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ABSTRACT 

 

Role of A2 Adenosine Receptors in the Regulation of Coronary Flow 

 

Maryam Sharifi Sanjani 

 

 

One out of three individuals suffer from one form of cardiovascular disease, out of which, 

about 6,000,000 individuals suffer from coronary heart disease. Adenosine has long been known 

to play a role in coronary flow (CF) regulation; however, the individual role of A2A and A2B 

adenosine receptors (AR) and their contribution is yet to be fully elucidated. The purpose of this 

study was to characterize the pharmacology of both A2 ARs in coronary arteries (CAs), in 

addition, to identifying their role in reactive hyperemia, and their signaling mechanisms. We 

hypothesized that A2 ARs mediate an increase in CF, in addition, to being involved in metabolic 

control of CF. Therefore, in this study, we investigated CF changes due to exogenous activation 

of A2A and A2B ARs, in addition, to their endogenous activation during coronary reactive 

hyperemia, when metabolic factors, such as adenosine, play a pivotal role. We used the well 

established Langendorff isolated heart system as well as selective and non-selective AR agonists 

and antagonists, and A2A and A2B AR single and double knockout mice. We found that activation 

of both A2A and A2B ARs induces an increase in CF, albeit with different pharmacological 

profile. Further, in A2BKO mice, A2AARs are up-regulated in order to compensate for deletion of 

A2BARs. These findings may suggest that both A2ARs are capable of increasing the CF in 

conditions when a sufficient level of adenosine is available. However, we also found that only 

A2AARs contribute to CF changes in coronary reactive hyperemia, which may suggest that 

A2BARs may be activated in more severe conditions such as longer ischemic conditions, where 

adenosine levels are significantly augmented. We next investigated signaling pathways involved 



in A2AR-mediated effects. We found that non-mitochondrial KATP channels are a major end 

effectors in A2AR-induced increase in CF. What is more interesting is that we illustrated that 

H2O2 mediates adenosine’s effect on CF and that is coupled to adenosine-mediated effect on 

KATP channels. From these data, it can be concluded that A2A and A2B ARs may regulate CF in 

different conditions, albeit, maybe through the same signaling pathway.  
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CHAPTER ONE 

 

INTRODUCTION 
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Adenosine, produced by all cells, is an endogenous purine nucleoside with 

various physiological effects induced through its four subtypes of receptors A1, A2A, A2B, 

and A3. Figure 1.1 illustrates the chemical structure of adenosine. Adenosine induces its 

effects All adenosine receptors (AR) are G protein coupled receptors (GPCR) and have 

their own pharmacological profile and affinity for adenosine, tissue distribution, and 

effector coupling. Therefore, effects mediated through adenosine depend on the AR 

subtype activated.  

Generation of adenosine and its metabolism 

In physiological conditions, adenosine is produced from intracellular conversion 

of S-adenosyl-L methionine (SAM) to S-adenosyl-L-homocysteine (SAH) which then is 

converted to adenosine and homocysteine by SAH-hydrolase (30, 48) (Figure 1.2). 

Cytosolic adenosine can become phosphorylated via adenosine kinase to AMP in 

addition to getting converted to inosine by adenosine deaminse (ADA), especially at high 

levels of adenosine. Intracellular adenosine is transported down the concentration 

gradient into the extracellular space via equillibrative membrane transporters. Adenosine 

can also be produced extracellular through successive dephosphorylation of ATP to ADP 

and then ADP to AMP, which then goes under hydrolysis via membrane-bound ecto-5′-

nucleotidases CD39 and CD73 in order to form adenosine. By the action of ADA, 

extracellularly produced adenosine can also be further converted to inosine which is 

finally broken down to uric acid that is excreted in urine. However, adenosine can also 

get re-converted to AMP via the enzyme adenosine kinase (AK). Nevertheless, 

extracellularly produced adenosine can also be transported into the cell via concentration- 

and/or sodium-dependent transporters (Figure 1.2). In addition to being metabolized, 
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adenosine acts on its specific receptors to induce various physiological effects (43, 48, 

82). 
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Figure 1.1 Adenosine structure 

 

 

 

  

 

 

 

 

 

 

 

Figure 1.2 Production of adenosine under physiological conditions. Scheme adapted 

from Koos et al. (82) 
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Coronary flow regulation  

 Coronary arteries (CAs) play a pivotal role in determining the oxygen and nutrient 

supply of the myocardium by regulating the coronary flow (CF). Myocardial perfusion is 

regulated by several factors released from endothelial cells, smooth muscle cells, and 

cardiomyocytes that affect the coronary vascular tone. It is well known that physical 

forces induce coronary responses known as myogenic and flow-induced (shear stress) 

vascular control that determine the vascular basal tone and CF (Figure 1.3). Also, 

metabolic factors such as adenosine have been shown to mediate CA responses during 

metabolic stimulation (active hyperemia), autoregulation, and/or reactive hyperemia 

(Figure 1.3). Moreover, sympathoneural factors such as the effect of β adrenoceptors 

(ADR) are reported to affect the coronary tone through endothelium-dependent and –

independent manners (Figure 1.3).  

 Pressure-induced myogenic constriction importantly contributes to autoregulation 

of local blood flow, which also acts as a protective measure from sudden increases in 

arterial pressure (88). Given that this constriction allows resistance arteries, such as 

coronary arterioles, to constrict or dilate in response to vasoactive mediators and changes 

in intraluminal pressure, it counts as an essential component of basal microvascular tone 

where vascular resistance is tightly regulated (19). The myogenic response occurs 

independently of the endothelium and perivascular nerves and is, therefore, an inherent 

property of vascular smooth muscle cells (85, 98). Smooth muscle cells have stretch-

activated cation channels that, when activated, induce an inward current leading to cell 

membrane depolarization and constriction (22-23, 160). Previous studies have shown that 

increased intraluminal pressure leads to depolarization of smooth muscle cells and the 

opening of Ca
2+

 channels, such as Ca
2+

-activated K channels (BKCa), responsible for 
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increased intracellular Ca
2+

 leading to the contraction and the increase in myogenic tone 

(53-54, 108). Several endogenous mediators, such as cytochrome P450 metabolites, have 

been suggested to be involved in myogenic tone control via activation of BKCa channels 

(158). The CA myogenic tone is also proposed to be regulated by several molecular 

signaling pathways, such as, PKC pathway (29, 83, 99) and MAPK/ERK1/2 pathway 

(76-78). Moreover, the myogenic constriction in CA is suggested to antagonize EDHF-

mediated dilation; it was reported that activation of BKCa channels reduces myogenic 

constriction and profoundly increases EDHF-mediated dilation in CA (54).   

 An increase in wall shear stress results in the release of various factors from the 

endothelium that subsequently act on smooth muscle cells in order to induce vasodilation 

(86, 122, 150, 165). This illustrates the release of endothelium-derived factors that may 

limit myogenic constriction. Endothelium-derived nitric oxide (NO), suggested as 

endothelium-derived relaxing factor (EDRF), was proposed to regulate the coronary 

reactive hyperemia responses (80, 150, 165). However, other non-NO and non-prostanoid 

endothelium-derived substances, referred to as endothelium-derived hyperpolarizing 

factors (EDHFs), were found to play an important role in the regulation of CA vascular 

tone. Epoxyeicosatrienoic acids (EETs) (46, 128), H2O2 (96, 101, 163), and K
+
 (6) are a 

few suggested EDHFs in coronary arteries to highlight. Liu et al. showed that 

endothelial-derived H2O2 was critical in human CA dilation to shear stress (90, 101). The 

same group also suggested that mitochondria are the source of the H2O2 generation that 

plays a role in flow-induced human CA dilation (90). Miura et al. reported that shear 

stress induces endothelium-dependent vasodilation through CYP450 metabolites leading 

to hyperpolarization of smooth muscle cells through BKCa channels in human coronary 

arterioles (103). It should be highlighted that human CAs in these studies are dissected 
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from patients with cardiovascular disease, which may lead to different physiological 

responses than true controls, the tissues from healthy individuals. Nevertheless, previous 

studies have shown that endothelial production of NO can be triggered by mechanical 

shear forces or CF-induced pulsatile strain (154-155). It was demonstrated that NO 

contributes to the coronary responses in reactive hyperemia (167)and that adenosine is 

involved in CA flow-induced dilation and enhanced coronary response to pulsatile 

perfusion(87, 117, 169), which suggests the existence of a cooperative interaction 

between adenosine and the local flow regulation mechanisms.  

It is well established that CF is regulated by the metabolic state of the heart (44) 

(Figure 1.3). Berne’s adenosine hypothesis suggests that increases in myocardial oxygen 

consumption decreases myocardial oxygen tension (pO2) which leads to the release of 

adenosine from cardiomyocytes (8, 43, 159). Furthermore, a role for H2O2 in metabolic 

CA vasodilation has been established (72, 116, 164). Chilian et al. suggested that H2O2 

production increases in proportion to cardiac metabolism in order to couple the coronary 

blood flow to myocardial oxygen tension (131). On the other hand, increasing evidence 

has shown the involvement of KATP channels in metabolic CF adjustment through 

different approaches such as pacing-induced tachycardia (73), pharmacological metabolic 

stimulation (110), and exercise (36). Further, coronary arteriolar smooth muscle KATP 

channels (42, 124-125) and BKCa channels were reported to contribute to the basal CF 

regulation (53). There is evidence that during exercise, coronary NO production is 

increased in the heart (136), likely due to an increase in endothelial shear stress 

secondary to the increased CF rate (9, 149). Nevertheless, Chilian et al. demonstrated that 

CA vasoconstriction induced by inhibition of NO was counterbalanced by coronary 

vasodilation, indicating that many compensatory vasomotor adjustments occur in order to 
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maintain the CF (71). And finally, the knowledge that prostaglandins may also act as 

local chemical mediators to control coronary perfusion to adapt to the metabolic demands 

of the heart should be considered (135).  
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Figure 1.3 Several reported pathways for metabolic vasodilation of coronary 

arteries. Scheme adapted from Koos et al.  (82).  
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It has been known that neurotransmitters released from nerve endings are known 

to affect the coronary vascular tone. Sympathetic stimulation-mediated coronary 

vasoconstriction is capable of competing with local metabolic control to lower coronary 

venous oxygen tension (44). The autonomic effects on CF regulation have been studied at 

rest and during exercise through different approaches such as after surgical or chemical 

denervation of the heart or in the presence of selective autonomic receptor antagonists. It 

was reported that cardiac neural ablation did not impair the ability to maintain the 

exercise level, although the initial hemodynamic adjustment to exercise was delayed (52). 

It is established that blockade of α2-adrenoceptors (ADR) can affect the CF through three 

mechanisms: a) blockade of prejunctional αADR which interrupts the negative-feedback 

control of norepinephrine release leading to an increase in norepinephrine levels and 

induction of cardiac ßADR stimulation and an increase in CF (60, 62); b) αADR 

blockade can increase CF by interrupting vasoconstriction mediated by postjunctional α1 

and  α2ADRs located on CA smooth muscle cells; and c) α2ADR on CA endothelial cells 

can stimulate release of nitric oxide (NO), which can oppose the αADR-mediated 

vasoconstriction (20, 65). On the other hand, it was reported that norepinephrine brings 

about human coronary vasodilation through ß2ADR (139) that involves NO and KATP 

channels (100). Previous studies suggested that ß2ADR-mediated CF regulation is 

minimal under resting conditions in dogs (5, 61) while, βADRactivation was shown to 

contribute to coronary vasodilation during exercise in a feed-forward manner (104-105, 

153). β2ADR activation during exercise causes a significant degree of CA dilatation 

independent of myocardial effects of β1ADR stimulation (31, 94). Overall, the consensus 

is that βADR blockade causes a greater reduction in CF compared to myocardial oxygen 
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consumption, resulting in increased oxygen extraction by the heart which demonstrates a 

direct feed-forward for βADR CA vasodilatory effect.  

In this thesis, based on previous studies on adenosine and the existence of broad 

factors involved in the regulation of CF, we elaborate on the role of adenosine, KATP 

channels, and H2O2 in addition to a brief look at β adrenoceptors, as a sympathoneural 

factor, in light of adenosine as the main focus.  
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Figure 1.4 Previously reported major signal transduction pathways in the regulation 

of coronary flow. Adapted from Komaru et al. (81)  
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Role of adenosine in coronary flow regulation  

  The heart has a small anaerobic metabolic capacity and, therefore, is essentially 

dependent on CF in order to provide the heart with oxygen on a beat to beat basis. Some 

also say that heart function is comprised of continuous sequential episodes of transient 

increase in CF, called reactive hyperemia (RH), with the decreased flow occurring during 

the systole and the RH response occurring during the diastole. Additionally, during 

conditions such as coronary vasospasm or even exercise the myocardium is also 

responsive to acute periods of decreased CF by means of RH. Nevertheless, as 

mentioned, the increase in CF during more aggressive conditions such as exercise or 

angina plays a crucial role in providing the heart with necessary oxygen. However, it is 

interesting to note that the myocardium is reported to only extract about 75% of the 

delivered oxygen at rest and that the seemingly high level of repayment during episodes 

of RH only provides oxygen repayment ratios of between 26-82% (129), which suffice to 

say that myocardium has a small oxygen extraction reserve and that the contribution of 

any vasodilatory factor plays a crucial role for the regulation of CF and the efficient 

oxygen supply and, hence, cardiac function. Needless to say that although the myocardial 

oxygen supply (in the form of blood flow or oxygen extraction) is small, the myocardial 

oxygen consumption can increase up to five fold when needed (43).  

In 1963, Berne et al. proposed the adenosine hypothesis (7). The idea was that the 

myocardial oxygen supply over oxygen consumption ratio is reflected in the intracellular 

myocardial oxygen tension (pO2). For example, if myocardial oxygen supply over 

consumption ratio decreases (as during exercise), the myocardium encounters a fall in 

pO2 which leads to the breakdown of adenine nucleotides (ATP, ADP, AMP) and, hence, 

generation of adenosine. The produced adenosine then diffuses out of the cell to act on its 
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receptors on coronary arteriolar smooth muscle cells (through an endothelium-dependent 

and –independent manner) in order to cause vasodilation. This increase in CF delivers 

more oxygen to the myocardium and, thus, returns myocardial pO2 back toward the 

normal range (Figure 1.5). The adenosine hypothesis is also a transmitter hypothesis 

which suggests that adenosine transmits information regarding the status of one cell type 

such as cardiomyocyte to another cell type such as arteriolar smooth muscle by diffusing 

across the interstitial space (43, 48). Therefore, Berne’s adenosine hypothesis suggests 

that adenosine coordinates the myocardial oxygen consumption to CF (Figure 1.5). The 

role of each AR subtype in the regulation of CF has been extensively studied. 

Adenosine receptors classification and characteristics 

Adenosine receptors were initially classified into A1 and A2 subtypes based on 

their potency for ligands and antagonism by methylxanthines (91). Subsequently 

subclassification of A2 into A2A and A2B subtypes was pharmacologically based upon the 

high affinity A2A and low affinity A2B binding sites in rat brain (24). All ARs are seven 

transmembrane GPCR with approximately 21–28 amino acids in each transmembrane 

region. The A2AAR is 409 and 410 amino acids long in human and mouse, respectively.  

A2AAR is the largest of all ARs due to its extended C-terminus of no known function 

(121). Overall, there is relatively low level of amino acid homology between different 

ARs in a single species in addition to the same AR between species which may contribute 

to the different ARs-mediated effects observed in different species. 

