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ABSTRACT 
 

DIVERSITY OF ECTOMYCORRHIZAL FUNGI ON TWO RECLAIMED 
SURFACE MINES DIFFERING IN SOIL PROPERTIES 

 
Betsy S. Kurnik 

 
I analyzed community structure of ectomycorrhizal fungi on white pine 
(Pinus strobus) on two reclaimed surface mines in eastern Ohio.  One site was 
acidic and metal-stressed, the other was alkaline.  Completely different 
community composition was found on the two sites by PCR/ITS/RFLP 
analyses of field collected mycorrhizae.  However, Shannon-Wiener index 
values indicated that the two communities were equally diverse.  A 
population of isolates of one species common to both sites was obtained from 
trap cultures planted with white pine.  The identity of this species as 
Wilcoxina mikolae was established through DNA sequencing of the ITS 
region.  The W. mikolae populations were further evaluated with in vitro 
studies determining the affects of aluminum and pH.  No clear differences 
between the two populations in response to aluminum and pH could be 
defined due to variation among isolates within populations.  AFLP analysis 
showed that the populations from the two sites were genetically similar. 
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GENERAL INTRODUCTION 

Mycorrhizal Fungi: 

 The term mycorrhiza refers to a close relationship between a fungus 

and a root (Deacon, 1997).  In most cases, the relationship is mutalistic 

whereby each organism receives life-sustaining material from the other.  

Seven different mycorrhizal relationships are formed, but the two most 

commonly found in nature are ectomycorrhizae and arbuscular 

endomycorrhizae (Allen et al., 1995; Alexopoulos et al., 1996).   

A host plant receives several benefits from a mycorrhizal fungus 

symbiosis.  The fungus promotes plant growth by exploring beyond the root 

zone of the plant into the soil with extramatrical mycelium to intercept 

nutrients and water (Danielson, 1991; Clarkson, 1985).  Tolerance to drought, 

high soil temperature, and heavy metals made available by soil acidity are 

increased by mycorrhizal infection (Marx, 1980).  Mycorrhizal fungi also 

benefit host plants by protecting the roots from plant pathogenic fungi (Morin 

et al., 1999; Duchesne et al., 1989; Marx, 1969) and nematodes (Smith and 

Read, 1999; Deacon, 1997).  Mycorrhizal fungi receive benefits from the host 

plants in the form of carbohydrates and vitamins (Marx, 1975).   

Ectomycorrhizal fungi are present in two phyla, the Basidiomycota and 

the Ascomycota (Marx, 1975).  There have been approximately 5,400 
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ectomycorrhizal species identified from 148 genera worldwide (Allen et al., 

1995).  Law and Lewis (1983) suggest the symbiotic relationship between 

ectomycorrhizal fungi and plants arose on a number of occasions.   

In contrast, the arbuscular mycorrhizae, are presently classified in the 

phylum Zygomycota belonging to the order Glomales (Morton, 2000).  

Although the classification is currently under revision, 154 arbuscular fungal 

species have been described within seven genera (Morton, 2000).  Evidence 

suggests that arbuscular fungi arose from a common ancestor (Morton, 2000).   

Ectomycorrhizal fungal communities can be diverse, even when in 

association with host plants in communities with low diversity, such as a 

coniferous forest (Bruns, 1995; Hartley et al., 1997; Allen et al., 1995).  

Ectomycorrhizal community structure is influenced by host specificity (Egger, 

1995).  Many tree families, including the Pinaceae, Betulaceae, Fagaceae, 

Dipterocarpaceae, and most of the Mytaceae, Salicaceae and Cupressaceae 

associate with ectomycorrhizal fungi (Malloch et al., 1980).  Schramm (1966) 

suggest that for seedling development, ectomycorrhizal colonization is 

essential.   

Arbuscular mycorrhizal fungi are thought to have a relationship with 

nearly all agricultural, ornamental, forage, weed, and tropical plants, as well 

as cacti and many hardwood trees (Brundrett, 1991).  Arbuscular mycorrhizal 

fungi are normally found in communities of low diversity, even when 

associated with plant communities of high diversity (Allen et al., 1995).   
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The physiological relationships that these different types of 

mycorrhizal fungi have with their host plants are very similar.  However, the 

physical mechanisms of how the hyphae interact with the host plants are 

unresolved.  Ectomycorrhizal fungi cover the surface of feeder roots with a 

mantle or sheath of hyphae (Marx, 1975).  A Hartig net forms by a hyphal 

network that grows intercellularly extending to the outermost root cortex cell 

layers (Alexopoulos et al., 1996).  Hyphal strands extend out from the hyphal 

mantle to obtain nutrients and water from the soil (Danielson, 1991; 

Clarkson, 1985).  These materials are carried back to the Hartig net where an 

exchange between the plant and fungus presumably occurs (Deacon, 1997).  

Due to their need for a symbiotic relationship with a host tree, 

ectomycorrhizal fungi are rarely found in the environment in a free living 

state (Hartley et al., 1997).   

 Arbuscular fungi, however, grow intercellularly in root cells to branch 

and form intracellular arbuscles, which are sites of nutrient-exchange within 

cells, and sometimes vesicles, which are lipid storage structures (Smith and 

Read, 1999).  Arbuscular mycorrhizae are obligate biotrophic fungi and 

cannot be grown in culture apart from their host plants (Deacon, 1997).   

Ectomycorrhizal Fungi in Reclaimed Mine Lands: 

Ectomycorrhizal fungi are beneficial partners to host plants, especially 

in stressed soil habitats.  Some researchers suggest that certain fungi appear 

to adapt to living in stressful soil conditions (Marx and Artman, 1979), where 
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they may play important roles in reducing plant uptake of toxic metals by 

accumulating the metals in the mycorrhizal hyphae (Turnau et al., 1996).  An 

earlier study by Ingleby et al. (1985) suggests that stressed environments 

might limit mycorrhizal community diversity.  This study recorded restricted 

diversity of fruiting bodies of ectomycorrhizal fungi on abandoned poor soils.   

Since 1930, approximately 6 million acres have been disturbed by coal 

mining operations in the United States (Zeleznik and Skousen, 1996).  The 

contour of the land is changed by surface mining, which causes the geologic 

and hydrologic features to be altered (Gillis, 1991).  Surface mining is 

disruptive to biological communities because the operation consists of 

removing the overburden (soil above the coal) by blasting to expose coal veins, 

removing coal, and then replacing overburden (Skousen, personal 

communication).   

Mine soils are associated with low fertility, low organic matter, few 

nutrient reserves, low moisture-holding capacity, excessive leaching, erosion, 

and possibly unfavorable chemical characteristics (Jurgensen, 1978).  

Danielson (1991) described unreclaimed mine spoils as adverse environments 

for plant growth.   

In 1977, the federal government passed the Surface Mining Control 

and Reclamation Act (SMCRA), which required that all land mined for coal 

must be reclaimed in a manner such that the land resembles the premining 
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condition (Gillis, 1991).  SMCRA required land restoration to the premining 

use and/or level of productivity (Barnhisel and Hower, 1997).   

Biological communities are considered a complex of species interacting 

and changing through the addition or loss of species (Egger 1995).  The 

practice of surface mining leads to disruption of the original biological 

communities.  One researcher considered strip-mined lands to be a biological 

desert in comparison to the biological status of the original profile (Marx, 

1975).  Some of the original topsoil may be mixed throughout, but this is not 

enough to bring the land back to normalcy.   

Suitable rooting media for vegetation is critical for reconstruction of 

mined land (Barnhisel and Hower, 1997).  In present day reclamation, soil 

layers are replaced in the order in which they were removed to aid in 

revegetation of the surface mine (Gould et al., 1996).  The soil medium 

selected for the surface should provide physical and chemical properties 

suitable for postmining land use (Skousen and Zipper, 1996).   

Assessing Ectomycorrhizal Fungal Diversity by DNA Fingerprinting:   

To assess diversity of an ectomycorrhizal fungus community on 

reclaimed mines, or any site, researchers must use an appropriate strategy.  

A great deal of concern has been expressed about the validity of counting 

fungal reproductive structures to assess the diversity of fungi in a given area, 

due to the constraints of time and weather (Gardes and Bruns, 1996; 

Danielson and Pruden, 1989).  Gardes and Bruns (1996) found that some of 
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the most common species fruiting above ground were seldom found on roots 

below ground.  They found that more than half of the mycorrhizal fungi 

colonizing roots were not represented aboveground during the three-year 

period of their study.  In another study, of 47 fungal species producing 

sporocarps over 6 years, only 7 produced sporocarps every year, and almost 

half of the species produced fruiting bodies in any given year (Dahlberg et al., 

1997).  Fruiting bodies are indicative of species being present in the soil, but 

the absence of fruiting bodies is not indicative of the absence of mycorrhizal 

colonization (Gardes and Bruns, 1996).   

