*E x/2/md +dtNwt*fi x/2/md+dtNwt*fn x/2/md+dtNwt*g x/2;

%vy minus = vy0+dtNwt*q*E y/2/md +dtNwt*fi y/2/md+dtNwt*fn y/2/md+dtNwt*g y/2;

A = dtNwt*q*B/(2*md); %% A is simply a factor related to the gyro frequency

v1 = ((1−dtNwt*(nu dn)/2)*vx minus+A*vy minus);

v2 = ((1−dtNwt*(nu dn)/2)*vy minus−A*vx minus);

% % at the end of this step, calculate the velocities and apply the

% % other half of the electric impulse

vx=((1+dtNwt*(nu dn)/2)*v1+A*v2)/((1+dtNwt*(nu dn)/2).ˆ2+A.ˆ2)+...

dtNwt*q*E x/2/md + dtNwt*g x/2 +...
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dtNwt*nu dn*vnx/2 ;%+dtNwt*nu ic*vix/2+dtNwt*nu ic*vix/2;

vy=((1+dtNwt*(nu dn)/2)*v2−A*v1)/((1+dtNwt*(nu dn)/2).ˆ2+A.ˆ2)+...

dtNwt*q*E y/2/md + dtNwt*g y/2 +...

dtNwt*nu dn*vny/2 ;%+dtNwt*nu ic*viy/2+dtNwt*nu ic*viy/2;

%%¬¬¬¬#2

% % second step in boris method: calculate positions at the full timestep

% % based on the velocities calculated at the half timestep. (The positions

% % will be half a timestep ahead of the velocities)

x=dtNwt*vx+x0;

y=dtNwt*vy+y0;

% % compute grain speed:

%w=sqrt(vx.ˆ2+vy.ˆ2);

% % compute grain speed relative to an electron flow:

%we=sqrt((vx−vex).ˆ2+(vy−vey).ˆ2);

% In a sheath, we assume that the electrons are not flowing. We will allow

% for electron drifts in the phi direction, which requires that vey is set

% up in profiles properly so that vey = ve phi.

phi=improved arctan(x,y);

we = sqrt((vx−(vey)*sin(phi)).ˆ2+(vy+(vey)*cos(phi)).ˆ2);

% % compute grain speed relative to an ion flow:

% % velocity of the grain relative to the ions:

% % e.g., if vx = 0, but the ions are streaming towards the grain in the

% % −x direction with velocity vix, then it is equivalent to the grain

% % moving at a velocity +vix in the +x−direction.

% WE ADD THE TERM (vex).ˆ2 IN ORDER TO GET THE RELATIVE DRIFT ALONG THE

% Z−DIRECTION. THE DUST GRAIN, BY VIRTUE OF BEING LEVITATED IN THE PLANAR

% SHEATH, HAS NO VELOCITY ALONG THE Z DIRECTION.

wi=sqrt((vx−vix).ˆ2+(vy−viy).ˆ2 + (vex).ˆ2);

% % make a w−vector; the first element is the grain speed relative to

% % electron flow, the second is the grain speed relative to ion flow.

w=[we wi];
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end

iii Boris Solver for Grains in Co-rotating Reference frames

The function corotating boris pusher.m provides the time advancement of the grain in the frame

that co-rotates with a planet, or other rotating system. This is particularly useful for determining

grain motion relative to an observer on Saturn or Jupiter, for example.

% % corotating boris pusher.m

% %

% % boris pusher.m is a function that uses the boris algorithm to advance

% % the positions and velocities of a particle. This function was written

% % for the purpose of dust grains.

function [x,y,vx,vy,w]=...

corotating boris pusher(dtNwt,md,q,x0,y0,vx0,vy0,E x,E y,B,nu dn,...

g x,g y,vex,vey,vix,viy,vnx,vny,corot period)

% below is the version of inputs that I intend to use. (sept 2013)

% I have probably more inputs than necessary, because I intend on treating

% the linear approximation to ion drag 2010 Bacharis PRE??

%[x,y,vx,vy,w]=boris pusher(dtNwt,md,q,x0,y0,vx0,vy0,E x,E y,B,g x,g y,...

%ni,nu dn,vnx,vny,vex,vey,vix,viy,Ti,lambda D,ch model);

% % uncomment the line below if you want to turn neutral drag off.

%nu dn=0;

% MUST include radiation and recoil forces!!!!

% % compute grain speed relative to an electron flow:

we=sqrt((vx0−vex).ˆ2+(vy0−vey).ˆ2);

% % compute grain speed relative to an ion flow:

% % velocity of the grain is relative to the ions:

% % e.g., if vx = 0, but the ions are streaming towards the grain in the

% % −x direction with velocity vix, then it is equivalent to the grain

% % moving at a velocity +vix in the +x−direction.
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wi=sqrt((vx0−vix).ˆ2+(vy0−viy).ˆ2);

% % make a w−vector; the first element is the grain speed relative to

% % electron flow, the second is the grain speed relative to ion flow.

w=[we wi];

% % begin definition of some quantities for the linear ion drag. These are

% % from 2010 Baccharis PRE.

%beta T=a*abs(q/C)/lambda D/Ti; % from 1992 Barnes PRL and 2005 Fortov

% % modified Coloumb logarithm

%C log mod=−exp(beta T/2)*expint(−beta T/2); from 2005 Fortov

% % Damping frequency from ion−collection force:

%nu ic=pi*a.ˆ2*mi*ni*sqrt(8*qe*Ti/pi/mi)*(1−q/C/Ti);

% % Damping frequency from ion−orbit force: DOES NOT CURRENTLY HAVE THE

% % RIGHT UNITS!!! (OCT. 14 2013)

%nu io=sqrt(32*pi)/3*sqrt(mi/2/qe/Ti)*eps0*Ti.ˆ2*C log mod*beta T.ˆ2;

%%¬¬¬¬#1

% % first step in boris method: calculate vx,vy at the half step, apply

% % half the electric impulse. Half step calculations of velocity are

% % offset by dt/2 from quantities calculated at spatial locations;

% % velocities are dt/2 BEHIND position calculations.

% For now, B and the angular velocity of SATURN will be considerd to be

% along the z−direction.

% In a corotating frame, E is given by B x (omega x r), which cancels with

% another term and so is not present here.

vx minus = vx0 + dtNwt*g x/2 + dtNwt*nu dn*vnx/2 ...

+dtNwt/2*x0*(2*pi/corot period).ˆ2;

%+dtNwt*nu ic*vix/2+dtNwt*nu io*vix/2;

vy minus = vy0 + dtNwt*g y/2 + dtNwt*nu dn*vny/2 ...

+dtNwt/2*y0*(2*pi/corot period).ˆ2;

%+dtNwt*nu ic*viy/2+dtNwt*nu io*viy/2;

% original, from boris pusher.m:

% vx minus = vx0+dtNwt*q*E x/2/md + dtNwt*g x/2+...

% dtNwt*nu dn*vnx/2+;%+dtNwt*nu ic*vix/2+dtNwt*nu io*vix/2;
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% vy minus = vy0+dtNwt*q*E y/2/md +dtNwt*g y/2+...

% dtNwt*nu dn*vny/2;%+dtNwt*nu ic*viy/2+dtNwt*nu io*viy/2;

% A is simply a factor related to the gyro frequency

A = dtNwt*q*B/(2*md)+dtNwt*2*pi/corot period;

v1 = ((1−dtNwt*(nu dn)/2)*vx minus+A*vy minus);

v2 = ((1−dtNwt*(nu dn)/2)*vy minus−A*vx minus);

% % at the end of this step, calculate the velocities and apply the

% % other half of the electric impulse

% vx=((1+dtNwt*(nu dn)/2)*v1+A*v2)/((1+dtNwt*(nu dn)/2).ˆ2+A.ˆ2)+...

% dtNwt*q*E x/2/md + dtNwt*g x/2 +...

% dtNwt*nu dn*vnx/2 ;%+dtNwt*nu ic*vix/2+dtNwt*nu ic*vix/2;

% vy=((1+dtNwt*(nu dn)/2)*v2−A*v1)/((1+dtNwt*(nu dn)/2).ˆ2+A.ˆ2)+...

% dtNwt*q*E y/2/md + dtNwt*g y/2 +...

% dtNwt*nu dn*vny/2 ;%+dtNwt*nu ic*viy/2+dtNwt*nu ic*viy/2;

vx=((1+dtNwt*(nu dn)/2)*v1+A*v2)/((1+dtNwt*(nu dn)/2).ˆ2+A.ˆ2)+...

dtNwt*g x/2 + dtNwt*nu dn*vnx/2 +...

dtNwt/2*x0*(2*pi/corot period).ˆ2;

%+dtNwt*nu ic*vix/2+dtNwt*nu ic*vix/2;

vy=((1+dtNwt*(nu dn)/2)*v2−A*v1)/((1+dtNwt*(nu dn)/2).ˆ2+A.ˆ2)+...

dtNwt*g y/2 + dtNwt*nu dn*vny/2 +...

dtNwt/2*y0*(2*pi/corot period).ˆ2;

%+dtNwt*nu ic*viy/2+dtNwt*nu ic*viy/2;

% % compute grain speed relative to an electron flow. Do these need to be

% % adusted if we are in a corotating frame?

we=sqrt((vx−vex).ˆ2+(vy−vey).ˆ2);

% % compute grain speed relative to an ion flow:

% % velocity of the grain relative to the ions:

% % e.g., if vx = 0, but the ions are streaming towards the grain in the

% % −x direction with velocity vix, then it is equivalent to the grain

% % moving at a velocity +vix in the +x−direction.

wi=sqrt((vx−vix).ˆ2+(vy−viy).ˆ2);

% % make a w−vector; the first element is the grain speed relative to

% % electron flow, the second is the grain speed relative to ion flow.

w=[we wi];
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%%¬¬¬¬#2

% % second step in boris method: calculate positions at the full timestep

% % based on the velocities calculated at the half timestep. (The positions

% % will be half a timestep ahead of the velocities)

x=dtNwt*vx+x0;

y=dtNwt*vy+y0;

end

iv Iterative Leapfrog Solver

The function iterative pusher.m provides the time advancement of the grain for the case of

non-linear, velocity dependent drag forces. An iterative, Newton method is used to determine the

resulting grain position and velocity. The maximum number of iterations and the error tolerance

can be specified by the user within the subroutine; these values are currently set at 1000 iterations

and 10−10m/s, respectively, which provide a reasonable degree of accuracy without compromising

performance. Note that this method is an implicit solver.

% % iterative pusher.m

% %

% % iterative pusher.m was written to treat drag forces on a dust grain.

% % The Boris algorithm is incapable of treating drag terms or forces that

% % are velocityˆ2 dependent.

% % 7/18/2013

% %

% % currently have problems if the inputs vx, vy are both zero; need to

% % fix this issue. Sept 2013.

% below is the version of inputs that I intend to use. Also, got rid of

% global variables in here. (sept 2013)

function [x,y,vx,vy,w]=iterative pusher(dtNwt,a,rho d,q,x0,y0,vx0,vy0,...

species,Ex,Ey,B,gx,gy,ne,ni,n neut,vnx,vny,vex,vey,vix,viy,Te,Ti,...

lambda D,ch model)
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% Use ch model flag to determine what description of drag force you want to

% use; this still needs to be built in to the code.

% % I've decided to get rid of global vars; they are commented if you feel

% % like using them again.

%global qe;

%global me;

%global mp;

%global eps0;

qe=1.6e−19;

me=9.1e−31;

mp=1.67e−27;

eps0=8.854e−12;

mi=species*mp;

eta=ne/ni;

Tau=Te/Ti;

mr=me/mi;

vthe=sqrt(2*qe*Te/me); % local electron thermal speed, m/s

vthi=sqrt(mr/Tau)*vthe; % local ion (proton) thermal speed, m/s

m neut=mi;

Tn=Ti;

C=4*pi*eps0*a;

%w=sqrt(vx0.ˆ2+vy0.ˆ2);

% % compute grain speed relative to an electron flow:

we=sqrt((vx0−vex).ˆ2+(vy0−vey).ˆ2);

% % compute grain speed relative to an ion flow:

% % velocity of the grain is relative to the ions:

% % e.g., if vx = 0, but the ions are streaming towards the grain in the

% % −x direction with velocity vix, then it is equivalent to the grain

% % moving at a velocity +vix in the +x−direction.

wi=sqrt((vx0−vix).ˆ2+(vy0−viy).ˆ2);

% % make a w−vector; the first element is the grain speed relative to

% % electron flow, the second is the grain speed relative to ion flow.
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w=[we wi];

% % compute some relevant parameters:

cn=sqrt(8*qe*Tn/pi/m neut);

ci=sqrt(8*qe*Ti/pi/mi);

B0=abs(B);

md=4/3*pi*rho d*a.ˆ3;

% % Figure out whether to use Epstein drag force, or if it should go as

% % velocityˆ2.

if wi<cn

∆=1.26;

% % nu dn is the dust−neutral collision frequency; a result from the

% % Epstein drag

nu dn=∆*n neut*cn*m neut/a/rho d;

%dtNwt

%pause

% % line below is an older attempt at dust−neutral collision frequency;

% % vestigal and does not work presently.

%nu dn=4/3*pi*∆*n neut*cn*m neut*a.ˆ2;

beta n=0;

%disp('Epstein Drag')

else

% % nu dn is the dust−neutral collision frequency; a result from the

% % Epstein drag

nu dn=0;

% % think about if this can be rewritten (august 2013)

beta n=pi*a.ˆ2*m neut*n neut*cn/md;

end

%nu dn=0;

% % Set the ux=vx(t−1/2*dt) and uy=vy(t−1/2*dt), which are inputs

ux=vx0;

uy=vy0;
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vx=ux;

vy=uy;

% % Define some useful constants, which are coefficients for drag terms

% % (N.B. − They are not all in the same units!!!)

beta ic=pi*ni*mi/md;

beta io=4*pi*ni*mi/md;

% for testing

%beta ic=0;beta io=0;

% % Everything below here is needed in the main iterative loop.

% %¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% % max number of iterations, to prevent infinite loop

Nmax=1e3;

% % initialize the iteration counter to zero

n iter=0;

% % Not sure how to initialize the error

err=1;

% % error tolerance; this should be scaled by some characteristic velocity.

tol=1e−10;

while err>tol && n iter≤Nmax

% % some useful definitions:

vxdrifti=(vx+ux)/2−vix;

vydrifti=(vy+uy)/2−viy;

vxdriftn=(vx+ux)/2−vnx;

vydriftn=(vy+uy)/2−vny;

vs=sqrt(8*qe*Ti/pi/mi+vxdriftiˆ2+vydriftiˆ2);

vn=sqrt(vxdriftn.ˆ2+vydriftn.ˆ2);

bc=sqrt(1−2*qe*q/C/mi/(vs.ˆ2))*a;

%b 90=qe*abs(q)/(4*pi*eps0*mi*vs.ˆ2);

b 90=qe*q/(4*pi*eps0*mi*vs.ˆ2); % collision paramter for 90 degree

% collisions

gamma = 1/2*log((lambda Dˆ2+b 90ˆ2)/(bc.ˆ2+b 90ˆ2));

% see Grabbe−Merlino or other Dusty plasma texts for more information.
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% % Elements of the Jacobian matrix, which are derivatives of f1 and f2

% % with respect to vx, vy in matrix form:

% % | (df1/dvx) (df1/dvy) |(vxˆ[k+1] − vxˆ[k]) =−(f1)

% % | (df2/dvx) (df2/dvy) |(vyˆ[k+1] − vyˆ[k]) =−(f2)

b=zeros(2,1);

ut=zeros(2,1);

lt=zeros(2,1);

f=zeros(2,1);

% % make sure to check if vn=0!

if vn==0

b(1)=−1+.5*dtNwt*(−nu dn−beta n*(vn+(vxdriftn)ˆ2/vn)−...

beta ic*vs*bc.ˆ2−beta io*vs*b 90.ˆ2*gamma...

−beta ic*(vxdrifti).ˆ2*(bc.ˆ2/vs+2*vs*a.ˆ2*(2*qe*q/C/mi)/vs.ˆ4)...

−beta io*(vxdrifti).ˆ2*(b 90.ˆ2*gamma/vs−4*b 90.ˆ2*gamma/vs...

+2*b 90.ˆ2*exp(−gamma)*(b 90.ˆ2*(a.ˆ2*2*qe*q/C/mi/vs.ˆ2−bc.ˆ2)...

+lambda D.ˆ2*(b 90.ˆ2−2*a.ˆ2*qe*q/C/mi/vs.ˆ2))/vs/(bc.ˆ2+b 90.ˆ2).ˆ2));

b(2)=0;

ut(1)=0;

lt(2)=0;

disp('vn = 0')

% % Proceed as normal if vn 6= 0.

else

% % df1/dvx:

b(1)=−1+.5*dtNwt*(−nu dn−beta n*(vn+(vxdriftn)ˆ2/vn)−...

beta ic*vs*bc.ˆ2−beta io*vs*b 90.ˆ2*gamma...

−beta ic*(vxdrifti).ˆ2*(bc.ˆ2/vs+2*vs*a.ˆ2*(2*qe*q/C/mi)/vs.ˆ4)...

−beta io*(vxdrifti).ˆ2*(b 90.ˆ2*gamma/vs−4*b 90.ˆ2*gamma/vs...

+2*b 90.ˆ2*exp(−gamma)*(b 90.ˆ2*(a.ˆ2*2*qe*q/C/mi/vs.ˆ2−bc.ˆ2)...

+lambda D.ˆ2*(b 90.ˆ2−2*a.ˆ2*qe*q/C/mi/vs.ˆ2))/vs/(bc.ˆ2+b 90.ˆ2).ˆ2));

% % df2/dvy:

b(2)=−1+.5*dtNwt*(−nu dn−beta n*(vn+(vydriftn)ˆ2/vn)−...

beta ic*vs*bc.ˆ2−beta io*vs*b 90.ˆ2*gamma...

−beta ic*(vydrifti).ˆ2*(bc.ˆ2/vs+2*vs*a.ˆ2*(2*qe*q/C/mi)/vs.ˆ4)...
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−beta io*(vydrifti).ˆ2*(b 90.ˆ2*gamma/vs−4*b 90.ˆ2*gamma/vs...

+2*b 90.ˆ2*exp(−gamma)*(b 90.ˆ2*(a.ˆ2*2*qe*q/C/mi/vs.ˆ2−bc.ˆ2)...

+lambda D.ˆ2*(b 90.ˆ2−2*a.ˆ2*qe*q/C/mi/vs.ˆ2))/vs/(bc.ˆ2+b 90.ˆ2).ˆ2));

% % "upper" triangular portion of the Jacobian matrix, or df1/dvy:

% % (In tridiagonal terms, this is the "C" vector term)

%df1 dvy=ut(1)

ut(1)=.5*dtNwt*(q*B0/md−nu dn−beta n*(vn+(vydriftn)ˆ2/vn)−...

beta ic*vs*bc.ˆ2−beta io*vs*b 90.ˆ2*gamma...

−beta ic*(vydrifti).ˆ2*(bc.ˆ2/vs+2*vs*a.ˆ2*(2*qe*q/C/mi)/vs.ˆ4)...

−beta io*(vydrifti).ˆ2*(b 90.ˆ2*gamma/vs−4*b 90.ˆ2*gamma/vs...

+2*b 90.ˆ2*exp(−gamma)*(b 90.ˆ2*(a.ˆ2*2*qe*q/C/mi/vs.ˆ2−bc.ˆ2)...

+lambda D.ˆ2*(b 90.ˆ2−2*a.ˆ2*qe*q/C/mi/vs.ˆ2))/vs/(bc.ˆ2+b 90.ˆ2).ˆ2));

% % "lower" triangular portion of the Jacobian matrix or df2/dvx:

% % (In tridiagonal terms, this is the "A" vector term)

%df2 dvx=lt(2)

lt(2)=.5*dtNwt*(−q*B0/md−nu dn−beta n*(vn+(vxdriftn)ˆ2/vn)−...

beta ic*vs*bc.ˆ2−beta io*vs*b 90.ˆ2*gamma...

−beta ic*(vxdrifti).ˆ2*(bc.ˆ2/vs+2*vs*a.ˆ2*(2*qe*q/C/mi)/vs.ˆ4)...

−beta io*(vxdrifti).ˆ2*(b 90.ˆ2*gamma/vs−4*b 90.ˆ2*gamma/vs...

+2*b 90.ˆ2*exp(−gamma)*(b 90.ˆ2*(a.ˆ2*2*qe*q/C/mi/vs.ˆ2−bc.ˆ2)...

+lambda D.ˆ2*(b 90.ˆ2−2*a.ˆ2*qe*q/C/mi/vs.ˆ2))/vs/(bc.ˆ2+b 90.ˆ2).ˆ2));

end

% % The functions of vx, vy:

f(1)=−vx+ux+dtNwt*(gx+q*Ex/md+q*B0*(vy+uy)/2/md−nu dn*...

(vxdriftn)−beta n*(vxdriftn)*vn...

−beta ic*vs*(vxdrifti)*bc.ˆ2−beta io*vs*(vxdrifti)*b 90.ˆ2*gamma);

f(2)=−vy+uy+dtNwt*(gy+q*Ey/md−q*B0*(vx+ux)/2/md−nu dn*(vydriftn)−...

beta n*(vydriftn)*vn...
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−beta ic*vs*(vydrifti)*bc.ˆ2−beta io*vs*(vydrifti)*b 90.ˆ2*gamma);

% % Need the negative of f:

f=−f;

% % the "error" vector can be computed using a tridiagonal solver.

error=trisolver(lt,b,ut,f);

% % figure out the maximum error in the "error vector", if this is less

% % than the tolerance then break out of the loop. Use the "infinity"

% % norm, or maximum value or the error vector.

err=max(abs(error));

vx=vx+error(1);

vy=vy+error(2);

% % put this line below to prevent an infinite loop

n iter=n iter+1;

%q/1.6e−19

%pause

end

% % % velocity of the grain relative to the ions:

% % % e.g., if vx = 0, but the ions are streaming towards the grain in the

% % % −x direction with velocity vix, then it is equivalent to the grain

% % % moving at a velocity +vix in the +x−direction.

% %w=sqrt((vx−vix).ˆ2+(vy−viy).ˆ2);

% % % compute grain speed relative to an electron flow:

% we=sqrt((vx−vex).ˆ2+(vy−vey).ˆ2);

% % % compute grain speed relative to an ion flow:

% % % velocity of the grain relative to the ions:

% % % e.g., if vx = 0, but the ions are streaming towards the grain in the

% % % −x direction with velocity vix, then it is equivalent to the grain

% % % moving at a velocity +vix in the +x−direction.

% wi=sqrt((vx−vix).ˆ2+(vy−viy).ˆ2);

% % % make a w−vector; the first element is the grain speed relative to

% % % electron flow, the second is the grain speed relative to ion flow.

% w=[we wi];
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% In a sheath, we assume that the electrons are not flowing. We will allow

% for electron drifts in the phi direction, which requires that vey is set

% up in profiles properly so that vey = ve phi.

we = abs(vey);

% % compute grain speed relative to an ion flow:

% % velocity of the grain relative to the ions:

% % e.g., if vx = 0, but the ions are streaming towards the grain in the

% % −x direction with velocity vix, then it is equivalent to the grain

% % moving at a velocity +vix in the +x−direction.

% WE ADD THE TERM (vex).ˆ2 IN ORDER TO GET THE RELATIVE DRIFT ALONG THE

% Z−DIRECTION. THE DUST GRAIN, BY VIRTUE OF BEING LEVITATED IN THE PLANAR

% SHEATH, HAS NO VELOCITY ALONG THE Z DIRECTION.

wi=sqrt((vx−vix).ˆ2+(vy−viy).ˆ2 + (vex).ˆ2);

% % make a w−vector; the first element is the grain speed relative to

% % electron flow, the second is the grain speed relative to ion flow.

w=[we wi];

%%¬¬¬¬#2

% % second main step in this iterative method: calculate positions at the

% % full timestep based on the velocities calculated at the half timestep.

% % (The positions will be half a timestep ahead of the velocities). This

% % is done after vx and vy have been found through an iterative process.

x=dtNwt*vx+x0;

y=dtNwt*vy+y0;

end

v Iterative Leapfrog Solver for Grains in Sheaths

The function sheath iterative pusher.m is nearly identical to iterative pusher.m, except that

it assumes that the variable vex is used to store the information about the ion flow along the

z-direction, instead of storing information about the electron flow in the x-direction.
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% % iterative pusher.m

% %

% % iterative pusher.m was written to treat drag forces on a dust grain.

% % The Boris algorithm is incapable of treating drag terms or forces that

% % are velocityˆ2 dependent.

% % 7/18/2013

% %

% % currently have problems if the inputs vx, vy are both zero; need to

% % fix this issue. Sept 2013.

% below is the version of inputs that I intend to use. Also, got rid of

% global variables in here. (sept 2013)

function [x,y,vx,vy,w]=iterative pusher(dtNwt,a,rho d,q,x0,y0,vx0,vy0,...

species,Ex,Ey,B,gx,gy,ne,ni,n neut,vnx,vny,vex,vey,vix,viy,Te,Ti,...

lambda D,ch model)

% Use ch model flag to determine what description of drag force you want to

% use; this still needs to be built in to the code.

% % I've decided to get rid of global vars; they are commented if you feel

% % like using them again.

%global qe;

%global me;

%global mp;

%global eps0;

qe=1.6e−19;

me=9.1e−31;

mp=1.67e−27;

eps0=8.854e−12;

mi=species*mp;

eta=ne/ni;

Tau=Te/Ti;

mr=me/mi;

vthe=sqrt(2*qe*Te/me); % local electron thermal speed, m/s

vthi=sqrt(mr/Tau)*vthe; % local ion (proton) thermal speed, m/s
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m neut=mi;

Tn=Ti;

C=4*pi*eps0*a;

%w=sqrt(vx0.ˆ2+vy0.ˆ2);

% % compute grain speed relative to an electron flow:

we=sqrt((vx0−vex).ˆ2+(vy0−vey).ˆ2);

% % compute grain speed relative to an ion flow:

% % velocity of the grain is relative to the ions:

% % e.g., if vx = 0, but the ions are streaming towards the grain in the

% % −x direction with velocity vix, then it is equivalent to the grain

% % moving at a velocity +vix in the +x−direction.

wi=sqrt((vx0−vix).ˆ2+(vy0−viy).ˆ2);

% % make a w−vector; the first element is the grain speed relative to

% % electron flow, the second is the grain speed relative to ion flow.

w=[we wi];

% % compute some relevant parameters:

cn=sqrt(8*qe*Tn/pi/m neut);

ci=sqrt(8*qe*Ti/pi/mi);

B0=abs(B);

md=4/3*pi*rho d*a.ˆ3;

% % Figure out whether to use Epstein drag force, or if it should go as

% % velocityˆ2.

if wi<cn

∆=1.26;

% % nu dn is the dust−neutral collision frequency; a result from the

% % Epstein drag

nu dn=∆*n neut*cn*m neut/a/rho d;

%dtNwt

%pause

% % line below is an older attempt at dust−neutral collision frequency;

% % vestigal and does not work presently.

%nu dn=4/3*pi*∆*n neut*cn*m neut*a.ˆ2;

beta n=0;
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%disp('Epstein Drag')

else

% % nu dn is the dust−neutral collision frequency; a result from the

% % Epstein drag

nu dn=0;

% % think about if this can be rewritten (august 2013)

beta n=pi*a.ˆ2*m neut*n neut*cn/md;

end

%nu dn=0;

% % Set the ux=vx(t−1/2*dt) and uy=vy(t−1/2*dt), which are inputs

ux=vx0;

uy=vy0;

vx=ux;

vy=uy;

% % Define some useful constants, which are coefficients for drag terms

% % (N.B. − They are not all in the same units!!!)

beta ic=pi*ni*mi/md;

beta io=4*pi*ni*mi/md;

% for testing

%beta ic=0;beta io=0;

% % Everything below here is needed in the main iterative loop.

% %¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% % max number of iterations, to prevent infinite loop

Nmax=1e3;

% % initialize the iteration counter to zero

n iter=0;

% % Not sure how to initialize the error

err=1;

% % error tolerance; this should be scaled by some characteristic velocity.

tol=1e−10;

while err>tol && n iter≤Nmax
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% % some useful definitions:

vxdrifti=(vx+ux)/2−vix;

vydrifti=(vy+uy)/2−viy;

vxdriftn=(vx+ux)/2−vnx;

vydriftn=(vy+uy)/2−vny;

vs=sqrt(8*qe*Ti/pi/mi+vxdriftiˆ2+vydriftiˆ2);

vn=sqrt(vxdriftn.ˆ2+vydriftn.ˆ2);

bc=sqrt(1−2*qe*q/C/mi/(vs.ˆ2))*a;

b 90=qe*q/(4*pi*eps0*mi*vs.ˆ2); % collision paramter for 90 degree

% collisions

gamma = 1/2*log((lambda Dˆ2+b 90ˆ2)/(bc.ˆ2+b 90ˆ2));

% see Grabbe−Merlino or other Dusty plasma texts for more information.

% % Elements of the Jacobian matrix, which are derivatives of f1 and f2

% % with respect to vx, vy in matrix form:

% % | (df1/dvx) (df1/dvy) |(vxˆ[k+1] − vxˆ[k]) =−(f1)

% % | (df2/dvx) (df2/dvy) |(vyˆ[k+1] − vyˆ[k]) =−(f2)

b=zeros(2,1);

ut=zeros(2,1);

lt=zeros(2,1);

f=zeros(2,1);

% % make sure to check if vn=0!

if vn==0

b(1)=−1+.5*dtNwt*(−nu dn−beta n*(vn+(vxdriftn)ˆ2/vn)−...

beta ic*vs*bc.ˆ2−beta io*vs*b 90.ˆ2*gamma...

−beta ic*(vxdrifti).ˆ2*(bc.ˆ2/vs+2*vs*a.ˆ2*(2*qe*q/C/mi)/vs.ˆ4)...

−beta io*(vxdrifti).ˆ2*(b 90.ˆ2*gamma/vs−4*b 90.ˆ2*gamma/vs...

+2*b 90.ˆ2*exp(−gamma)*(b 90.ˆ2*(a.ˆ2*2*qe*q/C/mi/vs.ˆ2−bc.ˆ2)...

+lambda D.ˆ2*(b 90.ˆ2−2*a.ˆ2*qe*q/C/mi/vs.ˆ2))/vs/(bc.ˆ2+b 90.ˆ2).ˆ2));

b(2)=0;

ut(1)=0;

lt(2)=0;

disp('vn = 0')
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% % Proceed as normal if vn 6= 0.

else

% % df1/dvx:

b(1)=−1+.5*dtNwt*(−nu dn−beta n*(vn+(vxdriftn)ˆ2/vn)−...

beta ic*vs*bc.ˆ2−beta io*vs*b 90.ˆ2*gamma...

−beta ic*(vxdrifti).ˆ2*(bc.ˆ2/vs+2*vs*a.ˆ2*(2*qe*q/C/mi)/vs.ˆ4)...

−beta io*(vxdrifti).ˆ2*(b 90.ˆ2*gamma/vs−4*b 90.ˆ2*gamma/vs...

+2*b 90.ˆ2*exp(−gamma)*(b 90.ˆ2*(a.ˆ2*2*qe*q/C/mi/vs.ˆ2−bc.ˆ2)...

+lambda D.ˆ2*(b 90.ˆ2−2*a.ˆ2*qe*q/C/mi/vs.ˆ2))/vs/(bc.ˆ2+b 90.ˆ2).ˆ2));

% % df2/dvy:

b(2)=−1+.5*dtNwt*(−nu dn−beta n*(vn+(vydriftn)ˆ2/vn)−...

beta ic*vs*bc.ˆ2−beta io*vs*b 90.ˆ2*gamma...

−beta ic*(vydrifti).ˆ2*(bc.ˆ2/vs+2*vs*a.ˆ2*(2*qe*q/C/mi)/vs.ˆ4)...

−beta io*(vydrifti).ˆ2*(b 90.ˆ2*gamma/vs−4*b 90.ˆ2*gamma/vs...

+2*b 90.ˆ2*exp(−gamma)*(b 90.ˆ2*(a.ˆ2*2*qe*q/C/mi/vs.ˆ2−bc.ˆ2)...

+lambda D.ˆ2*(b 90.ˆ2−2*a.ˆ2*qe*q/C/mi/vs.ˆ2))/vs/(bc.ˆ2+b 90.ˆ2).ˆ2));

% % "upper" triangular portion of the Jacobian matrix, or df1/dvy:

% % (In tridiagonal terms, this is the "C" vector term)

%df1 dvy=ut(1)

ut(1)=.5*dtNwt*(q*B0/md−nu dn−beta n*(vn+(vydriftn)ˆ2/vn)−...

beta ic*vs*bc.ˆ2−beta io*vs*b 90.ˆ2*gamma...

−beta ic*(vydrifti).ˆ2*(bc.ˆ2/vs+2*vs*a.ˆ2*(2*qe*q/C/mi)/vs.ˆ4)...

−beta io*(vydrifti).ˆ2*(b 90.ˆ2*gamma/vs−4*b 90.ˆ2*gamma/vs...

+2*b 90.ˆ2*exp(−gamma)*(b 90.ˆ2*(a.ˆ2*2*qe*q/C/mi/vs.ˆ2−bc.ˆ2)...

+lambda D.ˆ2*(b 90.ˆ2−2*a.ˆ2*qe*q/C/mi/vs.ˆ2))/vs/(bc.ˆ2+b 90.ˆ2).ˆ2));

% % "lower" triangular portion of the Jacobian matrix or df2/dvx:

% % (In tridiagonal terms, this is the "A" vector term)

%df2 dvx=lt(2)

lt(2)=.5*dtNwt*(−q*B0/md−nu dn−beta n*(vn+(vxdriftn)ˆ2/vn)−...

beta ic*vs*bc.ˆ2−beta io*vs*b 90.ˆ2*gamma...

−beta ic*(vxdrifti).ˆ2*(bc.ˆ2/vs+2*vs*a.ˆ2*(2*qe*q/C/mi)/vs.ˆ4)...
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−beta io*(vxdrifti).ˆ2*(b 90.ˆ2*gamma/vs−4*b 90.ˆ2*gamma/vs...

+2*b 90.ˆ2*exp(−gamma)*(b 90.ˆ2*(a.ˆ2*2*qe*q/C/mi/vs.ˆ2−bc.ˆ2)...

+lambda D.ˆ2*(b 90.ˆ2−2*a.ˆ2*qe*q/C/mi/vs.ˆ2))/vs/(bc.ˆ2+b 90.ˆ2).ˆ2));

end

% % The functions of vx, vy:

f(1)=−vx+ux+dtNwt*(gx+q*Ex/md+q*B0*(vy+uy)/2/md−nu dn*...

(vxdriftn)−beta n*(vxdriftn)*vn...

−beta ic*vs*(vxdrifti)*bc.ˆ2−beta io*vs*(vxdrifti)*b 90.ˆ2*gamma);

f(2)=−vy+uy+dtNwt*(gy+q*Ey/md−q*B0*(vx+ux)/2/md−nu dn*(vydriftn)−...

beta n*(vydriftn)*vn...

−beta ic*vs*(vydrifti)*bc.ˆ2−beta io*vs*(vydrifti)*b 90.ˆ2*gamma);

% % Need the negative of f:

f=−f;

% % the "error" vector can be computed using a tridiagonal solver.

error=trisolver(lt,b,ut,f);

% % figure out the maximum error in the "error vector", if this is less

% % than the tolerance then break out of the loop. Use the "infinity"

% % norm, or maximum value or the error vector.

err=max(abs(error));

vx=vx+error(1);

vy=vy+error(2);

% % put this line below to prevent an infinite loop

n iter=n iter+1;

%q/1.6e−19

%pause

end

%%¬¬¬¬#2
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% % second main step in this iterative method: calculate positions at the

% % full timestep based on the velocities calculated at the half timestep.

% % (The positions will be half a timestep ahead of the velocities). This

% % is done after vx and vy have been found through an iterative process.

x=dtNwt*vx+x0;

y=dtNwt*vy+y0;

% In a sheath, we assume that the electrons are not flowing. We will allow

% for electron drifts in the phi direction, which requires that vey is set

% up in profiles properly so that vey = ve phi.

phi=improved arctan(x,y);

we = sqrt((vx−(vey)*sin(phi)).ˆ2+(vy+(vey)*cos(phi)).ˆ2);

% % compute grain speed relative to an ion flow:

% % velocity of the grain relative to the ions:

% % e.g., if vx = 0, but the ions are streaming towards the grain in the

% % −x direction with velocity vix, then it is equivalent to the grain

% % moving at a velocity +vix in the +x−direction.

% WE ADD THE TERM (vex).ˆ2 IN ORDER TO GET THE RELATIVE DRIFT ALONG THE

% Z−DIRECTION. THE DUST GRAIN, BY VIRTUE OF BEING LEVITATED IN THE PLANAR

% SHEATH, HAS NO VELOCITY ALONG THE Z DIRECTION.

wi=sqrt((vx−vix).ˆ2+(vy−viy).ˆ2 + (vex).ˆ2);

% % make a w−vector; the first element is the grain speed relative to

% % electron flow, the second is the grain speed relative to ion flow.

w=[we wi];

%disp(num2str(n iter));

end

vi Iterative Leapfrog Solver for Grains in Co-rotating Reference frames

The function corotating iterative pusher.m incorporates non-linear ion drag for grains in the

reference frame that co-rotates with a planet or moon.

% % corotating iterative pusher.m
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% %

% % This is an attempt to turn iterative pusher into a co−rotating pusher.

% % As of September 19, this still needs to be done!

% %

% % iterative pusher.m was written to treat drag forces on a dust grain.

% % The Boris algorithm is incapable of treating drag terms or forces that

% % are velocityˆ2 dependent.

% % 7/18/2013

% %

% % currently have problems if the inputs vx, vy are both zero; need to

% % fix this issue. Sept 2013.

% below is the version of inputs that I intend to use. Also, got rid of

% global variables in here. (sept 2013)

function [x,y,vx,vy,w]=corotating iterative pusher(dtNwt,a,rho d,q,...

x0,y0,vx0,vy0,species,Ex,Ey,B,gx,gy,ne,ni,n neut,vnx,vny,vex,vey,...

vix,viy,Te,Ti,Tn,lambda D,ch model,corot period,nu dn)

% Use ch model flag to determine what description of drag force you want to

% use; this still needs to be built in to the code.

% % I've decided to get rid of global vars; they are commented if you feel

% % like using them again.

%global qe;

%global me;

%global mp;

%global eps0;

qe=1.6e−19;

me=9.1e−31;

mp=1.67e−27;

eps0=8.854e−12;

mi=species*mp;

eta=ne/ni;

Tau=Te/Ti;

mr=me/mi;

234



vthe=sqrt(2*qe*Te/me); % local electron thermal speed, m/s

vthi=sqrt(mr/Tau)*vthe; % local ion (proton) thermal speed, m/s

m neut=mi;

C=4*pi*eps0*a*(1+a/lambda D);

%w=sqrt(vx0.ˆ2+vy0.ˆ2);

% % compute grain speed relative to an electron flow:

%we=sqrt((vx0−vex).ˆ2+(vy0−vey).ˆ2);

% % compute grain speed relative to an ion flow:

% % velocity of the grain is relative to the ions:

% % e.g., if vx = 0, but the ions are streaming towards the grain in the

% % −x direction with velocity vix, then it is equivalent to the grain

% % moving at a velocity +vix in the +x−direction.

wi=sqrt((vx0−vix).ˆ2+(vy0−viy).ˆ2);

% % make a w−vector; the first element is the grain speed relative to

% % electron flow, the second is the grain speed relative to ion flow.

%w=[we wi];

% % compute some relevant parameters:

cn=sqrt(8*qe*Tn/pi/m neut);

ci=sqrt(8*qe*Ti/pi/mi);

% Kind of a waste to make this extra variable B0, but it doesn't hurt

% anything. Can't take the absolute value of the local magnetic field,

% or you will get erroneous results.

B0=B;

md=4/3*pi*rho d*a.ˆ3;

% % Figure out whether to use Epstein drag force, or if it should go as

% % velocityˆ2.

if wi<cn

∆=1.26;

% % nu dn is the dust−neutral collision frequency; a result from the

% % Epstein drag

%nu dn=∆*n neut*cn*m neut/a/rho d;

% % line below is an older attempt at dust−neutral collision frequency;

% % vestigal and does not work presently.
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%nu dn=4/3*pi*∆*n neut*cn*m neut*a.ˆ2;

beta n=0;

%disp('Epstein Drag')

else

% % nu dn is the dust−neutral collision frequency; a result from the

% % Epstein drag

nu dn=0;

% % think about if this can be rewritten (august 2013)

beta n=pi*a.ˆ2*m neut*n neut*cn/md;

end

%nu dn=0;

% % Set the ux=vx(t−1/2*dt) and uy=vy(t−1/2*dt), which are inputs

ux=vx0;

uy=vy0;

vx=ux;

vy=uy;

% % Define some useful constants, which are coefficients for drag terms

% % (N.B. − They are not all in the same units!!!)

beta ic=pi*ni*mi/md;

beta io=4*pi*ni*mi/md;

% for testing

%beta ic=0;beta io=0;

%nu dn=0;beta n=0;

% % Everything below here is needed in the main iterative loop.

% %¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% % max number of iterations, to prevent infinite loop

Nmax=1e3;

% % initialize the iteration counter to zero

n iter=0;

% % Not sure how to initialize the error

err=1;

% % error tolerance; this should be scaled by some characteristic velocity.
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tol=1e−10;

while err>tol && n iter≤Nmax

% % some useful definitions:

vxdrifti=(vx+ux)/2−vix;

vydrifti=(vy+uy)/2−viy;

vxdriftn=(vx+ux)/2−vnx;

vydriftn=(vy+uy)/2−vny;

vs=sqrt(8*qe*Ti/pi/mi+vxdriftiˆ2+vydriftiˆ2);

vn=sqrt(vxdriftn.ˆ2+vydriftn.ˆ2);

bc=sqrt(1−2*qe*q/C/mi/(vs.ˆ2))*a;

b 90=qe*q/(4*pi*eps0*mi*vs.ˆ2); % collision paramter for 90 degree

% collisions

gamma = 1/2*log((lambda Dˆ2+b 90ˆ2)/(bc.ˆ2+b 90ˆ2));

% see Grabbe−Merlino or other Dusty plasma texts for more information.

% % Elements of the Jacobian matrix, which are derivatives of f1 and f2

% % with respect to vx, vy in matrix form:

% % | (df1/dvx) (df1/dvy) |(vxˆ[k+1] − vxˆ[k]) =−(f1)

% % | (df2/dvx) (df2/dvy) |(vyˆ[k+1] − vyˆ[k]) =−(f2)

b=zeros(2,1);

ut=zeros(2,1);

lt=zeros(2,1);

f=zeros(2,1);

% % make sure to check if vn=0!

if vn==0

b(1)=−1+.5*dtNwt*(−nu dn−beta n*(vn+(vxdriftn)ˆ2/vn)−...

beta ic*vs*bc.ˆ2−beta io*vs*b 90.ˆ2*gamma...

−beta ic*(vxdrifti).ˆ2*(bc.ˆ2/vs+2*vs*a.ˆ2*(2*qe*q/C/mi)/vs.ˆ4)...

−beta io*(vxdrifti).ˆ2*(b 90.ˆ2*gamma/vs−4*b 90.ˆ2*gamma/vs...

+2*b 90.ˆ2*exp(−gamma)*(b 90.ˆ2*(a.ˆ2*2*qe*q/C/mi/vs.ˆ2−bc.ˆ2)...

+lambda D.ˆ2*(b 90.ˆ2−2*a.ˆ2*qe*q/C/mi/vs.ˆ2))/vs/...

(bc.ˆ2+b 90.ˆ2).ˆ2));
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b(2)=0;

ut(1)=0;

lt(2)=0;

disp('vn = 0')

% % Proceed as normal if vn 6= 0.

else

% % df1/dvx:

b(1)=−1+.5*dtNwt*(−nu dn−beta n*(vn+(vxdriftn)ˆ2/vn)−...

beta ic*vs*bc.ˆ2−beta io*vs*b 90.ˆ2*gamma...

−beta ic*(vxdrifti).ˆ2*(bc.ˆ2/vs+2*vs*a.ˆ2*(2*qe*q/C/mi)/vs.ˆ4)...

−beta io*(vxdrifti).ˆ2*(b 90.ˆ2*gamma/vs−4*b 90.ˆ2*gamma/vs...

+2*b 90.ˆ2*exp(−gamma)*(b 90.ˆ2*(a.ˆ2*2*qe*q/C/mi/vs.ˆ2−bc.ˆ2)...

+lambda D.ˆ2*(b 90.ˆ2−2*a.ˆ2*qe*q/C/mi/vs.ˆ2))/vs/...

(bc.ˆ2+b 90.ˆ2).ˆ2));

% % df2/dvy:

b(2)=−1+.5*dtNwt*(−nu dn−beta n*(vn+(vydriftn)ˆ2/vn)−...

beta ic*vs*bc.ˆ2−beta io*vs*b 90.ˆ2*gamma...

−beta ic*(vydrifti).ˆ2*(bc.ˆ2/vs+2*vs*a.ˆ2*(2*qe*q/C/mi)/vs.ˆ4)...

−beta io*(vydrifti).ˆ2*(b 90.ˆ2*gamma/vs−4*b 90.ˆ2*gamma/vs...

+2*b 90.ˆ2*exp(−gamma)*(b 90.ˆ2*(a.ˆ2*2*qe*q/C/mi/vs.ˆ2−bc.ˆ2)...

+lambda D.ˆ2*(b 90.ˆ2−2*a.ˆ2*qe*q/C/mi/vs.ˆ2))/vs/...

(bc.ˆ2+b 90.ˆ2).ˆ2));

% % "upper" triangular portion of the Jacobian matrix, or df1/dvy:

% % (In tridiagonal terms, this is the "C" vector term)

%df1 dvy=ut(1)

ut(1)=.5*dtNwt*(q*B0/md+4*pi/corot period−...

beta n*(vn+(vydriftn)ˆ2/vn)−...

beta ic*vs*bc.ˆ2−beta io*vs*b 90.ˆ2*gamma...

−beta ic*(vydrifti).ˆ2*(bc.ˆ2/vs+2*vs*a.ˆ2*(2*qe*q/C/mi)/vs.ˆ4)...

−beta io*(vydrifti).ˆ2*(b 90.ˆ2*gamma/vs−4*b 90.ˆ2*gamma/vs...

+2*b 90.ˆ2*exp(−gamma)*(b 90.ˆ2*(a.ˆ2*2*qe*q/C/mi/vs.ˆ2−bc.ˆ2)...

+lambda D.ˆ2*(b 90.ˆ2−2*a.ˆ2*qe*q/C/mi/vs.ˆ2))/vs/...

(bc.ˆ2+b 90.ˆ2).ˆ2));
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% % "lower" triangular portion of the Jacobian matrix or df2/dvx:

% % (In tridiagonal terms, this is the "A" vector term)

%df2 dvx=lt(2)

lt(2)=.5*dtNwt*(−q*B0/md−4*pi/corot period−...

−beta n*(vn+(vxdriftn)ˆ2/vn)−...

beta ic*vs*bc.ˆ2−beta io*vs*b 90.ˆ2*gamma...

−beta ic*(vxdrifti).ˆ2*(bc.ˆ2/vs+2*vs*a.ˆ2*(2*qe*q/C/mi)/vs.ˆ4)...

−beta io*(vxdrifti).ˆ2*(b 90.ˆ2*gamma/vs−4*b 90.ˆ2*gamma/vs...

+2*b 90.ˆ2*exp(−gamma)*(b 90.ˆ2*(a.ˆ2*2*qe*q/C/mi/vs.ˆ2−bc.ˆ2)...

+lambda D.ˆ2*(b 90.ˆ2−2*a.ˆ2*qe*q/C/mi/vs.ˆ2))/vs/...

(bc.ˆ2+b 90.ˆ2).ˆ2));

end

% % The functions of vx, vy:

f(1)=−vx+ux+dtNwt*(gx+q*Ex/md+2*pi/corot period*(vy+uy)+...

(2*pi./corot period).ˆ2*x0...

+q*B0*(vy+uy)/2/md−nu dn*(vxdriftn)−beta n*(vxdriftn)*vn...

−beta ic*vs*(vxdrifti)*bc.ˆ2−beta io*vs*(vxdrifti)*b 90.ˆ2*gamma);

f(2)=−vy+uy+dtNwt*(gy+q*Ey/md−2*pi/corot period*(vx+ux)+...

(2*pi./corot period).ˆ2*y0...

−q*B0*(vx+ux)/2/md−nu dn*(vydriftn)−beta n*(vydriftn)*vn...

−beta ic*vs*(vydrifti)*bc.ˆ2−beta io*vs*(vydrifti)*b 90.ˆ2*gamma);

% % Need the negative of f:

f=−f;

% % the "error" vector can be computed using a tridiagonal solver.

error=trisolver(lt,b,ut,f);

% % figure out the maximum error in the "error vector", if this is less

% % than the tolerance then break out of the loop. Use the "infinity"
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% % norm, or maximum value or the error vector.

err=max(abs(error));

vx=vx+error(1);

vy=vy+error(2);

% % put this line below to prevent an infinite loop

n iter=n iter+1;

%q/1.6e−19

%pause

end

% % % velocity of the grain relative to the ions:

% % % e.g., if vx = 0, but the ions are streaming towards the grain in the

% % % −x direction with velocity vix, then it is equivalent to the grain

% % % moving at a velocity +vix in the +x−direction.

