
Graduate Theses, Dissertations, and Problem Reports

2012

A Context Centric Model for building a Knowledge advantage A Context Centric Model for building a Knowledge advantage

Machine Based on Personal Ontology Patterns Machine Based on Personal Ontology Patterns

Luyi Wang
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Wang, Luyi, "A Context Centric Model for building a Knowledge advantage Machine Based on Personal
Ontology Patterns" (2012). Graduate Theses, Dissertations, and Problem Reports. 3594.
https://researchrepository.wvu.edu/etd/3594

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F3594&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/3594?utm_source=researchrepository.wvu.edu%2Fetd%2F3594&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

2

A Context Centric Model for building

a Knowledge advantage Machine

Based on

Personal Ontology Patterns

by

Luyi Wang

Thesis submitted to the
College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy of Computer Science
in

Computer Science

Ramana Reddy, Ph.D., Chair
Sumitra Reddy, Ph.D.
James Mooney, Ph.D.

Arun Ross, Ph.D.
Asesh Das, Ph.D.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2012

Keywords: Context Centric, Ontology, Ontology Pattern, Knowledge Advantage Machine,
Artificial intelligence, Information Retrieval,Software Engineering

Copyright 2012 Luyi Wang

Abstract

A Context Centric Model for building
a Knowledge advantage Machine

Based on
Personal Ontology Patterns

Luyi Wang

Throughout the industrial era societal advancement could be attributed in large part to
introduction a plethora of electromechanical machines all of which exploited a key concept
known as Mechanical Advantage. In the post-industrial era exploitation of knowledge is
emerging as the key enabler for societal advancement. With the advent of the Internet and
the Web, while there is no dearth of knowledge, what is lacking is an efficient and practical
mechanism for organizing knowledge and presenting it in a comprehensible form appropriate
for every context. This is the fundamental problem addressed by my dissertation.

We begin by proposing a novel architecture for creating a Knowledge Advantage Machine
(KaM), one which enables a knowledge worker to bring to bear a larger amount of knowledge
to solve a problem in a shorter time. This is analogous to an electromechanical machine that
enables an industrial worker to bring to bear a large amount of power to perform a task thus
improving worker productivity. This work is based on the premise that while a universal
KaM is beyond the realm of possibility, a KaM specific to a particular type of knowledge
worker is realizable because of the limited scope of his/her personal ontology used to organize
all relevant knowledge objects.

The proposed architecture is based on a “society of intelligent agents” which collabora-
tively discover, markup, and organize relevant knowledge objects into a semantic knowledge
network on a continuing basis. This in-turn is exploited by another agent known as the
Context Agent which determines the current context of the knowledge worker and makes
available in a suitable form the relevant portion of the semantic network. In this dissertation
we demonstrate the viability and extensibility of this architecture by building a prototype
KaM for one type of knowledge worker such as a professor.

iii

Acknowledgements

In the past five years I spent in West Virginia University, all merits came with supports

and inspiration from all people around me. I would first like to thank my committee chair

and advisor, Dr. Ramana Reddy. Serving in a position for inspiring and providing guidance

on my research interest, He is far beyond this scope in influencing me with always positive

attitude and providing endless support. What I learned from him laid a solid base for my

long term career and also is a fortune for my future life. It is indeed my honor to be his

student.

I would also like to thank Dr. Sumitra Reddy, Dr. James Mooney, Dr. Arun Ross and

Dr. Asesh Das for being on my committee. Without their help and guidance on my research,

I can’t finish this topic with the current achievements. Specially thanks to Dr. Arun Ross

and Dr. Asesh Das, every discussion we took on my research topic inspired and benefited

me to think it in a more considerate and deeper way. All these drove this topic further and

further.

I would also like to thank students in CERC lab with whom I’ve had the pleasure of

working alongside. Because of them, this research topic was developed into a well-rounded

shape. I would also like to express my gratitude to my friends. Specially to Dr. YunFei

Zheng,Trevor Kemp and Yutian Gan. All of them gave me warmhearted help and support,

which was a driving force pushing me forward till this step. Special thanks to many friends,

like Yu Feng, Yaohui Ding, Wu Nan, Shan Yang, Lin Chang and all other friends whoever

helped me. All of them companied me along with the tough road. We fight we smile.

Finally I would like to thank to my parents. Thanks for their love on me that always be

my momentum for reaching and achieving a higher goal. They guide me to understand there

are many importances in life and their encouragement is always along with me, bringing me

endless power to accept challenges.

iv

Contents

Acknowledgements iii

List of Figures v

List of Tables vi

1 Introduction 1
1.1 History . 1
1.2 Methods Applied . 2
1.3 Context Centric approach . 3
1.4 Knowledge engineering on user preferences 4
1.5 Problem we need to solve . 6
1.6 My Contribution . 6

2 Related Research 8
2.1 Knowledge Engineering development history 8
2.2 Research upon ontology and semantic web 9
2.3 Research upon user profile and context awareness 10

3 KAM Architecture 12
3.1 Knowledge Advantage Machine Background 12
3.2 KAM Features . 13

3.2.1 scenario One: Domain information 13
3.2.2 Scenario two: Communication within Domains 14
3.2.3 Scenario three: Communication within same Domain but different area 14
3.2.4 KAM Features on domain . 15

3.3 KAM Model . 16
3.3.1 Knowledge Unit . 16
3.3.2 User Based ontology . 17

3.4 KAM architecture . 17
3.4.1 Taxonomy and the Semantic Net of Knowledge (T and R) 17
3.4.2 The Discovery Agent (dA) and Markup Agent 18
3.4.3 The Organizing Agent (oA) . 19
3.4.4 The Consistency/Completeness Agent (cA) 19
3.4.5 The Visualization Agent (vA) . 19

CONTENTS v

3.4.6 Ontology Agent . 20

4 RESTful architecture 23
4.1 Introduction . 23
4.2 RESTful Features . 24
4.3 Why KAM uses RESTful . 25

4.3.1 Hierarchy Structure . 25
4.3.2 Consistency of URI and URL . 26
4.3.3 Resource Security . 26
4.3.4 Other benefits . 27

4.4 Resources in KAM . 27
4.5 RESTful Service for Work Flow . 28
4.6 Detailed Implementation . 28

4.6.1 KAM framework in ROA . 29
4.6.2 Data format . 30
4.6.3 URI resources and compared to Session 31

5 Vijjana Keyphrase Extraction Algroithm 32
5.1 Background . 32
5.2 RELATED WORK . 34
5.3 Theoretical Background . 35

5.3.1 Term Weighting . 35
5.3.2 Metropolis-Hastings algorithm in sampling 36
5.3.3 Monte Carlo Method in VKE . 38
5.3.4 Maximum entroy theorem in VKE 39

5.4 Algorithm design . 41
5.4.1 Preprocessing . 42
5.4.2 M-H in VKE . 42
5.4.3 HMC heuristic selection . 43
5.4.4 Entroy computation . 44

5.5 Experiment . 44
5.5.1 Terminology . 44
5.5.2 Experiment Design . 45

5.6 Data Analysis . 49
5.6.1 Analysis of Variance(ANOVA) . 49
5.6.2 General Analysis upon our objectives 49
5.6.3 Hypothesis Test . 50
5.6.4 Study Validity Consideration . 56

5.7 Conclusion and Future Work . 57

6 Context Centric Model 59
6.1 Acknowledge User . 59
6.2 User Profile based on Ontology . 60

6.2.1 Global ontology . 61
6.2.2 Constructing user ontology . 62

CONTENTS vi

6.2.3 User File System . 64
6.2.4 User Bookmark System . 64

6.3 Context Awareness . 65
6.3.1 Timeline Context Awareness . 67
6.3.2 Interest driven context . 67

6.4 Classification of JAN . 69
6.4.1 Generate training date . 70
6.4.2 Similarity between JAN and taxonomy 71
6.4.3 Relationship between local taxonomy and global taxonomy 72

6.5 Knowledge discovery process . 72
6.5.1 Knowledge discovery process in local 73
6.5.2 Knowledge discovery process in community 74
6.5.3 Knowledge discovery process in universal 75

7 Implementation and Applied methods 77
7.1 KAM implementation Architecture . 77

7.1.1 Knowledge representation layer . 78
7.1.2 Visualization Agent . 82
7.1.3 Implementation technology . 83

7.2 Middle Layer, Database Layer and Development Environment 84
7.2.1 Middle Layer . 84
7.2.2 Database Layer . 85
7.2.3 Development tools and source architecture 85

7.3 Conclusion . 86

8 Conclusion and Discussion 87

vii

List of Figures

3.1 KAM architecture . 21
3.2 A JAN object . 22

4.1 work flow . 29
4.2 vijjana framework . 30

5.1 Metropolis-Hastings . 37
5.2 Monte Carlo Approach . 38
5.3 State transitions . 39
5.4 Entropy Concept . 40
5.5 Overview dotchart 1: Accuracy Grouped by Domains 50
5.6 Overview dotchart 2: Accuracy Grouped by keyphrase Number 52
5.7 Interaction plot between keyphrase length and domain 54
5.8 Interaction plot between keyphrase length and document size 55
5.9 Interaction plot between documentsize and domain 56

6.1 Global Ontology . 63
6.2 User Ontology Based on the FileSystem . 65
6.3 User Ontology on Web Interface . 66
6.4 The timeline model . 68
6.5 Interest driven model . 69
6.6 A general view of ontology . 73
6.7 Local Search . 74
6.8 The whole discovery process . 76

7.1 KAM Architecture . 78
7.2 KAM Web interface entry. 79
7.3 KAM User Space . 80
7.4 A new created taxonomy . 81
7.5 Discovery agent found related JAN . 82
7.6 Search agent return related global taxonomy 83
7.7 Sample graphML . 84
7.8 Database tables . 86

viii

List of Tables

3.1 KAM Model . 18

4.1 RESTful Operation . 24
4.2 API Table . 30

5.1 Factor Table . 46
5.2 RCBD in VKE . 49

1

Chapter 1

Introduction

1.1 History

Has the Internet changed the method by which people acquire knowledge? To answer

this question, we need to look back in retrospect to the time when people would use a

brick-and-mortar library to find reading material for their subjects of interest. In a library,

resources were limited. Not only were knowledge materials for a given subject limited but

so also was quick access to colleagues and friends that shared an interest in the subject.

Additionally, placing ourselves in this antiquated reality reminds that discussions within

a group of colleagues usually consumed large quantities of time and had a large financial

burden due to travel and communications technology costs. Regarding these points, we can

give demonstrable examples in the present day in search technology like Google and social

media like Facebook. These tools have given us starkly different methods for disseminating

information than what came before them. However, have these technologies truly changed

the way we acquire knowledge?

An easily consumable list of knowledge on a topic is not directly provided by search engine

technology that simply consolidates all information related on a specific set of keywords. For

example, searching on keyword “apple” will return resources that are predominantly about

Apple Inc. On the first page, minimizing matches that contain knowledge on the fruit we

eat everyday. The search results benefit people who are interested in knowledge of Apple

Inc. but the results are not suitable for people who try to know more about the fruit. Also,

CHAPTER 1. INTRODUCTION 2

much irrelevant information accumulates alongside useful information when people generate

content by repeatedly discussing many aspects of a topic. This causes difficulty for people

who search for information on one specific aspect of a topic. It is hard for them to filter out

conversations irrelevant to their interest. For example, when people discuss the topic “cell

phone” the discussions may concern phone hardware. These discussions range in specificity

from phones’ technical specifications to their outward appearance. Content authors may

discuss topics like a phone’s running platform, particular functionality of the device, or

a service carrier for it. They may also refer to its manufacturer, perhaps discussing the

history or current trends of the company. For different groups of people, the way of distilling

search results into usable information varies. An engineer who intends to learn smart phone

programming expects different knowledge compared to a prospective customer who would

like to purchase a new phone. All these attest to the fact that the knowledge discovery

process from an individual’s perspective is not a straightforward process.

1.2 Methods Applied

In regard to these problems, researchers in Artificial Intelligence have invented many

rule-based expert systems [?][?][?][?]to infer information from large amounts of incoming

data. Discovering knowledge in databases by way of data mining focuses on retrieving useful

pieces of information in a large volume of data to make optimized decisions [?] by utilizing

neural networks[?][?], Bayesian learning[?], and other statistical methods[?][?]. From an al-

gorithmic perspective, researchers are putting effort into developing better algorithms[?][?]

to eliminate less influential features. Meanwhile, with the development of communication

technology, pervasive computing has emerged as a new area in the applied field of informa-

tion retrieval. Sensors such as GPS modules, cameras, and accelerometers are built small

enough to be embedded into portable devices[?]. These portable sensors make it possible for

information to be obtained in real time and also bring in a new challenge that knowledge

must be presented on demand. Consequentially, the methods for retrieving this information

must be revised as well. They are not big different from the original methods that call for

heavy computing power in discovering useful information from a large volume of stored data

CHAPTER 1. INTRODUCTION 3

but bring in new requirements for efficiency and correctness.

1.3 Context Centric approach

Rule based systems like the ones mentioned aim to solve problems by discovering an

optimal solution or discover rules for making better decisions. When search engine technology

opens the door for ordinary people to search vast knowledge repositories on the Internet

and when sifting through the content in the information boom becomes an affair in which

end users must take part, it is required to combine mining techniques with information

about a user,which provides a context and largely reduce the applicable scope of knowledge

. The traditional approach for accomplishing this is to build up user profile by monitoring,

accumulating and analysing a user’s behavior. A user-monitoring agent, running on desktop

computers, records user’s activities such as web browsing history, file operations, etc. Based

on the duration and frequency of predefined types of the user’s activity, the agent can

incrementally learn and create a user profile that automatically determines a user’s habits

and preferences. When information collection becomes a real time manner, query time

efficiency becomes more important than ever before, and relying on user preferences to aid

in data mining is not enough. The degree of correctness or accuracy of search results also

turns out to be measured by the user’s interest. This user is the final judge in determining

if the queried knowledge is useful. Moreover, the measurement of result accuracy is largely

increased by an awareness of context that reflects the user’s circumstance. This changes

the knowledge discovery process to be a user centric model, which think in the user’s view

and learn in a specific context. And so well the discovery process needs to be intelligent in

acquiring user context and also be capable of switching when the circumstance changes. For

instance, when a person who has a dinner appointment in a different city queries restaurant,

he/she is more likely to find the best city in that city rather than around.

If we think in a more theoretical way, all user behaviors are observations and user habits

are transitions between user preferences, which act as states of the user’s profile. On a certain

state, knowledge should be filtered according to the corresponding preference. Meanwhile, a

CHAPTER 1. INTRODUCTION 4

user habit transitions state to another preference and therefore knowledge should be filtered

again. For a particular user, his/her preferences should be covered by finite abstract concepts

and the habits can also be enumerated.

We can use an example to illustrate this. Prof. Smith checks his email everyday when

he wakes up. He usually goes through his student’s email first, then colleagues and others.

This habits can generalized as

Swakeup → Scheckemail (1.1)

Semail := SStudent + SColleagues + SOthers (1.2)

Here, we use S to denote states. There are two transitions, from “wakeup” to “check email”

and once in “check email” from students to colleagues and others. They share a commonness

that they are all Prof. Smith’s habit but also different on causal reasoning. From wake up

to check email is a time line change. It is a habit upon time. The order in checking emails

is a user habit upon preferences.

From this view, we need to build user context models in order to better describe user

preferences. The user preferences can no longer to be static and isolated states but are

connected by user habits which act as transitions between the preferences.

1.4 Knowledge engineering on user preferences

As we mentioned, user preferences should be considered as a finite set and described by

enumerated observations on user the behaviour model. Each of these observations need to

be engineered into knowledge units which map to a certain user preference.

While working on this project, we noticed an interesting phenomenon. A knowledge unit

usually doesn’t fit well into one particular preference. Usually, a knowledge unit itself can

be viewed from several perspectives. For example, let us imagine that Prof. Smith received

an email from students inquiring about a course assignment. This email contains plenty of

information covering multiple areas like Prof. Smith’s email, student’s email, and course

assignment. Theoretically, we can formulate this scenario like so: for this email, because it

is sent by a student to Prof. Smith, it connects two concepts: student and professor. Mean-

CHAPTER 1. INTRODUCTION 5

while it is about one assignment in one course. It connects one more concepts: assignment

and course. We can use the following formula denoting these relationships. Here we use j

denoting a knowledge unit and C denoting a concept.

j(email|Prof.Smith)→ j(email|student) = C(Prof)→ C(student) (1.3)

j(assignmentinquery)→ j(course) = C(assignment)→ C(course) (1.4)

We also notice that it is about Prof. Smith’s email, so the context is email and user is Prof.

