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Abstract 

 

Design, Construction and Testing of an Innovative Mechanism for Manual 
Wheelchair Propulsion 

 
 

Thomas S. Burke Jr. 
 

The concern for people with disabilities who are users of wheelchairs has become 
a dynamic research area in the past several years.  This research is being done to enhance 
the health and lifestyles of standard manual wheelchair users.  As part of this research 
new and innovative mechanisms that give the manual wheelchair users a mechanical 
advantage, and allow them to operate a standard wheelchair with less effort and muscle 
strain are being developed.   
 In this research, an innovative mechanism was conceived, designed, built, and 
tested.  The path of this innovative mechanism was modeled after the semi-circular (SC) 
wheelchair stroke pattern.  It allows the user to propel a standard wheelchair in both the 
push and pull strokes of the handle.  This new design will allow for a more symmetric 
muscle development of the shoulder and upper-arm complex, and should reduce muscle 
(skeletal) injuries.  A conceptual model of the new mechanism was formulated using 
SolidWorks software.  Preliminary position and torque analysis were analyzed using 
Microsoft Excel spreadsheets.  A prototype of the innovative mechanism was built and 
retrofitted onto a standard manual wheelchair.  In addition, a portable wheelchair testing 
station was designed and fabricated to allow for human testing comparative 
measurements between a standard wheelchair and the innovative mechanism.  
Comparison of data from the standard wheelchair and the innovative mechanism showed 
energy, horsepower, and RPM ratio gains of 1.638, 1.631, and 1.64.  Therefore, the 
mechanism shows promise to enhance the quality of life for mobility impaired citizens. 
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1 Introduction 

 
1.1 Declaration of Problem 

 Wheelchair development and use has become a topic of importance. There are 

approximately 1.4 million users of wheelchairs (in the world) and if those 75% are using 

a manual wheelchair.  This figure is estimated to be growing at a rate of approximately 

10% per year.  Most manual wheelchair users have lower-extremity weakness, 

amputation, or paralysis that makes walking difficult.  These injuries may include spinal 

cord injuries, hemiplegia, other paralysis, multiple sclerosis, cerebral palsy, spina bifida, 

arthritis, or lower-limb amputations1.   

Through increased legislation over the past twenty years, many new opportunities, 

such as increased access, employment, and mobility, have been granted to wheelchair 

users. The average of the population with disabilities in West Virginia is 2.9 percent, 

whereas the national average is only 1.6 percent2.   Therefore a higher percentage of the 

citizens of West Virginia benefit more than most other states from this legislation. From 

these statistics, it is easy to understand how users manual wheelchairs, can greatly benefit 

from advances in wheelchair mobility and propulsion. 

 The environment of a wheelchair user is a very complex and difficult place in 

which to maneuver.  Some of the environmental factors that affect a wheelchair user’s 

mobility are functions of the rolling surface; uneven, broken, or missing sidewalks, 

inclined surfaces, and weather affected areas.  Most wheelchairs are not equipped with 

the necessary options to be able to transverse over such surfaces as sand, dirt, loose 

gravel, or even thick carpeting.  Consider the complexity of negotiating uneven sidewalks 
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or sidewalks that do not have ramps to enter from the street.  These challenges might 

discourage even the most physically able person.  What if an icy sidewalk or a ramp is 

added?  The situation could become an almost impossibility for the average wheelchair 

user with today’s technologies.  There is a great need to find more efficient mechanisms 

for wheeled-mobility patients.   

 A person’s inability to maneuver a wheelchair through the above-mentioned 

environments could severely limit his or her independence.  Lack of independence can 

have a great affect on mental and physical health.  The use of a manual wheelchair can 

counteract these ill affects by improving a users cardiovascular and muscular strength. 