% %w=sqrt((vx−vix).ˆ2+(vy−viy).ˆ2);

% % % compute grain speed relative to an electron flow:

% we=sqrt((vx−vex).ˆ2+(vy−vey).ˆ2);

% % % compute grain speed relative to an ion flow:

% % % velocity of the grain relative to the ions:

% % % e.g., if vx = 0, but the ions are streaming towards the grain in the

% % % −x direction with velocity vix, then it is equivalent to the grain

% % % moving at a velocity +vix in the +x−direction.

% wi=sqrt((vx−vix).ˆ2+(vy−viy).ˆ2);

% % % make a w−vector; the first element is the grain speed relative to

% % % electron flow, the second is the grain speed relative to ion flow.

% w=[we wi];

% % compute grain speed relative to an electron flow. Do these need to be

% % adusted if we are in a corotating frame?

we=sqrt((vx−vex).ˆ2+(vy−vey).ˆ2);

% % compute grain speed relative to an ion flow:

% % velocity of the grain relative to the ions:

% % e.g., if vx = 0, but the ions are streaming towards the grain in the

% % −x direction with velocity vix, then it is equivalent to the grain

% % moving at a velocity +vix in the +x−direction.

wi=sqrt((vx−vix).ˆ2+(vy−viy).ˆ2);
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% % make a w−vector; the first element is the grain speed relative to

% % electron flow, the second is the grain speed relative to ion flow.

w=[we wi];

%%¬¬¬¬#2

% % second main step in this iterative method: calculate positions at the

% % full timestep based on the velocities calculated at the half timestep.

% % (The positions will be half a timestep ahead of the velocities). This

% % is done after vx and vy have been found through an iterative process.

x=dtNwt*vx+x0;

y=dtNwt*vy+y0;

end

iii Abrupt Inhomogeneity Theory Code

The theory code for producing one gyro-orbit in an abrupt inhomogeneity, abrupt omega theory.m

is included here. For a description of the basic theory behind this code, see sections A and B. The

process is described there. The final position of the grain in x, y coordinate space can be used

as inputs to the abrupt omega theory.m function in order to produce multiple gyro-orbits. This

function can be used to find the guiding center drifts over a wide range of plasma parameters and

conditions for the abrupt inhomogeneity. This routine requires dimensionless charger.m, which

is described later in 4.

% % abrupt omega theory.m

% % Need to fix this! 3/14/2014 Too many charging loops; compute Z1 and Z2,

% % t2 based on parameters, then start the grain trajectory loop. Then you

% % can compute z2f, then use a charging loop to obtain t1, then do the

% % second half of the trajectory.
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% % this .m file predicts the gyrophase drift for the first HALF of the

% % gyrocycle for an abrupt inhomogeneity (uv being a prime example.)

% % this function requires dimensionless charger.m in order to run.

% % Maybe consider reworking some of these equations to account for the

% % fact that C=4*pi*eps0*a*exp(a/lambda D) from 2004 matthews asr instead

% % of C=4*pi*eps0*a. This is important when a/lambda D¬1.

function [vxdrift,vydrift,vxdrift northrop,vydrift northrop,Kn R0,...

gyro period,gyration ratio,tch avg,t1,Z1 eq,Z2]=...

abrupt omega theory(ch model,species,Tr,eta,M,KnD,...

gyration ratio i,e mag,mag ratio,Kna,NDe,gamma,mass ratio,E 0x,...

upsilon,initial gyrophase,ion frac)

% e mag − e mag refers to the magnetization parameter of electrons

% (a/RLe) in region 1 (x<0).

% density ratio − this refers to the ratio of dust mass density to

% electron mass density, or rho d/ne/me.

% gamma − gamma is a free parameter which represents the change in

% charge state divided by the initial charge state, assuming

% a discharging condition (so the grain has lost an

% electron.) For my earlier simulations, gamma ¬−1.

% gamma=1−Z1/Z2.

% mag ratio − This signifies the ratio between the magnetic field

% strength for region 1, x<0 (B1) and region 2, x>0

% (B2),and mag ratio=B1/B2. (is that right? check my

% notebooks to make sure!!!)

% Kna − Knudsen number, which is lambda i/a, the ratio between ion

% mean free path and grain radius.

% NDe − The plasma parameter, or the number of electrons per Debye

% sphere.

% gamma − gamma = 1−q1/q2, where q1 is the in−situ equilibrium grain

% charge in region 1 (x<0), and q2 is the in−situ equilibrium

% grain charge in region 2 (x>0). Currently, I require that

% q1<q2<0, but I might want to extend this code in the future
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% to look at positive grain charge or relax the q1<q2

% condition.

% mass ratio − This represents rho d/(ne*me).

% E 0x − This is a proxy for the electric field, but is really

% E 0x/B/v perp, where v perp=sqrt(v 0xˆ2+v 0yˆ2). Keep in

% mind, this code does not solve the case where neutral drag

% and a constant electric field exists, so make sure that

% w cd/nu dn >>1 if you want to use E 0x 6= 0!!! Also, be

% aware that E 0x is also normalized to v perp, and retracing

% gyro−orbits do not exists for E/B >> v perp! I use E=E 0x,

% without loss of generality. Additionally, stick with

% negative values for E 0x for now, but try positive values

% too!

% upsilon − The coefficient of UV illumination, or: f uv/n0/vthe.

% Leave this blank if you want to use q1/q2 ratio instead

% of UV illumination coefficient.

% initial gyrophase − The initial gyro−phase of the grain;

% electron and ion thermal mach numbers, or we/vthe and wi/vthi where we

% and wi are the electron and ion flows relative to the grain,

% respectively.

Me=M(1);

Mi=M(2);

% figure out if we are doing a step in magnetic field.

if mag ratio==1

b step=false;

else

b step=true;

% for the case of no UV and a step function in magnetic field strength,

% I think I need to abandon Z1/Z2=(1−gamma), and instead just find out

% what is Z2, the equilibrium charge?? Maybe I should figure out Z1 as

% well?

end

% you can't specify a priori what is Z1???
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% figure out if initial gyro−phase is specified, or if it is outside

% −2*pi<theta di<2*pi, otherwise default to an

% angle of −pi/2, or 3*pi/2.

if exist('initial gyrophase','var')==0 | | (initial gyrophase>2*pi) | | ...

(initial gyrophase<0)

theta di=3*pi/2;

else

% set theta di equal to the initial gyro−phase

theta di=initial gyrophase;

end

% constants:

qe = 1.6e−19;

eps0 = 8.854e−12;

me = 9.1e−31;

mp = 1.67e−27;

mi = species*mp;

mr = me/mi; % mass ratio

% a/RLi

i mag = e mag*sqrt(mr*Tr);

% If we have one of the mono−energetic profiles, we need to fix the

% (1+Tr/eta) factor. I will call this tn fact, which stands for temperature

% and density factor. This factor shows up when considering the time it

% takes for the grain to gain or lose one electron at the present current

% or dq/dt. It also shows up in that

% lambda Deˆ2 =(1+Tr/eta)*lambda Dˆ2

% lambda Deˆ2 = (tn fact)*lambda Dˆ2

% if strcmp(ch model,'oml monoenergetic ions')==0 && ...

% strcmp(ch model,'kortshagen monoenergetic ions')==0 && ...

% strcmp(ch model,'hutchinson monoenergetic ions')==0

% tn fact=(1+Tr/eta);

% else

% tn fact=(1+1/Mi.ˆ2/eta);

% end
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% if ions are flowing, we cant use the usual tn fact=(1+Tr/eta), so prepare

% for this! The thought here is that the ion temperature

if Mi==0

tn fact=(1+Tr/eta);

else

% if the string input is mono−energetic, use the definition below for

% tn fact.

if strcmp(ch model,'oml monoenergetic ions')==1 | | ...

strcmp(ch model,'kortshagen monoenergetic ions')==1 | | ...

strcmp(ch model,'hutchinson monoenergetic ions')==1

% This expression uses Mi in terms of the bohm speed, which is

% correct for a mono−energetic population of ions. If it is

% flow−shifted, reconfigure for Mi in terms of the bohm speed!

tn fact=(1+1/Mi.ˆ2/eta);

else

% if it's not mono−energetic, use this definition!

tn fact=(1+1/Mi.ˆ2*Tr/2/eta);

end

end

%gamma=−1; % gamma = Z1/Z2 = 1−gamma;

% % THERE SHOULD BE SOME RELATIONSHIP BETWEEN GAMMA AND upsilonA,

% % NEED TO THINK ABOUT THIS???

% figure out what coefficient of UV illumination should be so that the

% correct photo−electric current is applied to produce Z2, where Z(t=0) =

% Z1. Also remember: mag ratio=B1/B2

% change the variable "upsilon*c uv" in order to adjust Zp in

% dimensionless charger.m so that the current increases to maintain Z1/Z2

% ratio! Also, because this sets parameters in region 2, we have to divide

% by mag ratio

% initialize charging loop parameters
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cnt=1;

tchg=0;

Z=0;

% FIND EQUILIBRIUM SURFACE POTENTIAL IN REGION 1.

% currently, no UV is assumed for region 1 (x<0).

while Z≤0 % Note that this is a bogus statement; the point is to

% run the loop until Z repeats itself, that's when we

% have reached equilibrium surface potential.

dZdt=dimensionless charger(ch model,Z,Tr,mr,M,eta,Kna,KnD,0,e mag);

dt=1/3*KnD/(1+1/KnD)/(tn fact)/NDe/abs(dZdt);

dZ=1/3*KnD/(1+1/KnD)/(tn fact)/NDe*sign(dZdt);

Zarr(cnt)=Z;

tarr(cnt)=tchg;

tchg=tchg+dt;

Z=Z+dZ;

if cnt>2&&Zarr(cnt)==Zarr(cnt−2)

% break out of the loop when the charge begins oscillating back

% and forth between two values.

break

end

cnt=cnt+1;

% drawnow;

% figure(1);plot(tarr,Zarr)

end

clear Zarr;clear tarr;

Z1=Z;

% output this variable to Z1 eq, so that we know what the equilbrium

% in−situ charge is for the UV−absent region.

Z1 eq=Z1;

%gamma=1;

Z2=Z1/(1−gamma);
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% b step option still needs to compute Z1! 3/14/2014

if b step==true

clear Z1; % don't need Z1; we're going to find it based on plasma

% parameters.

% I'm not ready to work with UV illumination AND a step function in B.

upsilon=0;

% initialize charging loop parameters

cnt=1;

tchg=0;

Z=0;

% Next, we must find Z2!

% initialize charging loop parameters

cnt=1;

tchg=0;

Z=0;

while Z≤0 % Note that this is a bogus statement; the point is to

% run the loop until Z repeats itself, that's when we

% have reached equilibrium surface potential.

dZdt=dimensionless charger(ch model,Z,Tr,mr,M,eta,Kna,KnD,upsilon,...

e mag/mag ratio);

dt=1/3*KnD/(1+1/KnD)/(tn fact)/NDe/abs(dZdt);

dZ=1/3*KnD/(1+1/KnD)/(tn fact)/NDe*sign(dZdt);

Zarr(cnt)=Z;

tarr(cnt)=tchg;

tchg=tchg+dt;

Z=Z+dZ;

if cnt>2&&Zarr(cnt)==Zarr(cnt−2)

% break out of the loop when the charge begins oscillating back

% and forth between two values.

break

end

cnt=cnt+1;

% drawnow;
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% figure(1);plot(tarr,Zarr)

end

clear Zarr;clear tarr;

Z2=Z;

else

if isfloat(upsilon)==1

% If upsilon was input by the user, then use THAT value to

% determine Z2 and gamma. This replaces whatever value was input to

% gamma.

while Z≤0 % Note that this is a bogus statement; the point is to

% run the loop until Z repeats itself, that's when we

% have reached equilibrium surface potential.

dZdt=dimensionless charger(ch model,Z,Tr,mr,M,eta,Kna,KnD,upsilon,...

e mag/mag ratio);

dt=1/3*KnD/(1+1/KnD)/(tn fact)/NDe/abs(dZdt);

dZ=1/3*KnD/(1+1/KnD)/(tn fact)/NDe*sign(dZdt);

Zarr(cnt)=Z;

tarr(cnt)=tchg;

tchg=tchg+dt;

Z=Z+dZ;

if cnt>2&&Zarr(cnt)==Zarr(cnt−2)

% break out of the loop when the charge begins oscillating back

% and forth between two values.

break

end

cnt=cnt+1;

%drawnow;plot(tarr,Zarr);

end

clear Zarr;clear tarr;

Z2=Z;

gamma=1−Z1/Z2;

else

switch ch model

case 'oml'

if e mag/mag ratio<1
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if i mag/mag ratio<1

% for oml model ONLY!!!

% c uv = 1

upsilon=2/sqrt(pi)*exp(Z2)−2/sqrt(pi)*sqrt(mr/Tr)...

/eta*(1−Tr*Z2);

%uv coeff = upsilona*c uv!!! so it includes the

%illumination factor

%uv coeff = 4*exp(Z2)−4*sqrt(mr/Tr)*eta*(1−Tr*Z2);

else

upsilon = 2/sqrt(pi)*exp(Z2)−1/sqrt(pi)*sqrt(mr/Tr)/eta;

end

else

if i mag/mag ratio<1

% for oml model ONLY!!!

% Factor of 1/2 in front of ion current term.

% c uv = 1

upsilon = 1/sqrt(pi)*exp(Z2)−2/sqrt(pi)*sqrt(mr/Tr)...

/eta*(1−Tr*Z2);

% uv coeff = upsilona*c uv!!! so it includes the illumination

% factor

%uv coeff = 4*exp(Z2)−4*sqrt(mr/Tr)*eta*(1−Tr*Z2);

else

upsilon = 1/sqrt(pi)*exp(Z2)−1/sqrt(pi)*sqrt(mr/Tr)/eta;

end

end

% c uv = 2

%upsilona = 2*exp(Z2)−2*sqrt(mr/Tr)*eta*(1−Tr*Z2)

case 'oml monoenergetic ions'

% fill this out!!!

case 'kortshagen'

% must compute Knudsen capture radius parameter based on the

% dimensionless grain potential, Z2 (so that we can derive the

% necessary photo−current to produce equilbrium grain potential

% Z2)
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Kn R=Kna/2/1.22*(1.5/Tr/abs(Z2)*KnD+1)/(KnD+1);

if i mag/mag ratio<1

% current probabilities:

P0=exp(−1/(Kn R));

P1=(1/(Kn R))*exp(−1/(Kn R));

Pg1=1−(P0+P1);

ioml = 2/sqrt(pi)*sqrt(mr/Tr)*(1−Tr*Z2)/eta;

icec = 2/sqrt(pi)*sqrt(mr/Tr)*Kna.ˆ2/Kn R.ˆ2/4/eta;

ihyd=1/sqrt(pi)*sqrt(2)*sqrt(mr/Tr)*Kna*3*pi/4*Tr*abs(Z2);

Zi = P0*ioml+P1*icec+Pg1*ihyd;

if e mag/mag ratio<1

upsilon=2/sqrt(pi)*exp(Z2)−Zi;

else

upsilon=1/sqrt(pi)*exp(Z2)−Zi;

end

% honestly, I have no clue what to do here if the ions are

% "magnetized". Maybe make this the same as the lines above,

% for now, or try working these out.

else

if e mag/mag ratio<1

Zi=1/sqrt(pi)*sqrt(mr/Tr)*(1−Tr*Z2)/eta;

upsilon=2/sqrt(pi)*exp(Z2)−Zi;

else

Zi=1/sqrt(pi)*sqrt(mr/Tr)*(1−Tr*Z2)/eta;

upsilon=1/sqrt(pi)*exp(Z2)−Zi;

end

end

case 'kortshagen monoenergetic ions'

% fill this out!

case 'hutchinson'

% put hutchinson case in here.

z=e mag/mag ratio/(1+e mag/mag ratio);
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% iota* in Patacchini and Hutchinson:

iota=1−0.0946*z−0.305*z.ˆ2+0.95*z.ˆ3−2.2*z.ˆ4+1.15*z.ˆ5;

% % FOR LAMBDA D = FINITE, AND DEBYE−HUCKEL POTENTIAL:

% eta, which is now dependent on grain sheath size:

eta mag=−Z2/e mag/mag ratio*...

(1+e mag/4*(1−exp(−4/KnD/e mag/mag ratio)));

% w, which is eta/(1+eta):

w mag=eta mag/(1+eta mag);

% A, the fitting polynomial, a function of w:

A fit=0.678*w mag+1.543*w mag.ˆ2−1.212*w mag.ˆ3;

% Ie*, which is the empirical formula for electron current as a

% function of magnetization

%Ze=−sqrt(2*pi)/KnD*exp(Z)*(A fit+(1−A fit)*iota);

% Patacchini−Hutchinson model can include the spatial

% dependence of electron flux to the sphere. I have chosen not

% to put this in at the current time, since it is not necessary

% for determining the total grain charge.

if i mag/mag ratio<1

upsilon=2/sqrt(pi)*exp(Z2)*(A fit+(1−A fit)*iota)−...

2/sqrt(pi)*sqrt(mr/Tr)/eta*(1−Tr*Z2);

else

upsilon=1/sqrt(pi)*exp(Z2)*(A fit+(1−A fit)*iota)−...

2*sqrt(mr/Tr)/eta*(1−Tr*Z2);

end

case 'hutchinson monoenergetic ions'

% fill this out!

end

% determine Z2, for redundancy purposes.

% initialize charging loop parameters

cnt=1;

tchg=0;

Z=0;
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%while Z≥Z2 % use Z2 here if gamma is used?

% arbitrarily impose a normalized photo−current, given by upsilon

%if strcmp(control string,'constant gamma')

%if isempty(gamma)? or something about upsilon?

%upsilon=0.25;

%upsilon=0.25;

% this upsilon below corresponds to UV photo current measured by Dove et.

% al., and for background plasma parameters: n0=1e14 and Te=5 eV

% using the value for UV coefficient (upsilon) found above, we can now

% find the equilibrium charge in the UV illuminated region.

while Z≤0 % Note that this is a bogus statement; the point is to

% run the loop until Z repeats itself, that's when we

% have reached equilibrium surface potential.

dZdt=dimensionless charger(ch model,Z,Tr,mr,M,eta,Kna,KnD,upsilon,...

e mag/mag ratio);

dt=1/3*KnD/(1+1/KnD)/(tn fact)/NDe/abs(dZdt);

dZ=1/3*KnD/(1+1/KnD)/(tn fact)/NDe*sign(dZdt);

Zarr(cnt)=Z;

tarr(cnt)=tchg;

tchg=tchg+dt;

Z=Z+dZ;

if cnt>2&&Zarr(cnt)==Zarr(cnt−2)

% break out of the loop when the charge begins oscillating back

% and forth between two values.

break

end

cnt=cnt+1;

%drawnow;plot(tarr,Zarr);

end

clear Zarr;clear tarr;

Z2=Z;

gamma=1−Z1/Z2;

end

end

252



% we are now ready to compute the Knudsen capture parameter based on the

% information above

% Can this even be specified a priori? Maybe this can be used to

% characterize the Knudsen capture parameter at the beginning.

% Kn R=9*sqrt(pi)/8*sqrt(mr*Tr)/1.22*...

% e mag*N i*KnDˆ3*Kna/(KnD+1)./gyration ratio i/(1/Tr+eta) + ...

% Kna/2/1.22/(KnD+1);

%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% try sweeping smaller than the electron plasma frequency; see what

% happens!

% another alternative: use mass ratio, or md/me ratio instead:

%mass ratio=mass ratio;

gyro period=(2/3/sqrt(pi)/e mag/abs(Z1)/(1+1/KnD))*(mass ratio)*...

(tn fact)ˆ(−3/2)/NDe;

% NEW DEVELOPMENT: IT IS POSSIBLE TO INPUT GYRATION RATIO IN TERMS OF

% DIMENSIONLESS PARAMETERS!!!

% gyro period, in units of 2*pi/omega pe. If gyro period=1, this means that

% the dust is gyrating at the local electron plasma−frequency

% here is the gyro−period in units of 2*pi/wpe:

% gyro period=(2/3/sqrt(pi)/e mag/abs(Z1)/(1+1/KnD))*(mass ratio)*...

% (tn fact)ˆ(−3/2)/KnDˆ3;

% OPTIONALLY: BASE THE GYRO−PERIOD OFF OMEGA CD 2!!! (in units of 2*pi/wpe)

% gyro period2=(2/3/sqrt(pi)/e mag/abs(Z2)/(1+1/KnD))*(mass ratio)*...

% (Tr+1/eta)ˆ(−3/2)/KnDˆ3;

%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% approximate number of points per half gyro−cycle

npoints=1e4;
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% initial conditions for the trajectory:

%theta di=−pi/2; % initial angle in gyro−phase

v0x = cos(theta di+pi/2); % initial velocity in x−direction,

% normalized to v perp

v0y = sin(theta di+pi/2); % initial velocity in y−direction,

% normalized to v perp

% We can put the t2 determination loop outside the main loop because we

% only need this calculation once.

% starting at Z1, discharging to Z2

% some initial conditions for the charging loop:

cnt=1;

tchg=0;

% if Z1<Z2, the grain is "discharging", or losing electrons when it goes

% into region 2. Z1 and Z2 are both less than zero

if Z1<Z2

Z = Z1;

Z2f = Z1+(1−exp(−1))*(Z2−Z1);

while Z<Z2f

dZdt=dimensionless charger(ch model,Z,Tr,mr,M,eta,Kna,KnD,upsilon,...

e mag/mag ratio);

dt=1/3*KnD/(1+1/KnD)/(tn fact)/NDe/abs(dZdt);

dZ=1/3*KnD/(1+1/KnD)/(tn fact)/NDe*sign(dZdt);

Zarr(cnt)=Z;

tarr(cnt)=tchg;

if cnt>2&&Zarr(cnt)==Zarr(cnt−2)

% break out of the loop when the charge begins oscillating back

% and forth between two values.

break

end

cnt=cnt+1;

tchg=tchg+dt;

Z=Z+dZ;

% drawnow;

% figure(1);plot(tarr,Zarr)
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end

% if Z1>Z2, this means that the grain is "charging", or gaining electrons

% when it goes into region 2. Z1 and Z2 are still both less than zero.

% % THIS NEEDS TO BE FIXED!!! 3/5/2014

else

Z = Z1;

%Z2f = Z1+exp(−1)*(Z2−Z1);

Z2f = Z1−(1−exp(−1))*(Z1−Z2);

while Z>Z2f %Z<−1.25%Z<Z2f Z<0

dZdt=dimensionless charger(ch model,Z,Tr,mr,M,eta,Kna,KnD,upsilon,...

e mag/mag ratio);

dt=1/3*KnD/(1+1/KnD)/(tn fact)/NDe/abs(dZdt);

dZ=1/3*KnD/(1+1/KnD)/(tn fact)/NDe*sign(dZdt);

Zarr(cnt)=Z;

tarr(cnt)=tchg;

cnt=cnt+1;

tchg=tchg+dt;

Z=Z+dZ;

% drawnow;

% figure(1);plot(tarr,Zarr)

end

end

% After we are out of the loop, we know that we have reached

% t=t discharge.

t2 = tchg;

%for j=1:sweep points %j=1:sweep points

clear xd;clear yd;clear u xd;clear u yd;clear theta d;clear tau;

clear xc;clear yc;clear u xc;clear u yc;clear theta c;

clear Zarr;clear tarr;

% initialize "gyro−cycle" arrays:

td=zeros(1,npoints+1);

u xd=zeros(size(td));

u yd=zeros(size(td));

u xc=zeros(size(td));
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u yc=zeros(size(td));

u xd new=zeros(size(td));

u yd new=zeros(size(td));

Zd=zeros(size(td));

Zc=zeros(size(td));

xd=zeros(1,npoints);

yd=zeros(size(xd));

xc=zeros(size(xd));

yc=zeros(size(xd));

xd new=zeros(size(xd));

yd new=zeros(size(xd));

% FIRST HALF GYROCYCLE:

% compare t2 to the gyro period time step, figure out which is the best

% step to use to get the best accuracy for the theta d array.

%t=linspace(0,gyro period(j),npoints);

%theta d=2*pi/gyro period(j)*(gamma*t2*(exp(−t/t2)−1)+t)+ theta di;

%td=[0:tstep:gyro period(j)];

td=linspace(0,gyro period,npoints+1);

theta d=2*pi/gyro period*(gamma*t2*(exp(−td/t2)−1)+td)+ theta di;

% calculate the dimensionless surface potential as a function of time; need

% to do this before we calculate velocity components because the damping

% term in u xd and u yd depends on this quantity

Zd=(Z1−Z2)*exp(−td/t2)+Z2;

% figure out if ne/n neut is specified, otherwise just use some arbitrary

% value. This definition for ion frac is good for the discharging part of

% the motion, and needs to be changed for Zc, and Zd new

if exist('ion frac','var')==0

gyration ratio=gyration ratio i;

% need to put this line in here, because I have/will convert the

% expressions below to include the time−dependent gyration ratio!

ion frac=gyration ratio*4/3/pi/KnD.ˆ2/(tn fact)/(1+1/KnD)/sqrt(mr*Tr)/...

e mag./abs(Zd);

256



const gyration ratio=true;

else

const gyration ratio=false;

end

% Compute dimensionless (normalized by v perp) velocities. These equations

% look a little complicated right now because the damping terms depend on

% dimensionless surface potential

u xd = v0x*cos(theta d−theta di).*...

exp(−2*pi/gyro period./(3*pi/4*KnD.ˆ2*(tn fact)*(1+1/KnD)*sqrt(mr*Tr)*...

e mag*abs(Zd).*ion frac).*td)−...

(v0y+E 0x)*sin(theta d−theta di).*exp(−2*pi/gyro period./(3*pi/4*KnD.ˆ2*...

(tn fact)*(1+1/KnD)*sqrt(mr*Tr)*e mag*abs(Zd).*ion frac).*td);

u yd = v0x*sin(theta d−theta di).*...

exp(−2*pi/gyro period./(3*pi/4*KnD.ˆ2*(tn fact)*(1+1/KnD)*sqrt(mr*Tr)*...

e mag*abs(Zd).*ion frac).*td)−E 0x+...

(v0y+E 0x)*cos(theta d−theta di).*exp(−2*pi/gyro period./(3*pi/4*KnD.ˆ2*...

(tn fact)*(1+1/KnD)*sqrt(mr*Tr)*e mag*abs(Zd).*ion frac).*td);

% % initial conditions for position; just start at x=0 and y=0, most

% % sensible way to start.

xd(1)=0;

yd(1)=0;

% x and y are in units of v perp*gyro period/2/pi

%yd(1)=−2*gyro period(j)/2/pi;

%plot(td,theta d)

% use while loop instead??? This gaurantees that the last element of xd

% is at x=0 for the "non−drag" case, and also permits high drag

% coefficients!

% need to initialize counter

i=1;

%i=length(td)−2;

%clear xd;clear yd;

% does not appear to be breaking out of the loop correctly. 3/5/2014

% This problem appears to have been fixed.

while xd(i)≥0 && i≤length(td)−1
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i=i+1;

% this line shouldn't be necessary, but the while loop above is not

% working properly.

if i>length(td)−1%i≥length(td)−1

i=i−1;

break

end

% compute yd first, because when xd<0 it will short circuit the loop!

% update the counter; put this here at the end so that if xd<0, we

% don't update the counter.

% if i>length(td)−3

% disp('here')

% end

yd(i)=(.5*(td(i+1)−td(i))*(u yd(i)+u yd(i+1)))+...

yd(i−1);

xd(i)=(.5*(td(i+1)−td(i))*(u xd(i)+u xd(i+1)))+...

xd(i−1);

%drawnow;plot(xd,yd)

end

% check to determine if xd is never less than zero! This can happen for

% small values of the gyration parameter, omega cd/nu dn.

% after the above loop is over, check to see if we still have x>0.

% Additionally, need to make sure xd is never negative, otherwise this

% would mean that the grain has made several gyrations.

if xd(i)>0 && min(xd)≥0

% if xd never goes into xd<0, there is no transition from x>0 to x<0.

transition1=false;

% fill in some values for charging and re−entry quantities.

tdf=gyro period;

tcf=0;

tdf new=0;

t1=0;

t2 new=0;

% Compute charge as a function of time

Zd=(Z1−Z2)*exp(−td/t2)+Z2;
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% fill in some values for the charging and re−entry arrays.

% xc=xd(end);

% yc=yd(end);

% tc=td(end);

% td new=td(end);

% theta c=theta d(end);

% theta d new=theta d(end);

% xd new=xd(end);

% yd new=yd(end);

% u xc=u xd(end);

% u yc=u yd(end);

% u xd new=u xd(end);

% u yd new=u yd(end);

% Zc=Zd(end);

% Zd new=Zd(end);

xc=[];

yc=[];

tc=[];

td new=[];

theta c=[];

theta d new=[];

xd new=[];

yd new=[];

u xc=[];

u yc=[];

u xd new=[];

u yd new=[];

Zc=[];

Zd new=[];

else

% the grain does transition into xd<0, so do linear interpoplation

% to get xd(i) and yd(i).

% xd is defined as being zero in this procedure.

transition1=true;

% find tdf using linear interpolation. get the slope between the
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% last two data points.

indices=find(xd<0);

i=indices(1)−1;

tdf = −xd(i−1)*(td(i)−td(i−1))/(xd(i)−xd(i−1))+td(i−1);

% now that tdf is computed, we are free to enter xd(t=tdf)=0.

xd(i)=0;

td(i)=tdf;

% need to re−compute yd(t) for the last index value. Not sure if

% this is correct!

% yd(i)=(.5*(td(i)−td(i−1))*(u yd(i−1)+u yd(i)))/gyro period+...

% yd(i−1);

yd(i)=(.5*(td(i)−td(i−1))*(u yd(i−1)+u yd(i)))/1+...

yd(i−1);

xd(i+1:end)=[];

yd(i+1:end)=[];

td=linspace(0,tdf,npoints+1);

% theta d=[theta di:...

% 2*pi/gyro period(j)*(gamma*t2*(exp(−tstep/t2)−1)+tstep):...

% theta df];

theta d=2*pi/gyro period*(gamma*t2*(exp(−td/t2)−1)+td)+...

theta di;

theta df=theta d(end);

% need to compute Zd(t) before u xd and u yd!

Zd=(Z1−Z2)*exp(−td/t2)+Z2;

% Now redefine Z2f based on t2, as computed earlier.

Z2f=(Z1−Z2)*exp(−tdf/t2)+Z2;

gamma d = Z2f/Z2;

% % Testing stuff, get rid of it if you want.

%tn fact

% max(3*pi/4*KnD.ˆ2*(tn fact)*(1+1/KnD)*sqrt(mr*Tr)*...

% e mag*abs(Zd).*ion frac)

% min(3*pi/4*KnD.ˆ2*(tn fact)*(1+1/KnD)*sqrt(mr*Tr)*...
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% e mag*abs(Zd).*ion frac)

% Compute dimensionless (normalized by v perp) velocities. These equations

% look a little complicated right now because the damping terms depend on

% dimensionless surface potential

u xd = v0x*cos(theta d−theta di).*...

exp(−2*pi/gyro period./(3*pi/4*KnD.ˆ2*(tn fact)*(1+1/KnD)*sqrt(mr*Tr)*...

e mag*abs(Zd).*ion frac).*td)−...

(v0y+E 0x)*sin(theta d−theta di).*exp(−2*pi/gyro period./(3*pi/4*KnD.ˆ2*...

(tn fact)*(1+1/KnD)*sqrt(mr*Tr)*e mag*abs(Zd).*ion frac).*td);

u yd = v0x*sin(theta d−theta di).*...

exp(−2*pi/gyro period./(3*pi/4*KnD.ˆ2*(tn fact)*(1+1/KnD)*sqrt(mr*Tr)*...

e mag*abs(Zd).*ion frac).*td)−E 0x+...

(v0y+E 0x)*cos(theta d−theta di).*exp(−2*pi/gyro period./(3*pi/4*KnD.ˆ2*...

(tn fact)*(1+1/KnD)*sqrt(mr*Tr)*e mag*abs(Zd).*ion frac).*td);

% u xd = v0x*cos(theta d−theta di).*...

% exp(−2*pi/gyro period/gyration ratio*td)−...

% (v0y+E 0x)*sin(theta d−theta di).*...

% exp(−2*pi/gyro period/gyration ratio*td);

% u yd = v0x*sin(theta d−theta di).*...

% exp(−2*pi/gyro period/gyration ratio*td)−E 0x+...

% (v0y+E 0x)*cos(theta d−theta di).*...

% exp(−2*pi/gyro period/gyration ratio*td);

% % initial conditions for position; just start at x=0 and y=0, most

% % sensible way to start.

xd(1)=0;

yd(1)=0;

% x and y are in units of v perp*gyro period/2/pi

%yd(1)=−2*gyro period(j)/2/pi;

% % x(t), y(t) offset in time from vx, vy by a half step:

for i=2:length(td)−1

xd(i)=(.5*(td(i+1)−td(i))*(u xd(i)+u xd(i+1))/1+...

xd(i−1))/1;
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yd(i)=(.5*(td(i+1)−td(i))*(u yd(i)+u yd(i+1))/1+...

yd(i−1))/1;

% maybe try some trick with theta instead of time later.

end

%plot(xd,yd)

% 4/16/2014: STILL NEED TO INTERPOLATE xd,yd,td,theta d,u xd,u yd!

% Have everything we need for the discharging part of the gyrocycle,

% time to turn our attention to the charging part.

% figure out charging time for the "charging" region; this means using

% Z2f to find Z1f.

Z=Z2f;

cnt = 1;

tchg=0;

% Need to peform this charging loop to determine the charging time

% for the 2nd−half gyro−cycle because Z2f is not known a priori.

if Z1<Z2 % Case where grain is more negatively charged in region 1

Z1f = Z2f+(1−exp(−1))*(Z1−Z2f);

while Z>Z1f % This assumes that the grain charges more negatively!!!

dZdt=dimensionless charger(ch model,Z,Tr,mr,M,eta,Kna,KnD,0,...

e mag);

dt=1/3*KnD/(1+1/KnD)/(tn fact)/NDe/abs(dZdt);

dZ=1/3*KnD/(1+1/KnD)/(tn fact)/NDe*sign(dZdt);

% should these arrays actually go here???

tarr(cnt)=tchg;

Zarr(cnt)=Z;

% calculate the meaningful quantities

tchg=tchg+dt;

Z=Z+dZ;

%pause

if Z>Z2f && cnt==1

tchg=0;

% Z1<Z2, and we should approach Z1 in this loop. If Z>Z2f, in

% the first time through the loop, we have a less negative
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% charge than we had after we left region 2. Hence, the final

% charge must be Z2f. This should generally only happen if

% Z2f=Z1.

%Z1f=Z2f;

break

end

% Have an extra piece of code that breaks us out of the loop;

% this is needed when t ch is a very large number!

% I think this is set up properly −July 15, 2014

if cnt>2&&Zarr(cnt)==Zarr(cnt−2)

% break out of the loop when the charge begins oscillating

% back and forth between two values.

break

end

cnt=cnt+1;

% drawnow;

% figure(2);plot(tarr,Zarr)

end

clear Zarr;

clear cnt;

clear tarr;

% Z1>Z2 case, or when the grain is more negatively charged in region 2

% instead of region 1. This means that the grain is losing electrons in

% region 1. I think this section may still need some work Aug/28/2014

else

%Z1f = Z2f+(1−exp(−1))*(Z1−Z2f);

Z1f = Z1 − (1−exp(−1))*(Z2f−Z1);

while Z<Z1f % assumes that grain charges less negatively!

dZdt=dimensionless charger(ch model,Z,Tr,mr,M,eta,Kna,KnD,0,e mag);

dt=1/3*KnD/(1+1/KnD)/(tn fact)/NDe/abs(dZdt);

dZ=1/3*KnD/(1+1/KnD)/(tn fact)/NDe*sign(dZdt);

tchg=tchg+dt;

Z=Z+dZ;

%pause
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if Z<Z2f && cnt==1

tchg=0;

break

end

end

end

t1=tchg;

%tstep=1/mag ratio*Z1/Z2f*gyro period(j)/(npoints)/2;

% have to change the time interval slightly, because the gyro period

% might be smaller because |Z1 |> |Z2 |

tc=linspace(0,gyro period/mag ratio,npoints+1);

%tc=linspace(0,gyro period(j)/(1−gamma)/mag ratio,npoints+1);

% Protection in case the charging time is found to be zero

if t1==0

%theta c=2*pi/gyro period*(1−gamma)*(Z2/Zc(end))*mag ratio*tc+theta df;

theta c=2*pi/gyro period*mag ratio*tc+theta df;

else

theta c=2*pi/gyro period*(1−gamma)*mag ratio*...

((1−gamma−gamma d)/(1−gamma)*t1*(exp(−tc/t1)−1)+tc)+theta df;

% theta c=[theta df:...

% 2*pi/gyro period(j)*(1−gamma)*mag ratio*...

% ((1−gamma−gamma d)/(1−gamma)*t1*(exp(−tstep/t1)−1)+tstep):...

% theta df+2*pi];

end

theta cf indices=find(theta c≤theta di+2*pi);

%theta cf=theta c(theta cf indices(end));

% find the time at which theta cf=theta di+2*pi, or when the grain has

% completed one entire gyro−cycle.
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tcf=tc(theta cf indices(end));

tc=linspace(0,tcf,npoints+1);

% Protection in case the charging time is found to be zero

if t1==0

%theta c=2*pi/gyro period*(1−gamma)*(Z2/Zc(end))*mag ratio*tc+theta df;

theta c=2*pi/gyro period*mag ratio*tc+theta df;

Zc=Z1*ones(size(tc));

else

theta c=2*pi/gyro period*(1−gamma)*mag ratio*...

((1−gamma−gamma d)/(1−gamma)*t1*(exp(−tc/t1)−1)+tc)+theta df;

% theta c=[theta df:...

% 2*pi/gyro period(j)*(1−gamma)*mag ratio*...

% ((1−gamma−gamma d)/(1−gamma)*t1*(exp(−tstep/t1)−1)+tstep):...

% theta df+2*pi];

Zc=(Z2f−Z1)*exp(−tc/t1)+Z1;

end

% figure out if ne/n neut is specified, otherwise just use some arbitrary

% value. This definition for ion frac is good for the charging part of

% the motion, and needs to be changed for Zd new

if const gyration ratio==true

gyration ratio=gyration ratio i;

% need to put this line in here, because I have/will convert the

% expressions below to include the time−dependent gyration ratio!

ion frac=gyration ratio*4/3/pi/KnD.ˆ2/(tn fact)/(1+1/KnD)/sqrt(mr*Tr)/...

e mag./abs(Zc);

end

% Compute dimensionless (normalized by v perp) velocities. These look a

% little complicated, but that is just because I have replaced the

% gyration ratio parameter with a combination of other parameters.

u xc = u xd(end)*cos(theta c−theta df).*...

exp(−2*pi/gyro period./(3*pi/4*KnD.ˆ2*(tn fact)*(1+1/KnD)*...

sqrt(mr*Tr)*e mag*abs(Zc).*ion frac).*tc)−...

(u yd(end)+E 0x)*sin(theta c−theta df).*...

exp(−2*pi/gyro period./(3*pi/4*KnD.ˆ2*(tn fact)*(1+1/KnD)*...

sqrt(mr*Tr)*e mag*abs(Zc).*ion frac).*tc);

u yc = u xd(end)*sin(theta c−theta df).*...
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exp(−2*pi/gyro period./(3*pi/4*KnD.ˆ2*(tn fact)*(1+1/KnD)*...

sqrt(mr*Tr)*e mag*abs(Zc).*ion frac).*tc)−E 0x+...

(u yd(end)+E 0x)*cos(theta c−theta df).*...

exp(−2*pi/gyro period./(3*pi/4*KnD.ˆ2*(tn fact)*(1+1/KnD)*...

sqrt(mr*Tr)*e mag*abs(Zc).*ion frac).*tc);

% % initial conditions for position; just start where we left off

% % during the discharging part of the gyro−cycle.

%xc(1)=xd(end);

xc(1)=0;

yc(1)=yd(end);

% compute xc and yc

for i=2:length(tc)−1

xc(i)=(.5*(tc(i+1)−tc(i))*(u xc(i)+u xc(i+1)))/1+xc(i−1);

yc(i)=(.5*(tc(i+1)−tc(i))*(u yc(i)+u yc(i+1)))/1+yc(i−1);

% maybe try some trick with theta instead of time later.

end

% check to see if the grain transitions back to x>0!

% IF THE GRAIN DOES NOT TRANSITION, THEN MAKE SURE TO CUT EVERYTHING OFF AT

% THETA C = THETA DI+2*PI

if xc(end)≤0%theta cf≤theta di+2*pi%xc(i)≤0 && max(xc)<0

%disp('now here')

%xc(end)

% if xd never goes into xd<0, there is no transition from x<0 to

% x>0, no fancy tricks are needed. Grain spends no more time in the

% x>0 (UV present) region.

transition2=false;

% put in "safe" values for the "re−entry" parameters.

tdf new=0;

t2 new=0;

% theta d new=theta c(end);

% xd new=xc(end);

% yd new=yc(end);

% u xd new=u xc(end);

% u yd new=u yc(end);
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% Zd new=Zc(end);

td new=[];

theta d new=[];

xd new=[];

yd new=[];

u xd new=[];

u yd new=[];

Zd new=[];

% THE GRAIN TRANSITIONS BACK INTO x>0

else

%initialize counter

i=1;

% x and y are in units of v perp*gyro period/2/pi

while (xc(i)≤0 | | i≤2) && i≤length(td)−1

i=i+1;

yc(i)=(.5*(tc(i+1)−tc(i))*(u yc(i)+u yc(i+1)))+yc(i−1);

xc(i)=(.5*(tc(i+1)−tc(i))*(u xc(i)+u xc(i+1)))+xc(i−1);

%disp(num2str(xc(i)))

%drawnow;plot(xd,yd)

end

% get rid of superfluous elements

xc(i+1:end)=[];

yc(i+1:end)=[];

%disp('not here')

% the grain does transition into x>0, so do linear interpoplation

% to get xc(i) and yc(i).

% xcf is defined as being zero in this procedure.

transition2=true;

% find tdf using linear interpolation. get the slope between the

% last two data points.

indices=find(xc>0);

i=indices(1)−1;

tcf = −xc(i−1)*(tc(i)−tc(i−1))/(xc(i)−xc(i−1))+tc(i−1);

% now that tdf is computed, we are free to enter xc(t=tcf)=0.

xc(i)=0;

tc(i)=tcf;
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% need to re−compute yd(t) for the last index value. Not sure if

% this is correct!

yc(i)=(.5*(tc(i)−tc(i−1))*(u yc(i−1)+u yc(i)))/1+...

yc(i−1);

xc(i+1:end)=[];

yc(i+1:end)=[];

tc=linspace(0,tcf,npoints+1);

% need to protect against t1=0 case again.

if t1==0;

% theta c=2*pi/gyro period*(1−gamma)*mag ratio*tc...

% +theta df;

theta c=2*pi/gyro period*mag ratio*tc+theta df;

Zc=Z2f*ones(size(Zc));

Z1f=Z2f;

else

theta c=2*pi/gyro period*(1−gamma)*mag ratio*...

((1−gamma−gamma d)/(1−gamma)*t1*(exp(−tc/t1)−1)+tc)+...

theta df;

Zc=(Z2f−Z1)*exp(−tc/t1)+Z1;

% redefine Z1f so that it corresponds to the dimensionless

% surface potential when the grain reaches x=0 or at the end of

% the gyro−orbit!

Z1f=(Z2f−Z1)*exp(−tcf/t1)+Z1;

end

theta cf=theta c(end);

% Compute dimensionless (normalized by v perp) velocities. These

% look a little complicated, but that is just because I have

% replaced the gyration ratio parameter with a combination of other

% parameters.

u xc = u xd(end)*cos(theta c−theta df).*...

exp(−2*pi/gyro period./(3*pi/4*KnD.ˆ2*(tn fact)*(1+1/KnD)*...

sqrt(mr*Tr)*e mag*abs(Zc).*ion frac).*tc)−...

(u yd(end)+E 0x)*sin(theta c−theta df).*...

exp(−2*pi/gyro period./(3*pi/4*KnD.ˆ2*(tn fact)*(1+1/KnD)*...

sqrt(mr*Tr)*e mag*abs(Zc).*ion frac).*tc);
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u yc = u xd(end)*sin(theta c−theta df).*...

exp(−2*pi/gyro period./(3*pi/4*KnD.ˆ2*(tn fact)*(1+1/KnD)*...

sqrt(mr*Tr)*e mag*abs(Zc).*ion frac).*tc)−E 0x+...

(u yd(end)+E 0x)*cos(theta c−theta df).*...

exp(−2*pi/gyro period./(3*pi/4*KnD.ˆ2*(tn fact)*(1+1/KnD)*...

sqrt(mr*Tr)*e mag*abs(Zc).*ion frac).*tc);

% % initial conditions for position; just start where we left off

% % during the discharging part of the gyro−cycle.

xc(1)=xd(end);

yc(1)=yd(end);

% x and y are in units of v perp*gyro period/2/pi

% % x(t), y(t) offset in time from vx, vy by a half step:

for i=2:length(td)−1

xc(i)=(.5*(tc(i+1)−tc(i))*(u xc(i)+u xc(i+1)))+xc(i−1);

yc(i)=(.5*(tc(i+1)−tc(i))*(u yc(i)+u yc(i+1)))+yc(i−1);

% maybe try some trick with theta instead of time later.

end

%disp(num2str(xc(end)))

% DO CHARGING EQUATION AGAIN TO FIND A NEW VALUE OF t2; THIS NEEDS

% TO BE FIXED SO THAT Z1/Z2<1 IS POSSIBLE! 4/16/2014

% REMEMBER that Z1f was redefined earlier to mean the dimensionless

% surface potential when the grain reaches x=0 or at the end of the

% gyro−orbit.

Z = Z1f;

% Z2f new is our second calculation for Z2f.

Z2f new = Z1f+(1−exp(−1))*(Z2−Z1f);

while Z>Z2f new

dZdt=dimensionless charger(ch model,Z,Tr,mr,M,eta,Kna,KnD,...

upsilon,e mag/mag ratio);

dt=1/3*KnD/(1+1/KnD)/(tn fact)/NDe/abs(dZdt);

dZ=1/3*KnD/(1+1/KnD)/(tn fact)/NDe*sign(dZdt);

Zarr(cnt)=Z;

tarr(cnt)=tchg;

cnt=cnt+1;

269



tchg=tchg+dt;

Z=Z+dZ;

% drawnow;

% figure(1);plot(tarr,Zarr)

end

t2 new=tchg;

gamma new=(Z2−Z1f)/Z2;

td new=linspace(0,gyro period,npoints+1);

% need to protect against t1=0 case again.

if t2 new==0;

theta d new=2*pi/gyro period*td new+theta c(end);

else

theta d new=2*pi/gyro period*(gamma new*t2 new*...

(exp(−td new/t2 new)−1)+td new)+theta c(end);

end

% CONTINUE FINDING TRAJECTORY IN DISCHARGE REGION.

% find where theta d new=theta di+2*pi

stop indices=find(theta d new≥theta di+2*pi);

tdf new=td new(stop indices(1));

td new=linspace(0,tdf new,npoints+1);

% need to protect against t1=0 case again.

if t2 new==0;

theta d new=2*pi/gyro period*td new+theta c(end);

Zd new=Z1f*ones(size(td new));

% redefine Z2f new so that it corresponds to the dimensionless

% surface potential at the end of the gyro−orbit. In this case,

% because grain surface potential does not change (no

% discharging), just set it equal to the final charge obtained

% in region 1.

Z2f new=Z1f;

else

theta d new=2*pi/gyro period*(gamma new*t2 new*...

(exp(−td new/t2 new)−1)+td new)+theta c(end);

Zd new=(Z1f−Z2)*exp(−td new/t2 new)+Z2;

% redefine Z2f new so that it corresponds to the dimensionless
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% surface potential at the end of the gyro−orbit!

Z2f new=(Z1f−Z2)*exp(−tdf new/t2 new)+Z2;

end

% figure out if ne/n neut is specified, otherwise just use some

% arbitrary value. This definition for ion frac is good for the 2nd

% discharging part of the motion, and needs to be changed for

% Zd new

if const gyration ratio==true

gyration ratio=gyration ratio i;

% need to put this line in here, because I have/will convert the

% expressions below to include the time−dependent gyration ratio!

ion frac=gyration ratio*4/3/pi/KnD.ˆ2/(tn fact)/(1+1/KnD)...

/sqrt(mr*Tr)/e mag./abs(Zd new);

end

u xd new = u xc(end)*cos(theta d new−theta c(end)).*...

exp(−2*pi/gyro period./(3*pi/4*KnD.ˆ2*(tn fact)*(1+1/KnD)*...

sqrt(mr*Tr)*e mag*abs(Zd new).*ion frac).*td new)−...

(u yc(end)+E 0x)*sin(theta d new−theta c(end))...

.*exp(−2*pi/gyro period./(3*pi/4*KnD.ˆ2*(tn fact)*(1+1/KnD)*...

sqrt(mr*Tr)*e mag*abs(Zd new).*ion frac).*td new);

u yd new = u xc(end)*sin(theta d new−theta c(end)).*...

exp(−2*pi/gyro period./(3*pi/4*KnD.ˆ2*(tn fact)*(1+1/KnD)*...

sqrt(mr*Tr)*e mag*abs(Zd new).*ion frac).*td new)−E 0x+...

(u yc(end)+E 0x)*cos(theta d new−theta c(end))...