Smith. However concerning the relationship between the preferences, we utilize an ontological

concept that was originally designed for explaining domain knowledge. A ontology is regarded

as a speculation of concepts and the relationships among them [?]. From its definition, we

can tell that ontology defines the relationship between concepts in a more generalized way

than compared to habits, which only concern behaviour rules as pertaining to particular

user. However the concepts and habits share commonality in that when certain habits are

applied, concepts covering them are also applied.

In the previous example, Prof. Smith may transit from Cemail to Cassignment to figure

out what’s the student’s question about. Then this email, considered as a knowledge unit,

connects two concepts,email and assignment, together because it is a email about assignment.

More generally, Prof. Smith may receive many this type of student email everyday. To better

organize his email, he usually categorizes them into a student-assignment group. So here

there should be a relationship established between these two concepts. This relationship

should be applicable for all professors like Prof. Smith who teach courses. If Prof. Smith

has a personal ontology defining all his knowledge and so well are all other professors, then

from this we can tell the partial ontology concerning student-assignment-email should be

similar among all ontology of professors. From this perspective, we can tell that a user

ontology should conform to an entire group one in which individuals share the same interest

but in addition should have personal versatility. From a knowledge engineering perspective,

a knowledge unit should be capable of mapping to different concepts with enriched meta-

information in distinguishing the difference.For example, a smart phone should be tagged

with OS information in developer view but manufacture information in a consumer view.

CHAPTER 1. INTRODUCTION 6

Consequently, concepts share knowledge units when they have connection defining by user

indicating their relationship.

1.5 Problem we need to solve

As discussed already, we apply ontology in illustrating the user preferences and their

relationships. Because of the challenges in time efficiency in real time information retrieval,

there is a requirement of the context model that details a user’s circumstance and reflects

the current ontology the user is working with. Moreover, the information retrieval and col-

lection process becomes more systemic in distilling information to map into a user’s personal

ontology. The user ontology in some degree is similar to a group ontology which consist of

people who own the same interest on certain knowledge set. This brings up the requirement

that a context model can communicate with other ontologies to retrieve common interest

information.

1.6 My Contribution

In my dissertation, I propose a new architecture that is suitable for building up a context

centric knowledge network. The architecture is named as Knowledge Advantage Machine

(KAM).The knowledge advantage stresses the importance of knowledge and the machine is

concerned with the architecture. My main contributions I did to build KAM are mainly in

the following parts.

• Three tiers infrastructure

• VKE algorithm

• Context Model

The novelty of this architecture is that we build up a three tiers architecture that personal

ontology, community ontology and global ontology are all connected together. The personal

ontology is created by user but mapped with global ontologies. In a particular ontology, all

CHAPTER 1. INTRODUCTION 7

the knowledge units, JANs, are processed using my own keyphrases generation algorithm

and organized into a user defined logic layout. To reveal this layout, I apply the RESTful

framework that allows us to better utilize resources and easily retrieve them. In order to

reflect the user preferences, I design two context model, timeline model and interest driven

model. We use these two models to detect user current taxonomy and correspondingly

provides user the related knowledge units, JANs, using our query method “Call it Once”.

The “Call it Once” query is different with traditional wild search that it is performed on

these three tiers. The local search will return user’s personal taxonomies and JANs, the

community search will return knowledge units from people who has the same taxonomy with

you. The global search is a wild search that return the related global taxonomies.

In this Chapter, I already emphasis the knowledge importance, the current situation

and the problem we are solving. The second chapter focuses on the previous work done

in semantic work, ontology and user profiling. Chapter three illustrates the concept of

KAM and whole architecture. Chapter four pertains to the architectural design, which is

an implementation of the Restful structure. And the key phrase extraction algorithm VKE

is illustrated in Chapter five. In Chapter six, I explain the methods I apply in building up

context centric patterns utilizing user ontology information and introduce a workflow that

we have termed “call it once” that divides the whole information discovery process into three

phrases. In Chapter seven, I reveal the real KAM implementation and Chapter eight is a

conclusion chapter that concludes all my contributions.

8

Chapter 2

Related Research

In this chapter, I briefly review related research in knowledge engineering field. It covers

the topics of knowledge engineering, Ontology, semantic Web service and context awareness

technologies.

2.1 Knowledge Engineering development history

The concept of knowledge engineering was proposed by Edward Feigenbaum and Pamela

McCorduck in 1983 in book “Fifth generation”[?]. The book introduced a “new” generation

of super computer designed in Japan that provides tremendous parallel computing power to

support development in Artificial Intelligence(AI). It was for the first time proposed that

knowledge need to be processed and represented in various types. Computer technologies

in processing large scale data base [?]and knowledge inferences [?]became popular in 1980s.

These ideas were soon incorporated into the development of expert systems which, by then

were usually rule-based systems conducted by interviewing experts in fields, and implemented

for specific purposes. As a consequence, their knowledge was tightly tied with human defined

rules. As time went on, people[?] realized that rule-based systems disobeyed the principle

of knowledge reuse for their lack of knowledge representation. Meanwhile, on the cost con-

sideration, as a ruled-based system expanded into a larger scope, the system became harder

to maintain for the user spends more efforts in remembering and maintaining the reasoning

logic amongst a huge amount of complex rules. Therefore, since the late 80s computer mod-

CHAPTER 2. RELATED RESEARCH 9

elling [?] with an expandable and reusable knowledge base became a new trend. Studer[?]

reviewed in 1998 the two phase development of Knowledge-based system in the 80s and also

shared insights onto a new trend of the 90s, the development of ontology. The popularity

of ontology was attributed to its promise on easy interpretation between human and ma-

chines across domains[?]. The terminology was borrowed from the philosophical concept of

ontology that describes the existence of objects. In knowledge engineering, Ontology de-

notes a knowledge representation with selected properties that allow automated processing,

formalizing and reasoning in certain domains.

2.2 Research upon ontology and semantic web

McCarthy first introduced “ontology” to computer science in 1980[?]. The concept be-

came popular after 1993 when Gruber[?]proposed his principle in developing ontology and

conducted relevant case studies. In Gruber’s paper, it was explained that ontology is “an

explicit specification of a conceptualization”, and that ontology could be used as agreements

on knowledge sharing in building reusable knowledge components and knowledge-based web

services. Gruber’s proposal were well accepted in the knowledge modelling society. Guarino

and Giaretta in 1995 [?] redefined the Ontology terminology in computer science to avoid

confusion.

In contemporary knowledge engineering, the core problem still lies in the searching of

commonality within a large of amount data. Even though a growing number of knowledge

services are provided as means for searching (search engine) or referencing (information site,

e.g., Wikipedia), the concept of reusable knowledge is still to be defined. Along with theoret-

ical development, researchers also emphasized algorithm design on data mining techniques.

In 1995, H. Chen and T.NG [?] proposed two knowledge discovering algorithms. The first

algorithms utilized a semantic network on structured knowledge to traverse along the large

scale knowledge network to explore related conceptual knowledge. The second algorithm

relied on the parallel relaxation of neural networks. Both methods quantified the knowledge

relationship as a measurement of their similarity. The structured knowledge representation

grants efficient information retrieval and provides the basics for information reference. With

CHAPTER 2. RELATED RESEARCH 10

the emergence of OWL standard, structural information reasoning and inference gains more

interest in the field, too.

In [?], Deborah and Paulo (2004) suggested a new web structure, inference web, which

makes inference proof along reasoning with a series of tools. They demonstrated the concept

with a knowledge based registry method, an inference engine, and utilities for knowledge

representation. Meanwhile, the semantic web services are also proved to be suitable for new

infrastructure [?][?]. In[?] , LEO and his colleagues discussed their experience on building

a personal semantic desktop system(2006). The discussion was mainly focused on ways to

organize the resource for personal users by meta-data extraction. The knowledge sharing

aspect of the system was confined within wiki page authoring. In 2008, the semantic web

was brought to mobile networks[?].

2.3 Research upon user profile and context awareness

Along with the academia and industrial efforts in knowledge discovery and semantic rea-

soning, another trend in knowledge engineering focuses in personal knowledge networks and

the correlated contextual information. One relevant field is the construction of user profiles.

In 1995,[?] proposed to build user profiles by monitoring the web-browsing history of the

users. In 1997, Thomas introduced a method of query analysis upon the bookmarks[?]. A

user profile, however, is not limited within web pages. Efforts were also made to expand

the profile range from web pages to a wide range of information sources, such as documents

and emails[?][?]. Since 1999, the construction of user profiles started to utilize techniques

to categorize information with abstract structures. In [?], [?], it was proposed to enumerate

lists of user’s interest. [?] introduced a method to organize information into hierarchical

concepts. Another relevant field of study is the context awareness. The initial context

awareness research is achieved through questionnaires, which confines user context based

on the user’s feedback. In order to better representing the user context, Researches [?],[?]

categorize user interest into classes and form hierarchy structure of these classes. Joana [?]

in 2004 introduced a method that relies on ontology to define the user context with the

help of the Open Directory Project[?]. Most research defining user context is based on the

CHAPTER 2. RELATED RESEARCH 11

vector space model[?] that calculate with the tf*idf method the weight or rank of each query

phrase. The context is selected from the list of the top-ranking user concepts. In 2004,

Middleton[?] used the K-nearest neighbor method to build user profiles, in which the user

profile construction began from a cold start. And the accuracy of finding user preference is

improved with accumulative adding new information. Joana [?] verified the idea by testing

the convergence of profiles, its ranking orders, and the pruning non-relevant concepts. For

user profiles, it was found that with merely half of the ontology information a user profile can

converges into a stable state. For the ranking orders, no significant difference was reported

between representation based ranking and VSM weight based ranking. For the pruning, it

was discovered that the process improved the accuracy in context definitions.

12

Chapter 3

KAM Architecture

In this chapter, I first introduce of “knowledge advantage machine” model and illustrate

the KAM (old Vijjana architecture [?]) we built for this concept. All these work are related

to an ongoing project in our SIPLab of West Virginia University,which is aiming at building

up a real Knowledge advantage machine that can help user organize their personal knowledge

network.

3.1 Knowledge Advantage Machine Background

Throughout the industrial era societal advancement could be attributed in large part to

introduction a plethora of electromechanical machines all of which exploited a key concept

known as Mechanical Advantage. In the post industrial era exploitation of knowledge is

emerging as the key enabler for societal advancement. With the advent of the Internet and

the Web, while there is no dearth of knowledge, what is lacking is an efficient and practical

mechanism for organizing knowledge and presenting it in a comprehensible form appropriate

for every context. This is the fundamental problem addressed by Knowledge advantage

Machine.

Our purpose of building a Knowledge Advantage Machine is to help user exploiting a large

amount of knowledge to solve problem in a shorter time. The knowledge in use is selected

from user ontology in which knowledge units are organized in different domain scopes where

the user applies knowledge across over. The knowledge unit is instances defined by user with

CHAPTER 3. KAM ARCHITECTURE 13

enriching meta information. This building KAM principle lies in an assumption that a user

knowledge should be limited in a certain scopes instead of a universal realm.

3.2 KAM Features

Before we explains the KAM architecture, we need to first examine the areas the KAM

should apply on. Here we use several scenarios to illustrate the problems KAM should cope

with.

3.2.1 scenario One: Domain information

Dr. Watson is an assistant professor in CSEE Department of West Virginia University.

His major interest is in Artificial Intelligence. He usually works more than ten hours a day,

teaching courses and doing research. He teaches two courses with around seventy students

in total every semester. Meanwhile, he has his own AI research lab. There are four master

students and three PhD students working under him. His whole family lives in Morgan-

town,West Virginia. He has a beautiful wife and a five years old boy.

So in this scenario, Watson plays two roles in his daily life. One lies in academic domain

and the other lies in family.

• Work Role: a Professor who conducts research and also teaches courses

• Family Role: A husband has wife and child.

Based on this, we can see the domain information varies with people’s role changes. When

Dr. watson focus on work, He resides in his academic domain. When he come to home,

the role changes to a family member, correspondingly the domain alters to be family. From

this perspective, KAMs used by Dr. Watson should also reside in two domains. If we define

a KAM in each domain, then these KAM should switch their leading role when context

changes.

CHAPTER 3. KAM ARCHITECTURE 14

3.2.2 Scenario two: Communication within Domains

Dr. Watson teaches undergraduate Artificial Intelligent class every Monday, Wednesday,

and Friday. In the beginning of his lecture, he usually gives out all lecture references for the

giving lecture which he collected with time goes on. Even though the topic every year is same

but he is used to add some new materials in his lecture, such as new technologies trend, to

attract student’s attention. On a particular night before the lecture, after reading some new

papers published by peers in another university, Dr. Watson is caught by one paper illustrat-

ing the new study on a course planning system. This paper illustrates an new experiment of

applying a revision of old COCOMO cost model in effectively planning courses. In order to

let student have a better understanding on the COCOMO model, he plans to leave a paper

review upon this paper as a part of new assignment.

From this scenario, we can tell that, in a more abstract way, Dr.Watson already constructed

his own knowledge network in a mental way. He kept updating his knowledge network by

synchronized with works from others who are in the same filed. However the current way of

synchronization was manually done by Dr. Watson himself. He manually found papers to

read and determined if it was worth to save in his mental knowledge network. From this per-

spective, the KAM working in Dr. Watson’s academic domains should be able to automate

this process by communicating with peers in the same fields and keep Dr. Watson updated.

If there was another KAM helping in this matter for his peer, it requires that KAM within

same domain for different user should have the capacity of communication. These KAM

should also share knowledge unit because of their commonness between domain information

defined in user ontology.

3.2.3 Scenario three: Communication within same Domain but

different area

On Tuesday Dr.Watson spent most of his time in doing research. He is writing a re-

search proposal to apply one science funding. This would be a new project collaboratively

cross several universities. He takes the lead role in communicating with professors in other

CHAPTER 3. KAM ARCHITECTURE 15

universities. They spend a plenty of time in discussing innovating ideas that utilize theo-

ries abstracted from biological phenomena into distributed computing. All these phenomena

appear in our daily life. Researches in the biological summarize their finding into a theory

system, which benefit distributed computing in many areas, such as resource utilization, load

balancing and also clustering. The innovating ideas proposed by Dr.Watson is not new in

biological but is an adventure in distributed computing. So he spends some time with other

professors in discussing his new idea.

In this scenario, more people from different domains involve. Dr.Watson’s knowledge is

in a limited scope that it is not sufficient to support in exploring his new idea. He consults

help from other people who has the knowledge. Thereafter his knowledge network expands

into a new area that has connection to his original domain. However his knowledge network

in this new area is sparse. To construct it, he ask knowledge share from people who al-

ready have a perplex one on it. From this perspective, for the KAM residing in Dr.Watson’s

academic domain,because of the new expansion of Dr. Watson’s knowledge network, KAM

should construct a new taxonomy in its ontology.Also it should have the ability of getting

knowledge units from the same taxonomy in peers ontology. That requires the KAM should

be able to import other people’s knowledge network. If the peer also has a KAM,when a new

taxonomy appears in one KAM’s ontology, the two KAM should communicates and share

knowledge. If the knowledge network become too large to handle for one KAM, it should be

able to split into multiple one. Each takes care one particular area.

3.2.4 KAM Features on domain

After on all above explanations, we can conclude that a KAM should contain the following

features in domain perspective.

• One KAM should be defined within a particular domain, enriching itself with domain

information. On one domain, it can contain more than one KAM.

• One KAM should reside in only one domain, but it can interactively communicate with

other KAM residing on other domain.

CHAPTER 3. KAM ARCHITECTURE 16

• Ontology information of one KAM constitutes part of ontology of the domain it resides

in.

3.3 KAM Model

The KAM architecture is based on a “society of intelligent agents” which collaboratively

discover, markup, and organize relevant knowledge objects into a semantic knowledge net-

work on a continuing basis. We can show it as Figure 3.1.

3.3.1 Knowledge Unit

The basic knowledge unit in KAM is a revision of Learning Object Metadata(LOM).[?].

It is a metadata defining all aspect of learning object. But most important features of it are

“category, data type, relation, annotation, and category”. We can draw a Jan object into

following diagram,see Fig. 3.2.

In this diagram, we can see, two JANs within that the rectangle area belongs to a

same class. All threes JANs in this diagram belongs to a same category. Each JAN has

its annotations and relationships with other JANs. This representation requires that JAN

should be unique. If we use URI to identify a same knowledge object, the URI of JAN in

different KAM should be different. This satisfies the premise of URI. To organize URIs, a

Resource oriented Architecture suits all requirements well. In this architecture, all resources

are identified by URI and be organized according to a logic view. In addition it simplifies

the API of KAM web interface into basic HTTP operation. This is illustrated in Chapter

four.

