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Abstract 

APTAMER FUNCTIONALIZED ZINC OXIDE FIELD EFFECT 
TRANSISTORS FOR ODOR DETECTION IN AIR 

 

Michael Aldridge 

Odor detection and identification are complex processes, and tasks that currently only 
animals do well. There is a pressing need for an electronic nose, or eNose, with good 
sensitivity, selectivity, and speed that mimics that ability. Food quality control operations, 
environmental sensing, occupational safety, and the defense sectors all require systems 
that can rapidly and reliably detect trace levels of volatile organic compounds. Although 
recent development in gas-phase chemical sensors has enabled the detection of trace 
quantities of such chemicals, there is currently no device which can detect the broad 
range of odorants as effectively as most animals. This is partly due to a gap between 
what we know about naturally occurring olfactory systems and the implementation of that 
knowledge for the design of artificial olfactory systems. The goal of this work is to create 
a biologically inspired device which can accurately detect and identify odors at 
concentrations consistent with the most sensitive biological systems. 
In order to mimic a natural olfactory system, we replaced the biological components of 
the olfactory system with synthetic components. For example, the device is contained on 
a silicon chip instead of within olfactory epithelium. Individual olfactory receptor proteins 
are replaced by aptamers, which are short sequences of single-stranded DNA, identified 
via an evolution-based process, to bind a particular target. Like olfactory receptor 
proteins, aptamers can bind more than one homologous molecule. If successful, this 
approach would provide a basis for a computational strategy that identifies odor based 
on combinatorial patterns of receptor activation, so that the number of recognizable 
odors exceeds the number of receptors. 
Our efforts produced an aptamer-decorated zinc oxide field effect transistor (Apta-FET) 
that shows great sensitivity to target compounds, but limited selectivity. We 
demonstrated that aptamers attached to a FET respond to targets in a concentration-
dependent manner, and that this response can be measured electrically. The limited 
selectivity of our device highlights the need for many different kinds of aptamers within 
the same device, as well as the need for more advanced computational analysis of the 
output data. It is our hope that these hurdles will be overcome.  
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I. Introduction 

The design and production of chemical sensors and electronic nose devices have, in recent 

years, made great advances (Röck et al., 2008; Wilson and Baietto 2009). However, these 

devices are still inferior to the olfactory systems of many animals because they lack receptor 

diversity, sufficient response specificity, and speed (Wilson and Baietto 2009). To this end, we 

aimed to design and fabricate a single receptor channel detector device that was fast, sensitive 

and selective, using principles found in nature. Specifically, we fabricated a device which would 

act as a single olfactory receptor.  

 

The device produced relied on the binding of two molecules, an aptamer and a target. In order 

to detect this binding event, a suitable platform or transducer was needed. To this end, a thin-

film field effect transistor (FET) was fabricated, and aptamers attached to the active surface 

channel of the device. It was proposed that the structural change in the aptamer after binding 

would induce a change in the electrical field of the FET, and thus change the amount of current 

flowing through the device.  

 

The product of this work was two aptamer-decorated field effect transistors (Apta-FETs), one 

with sensitivity to cadaverine, and the other to methyl ethyl ketone (MEK). These small amines 

were chosen because of their relevance in health and safety. Cadaverine is an unpleasant 

odorant that is produced by the decomposition of animal tissue. Detection of cadaverine is 

therefore important for military and law enforcement efforts in locating the deceased. MEK, in 

addition to being a biologically relevant compound in the detection of certain cancers, is a 

hazardous chemical encountered in occupational settings (NIOSH 1988). We were successful in 

developing a device with high sensitivity to the target analytes in vitro, but with limited 

discriminatory power.   
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I. A. Chemical sensing and olfaction 

 

Chemical sensing is one of the most basic ways that an organism receives information about its 

surroundings. Evolutionarily speaking, it is likely the oldest form of sensation, and nearly every 

organism possesses some method of chemical detection (Brennan and Keverne 2004). This 

detection is achieved when a volatile molecule, or odorant, is perceived by the organism in 

some meaningful way.  

 

The chemical environment around an organism contains a wealth of information (Bear et al., 

2007). The ability to find food sources (Distel and Hudson 1985), avoid predation (Dorries et al., 

1997), or locate and select a mate (Novotny 2003) typically relies on olfactory cues. For most 

single celled organisms, chemical sensing is the only method by which any of these abilities are 

possible. 

 

Individual cells within a multicellular organism use chemical sensing and signaling for many 

purposes as well: axonal growth cones in neurons use chemical cues during development  

(Mortimer et al., 2008), cells in the heart respond to epinephrine (Gordan et al., 2015), and 

osteoblasts and osteoclasts respond to hormones to either deposit or digest bone (Chen et al., 

2018). There are countless examples of chemical signaling between cells within a multicellular 

organism, but our focus is on olfaction – the event by which an animal detects and identifies 

volatile chemical compounds (odors) in its external environment.  

 

In animals, olfaction at the organismal level relies on the binding of odor molecules to special 

proteins called olfactory receptor proteins (ORs; Mombaerts 2004). These proteins are 

expressed by olfactory receptor neurons (ORNs), which both act as the molecular recognition 
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element and the transducer that converts the chemical binding event into an electrochemical 

signal.  

 

Olfactory receptor proteins are typically 7-transmembrane spanning, G-protein coupled 

receptors that are embedded in the membrane of ORNs (Bear et al., 2007; Peter 2004; Hoon et 

al., 1999). The canonical ORs are 7-transmembrane G-protein coupled receptors (GPCRs), and 

are responsible for the transduction of a chemical odor signal to an electrochemical signal in an 

ORN.Buck and Axel (1991), discovered that ORs were encoded by a distinct super family of 

genes in rodents. Their work demonstrated that this multigene family had certain characteristics 

which suggested that these proteins were responsible for odor transduction. First, each 

encoded protein had a variable extracellular region, which fits with the model of structurally 

diverse odorant molecules binding to proteins on the outside of a cell. Second, these proteins 

have seven-transmembrane spanning regions, which indicates that they are membrane bound 

proteins. Third, the cytoplasmic side of the proteins are more conserved, suggesting that they 

are all capable of interacting with an intercellular cascade mechanism to complete the 

transduction process. In our work, we sought to mimic the ligand specificity of the extracellular 

domain of these ORs using DNA aptamers, which varied in sequence. Attaching these 

aptamers to the same zinc oxide FET parallels the intercellular signaling cascade, with the goal 

of creating a measurable electrical signal in the form of an effective change in the gate field. 

 

Vosshall et al., (1999) further explored this gene family in Drosophila, and showed that 

expression of these proteins was largely confined to olfactory receptor neurons in the antenna. 

Furthermore, by mapping expression of these proteins in the antenna, they demonstrated that 

each neuron expresses different combinations of ORs. In 2004, Larsson and colleagues 

identified that a particular Drosophila odorant receptor, OR83b, which is expressed ubiquitously 
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in ORNs. They showed that deletion of this OR resulted in the failure of the olfactory system. 

This indicates that the OR83b, the so called “ORCO” is a required coreceptor.  

 

Over a decade later, a different family of olfactory receptor proteins was described (Benton et 

al., 2009). In contrast to the metabotropic GPCRs described earlier, these proteins are 

ionotropic, and directly change the conductance of the ORN membrane as a result of odorant 

binding. Like metabotropic ORs, these IRs exhibit high variability in the ligand-binding region. 

However, their structure around the ion channel is similar to ionotropic glutamate receptors, 

which indicates that they retain their ability to conduct ions. This is similar to the genetic 

divergence and conservation in other olfactory receptor proteins, in that the extracellular domain 

exhibits a high variability, presumably to interact with the diversity of odorant molecules, while 

the cytoplasmic or membrane regions are conserved, enabling the protein to effectively interact 

with cellular machinery. Thus, the ability of these membrane bound receptors to effectively 

transduce the odorant binding event into a meaningful cellular signal is rooted in their genetic 

makeup. Therefore, it is critical that a variety of different aptamer sequences be incorporated to 

reflect the sequence diversity of the OR extracellular domain. 