DNA fingerprinting allows identification of mycorrhizal fungi on host 

plants even in the absence of fruiting bodies.  DNA amplification is possible 

from small mycorrhizal tips using the polymerase chain reaction (PCR).  The 

use of PCR increases sensitivity in detecting DNA sequences because small 

volumes of DNA may be targeted (Timonen et al., 1997; Gardes and Bruns, 

1996; Gardes and Bruns, 1993; Henrion et al., 1992).  PCR directly from 

mycorrhizal root tips has given a more definitive measure of ectomycorrhizal 

fungi colonizing the tree roots (Gardes and Bruns, 1996).   

Amplifying the internal transcribed spacer (ITS) region of ribosomal 

DNA, followed by restriction fragment length polymorphism (RFLP) analysis 

of the amplified ITS regions has been very useful in distinguishing 

mycorrhizal fungal species on roots (Erland et al., 1994; Gardes and Bruns, 

1993; Gardes et al., 1991; Henrion et al., 1992; Gehring et al., 1998; 
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Gandeboeuf et al., 1997; Timonen et al., 1997; Dahlberg et al., 1997).   In 

general, RFLP analysis of the ITS region provides species level identification 

(Guidot et al., 1999).  Bonfante et al. (1997) detected variability in the RFLPs 

of the amplified ITS regions between species of Suillus, but little difference 

within a species. 

In cases where differences among isolates within a species need to be 

determined, more powerful DNA fingerprinting techniques such as amplified 

fragment length polymorphism (AFLP) can be applied.  AFLP combines PCR 

and RFLP to reveal significant levels of DNA polymorphism (Vos et al., 1995).  

AFLP is considered to be a robust and reliable molecular marker assay 

detecting DNA polymorphism at a much higher level of resolution (Loh et al., 

1999).  It has been used successfully with many plants to detect intraspecific 

variability (Loh et al., 1999; Barrett and Kidwell, 1998).   

Overview of Current Study: 

 In this thesis I describe a series of studies performed to investigate 

ectomycorrhizal diversity from 2 reclaimed surface mines in eastern Ohio 

differing in soil properties.  In chapter one, I describe community level 

diversity in field and trap cultures of ectomycorrhizal fungi on an acidic, 

aluminum-rich site (Dundee, Ohio) and an alkaline, non-metal stressed site 

(Georgetown, Ohio).  Chapter two summarizes the intraspecific variation 

within isolates of one species from Dundee and Georgetown, Ohio. 
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CHAPTER 1 
 

Ectomycorrhizal fungal community biodiversity on an acidic, Al-rich site 
(Dundee) and an alkaline, non-metal stressed site (Georgetown). 
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INTRODUCTION 

 Surface mining disrupts microbial activity and destroys vegetation 

(Gillis, 1991).  Gould et al. (1996) found that arbuscular mycorrhizal 

inoculum density was extremely low after the first year of reclaiming 

abandoned surface mines in Kentucky and increased slowly in the second and 

third years after reclamation.  Surface mine reclamation often leads to low 

soil pH, inadequate moisture retention, and compaction problems (Barnhisel 

and Hower, 1997).  Soil pH and moisture can influence capacity for 

ectomycorrhizal development in host plants (Marx, 1980).  Furthermore, 

compaction impedes root growth (Barnhisel and Hower, 1997) thus limiting 

the extent of ectomycorrhizal colonization on feeder roots (Marx, 1980).   

Reestablishing a stable landscape that has a state of usefulness is the 

primary goal of reclamation (Barnhisel and Hower, 1997).  Currently, grasses 

and legumes are preferred over tree planting because they quickly control 

erosion and provide a quick economic return (Zeleznik and Skousen, 1996).  

Tree planting has been used extensively in the past and provides long-term 

stabilization, though the process is slow (Zeleznik and Skousen, 1996).     

The objective of this current study was to assess biodiversity of 

ectomycorrhizal fungal communities on an acidic, aluminum-rich site 

(Dundee, OH) and an alkaline, non-metal stressed site (Georgetown, OH) 

reclaimed with eastern white pine.  We hypothesized that the fungal 

communities would differ and that the acidic, aluminum-rich soils would 
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restrict the diversity of fungi on that site.  We also compared efficacy of 

detecting diversity in root tips derived from trap cultures compared to field-

collected mycorrhizal root tips.   

MATERIALS AND METHODS 

Site Characteristics: 

 The surface mining operations located near Georgetown and 

Dundee, Ohio consisted of the removal of overburden, the extraction of coal, 

and the replacement of overburden into mined cuts in a series of ridges and 

troughs (Zeleznik and Skousen, 1996).  During reclamation on some of the 

Georgetown plots, bulldozers leveled the ridges and troughs.  In other plots of 

Georgetown and all Dundee plots, no leveling occurred.  In 1946 these surface 

mines were reclaimed with tree planting (Zeleznik and Skousen, 1996).   

Georgetown and Dundee sites were previously divided into 1.2 ha 

replicated plots planted with various tree species.  Among the tree species 

was eastern white pine (Pinus strobus), which forms obligate associations 

with ectomycorrhizal fungi.  The trees came from common nursery stock so 

that common fungal species were present at the time of outplanting, which 

minimized variation for initial fungal populations.  Ten trees were chosen on 

each of three plots for evaluation.  Zeleznik and Skousen (1996) analyzed 10 

soil samples from each plot in 1992 to determine overall chemical 

characteristics of the soils on each site (Table 1-1).   
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Characterization and Collection of Mycorrhizal Root Tips: 

 Ectomycorrhizae were collected and categorized by examining tree 

seedling roots from trap cultures and from tree roots collected from the field.   

Trap Cultures: 

 Pot cultures containing field soil and planted with a mycotrophic host 

provide a method to trap out natural ectomycorrhizal fungi.  Three soil cores 

(approximately 300 ml each) were taken about 1 m from the trunk of each of 

ten trees per plot at each site.  Soils were transported to the lab and stored at 

4° C until samples were used.  The field soil was homogenized by chopping; 

mixed with sand 1:2 (v/v); and, placed in 300 cm3 deepots (Stuewe and Sons, 

Corvallis, OR).  Individual tree and plot identity were maintained.  Before 

germination, white pine seeds were surface sterilized with tap water for 60 

minutes, 0.1% tween-80 for 60 minutes, an additional rinse with tap water 

for 60 minutes, a 30% hydrogen peroxide rinse followed by a distilled, sterile 

water rinse.  Seeds were stratified in sterile perlite that was dampened for 60 

days.  The flats containing the seeds were then moved to a growth chamber 

where there was a 14 hour light period at 24° C followed by a 10 hour light 

period at 19° C, allowed to germinate in the perlite and transplanted after 

approximately 4 weeks of growth.   

White pine seedlings were transplanted to deepots within 1 week of 

each other and pots were placed in a greenhouse.  Plants were watered with 
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an artificial rain solution (Lee and Weber, 1979) and grew for approximately 

3 months before being harvested.   

At harvest trees were loosened from the cones by rolling the cone on a 

countertop, after which roots and soil were gently pulled from the cone.  

Loose soil was carefully shaken from the roots, after which the root system 

was submerged in approximately 200 ml of tap water to remove adherent 

soil.  All trees were harvested over a 3-week period.    

 Roots were examined under a dissecting microscope and mycorrhizal 

root tips were placed into categories based upon their morphological 

characteristics (Table 1-2).  The number of mycorrhizal root tips per plant 

was also recorded.  Mycorrhizal root tips then were excised, surface-sterilized 

with 30% H2O2 and placed on modified Melin Norkins (MMN) medium 

(Marks, 1969).  Potato dextrose agar (PDA; Annis and Panaccione, 1998) also 

was used for later transfers.  When several mycorrhizal tips in the same 

category were found on one plant, the tips were frozen in a –80° C freezer for 

later DNA extraction. 

Field Root Collection:   

 Roots of trees sampled for trap cultures also were examined for 

mycorrhizal root tips in the field.  Approximately 1 m from the base of the 

tree, organic matter was removed to expose the topsoil layer.  Roots near the 

soil surface were carefully removed and placed in plastic bags for transport 

back to the lab.   
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 Once in the laboratory, root length was measured and roots were 

examined in the same manner described above for trap cultures.  

Morphological characteristics of root tips were different than those found in 

the trap cultures, so that different criteria were used to characterize them 

(Table 1-3).  Tips were frozen and stored in the same manner as described 

previously.   

DNA Preparation: 

Over the course of this study, three different DNA extraction protocols 

were used.  Each of the protocols is summarized below.   

Miniprep Extraction Method: 

Gardes and Bruns (1993) developed the miniprep extraction method 

for DNA extraction from fungal root tips (Appendix A).  Three-hundred µl of 

2X CTAB extraction buffer [2% (w/v) CTAB, 100 mM Tris HCL, 20 mM 

EDTA, and 1.4 M NaCl] was added to frozen mycorrhizal root tips in a 1.7-ml 

microcentrifuge tube.  The suspended sample was frozen at –70°  C and 

thawed on a heat block at 65°  C three times.  After the final thaw, the sample 

was crushed with a micropestle and incubated at 65°  C for 30 to 60 minutes.  