JAN as the basic knowledge unit in KAM is extracted from various type of sources. In

KAM, we focus on three important areas in our daily life: personal file system, personal

bookmarks and personal email system. All JAN used in KAM area extracted from these

three sources. The detailed exaction process is illustrated in Chapter five.

CHAPTER 3. KAM ARCHITECTURE 17

3.3.2 User Based ontology

Ontology plays an important role in KAM. As we can see from scenarios of Dr. Watson.

When he found out some valuable resource, he would like to add into his personal knowledge

network and also share with other colleagues. His knowledge network which right now does

not exist in a visible format, purely in his mind. If Dr.Watson can convert his mental

knowledge network into a concrete format, then his ontology is generated. if a KAM knows

Dr. Watson so well, it can help Dr. Watson to create his personal ontology by creating

taxonomy from his interesting areas and JANs from all resources Dr. Watson saved as his

personal data. So to some extend, KAM can help Dr. Watson to reorganize all his knowledge

into a visual format.

3.4 KAM architecture

KAM works with AI agents, and facilitates users’ knowledge acquisition. It is the detailed

implementation of KAM concept.

We define the KAM model as Table.3.1:

3.4.1 Taxonomy and the Semantic Net of Knowledge (T and R)

The first step in organizing any knowledge base is classification of the constituent Jans

and interlinking them to form a semantic net. This requires that we first define a taxonomy

that is appropriate for the domain. From a user perspective, this is aimed to build up user

ontology into hierarchy architecture. The user ontology is different with the user profile. The

prior concerns the classifications and their relationship. The later focus the user behavior

model. Also because of the similarity of users, it is necessary to create Group Knowledge

network that allow user to share JANs among groups.

CHAPTER 3. KAM ARCHITECTURE 18

Table 3.1: KAM Model

KAM−X =

pKN = Personal Knowledge Network

gKN = Group Knowledge Network

pON = Personal Onytology

CN = Context Network

iAPP = Intelligent Apps

pFS = Personal File System

pBM = Personal Bookmarks

pMS = Personal Mail System

dA = Discovery Agent

mA = Markup Agent

iA = Linking Agent (or Organizing Agent)

cA = Context Agent

vA = Visualization Agent

pA = Perusal Agent

sA = Search Agent

iA = Integrity Agent

oA = Ontology Agent

X = the domain name

3.4.2 The Discovery Agent (dA) and Markup Agent

We have adopted the agent paradigm to describe all the services needed in building

or using KAM. This may be viewed as a human-program continuum where a service may

be provided manually or automatically by invoking a program using the concept of mixed

initiative - where a program or a human depending on the circumstances may initiate an

action. In our initial version of KAM, the discovery agent is a human who goes through

normal search processes discovers a useful JAN which will be “marked-up” (to assist in

classification) and submitted to a KAM builder where it will be classified and organized

into the targeted knowledge network. The current version automated this process. This

discovery agent actively search knowledge unit in the user space along with the global space.

CHAPTER 3. KAM ARCHITECTURE 19

The query result in turn was analysed by Markeup agent. The one with highest similarity

would be submitted to the organizing agent.

3.4.3 The Organizing Agent (oA)

Once a Jan is obtained by “clicking” on the “markup” button (installed by a user on

his or her browser) or through the KAM client interface, it is handed-off to the organizing

agent which first ensures that the JAN represents a genuine link (one that is not broken or

submitted by an unreliable source). It then examines the markup information, which is used

for classification and interlinking. This information is also used to creating inverse links.

3.4.4 The Consistency/Completeness Agent (cA)

The Consistency/Completeness agent is mainly responsible for ensuring the integrity of

the KAM by removing broken links and Jans that have been designated as inappropriate or

irrelevant. The cA also will change the color of nodes whose semantic links have not been

set for lack of information. This color-coding can assist the contributors of Jans to look for

the needed information and set link values thus making the knowledge network progressively

more complete.

3.4.5 The Visualization Agent (vA)

The visualization agent is responsible for displaying the KAM knowledge network in

a variety of forms based on user preferences. One of the most useful ways to display a

knowledge network is by drawing a hyper tree or as a radial graph where nodes at each

level at the end of radii are equally spaced. The user can browse the lower level nodes by

“clicking” on the nodes as the information at lower levels unfolds. In this view, the user gets

radial graph view of the whole knowledge network from which the user can navigate to the

area of interest as it unfolds with more and more detail as you near the target. In addition

to the radial graph model, we intend to provide a variety of other representations including

hierarchies and network traversal following predefined patterns.

CHAPTER 3. KAM ARCHITECTURE 20

3.4.6 Ontology Agent

The Ontology agent is responsible for importing and exporting User personal ontology

created by KAM. It supports the OWL standard. The exported file can be read by tools

supporting this standard, like protege. Also Ontology can help user to grow their knowledge

network by importing other people’s ontology file.

CHAPTER 3. KAM ARCHITECTURE 21

Figure 3.1: KAM at a glance

CHAPTER 3. KAM ARCHITECTURE 22

Figure 3.2: A JAN Object

23

Chapter 4

RESTful architecture

In this chapter, I illustrate the implementation of ROA in KAM. The ROA structure

resolves the requirement on the uniqueness of resources in KAM. And the stateless feature of

ROA eliminates the difficulties in organizing the knowledge concerning on the user context.

All operations are simplified into basic HTTP actions.

4.1 Introduction

RESTful web applications rely on named resources in the form of Uniform resource loca-

tors (URL) and Uniform Resource Identifiers (URI) which are different from the information

encapsulated in Simple Object Access Protocol(SOAP) message as individual XML files.

Everything on World Wide Web is a resource and the reliance of the Rest API on named

resources instead of messages eases the retrieval of a specified representation of the resource.

Meanwhile the Rest API treats the resources as “nouns” that can be uniquely identified by a

URI. A request associated with resources (noun) should be treated as a “verb”. An example

of this usage is to GET a document identified with a unique URI. The use of URI’s enabled

the discovery services without them being published to the centralized repository apriori.

The naming strategy ensures that the REST API acts as the simplest HTTP requests and

responses to send and receive information to/from applications. The following operations

are supported:

CHAPTER 4. RESTFUL ARCHITECTURE 24

• Retrieving Information (GET)

• Modifying Information (PUT)

• Creating Information (POST)

• Deleting Information(DELETE)

To explain the RESTful Operations with an example, consider a URI: http://Vijjana.org/users.

Table 4.1 shows the basic operations and their corresponding meanings..

Table 4.1: RESTful Operation

Verb/Operation Application Task Explanation

GET Read/ Retrieve If a get request is sent for

the URI it retrieves all re-

sources related from this

URI

PUT Create/Update When there is no resource

related with this URI, then

create new one, otherwise

replace the old one with new

one.

POST Create Create one resource related

with this URI, the return

should be a representation

of this resource

DELETE Delete Delete the resource related

with the URI

4.2 RESTful Features

One important feature of RESTful web services is their statelessness. A stateless web

application requires the client to submit complete, independent requests. When processing

this complete and independent request the server doesn’t need to retrieve any application

CHAPTER 4. RESTFUL ARCHITECTURE 25

context or states.The design and development of the entire system is therefore arguably sim-

plified. The lack of states of the intermediate servers completely avoids the synchronization

issue between the session data and external applications. The state information is, on the

other hand stored in the client. The overall response time of the system also benefits from

the simplified server applications. One drawback of the stateless design is the server needs to

receive repetitive data sent in a series of requests, to simulate the otherwise not maintained

connection information for established clients. The requests with the repetitive information

is sometimes referred as “overloaded post”.

4.3 Why KAM uses RESTful

KAM is aimed to establish a framework that facilities the construction of personal knowl-

edge networks. KAM claims that a user crosses several domains of interests. To build the

user profile, we rely upon Ontology, which defines a series of classifications and also relation-

ships among the classifications. ROA architecture is a best candidate that fits the hierarchy

requirement because the resource in ROA is purely and consistently identified with URIs.

4.3.1 Hierarchy Structure

In contrast with other resources, knowledge is abstract. To better interpret them, knowl-

edge is often classified into categories, a process in which knowledge units are enriched with

hierarchy information. Several resource websites, open directory [?], for example, already

represents an enormous amount of knowledge units with well classified hierarchy information.

The meta information fulfills the assumption of Resource-Oriented Architecture[?] (ROA)

and also simplifies the resource retrieval problem. Meanwhile, according to the Web 3.0

standard[?], knowledge units, as a type of information, is to be retrieved upon semantic

relations, which, to some extent, are extracted from hierarchy information.

CHAPTER 4. RESTFUL ARCHITECTURE 26

4.3.2 Consistency of URI and URL

The knowledge units collected by a KAM system are mostly Internet URLs browsed

by the users. One URL may be identified with several users, but in different, user specific

perspectives. Meanwhile, people may contribute published books or articles as JANs into

KAM, too. ROA is the best choice for KAM. The RESTful service would promote the

efficiency in information retrieval . For RESTful services, resources are regarded as inde-

pendent server resource objects, providing services for retrieving information. To explain

this, we can look at one example. For instance, to find out the knowledge units about

term “sportswebsites”, previously we have to run a whole database scan to retrieve related

information. If it related to a particular user, the query is executed again but confined

with user information that might relate to certain context. However, in ROA, the naming

strategy reassures us from this pressure. We still maintain one user-favorite table. How-

ever, the URL is examined when we make the HTTP POST operation. For instance we

can send a get request to the URL http://Vijjana.org/sportswebsites. The server resources

defined with this URL would take action. The HTTP response sent back should contain

a list of resource units. All these resource units are collected from users knowledge net-

work, which are related to the term “sportswebsite“”. All these knowledge units are also

Uniformed Resource Identifier, such as “jim:url:http://espn.com”. So when we need to get a

particular user knowledge about “sportwebsite”, the results can be easily parsed by visiting

http://Vijjana.org/sportswebsites/jim where will return the sports websites user jim saves.

This also would benefit us on status check that is to make sure the information is correct. To

do this, we ran a consistency agent to constantly remove entries where their corresponding

JANs are no longer valid. Because the all the resources are URI, we avoid a lot of duplication

checks when considering same URL are saved by multiple people.

4.3.3 Resource Security

As we explained before, one feature of RESTful services is their statelessness, accepting

clients request without saving the state information. For a user-based system, however, if

the server doesn’t maintain a user state context, problems may arise. On the other hand,

CHAPTER 4. RESTFUL ARCHITECTURE 27

heavily relying on a persistence connection to maintain the state consistency is prohibitively

expensive. The problem is solved in RESTful with security schema. This is helpful in

KAM for user to create personal cyber world with privacy concern. The private space and

public space are defined and controlled by the write/access privileges on the resources. From

an outer view, the whole space is readable and transparent. However from inner view, only

authenticated user can POST or PUT entity. All the user related operations are distinguished

by the URI structure.

4.3.4 Other benefits

Another important feature implying in RESTful is robot-driven. This fulfills the feature

proposed in Web 3.0 standard. A knowledge system should be driven by machine instead

of human contribution. The strong service layer plays the important role in enabling this

feature. It also provides a way for resource exposing. To some extent, KAM is intending to

open service for others. Also it provides a way for KAM to become to be a collaborative

platform.

4.4 Resources in KAM

The basic knowledge unit JAN is the core resource in KAM. Also user, as the contributor

of JAN, becomes to be another important resource in KAM. A normal person acts in several

roles in his/her daily life, like roles in family, roles in job, roles in friends. All these roles

vary with the age grows, environment changes and all other possible factors. Considering on

this, well-structured context information would benefit us in defining user URI.

Also related terminologies are also resources here, such as following:

• subscription of update of one user knowledge network;

• consistency check;

• reorganize knowledge network;

CHAPTER 4. RESTFUL ARCHITECTURE 28

All these terminologies are mapped with certain actions. When one terminology resource is

called, its corresponding action would be taken and may trigger the state transition for other

resources.

4.5 RESTful Service for Work Flow

Imagine the following scenario, when a user, Jim, accesses the KAM system with RESTful

API, Jim first accesses the entry point which is an index page listing all sorts of services

provided in KAM system. Afterward, when Jim may choose to log in his space, where saves

his personal knowledge network. Whiling surfing the Internet, Jim may find out interesting

sports news and would like to create one JAN for it. The Vijjana-Addon [?] will help Jim to

markup the URL and generate the meta data for this JAN. After this, Jim makes a POST

request to his knowledge network URL by adding this JAN into the knowledge network.

Then this JAN has its own URI and also available for AI agents. The whole process is

illustrated in the following diagram , Fig 4.1.

APIs are required for the following scenarios.

• entry point for both the whole system and user;

• user knowledge network

• user knowledge network node: JANs

Based on the above scenarios, we design the APIs and list them in Table ??, as following:

4.6 Detailed Implementation

RESTful service does not change the framework of KAM illustrated in[?]. It appears in

the KAM framework as part of middle layer and help to facilitate the Web user interface.

We can abstract the KAM framework into several parts as Fig. 4.2 represents.

CHAPTER 4. RESTFUL ARCHITECTURE 29

Figure 4.1: A common work-flow for a typical user

4.6.1 KAM framework in ROA

From Fig.4.2, we can tell that the RESTful service acts as an important role in KAM

system, presenting in the intermediate layer to work with agents and Core KAM module.

The Agents are responsible for all intelligent tasks, like creating JAN upon specific URL. It

cooperates with the all modules and would reflect result into data store. The Core KAM

module takes the role to store/retrieve JANs into/from data store. To cooperate with others,

the RESTful service then reacts upon the requests from the Core KAM module to represent

JANs into Web layer, and also communicates with agents to create or organize JANs.

CHAPTER 4. RESTFUL ARCHITECTURE 30

Table 4.2: API Table

URI Explanation

/ Entry points for whole system

/user/ALL Entry point for all users

/user/jim Entry point for jim

/user/jim/jans (GET) Retrieve all JANs contributed by all users

/user/jim/jans/add a new jan form

/user/jim/jans/{janid}/{POST} POST an new JAN for jim

/user/jim/jans/{janid}/edit update one particular JAN for jim

/user/jim/jans/{janid} Get a JAN identified by id from jims knowledge network

Figure 4.2: Vijjana framework

4.6.2 Data format

As mentioned above, in KAM, we need different type of format to represent our knowl-

edge unit. For example, the graphML , a special graph xml format, is generated as our

CHAPTER 4. RESTFUL ARCHITECTURE 31

visualization input. The representation format, such as json, xml and graphML is also rep-

resented according to the request entry of our restful layer. When the object is POSTed,

the corresponding serverResource would transform the object into JAN without any format.

When a JAN was requested with format requirement with the url according to this pattern

{JANID}{format}, the corresponding format data representation will process and generated.

For example,/jans/892/graphml would generate the GraphML format of JAN with id 892.

Internally we rely on Spring marshalling method to create an xml format and JSON serializer

to create JSON format.

4.6.3 URI resources and compared to Session

In the RESTful framework, all things are concerns with URI without concerning on the

session information. For example, in our implementation, all the operations related to user

are related with URL http://vijjanaweb.vijjana.org/users. The underneath operations are

the basic operations of HTTP. When register a new user, it submits a POST operation to

the URL “” and then one server resource responses with store this user. When we visit

the URL “http://vijjanaweb.vijjana.org/users/john”. Another server resource will provide

the service instead of the previous one. So even the two URL share the base URL but its

underlying structure is different. Compared to the session related server, if we need to retrieve

a user information, then the client needs to initiate a request to server with query string

“username=john”. To response this, the server will open one session for this request and the

corresponding servlet binding with URL like “/users?username=draft” will response. Then

the response returns to client. Here the service resources binding with “/users” will response

on any use request, acting as an intermediate station to dispatch response correspondingly.

Obviously, the RESTful implementation illuminates this with different URI resource binding,

which form a one to one mapping.

http://vijjanaweb.vijjana.org/users

32

Chapter 5

Vijjana Keyphrase Extraction

Algroithm

In this chapter, I will illustrate the key phrase extracting algorithm used in the vijjana.

From chapter two, we can see that the the semantic word concept plays an important role in

knowledge filtering and user profile construction. Here I explain my method for extracting

keywords. I will explain its usage on the user ontology and knowledge unit in the next

chapter.