.*exp(−2*pi/gyro period./(3*pi/4*KnD.ˆ2*(tn fact)*(1+1/KnD)*...

sqrt(mr*Tr)*e mag*abs(Zd new).*ion frac).*td new);

% % initial conditions for position; just start at x=xc(end) and

% % y=yc(end), most sensible way to start.

xd new(1)=xc(end);

yd new(1)=yc(end);

% % x(t), y(t) offset in time from vx, vy by a half step:

for i=2:length(td)−1

xd new(i)=(.5*(td new(i+1)−td new(i))...

*(u xd new(i)+u xd new(i+1))/1+xd new(i−1))/1;

yd new(i)=(.5*(td new(i+1)−td new(i))...
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*(u yd new(i)+u yd new(i+1))/1+yd new(i−1))/1;

% maybe try some trick with theta instead of time later.

end

%Zd new=(Z1f−Z2)*exp(−td new/t2 new)+Z2;

end

end

% gyro−average the charging time to get a reasonable value for

% describing the charging time as a whole??

dZd dt=(Z2−Z1)/t2*exp(−td/t2);

% find "current", or (d/dt)Z in the "charging" region:

if t1==0

dZc dt=zeros(size(tc));

else

dZc dt=(Z1−Z2f)/t1*exp(−tc/t1);

end

% find "current", or (d/dt)Z if the grain re−enters x>0 from the charging

% region:

if t2 new==0

dZd new dt=zeros(size(td new));

else

%Zd new=(Z1f−Z2)*exp(−td new/t2 new)+Z2;

dZd new dt=−(Z1f−Z2)/t2 new*exp(−td new/t2 new);

end

% recall what our old gyro period was, save it:

gyro period i=gyro period;

% resize the gyro−period to make it equal to the time it takes the

% grain to make one revolution in gyro−phase

gyro period = tdf+tcf+tdf new;

% concatenate arrays to get x(t), y(t), etc.

theta=[theta d theta c theta d new];

% very important to get this array correct! each of the 3 possible time

% arrays must be concatenated from tail−to−head.

t=[td tdf+tc tdf+tcf+td new];

x=[xd xc xd new];
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y=[yd yc yd new];

ux=[u xd u xc u xd new];

uy=[u yd u yc u yd new];

% the perpendicular speed:

v perp=sqrt(ux.ˆ2+uy.ˆ2);

Z t = [Zd Zc Zd new];

dZ dt=[dZd dt dZc dt dZd new dt];

% compute the average charge on the grain:

Zavg=1/gyro period*trapz(t,Z t);

% the expression below can be used to determine "current" as a function of

% time

dZ dt avg=1/gyro period*trapz(t,dZ dt);

% keep in mind that gyration ratio is not accurate right now in this

% loop! Not a big deal, just recalculate: the original

% gyration ratio=2*pi/gyro period orig, so the new

% gyration ratio=gyration ratio*((tdf+tcf)/gyro period(j)). It might be

% a good idea to set up an array and see how the gyration parameter

% changes as t g/t ch is sweeped.

% If we didn't use the ionization fracation parameter, and input a constant

% gyration ratio, then the gyration ratio does not change?

if const gyration ratio==true

gyration ratio=gyration ratio*(gyro period i/(tdf+tcf+tdf new));

% no longer need ion frac

clear ion frac;

else

gyration ratio=(3*pi/4*KnD.ˆ2*(tn fact)*(1+1/KnD)*sqrt(mr*Tr)*e mag*...

ion frac*abs(Zavg))*(gyro period i/(tdf+tcf+tdf new));

end

% aug 28 2014: I think this line is no longer needed, but I have left it

% here just in case
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%gyro period i = gyro period;

% one way of computing tch avg.

%tch avg(j) = 1/gyro period(j)*(trapz(td,Zd./dZd dt)+...

% trapz(tc,Zc./dZc dt));

% old method for getting drifts:

% take the average value of the guiding center velocities.

% vxdrift=1/gyro period*(trapz(td, u xd)+trapz(tc,u xc)+...

% trapz(td new,u xd new));

% vydrift=1/gyro period*(trapz(td, u yd)+trapz(tc,u yc)+...

% trapz(td new,u yd new));

% risky procedure; but the idea is to get rid of "redundant" time values,

% or other arrays that are based off the time array. Position arrays x and

% y for example, will not be culled.

removal=mod(length(t),npoints)−1;

% there are only 3 options: t array is of length npoints, t array is of

% length 2*npoints, or t array is of length 3*npoints. If t array is of

% length npoints, nothing more needs to be done.

if removal==1 | | removal ==2

if removal==1

% get rid of the redundant element.

v perp(npoints+1+removal)=[];

t(npoints+1+removal)=[];

theta(npoints+1+removal)=[];

Z t(npoints+1+removal)=[];

dZ dt(npoints+1+removal)=[];

ux(npoints+1+removal)=[];

uy(npoints+1+removal)=[];

else

% get rid of the redundant elements.
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v perp(npoints+1+(removal−1))=[];

v perp(2*(npoints+1)+(removal−1))=[];

t(npoints+1+(removal−1))=[];

t(2*(npoints+1)+(removal−1))=[];

theta(npoints+1+(removal−1))=[];

theta(2*(npoints+1)+(removal−1))=[];

Z t(npoints+1+(removal−1))=[];

Z t(2*(npoints+1)+(removal−1))=[];

dZ dt(npoints+1+(removal−1))=[];

dZ dt(2*(npoints+1)+(removal−1))=[];

ux(npoints+1+(removal−1))=[];

ux(2*(npoints+1)+(removal−1))=[];

uy(npoints+1+(removal−1))=[];

uy(2*(npoints+1)+(removal−1))=[];

end

end

% % figure out if an electric field was specified; this affects how

% % the instantaneous guiding center is calculated!

if E 0x==0

% compute instantaneous guiding center drift position:

xgct=x−v perp(2:end)./(diff(theta)./diff(t)).*cos(theta(2:end));

% y−guiding center requires the subtraction of the electric field??

ygct=y−v perp(2:end)./(diff(theta)./diff(t)).*sin(theta(2:end));

% let phi=theta!

phi=theta;

else

%phi=zeros(size(x));

phi=zeros(size(ux));

for index=1:length(t)

phi(index)=improved arctan(ux(index),uy(index));

end
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phi=phi−pi/2;

%phi(end)

xgct=x−sqrt(ux(2:end).ˆ2+uy(2:end).ˆ2)./(diff(phi)./diff(t(1:end))).*cos(phi(2:end));

ygct=y−sqrt(ux(2:end).ˆ2+uy(2:end).ˆ2)./(diff(phi)./diff(t(1:end))).*sin(phi(2:end));

%figure(2);

%plot(x,y)

%hold on;

%plot(alt2 xgct,alt2 ygct,':k')

%plot(t,phi)

end

% alternate

%alt xgct=xc−(u xc(2:end).ˆ2+u yc(2:end).ˆ2)./(diff(theta c)./diff(tc)).*cos(theta c(2:end));

%alt ygct=yc−(u xc(2:end).ˆ2+u yc(2:end).ˆ2)./(diff(theta c)./diff(tc)).*sin(theta c(2:end));

% another alternate: try to get analytical expression for dtheta dt:

% dtheta d dt=abs(3*sqrt(pi/2)*(1+1/KnD)*(KnD.ˆ3)*...

% (1+Tr/eta)ˆ(3/2)*e mag*Z2/mass ratio*...

% ((Z1−Z2)/Z2*exp(−td/t2)+1));

% % leaving this for now; need to think more about this particular problem.

% % that is, why does this not replicate theta d written earlier???

% thetad=abs(3*sqrt(pi/2)*(1+1/KnD)*(KnD.ˆ3)*...

% (1+Tr/eta)ˆ(3/2)*e mag*Z2/mass ratio*...

% (t2*gamma*(exp(−td/t2)−1)+td))+theta di;

%thetad=2*pi/gyro period i*(t2*gamma*(exp(−td/t2)−1)+td)+theta di;

%dtheta d dt=2*pi/gyro period i*(−gamma*exp(−td/t2)+1);

% July 8 2014: I think I will stop using these lines of code, and stick to

% the Larmor average of the guiding center position.

% improved version for calculating drifts; I think this is always valid. If

% the grain never transitions, then the time and velocity values get

% duplicated. When using trapz, these points will not contribute to the

% integral, which is what we want. Note: I do not think this is a Larmor
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% average, which is alternatively implemented later.

%vxdrift=1/gyro period*(trapz(t, ux));

%vydrift=1/gyro period*(trapz(t, uy));

% compute the drifts, as specified by Northrop

% a possible way (it appears to be correct) of computing the guiding center

% drift: integrate instantaneous guiding center postion as a function of

% time (average over 1 gyro−cycle). R Ld = v perp/(dtheta dt), so I just

% use a finite difference to find dtheta dt. Gives close results to the

% algorithm above, but slightly different. Note: this is a Larmor average,

% meaning that the guiding center position and time is used rather than

% just the velocity values.

% July 8 2014: I don't know how I came up with these lines, but I don't

% trust them. After further inspection, they are correct, but I need to use

% phi instead of theta for more generality.

% vxdrift=((x(end)−v perp(end)/((theta(end)−theta(end−1))/...

% (t(end)−t(end−1)))*cos(theta(end)))−...

% (x(1)−v perp(1)/((theta(2)−theta(1))/(t(2)−t(1)))*...

% cos(theta(1))))/gyro period;

% vydrift=((y(end)−v perp(end)/((theta(end)−theta(end−1))/...

% (t(end)−t(end−1)))*sin(theta(end)))−...

% (y(1)−v perp(1)/((theta(2)−theta(1))/(t(2)−t(1)))*...

% sin(theta(1))))/gyro period;

% Better Larmor average method, which uses phi instead of theta:

% see my notebook page 74, I think these are legit, although they seem to

% cause problems when the electric field is non−zero. Could be due to the

% finite differences I take to approximate derivatives!

vxdrift=1/gyro period*(x(end)−x(1)−...

v perp(end)/((phi(end)−phi(end−1))/(t(end)−t(end−1)))*cos(phi(end))+...

v perp(1)/((phi(2)−phi(1))/(t(2)−t(1)))*cos(phi(1)));

vydrift=1/gyro period*(y(end)−y(1)−...

v perp(end)/((phi(end)−phi(end−1))/(t(end)−t(end−1)))*sin(phi(end))+...

v perp(1)/((phi(2)−phi(1))/(t(2)−t(1)))*sin(phi(1)));
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%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% Northrop prediction??? Need Zavg first??

% find out the phase angle where the grain is most negatively charged, this

% must correspond to theta 1 in northrop's notation, which I call phi 1.

% Call the most negative charge Zamp.

% this assumes that Z is always negative. Should Zamp be a positive or

% negative value?? makes a big difference!!!

%index set=find(Z t==min(Z t));

index set=find(Z t==max(Z t));

% in case Z t=the most negative value of Z t several times, choose the

% first time???

phi 1=phi(index set(1));

% perhaps I should use Zhalf, or the dimensionless surface potential that

% is halfway between the minimum and maximum value, for "q0" in Northrop's

% notation.

Zhalf=(max(Z t)+min(Z t))/2;

% does Zamp need a minus sign or not??? check 1983 northrop jgr

Zamp=abs(Z t(index set(1))−Zhalf);

% figure(1);clf;

% plot(phi,Z t)

% hold on;

% %line([t(1) t(end)],[Zhalf Zhalf],'color','k')

% line([phi(1) phi(end)],[Zhalf Zhalf],'color','k')

% %line([t(1) t(end)],[Zhalf+Zamp Zhalf+Zamp],'color','k','linestyle','−−')

% plot(phi 1,Zhalf+Zamp,'ok','markersize',16);

% hold on;

% plot(phi,Zhalf+Zamp*cos(phi−phi 1));

% set(gcf, 'Color', [1,1,1]);

% These descriptions need to be debugged, and I need to make sure they

% work!!!

% what do I do about v perp??? assume it is the gyro−averaged value???

% Do I normalize correctly by dividing by sqrt(ux(1)ˆ2+uy(1)ˆ2)?? I think
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% the answer is NO.

vxdrift northrop=−(Zamp/2/Zhalf)*1/gyro period*trapz(t,v perp)*sin(phi 1);

% do I include the grad−q drift in here???

% vydrift northrop=(−Zamp/2/Zhalf)*1/gyro period*trapz(t,v perp)*cos(phi 1)...

% +2*1/gyro period*trapz(t,v perp)/pi*...

% (abs(Z1)−abs(Z2))/(abs(Z1)+abs(Z2))+...

% abs(E 0x);

vydrift northrop=(Zamp/2/Zhalf)*1/gyro period*trapz(t,v perp)*cos(phi 1)...

+abs(E 0x);

%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% maybe do something like this to compute avg charging time? I think this

% is the most sensible way.

tch avg=t2*tdf/gyro period+t1*tcf/gyro period+t2 new/gyro period;

% It might be a better idea to use: Zavg/dZ dt avg for tch avg:

%tch avg=Zavg/dZ dt avg;

% consider computing (average) Knudsen capture parameter as a function of

% time? This expression has been updated to reflect the

% 4*pi*eps0*a −−> 4*pi*eps0*a*(1+a/lambda D) change to capacitance.

Kn R0=Kna/2/1.22*(1.5/Tr/abs(Zavg)*KnD+1)/(1+KnD);

% it might also be of interest to see the instantaneous guiding center

% position.

% figure out how big the graph has to be.

%graph size=max(y);

%graph size=max(x);

% this statement ensures that we pick the larger of the two excursions for

% the graph size.

graph size=(max(y)>max(x))*max(y)+(max(x)>max(y))*max(x);

% % v perp, which is a function of time for discharging and charging

% % parts of the gyro−cycle:

%v perp d=sqrt(u xd(1:end−1).ˆ2+u yd(1:end−1).ˆ2);

%v perp c=sqrt(u xc(1:end−1).ˆ2+u yc(1:end−1).ˆ2);
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%% the time−dependent gyro−frequency, need for gyro−radius

%%wdt=2*pi/gyro period(j)*(Zd(1:end−1)/Z2);

%wdt=2*pi*(Zd(1:end−1)/Z2);

%% the time−dependent gyro−frequency, needed

%% for gyro−radius calculation below.

%%wct=2*pi/gyro period(j)*mag ratio*((gamma d+gamma−1)...

%% *exp(−tc(1:end−1)/t1)+(1−gamma));

%wct=2*pi*mag ratio*((gamma d+gamma−1)...

%*exp(−tc(1:end−1)/t1)+(1−gamma));

%% finally, compute gyro−radius as a function of time:

%RLd = v perp d./wdt;

%RLc = v perp c./wct;

%% xgct=[xd−RLd.*cos(theta d(1:end−1))...

%% xc−RLc.*cos(theta c(1:end−1))];

%% ygct=[yd−RLd.*sin(theta d(1:end−1))...

%% yc−RLc.*sin(theta c(1:end−1))];

%xgct=[xd−RLd.*cos(theta d(1:end−1))...

%xc−RLc.*cos(theta c(1:end−1))]/graph size;

%ygct=[yd−RLd.*sin(theta d(1:end−1))...

%yc−RLc.*sin(theta c(1:end−1))]/graph size;

%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% plotting commands for grain trajectory.

figure(2);

%clf;

plot(x/graph size,y/graph size,'−k','linewidth',2)

hold on;

%plot(xd(find(theta d<pi/2))/graph size,yd(find(theta d<pi/2))/graph size,'−m')

plot(xgct/graph size,ygct/graph size,':k','linewidth',2);

%plot(alt xgct/graph size,alt ygct/graph size,'b');

%plot(alt2 xgct/graph size,alt2 ygct/graph size,'g');

% xlim([−1*(max(y)>max(x))+(−1+1/2)*(max(x)>max(y))...

% (max(y)>max(x))+(1+1/2)*(max(x)>max(y))])

%xlim([−1 1])

xlim([−2 2])
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% ylim([(−1+1/2)*(max(y)>max(x))−1*(max(x)>max(y))...

% (1+1/2)*(max(y)>max(x))+1*(max(x)>max(y))])

%ylim([−1+1/2 1+1/2])

ylim([−2 2])

axis square;

set(gca,'fontsize',16)

xlabel('Normalized x')

ylabel('Normalized y')

title('Trajectory')

%fill([0 0 1 1],[−.5 1.5 1.5 −.5],'y','edgecolor','none');

set(gcf, 'Color', [1,1,1]);

%hold off;

%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% figure(3);

% clf;

% hold on;

% for i=1:length(x);

%

% if mod(i,10)==0

% drawnow;

% plot(x(i)/graph size,y(i)/graph size,'−k','linewidth',2)

% %plot(xd(find(theta d<pi/2))/graph size,yd(find(theta d<pi/2))/graph size,'−m')

% plot(xgct(i)/graph size,ygct(i)/graph size,':k','linewidth',2);

% xlim([−2 2])

% ylim([−2 2])

% set(gcf, 'Color', [1,1,1]);

%

% end

% end

%movie2avi(M,'testing.avi');

%save(strcat(ch model,' omega sweep var',grainsize,'.mat'),'upsilona','vxdrift','vydrift','drift ratio','Kn R0');
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2 Specifying the Space or Laboratory Plasma Profile

The purpose of profiles.m is to provide an analytical spatial description for the plasma or system

of interest. The output of profiles, such as electron and ion density and electric fields etc., will

ultimately be applied to the equations of motion for the dust grain and for determining the current

to the dust grain. This program can also be called to make spatial plots of a specific profile. Many

profiles have been constructed so far, and examples of these will be discussed in later sections of

this report, but it will generally be up to the user to create new profiles, or modify existing profiles

when running simulations.

Profiles is used by dust trajectory.m, but can be used as a subroutine or function in its own

right.

% % profiles.m

% % perhaps debye length and ion mean free path should be computed inside

% % of profiles.m??

function [V,E x,E y,B,vi x,vi y,ve x,ve y,vn x,vn y,g x,g y,ni,ne,alph,...

Ti,Te,nneut,lambda i,lambda D,corot period]=...

profiles(Ti0,Te0,n0,t,x,y,profile type,P,species)

% add statements for B, P, lambda i, lambda D, Z, eta, tau, ion/electron

% larmor radii, neutral density

% % I've decided to get rid of global vars; they are commented if you feel

% % like using them again.

%global qe;

%global me;

%global mp;

%global eps0;

%global mi

qe=1.6e−19;

me=9.1e−31;

mp=1.67e−27;

eps0=8.854e−12;
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mi=species*mp;

mr=me/mi;

%%!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

% All of the information below should go into each profile!

% % assume Tn = Ti, may not always be true. I will eventually need Tn0 as

% % an input, and Tn as an output of profiles.m

nneut=P/qe/Ti0;

% % bit of code I am trying out to change pressure with respect to time.

% if t≥3

% Pmtorr=.05;

% nneut=(Pmtorr/7.5)/qe/Ti0;

% end

Tau=Te0/Ti0;

vthe=sqrt(2*qe*Te0/me); % local electron thermal speed, m/s

vthi=sqrt(mr/Tau)*vthe; % local ion (proton) thermal speed, m/s

% % calculate the mean free path; assuming this is the mean free path for

% % neutrals. To save myself the headache of rewriting much of this code, I

% % will follow Lampe 2003 pop, and set lambda i = lambda mfp =

% % lambda neut. 5.8e−19 is the cross−section for resonant charge exchange

% % that I got out of Smirnov's book on ionized gases. This value is for a

% % 1 ev beam of Ar ions incident on Ar neutrals, but according to Tsendin

% % this energy dependence is weak so I'm using this value. This will have

% % to be changed for different species! IT SHOULD BE:

% % vthn=sqrt(2*qe*(Tn0=Ti0)/(mi=mn)), CORRECT???

% The definition below is from Tsendin's textbook:

nu=32*(5.8e−19)*nneut*sqrt(qe*Ti0/mi)/3/sqrt(pi);

if nu==0

lambda i=inf;

else

lambda i=vthi/nu; % lambda i will be infinite if nu=0!

% This is an expression from Pascal Chabert's textbook, I think it is
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% not as correct as the Tsendin expression above.

%lambda i=1/5.8e−19/nneut;

end

% % error checking code below doesn't work, don't know why.

% if ch model=='kortshagen'&&P==0

% exception = 'YOU MUST USE A POSITIVE DEFINITE VALUE FOR THE PRESSURE

% WHEN USING KORTSHAGEN CHARGE MODEL!!!';

% error(exception)

% end

% % if no profile is specified, then use a uniform profile

% if length(profile type)==0;

% disp('no profile was selected, so a uniform profile has been chosen');

% profile type='uniform';

% end

% % All the code above needs to go into each profile!

% %!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

switch profile type

case 'uniform'

alph0=0;

V=0;

E x=−100;

E y=0;

ni=n0;

ne=n0;

alph=alph0;

vi x=0;vi y=0;

ve x=0;ve y=0;

vn x=0;vn y=0;

Ti=Ti0;Te=Te0;

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

% % gravity unimportant since it is not in the plane or too weak.

g x=0;g y=0;
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B=4;

% corot period is unused for this profile.

corot period=0;

% % uniform plasma, but with an electric field

case 'non uniform n0'

alph0=0;

V=0;

E x=0;

E y=0;

% "L" marks where the density reaches (1−exp(−1))*n0:

L=0.01;

ni=n0*sech(x/L);

ne=ni;

alph=alph0;

vi x=0;vi y=0;

ve x=0;ve y=0;

vn x=0;vn y=0;

Ti=Ti0;Te=Te0;

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

% % gravity unimportant since it is not in the plane or too weak.

g x=0;g y=0;

B=4;

% corot period is unused for this profile.

corot period=0;

% % uniform plasma, but with an electric field

case 'uniform E'

alph0=0;

L=1; %% scale length of plasma

V=0;

%E x=−Te0/2/L;

E x=−100;

E y=0;

ni=n0;

ne=n0;

alph=alph0;

vi x=0;vi y=0;
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ve x=0;ve y=0;

vn x=0;vn y=0;

Ti=Ti0;Te=Te0;

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

% % gravity unimportant since it is not in the plane or too weak.

g x=0;g y=0;

B=4;

% corot period is unused for this profile.

corot period=0;

case 'ExB theory simulation'

alph0=0;

L=1; %% scale length of plasma

V=0;

E x=−100;

E y=−100;

ni=n0;

ne=n0;

alph=alph0;

vi x=0;vi y=0;

ve x=0;ve y=0;

vn x=0;vn y=0;

Ti=Ti0;Te=Te0;

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

% % gravity unimportant since it is not in the plane or too weak.

g x=0;g y=0;

B=4;

% corot period is unused for this profile.

corot period=0;

case 'ExB theory simulation ion drag'

alph0=0;

L=1; %% scale length of plasma

V=0;

E x=−0;

E y=−0;

ni=n0;

ne=n0;
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alph=alph0;

vi x=−200;vi y=0;

ve x=0;ve y=0;

vn x=0;vn y=0;

Ti=Ti0;Te=Te0;

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

% % gravity unimportant since it is not in the plane or too weak.

g x=0;g y=0;

B=1;

% corot period is unused for this profile.

corot period=0;

case 'ExB theory simulation drag'

alph0=0;

L=1; %% scale length of plasma

V=0;

E x=−100;

%E x=0;

E y=−0;

ni=n0;

ne=n0;

alph=alph0;

vi x=0;vi y=0;

ve x=0;ve y=0;

vn x=−100;vn y=0;

Ti=Ti0;Te=Te0;

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

% % gravity unimportant since it is not in the plane or too weak.

g x=0;g y=0;

B=4;

% corot period is unused for this profile.

corot period=0;

case 'grad B slab'

alph0=0;

V=0;

E x=−0;

E y=−0;
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B0=4;

% length scale:

L=1000;

ni=n0;

ne=n0;

alph=alph0;

vi x=0;vi y=0;

ve x=0;ve y=0;

vn x=−100;vn y=0;

Ti=Ti0;Te=Te0;

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

% % gravity unimportant since it is not in the plane or too weak.

g x=0;g y=0;

%B=4;

B=B0−x/L*B0;

% corot period is unused for this profile.

corot period=0;

% % uniform plasma, but with electric field only on for −1<E<1:

case 'uniform E step'

alph0=0;

V=0;

E x=−10*(x>−.1)*(x<.1);

E y=0;

ni=n0;

ne=n0;

alph=alph0;

vi x=0;vi y=0;

ve x=0;ve y=0;

vn x=0;vn y=0;

Ti=Ti0;Te=Te0;

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

% % gravity unimportant since it is not in the plane or too weak.

g x=0;g y=0;

B=4;

% corot period is unused for this profile.

corot period=0;
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case 'density step'

alph0=0;

V=0;

E x=0;

E y=0;

if x<0;

ne=2*n0;

ni=n0;

else

ne=n0;

ni=2*n0;

end

alph=alph0;

vi x=0;vi y=0;

ve x=0;ve y=0;

vn x=0;vn y=0;

Ti=Ti0;Te=Te0;

% % gravity unimportant since it is not in the plane or too weak.

g x=0;g y=0;

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

% corot period is unused for this profile.

corot period=0;

% % for an E*L*sech(x/L) plasma potential:

% % Also bear in mind that if you input E=positive value, you get a

% % positive E−field peak at x=−L, and a negative peak at x=L.

case 'E tanh sech'

alph0=0;

E=100; %% max strength of E−field in V/m

L=0.1;

ne = n0*exp(E*L*sech(x/L)/Te);

ni = n0*exp(−E*L*sech(x/L)/Ti);

% % multiply by 2 here for ions and electrons??

% % sept 2012 note to question above: yes.

E q = −(2)*(E*tanh(x/L)*sech(x/L));
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alph=alph0;

g x=0;g y=0;

vi x=0;vi y=0;

ve x=0;ve y=0;

vn x=0;vn y=0;

Ti=Ti0;Te=Te0;

% % gravity unimportant since it is not in the plane or too weak.

g x=0;g y=0;

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

B=4;

% corot period is unused for this profile.

corot period=0;

% % for an infinitely big electric field in −x direction:

case 'E lin inf'

% if x<0.5&&x>0

% ne=n0*exp(−E*x/Te)*(x<0.5)*(x>0);

% else

% ne=n0;

% end

% ni=n0;

alph0=0;

E=100; %% max strength of E−field in V/m

E x = −E;

E y=0;

V = E*x;

ne=n0;

ni=n0;

alph=alph0;

g x=0;g y=0;

vi x=0;vi y=0;

ve x=0;ve y=0;

vn x=0;vn y=0;

Ti=Ti0;Te=Te0;

% % gravity unimportant since it is not in the plane or too weak.

g x=0;g y=0;

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));
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B=4;

% corot period is unused for this profile.

corot period=0;

% % 2013/03/01: This profile is not a valid model.

case 'V step'

% % I get a dirac ∆ function when x = 0; not sure how to adjust

% % the electric field. I set it to zero for now.

alph0=0;

E=−100; %% max strength of E−field in V/m

E x = E;

E y=0;

V = (x<0)*(−50); %% 100 is just an arbitrary number in volts.

ne=n0;

ni=n0;

alph=alph0;

g x=0;g y=0;

vi x=0;vi y=0;

ve x=0;ve y=0;

vn x=0;vn y=0;

Ti=Ti0;Te=Te0;

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

B=4;

% corot period is unused for this profile.

corot period=0;

case 'E tanh'

alph0=0;

n1=n0;

n2=n0*3;

L=0.001;

ne=n1+(n2−n1)/2*tanh(x/L);

ni=ne;

E q=0;

alph=alph0;

g x=0;g y=0;

vi x=0;vi y=0;

ve x=0;ve y=0;
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vn x=0;vn y=0;

Ti=Ti0;Te=Te0;

% % gravity unimportant since it is not in the plane or too weak.

g x=0;g y=0;

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

B=4;

% corot period is unused for this profile.

corot period=0;

case 'B step'

alph0=0;

E=0;

E x=E;

E y=E;

V=0;

ne=n0;

ni=n0;

alph=alph0;

g x=0;g y=0;

vi x=0;vi y=0;

ve x=0;ve y=0;

vn x=0;vn y=0;

Ti=Ti0;Te=Te0;

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

% Make the step function right at x=0

%B=4*(x>0)+5*(x≤0);

% should I reverse the step function, so that the greater negative

% charge (q1) is for x≤0, and the lesser negative charge (q2) is

% for x>0?

B=4.05*(x≤0)+5*(x>0); % B=4.05 T is chosen, with 1.6 micron dia.

% grains in mind to demonstrate stationary

% guiding center.

% corot period is unused for this profile.

corot period=0;

case 'graded uv'

alph0=0.5;

ni=n0;
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ne=n0;

%% scale length:

L=.075;

if x<L&&x>−L

alph=(alph0*x+alph0/2)*(x<L)*(x>−L);

elseif x>L

alph=alph0;

else

alph=0;

end

V=0;

E x=0;

E y=0;

vi x=0;vi y=0;

ve x=0;ve y=0;

vn x=0;vn y=0;

Ti=Ti0;Te=Te0;

% % gravity unimportant since it is not in the plane or too weak.

g x=0;g y=0;

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

B=4;

% corot period is unused for this profile.

corot period=0;

case 'uv step'

%alph0=0.5;

alph0=0.25;

ni=n0;

ne=n0;

alph=(x>0)*alph0;

V=0;

E x=0;

E y=0;

vi x=0;vi y=0;

ve x=0;ve y=0;

vn x=0;vn y=0;

293



Ti=Ti0;Te=Te0;

% % gravity unimportant since it is not in the plane or too weak.

g x=0;g y=0;

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

B=4;

% corot period is unused for this profile.

corot period=0;

case 'uv step sheath'

%alph0=0.5;

% boundary region, where it switches from UV present/absent

%xb=−0.05;

% default value should be xb=0.

xb=0;

Ti=Ti0;Te=Te0;

ni=n0;

ne=n0;

% from Dove et. al.

f uv=1e17;

% the following expression ensures that we have 20 times as much uv

% flux as Dove et. al.

alph0=20*f uv/ne/vthe;

%alph0=0.25;

alph=(x>xb)*alph0;

V=0;

E x=0;

E y=0;

vi x=0;vi y=0;

ve y=0;

% assume the bohm speed for ions at sheath for now, check this

% later. remember that ve x is vi z!!!

ve x=sqrt(qe*Te0/mi);

vn x=0;vn y=0;

% % gravity unimportant since it is not in the plane or too weak.

g x=0;g y=0;
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%lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

% because ions flow at the bohm speed:

lambda D=sqrt((eps0*Te)/qe/(ne+ni));

B=4;

% corot period is unused for this profile.

corot period=0;

% Just like 'uv step' above, except now the UV gets modulated in time.

case 'uv time'

% figure out what frequency you want to modulate the UV. I suggest

% using a frequency that is close to the dust cyclotron frequency

% for the "shadowed" condition. This means you have to input all of

% the necessary parameters before you pick a frequency. Likewise,

% you only need to compute this timescale once.

% NOTE: PICK A REASONABLE FLUX OF PHOTOELECTRONS, AND REDO ALL OF

% THE STUFF BELOW FOR AN ECR PLASMA!!

% UV profile, need to calculate appropriate alph0 again, taking

% into account distance of the grain from the sun. calculated in a

% seemingly weird way due to how the photo−current is computed in

% the various charge models.

solar distance = 9.5; % distance from the sun in AU

effic = 1; % conductors have efficiencies of ¬1, oxides have ¬0.1

% this uv photon flux is for solar radiation and regolith

f UV = 2.8e13*effic/solar distance.ˆ2;

% coefficient for solar radiation and regolith; consider redo−ing

% for water

alph0 = 0.25*sqrt(4*pi)*f UV/n0/vthe;

% or, just input a value.

alph0=0.25; % alph0=1/4 implies that you get a flux of photo

% electrons that is equal to the electron current that

% would be present if the grain were at the local space

% potential.

% assume singly ionized plasma for now.
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Z=1;

ni=n0;

ne=n0;

V=0;

E x=0;

E y=0;

vi x=0;vi y=0;

ve x=0;ve y=0;

vn x=0;vn y=0;

Ti=Ti0;Te=Te0;

% % gravity unimportant since it is not in the plane or too weak.

g x=0;g y=0;

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

% strongest magnetic field along axis for an ECR is 0.0875 T.

B=0.0875;

if t==0

% Input what size of dust you are interested in, to find out

% what frequency to modulate the UV.

dust size=15*1e−9; % I've gone with 15 nm radius grains.

C=4*pi*eps0*dust size;

alph=0;

qflag=1;

ch model='oml'; % oml for now, but you are free to pick a

% different charge model

% assume for now that the grain moves at the neutral flow

% speed; might want to think about this assumption.

w grain=[sqrt(ve xˆ2+ve yˆ2) sqrt(vi xˆ2+vi yˆ2)];

[Itot,q,Kn R0,P0,P1,Pg1]=...

charging models(qflag,ch model,dust size,alph,Te,Ti,...

ne,ni,B,Z,C,0,lambda D,lambda i,w grain,species);

% frequency at which to modulate UV:

rho=1e3;

md=4/3*pi*rho*dust sizeˆ3;

T UV=abs(2*pi*md/q/B);

end

% YOU HAVE TO SHAPE THE PULSE, OTHERWISE THE GRAIN GOES AROUND IN A
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% CIRCLE!

T1=0.1476;

T2=.3095;

%T UV=0.1476;

T UV = T1/2+T2/2;

% integer multiples of T UV:

n whole = floor(t/T UV);

%alph=alph0*(((n whole+.5)*T UV<t) && (n whole+1)*T UV>t);

% I think this bottom line works:

alph=alph0*((n whole*T UV+T1/2<t) && (n whole+1)*T UV>t);

% corot period is unused for this profile.

corot period=0;

case 'uv gradient'

alph0=0.25;

ni=n0;

ne=n0;

alph=(x>0)*alph0;

% % use region where q=q2=q1/2 as the scale length.

%L=.0015;

% % alternatively, use a smaller gradient:

L=0.00015

% alph increases from 0 at x=0 to a max value at x=L, and stays at

% this max value for x>L.

alph=alph0*(x≥L) + alph0*x/L*(x≥0)*(x≤L);

V=0;

E x=0;

E y=0;

vi x=0;vi y=0;

ve x=0;ve y=0;

vn x=0;vn y=0;

Ti=Ti0;Te=Te0;

% % gravity unimportant since it is not in the plane or too weak.

g x=0;g y=0;

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

% corot period is unused for this profile.
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corot period=0;

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% % The child langmuir sheath provides the parameters for a dust grain

% % suspended in a simple DC discharge sheath. An electrode is placed at

% % the bottom, with an applied voltage relative to the plasma potential at

% % the center of the discharge (space potential is taken as 0 in the

% % middle of the discharge. This requires cold ions, or Te>>Ti. The sheath

% % is oriented in the y−direction, with the planar surface starting at

% % y=0.

case 'cl sheath'

% length of the plasma, in meters:

L=.05;

% ionization constant for Argon gas, in units of mˆ3 sˆ−1:

Ki=5e−14;

alph0=0;

V0=−10; % % This is the voltage of the Sheath electrode

% % relative to the plasma's space potential far away

% % from the electrode

% temp profile??

Ti=Ti0;Te=Te0;

% % specify the bohm speed, either here or in the main program

ub=sqrt(qe*Te0/mi);

ns=n0*exp(−1/2);

if V0>Te0;

% % if the above condition is false, CL condition does not hold.

% % Note that V0 will probably be negative relative to Te0.

%return

exception='V0>Te, CL condition=false';

error(exception);

end

%ji=qe*n0*sqrt(qe*Te0/mi);

ji=qe*ns*ub;

% % recheck this!

%V=((4/3)*(2*x*(ji/eps0)ˆ(1/2)*(2*qe/mi)ˆ1/4−(−V0ˆ3/4))ˆ(4/3);

% % calculate the sheath boundary. Might be necessary to include
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% % the −mi/2/qe*(ub).ˆ2 term, required for the space potential to

% % be continuous.

s=2*((−V0)ˆ(3/4))*sqrt(eps0/ji)*((2*qe/mi)ˆ(1/4))/3;

% plasma density at the sheath boundary:

ns=n0*exp(−1/2);

% % y=0 is the planar electrode which is well defined. Set the

% % sheath boundary (s) above this. See Chabert's 2011 textbook.

% % What follows in this if statement is the plasma solution.

if y≥s;

% % for y>sheath edge location, the plasma is quasineutral. One

% % still needs to obtain the n0(y), however.

% % Uncomment the lines below to get rid of complications:

V=0;

% electric field in the presheath is half an electron

% temperature. This field must be present to accelerate ions to

% the bohm speed at the plasma sheath boundary. I have this

% field going in the negative direction. The potential drop is

% Te/2, so you have to divide by the length of the presheath

% (the size of the plamsa)

%E y=−Te/L;

% No ion flow in x direction, although a cylindrical glow

% discharge might have a radial ion flow.

vi x=0;

% consider using the Tonks Langmuir solution!

% first, compute the sheath length:

%ys=2/3*ub/nneut/Ki;

% or, just use:

ys=L/2−s;

ynorm=2/3*(L/2−y)/ys;

% ion flow is given by the commented equation below, but must

% be rewritten so that matlab can handle it.

%vi y=2*ub*cos(1/3*(4*pi−atan(sqrt(4/9/ynorm/ynorm−1))));

% the rewritten version.

vi y=2*ub*cos(4*pi/3)*cos(atan(sqrt(4/9/ynorm/ynorm−1))/3)−...

2*ub*sin(4*pi/3)*sin(atan(sqrt(4/9/ynorm/ynorm−1))/3);
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%vi y=0;

V=−mi/2/qe*vi y.ˆ2;

% See my notebook #7, page 54 for the derivation. Still needs

% to be debugged! May 13, 2014

% E y=(−2/3/ys)*mi/qe*vi y*(8*ub/27/sqrt(4/9/ynorm.ˆ2−1)/...

% (1+(4/9/ynorm.ˆ2−1).ˆ2)/ynorm.ˆ3)*...

% (−sqrt(3)/2*cos(1/3*atan(sqrt(4/9/ynorm.ˆ2−1)))+...

% +.5*sin(1/3*atan(sqrt(4/9/ynorm.ˆ2−1))));

E y=(−2/3/ys)*mi/qe*vi y*(2*ub/3/ynorm/sqrt(4/9/ynorm.ˆ2−1))...

*(−sqrt(3)/2*cos(1/3*atan(sqrt(4/9/ynorm.ˆ2−1)))+...

+.5*sin(1/3*atan(sqrt(4/9/ynorm.ˆ2−1))));

%E y=0;

ni=n0*exp(V/Te);

ne=ni;

E x=0;

%ne=n0;ni=n0;

% use boundary values? Or find the plasma solution, otherwise

% the densities are discontinuous.

%ne=ns;ni=ns;

ve x=0;ve y=0;

vn x=0;vn y=0;

% below the boundary.

else

% I added the extra −mi/2/qe*(ub).ˆ2 term so that the

% potentials match on either side of the boundary! Check this

% in the future.

V=−(−3/2*sqrt(ji/eps0)*(2*qe/mi)ˆ(−1/4)*y+...

(−V0)ˆ(3/4)).ˆ(4/3)−mi/2/qe*(ub).ˆ2;

E y=(−2*sqrt(ji/eps0)*(2*qe/mi)ˆ(−1/4))*...

(−3/2*sqrt(ji/eps0)*(2*qe/mi)ˆ(−1/4)*y+(−V0)ˆ(3/4)).ˆ(1/3);

% I take away the term −mi/2/qe*ub.ˆ2 so that density is

% continuous.

ne=ns*exp((V+mi/2/qe*(ub).ˆ2)/Te0);

%ni=ji*sqrt(−mi/2/qe/V)/qe % huge problems when V¬0 at sheath

% edge!

% I take away the term −mi/2/qe*ub.ˆ2 so that density is
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% continuous.

ni=ns*(1−2*qe*(V+mi/2/qe*(ub).ˆ2)/mi/ubˆ2).ˆ(−1/2);

% specify the ion flow at this spatial location, assuming the

% sheath is located at y=s. Also, ions should be flowing

% downward:

vi y=−ns*ub/ni;

E x=0;

vi x=0;

% % Uncomment to get rid of ion streaming

%vi y=0;

% electron streaming?

ve x=0;ve y=0;

% should there be neutrals streaming??

vn x=0;vn y=0;

end

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

% % specify acceleration due to gravity; can put this in x or y

% % direction but generally g y=9.8 m/s/s on Earth experiments

g x=0;

g y=−9.8;

% % try no magnetic field first.

B=0;

%B=4;

% UV illumination??

alph=alph0;

% corot period is unused for this profile.

corot period=0;

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% % cl sheath for RF plasma. Still need to add in the self bias, April 10,

% % 2014. This is applicable for RF frequencies that are above the ion

% % plasma frequency, but below the electron plasma frequency.

case 'cl sheath rf'

% the rf amplitude:

Vrf=50;
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% the floating potential of a planar sheath when a sinusoidal RF

% voltage is applied:

Vself=Te0*(.5*log(2*pi*me/mi)−log(besseli(0,Vrf/Te0)));

% alternatively, for a square wave instead of sinusoidal:

%Vself=Te0*(.5*log(2*pi*me/mi)−log(cosh(Vrf/Te0)));

% ionization constant for Argon gas, in units of mˆ3 sˆ−1:

Ki=5e−14;

alph0=0;

V0=−50; % % This is the voltage of the Sheath electrode

% % relative to the plasma's space potential far away

% % from the electrode

% temp profile??

Ti=Ti0;Te=Te0;

% % specify the bohm speed, either here or in the main program

ub=sqrt(qe*Te0/mi);

ns=n0*exp(−1/2);

if V0>Te0;

% % if the above condition is false, CL condition does not hold.

% % Note that V0 will probably be negative relative to Te0.

%return

exception='V0>Te, CL condition=false';

error(exception);

end

%ji=qe*n0*sqrt(qe*Te0/mi);

ji=qe*ns*ub;

% % recheck this!

%V=((4/3)*(2*x*(ji/eps0)ˆ(1/2)*(2*qe/mi)ˆ1/4−(−V0ˆ3/4))ˆ(4/3);

% % calculate the sheath boundary.

s=2*((−V0)ˆ(3/4))*sqrt(eps0/ji)*((2*qe/mi)ˆ(1/4))/3;

% plasma density at the sheath boundary:

ns=n0*exp(−1/2);

% % y=0 is the planar electrode which is well defined. Set the

% % sheath boundary (s) above this. See Chabert's 2011 textbook

if y≥s;

% % for y>sheath edge location, the plasma is quasineutral. One

302



% % still needs to obtain the n0(y), however.

% the stuff below is really not appropriate for a CL sheath; it

% is more relevant to the plasma solution.

% % Specify the ion flow at this spatial location, assuming the

% % sheath is located at y=s:

% vi y=2*ub*cos(1/3*(4*pi−sqrt(atan(4/9/(2*y/s)ˆ2−1))));

% V=−mi/2/qe*vi y.ˆ2;

% E y=−2*mi/qe*vi y*ub;

% ni=n0*exp(V/Te);

% ne=ni;

% % Uncomment the lines below to get rid of complications:

V=0;

% electric field in the presheath is half an electron

% temperature. This field must be present to accelerate ions to

% the bohm speed at the plasma sheath boundary. I have this

% field going in the negative direction.

E y=−Te/2;

vi x=0;

% ions are at the bohm speed everywhere in the presheath, and

% stream

vi y=−ub;

E x=0;

ne=n0;ni=n0;

ve x=0;ve y=0;

vn x=0;vn y=0;

% below the boundary.

else

V=−(−3/2*sqrt(ji/eps0)*(2*qe/mi)ˆ(−1/4)*y+(−V0)ˆ(3/4)).ˆ(4/3);

E y=(−2*sqrt(ji/eps0)*(2*qe/mi)ˆ(−1/4))*...

(−3/2*sqrt(ji/eps0)*(2*qe/mi)ˆ(−1/4)*y+(−V0)ˆ(3/4)).ˆ(1/3);

ne=ns*exp(V/Te0);

%ni=ji*sqrt(−mi/2/qe/V)/qe % huge problems when V¬0 at sheath

% edge!

ni=ns*(1−2*qe*V/mi/ubˆ2).ˆ(−1/2);

303



% specify the ion flow at this spatial location, assuming the

% sheath is located at y=s. Also, ions should be flowing

% downward:

vi y=−ns*ub/ni;

E x=0;

vi x=0;

% % Uncomment to get rid of ion streaming

%vi y=0;

% electron streaming?

ve x=0;ve y=0;

% should there be neutrals streaming??

vn x=0;vn y=0;

end

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

% % specify acceleration due to gravity; can put this in x or y

% % direction but generally g y=9.8 m/s/s on Earth experiments

g x=0;

g y=−9.8;

% % try no magnetic field first.

B=0;

B=4;

% UV illumination??

alph=alph0;

% corot period is unused for this profile.

corot period=0;

case 'linear profile'

alph0=0;

%L=75; %% the scaling for density gradient in m

L=0.025;

% % input the desired electric field here:

%E base=−100;

E base=0;

eta=n0/L; %% density gradient??

% % the cutoff:
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ratio=10; % <<<−−−− factor by which one species is greater than

% the other at the cutoff; to be determined.

% set fact=1 if you want ni=ne=n0 at the cuttoff.

%cutoff=(ratio−1)/(ratio+1)*n0/eta;

% same thing as the above:

cutoff=(ratio−1)/(ratio+1)*L;

% wouldn't this just be:

%cutoff=(ratio−1)/(ratio+1)*L;

%cutoff=L;

ni=n0+eta*x;

ne=n0−eta*x;

% % To reverse the profile, comment the above 2 lines and uncomment

% % the following 2 lines:

%ne=n0+eta*x;

%ni=n0−eta*x;

V=−qe*(eta*xˆ3)/3/eps0;

% % put in the following lines to make sure the densities don't go

% % negative.

if x≤−cutoff;

ni=n0+eta*cutoff;

ne=n0−eta*cutoff;

%ni=n0;

%ne=n0;

%disp('outside the cutoff');

%% still need to fix the next two lines:

V0=−qe*(eta*cutoffˆ3)/3/eps0;

V=V0+qe*(ratio−1)*n0*xˆ2/(ratio+1)/eps0;

end

if x≥cutoff;

ni=n0+eta*cutoff;
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ne=n0−eta*cutoff;

%ni=n0;

%ne=n0;

%disp('outside the cutoff');

% % still need to fix the next two lines:

V0=qe*(eta*cutoffˆ3)/3/eps0;

V=V0−qe*(ratio−1)*n0*xˆ2/(ratio+1)/eps0;

end

% E=0 for now; can add linear and inhomog. profile later.

E x=E base*(x>−cutoff)*(x<cutoff);

E y=0;

alph=alph0;

vi x=0;vi y=0;

% % not sure to do with the electron flow; set equal to zero for

% % now.

ve x=0;ve y=0;

vn x=0;vn y=0;

Ti=Ti0;Te=Te0;

% % gravity unimportant since it is not in the plane or too weak.

g x=0;g y=0;

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

B=4;

% corot period is unused for this profile.

corot period=0;

case 'parabolic temp'

alph0=0;

V=0;

E x=0;

E y=0;

ni=n0;

ne=n0;

alph=alph0;

vi x=0;vi y=0;

ve x=0;ve y=0;
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L=0.01; % half width at full max for this profile

Ti=Ti0; % ion profile is flat

Tmax=20.0; % "peak" electron temperature

if abs(x)≤L

% parabolic inside the inhomogeneity

Te=Tmax−(Tmax−Te0)*(x/L)ˆ2;

else

Te=Te0; %% flat outside the inhomogeneity

end

% % gravity unimportant since it is not in the plane or too weak.

g x=0;g y=0;

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

B=4;

% corot period is unused for this profile.

corot period=0;

case 'linear temp'

alph0=0;

V=0;

E x=0;

E y=0;

ni=n0;

ne=n0;

alph=alph0;

vi x=0;vi y=0;

ve x=0;ve y=0;

vn x=0;vn y=0;

L=0.01; % half width at full max for this profile

Ti=Ti0; % ion profile is flat

T L=1.0/L; % electron temp goes "down" this amount in a length L;

% units: eV/m

if x<−L

Te=T L*L+Te0;

end

if abs(x)≤L

Te=Te0+T L*L/2−T L*x/2;
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end

if x>L

Te=Te0;

end

% % gravity unimportant since it is not in the plane or too weak.

g x=0;g y=0;

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

B=4;

% corot period is unused for this profile.

corot period=0;

case 'linear profile w ion drift'

alph0=0;

%L=75; %% the scaling for density gradient in m

L=0.025;

% % input the desired electric field here:

%E base=−100;

E base=0;

eta=n0/L; %% density gradient??

% % the cutoff:

ratio=10; % <<<−−−− factor by which one species is greater than

% the other at the cutoff; to be determined.

% set fact=1 if you want ni=ne=n0 at the cuttoff.

cutoff=(ratio−1)/(ratio+1)*n0/eta;

%cutoff=L;

ni=n0+eta*x;

ne=n0−eta*x;

% % To reverse the profile, comment the above 2 lines and uncomment

% % the following 2 lines:

%ne=n0+eta*x;

%ni=n0−eta*x;

% % put in the following lines to make sure the densities don't

% % go negative.

if x≤−cutoff;

ni=n0+eta*cutoff;
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ne=n0−eta*cutoff;

%ni=n0;

%ne=n0;

%disp('outside the cutoff');

end

if x≥cutoff;

ni=n0+eta*cutoff;

ne=n0−eta*cutoff;

%ni=n0;

%ne=n0;

%disp('outside the cutoff');

end

E x=E base*(x>−cutoff)*(x<cutoff); % E=0 for now; can add linear

% and inhomog. profile later.