The N-terminus of ARs are extracellular and it was shown that all ARs other than 

A2AAR have a palmitoylation site near the C-terminus (1). Furthermore, all ARs are 

glycosylated on their 2
nd

 extracellular loop (121) and although the 3
rd

 intracellular loop is 

involved in both A1 and A2AAR G protein coupling, the C-terminus is only involved in 
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A1AR G protein coupling (151). It was also reported that the A2AAR phosphorylation of 

intracellular loop is involved in this AR desensitization (118). Currently, all four ARs are 

cloned and their expressions in various tissues have been extensively studied. 

The A2AAR gene has been localized to chromosome 22q11.23 (27, 92) and 

chromosome 10 in human and mouse, respectively (162). However, the A2BAR gene has 

been localized to chromosome 17p12-11.2 (69) chromosome 11 in human and mouse, 

respectively (162). A2AAR was the first AR genetically modified in a murine model (89). 

The A2AAR knockout (KO) mice were developed in three different genetic backgrounds 

of CD1, congenic C57B L/6, and pure 129-Steel (17-18, 89) while A2BAR has been 

recently developed only in C57BL/6 background. A2AKO animals demonstrated several 

central nervous system disturbances such as decreased exploratory activity, increased 

aggressiveness and hypoalgesia (89). Furthermore, A2AKO mice with CD1 genetic 

background were demonstrated to have increased blood pressure, heart rate, and platelet 

aggregation (89) while an A2AKO mice on either a mixed 129Steel-C57BL/6 or congenic 

C57BL/6 genetic background did not show any change in blood pressure(17, 26). While 

there are relatively a large number of studies on A2AKO, there are not many studies using 

A2BKO mice and, therefore, a better understanding of its functional effects or 

compensatory mechanisms due to its genetic modification still remains to be fully 

elucidated. 

A2ARs: The presence of both A2A and A2BARs on coronary endothelial and 

smooth muscle cells and the pivotal vasoregulatory role of adenosine in human CA is 

well established (37-38, 113, 130, 133). The involvement of A2AAR in the regulation of 

CF in various other species has been also broadly reported (11, 37-38, 74, 106, 130, 133, 

137, 142, 145, 167). Previous studies further suggest that metabolic vasodilatory factors 
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such as adenosine are the primary mediators responsible for the CF regulation during RH 

(21, 63, 114-115).  In vivo studies in dogs showed a role for A2AAR in CF regulation 

during RH (32), which further confirms the physiological role of adenosine. Zatta et al. 

also confirmed this finding by using pharmacological approaches (11, 167). Furthermore, 

it is proposed that A2AAR contributes to the coronary circulation basal tone since deletion 

of A2AAR and application of SCH58261 (A2A selective antagonist) diminished the 

baseline CF compared to WT hearts (137, 145).  

Due to its lower affinity for adenosine, A2BAR is activated in conditions where a 

significant increase in adenosine levels is observed, such as in ischemia (48). Also, a 

previous study showed that A2BAR may not play a role in basal tone regulation of CF 

since targeted deletion of A2BAR had no effect on the baseline CF (137). Additionally, 

Tune et al. suggested no role for A2BAR in RH by means of indirect measures such as 

using non-selective antagonist (11). Nevertheless, A2BAR is shown to be involved in the 

regulation of CF, albeit may be with a lesser contribution compared to A2AAR (13, 106, 

137, 142). Furthermore, recent studies suggested an interrelationship between A2A and 

A2BARs subtypes since one compensates for the down-regulation/deletion of the other 

(137, 145) through their up-regulation in coronary arterioles. In fact the involvement of 

A2A and A2BARs and their down- or up-regulation is reported in many pathophysiological 

conditions (2, 4, 41, 75). Regardless of this relationship, the differential expression of 

ARs is shown to contribute to functional heterogeneity of human endothelial cells (45) 

and the impairment of adenosine-related signaling contributes to the pathophysiology of 

congestive heart failure (2). By benefiting from gene-modified models and 

pharmacological approaches and by using selective adenosine analogs, we were allowed 
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to better assess the role of A2ARs in the regulation of CF and, therefore, to better 

understand the heterogeneity of CF in relation to A2ARs responses.   

A1AR: There are previous reports from our laboratory suggesting that A1AR 

negatively modulates the role of A2AARs and probably A2BARs in CF regulation (141, 

144). The presence of only A2AARs and A2BARs on coronary endothelial cells may also 

indirectly support this finding (113). Additionally, it was recently reported that in 

Ossabaw swine A1AR antagonism by DPCPX positively regulated basal CF. However, 

although A1AR may not play a major role in CF regulation, it has been shown that this 

receptor mediates negative chronotropic effects which may indirectly affect the CF in 

conditions where adenosine concentration is elevated enough to induce the chronotropic 

effect of this AR subtype. Nevertheless, A1ARs are known to protect the heart from 

ischemia-reperfusion (107, 161, 168) and coronary atherosclerosis (preliminary data from 

our laboratory (146)).  

A3AR: Zhao et al. showed that high concentrations of A3AR agonist, Cl-

IBMECA, induced coronary vasodilation which was further blocked by A2AAR 

antagonism (171). However, A3AR targeted deletion increased the A2AAR-mediated 

response. This finding may suggest that A3AR also participate in CF regulation of 

isolated murine hearts via negative modulation of A2AAR-mediated coronary vasodilation 

(141). Additionally, single-nucleotide polymorphism (SNP) of I248L in A3AR gene is 

shown to be associated with coronary heart disease (120). Further studies are required to 

better understand the role of A3AR in CF regulation and responses. 
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Figure 1.5 Berne’s adenosine hypothesis. Scheme adapted from Feigl et al. (43) 
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Classically known signaling of adenosine receptors 

As mentioned, each AR has its own pharmacological profile. Adenosine at its 

basal concentration is sufficient to activate A1, A2A, and A3 ARs. However, due to its low 

affinity for adenosine, A2BARs are activated in conditions where significant high levels 

of adenosine are produced, such as in pathophysiological conditions. It is well established 

that A1 and A3ARs are associated with Gi proteins while A2A and A2B ARs are coupled to 

Gs proteins. The A1 and A3ARs signal through Gi/o proteins and its activation leads to an 

inhibition of adenylyl cyclase (AC) which causes a lowering of cyclic AMP (cAMP) 

levels. The A2A and A2BARs signal through the Gs pathway and its activation leads to 

stimulation of AC resulting in increased production of cAMP. Classically, ARs were 

thought to induce their effects through inhibition (Gi) or stimulation (Gs) of adenylyl 

cyclase. However, it is becoming more and more evident that these receptors also activate 

other pathways such as phospholipase C (PLC), mitogen-activated protein kinase 

(MAPK), etc. In fact, signaling through the A1AR can also lead to activation of IP3/DAG 

through the PLC pathway (68, 143). Additionally, the A2B receptor signals through Gs/q 

and its activation can either result in increased cAMP or IP3/DAG and Ca
2+

 levels. 

Furthermore, ARs are now shown to be associated with the K
+
 channels, production of 

reactive oxygen species (ROS) and activation of the arachidonic pathway (34, 50, 59, 

111, 137). 

Role of K
+
 channels in A2AAR-mediated coronary flow regulation 

K
+
 channels play an essential role in determining the cell membrane potential and 

regulating the contractile tone of arterial smooth muscle cells through controlling the 

Ca
2+

 entry via voltage-dependent Ca
2+

 channels and, thereby, the contractility (67). There 

are four types of K
+ 

channels on CA smooth muscle and endothelial cells: voltage-
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dependent K
+
 (KV), Ca

2+
dependent K

+
 (BKCa), ATP-dependent K

+
 (KATP), and inward 

rectifier K
+
 (Kir) channels. KATP channels are shown to be present on isolated coronary 

artery cells (51, 140), in addition to KV channels which are known to be expressed on 

coronary arteries (33, 66, 140, 156, 166). Additionally, BKCa channels are known to be 

abundantly expressed on coronary smooth muscle cells and contribute to CA vasodilation 

in different species (15, 64, 102), in addition, to Kir channels which are reported to be 

present on both coronary smooth muscle and endothelial cells (119, 126, 140, 157, 166).  

It is worth mentioning that K
+
 was suggested to be the EDHF in various vascular 

beds (39-40). Additionally, in general, K
+
 channels have been suggested to be involved in 

A2A and A2BARs-mediated hyperpolarization of CA (55-56, 74, 109, 112, 137, 170) and 

in adenosine’s role in potentiating flow-induced CA vasodilation (84). Coronary 

arteriolar smooth muscle KATP channels are tonically active under physiological 

conditions. Indeed, in humans as well as in different animal species, application of 

glibenclamide, a KATP channel blocker, resulted in a decrease in resting blood flow (42, 

124-125, 137). Additionally, a primary role for KATP channels in mediating the sustained 

dilation of CA during RH was suggested (167).  

Adenosine is reported to activate KATP channels in rabbit isolated CA smooth 

muscle cells (140) and in the A2A-induced effect in RH (11, 167). Additionally, a recent 

study proposed that the decrease in CF produced by intracoronary glibenclamide may 

cause metabolic changes of ischemia including the release of adenosine (35, 132). This is 

an important observation, since it indicates that blockade of the endogenous vasodilator 

system associated with KATP channel activity can cause coronary vasoconstriction 

sufficient to result in myocardial ischemia (132). Adenosine-mediated activation of KATP 

channels may be indirectly through release of some other mediators such as H2O2 (please 
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see the role of H2O2 in A2AAR-mediated CF regulation section)(50). A study reported 

that the effect of adenosine on endothelial KATP channels may be mediated via pertussis 

toxic-sensitive G proteins and not through the release of NO and cGMP production, 

whereas activation of smooth muscle cell KATP channels may not involve G proteins (59). 

Moreover, the enhanced responsiveness to adenosine at lower CA intraluminal pressure 

was suggested to be due to increased smooth muscle cell KATP channels activity (169). In 

addition to the A2AR-mediated pathway, one study suggested that adenosine also 

activates KATP currents in single CA smooth muscle cells via A1ARs (25). Nevertheless, 

the signaling pathway due to the activation of endothelial KATP channels is yet to be fully 

explored.  

To date no patch clamp study has demonstrated the effect of adenosine on KV 

currents in CA smooth muscle cells. However, in vivo studies have shown that 4-

aminopyridine, KV channel blocker, inhibited CA vasodilation induced by adenosine (11, 

32, 56-58). Previous studies on CA smooth muscle cells also indicate the involvement of 

PKC and PKA in the KV channel-mediated pathway (138, 140),which renders the 

question whether adenosine induces the activation of KV channels through the PKC 

pathway.  

Role of H2O2 in A2AAR-mediated coronary flow regulation 

H2O2 is suggested to act as EDHF in humans and mice (95, 97, 163). 

Additionally, it was reported that H2O2 induces CA vasodilation through both 

endothelium-dependent and –independent manners (147). Recent reports have established 

the contribution of H2O2 in flow-induced dilation of isolated human CA (101) and in 

reactive dilatation of rat isolated coronary arterioles (79). Yada et al. proposed that H2O2 

(as an EDHF in vivo) plays an important role in CA autoregulation in cooperation with 
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adenosine and NO (163). However, so far there are no reports showing the relationship 

between H2O2 and adenosine-mediated coronary vasodilation, which lead to the basis of 

our study. 

It is worth mentioning that Berne’s adenosine hypothesis suggests that increases 

in myocardial oxygen consumption decrease myocardial oxygen tension which leads to 

the stimulation of the release of adenosine from cardiomyocytes (152), where A2AARs 

have also been found to be expressed in both human and mouse (16, 93). Adenosine 

induces CA dilatation through activation of sites on cardiomyocytes in addition to the 

arteriole vascular bed itself (148). Furthermore, as mentioned, a role for H2O2 in 

metabolic vasodilation has already been proposed (164) and Chilian et al. suggested that 

H2O2 production increases in proportion to cardiac metabolism in order to couple the 

coronary blood flow to myocardial oxygen tension (131). What is interesting to 

appreciate is that both H2O2 and adenosine are released from cardiomyocytes and that 

they may modulate the vascular tone through the cardiac myocyte (72). Therefore, 

myocardium may be partly the source of both adenosine and H2O2 released for the 

regulation of CF. Our study is based on such similarities between adenosine and H2O2 

(please also refer to chapter 4).  

Relationship between adrenoceptors (ADR) and A2ARs in coronary flow regulation 

Endogenous adenosine was reported to affect the norepinephrine release from 

sympathetic nerve endings (127). The A2AAR-mediated facilitation of norepinephrine 

release was also suggested to require activation of the PKC and PKA pathways (49) 

which itself is proposed as an adenosine signaling pathway. It was reported that αADR-

mediated coronary vasoconstriction during exercise limits coronary perfusion in impaired 

endothelial function situations (70). DeFily et al. further added to this finding by showing 
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that, even in normal conditions, stimulation of αADR-induced vasoconstriction is masked 

by autoregulatory control, by means of NO release and endogenous adenosine (28). 

Furthermore, it was demonstrated that coronary RH responses due to adenosine are 

blocked by αADRs when NO synthesis is interrupted (14). On the other hand, the 

cardioprotective effect of carvedilol, a βADR blocker, was shown to be through an 

adenosine-dependent mechanism (3). Additionally, it was demonstrated that βADR-

mediated inotropic responses were attenuated by adenosine (134). Therefore, overall 

there is some evidence on similarities between ADR and AR cardiovascular effects and 

signaling. However, there are no studies on the interaction or cross talk of ARs and 

ADRs in the regulation of CF which was the basis of our new study (Please see our 

appendix A). 

Clinical applications  

Adenosine and its agonist are currently being used in clinical settings; The 

vasoregulatory properties of A2AARs are used clinically in humans for the diagnosis of 

coronary artery disease through the use of adenosine (Adenoscan) as a substitute for 

exercise stress testing for people who can’t exercise in myocardial perfusion imaging 

(12). The use of Adenoscan has its own limitations due to its blocking effect on AV 

conduction [due to activation of A1ARs (10, 12)] and inducing bronchospasm [probably 

due to activation of A1, A3 or A2BARs (47, 123)]. However, these side effects may be 

alleviated by the development of more A2ARs subtype selective agonists. A new A2AAR 

selective agonist called Regadenoson (Lexiscan®) has been developed and approved by 

FDA which is being used clinically in myocardial perfusion imaging. Additionally, in 

many cardiovascular diseases such as coronary atherosclerosis, angina, and hypertension, 

an attenuated vascular response to adenosine has been demonstrated where functional 
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disturbance of smooth muscle or endothelial cells may be the underlying cause. 

Therefore, it is important to better understand adenosine’s role in the regulation of CF, its 

mechanism of action, and its interplay with other AR receptors, and/or its interaction with 

the ADRs. 
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 Project Summary 

Adenosine plays an important role in coronary flow regulation in physiological and 

pathological conditions where AR expression modification may occur. Therefore, the 

purpose of this investigation was to better understand the individual role and contribution 

of A2ARs in the regulation of coronary flow and their mechanism of action during their 

exogenous and endogenous activation. In addition to better understand the heterogeneity 

of CF responses by ARs, elucidation of ARs’ role in CF regulation would enable us to 

develop therapies with less unwanted side effects or new enhanced medications for the 

diagnosis and/or treatment of cardiovascular disorders. With this purpose in mind, the 

following aims were developed: 

 

Specific Aim 1: Elucidation of the role of A2 ARs in the regulation of coronary flow 

Specific Aim 2: Identification of A2 ARs signaling pathways in coronary flow 

regulation 

Specific Aim 3: Characterize the role of A2 ARs in coronary reactive hyperemia 

Specific Aim 4: Identify the role of H2O2 in A2 ARs’ signaling pathway during 

reactive hyperemia  
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The isolated perfused heart (Langendorff heart system), especially for small 

animals, is one of the optimal approaches, having in mind, the quantity and quality of 

data that can be obtained in a laboratory setting. Nevertheless, this approach has its own 

advantages and disadvantages.   