5.1 Background

Keyphrases extraction, as an information retrieval technology, plays an important role

in information indexing, clustering and inferencing. Accurate keyphrases depict content at

a high level abstraction and are also used to define a semantic index in a knowledge based

network. With the development of search engines and the semantic web, tons of information

accumulates at a rapid speed. Most of it is disordered and is represented without an obvious

relationship. To reveal the inherent relationships and make corresponding classifications,

researchers in machine learning impose statistical models that rely on techniques like the

naive bayes[?] theorem, decision trees [?], and example-based models [?]. Most of them can

achieve very accurate results with domain-specific knowledge which ensures that the condi-

tional independence assumption in these statistical models is true. However this assumption

CHAPTER 5. VIJJANA KEYPHRASE EXTRACTION ALGROITHM 33

is rarely true in real world applications, especially in a real time application which provides

concurrent feedback with user input. To conquer this, Artificial Intelligence techniques are

introduced into the process. They can change their actions with the awareness of context

status changes. On the other hand, what they sacrifice is having additional run-time cost

in adaptively re-run the model to produce higher quality results. To seek a balance be-

tween statistical and AI methods, we can combine their features. From the AI perspective,

adaptive learning is performed the confines of a small window, usually a region of a certain

word-length. Heuristic selection, as the basic AI operation, is conducted based upon the

accumulative learning on these certain-length regions. For a particular paragraph, the final

result of this method is a list of keywords which can stand as a summary for the whole

paragraph’s content. In order to better organize the accumulative learning, we need to apply

statistic analysis in investigating the functional factors that largely affect the results. In

general, several factors could potentially impact result accuracy and algorithm performance.

These factors range from category factors like specific domains to quantitative factors as

text lengths. The earlier researches[?][?][?] in this area focuses on changing the amount of

training data or the number of keyphrases to diagnose the impact of such factors. Their

research results suggest that the training data set size has little impact on final keyphrase

accuracy after its quantity exceeds 20. Thus, the quality of the training set influences results

greatly as compared to the size of the training set.

In the KAM model, information inference is a key factor in discovering knowledge units,

revealing connections between users taxonomies and linking ontologies. The user input doc-

ument is interpreted into keyphrases that would be used in information indexing and clus-

tering. These keyphrases are also analysed in a context model to determine the current user

context. All of these determine that our algorithm needs to be accurate and relies less upon

the algorithm’s training process. To solve the problem, we utilize a Markov chain Monte

Carlo method to sample selected paragraph snippets. Based on sample distribution and

maximum entropy theorem, we designed our own keyphrase algorithm. The assumption of

this algorithm is that the keyphrase, regarded as a characteristic word, discretely appears

continuously in each equal size region of a document. In this rest of this chapter, section two

presents related works in this field. Section three gives the theoretical background of our

CHAPTER 5. VIJJANA KEYPHRASE EXTRACTION ALGROITHM 34

algorithm. Section four focuses on illustrating the algorithm details. Section five examines

several factors in which we have interest.

5.2 RELATED WORK

In the English language, people use different phrases to distinguish a given time with

with the current moment. This brings in uncertainty and word-polymorphism problems in

text mining. To solve this problem, several stemming algorithm are proposed. Lovins[?] and

Porter[?] are two popular algorithms for stemming English words whose alphabet consists

only of 26 characters. Stemming is important in keyphrase extraction algorithms which call

for accurately recognizing minor differences between words. Krulwich and Burkley[?] pro-

posed to use heuristic rules to extract key words in 1996. Their method largely depends

on syntactic rules. Adam L. Berger and Vincent in 1996 [?] proposed to use the maximum

entropy for natural language processing. Munoz proposed a method of generating keywords

by using Adaptive Resonance theory (ART) neural networks [?]. The keywords generated

by this algorithm have a low precision and the algorithm also doesn’t fit for more-than-two-

words keyphrase. Frank et al. (1999) developed a keyphrase generating tool called KEA

which uses the Bayesian approach as a learning procedure[?]. This algorithm largely im-

proved the accuracy by heavily relying on well structured training data sets gathered from

a specific domain. Andrew and Dayne at 2000 proposed the MEMM model[?] to tag se-

quential data, which utilized a theory similar to ours but relied on learning data and specific

constraints.

All these researches reveal that the heuristic method is much more effective than analyzing

patterns lying between sentences. A Large amount of training data would greatly improve

results but also sacrifice a shorter running time in gathering them. However, almost all of

these algorithms put much energy into discovering and exposing very small factors which

impact performance. Frank and his/her colleagues in [?] suggest that well structured domain

characteristic data would improve results and also reveal their algorithm’s result would have

no improvement after trained with 50 documents on a specific domain.

CHAPTER 5. VIJJANA KEYPHRASE EXTRACTION ALGROITHM 35

An overall goal of our work is to propose the algorithm and also to identify significant

factors from several general ones. Our algorithm is independent from training data.

5.3 Theoretical Background

A standard document consists of thousands of words. After it is stemmed, each word

will be identical and also have its own distribution. If we define a information set X as a set

of words, then the distribution of this information set becomes a multinominal distribution

with respect to the distribution of a random variable xi with probability pi, where xi stands

for a particular word in this information set.

f(X) =

{
n!

x1!...xk!
p1 . . . pk when

∑k
i=1 xi = N

0 Otherwise
(5.1)

where xi ∈ X.

As mentioned before, the keyphrase, regarded as words distilling the main idea of a whole

document, should appear in the document in a discretely in a uniform distribution.

5.3.1 Term Weighting

The importance of a term in a document is revealed by its contribution to the whole

document. To evaluate the contribution, it is necessary to formalize them in a numeric fash-

ion. The traditional method is to construct the document into a vector d = {w0, w1, . . . , wn}

where the wi denotes a unique word that has appeared in this document. For each word, wi,

the weight is calculated by its frequency in this document. The intuitive and easiest way is

using a term occurrence frequency in the document as term frequency. There are two other

types term frequency [?] augmented normalized term frequency and binary term frequency.

The binary term frequency is also as simple as the occurrence frequency. It is useful when

there is an existing training set. If a term appeared in the training set but not in the doc-

ument, the term frequency is set to zero. If it appeared in both, then the term frequency is

CHAPTER 5. VIJJANA KEYPHRASE EXTRACTION ALGROITHM 36

set to one. The augmented normalized method is a variation of binary frequency but inde-

pendent of a training set. It adds an augmented factor and normalizes the term occurrence

by dividing the maximum term occurrence. It is defined as 0.5 + 0.5 ∗ tf
tfmax

where the tf is

the occurrence frequency and tfmax is the maximum term frequency in this document. In

our VKE algorithm, we use the occurrence algorithm as our term frequency. In our context

model which will be illustrated in the next chapter, we use the augmented normalized term

frequency. The reason we use the occurrence frequency is from the consideration of the term

density in our random sampling process.

5.3.2 Metropolis-Hastings algorithm in sampling

The random selection in our VKE algorithm is ensured by the Metropolis-hasting algorithm[?].

It walks through the whole document and generates “candidates” from the proposal distri-

bution which is a multinomial distribution of the whole document. This algorithm is simple

but quite effective in generating samples from a continuous space. It involves an Acceptance-

Rejection progress. For a given item x, it has a density π(x) = f(x)/K, where f(x) is the

unnormliazed density and K is a normalized factor which might be unknown. If we already

know there is a density, h(x), that is generated from a known method and suppose there is

a known factor c such that f(x) ≤ c ∗ h(x), then we can obtain a random variate from π.

This original algorithm is described as following:

1: initially, random selected one item y as start point.

2: for i =1 TO sample size do

3: proposal step: generate ”candidate” x from the given distribution Q, and mu from

U(0,1)

4: x ∼ q(x|yi−1)

5: if µ < α(x, y) then

6: yi = X

7: else

8: yi = yi−1

9: end if

CHAPTER 5. VIJJANA KEYPHRASE EXTRACTION ALGROITHM 37

10: end for

11: return

The A-R process is determined as α(x, y). If u < α(x, y), then a new candidate is obtained,

otherwise it stays. Therefore, the transition from x to y according to alpha(x, y) can be

described as following:

P (x, y) = q(x, y)α(x, y), wherex 6= y (5.2)

One of our M-H round shows result as :

Figure 5.1: Metropolis-Hastings

CHAPTER 5. VIJJANA KEYPHRASE EXTRACTION ALGROITHM 38

Figure 5.2: Monte Carlo Approach

5.3.3 Monte Carlo Method in VKE

The traditional monte carlo method is used to sample i.i.d data set X with a known

density p(x) on a space where the posterior distribution is defined. This is shown as Fig.

5.2 For real time applications like text processing, the traditional method is not applicable.

Correspondingly, the sequential monte carlo method [?][?] is devised to solve this problem.

It is required to satisfy the following criteria: 1). It has an initial distribution, which is

non-zero but can be arbitrary generated and 2). The latest information should satisfy the

support of posterior p(X) or even greater than the earlier information gained in the process

with respect to state Y.

p(X0) > 0 (5.3)

p(Xt|Yt) > p(Xt−1|Yt−1) (5.4)

To better interpret these requirements, we can consider the whole process as set transi-

tions. A generic transition is related to one past state Yt−1 with probability p(Xt−1|Yt−1),

current state Yt with probability p(Xt), and one observation ot gained from current state.

Correspondingly, at the very beginning, the initial set is stateless with a non-zero density

mass p(X0). An information set is collected at this state. Meanwhile the first observation

o1 is computed from this information set based on p(X0). This observation leads to a state

transition, in which new information set is collected and new observation is computed. This

process is displayed in Fig. 5.3.

CHAPTER 5. VIJJANA KEYPHRASE EXTRACTION ALGROITHM 39

Figure 5.3: State transitions

An important property to mention in a Markov chain is the aperiodicity. Any state tran-

sition needs to avoid becoming trapped in a loop. This property is also important even in

real time applications like sequence text processing where the data is cached and computed.

When the state transition only moves from a state with lower probability to a state with a

higher one, the target distribution would be shaped in a gradient way. This mechanism is a

revision of MCMC algorithm, called Hybrid Monte Carlo.

5.3.4 Maximum entroy theorem in VKE

Entropy is a concept introduced into information theory from physics. It is used to be

a measure of disorder. One feature of entropy is that it explains the spontaneous process.

Here we can simply explain entropy by a simple example when it applies in text processing.

Suppose one sentence consists five words: A, B,C,D and E, in which they may appear more

than once. From this sentence, two information sets are generated. One contains three

words, A ,B and C,and the other is formed by A,B,C,D. The intuitive density is as following:

p(A) = p(B) = p(C) = p(D) = p(E) = 1/5. (5.5)

This naive model treats every possible candidate as having equal probability, however they

do not since they appear in the sentence more than once. From the two information sets, we

CHAPTER 5. VIJJANA KEYPHRASE EXTRACTION ALGROITHM 40

Figure 5.4: Entropy Concept

may think the first information containing words A, B and C may be more appropriate in

depicting this sentence. However, to verify this, we need to prove these words have a more

uniform model than the other two. To prove this, we can use the entropy concept.

The definition of entropy in information theory is given in term of probability of message

delivery. Messages can be lost during the transmit process. For this reason, the probability

is regarded as a success rate. For an information set, the entropy concept is used to be a

measure of how much information was in this information set. See Fig. 5.4

The definition given can be interpreted in the following way to fit in our keyphrase

extraction circumstance: the entropy of a word in a document is a measurement of to what

degree this word can stand for the main idea of this document. Then the information set

which has the largest entropy value should be regarded as the best keyphrase set. The new

definition fulfills the features of the entropy concept and also suits well for our complex

CHAPTER 5. VIJJANA KEYPHRASE EXTRACTION ALGROITHM 41

problems that we are trying to solve. As same as the formula defined in information theory,

we define the entropy formula as :

E(IS) =
N∑
i=0

Pi(X) ln
1

Pi(X)
,∀X ∈ IS. (5.6)

Where the X denotes a particular word, Pi(X) is the possibility that the word X shows in

the ith certain transition. It is the ratio betwen its number of it appearances in a list of

frequently-appearing words and the list size in a particular Monte Carlo Set . N denotes

the total number of transitions which also relate to region numbers that the document is

divided into. Our algorithm selects only one transition per region. So totally we have N

Monte Carlo Sets.

From the definition we can say the words with the largest entropy values are more likely

to be keyphrases. This is also our final conclusion drawn from the entropy concept. However

the premise of using the entropy concept here is the the equilibrium of keyphrase density in

document.

5.4 Algorithm design

The VKE algorithm processes a document in three steps. The first step is the prepro-

cessing step. It is to preprocess the given document. This step includes two minor steps. 1)

The User predefines three important variables. One is a variable defining the threshold of

term weight. Another is a region number that is used to determine into how many pieces a

document should be divided. The third variable is the maximum trail number that indicates

the maximum number of state transitions permitted in the VKE Model. 2) Generates two

tables: a term weight table and a term location table.

The second step is the HMC heuristic selection step. In this step, based on the regions we

state, we first define the HMC state that is a HMC selection would perform on this particular

region. For each state, we label it as either a high term weight state or a low term weight

state according to the terms frequency we calculated on step 1. Then We apply the M-H

algorithm on all states. The M-H algorithm will generate a Monte Carlo set on each state

CHAPTER 5. VIJJANA KEYPHRASE EXTRACTION ALGROITHM 42

that stands for the current observation. Based on the observation, we leapfrog only if the

current monte carlo set satisfies two conditions: the mean value of term weight calculated

from this set is (1) larger than the one from previous state and also (2) the ratio of the two

mean values is larger than a random value selected from a uniform distribution, U(0,1). The

transition can only move to a higher term weight state. Till all high term weight states are

all visited, HMC algorithm finished.

The third step is the maximum entropy calculation of the selected HMC observation.

5.4.1 Preprocessing

In the preprocessing step, a user-defined threshold for minimum term weight is required.

It is usually a percentage factor, valued from zero to one. This factor is multiplied by the max-

imum term weight to get the real threshold. The other user-defined value is region number.

For a given document, we need to construct two information tables. One is the token-length

table L(pos, wpos). The other is the term weight table, W (term, tf). L(pos, wpos) which

describes the document length continuous space. Both the M-H and HMC heuristics need

location information from it to perform the random walk. Table W (term, tf) laid the foun-

dation for the VKE algorithm. All the calculations of term density and entropy are based

on the term weight table.

5.4.2 M-H in VKE

For a M-H algorithm implementation, it is important to specify a target density where the

random variate generated from. In VKE, we specified the term density as our target density.

For a given document, the term density is described by term frequency in a document length

space as π(wi) =
tfwi

Ld
where the tfwi

stands for the term occurrence and Ld is the length of

the given document. Then A-R acceptance method,alpha(wi, wj), is defined as

α(wi, wj) = min

(
π(y)

π(x)
, 1

)
(5.7)

Our M-H implementation is as same as the above section with specifying the density function.

CHAPTER 5. VIJJANA KEYPHRASE EXTRACTION ALGROITHM 43

5.4.3 HMC heuristic selection

The HMC heuristic selection is the essential part in the KEA algorithm. The region

number determines how many states are in this HMC model. According to the region

number, we divide a document into regions. The region information is calculated from

the table L(pos, wpos) that is generated in the preprocessing phase. Each region acts as

an individual state. Based on the term weight information provided by term weight table

W (term, tf), we can label each state as a “high term weight” state,S − htw or a “low term

weight” state Sltw.

A Monte Carlo set containing keyphrases generated by the M-H algorithm on a certain

region is regarded as an observation from the corresponding state. The probability of the

observation is calculated by high frequency term percentage, P (Xi) = hftss
T

where hfs stands

for the high frequency term size and T denotes the Monte Carlo set size. The State transition

also involves an A-R progress. Different from the H-M algorithm, the acceptance condition

is rigid and tough, which we need to satisfy the HMC premise that every leapfrog needs to be

from a state with a lower probability to a state with a higher one. Therefore in our model, for

a state transition, the transition must be from a monte carlo set with lower probability to a

higher one. In addition, we introduce a random value z simulated by a uniform distribution

on range from zero to one. For every leapfrog, the probability ratio of the current state over

the previous has to be larger than z. These two conditions ensure keyphrases that appear in

previous regions may also appear in the following regions. This conditional leapfrog ensures

our assumption that using entropy is correct. The initial state is random selected. The

ending situation is that all high term weight states are visited.

The process can be described as follows:

1: Start at region one with state Y0

2: for i= 1 to N-1 do

3: Create Monte Carlo Set Si.

4: Calculate Pi

5: if P (Xi|Yi)
P (Xi−1|Yi−1)

≥ 1 AND P (Xi|Yi)
P (Xi−1|Yi−1)

≥ µ then

CHAPTER 5. VIJJANA KEYPHRASE EXTRACTION ALGROITHM 44

6: Go to next Region

7: else

8: Redo procedure from line 3 to line 6

9: end if

10: end for

5.4.4 Entroy computation

1: All candidates’ frequency is computed

2: while Not Final State do

3: Store candidates p(xi|Yi) in an array Ei.

4: end while

5: compute maximum entropy from matrix M consisted by Ei

6: sort M.

The correctness of this algorithm is easily proven. The concept of entropy means that the

keyphrases are going to be spread through the whole document. From the view of keyphrase

extraction, we are applying a syntactic rule on a well structured document. The heuristic

method, Markov chain Monte Carlo (MCMC), provides the foundation for this assumption

to be true by satisfying base possibility requirement.

