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Abstract 

Employ Sensor Fusion Techniques for Determining Aircraft Attitude 
and Position Information 

Jason Andrew Jarrell 

Inertial Navigation Systems (INS) with the level of precision needed for 

Unmanned Aerial Vehicles (UAV) can easily cost more than the vehicle itself. This 

drastically increases the amount of aircraft power consumption and payload weight that 

drives the need for a low cost solution. This can be achieved through the use of sensor 

fusion techniques on low cost accelerometers and gyroscopes fused with Global 

Positioning System (GPS) data. In this paper, existing GPS and Inertial Measurement 

Unit (IMU) flight data is fused with the use of both an Kalman filter (KF) and Extended 

Kalman filter (EKF) methods for a more accurate estimate of the aircraft attitude, 

velocity, and position eliminating the need for the high cost attitude sensors. A simulation 

study shows that four sensor fusion methods verifying that an improvement of position, 

velocity, and attitude can be achieved using low-cost sensors. The first method 

incorporates a six state KF that corrects INS/GPS position and velocity errors.  The 

second method features the GPS to estimate attitude parameters, which in turn uses in an 

EKF to correct INS attitude values. With this method, improved attitude values are 

obtained without the calculation of the full INS state; such that the INS position and 

velocity are not required, reducing the computational load. The third method uses only 

the GPS and INS position and velocity to correct for the errors in the full state of the INS 

also using an EKF.  Finally, the last method combines the GPS attitude of the second 

method and the error reduction of the third method to further decrease the error in the 

velocity, position, and attitude of the system.  The simulation results illustrate that all of 

the methods tested provide performance improvement to the system, and could be 

implemented in real-time on a UAV for accurate navigation parameters.  
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Chapter 1. Introduction 

1.1. Problem Definition 

Over the past twenty years, there has been an increase in demand for the 

development of unmanned aerial vehicles (UAV) and more recently, micro aerial 

vehicles (MAV), which has spurred research in a variety of areas within the aerospace 

industry.  These areas include, but are not limited to: guidance and navigation (which is 

the main focus for this research objective), structures and materials, sensor design and 

development, propulsion systems, and communications. 

This thesis focuses in the area of guidance and navigation, mainly the 

development of an aircraft navigation system utilizing a low-cost, off-the-shelf sensor 

package implemented on an YF-22 test-bed designed and constructed at West Virginia 

University (WVU).  

 
Figure 1.1: WVU YF-22 Research Test-beds 

The test-beds were constructed for an Air Force research project in which WVU 

successfully achieved autonomous formation flight on three YF-22 test-beds.  A radio 

control (R/C) pilot controlled a virtual ‘leader’ while two ‘follower’ aircraft flew in a 

triangle pattern autonomously1,2.  The ‘leader’ aircraft transmitted position, velocity, and 

attitude information to the follower aircraft for use in the control algorithm. To achieve 

autonomous formation flight the three aircraft were equipped with a variety of sensors, 

which include an IMU, GPS, and Vertical Gyro for the aircraft Euler angles. 
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The vehicles sensor package, in respect to the research conducted in this thesis, is 

composed of a low-cost inertial measurement unit (IMU), global positioning system 

(GPS), vertical gyroscope (VG), and flight computer. 

The Vertical Gyro is a mechanical gimbaled component which determines aircraft 

attitude data at a high level of accuracy and high frequency, with the drawbacks of 

consuming a great deal of power, high cost, and has a shorter lifespan due to the ability of 

the mechanical parts to wear over time.  

The IMU is capable of producing the attitude, position, and velocity with low 

power consumption while at a generally low cost.  An IMU is composed of 

accelerometers and gyroscopes orthogonal to one another, which are integrated to obtain 

vehicle position, velocity and attitude, in which this integration is called an inertial 

navigation system (INS).  

INS position, velocity and attitude are based solely on the previous measurement 

from the IMU’s accelerometers and gyros.  This makes the INS a self contained closed 

system, which has positive and negative aspects.  The positive aspects are that the system 

doesn’t rely on a reference point, which would limit the navigation system to a limited 

area.   

The negative aspects of the system are that the sensors generate a great deal of 

noise such that the integration of this noise over time generates a so-called “drift” in the 

attitude causing the parameters to be inaccurate to the point where they are unusable for 

flight control.  Since the system is self-contained without any outside correction, the error 

grows without bound which can be minimized with the use of either higher precision 

sensors (which come with a high price), or the use of various filtering methods.  In the 

case of UAV and MAV design, parameter accuracy and precision in many cases is 

sacrificed for other variables such as sensor cost, weight, and availability, which are 

design criteria that must be taken into account when navigation and control systems are 

being implemented.  

In addition, navigation systems comprised of higher precision components such as 

laser ring gyroscopes (LRG) and fiber optic gyroscopes (FOG), for example, are limited 

by the fact that the government regulates the sale and distribution of such components.  

These gyroscopes also cost in the range of US$100,000, which also limit the use of the 
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gyro in everyday consumer applications such as automobiles and general aviation.  The 

majority of the applications for these types of components are generally restricted to 

military, government-sponsored research, NASA applications, and commercial airlines. 

The final sensor utilized in this research project is GPS, which also has good and 

bad aspects associated with it.  On the positive side, new GPS position and velocity data 

is obtained at each new time increment causing it to be unsusceptible to drifting effects, 

although GPS data can be degraded at each individual measurement by such caused error 

occurrences as satellite loss, atmospheric effects, multi-path effects, selective availability 

(SA), interference, jamming, and ephemeris and clock errors.   

In regards to the previously described components, this thesis relates the use of 

sensor fusion to the application of vehicle navigation, for which the inertial measurement 

unit and global positioning system are fused to combine the complimentary aspects 

(closed system for IMU, while GPS is insusceptible to drift) between the GPS and IMU 

data while removing the negative attributes from one another.   

Basically, Sensor fusion is the combination of sensory data from multiple sources 

in the attempt to improve data quality or generate data that could otherwise not be 

obtained from independent sensors.  Data between the various sources must in some way 

complement one other, meaning the sensor’s data must have some trait or link in 

common that allows for the fusion. 

An example of sensor fusion is contrasting two sensors with two individuals.  

Let’s say that the two individuals are working independently on a similar problem in two 

rooms’ side-by-side in which they are both stuck on different calculations.  Since they are 

working independently they may never determine the answer they are looking for, 

however by putting the two together they can combine their knowledge and help one 

another solve each of their calculations.  This comparison can be reverted back to sensors 

in which each sensor may contain certain elements to aide one another.  

The combination of the GPS data (which does not drift), with IMU data (which is 

not reliant on external measurements), is the same as combing the two individuals to 

collaborate on a similar problem.  The IMU can benefit the GPS measurement by not be 

reliant of the external measurements while the GPS can benefit the IMU by not being 

susceptible to the drift, eliminating the negative effects from each measurement device 
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leaving only the accurate data that is comparable to its higher precision, higher cost 

sensor counterparts.  With the complimentary effects between the GPS and IMU data, a 

Kalman filter is a perfect fit to correct the drift issue, in which several methods are 

discussed to deal with such error.   

The first method utilizes the IMU, GPS, and Vertical Gyro to correct the position 

and velocity only.  This method shows how a Kalman filter is implemented so that the 

GPS and IMU complement each other; such that the IMU’s position and velocity are 

corrected for drift errors while the GPS is corrected for the caused error described earlier.  

The Vertical Gyro attitude is used in this method for simplicity; by using the IMU 

attitude values the system becomes nonlinear which drastically increases the complexity 

of the system.  This issue is addressed in the second method described below. 

The second method addressed eliminates the Vertical Gyro and uses a method of 

manipulating the GPS velocity data to obtain attitude information for use in the Kalman 

filter to correct the IMU’s attitude.  The IMU’s attitude values are used creating the need 

for the extended Kalman filter (EKF) due to the nonlinear characteristics of the INS 

integrations.  This not only increases the complexity of the calculations but also increases 

the amount of computational load on the computer posing concerns for use in real-time 

applications. 

The third method for this section was then implemented utilizing the extended 

Kalman filter to estimate the error in the estimated position, velocity, and attitude.  This 

method corrects the system states by utilizing only the GPS position and velocity as the 

measured values for use in the filter, without using the GPS estimated attitude.   The 

states to be estimated in the filter are the error states of the position, velocity and attitude, 

instead of the actual dynamic system states estimated in the first method.  

1.2. Research Objectives 

The following research objectives are somewhat of a blueprint outlining the 

process in which the research requirements are met.  They are intended to address the 

development and evaluation of the different sensor fusion methods discussed throughout 

this thesis.  
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• Develop an INS system using the Matlab® programming environment using IMU 

data obtained during the WVU formation flight research project. 

• Develop and test a data fusion algorithm using the Matlab® programming 

environment using GPS, Vertical Gyro, and INS data to improve position and 

velocity of a vehicle.  This task utilizes Vertical Gyro data so that the nonlinear 

effects of the attitudes in the INS can be neglected allowing for the use of a 

Kalman filter.  Validation data sets are simulated to compare the error analysis 

between the validation and initial development set.   

• Develop and test data fusion software using the Matlab® programming 

environment using GPS and INS values to improve the position, velocity, and 

attitude of the vehicle.  This task uses the INS attitude requiring the use of a 

nonlinear model, which in turn requires the use of the EKF.  A method to 

determine the GPS attitude is used as a means for determining the residual within 

the EKF.  Validation data sets are simulated to compare the error analysis 

between the validation and initial development set.   

• Develop and test data fusion software using the Matlab® programming 

environment using GPS and INS values to improve the position, velocity, and 

attitude of the vehicle.  This task uses the INS attitude requiring the use of a 

nonlinear model, which in turn requires the use of the EKF.  The residual within 

the EKF for the attitude correction is determined through state error analysis.  

Validation data sets are simulated to compare the error analysis between the 

validation and initial development set.   

1.3. Thesis Overview 

The chapter structure throughout this thesis is organized in the following manner: 

• Chapter 2 is composed of the literature review, which presents descriptions of the 

various researches being conducted within the field of sensor fusion.  The 

majority of this section is composed of work conducted on navigation systems 

although additional sensor fusion applications are discussed.  

• Chapter 3 is composed of all of the underlying theory that is the basis of this 

research topic.  Navigation systems are very complex and involve many forms of 

 5



higher-level mathematics involving geometry, trigonometry and calculus, while 

also requiring an understanding of aircraft flight dynamics.  This chapter 

describes in detail the various coordinate frames and their corresponding 

transformations, INS development and integration, GPS ephemeral/pseudorange 

position calculations, GPS attitude determination, and the detailed discussions 

describing the underlying theory behind the Kalman filter and extended Kalman 

filter. 

• The fourth chapter is devoted to the experimental setup of the research project, in 

which all of the theory from the previous two chapters is combined into a 

detailed description such that the final solution is obtained.  The hardware setup, 

data acquisition for the laboratory experiments, and limitations are also discussed 

within the context of this chapter. 

• Chapter 5 displays the results are presented in a manner so that the reader can see 

how and where sensor fusion is beneficial for low-cost navigation systems.  This 

includes a detailed error analysis along with a computational workload analysis. 

• Chapter 6 then concludes the thesis with the closing remarks, which contain 

conclusions drawn from this research effort, recommendations, and continuing 

efforts leading to actual vehicle implementation. 
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Chapter 2.  Literature Review 

2.1.  General Description 

Sensor and data fusion is widely used and is on the forefront of navigation and 

autonomous control research.  The ability to combine multiple data sources enables the 

capability of a dynamic system to not be restricted by individual measurements, but 

combines all of the information on hand to generate a better more refined measurement of 

the system parameters.  

Although Kalman filtering is the only method of sensor fusion used throughout 

the research portion of this thesis, it would be unfair to not touch on the Weiner Filter, for 

it is the original basis behind the Kalman Filter.   

The Wiener filter was developed by Norbert Wiener in the early years of World 

War II to design a controller for anti-aircraft guns that could “predict” where to shoot so 

that a round would hit enemy aircraft using noisy radar data.  This was accomplished by 

minimizing the mean-square error between the output and the desired output3.  This 

minimization of the error allowed estimation for the future position of the aircraft.   

   Unlike land and naval ballistics at the time, the speed of the aircraft was not a 

negligible parameter in the prediction algorithm; this resulted in the past trajectory of the 

aircraft to be used to extrapolate the future position.  Wiener found that since the filter 

was based on probability and statistics, an exact predicted location could not be obtained, 

but only a better guess, similar to that of weather forecasting4.   

Although the filter proved to be a highly effective in the prediction of aircraft 

trajectories, it was too complicated to be implemented by soldiers in the field.  The 

research was not conducted in vain, for which Wiener’s work in the field of 

communication theory, which led to the formulation of cybernetics.  The theory behind 

the Weiner filter was also the basis behind the Kalman filter as described in the next 

section. 
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2.2.  Kalman Filter Methods 

2.2.1. Simple Kalman Filter      

Rudolf Emil Kalman originally determined the method in November 1958, when 

he thought of the idea to apply state variables to the Weiner filter.  After increasing his 

knowledge on probability theory, Kalman equated expectation and projection to derive 

the Weiner filter into the Kalman filter5. 

The filter is a recursive filter that estimates the states of a dynamic system by 

comparing the covariance of the state estimate with the covariance of a measurement at a 

certain time, t.  This process is separated into two steps, the first being the state 

propagation using the system dynamic model with the inputs being noisy sensor 

measurements.  These measurements corrupt the state estimates, introducing the second 

step, in which the Kalman filter is implemented to take advantage of the system dynamics 

to reduce the error, ultimately correcting the estimated state6.  The Kalman filter, when 

implemented correctly is an optimal estimator in which the best possible, optimal, 

estimate of the states can be obtained.     

While for most applications the filter is designed discretely, but can also be 

implemented in continuous time using the Kalman-Bucy Filter7.  The main distinction 

between the discrete Kalman filter and the Kalman-Bucy filter, is that the measurement 

and update steps described above are not distinct.  This is due to the fact that the update 

of the error covariance matrix is determined in a single calculation instead of independent 

a priori and a posteriori calculations.  This single calculation can occur because the 

observation noise in the a priori calculation occurs at the same time as the a posteriori 

estimate. 

When Kalman developed the simple Kalman filter, more commonly referred as 

simply, the ‘Kalman Filter,’ it was initially derived for linear systems, though it didn’t 

take long for various renditions of the filter to expand it into non-linear form as seen in 

the following section. 
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2.2.2.  Extended Kalman Filter 

The first credited application of the Kalman filter was on the Apollo Moon 

Program in which the filter was incorporated on the Apollo’s navigation computer8.  In 

1959 NASA was in need of a system to navigate to the moon in which space flight 

navigation posed problems due to the fact that there was no nonmoving reference point to 

reference the flight path of the spacecraft.  Stanley F. Schmidt came up with the idea of 

applying the Kalman filter to obtain guidance and navigation data.  Schmidt successfully 

implemented the filter using the optical measurements of the stars and inertial 

measurements of the spacecraft with a level of precision high enough to insert the 

spacecraft in orbit around the moon.  This application to guidance was a groundbreaking 

achievement in which the Kalman filter was then incorporated into all navigation 

systems.   

This first implementation was named the Kalman-Schmidt filter, or more 

commonly called the extended Kalman filter, which proved that nonlinear systems can be 

implemented in the Kalman filter.  The linearization of the dynamic system, measurement 

model, or both are generally conducted with the use of the Taylor series expansion in 

which the value at each time increment is an estimate of the nonlinear system at that time 

increment.  Nonlinear estimation techniques are effective in which the time increment, dt, 

in-between estimates are relatively small.  Additional nonlinear measurement methods 

can be seen in Ref [9] and [10].  

Problems can arise with the EKF mainly due to the fact that, unlike the Kalman 

filter, it is not a true optimal estimator.  With the filter no longer being optimal, the a 

priori and a posteriori covariance matrices are no longer true covariance matrices. In 

other words, a correct system model and proper values for the initial state and error 

covariance matrices are essential so that the filter does not diverge building from the 

errors generated by the linearization. 

2.2.3.  Unscented Kalman Filter 

In 1997 researchers Simon J. Julier and Jeffery K. Uhlman at Oxford published a 

new linear estimator in which a set of discretely sampled points were used to 

parameterize mean and covariance. These sampled points were selected by a sampling 
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technique known as the unscented transform, in which points were selected around the 

mean, where they are then propagated through the non-linear function to determine the 

covariance of the estimate.  This method removes the step using Jacobians to linearize the 

dynamic model while obtaining more accurate values for the true mean and covariance of 

the system11. 

The thought behind the unscented Kalman filter is to approximate the mean and 

covariance distribution, unlike the EKF, which approximates the system models.  Julier 

and Jeffrey’s methodology was to leave the system models intact since they are more 

precise than the estimated values for the mean and covariance and has proven to be an 

effective filter in many applications a few of which can be seen in the next section. 

2.3.  Sensor Fusion Applications 

Sensor fusion applications have been applied to many fields of research including 

aerospace, ground robotics, naval, munitions, agricultural, economics and the medical 

fields, while research into more consumer and medical applications is driven as sensor 

technology advances and cost decreases.  Sensor technology over the past ten years alone 

has seen a drastic reduction in size and cost allowing for the creation of more 

“intelligent,” affordable consumer products.  

The majority of the applications in this literature review are based around 

guidance and navigation; however additional applications are discussed that show how 

sensor fusion has been utilized in different situations.  There are still additional 

applications that exist which are not covered within the context of this literature review.    

2.3.1. Naval Applications 

Naval research in guidance and navigation during the early parts of the twentieth 

century can be accredited with development of the first navigation systems in which E. A. 

Sperry developed the first gyrocompass for use within large steel ships12.  This first 

gyrocompass was installed in August of 1911 aboard the U.S.S. Delaware which paved 

the way for Sperry to apply his vast knowledge of gyroscopes to produce an array of 

products including the first full gun battery system, which was installed on all battleships 
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during World War I, a gyro stabilization system which kept the vessel from rolling, and 

the first gyro pilot steering mechanism dubbed the nickname “Metal Mike.”   

One hundred years later, naval research is still on the forefront of autonomous 

navigation research.  As with many areas within the military, there is a large amount of 

research effort being put forth into the creation of autonomous, or semiautonomous 

vehicles, in which the U.S. navy is in the process of producing three such vehicles; the 

DD(X) destroyer, CG(X) cruiser, and the LCS littoral combat ship13.   