The isolated heart provides us with types of data, such as heart rate, left ventricle 

pressure, and coronary flow, in the absence of the confounding effects of other 

organs,systemic circulation, neurohormonal factors, etc. This characteristic is considered 

as an advantage since it allows the distinction of aforementioned factors from cardiac 

responses. The absence of neurohormonal and peripheral factors can often be 

compensated for, if required; for example catecholamines or other neurotransmitters may 

be included in perfusate and many other peripheral mediators can be added exogenously. 

However, this approach can also be considered a disadvantage in the sense that it makes 

the preparation one step further away from the physiological in vivo state. Nonetheless, 

without a doubt, the isolated heart system provides us with the ability of performing 

metabolic or pharmacological dose-response studies. Although one must take into 

account the fact that, as an ex vivo preparation, the isolated heartundergoes deterioration 

in time, but it is capable of providing data up to 3-4 hours. 

Using the isolated heart system, we are also able to induce whole heart ischemia 

through flow occlusion; this is an approach that we used for our reactive hyperemia 

experiments. Anoxia or hypoxia at various degrees of oxygen deprivation (in the 

presence of normal flow) can also be easily imposed through manipulation of 

oxygenation rate or amount. Therefore, this approach provides us with a powerful tool for 

assessing many aspects of ischemia/hypoxia or even, if interested, ischemia-reperfusion-

induced injury, in which case single coronary occlusion can be performed.  
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It is important to know that we have two modes of operation of the isolated 

perfused heart systems: constant flow and constant pressure. Whereas constant flow 

perfusion eliminates a variable from the experiment, it also has the disadvantage that, 

unlike constant pressure perfusion, autoregulatory coronary flow mechanisms are 

overridden and, therefore, it does not provide us with data regarding coronary flow 

regulation. Switching between constant flow and constant pressure modes of perfusion is 

not very straightforward so that it can be feasible within a single experimental protocol. 

However, currently, this system is now commercially available through ADInstruments 

Ltd. which allows us to switch instantly between constant pressure and constant flow 

modes of perfusion, enabling perfusion pressures and coronary flow to be controlled over 

a wide range. This feature is of considerable advantage in many studies of vascular 

function. 

Using isolated perfused heart, several types of data can be gathered; for the 

purpose of morphology and vascular anatomy studies, heart or vascular fixation can be 

easily performed through coronary perfusion of required agents and a sequential analysis 

using light or electron microscopy. Additionally, the heart can be sliced, starting at the 

apex of the heart and working towards the base, for histology studies of coronary arteries. 

The whole heart can also be used for gross morphology such as is required during infarct 

size or cardiac hypertrophy studies. From a biochemistry/physiology point of interest, 

arterio-venous substrate concentration differences for metabolites, oxygen, and a host of 

other factors involved during physiological and extreme metabolism can be measured. 

Additionally, measurement of cellular constituents such as enzymes and proteins can be 

performed for the assessment of tissue injury due to the influence of, for example, various 

conditions such as ischemia/reperfusion or hypoxia. Microelectrodes can further be used 



51 

 

for continuous measurement of interstitial K
+
, Ca

2+
, pH or monophasic action potentials. 

With all that in mind, using isolated heart perfusion the coronary perfusion, can be used 

for delivery of vectors in gene transfer studies where adenovirus or other vectors can be 

selectively delivered to the coronary artery vasculature and hence providing us with a so 

called “organ specific gene modification”, which may replace whole animal knockout 

models as an approach which may exclude the effect of compensatory mechanisms due to 

the general whole animal gene modification. 

From a more functional standpoint, using the isolated heart system, 

electrocardiographic recordings allow the detection, identification, and quantification of 

cardiac arrhythmias. Furthermore, the Langendorff preparation provides valuable 

information on left ventricular systolic and diastolic pressures and derivatives such as 

dp/dt. Various ultrasound techniques, such as echocardiography and Doppler, can also be 

used for measurements of cardiac wall thickening, stroke volume, cardiac output, 

coronary flow velocity, etc. While most studies with the isolated perfused heart are 

focused on the function and malfunction of the cardiomyocyte, using contractile and 

metabolic endpoints, it should be highlighted that Langendorff heart system can be used 

to study vascular reactivity, endothelial and smooth muscle function, and the effect of a 

variety of agents and drugs on coronary flow. Indeed, the isolated heart has been the 

foundation of much of the work on the no reflow phenomenon where A2ARs agonists are 

currently being clinically investigated as an approach for reduction of reperfusion injury. 

Nevertheless, even from basic therapeutic approaches, the isolated heart preparation is 

reliable for assessing the direct cardiovascular effects of various therapeutic agents in 

terms of contractile function, electrical activity, or metabolic function. This preparation 

allows us to perform dose-response studies with reproducibility and precise control of 
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agent concentration. An additional advantage is that we are able to washout drugs from 

the circulation by replacing perfusion fluids which itself can be an excellent approach to 

study drug tachyphylaxis or desensitization. 

There are also further important issues to consider when using the isolated heart 

system. Like so many other aspects of heart perfusion, the decision of whether to pace the 

heart or not, is based on a compromise between protocol requirements and quality of 

data. Heart rate in isolated hearts, when left to contract spontaneously, undergoes a 

progressive time-dependent decline. Spontaneous heart rate, in a perfused heart system, is 

usually significantly below the physiological normal rate. Mouse heart rate, in an in vivo 

preparation, is about 500 beats/min, whereas heart rate of about 380 beats/min, can be 

expected in the ex vivo preparation. This decline in baseline heart rate, of course, adds an 

additional variable, which itself may also vary among the animals. Moreover, this decline 

in heart rate also adds variability to the measurements obtained for left ventricular 

pressure. During an experiment, the worsening of HR depends on a large number of 

factors including the skills of the worker, avoidance of injury, the species being used, the 

composition of the perfusion fluid, the drugs used, age, HR and work load, and the 

temperature at which the studies are carried out. During a Langendorff heart preparation 

experiment, a deterioration rate of contractile function of about 5-10% per hour is 

expected. Therefore, the rate of deterioration should be taken into account for the 

interpretation of studies and the experiments should be more or less time-matched with 

corrections for baseline deterioration when comparing groups. 

Use of the isolated heart perfusion approach is reported in many large animals 

such as pigs, monkeys, sheep, dogs and even humans. Nevertheless, such studies are less 

frequently performed due to many limiting factors such as high cost, presence of greater 
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variability in results, need forf large volumes of perfusion fluid and specialized 

equipment required. The availability of transgenic technology for mice undoubtedly 

resulted in increasing numbers of studies using murine preparations. Indeed, one of the 

reasons to use mouse, in our laboratory, was the availability of AR KO mice. Currently, 

the literature consists of an increasing number of studies which employ mouse hearts 

although the high HR ofmice may set some limitations for translation of data obtained 

from this species to human studies. Another limitation in the use of mice, in some studies, 

is the very small size of all organs or tissues. For example, the size of many arteries, such 

as large conduit coronary arteries, is in ~80 µm range, which shows a very smaller size 

range for the coronary resistance vessels. The size of these vessels somehow limits the 

study of coronary arteries in that the isolation of the actual resistance vessels is extremely 

challenging. Also, the use of a larger number of animals is required in order to obtain 

sufficient amount of tissue for the purpose of even basic experiments such as RT-PCR or 

western blot. Another limitation with the use of mice is the miniaturization of equipment; 

handling of rat hearts, for example, has a great advantage over smaller hearts from mice 

where intraventricular pressure recordings are more difficult. The rat does, however, 

suffer from very short action potential duration which can limit its value in terms of 

translation of data to human studies of arrhythmia and antiarrhythmic drugs. Other 

species, such as the rabbit, suffer problems with anesthesia and the guinea-pig heart 

differs from other species in that the coronary vasculature is totally collateralized, 

effectively preventing the study of regional ischemia in this species. Thus, as no ideal 

species or setting exists, in selecting a species or preparation for a specific study, it is 

crucial to recognize and appreciate the disadvantages and advantages. 
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Contributions of A2A and A2B adenosine receptors in coronary flow responses in 

relation to KATP channel using A2B and A2A/2B double knockout mice 

American Journal of Physiology, September 2011 

(Used with permission from Am J Physiol Heart Circ Phsyiol, appendix B) 

  



55 

 

Abstract 

 

Adenosine plays a role in physiological and pathological conditions and A2 adenosine 

receptors (AR) expression is modified in many cardiovascular disorders. In this study, we 

elucidated the role of A2BAR and its relationship to A2AAR in coronary flow (CF) 

changes using A2B single (KO) and A2A/2B double (DKO) knockout mice in Langendorff 

setup. We used two approaches: a) selective and non-selective AR agonists and 

antagonists, and b) A2A and A2BKO and A2A/2BDKO. BAY60-6583 (selective A2B 

agonist) had no effect on CF (ml/min/g) in A2BKO while it significantly increased the 

WT CF (maximum of 23.3±9). NECA (non-selective AR agonist) increased the CF in 

A2BKO (maximum of 34.6±4.7) to a significantly higher degree compared to WT 

(maximum of 23.1±2.1). Also, CGS21680 (selective A2A agonist) increased the CF in 

A2BKO (maximum of 29±1.9) to a significantly higher degree compared to WT 

(maximum of 25.1±2.3). SCH58261 (A2A selective antagonist) inhibited the NECA-

induced increase in CF to a significantly higher degree in A2BKO (19.3±1.6 vs. 0.5±0.4) 

compared to WT (19±3.5 vs. 3.6±0.5). NECA did not induce any increase in CF in 

A2A/2BDKO while a significant increase was observed in WT (maximum of 23.1±2.1). 

Furthermore, mitochondrial KATP channel blocker 5-hydroxydecanoate had no effect on 

NECA-induced increase in CF in WT while NECA-induced increase in CF in WT 

(17.6±2), A2AKO (12.5±2.3), and A2BKO (16.2±0.8) was significantly blunted by KATP 

channel blocker, glibenclamide, to 0.7±0.7, 2.3±1.1, and 0.9±0.4, respectively. Also, 

CGS21680 (22±2.3), and BAY60-6583 (16.4±1.60)-induced increase in CF in WT was 

significantly blunted by glibenclamide to 1.2±0.4 and 1.8±1.2, respectively. In 

conclusion, this is the first evidence supporting the compensatory up-regulation of 

A2AAR in A2BKO mice and demonstrating that both A2A and A2BARs induce CF changes 
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through KATP channels. These results identify AR-mediated CF responses which may 

lead to better therapeutic approaches for the treatment of cardiovascular disorders. 

 

Introduction 

Adenosine is an endogenous nucleoside which is released through the breakdown 

of adenine nucleotides. Adenosine’s cardiovascular effects are mediated through 

activation of its four subtypes of receptors (AR), namely, A1, A2A, A2B and A3. Activation 

of A1AR results in negative chronotropic and ionotropic effect, and a decrease in 

coronary flow (CF) (68) while other studies suggest that the activation of both A1 or 

A3ARs prior to ischemia is cardioprotective (6, 30). However, adenosine is shown to play 

a vasoregulatory role in human coronary arteries (16-17, 62-63). It is well established that 

the activation of A2AAR induces positive inotropic effect and that A2AAR plays a major 

role in the regulation of CF in ex vivo models (67, 69). Additionally, in vivo studies in 

dogs showed the involvement of A2AAR in CF (reactive hyperemia) regulation (5, 77) 

and thus, supporting a physiological role for adenosine. Adenosine-induced effects are 

species-dependent (20, 23). For example it is reported that guinea pig coronary 

vasodilation is more sensitive to adenosine compared to rats (72). Furthermore, few 

studies show that A2BAR acts as a vasoconstricting as well as a vasodilating factor in 

different vascular beds (13, 57), in addition, to playing a cardioprotective role during 

ischemia/reperfusion (14-15, 30). Nevertheless, there are no reports fully elucidating the 

individual and relative role of A2BAR in relation to A2AAR in coronary vasodilation. Our 

group and others have previously suggested a role for A2BAR in coronary artery 

vasodilation by means of indirect measures such as using non-selective agonist and 

antagonists and A2AKO mice (48, 67) which are in accordance with previous reports 
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showing A2AR-mediacted vasodilation in isolated human coronary arteries (39, 63). 

Furthermore, this laboratory has shown the presence of A2B and A2AARs in human and 

porcine coronary artery endothelial and vascular smooth muscle cells that may further 

support the involvement of A2A and A2BARs in the regulation of CF and a further possible 

interaction between these two receptor subtypes (53, 71). Coexpression of more than one 

AR subtype is also reported from other laboratories on human endothelial cells (36, 53) 

however, there are no reports studying whether the coexpressed receptors interact. We 

have recently shown an up-regulation of A2BAR in A2AKO mouse coronary artery 

suggesting an interrelationship between A2A and A2BARs subtypes since A2BAR 

compensated for the down-regulation/deletion of A2AAR (69). Additionally, since the 

involvement of A2A and A2BARs and their down- or up-regulation is reported in many 

pathophysiological conditions (2, 40) and differential expression of ARs contributes to 

functional heterogeneity of human endothelial cells (21), elucidating the presence of such 

compensatory mechanisms and signaling pathways for ARs is essential for better 

understanding of the heterogeneity of vascular responses and the regulation of CF.  

While A2BAR is reported to induce its cardiovascular effects through activation of 

arachidonic acid pathway in vasculature (13), A2AAR-induced vascular effects are 

demonstrated to partly involve CYP expoxygenases (50).  We and others have previously 

demonstrated that A2AAR-induced vasodilation is partly due to release of nitric oxide in 

mouse aorta and coronary arteries (69). However, A2BAR-induced vasodilation is both 

nitric oxide-dependent and –independent in mouse aortic conduit artery and coronary 

arteries, respectively (1, 69). Although KATP channels are shown to be present in coronary 

artery cells (28, 65) and K
+
 channels in general are known to be involved in A2A and 

A2BARs-mediated hyperpolarization of coronary arteries (31, 39, 52), the involvement of 
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KATP channels in adenosine-induced coronary artery responses remains poorly 

understood.  

The purpose of the present study was to directly and more fully elucidate the 

individual contribution of A2BAR and its relationship to A2AAR in A2ARs-mediated 

induction of coronary artery vasodilation in light of the KATP channel involvement. The 

hypotheses to be tested were; a) A2BAR contributes to coronary vasodilation, b) A2A and 

A2BARs interact to induce coronary artery vasodilation and they each compensate for the 

deletion/down-regulation of the other, and c) A2A and A2BARs-induced increase in CF is 

the result of activation of KATP channels. Since there are inconsistencies between the 

results obtained from transgenic models compared to those obtained using 

pharmacological approaches (55), in this study, we have used both pharmacological and 

molecular (targeted gene deleted mouse model) approaches. Furthermore, we used 

A2A/2BDKO mice to remove any possible compensatory up-regulation of either A2A or 

A2BAR in CF responses. 

 

Methods 

All experimental protocols were performed according to the West Virginia 

University guidelines and approval of Animal Care and Use Committee. 

Generation of DKO mice.  A2A -/- mice (backcrossed 12 generations to the C57BL/6 

background) were bred with A2B -/- mice (backcrossed 12 generations to the C57BL/6 

background) to generate A2A +/- A2B +/- double heterozygotes. These double 

heterozygotes were then intercrossed, and 1/16 of the resultant offspring were A2A -/-A2B 

-/- DKOs.  Male and female DKO breeding pairs were established from these animals to 
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produce DKO mice.  Since both A2A -/- and A2B -/- mice were inbred on C57BL/6, DKO 

are also inbred.  