 

In addition to ionotropic receptors (IRs) and GPCRs, there are odorant binding proteins (OBPs) 

that are associated with the support cells surrounding ORs (Larter et al., 2016). While previously 

suspected to enable or support odorant transport to the olfactory receptor proteins, Larter and 

colleagues showed that they may act as a buffer, or mediate the interaction of odorants and 

ORs in another manner. While we did not incorporate a secondary binding molecule, adding a 

component to this effect could enhance the performance of our device in future work.  

 

When an odorant molecule binds to an olfactory receptor protein, it causes a membrane 

depolarization, and potentially an action potential in the olfactory receptor neuron. For 
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mammalian metabotropic ORs, the binding of an odorant to the extracellular domain of the 

receptor results in the recruitment of adenylyl cyclase to the receptor, which converts adenosine 

triphosophate (ATP) into cyclic adenosine monophosphate (cAMP). The rise in intracellular 

cAMP opens a cyclic gated sodium channel, which results in an influx of Na+ and potentially an 

action potential (Buck and Axel 1991). Insect ORs are distinct in that they contain both 

ionotropic and metabotropic response components (Wicher et al., 2008).  For ionotropic 

component of the OR response, the binding of an odorant results in the opening of a central 

pore in the protein, increasing the permeability of the membrane to cations and causing an 

action potential through depolarization (Rytz et al., 2013, Wicher et al., 2008). 

 

This transduction mechanism, from odorant molecule to action potential, and even odor 

perception, was extensively investigated by Hallem and Carlson (2006) by exposing Drosophila 

to a battery of over 100 odors. What they found is that while some ORs respond to a single or 

small number of odor molecules, others respond to many different odor molecules. These 

narrowly tuned, or highly selective receptors, may respond to only one odorant. The broadly 

tuned receptors, on the other hand, tend to be sensitive to a particular class of structurally 

similar molecules, such as alcohols, esters, or amines (Hallem and Carlson 2006). A similar 

profile is reported for inhibitory responses. In fact, inhibitory responses from odorants appear to 

occur more frequently than excitatory responses in the receptors tested (Hallem and Carlson 

2006). Furthermore, the different ORs tested show tuning curves that are broadly tuned, 

narrowly tuned, or anywhere in between. At lower concentrations, the more broadly tuned 

receptors responded to fewer odorants indicating that tuning is concentration dependent 

(Hallem and Carlson 2006).  

 

Therefore, in natural olfactory systems, there is a continuous distribution from narrowly tuned, 

highly specific, receptors, to broadly tuned, less specific, receptors. This greatly increases the 
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number of analytes which can be detected with a limited number of sensors, because each 

chemical stimulus results in the activation of different combinations of receptors (Hallem and 

Carlson 2006). The aptamers presented in this work represent broadly tuned ORs, in that they 

ultimately were highly sensitive but with limited selectivity. These broadly tuned aptamers are an 

important part of a robust olfactory response, and should be incorporated into future devices. 

Moreover, the SELEX process is amenable to producing aptamers with different tuning 

properties, which holds the promise for the generation of an aptamer library with different 

degrees of affinity/specificity to a variety of compounds (Ellington and Szostak 1992; Klug and 

Famulok 1994; Knight and Yarus 2003; Tuerk and Gold 1990; Joyce 1989). 

 

Despite the ability to detect odorants in air, a gaseous medium, natural olfactory systems 

require a liquid interface in order to function. (Steinbrecht 1998; Pelosi 1995; Menco and 

Farbman 1992) This mucosa functions to protect the olfactory receptors from desiccation, and 

also contains numerous odorant binding proteins (OBPs) (Later et al., 2016; Briand et al., 2000; 

Park et al., 2000; Dear et al., 1991). The role of these OBPs is not just simply to transport 

hydropobic odorants across the aqueous mucosa (Pelosi 1995; Steinbrecht 1998, Larter et al., 

2016). These OBPs, along with detoxifying enzymes in the mucosa, have been proposed to 

deactivate the odorant response (Pelosi 1995). They have also been proposed to bind the 

odorant in such a way as to make it more recognizable to the olfactory receptor protein 

(Prestwich 1996). More recently, OBPs in Drosophila have been shown to be important for 

normal olfactory function (Larter et al., 2016). However, Larter and colleagues found a robust 

response from an olfactory sensillum that was devoid of any OBP. They demonstrated that 

OBPs serve to enhance the selectivity for a target odorant in the presence of a background. 

These proteins thus serve to filter and buffer the local mucous environment around olfactory 

sensilla and play a more nuanced role than previously thought.  
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The Apta-FET we fabricated was exposed to chemical in an aqueous solution to approximate 

this aspect of the ORN environment but was dried prior to testing. Incorporating a mucous or 

wet polymer layer may be possible in future devices, but was not considered within the scope of 

the current work. However, it may be a critical part of a dynamic and flexible olfactory system. 

 

I. B. Chemical sensors and the electronic nose 

 

In general, sensory systems facilitate a flow of information from the external environment to a 

central processing and decision-making entity. In biological systems, this is the brain, or more 

specifically, higher brain regions. In man-made systems, this central decision-maker can be an 

output monitor that informs the user, or software that is programmed to respond to a stimulus. In 

both cases, the stimulus must be detected, converted or transduced into a meaningful signal, 

and then processed. For example, the flow of information in a word processing program – from 

the typist’s fingers to the words on the screen – follows the same general outline. The detector 

(key) receives a physical force which is then transduced into an electrical signal by electronics 

in the keyboard. The signal (“type the letter ‘m’”) is processed by the software. In a biological 

olfactory system, the ORs detect the presence of volatile compounds (detector). This detection 

event is transduced into an electrical signal by a cascade of protein interactions around the OR, 

along with the ORN itself (transducer). This signal is carried by the ORN where it is processed 

at the glomerular level and passed to higher brain regions (processor).  

 

An electronic nose works using the same principles of detection, transduction, and processing 

(Persaud and Dodd 1982; Röck et al., 2008; Mitrovics et al., 1998). There are a wide variety of 

detectors (Wilson and Baietto 2009); the primary function of these detectors (the keys of the 

keyboard) is to respond to the presence of a gas or volatile compound that they are sensitive to. 

These are attached to or incorporated into a transducer element which converts the detection 
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response to an electrical signal – typically a change in resistance (Nylander 1983; Bai et al., 

2007; Yamada et al., 2001), capacitance (Plum et al., 2006; Braik et al., 2015; Hagleitner 2002), 

voltage (Lin and Tseng 1998), or current (Wang et al., 1998). The metal oxide semiconductor 

field effect transistor (MOS-FET, hereafter simply FET) is a popular transduction element 

(Yamazoe et al., 1983; Winquist et al., 1985; Åbom et al., 2002). One of the primary challenges 

in electronic nose technology is the processing of these electrical signals (Gao et al., 2012). 

While we designed an electronic nose “receptor” that mimics the recognition and transduction 

processes of an olfactory receptor protein and ORN, addressing the processing problem was 

beyond the scope of the current thesis.   