E y=0;

V=0;

alph=alph0;

% % If electric field is along −x, then there should be an ion

% % drift along −x.

vi x=−sqrt(qe*Te/40/1.67e−19);

vi y=0;

Ti=Ti0;Te=Te0;

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

% % gravity unimportant since it is not in the plane or too weak.

g x=0;g y=0;

% % not sure what to do with electron flow; set to 0 for now.

ve x=0;ve y=0;

vn x=0;vn y=0;

B=4;

% corot period is unused for this profile.

corot period=0;

case 'uniform E cyl'

phi=improved arctan(x,y);
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% % radius of the experimental volume, in meters

R=0.225;

% This corresponds exactly with the "central experimental volume"

% on the Auburn machine; the smaller, "uniform region" radius is

% 0.1

Er=−100;

ni=n0;

ne=n0;

radius=sqrt(xˆ2+yˆ2);

alph=0;

V=0;

E x=Er*cos(phi);

E y=Er*sin(phi);

vi x=0;vi y=0;

ve x=0;ve y=0;

% % If you want to use a sheath:

% assume the bohm speed for ions at sheath for now, check this

% later. remember that ve x is vi z!!!

ve x=sqrt(qe*Te0/mi);

vn x=0;vn y=0;

Ti=Ti0;Te=Te0;

Ti=Ti0;Te=Te0;

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

% % gravity unimportant since it is not in the plane or too weak.

g x=0;g y=0;

B=4;

% corot period is unused for this profile.

corot period=0;

case 'cylindrical profile'

B=4;

% % radius of the experimental volume, in meters

R=0.225;

% This corresponds exactly with the "central experimental volume"

% % on the Auburn machine; the smaller, "uniform region" radius is

% % 0.1
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phi=improved arctan(x,y);

Er=100; %% radial electric field in V/m

radius=sqrt(xˆ2+yˆ2);

%%¬!!! Attempting to put E−field in only a specific volume.

%if radius≥0.225 | | radius≤0.05

%Er=0;

%else

%Er=Te0/2;

%end

E x=Er*cos(phi);

E y=Er*sin(phi);

% % don't worry about V for now.

V=0;

alph=0;

% % assuming B is in the +z direction, the ion drifts should be

% % simply written as E/B, in the −phi direction.

% % 4/18/2013: There should be an additional component, probably

% % radially inwardcorresponding to the ion flow of the charge

% % imbalance.

vi x=Er*sin(phi)/B;

vi y=−Er*cos(phi)/B;

ve x=Er*sin(phi)/B;

ve y=−Er*cos(phi)/B;

vn x=0;vn y=0;

% % Uncomment the line below to turn off ion drag

vi x=0;vi y=0;

% % Uncomment the line below to turn on an ion drag with no E−field

% % term. This will produce an outward, FxB drift

%E temp=1;vi x=E temp*sin(phi)/B;vi y=−E temp*cos(phi)/B;

ne=n0;ni=n0;
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Ti=Ti0;Te=Te0;

% % gravity unimportant since it is not in the plane or too weak.

g x=0;g y=0;

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

% corot period is unused for this profile.

corot period=0;

case 'linear cylindrical profile'

% % This is like the linear profile, but instead this is in

% % cylindrical geometry

% % radius of the experimental volume, in meters

R=0.225;

% This corresponds exactly with the "central experimental volume"

% on the Auburn machine; the smaller, "uniform region" radius is

% 0.1

phi=improved arctan(x,y);

radius=sqrt(xˆ2+yˆ2);

R1=0.15;

R2=0.175;

dR=R2−R1; % R1 and R2 have been chosen such that dR=0.025 meters.

% keep in mind that the center of the gradient, where

% ne=ni is at R0=0.1625; use this as an initial

% condition in dust trajectory.m

R0=R1+dR/2; % center of the density gradient

ratio=10; % this ratio signifies by how many times larger is the

% electron density than the ion density at the lower

% cutoff, and by what factor the ion density is larger

% than the electron density at the upper cutoff.

% lower radius cutoff:

r lower=(R1+(1−ratio)*dR+ratio*R2)/(1+ratio);

% upper radius cutoff;

r upper=2*R0−r lower;
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ne=−2*n0/dR*(radius−R1)+2*n0;

ni=2*n0/dR*(radius−R2)+2*n0;

V=0;

%Er=0;

Er=(2*qe*n0/eps0/dR)*(2/3*radius.ˆ2−2/3*r lowerˆ3/radius−...

(R1+R2)/2*radius+(R1+R2)/2*r lowerˆ2/radius);

Er=0;

% electron and ion densities are flat outside of the inhomogeneity

if radius<r lower

% alternatively, set ne=ni=n0

ne=−2*n0/dR*(r lower−R1)+2*n0;

ni=2*n0/dR*(r lower−R2)+2*n0;

ne=n0;ni=n0;

V=0;

%Er=(−4*radius+(R1+R2))*log(r upper/r lower)+...

% 4*(r upper−r lower);

Er=0;

end

% electron and ion densities are flat outside of the inhomogeneity

if radius>r upper

% alternatively, set ne=ni=n0

ne=−2*n0/dR*(r upper−R1)+2*n0;

ni=2*n0/dR*(r upper−R2)+2*n0;

ne=n0;ni=n0;

V=0;

Er=(2*qe*n0/eps0/dR)*(1/radius)*(2/3*(r upperˆ3−r lowerˆ3)−...

(R1+R2)/2*(r upperˆ2−r lowerˆ2));

end

E x=Er*cos(phi);

E y=Er*sin(phi);

% % if this is uncommented, don't worry about E−field for now.

%E x=0;E y=0;

% % if this is uncommented, don't worry about drifts for now.
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vi x=0;vi y=0;

ve x=0;ve y=0;

vn x=0;vn y=0;

% % no temperature gradients or UV illumination

Ti=Ti0;Te=Te0;alph=0;

% % gravity unimportant since it is not in the plane or too weak.

g x=0;g y=0;

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

B=4;

% corot period is unused for this profile.

corot period=0;

case 'two gaussian cylindrical profile'

phi=improved arctan(x,y);

% % radius of the experimental volume, in meters

R=0.225;

% This corresponds exactly with the "central experimental volume"

% on the Auburn machine; the smaller, "uniform region" radius is

% 0.1 m

% This is the center of the gaussian E−field in radial direction

% (two peaks)

r1=R/4;

% The center for the gaussian ion density in radial direction

% (also two peaks)

r2=R/2;

r1=0.11;

r2=0.14;

% Width of the gaussian E−field in meters

a1=0.03;

% Width of the gaussian ion density "perturbation" to background

a2=0.06;

E0=100; % strength of the electric field in V/m

radius=sqrt(xˆ2+yˆ2);

% compute the radial drift component of ion velocity by the
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% Einstein Relation

mu i=(1/Ti0)*(3*pi*vthi*lambda i)/(16*sqrt(2));

% see 2006 Reynolds phys. plasmas for my inspiration on this

Er=E0*exp(−((radius−r1)/a1).ˆ2);

% see 2006 Reynolds phys. plasmas

ni=n0*(1+2*exp(−((radius−r2)/a2).ˆ2));

% for my inspiration on this. I put a factor

% of 2 here

% To get a self−consistent electron density, take a spatial

% derivative of Er; multiply by eps0/qe Then add ni.

ne=(2*eps0/qe)*Er*(radius−r1)/a1/a1+ni;

% Uncomment the line below to have a constant density profile.

%ne=n0;ni=n0;

E x=Er*cos(phi);

E y=Er*sin(phi);

% don't worry about V for now.

V=0;

alph=0;

% % assuming B is in the +z direction, the ion drifts should be

% % simply written as E/B, in the −phi direction.

% % 4/18/2013: There should be an additional component, probably

% % radially inward corresponding to the ion flow of the charge

% % imbalance. This comes from ion mobility and this change has

% % hopefully been made correctly. (5/13/2013)

vi x=Er*sin(phi)/B+mu i*E x;

% % I think the above expressions should be fine,

% % because the inhomogeneity scale length is much

% % larger than the ion gyro−radii.

vi y=−Er*cos(phi)/B+mu i*E y;

% % Uncomment the lines below to turn off ion drag and Electric

% % field independently

vi x=0;vi y=0;
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% % Not sure what to do with electron terms; temporarily set to

% % zero.

ve x=0;ve y=0;

vn x=0;vn y=0;

%E x=0;E y=0;

Ti=Ti0;Te=Te0;

% % gravity unimportant since it is not in the plane or too weak.

g x=0;g y=0;

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

B=4;

% corot period is unused for this profile.

corot period=0;

case 'parabolic cylindrical profile'

phi=improved arctan(x,y);

% % radius of the experimental volume, in meters

% % This corresponds exactly with the "central experimental volume"

R=0.225;

% % on the Auburn machine; the smaller, "uniform region" radius is

% % 0.1

% % The radius at which E¬0. If r>r field, E=0, space potential is

% % constant.

r field=0.075;

% % the space potential at the edge of the parabolic profile.

V edge=2.5;

% % space potential when r=0.

V max=25;

%E0=1e2; %% strength of the electric field in V/m

radius=sqrt(xˆ2+yˆ2);

if radius≤r field

Er=−2*(V edge−V max)*radius/r field/r field;

ne=n0;

ni=n0;

% % assuming B is in the +z direction, the ion drifts should be
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% % simply written as E/B, in the −phi direction.

% % 4/18/2013: There should be an additional component,

% % probably radially inward corresponding to the ion flow of

% % the charge imbalance.

vi x=Er*sin(phi)/B; % % I think these expressions should be

% % fine, because the inhomogeneity scale

% % length is much larger than the ion

% % gyro−radii.

vi y=−Er*cos(phi)/B;

% % Uncomment the line below to turn off ion drag

%vi x=0;vi y=0;

else

Er=0;

% % 4/18/2013: There should be an additional component,

% % probably radially inward corresponding to the ion flow of

% % the charge imbalance.

vi x=0;

vi y=0;

ne=n0;

ni=n0;

end

% % Uncomment the line below to have a constant density profile.

%ne=n0;ni=n0;

E x=Er*cos(phi);

E y=Er*sin(phi);

% % don't worry about V for now.

V=0;

alph=0;

Ti=Ti0;Te=Te0;

% % gravity unimportant since it is not in the plane or too weak.

g x=0;g y=0;

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

% % not sure what to do with electron terms; temporarily set to

% % zero.
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ve x=0;ve y=0;

vn x=0;vn y=0;

B=4;

% corot period is unused for this profile.

corot period=0;

case 'uv cyl profile ysection'

phi=improved arctan(x,y);

% % radius of the experimental volume, in meters

% % This corresponds exactly with the "central experimental volume"

% % on the Auburn machine; the smaller, "uniform region" radius is

% % 0.1

R=0.225;

% % try UV on for all y, but with a beam centered at x=0, and

% % −L≤x≤L

L=0.05;

alph0=0.25;

ni=n0;

ne=n0;

alph=(x>−L)*alph0*(x<L);

V=0;

E x=0;

E y=0;

vi x=0;vi y=0;

ve x=0;ve y=0;

vn x=0;vn y=0;

Ti=Ti0;Te=Te0;

% % gravity unimportant since it is not in the plane or too weak.

g x=0;g y=0;

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

B=4;

% corot period is unused for this profile.

corot period=0;

case 'uv step cyl radial'

phi=improved arctan(x,y);

% % radius of the experimental volume, in meters
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R=0.225; % This corresponds exactly with the "central

% experimental volume" on the Auburn machine; the

% smaller, "uniform region" radius is 0.1

% try UV on for all y, but with a beam centered at x=0, and

% −L≤x≤L

L=0.05;

alph0=0.25;

ni=n0;

ne=n0;

radius=sqrt(xˆ2+yˆ2);

alph=(radius<L)*alph0;

V=0;

E x=0;

E y=0;

vi x=0;vi y=0;

ve x=0;ve y=0;

vn x=0;vn y=0;

Ti=Ti0;Te=Te0;

% % gravity unimportant since it is not in the plane or too weak.

g x=0;g y=0;

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

B=4;

% corot period is unused for this profile.

corot period=0;

case 'uv step sheath cyl radial'

phi=improved arctan(x,y);

% % radius of the experimental volume, in meters

R=0.225; % This corresponds exactly with the "central

% experimental volume" on the Auburn machine; the

% smaller, "uniform region" radius is 0.1

% try UV on for all y, but with a beam centered at x=0, and

% −L≤x≤L

L=0.05;
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alph0=0.0125;

ni=n0;

ne=n0;

radius=sqrt(xˆ2+yˆ2);

alph=(radius<L)*alph0;

V=0;

E x=0;

E y=0;

vi x=0;vi y=0;

ve y=0;

% assume the bohm speed for ions at sheath for now, check this

% later. remember that ve x is vi z!!!

ve x=sqrt(qe*Te0/mi);

vn x=0;vn y=0;

Ti=Ti0;Te=Te0;

% % gravity unimportant since it is not in the plane or too weak.

g x=0;g y=0;

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

B=4;

% corot period is unused for this profile.

corot period=0;

case 'cyl stellarator'

% obviously a stellarator has a much more complicated geometry, but

% this is a simple attempt.

phi=improved arctan(x,y);

radius=sqrt(xˆ2+yˆ2);

R=0.6; % % this corresponds to the beginning of the

% % sheath/SOL/density drop−off in the Large Helical

% % Device

% IN THIS CASE, IT IS THE TEMPERATURE PROFILES THAT ARE

% INHOMOGENEOUS!!

Te max=3.5e3; %% Te at r=0 in eV.

Ti max=7e3; %% Ti at r=0 in eV.

T edge=1e3; %% Te¬Ti at the edge.
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% Using a parabola for now, try gaussian or sech later.

Te=Te max−(Te max−T edge)*(radius/R).ˆ2;

Ti=Ti max−(Ti max−T edge)*(radius/R).ˆ2;

if radius>R

Te=T edge;

Ti=T edge;

end

% the density profiles are nearly flat, provided r≤R.

ni=n0;

ne=n0;

% fill in electric field and ion drift information later.

V=0;

E x=0;

E y=0;

vi x=0;vi y=0;

ve x=0;ve y=0;

vn x=0;vn y=0;

alph=0;

% % gravity unimportant since it is not in the plane or too weak.

g x=0;g y=0;

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

B=4;

% corot period is unused for this profile.

corot period=0;

case 'enceladus cyl'

%case 'enceladus'

% please note: this profile is set up to be used with

% "corotating boris pusher.m" exclusively! Things will be different

% if you work in a non−corotating frame.

phi=improved arctan(x,y);

radius=sqrt(xˆ2+yˆ2);

% radius of saturn, in meters, +/− 4000 m:

r sat=60268e3;

% space potential is set to zero, for now

V=0;
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% assume homogeneous plasma, for now. For reference, n0¬4e7 mˆ−3.

% also, neutral density is 10ˆ10 mˆ−3, convert this to Pascals

ni=n0;

ne=n0;

% here's a stab at an electron density gradient: exponential up to

% 10 saturn radii, but back down to a constant Temp after passing

% this radial distance.

%Te = Te0*exp((radius−r sat)/(7*r sat))*(radius<10*r sat)+...

% Te0*exp((9*r sat)/(7*r sat))*(radius>10*r sat);

Te=Te0;

% assume no temperature gradients, for now. For reference, Te¬1−10

% eV near saturn, and Ti¬10−20 eV?

%Te=Te0;

Ti=Ti0;

% comment the line below if you don't want a log temp gradient

%Te=log(1);

% no flows in the co−rotating frame with saturn?

vi x=0;vi y=0;

ve x=0;ve y=0;

vn x=0;vn y=0;

% compute the local debye length

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

% check 2009? Farrell et. al. to get an estimate for B during

% closest approach of Cassini. Use homogeneous B−field at first,

% but use a Dipole as simulations become more sophisticated. Keep

% in mind also, that saturn's magnetic north pole is also its

% geographical north pole, so if the field is a dipole the magnetic

% field direction is pointing along the −z direction.

B=−3.4e−7;

%B=−3.4e−5;

% optional: dipole field, z component only for now:

B=4*pi*1e−7/4/pi*(−4.5793e25/(radius.ˆ3));
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% We will work in Saturn's corotating frame, so use the rotation

% period of saturn, in seconds:

corot period=10.57*3600; % hours*seconds/hour

% gravity of saturn is not time−dependent

G = 6.67384e−11; % gravitational constant

m sat = 5.6846e26; % mass of saturn in kg

m enc = 1.08e20; % mass of enceladus in kg

m rhea = 2.3e21; % mass of rhea in kg

% distance of grain from saturn

g sat r = −G*m sat/radiusˆ2;

%g enc r = −G*m enc/

g x=g sat r*cos(phi);

g y=g sat r*sin(phi);

% perterbation due to enceladus:

x enc = 0;

y enc = 0;

g enc r = −G*m enc/(sqrt((x enc−x).ˆ2+y enc−y).ˆ2);

% UV profile, need to calculate appropriate alph0 again, taking

% into account distance of the grain from the sun. calculated in a

% seemingly weird way due to how the photo−current is computed in

% the various charge models.

solar distance = 9.5; % distance from the sun in AU

effic = 1; % conductors have efficiencies of ¬1, oxides have ¬0.1

% this uv photon flux is for solar radiation and regolith

f UV = 2.8e13*effic/solar distance.ˆ2;

% coefficient for solar radiation and regolith; consider redo−ing

% for water

alph0 = 0.25*sqrt(4*pi)*f UV/n0/vthe;

% OR: uncomment the line below to turn off UV charging.

%alph0=0;

% UV is absent when ever the grain is behind saturn in the

% co−rotating frame. Assume light from the sun travels from

323



% positive y values toward smaller y values at first; allow for

% time−dependent correction later

alph=alph0−alph0*(abs(x)<r sat&y<0);

% Need to invent "lighthouse function"!

% This is my "lighthouse function", see my notebook #6 pg 142−143

%theta trailing = −mod(2*pi/corot period*t,2*pi);

theta trailing=2*pi−2*pi/corot period*t+floor(1/corot period*t);

% theta trailing refers to the trailing edge of saturn's shadow. I

% guess another term for this might be the dawn side.

if theta trailing==0 | | theta trailing==pi | | theta trailing==2*pi

% if the above statement is true, then the leading and trailing

% edges of saturn's shadow are on the lines are located at |x |

% = r sat.

alph=alph0−alph0*(phi<theta trailing && phi>theta trailing ...

&& abs(x)<r sat);

else

% figure out what the equations are for the lines representing

% the leading and trailing edges of saturn's shadow. see my

% notebook 36 pg 142−143 for more details.

m = 1/(cos(theta trailing−pi/2)); % "slope" of the shadow

% intercept for the trailing edge

b I = r sat*sin(theta trailing)− ...

m*r sat*cos(theta trailing);

y I = m*x+b I;

% intercept for the leading edge

b II = r sat*sin(theta trailing−pi) − ...

m*r sat*cos(theta trailing−pi);

y II = m*x+b II;

if theta trailing > pi

alph=alph0−alph0*(phi<theta trailing && ...

phi>theta trailing && y>y I && y<y II);
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%disp('theta t > pi');

else

alph=alph0−alph0*(phi<theta trailing && ...

phi>theta trailing && y<y I && y>y II);

%disp('theta t < pi')

end

end

%alph=alph0−alph0*(phi<theta trailing && phi>theta trailing);

% in corotational "mode", E x and E y are not needed.

% using E = B x (omega x r)

% E x=−x*(B*2*pi/corot period);

% E y=−y*(B*2*pi/corot period);

E x = 0;

E y = 0;

% allow for grain capture by saturn:

if abs(x)<r sat & abs(y) <r sat

disp('grain has been captured by saturn.')

pause;

end

case 'enceladus temp grad cyl'

% please note: this profile is set up to be used with

% "corotating boris pusher.m" exclusively! Things will be different

% if you work in a non−corotating frame.

phi=improved arctan(x,y);

radius=sqrt(xˆ2+yˆ2);

% radius of saturn, in meters, +/− 4000 m:

r sat=60268e3;

r enc=237948000;

r rhea=8.76*r sat;
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% space potential is set to zero, for now

V=0;

% assume homogeneous plasma, for now. For reference, n0¬4e7 mˆ−3.

% also, neutral density is 10ˆ10 mˆ−3, convert this to Pascals

n scale=(r rhea−r enc)/log(1/20);

n0=n0*(radius≤r enc)+...

n0*exp((radius−r enc)/n scale)*(radius<r rhea)*(radius>r enc)+...

(1/20)*n0*(radius≥r rhea);

ni=n0;

ne=n0;

% here's a stab at an electron density gradient: exponential up to

% 10 saturn radii, but back down to a constant Temp after passing

% this radial distance.

% scale length of temperature inhomogeneity

Re scale=(r rhea−r enc)/log(10);

Te=Te0;

Te = Te0*(radius≤r enc)+...

Te0*exp((radius−r enc)/(Re scale))*(radius<r rhea)*(radius>r enc)+...

10*Te0*(radius≥r rhea);

% assume no temperature gradients, for now. For reference, Te¬1−10

% eV near saturn, and Ti¬10−20 eV?

%Te=Te0;

% scale length of temperature inhomogeneity

Ri scale=(r rhea−r enc)/log(100/30);

Ti=Ti0;

Ti=Ti0*(radius≤r enc)+...

Ti0*exp((radius−r enc)/(Ri scale))*(radius<r rhea)*(radius≥r enc)+...

100/30*Ti0*(radius≥r rhea);

% comment the line below if you don't want a log temp gradient

%Te=log(1);

% no flows in the co−rotating frame with saturn?
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vi x=0;vi y=0;

ve x=0;ve y=0;

vn x=0;vn y=0;

% compute the local debye length

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

% check 2009? Farrell et. al. to get an estimate for B during

% closest approach of Cassini. Use homogeneous B−field at first,

% but use a Dipole as simulations become more sophisticated. Keep

% in mind also, that saturn's magnetic north pole is also its

% geographical north pole, so if the field is a dipole the magnetic

% field direction is pointing along the −z direction.

%B=−3.4e−7;

%B=−3.4e−5;

% optional: dipole field, z component only for now:

B=4*pi*1e−7/4/pi*(−4.5793e25/(radius.ˆ3));

% We will work in Saturn's corotating frame, so use the rotation

% period of saturn, in seconds:

corot period=10.57*3600; % hours*seconds/hour

% gravity of saturn is not time−dependent

G = 6.67384e−11; % gravitational constant

m sat = 5.6846e26; % mass of saturn in kg

m enc = 1.08e20; % mass of enceladus in kg

m rhea = 2.3e21; % mass of rhea in kg

% distance of grain from saturn

g sat r = −G*m sat/radiusˆ2;

%g enc r = −G*m enc/

g x=g sat r*cos(phi);

g y=g sat r*sin(phi);

% perterbation due to enceladus:

x enc = 0;

y enc = 0;

g enc r = −G*m enc/(sqrt((x enc−x).ˆ2+y enc−y).ˆ2);
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% UV profile, need to calculate appropriate alph0 again, taking

% into account distance of the grain from the sun. calculated in a

% seemingly weird way due to how the photo−current is computed in

% the various charge models.

solar distance = 9.5; % distance from the sun in AU

effic = 1; % conductors have efficiencies of ¬1, oxides have ¬0.1

% this uv photon flux is for solar radiation and regolith

f UV = 2.8e13*effic/solar distance.ˆ2;

% coefficient for solar radiation and regolith; consider redo−ing

% for water

alph0 = 0.25*sqrt(4*pi)*f UV/n0/vthe;

% OR: uncomment the line below to turn off UV charging.

%alph0=0;

% UV is absent when ever the grain is behind saturn in the

% co−rotating frame. Assume light from the sun travels from

% positive y values toward smaller y values at first; allow for

% time−dependent correction later

alph=alph0−alph0*(abs(x)<r sat&y<0);

% Need to invent "lighthouse function"!

% This is my "lighthouse function", see my notebook #6 pg 142−143

%theta trailing = −mod(2*pi/corot period*t,2*pi);

theta trailing=2*pi−2*pi/corot period*t+floor(1/corot period*t);

% theta trailing refers to the trailing edge of saturn's shadow. I

% guess another term for this might be the dawn side.

if theta trailing==0 | | theta trailing==pi | | theta trailing==2*pi

% if the above statement is true, then the leading and trailing

% edges of saturn's shadow are on the lines are located at |x |

% = r sat.

alph=alph0−alph0*(phi<theta trailing && phi>theta trailing ...

&& abs(x)<r sat);

else
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% figure out what the equations are for the lines representing

% the leading and trailing edges of saturn's shadow. see my

% notebook 36 pg 142−143 for more details.

m = 1/(cos(theta trailing−pi/2)); % "slope" of the shadow

% intercept for the trailing edge

b I = r sat*sin(theta trailing)− ...

m*r sat*cos(theta trailing);

y I = m*x+b I;

% intercept for the leading edge

b II = r sat*sin(theta trailing−pi) − ...

m*r sat*cos(theta trailing−pi);

y II = m*x+b II;

if theta trailing > pi

alph=alph0−alph0*(phi<theta trailing && ...

phi>theta trailing && y>y I && y<y II);

%disp('theta t > pi');

else

alph=alph0−alph0*(phi<theta trailing && ...

phi>theta trailing && y<y I && y>y II);

%disp('theta t < pi')

end

end

%alph=alph0−alph0*(phi<theta trailing && phi>theta trailing);

% in corotational "mode", E x and E y are not needed.

% using E = B x (omega x r)

% E x=−x*(B*2*pi/corot period);

% E y=−y*(B*2*pi/corot period);

% don't need electric field in the co−rotating frame!

E x = 0;

E y = 0;
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% allow for grain capture by saturn:

if abs(x)<r sat & abs(y) <r sat

disp('grain has been captured by saturn.')

pause;

end

case 'grad B'

% magnetic field on axis. For Te=1.6 eV, strength of the gradient

% in T/m; maximum gradient is 2 T/m in Auburn machine

B0=5;

beta B=2;

ni=n0;

ne=n0;

V=0;

E x=0;

E y=0;

Ti=Ti0;Te=Te0;

% IN A SHEATH PROFILE, USE ve x TO REPRESENT vi z!!!

% Also, use ve y to represent ve y.

% assume the bohm speed for now, check this later.

ve x=sqrt(qe*Te/mi);

% Need to account for diamagnetic electron/ion currents

vi x=0;vi y=0;

ve y=0;

vn x=0;vn y=0;

% % gravity unimportant since it is not in the plane or too weak.

g x=0;g y=0;

V=0;

ni=n0;

ne=n0;

alph=0;

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));
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xmax=beta B/B0;

% Assume a simple, linear decrease in magnetic field with radial

% distance from x=0. Make B=B0 for x<0.

B=(B0−beta B*x)*(x<xmax)*(x≥0)+B0*(x<0);

% corot period is unused for this profile.

corot period=0;

case 'grad B cyl'

% magnetic field on axis. For Te=1.6 eV, strength of the gradient

% in T/m; maximum gradient is 2 T/m in Auburn machine

B0=5;

beta B=2;

phi=improved arctan(x,y);

% radius of the experimental volume, in meters. This corresponds

% exactly with the "central experimental volume"

R=0.225;

% on the Auburn machine; the smaller, "uniform region" radius is

% 0.1

% assume that grains levitate near the sheath (not entirely

% realistic, but better than nothing.)

n0=n0*exp(−1/2);

ni=n0;

ne=n0;

radius=sqrt(xˆ2+yˆ2);

V=0;

E x=0;

E y=0;

Ti=Ti0;Te=Te0;

vi x=0;vi y=0;

% IN A SHEATH PROFILE, USE ve x TO REPRESENT vi z!!!

% assume the bohm speed for now if we are at the sheath edge;

% check this later. negative because the ions flow in the opposite

% direction of Z (toward the planar electrode.)

ve x=−sqrt(qe*Te/mi);

%ve x=0;
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% Need to account for diamagnetic electron/ion currents

ve y=0;

vn x=0;vn y=0;

% % gravity unimportant since it is not in the plane or too weak.

g x=0;g y=0;

V=0;

ni=n0;

ne=n0;

alph=0;

lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

% NEED TO CHECK THIS LINE BELOW! I AM BASING IT OFF OF

% 1992 DAUGHERTY JAP. THE IDEA HERE IS THAT NEAR−MONO−ENERGETIC

% IONS THAT FALL OUT OF THE SHEATH HAVE AN ENERGY COMPARABLE TO Te,

% SO THIS ENLARGES THE SIZE OF THE SHEATH.

%lambda D=sqrt((eps0*Te*Te)/qe/(ne*Te+ni*Te));

% Assume a simple, linear decrease in magnetic field with radial

% distance from r=0.

B=B0−beta B*radius;

% corot period is unused for this profile.

corot period=0;

case 'auburn cyl'

%case 'auburn'

% magnetic field on axis. For Te=1.6 eV, strength of the gradient

% in T/m; maximum gradient is 2 T/m in Auburn machine

%B0=5;

B0=4;

%beta B=2;

phi=improved arctan(x,y);

% radius of the experimental volume, in meters. This corresponds

% exactly with the "central experimental volume"

R=0.225;

% on the Auburn machine; the smaller, "uniform region" radius is

% 0.1
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radius=sqrt(xˆ2+yˆ2);

% temperature profiles: assumed constant

Ti=Ti0;Te=Te0;

ni=exp(−1/2)*n0*sech(radius/(1*R));

ne=exp(−1/2)*n0*sech(radius/(1*R));

V=0;

% radial electric field in V/m:

Er=−100;

Er=−1;

E x=Er*cos(phi);

E y=Er*sin(phi);

% If an electric field is present, then ion flow is present

vi x=Er*sin(phi)/B0;

vi y=−Er*cos(phi)/B0;

vi x=0;

vi y=0;

% IN A SHEATH PROFILE, USE ve x TO REPRESENT vi z!!!

ve x=sqrt(qe*Te/mi);

ve y=−Er/B0;

ve x=0;

ve y=0;

vn x=0;

vn y=0;

% % gravity unimportant since it is not in the plane or too weak.

g x=0;g y=0;

alph=0;

%lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

% NEED TO CHECK THIS LINE BELOW! I AM BASING IT OFF OF

% 1992 DAUGHERTY JAP. THE IDEA HERE IS THAT NEAR−MONO−ENERGETIC

% IONS THAT FALL OUT OF THE SHEATH HAVE AN ENERGY COMPARABLE TO Te,

% SO THIS ENLARGES THE SIZE OF THE SHEATH.

lambda D=sqrt((eps0*Te*Te)/qe/(ne*Te+ni*Te));

% Assume a simple, linear decrease in magnetic field with radial
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% distance from r=0.

%B=B0−beta B*radius;

B=B0;

% corot period is unused for this profile.

corot period=0;

case 'auburn ring cyl'

% magnetic field on axis. For Te=1.6 eV, strength of the gradient

% in T/m; maximum gradient is 2 T/m in Auburn machine

%B0=5;

B0=4;

%beta B=2;

phi=improved arctan(x,y);

% radius of the experimental volume, in meters. This corresponds

% exactly with the "central experimental volume"

R=0.225;

% on the Auburn machine; the smaller, "uniform region" radius is

% 0.1

radius=sqrt(xˆ2+yˆ2);

% temperature profiles: assumed constant

Ti=Ti0;Te=Te0;

% define radial electric field stuff first

E0=500;

% assume an off−center gaussian, specified by a "sharpness" R0 and

% by a location parameter r0

r0=0.05;

%R0=0.02;

FWHM=0.04;

R0=FWHM/2/sqrt(log(2));

Er=E0*exp(−(radius−r0).ˆ2/R0.ˆ2);

E x=Er*cos(phi);

E y=Er*sin(phi);
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% compute space potential, assuming V0=V(r=0) is known

V=−E0*R0*(erf(r0/R0)+erf((radius−r0)/R0));

%V=−E0*R0*erfc((radius−r0/R0));

% density profiles, assume boltzmann electrons?:

ns=exp(−1/2)*n0;

ne=ns*exp(V/Te);

% I don't think the next line is correct

%ni=−eps0/qe*(2*(radius−r0)/R.ˆ2.*Er)+ne;

ni=ne+(eps0/qe)*(Er./radius−2/R0.ˆ2*(radius−r0).*Er);

% If an electric field is present, then ion flow is present. The

% correct convention is that if the electric field is in the

% positive direction, then ion flow is in the phi direction.

vi x=Er*sin(phi)/B0;

vi y=−Er*cos(phi)/B0;

% IN A SHEATH PROFILE, USE ve x TO REPRESENT vi z!!!

ve x=sqrt(qe*Te/mi);

%ve x=0;

% use ve y for the phi direction!

ve y=−Er/B0;

vn x=0;

vn y=0;

% % gravity unimportant since it is not in the plane or too weak.

g x=0;g y=0;

alph=0;

%lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

% NEED TO CHECK THIS LINE BELOW! I AM BASING IT OFF OF

% 1992 DAUGHERTY JAP. THE IDEA HERE IS THAT NEAR−MONO−ENERGETIC

% IONS THAT FALL OUT OF THE SHEATH HAVE AN ENERGY COMPARABLE TO Te,

% SO THIS ENLARGES THE SIZE OF THE SHEATH.

lambda D=sqrt((eps0*Te*Te)/qe/(ne*Te+ni*Te));

% Assume a simple, linear decrease in magnetic field with radial

% distance from r=0.

%B=B0−beta B*radius;
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B=B0;

% corot period is unused for this profile.

corot period=0;

case 'auburn cyl parabolic'

% magnetic field on axis. For Te=1.6 eV, strength of the gradient

% in T/m; maximum gradient is 2 T/m in Auburn machine

%B0=5;

B0=4;

%beta B=2;

phi=improved arctan(x,y);

% radius of the experimental volume, in meters. This corresponds

% exactly with the "central experimental volume"

R=0.225;

% on the Auburn machine; the smaller, "uniform region" radius is

% 0.1

radius=sqrt(xˆ2+yˆ2);

% temperature profiles: assumed constant

Ti=Ti0;Te=Te0;

% compute space potential, assuming V0=V(r=0) is known:

V0=25; % keep in mind this is a "negative" parabolic potential

r0=0.1; % where the potential stops, and the plasma potential is

% just flat

% density profiles, assume boltzmann electrons?:

ns=exp(−1/2)*n0;

if radius≤r0;

V=−abs(V0)+abs(V0)*radius.ˆ2/r0.ˆ2;

Er=−2*abs(V0)*radius/r0.ˆ2;

ne=ns*exp(V/Te);

ni=ne−(eps0/qe)*(4*abs(V0)/r0.ˆ2);

336



else

V=0;

Er=0;

ne=ns*exp(V/Te);

ni=ne−(eps0/qe)*(4*abs(V0)/r0.ˆ2);

end

E x=Er*cos(phi);

E y=Er*sin(phi);

% If an electric field is present, then ion flow is present. The

% correct convention is that if the electric field is in the

% positive direction, then ion flow is in the phi direction.

vi x=Er*sin(phi)/B0;

vi y=−Er*cos(phi)/B0;

%vi x=0;

%vi y=0;

% IN A SHEATH PROFILE, USE ve x TO REPRESENT vi z!!!

ve x=sqrt(qe*Te/mi);

%ve x=0;

% use ve y for the phi direction!

ve y=−Er/B0;

%ve y=0;

vn x=0;

vn y=0;

% % gravity unimportant since it is not in the plane or too weak.

g x=0;g y=0;

alph=0;

%lambda D=sqrt((eps0*Ti*Te)/qe/(ne*Ti+ni*Te));

% NEED TO CHECK THIS LINE BELOW! I AM BASING IT OFF OF

% 1992 DAUGHERTY JAP. THE IDEA HERE IS THAT NEAR−MONO−ENERGETIC

% IONS THAT FALL OUT OF THE SHEATH HAVE AN ENERGY COMPARABLE TO Te,

% SO THIS ENLARGES THE SIZE OF THE SHEATH.
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lambda D=sqrt((eps0*Te*Te)/qe/(ne*Te+ni*Te));

% Assume a simple, linear decrease in magnetic field with radial

% distance from r=0.

%B=B0−beta B*radius;

B=B0;

% corot period is unused for this profile.

corot period=0;

% use endswitch with octave, end with matlab.

%endswitch

end

% the more correct description for the grain capacitance:

% C=4*pi*eps0*a*exp(−a/lambda D)

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

3 Gyro-phase Analysis Code

The main routine dust trajectory.m produces trajectories in x, y configuration space. In order

to put quantities into gyro-phase space, or to determine gyro-phase angle, and dependence of

quantities on gyro-phase, an analysis code is needed. This is done using the routine gyrophaser.m.

% % This program produces gyrophase−style plots, instead of "configuration

% % space" plots.

% % This corresponds to Jeff Idea #1, see my notebook #5, page 39

% %

% % Please note: this code only runs well for re−tracing cycloidal orbits.

% % This means that if you had a high electric field, you need to have a

% % much higher initial velocity or else you will get garbage results.

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% % this function should be called from a script where the global variables

% % listed below are defined within the script
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function [phase,q polar,I polar,phase polar,xgc,ygc,rgc,phi gc,...

vxgc,vygc,vrgc,vphi gc,xc,yc,tgc]=gyrophaser(data file,phi start);

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% % Brief Explanation of inputs and how this program works

% % Gyrophaser.m will find the guiding center drifts of a dust grain.

% % By default, it will use slab geometry to compute vxgc and vygc, but if

% % a cylindrical profile has been chosen, then rgc and phi gc will be

% % calculated. In the slab case, vygc generally corresponds to a

% % diamagnetic−like drift, while vxgc corresponds to a

% % gyrophase−like drift, whereas in the cylindrical case vrgc corresponds

% % to a gyrophase−like drift and vphi gc corresponds to a diamagnetic−like

% % drift.

% % I've decided to get rid of global vars; they are commented if you feel

% % like using them again.

%global qe;

%global me;

%global mp;

%global eps0;

qe=1.6e−19;

me=9.1e−31;

mp=1.67e−27;

eps0=8.854e−12;

% % ERROR CHECKING: IF phi start is not given, use a default of

% % phi start=90. Apparently this does not actually work, figure out how to

% % do the error checking

if isempty(phi start);

phi start=360;

disp('phi start=360 degrees');

end

% Older code below VVVVVVVVVVVVVVVVVVVVVVVVVVV

% % set the starting angle for the gyroavering analysis in degrees. This

% % can be phase(1), or the initial gyro−angle, but it does not have to be.

% % However, phi start MUST BE POSITIVE, AND IT MUST BE LESS THAN 2*PI.
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%phi start=90;

%phi start=270; % Chosen for the JPP paper!!!

% Older code above ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

% % June 3 2013 NOTE:

% % gyrophaser does not give the correct drift magnitudes for abrupt

% % inhomogeneities; this will require further refinement.

% Older code above ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

% % use this function to put things into a gyrophase plot, and also get

% % drifts. MAKE SURE YOU'VE LOADED THE DATA FILE!

load(strcat(data file,'.mat'));

% This line below is garbage!

%RLd=md.*sqrt(vx.ˆ2+vy.ˆ2)./abs(q)./abs(B t);

v perp=sqrt(vx.ˆ2+vy.ˆ2);

% % prepare to scroll through all of the data; these should all be arrays

% % the size of t.

nsteps=length(t);

phase=zeros(size(t));

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% % Options for computing gyrocenter:

% %

% % average method: get xgc,ygc by averaging x(t), y(t) over a gyrocycle to

% % get the gyrocenters

average method=0;

% % larmor average: use the time−average Larmor radius in x,y configuration

% % space to get xgc,ygc.

if average method==1

larmor average=0;

else

larmor average=1;

end

% % Initialize some counters and other variables:
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% % initialize a general counter for the loop. This counter is separate

% % from the cycle counter, and is just used to update the phase angle

% % properly.

counter=1;

% % set phi prev=0

phi prev=0;

% % initialize the first element of the array to 0; this will get changed

% % later.

new cycle(1)=1;

% % start the cycle counter at 1; everytime the phase angle passes

% % phi start this counter will increment by one.

cycle count=1;

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% figure out if we have a cylindrical profile or not.

if isempty(strfind(profile type,'cyl'))6=1

% if the value of the above statement is true, we have a cyl. profile

ar=zeros(size(t));

aphi=zeros(size(t));

% make arrays for radial and azimuthal grain velocities:

r=sqrt(x.ˆ2+y.ˆ2);

vr=(x.*vx+y.*vy)./r;

vphi=(x.*vy−y.*vx)./r;

% find the phi−coordinate in cylindrical geometry; this is NOT the

% gyro−phase angle, it's the angle in configuration space!

phi config(1)=improved arctan(x(1),y(1));

phi last=phi config(1);

for i=2:length(x);

phi temp=improved arctan(x(i),y(i));

dphi=phi temp−phi last;

if abs(dphi)>pi/2;

% if this statement is true, then we have switched from 0 radians

% to ¬<2*pi radians.
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dphi=phi temp−2*pi;

end

phi config(i)=phi config(i−1)+dphi;

phi last=phi temp;

% % this is for the arc length:

% s(i−1)=(v perp(i)+v perp(i−1))*(t(i)−t(i−1));

if i<length(x)

ar(i)=(vr(i+1)−vr(i−1))/2/(t(2)−t(1));

aphi(i)=(vphi(i+1)−vphi(i−1))/2/(t(2)−t(1));

end

end;

clear phi last;clear phi temp;

% these lines are needed, kinda bs but tacked on anyway to keep

% acceleration arrays the same size as velocity arrays.

ar(1)=ar(2);

ar(end)=ar(end−1);

aphi(1)=aphi(2);

aphi(end)=aphi(end−1);

% now calculate larmor radius.

RLd=v perp.ˆ3./(vr.*aphi−vphi.*ar);

for k=1:nsteps

% The point of all these logical statements is to ensure that we are

% correctly solving for the gyro−phase angle in configuration space.

% In quadrant 1.) of the standard circle, but exactly at 0 degrees in

% cofig. space

if vphi(k)≥0 && vr(k)==0

phi=0;

end

% In quadrant 2.) of the standard circle, but exactly at 90 degrees in

% cofig. space

if vphi(k)==0 && vr(k)≤0
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phi=pi/2;

end

% In quadrant 3.) of the standard circle, but exactly at 180 degrees in

% cofig. space

if vphi(k)≤0 && vr(k)==0

phi=pi;

end

% In quadrant 4.) of the standard circle, but exactly at 270 degrees in

% cofig. space

if vphi(k)==0 && vr(k)≥0

phi=1.5*pi;

end

% In quadrant 1.) of the standard circle.

if vphi(k)>0 && vr(k)<0

phi=atan(abs(vr(k)/vphi(k)));

% update the "revolutions" counter, which is good for the first 2

% iterations of the loop.

if (k==1 | | k==2) && phi prev≥pi/2

counter=counter+1;

%new cycle(counter−1)=k;

end

% update revolutions counter for ccw rotation

if k≥3 && strcmp(direction,'ccw') && phi prev≥pi/2

counter=counter+1;

%new cycle(counter−1)=k;

end

end

% In quadrant 2.) of the standard circle.

if vphi(k)<0 && vr(k)<0

phi=atan(abs(vphi(k)/vr(k)))+pi/2;

end

% In quadrant 3.) of the standard circle.

if vphi(k)<0 && vr(k)>0

phi=atan(abs(vr(k)/vphi(k)))+pi;
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end

% In quadrant 4.) of the standard circle.

if vphi(k)>0 && vr(k)>0

phi=atan(abs(vphi(k)/vr(k)))+1.5*pi;

% have to add this line to deal with 'clockwise' rotation

if k≥3 && (strcmp(direction,'cw') && phi prev≤pi/2)

counter=counter+1;

end

end

% to take care of the first element of the phase array in this loop.

if k==1

phase(1)=phi;

end

% at k=2, if the current angle phi is greater than the previous

% calculated angle phi prev, OR if the current angle phi

if k==2 && (phi>phi prev | | (phi<pi/2 && phi prev> 3*pi/2))

direction ='ccw';

end

% the cw case:

if k==2 && (phi<phi prev | | (phi>3*pi/2 && phi prev<pi/2))

direction ='cw';

end

% after k=2 case has arisen, we can now specify how to update the phase

% angle.

% the ccw case:

if k≥2 && strcmp(direction,'ccw')

phase(k)=phi+2*pi*(counter−1);

end

% the cw case:

if k≥2 && strcmp(direction,'cw')

if (k==2 && phi>3*pi/2 && phi prev<pi/2)

phase(1)=phi prev+2*pi;

end

phase(k)=phi−2*pi*(counter−1);
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end

% August 27, 2013:

% This line below has become quite complicated compared to how it

% started out. You need to make sure that the computed angle

% 0<phi<2*pi is greater than the designated starting angle in order to

% update which gyro−cycle you are on. Also, either the previously

% calculated angle phi is less than the starting angle, or phi is less

% than the previously calculated value of phi.

% JANUARY 23, 2014:

% The statement must be ammended for grains that gyrate in a clockwise

% direction!!

% The "counter−clockwise" gyrating statement

if k≥2 && phi>phi start*pi/180 && ...

(phi prev≤phi start*pi/180 | | phi<phi prev) && ...

strcmp(direction,'ccw')

new cycle(cycle count)=k;

cycle count=cycle count+1;

end

% The "clockwise" gyrating statement

if k≥2 && (phi<phi start*pi/180 && ...

(phi prev≥phi start*pi/180 | | phi>phi prev)) && ...

strcmp(direction,'cw')

new cycle(cycle count)=k;

cycle count=cycle count+1;

end

% Need to set phi prev equal to the current value of phi.

phi prev=phi;

end

% initialize the arrays which will become the instantaneous guiding center
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% position; these arrays are filled up with xc, yc arrays during each cycle

% iteration

rc=[];

phi c=[];

rc temp=[];

phi c temp=[];

% the part you need to subtract off:

%rs=sqrt(4*r.ˆ2+(sin(phi config)).ˆ2−RLd.ˆ2.*(sin(phase)).ˆ2);

xc=[];

yc=[];

xc temp=[];

yc temp=[];

for i=2:cycle count−1

% Need to get the correct indices for each gyrocycle, which will be

% used in the lines below. This algorithm currently forces the dust

% grain to start at zero degrees.

cycle indices=new cycle(i−1):new cycle(i);

tgc(i)=t(new cycle(i))−t(new cycle(i−1));

xc=x(cycle indices)−...

abs(RLd(cycle indices)).*cos(phase(cycle indices));

%xgc(i)=trapz(t(cycle indices),xc)/tgc(i);

% % Do the same thing as above, but for y??

yc=y(cycle indices)−...

abs(RLd(cycle indices)).*sin(phase(cycle indices));

%ygc(i)=trapz(t(cycle indices),yc)/tgc(i);

% % HOW DO I FIX THIS FOR CYL. GEOMETRY???

% rc=r(cycle indices)−...
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% RLd(cycle indices).*(sin(phase(cycle indices)).*phi config(cycle indices)+...

% cos(phase(cycle indices)).*phi config(cycle indices));

%

% phi c=0;

%

% rgc(i)=trapz(t(cycle indices),rc)/tgc(i);

% % Do the same thing as above, but for phi; need to use phi config

% % here;

% phi c=r(cycle indices).*phi config(cycle indices)−...

% abs(RLd(cycle indices)).*sin(phase(cycle indices));

% phi c=phi config(cycle indices)−...

% abs(RLd(cycle indices)).*sin(phase(cycle indices));

% phi c=r(cycle indices).*phi config(cycle indices)−...

% abs(RLd(cycle indices)).*sin(phase(cycle indices));

% phi c=r(cycle indices).*phi config(cycle indices)−...

% RLd(cycle indices).*sin(cycle indices);

% phi gc(i)=trapz(t(cycle indices),phi c)/tgc(i);

% for k=1:length(xc)

%

% [V space,Ex,Ey,B,vix,viy,vex,vey,vnx,vny,gx,gy,n i,n e,alph,...

% T i,T e,nneut,l i,l D,corot period]=...

% profiles(Ti0,Te0,n0,t(k),xc(k),yc(k),...

% profile type,P,species);

% % capacitance of grain with adjustment for debye shielding

% Cap=4*pi*eps0*a*(1+a/l D);

% w e=sqrt((vx(k)−vex).ˆ2+(vy(k)−vey).ˆ2);

% w i=sqrt((vx(k)−vix).ˆ2+(vy(k)−viy).ˆ2);

% w vec=[w e w i];

% [Itot eq,qeq,KnR eq,P 0,P 1,P g1]=...

% charging models(1,ch model,a,alph,T e,T i,n e,n i,B,Z,Cap,0,...

% l D,l i,w vec,species);

% q polar(cycle indices(k))=q(cycle indices(k))/qeq;

% I polar(cycle indices(k))=Itot(cycle indices(k))/Itot eq;
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% phase polar(cycle indices(k))=phase(cycle indices(k));

% % % while we are in this loop, determine what is phi c, or the

% % % angle of the instantaneous guiding center for cylindrical

% % % coordinates.

% phi c(k) = improved arctan(xc(k),yc(k));

% % % OPTIONAL LINE BELOW:

% % % COMPUTE THE GYRO−AVERAGED VALUE OF dq(x)/dx!

% % % −−how to do this??

% end

%rc temp=[rc temp,rc];

%phi c temp=[phi c temp,phi c];

xc temp=[xc temp,xc];

yc temp=[yc temp,yc];

% ideally, put some code here in case neither of the above cases are

% selected.

% % for cyl. coordinates:

%vrgc(i−1)=(rgc(i)−rgc(i−1))/(tgc(i));

vrgc(i−1)=trapz(t(cycle indices),vr(cycle indices));

% % the phi component of the guiding center drift is tricky, because

% % rgc might be changing so the usual vphi=r*dphi/dt may give us wrong

% % answers; just use an average value of r for now.

%vphi gc(i−1)=(rgc(i)+rgc(i−1))*(phi gc(i)−phi gc(i−1))/(tgc(i))/2;

vphi gc(i−1)=trapz(t(cycle indices),vphi(cycle indices));

end

% arrays I either don't need or have not figured out for the cyl.