Wheelchair users have less opportunity for aerobic exercise.  Normally, the only aerobic 

exercise that a wheelchair user has will be derived from propelling their wheelchair for 

daily activities.  Many elderly and frail individuals are unable to use a manual 

wheelchair, but their health, both mental and physical, may be improved by extending the 

time in which they can use the wheelchair1.  Assistive technologies are being developed 

to enable elderly and weaker individuals to gain greater mobility and independence.  

These devices benefit them and generally lead to a higher quality of life.   

 It is the goal of this research to create, design, construct, and test a new assist 

device that can be retrofitted into a standard wheelchair frame that will reduce the 

potential of injury and produce a higher quality of life for wheelchair users. 



 3

1.2 Literature Review 

1.2.1 Prelude 

 In this section the literature related to wheelchair injuries, stroke patterns, and 

other devices will be explored.  From this literature review the issues appropriate for the 

hypothesized mechanism can be delineated.     

1.2.2 Wheelchair Related Injuries 

 Users of wheelchairs experience a wide variety of physical injuries.  Recent 

studies have shown that the high degree of reliance of wheelchair users on the upper-

body and associated muscular skeleton system, along with the repetitiveness of the 

wheelchair-stroking pattern, predisposes them to overuse injuries; especially at the 

shoulder, elbow, and wrist3.  The following table gives a summary of the various injuries, 

and percentages of wheelchair users that experience these injuries.   

Table 1– Wheelchair Use Related Injuries1 

Injury Type Percentage of Wheelchair Users
Shoulder-Related Injuries 51

Elbow Pain 16
Wrist Pain 13
Hand Pain 11

Rotator Cuff Greater Than 50
Carpal Tunnel Greater Than 50  

   Table 1 only gives a small list of the injuries that wheelchair users develop.  

Other injuries and conditions that wheelchair users encounter are:  backaches, exhaustion, 

burning of the hands on the rims, dirty clothes, dirty hands, perspiration, and over 

heating4.  Most of these injuries occur from an overuse or misuse of the muscles in the 

shoulders, arms, and hands.   
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Wheelchair users face a higher percentage of certain injuries than the population 

at large.  For example, the incidence of carpal tunnel and rotator cuff tendonitis are 

greater than 50 percent for wheelchair users as compared to 3 percent for the general 

population1.  Many of the injuries are produced by the manner in which an individual 

must use their body while operating a wheelchair.  On a standard wheelchair, the only 

way to stop the chair comes from the force a person applies to the pushrim with his or her 

hands.  This continuous rubbing on the pushrim causes blisters.  In general the inward 

force generated by a wheelchair user does not help in braking or chair propulsion, but is 

necessary for the user to gain friction with the pushrim on the wheel  

 Research in the field of wheelchair related injuries is an ongoing topic.  Some 

general conclusions can be reached from the above review:  (1) The basic injuries are to 

the shoulder and wrist.  These are due to the repetitive nature required for wheelchair 

propulsion.  (2) Propulsion of the standard wheelchair requires the individual to use his 

body in a way that may be responsible for some of these injuries.  The following pages 

contain some case studies that give an illustration of various research that is currently 

being done in the area of preventing wheelchair related injuries.   

 

1.2.2.1 Case Study I 

 Kibler studied the results of stretch weakness and inadequately developed 

opposing muscles.  Kibler advocated a preventive exercise program to stretch the muscles 

most likely to be overdeveloped, and to strengthen the muscles most likely to show 

stretch weakness.  For the basic wheelchair user, this would mean that the anterior upper 

body musculature is most likely to need stretching and the posterior upper body 
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musculature is most likely to need strengthening.  This hypothesis was based on earlier 

work that suggested that therapeutic exercise intervention specifically designed to stretch 

and strengthen these given muscle groups may possibly reduce the risk of overuse 

injuries.  The procedures used to test the subjects will not be explained, but the results 

from the testing will be presented.  After the proper training and strengthening, 

wheelchair users gained a significant increase in the peak joint moments at the wrist, 

elbow, and shoulder.  There was a 17.4% increase in the peak propulsive moment at the 

handrim.  At the wrist joint, there was a 14.4% increase in the ulnar deviation moment.  