 

Detector elements in electronic chemical sensing systems rely on chemical interactions 

between a test gas and a sensor element. Typically, these chemical interactions modulate the 

way that the sensor element behaves in an electronic circuit. Changes in resistance and 

capacitance are commonly exploited (Nylander 1983; Bai et al., 2007; Yamada et al., 2001; 

Plum et al., 2006; Braik et al., 2015; Hagleitner 2002). For many detector elements, the 

detection and transduction step are combined. There are examples of detector elements which 

separate these steps – surface acoustic wave (SAW) sensors (Drafts 2001), for example, detect 

the mass of elements absorbed on the surface of the sensor (Abdollahi et al., 2007). By coating 

a SAW device with a selective element, such a polymer, it is possible to selectively capture a 

target analyte (Wohltjen and Dessy 1979; Alizadeh and Zeynali 2008). Since SAW devices are 

able to detect minute changes in mass, the amount of added mass can be used to determine 

the concentration of analyte adsorbed. This principle is also employed by quartz microbalance 

sensors (Lucklum et al., 1991; Grate 2000) and cantilever mass balance sensors (Battiston et 

al., 2001). 
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The first semiconductor gas sensor, invented by Naoyoshi Taguchi in 1972, took advantage of a 

resistivity change in a semiconductor upon exposure to a gas (U.S. Patent No. 3,695,848, 

1972). In 1975, Lundström et al., reported metal-oxide semiconductor FETs which responded to 

hydrogen.  Building on this, metal oxide sensors operate on the principle that certain gas 

species react with certain metal oxides in a reproducible way (Persaud and Dodd 1982). These 

sensors often rely on a chemical reaction between the gas to be detected and the metal oxide. 

Typically, the metal oxides chosen reflect the target analyte, and there is some degree of ab 

initio selection of target gasses. The array of sensors is then exposed to a test library of vapors 

and gasses, from which a response library of “fingerprints” can be obtained as a combinatorial 

activation pattern (Gao et al., 2012). The drawbacks to this technology are that these sensors 

are biased strongly by humidity and oxygen content (Wilson and Baietto 2009).  

 

Sensor arrays which incorporate conductive polymers operate on a similar principle as metal 

oxide sensor arrays (Wilson and Baietto 2009; Plum et al., 2006; Braik et al., 2015). Variations 

in chemistry and physical properties of certain polymers result in different responses to different 

vapors and gasses. In addition, polymer composition and thickness can affect diffusion of the 

analyte into the sensor material, adding another layer of complexity which can aid in the 

differentiation of test samples. Like metal oxide sensor arrays, the selectivity of a conductive 

polymer array is dependent on the size and complexity of the training library. In addition, 

temperature and humidity can create large biases in the response signals. Modern electronic 

nose devices typically incorporate both metal oxides and conductive polymer sensors (Wilson 

and Baietto 2009). 
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I. C. Field effect transistors 

 

The field effect transistor is an electronic device in which the flow of current between two 

terminals, the source (S) and drain (D) is enhanced or diminished by the application of voltage 

across a third terminal, the gate (G) (U.S. Patent No. 3,102,230, 1963; Bayraktaroglu et al., 

2008). 

 

The application of a voltage to the gate terminal (the gate voltage, VG) creates an electrical field, 

the eponymous field effect, in the material between the source and the drain. For a set voltage 

drop across the source and drain (the bias voltage, VDS) a change in VG produces a change in 

the output current (U.S. Patent No. 3,102,230, 1963). 

 

FETs are good transducers for sensor devices because a small change in gate voltage, or the 

field, can produce large changes in the source-drain current (Winquist et al., 1985; U.S. Patent 

No. 3,102,230, 1963). Depending on the properties of the FET, a change in gate voltage 

facilitates or impedes electrical current flow from the source to the drain. In this manner, FETs 

can act as signal amplifiers (Carcia et al., 2003). In designing and assembling our device, the 

field effect transistor was used to convert the binding event of the molecular recognition element 

of the detector to the analyte into a measurable electrical signal. Here, we developed and used 

aptamers (described below) as the molecular recognition element. 

 

Transistor performance is based on two types of measurements, transfer and output. In both of 

these measurement modes, the current flowing between the source and the drain is measured 

(IDS). For transfer measurements, the bias voltage is held constant while different gate voltages 

are applied. Typically, the lowest expected gate voltage is applied first, current is measured, and 

the gate voltage is increased in a stepwise manner until the highest expected gate voltage is 
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reached. This produces a series of bias currents relative to gate voltage. Typically, this process 

is repeated at several bias voltages, and a set of transfer curves is obtained (Carcia et al., 2003; 

Bayraktaroglu et al., 2008). 

 

Output measurements, in contrast, hold the gate voltage constant while different bias voltages 

are applied. Each output measurement produces a series of bias currents relative to bias 

voltages at a single gate voltage. Again, this process is typically repeated for a set of gate 

voltages (Carcia et al., 2003; Bayraktaroglu et al., 2008). 

 

I. D. Aptamers – molecular recognition elements 

 

Aptamers are short (20-50 base pairs) nucleic acid oligomers which bind strongly to a target of 

interest (Ellington and Szostak 1992; Klug and Famulok 1994; Knight and Yarus 2003; Tuerk 

and Gold 1990; Joyce 1989). In our work, we identified and used single stranded DNA 

aptamers. The binding properties of an aptamer depend directly on the DNA sequence, which 

also determines its shape and structure in space. The sequence of the single-stranded DNA 

aptamers determines their shape because different base pairs interact with each other, in part 

by base pair hybridization. The sequence-determined shape of an aptamer allows it to bind to 

target analytes using van der waals and other small intermolecular forces (Klug and Famulok 

1994; Feigon et al., 1996). This binding can be very strong (Kd < 10µM) (Sassanfar and 

Szostak 1993) for some aptamer-target complexes. This is similar to antibody-antigen 

interactions (Kd = 200µM) (Moutin et al., 1994). In our case, the appropriate sequence for a 

target-specific aptamer is identified using the SELEX process (Selective Evolution of Ligands by 

EXponential enrichment), an in-vitro selection method (Klug and Famulok 1994). 
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Aptamers were selected using the SELEX, an iterative process in which a library of single 

stranded DNA (ssDNA), or in some cases, double-stranded DNA or RNA sequences of a 

specific length are incubated with a target molecule, selected for their ability to bind to that 

molecule, and amplified (Klug and Famulok 1994; Knight and Yarus 2003; Tuerk and Gold 

1990; Joyce 1989). Since the aptamers themselves are short pieces of ssDNA, they can be 

amplified using the polymerase chain reaction (PCR). After numerous rounds of incubation, 

selection, and amplification, the pool becomes enriched with oligonucleotides that have good 

binding affinity for the target molecule. The remaining pool is sequenced, and aptamers are 

identified which have good binding affinity for a selected target, or other desirable properties. 

The present study takes advantage of aptamers identified by collaborators in the laboratory of 

Dr. Letha Sooter. Their work in selecting aptamers for cadaverine and methyl ethyl ketone 

(MEK) was pioneering because the targets were small molecules not readily immobilized on a 

substrate. To overcome this, they used capillary electrophoresis (CE) SELEX (Mosing and 

Bowser 2009). Capillary electrophoresis separates molecules or constructs in solution based on 

their charge and hydrodynamic radius, eliminating the need to bind the aptamers or target 

molecules to a substrate. 

 

II. Methods  

 

In the present work, ssDNA aptamers we used were selected for affinity to cadaverine and 

methyl ethyl ketone (MEK or 2-butanone), which are both small, biogenic, amines. In addition, 

we purchased commercially available aptmers with high affinity for ATP (Huizenga and Szostak 

1995) to use as a positive control. The finished device consisted of a field effect transistor 

decorated with aptamers. These devices were fabricated using RF magnetron sputtering 

(Carcia et al., 2003) for a Zinc Oxide (ZnO) semiconductor layer and DC sputtering to deposit 
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metallic contacts. Shadow masks were used to pattern the ZnO and metals. Aptamers were 

attached to the ZnO surface using silane chemistry (Hagen et al., 2010).  

 

II. A. FET fabrication 

 

FETs were fabricated on Si/SiO2 substrates. Blank Si (Silicon Quest International) was p-doped 

(Boron), <100>, with a thickness of 525 ± 25 µm. “<100>” refers to the orientation of the 

crystallographic plane in the wafer. Dry thermal oxidation was performed by the manufacturer to 

create a SiO2 layer on both sides of the wafer with a thickness of 2000 Å ± 5%. The wafers were 

single-side polished, and heavily doped (0.005 Ω-cm). The high conductivity of the substrates 

was critical, since the bulk silicon acted as the back gate electrode for the device. 