In conglomeration with the Navy is an array of companies involved in the 

development of the new technologies needed to create such a navy of the future.  These 

vehicles have implemented sensor fusion techniques throughout the vessels so that sensor 

packages can generate more precise data while also providing crew members with a 

wider range of data so that decisions could be based on multiple angles. 

Lockheed Martin has developed a series of simulations in relation to the DD(X) in 

which tests were arranged to track aircraft, ships, submarines, and land targets under 

various warfare scenarios.  Measures of the sensor fusion performance were evaluated 

across multiple scenarios which incorporated five different sensors, in which Lockheed 

claims that their sensor fusion technology is the only one that is capable of processing all 

of the sensor inputs at the level of precision needed in real time14. 

An additional goal the Navy is pushing for is to reduce the manning requirements 

to approximately one-third of what is required on the ships of today in which Northrop 

Grumman is conducting research in this area15.  In order to reduce the manning by such a 

magnitude requires the use of data fusion and intelligent agents that analyze data such as 

a human would.  This technology would require the onboard computer to make decisions 

by collecting and analyzing data across a magnitude of sensors which then creates 

multiple courses of action along with recommendations to the available crew members so 

that the manning could be reduced while also minimizing human error. 

Northrop Grumman is also working on the development of an autonomous system 

to discover undersea threats to the new naval vehicles16.  The use of sensor fusion within 

the detection of undersea threats allows for acoustic sensors to be integrated with non-

acoustic sensors to further enhance the precision and localization of undersea threat 

detection. 
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2.3.2. Aerospace Applications 

E.A. Sperry’s developments in the field of controls also influenced the early days 

of the aeronautical industry during the second decade of the twentieth century in which 

Lawrence Sperry, the son of E.A. Sperry, applied a lightweight adaptation of his father’s 

gyroscope to a Curtiss C-2 Biplane which he coupled with the control surfaces to 

maintain strait and level flight17.  This mechanism implemented on the C-2 was the first 

autopilot integrated on an aircraft, which was first demonstrated in Paris in 1913.  L. 

Sperry’s inventions also include the artificial horizon, improved anemometer, and the 

horizontal and vertical gyro that allowed for the development of the autopilot.  This 

initial autopilot has been refined and improved over the years with the development of 

improved inertial sensors, GPS, and improved control theory.  Sperry has also been 

credited with being the founder of the mile-high club.   

Since then, sensor fusion has made its way into every aspect of the aerospace 

industry; ranging from guidance and navigation, ground target detection, to noise 

cancellation, and so on.  In the area of guidance and navigations alone, the addition of 

sensor fusion methods have allowed for a great reduction in cost, size, weight, and power 

consumption which in turn generates the need for a flight computer that can handle the 

additional computational load.  In many cases the additional benefits in data precision 

obtained by incorporating Kalman filtering techniques by far out-weigh the additional 

computation resources required as discussed in the following paragraphs. 

Researchers at the Munich University of Technology have developed a series of 

algorithms to provide general aircraft pilots with information about the aircraft angle-of-

attack (AoA), sideslip, and wind information along with highly accurate navigation 

information.  The purpose is to utilize low-cost commercial off-the-shelf components 

along with no major modifications to the aircraft to produce the flow around the aircraft, 

wind information, and navigation parameters.  The wind vector was determined 

analytically using attitude, velocity, and position data from the INS/GPS system along 

with pitot tube air speed.  The aircraft speed vector was then differenced by the air speed 

to establish the wind vector and the AoA and sideslip angles were obtained with the use 

of the INS/GPS, control surface deflections, and aircraft aerodynamic model data18. 
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In a more elaborate example of the advancements in navigation, control, and 

sensor fusion; Boeing has been developing a rotorcraft that is capable of being fully 

autonomous from takeoff to landing.  In July of 2006, the rotorcraft named Unmanned 

Little Bird took off, hovered, and then flew a programmed intelligence, surveillance, and 

reconnaissance mission before returning to land19.  The development of such a vehicle is 

of great value during times when the pilot is needed to complete additional tasks or has 

become incapacitated due to unforeseen circumstances.   

The autonomous take-off and landing of the rotorcraft alone proved to be a task in 

itself to overcome due to the high level of guidance and navigation control needed to 

achieve the task, especially when attempting a shipboard landing.  A shipboard landing 

increases the complexity of the task by adding wind over deck and wake turbulence, 

which creates challenging and unpredictable conditions during take-off and landing.  This 

topic has been researched in conglomeration between Boeing and NovAtel to design a 

navigation system capable of providing the level of precision needed to maintain control 

in such environments20.  The system acts similar to that of determining a GPS receiver’s 

position in terms of pseudorange and ephemeral data such that the helicopter is the GPS 

receiver and two separate points onboard the ship acts as the satellite positions.  The 

points onboard the ship are known from actual GPS real time kinematic (RTK) data 

which is then used to determine the relative position to the helicopter using a 

“pseudorange” vector.  The helicopter’s position is known from and onboard GPS/INS 

navigation system, which is used with the “pseudorange” vector to determine the relative 

distance to the point of landing.       

An additional example of the integration of micro components into aerospace 

applications is being investigated by researchers at the University of Florida in 

conjunction with the NASA Langley Research Center is the autonomous flight and 

control of Micro Air Vehicles (MAV) equipped with only small video cameras and 

transmitters21.  Their goal is to successfully navigate the MAV using a forward facing 

camera to determine the aircraft attitude with the use of horizon detection algorithms.  In 

order for the attitudes to be implemented in a control scheme, they must first be filtered 

so that the high frequency noise and single frame errors are removed.  The Kalman filter 

is appealing for this application due to its ability to remove the previously stated errors 
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without having the benefit of an accurate dynamic model.  The flex-wing MAV (Figure 

2.1) is modeled as two first-order, constant velocity systems due to the fact that no 

dynamic model is available for the system.  

The MAV itself does no actual data processing, in which all of the data is 

transmitted to a ground station, from there it is processed and the necessary servo control 

is transmitted back to the MAV. 

 
Figure 2.1: 6" Flex Wing MAV 

A further example in machine vision navigation, researchers at West Virginia 

University have researched the integration of GPS/machine vision navigation using the 

extended Kalman filter for use in the area of aerial refueling22.  The extended Kalman 

filter is used to combine the position data from a GPS/machine vision based system for 

providing a reliable estimation of the relative position of the UAV in regards to the tanker 

position.  Machine vision is used in this effort to compliment the GPS during times of 

signal loss or degradation, which in the case of aerial refueling, can be attributed to the 

tanker airframe impeding satellite line of sight.       

As previously discussed, the initial implementation of the Kalman filter was 

applied for space navigation issues during the Apollo program. From the time of 

Schmidt’s first application of the EKF on the Apollo mission, to the navigation system 

used on the space shuttle’s orbiter, many changes and advances in technology have 

improved the way navigation is conducted in space.  One area greatly influenced by 

sensor fusion methods is the development and integration of sensors incorporated into 

satellites position and control algorithms.  The size of satellites has also decreased 

drastically due to the low cost and ability to construct and launch in a reasonably short 
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duration.  As a consequence of the reduction in size, there has also been a reduction in 

computation power, sensors and actuators.  These smaller, cheaper sensors are less 

precise, generating the need for research in satellite position determination and 

navigation.  Due to the lack of GPS data, additional sensors such as sun sensors, star 

trackers, and magnetometers are integrated with IMU calculations to correct for INS drift 

as seen in reference [23].    

Noise reduction and cancellation has also become a topic drawing a great deal of 

interest in the aerospace industry.  In the past few years an increasing number of 

commercial headphones have been incorporating noise-canceling filters to remove 

unwanted noise from the surrounding environment.  These civilian devices mainly use 

least mean square (LMS) and recursive least square (RMS) filtering techniques which 

produce acceptable results, although Kalman filtering methods have been tested and 

produce better results than the previously listed methods, however it tends to generate a 

level of computational load that is too high for application in the civilian sector24.  For 

example, researchers at Massachusetts Institute of Technology25 (MIT) have been 

investigating the reduction of helicopter, propeller aircraft, and jet aircraft noise using a 

single microphone in which a Kalman filter was implemented to aide in the noise 

reduction.  These systems have been implemented in various military aircraft producing 

excellent results, with the exception of a hefty price tag. 

2.3.3. Ground Vehicle Applications 

With sensor technology advancing and cost decreasing, fusion techniques are 

being extensively used in ground vehicles with a wide range of applications.  A great deal 

of research effort is being put forth into autonomous navigation systems (ANS) on 

autonomous ground vehicles (AGV).  This type of research is being conducted on all 

makes, models and sizes of vehicles to conduct an array of tasks. 

The first application discussed is the highly publicized 2005 Defense Advanced 

Research Projects Agency (DARPA) challenge.  This event is a 132-mile race in which 

research teams were to design a fully autonomous vehicle to navigate its way through an 

off-road terrain course in which the winner was awarded two million dollars.  Of the 23 
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teams that competed in the race, Stanford completed the race first in a time of 6 hours, 53 

minutes, 8 seconds26.   

The Stanford’s team utilized sensor fusion for localization of the vehicle Euler 

angles and position in the Universal Transverse Mercator (UTM) coordinate system.  An 

extended Kalman filter was used to asynchronously integrate data from the GPS and IMU 

at a maximum rate of 100 Hz.  The vehicle’s onboard computer then geo-references the 

EKF position data with data obtained from two laser range finders, radar, and vision data 

so that the most efficient path can be taken.   

Sensor fusion applications also include the incorporation of data fusion into 

civilian vehicles, in which many of the vehicles on the road today already have the 

necessary sensors available to implement some form of sensor fusion.  Speed sensors, 

electronic compasses, GPS navigation systems, rear proximity sensors, and electric 

power steering are just a few sensors widely used on many vehicles produced today.  

While some car manufacturers such as Toyota that have integrated such components as 

throttle by wire and electric brake force distribution, and the Lexus LS460L, which has 

actuators for steering, braking, and throttle, are used for parallel parking.   All of these 

components can and are in some cases integrated into sensor fusion algorithms to 

increase safety and vehicle performance.   

One application in which standard vehicle components are being utilized is from 

researchers at the University of Michigan, in which they have conducted research on road 

departure warning systems using a Kalman filter to estimate the lateral velocity and the 

heading angle so that the Time to Lane Crossing (TLC) value can be determined27.  The 

benefit of knowing the TLC is due to the fact that the majority of vehicle road departure 

accidents in the US are associated with a single vehicle departing the roadway due to loss 

of control or inattentiveness.  With this TLC the university’s goal is to develop a system 

to warn drivers when they are drifting inadvertently off the road.  The available 

measurements are; the lane position obtained from an advanced camera system that 

measures lateral displacement, steering angle, lateral acceleration, yaw rate, and forward 

velocity using the vehicles speed sensor.  The Kalman filter in this application is to filter 

the measured data, estimate the lateral velocity, and provide measurement values when 
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sensors become temporarily unavailable.  With these values, the TLC parameter can 

easily be determined. 

2.3.4. Munitions 

An additional industry pushing for the development of smaller, affordable, 

accurate sensors are the munitions sector.   The development of precision-guided 

munitions (PGM) is not only pushing for sensor cost and size reduction, but must also be 

able to function under high-g environments over 15,000 g’s28.   

The Navy’s Extended Range Guided Munitions (ERGM) and the Army’s 

Excalibur programs are two of the driving force behind munitions research.  The ERGM 

research program effort began in 1994 in conjunction with Raytheon winning the contract 

to develop a munition that that had autonomous capabilities in which could be fired from 

existing firing mechanisms with little modification. 

 
Figure 2.2: Flight Trajectory of EX-171 Munition29

Raytheon developed the EX-171 rocket-assisted 5” projectile, which is a 12-

calibur projectile, capable of carrying a 4-calibur sub-munition.  The munition is 

equipped with a coupled INS/GPS guidance system, which allows for accurate guidance 

during points of GPS loss and jamming in environments with electronic 

countermeasures29.  Since the start of the program, numerous flight tests have been 

conducted with fairly successful results with the first test being in February 2001, Figure 

2.2 presents a rendering of a EX-171 flight trajectory. 
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The ERGM has had many setbacks due to the need to develop new technology.  

MIT’s Lincoln Laboratory was brought in to conduct an independent assessment and 

determined that the research being conducted was beneficial and that for the amount of 

new technology being developed there was substantial progress being made29. 

One of the major breakthroughs due to the ERGM program was the advancement 

in technology on the level of inertial navigation.  BAE systems was subcontracted to 

develop the SiIMU02 IMU that could meet the sensitivity requirements of precision 

guided munitions, packaged in enclosures that could withstand 20,000 g’s, significantly 

reduced the cost, and reduced the calibration time from eight days for one IMU to four 

IMU’s in three days30. 

 
Figure 2.3: SiIMU02 IMU Developed by BAE Systems for ERGM Research 

The Army’s XM982 Excalibur31 is a 155mm precision-guided extended range 

artillery projectile.  The munition is fire and forget which is canard controlled with a 

GPS/INS guidance system.  The munitions purpose is to utilize existing and future 155 

mm howitzer platforms to produce a weapon that has a range and accuracy greater than 

that of current ballistics.   

In the case that the GPS is jammed the INS will be used as the primary guidance 

system to the target.  In the situation where initial GPS data cannot be established, the 

munition will follow the fired ballistic trajectory with no aided guidance.  Due to this 

feature the munition must be fired with accuracy within 35 m for area targets and less 

than 10 m for targets requiring a direct hit.   
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2.3.5. Medical Industry 

Sensor fusion methods have also proven beneficial in the medical industry in such 

areas as medical imaging, prosthetic limb and organ development, neural prosthesis, and 

epilepsy diagnosis.  As was true with all other fields discussed, just a few medical 

applications are touched on, although there are infinite possibilities in which sensor 

fusion methods can be implemented in the medical field. 

Within the field of medical imagery researchers at the University of Hawaii have 

been testing photon laser applications to produce computational tomography (CT) scaned 

images, also known as computed axial tomography (CAT) scans32.  The benefits of using 

the photon laser over the standard X-ray is that the photon laser does not require healthy 

tissue cells to be exposed to the strong radiation beam used to detect the unusual tissue 

cells.  The unusual tissue is detected by knowing the scattering and absorption 

coefficients of the both the healthy and unhealthy tissue, in which this shows a distinction 

between the tissues.  The regeneration of the image is difficult due to the calculation of 

the photon diffusion equation, in which the solving the forward and inverse problem 

creates issues.  The forward problem is defined as having the cells’ scattering and 

absorption coefficients allowing the computation of the photon density within the 

medium.  Since all of the values within the forward problem are can be determined, this 

is not where sensor fusion applications are beneficial, leading to the inverse problem.  In 

the inverse problem, detectors measure the photon density, which is used to reconstruct 

the tissue structure by estimating the scattering and absorption coefficients.  The solving 

of the inverse problem for this application is set up as a parameter identification problem, 

in which parameters of healthy tissue are established as an initial baseline.  The initial 

“healthy” values are then compared to the noisy values read by the detectors in the EKF 

to converge on the actual parameters of the tissue with anomalies. 

In the area of neural prosthesis, a multitude of research has been conducted in 

attempts to collect neural signals utilizing implanted electrodes for use in the control of 

prosthetic limbs or computer cursors33,34,35.  In one series of tests, electrodes were 

chronically implanted into macaque monkey’s arms to collect the neural signals during a 

series of computer tests requiring the monkey to “play” two simple video games33.  A 

model was created to mimic the hand kinematics in which the collected neural signals 
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would be used to mimic the monkey’s responses to the games.  Kalman filtering was used 

to decode the neural data, which allows for the filtering of the non-Gaussian distributions 

of cell firing rates.  In addition the filter helps to clean each individual electrodes signal 

in cases when multiple cell firings are detected simultaneously. 

An electroencephalogram (EEG) is the main tool in the diagnosis of epilepsy in 

which Kalman filtering can be a valuable tool in the detection of epileptic spikes36.  

Normally EEG data is read visually by an experienced EEG technician which can be time 

consuming and difficult due to varying brain activity which could represent epileptic 

spikes which could be interpreted as false positives or negatives by a human eye.  By 

incorporating a KF to review the data, then ran through a thresholding function, EEG data 

can be reviewed unsupervised minimizing human error while also reducing technician 

reviewing time. 

2.3.6. Economics 

The production, distribution, and consumption of goods and services is 

complicated to model due to its unpredictable nature; meaning there’s no finite model to 

predict the economies exact ‘dynamics.’  There are simply too many variables that cannot 

be accounted for such as natural disasters, wars, and disease, for example, however, there 

are signs and trends that allow for educated guesses to help determine which direction the 

market is heading, which is a perfect fit for Kalman filtering applications. 

Economists Lorne Johnson and Georgios Sakoulis have conducted research on a 

method of implementing a Kalman filter that estimates time varying sensitivities to 

predetermined risk factors to determine which financial sector has the highest risk and 

growth potential37.  The purpose was to find a successor that could outperform the 

Capital Asset Pricing Model (CAPM), the standard model in use today, for which their 

model accounts for the change in dividend yield on the S&P 500 composite index, 

change in the spread between the ten year treasury note and the 90 day treasury bill yield, 

percent change in the near month crude oil contract, and the change in the default spread.  

Simulations ran over various sample periods show that the model does at least as well as 

the CAPM at pricing risk, though the method produces better results during periods of 

high economic uncertainty and business cycle turning points such as the period following 
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the equity market peak in 2000.  It is however; less effective during periods (e.g. 1994-

2000) when stock price/dividend (P/D) ratios are higher which indicate higher returns in 

the future which make it difficult to quantify, and cannot be easily adapted into the 

macroeconomic model developed in this article. 

Another application for Kalman filtering in the area of economics is for economic 

forecasting, which is the process where predictions are made about various or all 

variables within an economy38.  For example, in agriculture forecasting, the 

determination of the amount of food needed is an important issue that can lead to higher 

costs, supply shortages, or overproduction as discussed in [39] at Shandong Institute of 

Mining and Technology in Jinan, China, where a Kalman filter was implemented on an 

Bayesian dynamic linear model for forecasting pork production.      
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Chapter 3. Theoretical Background 

3.1. Overview of Theoretical Approach 

The theoretical approach to this research can be broken into three stages.  The 

first stage involves the coordinate frame descriptions and their respective transformation 

calculations between reference frames.  These are reviewed in detail throughout Section 

3.2 since there is a great deal of interaction between data in multiple reference frames.  