The extensor moment at the elbow increased by 16.9%, and the flexor moment at the 

shoulder increased by 13.6%.  Peak joint reaction force changes at the wrist included a 

14.5% decrease in the shear force in the radioulnar direction and a 7.6% increase in the 

compressive force.  The anteroposterior shear forces increased 15.8% at the elbow, and 

14.3% at the shoulder3.  These findings suggested that specific training for wheelchair 

users improved wheelchair propulsion mechanics and decreased the probability of 

overuse injuries.  Further investigation of joint kinetic changes is continuing and it is 

anticipated that an optimal exercise protocol can be developed. 

 The general conclusion of this case study is that wheelchair injuries occur 

from repetitive asymmetric muscle use and an exercise programs that promotes 

symmetric muscle development can reduce the occurrence of such injuries.   

-------------------------------------- 
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1.2.2.2 Case Study II 

 
 This study characterizes wheelchair propulsion stroke patterns through the 

investigation of joint accelerations, joint range of motion (ROM), propulsion phases, and 

stroke efficiency.  The second metacarpophalangeal joint plots of seven subjects were 

used to obtain the data.  The kinematic data revealed three distinct stroke patterns.  The 

following descriptions characterize those patterns:  semi-circular (SC), single looping 

over propulsion (SLOP), and double looping over propulsion (DLOP).  These patterns are 

shown in Figure 1 on the next page.  The subjects using the SC (Figure 1-A) stroke 

pattern dropped their hands below the propulsion path during the recovery phase.  The 

subjects using SLOP and DLOP stroke patterns lifted their hands over the propulsion 

path during the recovery phase.  The subjects not sharing a common point on the 

propulsion and recovery strokes characterized the SLOP (Figure 1-B) stroke pattern.  The 

DLOP (Figure 1-C) stroke pattern had a characteristic shared point on both the 

propulsion and recovery phases.  Figure 1 gives an illustration of the different stroke 

patterns that were characterized.   
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Figure 1 - Wheelchair Stroke Patterns5 
 From Figure 1 it can be seen that none of the given subjects used a pumping 

stroke pattern.  The pumping stroke pattern is considered to be a pattern used by 

inexperienced wheelchair users.   

 It has long been known that high joint accelerations are the cause of many 

wheelchair related injuries of the shoulder, elbow, and hand.  The changes in joint angles 

were quantified through an analysis of joint accelerations.  This study revealed that 

subjects with the SC pattern had smaller flexion/extension and shoulder 

abduction/adduction acceleration measures during the slower speed, as compared to the 
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other stroke patterns.  This decrease in acceleration may lessen the risk of acceleration-

related injuries.   

The joint excursions data was then used to determine whether the joints were 

being exposed to abnormal ROM during propulsion.  This analysis revealed that subjects 

with the SC stroke pattern did have a larger ROM during propulsion, but this data was 

then compared to normal ROM for the given joints and it was concluded that the ROM 

for the SC stroke pattern was within the satisfactory range.  In addition, the study found 

that individuals with the SC stroke pattern spent a greater percentage of the cycle time 

(CT) in the propulsion phase of the stroke.  By analyzing phases alone, it was concluded 

that subjects using the SC stroke pattern are more efficient because a larger amount of 

time is spent in the propulsion phase, which in turn produces a larger impulse at the 

pushrim.  Through the analysis of the data for this study, it was hypothesized that the 

manual wheelchair users with the SC stroke pattern were more biomechanically efficient 

when propelling a wheelchair.  These subjects had the positive qualities of lower shoulder 

and elbow joint acceleration measures, along with a greater percentage of time spent in 

the propulsion phase of the wheelchair stroke.  These individuals may also be less prone 

to injury because they apply less force to the pushrim over a greater amount of time5.   