One volume (approximately 300 µl) of chloroform was added to each sample 

and mixed briefly by vortexing.  Samples were centrifuged for 10 minutes.  

DNA in the top layer was precipitated with cold isopropanol, collected by 

centrifugation, and washed with 70% ice-cold ethanol.  The pellet was 

suspended in 40-60 µl of 0.1 X TE (1 mM Tris pH 8.0, 0.1 mM EDTA).  
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Samples were diluted 1:5, 1:10, or 1:25 in a 50 µl Polymerase Chain Reaction 

(PCR).   

Modified Miniprep Extraction Method, GeneClean Protocol:   

 Samples were ground in 2X CTAB buffer and extracted with 

chloroform as previously described (Appendix B).  The top phase after 

chloroform extraction was purified with the GeneClean Kit (Bio101, Vista, 

CA).  Samples were diluted as needed for PCR.   

Modified Miniprep Extraction Method, GeneClean Spin Protocol:   

 Samples were ground in 2X CTAB buffer and extracted with 

chloroform as previously described (Appendix C).  The top phase after 

chloroform extraction was purified with GeneClean Spin Kit (Bio101, Vista, 

CA).  After purification, samples were diluted as needed for PCR.   

Polymerase Chain Reaction (PCR): 

Preparation: 

PCR was performed in 50 µl reactions containing 10 mM Tris-HCl pH 

9.0, 50 mM KCl, 0.1% v/v Triton-X100, 1.5 mM MgCl2, 200 µM each of 

deoxyribonucleotide triphosphates (dATP, dCTP, dGTP, dTTP; Promega 

Biotech, Madison, WI), 1 µM each of two oligonucleotide primers (GIBCO 

BRL Custom Primers, Gaithersburg, MD; described below), 0.5 units of Taq 

DNA polymerase (Promega Biotech, Madison, WI), and the desired amount of 

genomic DNA.  The volume of DNA added ranged from 1 to 10 µl among 

various samples.   
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The internal transcribed spacer (ITS) region of the ribosomal DNA 

(rDNA; Fig. 1-1) of each sample was amplified using a general primer 

combination of ITS1 (5’-TCCGTAGGTGAACCTGCGG-3’) and ITS4 (5’-

TCCTCCGCTATTGATATGC-3’), which anneals to DNA of a wide range of 

fungi (White et al., 1990).  Production of a DNA fragment from primers 

ITS1/ITS4 demonstrated fungal rDNA had been successfully isolated from 

the mycorrhizal root tip (Fig. 1-2a, 1-2b).  The primer combination of ITS1 

and ITS4B (5’-CAGGAGACTTGTACACGGTCCAG-3’) was used as an 

indicator of Basidiomycetes (Gardes and Bruns, 1993).  Figure 1-2c indicates 

that in lane 3, A439 was a Basidiomycete and A423 (lane 4) was not.  Figure 

1-1 illustrates the approximate location of the primers on the rDNA.   

PCR Temperature Cycles:   

 The PCR reactions were incubated in a programmable heat block 

(Hybaid, PCR Sprint) through 35 cycles of the following series of steps.  The 

initial denaturing was at 95° C for 85 s followed by 13 cycles of 95° C for 35 s, 

55° C for 55 s, and 72° C for 45 s.  Cycles 14-26 were 95° C for 35 s, 55° C for 

55 s, and 72° C for 120s.  Cycles 27-35 followed the same pattern with 95° C 

for 35 s, 55° C for 55 s, but 72° C for 180 s.  Upon completion of the 35 cycles, 

samples were incubated at 72° C for an additional 10 minutes.   
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Electrophoresis:   

 PCR products were examined by electrophoresis through 1.5% agarose 

gels (Sigma, St. Louis, MO), stained with ethidium bromide (BioRad, 

Richmond, CA), and photographed under ultraviolet (UV) light.   

Restriction Fragment Length Polymorphism (RFLP):   

 Aliquots of amplified ITS regions were digested separately for 3 h with 

2 enzymes, Sau 3AI and Nla III (New England Bio Labs, Beverly, MA).  

Samples were loaded onto a 2.0% agarose gel (Sigma, St. Louis, MO) and 

electrophoresed as described previously.  RFLP patterns were photographed 

under UV illumination.  Root tips were considered to contain the same fungal 

species if RFLP patterns were identical for both enzymes (Gardes and Bruns, 

1996; Gehring et al. 1998).   

Statistical Analysis: 

Diversity was calculated with the Shannon-Wiener index (H)  

H = -sum (Pi*log[Pi]) 

where Pi is the proportion of the ith species among all species (Bills et al., 

1986).  Species richness (S) was calculated by totaling the number of species.  

To measure the relative abundance of species, species evenness (E) was 

computed by E = H/log(S).  The diversity index and species richness for the 

two sites were compared using t-tests.   
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RESULTS 

Community Composition: 

 The mycorrhizal root tips collected in the field were counted and 

categorized according to visual likeness (Table 1-3, Fig. 1-4).  Individual (or 

different) fungal species associated with field-isolated root tips were 

investigated by RFLP analysis of PCR amplified rDNA.  Mycorrhizal root tips 

grouped into a morphological class produced either identical (Fig. 1-5) or 

different (Fig. 1-6) RFLPs.  RFLP patterns identified 31 fungal species (Table 

1-4).  The range of genetic diversity greatly exceeded that of morphological 

differences in some groups.  For example, eleven species were separated from 

the F1 morphotype (Tables 3, 4), conversely other morphotypes were 

homogenous, such as F2, F4, F6, F8, F11, F12, and F14.  Designations, such 

as F1A, F1B, F1C as they appear in subsequent tables, for example, 

represent different species originally considered F1 morphotype.   

The fungal communities exemplified by PCR/ITS/RFLP analyses in 

field-collected roots from the two sites were completely different.  F1 was the 

only common morphotype to both sites, however, evaluation with 

PCR/ITS/RFLP declared no common species to the two sites.  Table 1-4 lists 

the 31 identified fungal species and the plots on which the fungi were found.  

No fungal species found at Georgetown were found at Dundee (Table 1-4).   

F2 and F12 were the most frequently encountered species at 

Georgetown and Dundee, respectively.  Of 24.05 m of roots examined from 15 
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trees at Georgetown, 2309 mycorrhizal tips were found and 41% of these were 

F2 species.  DNA extraction was attempted on twenty F2 mycorrhizal tip 

samples and RFLP patterns suggested that these root tips were identical.  F2 

mycorrhizal tips were cultured and RFLP patterns from samples indicated 

that cultured isolates of F2 were identical to fungi in the mycorrhizal tips.  

From Dundee samples, of 20.66 m of roots from 15 trees yielded 1119 

mycorrhizal tips, of which 65% of the F12 species.  RFLP patterns of F12 root 

tip samples were clearly identical suggesting the visual grouping of the F12 

morphotype was correct (Fig. 1-5).  The F1 morphotype was observed in 874 

mycorrhizal tips, but yielded 11 different fungal species from 45 samples 

(Table 1-4).   

Of the 30 fungal species investigated, 19 (63%) were Basidiomycete 

fungi and 11 (37%) were of some other class (Fig. 1-7).  Basidiomycete fungi 

dominated at only one plot at Georgetown and two plots at Dundee.  

Otherwise, Basidiomycete and non-Basidiomycete fungi were in equal 

proportion (Table 1-5).  Of all fungal species at Dundee and Georgetown, 69% 

and 57% were Basidiomycetes, respectively.   

Community Diversity: 

Even though the fungal species at each site were genetically and 

morphologically distinct, community diversity was not significantly different 

(Table 1-6).  The Shannon-Wiener Index values for the two sites were not 

different between the two communities (Table 1-6).  Species richness varied 
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among plots within each site especially Georgetown, but no significant 

difference was detected between sites (Table 1-6).  Furthermore, species 

evenness did not differ between sites nor between plots at each site (Table 1-

6).   

Trap Community Composition and Diversity: 

Genetic diversity of ectomycorrhizal fungi collected from trap cultures 

was very low.  RFLPs revealed only 2 fungal species, even though 10 

morphotypes were originally distinguished (Table 1-2, Fig. 1-3).  The species 

T10 was found on only 1 seedling from Dundee, but the species designated 

‘rust brown’ was found on all ten seedlings planted in soil from all 6 plots.  

Colonies of this fungus growing on MMN and PDA agar-based media had a 

fluffy, rust-brown morphology.  ITS-RFLP fingerprints obtained from 

mycorrhizal tips and axenic culture of this fungus were identical (Fig. 1-8).   