Section 0 then describes the INS calculation process including the respective drift error 

involved in the integration.  The fourth section is dedicated to the determination of GPS 

attitude estimation.  All of which are measurement values used in the Kalman filter and 

EKF.  Finally the Kalman filter and EKF process and calculations are discussed in 

Section 3.5. 

3.2.  Coordinate Frames of Reference 

As discussed above, this section reviews and compares different reference frames 

and the relationship between one another.  This section has been broken into two 

sections; Section 3.2.1 discusses each coordinate frame while Section 3.2.2 describes 

how to relate each coordinate system to one another.  The methods and transformations 

presented in this section discussed in greater detail in [40,41,42]. 

3.2.1. Coordinate Frame Descriptions 

The understanding of navigation systems is heavily dependant on the underlying 

knowledge of each individual coordinate frame.  This section is devoted to an in-depth 

discussion of each navigation system in a manner such that the reader understands the 

terminology used throughout this project. 

3.2.1.1. Inertial Frame 

An inertial frame is a frame of reference that is fixed about an arbitrary point that 

is not affected by rotational effects, but can still be in a constant motion.  For example the 

Earth-centered-inertial (ECI) coordinate system that defines coordinates on earth that is 

non-rotating with the x-axis pointing toward the vernal equinox (an imaginary vector that 
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originates at the center of the earth, through the equator and points directly to the sun).  

The vernal equinox is the point in time when the equatorial plane and the sun align; this 

occurs the first day of spring and the first day of fall.  Figure 3.1 shows a graphical 

representation of the ECI coordinate frame.  

 
Figure 3.1: ECI and ECEF Coordinate Frame Representation43

The inertial frame allows positions to be defined on a local level user-defined initial 

position.  In the majority of cases, the positions and trajectories needed aren’t affected by 

the rotation of the earth allowing this to be neglected, although long duration position 

tracking, such as transatlantic flights and long-range ballistic missiles must take earths 

rotational effects into account.   

3.2.1.2. Earth-Centered Earth-Fixed (ECEF) 

The Earth-Centered Earth-Fixed Coordinate system is set in relation to the earth, 

meaning that the location given in an ECEF coordinate system rotates with the earth.  

There are two general coordinate system conventions for the ECEF reference frame; 

rectangular coordinates and geodetic coordinates, which are discussed in greater detail 

below. 
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3.2.1.2.1. Earth-Centered Earth-Fixed (ECEF) Rectangular 

Coordinates 

The ECEF rectangular coordinates depict a position in relation to Cartesian (x,y,z) 

coordinates with the (0,0,0) location being the center of the earth.  The x component 

propagates through 0 degrees longitude (prime meridian or Greenwich meridian) and 0 

degrees latitude (equator), and the y-axis is perpendicular to the x-axis on the equator.  

The z component points upward through the North Pole.  Figure 3.1 demonstrates a 

representation of the ECEF rectangular coordinate system, note that as the earth rotates 

the coordinate system rotates in unison while the ECI stays fixed. 

3.2.1.2.2. Earth-Centered Earth-Fixed (ECEF) Geodetic Coordinates 

The ECEF geodetic coordinate system is expressed in latitude (λ), longitude (Φ), 

and height (h) and is the primary method for depicting position for many applications, 

such as navigation, surveying, and GPS.  The geodetic system stems from the fact the 

earth is not round but an ellipse, which causes the need for an ellipsoidal model.  

Over the years different ellipses to define earth’s shape have been developed 

which created an error between coordinate positions due to ellipse size deviation.   The 

World Geodetic System 84 (WGS84) has been accepted as the primary ellipsoid 

parameters for the majority of the world, which are listed in Table 3-144. 

Table 3-1: WGS84 Parameters 
Semi-major Axis Length, a (m) 6,378,137.0 

Semi-minor Axis Length, b (m) 6,356,752.3 

0.0034a b
a
−

=  Ellipsoid Flatness, f 

( )2 0.0818f f− =  Ellipsoid Eccentricity, e 

 

As seen in Figure 3.2 the latitude (λ) is the angle that shows the position of P 

from the equator to the line normal of the ellipse (earth’s surface).  The line normal to the 

ellipse (N) extends from the surface of the ellipse to the intersection of the z-axis.  The 

longitude (Φ) is the angle from the prime meridian to the longitudinal plane where point 
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P intersects with the equator, and the altitude (h) is the distance from the surface of the 

ellipse to point P. 

 
Figure 3.2: ECEF Geodetic Frame 

3.2.1.3. Tangent Plane 

The tangent plane, or navigation frame, is an inertial frame of reference that is 

localized.   It is a frame of reference that depicts a position by placing a plane tangent to 

the earth’s surface at the specific point of reference.  The point of reference can be any 

arbitrary point at which location points can be referenced.  An example is in the case of 

an aircraft and a radar station.  The radar station would be the point of reference of the 

tangent plane and the aircraft’s position would be referenced from that point. 

The tangent frame is divided into two separate conventions; East, North and Up 

(ENU) or the North, East and Down (NED) convention.  The ENU axes are placed 

orthogonal to each other with the x-axis pointing East on the tangent plane, the y-axis 

pointing North on the plane, and the z-axis pointing up perpendicular to the plane.  The 

NED axes are placed orthogonal to each other with the x-axis pointing north on the 

tangent plane, the y-axis pointing east on the plane, and the z-axis pointing down 
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perpendicular to the plane.  This project only refers to the NED convention; ENU will not 

be discussed past this section.      

3.2.1.4.  Body Frame 

A body frame is a coordinate frame of reference directly connected to a vehicle.  

The three axis of the body frame are orthogonal and generally placed at the center of 

gravity of the vehicle, with the y-axis perpendicular to the x-axis following the right-hand 

rule, and the z-axis perpendicular to the plane generated by the x and y-axis.  Since the 

body frame is directly connected to the vehicle, there is no way of telling where it is at a 

given time.  Therefore an additional stationary coordinate frame is needed, such as a 

tangent or ECEF reference frame, to act as a reference axis so that the vehicles movement 

through space can be tracked.  Figure 3.3 shows the body frame in relation to the ECEF 

coordinate frame. 

 
Figure 3.3: Body Frame in Relation to ECEF43

3.2.1.5.  Platform Frame 

The platform frame is located on the vehicle, generally at an offset from the body 

frame, with each respective axis parallel to that of the body frame.  The purpose of the 

platform frame is to compensate for a sensor that is located on the body of the vehicle, 

but not on the center of gravity.  The platform frame can be the same as the body frame 

when the sensor is located on or near the same axis of the body frame.   
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3.2.2. Reference Frame Conversions 

Since there are many different frames of reference used, a means of converting 

between each reference frame is needed as a way of comparing and relating data together.  

This section reviews the transformations used throughout this thesis.   

3.2.2.1. ECEF Geodetic to ECEF Rectangular 

The conversion from geodetic to rectangular coordinates is a simple calculation in 

which the WGS-84 ellipsoid parameters listed in Table 3-1 are used to determine the 

normal vector leading to the rectangular coordinates conversion shown below40: 

 ( )221 sin

aN
e λ

=
−  

(3-1) 

( ) ( ) ( )cos cosx N h λ φ= + ⋅ ⋅ (3-2)  

( ) ( ) ( )cos siny N h λ φ= + ⋅ ⋅  
(3-3)  

( ) ( )21 siz N e h n λ⎡ ⎤= ⋅ − + ⋅⎣ ⎦ (3-4)  

where N is the length of the normal vector from the surface of the ellipse to the 

intersection of the z axis, e is the eccentricity of the ellipse,  λ is the latitude coordinate 

position in ECEF geodetic coordinates, h is the altitude above the surface of ellipse and 

Φ is the longitudinal position in the ECEF geodetic coordinate system. 

3.2.2.2. ECEF Rectangular to ECEF Geodetic 

There are several methods to convert rectangular to geodetic coordinates, all of 

which are more complicated than the conversion from ECEF geodetic to rectangular.  

Only one method is discussed within the context of this paper, although additional 

iterative methods can be seen in [40].  The method described in Table 3-2 below is 

accurate up to meter level precision and is non-iterative45.  The reason for using the non-

iterative method is due to the fact that the iterative method produces a level of accuracy 

to the centimeter level, which is not necessary since the hardware utilized in this project 

is only capable of attaining meter level accuracy. 
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Table 3-2: ECEF Rectangular to Geodetic Coordinate Conversion45
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3.2.2.3. ECEF to Tangent Plane 

The next transformation converts ECEF coordinates to a tangent frame of 

reference.  A local tangent frame reference point (x0,y0,z0)e must first be selected to act as 

the point of reference for all additional points (x,y,z)e thereafter.  The ECEF rectangular 

and geodetic coordinates at this point must be known so that the new points can be 

related back to the reference point.     

The geodetic coordinates for the reference point must be known so that a 

transformation matrix can be constructed to create a relationship between the ECEF and 

the tangent ENU convention.  The transformation Matrix (Re2t) from the EFEC to tangent 
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frame is made up of two rotations; the first rotation is to align the y-axis in the east 

direction about the z axis, and the second is to align the z axis about the new y axis so 

that it points directly down perpendicular to the x-y plane.   

 
( ) ( )
( ) ( )

cos sin 0
sin cos 0

0 0
Rφ

φ φ
φ φ

1

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦  

(3-5) 

( ) ( )

( ) ( )

sin 0 cos
0 1 0

cos 0 sin
Rλ

λ λ

λ λ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− −⎣ ⎦

(3-6)  

The transformation matrix then becomes: 

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )
2

sin cos sin sin cos
sin cos 0

cos cos cos sin sin
e tR R Rλ φ

λ φ λ φ
φ φ

λ

λ φ λ φ

− −⎡ ⎤
⎢ ⎥= ⋅ = −⎢ ⎥
⎢ ⎥− − −⎣ ⎦

 
λ

 

(3-7) 

where λ and Φ is the latitude and longitude of the reference point. 

To express the position of a random location in the tangent plane that is in ECEF 

coordinates, the tangent plane reference point (x0,y0,z0)e must be subtracted from the 

location of interest (x,y,z)e. This is calculated as follows: 
tangent

0

2 0

0

R

ECEF

e t

x x x
y y y
z z z

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⋅ −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

(3-8)  

The transformation from the NED tangent frame to the ECEF frame can be 

reversed with the inverse of the transformation matrix.  Due to the orthogonal properties 

of the matrix the inverse is also the transpose as follows: 
tangent

0

2 0

0

R

ECEF ECEF

T
e t

x x x
y y y
z z z

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⋅ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

(3-9)  
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3.2.2.4. Tangent to Body Frame 

The transformation from the body axis to the navigation axis is performed using a 

transformation matrix, further described as the Direct Cosine Matrix (DCM).  The DCM 

is calculated as follows, which transforms the navigation axis to the body axis: 

( ) ( )
( ) ( )

( ) ( )

( ) ( )

( ) ( )
( ) ( )

1 0 0 cos 0 sin cos sin 0
0 cos sin 0 1 0 sin cos 0
0 sin cos sin 0 cos 0 0 1

c( ) c( )  s( ) c( ) -s( )
-s( ) c( )+c( ) s( ) s( )  c( ) c( )+s( ) s( ) s( ) c( ) s( )
 s( ) s( )+c( )

DCM
θ θ ϕ ϕ

φ φ ϕ ϕ
φ φ θ θ

ϕ θ ϕ θ θ
ϕ φ ϕ θ φ ϕ φ ϕ θ φ θ φ
ϕ φ ϕ

⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢= −⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢− −⎣ ⎦ ⎣ ⎦ ⎣

⋅ ⋅
= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅s( ) c( ) -c( ) s( )+s( ) s( ) c( ) c( ) c( )θ φ ϕ φ ϕ θ φ θ φ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⋅ ⋅ ⋅ ⋅ ⋅⎣ ⎦

⎤
⎥
⎥
⎥⎦

 

(3-10) 

The transformation from the tangent plane to the body axis is then completed as 

follows: 
Body Tangent

x x

y y

z z

a a
a DCM a
a a

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⋅⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

(3-11)  

The transformation from the body axis to the navigation axis can be reversed with 

the inverse of the DCM.  Due to the orthogonal properties of the matrix the inverse is also 

the transpose as follows: 
tangent body

x x
T

y y

z z

a a
a DCM a
a a

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⋅⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

(3-12)  

If the reader is unfamiliar with the DCM, there are many variations that can cause 

confusion and should refer to [46] or [47].  

3.3. Inertial Navigation System (INS) 

3.3.1. INS Description 

An inertial navigation system (INS) is a form of dead reckoning and is system of 

measurements and integrations of differential equations to determine the position, 

velocity, and attitude of a vehicle.  INS’s are self-contained navigation systems that are 

not reliant on additional measurement devices other than their own measurements.  This 

characteristic of INS’s poses benefits as well as drawbacks to the output data. 
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Having an INS onboard a vehicle allows the computation of the position, velocity 

and orientation without the limitation of the requirement of a having a point of reference.  

This is useful on vehicles such as submarines, aircraft, spacecraft, and ships travel long 

distances outside of the range of a given reference point.  INS systems are also beneficial 

to for their inability to be jammed and are stealthy in nature.  The system neither emits 

nor receives any detectable radiation and has no external antenna, which could be 

detectable by radar. 

The drawbacks come from the fact that INS has no additional outside reference 

point.  Each value for position, velocity and attitude is determined from the previous 

value through integration, therefore causing any error in the measurements to accumulate 

over time.  This accumulation of error causes a drift from the actual value that grows 

exponentially.  The amount of error compounded over time is reliant on the quality of the 

inertial sensors used for the INS measurements.  Methods for correcting this error are 

discussed in later chapters.  

The primary measuring device in an INS is an inertial measurement unit (IMU), 

which generally consists of accelerometers and rate gyros in orthogonal axes, and in 

some cases magnetometers.  There are generally two types of IMU’s: mechanized-

platform or gimbaled and strap-down systems, which are discussed in greater detail 

below. 

3.3.1.1. Mechanized-Platform 

A Mechanized-platform is an IMU that is based on a gimbaled mechanism.  For 

instance, a three axis gimbaled platform (Figure 3.4) has three rings positioned on 

bearings orthogonal to one another.  This allows the platform in the middle of the gimbal 

to remain unchanged no matter the angle in which the vehicle is positioned.  To cancel 

the gyroscopic precession, two gyroscopes are placed at right angles to one another, 

spinning at the same velocity.   
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Figure 3.4: Gimbaled Platform48

The attitude of the vehicle can then be determined with the use of potentiometers 

at the location of the bearings, while the position and velocity can be determined by 

placing accelerometers on the gimbaled platform orthogonal to one another.  Since the 

platform remains unchanged by the vehicle rotation, no coordinate transformation is 

required, as the gimbaled platform is consistent to the navigation axis. 

Mechanized-platform systems produce results at a high level of accuracy with the 

drawbacks of being heavy, expensive, high in power consumption, and by having moving 

parts allows the component to wear over time.    

3.3.1.2. Strap-down Mechanization 

Strap-down IMU’s are mounted directly to the inertial body and generally have 

three accelerometers and three gyros orthogonal to one another.  Unlike the gimbaled 

IMU, a strap-down system calculates the vehicle’s attitude with the use of a computer 

system based on the angular rates generated by the gyroscope.  Then with the component 

attached directly to the vehicle, the accelerometer information is collected in the body 

axis, generating the need for a coordinate transformation so that the position and velocity 

of the vehicle can be determined along the navigation axis.   

With the use of micro-electro-mechanical-system (MEMS) devices, strap-down 

systems eliminate all mechanical aspects allowing the IMU to be made much smaller, 

cheaper, weigh considerably less, and consume much less power than that of gimbaled 

systems, although the strap-down system is much less accurate than the gimbaled system 
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while also requiring some sort of computer to integrate the accelerations and angular 

rates to position, velocity, and attitude data.  The amount of additional computational 

load on a system could be a determining factor whether a strap-down or mechanized 

platform is preferred.    

3.3.2. INS Computation 

As stated previously a MEMS IMU’s output of the angular rate and acceleration 

is integrated to determine position, velocity, and attitude estimates.  Figure 3.5 shows a 

block diagram depiction of the computational layout of an INS system. 

Gyroscope

Accelerometer

IMU

(ax, ay, az)body

p, q, r Euler Angle
Integration

Direction
Cosine Matrix

(DCM)

(axayaz)
nav

φ θ ψ

Position/
Velocity

Integration

x,y,z,u,v,w

 
Figure 3.5: INS Computation 

The calculation of an INS is composed of both linear and nonlinear components, 

which creates an issue in the implementation of a Kalman filter.  This draws the need for 

a creation of a linearized model for the use in the filter, which is described later in this 

section.  Keep in mind that the linearization of the nonlinear equations is used only in the 

filter itself, and that the actual state propagation estimate is calculated with the nonlinear 

equations.  

The INS is modeled in state space for use in the Kalman filter that requires the 

linearization described in the previous paragraph.  For the case of an INS the 

determination of the Euler angles and rotation matrices are the non-linear calculations in 

which a generalized discrete state space representation is as follows: 
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k kx =A k k k kx B u w⋅ + ⋅ +�

 

(3-13)  

k k k k k ky C x D u v= ⋅ + ⋅ + (3-14) 

 where A is the system matrix, B is the input matrix, C is the output matrix, x is the n-

dimensional state vector, y is the m-dimensional measurement vector, w is the noise 

vector associated model/input error, v is the noise vector associated with the 

measurement noise, u is the input vector, and D is the feed-forward matrix. 

The first step in the determination of the INS is to calculate the aircraft attitude 

values using the continuous aircraft kinematic differential equations as follows: 

=p+q sin( ) tan( )+r cos( ) tan( )φ φ θ φ θ⋅ ⋅ ⋅ ⋅
i

(3-15)  

=q cos( )-r sin( )θ φ φ⋅ ⋅
i

 
(3-16)  

( )= sin( )+r cos( ) sec( )  qψ φ φ⋅ ⋅ ⋅
i

 θ
 

(3-17) 

where p, q, and r are the angular rates and and φ θ are the roll and pitch Euler angles. 

As seen from the aircraft kinematic equations, the relationships are nonlinear, 

which creates the need for linearization of equations (3-15)-(3-17), which is 

accomplished with the use of a Taylor series expansion shown in equation (3-18) 49.  
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(3-18)   

where hot’s are the ”higher Order Term’s” associated with the Taylor series expansion.  