In conclusion, this study hyposthesized that the simple elliptical path of the 

semi-circular stroke produces less injuries to the shoulder and arm complex than 

the other two patterns that are frequently employed by wheelchair users.  Thus, any 

device that we would like to develop should have an elliptical path in which the force is 

as close to uniform over the path as possible.   

----------------------------- 
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Wheelchair related injuries come at a price to insurance companies and ultimately 

the population at large.  Over a three-year period from 1995-1997 Medicare expenditures 

for manual wheelchairs averaged $98,000,0006.  There is a need for a device that could 

be affixed to standard wheelchairs so users have the propulsive abilities of a powered 

chair.  This device would then allow for less expensive standard wheelchairs to be used 

instead of more expensive wheelchairs that are used to accomplish that task.  It is one 

goal of this research to construct and test such a device.     

 

1.2.3 Determining Wheelchair Type – User’s Ability 

 There are a wide variety of wheelchairs that are available to each individual.  The 

three main classifications of standard two-armed propelled wheelchairs are standard, 

standard lightweight, and heavy-duty wheelchairs.  Standard wheelchairs are normally 

heavier than a high-end wheelchair, tending to weigh more than 44 pounds.  There are 

only a few options that are available on the standard chair.  The standard lightweight 

wheelchairs are lighter and often have more manufacturer options than the standard 

wheelchair.  In addition, they have more aftermarket options that are available.  The 

heavy-duty wheelchairs are made to operate at a higher load capacity, often up to 348 

pounds. These heavy-duty wheelchairs are also proportionately heavier and cost more 

than the standard chair7.   

The cost and weight of a wheelchair are real concerns for the individuals who use 

them.  In many cases Medicare, Veteran’s Administration, and other insurances will pay 

for most if not all of the cost of the wheelchair, but the person still must be able to 

maneuver the wheelchair in and out of the car and around his or her environment.  Where 
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independence issues are involved, lighter wheelchairs are seen as advancement because 

they are easier to maneuver in and out of the back seat of a vehicle.  A lot more emphasis 

is being placed on the weight of the wheelchair because lightweight wheelchair users can 

gain more independence.  Lighter weight wheelchairs are more expensive, but their cost 

must be weighed against the value of increased mobility and independence.  It is a goal of 

this research to develop a wheelchair mechanism that can be retrofitted into a standard 

weight wheelchair and cost less than a lightweight wheelchair, but provide more mobility 

and independence than a lightweight wheelchair.    

1.2.4 Wheelchair User Qualification List 

The needs of various wheelchair users can be very different.  It is often necessary 

to assess the ability of the user in order to gain a better fit to the individual.  These 

questions are often used to start a physical assessment: 

� Is the user able to self propel? 
� What are the postural requirements? 
� What is the visual and cognitive ability of the user? 
� How does the user transfer? 

 
The issues of self propelled motion, postural requirements, and transfer will give 

the technician, doing the assessment, an understanding of the chair for a particular 

individual.  In addition, the issue of propulsion type must be considered to define the 

proper wheelchair mechanism for a specific person. The following is a list of how most 

propulsion issues are fitted: 

� With both arms 
� With one arm 
� Foot propelled 
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Once the issue of propulsion has been addressed, the user can test several chairs 

and configurations to determine which meets his or her needs7.   Each of the above 

mentioned types of propulsion are possible with today’s wheelchairs, and the following 

sections will outline the different types of wheelchair propulsion that are available.   

 

1.2.5 Types of Wheelchair Propulsion 

1.2.5.1 Prelude 

 
 In this section of the literature review various assist devices and mechanisms are 

described, along with a description of their advantages and disadvantages.  This helped 

the researcher to decide the best type of mechanism that could be developed at WVU.  

The five types of wheelchair propulsion that will be looked at are geared hubs, power 

assists, one arm drives, lever drives, and specialty wheelchairs.     

1.2.5.2 Geared Hubs 

 A gearing system on a wheelchair provides the user the ability to switch from one 

gear to the next as the incline or environmental conditions change.  The gearing system 

provides the mechanical advantage necessary to accommodate these changes. In many 

situations, the gearing systems can be installed and used with standard hand rims.  