WT, A2A, and A2BKO and A2A/2BDKO mice. Hearts were isolated from age-matched 

10 to 14 weeks old mice. WT mice of a mixed C57BL/6 genetic background were 

purchased from The Jackson Laboratory (Bar Harbor, Maine). A2BKO and A2A/2BDKO 

mice of the same background were generously provided by Dr. Stephen Tilley, 

Department of Medicine, University of North Carolina, Chapel Hill, NC. A2AKO mice of 

the same background were generously provided by Dr. Catherine Ledent, Universite 

Libre de Bruxelles, Brussels, Belgium. All four strains were bred at the West Virginia 

University animal facility as a sub-colony of the original strain. The mice were kept in 

cages with 12:12-hr light-dark cycles and maintained on a standard laboratory diet with 

access to water ad libitum. All animal care and experimentation were in accordance with 

the West Virginia University Institutional Animal Care and Use Committee and the 

principles of the National Institutes of Health “Guide for the Care and Use of Laboratory 

Animals.” 

Chemicals. All chemicals were prepared as 10 mM stock using Dimethyl 

Sulfoxide (DMSO, Sigma) followed by serial dilution with 50% DMSO and distilled 

water and further dilution to desired concentration was achieved with distilled water 

(final DMSO concentration of < 1%).  NECA (5'-N-ethylcarboxamido adenosine), 

CGS21680, 5-hydroxydecanoate, and glibenclamide were bought from Sigma (St. Louis, 

MO, USA) and SCH58261 was a gift from Schering-Plough, Italy. A2B agonist, BAY60-

6583, was a gift from Bayer (Germany). All stated concentrations are the actual drug 

concentration delivered as 1% of coronary flow. 



60 

 

Langendorff-perfused mouse heart preparation. Isolated heart experiments were 

performed in accordance with the methods published earlier from our lab (48). In brief, 

mice were anesthetized with intraperitoneal sodium pentobarbital (50 mg/kg). A 

thoracotomy was performed, and the hearts were removed into heparinized (5U/ml) ice-

cold Kreb-Hensleit (KH) buffer. The hearts were retrogradely perfused rapidly through 

the aorta cannulated with a 20-gauge, blunt-ended needle at a constant pressure of 80 

mmHg with continuously gassed with 95% O2 and 5% CO2 KH buffer containing (mM): 

119 NaCl, 11 Glucose, 22 NaHCO3, 4.7 KCl, 1.2 KH2PO4, 1.2 MgSO4, 2.5 CaCl2, 2 

Pyruvate and 0.5 EDTA at 37°C in a standard Langendorff fashion and allowed to beat 

spontaneously. The left atrium was removed and the left ventricle was vented with a 

small polyethylene apical drain. A water-filled balloon made of plastic wrap was inserted 

into the left ventricle across the mitral valve, which was connected to a fluid-filled 

pressure transducer by polyethylene tubing for continuous measurement of left 

ventricular developed pressure (LVDP). Left ventricle diastolic pressure was adjusted to 

a pressure of 2-5 mmHg by filling up the left ventricle balloon. Coronary flow was 

measured via a Transonic flow probe (Transonic Systems; Ithaca, NY) in the aortic 

perfusion line. Baseline coronary flow, LVDP, and heart rate (derived from the 

ventricular pressure trace) were monitored for 30 min during the equilibration period, 

which were recorded on a Power Lab data acquisition system (AD Instruments; 

ColoradoSpring, CO). Hearts with persistent arrhythmias or poor LVDP (<80 mmHg) 

during the equilibration period were excluded from the study. To rule out the 

tachyphylaxis or desensitization, at the end of each antagonist experiment, after another 

washout period, a repeat infusion of the agonist was performed.  
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UExperimental Protocols. After 30 minutes of equilibrium, baseline coronary flow, heart 

rate, and developed pressure were measured in WT, A2BKO, and A2A/2BDKO isolated 

hearts. Concentration-response curve (CRC) (10
-10

-10
-6

M) were performed for BAY60-

6583 (A2B selective agonist), NECA (non-selective AR agonist) and CGS21680 (selective 

A2A agonist) by infusing the drugs into the coronary perfusate through an injection port 

directly proximal to the aortic cannula using a microinjection infusion pump (Harvard 

Apparatus; Holliston, MA). After equilibration period, each heart was perfused with 

increasing concentration of selected drug to develop a concentration-response 

relationship curve. Each drug concentration was given for 5 min with 10 min intervals to 

allow complete drug washout (or using recovery to baseline parameters). All 

concentrations are the actual concentration in the perfusate. Data were collected at the 

end of each infusion period and washout time, which was used as a reference for 

normalizing responses to the subsequent drug concentration. In the result section, actual 

values from CRCs (figures 1-2,4, and 6) are presented as the maximum response and 

values from the use of a single drug concentration in the presence and absence of an 

antagonist (Figures 5 and 7-9) are presented as the actual drug-induced effect (maximal 

response minus the baseline).  

UAntagonist experiment protocol. U After 30 min equilibration period and measurement of 

baseline parameters, agonists, NECA (10
-8

M, in A2B KO mice, or 10
-8

M, in A2A KO 

mice, closest concentration to the EC50 obtained from previously performed experiments) 

(Figures 7 and 8), BAY60-6583 (10
-7

M) (Figure 9), and CGS21680 (5x10
-9

M) (Figure 9), 

were infused for 5 min at 1% rate of coronary flow. The plateau effect of coronary flow, 

heart rate, and developed pressure were recorded and a 10 min washout interval was 

allowed to reach the baseline. This was followed by infusion of antagonists, SCH58261 
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(10
-6

M, A2A selective antagonist) (71) (Figure 5) or glibenclamide (10
-5

M) (Figures 7-9), 

at 1% rate of coronary flow for at least 10 min after which, the agonist was also added to 

the infusion line for an additional 5 min (for a total of 15 min). The baseline at the end of 

antagonist infusion was treated as the new baseline for the subsequent agonist responses. 

The data at the end of the 15 min (the end of infusion of both agonists and antagonists) 

were used to compare with data obtained from the first infusion of the agonist alone. At 

the end of the experiment, after at least 10 min of washout and reaching the baseline, the 

agonist was again infused in order to check for tachyphylaxis or desensitization.  

Western Blot. Mouse mesenteric arterioles (up to third branch arterioles) 

homogenates were obtained from isolated and cleaned tissue using ice-cold lysis buffer 

consisting of 0.05 M Tris-buffered saline, pH 7.4, 1% Triton X-100, 0.25% sodium 

deoxycholate, 150 mM sodium chloride, 1 mM EDTA, 1 mM phenylmethylsulfonyl and 

Halt Protease Inhibitor Cocktail (Thermo Scientific) by way of glass homogenizer.  

Samples were then centrifuged for 15 min at 13,000 rpm and the supernatant was stored 

at -80°C.  Protein extracts (30 μg protein per well) were separated on NuPAGE 4-12% 

Bis-Tris Gels (Invitrogen) along with Novex Sharp Protein Standard, 3.5–260-kDa, 

(Invitrogen) run in parallel.  Proteins were then transferred to a PVDF membrane 

(Millipore), blocked in 5% milk for 1 hour and then probed with anti-A2AAR Rabbit 

Polyclonal IgG antibody (45) developed in our laboratory for detection of A2AAR protein 

with a dilution of 1:1000 in TBST + 0.5% milk overnight at 4°C or with anti-β-actin 

(Santa Cruz Biotechnology) at a dilution of 1:5000 at room temperature for 1 hour.  This 

was followed by incubation with a secondary horseradish peroxidase-conjugated 

antibody (anti-mouse and anti-rabbit immunoglobulins, respectively; Santa Cruz 

Biotechnology Inc.) for 1 h at room temperature. For detection of bands, the membranes 
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were treated with an enhanced chemiluminescence reagent (GE Healthcare) for 1 min and 

subsequently exposed to ECL Hyperfilm (GE Healthcare).  Relative band intensities were 

quantified by densitometry, and each sample was normalized to the β-actin values and 

calibrated to A2AAR protein expression in WT. 

Data and Statistical analysis. Western blot data and baseline functional data of 

A2AKO, A2BKO, and A2A/2BDKO groups were compared to WT, analyzed by using t-test. 

Differences in dose response curves and responses to each drug at the same concentration 

between WT, A2BKO, A2AKO, and A2A/2BDKO hearts were analyzed using two-way 

ANOVA for repeated measures. Antagonist-induced responses (HR, LVDP, and CF) for 

WT, A2AKO, and A2BKO hearts were compared with t-test. Statistical comparisons were 

done on percent changes. Results were considered significant when P < 0.05. Values are 

means ±SEM. The EC50s were calculated using Prism (Graphpad Software, La Jolla, 

CA).  

 

Results 

Baseline function in WT, A2AKO, A2BKO, and A2A/2BDKO isolated hearts. Table 1 

demonstrates the baseline parameters for coronary flow (CF), heart rate (HR), and left 

ventricle developed pressure (LVDP) for A2AKO, A2BKO, A2A/2BDKO, and WT mice 

after 30 min of equilibration of the isolated hearts as mentioned in the “materials and 

methods”. The average body weight of A2BKO mice was significantly lower compared to 

the WT while heart weight to body weight ratio were not significantly different in any 

KOs compared to WT. Furthermore, no significant baseline differences were observed in 

CF and HR in any of the KOs compared to WT while LVDP was significantly higher in 

A2A/2BDKO compared to WT hearts (Table 1).  
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Effect of A2BAR activation on coronary flow. BAY60-6583 (A2B selective agonist) 

caused a concentration-dependent increase in CF in WT whereas no effect was observed 

in A2BKO mice (Figure 1A). BAY60-6583 increased the CF in WT mice (with a 

maximum of 23.3±9ml/min/g, n=7) to a significantly higher degree compared to A2BKO 

(no response) (Figure 1A). BAY60-6583 had no effect on HR of either WT or A2BKO 

(Figure 1B) while it induced a significant increase in LVDP from baseline in the WT 

animals to a maximum of 95.6±14.9 mmHg (Figure 1C, n=7). BAY60-6583 had no effect 

on LVDP in A2BKO hearts (Figure 1C).  

Contribution of A2AAR in ARs-mediated coronary vasodilation of A2BKO mice. 

Since we wanted to test if A2AAR compensates for A2BAR in producing coronary 

vasodilation in A2BKO mice, we used NECA (non-selective AR agonist) in A2BKO and 

WT mice. NECA increased the CF in A2BKO mice (with a maximum of 

34.6±4.7ml/min/g, n=8, and EC50: 6.8x10
-9

±0.8M) to a significantly higher degree 

compared to WT mice (with a maximum of 23.1±2.1ml/min/g, n=9, and EC50: 3.5x10
-

9
±0.6M) (Figure 2A). Furthermore, NECA induced a significant increase in LVDP of 

A2BKO compared to WT with a maximum increase of 115.5±8.5mmHg and 

77.5±11.6mmHg, respectively (Figure 2C), while a decrease in HR was noted in both 

WT and A2BKO mice with no significant difference between the two groups (Figures 

2B). 

Up-regulation of A2AAR expression in A2BKO isolated mesenteric arterioles. We 

used mesenteric arterioles as resistance vessels to analyze A2AAR expression level in 

A2BKO mice. The A2AAR protein was significantly increased in A2BKO isolated 

mesenteric arterioles compared to WT (25.7% higher expression, Figure 3, n=4, p<0.05)  
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Up-regulation of A2AAR in A2BKO mice. CGS21680 increased the CF (ml/min/g) 

in A2BKO mice (27.2±2.6 at 5x10
-8

M and 29±1.9 at 10
-7

M with EC50: 3.9x10
-9

±0.7M, 

n=7) to a significantly higher degree compared to WT (22.4±1.5 at 5x10
-8

M and 25.1±2.3 

at 10
-7

M with EC50: 2.6x10
-9

±0.7M, n=7) (Figure 4A). Additionally, CGS21680 caused a 

significant increase in LVDP (mmHg) in A2BKO (111.5±6.7 at 5x10
-8

M and 113±8.1 at 

5x10
-7

M) compared to WT (97.9±4.9 at 5x10
-8

M and 93±6.1 at 5x10
-7

M) while there 

were no difference between the HR induced by CGS21680 when comparing WT and 

A2BKO (Figures 4B-C). 

Up-regulation of A2AAR in A2BKO mice. To further confirm the up-regulation of 

A2AAR in A2BKO mice as a compensatory response for the regulation of CF, we used 

SCH58261, A2A selective antagonist, and tested its effect on NECA (10 nM)-induced 

increase in CF in WT and A2BKO. SCH58261 (1 µM) significantly decreased the 

baseline CF (ml/min/g) of WT (from 9.9±0.7 to 6.8±0.7) and A2BKO (from 12.3±0.6 to 

7.7±1.1, (Figure 5A).   SCH58261 also caused a significantly higher inhibition of NECA-

induced increase in CF (ml/min/g) in A2BKO (19.3±1.6 vs. 0.5±0.4 n=4) compared to WT 

(19±3.5 vs. 3.6±0.5, n=6) (Figure 5A). NECA at 10 nM concentration and SCH58261 

had no significant effect on HR in both WT and A2BKO animals (Figure 5B). However, 

NECA significantly increased the LVDP (mmHg) in both A2BKO (from 99.9±11.5 to 

141±20.8, n=4) and WT (from 89.5±4.4 to 123.1±4.5, n=6) hearts (Figure 5C). 

SCH58261 significantly reduced the baseline LVDP (mmHg) in both A2BKO (from 

99.9±11.6 to 84.2±12.2) and WT (from 89.5±4.4 to 80.6±5.2) hearts. Additionally, 

SCH58261 significantly reduced the NECA-induced increase in LVDP in both A2BKO 

and WT groups (34.9±5.9 vs. 2.8±1.5, n=4, and 33.6±5.7vs. 6.7±4, n=4, respectively) 

compared to their respective controls (Figure 5C). 
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Involvement of A2A and A2BARs in producing coronary vasodilation. In order to 

rule out the compensatory response between A2A and A2BARs, NECA was used in 

A2A/2BDKO mice (Figure 6). NECA did not induce any increase in CF in A2A/2BDKO 

(n=5) while a concentration-dependent response was observed in WT with a maximum 

increase up to 23.1±2.1ml/min/g (n=9) (Figure 6A). Additionally, NECA-induced effect 

on LVDP (mmHg) was significantly lower in A2A/2B DKO (53±2 at 10
-7

M and 

EC50:1.3x10
-8

±0.4) compared to WT (82.5±11.6 at 10
-7

M and EC50:1.8x10
-8

±0.2) (Figure 

6C). However, the decrease in HR in WT was not different compared to A2A/2BDKO 

hearts (Figure 6B).  

Involvement of KATP channels in A2A and A2B ARs-induced increase in coronary 

flow. We used 5-hydroxydecanote (mitochondrial KATP channel blocker, 10
-4

M) to test its 

effect on NECA (10
-8

M)-induced increase in CF in WT mice. The NECA concentrations 

were chosen based on the EC50 obtained from previously performed experiments (10
-8

M 

in WT and A2BKO and 5x10
-8

M in A2AKO). 5-hydroxydecanote had no effect on NECA-

induced increase in CF (ml/min/g) (15.3±2.8 vs. 18.5±3.1, n=5, Figure 7A). Additionally, 

5-hydroxydecanote had no effect on NECA-induced changes in HR and LVDP (Figures 

7B-C). Furthermore, we used glibenclamide (KATP channel blocker) to test its effect on 

NECA-induced increase in CF in WT, A2A and A2BKO mice (Figures 7A and 8A). 