 

Wafers were prepared by etching the oxide layer from the unpolished surface using buffered 

oxide etch (BOE, Microchem Inc.), an HF-containing solution for dissolving SiO2. This was 

necessary in order to expose the bare silicon surface, which is conductive. Removing the 

insulating SiO2 layer allowed us to make electrical contact with the bulk silicon. The polished 

surface was protected by a layer of AZ-5214 photoresist (Microchem Inc.) applied using spin-

coating. Removal of the oxide layer was confirmed visually based on hydrophobicity and 

conductivity was confirmed using a multimeter. This was possible because SiO2 is hydrophilic, 

but Si is hydrophobic. Thus, the absence of SiO2 was easy to observe by spraying water on the 

wafer and observing the degree of wetting. 

 

To protect the etched surface from oxidation, wafers were immediately coated with Ti/Au using 

DC sputtering (CVC 610 DC Magnetron Sputtering Station) or electron beam evaporation 

(Temescal BJD 2000 E-Beam Evaporator). Finally, wafers were diced into 10mm x 10mm chips 

using a DISCOTECH DAD-3240 Dicing Saw. 
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ZnO was deposited using RF (radio frequency) magnetron sputtering (Carcia et al., 2003), and 

patterned using a shadow mask (Fig. 1A-C). Sputtering is the use of an electrical bias between 

the sample and the target to cause ions in the target material (ZnO) to discharge and form 

plasma. RF sputtering employs an alternating current, which is necessary for insulating 

materials such as zinc oxide. Our system also uses a magnetron, which adds a magnetic field 

that enhances the deposition.  

 

To determine the optimal growth conditions, a series of ZnO films were grown on SiO2 

substrates and examined using x-ray reflectivity (XRR) for thickness (Fig. 1E) and x-ray 

diffraction (XRD) to determine crystallinity. Atomic force microscopy (AFM) was used to confirm 

roughness (Fig. 1D). Room-temperature films were grown at 15, 30, and 60 minutes to obtain 

an initial growth rate. A series of films were then grown at different substrate temperatures, 

using 23°C (room temperature), 100°C, 150°C, 200°C, 250°C, and 300°C (Fig. 1F). Using XRD, 

we determined that the 300°C films exhibited the wurtzite crystal structure, which is desirable for 

a transistor (Bayraktaroglu and Leedy 2008). 

 

For the final devices, 120W RF power was applied to a pure, 2” ZnO target. Substrates were 

heated to 300°C in vacuum and allowed to anneal for 1h prior to deposition. The deposition was 

carried out in O2 and Ar, at a pressure of 14mT. A stoichiometric ratio of 66.6% O2 : Ar was 

used, resulting in flow rates of 5.0sccm for Ar and 2.1sccm O2. To achieve the desired thickness 

of 70nm, the deposition was carried out for 7200s. During the deposition, the substrates were 

rotated at 23 RPM. The films were allowed to cool in vacuum for several hours prior to removal. 

After ZnO deposition, the devices were prepared with a second set of shadow masks to pattern 

electrical contacts (Fig. 1A). 
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Initially, Ti/Au contacts were used to create an electrical junction with the ZnO thin films. 

However, these contacts proved unusable because the Ti/ZnO interface was found to be 

insulating. We attempted to ameliorate this by using Al/ZnO contacts, and contacts were made 

using ZnO/Al/Au. Again, these contacts failed, because of a little-investigated and neglected 

issue known as “purple plague” which forms at Al/Au interfaces, creating an insulator. (Footner 

et al., 1987). Finally, we achieved low resistance electrical contact with ZnO/Al/Ti/Au contacts 

then later switched to ZnO/Al/Pt contacts, which also resulted in a low resistance contact, but 

was a more practical approach.  

 

Metals were deposited in the same sputter chamber, using pure Al and Pt targets. DC sputtering 

was performed at 23°C in Argon (5.0 sccm, 3.0mTorr). Al was sputtered for 300s for a thickness 

of ~50 Å, and Pt was sputtered for 120s for a thickness of ~950 Å. Substrates were rotated 

during both depositions. For metals, 80W DC power was applied to a pure 2” target.  

 

The ZnO layer and metal contact layers were patterned using 1cm2 shadow masks (Suron 

Precision Technology). Shadow masking was used to avoid issues with photoresist at the high 

temperatures required (300°C) for the ZnO deposition, as well as to avoid heating the ZnO layer 

during the photoresist process prior to the metal depositions. Additionally, shadow masking 

reduced the amount of sample loss during the lift-off process following deposition.  

 

A common technique for patterning electrodes and other features on silicon chips is 

photolithography. In this technique, a pattern is transferred from a glass and chrome photomask 

to a polymer coating on a wafer using an instrument which exposes the mask and wafer to light. 

A polymer called a photoresist is applied to a wafer by a process called spin coating. In this 

process, the wafer is rotated, or spun, at high speeds while a photoresist is applied to the center 

of the wafer with a pipette. As the wafer spins, the applied droplet flattens out and coats the 
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wafer surface in an even, uniform, coating. The photoresist is then baked for a short period of 

time to harden the polymer before the photomask is placed over the wafer. Aligning the mask to 

the wafer surface is typically performed using a mask aligner. The glass and metal (typically 

chrome) photomask is brought into close contact with the surface of the photoresist on the 

wafer, and the system is exposed to light, typically in the UV range. For the type of photoresist 

used, called a negative photoresist, the light cross-links the polymer. This is known as the 

‘exposure step’. Following the exposure step, the wafer is treated with a developer, which 

causes the regions exposed to light harden and remain after development, while dissolving the 

unexposed areas. This is usually followed by a metal deposition step, which results in metals 

depositing on both the wafer surface and the remaining photoresist. The final step, or ‘lift off’, 

dissolves the remaining photoresist, typically in acetone. Metals which deposited on the 

photoresist are washed off, while metals which deposited on the wafer surface remain.  

 

An alternative approach to achieving metal patterns on a wafer is called ‘shadow-masking’ and 

uses a thin metal device called a shadow mask. This technique is much more straightforward, 

as the shadow mask simply acts as a stencil. The mask, which is a thin piece of metal with the 

pattern etched or cut out, is placed directly on top of the wafer while metal or other materials are 

deposited in a vacuum chamber. Shadow masking is preferred when a high-temperature 

deposition is required, but can only be used for larger features due to limitations in fabricating 

the metal shadow mask itself.  

 

Two shadow mask designs were used to achieve the sample pattern shown in Fig.2. First, a 

mask with five vertical slits (Fig.2B) was clamped to a 1cm2 Si/SiO2 prepared substrate. 

Following ZnO deposition the substrates were removed, inspected visually and with optical 

microscopy, and the masks were replaced. The second set of mask patterned the electrical 
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contacts (Fig.2C). Mask position was inspected with optical microscopy, and then sputtered with 

an adhesion layer of aluminum followed by a thicker layer of platinum. 

 

For many preliminary fabrication 

attempts, metal contacts were 

patterned using photolithography. AZ-

5214 photoresist (Microchem) was 

applied to wafers using a Laurel 

Technologies 400 spinner. 

Photomasks were custom fabricated 

(Advance Reproductions Inc) to form 

the pattern shown in Fig. 3. Pattern 

alignment and UV exposure were 

performed with a Suss Microtech 

MA6 mask aligner using a 320 nm UV 

exposure source. Pattern 

development was performed using 

MIF 300 Developer (Microchem) 

according to the manufacturer’s 

instructions. Contact materials were Ti/Au, Al/Pt, or Al/Ti/Au depending on the sample, and were 

deposited using a Temescal BJD 2000 E-Beam evaporator. A number of contacts were also 

fabricated using a CVC 610 DC Magnetron sputtering station. Lift-off was performed in acetone. 