 Mycorrhizal tips recovered from trap seedlings planted in soil from 

Dundee were 61% higher in number than those from Georgetown (4254 and 

2587, respectively).  Georgetown trap cultures averaged 89.2 tips per 

seedling, whereas Dundee trap cultures averaged 151.9 tips per seedling.   

DISCUSSION 

The objective of this chapter was to assess the biodiversity of 

ectomycorrhizal fungal communities on an acidic, Al-rich site (Dundee, Ohio) 

and an alkaline, non-metal stressed site (Georgetown, Ohio).  We 

hypothesized that due to pressure imposed by the concentration of Al, we 
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would find more diversity on the alkaline site.  However, the Shannon-

Wiener Index values suggested no difference in the diversity of the two sites 

(Table 1-6).  A previous study suggested that as the stand age increased the 

ectomycorrhizal diversity also increased (Bradbury et al., 1998).  All trees on 

both these sites were approximately 55 years old allowing ample time for a 

diverse population to develop.   

A similar study of ectomycorrhizal fungal diversity on serpentine 

(stressed) and non-serpentine (non-stressed) sites in Maryland also yielded 

similar Shannon-Wiener Index values (Cumming and Panaccione, personal 

communication).  However, in that study, ectomycorrhizal community 

diversity was constrained on the serpentine as compared to the non-

serpentine site.  Bills et al. (1986) compared two forest types, spruce and 

hardwood, where they found consistency in the total number of species 

between their two sites.  Gehring et al. (1998) found their cinder (stressed) 

sites averaged 16.7 ectomycorrhizal types and sandy-loam (non-stressed) 

sites averaged 17 ectomycorrhizal types.  Our results are consistent with 

those of the previous studies in that the Dundee site totaled 16 species and 

Georgetown had a total of 15 species.   

We expected differences in the community composition but 

hypothesized that some species would overlap between the two sites.  This 

was not the case; instead, the community structure was completely different.  

The expected overlapping fungal taxa were not found even though the trees 
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came from the same nursery stock.  Observation of overlapping species in 

other ectomycorrhizal fungal diversity studies, however, has been common 

(Baxter et al., 1999; Gehring et al., 1998; Bills et al., 1986; Cumming and 

Panaccione, personal communication; Bradbury et al., 1998; Kranabetter and 

Wylie, 1998; Gardes and Bruns, 1996).   

The lack of observed overlap might have been due to climatic 

conditions, geography, or soil factors.  Overlap might have been detected if we 

had the opportunity to assess sporocarp production.  Due to drought 

conditions, however, few sporocarps were found.   

The distance of approximately 75 km between Georgetown and Dundee 

may have been great enough to limit fungal spore dispersal, therefore leading 

to no overlapping species.  Allen et al. (1995) hypothesized that 

ectomycorrhizal fungi may be susceptible to biogeographic limitations on 

their dispersal.  Gehring et al. (1998), as mentioned previously, found some 

overlapping species, but the site locations for that study were within a 20 km2 

region.  Cumming and Panaccione (personal communication) found four 

overlapping species, but plots were relatively close together (within 4 km2).   

 Soil conditions also may provide important filtering effects on 

community structure and must be considered when hypothesizing the 

reasons for the lack of overlapping species.  Kranabetter and Wylie (1998) 

suggested that fungal distribution might reflect soil interactions in the 

relationship between ectomycorrhizal fungi and tree nutrition and health.  
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Allen et al. (1995) suggested that fungi adapt to their local soil and climatic 

conditions.  Although climatically they are similar, local soil conditions 

between Dundee and Georgetown were very different (Table 1-1).   

Zeleznik and Skousen (1996) found large differences in soil chemical 

properties (Table 1-1) when they examined the survival and growth of white 

pine at Georgetown and Dundee.  White pine is assumed to be better adapted 

to soils of pH is 5.5 or less (Skousen et al., 1994), so that pine growth and 

survival would be expected to be higher at Dundee than Georgetown.  

However, tree growth did not differ and survivability was lower at Dundee 

(Zeleznik and Skousen 1996), possibly due to other constraints, such as Al 

stress.   

Hartley et al. (1997) have suggested that ectomycorrhizal fungi vary in 

their ability to reduce metal sensitivity to the host plant.  One study found 

that depending on the mycobiont present, inhibition of paper birch and jack 

pine may occur at elevated levels of Cu, Ni, or Al in the soil solution (Jones et 

al., 1986).  Another study demonstrated that survival and growth of pine 

seedlings significantly improved upon infection with ectomycorrhizal fungi in 

compromising mine spoils (Marx and Artman, 1979).  Pisolithus tinctorius 

was able to help loblolly and shortleaf pine seedlings to tolerate adverse soil 

conditions better than Thelephora terrestris even at low nutrient 

concentrations (Marx and Artman, 1979).  Just as soil conditions were not 

severe enough at Dundee to effect any differences in height and survival of 
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trees on the experimental plantations (Zeleznik and Skousen 1996), soil 

conditions were also not likely severe enough to restrict fungal diversity on 

the Dundee site.   

We found considerable differences in the number of mycorrhizal tips 

per unit length of root from Dundee and Georgetown.  Mycorrhizal 

colonization on roots from Georgetown approximately doubled the amount of 

mycorrhizal tips found at Dundee.  Earlier studies suggested that heavy-

metal environments might compromise the mycorrhizal populations (Bell et 

al, 1988; Dixon, 1988).  Dixon (1988) found that high concentrations of 

cadmium, nickel, and lead reduced ectomycorrhizal colonization of Quercus 

rubra.  Bell et al. (1988) also showed that the frequency of mycorrhizal root 

tips was reduced in heavy-metal soils compared to non-stressed soils.  

However, results of Gehring and Whitman (1995) found approximately two-

fold higher levels of ectomycorrhizal colonization on roots from stressed soils.  

Another study looking at temporal variation found significantly higher 

ectomycorrhizal colonization on a stressed site (Swaty et al., 1998).  Our 

findings, however, were consistent with Dixon (1988) and Bell et al. (1988) 

and suggested that even though diversity restrictions from the availability of 

heavy-metals were not detected, reduced mycorrhizal colonization in response 

to heavy-metal stress was detected.   

Colonization data from the field roots suggested that roots from the 

Georgetown site had approximately twice the amount of colonization of those 
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from Dundee.  However, colonization data from the traps was the opposite.  

Seedlings planted in soil from Dundee had approximately twice the 

mycorrhizal root tips compared to those planted in soil from Georgetown.  

Baxter et al. (1999) found similar results.  Their stressed sites had 

significantly lower colonization in the field and significantly higher 

colonization in the greenhouse.  Our results indicate that optimum conditions 

in the greenhouse led to more colonization of seedlings.   

Visual typing of ectomycorrhizae root morphotype underestimated 

genotypic diversity.  Timonen et al. (1997) also observed different fingerprints 

of morphotypes that had been visually grouped together.  Just as visually 

typing mycorrhizae underestimated diversity, counting of fruiting bodies also 

underestimated diversity.  During the exceptionally dry years over which this 

study was conducted (1997-1998), less than 10 sporocarps were found on the 

two sites together.  These results support those of others who rejected the use 

of sporocarps as ectomycorrhizal fungi diversity indicators (Gehring et al., 

1998; Gardes and Bruns, 1996).   

We found that 19 (63%) of the 30 species examined amplified with the 

primer combination ITS1/ITS4B indicating that they were basidiomycetes.  

The other 37% are possibly in the phylum Ascomycota.  Gehring et al. (1998) 

also found that 33% of examined mycorrhizal tips were not Basidiomycetes.   

Clearly different species were abundant on each of the two sites.  Our 

results differ from those of Gehring et al. (1998) who found two 
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ectomycorrhizal types dominated on sandy-loam soils.  The cinder sites 

examined by these authors showed very different results than the data for 

the current study’s stressed site.  They found each cinder site was dominated 

by a different fungus (Gehring et al., 1998).  

We found that trap cultures growing for 3 months were insufficient 

indicators of community diversity.  One fungus dominated on all trap trees 

and only one other fungus was detected on one tree.  Certain fungi have been 

considered pioneering fungi that infect young seedlings in the field (Deacon, 

1997).  Fungi initially colonizing a root system, are thought to be replaced on 

the roots nearest the trunk by late-colonizing fungal species (Bruns, 1995).  

No evidence of succession was detected in the trap cultures due to a limited 

growth period and a limit of seedlings grown to check over the course of the 

experiment.  However, the ‘rust brown’ fungus isolated from the traps 

provides a means by which we can investigate intraspecific variation in 

ectomycorrhizal fungi from divergent soil types.   
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Table 1-1. Soil characteristics. 
Soil characteristics of reclaimed surface mine sites at Georgetown and 
Dundee, Ohio1. 