Currently, the geared hubs for wheelchairs only have a limited number of gear ratios 

available.   The gearing system works in the same manner as a transmission works on a 

bicycle.  Whenever the user is going up a hill and needs more power, a lower gear can be 

used to generate the needed power to transverse the obstacle.  However, the user can then 

switch back to a higher gear once the obstacle has been conquered and proceed as 
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normal.  There is an infinite amount of gearing options that should be available with this 

system, but without a demand and standardization, the system will never be used to its 

full capacity.  This system has the ability to be adjusted to meet each person’s individual 

needs.  This could be a customized application.   

There are drawbacks to geared hub propulsion systems.  (1) The act of switching 

from one gear to the next can be “sloppy” and cause “play” in the system.  (2) Whenever 

a low gear is used, the user will have to propel the hand rims more than when a higher 

gear is used.  The added power comes at the expense of physical exertion.  (3) This type 

of system also adds extra weight to the wheelchair.  Since these types of wheelchairs 

have extra weight added, maneuverability may be a problem.  (4) An automatic braking 

system may need to be added to help the user slow the wheelchair down.  (5) Some 

geared systems inhibit the user from folding the chair.  This feature adds an extra burden 

to the user and makes independent automobile use almost non-existent for all 

automobiles except vans.  (6) With this type of system, the user could actually be at a 

disadvantage when traveling for long distances due to the mechanical loss in the gearing 

system and added weight of the wheelchair.  (7) Above all, wheelchair users have not 

accepted the geared hub systems as a viable solution to the current wheel-mobility 

problems1.   
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1.2.5.3 Power Assists 

 The power assist system is an add-on used to turn a manual wheelchair into a 

power wheelchair.  This type of system gives the user the ability to use the wheelchair as 

a standard manual chair or as a power chair with the add-on feature.  The add-on power 

assist feature is much cheaper than a power chair, but at the same time, it gives the user 

all of the advantages a power chair.  The power assist add-on is used whenever the user 

wants to go up hills or over terrain that is beyond their physical ability to navigate.  This 

feature allows greater mobility and increased independence in the surrounding 

environment.  Another valuable feature of the power assist chair is that it can aid in 

stopping the chair without grabbing the wheels or using wheel locks.  

 

Figure 2 - Example of Power Assist Device8 
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With the advantages of this system come a number of disadvantages.  (1) The 

current power assists are not manufactured so that they can be fit onto a wide variety of 

wheelchair styles.  (2) Many of the wheelchairs that use power assists are hard to fold and 

do not allow the user to put the wheelchair into the back seat of a car easily.  (3) Another 

concern, that many people have, is that the user could get the chair into a situation that he 

or she would not normally venture into with a standard manual wheelchair.  (4) Once 

again, one of the biggest disadvantages of the power assist system is that it adds weight 

and complexity to the wheelchair.  (5) By adding weight to the chair, an individual will 

not be able to get the wheelchair in and out of a car as easily.  (6) The complexity of the 

power assist mechanism will add more maintenance to the wheelchair4.   

 

1.2.5.4 One Arm Drive 

 
 The one arm drive wheelchair is a type of wheelchair that you do not see 

frequently.  The wheelchair is propelled by a double hand rim system located on one side 

of the chair.  The user has the ability to lock the hand rims together and propel both at the 

same time, or the rims can be propelled separately to give control to one side of the 

wheelchair or the other.  The users of these types of wheelchairs ordinarily encounter co-

ordination problems when the wheelchair is first acquired.  In addition, the complexity of 

trying to negotiate a hill or even a slope can be an almost impossible task for this type of 

propulsion system9.  Most people do not have the strength needed in only one arm to 

propel themselves on relatively flat ground let alone a slope or hill.  The operation of this 

type of chair requires a lot of practice and co-ordination to use correctly.  
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 A second type of one arm drive chair exists that uses a lever on one side of the 

chair to propel the entire chair.  Figure 3 shows an example of one such chair. 