The algorithm’s run-time complexity is O(mn), where n is the length of document, m is a

preset value of the maximum trials for fetching information set. The whole process will go

through the document at most m times. If the document is large and m is comparatively

small, then the complexity is close to O(n).

5.5 Experiment

5.5.1 Terminology

Before we proceed to explain our experiment, it is necessary to give several terms used

in our study. Most of them are also general terms used in statistic modeling:

CHAPTER 5. VIJJANA KEYPHRASE EXTRACTION ALGROITHM 45

1. Factors: The variable that affects the response variable.

2. Levels: The possible value of a factor can assume.

3. Response variable: The measurement variable used to evaluate performance.

4. Main effects: The variance of response values caused by factor level changes.

5. Interaction effects: The relative changes due to two factors interacting with each

other.

5.5.2 Experiment Design

Objective and Hypothesis

Our main objective as addressed before is to find out which factors have the greatest

effect in impacting the results. Statistically speaking, we can try to find the factor whose

main effect is obviously larger than the others with respect to its mean accuracy value. The

second objective is that we are trying to identify whether or not there are some factors

interacting with each other. Statistically speaking, we are trying to identify whether the

interaction effect between two chosen factors are identical. Generally the Hypothesises that

we are going to test are given as follows:

1. Main Objective:

Null Hypothesis H0: There is no differences amongst levels of a particular factor.

Alternative Hypothesis Ha: There are differences within levels of a particular factor.

CHAPTER 5. VIJJANA KEYPHRASE EXTRACTION ALGROITHM 46

2. Second Objective:

Null Hypothesis H0: There is no interaction effect existing between two factors.

Alternative Hypothesis: Ha: There are interaction effect existing between two factors.

Factors Selection

There are numerous factors which may impact the accuracy of keywords generated by the

keyphrase extraction algorithm. Some of them are characteristics intrinsic to text documents.

This demonstrates that some factors are beyond our control and lead our experiment to be

an observational study. For these kind of factors, we classify the experiment units, which

right now are documents, into corresponding factor levels by observing the distribution of

their values. Some of them are algorithm parameters which can be varied by passing in

different values. For these kind of factors, we change their values according to their factor

levels. In our experiment, we select factors as Table 5.1 shows.

Table 5.1: Factor Table

Factor Levels

document size words number less

than 30000, between

30000 and 60000,

more than 60000

generated keyphrase

number

5,10

domain specifics domain1 to domain4

Hereby we provide justification for the factors and their levels used in this study.

CHAPTER 5. VIJJANA KEYPHRASE EXTRACTION ALGROITHM 47

Document size is the total number of words in document from which we extract keyphrases.

As mentioned before, the size of a document as a document characteristic is also out of our

control in our study. Thus we selected its levels by observing its distribution from our

randomly-selected documents which stand for the whole population. In the end, we define

its levels as three categories: less than 30000, between 30000 and 60000, more than 60000.

keyphrase number is the number of keyphrases generated by our algorithm. This factor is

easily controlled since it is a parameter in our algorithm. Therefore we set its level as 5 and 10.

specific domain is a factor indicating which domain a particular document belongs to.

It is also a characteristic of a document. We place the selected document into one of four

domains from where we will later select it.

Response Variable

Since there is no measurement standard to follow in keyphrase extraction algorithms,

we continue to use general methods that measure accuracy by the number of matches be-

tween machine-generated keyphrases and human-assigned keyphrases. In our study, since

the number of keyphrases is one factor which might affect the result, we are expecting a

larger number would generate more matches. The accuracy value we use is the ratio of the

number of matches to the number of keyphrases as this equation shows:

Accuracy =
Matches number

keyphrase Numer
(5.8)

One thing to mention here is that the final number of final matches is manually counted

by humans. This may introduce validity threats due to human error.

CHAPTER 5. VIJJANA KEYPHRASE EXTRACTION ALGROITHM 48

Study Design

Random selection is a basic principle in experimental design. However, since a large

amount of factors in keyphrase extraction algorithm study are also characteristics of docu-

ments, the random-selection principle usually also introduces some noise in sampled data. In

our study, to largely eliminate bias, we randomly selected 24 documents as our sample data

from four different domains. The diversity in this sample data lets us define their factor levels

largely dependent on their distribution in sample data. This also fulfills the requirement of

a balanced design. However it also means some factor levels are going to be variable which

may bring in a random effect. We apply our algorithm upon these documents which are our

experiment units. Since the interaction effect between any two factors is our interest, we have

to use Crossed Design as our design model. Since the number of keyphrases is a factor that

we have control over and it has only two levels, we can use this feature to refine our design

as a Randomized Complete Block Design in which factor keyphrase numer is used as a block

factor. This design lets factor document size and factor domain specific be crossed within

the blocks of keyphrase number, as seen in Table 5.2. Since block design is used to largely

eliminate noise, it would also be helpful in clearly identifying relationships between factors.

Therefore we can consider the factor of the number of keyphrases as one block factor which

would increase the power of Analysis of variance. In our study, the document size factor has

three levels, and domain specific factor has four levels. So we have twelve treatments.

Data selection

To obey the random selection principle, we originally randomly selected 67 documents

from five different domains as our sample data. However, when we applied the algorithm

to them, we discovered that the sample data from domain one is largely different that the

other four domains since the documents’ sizes in it are too small compared with other four

domains’ data in which document size scale well in three factor levels. Due to this reason, we

pruned the sample data set to be 24 documents only and from 4 domains to ensure the bal-

ance requirement. These 24 documents are fitted into 12 treatments because the keyphrase

CHAPTER 5. VIJJANA KEYPHRASE EXTRACTION ALGROITHM 49

Table 5.2: RCBD in VKE

k(5) (D1,L2)(D1,L3)(D2,L1) (D1,L1)(D2,L3)(D3,L1)

(D4,L2)(D3,L2)(D4,L1)(D2,L2) (D4,L3)(D3,L3)(D4,L4)

k(10) (D1,L1)(D2,L2) (D1,L2)(D1,L3) (D2,L3)(D3,L3)

(D4,L1)(D3,L1)(D3,L2)(D4,L2)(D2,L1)(D4,L3)(D4,L4)

is acting as a block factor. This means our sample size in each treatment is only two. This

small sample size introduces bias. However, considering the cost issue, we continued to con-

duct our study with this small sample size.

5.6 Data Analysis

5.6.1 Analysis of Variance(ANOVA)

The statistic ANOVA technique is widely used in more than two levels of factorial design.

The definition of it given in wikipedia is what follows [?], “In statistics, analysis of variance

(ANOVA) is a collection of statistical models, and their associated procedures, in which the

observed variance is partitioned into components due to different explanatory variables.”.

The detailed explanation of the ANOVA table will be clarified in the following analysis part.

5.6.2 General Analysis upon our objectives

Before we proceed to conduct the hypothesis test, we take consider the whole study first.

From Fig 5.5 we can see there are no big differences among different domains; from Fig 5.6

we can see an interesting phenomena in that when the keyphrase number is five, the mean

CHAPTER 5. VIJJANA KEYPHRASE EXTRACTION ALGROITHM 50

value is larger than the mean value when the keyphrase number is 10. We can estimate that

the factor klength may have an effect of impacting the final result.

10101010101055
55
55
1010101010101055
55
55
5
101010101055
55
5
10101010101055
55
55

●
●
●

●
●

●
●

●
●

●
●
●

●
●
●
●

●
●

●
●

●
●
●
●

●
●

●
●

●
●

●
●

●
●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

1

2

3

4

0.0 0.2 0.4 0.6 0.8 1.0

Accuracy

G
ro

up
 b

y
do

m
ai

ns

Figure 5.5: Overview dotchart 1: Accuracy Grouped by Domains

5.6.3 Hypothesis Test

First Objective: Main Effect

Recall the null hypothesis proposed in Section 3.3.1. We are interested in analyzing the

main effect of factors that may impact the accuracy results and also their interaction effects.

Our study is a three factor design. For each factor we, examine its main effect and also how

it interacts with the remaining two factors. Then we construct our ANOVA test as following:

In this ANOVA table, a row indicates the effect caused by its corresponding factor which

is listed at the first column in each row. Df means the degrees of freedom and this value is

CHAPTER 5. VIJJANA KEYPHRASE EXTRACTION ALGROITHM 51

> anova(lm(accuracy ~ klength + domain

+ tlevel + klength * domain

+ domain * tlevel

+ klength * tlevel))

Analysis of Variance Table

Response: accuracy

Df Sum Sq Mean Sq F value Pr(>F)

klength 1 0.13021 0.13021 3.7227 0.06287 .

domain 3 0.17746 0.05915 1.6912 0.18922

tlevel 2 0.01051 0.00525 0.1502 0.86118

klength:domain 3 0.33484 0.11161 3.1911 0.03719 *

domain:tlevel 5 0.42641 0.08528 2.4383 0.05644 .

klength:tlevel 2 0.02442 0.01221 0.3491 0.70804

Residuals 31 1.08428 0.03498

CHAPTER 5. VIJJANA KEYPHRASE EXTRACTION ALGROITHM 52

11
11
11
22
23
33
33
33
22
44
44
44
11
11
11
22
23
33
33
33
22
44
44
44

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●
●
●

●
●
●

●
●

●
●

●
●
●

5

10

0.0 0.2 0.4 0.6 0.8 1.0

Accuracy

G
ro

up
 b

y
ke

yp
hr

as
es

 n
um

be
r

Figure 5.6: Overview dotchart 2: Accuracy Grouped by keyphrase Number

always factor level minus one; Sum Sq stands for sum of σ2 which is the variance of the par-

ticular factor; F value is its estimated value in F distribution , and Pr(≥F) is the possibility

of getting a value larger or equal to F than the estimated F value in F distribution. Usually

Pr(≥F) is used to compare with α value which indicates type one error percentage.

From the above ANOVA table, we first examine the first hypothesis about the main effect

of three factors. We can tell that after comparing with the other two factors that klength,

denoting keyphrase number, has the smallest P value. This means it has great effect than the

other two factors in influencing the final accuracy. However it isn’t small enough to less than

any reasonable chosen alpha value. We can write the formal hypothesis test as following,

where ai stands for the factor effect on the ith level of factor keyphrase numbers(klength),

bi indicates the factor effect on the ith level of factor domain(domain), and ci denotes the

factor effect on the ith level of factor document size(tlevel). α here is set to be 0.05.

CHAPTER 5. VIJJANA KEYPHRASE EXTRACTION ALGROITHM 53

Null Hypothesis One: H0 : a1 = a2 = 0

Alternative Hypothesis Ha : not all ai is equal to zero.

Compare: P [F0 ≥ 3.7227] ' 0.06287 where F0 ∼ F [1, 31] under H0.

Decision: Since P value(Pr(≥)) is larger than α = 0.05 , we failed to reject the H0.

Conclusion:There is not sufficient evidence to suggest that the keyphrase length has an effect

on influencing the final result.

Similarity We can conclude that the factor domain and document size also have no effect in

influencing the final result.

This conclusion is interesting and may be pragmatic because the factors, except the

keyphrase number, are characteristics of documents; they should have no effect since they

are hard to control in any algorithm. Otherwise our algorithm doesn’t depend on domain-

specific training sets to achieve highly-accurate results and also must not bound the size of

the document. This is the reason that the other two factors also take no effect. Besides the

above mentioned, the keyphrase number may have another story. From Fig 5.6, we can see

that a smaller number of keyphrases would generate a more accurate result. This may be

caused by the measurement method we used which is a ratio of the number of matches to the

number of keyphrases. This also indicates that matches have no relationship to the number

of keyphrases we set in the algorithm. This is also a feature of the heuristic rule approach.

Second Objective: Interaction Effect

From the ANOVA table, we can clearly see there is an interactivity effect existing between

the number of keyphrases and the domain. The interaction effect between domain and

document size is not obvious but close to critical region. Before we are going to perform

formal statistical tests, we first glance at their interaction plots.

We can easily tell whether or not there is an interaction effect between two factors by

looking at the parallel pattern between their tendency lines in the interaction plot. In the

Fig 5.7 and Fig 5.9 we can see the dramatic differences in their tendencies. In Fig 5.8, there

CHAPTER 5. VIJJANA KEYPHRASE EXTRACTION ALGROITHM 54

0.
2

0.
3

0.
4

0.
5

klength

m
ea

n
of

 a
cc

ur
ac

y

5 10

 domain

1
3
2
4

Figure 5.7: Interaction plot between keyphrase length and domain

is no parallelism. However, from the test, we can see the interaction effect is not obvious,

indicated by its large P value. We can ascribe this lack of parallelism to the small sample

data size.

The formal statistical analysis is given as follows, where abij stands for the interaction

effect between the ith level of factor, keyphrase numbers(klength), and the jth level of factor

domain(domain). And acij denotes the interaction effect between the ith level of factor,

keyphrase numbers(klength), and the jth level of factor document size(tlevel). And bcij de-

notes the interaction effect between the ith level of factor, domain(domain), and the jth

level of document size(tlevel). It is customary to set α at 0.05.

Null Hypothesis One: H0 : All abij = 0

Alternative Hypothesis Ha : not all abij is equal to zero.

Compare: P [F0 ≥ 3.1911] ' 0.03719 where F0 ∼ F [3, 31] under H0.

CHAPTER 5. VIJJANA KEYPHRASE EXTRACTION ALGROITHM 55

0.
25

0.
30

0.
35

0.
40

klength

m
ea

n
of

 a
cc

ur
ac

y

5 10

 tlevel

3
1
2

Figure 5.8: Interaction plot between keyphrase length and document size

Decision: Since P [F0 ≥ 3.1911] is smaller than α = 0.05, we reject the H0.

Conclusion:There is sufficient evidence to suggest that there is an interaction effect existing

between the keyphrase length and domain.

Null Hypothesis One: H0 : All bcij = 0

Alternative Hypothesis Ha : not all bcij is equal to zero.

Compare: P [F0 ≥ 2.4383] ' 0.05644 where F0 ∼ F [5, 31] under H0.

Decision: Since P [F0 ≥ 2.4383] is greater than α = 0.05 , we failed to reject the H0.

Conclusion:There is no sufficient evidence to suggest that there is an interaction effect exist-

ing between the domain and document size.

Similarity we can conclude there is no obvious interaction effect between number of keyphrases

and document size.

CHAPTER 5. VIJJANA KEYPHRASE EXTRACTION ALGROITHM 56

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

tlevel

m
ea

n
of

 a
cc

ur
ac

y

1 2 3

 domain

2
3
1
4

Figure 5.9: Interaction plot between documentsize and domain

This discovery is not out of our expectations since the domain and number of keyphrases

should have a correlation that infuences the final result. This means that if we trained some

well-defined data upon a specific domain, different levels of number of keyphrases would

bring a difference in the final result. We may also draw the conclusion that the if we can

combine the heuristic method and learning approach together, the accuracy would improve

compared to before.

5.6.4 Study Validity Consideration

Validity threats are usually raised from several aspects: Conclusion Validity, Internal

Validity, Construction Validity and External Validity. The possible factors that can trigger

these threats are usually classified into several major perspectives such as time order, en-

vironment change, subject mortality, and others. For our study, we also have issues which

might raise the threats of validity. We conclude them as follows:

CHAPTER 5. VIJJANA KEYPHRASE EXTRACTION ALGROITHM 57

1. Conclusion Validity

Our conclusion is drawn by statistical analysis. This step should not have substantial

problems. However due to the interaction effect existing between a block factor and a

general factor, we should take careful consideration of the experimental study.

2. Internal Validity

This validity related to whether or not the logic in this algorithm is correct. This step

should be correct. In the algorithm, currently we pass in very few parameters. To

improve the result quality and also eliminate the internal validity threats, we should

specify the parameters as implicitly as possible in our future work.

3. Construct Validity

This step has some validity threats. The largest threat is that the final number of

matches number is tabulated by a human. Another threat is caused by our sample

data size, which is too small. However the latter threat is largely due to resource lim-

itation and cost issues. There are also some construction validity concerns caused by

confounding factors since we don’t examine all factors.

4. External Validity

This study can be also conducted with other algorithms. Since it is involved with any

the time issue so it also can be applied on others without consideration on time order.