Initial parameters for the photolithography process were provided by Microchem, Inc.,  and were 

further adjusted based on thickness results obtained using a step profilometer (Tencor Alpha-

Step 200).   
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Subsequently, ZnO FETs with 

small (1um) channel width 

were fabricated with electron-

beam (E-beam) lithography 

(Fig 3B). PMMA 950 A-9 

(Microchem) was used as a 

photoresist, and was selected 

because of its thickness, 

which was desirable for the 

lift-off process and good 

contact between the small and large patterned metal contacts. Lithography was performed 

using a Leica 360 SEM with Nanometer Pattern Generation System (NPGS) software (Nabity 

2018). 

 

E-beam evaporation is a technique for depositing materials, usually metals, on a substrate. This 

technique was desirable because the thickness of the deposited layer was tightly controlled to 

within a few nanometers, and produced a uniform layer across the substrate. In addition, the 

deposition was directional, which means that material was only deposited on the surfaces 

perpendicular to the source. This was critical for small patterns and samples where sidewall 

deposition needed to be minimized. 

 

In short, e-beam evaporation works by using an electron beam to heat a source material – in 

our case, a crucible filled with metal – causing it to vaporize and create a directional plume. This 

plume then coats the substrate, which hangs inverted over the source. This instrument had a 

quartz crystal monitor (King 1964), which is a device that measured the amount of deposited 

material based on shifts in the crystal’s resonant frequency. When mass was added to the 
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crystal, the resonant frequency shifted, allowing for the detection of very small amounts of 

deposited material. By placing this monitor near the substrate, it was possible to accurately 

measure the amount of deposited material to within a few angstroms. In the present work, this 

technique was used to produce Ti/Au and Al/Pt films with tightly controlled thickness. 

The devices created using a combination of photolithography, electron beam lithography, and 

electron beam evaporation (Fig. 3) were produced in an effort to make a carbon nanotube FET. 

This was not achieved in the course of this work.  

 

To examine the crystallinity and thickness of sputtered ZnO films, we used XRD and XRR 

(Rigaku RU-300). Briefly, XRD and XRR work by using a monochromatic beam of x-rays to 

examine the crystal structure of a sample. The small wavelength of these x-rays allows them to 

partially penetrate the crystal lattice of the sample, interact with the electron density of the 

atoms within the crystal, and reflect or diffract off of the sample at measurable angles 

(Suryanarayana and Norton 1998). 

 

To measure thickness, we use the principle of Snell’s Law to compare the angles at which 

constructive and destructive interference occur, much like examining the thickness of an oil film 

on top of water. This allowed precise measurement of the ZnO layers thickness on top of the 

Si/SiO2 substrates (Huang et al., 1993). 

 

For crystallinity measurements, the diffraction of the x-rays was measured at a range of angles 

and compared to literature values. The angles at which peaks in the intensity of the signal are 

detected are well characterized for most materials, allowing us to confirm the crystal structure of 

our sputtered ZnO films. Films deposited with a substrate temperature below 250°C exhibited a 

zinc blende structure, while films deposited at 300°C showed a wurtzite structure, indicated by 

the peak near 34° (Fig. 1F) (Suryanarayana and Norton 1998; Pan et al., 2001). 
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AFM was used in this work to characterize the roughness of sputtered ZnO films, as well as to 

examine the channel geometry for the narrow-channel devices. Briefly, AFM works by tapping 

or dragging a cantilever over the surface of a sample. In tapping mode, the cantilever is 

oscillated at a resonant frequency and brought close to the sample surface. As the tip of the 

cantilever approaches the surface, van der Waals forces between the tip and the sample 

change the resonant frequency of the cantilever. By scanning across a sample in this manner, a 

map of the forces is made, and converted into a height map of the sample (Meyer 1992). 

SEM is a common method for examining sample geometry and quality. Due to the wavelength 

of visible light (around 390nm – 700nm) there is a physical limit to the resolution of an optical 

microscope (Around 1.5µm). This can be overcome by using accelerated electrons, which have 

a much smaller wavelength, allowing the resolution limit to be drastically lowered. For the work 

presented here, typical SEM observations were made with good resolution below 250nm. The 

optical limit is the same reason that electron beam lithography was required to make patterns 

with features smaller than 5µm, while UV light was used for patterns larger than 10µm. Thus by 

analogy, the two types of microscopy are similar with the exception that electron optics use 

‘lenses’ that are made from electromagnetic coils instead of glass.  

 

To measure the semiconducting properties of the ZnO films, we used the Hall measurement 

technique, which allowed us to determine the carrier concentration and mobility of the films. 

(Gajurel et al., 2016) This mobility refers to the ability of charge carriers (electrons or holes) to 

move through the material, which correlates to how well the material conducts electricity. The 

principle of the Hall technique is the Hall Effect, in which a transverse magnetic field is applied 

to the sample while the current and voltage are measured in the plane of the sample 

(Bayraktaroglu and Leedy 2008). 
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Once the devices were patterned as FETs, we measured the performance of the FETs using 

two regimes – transfer and output (Bayraktaroglu and Leedy 2008). In a transistor, transfer 

refers to the measurement of the source-drain current at a fixed source-drain voltage at a range 

of gate voltages. For these measurements, we typically held the source-drain voltage at 20V 

and swept the gate voltage from -50 to 50V in increments of 1V. Output measurements record 

the source-drain current at constant a constant gate voltage while changing the source-drain 

voltage. These measurements were usually performed at a gate voltage of 50V, with source-

drain voltage ranging from -20 to 20 volts, in 0.5V increments.  

 

II. B. Aptamer fabrication and characterization 

 

Aptamer selection and characterization was carried out by our colleagues, Jessica Lear and Dr. 

Letha Sooter, who provided us with the sequence information and extensive guidance on the 

use of such aptamers. The SELEX process began with a library or pool of ssDNA 

oligonucleotides containing a randomized sequence of nucleotides flanked by PCR primers. In 

SELEX experiments, the randomized region was typically 20-40bp long with a diversity of up to 

1015 different sequences (Klug and Famulok 1994). Diversity in the range of 1013 sequences 

was not uncommon – 22 randomized base pairs, for example, produce 422 different sequences, 

or ~1.76 x 1013. These randomized regions were flanked by primers, which facilitated PCR. 

These primers were sequences of DNA that allowed the copying machinery – TAQ Polymerase 

– to bind to and copy the sequence. These oligonucleotide constructs were obtained 

commercially (Eurofins MWG Operon, LLC; Integrated DNA Technologies, Inc.).  

 

Most of these oligonucleotides did not bind to the target of interest, so several rounds of 

selection, and purification and amplification were required. Typically, a target molecule was 

immobilized on a matrix or substrate, and the oligonucleotide library incubated for some period 
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of time with the target molecule. Following this incubation, the immobilized target molecule was 

removed, and with it any oligonucleotides with an affinity for the target. The bound 

oligonucleotides were dissociated from the target and amplified. 

 

Often, a selection was performed with a negative or off-target as well, so that sequences which 

bind to similarly structured molecules were removed from the pool (Klug and Famulok 1994). 

Removing sequences which bound to the off-target in principle should have helped to ensure 

that the final product of the selection was specific only to the target molecule, without 

interactions from other, sometimes structurally similar, molecules. It was, however, impossible 

to expose the putative aptamer pool to every possible off-target, so assumptions were made 

which account for the final application of the aptamer itself. It is prudent to include rounds of 

negative selection for contaminants that are expected to be in the test media. 

 

There were numerous methods for achieving this separation, such as an immobilized matrix 

(Sassanfar and Szostak 1993), magnetic beads (Qian et al., 2009), and others (Stoltenburg et 

al., 2005). Capillary Electrophoresis SELEX, or CE-SELEX, is a variation of the SELEX process 

implemented here, which eliminated the need for a substrate or matrix, and was useful for small 

molecule targets that are difficult to immobilize without causing significant structural changes. 

This was necessary for cadaverine and MEK, which are small, biogenic amines.  