The system and input matrix from equation (3-18) is a Jacobian matrix of partial 

derivatives that generates the best linear approximation for a nonlinear system at each 

time increment, which allows for the state space approximation.  The higher order terms 

error contribution generated from the Taylor series, which are neglected, could be 

reduced with the use of iteration, although for this research topic, the error will be 

reduced with the use of the Kalman filter discussed in the next chapter.  Only the system 

matrix Jacobian is shown below although the input matrix is determined similarly.  
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(3-19) 

Given that the angular rates and accelerations are measured at a certain time 

interval, dt, the linearized aircraft kinematic differential equations listed above must be 

converted to difference equations, or discrete time.  The discretized nonlinear kinematic 

equations are listed below: 

( )1= p +q sin( ) tan( )+r cos( ) tan( )k k k k k k k k k dtφ φ φ θ φ θ+ + ⋅ ⋅ ⋅ ⋅ (3-20)  

( )1= q cos ( )-r sin( )k k k k k k k dtθ θ φ φ+ + ⋅ ⋅ ⋅

 

(3-21)  

 (3-22) 

 In which the discretized linear approximation of the Euler angles system matrix is then 

conducted as follows: 

( ) ( )( ) ( )k kk+1 , ,J k k dt Jφ φ φ φ φ φ θ ψ= + ⋅ = + ⋅ =, dt

 ( ) ( )
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( )( ) ( ) ( )( )
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dt q dt
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⎡ ⎤⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⎢ ⎥

− ⋅ ⋅ ⋅⎢ ⎥
⎢ ⎥⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎢ ⎥⎣ ⎦

dt  

(3-23) 

The discretized nonlinear kinematic equations (equations (3-20)-(3-22)) are then 

computed over time to obtain the INS Euler angle values.  The linear approximation of 

the Euler angles will be revisited in Chapter 4 during the implementation of the extended 

Kalman filter.  Figure 3.6 and Figure 3.7 show the IMU’s angles compared to the vertical 

gyros output.  It can be seen on the magnified plots that the IMU data carries the same 

trends as the vertical gyro although drift causes the increased magnitude of the peaks. 
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Figure 3.6. INS Data vs. Vertical Gyro Data 
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Figure 3.7. INS Data vs. Vertical Gyro Data 
(Magnified) 

With the Euler angles determined, the focus now shifts to the IMU accelerometer 

data.  The accelerations are first transformed from the body axis to the navigation axis 

using the DCM discussed earlier so that the integrated velocity and position can be 

directly related to the GPS data.  The acceleration transformation is completed as follows: 

3 1

nav body
x x

nav T
x y y

z z

a a
a a DCM a

a a

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢= = ⋅ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

(3-24) 

where a is the IMU acceleration values. 

The position and velocity can then be easily calculated using the following 

discrete state space relationship: 

3 1, 1 3 1,3 3 3 3 3 3 5 1
3 1

3 1, 1 3 1,3 3 3 3 3 3

0 0
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x k x kx x x xnav
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⋅⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤= ⋅ + ⋅ −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⋅ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 

(3-25)  

where x is the position, v is the velocity, and g is gravity. 

By incorporating the Euler angle calculations into the position and velocity 

calculations the complete INS state space representation is: 

( ) ( )

1 3 3 3 3 3 3 3 1, 3 3 3 3 5 1
3 1

1 3 3 3 3 3 3 3 1, 3 3 3 3
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0 x
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g
⎤
⎥− ⎥
⎥⎦  

(3-26) 

where ω is the aircraft angular rates and g is gravity  
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Keep in mind that Equation (3-26) is a linearized approximation and that 

additional error is introduced here since the hot’s from the Taylor series approximation 

have been neglected.  The state space model of the INS system with the linearized 

kinematic equations is for use only in the extended Kalman filter, which is discussed in 

detail in Chapter 4 and Chapter 5, otherwise using the nonlinear equations would produce 

better results since there is no error due to the hot’s. 

Figure 3.8 compares the components of the velocity about each axis.  These 

values are overlaid and compared with the GPS flight data values, in which the 

compounding drift error is clearly visible.     
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Figure 3.8: INS Data vs GPS Comparison 

Note, the position information was not displayed due to its lack of relevance. After the 

position integration, there was little resemblance to the GPS position data; therefore this 

plot was intentionally neglected. 

3.4. GPS Calculations 

The creation of GPS, officially named NAVSTAR by the U.S. Dept. of Defense, 

has revolutionized the field of navigation and control in its ability to obtain precise 

position and velocity at nearly all points on the globe.  Prior to the development of GPS 

various additional navigation methods (post World War II era), in which GPS was partly 
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based from, were used to obtain accurate position data such as Long Range Navigation 

(LORAN) and the Decca Navigator, although these methods are being phased out due to 

the popularity and effectiveness of GPS.  The following section describes the 

determination of GPS attitude that will be used in the next chapter to aide the filtering 

process.  

3.4.1. GPS Attitude Estimation 

This section describes the method used to determine vehicle attitudes with the use 

of the GPS velocity and IMU’s accelerometer data.  This method for estimating the 

aircraft attitude generates accurate but extremely noisy values that are useful as the 

measurement values for the Kalman filter that is discussed in the next chapter50.  The 

GPS heading angle (φ) was first determined by utilizing the GPS velocity on the ‘X’ and 

‘Y’ axis and was determined with the use of the following equation: 

 ( )1tan V
Uϕ −=

 
(3-27) 

where V is the y-axis velocity, and U is the x-axis velocity  

The heading angle is shown in Figure 3.9: 
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Figure 3.9: GPS Heading Angle 

To calculate the roll and pitch angle of the aircraft using the GPS, a reference 

acceleration vector in the ECEF coordinate frame is first determined.  This reference 

vector is constructed using the acceleration by differencing the present, (k), and a priori, 
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(k-1), values of the GPS velocity.  This reference vector represents the aircraft under the 

condition that there is no roll or pitch angles.  The derivative of the velocity to obtain the 

acceleration is then determined by the following: 

( ) ( )1GPS GPS
GPS

v k v k
a v

dt
− −

= =� (3-28)  

where aGPS is the GPS acceleration in ECEF, v is the GPS velocity, and dt is the time 

increment. 

The GPS acceleration vector is then aligned with the x and y body-axis about the 

ECEF z-axis generating the reference acceleration rx and ry. The reference angles are 

rotated about the z-axis due to the fact that the reference frame is under the condition that 

there is no roll or pitch angles causing the x, y, and z-axes to be orthogonal about the 

ECEF z-axis. The rx and ry transformations are defined as: 

( ) ( )( )_ _cos sinx GPS x GPS yr a aϕ ϕ= − +  
(3-29)  

( ) ( )( )_ _sin cosy GPS x GPS yr a aϕ ϕ= − − + (3-30)  

Since the aircraft is moving in the body frame relative to the ECEF frame, the 

IMU’s accelerometers do not feel the effects of gravity. Therefore to compensate the GPS 

ECEF acceleration, the reference acceleration is calculated as follows: 

 
_z GPr g a S z= −  

( 3-31) 

This transformation can be seen graphically in Figure 3.10, where x and y are the 

body axis and y’ and x’ is the ECEF axis: 
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Figure 3.10: Rotation about the z-Axis to Align the ECEF Coordinate Frame with 

the Body Axis 

With the reference vector constructed, the attitudes can then be defined and 

calculated with the following set of equations: 
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( ) ( )sin cosx zr r rθ θ θ= +

 

(3-34)  
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(3-36)  

Figure 3.11 shows the raw GPS attitude estimate which has a great deal of noise 

on in the signal, although it still follows the same trends as the Vertical Gyro data. The 

noise from the GPS attitudes is not an issue, for the EKF will compensate for the negative 

effects of the noise while still correcting for the drift error associated with the INS. 
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Figure 3.11: GPS vs Vertical Gyro Attitude 

 

To further show that the GPS attitude does actually depict the aircraft roll and 

pitch attiude, the noisy values are sent through a low-pass butterworth filter, offline, as 

seen in Figure 3.12, then plotted against the vertical gyro data.  This representation shows 

distinct evidence that this method of estimating the attitude is effective. 
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Figure 3.12: GPS vs Vertical Gyro Attitude 
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3.5. Kalman Filter 

The following sections describe the calculations and theory that make up the 

Kalman filter.  Section 3.5.1 describes the simple Kalman filter, which is only used for 

linear systems, while section 3.5.2 discusses the Extended Kalman filter for non-linear 

applications. 

3.5.1. Introduction to Kalman Filtering 

The calculations that make up the filtering process can be separated into two steps 

depicted in Figure 3.13; time and measurement update.   The time update, or “prediction” 

step projects the states and error covariance values ahead in time using the dynamic 

model of the system while the measurement update or “correction” step then calculates 

the Kalman gain. This value is then used to correct the error in the states and finally 

update the error covariance matrix to be input back into the “prediction” equations.  The 

filtering calculations are discussed in greater detail in the following paragraphs.  The 

following description is based around the fusion of GPS/IMU data, although a more 

general breakdown of the Kalman filter can be seen in greater detail in [5], [40], and [41].     

 

Initial Values for x and P

"Prediction" Equations

1) Project the State Ahead

2) Project the Error Covariance Ahead

"Correction" Equations

1

1 1
T T

k k k k k k kK P H H P H R
−− −

+ +⎡ ⎤= +⎣ ⎦

1) Compute the Kalman Gain

2) Update Estimate with Measurement z

� ( )11 1ˆ ˆkk k k k kx x K z H x
−+ −

++ += + −

3) Update the Error Covariance

( )1 1k k k kP I K H P+ −
+ += −

1
T

k k k k kP P Q− +
+ = Φ Φ +

1ˆ ˆk k k kx x B u−
+ = Φ ⋅ + ⋅

 
Figure 3.13: Kalman Filter Sequence 
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3.5.1.1. Time Update - “Prediction” 

 The “prediction” step is composed of two calculations, the predicted state and 

covariance calculations, in which the predicted state update is composed of the system 

dynamics of the INS, which was discussed in detail in Section 3.3.1.  The state update 

determines the a priori estimate of the state vector, ‘x,’ at time k, knowing the previous 

values for ‘x’ at time k-1.   

Step two of the time update section determines the value of the a priori estimate 

of the error covariance matrix with the use of the Riccati equation discussed further in the 

next section.  By utilizing the state transition matrix of the dynamic system (STM, Φ ) 

and the covariance of the dynamic disturbance (Q), the error covariance matrix, ‘P,’ can 

be calculated as follows: 

 
1

T
k k k kP P− +

+ kQ= Φ Φ +  
(3-37) 

The error covariance a priori estimate takes into account that there is a known 

error/noise in the input and model of the system which causes the signal to drift or decay 

over time from the actual value.  Figures of the INS output in Section 3.3.2 are good 

examples of the system’s decay over time. 

The covariance matrix associated with the dynamic disturbance or model/input 

noise, (Qk), estimates the noise that is directly associated with the error in the dynamic 

model as well as the noise of the sensor measurement. Equation (3-38) calculates the 

estimated value of the model/input covariance matrix, which contributes to the 

uncertainty of the dynamic system at each time step. 

 
1 1

T
k k wQ Q 1k− − −= Φ Φ  

(3-38) 

where Qw is the power spectral density (PSD) of the sensor. 

The PSD of the sensor input signals is called white noise due to the fact that it has 

the same error at all frequencies as a comparison to the frequency spectrum of white 

light.  The PSD of the sensor error can be assumed to be zero mean and measured by 

conducting a variance analysis on the signal at a steady state response as follows: 

( ) ( ) ( ) ( )0,  T
wE t E t t Q tω ω ω⎡ ⎤= =⎡ ⎤⎣ ⎦ ⎣ ⎦ (3-39)  
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where the first term on the left represents the zero mean random vector of the sensor 

input while the second expression represents the PSD analysis of the white noise 

associated with the sensor data to generate a matrix associated with each sensor error. 

3.5.1.2. Measurement Update – “Correction” 

The “correction” step is composed of three calculations; computation of the 

Kalman gain, update of the estimated states, and the error covariance a posteriori update.  

Computation of the Kalman gain is based on the algebraic (filter) Riccati equation 

(ARE)10, which is a discrete recursive equation to calculate the error covariance, P.  The 

Riccati equation, or the matrix quadratic equation, in its general form is as follows: 

 ( ) 1

1 1 1
T T T T

k k k k k k k k k k kP P P H HkP H R H P Q
−

+ + +
⎡ ⎤= Φ − + Φ +⎢ ⎥⎣ ⎦ k (3-40) 

where P is the error covariance matrix, H is the system output matrix, and R is the 

covariance matrix of the measurement noise. 

By manipulating the Equation (3-38, the a priori covariance matrix, a posteriori 

covariance matrix, and the Kalman gain equations are obtained.  The a priori calculation 

in Section 3.5.1.1 is used to predict an estimate of the error covariance, P, determined 

from the system model at the new time step ‘k’ using the a posteriori value from the 

previous time step, ‘k-1’.   

P
1

a posterori

T
k k k kP P− +

+ ⎡ ⎤ 
kQ= Φ Φ +⎣ ⎦  

(3-41) 

With the a priori estimate of the obtained the Kalman gain can be calculated 

which also begins the measurement update portion of the filter.  Again referring to the 

Riccati equation the Kalman filter gain calculation can be determined as follows: 

( )
Kalman Gain

1

1 1 1 1 1
T T T T

k k k k k k k k k k k kP P P H H P H R H P
−+ − − − −

+ + + + +

⎡ ⎤
⎢ ⎥= Φ − + Φ +⎢ ⎥
⎢ ⎥⎣ ⎦


����������

kQ

 

(3-42)  

( ) 1

1 1
T T

k k k k k k kK P H H P H R
−− −

+ += + (3-43) 

 Similar to the system model/input covariance matrix, Qk, the covariance matrix of 

the measurement noise is also zero mean white noise (Rk), which is determined as 

follows: 
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( ) ( ) ( ) ( )0,  T
kE v t E v t v t R t⎡ ⎤= =⎡ ⎤⎣ ⎦ ⎣ ⎦  

(3-44)  

where v is the noise in reference to the measurement data used in the Kalman filter.   

The state estimate is next compensated with the use of the Equation (3-45).  This 

compensation is conducted by first computing the residual between the measurement 

(actual) value and the state estimated value.  The amount of residual used to correct the 

estimated state is determined by multiplying the Kalman gain by the residual.    

( )ˆ ˆ ˆk k k k k kx x K z H x+ − −= + −  
(3-45)  

where z is the measurement value. 

At this point the a posteriori covariance matrix is calculated by plugging the 

Kalman gain back into the Riccati equation to obtain the updated value for the 

covariance.   

( )
a posteriori Covariance Matrix 

1

1 1 1 1 1
T T T

k k k k k k k k k k k kP P P H H P H R H P Q
−+ − − − −

+ + + + +
⎡ ⎤= Φ − + Φ +⎢ ⎥⎣ ⎦


������������������
 

k
 

(3-46) 

( )1 1k k kP I K H P+ −
+ += − 

k  
(3-47) 

This set of calculations is then iterated over the time duration to improve the 

states of the system.  The Kalman filter’s ability to improve the states can once again be 

attributed to the Riccati equation, which is a recursive least squares solution to minimize 

the performance index, J, of the system.  A good analogy for the performance index can 

be referring to it as the “cost” that it takes to put the estimated state back on the optimal 

path.  As the performance index is minimized the overall accuracy of the system in 

improved. 

Figure 3.14 depicts the path that the state estimate and covariance matrix take 

between two increments in discretized time.  As seen from the following figure, the state 

transition matrix estimates a new value for the state, ˆkx− , which is then corrected by the 

Kalman gain to generate a more accurate value for the state, ˆkx+ . 
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Figure 3.14: Kalman Filter Progression of States and Covariance Matrix 

The effect of the error covariance has on the system determines the amount of 

measurement that gets used to update the state estimates.  As the error covariance 

decreases, the position of the estimate is trusted more, which doesn’t allow as much of 

the measurement to update the estimate.  Inversely, if the error covariance increases, the 

estimated position is trusted less allowing the measurement position to correct the 

estimate.  Ideally, as the system progresses over time the value for the error covariance 

should get close to zero.  This reduction is mainly due to the ‘actual’ measurement values 

to maintain the accuracy of the system.  Although the model/input noise covariance, Q, 

gets added into the error covariance matrix at each time increment limiting the reduction. 

3.5.2.  Extended Kalman Filter 

The Kalman filter is based on the principle that the dynamic model of the system 

is linear.  Most systems of any level of complexity are composed of non-linear elements, 

which draw the need for the extended Kalman filter (EKF).  Schmidt introduced the first 

application of the EKF during the NASA Ames research discussed earlier.  This method 

of the Kalman filter has also been referred to as the “Kalman-Schmidt” filter. 

It must be noted that by utilizing an EKF increases the level of complexity of the 

system by first creating the need to linearize the differential equations and then the update 

of the system and input matrix at each time step making the system time variant.  These 

additional calculations also drastically increase the amount of computational load on the 

system. 
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Other than the previous stated criteria, the EKF is relatively similar to the Kalman 

filter, as seen in Figure 3.15, the Kalman gain, a priori and a posteriori covariance matrix 

calculations are the same as the previous method.  An application of the EKF within the 

context of this thesis topic is the linearization of the INS attitude determination.  The 

attitude calculations discussed in Section 3.3.2 involve the use of a time variant linearized 

dynamic model that is derived from the non-linear dynamic model seen below.   

 ( )1ˆ ˆk k kx f x w+ −
+ = +

 

 (3-48) 

( )ˆk kz h x w−
k= +

 

(3-49)  
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Figure 3.15: Extended Kalman Filter (EKF) Sequence 

 Referring back to the discussion in section 2.2.2, the extended Kalman filter is not 

an optimal filter due to the linearization of the system model.  This is described in greater 

detail by referring back to the Ricotti equation, in which it is responsible for estimating 

and minimizing the error of linear systems.  By linearizing the system model by means of 

the Taylor series, additional error is induced causing the filter to improperly estimate the 

error covariance matrix.  The additional error does not pose a great issue, as the EKF is 

still a highly effective tool for estimating and reducing the system error.  However this 
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does also generate the need for a higher level of accuracy when determining the 

covariance matrices, which could cause the filter to diverge if not properly modeled 
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Chapter 4. Experimental Procedures 

4.1. Overview of Experimental Procedures 

The experimental procedures within the context of this research project required 

the development of software algorithms that work with an array of sensor data to meet 

the goals and objectives set forth in Section 1.1.  This chapter describes the hardware 

utilized in the collection of sensor data, the synchronization of the data, and the 

implementation of the Kalman filtering methods to achieve the previously stated 

objectives.  Section 4.2 describes the first phase of this research project in which 

previously obtained flight data from the WVU formation flight research was utilized.   