5.7 Conclusion and Future Work

In this chapter, we introduced the VKE algorithm and its experimental result. The

algorithm combines heuristic methods and a learning model. Experimental analysis is used to

discover two things: (1)important factors which might impact the accuracy and (2) whether

or not there is an interaction effect existing in factors. Our finding reveals that the number

CHAPTER 5. VIJJANA KEYPHRASE EXTRACTION ALGROITHM 58

of keyphrases as a parameter in the algorithm has more of effect than other two factors,

document size and domain specifics, in influencing the final result. Consequently, there is

an interaction effect existing between the number of keyphrases and a specific domain. This

experiment also has its disadvantages such as small sample size. In the future, we should focus

on building up an empirical regression model which would serve to automatically analyze a

factor’s effect when a new factor is introduced into study. Also our VKE algorithm should

be improved by combining training-purpose features and heuristic rules. We can accumulate

data from a particular user as a training data set which is only specific for him/her in our

algorithm. This would help us to gain a large performance promotion in anuser-based context

awareness collaborative environment.

59

Chapter 6

Context Centric Model

In this chapter, I will illustrate how the user centric model is established upon the on-

tology pattern. The user centric model covers three parts: how we establish the user profile

based on the ontology information, how the system can know the user current context and

what the work flow of a typical knowledge discovery process is.

6.1 Acknowledge User

The basic knowledge unit in KAM, what we called JAN, can be abstracted from various

source types. It can be extracted from a concrete object like a document, webpage or an

email. It can also be a logic unit with references to others. Acting as the basic reusable

resource unit in the ROA architecture, JAN plays a large role in representing knowledge.

As mentioned earlier, it is a revision of the LOM standard. According to the definition

of LOM, it should contain important fields such as annotations, references, and categories.

These properties are essential in our KAM model when dealing with knowledge processing

and discovery. From a user’s perspective, the knowledge units known as JANs are unique

to themselves, reflecting the user’s interest and preferences. The annotations and references

which the user manually labelled on the JAN emphasize the importance the JAN in user’s

view. More generally speaking, a JAN as a representation of knowledge should not only

contain Meta information describing its conceptual meaning but should also contain meta

CHAPTER 6. CONTEXT CENTRIC MODEL 60

information reflecting the view of a user. In another words, a JAN is only meaningful

when it is combined with user information. As mentioned in chapter three, a standard

user usually crosses over multiple domains. For instance, Professor Dr.Watson in chapter

three’s scenarios has a family domain besides his personal family domain. According to the

KAM definition, a KAM resides on only one domain in which a user’s ontology manages

resources’ classifications and their relationship. A particular user ontology maintains two

parts: taxonomies containing JANs and taxonomy relationships. Considering this, a user

profile in KAM should be augmented with a user’s ontology.

6.2 User Profile based on Ontology

A typical user profile contains two parts. One is user basic information and the other

is a user’s preferences. The former part is unique for every user. The latter part plays an

important role in the knowledge engineering model. In KAM , the latter part is described

by a user’s ontology, in which the taxonomies are user preferences. In addition to the typical

user profile, in KAM, a set of rules is generated from a user’s behavioral history. A typical

user behavior describes the user’s action upon a knowledge unit. An example is a user

browsed a particular webpage or read a specific document. The user’s behavioral history

is the set of records of user behavior. By analysing the user’s behavior and the knowledge

units related to them, the KAM organizing agent can help the user to find related JANs

more accurately from two aspects. (1). A new JAN classification: When a new information

object comes in, the organizing agent(oA) in the Vijjana framework needs to find a suitable

category in which it can reside. This is transformed into a query on the user profile and the

query results containing all possible taxonomies. (2). Find related JANs: the content of the

most browsed JANs are extracted and a query containing this content is submitted to the

KAM discovery agent. The query would return the JANs with highest content similarity.

Traditional information retrieval methods rely on keywords list to describe the content of an

information unit. In KAM, the information unit, JAN, is organized into a taxonomy. This

method allows us to transform the query into two parts: one part is the traditional search

on the knowledge units and the other is a concept search which returns the taxonomies

CHAPTER 6. CONTEXT CENTRIC MODEL 61

in which the knowledge unit resides. To implement that, we establish several statistical

probability models to map phrases into concepts. In the KAM model, the T set defines

these concepts as taxonomies. For each JAN, its original resource content is extracted using

Vijjana KeyPhraes extraction algorithm(VKE) and a similarity test is performed along all

user taxonomies to determine its concepts. If there is no concept that is best fit, a universal

similarity test is performed on a public ontology. Based on [?], approximately 3,000 terms

will cover all general concepts for a specific domain. For a user, It is possible that we can

use a finite taxonomy to cover all domains he/she crosses over.

6.2.1 Global ontology

To construct a user profile with ontology information, we need a large reference data

repository. Open Directory Project (ODP) became to be the final choice after we reviewed

several data sources. It is well accepted and has been cited in several papers [?][?]. The

ODP is regarded as one of the largest taxonomy stores for web directories. The taxonomy

is organized with a hierarchical structure. In [?] paper, they also used ODP as their main

reference source and concluded that the using the top three levels of taxonomy as references

would promote the ontology hit accuracy. In the KAM framework, we also follow this

suggestion and use taxonomies in the first three levels as our global concept set. Our purpose

is to construct a universal ontology. We first analyse the structure of the ODP data. The

ODP data contains two parts. One is its hierarchy structure and the other is a large RDF

file containing all links and descriptions of their hierarchy structure. To convert it to our

global ontology, we need to reorganize them into one unit. In KAM, the ontology is defined

as a set of taxonomies and each taxonomy contains knowledge units related to it. For a

taxonomy in the KAM universal ontology, we also expect it to have these two features.

After investigating the ODP data, we found it also has two similar features. (1). It has

siblings on the same level. (2). For every node in the hierarchy, we can find corresponding

items in the RDF file. The RDF item is usually a bookmark link and its self-description. So

here we can map the ODP hireachy node as our universal ontology taxonomy and the RDF

item as the knowledge unit JAN in the universal ontology. So a universal ontology taxonomy

CHAPTER 6. CONTEXT CENTRIC MODEL 62

defined in KAM has relationships between its parents and siblings that are also taxonomies.

It contains knowledge units, the links defined in the RDF. We can rely upon these features

to construct our universal ontology. The Fig. 6.1 is a partial universal ontology view. The

first level contains 14 taxonomies. The second level contains 517 taxonomies. And the third

level contains 6056 taxonomies.

6.2.2 Constructing user ontology

In KAM, the user ontology manages all user knowledge units. The knowledge units

mainly consist of three parts: User Email, User File System and User bookmarks. Here

we only illustrate the methodology used in constructing a user’s ontology from the User

FileSystem and User bookmarks.

JAN Abstraction

As we discussed earlier, a JAN is abstracted from various sources. Here, JAN “reference”

denotes the source. When a new JAN is brought into vision, its reference needs to go through

three steps of abstraction:

• extract content.

• PREPROCESSING: remove stop words, stemming.

• FULL TEXT or VKE processing.

The first step is extracting content. For the User file system, the current implementation

supports three basic types of textual documents: text, pdf and MS Office Word. For book-

marks, we extract the content of bookmarked webpage. Secondly, In the stopword removal

process, we search a large stopword corpus and remove any words in the document that

appear in the corpus. The part remaining after this is passed directly to Stemming process

which removes token suffixes and recovers the base, or stem, of the word. Step three has

two options: FULL TEXT or VKE processing. The FULL TEXT processing uses all results

from step two for keyphrase indexing. The VKE processing only builds an index upon the

CHAPTER 6. CONTEXT CENTRIC MODEL 63

Figure 6.1: Global Ontology

CHAPTER 6. CONTEXT CENTRIC MODEL 64

keyphrases generated by VKE algorithm. The phrases used in an index would are considered

as annotations of this JAN. After the three steps of abstraction, a JAN is created.

6.2.3 User File System

To build a user ontology from the user’s File System, we need to traverse through all

user folders and files contained in them. Because the folders have a hierarchical structure,

we map them to taxonomies in the user’s ontology. Correspondingly, files are regarded as

knowledge units under the taxonomy. The real implementation in KAM is achieved by a

further abstraction.

We implement two interfaces: “KAM FileSystem” and “FileDescriptor”. The “KAM

FileSystem” (KFS) manages the folder structure. To create a KFS, the users must specify

the KFS root path. The KFS has the capacity to navigat through its subfolders. It can

recursive deeply, to the lowest level, and report whole structure. During this process, it

can call a “FileDescriptor” which is responsible for generating file meta information and

extracting file content. The file content and file information is used by the JAN creation

process. The FULL TEXT processing in KFS has two opinions: lucence indexing [?] or our

own method which will be explained soon. A generated User ontology upon file system is

shown in the following Fig.6.2

6.2.4 User Bookmark System

The user bookmark system is a web interface that allows users to save their own book-

marks. In Paper [?] we ilwlustrated our old Firefox plugin to help the user through the JAN

creation progress. The process is simplified in our new web interface. In addition to that,

from the web interface, a user can create a user space to store all his bookmarks. Also,

this user space can be shared with the KAM FileSystem. From the web interface, a user

can browse the ontology generated from KFS. The JAN creation process is initialized when

a new link is added to user space. The discovery agent running as a part of web service

automatically extracts content from a linked source. The content will go through the same

process as JAN abstraction. However from web service, FULL TEXT is only supported in

CHAPTER 6. CONTEXT CENTRIC MODEL 65

Figure 6.2: User Ontology Based on the FileSystem

our own version now. A ontology of the web interface is shown in the following Fig.6.3

6.3 Context Awareness

Another important part of a user’s profile is the user behavioral model. Our premise

in KAM is that we can use a finite number of taxonomies to represent a user’s knowledge

domain. Based on this assumption, all user behaviors are converted into activities crossing

over the taxonomies. To reveal the user preferences, we can generalize a finite number of

rules by monitoring transitions happening between taxonomies. For instance, when off of

work, a user who has a strong interest in sports may spend more time reading sports news

CHAPTER 6. CONTEXT CENTRIC MODEL 66

Figure 6.3: User Ontology on Web Interface

than reading financial news. For this particular use, when the transition from work to news

occurs, KAM shall promote the sports new ahead of financial news. In KAM, The taxonomy

priority is evaluated by the taxonomy interest score. The interest score is affected by two

factors: total hit number and taxonomy size. The prior is the number of times the user

browsed the taxonomy and the later denotes how many JANs are related to this taxonomy.

We keep updating the taxonomy interest score when user browses the taxonomy or adds new

JAN into it. The interest score is calculated as

Iti =
total hit number

taxonomy size
,Where (6.1)

The Iti stands for the user interest on taxonomy i, taxonomy size is the number of JANs in

this taxonomy.

As we illustrated already, a user behavior models our base for context awareness. To

detect in which context a user resides, KAM uses methods that fall into two categories:

timeline and knowledge hit statistics. Before proceeding to explain our context awareness

model, we need first define what a context is. From its semantic meaning, a context is

where the user is. In our daily life, a context can be a restaurant where people are having

a wonderful dinner. When a person reads a book, the context is the paragraph that is

engrossing him. In a knowledge network, for example the ODP project, the context is the

CHAPTER 6. CONTEXT CENTRIC MODEL 67

branch where people click links. In the KAM model, we define the context as the current

ontology on which the user is working. Recall in the user behavior model, a transition is a

taxonomy switch. Here we can simply define the current context as the current state, which

is a taxonomy. Therefore one of the other taxonomies would possibly become the next state.

Context= {Current, {Next}}.

6.3.1 Timeline Context Awareness

In the KAM web interface, every operation upon a taxonomy and JAN is recorded as user

history. When a new taxonomy or JAN is created, its creation time is logged. In addition

to that, We also keep a record when he browses the taxonomy or JAN. The track data is

used in the calculation of the interest score. If a particular user, in a certain time period of

everyday, always browses a certain taxonomy or related JANs, KAM would mark this time

period with this taxonomy information and correspondingly set it as user context for this

time slot.

Using this method, we first section the day off as being part of one of two classifications; the

user is either active or inactive. The basic time unit can be one hour. The inactive periods

are time units without any user activity. In opposition, the user has activities during the

active period. For a certain time phrase of enough length, like one week or month, the user’s

activity can be categorized by these two periods. For the user’s active period, we can detect

the taxonomy boundary if we already know taxonomies the user owns. Based on the user

activities for taxonomies, we can calculate the probability for each taxonomy on time phase,

P (ti|timej), and then choose the highest one as the user’s context. We can see this from

Fig. 6.4

6.3.2 Interest driven context

The another context awareness model concerns the taxonomy interest Iti . For each

taxonomy, it has a interest score calculated as explained in the user behavior model. For all

CHAPTER 6. CONTEXT CENTRIC MODEL 68

Figure 6.4: timelinemodel

taxonomies, statistically, each concept has a factorial value between zero to one to describe

its importance.

PIti =
Iti∑
Iti

(6.2)

By this weight value, we also can predict the most probable next state. This memoryless

sequence forms a stationary Markov Chain. The transition probability for a user moving

from one taxonomy to another one, P (tnext|tprior) = P (tnext) ∗ P (tprior), can be given from

a transition matrix. It is more likely that a user would move from the current state to the

taxonomy with the largest probability. According to the transition matrix, we can form a

priority queue that stores a certain number of taxonomies with the highest probability. The

next state of context is selected from this queue. After the context switch, every transition

would update the interest score and consequentially update PIti . Generally for a small user

knowledge network with a low average hit number, the update operation would not be costly.

We can use Fig.6.5 to illustrate the Interest Driven Context Model.

CHAPTER 6. CONTEXT CENTRIC MODEL 69

Figure 6.5: Interest driven model

6.4 Classification of JAN

Till this point, KAM has enough information to provide user a suggestion on how to or-

ganize their knowledge unit, JAN. KAM shares a universal ontology build from ODP data.

Additionally, KAM owns its own user ontology and user behaviour history. All these would

be used when classifying a JAN.

As we mentioned already, after the JAN abstraction progress, JAN annotations are also

created and would be used as index phrases. Therefore a JAN is represented by a word

vector j = {w0, w1, . . . , wn}. The corresponding taxonomy can be represented as a class

containing all these JANs. For all KAMs, they all share a common global ontology in which

the taxonomies and knowledge units are all same. For a specific user’s KAM, taxonomies are

created by that user. Even though JAN annotations are either FULL TEXT or generated

by KAM, they can be edited by user. When a new JAN is added into a user’s ontology,

the methodology of selecting a suitable taxonomy used for both of the global and personal

CHAPTER 6. CONTEXT CENTRIC MODEL 70

ontologies is different. However, there is a commonality in training data processing of global

and personal ontology.

6.4.1 Generate training date

As mentioned earlier, TF*IDF is a popular technology used in text classification. We

also use it to do our basic classification. The detailed process is described as following:

wij = tfij ∗ idfi, where (6.3)

tfij = term weight (6.4)

idfi = log
JAN training set size

number of JAN containing ti
(6.5)

Different to our VKE algorithm, here the term weight of a JAN annotation is calculated

using the augmented normalized term frequency. The augmented normalized term frequency

is described as:

AN(tfw) = 0.5 + 0.5 ∗ tfw/tfmax (6.6)

where tfw is the occurrence frequency and tfmax is the maximum term frequency in JAN

annotations. Here The normalization process, tfw/tfmax, removes the dependence of classi-

fication results on annotations length[?]. Also it ensures the correctness of using the VKE

algorithm result for JAN annotations.

To calculate the weight of each annotation using the TF*IDF method, we need to specify

the training set. In the global ontology, we use the top three taxonomy levels as a training

set. In the user space, we employ all user created taxonomy data as training set. Therefore

a taxonomy word vector consists of the sum up of all its containing knowledge units JANs’

word vectors. We use Vt denoting a taxonomy word vector and jt denoting JAN word vector.

VT = {Vj|for all j in T}.

Once we have the training set ready, for any given JAN, we can calculate its TFIDF

weight. The TFIDF weight of JAN is described as:

TFIDFjan =
∑

wi|wherewi = tfi ∗ idf (6.7)

CHAPTER 6. CONTEXT CENTRIC MODEL 71

Consequently, the taxonomy weight is described as:

TFIDFTaxonomy =
∑

JANi|where jan belongs to taxonomy. (6.8)

To remove the classification error caused by mismatched vector lengths, we also apply the

normalization process on taxonomies. There are many alternative normalization methods[?].

Cosine normalization is the most commonly accepted one. The cosine normalization is

described as:

CN(V) = (w∗1, w
∗
2, . . . , w

∗
n)where (6.9)

w∗i =
wi

2
√∑

wi

(6.10)

6.4.2 Similarity between JAN and taxonomy

In order to determine a suitable taxonomy for an incoming JAN, we use cosine similarity

to give the user suggestions. A new JAN is represented by a vector j = {w0, w1, . . . , wn}.

where wi is the term that appeared in the JAN annotation. The taxonomy vector is compar-

atively large to a user taxonomy vector. Let T = {w0, w1, . . . , wm} represent the taxonomy

and wj stand for the term that appeared in it. For these two vectors, we form their own

weight vector using the term’s TFIDF value. To calculate their cosine similarity, the two

vectors’ lengths must be equal. Then we need to construct two equal length vectors. We

first merge the two word vectors together to form a new vector, then we use this method to

construct the weight vector: for every word missing in the original word vector, we fill its

weight with 0. After finishing this, we can calculate the cosine similarity.