% profile.

q polar=0;
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I polar=0;

phase polar=0;

%xgc=0;

%ygc=0;

%rgc=0;

phi gc=0;

vxgc=0;

vygc=0;

vrgc=0;

vphi gc=0;

%xc=0;

%yc=0;

tgc=0;

%rc=rc temp;

xc=xc temp;

yc=yc temp;

else

% If the value of the if statement was false, we don't have a cyl. profile,

% but rather a slab profile. proceed as normal.

ax=zeros(size(t));

ay=zeros(size(t));

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% % In the loop below, we must do the following:

% % get instantaneous gyrocenter by using v perp method

% January 2014: I think that the code below only works when phi is

% increasing, i.e., the grain gyrates in a counter−clockwise direction.

for k=1:nsteps

% The point of all these logical statements is to ensure that we are

% correctly solving for the gyro−phase angle in configuration space.

% In quadrant 1.) of the standard circle, but exactly at 0 degrees in

% cofig. space

if vy(k)≥0 && vx(k)==0

phi=0;

end
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% In quadrant 2.) of the standard circle, but exactly at 90 degrees in

% cofig. space

if vy(k)==0 && vx(k)≤0

phi=pi/2;

end

% In quadrant 3.) of the standard circle, but exactly at 180 degrees in

% cofig. space

if vy(k)≤0 && vx(k)==0

phi=pi;

end

% In quadrant 4.) of the standard circle, but exactly at 270 degrees in

% cofig. space

if vy(k)==0 && vx(k)≥0

phi=1.5*pi;

end

% In quadrant 1.) of the standard circle.

if vy(k)>0 && vx(k)<0

phi=atan(abs(vx(k)/vy(k)));

% update the "revolutions" counter, which is good for the first 2

% iterations of the loop.

if (k==1 | | k==2) && phi prev≥pi/2

counter=counter+1;

%new cycle(counter−1)=k;

end

% update revolutions counter for ccw rotation

if k≥3 && strcmp(direction,'ccw') && phi prev≥pi/2

counter=counter+1;

%new cycle(counter−1)=k;

end

end

% In quadrant 2.) of the standard circle.

if vy(k)<0 && vx(k)<0

phi=atan(abs(vy(k)/vx(k)))+pi/2;

end
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% In quadrant 3.) of the standard circle.

if vy(k)<0 && vx(k)>0

phi=atan(abs(vx(k)/vy(k)))+pi;

end

% In quadrant 4.) of the standard circle.

if vy(k)>0 && vx(k)>0

phi=atan(abs(vy(k)/vx(k)))+1.5*pi;

% have to add this line to deal with 'clockwise' rotation

if k≥3 && (strcmp(direction,'cw') && phi prev≤pi/2)

counter=counter+1;

end

end

%phase(k)=phi+2*pi*(counter−1);

% to take care of the first element of the phase array in this loop.

if k==1

phase(1)=phi;

end

% at k=2, if the current angle phi is greater than the previous

% calculated angle phi prev, OR if the current angle phi

if k==2 && (phi>phi prev | | (phi<pi/2 && phi prev> 3*pi/2))

direction ='ccw';

end

% the cw case:

if k==2 && (phi<phi prev | | (phi>3*pi/2 && phi prev<pi/2))

direction ='cw';

end

% after k=2 case has arisen, we can now specify how to update the

% phase angle.

% the ccw case:

if k≥2 && strcmp(direction,'ccw')

phase(k)=phi+2*pi*(counter−1);

end
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% the cw case:

if k≥2 && strcmp(direction,'cw')

if (k==2 && phi>3*pi/2 && phi prev<pi/2)

phase(1)=phi prev+2*pi;

end

phase(k)=phi−2*pi*(counter−1);

end

% August 27, 2013:

% This line below has become quite complicated compared to how it

% started out. You need to make sure that the computed angle

% 0<phi<2*pi is greater than the designated starting angle in order to

% update which gyro−cycle you are on. Also, either the previously

% calculated angle phi is less than the starting angle, or phi is less

% than the previously calculated value of phi.

% JANUARY 23, 2014:

% The statement must be ammended for grains that gyrate in a clockwise

% direction!!

% The "counter−clockwise" gyrating statement

if k≥2 && phi>phi start*pi/180 && ...

(phi prev≤phi start*pi/180 | | phi<phi prev) && ...

strcmp(direction,'ccw')

new cycle(cycle count)=k;

cycle count=cycle count+1;

end

% The "clockwise" gyrating statement

if k≥2 && (phi<phi start*pi/180 && ...

(phi prev≥phi start*pi/180 | | phi>phi prev)) && ...

strcmp(direction,'cw')

new cycle(cycle count)=k;

cycle count=cycle count+1;

end
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% Need to set phi prev equal to the current value of phi.

phi prev=phi;

% last little part here is needed for calculating RLd.

if k≥2 && k≤nsteps−1

ax(k)=(vx(k+1)−vx(k−1))/2/(t(2)−t(1));

ay(k)=(vy(k+1)−vy(k−1))/2/(t(2)−t(1));

end

end

% for the clockwise direction, I need to subtract off 180 degrees to

% get the correct phase.

if strcmp(direction,'cw')

phase=phase−pi;

end

% these lines are needed, kinda bs but tacked on anyway to keep

% acceleration arrays the same size as velocity arrays.

ax(1)=ax(2);

ax(end)=ax(end−1);

ay(1)=ay(2);

ay(end)=ay(end−1);

% now calculate larmor radius.

RLd=v perp.ˆ3./(vx.*ay−vy.*ax);

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% % make a plot to check on the phase, if desired.

%figure(1);clf;

%plot(phase,'.')

% % Not sure if the following can go into the loop above, but the idea

% % here is to calculate the average guiding center over a gyroperiod.

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% % set the initial xgc position to the initial x−position

% below must be fixed for arbitrary starting gyro−average angle

% xgc(1)=x(new cycle(1))−RLd(new cycle(1))*cos(new cycle(1));

% %ˆˆˆˆ Is that right???
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% %% set the initial ygc position:

% ygc(1)=y(new cycle(1))+RLd(new cycle(1))*sin(new cycle(1));

xgc(1)=x(new cycle(1)); %%<<< Is this right???

% % set the initial ygc position:

ygc(1)=y(new cycle(1))−RLd(new cycle(1))*sign(q(new cycle(1)));

% % Can now set the initial rgc position:

rgc(1)=sqrt(xgc(1).ˆ2+ygc(1).ˆ2);

phi(1)=improved arctan(xgc(1),ygc(1));

% % obviously, tgc(1) should be then zero:

tgc(1)=0;

% % KEEP IN MIND: the guiding centers listed above are the INITIAL guiding

% % center coordinates BEFORE any motion has happened. The real guiding

% % centers for the first gyrocycle corresponds to xgc(2) and ygc(2); the

% % above is merely necessary to set up so that the guiding center

% % velocities can be calculated, starting even with the first gyrocycle.

% % You can remove these.

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% initialize the arrays which will become the instantaneous guiding center

% position; these arrays are filled up with xc, yc arrays during each cycle

% iteration

xc temp=[];

yc temp=[];

Bc temp=[];

rc temp=[];

phi c temp=[];

% initialize arrays to save some computational time:

tgc=zeros(1,cycle count−1);

xgc=zeros(size(tgc));

ygc=zeros(size(tgc));

rgc=zeros(size(tgc));

phi gc=zeros(size(tgc));
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% find out what xgc(1) and ygc(1) should be! This is at

% gyro−phase=phi start.

xgc(1)=x(new cycle(1))−...

abs(RLd(new cycle(1))).*cos(phase(new cycle(1)));

ygc(1)=y((new cycle(1)))−...

abs(RLd((new cycle(1)))).*sin(phase((new cycle(1))));

for i=2:cycle count−1

% Need to get the correct indices for each gyrocycle, which will be

% used in the lines below. This algorithm currently forces the dust

% grain to start at zero degrees.

cycle indices=new cycle(i−1):new cycle(i);

tgc(i)=t(new cycle(i))−t(new cycle(i−1));

if average method==1

% UNFORTUNATELY, I THINK THE AVERAGE METHOD JUST DOES NOT WORK FOR

% THE PURPOSE OF FINDING THE GYROCENTER. USE LARMOR AVERAGE

% INSTEAD.

% −JJW June 2013

% below is the simpler, more intuitive, averaging over x during a

% cycle method:

xgc(i)=trapz(t(cycle indices),x(cycle indices))/tgc(i);

% % below is the simpler, averaging over y during a cycle method:

ygc(i)=trapz(t(cycle indices),y(cycle indices))/tgc(i);

% % for cyl. coordinates

rgc(i)=sqrt(xgc(i).ˆ2+ygc(i).ˆ2);

phi gc(i)=improved arctan(xgc(i),ygc(i));

end

if larmor average==1

% % first, here's the xgc(t) method, only valid if vx(0)=negative:

xc=x(cycle indices)−...

abs(RLd(cycle indices)).*cos(phase(cycle indices));
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xgc(i)=trapz(t(cycle indices),xc)/tgc(i);

% % Do the same thing as above, but for y??

yc=y(cycle indices)−...

abs(RLd(cycle indices)).*sin(phase(cycle indices));

ygc(i)=trapz(t(cycle indices),yc)/tgc(i);

% compute the instantaneous guiding center position in cylindrical

% coordinates. phi c gets computed later in the loop below.

rc=sqrt(xc.ˆ2+yc.ˆ2);

rgc(i)=trapz(t(cycle indices),rc)/tgc(i);

% initialize the phi c array to save time:

phi c = zeros(1,length(xc));

for k=1:length(xc)

[V space,Ex,Ey,B,vix,viy,vex,vey,vnx,vny,gx,gy,n i,n e,...

alph,T i,T e,nneut,l i,l D,corot period]=...

profiles(Ti0,Te0,n0,t(k),xc(k),yc(k),...

profile type,P,species);

% capacitance of grain with adjustment for debye shielding

Cap=4*pi*eps0*a*(1+a/l D);

w e=sqrt((vx(k)−vex).ˆ2+(vy(k)−vey).ˆ2);

w i=sqrt((vx(k)−vix).ˆ2+(vy(k)−viy).ˆ2);

w vec=[w e w i];

[Itot eq,qeq,KnR eq,P 0,P 1,P g1]=...

charging models(1,ch model,a,alph,T e,T i,n e,n i,...

B,Z,Cap,0,l D,l i,w vec,species);

Bc(cycle indices(k))=B;

q polar(cycle indices(k))=q(cycle indices(k))/qeq;

I polar(cycle indices(k))=Itot(cycle indices(k))/Itot eq;

phase polar(cycle indices(k))=phase(cycle indices(k));

% % while we are in this loop, determine what is phi c, or the

% % angle of the instantaneous guiding center for cylindrical
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% % coordinates.

%phi c(k) = improved arctan(xc(k),yc(k));

% % OPTIONAL LINE BELOW:

% % COMPUTE THE GYRO−AVERAGED VALUE OF dq(x)/dx!

% % −−how to do this??

end

xc temp=[xc temp,xc];

yc temp=[yc temp,yc];

Bc temp=[Bc temp,Bc];

rc temp=[rc temp,rc];

phi c temp=[phi c temp,phi c];

% fix this for cyl. coordinates!!! May 28 2013

% for cyl. coordinates

%rgc(i)=sqrt(xgc(i).ˆ2+ygc(i).ˆ2);

%phi gc(i)=improved arctan(xgc(i),ygc(i));

% % now that phi c has been calculated, compute the guiding center

% % averaged angle of the guiding center position for cylindrical

% % geometry.

phi gc(i) = trapz(t(cycle indices),phi c)/tgc(i);

end

% ideally, put some code here in case neither of the above cases are

% selected.

% % compute the guiding center drifts

vxgc(i−1)=(xgc(i)−xgc(i−1))/(tgc(i));

vygc(i−1)=(ygc(i)−ygc(i−1))/(tgc(i));

% % compute gyro−averaged magnetic field, for grad−B drifts

Bgc(i−1)=trapz(t(cycle indices),Bc(cycle indices))/tgc(i);

% % Alternative method, which lines up with my theory for abrupt

% % inhomogeneity:

%vxgc(i−1)=trapz(t(cycle indices),vx(cycle indices))/(tgc(i));

%vygc(i−1)=trapz(t(cycle indices),vy(cycle indices))/(tgc(i));
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% % for cyl. coordinates:

vrgc(i−1)=(rgc(i)−rgc(i−1))/(tgc(i));

% % the phi component of the guiding center drift is tricky, because

% % rgc might be changing so the usual vphi=r*dphi/dt may give us wrong

% % answers; just use an average value of r for now.

vphi gc(i−1)=(rgc(i)+rgc(i−1))*(phi gc(i)−phi gc(i−1))/(tgc(i))/2;

%disp(i)

end

% WARNING: I THINK MAYBE THE FIRST ELEMENT OF THESE QUANTITIES SHOULD NOT

% BE DROPPED??? 4/15/2014

% % The first element of vxgc, vygc, xgc, ygc was JUST used to help us

% % calculate some things; discard these now.

%xgc(1)=[];ygc(1)=[];vxgc(1)=[];vygc(1)=[];

% % likewise, discard first elements of the cyl. arrays.

%rgc(1)=[];phi gc(1)=[];vrgc(1)=[];vphi gc(1)=[];

% % turn xc temp and yc temp into the finished arrays xc and yc:

xc=xc temp;

yc=yc temp;

Bc=Bc temp;

rc=rc temp;

phi c=phi c temp;

% done with the temporary arrays.

clear xc temp; clear yc temp; clear Bc temp;

clear rc temp; clear phi c temp;

% % Need to fix all of the * polar arrays, because they are initialized to

% % zero for elements 1:new cycle(1)−1.

q polar(1:new cycle(1)−1)=[];

%I polar(1:new cycle(1)−1)=[];

phase polar(1:new cycle(1)−1)=[];

% % Optional plotting commands to make sure everything is working

% % correctly.

figure(2);clf;

plot(x,y,'−b','linewidth',2);

hold on;
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plot(xc,yc,'−k');

plot(xgc,ygc,'sk','markerfacecolor','k','markersize',12);

axis square;

hold off;

set(gcf, 'Color', [1,1,1]);

% figure(3);clf;

% plot(vxgc,'b');

% hold on;

% plot(vygc,'−−r');

% hold off;

% set(gcf, 'Color', [1,1,1]);

% % Comment this out when necessary.

%polar(phase polar,q polar);

end

% % It takes a lot of time now for gyrophaser.m to run, so make sure the

% % file, including the original filename gets saved!

save(strcat(filename,' gyrophased.mat'))

% % don't need the old file anymore.

delete(strcat(data file,'.mat'));

end

4 Charging Algorithm Codes

The subroutine accumulate charge.m is used to update charge on the grain. For a more detailed

description of the charging scheme, consult chapter IV.

% % Last modified by Jeff Walker, August 23, 2012, modified Feb 21 2013

% % updated to have density etc. calculations done here instead of in

% % dqdt models to save computation time.

function [q,Itot,Kn R0,P0,P1,Pg1,t acc]=accumulate charge(qflag,...

ch model,a,alph,Te,Ti,ne,ni,B,Z,C,q,tmax,alph m,lambda D,lambda i,...
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w,t acc,species)

% % save the initial charge in qi.

qi=q;

% % explanation of inputs:

% % qflag = whether or not to evaluate equilibrium charge for a given

% % model; qflag=1 means do calculate q eq, qflag=0 means do

% % not calculate q eq.

% % ch model = which charge model you are using, e.g., 'oml', 'kortshagen',

% % etc.

% % a = grain size in meters

% % alph = coefficient of UV illumination (I like to use 0.25)

% % Te = electron temperature in eV

% % Ti = ion temperature in eV

% % ne = local electron density in mˆ(−3)

% % ni = local ion density in mˆ(−3)

% % B = strength of the magnetic field in Tesla

% % Z = ionization state of the plasma; I usually just use Z=1.

% % C = capacitance of the dust grain (4*pi*eps0*a)

% % q = the current charge on the dust grain.

% % tmax = A comparison for how long accumulate charge should charge up

% % the grain. Generally, the Newton timestep will be used here,

% % but it depends.

% % alph m = the charge delay parameter

% % lambda D= the local Debye length, in meters.

% % lambda i= the local mean free path for ion−neutral charge exchange

% % collisions.

% % I've decided to get rid of global vars; they are commented if you feel

% % like using them again.

%global qe;

%global me;

%global mp;

%global eps0;

qe=1.6e−19;
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me=9.1e−31;

mp=1.67e−27;

eps0=8.854e−12;

mi=species*mp;

eta=ne/ni;

Tau=Te/Ti;

mr=me/mi;

vthe=sqrt(2*qe*Te/me); % local electron thermal speed, m/s

vthi=sqrt(mr/Tau)*vthe; % local ion (proton) thermal speed, m/s

Ze=1; % number of electrons collected per adaptive timestep

cnt=1; % initialize loop counter

tchg=0; % initialize the adaptive timestep; for when dt<tmax

[Itot(cnt),q0,Kn R0,P0,P1,Pg1]=charging models(qflag,ch model,a,alph,...

Te,Ti,ne,ni,B,Z,C,q,lambda D,lambda i,w,species);

% % This is the line of code that I have used in the past to make plots for

% % posters, and the JPP paper.

dt=Ze*qe/abs(Itot(cnt));

% % Maybe the line below is better?? Charge is added/subtracted 1 electron

% % at a time.

dt=Ze*qe/alph m/abs(Itot(cnt));

%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% % Alright, here's how it works: If the time for the grain to charge by an

% % increment/decrement of 1 electron is greater than the newton timestep,

% % update the charge by a fractional amount!

if dt>tmax

%dq=alph m*tmax*Itot(cnt);

%q=q+dq;

% if dtchg>dtnwt, then start timing how long it's been since the last

% charge update
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t acc=t acc+tmax;

% % bunchabs: ensure that the adaptive timestep works even if

% dtchg>dtNwt!!!

%t rem=dt−tmax;

if t acc>dt

%dq=alph m*tmax*Itot(cnt);

% written in such a way so that the grain is updated by +/− 1

% electron!

dq=alph m*dt*Itot(cnt);

%dq=dt*Itot(cnt);

% q(t) gets "lumped" into a time that is some integer multiple of

% dtNwt, but the time since the last charge update is maintained in

% the t acc variable.

q=q+dq;

% find out how far into THIS newton timestep we went before the

% particle was given +/− 1 electron

%[Itot(cnt),q0,Kn R0,P0,P1,Pg1]=charging models(qflag,ch model,a,alph,Te,Ti,ne,ni,B,Z,C,q,lambda D,lambda i,w);

%dt update=Ze*qe/abs(Itot(cnt));

% % figure out what the UPDATED current should have been when the

% % charge should have been updated. this means we will get the

% % correct value of the current at the charge update.

t rem=rem(t acc,dt);

% reset the time since the last update; which is

t acc=tmax−t rem;

end

% % If the time for the grain to charge up or down by one electron is less

% % than the newton timestep, use the adaptive timestep to charge the

% % grain.

else

while tchg<tmax % iterate to find equilibrium charge;

% tmax is the newton timestep

%disp('tchg<dtNwt')

% % q0 is an output of charging models; maybe it is not needed if
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% % using accumulate charge function

[Itot(cnt),q0,Kn R0,P0,P1,Pg1]=charging models(qflag,ch model,a,...

alph,Te,Ti,ne,ni,B,Z,C,q,lambda D,lambda i,w,species);

% % if there is no current to the dust grain, this will be dividing

% % by zero!

dt=Ze*qe/abs(Itot(cnt));

% % Maybe the line below is better??

%dt=Ze*qe/alph m/abs(Itot(cnt));

% % the next line is the charge delay

dq=alph m*dt*Itot(cnt);

% % if not using an alpha:

%dq=dt*Itot(cnt);

% if abs(dq/qe)<1

% if dt>tmax

% '!'

% else

% dt=qe/abs(alph m*dqdt(cnt));

% dq=qe;

% end

% end

q=q+dq;

tchg=tchg+dt;

% % How do I fix things to include t acc? August 2013

%tchg=t acc+tchg+dt;

qarr(cnt)=q;

% optional: make a time array

t(cnt)=tchg;

if cnt>2&&qarr(cnt)==qarr(cnt−2)

% % because we have broken out of the loop early, we need to

% % find out how much time was left in the newton timestep.

%t rem=tmax−tchg;

%t acc=t rem; % the grain reached its final charge value
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% during the newton timestep at t rem, so

% it's been at this value for time = t acc.

break

end

cnt=cnt+1;

% various diagnostic commands, not usually necessary

%disp(cnt)

%drawnow;

%subplot(2,1,2);plot(t,qarr/qe,'.');grid on;

end

% % after exiting the while loop, tchg>tmax. Find out what was tchg one

% % charging increment before this.

%t rem=tchg−dt; % dt has not changed since tchg was calcualted; subtract

% off dt from tchg to find out what tchg was before we

% exited the while loop.

%t acc=tmax−t rem; % We've been at this charge for time = t acc

end

%cnt

% % figure out what is the change in charge since the last time step.

∆ q=(q−qi)/qe;

% % wait, what is that line above used for???

%pause

Itot=Itot(end);

% close all;

% drawnow;

% subplot(2,1,1);plot(t,dqdt/qe,'.');grid on

% subplot(2,1,2);plot(t,qarr/qe,'.');grid on;pause

% %¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% stuff I've tacked on for instantaneous charging:

% FIND EQUILIBRIUM SURFACE POTENTIAL.

% figure out dimensionless plasma parameters

% e mag=a./(sqrt(pi/4)*me*sqrt(2*qe*Te/me)/qe/B);
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% Kna=lambda i/a;

% Tr=Te/Ti;

% Me=w(1)/vthe;

% % could have problems with this later down the road, just sayin. If you use

% Mi=w(2)/vthi;

% % initialize charging loop parameters

% cnt=1;

% tchg=0;

% Z=0;

% % if ions are flowing, we cant use the usual tn fact=(1+Tr/eta), so prepare

% % for this! The thought here is that the ion temperature

% if Mi==0

% tn fact=(1+Tr/eta);

% KnD=lambda D/a;

% NDe=4/3*pi*ne*lambda D.ˆ3;

% else

% % if the string input is mono−energetic, use the definition below for

% % tn fact.

% if strcmp(ch model,'oml monoenergetic ions')==1 | | ...

% strcmp(ch model,'kortshagen monoenergetic ions')==1 | | ...

% strcmp(ch model,'hutchinson monoenergetic ions')==1

% % This expression uses Mi in terms of the bohm speed, which is

% % correct for a mono−energetic population of ions. If it is

% % flow−shifted, reconfigure for Mi in terms of the bohm speed!

% Mi=w(2)/sqrt(e*Te/mi);

% tn fact=(1+1/Mi.ˆ2/eta);

% else

% % if it's not mono−energetic, use this definition!

% tn fact=(1+1/Mi.ˆ2*Tr/2/eta);

% end

% KnD=sqrt(eps0*(Te*Te)/(ni*Te+ne*Te)/qe)/a;

% NDe=4/3*pi*ne.*sqrt(eps0*(Te*Te)/(ni*Te+ne*Te)/qe).ˆ3;

% end

% M=[Me,Mi];

% % currently, no UV is assumed for region 1 (x<0).

% while Z≤0 % Note that this is a bogus statement; the point is to
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% % run the loop until Z repeats itself, that's when we

% % have reached equilibrium surface potential.

% dZdt=dimensionless charger(ch model,Z,Tr,mr,M,eta,Kna,KnD,0,e mag);

% dt=1/3*KnD/(1+1/KnD)/(tn fact)/NDe/abs(dZdt);

% dZ=1/3*KnD/(1+1/KnD)/(tn fact)/NDe*sign(dZdt);

%

% Zarr(cnt)=Z;

% tarr(cnt)=tchg;

% tchg=tchg+dt;

% Z=Z+dZ;

% if cnt>2&&Zarr(cnt)==Zarr(cnt−2)

% % break out of the loop when the charge begins oscillating back

% % and forth between two values.

% break

% end

% cnt=cnt+1;

%

% % drawnow;

% % figure(1);plot(tarr,Zarr)

%

% end

% clear Zarr;clear tarr;

% q=C*Z*Te;

% % itot:

% Itot=C*(sqrt(ne*qe.ˆ2/me/eps0)/2/pi)*dZdt;

% % output garbage to tacc for now:

% t acc=0;

%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

i Specifying Charging Model

The subroutine charging models.m allows the user to calculate the current to the dust grain for

the local plasma conditions based on the dust grain’s current charge state. The user can specify

whether to compute the in-situ, equilibrium grain charge, which uses a bisection method. The

bisection method codes are listed at the end of section ??. Bear in mind that computing the
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in-situ equilibrium grain charge is not generally recommended when running dust trajectory.m,

since this greatly slows down the program. Instead, use the instantaneous charging feature option

in accumulate charge.m if you want to find trajectories for instantaneous grain charging. The

program charging models.m is a subroutine in dust trajectory.m, but it can also be called

independently to find in-situ equilibrium grain charge, charging currents, Knudsen capture radius,

and also the probabilities for zero, one, and many ion-neutral charge exchange collisions in the grain

sheath. Charging models.m current supports several charge models, included after this subsection.

% % charging models.m

% % Jeffrey Walker

% %

function [Itot,q,Kn R0,P0,P1,Pg1]=...

charging models(qflag,ch model,a,alph,Te,Ti,ne,ni,B,Z,C,qd,...

lambda D,lambda i,w,species)

% explanation of inputs:

% qflag = whether or not to evaluate equilibrium charge for a given

% model; qflag=1 means do calculate q eq, qflag=0 means do not

% calculate q eq.

% ch model = a string which specifies the charging model to be used.

% your options are currently: 'oml', 'kortshagen', and

% 'hutchinson'.

% a = dust grain size, in meters

% alph = coefficient of UV illumination

% Te = electron temperature, in eV

% Ti = ion temperature, in eV

% ne = electron density in mˆ−3

% ni = ion density in mˆ−3

% B = Magnetic field strength, in Tesla

% Z = charge state of ions; use 1 for singly ionized plasma

% C = Capacitance of dust grain in Farads

% qd = grain charge, in Coloumbs

% lambda D = linearized debye length, in meters
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% lambda i = mean free path of ions, in meters

% w = w is a two element array, given by [we wi], where we is the

% grain speed relative to the electrons, and wi is the grain

% speed relative to the ions.

% species = this is the mass number of the ion species.

% some error handling, in case a is specified as a string 'electron' or

% 'ion':

if strcmp(a,'electron')==1 | | strcmp(a,'ion')==1

% just to make sure that if 'electron' or 'ion' is chosen for the dust

% grain size, the charge model MUST be 'constant q'.

ch model='constant q';

end

% % I've decided to get rid of global vars; they are commented if you feel

% % like using them again.

%global qe;

%global me;

%global mp;

%global eps0;

qe=1.6e−19;

me=9.1e−31;

mp=1.67e−27;

eps0=8.854e−12;

mi=species*mp;

eta=ne/ni;

Tau=Te/Ti;

mr=me/mi;

vthe=sqrt(2*qe*Te/me); % local electron thermal speed, m/s

vthi=sqrt(mr/Tau)*vthe; % local ion (proton) thermal speed, m/s

% % short circuit the e mag, i mag check:

%e mag=10;

%i mag=10;
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switch ch model

% I still have not written the "northrop" charging model function, but

% it is the limiting case of high dust grain velocity relative ions

% when compared to the ion thermal speed. Electrons are treated as

% being much faster than the dust grain velocity relative to electrons.

case 'northrop'

[Itot,q]=northrop(a,alph,species,mi,...

Ti,vthi,Rli,ni,Te,vthe,Rle,ne,B,Z,C,qd,er,vx,vy,V space);

case 'oml'

[Itot,q,Kn R0,P0,P1,Pg1]=oml(qflag,a,alph,Ti,ne,ni,Te,B,Z,C,qd,...

lambda D,lambda i,w,species);

case 'simple'

[Itot,q] = simple(qflag,alph,ne,ni,eta,vthe,vthi,a,qd,C);

case 'kortshagen'

[Itot,q,Kn R0,P0,P1,Pg1]=kortshagen(qflag,a,alph,Ti,ni,Te,ne,...

B,Z,C,qd,lambda D,lambda i,w,species);

case 'hutchinson'

[Itot,q,Kn R0,P0,P1,Pg1]=hutchinson(qflag,a,alph,species,...

Ti,ne,ni,Te,B,Z,C,qd,lambda D,lambda i,w);

case 'oml monoenergetic ions'

[Itot,q,Kn R0,P0,P1,Pg1]=oml monoenergetic ions(qflag,a,alph,Ti,ne,ni,Te,B,Z,C,qd,...

lambda D,lambda i,w,species);

% constant q charge model fixes the grain charge to a given number.

% This can be used to show particle trajectories for ions or electrons

% in a profile specified by profiles.m.

case 'constant q'

% not using Knudsen capture parameters for this profile.

Kn R0=0;P0=0; P1=0;Pg1=0;

% no current, because the charge is specified to be constant.

Itot=0;
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if ischar(a)==1

if strcmp(a,'electron')==1

charge state=−1;

end

if strcmp(a,'ion')==1

charge state=Z;

end

% IF a IS NOT A CHARACTER, WE ARE NOT TALKING ABOUT AN ELECTRON OR

% AN ION, SO THIS IS WHERE YOU INPUT THE NUMBER OF ELECTRONS ON A

% GRAIN. USE A NEGATIVE NUMBER FOR charge state TO INDICATE A

% NEGATIVE CHARGE (charge state IS THAT MANY ELECTRONS.)

else

% charge state, i.e., number of electrons. A negative number

% indicates positive charge, while a positive number indicates

% negative charge.

charge state=Z;

% use this instead?

%charge state=Z;

end

% Now specify the charge on the grain/elementary particle.

q=qe*charge state;

end

ii Charging Model Selection

This subsection includes all of the Matlab code for the different charging models investigated in

this dissertation.

i OML Model Codes

Included below is the Matlab code for oml.m, which is the OML model for grain charging and

includes drifting Maxwellian electron and drifting Maxwellian ion populations.
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% oml.m

function [Itot,qf,Kn R0,P0,P1,Pg1]=...

oml(qflag,a,alph,Ti,n e,n i,Te,B,Z,C,qd,lambda D,lambda i,w,species);

% Itot is the total current to the dust grain, while qf is the

% equilibrium charge on the dust grain

% explanation of inputs:

% qflag = whether or not to evaluate equilibrium charge for a given

% model; qflag=1 means do calculate q eq, qflag=0 means do

% not calculate q eq.

% % I've decided to get rid of global vars; they are commented if you feel

% % like using them again.

%global qe;

%global me;

%global mp;

%global eps0;

qe=1.6e−19;

me=9.1e−31;

mp=1.67e−27;

eps0=8.854e−12;

mi=species*mp;

eta=n e/n i;

Tau=Te/Ti;

mr=me/mi;

vthe=sqrt(2*qe*Te/me); % local electron thermal speed, m/s

vthi=sqrt(mr/Tau)*vthe; % local ion (proton) thermal speed, m/s

% electron thermal mach number:

Me=w(1)/vthe;

% ion thermal mach number:

Mi=w(2)/vthi;
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% % magnetization parameters

if B==0

% % error checking, in case the magnetic field is identically zero.

e mag=0;

i mag=0;

else

% to match up with Patacchini and Hutchinson 2007

Rle=sqrt(pi/4)*me*vthe/qe/B;

% to match up with Patacchini and Hutchinson 2007

Rli=sqrt(pi/4)*mi*vthi/Z/qe/B;

e mag=a/Rle;

i mag=a/Rli;

% % The size of the dust grain and debye sheath combined

a and s=a+2.5*lambda D;

% % The following may be more appropriate for magnetization ratios:

%e mag=a and s/Rle;

%i mag=a and s/Rli;

end

% % the following parameters are unneeded for the OML model, so they are

% % just set to zero for when they are needed in the call to

% % dust bisection.m

%lambda i=inf;

mu i=0;

% % Knudsen capture radius

Kn R0=0;

P0=1;

P1=0;

Pg1=0;
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% Calculate plasma currents to particle

if qd≤0 % negative dust potential (phi=qd/C)

if e mag<1 %% UNMAGNETIZED ELECTRONS

if Me==0

% derived via integration of Maxwellian from vmin=sqrt(2*qe*phi/me)

% to infinity, given 4*pi*aˆ2 collection area

%Ie=−ne*qe*(4*pi*aˆ2)*vthe*exp(qd/C/Te);

Ie=−n e*qe*(4*pi*aˆ2)/sqrt(4*pi)*vthe*exp(qd/C/Te);

% expression above matches Patacchini and Hutchinson, 2007

else

%Ie=−n e*qe*(4*pi*aˆ2)/sqrt(4*pi)*vthe*exp(qd/C/Te);

Ie=−.5*sqrt(pi)*a.ˆ2*n e*qe*vthe/Me*(...

(Me.ˆ2+.5+qd/C/Te)*sqrt(pi)*(erf(Me+sqrt(−qd/C/Te))+...

erf(Me−sqrt(−qd/C/Te)))+...

(sqrt(−qd/C/Te)+Me)*exp(−(Me−sqrt(−qd/C/Te)).ˆ2)−...

(sqrt(−qd/C/Te)−Me)*exp(−(Me+sqrt(−qd/C/Te)).ˆ2));

end

else %% MAGNETIZED ELECTRONS; this

% % same as unmagnetized case, except collection area reduced due

% % to magnetization; may be off by some constant factor due to

% % cos−dependence of incidence angle

if Me==0

% derived via integration of Maxwellian from vmin=sqrt(2*qe*phi/me)

% to infinity, given 4*pi*aˆ2 collection area

%Ie=−ne*qe*(4*pi*aˆ2)*vthe*exp(qd/C/Te);

Ie=−.5*n e*qe*(4*pi*aˆ2)/sqrt(4*pi)*vthe*exp(qd/C/Te);

% expression above matches Patacchini and Hutchinson, 2007

else

%Ie=−n e*qe*(4*pi*aˆ2)/sqrt(4*pi)*vthe*exp(qd/C/Te);

Ie=−.25*sqrt(pi)*a.ˆ2*n e*qe*vthe/Me*(...

(Me.ˆ2+.5+qd/C/Te)*sqrt(pi)*(erf(Me+sqrt(−qd/C/Te))+...

erf(Me−sqrt(−qd/C/Te)))+...

(sqrt(−Me*qd/C/Te)+Me)*exp(−(Me−sqrt(−qd/C/Te)).ˆ2)−...
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(sqrt(−Me*qd/C/Te)−Me)*exp(−(Me+sqrt(−qd/C/Te)).ˆ2));

end

end

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

if i mag<1 %% UNMAGNETIZED IONS

% % OML current, cf. Allen, Phys. Scr. 45 (1992), eq. 51

%Ii=ni*qe*(4*pi*aˆ2)*sqrt(−2*qe*qd/C/mi);

% % I'm replacing the above line with the current I see more

% % often in the literature (Shukla 2001 pop, for example)

% Include a statement for w==0 so that there is no division by

% zero.

if Mi==0

Ii=n i*qe*(4*pi*aˆ2)/sqrt(4*pi)*vthi*(1−qd/C/Ti);

% expression above matches Patacchini and Hutchinson, 2007

else

Ii=sqrt(pi)*a.ˆ2*n i*Z*qe*vthi*(...

(Mi.ˆ2+0.5−qd/C/Ti)*sqrt(pi)/Mi*erf(Mi)+exp(−Mi.ˆ2));

% % see 1992 northrop ps or 1981 whipple repprogphys for the

% % above. Also, 1996 Horanyi and 1996 Northrop.

end

% % Call the Newton−Raphson method to find the equilibrium charge FOR

% % THE INPUT CONDITIONS.

if qflag==1

% % a charge between 0 and 1e9 elementary charges is a good

% % search interval.

[output]=dust bisection(1e9,'oml',(qd/qe),eta,alph,Ti,Te,...

e mag,i mag,C,lambda D,lambda i,a,w,species);

qf=round(output);

qf=qf*qe;

else

% % return 0 if you do not wish to calculate equilibrium charge

% % (qflag=0.)

qf=0;
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% % just return zero, value does not matter we just want to

% % skip the charge calculation step.

end

% now that charge, potential profile, and ion mean free path are

% known, the Capture Radius can be calculated at the mean ion

% thermal kinetic energy.

R0 = (abs(qd/C)*a*(1+a/lambda D))/(1.5*Ti+abs(qd/C)*a/lambda D);

if R0==0 | | lambda i==inf

% If R0=0, use OML currents??

P0=1;

P1=0;

Pg1=0;

Kn R0=0;

else

% compute the Knudsen Capture radius; see 2008 Gatti PRE for

% details

Kn R0 = lambda i/(2*1.22*R0);

P0=exp(−1/(Kn R0));

P1=(1/(Kn R0))*exp(−1/(Kn R0));

Pg1=1−(P0+P1);

end

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% % MAGNETIZED IONS

else

% % simple thermal flux of ions, assuming ballistic trajectories

% % along field lines w/ reduced collection area due to

% % magnetization

Ii=n i*qe*(2*pi*aˆ2)*vthi;

% reference for the above?? Maybe 1982 Rubenstein phys. fluids

% % for magnetized ions and electrons, a simple charge model is

% % sufficient.

if qflag==1

qf=0.5*C*Te*log(mr/Tau/eta/eta);
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qf=round(qf/qe);

qf=qf*qe;

else

% return 0 if you do not wich to calculate equilibrium charge

% (qflag=0.)

qf=0;

% just return zero, value does not matter we just want to skip

% the charge calculation step.

end

% I think Kn R0 is just zero if there the ions are magnetized?

Kn R0=0;

end

ph flux=alph*4*n i*eta*vthe; %% just set ph flux=4*n0*vthe for now!

% FOR ENCELADUS, OR OTHER SOLAR SYSTEM RELEVANT SITUATIONS

% (Horanyi 1996): ph flux=2.5e10 K/d/d; this has units cmˆ−2 sˆ−1

% where d is the distance from the sun in AU

% and K is the efficiency factor; ¬1 for conductors and ¬0.1 for

% dielectrics.

Ip=qe*pi*aˆ2*ph flux; %% only valid for q<0! (Horanyi 1996)

% % Not sure why I have to multiply by sqrt(2*pi)... (august 2013)

Ip=1/sqrt(4*pi)*Ip;

% better expression: (4/24/2014)

Ip=qe*n i*eta*vthe*alph*pi*aˆ2;

Itot=Ii+Ie+Ip;

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% can add equations for positive dust potential here; I think the below is

% valid only for unmagnetized electrons, ions

else

% Whipple 1981, reviews of geophysics; 1995 Cui and Goree IEEE

Ie = −n e*qe*(4*pi*aˆ2)*vthe/sqrt(4*pi)*(1+qd/C/Te);

Ii = n i*qe*(4*pi*aˆ2)*vthi/sqrt(4*pi)*exp(−qd/C/Ti);

% Need to call the function for finding equilibrium charge:

% Call the Newton−Raphson method to find the equilibrium charge FOR THE

% INPUT CONDITIONS.

if qflag==1
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% a charge between 0 and 1e9 elementary charges is a good search

% interval.

[output]= dust bisection(1e9,'oml',(qd/qe),eta,alph,Ti,Te,...

e mag,i mag,C,lambda D,lambda i,mu i,a,w,species);

qf=round(output);

qf=qf*qe;

else

% return 0 if you do not wich to calculate equilibrium charge

% (qflag=0.)

qf=0;

% just return zero, value does not matter we just want to skip

% the charge calculation step.

end

%%%%%% %% FOLLOWING NEEDS TO BE CHANGED FOR POSITIVE DUST POTENTIAL!!

ph flux=alph*4*n i*eta*vthe; %% just set ph flux=4*n0*vthe for now!

% FOR ENCELADUS, OR OTHER SOLAR SYSTEM RELEVANT SITUATIONS

% (Horanyi 1996): ph flux=2.5e10 K/d/d; this has units cmˆ−2 sˆ−1

% where d is the distance from the sun in AU

% and K is the efficiency factor; ¬1 for conductors and ¬0.1 for

% dielectrics.

Ip=qe*pi*aˆ2*ph flux; % only valid for q<0! (Horanyi 1996)

% better expression: (4/24/2014)

Ip=qe*n i*eta*vthe*alph*pi*aˆ2;

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

%Ip=qe*pi*aˆ2*ph flux; %% only valid for q<0! (Horanyi 1996)

%Qabs=1; % absorption efficiency is ¬1 for 2*pi*a/lambda uv>1.

% the yield of photoelectrons; perhaps use Y=1? so we get 1

% photoelectron for every uv photon?

%Y=1;

%juv=alph*1e15; %% UV photon flux, in units of mˆ−2 sˆ−1?

% Thermal energy of photo electrons; for now I'm assuming Tph=1 eV for

% convenience.

%Tph=1;

% % only valid for q>0! (Shukla 2001)

%Ip=qe*pi*aˆ2*Qabs*Y*juv*exp(−qe*qd/C/Tph);

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬
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Itot=Ii+Ie+Ip;

% Knudsen capture radius does not exist.

Kn R0=0;

end

Included below is the matlab code for oml monoenergetic ions.m, which includes Maxwellian

electrons and mono-energetic ion populations. This model differs from OML because the ions are

assumed to be cold, having only some relative drift velocity.

% oml monoenergetic ions.m

function [Itot,qf,Kn R0,P0,P1,Pg1]=...

oml monoenergetic ions(qflag,a,alph,Ti,n e,n i,Te,B,Z,C,qd,lambda D,...

lambda i,w,species);

% Itot is the total current to the dust grain, while qf is the

% equilibrium charge on the dust grain

% explanation of inputs:

% qflag = whether or not to evaluate equilibrium charge for a given

% model; qflag=1 means do calculate q eq, qflag=0 means do

% not calculate q eq.

% % I've decided to get rid of global vars; they are commented if you feel

% % like using them again.

%global qe;

%global me;

%global mp;

%global eps0;

qe=1.6e−19;

me=9.1e−31;

mp=1.67e−27;

eps0=8.854e−12;

mi=species*mp;
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eta=n e/n i;

Tau=Te/Ti;

mr=me/mi;

vthe=sqrt(2*qe*Te/me); % local electron thermal speed, m/s

vthi=sqrt(mr/Tau)*vthe; % local ion (proton) thermal speed, m/s

% electron thermal mach number:

Me=w(1)/vthe;

% ion thermal mach number:

Mi=w(2)/vthi;

% % magnetization parameters

if B==0

% % error checking, in case the magnetic field is identically zero.

e mag=0;

i mag=0;

else

% to match up with Patacchini and Hutchinson 2007

Rle=sqrt(pi/4)*me*vthe/qe/B;

% to match up with Patacchini and Hutchinson 2007

Rli=sqrt(pi/4)*mi*vthi/Z/qe/B;

e mag=a/Rle;

i mag=a/Rli;

% % The size of the dust grain and debye sheath combined

a and s=a+2.5*lambda D;

% % The following may be more appropriate for magnetization ratios:

%e mag=a and s/Rle;

%i mag=a and s/Rli;

end

% % the following parameters are unneeded for the OML model, so they are

% % just set to zero for when they are needed in the call to
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% % dust bisection.m

%lambda i=inf;

mu i=0;

% % Knudsen capture radius

Kn R0=0;

P0=1;

P1=0;

Pg1=0;

% Calculate plasma currents to particle

if qd≤0 % negative dust potential (phi=qd/C)

if e mag<1 %% UNMAGNETIZED ELECTRONS

if Me==0

% derived via integration of Maxwellian from vmin=sqrt(2*qe*phi/me)

% to infinity, given 4*pi*aˆ2 collection area

%Ie=−ne*qe*(4*pi*aˆ2)*vthe*exp(qd/C/Te);

Ie=−n e*qe*(4*pi*aˆ2)/sqrt(4*pi)*vthe*exp(qd/C/Te);

% expression above matches Patacchini and Hutchinson, 2007

else

%Ie=−n e*qe*(4*pi*aˆ2)/sqrt(4*pi)*vthe*exp(qd/C/Te);

Ie=−.5*sqrt(pi)*a.ˆ2*n e*qe*vthe/Me*(...

(Me.ˆ2+.5+qd/C/Te)*sqrt(pi)*(erf(Me+sqrt(−qd/C/Te))+...

erf(Me−sqrt(−qd/C/Te)))+...

(sqrt(−qd/C/Te)+Me)*exp(−(Me−sqrt(−qd/C/Te)).ˆ2)−...

(sqrt(−qd/C/Te)−Me)*exp(−(Me+sqrt(−qd/C/Te)).ˆ2));

end

else %% MAGNETIZED ELECTRONS; this

% % same as unmagnetized case, except collection area reduced due

% % to magnetization; may be off by some constant factor due to

% % cos−dependence of incidence angle

if Me==0
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% derived via integration of Maxwellian from vmin=sqrt(2*qe*phi/me)

% to infinity, given 4*pi*aˆ2 collection area

%Ie=−ne*qe*(4*pi*aˆ2)*vthe*exp(qd/C/Te);

Ie=−.5*n e*qe*(4*pi*aˆ2)/sqrt(4*pi)*vthe*exp(qd/C/Te);

% expression above matches Patacchini and Hutchinson, 2007

else

%Ie=−n e*qe*(4*pi*aˆ2)/sqrt(4*pi)*vthe*exp(qd/C/Te);

Ie=−.25*sqrt(pi)*a.ˆ2*n e*qe*vthe/Me*(...

(Me.ˆ2+.5+qd/C/Te)*sqrt(pi)*(erf(Me+sqrt(−qd/C/Te))+...

erf(Me−sqrt(−qd/C/Te)))+...

(sqrt(−qd/C/Te)+Me)*exp(−(Me−sqrt(−qd/C/Te)).ˆ2)−...

(sqrt(−qd/C/Te)−Me)*exp(−(Me+sqrt(−qd/C/Te)).ˆ2));

end

end

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

if i mag<1 %% UNMAGNETIZED IONS

% % OML current, cf. Allen, Phys. Scr. 45 (1992), eq. 51

%Ii=ni*qe*(4*pi*aˆ2)*sqrt(−2*qe*qd/C/mi);

% % I'm replacing the above line with the current I see more

% % often in the literature (Shukla 2001 pop, for example)

% Include a statement for w==0 so that there is no division by

% zero.

if Mi==0

% this is OML theory for mono−energetic ions, so if there is no

% ion flow, there can be no ion current.

Ii=0;

%Ii=n i*qe*(4*pi*aˆ2)/sqrt(4*pi)*vthi*(1−qd/C/Ti);

% expression above matches Patacchini and Hutchinson, 2007

else

Ii=pi*n i*qe*aˆ2*w(2)*(1−qe*qd/C/(mi*w(2).ˆ2));

% Ii=sqrt(pi)*a.ˆ2*n i*Z*qe*vthi*(...

% (Mi.ˆ2+0.5−qd/C/Ti)*sqrt(pi)/Mi*erf(Mi)+exp(−Mi.ˆ2));

% % see 1992 northrop ps or 1981 whipple repprogphys for the

% % above. Also, 1996 Horanyi and 1996 Northrop.
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end

% % Call the Newton−Raphson method to find the equilibrium charge FOR

% % THE INPUT CONDITIONS.

if qflag==1

% % a charge between 0 and 1e6 elementary charges is a good

% % search interval.

[output]=dust bisection(1e6,'oml monoenergetic ions',(qd/qe),eta,alph,Ti,Te,...

e mag,i mag,C,lambda D,lambda i,a,w,species);

qf=round(output);

qf=qf*qe;

else

% % return 0 if you do not wish to calculate equilibrium charge

% % (qflag=0.)

qf=0;

% % just return zero, value does not matter we just want to

% % skip the charge calculation step.

end

% now that charge, potential profile, and ion mean free path are

% known, the Capture Radius can be calculated at the mean ion

% thermal kinetic energy.

R0 = (abs(qd/C)*a*(1+a/lambda D))/(1.5*Ti+abs(qd/C)*a/lambda D);

if R0==0 | | lambda i==inf

% If R0=0, use OML currents??

P0=1;

P1=0;

Pg1=0;

Kn R0=0;

else

% compute the Knudsen Capture radius; see 2008 Gatti PRE for

% details

Kn R0 = lambda i/(2*1.22*R0);

P0=exp(−1/(Kn R0));

P1=(1/(Kn R0))*exp(−1/(Kn R0));

Pg1=1−(P0+P1);
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end

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% % MAGNETIZED IONS

else

% % simple thermal flux of ions, assuming ballistic trajectories

% % along field lines w/ reduced collection area due to

% % magnetization

Ii=n i*qe*(2*pi*aˆ2)*vthi;

% reference for the above?? Maybe 1982 Rubenstein phys. fluids

% % for magnetized ions and electrons, a simple charge model is

% % sufficient.

if qflag==1

qf=0.5*C*Te*log(mr/Tau/eta/eta);

qf=round(qf/qe);

qf=qf*qe;

else

% return 0 if you do not wich to calculate equilibrium charge

% (qflag=0.)

qf=0;

% just return zero, value does not matter we just want to skip

% the charge calculation step.

end

% I think Kn R0 is just zero if there the ions are magnetized?

Kn R0=0;

end

ph flux=alph*4*n i*eta*vthe; %% just set ph flux=4*n0*vthe for now!

% FOR ENCELADUS, OR OTHER SOLAR SYSTEM RELEVANT SITUATIONS

% (Horanyi 1996): ph flux=2.5e10 K/d/d; this has units cmˆ−2 sˆ−1

% where d is the distance from the sun in AU

% and K is the efficiency factor; ¬1 for conductors and ¬0.1 for

% dielectrics.