 
Parameter Georgetown2 Dundee 
pH     7.7     4.2 
Calcium (mg/kg) 431.0   (6.2)   36.3   (2.9) 
Potassium (mg/kg)     4.80 (0.12)     2.92 (0.10) 
Sodium (mg/kg)     0.53 (0.04)     0.60 (0.04) 
Magnesium (mg/kg)   35.3   (1.7)   16.4   (1.6) 
Al  (mg/kg)     0.17 (0.07) 377.0 (42.5) 
Iron (mg/kg)   32.9   (1.5) 269.0 (17.2) 
 
1Soils were extracted with 1 M ammonium acetate at pH 7.0 and analyzed by 
inductively coupled plasma emission spectroscopy (Zeleznik and Skousen, 1996) 
 
2 Mean values with standard errors in parenthesis  
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Table 1-2. Morphological categorization of trap culture roots.   
Morphological categorization of mycorrhizal tips collected from trap 
cultures of white pine seedling.   

 

 

Morph 
ID 

Color Surface Branching Extramatrical 
Hyphae 

1 
Tip: orange/white  
Base: dark brown 

Smooth to 
semi-wooly 

Bifurcate, 
doubly 
bifurcate 

Present 

2 
Throughout tip: 
peach/orange 

Smooth to 
semi-wooly 

Coralloid, 
bifurcate 

Present 

3 
Tip: white 
Base: black 

Semi-wooly 
to wooly 

Bifurcate Present 

4 
Tip: gray/white 
Base: light gray/ 
black 

Smooth to 
semi-wooly 

Bifurcate Present 

5 
Tip: light 
orange/white 
Base: burnt red 

Smooth Bifurcate Present 

6 
Tip: white 
Base: very light 
tan/orange 

Semi-wooly 
to wooly 

Bifurcate, 
monopodal 

Present 

7 
Tip: red/orange 
Base: black 

Smooth Bifurcate Few 

8 
Tip: whitish 
Base: brown/orange 

Very wooly Bifurcate Many 

9 
Tip: white 
Base: olive green 

Semi-wooly Bifurcate, 
monopodal 

Present 

10 
Throughout tip: very 
white 

Very wooly Bifurcate, 
monopodal 

Very many 
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Table 1-3. Morphological categorization of field roots. 
Morphological categorization of mycorrhizal tips collected from white 
pine tree roots at Dundee and Georgetown, Ohio. 

 
 

Morph 
ID 

Color Surface Branching Extramatrical 
Hyphae 

F1 Orange Smooth Coralloid, 
bifurcate 

Present 

F2 Light peach/yellow Covered with 
hyphae 

Coralloid, 
bifurcate 

Present, snow 
white 

F3 Black Smooth Bifurcate Very few 

F4 Orange 
Covered with 
hyphae, but not 
wooly 

Monopodal 
bifurcate 

Present, Very 
yellow and 
large amount 

F5 Burnt red  Smooth Coralloid Few 

F6 Orange/brown Very wooly Monopodal 
bifurcate 

Present, golden, 
but very wooly 

F7 Yellow/white/mauve Wooly Bifurcate Present, long, 
translucent  

F8 Red/brown to brown Smooth, hyphae 
covers surface 

Bifurcate Present, brown, 
but not wooly 

F9 Deep purple Smooth Bifurcate Few 

F10 Yellow/orange/white Smooth, hyphae 
covers surface 

Bifurcate Present, white, 
not wooly 

F11 Brown/red  Smooth Bifurcate Few 

F12 Light pink/orange Smooth, hyphae 
covers surface 

Bifurcate Present, 
pink/white 

F13 Gray Smooth Bifurcate Few 

F14 Black Very wooly Bifurcate Present, very 
black  
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    18S rDNA            5.8S rDNA       28S rDNA 
         Gene       Gene            Gene 
    
       ITS1        ITS4 
               ITS4B 
 
Figure 1-1.  Diagram of the ITS region.  

Structure of the ITS region in fungal DNA (adapted from Gardes and 
Bruns, 1993).  Shows orientation and approximate location of primers 
for PCR amplification.  Sequences of the ITS1, ITS4, and ITS4B 
primers:   
ITS1 (5’-TCCGTAGGTGAACCTGCGG-3’) 
ITS4 (5’-TCCTCCGCTATTGATATGC-3’) 
ITS4B (5’-CAGGAGACTTGTACACGGTCCAG-3’) 

ITS1 ITS2 
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    a       b      c   

 
Figure 1-2.  Amplification products of the ITS region.  

Amplification products from the ITS regions of Basidiomycete and non-
Basidiomycete fungi.  Lanes 1 and 3 contain products amplified from 
isolate A439 template rDNA.  Isolate A423 DNA was template for 
amplification products in lanes 2 and 4.  Primer combinations in PCR 
were: a) ITS1/ITS4; b) ITS1/ITS4; and, c) ITS1/ITS4B.  Products were 
electrophoresed through 1.5 % agarose.   
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Figure 1-3.  Morphotypes from trap cultures. 
Comparison of mycorrhizal root tip morphotypes on white pine 
seedlings grown in pot cultures for 3 months containing representative 
morphotypes were photographed under a dissecting microscope.  All 
were photographed in water under an Olympus stereomicroscope.  The 
first number represents the plot in which the mycorrhizal tip was 
found (26, 31, 34 for Georgetown; 58, 62, 71 for Dundee).  The middle 
number represents the tree number in which the isolates were found.  
Finally, the last number represents the root morphotype.  Please see 
Table 1-2.   

 
Figure 1-4.  Morphotypes from field collection. 

Comparison of mycorrhizal root tip morphotypes from field roots of 
white pine.  Roots collected from trees in the field were photographed 
under a dissecting microscope.  All were photographed in water under 
an Olympus stereomicroscope.  Root numbering system is described in 
the legend to Figure 1-7.  Please see Table 1-3.   
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     a           b  

 
Figure 1-5.  RFLP analysis of the F12 morphotype.   

RFLP analysis of the F12 morphotype with the enzymes Sau 3AI and 
Nla III.  The PCR products of the F12 morphotype amplified with 
ITS1/ITS4 primer combination were digested with Sau 3AI (a) and Nla 
III (b).  Lane 1 = A146, lane 2 = A147, lane 3 = A148, lane 4 = A149, 
lane 5 = A150, lane 6 = A152, lane 7 = A151, lane 8 = A154, lane 9 = 
A156, lane 10 = A157, and Std = 50 base pair ladder from GIBCO BRL.   
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         a            b 

 
Figure 1-6.  RFLP analysis of the F10 morphotype.  

RFLP analysis of the F10 morphotype with the enzyme Sau 3AI 
and Nla III.  The PCR products of the F10 morphotype amplified 
with ITS1/ITS4 primer combination were digested with Sau 3AI 
(a) and Nla III (b).  Lane 1 = A273, lane 2 = A274, lane 3 = A275, 
lane 4 = A276, lane 5 = A277, lane 6 = A278, lane 7 = A279, lane 8 
= A280, lane 9 = A281, lane 10 = A282, lane 11 = A283, lane 12 = 
A284, lane 13 = A285, lane 14 = A286, lane 15 = A287, and Std = 
50 base pair ladder from GIBCO BRL.   
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Table 1-4. Distribution of fungal species  
Distribution of fungal species found on alkaline site Georgetown (plots 26, 
31, and 34), and the acidic site Dundee (plots 58, 62, and 71), based on 
RFLP patterns.  Isolates initially were differentiated (F1 – F14) by 
morphological criteria (Table 1-3). 

 

Fungal 
Species Plot 26 Plot 31 Plot 34 Plot 58 Plot 62 Plot 71 

F1A  X X    
F1B X X     
F1C     X  
F1D      X 
F1E     X  
F1F      X 
F1G   X    
F1H X      
F1I X      
F1J    X   
F1K X      
F2 X X X    
F3A X X X    
F3B   X    
F3C  X     
F4 X      
F6 X      
F7A X      
F7B   X    
F7C    X   
F8 X      
F9A     X  
F9B      X 
F10A    X  X 
F10B     X  
F10C     X  
F10D      X 
F10E      X 
F11    X X  
F12    X X X 
Cenococcum 
geophilum 

   X   

Species 
Richness on 
Plots 

10 5 6 6 7 7 

Species 
Richness on 
Sites 

Georgetown 
15 

Dundee 
16 
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Figure 1-7.  Basidiomycete and non-Basidiomycete percentages. 
Thirty species were examined by PCR for amplification with 
ITS1/ITS4B. 

 
 
 

Basidiomycete
63%

Non-Basidiomycete
37%

Basidiomycete

Non-Basidiomycete



 

 

 

44

Table 1-5. Distribution of Basidiomycetes. 
Distribution of Basidiomycetes by plot in the two sites sampled 
(Georgetown and Dundee, Ohio).  