The cosine similarity of these two vectors can be expressed as :

cosine(ti, JANj) =
∑

wik ∗ wjk,Where (6.11)

wik indicates the TFIDF weight of term k appears in the taxonomy i (6.12)

wjk indicates the TFIDF weight of term k appears in the new JAN j (6.13)

(6.14)

The final cosine similarity value is between -1 and 1. The close the absolute value is to

1, the more similar the two vectors are. Consequently we can see the JAN is similar to the

CHAPTER 6. CONTEXT CENTRIC MODEL 72

taxonomy. The taxonomy becomes a candidate. In addition to this value, we also consider

the Interest hit value. In the final suggestion rank, weight consists of two parts: the cosine

similarity result and PIti .

RT = Cosine(T, j) ∗ PIti (6.15)

Based on this rank value, we provide suggestions to user for the right taxonomy of this JAN.

6.4.3 Relationship between local taxonomy and global taxonomy

In KAM, one important part is the communication capacity between different users. A

user should know who shares interests with them. This part is bridged with the help of the

global taxonomy. While a new JAN is added into user taxonomy, KAM also performs the

similarity test upon global taxonomies. The relationship between different users is established

for a JAN sharing the same annotation with a global ontology.

6.5 Knowledge discovery process

One user, at a given point in time, should only reside in only one context. As we

defined above, the context provides the current taxonomy and next possible taxonomies.

For each user, his/her ontology shares part of the universal ontology. By this feature, we can

regard users who share the same ontology as a community. For instance, professors doing

research in computer science should share the ontology concerning computer science. All

communities share the universal ontology. So we can use a diagram, Fig. 6.6 to show a

better understanding of this.

This also leads to our knowledge discovery process, which is a three-step procedure. We

name this procedure “Call it once”. The discovery first happens locally, in the user context.

Then it expands to communities where the user resides in the same ontology, and it then

explores the universal cloud. Knowledge discovery can be initiated by a user in a certain

context or an agent during context switching. No matter in which way this occurs, it is

performed by queries upon a taxonomy. A typical query is constituted by a set of phrases.

CHAPTER 6. CONTEXT CENTRIC MODEL 73

Figure 6.6: A general view of ontology - with annotations, categories and references
fileds

6.5.1 Knowledge discovery process in local

The local search is confined in user taxonomies. For a given query, the cosine similarity

described earlier can still be used. If the search is confined into a particular taxonomy range,

for every JAN, we perform a similarity test and the JAN corresponding to the largest value

is returned as the query’s result. However if the search doesn’t confine into any taxonomy,

the similarity test is performed between query and all taxonomies. The method is already

illustrated in the cosine similarity part. We would construct a bigger vector and fill the

missing term weights with 0’s and perform cosine similarity again.

The process enacted upon the returned taxonomies is similar to what we did for an

individual taxonomy.

Figure 6.7 describes a local search belonging to a professor. When he is preparing his

course 481, he found part of his ontology on MIT courses he saved before.

CHAPTER 6. CONTEXT CENTRIC MODEL 74

s

Figure 6.7: Local Search

6.5.2 Knowledge discovery process in community

Since people in the same community share the same ontology, we can use the collaborative

filtering (CF) technique to recommend JANs to a user. There are two type of collaborative

filtering, user based CF and item based CF. Recall in the KAM model, in order to eliminate

the problem for organizing and consistency checks, we apply the ROA architecture which

requires that all items be uniquely identified. For an original resource, it is abstracted in to

a JAN to be added into user’s knowledge network, which is unique in the whole knowledge

network. So here, we can’t directly apply the CF technology upon JANs. There are two

methods to solve this problem. First is the rudimentary one, to use the JAN’s reference,

the original resource, as our item. The other is using a keyword to replace the JAN as the

comparison item. For the first method, we can construct the user-item matrix, in which

CHAPTER 6. CONTEXT CENTRIC MODEL 75

item’s value is the hit number of the JAN. So Here the

UIij =

hitnumberi if item i also appears in userj’s knowledge network

0 Otherwise

(6.16)

Once we have this matrix, we can use the adjusted cosine similarity to compare two JANs.

The JANs with highest similarity should catch the user’s eye. The performance between the

item-based and user-based methods depends on the sparsity of the matrix we build. If the

matrix is sparse, the user-based performance should be poorer than the item-based.

For the second method, we use a keyword to replace the JAN, so the the user-item matrix

is formed in the following manner. Here the keyword stands as a set of JANs which use this

keyword as index.

UIij =

1 if keyword i also appears in userj’s knowledge network

0 Otherwise

(6.17)

We calculate the similarity between the two keywords and recommend JANs, sorted by

the highest similarity keyword to the user.

6.5.3 Knowledge discovery process in universal

The final step in “Call it Once” is to search in the global ontologies. These relationships

are defined in the universal ontology and the search is already out of the user’s context.

So here the query is without any user preference. For each related taxonomies from global

ontology, we perform a local search on user’s related taxonomies and regard returned JANs as

a compensation of result from global search and community search. So the overall discovery

process can be viewed as Fig. 6.8

CHAPTER 6. CONTEXT CENTRIC MODEL 76

Figure 6.8: The whole discovery process

77

Chapter 7

Implementation and Applied methods

In this chapter, I will go through the implementation details of KAM. It illustrates three

agents in KAM: discovery agent, search agent, and context agent.

7.1 KAM implementation Architecture

As introduced in Chapter three, KAM consists of three important knowledge bases and

nine intelligent agents. All these agents work upon the three knowledge bases, and the

processing results reflect back the knowledge bases. In order to fulfill this requirement, we

design the KAM architecture as follows Fig. 7.1

As we can see from Fig 7.1, The top layer is the knowledge representation layer. It has

two parts, a web interface and Personal File System. The web user interface is aimed to cover

two knowledge bases: Personal bookmarks and Personal Email. This information is gathered

and collected independent of physical media and can be accessed anywhere. The personal

File System covers the knowledge base when stored in a physical media and with resource

access restrictions. The second layer is the intelligent agent layer. Each agent running on this

player acts in two parts. It can serve as a web service for the KAM web interface and also can

execute as a standalone program while coping with a personal file system. The third layer

is the logic layer taking charge of managing the conversion from the logic objects to data

objects. It also acts as a channel for saving and retrieving data and their logic relationships

back and forth between the KAM agents and the Database layer which is the fourth layer.

CHAPTER 7. IMPLEMENTATION AND APPLIED METHODS 78

Figure 7.1: KAM Architecture

7.1.1 Knowledge representation layer

The web interface and file system comprise the knowledge network representation layer.

The web interface provides a series of cloud-based web services to the user and also it is an

ontology repository for user’s ontology and global ontology. Fig.7.2 is the screen shot for

the KAM entry point. From there, an anonymous user can register new users or browse the

global ontology repository. The KAM web interface automatically creates a user space for

each registered user that allows each user to save their personal ontology. The web interface

also provides an interactive interface to registered user for all available KAM agents.

CHAPTER 7. IMPLEMENTATION AND APPLIED METHODS 79

Figure 7.2: KAM Web interface entry.

The KAM agents were implemented as web services that can be accessed from everywhere.

The already implemented web services are :

• User space on cloud.

• Search Agent

• Discovery Agent

• Markup Agent

• Visualization Agent (partially)

User Space

The user space is a user’s online knowledge repository. Users can create taxonomies and

JANs. Users can also link their personal file system with the web interface by displaying

metadata of file item inside the personal file system. Fig. 7.3 is the example of a professor’s

CHAPTER 7. IMPLEMENTATION AND APPLIED METHODS 80

ontology containing all web-created taxonomies and taxonomies created from the personal

file system.

Figure 7.3: KAM User Space

Markup Agent

The taxonomy and JAN created from the web interface are automatically analyzed by the

Markup agent. It generates annotations for taxonomies and JANs. The generation progress

is illustrated in Chapter four. All these annotations can be edited in that the user adds

and removes them through web interface. Fig. 7.4 shows a new taxonomy. The keyword is

automatically generated and listed below the taxonomy description.

Discover Agent an Search Agent

The Search functionality in KAM is provided by the Discover and Search agents. The

discover agent performs a “Call in Once” query process to discover related taxonomies and

JANs when a particular JAN is given. The detailed process was explained in the prior

CHAPTER 7. IMPLEMENTATION AND APPLIED METHODS 81

Figure 7.4: A new created taxonomy

chapter. Figure 7.5 is a screenshot showing the discovery agent found for user 22 who owns

the JAN with id 12 under his 621th taxonomy.

Different than the Discover agent, the Search agent doesn’t associate with a particular

JAN. Users can issue any query keywords as one search that is parsed and regarded as

special to a JAN. Correspondingly, the search keywords are regarded as its annotations. For

an already logged-in user, the next process is similar to a “Call it once” process in discovery

agent. For an anynomous user, the search process operates in the global ontology repositories

and returns taxonomies and JANs which has the highest similarity with the search object.

CHAPTER 7. IMPLEMENTATION AND APPLIED METHODS 82

Figure 7.5: Discovery agent found related JAN

7.1.2 Visualization Agent

The visualization agent provides the visualizable data to the front end. Currently, it

generates the graphML format data from the user’s ontology structure. This graphML

originally was read in our original visualization tool developed upon Prefuse[?]. Besides that

it has been concluded that Prefuse is difficult to integrate into our framework, we are still

investigating some better graphic toolkits like JUNG. Fig. 7.7 shows an example of graphML

that we generated from a particular user’s ontology. The nodes in this graphML are user

taxonomies.

CHAPTER 7. IMPLEMENTATION AND APPLIED METHODS 83

Figure 7.6: Search agent return related global taxonomy

7.1.3 Implementation technology

There are plenty of mature web frameworks available on market for use. Eventually We

chose the Spring framework as our servlet container. It inherits all the J2EE application

server’s features but is lightweight on servlet deployment and object injection. Meanwhile,

the MVC model inside Spring offers us the ability to dynamically map all agents running

results directly to a web view. This gives us more flexibility on the knowledge represen-

tation layer. We could alter our data model with more enriched display elements. Along

with all above, the newest version of Spring framework fundamentally supports all RESTful

operations, which eliminates the barriers of communications between different agents.

CHAPTER 7. IMPLEMENTATION AND APPLIED METHODS 84

Figure 7.7: Sample graphML

7.2 Middle Layer, Database Layer and Development

Environment

7.2.1 Middle Layer

The middle layer plays an essential role in the whole KAM architecture. It is the bridge

connecting the upper agent layer and the lower data warehouse layer. The KAM clients run-

ning on users’ desktops store data into the same database that the web interface accesses. In

the real implementation, we use Oracle JBOSS Hibernate as our object relationship manage-

ment tool. From a programming perspective, the interface provided to the web interface and

file system is the same. However the details in implementation are different with a variation

of different representation layer requirements. For the file system, we need to manually man-

age database session creation, transaction initialization, and commit. For the web interface,

CHAPTER 7. IMPLEMENTATION AND APPLIED METHODS 85

all these are handled by Spring[?]. When the Spring framework instance starts, it creates

a Hibernate session factory[?]; the session factory is always kept running until the Spring

instance is shut down.

Aside from the Hibernate layer, KAM also contains a cache layer. There are two types

of cache data stored in this layer. One stores the ODP data and the other caches the user

ontology data. All these are cached into files. For the standalone application, this data is

loaded on demand. In the web interface, the data is loaded when application server starts

and stays in memory as the application server runs. KAM also provides the functionality to

serialize the cache data. The cache data can be serialized into files that can be distributed

to other KAM instances. It provides a way for importing and exporting data.

7.2.2 Database Layer

KAM right now runs on a relational database containing twenty tables. There are five

important tables in two categories: (1) UTAX and UAN are two tables storing the global

ontology data distilled from ODP data set. (2) vijusertax, vijuserjan and vijtag are three

tables storing the user ontology data. The relationship of user taxonomies and JANs, user

taxonomies and global taxonomy, user JAN and its annotations, user taxonomy and its

annotations are described by four join tables, eg. vijuser has tag. Figure 7.8 shows the

database tables.

We use MySQL as our backbone database. It is running on a dedicated database server.

7.2.3 Development tools and source architecture

The current KAM is implemented purely in Java. The whole KAM source contains

three namespaces and twenty-four java packages. The namespace “com.vijjana.framework”

is the main namespace of the KAM framework. All the intelligent agents are implemented

under this namespace. The “com.vijjana.keyphrase” namespace is designated for the VKE

algorithm that is illustrated in Chapter 5. The “com.vijjana.util” namespace contains all

utility classes that are used in KAM. We use maven for our package management, compile,

CHAPTER 7. IMPLEMENTATION AND APPLIED METHODS 86

Figure 7.8: Database tables

and deployment tool. Besides the Spring framework and Hibernate library, we also use the

apache common library which offers basic file operations. In addition to that, we apply

Apache Lucene to do the FULL TEXT indexing as mentioned in last Chapter.

7.3 Conclusion

We are still actively developing and adding features in our KAM implementation. We

have developed several prototype mobile phone applications. The ontology reasoning and

personal email systems are the most demanding features to be expected in next stage. The

current KAM implementation laid a solid ground for future development.

87

Chapter 8

Conclusion and Discussion

In this thesis, I explained the way we built a context awareness model in the Knowledge

Advantage Machine by utilizing ontology pattern.

The KAM is intended to effectively help people find correct information with less effort. In

the KAM model, all resources are unique and identified by URI. Based on this feature, I

introduce the knowledge object concept that each general resource in KAM is abstracted

into a knowledge object JAN. This provides an abstraction layer upon resources. Even for

the same resource, this abstraction layer ensures the uniqueness of a JAN for different users.

The JAN object is constructed according to the IEEE LOM standard.

To better organize JAN, I use the ROA architecture as the resource infrastructure for the

whole model. The ROA architecture not only allows us to neglect the issues caused by re-

source duplication but also eliminates the issues caused by resource control. All operations

supported in our ROA implementation are stateless. This ensures that our distributed archi-

tecture can expand seamlessly across different components. Also the ROA resource naming

strategy provides us a more effective way to check resource consistency and organization.

We organize the resources based on the Ontology architecture in that JANs are categorized

into taxonomies and taxonomies are laid out in a hierarchy structure.

From a user’s perspective, facilitated by help from agents, leveraging knowledge becomes

more effective. According to users’ behavior analysis and an existing knowledge repository,

KAM creates user context and distills knowledge along with context changes. In my ap-

proaches, I model context according to user ontology patterns. In KAM, the user ontology

CHAPTER 8. CONCLUSION AND DISCUSSION 88

consists of two parts. One is a web user ontology created through the KAM web interface

and the other is built upon a user filesystem through KAM agents. Besides the user ontology,

KAM also stores a universal ontology that relies on the data distilled from Open Directory

Project. The universal ontology acts as a solid base for user ontology. The user ontology

construction process involves three steps: (1) create taxonomy. In this step, a taxonomy is

manually created byreferring to the universal ontology, (2) JAN abstraction and mark up

process. In this step, a JAN is manually created or cited from the web. Afterward, this

JAN is processed by the Discovery Agent and Markup Agent to generate a JAN annotation.

(3) “Call in once” discover process. In this step, the search procedures are carried inside the

knowledge repositories and the return results reflect the current user context and ontologies.

An important procedure in step two is to generate JAN annotations. I developed my own

keyphrase extraction algorithm which combines statistical methods and heuristic rules to-

gether. It replaced our old implementation that used the KEA algorithm. The new VKE

algorithm is more suitable than a traditional tf*idf approach introduced in the KEA algo-

rithm. Comparatively, the VKE algorithm, illustrated in Chapter Five, doesn’t require any

training process. The random process can be injected in any predefined distribution. It also

doesn’t rely any language features.

Another emphasis lies in step three that requires that the result reflect the user context. I

created two models to detect user context once we have the user ontology in place. First is

the timeline model. Based on the distribution of user activities, we can select the taxonomy

with the highest probability within a certain period as the user current context. The second

relies on monitoring user behaviour. When a transition happens between user taxonomies,

KAM calculates an interest scores for all user taxonomies. Based on these scores and their

stationary probability, we can predict the user context switch and taxonomy to which a user

will move.

The current implementation consists a web interface and standalone application. The web

interface is a cloud based solution of KAM. All intelligent agents run as web services which

can be accessed anywhere. The standalone application mainly focuses on the personal user

file system part. All agents runs as normal processes and the data are shared through the

same data layer as web interface.