Glibenclamide significantly reduced NECA-induced increase in CF (ml/min/g) in WT 

(17.6±2 vs. 0.7±0.7, n=4, Figure 7A), A2AKO (12.5±2.3 vs. 2.3±1.1, n=5, Figure 8A), and 

A2BKO (16.2±0.8 vs. 0.9±0.4, n=5, Figure 8A). However, glibenclamide did not change 

NECA-induced effect on HR (bpm) in A2A and A2BKO while it significantly reduced the 

NECA-induced effect on HR in WT compared to its control (28.5±9.7 vs. -8.1±7.6) 

where it also significantly reduced the basal HR from 315.5±11.1 to 236.6±15.2 (Figures 
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7B and 8B). Furthermore, glibenclamide did not change NECA-induced effect on LVDP 

in A2AKO while significantly reduced the LVDP (mmHg) in WT (26.4±9.9 vs. 1.2±3.6) 

and A2BKO (16.7±3.3 vs. 2.4±2.3, n=5) (Figures 7C and 8C). To confirm the effect of 

glibenclamide we tested its effect on pinacidil (KATP channel opener as positive control). 

Glibenclamide significantly reduced pinacidil-induced increase in CF (ml/min/g) from 

baseline in WT (19±3 vs. 10.2±1.8, n=6). However, glibenclamide did not change 

pinacidil-induced effect on HR and LVDP in WT mice (Figure 7). 

Additionally, we tested the effect of glibenclamide on CGS21680 (A2A selective 

agonist) and BAY60-6583(A2B selective agonist)-induced increase in CF in WT (Figure 

9A).  Glibenclamide significantly reduced the effect of CGS21680 (5x10
-9

M) (22±2.3, 

n=5) and BAY60-6583 (10
-7

M) (16.4±1.6, n=4) on CF (ml/min/g) to 1.2±0.4 (n=5) and 

1.8±1.2 (n=4), respectively (Figure 9A). In the presence of glibenclamide both the 

baseline and drug-induced effects on HR were significantly decreased compared to their 

control (Figure 9B). Additionally, glibenclamide significantly reduced CGS21680 and 

BAY-induced increase in LVDP (mmHg), 31.6±13.1 vs. 1.9±4.7 (n=5) and 20.1±1.7 vs. 

7.7±5.5 (n=4), respectively (Figure 9C). 
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Figure 3.1 Effect of BAY 60-6583 (BAY) in A2BKO and WT mice on coronary flow 

(A), heart rate (B) and LVDP (left ventricle developed pressure) (C). *Significant 

difference compared to WT, p<0.05. 
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Figure 3.2 Effect of NECA in A2BKO and WT mice on coronary flow (A), heart rate 

(B), and LVDP (C). *Significant difference compared to WT, p<0.05. 
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β-actin 

Figure 3.3 A2AAR expression levels in WT and A2BKO isolated mesenrteric 

arterioles.*Significant difference compared to WT, p<0.05. 
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Figure 3.4 Effect of CGS 21680 in A2BKO and WT mice on coronary flow (A), heart 

rate (B), and LVDP (C).*Significant difference compared to WT, p<0.05. 
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Figure 3.5 Effect of SCH 58261(1µM) on NECA-induced increase in coronary flow 

(A), heart rate (B), and LVDP (C) in WT and A2BKO. *Significant difference 

between drug-induced effects in the presence of antagonist compared to their 

corresponding control. 
#
Significant difference in baselines in the presence of 

antagonist compared to their corresponding control. 
$
Significant difference between 

WT and A2BKO antagonist treated groups, p<0.05. 
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Figure 3.6 Effect of NECA in A2A/2BDKO and WT mice on coronary flow (A), heart 

rate (B), and LVDP (C). *Significant difference compared to WT, p<0.05. 

-11 -10 -9 -8 -7 -6 -5 -4

0

10

20

30

40
WT

A2A/2BDKO

*
*

*

A

log[NECA]

C
o

ro
n

a
ry

 f
lo

w
(m

l/
m

in
/g

)

 

-11 -10 -9 -8 -7 -6 -5 -4

0

100

200

300

400

500 WT

A2A/2BDKO

B

log[NECA]

H
e
a
rt

 r
a
te

(b
p

m
)

 

-11 -10 -9 -8 -7 -6 -5 -4

0

50

100

150
WT

A2A/2BDKO

C

**

log[NECA]

L
V

D
P

(m
m

H
g

)

 
 

 



74 

 

Figure 3.7 Effect of 5-hydroxydecanote (5-HD) on NECA-induced increase in 

coronary flow (A), heart rate (B), and LVDP (C) in WT and the effect of 

glibenclamide (GB) on NECA and pinacidil (PIN)-induced increase in coronary flow 

(A), heart rate (B), and LVDP (C) in WT.*Significant difference in drug-induced 

effects in the presence of antagonist compared to their corresponding control. 

#
Significant difference in baselines in the presence of antagonist compared to their 

corresponding control, p<0.05. 
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Figure 3.8 Effect of glibenclamide (GB) on NECA-induced increase in coronary flow 

(A), heart rate (B), and LVDP (C) in A2A KO and A2B KO. *Significant difference in 

drug-induced effects in the presence of antagonist compared to their corresponding 

control, p<0.05. 
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Figure 3.9 Effect of glibenclamide (GB) on CGS 21680 (CGS) and BAY 60-6583 

(BAY)-induced increase in coronary flow (A), heart rate (B), and LVDP (C) in WT. 

*Significant difference in drug-induced effects in the presence of antagonist 

compared to their corresponding control. 
#
Significant difference in baselines in the 

presence of antagonist compared to their corresponding control, p<0.05. 
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Table 3.1 

  Baseline data for WT, A2AKO, A2BKO, and A2A/2BDKO mice hearts.  

 Wild-Type 

n=30 

A2AKO 

n=12 

A2BKO 

n=29 

A2A/2BDKO 

n=15 

Body weight, g           25±0.6 25±1.2 23.8±0.6* 24.7±1.1 

Heart weight, g 0.1 0.1 0.1 0.1 

Heart-to-body 

weight ratio, % 

0.5±0.4 0.4 0.4±0.1 0.4 

Coronary flow, 

ml.min-1.g-1 

15.2±0.8 17.2±0.9 14.5±0.7 15.6±1.8 

Heart rate, 

beats/min 

341.6±10.3 356.8±14.5 345.1±7.8 330.4±17.8 

Developed 

pressure, mmHg 

80.3±4.2 81.2±4.8 83.3±3.3 97.1±6.2* 

 

All parameters were collected after 30 min of equilibration in langendorff preparation. 

All values are means± S.E.M.* significantly different compared to WT. 
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Discussion 
In this study we have further elucidated the contribution of A2BAR and its 

relationship to A2AAR in A2ARs-mediated coronary artery vasodilation. With the use of 

A2A/2BDKO mice, we also showed for the first time that A2A and A2BARs, out of four 

ARs subtypes, contribute to coronary artery vasodilation and down-regulation/deletion of 

either of A2A and A2BARs leads to a compensatory up-regulation of the other AR and 

thus, suggesting an interrelationship between these two receptor subtypes. Furthermore, 

we showed for the first time the involvement of non-mitochondrial KATP channels in 

A2BAR-mediated coronary artery vasodilation, and finally showed the direct involvement 

of KATP channels in A2AAR-mediated increase in coronary flow using AR KO mice.  

Adenosine’s role in tissue protection may involve mechanisms such as increasing 

the tissue blood flow and protecting against ischemic damage (37). Adenosine is well 

known to play a vasoregulatory role in human coronary arteries (16-17, 62-63). We and 

others have previously also demonstrated the pivotal role for A2AAR in CF regulation (5, 

63, 67, 69). We also have preliminary data showing the involvement of A2AR in 

coronary reactive hyperemia that indirectly supports a physiological role for adenosine in 

CF regulation (data not shown) which is in support of previous in vivo and ex vivo 

reactive hyperemia studies (5, 12, 77). Additionally, it is suggested that A2AAR activation 

contributes to basal tone in coronary circulation through the release of nitric oxide (69). 

Our present data (Figure 5A) also support such a role for A2AAR since SCH58261 

(A2AAR selective antagonist) significantly reduced the baseline CF.   

Due to its low affinity for adenosine, A2BAR is known to be activated in 

conditions where a significant increase in adenosine levels is observed, such as in 

ischemic conditions (25). Therefore, A2BAR may be more involved in pathophysiological 
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conditions rather than physiological situations. However, cardiovascular effects of 

A2BAR and its role in coronary vasodilation still remain to be fully elucidated. It was 

reported that A2BAR plays a role in ischemia/reperfusion and preconditioning (15). 

Additionally, previous studies have used indirect measures such as non-selective 

agonist/antagonist (alloxazine), which is only about 10 fold more selective towards 

A2BAR relative to A2AAR (8), or A2AKO mice (without the use of A2B knockout) to 

indirectly study the role of A2BAR in CF regulation (48, 67). In this study, we 

demonstrated the contribution of both A2A and A2BARs in coronary artery vasodilation 

where we further clarified the individual role of A2BAR with the use of selective A2BAR 

agonist BAY 60-6583 and A2BKO mice (Figure 1). We also demonstrated that A2A and 

A2BARs, out of all ARs, are involved in inducing coronary artery vasodilation with the 

use of A2A/2BDKO mice (Figure 6). Reports suggesting that A1 and A3ARs negatively 

modulate the role of A2A and A2BARs in CF regulation (66, 68) and the presence of only 

A2A and A2BARs on human and porcine coronary endothelial cells (53) may also 

indirectly support their involvement in coronary artery vasodilation. 

Azakura et. al. suggested that the impairment of adenosine-related signaling 

contributes to the pathophysiology of congestive heart failure (2). In addition, we have 

previously demonstrated that A2AAR is up-regulated in high-salt compared to normal-salt 

fed mice (51) and failure to up-regulate A2AAR-induced pathway contributes to the 

development of hypertension (44). Furthermore, few studies have shown that A2BAR is 

selectively up-regulated in ischemic mouse hearts and by hypoxic conditions (3, 18) and 

differential expression of ARs contributes to functional heterogeneity of human 

endothelial cells (21). We have recently shown the up-regulation of A2BAR in A2AKO 

mice (69) and in this current study we demonstrated the up-regulation of A2AAR in 
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A2BKO mice (Figures 2-5), suggesting the presence of a relationship between these two 

ARs. Therefore, further understanding of the relationship between A2A and A2BARs may 

help us towards development of newer therapeutic approaches. Also, the observation that 

the down-regulation/deletion of A2A or A2BAR leads to compensatory up-regulation of 

A2B and A2AAR, respectively, itself supports an important regulatory function for each of 

these AR subtypes.  It is interesting to mention that this trend is observed in hypoxia of 

human umbilical vein endothelial and bronchial smooth muscle cells where hypoxia 

modulates the expression of ARs by decreasing A2AAR mRNA but increasing A2BAR 

mRNA levels (22). It is also noteworthy to mention that adenosine acts as a feed-back 

mediator in heart during hypertrophy and hypoxia (34) during which conditions other 

studies have shown the modification of ARs’ expression (2-3, 18, 22). These kinds of 

interactions have also been observed between other receptor subtypes such as 

adrenoceptors (ADR), where α1ADR compensates for the down-regulation of βADR in 

pathological conditions such as cardiac remodeling (75). 

Adenosine and its agonist are currently being used in clinical settings; The 

vasoregulatory properties of ARs are used clinically in humans for the diagnosis of 

coronary artery disease through the use of Adenosine (Adenoscan) as a substitute for 

exercise stress testing in myocardial perfusion imaging (7). The use of Adenoscan has its 

own limitations due to it blocking the AV conduction (due to activation of A1AR (4, 7)) 

and inducing bronchospasm (probably due to activation of A1, A3 or A2BARs (24, 59)). 

However, these side effects may be alleviated by the development of more A2AR subtype 

selective agonists. A new A2AAR selective agonist called Regadenoson (Lexiscan®) has 

been developed and approved by FDA which is being used clinically in myocardial 

perfusion imaging. During this use of adenosine and its agonist in determining coronary 
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reserve, the assessment of the true maximal dilatation of coronary arteries is an important 

factor (34). However, it is reported that maximal dilatation of coronary arteries with 

vasodilators such as adenosine does not eliminate all coronary vasomotor tone and that 

the role of hemodynamic changes should also be considered (34, 73). Nevertheless, the 

knowledge of the presence of a compensatory interaction between A2A and A2BARs may 

be helpful since most cardiac imagings are done in patients with vascular disease where 

the AR expression may have been already modified due to the disease condition. 

Furthermore, adenosine is being investigated as a treatment during percutaneous coronary 

intervention in order to reduce the myocardial reperfusion injury in patients with 

myocardial infarction (which is usually associated with worsening of cardiac injury and 

function). In these patients, intracoronary injection of adenosine is followed by a better 

myocardial salvage and thus prevention of left ventricular remodeling, ejection fraction, 

decreased infarct size, and ST-segment elevation resolution (10, 26, 46). However, 

Desmet et. al. demonstrated that adenosine significantly ameliorates ST-segment 

resolution while it does not improve myocardial salvage or coronary blood flow (11). 

Additionally, in another study, Ross et. al. showed a relationship between infarct size and 

primary clinical end point (death or heart failure) where adenosine significantly reduced 

the infarct size while, it did not improve the clinical outcome (61).   

It is well known that arterioles, compared to coronary conduit arteries, are the 

major players in flow regulation and as previously reported, A2AAR may be the major 

coronary artery vasodilator compared to A2BAR. Furthermore, large coronary arterioles 

were shown to be less responsive to adenosine than small ones and Hein et. al. have 

reported that mainly A2AARs are expressed in coronary arterioles (32, 42). The same 

disparity of receptor subtype distribution has also been seen with adrenoceptors, with 
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adrenergic constriction of large arterioles being mediated by α1 while in terminal 

arterioles α2 exert this function (56). Additionally, in coronary arterioles, a greater α2 

response has been shown compared to larger coronary arteries (70). Thus, showing the 

up-regulation of A2AAR in A2BKO mice would most likely not be reflected on larger 

coronary conduit arteries such as LAD. Isolation of mouse LAD and other large coronary 

conduit arteries is technically difficult but possible, however isolation of coronary 

resistance arterioles from mouse heart is almost impossible and to our knowledge no one 

has been able to isolate coronary arterioles so far which is a limitation in our study. 

However, A2AAR protein expression in mouse mesenteric artery resistance vessels (up to 

third branch of arterioles) shows the up-regulation of A2AAR in A2BKO mice which 

confirms the compensatory up-regulation of A2AAR in A2BKO mice resistance vessels 

(Figure 3).  

The occurrence of the up-regulatory mechanism phenomenon in our studies may 

be TNF-α-induced and post-transcriptionally regulated (41) or due to DNA methylation 

since this may regulate AR cell surface expression levels (9). Furthermore, HIF-1 has 

also been suggested to up-regulate the expression of A2BAR in hypoxic conditions (76). 

Although, the underlying mechanism may not be understood at this time, it seems that 

this relationship only exists between A2A and A2BARs and not between A1 or A3ARs 

since there was no significant difference between the concentration response curve for 

CCPA (A1AR selective agonist) and Cl-IBMECA (A3AR selective agonist) in 

A2A/2BDKO mice compared to WT (data not shown). 

Potassium channels have been suggested to be involved in regulating blood flow 

and blood pressure and in AR signaling pathways (29, 49, 78). For example, inward 

rectifier K
+
 (KIR) channels may play a role since their presence has been reported on 
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coronary artery smooth muscle cells (CASMCs) (54, 60, 65), in addition, to their role as 

the dominant K
+
 conductance in resting membrane potential (38). Moreover, adenosine is 

reported to activate ATP-sensitive potassium (KATP) channels in rabbit mesenteric 

arteries and isolated CASMCs (58, 65). Others have demonstrated the presence of KATP 

channels on coronary arteries and CASMCs (28, 65) and their role in A2A-induced effect 

in reactive hyperemia and retinal microvessels dilation (5, 33, 77). However there are no 

reports to our knowledge suggesting the involvement of KATP channels in A2A and 

A2BARs-induced changes in mouse CF.  