 Plot 26 Plot 31 Plot 34 Plot 58 Plot 62 Plot 71 
Basidiomycete 7 3 3 2 5 7 
Non- 
Basidiomycete 2 2 3 3 2 0 
Not checked 1 0 0 0 0 0 
 Georgetown Totals Dundee Totals 

Basidiomycete 
 
8 

 
11 

Non- 
Basidiomycete 

 
6 

 
5 

Not checked 1 0 
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Table 1-6. Comparison of community diversity.  
Comparison of community diversity of ectomycorrhizal funi 
isolated from white pine trees at Georgetown and Dundee, Ohio.  
Species were defined by discrete differences in RFLP banding 
patterns of PCR amplified ITS regions in rDNA. 

 

Georgetown Shannon-
Weiner Index 

Species 
Richness 

Species 
Evenness 

26 0.969 10 0.969 
31 0.587 5 0.840 
34 0.699 6 0.898 

Mean 0.752 7 0.902 
Population 

Variance 
0.023 4.67 0.003 

Standard 
Deviation 

0.152 2.16 0.055 

Dundee Shannon-
Weiner Index 

Species 
Richness 

Species 
Evenness 

58 0.71 6 0.912 
62   0.779 7 0.922 
71 0.77 7 0.911 

Mean   0.753     6.67 0.915 
Population 

Variance 
  0.001      0.233     0.00003 

Standard 
Deviation 

  0.032      0.483 0.005 

t Values for 
Georgetown 
and Dundee 

t0.05, 4 = 2.132 > 
0.0111 

t0.05, 4 = 2.132 > 
0.258 

t0.05, 4 = 2.132 
> 0.351 
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         a      b 

 
Figure 1-8.  RFLP analysis of the ’rust brown’ isolates  

RFLP analysis of the ’rust brown’ isolates with the enzyme Sau 
3AI and Nla III.  The ‘rust brown’ fungal isolates obtained from 
the trap cultures were amplified with the primer combination 
ITS1/ITS4 then digested with Sau 3AI (a) and Nla III (b).  Lane 1 
= 26-2-1, lane 2 = 34-2-1, lane 3 = 34-10-2, lane 4 = 26-6-2, lane 5 
= 58-1-2, lane 6 = 58-4-1, lane 7 = 62-1-2, lane 8 = 62-10-2, lane 9 
= 31-2-2, lane 10 = 34-8-7, lane 11 = 62-7-9, lane 12 = 71-8-2, lane 
13 = 31-5-5, lane 14 =31-1-2, lane 15 = 71-10-2, lane 16 = 58-8-2, 
lane 17 = root sample 26-5-2 and Std = 50 base pair ladder from 
GIBCO BRL.  
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CHAPTER 2 
Genotypic and physiological analyses of populations of Wilcoxina mikolae 

isolated from acidic and alkaline coal mine soils. 



 

 

 

48

INTRODUCTION 

One of the primary factors affecting the reclamation of mine lands is 

the composition of the overburden.  When exposed to oxygen and water, 

pyritic material contained in the overburden oxidizes to produce sulfuric acid 

(Evangelou et al., 1985).  The sulfuric acid produced by pyrite weathering 

decreases the pH of the soil (Chichester and Hauser, 1991) and leads to 

increased metal availability in the soil (Zel et al., 1993).  Many metals, 

including aluminum (Al), iron (Fe), and manganese (Mn), exhibit pH 

dependant solubility.  As soil pH drops, the concentration of these metals 

increases, leading to phytotoxicity.  A soil pH of 4.5 is considered an optimum 

level for aluminum toxicity to plants (Grauer, 1992).  When pH values of the 

soil solution are near neutral, concentrations of Fen+, Al n+, Mn2+, and Zn2+ 

are very low (Wilden et al., 1999).    

  Studies indicate that species of mycorrhizal fungi, and perhaps 

isolates within species, vary in Al tolerance.  Cumming and Weinstein (1990) 

showed that Pisolithus tinctorius was able to protect seedlings from adverse 

Al affects.  Cumming et al. (unpublished) found that Laccaria bicolor and P. 

tinctorius tolerated Al concentrations up to 500 µM in vitro.  Thomson and 

Medve (1984) saw significant growth reduction in response to Al from Suillus 

luteus, P. tinctorius, Cenococcum graniforme, and Thelephora terrestris.  

Jongbloed and Borst-Pauwels (1992) found Lactarius rufus and Lactarius 

hepaticus to be more Al sensitive than Laccaria bicolor.  However, Jongbloed 
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et al. (1992) saw a reduction in phosphate uptake in the presence of Al by all 

three fungi L. rufus, L. hepaticus, and L. bicolor.   

 As previously described in chapter 1, trap cultures did not provide a 

complete representation of fungal diversity of Georgetown and Dundee.  

However, sixteen isolates of a fungus provisionally called ‘rust brown’ were 

cultured successfully.  RFLP patterns of ‘rust brown’ isolates digested with 

Sau 3A I and Nla III established that they were from the same species.  In 

this chapter we classify the ‘rust brown’ isolate and determine if it can re-

colonize Pinus strobus seedlings and form similar ectomycorrhizae.  We 

investigate the genetic relationships among the 16 isolates, some of which 

originated from alkaline soil at Georgetown and others from acidic soil at 

Dundee.  We hypothesized that intraspecific variation is likely between sites, 

but variation would be minimal within sites.  Finally, we examine the affects 

of subjecting all isolates to different Al concentrations and pH ranges.  

Considering differences in environment between the Georgetown and Dundee 

soil (Zeleznik and Skousen, 1996) (Table 1; Chapter 1), we hypothesized that 

fungal isolates from Georgetown (alkaline) would produce greater dry weight 

in treatments with no Al and higher pH.  We also hypothesized that the 

Dundee (acidic) site isolates would produce greater dry weight than the 

Georgetown sites when exposed to low pH and high Al.   
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MATERIALS AND METHODS 

DNA Sequence Analysis of ‘Rust Brown’ Isolate:   

 The ITS region of the ‘rust brown’ isolate (isolate 31-2-2) was amplified 

from primers ITS-1X (5’-TATCTAGATCCGTAGGTGAACCTGCGG-3’) and 

ITS-4X (5’-TCTCTAGATCCTCCGCTTATTGATATGC-3’).  These are 

essentially primers ITS1 and ITS4 (White et al., 1990) with additional 

nucleotides at the 5’ ends to create Xba I sites.  Amplification conditions were 

the same as those described in Chapter 1.  PCR products were digested with 

Xba I and ligated into the Xba I site of pBluescript (Stratagene, San Diego, 

CA).  The ligation mixture was transformed into Escherichia coli strain 

DH5∝ by the CaCl2 method (Sambrook et al., 1989).  The insert (both 

strands) of the recombinant plasmid was sequenced by the Michigan State 

University DNA Sequencing Facility.  Sequence data were compared (with 

and without the 5.8s coding sequences) to GenBank and EMBL databases 

with the blastn algorithm (www.ncbi.nlm.nih.gov/).   

Koch’s Postulates: 

 To confirm that the ‘rust brown’ isolates were ectomycorrhizal, 7 sterile 

Pinus strobus seedlings (Chapter 1) were inoculated with ‘rust brown’ 

cultures (isolate 31-2-2).  Seedlings were planted in sterile sand in 500-ml 

flasks containing Modified Melin-Norkans (MMN) media (Molina and 

Palmer, 1982), inoculated with mycelial plugs from axenic culture, and grown 
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for 3 months.  Roots were examined under a dissecting microscope and 

mycorrhizal tips excised.  DNA was extracted from mycorrhizal tips with 

GeneClean Spin Kit (Bio101, Vista, CA) and the ITS regions were amplified 

by PCR.  The second generation mycorrhizal tips were compared to the first 

generation root tips by digesting the PCR products with Sau 3AI and Nla III 

(New England Bio Labs, Beverly, MA). 

Amplified Fragment Length Polymorphism (AFLP) Analysis: 

Fungal DNA was extracted from 16 ‘rust brown’ isolates with 

GeneClean Spin Kit (Bio101, Vista, CA) protocol described in Chapter 1.  

DNA extracts were subjected to restriction, ligation, and amplification as 

described in GibcoBRL (Gaithersburg, MD) protocols for AFLP Core Reagent 

Kit using the EcoRI-adapter and the MseI-adapter.  Primer pairs E-AC + M-

A, E-AA + M-C, E-AA + M-A, and E-AA + M-G (AFLP  Microorganism 

Primer Kit, GibcoBRL, Gaithersburg, MD) were used for amplification of 

fungal DNA.   