 

Like gel electrophoresis, CE uses an electrical potential to move charged molecules from one 

end of a capillary to the other (Kemp 1998). Separation was achieved based on the ratio of the 

charge of the molecule to its resistance to flow, or hydrodynamic radius. Since all of the DNA 

aptamers had the same charge, they were all pulled through the capillary with the same force. 

Aptamers which were bound to a target molecule were physically larger, and had a greater 

resistance to flow than free aptamers. Unbound target molecules had less charge than ssDNA, 
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and experienced less electrical force through the capillary. Due to the separation of these three 

species in time, it was possible to collect only the oligonucleotide-target constructs, so that 

selections could be performed without the need to immobilize the target. 

 

After performing selections against MEK and cadaverine, the remaining aptamer pool was 

sequenced. Consensus sequences were identified, tested, and verified. From among these 

sequences, several were chosen for further study and characterization. Finally, one sequence 

for each compound was identified as the putative aptamer. The resulting single sequences for 

the cadaverine aptamer and the MEK aptamer were synthesized (Integrated DNA Technologies, 

Inc.) and stored for later use. Results for the aptamer selection process are not shown here, as 

this work was carried out by colleagues. 

 

II. C. FET functionalization  

 

Aptamer attachment was achieved via a silane linker, (3-glycidoxypropyl) dimethylethoxysilane 

(Gelest Inc.), which bound to the thiol group attached to the aptamers (Hagen et al., 2010). In 

practice this occurred as a two-step process. First, the silane was applied by incubating the FET 

in a 2% (wt) solution of dimethylethoxysilane in 95% (v) ethanol, and then heated to 100oC in a 

vacuum. Aptamers were diluted to 12ng/µl and treated with a thermal shock folding step prior to 

attachment. To ensure that the aptamers were folded into the correct tertiary structure, this 

approach first heated aptamers to 95oC for 5 minutes, and then shock cooled them in ice water. 

Following this, the now folded aptamers were dispensed directly onto the active channels of the 

FET using a Hamilton syringe, positioned using a micromanipulator. Aliquots between 200 and 

400 nL were used, to control the quantity of aptamers deposited on each channel. Using this 

method, we were able to estimate that between 1.6-3.0 x1011 aptamers were deposited on each 

channel. A rough geometric calculation accounting for the approximate radius of the aptamer 
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(~75Å) and the size of the channel (50µm x 500µm) predicted that this was more than enough 

aptamers to cover the surface.  

 

Electrical measurements comparable to those made on untreated FETs were performed on 

functionalized FETs. Following our observation that illuminating the device caused a reduction 

in trapped charges (Gajurel et al., 2016), each measurement was preceded by 120 seconds of 

optical illumination by a fluorescent lamp. Transfer and output measurements were performed 

exactly as described above. For our measurements of functionalized FETs, it became 

necessary to measure the current as a function of time. For these measurements, the source 

current (IDS) was measured with 10V VG and -20V VDS. 

 

II. D. Functional Apta-FET testing 

 

Functional testing the Apta-FET devices required extensive measurements before and after 

each application of analyte. An 8 log-step concentration curve was prepared by serial dilution 

and presented to the device (1 pM to 10 μM). Each concentration point was applied as an 

aliquot of 200-400nL, allowed to incubate for 5 minutes, and then briefly rinsed with 1 mL DI 

H2O and dried with N2. The brief rinse step mitigated spurious effects due to evaporation of the 

~400nL aliquot, and the N2 drying reduced damage to the semiconducting channel. After 

measuring IDS as a function of time for 120-240s on each channel as described above, the 

device was incubated in DI H2O and rinsed with a pipette for 5 minutes. Electrical 

measurements were taken after rinsing to allow for baseline comparison. It became evident 

after the first several tests that the device did not return to baseline after exposure to analyte; 

measuring the steady-state current after rinsing helped account for this behavior. 
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For the final phase of testing, we calculated the normalized current at steady-state. This 

typically consisted of the measured source-drain current between 100 - 120 seconds after the 

voltage was applied (n= 30 - 40). This current was then normalized as I/I0, with I0 being the 

steady state current observed after a blank (DI H2O) measurement.  

 

Our preliminary data showed that after rinsing, there was a substantial persistent effect on gate 

voltage left over from the previous trial. After each log step in concentration, we rinsed the chip, 

and the signal did not return to the baseline recorded prior to beginning the measurement 

series. To account for this when analyzing the data, we subtracted the signal from the prior rinse 

step. For example, when calculating the normalized current (I/I0) for a 1µM treatment, we 

subtracted the normalized current from the rinse step after the 100nM treatment.  

 

In an effort to improve selectivity, we incubated a functionalized Apta-FET with bovine serum 

albumin (BSA). This was done to address a suspected issue with nonspecific binding of the 

analytes to the chip surface or ethoxysilane linker layer. To achieve this, Apta-FET 20160513B 

was incubated in a 2% solution of BSA in phosphate-buffered saline for 30 minutes at room 

temperature, and then rinsed with DI water. The chip was then dried with N2 and mounted on a 

test platform for later use. Although this appeared to increase the selectivity of the device, the 

results were unclear, and the aptamer without BSA showed similar response to the BSA without 

aptamer, suggesting that the BSA may contribute to analyte binding in a preferential manner. 

Thus, while it appeared to increase the selectivity, this is likely due to an increase in specific 

binding of BSA to an analyte, as opposed to a reduction of nonspecific binding. 
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III. Results 

 

III. A. Non-functionalized FETs 

 

Each FET was tested for its electrical performance. Output and transfer curves, as well as a 

measurement of current over time, were obtained immediately after device fabrication (Fig. 4). 

The transfer and output plots shown here are representative of a good, working FET. At large, 

negative gate voltages, the FET is effectively switched off, inhibiting current flow. As the gate 

voltage approaches the threshold voltage VT, the FET begins to switch on and allow current to 

flow. For the ZnO thin film FETs produced, positive gate voltage (50 VG) and negative drain-

source voltage (-20 VDS) allowed for the largest current flow IDS. Transfer plots are shown as log-

linear due to the range of IDS. The leakage current was measured between the gate and the 

source. This current should be nonexistent due to the insulator between the gate, and the 

source and drain contacts. This current was measured for quality validation, and is shown as a 

dashed line.  

 

III. B. Functionalized FETs 

 

Preliminary trials with a functionalized FET (ZnO20150506B) showed that the transfer response 

(Fig. 5) decreased when the chip was exposed to the target analyte with the decrease being 

concentration dependent. This result was promising, but repeated transfer measurements were 

not feasible. In addition, it became apparent that the speed at which the measurement was 

acquired changed the amount of current measured, indicating that there was a time-dependent 

effect in the device. To obtain more accurate measurements, we chose to measure at a fixed 

gate voltage (VG = 10V) and drain-source voltage (VDS = -20V).  
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Figure 4. Output (A) and transfer (B) measurements.
FETs were measured immediately after fabrication. Output (A) was measured as the current between the source
and drain (IDS) at different drain-source voltages (VDS) with a constant gate voltage (VG) of 50V. Transfer (B)
measurements measured IDS as a function of VG at a f ixed VDS of -20V. Data is shown for each of 10 channels
on the same FET. The dotted lines indicate the leakage current, between the gate and the drain. Leakage
current was measured to assess the quality of the insulation between the gate and the source / drain electrodes.
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Functional testing was performed (Fig. 6) by exposing the chip to increasing concentrations of 

the target or an off-target. These exposures consisted of applying an aliquot (400 nL) of analyte 

in water to the active channel of the chip, preceded and followed by a DI H2O rinse to remove 

excess or unbound material. Following the second rinse, the chip was dried with UHP N2. After 

each exposure, IDS was measured over time with VDS = -20V and VG = 10V. 