4.2.  WVU YF-22 IMU/GPS/Vertical Gyro Sensor Fusion 

The experimental procedures for this portion of the research project are composed 

of a small amount of sensor data manipulation, with the rest being the development of 

software algorithms integrating the various sensors to improve the position, velocity and 

attitude of the aircraft.  Sensor data for this section of the research project was utilized 

from the WVU research YF-22 UAV’s during the formation flight research discussed 

previously. 

The first section, Section 4.2.1, contains the hardware description of the sensors 

used for the WVU YF-22 formation flight research project.  This flight data is then 

utilized in the implementation of the various Kalman filtering software algorithms for the 

improvement of the aircraft parameters.  The second section, Section 4.2.2 discuses the 

limitations of the system and corrective measures taken to achieve results with a higher 

level of precision and Section 4.2.3 focuses on the implementation of various Kalman 

filtering techniques on the formation flight GPS and IMU data.   

4.2.1. Hardware Used for the WVU YF-22 Attitude Improvement 

The following section describes the hardware used during the formation flight 

research conducted at WVU on three YF-22 test-beds.  All data used within the context 

of this section was previously recorded flight data, meaning no additional data acquisition 

 49



was required for this portion of the research topic.  This hardware description provides an 

insight and background of the YF-22 test vehicles described in Table 4-1. 

Table 4-1: WVU YF-22 Test Vehicles/Sensor-Componant Package 
 

 
 

Engine 
Specifications 

Value General Vehicle Specifications Value 

Engine Type RAM 1000 Maximum Flight Duration (min) 12 

Engine hp (hp) 1.9 Maximum Air Speed (km/hr) 213 
Fuel Consumption 

(oz/min) 12 Take-off Speed (km/hr) 96 

RPM (Max) 126,000 Cruising Airspeed (km/hr) 144 

Thrust (lbs) 28 Length (m) 2.3 
Pressure Ratio 3:1 Wingspan (m) 2 

Fuel Type Jet-A Payload (maximum target) (Kg) 5.5 
Oil Type Turbine Oil Est. takeoff weight (w/ payload) (Kg) 21 

20:1 Est. wing load (with payload) (Kg/m2) 13.7 Fuel/Oil Ratio 

3 

 

Est. Thrust/Weight (with payload) 0.6 Fuel Tank Capacity 
(Kg) 

 

 The WVU YF-22 test vehicles were designed, constructed, maintained, and 

operated by faculty and students at WVU.  The main fuselage is constructed from 

fiberglass, while the wings and control surfaces have a foam core, sheeted with balsa 

wood, then covered in fiberglass and painted to the three schemes shown in Table 4-1.  

The vehicles are powered by RAM 1000 jet engines producing approximately 28 lbs. of 
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thrust allowing the vehicles to achieve a maximum air speed of 213 km/hr (132 mph) and 

a cruising velocity of 144 km/hr (89 mph).         

The sensor and component package implemented on the formation flight aircraft 

in relation to this research consists of an IMU, GPS, Vertical Gyro, and flight computer. 

Table 4-2 illustrates the component mounting locations of the IMU, GPS, Vertical Gyro, 

flight computer, and power supply, in which each component is discussed in detail 

throughout the following sections.  Additional sensors and components were 

implemented on the aircraft (as presented in Table 4-2), but have no immediate relevance 

to this effort.   

Table 4-2: Sensor Specifications and Component Mounting 
 

 

 
 

Onboard 
Sensors Manufacturer Model Number Measurement Type Sampling 

Rate 

On-Board 
Computer 

(OBC) 
Microcomputer Systems PC-104   

Angular Rates 50 Hz 
IMU Crossbow IMU400 

Linear Accelerations 50 Hz 
Vertical Gyro Goodrich Sensor Systems VG34 Euler Angles 50 Hz 

3-axis Position 20 Hz 
GPS Novatel OEM4 

3-axis Velocity 20 Hz 
ASCX01DN Differential Pressure 50 Hz Pressure 

Sensors SenSym 
ASCX15AN Absolute Pressure 50 Hz 

Angle-of-Attack and Sideslip Vane 50 Hz 
Nose Probe SpaceAge, Inc. Mini Air Data Boom

Static Dynamic Pressure Taps 50 Hz 
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4.2.1.1. Formation Flight On-Board Computer (OBC) 

The OBC, shown in Figure 4.1, was based on a 300 MHz PC-104 stack computer 

system, which contained a CPU module, a data acquisition module, a power supply 

module, and supporting components.  The PC-104 format was selected because of its 

reduced size, lightweight, and low power consumption2. 

Controller
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Reader

Power Supply
Card

Servo Control
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Interface-Board
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Controller
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Servo Control
Module

Interface-Board
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Figure 4.1: YF-22 Onboard Computer2

4.2.1.2. NovAtel GPS Receiver 

A NovAtel OEM4 GPS receiver was used to measure the 3-axis position and 

velocity to meter level accuracy, which was read into the flight computer at a rate of 20 

Hz.  This data was required for each of the three YF-22 test-beds in order to achieve 

formation flight, in which position and distance information between the aircraft had to 

be obtained.  While the flight computer recorded only the position and velocity 

information, the OEM4 receiver is capable of obtaining a variety of additional 

information depending on the firmware configuration purchased through NovAtel, 

including the ability to obtain raw pseudorange and ephemeral data, along with real-time 

kinematic (RTK) processing which allows the receiver to obtain position data at a level of 

either 2 or 20 cm accuracy.   
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(a) NavAtel GPS Receiver (b) GPS Antenna Location 

Figure 4.2: NovAtel GPS 
 

The selected GPS antenna was the GPS-511, also manufactured by Novatel, Inc., 

which offered desirable performance for airborne and high dynamic applications.  

The GPS antenna was mounted on the top section of the aircraft fuselage at the center of 

gravity (CG) location, as shown in Figure 4.2 (b), in relation to the IMU, Vertical Gyro, 

and power supply. 

4.2.1.3. Crossbow IMU 

The Crossbow IMU400CC-200 was selected for the formation flight research due 

to its lightweight, cost, and performance abilities.  This component was a solid-state 6-

degree-of-freedom (6 DOF) inertial package intended for navigation and control, 

dynamic testing, and instrumentation applications.  This system provided measurements 

of the angular rates and linear accelerations along three orthogonal axes.  Fully 

compensated angular rate and acceleration outputs were provided in both analog and 

digital (RS-232) formats, which were recorded at a rate of 50 Hz by the flight computer. 
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Table 4-3: Crossbow IMU400CC-200 Specifications 
 

 
Performance Maximum Update Rate (Hz) 100 

Range: Roll, Pitch, Yaw (°/sec) 200±  
Angular Rate 

Bias: Roll, Pitch, Yaw (°/sec) 1< ±  

Range: X, Y, Z (g) 10±  
Acceleration 

Bias: X, Y, Z (mg) 12< ±  

4.2.1.4. Goodrich Sensor Systems Vertical Gyro 

The vertical gyro attitudes were obtained by a Goodrich Sensor Systems brand, 

model VG34 vertical gyro, shown in Figure 4.3.  This unit is Goodrich Sensor System’s 

smallest vertical gyro, that produces highly accurate measurements in which the range is 

±90° for the roll angle, with an accuracy of ±1°, and ±60° for the pitch angle, also with an 

accuracy of ±1°.   

 
Figure 4.3: Goodrich Systems Vertical Gyro 

 

The size, cost, and accuracy of the VG34 make it a an optimal choice for many 

additional high performance vehicles such as tracked wheeled and tracked armored 

vehicles, aircraft, helicopters, missiles, drones and remotely piloted aerial vehicles 
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4.2.2. Limitations/Corrections to the WVU Formation Flight Hardware 

Setup 

Although the data collected during the formation flight research project was 

actual flight data, which in many ways increases the validity of the data and results, also 

creates some limitations on the project at hand.  Along with some of the limitations and 

restrictions of the collected data, there are also some additional corrective measures that 

have been conducted. 

GPS Position Data  

 The GPS data collected during flight tests consisted of only position and velocity 

data, no pseudorange, or raw ephemeral data was collected.  This restricts the Kalman 

filter to a loosely coupled system, which will be discussed in greater detail later in this 

chapter. 

Acquisition Rate  

The first issue between the IMU and GPS data being utilized is the difference in 

the sampling rates. The IMU samples were taken at 50 Hz while the GPS samples could 

be obtained at 20 Hz, which causes the data to only match on increments of 0.1 s. The 

optimal method for utilizing most of the flight data was to resample the IMU sensor 

information at 40 Hz and maintain the GPS data at 20 Hz. This allowed the Kalman Filter 

to correct for the IMU’s data every other time step instead of every fifth time step, as 

seen in Figure 4.4. 

 
Figure 4.4: IMU vs. GPS Measurement Acquisition Rate 

 
Lever Arm Correction  

The lever arm correction compensates for the offset distance between the GPS 

antenna and the IMU sensor, which realigns the position and velocity data between the 
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two sensors - back to the CG of the aircraft. This offset is caused by three main factors; a) 

the sensors cannot overlap each other, b) the GPS antenna must be placed on the fuselage 

of the aircraft, and c) to properly balance the aircraft the, sensors must be strategically 

placed within the aircraft. This correction was conducted by adjusting the relative 

acceleration for one point (the IMU), rotating about a second point (the GPS antenna, at 

the CG location). The lever arm correction was conducted with the use of the following40: 

 
2a a rBA α ω= − ⋅ + ⋅ d

2 200
2 20 0

2 20 0

r qa a r dr q
 

(4-1) 

x x x x
a a r dy y r p y r p y
a a r dz z z zq pA B q p

ω ωα α

α α ω ω

α α ω ω

⎡ ⎤−⎡ ⎤−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥= − − + −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥−⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦−⎣ ⎦ ⎢ ⎥⎣ ⎦  

(4-2) 

where α is the angular acceleration, ω is the angular rate, and r is the position offset from 

the GPS antenna location to the IMU location. 

The angular acceleration was then determined by differencing the angular rate 

from the time step k, with the previous time step k-1. The values for the angular velocities 

and accelerations are then placed into a skew matrix so that each directional component 

of the acceleration will be corrected. 

Bad Measurement Determination 

Bad measurements from degraded GPS signal data were also accounted for when 

analyzing flight data. The main periods for when the GPS data precision deteriorated 

during the WVU formation flight test experiments was during high bank angle 

maneuvers, as depicted in Figure 4.5, although while testing the validation data there was 

one instance when a total signal loss was discovered as seen in Figure 4.6.  
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Figure 4.5: GPS Position (Magnified) 
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Figure 4.6: GPS Position - Instantaneous Signal 

Loss 
 

While the filtering process compensated for the GPS error, the elimination of 

measurements that were unrealistic produced higher quality and more accurate results. 

Since the vehicles main dynamic movement is along the longitudinal axis, a significant 

lateral maneuver was unrealistic and not probable. Therefore whenever this type of 

movement was detected, the measurement was neglected and only the INS measurement 

utilized. Although the INS system is susceptible to drift effects, the short-term use of only 

the INS values is more precise than the filtered estimates. 

This correction was accomplished by comparing the Kalman filter residual 

calculation, ( 1ˆi i i )z H x −− , at time ‘k’ with the standard deviation. When the value of the 

residual exceeds a set threshold value of the standard deviation, the GPS value for that 

given time increment is omitted and the IMU’s dynamic model computes the transition to 

the next increment. 

4.2.3. Software Used for the Integration of GPS/INS 

Within the context of creating Kalman filtering algorithms for the fusion of the 

YF-22 formation flight data, four methods were implemented, in which each method has 

benefits and drawbacks to be further discussed throughout this section.  
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4.2.3.1. Fusion of IMU/GPS/Vertical Gyro data  

This method fuses the GPS position and velocity, INS position and velocity, and 

the Vertical Gyro attitudes.  The fusion of this method uses the GPS and INS components 

of position and velocity as the states within the Kalman filter, in which the benefit of this 

is to remove the drift within the INS and the signal errors in the GPS components of the 

position and velocity.  The attitudes from the Vertical Gyro are used so that there is no 

need for non-linear modeling, allowing the use of the Kalman filter. 

The algorithm for implementing the first method is composed of three main 

functions:  

1) Data Preprocessing 

2) INS Calculations  

3) Kalman Filter Implementation  

The data preprocessing is composed of the acquisition rate correction (discussed in the 

previous section) and the initialization of the filtering parameters.  

The initialization of the filter is composed of the initial values of the state vector 

and error covariance matrix as well as the setting up of the system model/input and 

measurement noise covariance matrices, Q and R respectively.  Initially the 6x6 error 

covariance matrix, P, was set to zeros since the exact initial position was known and the 

initial state vector, 0x̂ , was also set to zeros in which both parameters got updated after 

each filtering iteration. 

The measurement noise covariance matrix was determined by obtaining the 

variance of the GPS position and velocity measurements over a steady state period of 

time.  Figure 4.7 depicts an example of the period in which the variance was obtained. 
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Figure 4.7: Steady State Time Period for Variance Calculation 

 

These values were then inserted into a diagonal matrix respectively to generate the 

measurement noise covariance matrix of the GPS data: 
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As discussed previously in this chapter, the filtering approach was restricted to a 

‘loosely’ coupled system due to the lack of raw GPS data. A ‘loosely’ coupled system, 

although easier to implement than a tightly coupled system, does not estimate the IMU 

calibration parameters (e.g. biases), leaving the estimation of these parameters to the 

system designer. 

These IMU calibration parameters were set into the model/input covariance 

matrix, Q, and are used as a tuning parameter.  If the system designer did not correctly 
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estimate these parameters, a reduction in the performance of the filter could occur6.  This 

is not the case for ‘tightly’ coupled systems, in which these values are properly modeled 

as discussed in Section 3.5.1.1.  

 As a starting point for the initialization of the model/input covariance matrix, any 

value could be selected so that the value is greater than zero, but less than one; to obtain 

starting values, the initial values for this method were determined the same way as the 

measurement covariance matrix by placing the IMU acceleration variance during a 

steady-state condition in a 6x6 diagonal matrix for the position and velocity as seen 

below: 

3 3 1 3 1 3 1 3 3 3 1 3 1 3 1 3
2

3 1 3 1
2

3 1 3 1
2

3 13 1

0 0 0 0 0 0 0 0
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x

y

z

x x x x x x x x
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xx a
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⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

 

The location for the position covariance values are intentionally left zero since they are a 

direct integration from the velocity, which values in the covariance matrix are composed 

of the variance of the acceleration data.  The error associated with the velocity from the 

integration of the accelerometer and gyroscope data is directly passed on to the position.  

Meaning that by reducing the error in the velocity integration, the error in the position 

also decreases. 

From these values if the model/system covariance were increased so that the value 

was closer to one, the system would closer mimic the measured value.  Inversely, as the 

covariance approaches zero, the system would closer mimic the estimated values.  After 

the initial system has been established these values are adjusted to suit the needs of the 

system.  This tuning is explained and discussed further in the next chapter.  

The INS calculations, with the exception of the integration of the attitudes, are 

discussed in detail in section 3.3.1.  Again, the integration of the attitudes was neglected 

for this method since the vertical gyros attitude values were used.  This allows the INS 

calculations to begin at equation (3-24) with the DCM being calculated using the vertical 

gyro’s attitudes.   
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With the data preprocessing and initialization complete, the Kalman filter can be 

implemented to improve the position and velocity data.  Figure 4.8 illustrates a block 

diagram of the data flow throughout the filter resulting in the corrected data. 
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Figure 4.8: Block Diagram of a GPS Aided INS/Vertical Gyro 

  

 With the INS calculations, GPS, and vertical gyro data already discussed, the 

focus shifts to combining the data from the three sources in the proper manner so that the 

filter is implemented correctly.  With the initial values set, the “prediction” step of the 

Kalman filtering process can be conducted in which the a priori covariance matrix and 

new state estimates are obtained.  Revisiting Figure 3.13 and tailoring these equations to 

this specific application; Table 4-4 is constructed which distinctly defines each 

expression in the filtering process. 

Table 4-4: "Prediction" Equations (Method I) 
 Nomenclature Symbol Matrix 

Size Values 

1) Project the State Ahead 

1ˆ ˆk k k kx x B u−
+ = Φ ⋅ + ⋅  System States 1ˆ ˆ,k kx x−

+  6x1 
,3 1
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k x

k x

x
v

⎡ ⎤
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2) Project the Error Covariance 
Ahead 

1
T

k k k kP P− +
+ = Φ Φ + kQ  

Error 
Covariance 

Matrix 
1,k kP P− +

+  6x6 ( )6 6xdiag X⎡ ⎤⎣ ⎦  

  

 At this point the “correction” step was calculated in which the Kalman gain, Eq. 

(3-43), state corrections, Eq. (3-45), and a posteriori covariance matrix, Eq. (3-47), were 

calculated.  Table 4-5 was constructed which distinctly defines each expression 

“Correction” portion of the filtering process. 

Table 4-5: "Correction" Equations (Method I) 
 Nomenclature Symbol Matrix 

Size Values 
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Matrix 
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2) Update Estimate with  
Measurement “z” 
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3) Update the Error Covariance: 
( )1 6 6k x k kP I K H P+

+ += − 1k
−  
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Matrix 
1,k kP P− +
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Kalman Gain kK  6x6 [ ]6 6xX   
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Further describing the previous table, the state correction contains the observation 

vector (z), predicted observation vector ( ˆk kH x− ), and the Kalman gain matrix (K). The 

observation vector was a 6x1 matrix that is composed of the GPS values for position and 

velocity while the 6x1 predicted observation vector was composed of the INS values for 

the position and velocity. The observation vector and predicted observation vector were 

then differenced to make up the residual in Eq. (3-45), which then gets multiplied by the 

Kalman gain and summed with the state estimate to produce the filtered results.  The 

updated state vector was then fed back into the INS computation to predict the next 

increment. 

At this point, all of the parameters, inputs, and expressions needed for the filtering 

process have been well defined and the simulation was coded in Matlab®.  As described 

in section 4.2.2, the IMU and GPS data is obtained at 40 and 20 Hz respectively, meaning 

that filtering will occur every other reading obtained from the IMU, which is illustrated 

graphically in Figure 4.9.  
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Figure 4.9: Filter Process Sequence 

4.2.3.2. Fusion of IMU/GPS Data Using GPS Attitude Estimates 

This second method fuses the GPS position and velocity/GPS estimated attitudes 

with the INS position, velocity, and attitude.  There are two main differences from the 

previous method, which now entail the calculation of the non-linear kinematic equations 

to determine the aircraft attitude, which also forces the need for the EKF and the 

estimation of the GPS attitudes discussed in Section 3.4.  This is the first implementation 

in which the vertical gyro is eliminated and the navigation system relies solely on the 

extended Kalman filter to correct for the attitude drift.   