CHAPTER 8. CONCLUSION AND DISCUSSION 89

Till this point, KAM is already ready to serve use. However we are still actively working

in make it more mature and functional. There are several expected features that are under

development, like ontology reasoning and use KAM to cover personal email system. The

current KAM implementation laid solid ground for future development. KAM right now

mainly focuses on textural structural data. However, the new trend of internet development

with video and audio is becoming more popular [?][?] and comprise over 25% percent internet

content. Also, a lot of emerging social commerce shifts the marketing focus to social media

as well. All these demand us to add more features into KAM to support more content types.

These are all my future research interests.

90

References

[1] Ahmed Louri and Jongwhoa Na, “Design of an optical content-addressable parallel
processor for expert systems,” Appl. Opt., vol. 34, no. 23, pp. 5053–5063, Aug 1995.

[2] Efraim Turban, Decision Support and Expert Systems: Management Support Systems,
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2nd edition, 1990.

[3] Y Cho, “A personalized recommender system based on web usage mining and decision
tree induction,” Expert Systems with Applications, vol. 23, no. 3, pp. 329–342, 2002.

[4] Peter Politakis and Sholom M. Weiss, “Using empirical analysis to refine expert system
knowledge bases,” Artif. Intell., vol. 22, no. 1, pp. 23–48, 1984.

[5] Thomas R. Gruber, “Toward principles for the design of ontologies used for
knowledge sharing,” in IN FORMAL ONTOLOGY IN CONCEPTUAL ANALYSIS
AND KNOWLEDGE REPRESENTATION, KLUWER ACADEMIC PUBLISHERS,
IN PRESS. SUBSTANTIAL REVISION OF PAPER PRESENTED AT THE INTER-
NATIONAL WORKSHOP ON FORMAL ONTOLOGY. 1993, Kluwer Academic Pub-
lishers.

[6] Fabrizio Sebastiani, “Machine learning in automated text categorization,” ACM Com-
put. Surv., vol. 34, pp. 1–47, March 2002.

[7] Susan Dumais, John Platt, David Heckerman, and Mehran Sahami, “Inductive learning
algorithms and representations for text categorization,” in Proceedings of the seventh
international conference on Information and knowledge management, New York, NY,
USA, 1998, CIKM ’98, pp. 148–155, ACM.

[8] Andrew McCallum and Kamal Nigam, “A comparison of event models for naive bayes
text classification,” in IN AAAI-98 WORKSHOP ON LEARNING FOR TEXT CAT-
EGORIZATION. 1998, pp. 41–48, AAAI Press.

[9] Sholom M. Weiss, Fred J. Damerau, David E. Johnson, Frank J. Oles, and Thilo Goetz,
“Maximizing text-mining performance,” IEEE Intelligent Systems, vol. 14, pp. 63–69,
1999.

[10] Kamal Nigam, Andrew Kachites Mccallum, Sebastian Thrun, and Tom Mitchell, “Text
classification from labeled and unlabeled documents using em,” in Machine Learning,
1999, pp. 103–134.

REFERENCES 91

[11] Inderjit S. Dhillon, Subramanyam Mallela, and Rahul Kumar, “A divisive information-
theoretic feature clustering algorithm for text classification,” Journal of Machine Learn-
ing Research, vol. 3, pp. 1265–1287, 2003.

[12] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor net-
works: a survey,” Computer Networks, vol. 38, pp. 393–422, 2002.

[13] Hyoung R. Kim and Philip K. Chan, “Learning implicit user interest hierarchy for
context in personalization,” in IUI ’03: Proceedings of the 8th international conference
on Intelligent user interfaces, New York, NY, USA, 2003, pp. 101–108, ACM.

[14] Edward Feigenbaum and Pamela McCorduck, The fifth generation: artificial intelligence
and Japan’s computer challenge to the world, Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1983.

[15] Howard Jay Siegel, Interconnection networks for large-scale parallel processing: theory
and case studies (2nd ed.), McGraw-Hill, Inc., New York, NY, USA, 1990.

[16] H. J. Levesque and R. J. Brachman, A fundamental tradeoff in knowledge representation
and reasoning, Readings in Knowledge Representation. Morgan Kaufmann, 1985.

[17] William J. Clancey, “The knowledge level reinterpreted: Modeling how systems inter-
act,” Machine Learning, vol. 4, pp. 285–291, 1989.

[18] DA Waterman, “A Guide to Expert Systems,” 1986.

[19] R. R. Studer, R. Benjamins, and D. Fensel, “Knowledge engineering: principles and
methods,” Data and knowledge engineering, vol. 25, pp. 161–197, 1998.

[20] Thomas R. Gruber, “A translation approach to portable ontology specifications,”
KNOWLEDGE ACQUISITION, vol. 5, pp. 199–220, 1993.

[21] Ontology theory, management and design : advanced tools and models, Information
Science Reference, Hershey, PA, 2010.

[22] H. Chen and T. Ng, “An algorithmic approach to concept exploration in a large knowl-
edge network (automatic thesaurus consultation): symbolic branch-and-bound search
vs. connectionist hopfield net activation,” Journal of the American Society for Infor-
mation Science, vol. 46, pp. 348–369, 1995.

[23] Deborah L. McGuinness and Paulo Pinheiro da Silva, “Explaining answers from the
semantic web: the inference web approach,” Web Semant., vol. 1, no. 4, pp. 397–413,
2004.

[24] Ian Horrocks and Ulrike Sattler, “Ontology reasoning in the shoq(d) description logic,”
in In Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001. 2001, pp.
199–204, Morgan Kaufmann.

[25] Natalya F. Noy and Michel Klein, “Ontology evolution: Not the same as schema evolu-
tion,” Knowledge and Information Systems, vol. 6, pp. 428–440, 2003.

REFERENCES 92

[26] Leo Sauermann, Gunnar Aastr, Malte Kiesel, Heiko Maus, Dominik Heim, Danish
Nadeem, Benjamin Horak, and Andreas Dengel, “A.: Semantic desktop 2.0: The gnow-
sis experience,” in International Semantic Web Conference. Volume 4273 of Lecture
Notes in Computer Science. 2006, pp. 887–900, Springer.

[27] Wolfgang Woerndl and Georg Groh, “A social item filtering approach for a mobile
semantic desktop application,” 2008.

[28] Henry Lieberman, “Letizia: An agent that assists web browsing,” in INTERNATIONAL
JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 1995, pp. 924–929.

[29] Christoph G. Thomas and Gerhard Fischer, “Using agents to personalize the web,” in
IUI ’97: Proceedings of the 2nd international conference on Intelligent user interfaces,
New York, NY, USA, 1997, pp. 53–60, ACM.

[30] Michael Pazzani, Jack Muramatsu, and Daniel Billsus, “Syskill & webert: Identifying
interesting web sites,” in In Proc. 13th Natl. Conf. on Artificial Intelligence, 1998, pp.
54–61.

[31] Francisco Tanudjaja and Lik Mui, “Persona: A contextualized and personalized web
search,” in In Proc. of the 35th Annual Hawaii International Conference on System
Sciences, 2001, p. 67.

[32] Dunja Mladenic, “Text-learning and related intelligent agents: A survey,” IEEE Intel-
ligent Systems, vol. 14, no. 4, pp. 44–54, 1999.

[33] Stuart E. Middleton, Nigel R. Shadbolt, and David C. De Roure, “Capturing interest
through inference and visualization: ontological user profiling in recommender systems,”
in K-CAP ’03: Proceedings of the 2nd international conference on Knowledge capture,
New York, NY, USA, 2003, pp. 62–69, ACM.

[34] Chien Chin Chen, Meng Chang Chen, and Yeali Sun, “Pva: A self-adaptive personal
view agent,” 2002.

[35] Joana Trajkova and Susan Gauch, “Improving ontology-based user profiles,” 2004.

[36] Open Directory Project, “Open directory project website,http://dmoz.org,” April 2002.

[37] Liren Chen and Katia Sycara, “Webmate: a personal agent for browsing and searching,”
in AGENTS ’98: Proceedings of the second international conference on Autonomous
agents, New York, NY, USA, 1998, pp. 132–139, ACM.

[38] Stuart E. Middleton, Nigel R. Shadbolt, and David C. De Roure, “Ontological user
profiling in recommender systems,” ACM Trans. Inf. Syst., vol. 22, pp. 54–88, January
2004.

[39] R. Reddy, L. Wang, S. Reddy, S. Devalapalli, G. Sasanka, S. Macha, S. Teja, R. Doppala-
pudi, and J. Yu, “Vijjana: A pragmatic model for collaborative, self-organizing, domain
centric knowledge networks,” in IKE, 2008, pp. 116–121.

REFERENCES 93

[40] Learning Technology Standards Committee of the IEEE, “Draft standard for learning
technology - learning object metadata,” Tech. Rep., IEEE Standards Department, New
York, July 2002.

[41] Leonard Richardson and Sam Ruby, Restful Web Services, O’Reilly Media, 2007.

[42] “Semantic web 3.0,http://www.w3.org/2001/sw/wiki/main page,” .

[43] S. Devalapalli, R. Reddy, L. Wang, and S. Reddy, “Markup and validation agents in
vijjana - a pragmatic model for collaborative, self-organizing, domain centric knowledge
networks,” in WEBIST, 2009, pp. 263–269.

[44] A. McCallum and K. Nigam, “A comparison of event models for naive bayes text
classification,” 1998.

[45] Yufei Yuan and Michael J. Shaw, “Induction of fuzzy decision trees,” Fuzzy Sets and
Systems, vol. 69, no. 2, pp. 125 – 139, 1995.

[46] Makoto Nagao, “A framework of a mechanical translation between japanese and english
by analogy principle,” in Proc. of the international NATO symposium on Artificial and
human intelligence, New York, NY, USA, 1984, pp. 173–180, Elsevier North-Holland,
Inc.

[47] Yi fang Brook Wu, Quanzhi Li, Razvan Stefan Bot, and Xin Chen, “Domain-specific
keyphrase extraction,” in CIKM ’05: Proceedings of the 14th ACM international con-
ference on Information and knowledge management, New York, NY, USA, 2005, pp.
283–284, ACM.

[48] Peter D Turney, “Learning algorithms for keyphrase extraction,” Information Retrieval,
vol. 2, pp. 303–336, 2000.

[49] Eibe Frank, Gordon W. Paynter, Ian H. Witten, Carl Gutwin, and Craig G. Nevill-
manning, “Domain-specific keyphrase extraction,” 1999, pp. 668–673, Morgan Kauf-
mann Publishers.

[50] Julie B. Lovins, “Development of a stemming algorithm,” Mechanical Translation and
Computational Linguistics, vol. 11, pp. 22–31, 1968.

[51] Martin F. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3, pp.
130–137, 1980.

[52] B. Krulwich and C. Burkley, “Learning User Information Interests Through Extraction
of Semantically Significant Phrases,” in Proceedings of the AAAI Spring Symposium on
Machine Learning in Information Access. 1996, AAAI Press, Stanford, CA.

[53] Adam L. Berger, Vincent J. Della Pietra, and Stephen A. Della Pietra, “A maximum
entropy approach to natural language processing,” Comput. Linguist., vol. 22, no. 1,
pp. 39–71, 1996.

REFERENCES 94

[54] Alberto MuÃśoz, “Compound key word generation from document databases using a
hierarchical clustering art model.,” Intell. Data Anal., vol. 1, no. 1-4, pp. 25–48, 1997.

[55] Andrew McCallum, Dayne Freitag, and Fernando Pereira, “Maximum entropy Markov
models for information extraction and segmentation,” in Proc. 17th International Conf.
on Machine Learning. 2000, pp. 591–598, Morgan Kaufmann, San Francisco, CA.

[56] Gerard Salton and Christopher Buckley, “Term-weighting approaches in automatic text
retrieval,” in INFORMATION PROCESSING AND MANAGEMENT, 1988, pp. 513–
523.

[57] Siddhartha Chib and Edward Greenberg, “Understanding the metropolis-hastings algo-
rithm,” The American Statistician, vol. 49, no. 4, pp. 327–335, Nov. 1995.

[58] “Monte carlo introduction wiki, http://en.wikipedia.org/wiki/monte carlo method,” .

[59] Christophe Andrieu, Nando de Freitas, Arnaud Doucet, and Michael I. Jordan, “An
introduction to mcmc for machine learning.,” Machine Learning, vol. 50, no. 1-2, pp.
5–43, 2003.

[60] “Variance analysis, http://en.wikipedia.org/wiki/analysis of variance,” .

[61] Hele mai Haav and Tanel lauri Lubi, “A survey of concept-based information retrieval
tools on the web,” in In 5th East-European Conference, ADBIS 2001, 2001, pp. 29–41.

[62] “Apache lucence, http://lucene.apache.org/core/,” .

[63] Verayuth Lertnattee and Thanaruk Theeramunkong, “Effect of term distributions on
centroid-based text categorization,” Inf. Sci. Inf. Comput. Sci., vol. 158, pp. 89–115,
January 2004.

[64] Amit Singhal, Chris Buckley, and Mandar Mitra, “Pivoted document length normal-
ization,” in Proceedings of the 19th annual international ACM SIGIR conference on
Research and development in information retrieval, New York, NY, USA, 1996, SIGIR
’96, pp. 21–29, ACM.

[65] Jeffrey Heer, Stuart K. Card, and James A. Landay, “prefuse: a toolkit for interactive
information visualization,” in Proceedings of the SIGCHI conference on Human factors
in computing systems, New York, NY, USA, 2005, CHI ’05, pp. 421–430, ACM.

[66] Rod Johnson, Juergen Hoeller, Alef Arendsen, Thomas Risberg, and Dmitriy Kopy-
lenko, Professional Java Development with the Spring Framework, Wrox Press Ltd.,
Birmingham, UK, UK, 2005.

[67] Christian Bauer and Gavin King, Java Persistence with Hibernate, Manning Publica-
tions Co., Greenwich, CT, USA, 2006.

[68] “Content marketing state,http://blog.outbrain.com/2012/03/state-of-content-
marketing-2012.html,” .

REFERENCES 95

[69] “Content type survey, http://www.marketingcharts.com/interactive/college-students-
online-video-use-dramatically-surpasses-general-populations-1599/survey-u-online-
video-content-type-watchedgif/,” .

	A Context Centric Model for building a Knowledge advantage Machine Based on Personal Ontology Patterns
	Recommended Citation

	List of Figures
	List of Tables
	Introduction
	History
	Methods Applied
	Context Centric approach
	Knowledge engineering on user preferences
	Problem we need to solve
	My Contribution

	Related Research
	Knowledge Engineering development history
	Research upon ontology and semantic web
	Research upon user profile and context awareness

	KAM Architecture
	Knowledge Advantage Machine Background
	KAM Features
	scenario One: Domain information
	Scenario two: Communication within Domains
	Scenario three: Communication within same Domain but different area
	KAM Features on domain

	KAM Model
	Knowledge Unit
	User Based ontology

	KAM architecture
	Taxonomy and the Semantic Net of Knowledge (T and R)
	The Discovery Agent (dA) and Markup Agent
	The Organizing Agent (oA)
	The Consistency/Completeness Agent (cA)
	The Visualization Agent (vA)
	Ontology Agent

	RESTful architecture
	Introduction
	RESTful Features
	Why KAM uses RESTful
	Hierarchy Structure
	Consistency of URI and URL
	Resource Security
	Other benefits

	Resources in KAM
	RESTful Service for Work Flow
	Detailed Implementation
	KAM framework in ROA
	Data format
	URI resources and compared to Session

	Vijjana Keyphrase Extraction Algroithm
	Background
	RELATED WORK
	Theoretical Background
	Term Weighting
	Metropolis-Hastings algorithm in sampling
	Monte Carlo Method in VKE
	Maximum entroy theorem in VKE

	Algorithm design
	Preprocessing
	M-H in VKE
	HMC heuristic selection
	Entroy computation

	Experiment
	Terminology
	Experiment Design

	Data Analysis
	Analysis of Variance(ANOVA)
	General Analysis upon our objectives
	Hypothesis Test
	Study Validity Consideration

	Conclusion and Future Work

	Context Centric Model
	Acknowledge User
	User Profile based on Ontology
	Global ontology
	Constructing user ontology
	User File System
	User Bookmark System

	Context Awareness
	Timeline Context Awareness
	Interest driven context

	Classification of JAN
	Generate training date
	Similarity between JAN and taxonomy
	Relationship between local taxonomy and global taxonomy

	Knowledge discovery process
	Knowledge discovery process in local
	Knowledge discovery process in community
	Knowledge discovery process in universal

	Implementation and Applied methods
	KAM implementation Architecture
	Knowledge representation layer
	Visualization Agent
	Implementation technology

	Middle Layer, Database Layer and Development Environment
	Middle Layer
	Database Layer
	Development tools and source architecture

	Conclusion

	Conclusion and Discussion