 Five µl of amplification product and loading dye was loaded onto a 6% 

polyacrylamide denaturing gel (Sambrook et al., 1989).  Electrophoresis was 

performed for fragment separation.  Amplification products then were 

electrophoretically transferred to Magnagraph nylon (MSI, Westboro, MA) 

and then detected using a GibcoBRL AFLP non-radioactive probe.   
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 Polymorphic fragments were treated as individual characters and 

scored with a ‘1’ for present or a ‘0’ for absent.   Distance between isolates in 

all possible pairwise combinations was calculated according to the formula  

S = 2 * nab / (na + nb) 

where nab is the total number of bands shared between the two lanes, na is 

the number of bands in lane ‘a’, and nb is the total number of bands in lane ‘b’ 

(Weising et al., 1995).  The relationships among the isolates based on this 

distance matrix were analyzed with the UPGMA (Unweighted Pair Group 

Maximum Averages) algorithm of the Phylogeny Inference Package 

(PHYLIP) (Felsenstein, 1993).   

Physiological Study: 

 The 16 isolates used in the AFLP study were examined for their 

response to different pH and aluminum concentrations in vitro.  Treatments 

for pH were 4, 6, and 8 with 4 replications for each fungal culture.  

Treatments for Al were 0 µM, 100 µM, and 500 µM at pH 4 with four 

replicates of each fungal culture.     

Media preparation:  

 Modified Melin-Norkans (MMN) (Marks, 1969) was the basal medium 

used for both the pH and Al in vitro experiments.  The media for the pH 

experiment were buffered with citric acid at the desired pH (4, 6, or 8) before 

filter sterilization and the final pH averaged 3.88, 5.5, and 6.37, respectively.  

All media for the Al experiment were buffered with fumaric acid at pH 4 to 
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maintain Al availability.  Media were filter-sterilized and distributed 40 ml 

per 125-ml flask.   

Inoculation: 

 Thirteen 6-mm diameter plugs were cut from each of the 16 plate 

cultures and then leached in sterile distilled water for 24 hours prior to 

inoculation.  One fungal plug was used to inoculate each treatment.  Cultures 

were incubated at 20° C in darkness for 8 weeks.   

Harvest:    

 Filter paper was initially weighed to calculate residual water.  Fungal 

cultures were vacuum-filtered onto pre-weighed filter papers with a Buchner 

funnel and rinsed with 40 ml of distilled water.  The filtered mycelia were 

dried at 60° C for 5 days then weighed.   

Statistics:  

In vitro growth data were analyzed as nested factorial designs, with 

isolates nested within sites crossed with media pH or Al treatment.  Analyses 

were undertaken in the statistical package JMP (SAS Institute, Carey, NC).  

Mean separations where undertaken by single degree-of-freedom contrasts.   

RESULTS 

Identity of ‘Rust Brown’ Fungus:   

 The DNA sequence of the ITS region of the ‘rust brown’ fungus was 

compared to all sequences in the GenBank and EMBL databases by the 

blastn algorithim.  The closest matches were to the ITS region of Wilcoxina 



 

 

 

54

mikolae (accession numbers U38563 and U38626), a mycorrhizal ascomycete.  

DNA sequence from the ITS region of the ‘rust brown’ fungus was compared 

to the analogous region of other W. mikolae isolates and closely related fungi 

by the multiple alignment algorithm in DNAsis for Windows version 2.1 

(Hitachi Software Engineering Co., San Bruno, CA).  The ITS region of our 

isolate was on average 98.9% identical to the W. mikolae accessions within 

GenBank and 99.4% identical to accession numbers U38563 and U38626 

(Fig. 2-1).  These data strongly suggest that the ‘rust brown’ isolate found in 

our trap culture is W. mikolae.   

Pinus strobus seedlings were successfully re-colonized by W. mikoae 

and formed mycorrhizae morphologically identical to those of trap culture 

plants (Fig. 1-3 in chapter 1).  The identity of the original isolate and the 

fungus in the synthesized mycorrhizae was demonstrated by ITS/RFLP (Fig. 

2-2).   

AFLP Analysis of W. mikolae Isolates from Acidic and Alkaline Sites: 

 Four AFLP primer pairs (E-AC + M-A, E-AA + M-C, E-AA + M-A, and 

E-AA + M-G) generated 204 polymorphic fragments.  The relationship among 

the 16 isolates of W. mikolae based on the number of shared AFLP fragments 

is graphically represented by the phonogram produced by the UPGMA 

algorithm of PHYLIP (Fig. 2-3).  Most isolates from both alkaline and acidic 

sites exhibited only small differences in AFLP patterns, ranging from 1% to 

15%.  The most genetically distant isolate, 62-7-9, originated from the acidic 
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site at Dundee.  It differed by 31%-48% from other isolates.  Dundee isolates 

71-8-2 and 71-10-2 differed from other isolates by 25% to 35%; however, the 

difference between the two isolates was only 3%.  The Georgetown isolate 26-

2-1 was also different from other isolates by 29%-33% (Fig. 2-3).   

Physiological Analyses: 

 W. mikolae isolates grew best at near-neutral pH in vitro (Fig. 2-4), 

with growth being reduced by 44% at pH 4 compared to that at pH 6.  Growth 

responses of Dundee and Georgetown populations did not differ significantly 

in response to medium pH (P = 0.4337).  Variation was high, however, within 

populations in response to medium pH (P < 0.001).  Only one isolate, 71-10-2 

from the acidic Dundee site, grew better at pH 4 than at pH 6 (118% the 

mass accumulated at pH 6).  This isolate also was genetically distant from 

other isolates.  Its sister isolate, 71-8-2, also grew well at pH 4, accumulating 

79% of the mass at the lower pH than the higher pH.  However, the 

remaining Dundee isolates grown at pH 4 accumulated only 38% the mass 

compared to that at pH 6.  Georgetown isolates grown at pH 4 also 

accumulated only 38% the mass at pH 6.   

 At pH 4, the growth of W. mikolae isolates was slightly stimulated by 

100 µM Al, but was reduced by 16% at 500 µM Al (Fig. 2-5).  Populations 

responded differentially to Al concentrations.  Whereas Dundee isolates grew 

equally well at 0 and 100 µM Al, growth of the Georgetown isolates was 

stimulated at 100 µM Al (Fig. 2-5).  Growth of isolates from each population 
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was highly variable in response to Al, indicating that populations did not 

segregate consistently under Al stress (P < 0.001 for the Al-by-isolate within 

site interaction).  Analysis of covariance of the Al treatments indicated that 

cultures at pH 6 grew better than isolates at pH 4.   

DISCUSSION 

 The ‘rust brown’ fungus trapped from reclaimed surface mines was 

identified as Wilcoxina mikolae.  The ITS region of the ‘rust brown’ isolate 

was 99.4% identical to the analogous regions of Wilcoxina mikolae accession 

numbers U38563 and U38626.  Overall, there was 98.9% identity among in 

the ITS regions of other W. mikolae isolates (Fig. 2-1).  The re-colonization of 

white pine (Pinus strobus) from the ‘rust brown’ isolate confirmed that our W. 

mikolae isolates were mycorrhizal.   

Also known as ectendomycorrhizae or E-strain mycorrhizal fungi, W. 

mikolae belongs to the phylum Ascomycota in the order Pezizales (Danielson, 

1982).  E-strain fungi were originally described as Tricharina mikolae (Yang 

and Wilcox, 1984).  Later, Yang and Korf (1985) placed the E-strain fungi 

into a new genus, Wilcoxina.  Characteristically, the mantle is thin and, 

depending on the associated host, the Hartig-net hyphae may or may not 

penetrate the root cortical cells (Scales and Peterson, 1991a and 1991b).  

Because the root cortical cells may or may not be penetrated, Scales and 

Peterson (1991b) viewed the ‘ectendomycorrhizae’ (E-strain) as a variation in 
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development of ectomycorrhizae and hypothesized that ectendomycorrhizal 

fungi were a lineage within the ectomycorrhizal fungi.   

Wilcoxina spp. have high affinities to be mycorrhizal in nursery stock 

and greenhouses (Egger, 1996; Scales and Peterson, 1991a).  Danielson and 

Visser (1990) looked at container-grown trees and shrubs and described 

Wilcoxina sp. as the primary colonizer of lodgepole pine and white spruce.  

We found our trap cultures produced W. mikolae on all of our seedlings and 

only one other species on one tree.  This is consistent with the data of 

Shishido et al. (1996) who detected primarily Wilcoxina sp. on their forest-

soil-treated seedlings.  Due to the differences between the communities in our 

field roots and trap roots (Chapter 1), we conclude that trap culture 

conditions enriched for W. mikolae.    

Wilcoxina mikolae is commonly associated with host plants on 

disturbed soils, including coal mine spoils (Egger, 1996; Yang and Korf, 

1985).  Furthermore, W. mikolae is adapted to a wide ecological range 

(Chakravarty et al., 1990) and has the ability to tolerate adverse soil 

conditions created by disturbance (Egger et al., 1991).  Baar et al. (1999) 

found W. mikolae had colonized seedlings after a forest fire even though pre-

fire data did not detect the fungus.   Even though we were unable to detect W. 

mikolae in our field sampling, we were able to trap the fungus on seedlings 

(Baar et al., 1999).   
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AFLP is a sensitive and reliable method for defining differences in 

populations.  Sanchez et al. (1999) found that AFLP revealed genetic 

similarity of cassava.  Panaccione et al. (in review) used AFLP to analyze 18 

isolates of Cenococcum geophilum found on serpentine (high concentration of 

Mg2+ and Ni2+) soils and non-serpentine sites.  Their data indicated that the 

serpentine isolates and the non-serpentine isolates were genetically distinct.  