In addition to the first two functions conducted in the first method, this second method 

also entails:  

 

1) Data Preprocessing (From Method I) 

2) INS Calculations (From Method I) 

3) Attitude Integration and Linearization 

4) GPS Attitude Estimation  

5) Extended Kalman Filter Implementation.   

Most of the data preprocessing and parameter initialization remains consistent from the 

first method; the major differences for the implementation are the addition of the 

nonlinear calculations of the attitudes in the EKF, the estimation of the model/input 
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covariance matrix (Q), and the addition of the GPS attitude variance values to the 

measurement covariance matrix which is depicted graphically in Figure 4.10. 

Gyroscope

Accelerometer

IMU

(ax, ay, az)body

p, q, r Euler Angle
Integration

Direction
Cosine Matrix

(DCM)

(axayaz)nav

 φ θ ϕ

GPS

Position
Velocity

Position
Velocity

p
v

δ
δ

Position/
Velocity

Integration

Position
Velocity

GPS Attitude
Calculation

Kalman Filter

δΨ

 
Figure 4.10: Block Diagram for the GPS Aided INS System 

  

 With the addition of the GPS attitude in the observation vector, z, the measurement 

covariance matrix, R, gets expanded from the 6x6 diagonal matrix composed of the 

position and velocity covariance to a 9x9 diagonal matrix composed of the position, 

velocity, and attitude.    
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  The process for estimating the model/input covariance matrix was conducted the 

same way as to determine the values for measurement covariance matrix.  For the 

model/input covariance matrix, the variance of the IMU raw accelerometer and angular 

rate data is used for the diagonal as seen below: 
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  The addition of the INS attitude creates two major changes to the software 

algorithm; first, to project the state ahead, the nonlinear aircraft kinematic equations are 

used, while secondly, the aircraft kinematic equation’s Jacobian matrix of partial 

derivates from Equation (3-19) is inserted into the state transition matrix for use in the 

calculation of the a priori error covariance matrix.  Table 4-6 shows the “Prediction” 

calculations used for this method in which the determination of the state vector and 

Jacobian matrix was discussed in detail in Section 3.3.2.    
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Table 4-6: "Prediction" Equations (Method II) 
 

1) Project the State Ahead 
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Nomenclature Symbol Matrix 
Size Values 

STM kΦ  9x9 
3 3 3 3 3 3

3 3 3 3 3 3

3 3 3 3 ,3 3

0
0 0
0 0

x x x

x x x

x x

I I dt
I

JΨ

⎡ ⎤⋅
⎢ ⎥
⎢ ⎥
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Model/Input 
Covariance 

Matrix 
kQ  9x9 

3 3 3 3 3 3
2

3 3 ,3 3 3 3
2

3 3 3 3 ,3 3

0 0 0

0 ( ) 0

0 0 (

x x x

x v x x

x x x

diag

diag ψ

σ

σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
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2) Project the Error Covariance 
Ahead 

)

 

1
T

k k k kP P− +
+ = Φ Φ + kQ  

Error 
Covariance 

Matrix 
1,k kP P− +

+  9x9 
( )6 6 6 3

3 3 3 3

0
0

x x

x x

diag X
X

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

  

The resulting “Correction” calculations seen in Table 4-7 are similar to that of the 

previous method with the exception that the GPS attitude was added to the GPS 

observation vector, z, and the change in the size of each matrix to accommodate the 

additional three components of the attitude.  The new observation vector was a 9x1 

matrix that is composed of the GPS values for position, velocity, and attitude while the 

9x1 predicted observation vector was composed of the INS values for the position, 

velocity, and attitude.  The following table shows the “Correction” calculations including 

a detailed description. 

 

 

Table 4-7: "Correction" Equations (Method II) 
 Nomenclature Symbol Matrix 

Size Values 

1) Compute the Kalman Gain Observation 
Matrix kH  9x9 [ ]9 9xI  
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Error 
Covariance 

Matrix 
1kP−

+  9x9 
( )6 6 6 3

3 3 3 3

0
0

x x

x x

diag X
X

⎡ ⎤
⎢ ⎥
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Measurement 
Covariance 

Matrix 
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2
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2
,3 3

2
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( ) 0 03 3 3 3
0 ( ) 03 3 3 3
0 0 (3 3 3 3

r x

v x

x

diag x x
diagx x

diagx x

σ
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1

1 1
T T
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Kalman Gain kK  9x9 [ ]9 9xX  

 

System States 1ˆ ˆ,k kx x−
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,3 1

,3 1

,3 1

k x

k x

k x

x
v

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥Ψ⎣ ⎦

 

GPS 
Observation 

Vector 
kz  9x1 

,3 1

,3 1

,3 1

k x

k x

k x

x
v

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥Ψ⎣ ⎦

 

Observation 
Matrix kH  9x9 [ ]9 9xI  

2) Update Estimate with 
Measurement “z” 
� ( )ˆ ˆkk k k k kx x K z H x

− −= + −  

Error 
Covariance 

Matrix 
1,k kP P− +

+  9x9 
( )6 6 6 3

3 3 3 3

0
0

x x

x x

diag X
X

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

Kalman Gain kK  9x9 [ ]9 9xX  

Observation 
Matrix kH  9x9 [ ]9 9xI  3) Update the Error Covariance 

( )1 6 6k x k kP I K H P+ −
+ += − 1k  Error 

Covariance 
Matrix 

1kP−
+  9x9 

( )6 6 6 3

3 3 3 3

0
0

x x

x x

diag X
X

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 

At this point, all of the parameters, inputs, and expressions needed for the filtering 

process have been well defined and the simulation was coded in Matlab®.  As described 

in the previous section, the IMU and GPS data was again obtained at 40 and 20 Hz 

respectively, meaning that the filtering occurred every other measurement obtained from 

the IMU.  

4.2.3.3. Fusion of IMU/GPS data  

The third method directly corrects the position and velocity within the Kalman 

filter algorithm, and indirectly corrects the attitudes since they directly map to the 

position and velocity through the direction cosine matrix.  This method compensates for 

the Euler angle errors by incorporating the DCM into the system matrix instead of 

converting the acceleration to the local axis prior to the filtering process, which is the 

only link between the GPS data and the IMU angular rate data.  Without having the DCM 
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in the system matrix or a measurement value for the residual, no compensation can occur 

within the filter.  With this said, the third method required the following changes to be 

made in the formulation of the simulation algorithm: 

1. Data Preprocessing (From Method I & II) 

2. INS Calculations (From Method II) 

3. Attitude Integration and Linearization (From Method II) 

4. DCM Linearization 

5. Extended Kalman Filter Implementation 

Elements from the data preprocessing and parameter initialization remain consistent from 

the first two methods, although with the removal of the GPS attitude estimates, the 

measurement covariance matrix, R, resort back to the matrix used in method I, while the 

system/input covariance matrix, Q, is the same as method II. 

Gyroscope

Accelerometer

IMU

(ax, ay, az)body

p, q, r Euler Angle
Integration

Direction
Cosine Matrix

(DCM)

(axayaz)nav

 φ θ ϕ

Position/
Velocity

Integration

GPS Kalman FilterPosition, Velocity

Position
Velocity

Position
Velocity

p
v

δ
δ

δΨ

 
Figure 4.11: Block Diagram for the GPS/INS System (Method III) 

  

To further elaborate on the introduction, if the STM is only made up of the 

position, velocity, and kinematic equations, the error covariance matrix will take on the 

form depicted at point A in Figure 4.12 below.  This value is then input into the Kalman 
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gain calculation in which the gain turns out to be a 9x6 matrix with the bottom three rows 

being zeros, as seen at point B.  These bottom three rows of the gain matrix make up the 

gain associated with the attitude, causing there to be no correction to the estimated 

attitude states, resulting in the final output at point C. (NOTE: Positions within Figure 

4.12 containing the character ‘X’ represent any real number.) 
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Figure 4.12: Kalman Process Diagram 

  

With further inspection of Figure 4.12, to be able to obtain a gain within the 

bottom three rows at B, it is obvious that there are only two options.  The first is to have 

an additional measurement value (e.g. GPS attitude estimate as used for the previous 

section) so that the observation matrix, (H, point D), becomes a 9x9 matrix, allowing the 

Kalman gain to correct for all of the states.   

The second option is to generate nonzero values for the first two rows of the third 

column in the state transition matrix, which would then allow nonzero values to be 

obtained in the error covariance matrix (point E).  This is achieved by placing the DCM 

directly into the second row, third column of the STM so that the error associated with 

the rotation from the body axis to the local tangent frame can be estimated by the gain.  

Since the calculation of the DCM is nonlinear, a Taylor series approximation is now 

required for the velocity states in a similar fashion to the linearization of the aircraft 
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kinematic equations.  Only the Jacobian approximation for the system matrix is displayed 

due to the fact that the linearized input matrix is not utilized in the filtering process.  Also 

keep in mind that the error associated with the hot’s is neglected. 

( ), ,

f f f

f f f
J

f f f

δ θ δ φ δ ϕ

δφ δθ δϕ

δ θ δ φ δ ϕ
φ θ ϕ

δφ δθ δϕ
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δφ δθ δϕ
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( ) ( ) (
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(4-3) 

 After substituting the DCM Jacobian matrix into the state transition matrix the 

error covariance matrix takes in the form seen at point A in Figure 4.13.  This in turn 

allows for the attitude error to be estimated in the bottom three rows of the Kalman gain 

as seen at point B. 
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Figure 4.13: Kalman Process Diagram II 
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The “prediction” equations and descriptions shown in Table 4-8 are very similar 

to that of the method II with the exception of the addition of the Jacobian matrix to the 

state transition matrix. 

Table 4-8: "Prediction" Equations (Method III) 
1) Project the State Ahead 

3 1, 1 3 3 3 3 3 3
3 1

3 1, 1 3 3 3 3 3 3

0
0

x k x x k x nav
x

x k x x k x

x I I dt x
a

v I v I dt
+

+

⋅⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤= ⋅ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⋅ ⎣ ⎦⋅⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 

( )1= p +q sin( ) tan( )+r cos( ) tan( )k k k k k k k k k dtφ φ φ θ φ θ+ + ⋅ ⋅ ⋅ ⋅ ⋅  

( )1= q cos ( )-r sin( )k k k k k k k dtθ θ φ φ+ + ⋅ ⋅ ⋅  

( )( )1 1= sin( )+r cos( ) sec( )k k k k k k kq dtψ ψ φ φ θ+ + + ⋅ ⋅ ⋅ ⋅  

�
3 1, 1 3 1, 1 1 1 1[ , , , ,k x k x k k k kx x v φ θ ϕ

−
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Nomenclature  Symbol Matrix 
Size Values 

STM kΦ  9x9 
3 3 3 3 3 3

3 3 3 3 ,3 3

3 3 3 3 ,3 3

0
0
0 0

x x x

x x DCM x
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I I dt
I J

JΨ
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⎢ ⎥
⎢ ⎥
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Model/Input 
Covariance 

Matrix 
kQ  9x9 

3 3 3 3 3 3
2

3 3 ,3 3 3 3
2

3 3 3 3 ,3 3

0 0 0

0 ( ) 0
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x x x

x v x x
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diag

diag ψ

σ
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2) Project the Error 
Covariance Ahead 

1
T

k k k kP P− +
+ = Φ Φ + kQ  

Error 
Covariance 

Matrix 
1,k kP P− +

+  9x9 

( )
( )

3 3 3 3 3 3

3 3 3 3 3 3

3 3 3 3 3 3

0 0
0
0 0

x x

x x

x x

diag X
diag X X

X

x

x

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

  

The alterations to the “correction” calculations involved the removal of the GPS 

estimated attitude values from the GPS measurement value, z, and the measurement 

covariance matrix was reverted back to the 6x6 matrix used in method I.  The 

“correction” calculations and descriptions can be seen in the following table. 

Table 4-9: "Correction" Equations (Method III) 

Observation 
Matrix kH  6x9 3 3 3 3 3 3

3 3 3 3 3 3

0 0
0 0

x x x

x x x

I
I
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⎣ ⎦

 
1) Compute the Kalman Gain 
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Measurement 
Covariance 
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2) Update Estimate with Measurement 
“z” 

� ( )ˆ ˆkk k k k kx x K z H x
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Error 
Covariance 
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diag X
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3) Update the Error Covariance 

Kalman Gain kK  9x6 [ ]9 6xX  ( )1 6 6k x k kP I K H P+ −
+ += − 1k  

Observation 
Matrix kH  6x9 3 3 3 3 3 3

3 3 3 3 3 3

0 0
0 0

x x x

x x x

I
I

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 

At this point, all of the parameters, inputs, and expressions needed for the filtering 

process have been well defined and the simulation was coded in Matlab®.  As described 

in the previous section, the IMU and GPS data was again obtained at 40 and 20 Hz 

respectively, meaning that the filtering occurred every other measurement obtained from 

the IMU. 

4.2.3.4. Combination of Method II/Method III 

The fourth and final method for this research project is simply the combination of the 

second and third methods in which the estimated GPS attitude is used along with the 

insertion of the linearized DCM into the system model.  No additional alterations were 

required to the model or algorithm, just the manipulation of the Matlab® code to combine 

the two methods that is depicted graphically in Figure 4.14. 
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Figure 4.14: Block Diagram GPS Aided Attitude/DCM System 

 

The “prediction” equations and descriptions shown in Table 4-10 are the 

combination of method II and III’s “prediction” equations.  As seen from the table, the 

matrix dimensions are for a full state INS system (nine states), although the position and 

heading angle could be removed allowing for a five state model.  Unlike method II which 

could be reduced to two states, this method requires at least five states since the DCM is 

integrated into the system, as discussed in the previous section. 
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Table 4-10: "Prediction" Equations (Method IV) 
1) Project the State Ahead 
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 The “correction” calculations also involved the combination of the two methods 

causing the GPS measurement value, z, and the measurement covariance matrix, R, to 

once again to revert back to a 9x1 and a 9x9 matrix used in method II.  The “correction” 

calculations and descriptions can be seen in the following table. 

Table 4-11: "Correction" Equations (Method IV) 
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2) Update Estimate with Measurement 
“z” 
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Kalman Gain kK  9x9 [ ]9 9xX  

3) Update the Error Covariance 
( )1 6 6k x k kP I K H P+ −

+ += − 1k  

Observation 
Matrix kH  9x9 [ ]9 9xI  

At this point, all of the parameters, inputs, and expressions needed for the filtering 

process have been well defined and the simulation was coded in Matlab®.  
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Chapter 5. Simulation Results and Discussion 

5.1. Introduction 

This section discusses the simulation results from the fusion of the INS/GPS 

navigation estimates from the formation flight data. As discussed in the introduction, the 

simulations were conducted using actual flight data recorded from the WVU formation 

flight tests, each flights consisted of 900 seconds of flight data including sensor 

initialization, take-off, flight, and landing within that time frame.  This real world data is 

susceptible to noise and error, as noted earlier, the GPS’s main signal deterioration is due 

to periods of high bank angles, while the IMU obtains additional noise disturbance (e.g., 

engine vibration, electrical interference) all of which cannot be sufficiently duplicated 

and simulated within a controlled lab environment. This increases the validity of the 

results, proving that sensor fusion techniques can achieve a level of performance 

sufficient for real world UAV control applications. 

Each of the four methods were simulated, evaluated, and discussed throughout 

this section so that it can be seen how the alteration of various parameters can affect the 

precision and effectiveness of the filter in each of the various implementations and 

applications while also showing that sensor fusion is an effective way of reducing error 

within the aircraft components. 

The first method discussed in Section 4.2.3.1 improved the position and velocity 

with the use of the GPS, INS, and Vertical Gyro.  While this method does not provide 

any reduction to the cost, weight, and power consumption of the aircraft, it does however 

show a significant reduction in the drifting error from the INS system and removes the 

caused errors in the GPS data.   

Simulation results from the second method utilized GPS attitude estimation values 

in the filter as discussed in Section 4.2.3.2, where the GPS attitude values allowed there 

to be three measurement values to correct for the three states.  With this being the first 

implementation of the EKF, it begins to show the power of the Kalman filter by taking 

two attitude estimates, both with large, but different errors and generates a significant 

increase in position, velocity, and attitude position. 
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The third method used only the position and velocity as the measurement values 

to correct the position, velocity, and attitude as discussed in Section 4.2.3.3.  This section 

presents and discusses the results from how the EKF can correct for errors in states that 

do not have an actual measurement value to be differenced in the residual of the filter. 

For each method described throughout Section 4.2 the initial simulations were 

conducted using an initial data set in which the filter’s covariance matrix was tuned to 

produce the optimal performance.  This tuning is discussed in the next section, which 

shows how the alterations of the various covariance matrices affect the filters 

performance.  Table 5-1 represents the series of tests used to evaluate the performance of 

the filter for each respective method. 

Table 5-1: Test Descriptions 
Test Number Data Set Description 

Test 1 Initial Data Set 

Test 2 Validation Data Set 1 

Test 3 Validation Data Set 2 

  

The position and velocity data from both the INS and GPS have an error 

associated with it meaning that there is no “actual” position and velocity data for an error 

analysis, although the GPS data has a level of accuracy high enough for a comparison 

with the INS data.  One can easily see with visual inspection of both the position and 

velocity the errors associated with both the GPS and INS data.  The following plots 

depict the position errors coupled with the INS and GPS. 
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Figure 5.1: GPS Position 
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Figure 5.2: GPS Position (Magnified) 
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Figure 5.3: INS Position 
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Figure 5.4: INS Position (Magnified) 

  

These next plot contrasts the INS and GPS velocity against one another.  The 

error in the INS velocity is quite evident while it’s hard to distinguish between the errors 

in the GPS data.   
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Figure 5.5: INS Data vs. GPS Velocity 

 

The attitude values determined with the vertical gyro are at a level of precision 

high enough that they can be considered as the “actual” attitude values.  With this being 

said, a more in-depth error analysis can be conducted on the filtered attitude data.  The 

initial INS attitude values were shown in Chapter 3, although they are reiterated in Figure 
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5.6 along with the error of the INS data over the dynamic response of the aircraft seen in 

Figure 5.7  
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The mean error and standard deviation from the vertical gyro values can be seen 

in Table 5-2 below, in which these values will be used later to determine how much 

correction has taken place throughout the filtering process. 