Tests were performed with FETs functionalized with either ATP (ZnO20160503A) or cadaverine 

(ZnO20160503B) aptamers. Of the ten channels on the chip, the end and center channels were 

tested with analytes (ATP, MEK, and cadaverine) as described in Fig. 7. This eliminated the 

effect of analyte flowing from one channel to another and facilitated the application of controlled 

aliquots of analyte to specific channels. As demonstrated in Fig. 8, the response to increasing 

log steps in concentration produces a linear response in I/I0. However, this response is also 

present for non-target analytes. 
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Figure 5. Preliminary electrical measurements of an Apta-FET.
A.) Transfer characteristics for a channel on FET-ZnO20150506B. Curves shown are prior to
functionalization (initial, black line), and af ter functionalization with ATP aptamers (red line), with the
addition and removal of water (green line). The Apta-FET was exposed to varying concentrations of
ATP (blue, cyan, and magenta lines). Each increasing concentration shows a decrease in measured
current. Dotted lines show the leakage current between the gate and drain. B.) Data f rom A.),
rescaled for clarity.
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In an effort to improve selectivity, we treated a FET (ZnO20160513B) with BSA. This should 

have reduced non-specific binding of the analyte to the silane linker layer if it were a source of 

problems with selectivity. To investigate this, several channels on the same Apta-FET received 

different treatments (Fig. 9). The entire chip was treated with the 
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dimethylethoxysilane linker layer in the 

same manner as other Apta-FETs. 

Channels 7-9 were functionalized with the 

ATP aptamer, channels 8-10 were treated 

with BSA. This resulted in four types of 

channels. Channel 5 was treated with 

silanes only, channel 7 was treated with the 

ATP aptamer on silanes, channel 10 was 

treated with BSA on silanes, and channels 

8 and 9 were treated with silanes, ATP  

Figure 7. Functional testing paradigm for
multi-analyte testing.
Aliquots (200-400nL) at different concentrations of
ATP (A, red), cadaverine (B, orange), or MEK (C,
green) was applied to channels.

A B C

1 3 5

6 8 10

Figure 8. Response of Apta-FETs ZnO20160503A and ZnO20160503B.
Apta-FETs were tested with three different analytes after being functionalized with either ATP
aptamers (A) or cadaverine aptamers (B). Channels 1 and 6 were exposed to ATP (black
squares); channels 3 and 8 were exposed to cadaverine (green triangles); channels 5 and 10
were exposed to MEK (teal diamonds). “Buffer channels,” (2,4,7,9) were exposed to two analytes
as a result of the testing method, and are shown as red circles (ATP/cadaverine) and blue
triangles (cadaverine/MEK). Averaged responses from channel pairs with the same analyte are
shown. Both chips show concentration-dependent responses to all analytes. Normalized response
is a function of normalized current, I/I0 (I0 is defined by the response to DI H2O).
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aptamer, and BSA. Channels 1-4 

and 6 were not used. To obtain the 

experimental results shown in Fig. 

9, channels 5, 7, 8, and 10 were 

treated with ATP, while channel 9 

was treated with cadaverine. This 

allowed us to compare two identical 

channels (8 and 9) tested with the 

target (8) and off-target (9). In 

addition, we were able to show the 

effect of adding BSA on the 

sensitivity of the ATP-aptamer 

functionalized channels when 

presented with the target (ATP, 

compare channels 7 and 10). 

Furthermore, since channel 5 was 

treated only with silanes, but not 

aptamers, it shows the contribution 

of non-specific binding in the 

response. As shown in Fig. 9, the 

addition of BSA to channels treated 

with ATP aptamers resulted in an increased discrimination between the target, ATP (down 

triangles), and the off-target, cadaverine (up triangles). Responses from the BSA-blocked 

channels with ATP aptamer (down triangles) and without ATP aptamer (diamonds) indicates 

that BSA itself is contributing to the signal at unacceptable levels, nearly comparable to the 

channel functionalized with aptamer but without BSA (circles).  

Figure 9. Effects of blocking with BSA.
A.) Measurements performed on Apta-FET
ZnO20160513B. All channels were initially treated with
dimethylethoxysilane (linker molecule). Symbol
markers correspond to channel numbers in both
f igures: 5 ■, 7 ●, 8 ▲, 9 ▼, 10 ♦. B.) Channels 7,8,
and 9 were functionalized with the ATP aptamer (red
ellipse). C.) Channels 8, 9, and 10 were blocked with
BSA (green ellipse). D.) All channels were tested using
ATP, except for channel 9, which was tested with
cadaverine (orange circle). E.) Channel 5 was lef t
unmodif ied as a reference.
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IV. Discussion 

We successfully fabricated a ZnO FET functionalized with three distinct aptamers, selected for 

cadaverine, MEK, and ATP. The ZnO FET exhibited a measurable change in performance 

between -50 and 50 VG, with the strongest sensitivity to gate voltage at +20VDS. The Apta-FET 

device demonstrated electrical sensitivity to picomolar concentrations of analyte, although 

discriminatory power was poor.  

 

IV. A. FET Performance – Optical Resetting 

 

Additionally, we showed that our FET responded to illumination at different wavelengths by 

resetting the charging effect of the gate. Gate charging is an undesirable effect in field effect 

transistors (Gajurel et al., 2016), and our work describes optical resetting of the device as a 

potential remedy. Gate charging occurs when charges remain at the gate-insulator interface 

after the gate voltage is removed, and results in loss of FET response after subsequent gating 

cycles. We eliminated this problem by exposing the device to illumination (Gajurel et al., 2016). 

 

IV. B. Sensitive, But Not Selective 

 

The aptamer-decorated FET that we produced (Apta-FET) was able to detect the addition of 

analyte at picomolar (pM) concentrations, and continued to show incremental and measurable 

changes in response up to concentrations as high as 10 micromolar (µM). However, the device 

was very limited in its selectivity between analytes; our work was unable to show conclusive 

discriminatory power between exposure to the target and the off-target. Nonetheless, our work 

demonstrates that the aptamers attached to the surface of the device were able to modulate the 

function of transistor.  
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Additionally, when compared to other methods, our device was able to detect very low 

concentrations of analyte. A similar device consisting of aptamer-functionalized graphene 

achieved detection of a ~140 nanomolar (nM) solution of posaconazole, and discrimination 

between posaconazole and capsofungin at ~140 µM concentration (Wiedman et al., 2017).  

 

The NIOSH (National Institute of Occupational Safety and Health) Manual of Analytical Methods 

(NMAM) method number 2500 for detecting MEK in air describes a technique for sampling air 

with a sorbent tube, extracting the sampled MEK, and quantifying the amount present using gas 

chromatography / mass spectrometry. The limit of detection specified is 0.004 mg/sample, 

which equates to ~55.5 µM MEK in extraction solvent. Although it is likely possible to detect 

lower concentrations of MEK using GCMS, NMAM 2500 provides a good benchmark as an 

accepted standard method for quantifying concentrations of MEK in air (NMAM 2500). 

 

At the lower limit, liquid chromatography / mass spectrometry (LCMS) can be used to detect 

trace amounts of analyte. Ibarra et al., published a method for detecting cadaverine and other 

small amines in 2015, with a quantification limit of ~1.3 nM and detection limit of ~0.4 nM for 

cadaverine (Ibarra et al., 2015). This is still ten times more concentrated than the detection limit 

achieved with the Apta-FET. Thus while the selectivity for the target analyte was lacking, the 

sensitivity is unprecedented in the literature. 

 

IV. C. Limitations and proposed solutions 

 

While the Apta-FET we designed showed promising results for sensitive detection, our FET did 

not perform as well electrically as other devices in the literature. Better device fabrication could 

be achieved by reducing the thickness of the insulating oxide layer (currently 200nm). 
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Additionally, numerous types of FETs exist, and many of them are amenable to aptamer 

attachment (Staii et al., 2005; Aliakbarinodehi et al., 2017). 

 

A limitation of the work presented herein was our inability to expose our device to airborne or 

vapor samples of our test analytes. A major motivation for the design of the Apta-FET was to 

detect small molecules – odorants – in air. However, due to testing limitations, the device was 

only measured after exposure to liquid aliquots applied directly to the device. This constraint 

had three major disadvantages.  