Ip=qe*pi*aˆ2*ph flux; %% only valid for q<0! (Horanyi 1996)

% % Not sure why I have to multiply by sqrt(2*pi)... (august 2013)

Ip=1/sqrt(4*pi)*Ip;
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% better expression: (4/24/2014)

Ip=qe*n i*eta*vthe*alph*pi*aˆ2;

Itot=Ii+Ie+Ip;

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% can add equations for positive dust potential here; I think the below is

% valid only for unmagnetized electrons, ions

else

% Whipple 1981, reviews of geophysics; 1995 Cui and Goree IEEE

Ie = −n e*qe*(4*pi*aˆ2)*vthe/sqrt(4*pi)*(1+qd/C/Te);

Ii = n i*qe*(4*pi*aˆ2)*vthi/sqrt(4*pi)*exp(−qd/C/Ti);

% Need to call the function for finding equilibrium charge:

% Call the Newton−Raphson method to find the equilibrium charge FOR THE

% INPUT CONDITIONS.

if qflag==1

% a charge between 0 and 1e6 elementary charges is a good search

% interval.

[output]= dust bisection(1e6,'oml monoenergetic ions',(qd/qe),eta,alph,Ti,Te,...

e mag,i mag,C,lambda D,lambda i,mu i,a,w,species);

qf=round(output);

qf=qf*qe;

else

% return 0 if you do not wich to calculate equilibrium charge

% (qflag=0.)

qf=0;

% just return zero, value does not matter we just want to skip

% the charge calculation step.

end

%%%%%% %% FOLLOWING NEEDS TO BE CHANGED FOR POSITIVE DUST POTENTIAL!!

ph flux=alph*4*n i*eta*vthe; %% just set ph flux=4*n0*vthe for now!

% FOR ENCELADUS, OR OTHER SOLAR SYSTEM RELEVANT SITUATIONS

% (Horanyi 1996): ph flux=2.5e10 K/d/d; this has units cmˆ−2 sˆ−1

% where d is the distance from the sun in AU

% and K is the efficiency factor; ¬1 for conductors and ¬0.1 for

% dielectrics.

Ip=qe*pi*aˆ2*ph flux; % only valid for q<0! (Horanyi 1996)
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% better expression: (4/24/2014)

Ip=qe*n i*eta*vthe*alph*pi*aˆ2;

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

%Ip=qe*pi*aˆ2*ph flux; %% only valid for q<0! (Horanyi 1996)

%Qabs=1; % absorption efficiency is ¬1 for 2*pi*a/lambda uv>1.

% the yield of photoelectrons; perhaps use Y=1? so we get 1

% photoelectron for every uv photon?

%Y=1;

%juv=alph*1e15; %% UV photon flux, in units of mˆ−2 sˆ−1?

% Thermal energy of photo electrons; for now I'm assuming Tph=1 eV for

% convenience.

%Tph=1;

% % only valid for q>0! (Shukla 2001)

%Ip=qe*pi*aˆ2*Qabs*Y*juv*exp(−qe*qd/C/Tph);

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

Itot=Ii+Ie+Ip;

% Knudsen capture radius does not exist.

Kn R0=0;

end

ii Patacchini-Hutchinson Model Code

Included below is the matlab code for hutchinson.m, which is the Patacchini-Hutchinson model

for grain charging and includes Maxwellian electron and drifting Maxwellian ion populations. This

model differs from OML because it includes finite-Larmor radius effects of the electrons.

function [Itot,qf,Kn R0,P0,P1,Pg1]=hutchinson(qflag,a,alph,species,...

Ti,n e,n i,Te,B,Z,C,qd,lambda D,lambda i,w);

% % explanation of inputs:

% % qflag = whether or not to evaluate equilibrium charge for a given

% % model; qflag=1 means do calculate q eq, qflag=0 means do not

% % calculate q eq.

% % a = grain size in meters

% % alph =
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% % species = Mass number of ion/neutral species.

qe=1.6e−19;

me=9.1e−31;

mp=1.67e−27;

eps0=8.854e−12;

mi=species*mp;

eta=n e/n i;

Tau=Te/Ti;

mr=me/mi;

vthe=sqrt(2*qe*Te/me); % local electron thermal speed, m/s

vthi=sqrt(mr/Tau)*vthe; % local ion (proton) thermal speed, m/s

% electron thermal mach number:

Me=w(1)/vthe;

% ion thermal mach number:

Mi=w(2)/vthi;

% % magnetization parameters

if B==0

% % error checking, in case the magnetic field is identically zero.

e mag=0;

i mag=0;

else

%Rle=me*vthe/qe/B;

Rle=sqrt(pi/4)*me*vthe/qe/B; %% to match up with Patacchini and Hutchinson 2007

% % I think to match up with Patacchini and Hutchinson 2007, just use exactly their formula:

% e mag=a/sqrt(pi*Te*me/2/qe/B/B); % Sept 2013

%Rli=mi*vthi/Z/qe/B;

Rli=sqrt(pi/4)*mi*vthi/Z/qe/B; %% to match up with Patacchini and Hutchinson 2007

% % I think to match up with Patacchini and Hutchinson 2007, just use exactly their formula:

% i mag=a/sqrt(pi*Ti*mi/2/qe/B/B); % Sept 2013

e mag=a/Rle;

i mag=a/Rli;
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% % The size of the dust grain and debye sheath combined

a and s=a+2.5*lambda D;

% % The following may be more appropriate for magnetization ratios:

%e mag=a and s/Rle;

%i mag=a and s/Rli;

end

%% the following parameters are not need yet, so they are just set to zero for when they

%% are needed in the call to dust bisection.m

%lambda i=inf;

mu i=0;

% % Knudsen capture radius

Kn R0=0;

P0=1;

P1=0;

Pg1=0;

% % FOR LAMBDA D −−> INFINITE???

% z is the function of magnetization used by Patacchini and Hutchinson, 2007

%z=e mag/(1+e mag);

% iota* in Patacchini and Hutchinson:

%iota=1−0.0946*z−0.305*z.ˆ2+0.95*z.ˆ3−2.2*z.ˆ4+1.15*z.ˆ5;

%% lower bound on electron current:

%Ie low=4*pi*a.ˆ2*vthe/2/sqrt(pi)*iota*exp(qd/C/Te);

%

%% eta, which is (Vp/Te)/e mag:

%eta mag=−qd/C/Te/e mag;

%

%% w, which is eta/(1+eta):

%w mag=eta mag/(1+eta mag);

%

%% A, the fitting polynomial, a function of w:

%A fit=0.678*w mag+1.543*w mag.ˆ2−1.212*w mag.ˆ3;

%

%% Ie*, which is the empirical formula for electron current as a function of magnetization
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%Ie=4*pi*a.ˆ2*vthe/2/sqrt(pi)*exp(qd/C/Te)*(A fit+(1−A fit)*iota);

% % FOR LAMBDA D = FINITE, AND DEBYE−HUCKEL POTENTIAL:

% eta, which is now dependent on grain sheath size:

%eta mag=−qd/C/Te/e mag*(1+a/lambda D);

%eta mag=−qd/C/Te/e mag*(1+e mag/4*(1−exp(−4*a/lambda D/e mag)));

% w, which is eta/(1+eta):

%w mag=eta mag/(1+eta mag);

% A, the fitting polynomial, a function of w:

%A fit=0.678*w mag+1.543*w mag.ˆ2−1.212*w mag.ˆ3;

% Ie*, which is the empirical formula for electron current as a function of magnetization

%Ie=4*pi*a.ˆ2*vthe/2/sqrt(pi)*exp(qd/C/Te)*(A fit+(1−A fit)*iota);

% Patacchini−Hutchinson model can include the spatial dependence of electron flux to the sphere.

% I have chosen not to put this in at the current time, since it is not necessary for determining the

% total grain charge.

% % Check magnetization of ions, ion current is the same as OML.

% % Comment out the electron currents from OML model

if qd≤0 % negative dust potential (phi=qd/C)

% % Don't have to split electrons into magnetized and unmagnetized regimes;

% % this is taken care of in one expression for the electron current in the

% % Patacchini−Hutchinson charge model.

z=e mag/(1+e mag);

% iota* in Patacchini and Hutchinson:

iota=1−0.0946*z−0.305*z.ˆ2+0.95*z.ˆ3−2.2*z.ˆ4+1.15*z.ˆ5;

% % FOR LAMBDA D = FINITE, AND DEBYE−HUCKEL POTENTIAL:

% eta, which is now dependent on grain sheath size:

eta mag=−qd/C/Te/e mag*(1+e mag/4*(1−exp(−4*a/lambda D/e mag)));

% w, which is eta/(1+eta):

w mag=eta mag/(1+eta mag);
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% A, the fitting polynomial, a function of w:

A fit=0.678*w mag+1.543*w mag.ˆ2−1.212*w mag.ˆ3;

% Ie*, which is the empirical formula for electron current as a

% function of magnetization

Ie=−qe*4*pi*a.ˆ2*vthe/2/sqrt(pi)*n e*exp(qd/C/Te)*...

(A fit+(1−A fit)*iota);

% Patacchini−Hutchinson model can include the spatial dependence of

% electron flux to the sphere. I have chosen not to put this in at the

% current time, since it is not necessary for determining the total grain

% charge.

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

if i mag<1 %% UNMAGNETIZED IONS

% now that charge, potential profile, and ion mean free path are

% known, the Capture Radius can be calculated at the mean ion

% thermal kinetic energy.

R0 = (abs(qd/C)*a*(1+a/lambda D))/(1.5*Ti+abs(qd/C)*a/lambda D);

if R0==0 | | lambda i==inf

% If R0=0, use OML currents??

P0=1;

P1=0;

Pg1=0;

Kn R0=0;

else

% compute the Knudsen Capture radius; see 2008 Gatti PRE for

% details

Kn R0 = lambda i/(2*1.22*R0);

P0=exp(−1/(Kn R0));

P1=(1/(Kn R0))*exp(−1/(Kn R0));

Pg1=1−(P0+P1);

end

389



% ion current, for all thermal mach numbers.

if Mi==0

Ii=n i*qe*(4*pi*aˆ2)/sqrt(4*pi)*vthi*(1−qd/C/Ti);

% expression above matches Patacchini and Hutchinson, 2007

else

Ii=sqrt(pi)*a.ˆ2*n i*Z*qe*vthi*((Mi.ˆ2+0.5−qd/C/Ti)*...

sqrt(pi)/Mi*erf(Mi)+exp(−Mi.ˆ2));

% % see 1992 northrop ps or 1981 whipple repprogphys for the

% % above. Also, 1996 Horanyi and 1996 Northrop.

end

% % Call the Newton−Raphson method to find the equilibrium charge FOR

% % THE INPUT CONDITIONS.

if qflag==1

% % a charge between 0 and 1e4 elementary charges is a good

% % search interval.

[output]= dust bisection(1e6,'hutchinson',(qd/qe),eta,alph,...

Ti,Te,e mag,i mag,C,lambda D,lambda i,a,w,species);

qf=round(output);

qf=qf*qe;

else

% % return 0 if you do not wish to calculate equilibrium charge

% % (qflag=0.)

qf=0; % % just return zero, value does not matter we just

% % want to skip the charge calculation step.

end

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

else %% MAGNETIZED IONS

% % simple thermal flux of ions, assuming ballistic trajectories

% % along field lines w/ reduced collection area due to magnetization

Ii=n i*qe*(2*pi*aˆ2)*vthi; % reference for this?? Maybe 1982 Rubenstein phys. fluids

%% for magnetized ions and electrons, a simple charge model is sufficient.

if qflag==1
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qf=0.5*C*Te*log(mr/Tau/eta/eta);

qf=round(qf/qe);

qf=qf*qe;

else

%% return 0 if you do not wich to calculate equilibrium charge (qflag=0.)

qf=0; %% just return zero, value does not matter we just want to skip

%% the charge calculation step.

end

end

ph flux=alph*4*n i*eta*vthe; %% just set ph flux=4*n0*vthe for now!

%% FOR ENCELADUS, OR OTHER SOLAR SYSTEM RELEVANT SITUATIONS (Horanyi 1996):

%% ph flux=2.5e10 K/d/d; this has units cmˆ−2 sˆ−1

%% where d is the distance from the sun in AU

%% and K is the efficiency factor; ¬1 for conductors and ¬0.1 for dielectrics.

Ip=qe*pi*aˆ2*ph flux; %% only valid for q<0! (Horanyi 1996)

% % Not sure why I have to multiply by sqrt(2*pi)... (august 2013)

Ip=1/sqrt(4*pi)*Ip;

% better expression: (4/24/2014)

Ip=qe*n i*eta*vthe*alph*pi*aˆ2;

Itot=Ii+Ie+Ip;

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

else

% can add equations for positive dust potential here; I think the below is valid only for unmagnetized

% electrons, ions

Ie = −n e*qe*(4*pi*aˆ2)*vthe/sqrt(4*pi)*(1+qd/C/Te); %% Whipple 1981, reviews of geophysics; 1995 Cui and Goree IEEE

Ii = n i*qe*(4*pi*aˆ2)*vthi/sqrt(4*pi)*exp(−qd/C/Ti);

%% Need to call the function for finding equilibrium charge:

%% Call the Newton−Raphson method to find the equilibrium charge FOR THE INPUT CONDITIONS.

if qflag==1

%% a charge between 0 and 1e4 elementary charges is a good search interval.

[output]= dust bisection(1e6,'oml',(qd/qe),eta,alph,Ti,Te,e mag,i mag,C,lambda D,lambda i,mu i,a,w,species);

%[output]=dust newt meth(1e4,'oml',(qd/qe),eta,alph,Ti,Te,e mag,i mag,C);

qf=round(output);

qf=qf*qe;
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else

%% return 0 if you do not wich to calculate equilibrium charge (qflag=0.)

qf=0; %% just return zero, value does not matter we just want to skip

%% the charge calculation step.

end

%%%%%% %% FOLLOWING NEEDS TO BE CHANGED FOR POSITIVE DUST POTENTIAL!!

ph flux=alph*4*n i*eta*vthe; %% just set ph flux=4*n0*vthe for now!

% % FOR ENCELADUS, OR OTHER SOLAR SYSTEM RELEVANT SITUATIONS

% % (Horanyi 1996): ph flux=2.5e10 K/d/d; this has units cmˆ−2 sˆ−1

% % where d is the distance from the sun in AU

% % and K is the efficiency factor; ¬1 for conductors and ¬0.1 for

% % dielectrics.

Ip=qe*pi*aˆ2*ph flux; % only valid for q<0! (Horanyi 1996)

% % Not sure why I have to multiply by sqrt(2*pi)... (august 2013)

%Ip=1/sqrt(4*pi)*Ip;

% better expression: (4/24/2014)

Ip=qe*n i*eta*vthe*alph*pi*aˆ2;

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

%Ip=qe*pi*aˆ2*ph flux; %% only valid for q<0! (Horanyi 1996)

%Qabs=1; %% absorption efficiency is ¬1 for 2*pi*a/lambda uv > 1.

%Y=1; %% the yield of photoelectrons; perhaps use Y=1? so we get 1 photoelectron for every uv photon?

%juv=alph*1e15; %% UV photon flux, in units of mˆ−2 sˆ−1?

%Tph=1; %% Thermal energy of photo electrons; for now I'm assuming Tph=1 eV for convenience.

%Ip=qe*pi*aˆ2*Qabs*Y*juv*exp(−qe*qd/C/Tph); %% only valid for q>0! (Shukla 2001)

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

Itot=Ii+Ie+Ip;

end

iii Gatti-Kortshagen Model Code

Included below is the matlab code for kortshagen.m, which is the Gatti-Kortshagen model for

grain charging and includes drifting Maxwellian electron and drifting Maxwellian ion populations.

This charging model differs from OML because it includes the effects of ion-neutral charge exchange

collisions in the grain sheath, and is valid over a wide range of collisionality.
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function [Itot,qf,Kn R0,P0,P1,Pg1]=kortshagen(qflag,a,alph,Ti,ni,Te,ne,...

B,Z,C,qd,lambda D,lambda i,w,species);

% explanation of inputs:

% qflag = whether or not to evaluate equilibrium charge for a given

% model; qflag=1 means do calculate q eq, qflag=0 means do not

% calculate q eq.

% I've decided to get rid of global vars; they are commented if you feel

% like using them again.

%global qe;

%global me;

%global mp;

%global eps0;

qe=1.6e−19;

me=9.1e−31;

mp=1.67e−27;

eps0=8.854e−12;

mi=species*mp;

eta=ne/ni;

Tau=Te/Ti;

mr=me/mi;

vthe=sqrt(2*qe*Te/me); % local electron thermal speed, m/s

vthi=sqrt(mr/Tau)*vthe; % local ion (proton) thermal speed, m/s

% electron thermal mach number:

Me=w(1)/vthe;

% ion thermal mach number:

Mi=w(2)/vthi;

% % magnetization parameters

if B==0

% % error checking, in case the magnetic field is identically zero.

e mag=0;
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i mag=0;

else

%Rle=me*vthe/qe/B;

% Use below to match up with Patacchini and Hutchinson 2007

Rle=sqrt(pi/4)*me*vthe/qe/B;

%Rli=mi*vthi/Z/qe/B;

% Use below to match up with Patacchini and Hutchinson 2007

Rli=sqrt(pi/4)*mi*vthi/Z/qe/B;

e mag=a/Rle;

i mag=a/Rli;

end

% % The size of the dust grain and debye sheath combined

a and s=a+2.5*lambda D;

% % The following may be more appropriate for magnetization ratios:

%e mag=a and s/Rle;

%i mag=a and s/Rli;

% now that charge, potential profile, and ion mean free path are known,

% the Capture Radius can be calculated at the mean ion thermal

% kinetic energy.

R0 = (abs(qd/C)*a*(1+a/lambda D))/(1.5*Ti+abs(qd/C)*a/lambda D);

% % calculate the ion mobility. confusingly, DO NOT MULTIPLY BY qe!!!

mu i=(1/Ti)*(3*pi*vthi*lambda i)/(16*sqrt(2));

if mu i==inf;

% obviously, if mu i is infinite, or the plasma is essentially

% collisionless, we are in the OML regime so the hydrodynamic current

% is basically zero. To enforce this, just set mu i=0 if lambda i=inf

mu i=0;

end

% Calculate plasma currents to particle

if qd≤0 % negative dust potential (phi=qd/C)
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if e mag<1 % UNMAGNETIZED ELECTRONS

if Me==0

% derived via integration of Maxwellian from

% vmin=sqrt(2*qe*phi/me) to infinity, given 4*pi*aˆ2 collection

% area

Ie=−ne*qe*(4*pi*aˆ2)/sqrt(4*pi)*vthe*exp(qd/C/Te);

% expression above matches Patacchini and Hutchinson, 2007

else

Ie=−.5*sqrt(pi)*a.ˆ2*ne*qe*vthe/Me*(...

(Me.ˆ2+.5+qd/C/Te)*sqrt(pi)*(erf(Me+sqrt(−qd/C/Te))+...

erf(Me−sqrt(−qd/C/Te)))+...

(sqrt(−qd/C/Te)+Me)*exp(−(Me−sqrt(−qd/C/Te)).ˆ2)−...

(sqrt(−qd/C/Te)−Me)*exp(−(Me+sqrt(−qd/C/Te)).ˆ2));

end

% MAGNETIZED ELECTRONS

else

% same as unmagnetized case, except collection area reduced due

% to magnetization; may be off by some constant factor due to

% cos−dependence of incidence angle

Ie=−ne*qe*(2*pi*aˆ2)*vthe/2/sqrt(pi)*exp((qd/C)/Te);

end

if i mag<1

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% KORTSHAGEN CURRENT IS A COMBINATION OF OML, HYD., AND CEC ION

% CURRENTS.

% compute the probabilities for various numbers of collisions an

% ion undergoes in the dust grain sheath. P0 means no collisions,

% P1 is one collsion, and Pg1 is greater than 1 collision.

% R0 can very easily be zero if the charge on the grain is zero!

% The statement below is used to prevent any problems

if Mi==0

if R0==0
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% If R0=0, use OML currents??

P0=1;

P1=0;

Pg1=0;

Kn R0=0;

ioml=ni*qe*(4*pi*aˆ2)*vthi/2/sqrt(pi)*(1−qd/C/Ti);

icec=0;

ihyd=0;

else

% compute the Knudsen Capture radius; see 2008 Gatti PRE

% for details

Kn R0 = lambda i/(2*1.22*R0);

P0=exp(−1/(Kn R0));

P1=(1/(Kn R0))*exp(−1/(Kn R0));

Pg1=1−(P0+P1);

ioml=ni*qe*(4*pi*aˆ2)*vthi/2/sqrt(pi)*(1−qd/C/Ti);

icec=ni*qe*(4*pi*(1.22*R0)ˆ2)*vthi/2/sqrt(pi);

% calculate the ion current due to hyd. charge model, from

% Gotti et. al. Phys Rev E 2008, might want to find other

% sources too

ihyd=16*pi*a*qe*ni*mu i*abs((qd)/C)/2/sqrt(pi);

end

Ii=P0*ioml+P1*icec+Pg1*ihyd;

if qflag==1

% a charge between 0 and 1e4 elementary charges is a good

% search interval.

[output]=dust bisection(1e6,'kortshagen',(qd/qe),eta,...

alph,Ti,Te,e mag,i mag,C,lambda D,lambda i,a,w,...

species);
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qf=round(output);

qf=qf*qe;

else

% return 0 if you do not wish to calculate equilibrium charge

% (qflag=0.)

qf=0;

% just return zero, value does not matter we just want to skip

% the charge calculation step.

end

% Mi6=0, or for ion flow cases:

else

if R0==0

% If R0=0, use OML currents??

P0=1;

P1=0;

Pg1=0;

Kn R0=0;

% the best I can do for flowing ions right now is to just

% modify the oml current:

ioml=sqrt(pi)*a.ˆ2*ni*Z*qe*vthi*(...

(Mi.ˆ2+0.5−qd/C/Ti)*sqrt(pi)/Mi*erf(Mi)+exp(−Mi.ˆ2));

%ioml=ni*qe*(4*pi*aˆ2)*vthi/2/sqrt(pi)*(1−qd/C/Ti);

icec=0;

ihyd=0;

else

% compute the Knudsen Capture radius; see 2008 Gatti PRE

% for details

Kn R0 = lambda i/(2*1.22*R0);

P0=exp(−1/(Kn R0));

P1=(1/(Kn R0))*exp(−1/(Kn R0));

Pg1=1−(P0+P1);

% the best I can do for flowing ions right now is to just
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% modify the oml current:

ioml=sqrt(pi)*a.ˆ2*ni*Z*qe*vthi*(...

(Mi.ˆ2+0.5−qd/C/Ti)*sqrt(pi)/Mi*erf(Mi)+exp(−Mi.ˆ2));

%ioml=ni*qe*(4*pi*aˆ2)*vthi/2/sqrt(pi)*(1−qd/C/Ti);

icec=ni*qe*(4*pi*(1.22*R0)ˆ2)*vthi/2/sqrt(pi);

% calculate the ion current due to hyd. charge model, from

% Gotti et. al. Phys Rev E 2008, might want to find other

% sources too

ihyd=16*pi*a*qe*ni*mu i*abs((qd)/C)/2/sqrt(pi);

5+5;

end

Ii=P0*ioml+P1*icec+Pg1*ihyd;

if qflag==1

% a charge between 0 and 1e4 elementary charges is a good

% search interval.

[output]= dust bisection(1e6,'kortshagen',(qd/qe),eta,...

alph,Ti,Te,e mag,i mag,C,lambda D,lambda i,a,w,...

species);

qf=round(output);

qf=qf*qe;

else

% return 0 if you do not wish to calculate equilibrium charge

% (qflag=0.)

qf=0;

% just return zero, value does not matter we just want to skip

% the charge calculation step.

end

end

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

% MAGNETIZED CASE?? (B −> inf)

else

% simple thermal flux of ions, assuming ballistic trajectories
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% along field lines w/ reduced collection area due to

% magnetization

Ii=ni*qe*(2*pi*aˆ2)*vthi; % reference for this??

if qflag==1

% a charge between 0 and 1e4 elementary charges is a good

% search interval.

[output]= dust bisection(1e6,'kortshagen',(qd/qe),eta,alph,...

Ti,Te,e mag,i mag,C,lambda D,lambda i,a,w,species);

disp(output)

qf=round(output);

qf=qf*qe;

else

% return 0 if you do not wich to calculate equilibrium charge

% (qflag=0.)

qf=0;

% just return zero, value does not matter we just want to skip

% the charge calculation step.

end

end

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

ph flux=alph*4*ni*eta*vthe; %% just set ph flux=4*n0*vthe for now!

% FOR ENCELADUS, OR OTHER SOLAR SYSTEM RELEVANT SITUATIONS

% (Horanyi 1996): ph flux=2.5e10 K/d/d; this has units cmˆ−2 sˆ−1

% where d is the distance from the sun in AU

% and K is the efficiency factor; ¬1 for conductors and ¬0.1 for

% dielectrics.

Ip=qe*pi*aˆ2*ph flux; % only valid for q<0! (Horanyi 1996)

% % Not sure why I have to multiply by sqrt(2*pi)... (august 2013)

Ip=1/sqrt(4*pi)*Ip;

% better expression: (4/24/2014)

Ip=qe*ni*eta*vthe*alph*pi*aˆ2;

Itot=Ii+Ie+Ip;

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬
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% equations for positive dust potential:

else

% these might need to be changed for Kortshagen charge model, but I

% have the expressions from Whipple 1981 here for now

Ie = −ne*qe*(4*pi*aˆ2)*vthe/2/sqrt(pi)*(1+(qd/C)/Te);

Ii = ni*qe*(4*pi*aˆ2)*vthi/2/sqrt(pi)*exp(−(qd/C)/Ti);

% These are from %% Whipple 1981, reviews of geophysics; also

% 1995 Cui and Goree IEEE

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

%%%%%% %% FOLLOWING NEEDS TO BE CHANGED FOR POSITIVE DUST POTENTIAL!!

ph flux=alph*4*ni*eta*vthe/2/sqrt(pi); %% just set ph flux=4*n0*vthe for now!

% FOR ENCELADUS, OR OTHER SOLAR SYSTEM RELEVANT SITUATIONS

% (Horanyi 1996):

% ph flux=2.5e10 K/d/d; this has units cmˆ−2 sˆ−1

% where d is the distance from the sun in AU

% and K is the efficiency factor; ¬1 for conductors and ¬0.1 for

% dielectrics.

Ip=qe*pi*aˆ2*ph flux; % only valid for q<0! (Horanyi 1996)

% better expression: (4/24/2014)

Ip=qe*ni*eta*vthe*alph*pi*aˆ2;

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

%Ip=qe*pi*aˆ2*ph flux; %% only valid for q<0! (Horanyi 1996)

%Qabs=1; % absorption efficiency is ¬1 for 2*pi*a/lambda uv > 1.

%Y=1;

% the yield of photoelectrons; perhaps use Y=1? so we get 1

% photoelectron for every uv photon?

%juv=alph*1e15; % UV photon flux, in units of mˆ−2 sˆ−1?

%Tph=1; % Thermal energy of photo electrons; for now I'm assuming

%Tph=1 eV for convenience.

%Ip=qe*pi*aˆ2*Qabs*Y*juv*exp(−qe*qd/C/Tph); % only valid for q>0!

%(Shukla 2001)

%%¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

end
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iii Bisection Method

The bisection method is used to solve the transcendental equation that results when trying to find

equilibrium charge on the grain. The bisection method is capable of solving any polynomial or

transcendental algebraic equation, making it a particularly useful tool. This particular bisection

function was set up to include plasma parameters as inputs, and can be called by any of the

charging model subroutines to find equilibrium grain charge. This code, dust bisection.m, is

described below.

% % Jeffrey J. Walker

% % This is a simple program for finding the root of a specific quadratic

% % using the bisection method.

function [c]= dust bisection(domain,inp func,guess,eta,alph,Ti,Te,...

e mag,i mag,C,lambda D,lambda i,a grain,w,species);

% Explanation of inputs:

% domain = the size of the search domain; you must pick a size

% inp func = a string specifying which function to call from

% dust function list

% c is the output of the function, which is/are the root(s).

% +/− domain are the endpoints of the search

% % I've decided to get rid of global vars; they are commented if you feel

% % like using them again.

%global qe;

%global me;

%global mp;

%global eps0;

qe=1.6e−19;

me=9.1e−31;

mp=1.67e−27;

eps0=8.854e−12;

mi=species*mp;

Tau=Te/Ti;
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mr=me/mi;

vthe=sqrt(2*qe*Te/me); % local electron thermal speed, m/s

vthi=sqrt(mr/Tau)*vthe; % local ion (proton) thermal speed, m/s

%% error handling:

if sign(domain)<0

exception = 'YOU MUST USE A POSITIVE DEFINITE VALUE FOR THE DOMAIN!!!';

error(exception)

end

a=domain;

b=−domain;

% The idea in the following set of statements is to only look in a small

% interval around the current value of the dust charge. It should not

% change too much between updates, so look in this smaller interval.

%if guess 6=0

%a=guess+50;

%b=guess−50;

%else

%a=domain;

%b=−domain;

%end

% Nmax is the max number of iterations, to prevent an infinite loop

Nmax = 1e6;

% tol is the tolerance allowed. this could potentially be an input for the

% function

tol = 1e−2;

% n is the iteration counter, initialized to 1

n=1;

err = b−a;

%while n≤Nmax && abs(err(i)) > tol

while n≤Nmax && abs(err) > tol

% calculate the error at the beginning of the loop. Use a and b

% instead of b and c, because if the error is less than the tolerance,
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% the current value of c from the last time through the loop will be

% our root.

%err(i) = 0.5*b(i)−0.5*a(i);

err = 0.5*b−0.5*a;

% chop the interval in half

%c(i) = 0.5*a(i)+0.5*b(i);

c = 0.5*a+0.5*b;

%f a = C*(a(i))ˆ4 − B*(a(i))ˆ2 + A;

%f c = C*(c(i))ˆ4 − B*(c(i))ˆ2 + A;

[f a] = dust function list(inp func,a,eta,alph,Ti,Te,...

e mag,i mag,C,lambda D,lambda i,a grain,w,species);

[f c] = dust function list(inp func,c,eta,alph,Ti,Te,...

e mag,i mag,C,lambda D,lambda i,a grain,w,species);

if sign(f a)==sign(f c)

a=c;

else

b=c;

end

n=n+1;

end

%disp(strcat('number of steps needed to converge:',' ',num2str(n)));

%disp(c);

end

The program dust bisection.m requires a function list. The program dust function list.m

provides a list of dimensionless charging equations, and it is shown below.

function [f x,f deriv] = dust function list(case label,x,eta,alph,Ti,Te,...

e mag,i mag,C,lambda D,lambda i,a,w,species)

% % 3/11/13 note: NEED to add alph to the oml cases!!!
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% % I've decided to get rid of global vars; they are commented if you feel

% % like using them again.

%global qe;

%global me;

%global mp;

%global eps0;

qe=1.6e−19;

me=9.1e−31;

mp=1.67e−27;

eps0=8.854e−12;

mi=species*mp;

Tau=Te/Ti;

mr=me/mi;

vthe=sqrt(2*qe*Te/me); % local electron thermal speed, m/s

vthi=sqrt(mr/Tau)*vthe; % local ion (proton) thermal speed, m/s

% % split up the w−array into:

% % we − grain velocity relative to an electron flow

% % wi − grain velocity relative to an ion flow

we=w(1);

wi=w(2);

% thermal mach numbers:

Me=we/vthe;

Mi=wi/vthi;

% % A useful list of functions that can be called by other external

% % functions. This outputs the function and the derivative of the

% % function; when calling this function from a main program just ignore

% % f deriv. case label is a string input that must match one of these

% % functions

switch case label

case '1a'
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f x = exp(x).*cos(4*x);

% figure out the derivative and do this later;

% just picking f deriv=0 for now.

f deriv=0;

case '1b'

f x = x.ˆ(5/2);

% figure out the derivative and do this later;

% just picking f deriv=0 for now.

f deriv=0;

case '1c'

f x = exp(cos(x));

% figure out the derivative and do this later;

% just picking f deriv=0 for now.

f deriv=0;

% % gaussian function; for HW #3, problem 3 A)

case 'gaussian'

f x = exp(−x.ˆ2);

% figure out the derivative and do this later;

% just picking f deriv=0 for now.

f deriv=0;

% % 1−vˆ2 function in the interval −1<v<1 for HW #3, problem 3 B)

case '1−vˆ2'

f x = (x≥−1).*(x≤1).*(1−x.ˆ2);

% figure out the derivative and do this later;

% just picking f deriv=0 for now.

f deriv=0;

% % v*exp(−v) function for HW #3, problem 3 C), I called it EEDF

% % because it has the same functional form as an eedf.

case 'eedf'

f x = x.*exp(−x);

% figure out the derivative and do this later;

% just picking f deriv=0 for now.

f deriv=0;

case 'transcendental'

Ti=0.025;

Te=1.6;
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E0=100;

species=40; % Argon

me=9.1e−31;

mi=1.67e−27*species;

% x coord tells you where you are in space in order to calculate

% the space potential. (in m)

x coord=−.1;

% calculate Vspace in the prescribed way for a linear E−field

V space = 100*(x coord);

% % x here represents surface potential.

f x=sqrt(Ti/mi)*(1−(x/Ti − V space/Ti))−...

sqrt(Te/me)*exp((x−V space)/Te);

case 'oml monoenergetic ions'

if x≥0

f x=sqrt(pi)*(wi/vthe)/2*(1−qe*qe*x/C/(mi*wi.ˆ2))−...

eta*exp(qe*x/C/Te);

f deriv=0;

else

f x=sqrt(pi)*(wi/vthe)/2*exp(−qe*qe*x/C/(mi*wi.ˆ2))−...

eta*(1+qe*x/C/Te);

f deriv=0;

end

case 'oml' %%<−−−−− Still need to put in photo−current!!!

% % Note: x=elementary charges on dust grain.

% % both ions and electrons are unmagnetized if temp==1.

temp=e mag<1 && i mag<1;

% if x≤0, then the grain is negatively charged.

if temp==1;

oml case='unmag';

end

% % electrons = magnetized, ions = unmagnetized.

temp=e mag>1 && i mag<1;

if temp==1;

oml case='mag e';

end

% % electrons = magnetized, ions = magnetized.
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temp=e mag>1 && i mag>1;

if temp==1;

oml case='mag';

end

% % the case where ions are magnetized and electrons are not so

% % I'm should almost never happen, so I am not treating it.

if x≤0;

switch oml case

case 'unmag'

if wi==0 | | we==0

if wi==0 && we==0

f x=sqrt(mr/Tau)*(1−qe*x/C/Ti)...

−eta*exp(qe*x/C/Te);

f deriv=0;

end

if wi==0 && we6=0

% first term comes from the ion current, second

% comes from electron current

f x=sqrt(mr/Tau)*(1−qe*x/C/Ti)...

−.5*eta/Me*(...

(Me.ˆ2+.5+qe*x/C/Te)*sqrt(pi)*...

(erf(Me+sqrt(−qe*x/C/Te))+...

erf(Me−sqrt(−qe*x/C/Te)))+...

(sqrt(−qe*x/C/Te)+Me)*...

exp(−(Me−sqrt(−qe*x/C/Te)).ˆ2)−...

(sqrt(−qe*x/C/Te)−Me)*...

exp(−(Me+sqrt(−qe*x/C/Te)).ˆ2));

f deriv=0;

end

if wi6=0 && we==0

% first term is the electron term, the other

% terms comprise the ion term.

f x=−eta*exp(qe*x/C/Te)...

+.5*sqrt(mr/Tau)*((Mi.ˆ2+1/2−qe*x/C/Ti)*...

sqrt(pi)/Mi*erf(Mi)+exp(−Mi.ˆ2));
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f deriv=0;

end

else

% Lines below are for a flow shifted maxwellian

% population of ions. This is how it is written in 1996

% Horanyi araa. The first set of terms is the ion term,

% which comprise the first 3 lines. The electron term

% starts on the fourth line, and comprises the rest of

% the expression.

f x=.5*sqrt(mr/Tau)*(...

(Mi.ˆ2+1/2−qe*x/C/Ti)*sqrt(pi)/Mi*erf(Mi)+...

exp(−Mi.ˆ2))...

−.25*eta/Me*((Me.ˆ2+.5+qe*x/C/Te)*sqrt(pi)*...

(erf(Me+sqrt(−qe*x/C/Te))+...

erf(Me−sqrt(−qe*x/C/Te)))+...

(sqrt(−qe*x/C/Te)+Me)*...

exp(−(Me−sqrt(−qe*x/C/Te)).ˆ2)−...

(sqrt(−qe*x/C/Te)−Me)*...

exp(−(Me+sqrt(−qe*x/C/Te)).ˆ2));

% f deriv is needed if you want to use this .m file for

% the newton method, but dust bisection.m works much

% faster and with greater accuracy. Hence, I have just

% set f deriv=0 for this case.

f deriv=0;

end

case 'mag e'

if wi==0 | | we==0

if wi==0 && we==0

f x=sqrt(mr/Tau)*(1−qe*x/C/Ti)...

−.5*eta*exp(qe*x/C/Te);

f deriv=0;

end

if wi==0 && we6=0

% first term comes from the ion current, second
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% comes from electron current

f x=sqrt(mr/Tau)*(1−qe*x/C/Ti)...

−.25*eta/Me*(...

(Me.ˆ2+.5+qe*x/C/Te)*sqrt(pi)*...

(erf(Me+sqrt(−qe*x/C/Te))+...

erf(Me−sqrt(−qe*x/C/Te)))+...

(sqrt(−qe*x/C/Te)+Me)*...

exp(−(Me−sqrt(−qe*x/C/Te)).ˆ2)−...

(sqrt(−qe*x/C/Te)−Me)*...

exp(−(Me+sqrt(−qe*x/C/Te)).ˆ2));

f deriv=0;

end

if wi6=0 && we==0

% first term is the electron term, the other

% terms comprise the ion term.

f x=−eta*exp(qe*x/C/Te)...

+sqrt(mr/Tau)*((Mi.ˆ2+1/2−qe*x/C/Ti)*...

sqrt(pi)/Mi*erf(Mi)+exp(−Mi.ˆ2));

f deriv=0;

end

else

% Lines below are for a flow shifted maxwellian

% population of ions. This is how it is written in 1996

% Horanyi araa. The first set of terms is the ion term,

% which comprise the first 3 lines. The electron term

% starts on the fourth line, and comprises the rest of

% the expression. The factor of 1/8 is needed due to

% the factor of 1/2 that comes from electron

% magnetization.

f x=.5*sqrt(mr/Tau)*(...

(Mi.ˆ2+1/2−qe*x/C/Ti)*sqrt(pi)/Mi*erf(Mi)+...

exp(−Mi.ˆ2))...

−.125*eta/Me*((Me.ˆ2+.5+qe*x/C/Te)*sqrt(pi)*...

(erf(Me+sqrt(−qe*x/C/Te))+...

erf(Me−sqrt(−qe*x/C/Te)))+...

(sqrt(−qe*x/C/Te)+Me)*...
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exp(−(Me−sqrt(−qe*x/C/Te)).ˆ2)−...

(sqrt(−qe*x/C/Te)−Me)*...

exp(−(Me+sqrt(−qe*x/C/Te)).ˆ2));

% f deriv is needed if you want to use this .m file for

% the newton method, but dust bisection.m works much

% faster and with greater accuracy. Hence, I have just

% set f deriv=0 for this case.

f deriv=0;

end

case 'mag'

% % I'll do this later.

f x=0;

f deriv=0;

end

% % POSITIVE grain potential equations go here.

else

switch oml case

case 'unmag'

if wi==0 | | we==0

if wi==0 && we==0

f x=sqrt(mr/Tau)*exp(−qe*x/C/Ti)...

−eta*(1+qe*x/C/Te);

f deriv=0;

end

if wi==0 && we6=0

% first term comes from the ion current, second

% comes from electron current

f x=sqrt(mr/Tau)*exp(−qe*x/C/Ti)...

−.5*eta*((Me.ˆ2+1/2+qe*x/C/Te)*...

sqrt(pi)/Me*erf(Me)+exp(−Me.ˆ2));

f deriv=0;

end

if wi6=0 && we==0
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f x=−eta*(1+qe*x/C/Te)...

+.5*sqrt(mr/Tau)/Mi*(...

(Mi.ˆ2+.5−qe*x/C/Ti)*sqrt(pi)*...

(erf(Mi+sqrt(qe*x/C/Ti))+...

erf(Mi−sqrt(qe*x/C/Ti)))+...

Mi*(sqrt(qe*x/C/Ti/Mi)+1)*...

exp(−(Mi−sqrt(qe*x/C/Ti)).ˆ2)−...

Mi*(sqrt(qe*x/C/Ti/Mi)−1)*...

exp(−(Mi+sqrt(qe*x/C/Ti)).ˆ2));

f deriv=0;

end

else

% Lines below are for a flow shifted maxwellian

% population of ions. This is how it is written in 1996

% Horanyi araa. The first set of terms is the electron

% term, (1−qe*x/C/Ti) which comprise the first 3 lines.

% The ion term starts on the fourth line, and comprises

% the rest of the expression.

f x=−.5*eta*(...

(Me.ˆ2+1/2+qe*x/C/Te)*sqrt(pi)/Me*erf(Me)+...

exp(−Me.ˆ2))...

+.25*sqrt(mr/Tau)/Mi*(...

(Mi.ˆ2+.5+qe*x/C/Ti)*sqrt(pi)*...

(erf(Mi+sqrt(qe*x/C/Ti))+...

erf(Mi−sqrt(qe*x/C/Ti)))+...

(sqrt(qe*x/C/Ti)+Mi)*...

exp(−(Mi−sqrt(qe*x/C/Ti)).ˆ2)−...

(sqrt(qe*x/C/Ti)−Mi)*...

exp(−(Mi+sqrt(qe*x/C/Ti)).ˆ2));

% f deriv is needed if you want to use this .m file for

% the newton method, but dust bisection.m works much

% faster and with greater accuracy. Hence, I have just

% set f deriv=0 for this case.

f deriv=0;

end
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case 'mag e'

if wi==0 | | we==0

if wi==0 && we==0

f x=sqrt(mr/Tau)*exp(−qe*x/C/Ti)...

−.5*eta*(1+qe*x/C/Te);

f deriv=0;

end

if wi==0 && we6=0

% first term comes from the ion current, second

% comes from electron current

f x=sqrt(mr/Tau)*exp(−qe*x/C/Ti)...

−.25*eta*((Me.ˆ2+1/2+qe*x/C/Te)*...

sqrt(pi)/Me*erf(Me)+exp(−Me.ˆ2));

f deriv=0;

end

if wi6=0 && we==0

f x=−eta*(1+qe*x/C/Te)...

+sqrt(mr/Tau)/Mi*(...

(Mi.ˆ2+.5−qe*x/C/Ti)*sqrt(pi)*...

(erf(Mi+sqrt(qe*x/C/Ti))+...

erf(Mi−sqrt(qe*x/C/Ti)))+...

(sqrt(qe*x/C/Ti)+Mi)*...

exp(−(Mi−sqrt(qe*x/C/Ti)).ˆ2)−...

(sqrt(qe*x/C/Ti)−Mi)*...

exp(−(Mi+sqrt(qe*x/C/Ti)).ˆ2));

f deriv=0;

end

else

% Lines below are for a flow shifted maxwellian

% population of ions. This is how it is written in 1996

% Horanyi araa. The first set of terms is the electron

% term, (1−qe*x/C/Ti) which comprise the first 3 lines.

% The ion term starts on the fourth line, and comprises

% the rest of the expression.

f x=−eta*(...
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(Me.ˆ2+1/2+qe*x/C/Te)*sqrt(pi)/Me*erf(Me)+...

exp(−Me.ˆ2))...

+sqrt(mr/Tau)/Mi*(...

(Mi.ˆ2+.5−qe*x/C/Ti)*sqrt(pi)*...

(erf(Mi+sqrt(qe*x/C/Ti))+...

erf(Mi−sqrt(qe*x/C/Ti)))+...

(sqrt(qe*x/C/Ti)+Mi)*...

exp(−(Mi−sqrt(qe*x/C/Ti)).ˆ2)−...

(sqrt(qe*x/C/Ti)−Mi)*...

exp(−(Mi+sqrt(qe*x/C/Ti)).ˆ2));

% f deriv is needed if you want to use this .m file for

% the newton method, but dust bisection.m works much

% faster and with greater accuracy. Hence, I have just

% set f deriv=0 for this case.

f deriv=0;

end

case 'mag'

% % I'll do this later.

f x=0;

f deriv=0;

end

end

case 'kortshagen' %%<−−−−− Still need to put in photo−current!!!

% % kortshagen case will find the equilibrium charge for kortshagen

% % charge model. x=elementary charges on the grain. both ions and

% % electrons are unmagnetized if temp==1.

if x≤0;

if e mag<1 && i mag<1;

k case='unmag';

end

% % electrons = magnetized, ions = unmagnetized.

if e mag>1 && i mag<1;

k case='mag e';

end

% % electrons = magnetized, ions = magnetized.

if e mag>1 && i mag>1;
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k case='mag';

end

% % the case where ions are magnetized and electrons are not

% % should almost never happen, so I'm not treating it.

switch k case

case 'unmag'

R0=a*abs(qe*x/C)*(1+a/lambda D)...

/(1.5*Ti+abs(qe*x/C)*a/lambda D);

% R0 can very easily be zero if the charge on the

% grain is zero! There is no sheath yet; just use the

% OML currents. The statement below is used to prevent

% any problems; also check to make sure lambda i 6=inf,

% or collisionless!

if R0==0 | | lambda i==inf

% If R0=0, use OML currents??

P0=1;

P1=0;

Pg1=0;

%disp('you are in the case R0=0')

if wi==0 | | we==0

if wi==0 && we==0

f x=−eta*exp(qe*x/C/Te)...

+sqrt(mr/Tau)*(1−qe*x/C/Ti);

f deriv=0;

end

if wi==0 && we6=0

% first term comes from the ion current, second

% comes from electron current

f x=sqrt(mr/Tau)*(1−qe*x/C/Ti)...

−.5*eta/Me*(...

(Me.ˆ2+.5−qe*x/C/Te)*sqrt(pi)*...

(erf(Me+sqrt(−qe*x/C/Te))+...

erf(Me−sqrt(−qe*x/C/Te)))+...

(sqrt(−qe*x/C/Te)+Me)*...

exp(−(Me−sqrt(−qe*x/C/Te)).ˆ2)−...
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(sqrt(−qe*x/C/Te)−Me)*...

exp(−(Me+sqrt(−qe*x/C/Te)).ˆ2));

f deriv=0;

end

if wi6=0 && we==0

f x=−eta*exp(qe*x/C/Te)...

+.5*sqrt(mr/Tau)*(...

(Mi.ˆ2+1/2−qe*x/C/Ti)...

*sqrt(pi)/Mi*erf(Mi)+exp(−Mi.ˆ2));

f deriv=0;

end

% Lines below are for a flow shifted maxwellian

% population of ions and electrons. This is how it

% is written in 1996 Horanyi araa.

else

f x=.5*sqrt(mr/Tau)*(...

(Mi.ˆ2+1/2−qe*x/C/Ti)*sqrt(pi)/Mi*...

erf(Mi)+ exp(−Mi.ˆ2))...

−.25*eta/Me*(...

(Me.ˆ2+.5+qe*x/C/Te)*sqrt(pi)*...

(erf(Me+sqrt(−qe*x/C/Te))+...

erf(Me−sqrt(−qe*x/C/Te)))+...

(sqrt(−qe*x/C/Te)+Me)*...

exp(−(Me−sqrt(−qe*x/C/Te)).ˆ2)−...

(sqrt(−qe*x/C/Te)−Me)*...

exp(−(Me+sqrt(−qe*x/C/Te)).ˆ2));

% f deriv is needed if you want to use this .m file for

% the newton method, but dust bisection.m works much

% faster and with greater accuracy. Hence, I have just

% set f deriv=0 for this case.

f deriv=0;

end

% R06=0, so there IS a capture radius.
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else

% check to see if ions or electrons are flowing.

if wi==0 | | we==0

if wi==0 && we==0

Ie=−eta*sqrt(Tau/mr)*exp(qe*x/C/Te);

Kn R0 = lambda i/(2*1.22*R0);

P0=exp(−1/(Kn R0));

P1=(1/(Kn R0))*exp(−1/(Kn R0));

Pg1=1−(P0+P1);

% first term is the electron current, then

% i oml, then i cec, and finally i hyd

Ioml=P0*(1−qe*x/C/Ti);

Icec=P1*(1.22*R0/a)ˆ2;

Ihyd=Pg1*3*pi*(lambda i)*...

abs(qe*x)/C/Ti/a/4/sqrt(2);

f x=Ie+Ioml+Icec+Ihyd;

% % Do not need f deriv for dust bisection.m! Go

% % back and finish if this is needed for doing the

% % newton root−finding method.

f deriv=0;

end

if wi==0 && we6=0

% electron current:

Ie=−.25*eta/Me*sqrt(Tau/mr)*(...

(Me.ˆ2+.5+qe*x/C/Te)*sqrt(pi)*...

(erf(Me+sqrt(−qe*x/C/Te))+...

erf(Me−sqrt(−qe*x/C/Te)))+...

(sqrt(−qe*x/C/Te)+Me)*...

exp(−(Me−sqrt(−qe*x/C/Te)).ˆ2)−...