Table 5-2:  INS Error Analysis 
Roll Angle Pitch Angle  

Standard 
Deviation (rad) MSE RMSE Standard 

Deviation (rad) MSE RMSE

Initial Data 0.0502 0.0083 0.0911 0.0486 0.0087 0.0935 
Validation 
Data Set 1 0.2019 0.1252 0.3539 0.2139 0.1414 0.3760 

Validation 
Data Set 2 0.2851 0.1137 0.3372 0.2356 0.0712 0.2669 

5.2. GPS/IMU/Vertical Gyro Sensor Fusion Simulation Results 

Within the context of this section, the actual benefit of the additional time and 

effort put forth to implement a Kalman filter in a navigation system algorithm can be 

clearly seen, even in the event where all of the necessary sensors are available to sustain 

autonomous control algorithms.  If the system has the available computation power to 

add a filter, it is possible to further increase the precision of the data.  Although the GPS 

provided sufficient position information for the formation fight program, the addition of 

the Kalman filter creates a considerable increase in data quality during times of GPS 
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degradation.  For the application simulated and compared in this thesis, the GPS and INS 

position and velocity of the aircraft from Section 4.2.3.1 are corrected, but this 

application could also be used in a wide range of applications, such as automobiles 

equipped with navigation systems, in which the GPS data obtained in the navigation 

system could be fused with that of the automobiles speed sensor allowing position and 

velocity information during times of GPS loss of signal (e.g. tunnels, thick foliage).   

The main discussion for this method depicts how the alteration of the 

measurement and model/input covariance matrices directly influence the simulation 

results.  As a starting point, the measurement covariance matrix, R, was set as the 

variance of the GPS position and velocity during a period when the vehicle was in a 

steady state period.  Similarly the velocity positions in the diagonal of the model/input 

covariance matrix, Q, were set as the variance of the IMU’s accelerometer during a 

steady state period.  Again reiterating the point from Section 4.2.3.1 in which the position 

values in the diagonal were intentionally set to zero due to the fact that the position is a 

direct integration of the velocity.  These initial values returned the following response, 

seen in Figure 5.8 and Figure 5.9, in regards to the velocity. 
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Figure 5.8: GPS vs. GPS-INS Velocity Plot (6 
State) 
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Figure 5.9: GPS vs. GPS-INS Velocity Plot 
(Magnified – 6 State) 

 

The simulation was also conducted with the accelerometer variance replacing the zero 

values in the position locations within the diagonal of the model/input covariance matrix, 

in which the results were degraded when compared to the simulation results of when the 

position values of the covariance matrix were set to zero. 
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Although the velocity plots seem to perfectly mimic the GPS data, the actual 

correction can be seen when the filtered position data is plotted against the GPS data.  

Although there is no direct correction to the position from the model/input covariance 

matrix, the measurement covariance matrix reduces the error induced from the GPS 

values.  These values are important for two reasons; firstly, without the variance values in 

the diagonal of the measurement covariance matrix, the noise from the GPS position 

wouldn’t get estimated and removed from the GPS-INS filtered data, and more 

importantly, each state must have some sort of error modeling in one of the two 

covariance matrices or the error covariance matrix, P, will not be full rank driving the 

system to be singular.  In other words, if there is no value in either of the model or 

measurement covariance matrices, that aspect of the system cannot be considered as a 

state in the filter.  In Figure 5.10 and Figure 5.11 below it can now be clearly seen how 

well the filter has removed the drift from the INS while also removing the error from the 

GPS.  Keep in mind that the INS’s contribution to the position is the integration of the 

filtered velocity, while the GPS position error is modeled and removed from the system. 
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Figure 5.10: GPS vs. GPS-INS Data Position 
Plot (6 State) 
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Figure 5.11: GPS vs. GPS-INS Data Position Plot 
(Magnified - 6 State) 

 

 If computation power is limited, the filter could also be reduced to a three state 

filter in which only the velocity is filtered, eliminating the position as a state within the 

filter.  In this case the position would only be a direct integration of the velocity values 

and would still incorporate the GPS errors, which produces only a small contribution to 

the overall error in comparison to the INS drift error.  The following plots represent the 
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position of the three state filter in which a obvious increase in performance is still 

evident.  
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Figure 5.12: GPS vs. Filtered Data Position Plot 
(3 State) 
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Figure 5.13: GPS vs. Filtered Data Position Plot 
(Magnified - 3 State) 

  

As noted earlier the previous simulations utilized the model and measurement 

covariance values determined in Section 4.2.3.1, which was discussed, that varying these 

values could greatly affect the performance of the filter.  The next few paragraphs will 

show the various affects and trends that occur from varying the model/input covariance 

matrix.   

Again referencing back to Section 4.2.3.1, if the values in the model/system 

covariance were decreased so that the value was approaching zero, the system would put 

more weight on the INS estimated values, therefore more drifting error from the IMU 

data would be present in the output.  This can be better visualized by viewing the Kalman 

gain calculation as a scalar, shown below: 

2

HPK
H P R

=
+

 (5-1) 

 To further elaborate on the scalar equation above, three possible scenarios are 

discussed to show how the dynamics of the filter respond when the main components are 

altered.  The first case is when the error covariance matrix (P) is considerably lower than 

that of the measurement covariance matrix (R).  This in turn causes the Kalman gain to 

increase, meaning that there is little error in the system, and the estimated states will be 

utilized. 
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 The second method discussed is when the measurement covariance matrix is 

considerably greater than that of the error covariance matrix, which means that the 

measurement value has a considerable amount of error (in relation to the error covariance 

matrix), which once again causes the system estimate to be weighted more heavily. 

By decreasing the error covariance matrix by a factor of ten over four simulations, 

the dynamics of the first two cases can better be visualized.  One can see how the system 

begins to incorporate the drift error back into the filter output in the following figures. 

 

200 300 400 500 600 700 800 900
0 

100 
200 
300 
400 
500 
600 
700 
800 

N
or

th
 C

om
po

ne
nt

, m
 

East Component, m 

GPS
GPS-INS Data

Figure 5.14: GPS vs. GPS-INS Data Position 
Plot (.1P) 
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Figure 5.15: GPS vs. GPS-INS Data Position 
Plot (.01P) 
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Figure 5.16: GPS vs. GPS-INS Data Position 
Plot (.001P) 
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Figure 5.17: GPS vs. GPS-INS Data Position 
Plot (.0001P) 

 

The final case discussed is when the covariance matrix is considerably greater 

than the measurement covariance matrix, in which the measurement covariance matrix 
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can then be ignored (more weight on the measurement value) leaving only the GPS 

measurement value as seen in equation (5-2). 

( )2

1 1ˆ ˆ ˆHP zK x x z H
H P H H H

= = ⇒ = + − =x (5-2)  

Therefore, as the covariance approaches infinity, the system would closer mimic the GPS 

values until the point where only GPS position and velocity is utilized and the INS is 

neglected.  After the initial system has been established these values can be adjusted to 

suit the needs of the system.  This tuning is explained and discussed further in the next 

chapter.    

5.3. GPS/GPS Attitude/IMU Sensor Fusion Simulation Results 

The ability of having all of the sensors needed to sustain autonomous flight is a 

luxury that may not always be possible within the scope of UAVs or MAVs.  As to 

compensate for the lack of precise information, the available sensor data is combined to 

generate the level of precision needed.  This section begins to show that the aircraft 

attitude can be corrected without the use of the vertical gyro through the use of the EKF.  

The simulation data discussed in the following paragraphs is the position, velocity, and 

attitude from the calculations described in Section 4.2.3.2 in which the GPS estimated 

attitude was used as a measurement value in the residual of the filter. 

The following simulation is composed of nine states, in which a detailed error 

analysis will be conducted on the attitude corrections.  Prior to the attitude discussion, the 

position and velocity is first shown in the following plots to show that there is no loss of 

quality to the data from the previous method.  
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Figure 5.18: GPS vs. GPS-INS Data Velocity 
Plot (Method II) 
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Figure 5.19: GPS vs. GPS-INS Data Position 
Plot (Method II) 

 

The figures below compare the roll and pitch angles between the vertical gyro, 

filtered, and INS data along with magnified view so the one can see the actual reduction 

in error between the data sources.  By visual inspection alone there is a clear decrease in 

error from the INS data and INS/GPS filtered data, in which the following paragraphs, 

tables, and figures further elaborate on the error numerically. 
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Figure 5.20: Vertical Gyro/INS Data/GPS-INS 
Filtered Data Roll Angle Comparison (Method 

II) 
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Figure 5.22: Vertical Gyro/INS Data/GPS-INS 
Filtered Data Roll Angle Comparison (Method 
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Figure 5.23: Vertical Gyro/INS Data/GPS-INS 

Filtered Data Roll Angle Comparison 
(Magnified - Method II) 

 

Table 5-3 below compares the standard deviation (STD), mean squared error 

(MSE), and the root mean squared error (RMSE) between the GPS-INS filtered output 

and the INS roll and pitch values.  As seen from the table, considerable improvement is 

achieved for each error calculation in which the roll standard deviation, MSE, and RMSE 

were each decreased by 0.0271, 0.0069, and 0.0536 from the raw INS integration.  The 

pitch STD, MSE, and RMSE was also decreased by 0.0232, 0.0073, and 0.0561 from the 

raw INS integration.   

Table 5-3: Method II Attitude Error Analysis (Initial Data Set) 
Roll Angle Pitch Angle  

STD (rad) MSE RMSE STD (rad) MSE RMSE 
INS-GPS Data (9 

State) 0.0231 0.0014 0.0375 0.0254 0.0014 0.0374 Initial 
Data 

INS Data 0.0502 0.0083 0.0911 0.0486 0.0087 0.0935 
 

To test the validity of the filter, two additional validation data test sets were 

simulated.  The purpose of these additional data sets are to show that the filter hasn’t 

been specifically tuned for this exact data set and that the it is capable of producing 

similar results under varying dynamic disturbances.  The additional data sets simulated 

were obtained from the same aircraft and sensor configuration.  Since the main focus of 

this research topic is to produce accurate aircraft attitude values equivalent to that of the 

vertical gyro, the position and velocity plots will be neglected during the evaluation of 

the validation data. 
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Table 5-4 shows the error calculations after the first validation data set was 

simulated along with the initial data set for comparison purposes.  As seen from the table, 

the second validation set also improved the raw INS data; in fact, the filter actually 

posted a higher level of error reduction from the initial data set.  The roll STD, MSE, and 

RMSE were each decreased by 0.1562, 0.1221 and 0.2949.  The pitch STD, MSE, and 

RMSE was also decreased by 0.1581, 0.1370, and 0.3098.  

Table 5-4: Method II- Attiude Error Analysis (Validation Data Set 1) 
Roll Angle Pitch Angle  

STD (rad) MSE RMSE STD (rad) MSE RMSE 
INS-GPS Data 

(9 State) 0.0231 0.0014 0.0375 0.0254 0.0014 0.0374 Initial 
Data 

INS Data 0.0502 0.0083 0.0911 0.0486 0.0087 0.0935 
INS-GPS Data 

(9 State) 0.0457 0.0031 0.0590 0.0558 0.0044 0.0662 Validation 
Data Set 1 

INS Data 0.2019 0.1252 0.3539 0.2139 0.1414 0.3760 
 

Table 5-5 shows the error a calculation after the second validation data set was 

simulated along with the initial data and first validation sets for comparison purposes.  As 

seen in the table, the second validation set produced results that improve the roll and 

pitch angles comparable to that of the first two sets simulated.  

Table 5-5: Method II Attitude Error Analysis (Validation Data Set 2) 
Roll Angle Pitch Angle  

STD  (rad) MSE RMSE STD (rad) MSE RMSE 
INS-GPS Data 

(9 State) 0.0231 0.0014 0.0375 0.0254 0.0014 0.0374 Initial 
Data 

INS Data 0.0502 0.0083 0.0911 0.0486 0.0087 0.0935 
INS-GPS Data 

(9 State) 0.0457 0.0031 0.0590 0.0558 0.0044 0.0662 Validation 
Data Set 1 

INS Data 0.2019 0.1252 0.3539 0.2139 0.1414 0.3760 
INS-GPS Data 

(9 State) 0.0718 0.0090 0.0946 0.0580 0.0078 0.0884 Validation 
Data Set 2 

INS Data 0.2851 0.1137 0.3372 0.2356 0.0712 0.2669 
 

The actual error between the GPS-INS filtered data/Vertical Gyro and the 

INS/Vertical Gyro was calculated at each dynamic measurement as depicted in Figure 

5.24.   
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Figure 5.24: Validation Data Set 2 - Roll and Pitch Actual Error (Method II) 

 

This analysis was conducted to show that even though the standard deviation 

MSE, and the RMSE decreased as a whole, the first 450 seconds of the pitch angle was 

actually better before the filtering process.  The numbers are inflated due to the final 150 

seconds of the simulation in which there is a large amount of error in the INS data. This 

is due to the fact that the filter induces additional error in the system during periods when 

there is little or no error in the system prior to filtering, for the filter always assumes there 

is some error due to the modeling of the system covariance matrix, Q.  Although only 

three sets of data are simulated in this report, many data sets were tested in which this is 

the only case in which this occurrence was observed. 

5.3.1. Method II – Two-State Filter 

As stated earlier the previous simulation was composed of nine states, although 

similar to the previous section, the number of states in this system could also be reduced 

in the case that there is a need to conserve computation power.  Given that each state has 

a measurement value associated with it within the residual, meaning the observation 

matrix, H, is of full rank, the number of states could be reduced to as few as two.  In 

which the two remaining states within the filter are roll and pitch angle, while the heading 

angle is determined with the use of the ‘east’ and ‘north’ GPS velocity vector.  
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The following figures compare the three data sources in which the two-state filter 

was implemented to filter the roll and pitch angle.  Upon visual inspection of the plots, 

one can see that the two-state filter produces results comparable to that of the nine-state 

filter and could be very effective in small UAVs or MAVs. 
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Figure 5.25: Vertical Gyro/INS Data/GPS-INS 
Filtered Data Roll Angle Comparison  

(Method II – 2 State Fitler) 
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Figure 5.26: Vertical Gyro/INS Data/GPS-INS 
Filtered Data Roll Angle Comparison 

(Magnified - Method II – 2 State Filter) 
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Figure 5.27: Vertical Gyro/INS Data/GPS-INS 
Filtered Data Pitch Angle Comparison  

(Method II – 2 State Fitler) 
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Figure 5.28: Vertical Gyro/INS Data/GPS-INS 
Filtered Data Pitch Angle Comparison 
(Magnified - Method II - 2 State Filter) 

 

Table 5-6 shows the error calculations from the two-state system, such that all 

three simulated data sets where contrasted against one another.  Similar to the nine-state 

filter, the two-state filter also posted a significant decrease in error which proves to be 

useful in the situation where there is limited computational ability. 
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Table 5-6: Method II Attitude Error Analysis (2 State) 
Roll Angle Pitch Angle  

STD (rad) MSE RMSE STD (rad) MSE RMSE 
INS-GPS 

Data 
(2 State) 

0.0198 0.0015 0.0387 0.0248 0.0016 0.0404 Initial Data 

INS Data 0.0502 0.0083 0.0911 0.0486 0.0087 0.0935 
INS-GPS 

Data 
(2 State) 

0.0452 0.0064 0.0801 0.0547 0.0091 0.0953 Validation Data 
Set 1 

INS Data 0.2019 0.1252 0.3539 0.2139 0.1414 0.3760 
INS-GPS 

Data 
(2 State) 

0.0720 0.0211 0.1454 0.0608 0.0105 0.1026 Validation Data 
Set 2 

INS Data 0.2851 0.1137 0.3372 0.2356 0.0712 0.2669 
 

Due to the repetitive nature of the validation data sets, the remaining results and error 

analysis can be found in Appendix A, although Table 5-7 be was constructed to compare 

the full-state INS with the two-state INS. 

Table 5-7: Method II Data Comparison 
Roll Angle Pitch Angle  

STD (rad) MSE RMSE STD (rad) MSE RMSE 
INS-GPS Data 

(9 State) 0.0231 0.0014 0.0375 0.0254 0.0014 0.0374 

INS-GPS Data 
(2 State) 0.0198 0.0015 0.0387 0.0248 0.0016 0.0404 

Initial Data 

INS Data 0.0502 0.0083 0.0911 0.0486 0.0087 0.0935 
INS-GPS Data 

(9 State) 0.0457 0.0031 0.0590 0.0558 0.0044 0.0662 

INS-GPS Data 
(2 State) 0.0452 0.0064 0.0801 0.0547 0.0091 0.0953 

Validation 
Data Set 1 

INS Data 0.2019 0.1252 0.3539 0.2139 0.1414 0.3760 
INS-GPS Data 

(9 State) 0.0718 0.0090 0.0946 0.0580 0.0078 0.0884 

INS-GPS Data 
(2 State) 0.0720 0.0211 0.1454 0.0608 0.0105 0.1026 

Validation 
Data Set 2 

INS Data 0.2851 0.1137 0.3372 0.2356 0.0712 0.2669 
 

As seen from the table, the initial data set showed nearly the same reduction in error 

between the two and nine-state filters.  By then contrasting the MSE and RMSE of the 

two validation sets, it can be inferred that the nine-state filter generates slightly better 

results, although the STD reduction is consistently the same over all of the data sets.  By 

removing the additional states for the two-state filter, the position, velocity, and heading 
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correction is removed, causing a slight reduction in the two-state filter’s performance, 

which is evident from the previous table.   

It can also be stated that the filter proved to remain effective with only one of the 

GPS estimated attitude values used within the filtering algorithm.  Since the roll and pitch 

are coupled in the state transition matrix, as discussed in Section 4.2.3.3, only one value 

is needed in the measurement covariance matrix so that the noise can be reduced in the 

system. 

5.4. GPS/IMU Sensor Fusion Simulation Results 

The third method utilizes the GPS and IMU data to improve the attitude values 

without the use of the GPS attitude estimates within the residual.  As discussed in Section 

4.2.3.3, without the GPS attitude there is no direct compensation for the attitude, causing 

the correction to be achieved from the coupling effects in the DCM, which transforms the 

INS position and velocity from the body axis to the ECEF axis.  Unlike the previous 

method, the system cannot be reduced to any less than six states since the attitude 

correction is being carried out via the velocity data. 