 

 
Figure 3 - Lever One Arm Drive Wheelchair10 

 

The lever on the side of the wheelchair can be adjusted and positioned on either 

side of the chair, thus it is ambidextrous10.  The lever style design will give the user a 

more natural feel and requires less time to adjust to the wheelchair design.  But, this type 

of chair still has the disadvantage of having to switch power from one wheel to the other 

in order to propel the wheelchair around turns and corners.  Consequently, the lever one 

arm drive chair has the same disadvantages on hills and slopes as the push rim one arm 

drive chair.  In order to use either wheelchair, a person must be able to generate enough 

power with one arm as the standard wheelchair users do with two arms for a given 

distance.  This type of design can be used to give a person with the use of only one arm 
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exercise, and it helps to keep these patients from becoming totally dependant on a power 

wheelchair.   

1.2.5.5 Lever Drive 

 Lever propulsion systems for wheelchairs are not a new idea.  For years people 

have been working on specialty wheelchair lever mechanisms.  Many of the early lever 

systems resembled the propulsion systems from bicycles.  Some of these systems are only 

called lever drives because they use a handle attached to a lever to provide a mechanical 

advantage on the chain mechanism.  The systems that are used to propel the wheelchair 

on these models simply look like the pedals of a bicycle mounted above the frame of the 

wheelchair.    

 

 
Figure 4 - Example Of Lever Drive Wheelchair10 

In many cases, the user needs to be strapped into the chair to be sure that he or she 

does not fall out during operation.  Placing a different type of seat that allows the user to 

set back further and in a reclined position in the wheelchair could solve this problem.   
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 Another type of lever drive wheelchair that has been developed uses a chain drive 

on both sides that allows for independent operation of the wheels.  Figure 5 gives an 

example of one such lever drive wheelchair. 

 

 

Figure 5 - Example of Lever Drive Wheelchair11 

 

This type of wheelchair gives the user a more reclined position so that the user is 

not falling out of the chair while it is being propelled.  In addition, this wheelchair gives 

the user a more standard feel by allowing two-sided propulsion.  The motion is more 

natural for the user and not a big change from a standard wheelchair design.   

 Another assistive lever device that has been invented for wheelchair propulsion is 

the Wijit12.  The Wijit is a device that was developed as a result of nine years of research.  

It is a wheelchair propulsion and braking device that consists of levers on both sides of 

the chair.  The figure below shows an example of the Wijit system.   
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Figure 6 - Wijit Assistive Device12 
  

The assistive technology of the Wijit reduces the stress that is normally placed on 

the upper extremities during propulsion of a standard wheelchair, and amplifies the users 

force by approximately 50%.  In addition, the Wijit allows the user to sit erect in the chair 

that provides better back support.  This device permits wheelchair propulsion with 

minimal grip changes and offers a variety of hand positions to accommodate a wider 

range of impairments.  The Wijit weighs less than 10 pounds and does not add more than 

2 inches to the width of a wheelchair.  However, this device only allows for a propulsion 

stroke in one direction.  The user will still have the asymmetric muscle development 

associated with standard wheelchair propulsion.   

Lever drive wheelchairs provide the user with a mechanical advantage over a 

standard drive wheelchair through the use of chains and gearing.  In addition, lever drive 

wheelchairs also provide the user with a less tiresome method of propulsion. Instead of 

the unnatural method of a conventional wheelchair, the user is able to use his or her arm 

in a more natural and powerful manner.  Additional advantage can be achieved by 
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changing the wheel size based on the user’s mobility needs, or changing the lever 

position on the wheelchair to meet the comfort needs of the user.   