Another study compared AFLP to RAPD, finding that AFLP showed more 

genetic diversity than RAPD and that AFLP results were more reproducible 

(Barker et al., 1999).   

Our AFLP study suggested the majority of the isolates of W. mikolae 

were genetically similar and did not suggest any population specialization 

based upon soil type or geography.  However, several W. mikolae isolates 

were genetically dissimilar. W. mikolae is a sexually outcrossing species 

(Yang and Wilcox, 1984) which should result in distribution of AFLP markers 

among localized compatible isolates.  The few genetically dissimilar isolates 

that we observed may have lost their ability to cross with other individuals 

on the sites.  Different species of Wilcoxina also can cross to form hybrid 

varieties.  Egger et al. (1991) suggested that hybridization occurred between 

W. mikolae and W. rehmii creating a new variety, W. mikolae var. tetraspora.  

Hybridization of crossing species could account for the unusual isolates found 

in our AFLP study.   
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Physiological responses of W. mikolae isolates to Al and pH were 

investigated and no significant difference between the two populations was 

detected in response to these stresses.  Across both populations of W. mikolae, 

Al stimulated growth at 100 µM and significantly reduced growth at 500 µM.  

However, the effect of Al on growth depended on the population.  The 

significant Al-by-population interaction was the result of the stimulation of 

growth in Georgetown isolates by 100 µM Al compared to controls, whereas 

growth of isolates from Dundee was unaffected by 100 µM Al.  The growth of 

isolates from both populations was similarly reduced at 500 µM Al.  The 

stimulation by low concentrations of Al in the population collected from the 

neutral pH site may be due to of low concentrations of Al reducing the toxic 

effects of H+ on these isolates (Kinraide, 1993).   More significantly, however, 

isolates that originated from the Al-rich soil at Dundee were not more 

tolerant of Al than were the Georgetown isolates.   

With respect to pH, our results suggested that growth of W. mikolae 

isolates in both populations was reduced at pH 4 compared to that observed 

at the higher pHs of 6 and 8 (Fig. 2-4).  These results suggest that isolates 

originating from the acidic Dundee site were not more acid tolerant than from 

the alkaline Georgetown site.  Conversely, isolates from Georgetown were no 

more adapted to alkaline pH than isolates from Dundee.  In contrast to these 

findings for W. mikolae, Jongbloed and Borst-Pauwels (1992) found that the 

optimal ranges for growth for Lactarius rufus and Lactarius hepaticus were 
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between the ranges of 2.5 to 4.3 and 3.0 to 4.3, respectively.  They also found 

severe inhibition of these two fungi when exposed to pH 5.2.   

Ecotypic separation appears to be absent between the Dundee and 

Georgetown populations, at least as it relates to soil pH and Al concentration.  

Perhaps the soil conditions at Dundee did not impose severe pressure to 

select acid-tolerant or Al-tolerant individuals.  One isolate 71-10-2, was more 

acid-tolerant and also was genetically separated from other isolates based on 

AFLP analysis.  However, if this species were at a competitive advantage on 

this site, then it would have been detected much more frequently on the 

Dundee plots.   
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Figure 2-1.  DNA sequence comparison of the ITS region. 

Comparison of the DNA sequence of the ITS region of the ‘rust 
brown’ fungus (BSKITS) with the ITS regions of Wilcoxina 
mikolae and related fungi.  Isolate designations are GenBank 
accession numbers.  Figures at nodes are percent DNA sequence 
identity.  Tree was generated by the multiple alignment algorithm 
of DNASIS for Windows 2.0.   
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Figure 2-2.  Second generation of W. mikolae RFLP patterns.  
RFLP patterns of the second-generation W. mikolae ITS regions 
amplified with ITS1 and ITS4 and digested with Sau 3AI and Nla 
III.  Comparison of RFLP patterns between second-generation 
mycorrhizal root tips of W. mikolae and also the trap culture 
isolate A230 (Lane 11).  Lane 1 = tree 1 root tip a, lane 2 = tree 1 
root tip b, lane 3 = tree 4 root tip a, lane 4 = tree 4 root tip b, lane 
5 = tree 5 root tip a, lane 6 = tree 5 root tip b, lane 7 = tree 6 root 
tip a, lane 8 = tree 6 root tip b, lane 9 = tree 7 root tip a, lane 10 = 
tree 7 root tip b, lane 11 = A230, and Std = 50 base pair ladder 
from GIBCO BRL.   
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Figure 2-3.  Isolate relationship based upon distance matrix.  
Relationships of isolates based upon distance matrix of 
polymorphic bands created by four AFLP primer pairs.  The tree 
was generated by the UPGMA (Unweighted Pair Group Maximum 
Averages) algorithm of PHYLIP (Phylogeny Inference Package).  
The first number represents the plot in which the fungus was 
found (26, 31, 34 for Georgetown; 58, 62, 71 for Dundee).  The 
middle number represents the tree number in which the isolates 
were found.  Finally, the last number represents the root 
morphotype.  
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Figure 2-4.  Dry weight of W. mikolae isolates in response to pH.   

Dry weight of W. mikolae isolates grown in MMN media with pH 
treatment of 4, 6, and 8.  Bars represent the means of 4 replicates.   
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Figure 2-5.  Dry of W. mikolae isolates in response to Al.   

Dry weight of W. mikolae isolates grown in MMN media with Al 
treatments of 0, 100 µM Al, and 500 µM Al.  Bars represent the 
means of 4 replicates.  
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Appendix A 
 

Miniprep Extraction Method (Gardes and Bruns, 1993) 

Add 300 µl of 2X 
CTAB extraction 
buffer to frozen 
root tip. 

Freeze at –80C. 
C 

Thaw at 65C. 

Repeat 3 times 

Add 300 µl of 
chloroform, shake 
briefly, and 
centrifuge for 10 
minutes. 

Transfer 
top layer to 
new tube.   

Add one volume of 
cold isopropanol 
and incubate 
overnight at –20C.  

Next day, centrifuge 10 
minutes to form small 
pellet in bottom of 
microfuge tube. 

Discard supernatant, 
wash pellet with 200 µl of 
70% ice-cold ethanol, 
centrifuge for 10 minutes.  

Discard supernatant, dry 
pellet in speed vacuum for 
5 minutes, resuspend 
pellet in 40 to 60 µl of 0.1X  
TE and store at –20C. 

Crush with a 
micropestle and 
incubate at 65C for 30 
to 60 minutes. 
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Appendix B 
 

GeneClean Protocol 

Add 300 µl of 2X 
CTAB extraction 
buffer to frozen 
root tip. 

Freeze at –80C. Thaw at 65C. 

Repeat 3 times 

Crush with a 
micropestle and 
incubate at 65C for 30 
to 60 minutes. 

Add 300 µl of 
chloroform, shake 
briefly, and 
centrifuge for 10 
minutes. 

Transfer top 
layer to new 
tube.  Add 3 
volumes of NaI 
solution. 

Add 20 µl of Glassmilk, incubate 
at room temperature for 5 to 15 
minutes, and mix every minute.  
Centrifuge for 5 seconds and 
discard supernatant.   

Wash pellet with 500 µl 
of New Wash, spin for 5 
seconds, discard 
supernatant.  Repeat. 

Dry pellet in speed 
vacuum for 2 to 5 
minutes. 

Resuspend pellet in 40 
µl of TE, centrifuge for 
30 seconds, decant 
supernatant, put in new 
tube, and store at –20C. 
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Appendix C 
 

GeneClean Spin Protocol 

 

Add 300 µl of 2X 
CTAB extraction 
buffer to frozen 
root tip. 

Freeze at –80C  Thaw at 65C. 

Repeat 3 times 

Crush with a 
micropestle and 
incubate at 65C for 30 
to 60 minutes. 

Add 300 µl of 
chloroform, shake 
briefly, and 
centrifuge for 10 
minutes. 

Transfer 
top layer to 
new tube.   

Add 400 µl of Glassmilk solution to 
GC spin filter, add 300 µl of sample, 
and incubate at room temperature 
for 5 minutes, inverting tube every 
minute.  Centrifuge for 30 seconds, 
remove filter to discard supernatant. 

Wash pellet with 500 µl 
of New Wash, spin 30 
seconds, discard liquid 
from catch tube.  Repeat. 

Place filter in 
new catch tube. 

Suspend glass pellet in 15 
to 20 µl of TE, centrifuge 
for 30 seconds, repeat.  
Remove filter and freeze 
sample at –20C.   
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