(sqrt(−qe*x/C/Te)−Me)*...

exp(−(Me+sqrt(−qe*x/C/Te)).ˆ2));
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Kn R0 = lambda i/(2*1.22*R0);

P0=exp(−1/(Kn R0));

P1=(1/(Kn R0))*exp(−1/(Kn R0));

Pg1=1−(P0+P1);

% i oml, then i cec, and finally i hyd

Ioml=P0*(1−qe*x/C/Ti);

Icec=P1*(1.22*R0/a)ˆ2;

Ihyd=Pg1*3*pi*(lambda i)*...

abs(qe*x)/C/Ti/a/4/sqrt(2);

f x=Ie+Ioml+Icec+Ihyd;

% % Do not need f deriv for dust bisection.m! Go

% % back and finish if this is needed for doing the

% % newton root−finding method.

f deriv=0;

end

if wi6=0 && we==0

Ie=−eta*sqrt(Tau/mr)*exp(qe*x/C/Te);

Kn R0 = lambda i/(2*1.22*R0);

P0=exp(−1/(Kn R0));

P1=(1/(Kn R0))*exp(−1/(Kn R0));

Pg1=1−(P0+P1);

% first term is the electron current, then

% i oml, then i cec, and finally i hyd

Ioml=.5*P0*((Mi.ˆ2+1/2−qe*x/C/Ti)*...

sqrt(pi)/Mi*erf(Mi)+exp(−Mi.ˆ2));

%Ioml=P0*(1−qe*x/C/Ti);

Icec=P1*(1.22*R0/a)ˆ2;

Ihyd=Pg1*3*pi*(lambda i)*...

abs(qe*x)/C/Ti/a/4/sqrt(2);

f x=Ie+Ioml+Icec+Ihyd;
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% % Do not need f deriv for dust bisection.m! Go

% % back and finish if this is needed for doing the

% % newton root−finding method.

f deriv=0;

end

% for this case, the capture radius exists and both

% ions and electrons are flowing.

else

Ie=−.25*eta/Me*sqrt(Tau/mr)*(...

(Me.ˆ2+.5+qe*x/C/Te)*sqrt(pi)*...

(erf(Me+sqrt(−qe*x/C/Te))+...

erf(Me−sqrt(−qe*x/C/Te)))+...

(sqrt(−qe*x/C/Te)+Me)*...

exp(−(Me−sqrt(−qe*x/C/Te)).ˆ2)−...

(sqrt(−qe*x/C/Te)−Me)*...

exp(−(Me+sqrt(−qe*x/C/Te)).ˆ2));

Kn R0 = lambda i/(2*1.22*R0);

P0=exp(−1/(Kn R0));

P1=(1/(Kn R0))*exp(−1/(Kn R0));

Pg1=1−(P0+P1);

% i oml, then i cec, and finally i hyd

Ioml=.5*P0*((Mi.ˆ2+1/2−qe*x/C/Ti)*...

sqrt(pi)/Mi*erf(Mi)+exp(−Mi.ˆ2));

%Ioml=P0*(1−qe*x/C/Ti);

Icec=P1*(1.22*R0/a)ˆ2;

Ihyd=Pg1*3*pi*(lambda i)*...

abs(qe*x)/C/Ti/a/4/sqrt(2);

f x=Ie+Ioml+Icec+Ihyd;

end

end
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% fix this case to allow for wi=0, and we=0 possibility!

case 'mag e'

R0=a*abs(qe*x/C)*(1+a/lambda D)/...

(1.5*Ti+abs(qe*x/C)*a/lambda D);

if R0==0

P0=1;

P1=0;

Pg1=0;

%disp('you are in the case R0=0')

if wi==0

% first term comes from the ion current, second

% comes from electron current

f x=sqrt(mr/Tau)*(1−qe*x/C/Ti)−...

eta*exp(qe*x/C/Te);

f deriv=−sqrt(mr*Tau)−eta*exp(qe*x/C/Te);

else

% Lines below are for a flow shifted maxwellian

% population of ions. This is how it is written in

% 1996 Horanyi 1996 araa. The first line below is

% the ion term. The next 2 lines are the electron

% term.

f x=.5*sqrt(mr/Tau)*((Mi.ˆ2+1/2−qe*x/C/Ti)*...

sqrt(pi)/Mi*erf(Mi)+exp(−Mi.ˆ2))+...

−.25*eta/Me*((Me.ˆ2+.5+qe*x/C/Te)*...

sqrt(pi)*(erf(Me+sqrt(−qe*x/C/Te))+...

erf(Me−sqrt(−qe*x/C/Te)))+...

(sqrt(−qe*x/C/Te)+Me)*...

exp(−(Me−sqrt(−qe*x/C/Te)).ˆ2)−...

(sqrt(−qe*x/C/Te)−Me)*...

exp(−(Me+sqrt(−qe*x/C/Te)).ˆ2));

% f deriv is needed if you want to use this .m file for the newton method,

% but dust bisection.m works much faster and with greater accuracy.
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% Hence, I have just set f deriv=0 for this case.

f deriv=0;

end

else

%Kn a=lambda i/a;

Kn R0 = lambda i/(2*1.22*R0);

P0=exp(−1/(Kn R0));

P1=(1/(Kn R0))*exp(−1/(Kn R0));

Pg1=1−(P0+P1);

%disp('You are in the case R0!=0')

% % first term is the electron current, then i oml,

% % then i cec, and finally i hyd

% Ie is reduced by factor of 1/2 for magnetization

Ie=−.5*eta*sqrt(Tau/mr)*exp(qe*x/C/Te);

Ioml=P0*(1−qe*x/C/Ti);

Icec=P1*(1.22*R0/a)ˆ2;

Ihyd=Pg1*3*pi*(lambda i)*abs(qe*x)/C/Ti/a/4/sqrt(2);

f x=Ie+Ioml+Icec+Ihyd;

f deriv=0;

end

case 'mag'

% % I'll do this later.

f x=0;

f deriv=0;

% I think this hanging end below corresponds to the switch

% statement for the different magnetization cases.

end

% % THIS IS CURRENTLY THE UNMAGNETIZED, Q dust>0 OML CASE!!!
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% % THIS WILL NEED TO BE REDONE FOR KORTSHAGEN MODEL.

else

f x=−eta*(1+qe*x/C/Te)+sqrt(mr/Tau)*exp(−qe*x/C/Ti);

f deriv=−eta*sqrt(1/mr/Tau) − exp(−qe*x/C/Ti);

end

case 'hutchinson'

% % fill this out for OML charge model to find equilibrium charge. x=elementary charges on dust grain.

% % both ions and electrons are unmagnetized if temp==1.

temp=e mag<1 && i mag<1;

if x≤0

% % negative grain potential.

z=e mag/(1+e mag);

% iota* in Patacchini and Hutchinson:

iota=1−0.0946*z−0.305*z.ˆ2+0.95*z.ˆ3−2.2*z.ˆ4+1.15*z.ˆ5;

% % FOR LAMBDA D = FINITE, AND DEBYE−HUCKEL POTENTIAL:

% eta, which is now dependent on grain sheath size:

eta mag=−qe*x/C/Te/e mag*(1+e mag/4*(1−exp(−4*a/lambda D/e mag)));

% w, which is eta/(1+eta):

w mag=eta mag/(1+eta mag);

% A, the fitting polynomial, a function of w:

A fit=0.678*w mag+1.543*w mag.ˆ2−1.212*w mag.ˆ3;

if i mag<1

% % unmagnetized ions:

if Mi==0

% expression above Patacchini and Hutchinson, 2007

f x=sqrt(mr/Tau)*(1−qe*x/C/Ti)−eta*(A fit+(1−A fit)*iota)*exp(qe*x/C/Te);

f deriv=0;

else

f x=.5*sqrt(mr/Tau)*((Mi.ˆ2+1/2−qe*x/C/Ti)*sqrt(pi)/Mi*erf(Mi)+exp(−Mi.ˆ2))+...

−eta*(A fit+(1−A fit)*iota)*exp(qe*x/C/Te);

% % see 1992 northrop ps or 1981 whipple repprogphys for the above.
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% % Also, 1996 Horanyi and 1996 Northrop.

end

else

% % magnetized ions:

if Mi==0

% % I should think carefully about Mi=0 vs Mi6=0. Does this

% % change anything?

f x=sqrt(pi)/2*sqrt(mr/Tau)+...

−eta*(A fit+(1−A fit)*iota)*exp(qe*x/C/Te);

else

f x=sqrt(pi)/2*sqrt(mr/Tau)+...

−eta*(A fit+(1−A fit)*iota)*exp(qe*x/C/Te);

% % see 1992 northrop ps or 1981 whipple repprogphys for the above.

% % Also, 1996 Horanyi and 1996 Northrop.

end

end

else

% % positive grain potential.

% % THIS IS CURRENTLY THE UNMAGNETIZED, Q dust>0 OML CASE!!!

% % THIS WILL NEED TO BE REDONE FOR HUTCHINSON MODEL.

f x=−eta*sqrt(Tau/mr)*(1+qe*x/C/Te)+exp(−x/C/Ti);

f deriv=−eta*sqrt(1/mr/Tau) − exp(−x/C/Ti);

end

case 'phgk' % still need to actually finish this! 10/9/2013

% % The Patacchini−Hutchinson and Gatti−Kortshagen model uses the Hutchinson electron current,

% % and the Gatti−Kortshagen ion current. Consider a rewrite when I figure out how to introduce a

% % flow shifted Maxwellian into all of this.

% % fill this out for OML charge model to find equilibrium charge. x=elementary charges on dust grain.

% % both ions and electrons are unmagnetized if temp==1.

temp=e mag<1 && i mag<1;

if x≤0

% % negative grain potential.

z=e mag/(1+e mag);
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% iota* in Patacchini and Hutchinson:

iota=1−0.0946*z−0.305*z.ˆ2+0.95*z.ˆ3−2.2*z.ˆ4+1.15*z.ˆ5;

% % FOR LAMBDA D = FINITE, AND DEBYE−HUCKEL POTENTIAL:

% eta, which is now dependent on grain sheath size:

eta mag=−qe*x/C/Te/e mag*(1+e mag/4*(1−exp(−4*a/lambda D/e mag)));

% w, which is eta/(1+eta):

w mag=eta mag/(1+eta mag);

% A, the fitting polynomial, a function of w:

A fit=0.678*w mag+1.543*w mag.ˆ2−1.212*w mag.ˆ3;

if i mag<1

% % unmagnetized ions:

if Mi==0

% expression above Patacchini and Hutchinson, 2007

f x=sqrt(mr/Tau)*(1−qe*x/C/Ti)−eta*(A fit+(1−A fit)*iota)*exp(qe*x/C/Te);

f deriv=0;

else

f x=.5*sqrt(mr/Tau)*((Mi.ˆ2+1/2−qe*x/C/Ti)*sqrt(pi)/Mi*erf(Mi)+exp(−Mi.ˆ2))+...

−eta*(A fit+(1−A fit)*iota)*exp(qe*x/C/Te);

% % see 1992 northrop ps or 1981 whipple repprogphys for the above.

% % Also, 1996 Horanyi and 1996 Northrop.

end

else

% % magnetized ions:

if Mi==0

% % I should think carefully about Mi=0 vs Mi6=0. Does this

% % change anything?

f x=sqrt(pi)/2*sqrt(mr/Tau)+...

−eta*(A fit+(1−A fit)*iota)*exp(qe*x/C/Te);

else

f x=sqrt(pi)/2*sqrt(mr/Tau)+...

−eta*(A fit+(1−A fit)*iota)*exp(qe*x/C/Te);

% % see 1992 northrop ps or 1981 whipple repprogphys for the above.

% % Also, 1996 Horanyi and 1996 Northrop.
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end

end

% % positive grain potential.

% % THIS IS CURRENTLY THE UNMAGNETIZED, Q dust>0 OML CASE!!!

% % THIS WILL NEED TO BE REDONE FOR HUTCHINSON MODEL.

else

f x=−eta*sqrt(Tau/mr)*(1+qe*x/C/Te)+exp(−x/C/Ti);

f deriv=−eta*sqrt(1/mr/Tau) − exp(−x/C/Ti);

end

case 'nunomura'

Ti=0.025; %% does not matter anyway; ions are at bohm speed or greater

Te=1.6;

species=40; % Argon

me=9.1e−31;

mi=1.67e−27*species;

qe=1.6e−19;

%% you have to pick an x coord, really a vertical position above

%% the sheath in order to get V space and E ion, the kinetic energy

%% of the ions at that spatial location (they are accelerated with

%% decreasing x due to the electric field of the planar sheath.)

x coord =1;

E ion =1;

V space =1;

%% x here represents surface potential.

f x = sqrt(qe*Te/mi)*(1−qe*x/(E ion+abs(qe*V space)))−sqrt(8*qe*Te/pi/me)*exp(V space+x);

%% figure out the derivative and do this later; just picking f deriv=0 for now.

f deriv=0;

%% error handling for incorrect string input:

% mistake=(case label=='1a') | |(case label=='1b') | |(case label=='1c') | |...

% (case label=='gaussian') | |(case label=='1−vˆ2')||(case label=='eedf');

% if mistake==0

424



% exception = 'You must pick a valid function!';

% error(exception)

% end

end

iv Dimensionless Charging Equation

The function dimensionless charger.m is called by the theory code, abrupt omega theory.m.

This charging code can also be used to find equilibrium dimensionless surface potential faster than

the bisection algorithm discussed earlier in subsection iii.

function dZdt=dimensionless charger(model,Z,Tr,mr,M,eta,Kna,KnD,alph,e mag)

%qe=1.6e−19;

% this i mag value should still be valid for mono−energetic ions if you

% assume that the ions have a perpendicular temperature equivalent to the

% neutral gas or some other value. I don't treat ions that are

% mono−energetic in the perpendicular direction, only the parallel

% direction, although it might be interesting to do a more detailed

% analysis of this inherent temperature anisotropy

i mag = e mag*sqrt(mr*Tr);

% Include some mono−energetic charging models for dissertation, June 11,

% 2014. If the ions are mono−energetic, the meaning of the temperature ratio is

% the regular electron temperature divided by ion energy, which is given by

% the bohm speed or some factor Te/(Mi*Te)

% alpha here is basically the ratio between the photo−electron flux and the

% product ne*vthe.

% electron and ion thermal mach numbers, or we/vthe and wi/vthi where we

% and wi are the electron and ion flows relative to the grain,

% respectively.

Me=M(1);

Mi=M(2);
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% coefficient for UV illumination; use c uv =1 for single sided

% illumination, c uv=2 for double sided illumination (this prevents

% photo−recoil forces), and c uv=4 for isotropic illumination (this

% probably does not happen in space situations, but could I suppose it

% could be done in an experiment).

c uv = 1;

%c uv=2; % double sided−illumination, which prevents photo−recoil. THIS

%SHOULD BE THE DEFAULT OPTION!

% compute Knudsen capture radius number here.

if Z<0

if strcmp(model,'oml monoenergetic ions')==1 | | ...

strcmp(model,'kortshagen monoenergetic ions')==1 | | ...

strcmp(model,'hutchinson monoenergetic ions')==1

% Is this correct for mono−energetic ions??? or should I use Tr to

% encapsulate information about neutrals???

Kn R0=Kna/2/1.22*(1.5*Mi.ˆ2/abs(Z)*KnD+1)/(1+KnD);

Kn R0=Kna/2/1.22*(1.5/Tr/abs(Z)*KnD+1)/(1+KnD);

else

% anything other than mono−energetic ions should give the following

% expression; I think this holds for flow−shifted maxwellians too??

Kn R0=Kna/2/1.22*(1.5/Tr/abs(Z)*KnD+1)/(1+KnD);

end

% if the normalized particle potential is greater or equal to zero, no

% capture radius exists!

else

Kn R0=0;

end

switch model

case 'oml'

if Z≤0 % negative dust potential (phi=qd/C)

% Electron Current

if e mag<1 %% UNMAGNETIZED ELECTRONS

% derived via integration of Maxwellian from

% vmin=sqrt(2*qe*phi/me) to infinity, given 4*pi*aˆ2 collection
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% area

if Me==0

Ze = −sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/(1+1/KnD)*exp(Z);

% check to make sure the photocurrent is written

% correctly!

%Zp=sqrt(pi)/sqrt(2)/2*alph/KnD/sqrt(1+Tr/eta)/...

% (1+1/KnD)*c uv;

% seems like it should actually be:

Zp=pi/sqrt(2)*alph/KnD/sqrt(1+Tr/eta)/...

(1+1/KnD)*c uv;

% If there is an electron flow, need to use this

% description from 1981 Whipple rev. geophys.

else

Ze=−.5*sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/(1+1/KnD)/Me*(...

(Me.ˆ2+.5+Z)*sqrt(pi)*(erf(Me+sqrt(−Z))+...

erf(Me−sqrt(−Z)))+...

(sqrt(−Me*Z)+Me)*exp(−(Me−sqrt(−Z)).ˆ2)−...

(sqrt(−Me*Z)−Me)* exp(−(Me+sqrt(−Z)).ˆ2));

%Zp=sqrt(pi)/sqrt(2)/2*alph/KnD/sqrt(1+Tr/eta)/...

% (1+1/KnD)*c uv;

% seems like it should actually be:

Zp=pi/sqrt(2)*alph/KnD/sqrt(1+Tr/eta)/...

(1+1/KnD)*c uv;

end

else % MAGNETIZED ELECTRONS

% same as unmagnetized case, except collection area reduced due

% to magnetization; may be off by some constant factor due to

% cos−dependence of incidence angle

if Me==0

Ze=−.5*sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/(1+1/KnD)*exp(Z);

% UV is incident along magnetic field direction.

%Zp=sqrt(pi)/sqrt(2)/2*alph/KnD/sqrt(1+Tr/eta)/...
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% (1+1/KnD)*c uv;

% seems like it should actually be this, assuming

% UV is incident along the magnetic field

Zp=pi/sqrt(2)*alph/KnD/sqrt(1+Tr/eta)/...

(1+1/KnD)*c uv;

% If there is an electron flow, need to use this

% description from 1981 Whipple rev. geophys.

else

Ze=−.25*sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/(1+1/KnD)/Me*(...

(Me.ˆ2+.5+Z)*sqrt(pi)*(erf(Me+sqrt(−Z))+...

erf(Me−sqrt(−Z)))+...

(sqrt(−Me*Z)+Me)*exp(−(Me−sqrt(−Z)).ˆ2)−...

(sqrt(−Me*Z)−Me)* exp(−(Me+sqrt(−Z)).ˆ2));

%Zp=sqrt(pi)/sqrt(2)/2*alph/KnD/sqrt(1+Tr/eta)/...

% (1+1/KnD)*c uv;

% seems like it should actually be this, assuming

% UV is incident along the magnetic field

Zp=pi/sqrt(2)*alph/KnD/sqrt(1+Tr/eta)/...

(1+1/KnD)*c uv;

end

end

% Ion current

if i mag<1

% OML current, cf. Allen, Phys. Scr. 45 (1992), eq. 51

if Mi==0

Zi=sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/...

(1+1/KnD)*sqrt(mr/Tr)*(1−Tr*Z)/eta;

% Flowing ions; taken from 1981 Whipple rev. geophys.

else

Zi=.5*sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/(1+1/KnD)...

*sqrt(mr/Tr)*((Miˆ2+.5−Tr*Z)*sqrt(pi)/Mi*erf(Mi)+...
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exp(−Miˆ2))/eta;

end

else

% simple thermal flux of ions, assuming ballistic trajectories

% along field lines w/ reduced collection area due to

% magnetization

Zi=.5*sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/...

(1+1/KnD)*sqrt(mr/Tr)/eta;

% reference for this?

end

% can add equations for positive dust potential here.

% 4/4/2014: THIS STILL NEEDS TO BE DONE PROPERLY!!!

else

% Electron Current

if e mag<1 % % UNMAGNETIZED ELECTRONS

Ze = −sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/(1+1/KnD)*(1+Z);

else

Ze = −.5*sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/(1+1/KnD);

end

% Ion current

if i mag<1 % Unmagnetized ions

Zi=sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/...

(1+1/KnD)*sqrt(mr/Tr)*exp(−Tr*Z)/eta;

else

Zi=.5*sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/...

(1+1/KnD)*sqrt(mr/Tr)*exp(−Tr*Z)/eta;

end

% check to make sure the photocurrent is written

% correctly!

Zp=pi/sqrt(2)*alph/KnD/sqrt(1+Tr/eta)/(1+1/KnD)*c uv;

% Whipple 1981, reviews of geophysics; 1995 Cui and Goree IEEE

end

dZdt = Zi+Ze+Zp;

case 'oml monoenergetic ions'

% stop everything if Mi=0, because Mi6=0 is necessary for
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% mono−energetic ions.

if Mi==0

exception='Mi cannot be zero!';

error(exception);

end

% If we get through the statement above, we can continue

if Z≤0 % negative dust potential (phi=qd/C)

% Electron Current

if e mag<1 %% UNMAGNETIZED ELECTRONS

% derived via integration of Maxwellian from

% vmin=sqrt(2*qe*phi/me) to infinity, given 4*pi*aˆ2 collection

% area

if Me==0

Ze=−sqrt(2*pi)/KnD/sqrt(1+1/Mi.ˆ2/eta)/...

(1+1/KnD)*exp(Z);

% check to make sure the photocurrent is written

% correctly!

%Zp=sqrt(pi)/sqrt(2)/2*alph/KnD/sqrt(1+Tr/eta)/...

% (1+1/KnD)*c uv;

% seems like it should actually be:

Zp=pi/sqrt(2)*alph/KnD/sqrt(1+1/Mi.ˆ2/eta)/...

(1+1/KnD)*c uv;

% If there is an electron flow, need to use this

% description from 1981 Whipple rev. geophys.

else

Ze=−.5*sqrt(2*pi)/KnD/sqrt(1+1/Mi.ˆ2/eta)/(1+1/KnD)/Me*(...

(Me.ˆ2+.5+Z)*sqrt(pi)*(erf(Me+sqrt(−Z))+...

erf(Me−sqrt(−Z)))+...

(sqrt(−Z)+Me)*exp(−(Me−sqrt(−Z)).ˆ2)−...

(sqrt(−Z)−Me)* exp(−(Me+sqrt(−Z)).ˆ2));

%Zp=sqrt(pi)/sqrt(2)/2*alph/KnD/sqrt(1+Tr/eta)/...

% (1+1/KnD)*c uv;
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% seems like it should actually be:

Zp=pi/sqrt(2)*alph/KnD/sqrt(1+1/Mi.ˆ2/eta)/...

(1+1/KnD)*c uv;

end

else % MAGNETIZED ELECTRONS

% same as unmagnetized case, except collection area reduced due

% to magnetization; may be off by some constant factor due to

% cos−dependence of incidence angle

if Me==0

Ze=−.5*sqrt(2*pi)/KnD/sqrt(1+1/Mi.ˆ2/eta)/(1+1/KnD)*...

exp(Z);

% UV is incident along magnetic field direction.

%Zp=sqrt(pi)/sqrt(2)/2*alph/KnD/sqrt(1+Tr/eta)/...

% (1+1/KnD)*c uv;

% seems like it should actually be this, assuming

% UV is incident along the magnetic field

Zp=pi/sqrt(2)*alph/KnD/sqrt(1+1/Mi.ˆ2/eta)/...

(1+1/KnD)*c uv;

% If there is an electron flow, need to use this

% description from 1981 Whipple rev. geophys.

else

Ze=−.25*sqrt(2*pi)/KnD/sqrt(1+1/Mi.ˆ2/eta)/...

(1+1/KnD)/Me*(...

(Me.ˆ2+.5+Z)*sqrt(pi)*(erf(Me+sqrt(−Z))+...

erf(Me−sqrt(−Z)))+...

(sqrt(−Me*Z)+Me)*exp(−(Me−sqrt(−Z)).ˆ2)−...

(sqrt(−Me*Z)−Me)* exp(−(Me+sqrt(−Z)).ˆ2));

%Zp=sqrt(pi)/sqrt(2)/2*alph/KnD/sqrt(1+Tr/eta)/...

% (1+1/KnD)*c uv;

% seems like it should actually be this, assuming

% UV is incident along the magnetic field
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Zp=pi/sqrt(2)*alph/KnD/sqrt(1+1/Mi.ˆ2/eta)/...

(1+1/KnD)*c uv;

end

end

% Ion current

if i mag<1

% Because we have mono−energetic ions, cannot have Mi==0

% case!!

Zi=pi/2/KnD/sqrt(1+1/Mi.ˆ2/eta)/(1+1/KnD)/...

eta*sqrt(mr)*Mi*(1−mr*Z/(mr/2*Miˆ2));

else

% simple thermal flux of ions, assuming ballistic trajectories

% along field lines w/ reduced collection area due to

% magnetization

% Zi=.5*sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/...

% (1+1/KnD)*sqrt(mr/Tr)/eta;

% I think this is right... but this seems an absurd

% situation because the ions are mono−energetic, so they

% have no perpendicular energy! Maybe, use Tr ratio to

% characterize their perpendicular temperature with respect

% to electrons.

Zi=pi/2/KnD/sqrt(1+1/Mi.ˆ2/eta)/(1+1/KnD)/eta*sqrt(mr)*Mi;

end

% can add equations for positive dust potential here.

% 4/4/2014: THIS STILL NEEDS TO BE DONE PROPERLY!!!

else

% Electron Current

if e mag<1 % % UNMAGNETIZED ELECTRONS

Ze = −sqrt(2*pi)/KnD/sqrt(1+1/Mi.ˆ2/eta)/(1+1/KnD)*(1+Z);

else

Ze = −.5*sqrt(2*pi)/KnD/sqrt(1+1/Mi.ˆ2/eta)/(1+1/KnD);

end

% Ion current
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if i mag<1 % Unmagnetized ions

Zi=sqrt(2*pi)/KnD/sqrt(1+1/Mi.ˆ2/eta)/...

(1+1/KnD)*Mi*sqrt(mr)*exp(−Z/Mi.ˆ2)/eta;

else

Zi=.5*sqrt(2*pi)/KnD/sqrt(1+1/Mi.ˆ2/eta)/...

(1+1/KnD)*Mi*sqrt(mr)*exp(−Z/Mi.ˆ2)/eta;

end

% check to make sure the photocurrent is written

% correctly!

Zp=pi/sqrt(2)*alph/KnD/sqrt(1+1/Mi.ˆ2/eta)/(1+1/KnD)*c uv;

% Whipple 1981, reviews of geophysics; 1995 Cui and Goree IEEE

end

dZdt = Zi+Ze+Zp;

case 'kortshagen'

if Z≤0 % negative dust potential (phi=qd/C)

% Electron Current

if e mag<1 %% UNMAGNETIZED ELECTRONS

if Me==0

Ze=−sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/(1+1/KnD)*exp(Z);

Zp=pi/sqrt(2)*alph/KnD/sqrt(1+Tr/eta)/...

(1+1/KnD)*c uv;

% the statement above needs to be corrected for higher

% densities, see 1994−1996 Rosenberg IEEE papers.

% If there is an electron flow, need to use this

% description from 1981 Whipple rev. geophys.

else

Ze=−.5*sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/(1+1/KnD)/Me*(...

(Me.ˆ2+.5+Z)*sqrt(pi)*(erf(Me+sqrt(−Z))+...

erf(Me−sqrt(−Z)))+...

(sqrt(−Me*Z)+Me)*exp(−(Me−sqrt(−Z)).ˆ2)−...

(sqrt(−Me*Z)−Me)* exp(−(Me+sqrt(−Z)).ˆ2));

Zp=pi/sqrt(2)*alph/KnD/sqrt(1+Tr/eta)/...

(1+1/KnD)*c uv;
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end

% Magnetized electrons.

else

if Me==0

Ze=−.5*sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/(1+1/KnD)*exp(Z);

% assumes that UV photons are incident along magnetic

% field direction.

Zp=pi/sqrt(2)*alph/KnD/sqrt(1+Tr/eta)/...

(1+1/KnD)*c uv;

% the statement above needs to be corrected for higher

% densities, see 1994−1996 Rosenberg IEEE papers.

% If there is an electron flow, need to use this

% description from 1981 Whipple rev. geophys.

else

Ze=−.25*sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/(1+1/KnD)/Me*(...

(Me.ˆ2+.5+Z)*sqrt(pi)*(erf(Me+sqrt(−Z))+...

erf(Me−sqrt(−Z)))+...

(sqrt(−Z)+Me)*exp(−(Me−sqrt(−Z)).ˆ2)−...

(sqrt(−Z)−Me)* exp(−(Me+sqrt(−Z)).ˆ2));

% assumes that UV photons are incident along magnetic

% field direction.

Zp=pi/sqrt(2)*alph/KnD/sqrt(1+Tr/eta)/...

(1+1/KnD)*c uv;

end

end

% Ion current.

% 4/4/2014: What should we do about flowing ions in G−K model?

% They are currently left out.

% Unmagnetized ions.

if i mag<1

if Mi==0
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if Kn R0==0

P0=1;

P1=0;

Pg1=0;

ioml=sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/...

(1+1/KnD)*sqrt(mr/Tr)*(1−Tr*Z)/eta;

icec=0;

ihyd=0;

else

P0=exp(−1/(Kn R0));

P1=(1/(Kn R0))*exp(−1/(Kn R0));

Pg1=1−(P0+P1);

ioml=sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/(1+1/KnD)*...

sqrt(mr/Tr)*(1−Tr*Z)/eta;

% icec as i originally had it; looks wrong now

% though!

% icec = sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/(1+1/KnD)*...

% sqrt(mr/Tr)*Kna/Kn R0/eta;

% I think the icec written below is correct.

icec=sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/(1+1/KnD)*...

sqrt(mr/Tr)*Kna.ˆ2/Kn R0.ˆ2/4/eta;

%ihyd = sqrt(pi)/KnD/sqrt(1+Tr/eta)/(1+1/KnD)*...

% sqrt(mr/Tr)*Kna*3*pi/4*abs(Z)/eta;

% I think the ihyd written below is correct.

ihyd=3/4*pi*sqrt(pi)/KnD/sqrt(1+Tr/eta)/(1+1/KnD)*...

sqrt(mr/Tr)*Kna*Tr*abs(Z)/eta;

end

Zi = P0*ioml+P1*icec+Pg1*ihyd;

% Flowing ion case:

else

if Kn R0==0

P0=1;

P1=0;

Pg1=0;

% the plasma is flowing, so use this description

435



% for ioml:

ioml=.5*sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/(1+1/KnD)...

*sqrt(mr/Tr)*((Miˆ2+.5−Tr*Z)*...

sqrt(pi)/Mi*erf(Mi)+exp(−Miˆ2))/eta;

icec=0;

ihyd=0;

else

P0=exp(−1/(Kn R0));

P1=(1/(Kn R0))*exp(−1/(Kn R0));

Pg1=1−(P0+P1);

% compute currents:

ioml=.5*sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/(1+1/KnD)...

*sqrt(mr/Tr)*((Miˆ2+.5−Tr*Z)*...

sqrt(pi)/Mi*erf(Mi)+exp(−Miˆ2))/eta;

% icec as i originally had it; looks wrong now

% though!

% icec = sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/(1+1/KnD)*...

% sqrt(mr/Tr)*Kna/Kn R0/eta;

% I think the icec written below is correct.

icec=sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/(1+1/KnD)*...

sqrt(mr/Tr)*Kna.ˆ2/Kn R0.ˆ2/4/eta;

%ihyd = sqrt(pi)/KnD/sqrt(1+Tr/eta)/(1+1/KnD)*...

% sqrt(mr/Tr)*Kna*3*pi/4*abs(Z)/eta;

% I think the ihyd written below is correct.

ihyd=3/4*pi*sqrt(pi)/KnD/sqrt(1+Tr/eta)/(1+1/KnD)*...

sqrt(mr/Tr)*Kna*Tr*abs(Z)/eta;

end

Zi = P0*ioml+P1*icec+Pg1*ihyd;

end

% honestly, I have no clue what to do here if the ions are

% "magnetized". Maybe make this the same as the lines above,

% for now, or try working these out.
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else

% if Mi==0

% Zi=sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/...

% (1+1/KnD)*sqrt(mr/Tr)*(1−Tr*Z)/eta;

% else

% Zi=sqrt(2/pi)/KnD/sqrt(1+Tr/eta)/(1+1/KnD)...

% *sqrt(mr/Tr)*((Miˆ2+.5−Z)*sqrt(pi)/Mi*erf(Mi)+...

% exp(−Miˆ2));

% end

%

Zi = sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/...

(1+1/KnD)*sqrt(mr/Tr)*(1−Tr*Z)/eta;

end

% can add equations for positive dust potential here

else

% Electron Current

if e mag<1 % % UNMAGNETIZED ELECTRONS

Ze=−sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/(1+1/KnD)*(1+Z);

Zp=pi/sqrt(2)*alph/KnD/sqrt(1+Tr/eta)/...

(1+1/KnD)*c uv;

% the statement above needs to be corrected for higher

% densities, see 1994−1996 Rosenberg IEEE papers.

else

Ze = −.5*sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/(1+1/KnD);

Zp=pi/sqrt(2)*alph/KnD/sqrt(1+Tr/eta)/...

(1+1/KnD)*c uv;

% the statement above needs to be corrected for higher

% densities, see 1994−1996 Rosenberg IEEE papers.

end

% Ion current

if i mag<1 % Unmagnetized ions

Zi = sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/...

(1+1/KnD)*sqrt(mr/Tr)*exp(−Z)/eta;

else

Zi = .5*sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/...
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(1+1/KnD)*sqrt(mr/Tr)*exp(−Z)/eta;

end

% check to make sure the photocurrent is written

% correctly!

end

dZdt = Zi+Ze+Zp;

case 'kortshagen monoenergetic ions'

% stop everything if Mi=0, because Mi6=0 is necessary for

% mono−energetic ions.

if Mi==0

exception='Mi cannot be zero!';

error(exception);

end

% If we get through the statement above, we can continue

if Z≤0 % negative dust potential (phi=qd/C)

% Electron Current

if e mag<1 %% UNMAGNETIZED ELECTRONS

if Me==0

Ze=−sqrt(2*pi)/KnD/sqrt(1+1/Mi.ˆ2/eta)/(1+1/KnD)*...

exp(Z);

Zp=pi/sqrt(2)*alph/KnD/sqrt(1+1/Mi.ˆ2/eta)/...

(1+1/KnD)*c uv;

% the statement above needs to be corrected for higher

% densities, see 1994−1996 Rosenberg IEEE papers.

% If there is an electron flow, need to use this

% description from 1981 Whipple rev. geophys.

else

Ze=−.5*sqrt(2*pi)/KnD/sqrt(1+1/Mi.ˆ2/eta)/(1+1/KnD)/...

Me*((Me.ˆ2+.5+Z)*sqrt(pi)*(erf(Me+sqrt(−Z))+...

erf(Me−sqrt(−Z)))+...

(sqrt(−Me*Z)+Me)*exp(−(Me−sqrt(−Z)).ˆ2)−...

(sqrt(−Me*Z)−Me)* exp(−(Me+sqrt(−Z)).ˆ2));

438



Zp=pi/sqrt(2)*alph/KnD/sqrt(1+1/Mi.ˆ2/eta)/...

(1+1/KnD)*c uv;

end

% Magnetized electrons.

else

if Me==0

Ze=−.5*sqrt(2*pi)/KnD/sqrt(1+1/Mi.ˆ2/eta)/(1+1/KnD)*...

exp(Z);

% assumes that UV photons are incident along magnetic

% field direction.

Zp=pi/sqrt(2)*alph/KnD/sqrt(1+1/Mi.ˆ2/eta)/...

(1+1/KnD)*c uv;

% the statement above needs to be corrected for higher

% densities, see 1994−1996 Rosenberg IEEE papers.

% If there is an electron flow, need to use this

% description from 1981 Whipple rev. geophys.

else

Ze=−.25*sqrt(2*pi)/KnD/sqrt(1+1/Mi.ˆ2/eta)/(1+1/KnD)...

/Me*((Me.ˆ2+.5+Z)*sqrt(pi)*(erf(Me+sqrt(−Z))+...

erf(Me−sqrt(−Z)))+...

(sqrt(−Z)+Me)*exp(−(Me−sqrt(−Z)).ˆ2)−...

(sqrt(−Z)−Me)* exp(−(Me+sqrt(−Z)).ˆ2));

% assumes that UV photons are incident along magnetic

% field direction.

Zp=pi/sqrt(2)*alph/KnD/sqrt(1+1/Mi.ˆ2/eta)/...

(1+1/KnD)*c uv;

end

end

% Ion current.

% 4/4/2014: What should we do about flowing ions in G−K model?
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% They are currently left out.

% Unmagnetized ions.

if i mag<1

if Kn R0==0

P0=1;

P1=0;

Pg1=0;

% the plasma is flowing, so use this description

% for ioml with mono−energetic ions:

ioml=pi/2/KnD/sqrt(1+1/Mi.ˆ2/eta)/(1+1/KnD)/...

eta*sqrt(mr)*Mi*(1−mr*Z/(mr/2*Miˆ2));

icec=0;

ihyd=0;

Zi = P0*ioml+P1*icec+Pg1*ihyd;

else

P0=exp(−1/(Kn R0));

P1=(1/(Kn R0))*exp(−1/(Kn R0));

Pg1=1−(P0+P1);

% compute currents:

ioml=pi/2/KnD/sqrt(1+1/Mi.ˆ2/eta)/(1+1/KnD)/...

eta*sqrt(mr)*Mi*(1−mr*Z/(mr/2*Miˆ2));

% I think the icec written below is correct.

icec=sqrt(2*pi)/KnD/sqrt(1+1/Mi.ˆ2/eta)/...

(1+1/KnD)*Mi*sqrt(mr)*Kna.ˆ2/Kn R0.ˆ2/4/eta;

% I think the ihyd written below is correct, although

% the hydrodynamic regime is not really applicable for

% streaming mono−energetic streaming ions.

ihyd=3/4*pi*sqrt(pi)/KnD/sqrt(1+1/Mi.ˆ2/eta)/...

(1+1/KnD)*Mi*sqrt(mr)*Kna*abs(Z)/eta/Mi.ˆ2;

Zi = P0*ioml+P1*icec+Pg1*ihyd;

end

% honestly, I have no clue what to do here if the ions are
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% "magnetized". Maybe make this the same as the lines above,

% for now, or try working these out.

else

Zi = sqrt(2*pi)/KnD/sqrt(1+1./Mi.ˆ2/eta)/...

(1+1/KnD)*Mi*sqrt(mr)*(1−Z/Mi.ˆ2)/eta;

end

% can add equations for positive dust potential here

else

% Electron Current

if e mag<1 % % UNMAGNETIZED ELECTRONS

Ze=−sqrt(2*pi)/KnD/sqrt(1+1/Mi.ˆ2/eta)/(1+1/KnD)*(1+Z);

Zp=pi/sqrt(2)*alph/KnD/sqrt(1+1/Mi.ˆ2/eta)/...

(1+1/KnD)*c uv;

% the statement above needs to be corrected for higher

% densities, see 1994−1996 Rosenberg IEEE papers.

else

Ze=−.5*sqrt(2*pi)/KnD/sqrt(1+1/Mi.ˆ2/eta)/(1+1/KnD);

Zp=pi/sqrt(2)*alph/KnD/sqrt(1+1/Mi.ˆ2/eta)/...

(1+1/KnD)*c uv;

% the statement above needs to be corrected for higher

% densities, see 1994−1996 Rosenberg IEEE papers.

end

% Ion current

if i mag<1 % Unmagnetized ions

Zi=sqrt(2*pi)/KnD/sqrt(1+1/Mi.ˆ2/eta)/...

(1+1/KnD)*Mi*sqrt(mr)*exp(−Z)/eta;

else

Zi=.5*sqrt(2*pi)/KnD/sqrt(1+1/Mi.ˆ2/eta)/...

(1+1/KnD)*Mi*sqrt(mr)*exp(−Z)/eta;

end

% check to make sure the photocurrent is written

% correctly!

end
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dZdt = Zi+Ze+Zp;

case 'hutchinson'

if Z≤0 % negative dust potential (phi=qd/C)

% Electron Current

z=e mag/(1+e mag);

% iota* in Patacchini and Hutchinson:

iota=1−0.0946*z−0.305*z.ˆ2+0.95*z.ˆ3−2.2*z.ˆ4+1.15*z.ˆ5;

% % FOR LAMBDA D = FINITE, AND DEBYE−HUCKEL POTENTIAL:

% eta, which is now dependent on grain sheath size:

eta mag=−Z/e mag*(1+e mag/4*(1−exp(−4/KnD/e mag)));

% w, which is eta/(1+eta):

w mag=eta mag/(1+eta mag);

% A, the fitting polynomial, a function of w:

A fit=0.678*w mag+1.543*w mag.ˆ2−1.212*w mag.ˆ3;

% Ie*, which is the empirical formula for electron current as a

% function of magnetization

Ze=−sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/...

(1+1/KnD)*exp(Z)*(A fit+(1−A fit)*iota);

% Patacchini−Hutchinson model can include the spatial

% dependence of electron flux to the sphere. I have chosen not

% to put this in at the current time, since it is not necessary

% for determining thetotal grain charge.

% Ion current; still "binary", so it is either magnetized or

% unmagnetized; not sure if/how this has been treated by

% Patacchini and Hutchinson.

if i mag<1

if Mi==0

% OML current, cf. Allen, Phys. Scr. 45 (1992), eq. 51

Zi=sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/...

(1+1/KnD)*sqrt(mr/Tr)*(1−Tr*Z)/eta;

% Flowing ions; taken from 1981 Whipple rev. geophys.
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else

Zi=.5*sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/(1+1/KnD)...

*sqrt(mr/Tr)*((Miˆ2+.5−Tr*Z)*sqrt(pi)/Mi*erf(Mi)+...

exp(−Miˆ2))/eta;

end

else

% simple thermal flux of ions, assuming ballistic trajectories

% along field lines w/ reduced collection area due to

% magnetization

Zi=.5*sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/...

(1+1/KnD)*sqrt(mr/Tr)/eta;

% reference for this?

end

% put photo−electron current here?

Zp=pi/sqrt(2)*alph/KnD/sqrt(1+Tr/eta)/...

(1+1/KnD)*c uv;

% can add equations for positive dust potential here. How is this

% done in the Hutchinson model??

else

% Electron Current

if e mag<1 % % UNMAGNETIZED ELECTRONS

Ze = −sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/(1+1/KnD)*(1+Z);

else

Ze = −.5*sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/(1+1/KnD);

end

% Ion current

if i mag<1 % Unmagnetized ions

Zi = sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/...

(1+1/KnD)*sqrt(mr/Tr)*exp(−Tr*Z)/eta;

else

Zi = .5*sqrt(2*pi)/KnD/sqrt(1+Tr/eta)/...

(1+1/KnD)*sqrt(mr/Tr)*exp(−Tr*Z)/eta;

end

% check to make sure the photocurrent is written
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% correctly! Might be different in P−H model.

Zp=pi/sqrt(2)*alph/KnD/sqrt(1+Tr/eta)/(1+1/KnD)*c uv;

% Whipple 1981, reviews of geophysics; 1995 Cui and Goree IEEE

end

dZdt = Zi+Ze+Zp;

case 'hutchinson monoenergetic ions'

% stop everything if Mi=0, because Mi6=0 is necessary for

% mono−energetic ions.

if Mi==0

exception='Mi cannot be zero!';

error(exception);

end

% If we get through the statement above, we can continue

if Z≤0 % negative dust potential (phi=qd/C)

% Electron Current

z=e mag/(1+e mag);

% iota* in Patacchini and Hutchinson:

iota=1−0.0946*z−0.305*z.ˆ2+0.95*z.ˆ3−2.2*z.ˆ4+1.15*z.ˆ5;

% % FOR LAMBDA D = FINITE, AND DEBYE−HUCKEL POTENTIAL:

% eta, which is now dependent on grain sheath size:

eta mag=−Z/e mag*(1+e mag/4*(1−exp(−4/KnD/e mag)));

% w, which is eta/(1+eta):

w mag=eta mag/(1+eta mag);

% A, the fitting polynomial, a function of w:

A fit=0.678*w mag+1.543*w mag.ˆ2−1.212*w mag.ˆ3;

% Ie*, which is the empirical formula for electron current as a

% function of magnetization

Ze=−sqrt(2*pi)/KnD/sqrt(1+1/Mi.ˆ2/eta)/...

(1+1/KnD)*exp(Z)*(A fit+(1−A fit)*iota);

% Patacchini−Hutchinson model can include the spatial
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% dependence of electron flux to the sphere. I have chosen not

% to put this in at the current time, since it is not necessary

% for determining thetotal grain charge.

% Ion current; still "binary", so it is either magnetized or

% unmagnetized; not sure if/how this has been treated by

% Patacchini and Hutchinson.

if i mag<1

Zi=pi/2/KnD/sqrt(1+1/Mi.ˆ2/eta)/(1+1/KnD)/...

eta*sqrt(mr)*Mi*(1−mr*Z/(mr/2*Miˆ2));

else

% simple thermal flux of ions, assuming ballistic trajectories

% along field lines w/ reduced collection area due to

% magnetization

% reference for this?

Zi=pi/2/KnD/sqrt(1+1/Mi.ˆ2/eta)/(1+1/KnD)/eta*sqrt(mr)*Mi;

end

% put photo−electron current here?

Zp=pi/sqrt(2)*alph/KnD/sqrt(1+1/Mi.ˆ2/eta)/...

(1+1/KnD)*c uv;

% can add equations for positive dust potential here. How is this

% done in the Hutchinson model??

else

% Electron Current

if e mag<1 % % UNMAGNETIZED ELECTRONS

Ze = −sqrt(2*pi)/KnD/sqrt(1+1/Mi.ˆ2/eta)/(1+1/KnD)*(1+Z);

else

Ze = −.5*sqrt(2*pi)/KnD/sqrt(1+1/Mi.ˆ2/eta)/(1+1/KnD);

end

% Ion current

if i mag<1 % Unmagnetized ions

Zi = sqrt(2*pi)/KnD/sqrt(1+1/Mi.ˆ2/eta)/...
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(1+1/KnD)*Mi*sqrt(mr)*exp(−Z/Mi.ˆ2)/eta;

else

Zi = .5*sqrt(2*pi)/KnD/sqrt(1+1/Mi.ˆ2/eta)/...

(1+1/KnD)*Mi*sqrt(mr)*exp(−Z/Mi.ˆ2)/eta;

end

% check to make sure the photocurrent is written

% correctly! Might be different in P−H model.

Zp=pi/sqrt(2)*alph/KnD/sqrt(1+1/Mi.ˆ2/eta)/(1+1/KnD)*c uv;

% Whipple 1981, reviews of geophysics; 1995 Cui and Goree IEEE

end

dZdt = Zi+Ze+Zp;

% calculate dt, the time to gain/lose one electron, given the value of

% the "current", or dZdt?

%dt = 1/3*KnD/(1+1/KnD)/(1+Tr/eta)/NDe/abs(dZdt);

%dZ=1/3*KnD/(1+1/KnD)/(1+Tr/eta)/NDe*sign(dZdt);

end
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Dust Experiment a B mi/mp ni P Td Te Ti
(Units) (µm) (T) (m−3) (mTorr) (eV) (eV) (eV)

DPD
(Thompson et al., 1997) 0.8 0.09 14 1015 100 2.5 0.03-0.1

DUPLEX
(Amatucci et al., 2004) 0.6 0.25 40 1015 250 0.025 1.6 0.025

DUSTWHEEL
(Knist et al., 2011) 0.5 40 1014 1-10 2.5 0.03

Matilda II
(Trottenberg et al., 2006) 0.47 0.02 40 1015 15 0.025 2.7 0.1

MDPX
(Thomas et al., 2012) 0.3-0.5 4 10,14,40 1014 − 1016 1 0.025 3-4 0.025

MDPX at MPE
(Schwabe et al., 2011) 1.3-2.2 2 10,14,40 1014 − 1016 2.5 3-4 0.025

Molecular Clouds
(Ferrière, 2001) 10−4 − 0.1 10−9 1 10− 1010 < 10−9 10−3 1 1

(Nunomura et al., 1997) 30 0.09 4 1016 0.34 5 0.5

(Sato et al., 2001) 10 0.04-4 40 1014 100 2 0.025

Saturn’s E ring
(Khurana et al., 2008) 0.01-10 10−7 18 106 10−10 10 30

Suleiman Device
(Carstensen et al., 2012) 5.8 4 40 1014 60 3 0.025

Table 1.1: Parameters for laboratory dust experiments and other regimes with magnetic fields.
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Dust Experiment a/RLe a/RLi KnR0 NDe RLd(m) Te/Ti λD/a λi/a ωcd/νdn
DPD
(Thompson et al., 1997) 10−2 10−3 1 105 10−1 50 500 102 10−4

DUPLEX
(Amatucci et al., 2004) 10−2 10−3 1 104 10−2 64 500 102 10−4

Matilda II
(Trottenberg et al., 2006) 10−3 10−5 102 105 10−1 27 830 > 104 10−2

MDPX
(Thomas et al., 2012) 0.2-0.4 10−2 20 104 10−3 140 > 103 > 104 10

MDPX at MPE
(Schwabe et al., 2011) 1 10−2 10−1 104 10−3 140 103 − 104 102 1

Molecular Clouds
(Ferrière, 2001) 10−10 10−12 > 104 > 106 > 105 1 > 106 > 1014 1− 104

(Nunomura et al., 1997) 0.4 10−1 2 104 10−1 200 6 103 10−2

Saturn’s E ring
(Khurana et al., 2008) 10−7 10−9 109 109 > 105 0.1 > 108 > 1015 10− 104

Suleiman Device
(Carstensen et al., 2012) 4.5 10−1 10−1 105 10−3 120 220 34 10−3

Table 1.2: Dimensionless Parameters for laboratory dust experiments with magnetic fields. Even
experiments with large magnetic fields (B > 1 T) do not necessarily produce magnetized orbit
dust grains due to the presence of neutral drag, which is represented in this table by the ωcd/νdn
parameter. Parameters that depend on the gyro-radii quoted here correspond to the mean gyro-

radius RLs =
√

πkbTs

2me
/ωcs. The dust gyro-radius RLd quoted in this table does not include the

enlarging effect of an applied electric field that is perpendicular to the magnetic field. Dust grains

are levitated in a planar sheath where the ions have a fluid drift vi =
√

kbTe

mi
directed along the

sheath dimension, which means that the Debye length is given by λD =
√

ε0kbTe

e2ni
(Carstensen et al.,

2012). The dust-neutral collision frequency νdn is calculated assuming Epstein drag and is given
by equation 3.59.