In this study, we used mitochondrial KATP channel blocker, 5-hydroxydeconoate 

(5-HD) and glibenclamide to test KATP channels involvement in A2A and A2BARs-induced 

CF changes. Glibenclamide blocked the NECA-induced increase in CF in A2A and 

A2BKO and BAY60-6583-, and CGS21680-induced increase in CF in WT mice. 

However, 5-HD had no effect on NECA-induced increase in CF, which may suggest a 

role for non-mitochondrial KATP channels in both A2A and A2BARs signaling pathways 

(Figures 7-9A). However, this study does not show if the KATP channels are located on 

endothelial or SMCs. This is important since endothelial dysfunction is an early risk 

factor for cardiovascular diseases where a reduced adenosine response has been reported 

(19). Further, Wang et. al. suggested that activation of endothelial KATP channels might 

result in the protection against endothelial dysfunction (74). We think that adenosine-

induced activation of KATP channels may be indirectly through release of some other 

mediators such as hydrogen peroxide (27), which was previously suggested to be the 

endothelium-derived hyperpolarizing factor (47) and that may be involved in 

cardiovascular dysfunction (64). Elucidations of these signaling pathways will help us 
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better understand the underlying cause of reduced adenosine response in cardiovascular 

diseases. 

The availability of gene deleted knockout mice has been an important tool to 

dissect the physiological and pharmacological pathways for elucidating the role of a 

single receptor. However, in some instances, mice lacking a specific receptor gene 

exhibit phenotypic differences such as higher blood pressure in A2AKO mice (43).  

Therefore, in this study we used both pharmacological and molecular (single and double 

gene knockout) approaches to confirm our results. We also evaluated the baseline 

parameters of WT and KO hearts (Table 1). The baseline LVDP of A2A/2BDKO was 

significantly higher compared to WT, which may be attributed to alterations at second 

messenger or translational levels. The relationship between A2A and A2BARs and 

activation of other signaling pathways such as an increase in the levels of cAMP and Ca
2+

 

may compensate for the deletion of A2A/2BARs (35, 37). Even adrenoceptors may 

compensate for the absence of A2A and A2BARs since there are reports showing direct and 

indirect anti β-adrenergic effect of adenosine, suggesting the presence of an interaction 

between these two different GPCRs (49). Further experiments are required to better 

understand the relationship between these two receptor classes. There are no significant 

differences in baseline HR, LVDP, and CF of A2AKO and A2BKO mice compared to WT. 

We also tested the A2BKO mice for endothelium functionality using bradykinin where we 

found no significant difference between the A2BKO and WT groups, thus, showing the 

presence of a normal functional endothelium in A2BKO (data not shown).  

CGS21680 and NECA induced an increase in LVDP of WT and A2BKO but not 

A2A/2BDKO. BAY60-6583 also induced an increase in LVDP of WT mice. These data 

support our previous report that A2A and A2BARs may be involved in cardiac contractility 
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and positive inotropic effect (Figures 1, 2, and 4C) (69). Changes in CF can affect the 

contractility (Gregg effect) which is an inherent problem with the isolated perfused heart 

preparation. However, as shown in this study (Figures 2 and 6), the increase in CF comes 

earlier than the changes in LVDP which may suggest that the observed effects of A2ARs 

activation on LVDP may not be due to Gregg’s effect. The opening of KATP channels 

may also affect the contractility independent of CF changes which may be independent of 

non-mitochondrial KATP channels in this study since there is no difference observed in 

NECA-induced changes in LVDP in the presence of 5-HD (mitochondrial KATP channel 

blocker) while a significant decrease in NECA-induced changes in LVDP was shown in 

the presence of glibenclamide (non-selective KATP channel blocker) (Figure 7). 

Additional studies are needed to define the role of A2ARs on LVDP. However, our data 

from A2A/2BDKO are very important since they show that only A2A and A2BARs are 

involved in LVDP and coronary vasodilation which could be further exploited for 

therapeutic approaches such as heart failure.  

Our current study also confirms our previous finding that A1AR plays a role in 

HR (68) while A2A and A2BARs do not since BAY60-6583 (Figure 1B) and CGS21680 

(Figure 4B) did not affect HR while NECA (non-selective agonist) decreased the HR 

(Figure 2B). Additionally, our data showed a decrease in baseline HR in the presence of 

glibenclamide (Figures 7 and 9B) which could be due to the presence of KATP channels 

on atria and ventricle (79) and the KATP channel-dependent potassium efflux-induced 

shortening of cardiac action potentials and hence a decrease in HR (79).  

In conclusion, we showed for the first time, the individual role of A2BAR and the 

contribution of A2AAR in A2ARs-mediated coronary vasodilation using A2BKO and 

A2A/2BDKO mice along with the use of A2BAR and A2AAR selective agonists. We found 
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that A2A and A2BARs contribute to coronary artery vasodilation which involves KATP 

channels and that A2AAR is up-regulated in A2BKO mice. These findings are another step 

toward a better understanding of ARs’ pharmacology in coronary artery and the 

heterogeneity of CF responses by ARs which may lead to better therapeutic approaches 

for the treatment of cardiovascular disorders. 
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Interactions between A2A adenosine receptor, hydrogen peroxide, and K
+
-ATP 

channel in coronary reactive hyperemia 
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Abstract 

Myocardial metabolites such as adenosine mediate reactive hyperemia (RH), partially, by 

activating ATP-dependent K
+
 (KATP) channels in coronary smooth muscle. In this study, we 

investigated the role of A2 adenosine receptors (ARs) and their downstream signaling 

mechanisms in RH. We tested the hypothesis that coronary RH involves A2AARs, hydrogen 

peroxide (H2O2), and KATP channels using A2A and A2B single (KO) and A2A/2B double knockout 

(DKO) mice hearts in a Langendorff heart. Flow debt-to-repayment ratio (RPA//DA) following a 

15s occlusion was 1.3±0.1 in WT which was reduced in hearts from A2AKO (0.9±0.1), but not 

A2BKO (1.2±0.1) mice. Catalase (1250 U/ml), an enzyme that breaks down H2O2, significantly 

reduced the baseline flow (ml/min/g) in A2AKO hearts (16.8±0.9) compared with control 

(19.4±1.6) and WT in the presence and absence of catalase (21.4±2.1 and 19.8±0.9, respectively). 

However, catalase significantly reduced the RPA/DA in WT (0.8±0.1) but, not in A2AKO 

(0.9±0.1) mice compared with its control. Patch clamp experiments demonstrated that adenosine 

(10μM) activated a glibenclamide (10μM; a KATP channel blocker)-sensitive conductance (nS/pF) 

in smooth muscle cells from WT (0.048±0.01) but not A2A/A2BDKO (0.016±0.01) mice. 

Importantly, however, conductance activated by pinacidil (10 μM; a KATP channel opener) was 

similar in cells from WT and A2A/A2BDKO mice (0.013±0.034 vs. 0.012±0.04 nS/pF). 

Additionally, in WT smooth muscle cells, H2O2 (1 mmol/L) activated a glibenclamide-sensitive 

conductance (0.074±0.02 nS/pF). Our data indicate that A2AARs are coupled to KATP channels in 

RH, in part, via the production of H2O2 as a signaling intermediate. 

 

Keywords: coronary circulation, ischemic vasodilation, adenosine receptors, knockout mice, 

reactive oxygen species 
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Introduction 

The heart responds to acute ischemia by transiently increasing blood flow in a 

phenomenon called reactive hyperemia (RH) (7). The temporary reduction in coronary vascular 

resistance is mediated by chemical signals released into blood (47), including adenosine (44). 

Adenosine induces its effects through activation of its receptors (AR) namely A1, A2A, A2B, and 

A3. Adenosine’s cardiovascular effects depend on the activation of the subtype of receptor 

involved, where A2ARs are known to play a role in coronary vasodilation through their action on 

both endothelial and smooth muscle cells. Our laboratory and others have shown that A2AARs 

play a pivotal role in the regulation of coronary flow (CF) (48, 50), while, A2BARs are also 

involved, albeit with a lesser contribution compared to A2AARs (32, 48, 50). Additionally, 

pharmacological studies indicate that A2A and A2BARs are the subtypes most likely involved in 

coronary RH (2, 11, 62). However, undesirable overlap in the pharmacological profiles of 

adenosine receptor antagonists obfuscates the relative contribution of A2A and A2BARs in RH. 

Thus, in order to more specifically determine the roles of A2A and A2BARs in coronary RH, we 

used Langendorff-perfused hearts from wild type (WT) and A2A, A2B knockout (KO) and A2A and 

A2B double knockout (DKO) mice. 

 Numerous mediators and end effectors of coronary RH have been proposed. Importantly, 

however, information remains scarce regarding the role of H2O2, a coronary metabolic and 

endothelium-dependent vasodilator (29, 45, 58), and its interactions with ARs and KATP channels. 

Some support for H2O2 in RH has been provided by studies of skeletal muscle and isolated 

coronary arterioles (3, 20). The idea that KATP channels participate in coronary RH is well 

established (1, 12), but it is unknown whether H2O2 couples adenosine receptor activation to KATP 

channel activity. KATP channels are known to mediate, at least in part, H2O2-induced dilatation of 

arterioles from skeletal muscle and brain (25, 55) and cardiac myocytes (18). However, to our 

knowledge, direct evidence of this mechanism in smooth muscle is still to be elucidated. Thus, we 
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ascertained whether H2O2 is involved in coronary RH and whether H2O2 mediates the coupling of 

adenosine receptors to activation of KATP in coronary RH. 

  

Materials and Methods 

Animals. An Institutional Animal Care and Use Committee at West Virginia University 

School of Medicine approved all experimental protocols. We followed guidelines set forth by the 

American Physiological Society and National Institutes of Health regarding the care and use of 

laboratory animals. A2A and A2B knockout mice, both backcrossed 12 generations to the WT 

C57BL/6 background (Jackson Laboratory; Bar Harbor, ME), were bred to generate A2A/A2B 

double heterozygotes. Double heterozygotes were intercrossed, 1/16 of the offspring were 

A2A/A2B double knockouts, and A2A/A2B knockout breeding pairs were established. Mice were 

caged in a 12:12-hr light-dark cycle with free access to standard chow and water. 

WT, A2A, and A2BKO and A2A/2BDKO mice. WT mice of a mixed C57/BL6 genetic 

background were purchased from The Jackson Laboratory (Bar Harbor, Maine). All four WT, 

A2AKO, A2BKO, and A2A/2BDKO strains were bred at the West Virginia University animal facility 

as a sub-colony of the original strain. All animal care and experimentation were in accordance 

with the West Virginia University Institutional Animal Care and Use Committee and the 

principles of the National Institutes of Health “Guide for the Care and Use of Laboratory 

Animals.” 

Langendorff-perfusion. Mice (10-14 wks of age) were anesthetized with sodium 

pentobarbital (50 mg/kg i.p.) and hearts were excised into heparinized (5 U/ml) ice-cold Krebs-

Henseleit (KH) buffer. KH contained (mmol/L) 119 NaCl, 11 glucose, 22 NaHCO3, 4.7 KCl, 1.2 

KH2PO4, 1.2 MgSO4, 2.5 CaCl2, 2 pyruvate and 0.5 EDTA. Hearts beat spontaneously when 

retrogradely perfused (80 mmHg) with 37°C KH bubbled with 95% O2 and 5% CO2. The left 

atrium was removed and the left ventricle drained. A fluid-filled balloon was inserted into the left 

ventricle and connected to a transducer for pressure measurements. Left ventricular diastolic 
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pressure was adjusted to 2-5 mmHg. Coronary flow was measured with a probe (Transonic 

Systems; Ithaca, NY) in the aortic perfusion line. Hearts were paced to 400 beats/min and 

function allowed to stabilize. Hearts with persistent arrhythmias or developed pressure less than 

80 mmHg were excluded from the study. Baseline coronary flow and cardiac function were 

measured using a Power Lab data acquisition system (AD Instruments; Colorado Springs, CO). 

Hearts were then subjected to 15 seconds of total flow occlusion to elicit hyperemia. Catalase 

(Sigma Chemical Co.; St. Louis, MO) was delivered into the aortic perfusion line using a 

microinjection pump (Harvard Apparatus; Holliston, MA) as 1% of coronary flow to achieve a 

final concentration of 1250 U/ml (57, 60). 

 

Patch clamp. Single smooth muscle cells were enzymatically isolated from the aortas of 

WT and A2A/A2B knockout mice. For cell isolation, a simple HEPES-buffered saline was used and 

contained (mmol/L) 135 NaCl, 5 KCl, 1 MgCl2, 0.36 CaCl2, 10 glucose, 10 HEPES, and 5 Tris; 

pH 7.4. The aorta was placed in this solution plus (mg/ml) 2 collagenase, 1 elastase, 2 bovine 

serum albumin, and 1 soybean trypsin inhibitor for 15 min at 37°C. The tissue was passed 

through the tip of a fire-polished Pasteur pipette to liberate single cells. Smooth muscle cells were 

pelleted at 0.5 g, resuspended in enzyme-free buffer, placed on ice, and used within 8 hr. Cells 

were placed in a recording chamber atop an inverted microscope and perfused with a HEPES-

buffered solution (as above) containing 140 mmol/L K
+
. Patch pipettes (3-5 MOhms) were filled 

with this 140 mmol/L K
+
 solution supplemented with 5 mmol/L Mg-ATP and 0.1 mM Na-GTP; 
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pH 7.1. Inward KATP currents were recorded in the conventional whole-cell mode (with Nernst 

equilibrium potential for K
+
 set to 0 mV). The membrane potential was held at -80 and ramped or 

stepped to potentials between -100 and +100 mV. Currents were low-pass filtered a 1 kHz and 

digitized at 5 kHz. Series resistance and whole-cell capacitance were compensated as completely 

as possible using circuitry of the amplifier (PC-505, Warner Instruments; Hamden, CT). This 

amplifier was interfaced to a computer with pClamp 9 software for data acquisition and analysis 

(Molecular Devices; Sunnyvale, CA). 

Statistical analysis. Statistical analyses were made with t-test and one- or two-way 

analysis of variance (ANOVA) with post hoc tests as indicated. Results were considered 

significant when P < 0.05. Values are means ± SEM from n number of animals. 

 

Results 

Involvement of A2AARs in coronary reactive hyperemia. We used WT and A2AKO mice in 

order to test the involvement of A2AARs in coronary RH. The flow debt-to-repayment ratio was 

significantly reduced in A2AKO (0.9±0.1, n=8) compared with WT (1.3±0.1, n=6) mice (Figure 

1B) while, the peak flow was not different between the two groups (WT: 42.7±2 ml/min/g, n=6 

vs. A2A KO: 42.9±1.7 ml/min/g, n=8, Figure 1C). The resting flow of 19.4± 1.6 ml/min/g (n=8) in 

A2AKO was similar to WT (19.8 ± 0.9 ml/min/g, n=6, Table 1).  

A2BARs may not be involved in coronary reactive hyperemia. In order to characterize the 

role of A2BARs in coronary RH, we performed our RH experiments in WT and A2BKO mice. The 

flow debt-to-repayment ratio (Figure 2B) and peak flow (Figure 2C) in A2BKO, 1.2±0.1 and 

44.2±0.5 ml/min/g (n=4), respectively, were not different compared with WT, 1.3±0.1 and 42.7±2 

ml/min/g (n=6), respectively. Additionally, the resting flow of A2BKO, 20.3±1.1 ml/min/g was 

not different compared with WT, 19.8±0.9 ml/min/g, respectively (Table 1). 