The following table depicts the error analysis for the initial and two validation 

data sets, such that it is again evident from the table that this method improves the 

attitude results. 

Table 5-8: Method III Attitude Error Analysis  
Roll Angle Pitch Angle  

STD (rad) MSE RMSE STD (rad) MSE RMSE 

Method III 0.0350 0.0015 0.0387 0.0286 0.0016 0.0404 
Initial Data 

INS Data 0.0502 0.0083 0.0911 0.0486 0.0087 0.0935 

Method III 0.0688 0.0064 0.0801 0.0836 0.0091 0.0953 
Validation Data Set 1 

INS Data 0.2019 0.1252 0.3539 0.2139 0.1414 0.3760 

Method III 0.1178 0.0211 0.3372 0.0859 0.0105 0.1026 
Validation Data Set 2 

INS Data 0.2851 0.1137 0.3372 0.2356 0.0712 0.2669 

 

 Figure 5.29 shows the filtered attitude comparison between the INS/GPS-INS 

filtered data in which it is clear from visual inspection that the data is similar to that of 

the vertical gyro. Although, keep in mind that this method’s attitude correction is totally 
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reliant on the fact that the linearized DCM is coupled with the position and velocity.  

Which means that the error associated with the higher order term’s from the Taylor series 

expansion during the linearization process are not compensated for, this can possibly 

cause the this method to not post as high of error reduction as the previous method.  The 

other issue that can decrease the efficiency of the filter is the determination of the 

covariance matrix.  These will be revisited later when the results of all the methods are 

contrasted against one another.   
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Figure 5.29: Vertical Gyro/GPS-INS Comparison 

 

Due to the repetitive nature of the validation data sets, the remaining results and 

error analysis can be found in Appendix B. 

5.5. Method IV - Combination of Method II and III 

This final method combines methods II and III to allow the GPS attitude and 

DCM Jacobian matrix to correct the position, velocity, and attitude as discussed in 

Section 4.2.3.4.  As with the previous method, the state transition matrix must remain at 

least a 6x6 matrix, which is comprised of attitude and velocity values at a minimum to 

allow for the Kalman filter to compensate for the attitudes.  Again, this is due to fact that 
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the correction was carried out in regards to the DCM and also relies on the GPS estimated 

attitude components.  

Table 5-9 shows the error calculations conducted on each of the three data sets in 

which it can be seen that a reduction in error is evident. 

Table 5-9: Method IV Attitude Error Analysis 
Roll Angle Pitch Angle 

 Standard 
Deviation 

(rad) 
MSE RMSE 

Standard 
Deviation 

(rad) 
MSE RMSE 

Method 
IV 0.0233 0.0014 0.0374 0.0270 0.0015 0.0386 Initial Data 

INS Data 0.0502 0.0083 0.0911 0.0486 0.0087 0.0935 
Method 

IV 0.0535 0.0040 0.0635 0.0655 0.0056 0.0748 Validation 
Data Set 1 

INS Data 0.2019 0.1252 0.3539 0.2139 0.1414 0.3760 
Method 

IV 0.0915 0.0132 0.1148 0.0655 0.0072 0.0848 Validation 
Data Set 2 

INS Data 0.2851 0.1137 0.3372 0.2356 0.0712 0.2669 
  

 Similar to the previous section, this combination of the methods also incorporates the 

error associated with the higher order terms from the DCM and kinematic equations 

linearization, although the GPS attitude estimates are also utilized as actual measurement 

values.  The fact that the GPS attitude is being utilized in the residual could help reduce 

the error associated with the neglected linearization error. 

The remaining data set simulations are located in Appendix C, due to the 

redundant nature of the simulations. 

5.6. Method Comparisons and Discussions 

With the individual results shown and discussed in the previous sections, a 

comparison was conducted to determine which individual method produced the most 

effective results.  Table 5-10 contrasts the roll and pitch attitude between method II (nine 

and two-state), method III, and finally the combination of methods II and III (method IV) 

for the initial, validation set 1, and validation set 2.  Method I was neglected because its 

purpose is to correct position and velocity errors only. 
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Table 5-10: Inter-Method Error Comparison 
Roll Angle Pitch Angle 

 Standard 
Deviation 

(rad) 
MSE RMSE Standard 

Deviation (rad) MSE RMSE 

INS-GPS 
Data (9 State) 0.0231 0.0014 0.0375 0.0254 0.0014 0.0374 

INS-GPS 
Data (2 State) 0.0198 0.0015 0.0387 0.0248 0.0016 0.0404 

Method III 0.0350 0.0015 0.0387 0.0286 0.0016 0.0404 
Method IV 0.0233 0.0014 0.0374 0.0270 0.0015 0.0386 

Initial 
Data 

INS Data 0.0502 0.0083 0.0911 0.0486 0.0087 0.0935 
INS-GPS 

Data (9 State) 0.0457 0.0031 0.0590 0.0558 0.0044 0.0662 

INS-GPS 
Data (2 State) 0.0452 0.0064 0.0801 0.0547 0.0091 0.0953 

Method III 0.0688 0.0064 0.0801 0.0836 0.0091 0.0953 
Method IV 0.0535 0.0040 0.0635 0.0655 0.0056 0.0748 

Validation 
Data Set 1 

INS Data 0.2019 0.1252 0.3539 0.2139 0.1414 0.3760 
INS-GPS 

Data (9 State) 0.0718 0.0090 0.0946 0.0580 0.0078 0.0884 

INS-GPS 
Data (2 State) 0.0720 0.0211 0.1454 0.0608 0.0105 0.1026 

Method III 0.1178 0.0211 0.3372 0.0859 0.0105 0.1026 
Method IV 0.0915 0.0132 0.1148 0.0655 0.0072 0.0848 

Validation 
Data Set 2 

INS Data 0.2851 0.1137 0.3372 0.2356 0.0712 0.2669 

As seen from the previous table, areas highlighted with red depict when a single 

method clearly produces the highest level of reduction in error, while areas highlighted 

with orange depict when multiple methods produce the highest level of error reduction in 

which no single method can be determined to produce the best overall results.  By 

evaluating the initial data set in Table 5-10 no single method can clearly be labeled as 

producing the best results as each method’s amount of error reduction is similar, this 

could be due to the fact that each filter was tuned to its optimal performance for the initial 

set.  By comparing the additional validation data sets, the filter posting the best results 

could be determined. 

From the comparison from the two and nine-state filters from Section 5.3 it is 

already known that the nine-state filter produces a higher level of error reduction when 

simulated over various data sets.  The question now is whether the deductions made for 

methods III and IV, in regards to the error associated with the higher order terms, hold 

true.  By reviewing Table 5-10 again and comparing the results from each method, it can 

be seen that there is a definite decrease in performance from the best results from method 

 95



II (nine state) and that of the third and fourth method in which method III produced the 

lowest level of error reduction which can most likely be attributed to the error associated 

with the linearization of the nonlinear terms, while method IV is also effected by the 

linearization error, some of this error is removed in the filtering process due to the GPS 

attitude. 

 In an additional note, the filtering process tends to visually produce better results 

for the roll angle than that of the pitch angle (Figure 5.30), although when comparing the 

standard deviation, RMSE, and the MSE between the roll and pitch it can be seen that 

both tend to produce the same level of accuracy. 
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Figure 5.30: GPS-INS Data/Vertical Gyro Comparison  

(Validation Set 2 – Method II)  
 

The roll angle’s STD, MSE, and RMSE are 0.0718, 0.0090, and 0.946, while the pitch 

angle’s respective errors are 0.0580, 0.0078, and 0.0884.  After inspecting the error 

values, it can be seen that the pitch actually has less error than the roll angle for this data 

set.  Generally, for this research topic and the data sets evaluated, it can be deduced that 

the amount of error reduction in the pitch and roll angles is nearly the same, which also 

holds true between the various methods. 
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5.7. Computational Workload Analysis 

A computational workload analysis is also conducted using the Matlab® Profiler 

function, which determines the amount of time spent in each function along with the 

number of times each function has been executed.  The Profiler function helps to also 

optimize the computer code by pointing out areas with relatively high computation times, 

which in some cases can be written in a more efficient manner, freeing up additional 

system resources. 

This analysis is conducted for each method so that it can be seen how much of a 

burden the filter places on the fight computer.  The analysis has been divided into the 

following sections for evaluation: 

1. Data Pre-processing 

2. GPS Attitude Determination 

3. Prediction Equations 

a. Estimated State Update 

b. State Transition Matrix Update 

c. a priori Error Covariance Update 

4. Update Equations 

a. Kalman Gain Determination 

b. Update State Estimate 

c. a posteriori Error Covariance Update 

Table 5-11 presents the results from the workload analysis so that it can be 

determined where the majority of the resources are absorbed.  For example, by 

comparing the amount of time the simulation spends in each individual calculation of the 

filtering process, it can be seen that calculating the Kalman gain in all of the methods 

takes the most computation time, which is where the highest strain on the system’s 

resources lies.  There is two ways of reducing the amount of computational load for each 

function, first by removing or simplifying the calculation itself, or in some cases the code 

can be optimized to run at a higher level of efficiency.  By revisiting the Kalman gain 

calculation, there is no additional simplification or code optimization can be conducted 

leaving the determination of the Kalman gain the most stringent on the system.  
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The results in the table are obtained from simulations of the initial data set during 

the dynamic portion of the WVU YF-22 formation flight.  The dynamic flight period was 

730 seconds in which the filtering algorithm was executed 14,600 times and the INS was 

executed 29,200 times, which was due to the GPS and IMU data obtained at 20 Hz and 

40 Hz respectively.  By evaluating the results, several comparisons can be seen from the 

data, in which the first discusses the differences between the various software methods.  

The data pre-processing and GPS attitude algorithms are exactly the same for each 

method (with the exception of method III, which does not have any GPS attitude 

determination), so the difference in the simulation time is attributed to the number of 

processes being conducted by the operating system, Windows®.  The remaining functions 

simulation times vary due to the size of the matrix (9x9 or 2x2) and the level of 

complexity of the calculations being evaluated.  Since method III and IV are more 

complex in terms of the state transition matrix update, their update time increases. 

  By evaluating and contrasting each method’s total simulation time, it can be 

determined which method is optimal in terms of workload.  From Table 5-11, is clearly 

evident that method II (two-state) has the fastest total simulation time of 2.84 seconds, 

which can be attributed to the fact that it is only a 2x2 system.  Although this method was 

the least stringent in terms of computational load, when referring back to the previous 

section, this method did not post the highest level of error reduction.  The nine-state filter 

produced the best results in terms of error reduction; however the simulation time was 

4.65 seconds, which is 63% slower than the two-state filter.   
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Table 5-11: Computational Workload Analysis 
Method II (9-State) Method II (2-State) Method III Method IV 

Time 
(sec) Execution 

Time/ 
Execution 

(sec) 

Time
(sec) Executions 

Time/ 
Execution 

(sec) 

Time 
(sec) Executions 

Time/ 
Execution 

(sec) 

Time 
(sec) Executions 

Time/ 
Execution 

(sec) 

 

Data Preprocessing 0.176 1 N/A 0.176 1 N/A 0.187 1 N/A 0.179 1 N/A 
GPS Attitude 
Determination 0.583 14600 3.99e-5 0.548 14600 3.75e-5 N/A N/A N/A 0.619 14600 4.23e-5 

Estimated 
State 

Update 
0.777 29200 2.66e-5 0.360 29200 1.23e-5 0.757 29200 2.59e-5 0.768 29200 2.63e-5 

STM 
Update 0.383 14600 2.62e-5 0.235 14600 1.61e-5 0.522 14600 3.58e-5 0.517 14600 3.54e-5 Prediction 

Equations 
a priori 
Error 

Covariance 
Update 

0.414 14600 2.83e-5 0.226 14600 1.55e-5 0.412 14600 2.82e-5 0.346 14600 2.37e-5 

Kalman 
Gain 1.194 14600 8.18e-5 0.656 14600 4.49e-5 0.911 14600 6.24e-5 1.132 14600 7.75e-5 

Update 
State 0.742 14600 5.08e-5 0.390 14600 2.67e-5 0.631 14600 4.32e-5 0.804 14600 5.51e-5 Update 

Equations a posteriori 
Error 

Covariance 
Update 

0.387 14600 2.65e-5 0.250 14600 1.71e-5 0.361 14600 2.47e-5 0.385 14600 2.64e-5 

Total Time 4.65 N/A N/A 2.84 N/A N/A 3.78 N/A N/A 4.75 N/A N/A 
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Of the nine-state filters (Methods II, III, and IV), method III is the fastest, but yet 

again, it’s the worst performing filter in terms of error reduction.  While methods II 

(nine-state) and IV are the best performing in terms of error reduction, they both post 

simulation times of 4.65 and 4.75 seconds, which are the worst overall.  The additional 

time can be attributed to the calculation of the GPS estimated attitudes, which is not 

calculated in Method III.   

 At this point, when designing a control system, one must take into account the 

amount of computational resources available and select the best fit for the application.  

By comparing the computational workload analysis with the error analysis in the previous 

section, it is evident that the best results are proportional to the amount of computational 

resources available. 
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Chapter 6. Conclusions and Recommendations 

6.1. Conclusions 

The ability to obtain higher precision data with lower cost, smaller sensor 

packages is becoming a standard not only in UAV and MAV research, but also all areas 

of guidance and navigation, including commercial, civilian, and military full scale 

applications.  Although, while sensor fusion is becoming easier to implement, not only 

due to the fact that vehicle computers are able to handle higher levels of computation, but 

also for the need to become smaller, expendable, and power conscious depending on the 

application.   

The results of this effort show that the integration of INS/GPS sensors is a 

sufficient, low-cost solution for position, velocity, and attitude determination in which the 

sensor fusion methods presented here exhibited satisfactory results and should be 

considered for implementation for any system in which a higher level of precision is 

required when only a low-cost sensor platform is available.  Simulation results from the 

real-world flight data prove that each of the filtering methods presented throughout this 

report reduced the amount of error in the navigation system.  As discussed in Section 5.6, 

the nine-state filter from method II produced the highest level of error reduction over the 

four data sets use., The results from the second method could be associated with a 

number of issues; first, since the EKF is not a true “optimal” filter, it is more susceptible 

to divergence and residual error if the system is not initially set-up/modeled correctly.  

These initial setup errors would mainly be tied with the calculation of the model/input 

and measurement covariance matrix that determines the amount of correction to be 

adjusted back into the state estimate.  The linearization of the aircraft kinematic equations 

and direction cosine matrix produce errors due to the fact that the higher order terms are 

neglected leaving residual errors in the system not modeled or taken into consideration 

which is the reason for the filter not being optimal.  Method II produces better results due 

to the fact that the direction cosine matrix is not linearized and inserted into the state 

transitions matrix as in methods III and IV.   
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It is also worthwhile to restate that the implementation in the second method, all 

nine states were not required to produce adequate results, in which the system state 

matrix can be reduced to as little as two states (pitch and roll) and still produce equivalent 

results in regards to system performance while greatly reducing the computational 

workload. Although this cannot be done for the third method for it utilizes the position 

and velocity for the correction of the attitude.  This would be especially important in 

MAV’s when computation power is limited. 

6.2. Recommendations 

The future of sensor fusion applications within the field of guidance and 

navigation will certainly continue to become more widespread as the need for smaller, 

cheaper UAV’s and MAV’s become the norm in the military and civilian world.  To 

further build on the research presented within the context of this thesis, it is 

recommended to implement these methods in a real-time environment as to test the 

robustness of the system in determining attitude, position, and velocity data in regards to 

aircraft control as well as the computational load on the flight computer.  

In regards to recommendations for the research conducted within the context of 

this research project, additional means in reducing error generated from the linearization 

errors and covariance analysis could also reduce the amount of error in the EKF.  The 

sampling rate between the GPS (20 Hz) and the IMU (40 Hz) also plays a role in the 

efficiency of the filter; meaning that if the GPS and IMU were to be sampled at the same 

frequency the system would have less error, with the drawback of having a lower 

sampling rate.  Testing to find the optimal sampling rates may also help to decrease error 

in the system.   

The method for determining the covariance matrices is also an area that could 

increase the performance of the filtering process.  Since the covariance’s are determined 

from the sensors during a steady-state period, the exact values could be skewed due to 

inaccuracies of the data.  By more accurately determining the actual covariance’s of the 

sensors, the filter would produce better results, especially for the EKF.  

At the time this thesis was written, researches at WVU have already began 

conducting research on two separate programs requiring the implementation of these 
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sensor fusion methods for the determination of aircraft attitude for use in control 

schemes.  The first is to utilize sensor fusion methods in a low-cost miniature autopilot 

capable of being implemented on commercial off-the-shelf r/c aircraft at a minimum 

expense51.  The miniature autopilot does not have the benefit of having a vertical gyro to 

obtain highly precise attitude angles, however it is equipped with both GPS and IMU 

sensors that allow for sensor fusion implementation. 

   The second project is for a total redesign of the WVU YF-22 test vehicles on-

board-computer in which various sensor fusion schemes will be tested in a real-time 

flight environment.       
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Appendix A 
 

Method II – Additional Plots and Error Analysis 
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Figure A.1: GPS-INS Data/Vertical Gyro Comparison (Validation Set 1) 
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Figure A.2: Two State Roll and Pitch Error (Validation Set 1) 
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Figure A.3: GPS-INS Data/Vertical Gyro Comparison (Validation Set 2) 
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Figure A.4: Two State Roll and Pitch Error (Validation Set 2) 
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Appendix B 
 

Method III – Additional Plots and Error Analysis 
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Figure B.1: GPS-INS Data/Vertical Gyro Comparison (Validation Set 1) 
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Figure B.2: Method III Roll and Pitch Error (Validation  Set 1) 
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Figure B.3: GPS-INS Data/Vertical Gyro Comparison (Validation Set 2) 
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Figure B.4: Method III Roll and Pitch Error (Validation Set 2) 
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Appendix C 
 

Method IV – Additional Plots and Error Analysis 
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Figure C.1: : GPS-INS Data/Vertical Gyro Comparison (Validation Set 1) 
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Figure C.2: Method IV Roll and Pitch Error (Validation Set 1) 
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Figure C.3: GPS-INS Data/Vertical Gyro Comparison (Validation Set 2) 
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Figure C.4: Method IV Roll and Pitch Error (Validation Set 2) 
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