 

Primarily, we were unable to determine if the aptamers would be able to function in a non-

aqueous environment. Altering the immediate molecular environment around the nucleic acid 

would, in theory, alter its folded structure (Feigon et al., 1996; Lin and Patel 1997). Additionally, 

it is assumed that water molecules facilitate the binding interactions between aptamer and 

target. One of the goals of the study was to determine how aptamers would perform in a 

relatively drier microenvironment.  

 

Second, the addition of liquid water to the surface of the device greatly limited our available 

voltage parameters for functional testing. Typical performance tests for our FETs required -50 to 

50 VG and -20 to 20 VDS. However, due to the small distance between the source and drain 

(50µm), potentials higher than 2VDS were impossible while aqueous solution was on the chip. In 

order to use the voltages required for an acceptable device response, we had to incubate the 

sensor channel in a small aliquot of target solution, and then allow the droplet to dry by 

evaporation. This introduced additional potential for spurious effects, such as dried analyte on 

the surface, hydrodynamic repositioning of aptamers, changes to aptamer folding, and residue 

from impurities deposited on the device surface.  
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Our practice of applying a liquid droplet to the surface of the device and then allowing the 

droplet to dry limited our ability to accurately determine the concentration of analyte delivered. 

The volumes added were small, on the order of 200-400 nL. The accuracy of the delivery was 

limited, both in position on the device and volume, despite the use of optical magnification and 

micromanipulator devices. This problem can be overcome in future testing by exposing the 

device to an air stream containing the volatile compounds of interest. Currently, such a system 

is in use for the characterization of similar devices at the National Institute of Occupational 

Safety and Health, Respiratory Health Division (NIOSH/RHD) in Morgantown, WV. By using this 

method, we will be better equipped to examine the response of the Apta-FET to prepared 

concentrations of target in air. 

 

In order to complete the stated aims of the original work, the Apta-FET needs to be tested in the 

gas or vapor phase as well. While it is possible that the cross-reactivity issue may persist, 

evidence from Apta-FET trials indicates that the addition of liquid water droplets induce an 

electrical change in the device, even after the droplet has dried. The best way to verify this 

experimentally would be to measure the Apta-FET in a vapor environment.  

 

In order to conclusively investigate the performance of the Apta-FET, measurements need to be 

taken in a dynamically generated flow cell. Such an experiment could be performed by flowing 

vapor containing the target over the device while measuring the current at a set VG and VDS. 

This would clearly demonstrate if the Apta-FET is capable of detecting target analytes in air, and 

would allow a more direct investigation of cross-reactivity. In addition, it would inform us about 

the nature of the saturation issue, and give evidence about the role of liquid water in aptamer 

function.  
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Due to the duration and logistics of the testing process, it is possible that the aptamers attached 

to the chip surface suffered physical damage during testing as a result of wetting and drying. 

Dust, while minimized, was present because the electrical measurements could not be 

performed inside a cleanroom.  

 

A final limitation of the Apta-FET was that we were unable to reset the sensor to a baseline after 

the addition of analyte. In practice, our detection threshold for each test was determined by the 

highest concentration of analyte previously applied to the chip. This effect persisted after 

optically resetting the FET, after rinsing the device in DI H2O, and after allowing the chip to sit 

for a period of several weeks. Again, it is not clear if this is due to irreversible binding of the 

target to the aptamer, or other effects introduced by the application of a liquid sample.  

 

There are several potential methods to mitigate this problem. One possibility is to denature the 

aptamers with heat or a strong electrical field; however, both of these could damage the FET. In 

addition, there is a risk that the aptamers may not return to their native conformation after being 

denatured. Another possibility is extensive washing or rinsing. While we did see some effect of 

rinsing the chip on subsequent baseline measures, it was not sufficient to reset the device. More 

work is needed to understand this limitation. 

 

IV. D. Proposed Reasons for Nonspecific Binding 

 

The Apta-FET produced here, while sensitive to concentration, could not discriminate between 

analytes using the methods employed, that is, the selectivity of the Aptamers for the target 

appears to have been lost. This could be because the aptamers respond indiscriminately to the 

different analytes tested. It is possible that the aptamers, when attached to the chip and 

exposed to a dry environment, lose their conformation and thus their specificity. It is also 
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possible, although unlikely, that the ATP aptamers respond equally to ATP, MEK, and 

cadaverine, and that the cadaverine aptamers respond in kind. A third possibility is that a 

component of the device, such as the silane attachment layer or the ZnO itself, reacts with the 

analytes tested to produce a confounding response. Attempts to ameliorate this possibility using 

BSA was met with limited but encouraging success.  

 

In an attempt to reduce non-specific binding, we attempted to block the surface of the FET with 

bovine serum albumin (BSA). We reasoned that there may be sites on the surface of the device 

or on the functionalized layer that could interact nonspecifically with ATP, cadaverine, or MEK. 

This resulted in Apta-FETs with reduced cross-reactivity, but a lower overall response that was 

less dependent on concentration. A possible explanation for this is that since BSA itself is 

capable of binding to many different compounds, it may have acted as an intermediate layer, 

reducing the sensitivity.  

 

Future efforts might focus on testing different concentrations of BSA applied to the 

functionalized chip, investigating the conformation of the aptamers attached to the chip, and 

investigating the binding ability of the attached aptamers to their target compounds. It might be 

possible to apply a test mixture containing the target to the chip, and later analyze the chip 

surface for the target. Such an experiment could be performed by exposing the Apta-FET to the 

target, incubating for some time, cleaving the aptamer-silane attachment point, and then using 

an analytical technique (such as liquid chromatography / mass spectrometry) to confirm the 

presence of the target.  

 

A potential reason for the off-target responses of the Apta-FET could be that the surface-bound 

aptamers are not folded properly. In order to exhibit binding activity and selectivity, the aptamers 

need to be in the same configuration that they were in vitro when they were selected using the 
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SELEX process (Ellington and Szostak 1992). Although the aptamers were folded by heating 

and shock cooling prior to attachment to the chip, it is possible that repeated cycles of wetting 

and drying during the functionalization process caused the aptamers to denature or adopt a 

different conformation. If this is the case, it would explain the general sensitivity of the chip to 

different compounds, since it is known that unfolded DNA can interact and bind nonspecifically 

to various compounds. This can be ameliorated in future work by negatively selecting for more 

off-target compounds during the aptamer selection process (Klug and Famulok 1994). 

 

Another explanation for off-target response is that the aptamers used are cross reactive for the 

different analytes used. While we do not expect that the ATP aptamer can bind to MEK and 

cadaverine, we have not verified this in an independent experiment. Negative selections were 

not performed for the cadaverine aptamers to ensure that it does not bind to MEK. It is therefore 

possible, albeit unlikely, that there are responses to these three different analytes from all three 

aptamers because the aptamers themselves are capable of binding to each analyte.  

 

We have also considered that the intermediate ethoxysilane linker layer could be binding 

nonspecifically to our analytes. The silane layer itself could trap or bind to our analytes, resulting 

in a change in electrical response from the Apta-FET. To investigate this further, we 

functionalized an FET with only the silane linker but did not add aptamers. In these tests, we did 

not see an electrical response comparable to the off-target interactions from the Apta-FET. This 

leads us to conclude that the silane layer was not solely responsible for the off-target 

interactions. 
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V. Conclusion 

 

The present work describes the fabrication and characterization of an electronic nose device 

consisting of a thin film zinc oxide field effect transistor functionalized with DNA aptamers. The 

goal of this work was to produce an electronic device which detects and reports the presence of 

small molecules using the principles of olfactory receptors. This device is capable of sensitive 

detection of small amounts of analyte, but has poor discriminatory power. Our work suggests 

that aptamers may not retain their specificity if dried and rehydrated, but further study is needed 

to confirm this. 
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