Involvement of only A2ARs in coronary reactive hyperemia. Since we have previously 

shown that only A2A and A2BARs, out of four ARs, are involved in the regulation of CF (48), we 
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tested the involvement of other ARs than A2ARs in coronary RH using WT and A2A/2BDKO mice. 

The flow debt-to-repayment ratio was significantly higher in WT (1.3±0.1, n=6) compared with 

A2A/2BDKO (1±0.1, n=8) mice (Figure 3B), which may be only due to the absence of A2AARs, 

nevertheless, the peak flow was not different between the two groups, 42.7±2 ml/min/g and 

41.6±1.2 ml/min/g, respectively (Figure 3C). Additionally, the resting flow of A2A/2BDKO, 

18.6±0.6 ml/min/g (n=8) was not different compared with WT (Table 1). 

Adenosine activates KATP channels. It is known that KATP channels play a role in coronary 

RH (2, 62). We have also previously reported that both A2A and A2B ARs induce coronary 

vasodilation, and hence an increase in CF, through activation of KATP channels (48). We 

established this finding by using our isolated heart system (48). However, in this study we wanted 

to investigate this finding on a molecular level using patch clamp. Since both A2A and A2B ARs 

were shown to activate KATP channels, in this study, we used A2A/2BDKO mice in order to be able 

to distinguish the currents activated due to activation of ARs. Adenosine (10μmol/L) activated a 

conductance (nS/pF) sensitive to the KATP channel blocker, glibenclamide (10μmol/L), in smooth 

muscle cells from WT (0.048±0.01) but not A2A/A2BDKO (0.016±0.007) mice. Also, pinacidil (10 

μmol/L; a KATP channel opener) activated the same conductance similarly in cells from both WT 

and A2A/A2BDKO mice (0.013±0.034 vs. 0.012±0.04 nS/pF) (Figure 4). 

Involvement of H2O2 in adenosine-induced increase in coronary flow. To test if H2O2 

induces coronary vasodilation, we performed exogenous H2O2 concentration-curve. Exogenous 

H2O2 significantly increased the coronary flow from baseline (from 11.3 to 38.1 ml/min/g, data 

not shown). We used catalase (1250 u/ml), an enzyme which breaks down hydrogen peroxide into 

water and oxygen, to test its effect on adenosine-induced increase in CF in WT mice. Catalase 

significantly decreased adenosine-induced increase in CF in WT (from 30 ± 4.4 to 8.4 ± 1 

ml/min.g, n=4), A2AKO (from 33.2 ± 2.3 to 9.9 ± 1 ml/min/g, n=4), and A2BKO (from 35.2 ± 1.5 

to 13.4 ± 0.8 ml/min/g, n=4) mice (Figure 5A). Catalase also significantly decreased adenosine-

induced changes in LVDP in WT (from 122.4 ± 11 to 78 ± 7 mmHg), A2AKO (from 119.2 ± 4.1 
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to 74.6 ± 4 mmHg), and A2BKO (from 139.1 ± 6 to 81 ± 10.1 mmHg) mice while it had no effect 

on HR (Figures 5 B-C). 

Involvement of H2O2 in coronary reactive hyperemia. Since we showed that adenosine is 

involved in coronary RH and that it induces coronary vasodilation through release of H2O2, we 

wanted to test if H2O2 itself is also involved in coronary RH. Therefore, we used catalase (1250 

u/ml) in WT mice. Catalase significantly decreased the flow debt-to-repayment ratio in WT 

compared with its control, 0.8±0.1 (n=6) vs. 1.3±0.1 (n=6), respectively (Figure 6B). However, 

the resting flow was similar to WT in the presence of catalase (21.4±2.1 ml/min/g, n=6) 

compared to its control (19.8±0.9 ml/min/g, n=6) (Table 1). Nevertheless, the peak flow in WT 

mice, in the presence of catalase, (38.6±2.4 ml/min/g, n=6) was also significantly attenuated 

compared to its control (42.7±2 ml/min/g, n=6) (Figure 6C). 

Involvement of H2O2 in A2AR-mediatesd coronary reactive hyperemia. We used catalase 

(1250 u/ml) in A2AKO mice in order to investigate the role of H2O2 in A2AAR-induced effects in 

coronary RH. Catalase significantly decreased the flow debt-to-repayment ratio in A2AKO 

(0.9±0.1, n=6) (Figure 7B) compared with WT in the absence of catalase (1.3±0.1, n=5) (Figures 

1,2,3, and 6 B) while, it was not different compared to WT (0.8±0.1, n=6) in the presence of 

catalase. Also, there was no difference between flow debt-to-repayment ratio in A2AKO in 

presence of catalase (0.9±0.1, n=6) compared with A2AKO (0.9±0.1, n=8) (Figures 7B). Further 

resting flow of A2AKO in the presence of catalase (16.8±0.9 ml/min/g) was significantly lower 

compared with WT (19.8±0.9 ml/min/g) and A2AKO (19.4±1.6 ml/min/g) in the absence of 

catalase, while there was no difference between the two latter groups (Table 1). The peak flow in 

A2AKO, in the presence of catalase, (36.3±1.4 ml/min/g, n=6) (Figure 7C) was significantly lower 

compared with WT (42.7±2 ml/min/g, n=6) (Figure 1C) and A2AKO (42.9±1.7 ml/min/g, n=8) in 

the absence of catalase (Figure 7C); this is when the WT and A2AKO peak flow, in the presence 

of catalase, were similar (Figure 1C). These findings may suggest that A2AARs may, at least in 

part, play their role in coronary RH through release of H2O2.  
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H2O2 activates KATP channels. In smooth muscle cells from WT mice, H2O2 (1 mmol/L) 

activated a glibenclamide-sensitive conductance (0.074±0.02 nS/pF) (Figure 8). 
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Fig. 4.1 Repayment volume (B), but not resting flow (A) or peak flow (C), is reduced in 

A2AKO (n=8) mice, compared with WT (n=6), in coronary RH. *Significant difference 

compared with WT, p<0.05. 
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Fig. 4.2 Baseline coronary flow (A), peak flow (B), and flow repayment area (C) of 

coronary RH are normal in A2BKO (n=4) mice compared with WT (n=6). 
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Fig. 4.3 Changes on coronary flow (A), peak flow (B), and flow repayment area (C) in WT 

(n=6) and A2A/2BDKO (n=8) mice during coronary RH. *Significant difference compared 

with WT, p<0.05. 
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Fig. 4.4 Adenosine-induced KATP current is reduced in smooth muscle cells of A2A/2BDKO 

mice.  (A) Glibenclamide-sensitive conductance (nS/pF) in WT and A2A/2BDKO mice. (B) 

Group data showing reduced effect of adenosine in A2A/2BDKO mice (n=4), but response to 

pinacidil were not different from WT (n=5). *Significant difference compared with WT, 

p<0.05. 
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Fig. 4.5 Attenuated adenosine-induced increase in coronary flow (A) and LVDP (C), and 

normal heart rate (B), in WT (n=4), A2AKO (n=4), and A2BKO (n=4) mice, in the presence of 

catalase (Cat). *Significant difference compared to corresponding control, p<0.05. 
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Fig. 4.6 Attenuated peak flow (B) and Repayment area (C), but normal baseline CF (A), in 

the presence of catalase (Cat) in WT (n=6) mice. *Significant difference compared with WT, 

p<0.05. 
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Fig. 4.7 Reactive hyperemia-induced changes on coronary flow (A), peak flow (B), and flow 

repayment area (C) in the presence (n=6) and absence (n=8) of catalase (Cat) in A2AKO 

mice. 
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Fig. 4.8 H2O2 increases a glibenclamide-sensitive conductance (nS/pF) in WT smooth 

muscle cells. (A) Representative trace showing effect of H2O2 to increase KATP current. (B) 

Group data (n=5 mice) illustrate effect of H2O2 relative to pinacidil. *Significant difference 

compared with control, p<0.05. 
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Fig. 4.9 Effect of catalase on adenosine and pinacidil mediated increase in 

glibenclamide-sensitive conductance (nS/pF) in WT smooth muscle cells (n=5). 
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Table 4.1 

Resting flow, debt area (DA), peak flow, flow repayment area (RPA), and debt to repayment area 

ratio (RPA/DA).  

 

 

Resting 

Flow 
(ml/min/g) 
   

Debt Area 

(DA) (ml/g)  
Peak 

(ml/min/g) 
Repayment 

Area 

(RPA) 
(ml/g)  

Debt to 

Repayment 

area 
 
RPA/DA  

WT 19.8±0.9  4.9±0.2  42.7±2  6.3±0.4  1.3±0.1  

A2AKO 19.4±1.6  4.9±0.4  42.9±1.7  4.5±0.2*  0.9±0.1*  

A2BKO  20.3±1.1  5.1±0.3  44.2±0.5  6.1±0.1  1.2±0.1  

A2A/2BKO  18.6±0.6  4.7±0.1  41.6±1.2  4.9±0.2*  1±0.1*  

WT+Cat  21.4±2.1  5.3±0.5  38.6±2.4*  4.4±0.4*  0.8±0.1*  

A2AKO+Cat  16.8±0.9*  4.2±0.2*  36.3±1.4*  4.1±0.4*  0.9±0.1*  

All values are means ± S.E.M. * p<0.05 compared with WT  
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Discussion 

The new findings in this study show: 1) a better elucidation of the individual involvement 

of A2AARs in RH, 2) a demonstration that H2O2 contributes to CF responses in RH, and 3) that 

H2O2 couples adenosine-mediated CF responses in RH to KATP channel activation. Using A2A and 

A2BKO and A2A/2BDKO mice, we showed that only A2AAR, out of four AR subtypes, is involved 

in RH. Additionally, we showed for the first time the involvement of H2O2 in mouse coronary RH 

in addition to its involvement in A2AAR-induced KATP channel activation.  

Increased oxygen demand over oxygen supply ratio of the myocardium is exerted through 

myocardial oxygen tension (pO2), which is decreased in ischemic conditions. This fall in pO2 

leads to the breakdown of adenine nucleotides leading to the production of adenosine that is 

known to mediate local metabolic control of CF (14). Previous RH studies investigating the effect 

of different occlusion periods suggested that metabolic vasodilatory factors are the primary 

mediators responsible for the increase in flow during RH (7, 17, 38, 39). Further, our laboratory 

and others have previously shown that activation of A2A and A2B ARs induces an increase in CF 

(37, 46, 49). Therefore, in this study, we wanted to test the role of adenosine, a well established 

local metabolite, in CF changes in RH. The involvement of adenosine in coronary RH was 

recently reported in an in vivo dog study, where the AR subtypes involved was not assessed (11). 

Nevertheless, using an A2AAR selective antagonist (SCH58261), Zatta et al. reported coronary 

RH responses mediated by A2AARs with a flow repayment area decrease of up to 30% and no 

change in peak flow (62). Also, in a previous in vivo study in dogs, the role of A2BAR-mediated 

CF changes in RH was assessed using a non-selective antagonist (alloxazine) which is only about 

10 fold more selective towards A2BARs relative to A2AARs (2). Therefore, a further study was 

needed in order to fully elucidate the role of ARs in coronary RH without the effect of 

pharmacological changes. The availability of gene deleted knockout mice has been an important 

tool to analyze the physiological and pharmacological pathways for elucidating the role of a 

single receptor. Therefore, in this study, using A2A and A2BKO isolated mice hearts, we directly 



118 

 

showed that A2AARs contribute to CF changes in mouse coronary RH by demonstrating a 

significant decrease in flow repayment time and volume (flow repayment area) in A2AKO mice 

compared with WT. These results are in accordance with recent studies showing a role for ARs in 

flow repayment area and not the peak flow (62). However, our results from A2BKO and 

A2A/2BDKO mice did not suggest any role for A2BARs in CF changes in RH. Due to its low 

affinity for adenosine, A2BARs are suggested to be activated in conditions where a significant 

increase in adenosine levels is observed (15). For example it was reported that A2BARs play a role 

in ischemia/reperfusion and preconditioning (13). Therefore, A2BARs may be more involved in 

severe ischemic pathophysiological conditions such as stroke or in protective preconditioning 

pathways rather than in physiological situations. Indeed, A2ARs agonists are being investigated as 

a treatment during percutaneous coronary intervention for the reduction of myocardial 

reperfusion injury in patients with myocardial infarction, which is well established to be 

associated with worsening of cardiac injury and function (6, 10). 

Berne’s adenosine hypothesis suggests that increase in myocardial oxygen consumption 

decreases the myocardial oxygen tension which leads to the release of adenosine from 

cardiomyocyte (53), where A2AARs have also been found to be expressed in both human and 

mouse (4, 24). Furthermore, a role for H2O2 in metabolic vasodilation is already established (59). 

Chilian et al. suggested that H2O2 production increases in proportion to cardiac metabolism in 

order to couple the coronary blood flow to myocardial oxygen tension (45). It is interesting to 

know that both H2O2 and adenosine are released from cardiomyocytes through which they 

modulate vascular tone (19). Nevertheless, it is also well recognized that hemodynamic changes-

induced release of mediators are also involved in RH; a sudden increase in flow after reperfusion 

activates shear stress-sensitive mechanisms (21, 41, 52, 61), illustrating the release of 

endothelium-dependent derived factors that may limit myogenic constriction and, therefore, 

modifying the RH time or flow repayment area. In fact, recent reports have established the 

contribution of H2O2 in flow-induced dilation of isolated human coronary arteries (29) and in 



119 

 

reactive dilation of rat isolated coronary arterioles (20). Therefore, in this study, as EDHF in 

humans and mice (26, 27, 58), we also investigated the role of H2O2 in CF changes during 

coronary RH using isolated heart (compared with isolated vessels). Additionally, due to the 

involvement of both adenosine and H2O2 as metabolic factors regulating CF, in this study, we 

also tested the involvement of H2O2 in AR-induced effect in CF regulation and RH. We showed 

for the first time that in the presence of catalase, which breaks down H2O2 into water and oxygen, 

adenosine-induced increase in CF is abolished in WT, A2AKO (where A2BAR is the only AR 

mediating vasodilation), and A2BKO (where A2AAR is the only AR mediating vasodilation) 

(Figure 5), showing that H2O2 plays a role in A2AR-mediated signaling pathway when inducing 

an increase in CF. In this study, we also showed for the first time that the RH repayment time and 

volume (flow repayment area) in addition to flow debt-to-repayment ratio were significantly 

decreased in WT isolated mice hearts in the presence of catalase, showing the contribution and 

release of H2O2 during coronary RH. Furthermore, since catalase decreased the flow debt-to-

repayment ratio in both A2AKO and WT mice with no difference compared to each other and 

compared to A2AKO in the absence of catalase, we suggest that H2O2 released during coronary 

RH is, at least partly, mediated through activation of A2AARs. Showing that catalase significantly 

decreased peak flow in WT and A2AKO mice (while peak flow of A2AKO was not different 

compared with WT mice in the absence of catalase), may further signify that H2O2 may also be 

released through activation of other pathways. Nevertheless, using patch clamp studies, we 

showed that H2O2 increases glibenclamide (KATP channels blocker) sensitive currents. Putting 

together these findings with our previous and current results, showing that adenosine activates 

KATP channels by means of its A2ARs, we are suggesting that, at least partly, H2O2 couples the 

activation of ARs to KATP channels during coronary RH. Nevertheless, further in vivo and in vitro 

studies are needed to fully elucidate the complex mechanisms of action involved in RH. We also 

have to highlight that the magnitude of hyperemia is also determined by the baseline flow. In this 

study, we observed that H2O2 or knocking out of the A2AARs, solely, do not decrease the baseline 
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CF; however, synergistically they significantly decrease the CF baseline, which by itself may 

suggest that there might be a compensatory relationship between A2AARs and H2O2 (Table 1).  