Species Potential Type

Vd = Vsurf − Vs > 0 Ions Retarding Potential

Vd = Vsurf − Vs > 0 Electrons Attractive Potential

Vd = Vsurf − Vs < 0 Ions Attractive Potential

Vd = Vsurf − Vs < 0 Electrons Retarding Potential

Table 2.1: Summary of retarding and attracting conditions for electrons and ions.
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Moon Enceladus Tethys Dione Rhea

Radial distance (RSat) 3.95 4.89 6.26 8.74
|B| (nT) 370 167 75 25
ne (m−3/106) 40 30 13 2
nn (m−3/106) 400 400 100
mi (AMU) 18 17 17 17
Te (eV) 10 20 60 100
Ti (eV) 30 50 90 100
Cs (km/s) 19 26 37 43

Table 6.1: Selected plasma parameters throughout the Saturnian system, from Khurana et al.
(2008); Richardson (1998).
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Figures
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Figure 2.1: For a small spherical conductor a � λD, the Yukawa, or Debye-Huckel potential is
compared to a Coloumb potential.
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Figure 2.2: Space potential, electron and ion densities, and ion fluid velocity along the sheath
direction for a collisionless and weakly collisional Child-Langmuir sheath, represented by the top
and bottom panels, respectively. For the same plasma parameters, the sheath is larger in the weakly
collisional case.
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Figure 2.3: Example grain trajectory around Saturn in the corotating reference frame. The a =
0.025 µm grain is launched from Enceladus at the Kepler velocity. On the left side of the figure,
the thick red line in the center shows the extent of Saturn, the larger, concentric cyan circle shows
the radius for geosynchronous orbit, and the thin black line corresponds to the grain trajectory. A
dipole magnetic field is assumed, and the parameters in the corotating plasma are n0 = 4 × 107

m−3, Te = 5 eV, Ti = 10 eV, with ions having 20 amu. On the right side of the figure, the radial
excursion of the grain as a function of time is plotted. The grain drifts radially inward.
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Figure 3.2: Figure from Merlino (2006) which shows how dimensionless surface potential χe =
eVd/(kbTe) depends on the ratio of electron to ion temperature.
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Figure 3.3: Figure from Gatti and Kortshagen (2008). This shows the normalized particle potential
χe = qd/(CdTe) as a function of the capture radius Knudsen number KnR0 for a particle with a
diameter of 500 nm, ni0 = 1010 cm3, Te=2.5 eV, Ti=0.025 eV, and nd/ni0 ≈ 0, meaning the
plasma is treated as dust in plasma rather than dusty-plasma. Also plotted are the probabilities of
performing zero (P0), one (P1), and more than one collision P>1 inside the capture radius sphere.
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Figure 4.1: This diagram shows the relationship between the velocity vector and the gyro-phase
angle φ for an example grain trajectory.
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Figure 4.2: A 1µm diameter grain starts at the origin, gyrates, and drifts in a magnetic field B = 4
T and an electric field Ex = 100 V/m, Ey = 100 V/m. The grain has ≈ 1400 electrons on its
surface.

10-8

10-6

10-4

10-2

100

102

10-3 10-2 10-1 100

Lo
g 1

0[
D

us
t g

yr
or

ad
iu

s 
(m

)]

Log10[Grain radius (µm)]

100 V/m
10 V/m

1 V/m

B

10-8

10-6

10-4

10-2

100

102

0 20 40 60 80 100

Lo
g 1

0[
D

us
t g

yr
or

ad
iu

s 
(m

)]

Ambient Electric Field (V/m)

1 µm
.1 µm

.03 µm

.01 µm

A

Figure 4.3: The effective gyro-radius can be accomodated in a laboratory vacuum vessel only for
small magnitude of radial electric field and small grain radius. A: Effective dust grain gyro-radius
as a function of a constant, ambient electric field is plotted for grain diameters a = 1µm, a = 0.1µm,
a = .015µm, and a = 0.01µm. B: Effective gyro-radius as a function of grain radius is plotted for
constant, ambient electric field values of 100V/m, 10V/m, and 1V/m.
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Figure 4.4: A 1µm diameter grain starts at the origin and moves in a magnetic field B = 4 T, an
electric field Ex = 100 V/m, Ey = 100 V/m, a neutral gas pressure of 1 mTorr, with the neutrals
flowing at vxn = −100 m/s, which produces a drag force of magnitude ≈ 10−15N. By comparison,
the magnitude of the magnetic force on this grain ≈ 10−18N. The grain has ≈ 1400 electrons on its
surface, ωcd ≈ 2s−1, νdn ≈ 2× 10−2s−1 so that ωcd/νdn � 1.
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Figure 4.5: A 1µm diameter grain starts at the origin and moves in a magnetic field B = 4 T, an
electric field Ex = 100 V/m, Ey = 100 V/m, a neutral gas pressure of 1 mTorr, with the neutrals
flowing at vxn = −100 m/s which produces a drag force of magnitude ≈ 10−15N. By comparison,
the magnitude of the magnetic force on this grain ≈ 10−18N. The grain has ≈ 1400 electrons on its
surface, ωcd ≈ 2s−1, νdn ≈ 2 so that ωcd/νdn ≈ 1 and the grain does not make a complete gyration.
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Figure 4.6: A 1µm diameter grain starts at the origin and moves in a magnetic field B = 4 T,
an electric field Ex = −100 V/m, a neutral gas pressure of 0.01 mTorr, with the neutrals flowing
at vxn = −100 m/s, which produces a drag force of magnitude ≈ 10−15N. By comparison, the
magnitude of the magnetic force on this grain ≈ 10−18N. The grain has ≈ 1400 electrons on its
surface.
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Figure 4.7: A 1µm diameter grain starts at the origin and moves in a magnetic field B = 4 T, an
ion density of 1012m−3, with the ions flowing at vxi = −200 m/s, which produces a drag force of
magnitude ≈ 10−17N. By comparison, the magnitude of the magnetic force on this grain ≈ 10−18N.
The grain has ≈ 1400 electrons on its surface.
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Figure 5.1: Grain trajectory for E0y = 0, E0x/(Bv⊥) = −1, λD/a = 103, λi/a = 105, md/me =
1011, q1/q2 = 1.74, ωcd/νdn = 104, and τg/τc = 5. In this case, the instantaneous gyro-radius must

be specified by the more general v⊥(t)/
dφ
dt , rather than v⊥(t)/ωcd(t), where φ is the gyro-phase

angle. The dotted line represents the guiding center position.
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Figure 5.3: Example of a drag affected trajectory overlaid with a non-drag affected trajectory. The
ratio ωcd/νdn is 10 for the drag affect trajectory and 104 for the non-drag affected trajectory, with
all other parameters equal. The drag affected trajectory has an inherent drift component along
the x̂-direction. For this plot, Argon ions are assumed, q1/q2 = 1.74, Te/Ti = 200, a/RLe = 0.1,
λD/a = 105, λi/a = 5, NDe = 103, md/me ≈ 1012, and τg/τc ≈ 20 (non-instantaneous charging).
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Figure 5.4: Charge evolution for a = 0.05µm grain in the OML and capacitor approximation. A:
Charge evolution of a dust grain as it transitions from the UV-absent to UV-present region. The
UV flux is 4× 1018m−2s−1, which yields a photo-electron current of 5.03× 10−15A. The capacitor
model reaches 1

e (q2 − q1) at the same time as the OML charge model, although it is a different
function of time. B: Charge evolution of a dust grain as it transitions from the UV-present to
UV-absent region.
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Figure 5.5: Example trajectory of a grain that starts at the origin, but does not transition back
to the x < 0 or q1 region due to excessive drag. In this example, ω1/νdn = 3, so when the grain
goes from x < 0 to x > 0 when t ≈ 0, this ratio is barely above unity. For this plot, Argon
ions are assumed, q1/q2 = 1.74, Te/Ti = 200, a/RLe = 0.1, λD/a = 105, λi/a = 5, NDe = 103,
md/me = 1020, and τg/τc ≈ 20 (non-instantaneous charging).
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Figure 5.6: Simulated example trajectory of a grain that starts at the origin, transitions to the
x < 0 half-plane, and does not re-enter the x > 0 region. This situation generally occurs for small
values of τg/τc. Argon ions are assumed for this drag-absent simulation plot, and a = 10−7m,
ρd = 90 kg m−3, n0 = 1014 m−3 Te = 5 eV, Ti = 0.025 eV. The dimensionless numbers for this
trajectory are q1/q2 = 1.74, Te/Ti = 200, a/RLe = 0.1, λD/a = 103, λi/a = 105, NDe = 103,
md/me = 1012, and τg/τc ≈ 20 (non-instantaneous charging).
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Figure 5.7: This figure shows the possibility of dust grains re-entering the x = 0 region when drag
is present. This is shown clearly in the solid blue trajectory ωcd/νdn = 10, while it does not occur
for the drag-absent trajectory with ωcd/νdn = 104. Other than ωcd/νdn ratios, both cases have
identical parameters; Argon ions are assumed, q1/q2 = 2, Te/Ti = 200, a/RLe = 0.1, λD/a = 105,
λi/a = 5, NDe = 103, md/me = 1022, and log(τg/τc) = 5.3. When drag is present, this situation
generally occurs for larger values of τg/τc.
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Figure 5.8: Guiding center drift magnitude dependence on the gyration parameter ωcd/νdn for
the parameters Te/Ti=200, q1/q2 = 1.74, a/RLe = 0.1, λD/a = 105, λi/a = 5, NDe = 103,
md/me = 1012, and log(τg/τc) = 1. The abscissa is mislabelled; τg/τc should be ωcd/νdn.
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Figure 5.9: Guiding center drift magnitude and direction dependence on the initial gyro-phase
angle θ0. In this figure, drag is absent (ωcd/νdn = 104), UV illumination is the source of abrupt
inhomogeneity, q1/q2 = 2, Argon ions are assumed, Te/Ti = 200, a/RLe = 0.1, λD/a = 103,
λi/a = 105, NDe = 2 × 104, and md/me = 1012. The top panel shows the guiding center drift
magnitudes, the middle panel shows the guiding center drift angle relative to the x-axis, and the
bottom panel shows the τg/τc ratio as a function of the initial gyro-phase angle.
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Figure 5.10: Gyro-phase drift magnitude and direction for the first gyro-cycle as a function of the
ratio τg/τc for the abrupt theory and Northrop’s prediction. The absolute values of the velocities
are plotted in the topmost plot, while the direction is supplied by the bottom panel. In this figure,
UV illumination is the source of inhomogeneity, Argon ions are assumed, Te/Ti = 200, a/RLe = 0.1,
λD/a = 103, λi/a = 105, NDe = 2× 104, q1/q2 = 2, and 1010 ≤ md/me ≤ 1020. The grain drifts in
the negative ŷ-direction for 10−2 < τg/τc ≤ 2.
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Figure 5.11: This figure shows examples of fitting a sinusoidal charge variation to q(t) in order to
obtain the gyro-phase drift vector using Northrop’s method for the case of abrupt inhomogeneity.
In this figure, the dimensionless surface potential χe(t) = eq(t)/(CdkbTe) is shown instead of q(t).
Each plot shows q(t) and a sinusoidal fit to a selected data point from figure 5.10.
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Figure 5.12: Radial distance from the origin is the gyro-radius as a function of gyro-angle in
meters. The grain size is a = 0.05µm. In the semi-analytical model, q(t) is continuous, while for
the simulations, q(t) is discrete. Despite this major difference, the semi-analytical model and the
simulation closely agree. The quantitiy dq

dt is discontinuous at 0◦ and ≈ 80◦ because the current to
the grain abruptly changes at both of these phase angles.
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Figure 5.13: Gyro-phase drift magnitude and direction for the first gyro-cycle as a function of the
ratio τg/τc with an electric field. In this figure, drag is absent (ωcd/νdn = 104), UV illumination is
the source of abrupt inhomogeneity, q1/q2 = 2, Argon ions are assumed, Te/Ti = 200, a/RLe = 0.1,
λD/a = 103, λi/a = 105, NDe = 2× 104, and md/me is swept from 1010 to 1020.
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Figure 5.14: Gyro-phase drift magnitude and direction for the first gyro-cycle as a function of the
ratio τg/τc for different values of q1/q2.
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Figure 5.15: Gyro-phase drift magnitude for the first gyro-cycle as a function of the ratio τg/τc for
different values ofme/mi when q1/q2 = 2 is held constant. The top panel corresponds to the guiding
center velocity along the x̂-direction and the bottom panel corresponds to the guiding center velocity
along the ŷ-direction. The values of me/mi chosen correspond to Hydrogen, Nitrogen, Argon, and
Xenon plasmas in ascending order. Evident in this figure is that all of the plots have exactly the
same shape and same values, but lower values of me/mi allow access to smaller values of τg/τc. For
this plot, λD/a = 103, λi/a = 105, NDe = 104, a/RLe = 10−1, and Te/Ti = 200.
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Figure 5.16: Gyro-phase drift magnitude for the first gyro-cycle as a function of the ratio τg/τc for
different values of me/mi when the normalized photo-current fuv/(nevthe) = 0.25 is held constant.
The top panel corresponds to the guiding center velocity along the x̂-direction and the bottom
panel corresponds to the guiding center velocity along the ŷ-direction. The values of me/mi chosen
correspond to Hydrogen, Nitrogen, Argon, and Xenon plasmas in ascending order, which produce
q1/q2 values of 1.4, 1.61, 1.74, and 1.93 respectively. Like in figure 5.15, lower values of me/mi

allow access to smaller values of τg/τc, but in these plots the lower values of me/mi also produce
greater drift amplitudes. For this plot, λD/a = 103, λi/a = 105, NDe = 104, a/RLe = 10−1, and
Te/Ti = 200.
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Figure 5.17: Gyro-phase drift magnitude for the first gyro-cycle as a function of the ratio τg/τc
for different values of Te/Ti when q1/q2 = 2 is held constant. The top panel corresponds to the
guiding center velocity along the x̂-direction and the bottom panel corresponds to the guiding center
velocity along the ŷ-direction. The temperature ratios Te/Ti = 10−1, Te/Ti = 100, Te/Ti = 2× 101,
and Te/Ti = 2 × 102 are shown in ascending order on the log(Te/Ti) axis. Higher values of Te/Ti
allow access to smaller values of τg/τc, in a much more dramatic way than seen in smaller values
of me/mi in 5.15. For this plot, hydrogen plasma assumed, λD/a = 103, λi/a = 105, NDe = 104,
and a/RLe = 10−1.
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Figure 5.18: Gyro-phase drift magnitude for the first gyro-cycle as a function of the ratio τg/τc
for different values of Te/Ti when fuv/(nevthe) = 0.25 is held constant. The top panel corresponds
to the guiding center velocity along the x̂-direction and the bottom panel corresponds to the
guiding center velocity along the ŷ-direction. The temperature ratios Te/Ti = 10−1, Te/Ti = 100,
Te/Ti = 2 × 101, and Te/Ti = 2 × 102 are shown in ascending order on the Te/Ti axis, and these
temperature ratios produce q1/q2 ratios of 2, 1.94, 1.57, and 1.4 respectively. Higher values of Te/Ti
for constant UV photo-current allow access to smaller values of τg/τc, in a much more dramatic
way than seen in smaller values of me/mi in figure 5.16. For this plot, hydrogen plasma assumed,
λD/a = 103, λi/a = 105, NDe = 104, and a/RLe = 10−1.
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Figure 5.19: Gyro-phase drift magnitude for the first gyro-cycle as a function of the ratio τg/τc for
different values of NDe when υ = fuv/(nevthe) = 0.25 is held constant. The top panel corresponds
to the guiding center velocity along the x̂-direction and the bottom panel corresponds to the guiding
center velocity along the ŷ-direction. Higher values of NDe allow access to smaller values of τg/τc.
For this plot, hydrogen plasma assumed, λD/a = 103, λi/a = 105, Te/Ti = 200, and a/RLe = 10−1.
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Figure 5.20: Gyro-phase drift magnitude for the first gyro-cycle as a function of the ratio τg/τc
for different values of NDe when fuv/(nevthe) = 0.25 is held constant. In the top panel, solid
curves correspond to |vxgc|, the guiding center velocity long the x̂-direction, and the dashed curves
correspond to |vxgc|, the guiding center velocity along the ŷ-direction. The plots of |vxgc| and |vxgc|
overlap and are identical for different values of NDe, showing that the gyro-phase drift magnitude
and direction is not affected by the NDe parameter. The bottom panel shows the guiding center
drift angle with respect to the x-axis in the dust grain trajectory configuration space. The guiding
center drift is calculated for electron magnetization parameter values a/RLe = 10−2, 10−1, 100, 101,
and 102, and the q1/q2 ratios are given by 1.74, 1.74, 2.57, 2.57, and 10.14 respectively. The q1/q2
ratios are increasing because the current collection regime changes at certain values of the a/RLe

parameter. Higher values of NDe allow access to smaller values of τg/τc. For this plot, hydrogen
plasma assumed, λD/a = 103, λi/a = 105, Te/Ti = 200, and a/RLe = 10−1.
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Figure 5.21: Gyro-phase drift magnitude for the first gyro-cycle as a function of the ratio τg/τc for
different values of a/RLe when fuv/(nevthe) = 0.25 is held constant. The top panel corresponds
to the guiding center velocity along the x̂-direction and the bottom panel corresponds to the
guiding center velocity along the ŷ-direction. For this plot, Argon plasma assumed, ωcd/νdn = 104,
NDe = 104, λD/a = 103, λi/a = 105, and Te/Ti = 200. The OML and Patacchini-Hutchinson
charge models produce the same guiding center drift magnitudes for these parameters.
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Figure 5.22: Gyro-phase drift magnitude for the first gyro-cycle as a function of the ratio τg/τc for
different values of ωcd/νdn when fuv/(nevthe) = 0.25 is held constant. The top panel corresponds
to the guiding center velocity along the x̂-direction and the bottom panel corresponds to the
guiding center velocity along the ŷ-direction. For this plot, hydrogen plasma assumed, NDe = 104,
λD/a = 103, λi/a = 105, Te/Ti = 200, and a/RLe = 10−1.
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Figure 5.23: Gyro-phase magnitude and direction dependence on τg/τc for the three different charg-
ing models for several values of the Knudsen number (λi/a). Solid (dashed) red line corresponds
to the Patacchini-Hutchinson model guiding center drift vxgc (vygc), solid (dashed black line cor-
responds to the OML model guiding center drift vxgc (vygc), and the solid (dashed) cyan line
corresponds to the Gatti-Kortshagen model guiding center drift vxgc (vygc). The other parameters
chosen for an Argon plasma include fUV /(nevthe) = 0.25, ωcd/νdn = 10, NDe = 104, a/RLe = 0.1,
λD/a = 103, and Te/Ti = 200. The OML and Patacchini-Hutchinson charge models predict the
same guiding center drift for these parameters.
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Figure 5.24: Gyro-phase magnitude and direction dependence on τg/τc for the three different
charging models for several values of the Knudsen number (λi/a). The abscissa is τg/τc, not log10

τg
τc
.

Solid (dashed) red line corresponds to the Patacchini-Hutchinson model guiding center drift vxgc
(vygc), solid (dashed black line corresponds to the OML model guiding center drift vxgc (vygc),
and the solid (dashed) cyan line corresponds to the Gatti-Kortshagen model guiding center drift
vxgc (vygc). The other parameters chosen for an Argon plasma include υ = fUV /(nevthe) = 0.25,
ωcd/νdn = 10, NDe = 104, a/RLe = 1.1, λD/a = 103, and Te/Ti = 200.
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Figure 5.25: Gyro-phase magnitude and direction dependence on τg/τc for the three different
charging models for several values of a/RLe. Solid (dashed) red line corresponds to the Patacchini-
Hutchinson model guiding center drift vxgc (vygc), solid (dashed black line corresponds to the OML
model guiding center drift vxgc (vygc), and the solid (dashed) cyan line corresponds to the Gatti-
Kortshagen model guiding center drift vxgc (vygc). The other parameters chosen for an Argon
plasma include fUV /(nevthe) = 0.25, ωcd/νdn = 10, NDe = 104, λi/a = 105, λD/a = 103, and
Te/Ti = 200. The OML and Patacchini-Hutchinson charge models produce the same guiding center
drift magnitudes, producing overlapping plots except for the values a/RLe = 1 and a/RLe = 10. In
the limit of very large or very small values of a/RLe, the OML and Patacchini-Hutchinson models
predict the same guiding center drift magnitude.
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Figure 5.26: Guiding center drift magnitude dependence on τg/τc for the three different charg-
ing models for several values of the parameter λD/a. Solid (dashed) red line corresponds to the
Patacchini-Hutchinson model guiding center drift vxgc (vygc), solid (dashed black line corresponds to
the OML model guiding center drift vxgc (vygc), and the solid (dashed) cyan line corresponds to the
Gatti-Kortshagen model guiding center drift vxgc (vygc). The other parameters chosen for an Argon
plasma include υ = fUV /(nevthe) = 0.25, ωcd/νdn = 10, NDe = 104, a/RLe = 0.1, λi/a = 105, and
Te/Ti = 200. The OML and Patacchini-Hutchinson charge models predict the same guiding center
drift for all parameters, and the Gatti-Kortshagen charge model predicts the same guiding center
drift as the OML and Patacchini-Hutchinson models for λi/λD � 1 and λi/λD � 1.
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Figure 5.27: Guiding center drift magnitude dependence on τg/τc for the three different charg-
ing models for several values of the parameter λD/a. Solid (dashed) red line corresponds to the
Patacchini-Hutchinson model guiding center drift vxgc (vygc), solid (dashed black line corresponds
to the OML model guiding center drift vxgc (vygc), and the solid (dashed) cyan line corresponds
to the Gatti-Kortshagen model guiding center drift vxgc (vygc). The other parameters chosen for
an Argon plasma include υ = fUV /(nevthe) = 0.25, ωcd/νdn = 10, NDe = 104, a/RLe = 1.1,
λi/a = 105, and Te/Ti = 200. The OML and Patacchini-Hutchinson charge models predict the
same guiding center drift for these parameters.
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Figure 5.28: Guiding center x-component drift magnitude dependence on λD/a and τg/τc for the
three different charging models as a function of the parameter λD/a. In the leftmost plot, the
abscissa is actually λD/a instead of log10

λD
a , and in the rightmost plot, the abscissa is actually

τg/τc instead of log10
τg
τc
. Here, a grain with a = 10−7 m made out of carbon has a mass ratio

md/me = 1013, and it is the variation of λD/a that produces the τg/τc variation of the guiding
center drift. Solid red line corresponds to the Patacchini-Hutchinson model guiding center drift
vxgc, solid black line corresponds to the OML model guiding center drift vxgc, and the solid cyan
line corresponds to the Gatti-Kortshagen model guiding center drift vxgc. The parameter λD/a
is swept while all other parameters are held constant. The other parameters chosen for an Argon
plasma are υ = fUV /(nevthe) = 0.25, ωcd/νdn = 10, NDe = 104, a/RLe = 1.1, λi/a = 105, and
Te/Ti = 200.
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Figure 5.29: Guiding center x-component drift magnitude dependence on λD/a and τg/τc for
the three different charging models for several values of the parameter λD/a. In the leftmost
plot, the abscissa is actually λD/a instead of log10

λD
a , and in the rightmost plot, the abscissa is

actually τg/τc instead of log10
τg
τc
. Here, a grain with 10−7 m made out of carbon has a mass ratio

md/me = 1013, and this is held constant while λD/a is swept. Solid red line corresponds to the
Patacchini-Hutchinson model guiding center drift vxgc, solid black line corresponds to the OML
model guiding center drift vxgc, and the solid cyan line corresponds to the Gatti-Kortshagen model
guiding center drift vxgc. When λD/a = 102, the other parameters are a/RLi = 0.12, λi/a, and
md/me = 1013, and these parameters are swept consistently throughout the values of λD/a shown.
The other parameters chosen for an Argon plasma include υ = fUV /(nevthe) = 0.25, ωcd/νdn = 10,
NDe = 104, and Te/Ti = 200.
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Figure 5.30: Gyro-phase magnitude and direction dependence on τg/τc for the three different
charging models with drifting Maxwellian ions for several values of the Mach number Mi = vi/vb,

which is the flow speed normalized by the Bohm speed vb =
√

kbTe

mi
. Solid (dashed) red line

corresponds to the Patacchini-Hutchinson model guiding center drift vxgc (vygc), solid (dashed
black line corresponds to the OML model guiding center drift vxgc (vygc), and the solid (dashed)
cyan line corresponds to the Gatti-Kortshagen model guiding center drift vxgc (vygc). The other
parameters chosen for an Argon plasma include υ = fUV /(nevthe) = 0.25, ωcd/νdn = 10, NDe = 104,
a/RLe = 0.1, λi/a = 105, λD/a = 103, Te/Ti = 200, and 108 ≤ md/me ≤ 1022. The OML and
Patacchini-Hutchinson charge models predict the same guiding center drift for these parameters.
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Figure 5.31: Gyro-phase magnitude and direction dependence on τg/τc for the three different
charging models with drifting Maxwellian ions for several values of the Mach number Mi = vi/vb,

which is the flow speed normalized by the Bohm speed vb =
√

kbTe

mi
. Solid (dashed) red line

corresponds to the Patacchini-Hutchinson model guiding center drift vxgc (vygc), solid (dashed
black line corresponds to the OML model guiding center drift vxgc (vygc), and the solid (dashed)
cyan line corresponds to the Gatti-Kortshagen model guiding center drift vxgc (vygc). The other
parameters chosen for an Argon plasma include υ = fUV /(nevthe) = 0.25, ωcd/νdn = 10, NDe = 104,
a/RLe = 0.1, λi/a = 105, λD/a = 103, Te/Ti = 200, and 108 ≤ md/me ≤ 1022.
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Figure 5.32: Gyro-phase magnitude and direction dependence on τg/τc for the three different
charging models with mono-energetic ions for several values of the Mach number Mi = vi/vb,

which is the flow speed normalized by the Bohm speed vb =
√

kbTe

mi
. Solid (dashed) red line

corresponds to the Patacchini-Hutchinson model guiding center drift for mono-energetic (drifting
Maxwellian) ions, solid (dashed black line corresponds to the OML model guiding center drift for
mono-energetic (drifting Maxwellian) ions, and the solid (dashed) cyan line corresponds to the
Gatti-Kortshagen model guiding center drift for mono-energetic (drifting Maxwellian) ions. The
other parameters chosen for an Argon plasma include υ = fUV /(nevthe) = 0.25, ωcd/νdn = 10,
NDe = 104, a/RLe = 0.1, λi/a = 105, λD/a = 103, Te/Ti = 200, and 108 ≤ md/me ≤ 1022. The
OML and Patacchini-Hutchinson charge models predict the same guiding center drift for these
parameters.
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Figure 5.33: Gyro-phase magnitude and direction dependence on τg/τc for the three different
charging models with mono-energetic ions for several values of the Mach number Mi = wi/wb,

which is the flow speed normalized by the Bohm speed vb =
√

kbTe

mi
. Solid (dashed) red line

corresponds to the Patacchini-Hutchinson model guiding center drift vxgc (vygc), solid (dashed
black line corresponds to the OML model guiding center drift vxgc (vygc), and the solid (dashed)
cyan line corresponds to the Gatti-Kortshagen model guiding center drift vxgc (vygc). The other
parameters chosen for an Argon plasma include υ = fUV /(nevthe) = 0.25, ωcd/νdn = 10, NDe = 104,
a/RLe = 0.1, λi/a = 105, λD/a = 103, Te/Ti = 200, and 108 ≤ md/me ≤ 1022.
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Figure 5.34: Gyro-phase magnitude and direction dependence on τg/τc for the three different
charging models for different values of the Mach number Mi = vi/vb, which is the flow speed

normalized by the Bohm speed vb =
√

kbTe

mi
. This figure shows a direct comparison between mono-

energetic and drifting Maxwellian ions. All solid lines correspond with mono-energetic ions, while
all dashed lines correspond to drifting Maxwellians. The colors black, red, and light blue correspond
to the OML, Patacchini-Hutchinson, and Gatti-Kortshagen charge models respectively. The other
parameters chosen for an Argon plasma include fUV /(nevthe) = 0.25, ωcd/νdn = 10, NDe = 104,
a/RLe = 0.1, λi/a = 105, λD/a = 103, Te/Ti = 200, and 108 ≤ md/me ≤ 1022.
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Figure 5.35: Comparison of simulation and theory results for the gyro-phase magnitude and
direction dependence on τg/τc for the three charging models. The colors black, red, and light blue
correspond to the OML, Patacchini-Hutchinson, and Gatti-Kortshagen charge models respectively.
Other parameters chosen for an Argon plasma include fUV /(nevthe) = 0.25, ωcd/νdn ≈ 10, drifting
Maxwell-Boltzmann ions with Mi = vi/vb = 10, NDe = 103, a/RLe = 0.1, λi/a = 105, λD/a = 103,
Te/Ti = 200, and 108 ≤ md/me ≤ 1013. The ratios of the in-situ equilibrium grain charge on the
shadowed side and the illuminated side of the abrupt inhomogeneity are q1/q2 = 2.65, q1/q2 =
2.65, and q1/q2 = 1.38 for the OML, Patacchini-Hutchinson, and Gatti-Kortshagen charge models
respectively. The OML and Patacchini-Hutchinson charge models predict the same guiding center
drift for these parameters.
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Figure 5.36: Linear profile used for simulations. All of the grain trajectories modelled using this
inhomogeneity do not include the effect of the electric field that would be produced by this in-
homogeneity. The electron and ion densities, ne, ni, are normalized to n0 = 1016m−3. The ratio
ne/ni is also plotted, as is the dimensionless quantity qeq(x)/qeq(x = 0), which is proportional to
the number of electrons on the grain. The discrete steps of qeq(x)/qeq(x = 0) correspond to an
addition or subtraction of one electron. The abscissa is scaled to the gyro-radius corresponding to
the equilibrium charge of a 0.015µm radius grain at x = 0, which is 43 electrons [RLd(t = 0) = 0.572
mm].
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Figure 5.37: Grain trajectories for a = 0.015µm and B = Bẑ, where B = 4 T, using the profile
from figure 5.36 and the effects of an electric field are not included in the trajectories. The dashed
and solid lines correspond to a charging rate parameter of α = 1 and α = 0.0105, respectively.
Squares and diamonds indicate the gyro-averaged guiding centers of the trajectories for α = 1 and
α = 0.0105, respectively. The instantaneous guiding centers are represented by the solid (α = 1)
and dashed (α = 0.0105) helical lines.
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Figure 5.38: Linear fit to the in-situ equilibrium grain charge as a function of the inhomogeneous
coordinate x. The solid line represents the in-situ equilibrium grain charge, which has a step-like
appearance because it changes in increments of 1e. The dashed line shows the linear fit to qeq(x).
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Figure 5.39: Northop fit to q(t) = q0 + q1 cos(φ − φ1). The quantity q0 represents the in-situ
equilibrium grain charge at the gyro-averaged guiding center, and q1 represents the amplitude of
charge modulation. The solid black line shows q(t), the dashed gray line shows the Northrop style
fit to q(t), and the circle indicates the gyro-phase angle where the grain is most negatively charged
during its gyro-orbit.
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Figure 5.40: Radial distance from origin is grain charge normalized to the instantaneous in-situ
equilibrium grain charge (q0 = −43e, in this case) as a function of gyro-angle for α = 1 (solid line)
and α = 0.0105 (dashed line). In this figure, the effects of the electric field produced by the density
gradient are not included. Lines appear thickened because multiple gyro-periods are displayed and
gyrophase angle at which single-electron charging events occur are not unique and because the
thickness reflects charge fluctuation +1,−0 electron. The gyro-angle φ = 0 refers to the +x̂ axis
here.
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Figure 5.41: Gyro-phase drift magnitude and direction dependence on the adjustable charge-rate
parameter α. In this plot, the abscissa is actually α instead of log10α. In this figure, the effects of
the electric field produced by the density gradient are not included. A: The magnitude is normalized
by the perpendicular velocity, v⊥ = 11 m/s. B: The angle θdrift, in degrees, is relative to the x̂-
direction. An angle of 180◦ corresponds to a drift direction that is entirely along the −x̂, and an
angle of 90◦ corresponds to a drift direction that is entirely along the ŷ-direction. Above α = 0.02,
no gyro-phase drift occurs for this case. Below α = 10−4, neither gyro-phase nor grad-q drift occurs
for this case.
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Figure 5.42: Gyro-phase drift magnitude and direction dependence on τg/τc. In this figure, the
effects of the electric field produced by the density gradient are not included. This figure uses the
same data as figure 5.41, but has been recast in terms of τg/τc instead of the adjustable charge-rate
parameter α.
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Figure 5.43: Gyro-phase drift magnitude and direction dependence on τg/τc for a = 1.5× 10−8 m
grain in the linear profile. In this plot, the abscissa is actually τg/τc instead of log10

τg
τc
. In this

figure, the effects of the electric field produced by the density gradient are not included. Electron
and ion number density varies between n0 = 109m−3 and n0 = 1020 m−3 to produce τc variation.
The large disparity between Northrop’s theory and the simulation near τg/τc < 10−1 is a result
from taking the arctangent of two numbers very close to zero.
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Figure 5.44: Gyro-phase drift magnitude and direction dependence on τg/τc for a = 5 × 10−7 m
grain in the linear profile. In this figure, the effects of the electric field produced by the density
gradient are not included. Electron and ion number density varies between n0 = 109m−3 and
n0 = 1020m−3 to produce τc variation.
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Figure 5.45: Gyro-phase drift magnitude and direction dependence on τg/τc for a = 1.5 × 10−6m
grain in the linear profile. In this figure, the effects of the electric field produced by the density
gradient are not included. Electron and ion number density varies between n0 = 109m−3 and
n0 = 1020m−3 to produce τc variation.
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Figure 5.46: Gyro-phase drift magnitude and direction dependence on τg/τc for a = 10 × 10−6m
grain in the linear profile. In this figure, the effects of the electric field produced by the density
gradient are not included. Electron and ion number density varies between n0 = 109m−3 and
n0 = 1020m−3 to produce τc variation.
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Figure 5.47: The ratio of charge variation to equilibrium charge q1/q0 dependence on τg/τc for
a = 10−6 m grain in the linear profile. This plot of q1/q0 corresponds to figure 5.46. The ratio of
dimensionless surface potential variation amplitude to the in-situ equilibrium dimensionless surface

potential at the gyro-center χ
(1)
e /χ0e is also shown. Electron and ion number density varies between

n0 = 109m−3 and n0 = 1020m−3 to produce τc variation.
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Figure 5.48: Grain trajectory in a linear-profile for drag-absent conditions in cylindrical geometry
with constant charge. The coaxial blue circles correspond to the limits of the linear profile; outside
this region, the plasma is quasi-neutral. The electric field is 100 V/m, directed radially-inward,
and is not consistent with the density gradient.
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Figure 5.49: Grain trajectory in a linear-profile for drag-absent conditions in cylindrical geometry
with instantaneous charging. The coaxial blue circles correspond to the limits of the linear profile;
outside this region, the plasma is quasi-neutral. The electric field is 100 V/m, directed radially-
inward, and is not consistent with the density gradient.
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Figure 5.50: Grain trajectory in a linear-profile when drag is present in cylindrical geometry with
non-instantaneous charging. The coaxial blue circles correspond to the limits of the linear profile;
outside this region, the plasma is quasi-neutral. The electric field is 100 V/m, directed radially-
inward, and is not consistent with the density gradient.
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Figure 5.51: This shows a comparison between the guiding center drift for abrupt and gradual
inhomogeneity for the λD/a parameter. The data shown for the abrupt inhomogeneity use the
parameters from figure 5.29. For the gradual inhomogeneity, the effects of the electric field are not
included.
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Figure 6.1: Spectrum of Osram Xeradex lamp used in the experiments of Dove et al. (2012), and
used to make predictions for guiding center drift in an abrupt inhomogeneity.
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Figure 6.2: Photo-electron yield as a function of wavelength for selected Carbon allotropes. Taken
from Feuerbacher and Fitton (1972). The inset shows the reflectance.
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Figure 6.3: Photo-electron yield as a function of wavelength for Zirconium. Taken from Eastman
(1971).
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Figure 6.4: Photo-electron yield as a function of wavelength for Platinum. Taken from Lin et al.
(1971). 536



Figure 6.5: Guiding Center drift for spherical Platinum grains, assuming an initial gyro-phase of
−90◦ and the UV spectrum shown in figure 6.1 but with 10 times as much power output. Additional
parameters include a = 200 nm, Tn = 0.025eV, Te = 5eV, ωcd/νdn = 4, drifting Maxwellian
ions flowing at the Bohm speed, and an Argon plasma. The solid black, red, and cyan curves
correspond to the results for the OML, Patacchini-Hutchinson, and Gatti-Kortshagen charging
models respectively. There is virtually no difference between the OML and Pattacchini-Hutchinson
charging models. The smaller dotted lines indicate the upper and lower bounds of the guiding
center drift, assuming that Te = 5eV, with an uncertainty of ±0.5eV.
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Figure 6.6: The υ = fuv/(nevthe) parameter as a function of plasma density used in figure 6.5. The
smaller dashed lines indicate the upper and lower bounds of υ, assuming that Te = 5eV, with an
uncertainty of ±0.5eV.
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Figure 6.7: The ratio of in-situ equilibrium surface potentials χ
(1)
e /χ

(2)
e corresponding to figure 6.5.

The smaller dashed lines indicate the upper and lower bounds of χ
(1)
e /χ

(2)
e , assuming that Te = 5

eV with an uncertainty of ±0.5 eV.
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Figure 6.8: Guiding Center drift for spherical Platinum grains, assuming an initial gyro-phase of
−90◦ and the UV spectrum shown in figure 6.1 but with 10 times as much power output. Additional
parameters include a = 200nm, Tn = 0.025eV, Te = 5eV, ωcd/νdn = 4, mono-energetic ions flowing
at the Bohm speed, and an Argon plasma. The solid black, red, and cyan curves correspond to the
results for the OML, Patacchini-Hutchinson, and Gatti-Kortshagen charging models respectively.
There is virtually no difference between the OML and Pattacchini-Hutchinson charging models.
The smaller dotted lines indicate the upper and lower bounds of the guiding center drift, assuming
that Te = 5eV with an uncertainty of ±0.5eV.
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Figure 6.9: The ratio of in-situ equilibrium surface potentials χ
(1)
e /χ

(2)
e corresponding to figure 6.8.

The smaller dashed lines indicate the upper and lower bounds of χ
(1)
e /χ

(2)
e , assuming that Te = 5

eV with an uncertainty of ±0.5eV.
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Figure 6.10: Guiding Center drift for spherical Zirconium grains, assuming an initial gyro-phase of
−90◦ and the UV spectrum shown in figure 6.1 but with 10 times as much power output. Additional
parameters include a = 200nm, Tn = 0.025eV, Te = 5eV, ωcd/νdn = 4, drifting Maxwellian
ions flowing at the Bohm speed, and an Argon plasma. The solid black, red, and cyan curves
correspond to the results for the OML, Patacchini-Hutchinson, and Gatti-Kortshagen charging
models respectively. There is virtually no difference between the OML and Pattacchini-Hutchinson
charging models. The smaller dotted lines indicate the upper and lower bounds of the guiding
center drift, assuming that Te = 5 eV with an uncertainty of ±0.5eV.
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Figure 6.11: The υ = fuv/(nevthe) parameter as a function of plasma density, used in figure 6.10.
The smaller dashed lines indicate the upper and lower bounds of υ, assuming that Te = 5eV with
an uncertainty of ±0.5eV.
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Figure 6.12: The ratio of in-situ equilibrium surface potentials χ
(1)
e /χ

(2)
e corresponding to figure

6.10. The smaller dashed lines indicate the upper and lower bounds of χ
(1)
e /χ

(2)
e , assuming that

Te = 5 eV with an uncertainty of ±0.5eV.
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Figure 6.13: Guiding Center drift for spherical Zirconium grains, assuming an initial gyro-phase of
−90◦ and the UV spectrum shown in figure 6.1 but with 10 times as much power output. Additional
parameters include a = 200 nm, Tn = 0.025 eV, Te = 5 eV, ωcd/νdn = 4, mono-energetic ions flowing
at the Bohm speed, and an Argon plasma. The solid black, red, and cyan curves correspond to the
results for the OML, Patacchini-Hutchinson, and Gatti-Kortshagen charging models respectively.
There is virtually no difference between the OML and Pattacchini-Hutchinson charging models.
The smaller dashed lines indicate the upper and lower bounds of the guiding center drift, assuming
that Te = 5 eV with an uncertainty of ±0.5 eV.
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Figure 6.14: The ratio of in-situ equilibrium surface potentials χ
(1)
e /χ

(2)
e corresponding to figure

6.13. The smaller dashed lines indicate the upper and lower bounds of χ
(1)
e /χ

(2)
e , assuming that

Te = 5 eV with an uncertainty of ±0.5 eV.
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Figure 6.15: Measured profiles from an ECR plasma (Nunomura et al., 1997).
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Figure 6.16: An example of an equilibrium profile assuming a gaussian electric field. In this figure,
the electric field is consistent with the density gradient. Compare these modelled profiles with
experimental data from figure 6.15
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Figure 6.17: A possible equilibrium profile, assuming a gaussian electric field, using the profiles from
figure 6.15 as a model. The electric field is consistent with the density gradient and it is centered
at r0 = 5cm, with a FWHM of 4cm. In the bottom plot of this figure, the red line represents
the in-situ-equilibrium charge for the Patacchini-Hutchinson and OML models, while the cyan line
represents the in-situ-equilibrium charge as calculated using the Gatti-Kortshagen model.

549



Figure 6.18: Trajectory of a zirconium grain with a = 0.05µm, started at the dust thermal speed
in the x-direction at (x, y) = (0.1, 0)m for the profile shown in figure 6.17; the grain charge is kept
constant at q = −695e. This trajectory includes the effects of an electric field that is consistent
with the density gradient. The solid red circle indicates the boundary of the vacuum vessel, the
smaller, solid magenta circle indicates the uniform magnetic field region, and the black line shows
the grain trajectory.

550



Figure 6.19: Radial excursion of the grain and grain charge corresponding to the trajectory in figure
6.18 when the grain has a constant charge q = −695e. The radial excursion includes the effects of
an electric field that is consistent with the density gradient.
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Figure 6.20: Trajectory of a zirconium grain with a = 0.05µm, started at the dust thermal speed
in the x-direction at (x, y) = (0.1, 0)m for the profile shown in figure 6.17 and the grain is forced
to charge instantaneously. The trajectory includes the effects of an electric field that is consistent
with the density gradient. The solid red circle indicates the boundary of the vacuum vessel, the
smaller, solid magenta circle indicates the uniform magnetic field region, and the black line shows
the grain trajectory.
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Figure 6.21: Radial excursion of the a = 0.05µm grain and grain charge corresponding to the
trajectory in figure 6.20 when the grain is forced to charge instantaneously. The radial excursion
includes the effects of an electric field that is consistent with the density gradient.
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Figure 6.22: Trajectory of a zirconium grain with a = 0.05µm, started at the dust thermal speed in
the x-direction at (x, y) = (0.1, 0)m for the profile shown in figure 6.17 using the OML model with
no drag forces are present. The solid red circle indicates the boundary of the vacuum vessel, the
smaller, solid magenta circle indicates the uniform magnetic field region, and the black line shows
the grain trajectory. The grain charges non-instantaneously for the plasma conditions specified in
figure 6.17 and the trajectory includes the effects of an electric field that is consistent with the
density gradient.
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Figure 6.23: Radial excursion of the a = 0.05µm grain and grain charge corresponding to the
trajectory in figure 6.22 when the grain is started with the in-situ equilibrium grain charge, using
the OML model, and no drag forces are present. The grain charges non-instantaneously for the
plasma conditions specified in figure 6.17 and the radial excursion includes the effects of an electric
field that is consistent with the density gradient.
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Figure 6.24: Trajectory of a zirconium grain with a = 0.05µm, started at the dust thermal speed
in the x-direction at (x, y) = (0.1, 0)m for the profile shown in figure 6.17 using the OML model.
The solid red circle indicates the boundary of the vacuum vessel, the smaller, solid magenta circle
indicates the uniform magnetic field region, and the black line shows the grain trajectory. The grain
charges non-instantaneously for the plasma conditions specified in figure 6.17 and the trajectory
includes the effects of an electric field that is consistent with the density gradient. Neutral drag is
assumed, but ion drag is not.
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Figure 6.25: Radial excursion of the grain and grain charge corresponding to the trajectory in
figure 6.24 when the a = 0.05µm grain is started with the in-situ equilibrium grain charge and
using the OML model. The grain charges non-instantaneously for the plasma conditions specified
in figure 6.17 and the radial excursion includes the effects of an electric field that is consistent with
the density gradient. Neutral drag is assumed, but ion drag is not.
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Figure 6.26: Radial excursion of the grain and grain charge corresponding to the trajectory in
figure 6.24 when the a = 0.05µm grain is started with q(t = 0) = 0 and using the OML model.
The grain charges non-instantaneously for the plasma conditions specified in figure 6.17 and the
radial excursion includes the effects of an electric field that is consistent with the density gradient.
Neutral drag is assumed, but ion drag is not.
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Figure 6.27: Radial excursion of the a = 0.05µm grain and grain charge is compared for in-
stantaneous and non-instantaneous charging, using the OML model. The grain charges non-
instantaneously for the plasma conditions specified in figure 6.17 and the radial excursion includes
the effects of an electric field that is consistent with the density gradient. Neutral and ion drag are
considered for this trajectory.
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Figure 6.28: Trajectory of a zirconium grain with a = 0.05µm, started at the dust thermal speed in
the x-direction at (x, y) = (0.1, 0)m for the profile shown in figure 6.17 using the Gatti-Kortshagen
model. The solid red circle indicates the boundary of the vacuum vessel, the smaller, solid magenta
circle indicates the uniform magnetic field region, and the black line shows the grain trajectory.
The grain charges non-instantaneously for the plasma conditions specified in figure 6.17 and the
grain trajectory includes the effects of an electric field that is consistent with the density gradient.
Neutral drag is assumed, but ion drag is not.
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Figure 6.29: Radial excursion of the grain and grain charge corresponding to the trajectory in
figure 6.28 when the grain is started with the in-situ equilibrium grain charge and using the Gatti-
Kortshagen model. The grain charges non-instantaneously for the plasma conditions specified in
figure 6.17 and the radial excursion includes the effects of an electric field that is consistent with
the density gradient. Neutral drag is assumed, but ion drag is not.
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Figure 6.30: A profile of the Saturnian system to a radial distance of 10Rsat.
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Figure 6.31: Trajectory of an a = 0.015µm grain launched from Enceladus in the co-rotating frame
of Saturn when no UV is considered. In the leftmost panel, the trajectory is depicted by the solid
black line, while the outer cyan circle shows the geosynchronous orbit and inner red circle shows
the radial extent of Saturn’s surface.

Figure 6.32: Trajectory of an a = 0.015µm grain launched from Enceladus in the co-rotating frame
of Saturn when UV is considered. In the leftmost panel, the trajectory is depicted by the solid
black line, while the outer cyan circle shows the geosynchronous orbit and inner red circle shows
the radial extent of Saturn’s surface.
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Figure 6.33: Comparison between the radial excursion and grain charge as a function of time for
the trajectories from figures 6.31 and 6.32. The solid line represents the grain trajectory when UV
is not considered and the dashed line represents the grain trajectory when UV is considered.
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Figure 6.34: Trajectory of an a = 0.015µm grain launched from Enceladus in the co-rotating
frame of Saturn when UV is considered and there is an electron temperature gradient. In the
leftmost panel, the trajectory is depicted by the solid black line, while the outer cyan circle shows
the geosynchronous orbit and inner red circle shows the radial extent of Saturn’s surface. The
rightmost panel shows the radial excursion of the dust grain. Neutral and ion drag forces are not
considered for this grain trajectory.

Figure 6.35: Trajectory of an a = 0.025µm grain launched from Enceladus in the co-rotating frame
of Saturn when UV is considered and there is an electron and ion temperature gradient. Neutral
drag force is considered for this grain trajectory. In the leftmost panel, the trajectory is depicted
by the solid black line, while the outer cyan circle shows the geosynchronous orbit and inner red
circle shows the radial extent of Saturn’s surface. The rightmost panel shows the radial excursion
of the dust grain.
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Figure 6.36: Trajectory of an a = 0.025µm grain launched from Enceladus in the co-rotating frame
of Saturn when UV is considered and there is an electron and ion temperature gradient. Neutral
and ion drag forces are considered for this grain trajectory. In the leftmost panel, the trajectory
is depicted by the solid black line, while the outer cyan circle shows the geosynchronous orbit and
inner red circle shows the radial extent of Saturn’s surface. The rightmost panel shows the radial
excursion of the dust grain. This figure is not noticeably different from 6.35, which shows that the
effect of ion drag on this grain trajectory is negligible.
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