Since, in this study, we used isolated heart, the contribution of flow/shear stress- or 

pressure-dependent coronary mechanisms in the development of RH could not be clearly 

elucidated or isolated from the effect of local metabolic factors. However, an ex vivo isolated 

heart model certainly provides us with more valuable data closer to the physiological in vivo 

responses compared with in vitro isolated vessels, since it reflects the overall end effect of 

shear/pressure stress- and metabolites-induced effects during coronary RH. Additionally, an ex 

vivo study, such as the current study, eliminates the complexity of the role of neuronal and 

hormonal effects and, hence, enabling us to better understand the tissue selective responses and 

mechanisms involved during coronary RH. We also have to mention a second limitation of our 

study that has to do with performing patch clamp experiments on smooth muscle cells from aorta, 

as a model to complement functional studies from the coronary arteries. Perhaps a better 

approach would be to study smooth muscle cells isolated from mouse coronary arteries or 

arterioles. However, to our knowledge, there are no reports using mouse coronary smooth muscle 

in patch clamp setting in order to study ion channel currents due to its own limitations such as 

isolation and experimental procedures required. Therefore, most studies investigating coronary 

ion channels show currents from aorta as a tool (5, 23, 28). Also, KATP channels are known to be 

important regulators of coronary vascular tone in mice (5, 28). Thus, aortic smooth muscle cells 

appear to be an appropriate substitute for coronary smooth muscle cells in this regard.  

The release of H2O2, as endothelium-derived hyperpolarizing factor (EDHF) in mice and 

humans (26, 27), could be induced by various factors. Morikawa et al. suggested that Cu,Zn-SOD 

plays an important role as an EDHF synthase in mice (31). It is also likely that H2O2 is produced 

from superoxide anions from several sources in endothelium, such as eNOS, lipoxygenase, 

cytochrome p-450 enzymes, and NADPH oxidases (27). Further, it is reported that adenosine-

mediated effects are partially endothelium dependent and that adenosine also induces vasodilation 
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through production of cytochrome p-450 metabolites (34, 35), NO (50), and NADPH oxidases 

(data not shown). Therefore, comparing these signaling pathways, one may speculate that 

adenosine-induced release of H2O2 may involve activation of epoxygenases pathway, eNOS, or 

NADPH oxidase. However, further studies are needed to identify these signaling pathways.  

It is known that H2O2 induces vasodilation; however, there are also reports showing that 

H2O2 induces vasoconstriction (8, 16, 30) and that H2O2 inhibits vasodilation to adenosine in 

isolated porcine coronary arteries (51). Nonetheless, it was suggested that the vascular effect of 

H2O2 depends on its concentration (8). To the best of our knowledge there is limited information 

on the endogenous level of H2O2, however, H2O2 levels between 2.5-50 µmol/L have been 

reported in human plasma (9, 22, 54). Exogenous infusion of H2O2, up to 6x10
-6

mol/L (6µmol/L), 

caused a significant increase in CF in isolated mouse heart (data not shown) from which point 

onward (at 10
-5

mol/L ) H2O2 started to induce coronary vasoconstriction which was also 

accompanied by a decrease in left ventricle pressure and +dp/dt (data not shown). It seems that 

endothelial cells are less vulnerable to H2O2 since a relatively high concentration of H2O2 >200 

µmol/L is generally required to produce irreversible endothelial barrier dysfunction (40, 56). 

Therefore, H2O2-induced decrease in CF at 10
-5

mol/L concentration may be due to H2O2-induced 

damaging effect on cardiomyocytes. Nevertheless, our study showed a significant increase in CF 

between 10
-6

- 6x10
-6

mol/L. Therefore, the discrepancy between our study and other studies 

regarding H2O2-induced effects may be dependent on the level of H2O2 released. For example, 

Thengchaisri et al. showed that H2O2 in concentrations below 10 µmol/L did not modify NO-

mediated vasodilatory responses. Such variations may also be dependent on the species, vascular 

beds, and experimental models such as ex vivo vs. in vitro. However, overall, we can only 

speculate that H2O2 concentration released due to coronary RH may be in the range of 10
-6

- 6x10
-

6
mol/L. 

It is well established that activation of KATP channels plays a major role in coronary RH 

in addition to its contribution to AR-mediated CF changes (2, 48, 62). However, identification of 
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the factor(s) that activates these channels was not assessed in previous studies. Recent studies 

have shown the association of K
+
 ions in H2O2–induced vasodilation (42, 43, 45). These channels 

were also shown to mediate, at least in part, H2O2-induced dilation of arterioles from skeletal 

muscle and brain (25, 55). Further, it has been shown that H2O2 activates KATP channels in 

pancreatic beta cells and cardiac myocytes (18, 33). Nevertheless, direct evidence of this 

mechanism in smooth muscle and the role of adenosine as the inducer of this mechanism is 

lacking. In this study, we showed for the first time that KATP channels on smooth muscle cells are 

activated by H2O2 and, at least partly, adenosine induces the release of H2O2 and, hence, 

activation of KATP channels. It is worth mentioning that A2AR-induced increase in CF is through 

activation of non-mitochondrial KATP channels (48) and, therefore, one can speculate that at least 

the source of H2O2-induced CF changes in RH due to activation of ARs may not be mitochondria 

related. However, further experiments are needed to better understand the role of mitochondrial 

and non-mitochondrial KATP channels in RH coronary flow responses. 

Finally catalase induced a decrease in adenosine-induced increase in LVDP. This 

inhibition may be due to Gregg’s effect since at this concentration adenosine has significantly 

increased both CF and LVDP. The opening of KATP channels may also affect the contractility 

independent of CF changes. It is worth mentioning that adenosine is shown to activate KATP 

channels and that glibenclamide, a KATP channel blocker, is reported to decrease reactive oxygen 

species (36). Nevertheless, further studies are needed to better understand the role of H2O2 in 

LVDP. 

This study is another step in the direction of better understanding of the CF regulation 

and its heterogeneity that may help us towards development of treatments for various clinical uses 

such as evaluation of endothelial integrity and reperfusion of coronary arteries after an embolism. 
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CONCLUSION 
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The work presented in this dissertation confirms the heterogeneity of coronary 

flow responses mediated by activation of adenosine receptors (AR). In this dissertation, 

we established that A2A/B AR subtypes may have differing contributions in the regulation 

of CF under varying conditions.  

We suggested that out of all four AR subtypes, A2AARs and A2BARs induce 

coronary artery (CA) vasodilation, since exogenous adenosine did not induce any 

increase in CF in A2A/2BAR double knockout mice. Additionally, each of these two AR 

subtypes further compensate for the deletion of the other subtype; indeed A2AARs 

expression was up-regulated in A2BKO mice. We established the presence of such 

compensatory mechanism via the use of selective and non-selective agonists and 

antagonists. Furthermore, since some inconsistencies are reported between the results 

obtained from pharmacological and molecular (knockout mice) approaches, we also used 

AR knockout mice to further confirm our findings. The differing expression of A2A/2B 

ARs is reported in many cardiovascular diseases and, therefore, the knowledge of the 

presence of such compensatory mechanisms between A2A and A2B ARs may contribute to 

the future development of new treatment approaches. In fact, A2ARs are being 

investigated as a treatment during percutaneous coronary intervention for the reduction of 

myocardial reperfusion injury in patients with myocardial infarction, which is well 

established to be associated with worsening of cardiac injury and function.  

The next step was to determine the effector, located on SMCs, causing the final 

effect of coronary vasodilation mediated by activation of A2ARs. We not only learned 

that both A2AAR- and A2BAR-mediated CF effects are via activation of non-

mitochondrial KATP channels but, we suggest that, no matter what the A2AR-induced 

coronary vasodilation signaling pathway may be, it may be through activation of KATP 
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channels since both A2AAR- and A2BAR-meditaed CF effects were abolished in the 

presence of glibenclamide (Figure 3.7).   

Whereas we showed that activation of both A2AARs and A2BARs induces CF 

vasodilation, in this dissertation we established that only A2AARs contribute to the 

regulation of CF in reactive hyperemia, where the metabolic factors are known to be 

mainly involved. It is interesting to mention that A2AARs induce the sustained coronary 

vasodilation during reactive hyperemia through the release of H2O2. H2O2, depending on 

the vascular bed and its concentration, acts as a vasorelaxing as well as a vasoconstricting 

factor. Using isolated mouse hearts, we showed that exogenous H2O2 may have a tissue-

protective role by inducing coronary vasodilation. In addition, we established that H2O2, 

released due to activation of A2AARs, also activates KATP channels on smooth muscle 

cells, which further confirms our findings that KATP channels may be the end effector in 

A2AR-mediated effect on CF (Figure 5.1).  

The availability of single and double knockout ARs is a valuable tool to better 

understand the role of each AR or a subclass of AR subtype. In addition to measurement 

of baseline parameters, such as baseline CF, heart rate, and left ventricle developed 

pressure, we also showed that the recently available A2BKO mice have a functional 

endothelium by showing that bradykinin response was not different in A2BKO mice 

compared with wild type mice.  

In summary, both A2A and A2B ARs are capable of inducing coronary 

vasodilation, but they each are activated endogenously under different conditions. 

Needless to say, the role of A2ARs in the regulation of CF is much more complicated 

than what has been described in this thesis.  It is possible that there might also be other 

interactions present between this class of GPCRs and β adrenoceptors, in view of the fact 
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that NECA-mediated increase in CF is ameliorated in β1/β2 double knockout mice 

(Appendix A). These findings require more detailed investigation to better understand the 

interaction between ARs and β adrenoceptors. 
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Figure 5.1 Suggested signaling pathways for A2A- and A2B ARs-mediated CF 

regulation 
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Future Directions 

The next step for this project would be to identify the source of H2O2; H2O2 may 

be released from the myocardium or the vascular bed itself, in which case, the knowledge 

of whether the source is the endothelium or SMCs may help us to identify the mechanism 

behind reduced adenosine coronary response in patients with cardiovascular disease. 

Furthermore, it would be interesting to identify the factor(s) responsible for the release of 

superoxide, which subsequently leads to the formation of H2O2; among the possible 

factors, NADPH oxidases and mitochondria are the primary candidate sources of 

superoxides (Figure 5.2).  

The NADPH oxidase-enzyme complex consists of two membrane-bound 

components (gp91phox [also known as NADPH oxidase (Nox)-2] and p22phox) and 

several cytosolic regulatory subunits, including p47phox, p67phox, and the small GTPase 

Rac (Rac1 or Rac2). When NADPH oxidase becomes activated, the cytoplasmic subunits 

translocate to the cell membrane and the resulting complex transfers electrons from 

NADPH to molecular oxygen in order to form superoxide. In fact, NADPH oxidase is 

identified as a major source of superoxide in ECs, and, therefore, the important 

determinants of the oxidation-reduction (redox) state of the endothelium. Investigators 

have also identified NADPH oxidase complex as the major source of ROS in VSMCs. 

Whereas both p22phox and p47phox appear to be essential for NADPH oxidase activity 

in VSMCs, targeted-deletion of the gp91phox gene in mice had no effect on superoxide 

production (3). Additionally, two homologues of gp91phox, termed Nox1 and Nox4, are 

suggested to be mainly present on vascular beds. Therefore, the association of the 

NADPH oxidase homologue involved in adenosine-mediated release of H2O2, and hence 

coronary vasodilation, needs to be clarified.  
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In many cells, the majority of superoxide is generated from mitochondria via 

cellular respiration and specifically during ubisemiquinone autoxidation. Ubisemiquinone 

can serve as an electron donor to O2 to produce superoxide. Electron flow through the 

mitochondrial electron transfer chain occurs by four inner membrane–associated enzyme 

complexes, with cytochrome c and the mobile carrier ubiquinone. NADH derived from 

both cytosol and mitochondria donate electrons to NADH:ubiquinone oxidoreductase 

(complex I) which then transfers its electrons to succinate:ubiquinone oxidoreductase 

(complex II). Electrons from reduced ubiquinone are then transferred to 

ubiquinol:cytochrome c oxidoreductase (complex III). Electron transport then proceeds 

through cytochrome c, cytochrome c oxidase (complex IV), and finally, molecular 

oxygen (5-6). Nevertheless, there are two major mitochondrial electron transfer chain 

regions where ROS are produced: complex I and complex III. Therefore, in order to 

identify the mitochondrial complex involved in H2O2 production, we can use rotenone, a 

complex I inhibitor, myxothiazol, which inhibits oxidation of ubiquinol to 

ubisemiquinone in complex III, and cyanide, a complex IV inhibitor, to detect if the 

trapped radical species originates from the electron transport chain of the mitochondria. 

Cardioprotective effect of carvedilol (βADR blocker) was shown to be through an 

adenosine-dependent mechanism. Additionally, it was reported that βADR-mediated 

inotropic responses were attenuated by adenosine (7). Our preliminary data also 

establishes a relationship between βADRs and A2ARs since the effect of NECA is 

attenuated in β1/β2DKO mice. Therefore, a better understanding of the relationship 

between ARs and βADRs in CF regulation and the possible signaling pathways involved, 

would open a new window to better understand the heterogeneity CF regulation in 

relation to ARs. Our preliminary data show that, like any complex system, regulation of 
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CF may further involve an interaction between ARs and βADRs. Nevertheless, this 

investigation requires further experiments to confirm the presence of such a relationship 

between these two classes of GPCRs.  

Finally, our data show that A2BARs are not involved in RH and may play a role in 

severe ischemic conditions, where adenosine levels are significantly higher. Therefore, in 

order to better clarify the role of A2BARs in CF regulation, further experiments such as 

ischemia/reperfusion experiments are needed. Indeed, is has been reported that A2BARs 

play a cardioprotective role during ischemia/reperfusion (1-2, 4). Therefore, taken 

together, elucidation of CF regulation and cardioprotection in light of A2BARs and 

βADRs, and, ultimately, understanding the signaling pathways involved, would lead to 

uncovering of the translational mechanisms of cardiac reperfusion subsequent to a heart 

attack, in addition to finding of better and complete ways of cardiac imaging evaluation 

for the diagnosis of coronary artery disease (Figure 5.2).     
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Figure 5.2 Future directions for identifications of A2AARs and A2BARs signaling 

pathways in the regulation of CF 
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                                                            APPENDIX A 

 

Preliminary experiments (relationship between adenosine receptors and β1 and β2 

adrenoceptors) were carried out. The concentration-response curve for NECA was 

calculated in WT (FVB) and β2KO mice isolated hearts. This was done to determine 

the role of A2ARs in NECA-induced relaxation in β2KO. There was no difference 

between the two groups. 
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Preliminary experiments (relationship between adenosine receptors and β1 and β2 

adrenoceptors) were carried out. The concentration-response curve for NECA was 

calculated in WT (FVB), WT (C57), and β1/2DKO mice isolated hearts. This was 

done to determine the role of A2ARs in NECA-induced relaxation in β1/2DKO. There 

was no difference between the two control groups while NECA-mediated effects 

were significantly diminished in β1/2DKO compared to both controls. 
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Preliminary experiments (relationship between adenosine receptors and β1 and β2 

adrenoceptors) were carried out. The concentration-response curve for CCPA was 

calculated in WT (FVB) and β1/2DKO mice isolated hearts. This was done to 

determine the role of A1AR-mediated effect in β1/2DKO. There was no difference 

between the two groups. 
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