 On the other side, levers have a lower acceptance by users than standard 

wheelchairs.  The lever systems add weight to the wheelchair and in some cases inhibit 

the wheelchair from being folded.  This in turn inhibits the user from transporting the 

chair in the back of automobiles.  One of the biggest drawbacks of lever systems is that 

they make side transfers very difficult4. Unless, the lever is mounted in a way that makes 

it removable, the user is unable to transfer out the side of the wheelchair.    

 The following section is an example of research that has been done on the 

mechanical advantage of lever drive propulsion. 

1.2.5.5.1 Case Study III 
 

This study was conducted to test the premise that in general manual wheelchair 

propulsion is an inefficient form of human transportation.  Handrim propulsion will lead 

to relatively high strain on the musculoskeletal and cardio respiratory systems.  The net 

result will be high-energy consumption, high heart rate, low mechanical efficiency, and 

future complaints related to the structures of the upper limb.  Past research had shown 

that crank and lever-propelled wheelchairs appeared to be less straining forms of 

transportation.  It had been shown that lever-propelled wheelchairs lead to lower physical 

strain compared to handrim-propelled wheelchairs.  Another advantage of lever-propelled 

mechanisms is that they allow for a more ergonomic optimization to the individual 

physical characteristics of the user.  For this given study, the levers on the chair were 

coupled together with a Bowden cable, and their orientation only allowed asynchronous 
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arm use, at a fixed position 180 degrees out of phase.  A figure of the tested wheelchair 

can be found below.   

 

Figure 7- Lever Asynchronous Propelled Wheelchair 

 

For all of the given tests, the mechanical advantage was controlled by using a 

five-gear transmission (gear box).  The current lever system that was used for the test 

does not have an idle phase, and it does not have a “dead spot” at both ends.  With this 

design, the external force varies sinusoidally with the lever orientation.  The mechanical 

advantage of the gearing system was shown to have an effect on oxygen uptake, 

mechanical efficiency, and energy expenditure.  At the same power output level, the 

mechanical efficiency of lever wheelchair propulsion in this study tended to increase and 

energy expenditure tended to decrease as the mechanical advantage decreased13.  Similar 

studies on handrim propulsion were used to confirm these findings.  Lastly, in this study, 

the mechanical advantage was studied using a varied gearbox.  The study also stated that 

the mechanical advantage should be studied using varied lever lengths and changing 

other aspects of the given wheelchair13.  This study only used the mechanical advantage 

of a gearbox.  These results could be different if a longer lever were used, or if the seat 
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were positioned differently for the user.  These are all aspects that must be considered 

when testing for mechanical advantages on any type of system.     

Most lever-powered wheelchairs are still developed to encourage asymmetric 

muscle development.   In addition, extra weight is still being added to the wheelchairs, 

and these wheelchairs have not shown a real distinct advantage and thus they are not 

widely accepted by the community of wheelchair users.   

1.2.5.6 Specialty Chairs 

In the scope of this paper, specialty wheelchair design includes everything from 

standard power wheelchairs to wheelchairs that have the ability to climb stairs.  The one 

specialty chair that will be considered for discussion in this section is a power wheelchair 

that has the means to give the user the ability to reach objects on higher shelves, and it 

can climb stairs.  Figure 8 contains a picture of the new revolutionary wheelchair. 

 

Figure 8- Example of Specialty Wheelchair14 
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The inventor created this new wheelchair design after he watched people struggling to 

use a standard wheelchair.  The new wheelchair design uses sophisticated gyroscopes, 

electric motors and computers to accomplish the goal of wheeled mobility.   

 The price and the inability to provide physical exercise are real drawbacks to 

electric wheelchairs and this type of specialty wheelchair.  Since the wheelchair is 

powered by electric motors, the user will not get the exercise that is involved with the 

operation of a standard manual wheelchair.  However, the benefits that the chair provides 

in mobility around a given environment could possibly be enough to offset the 

drawbacks.  It would be up to the given patient to weigh all the options.  With this 

wheelchair people would once again be able to go places and take part in activities that 

they thought were once beyond their abilities.   

 

1.3 Problem Statement 

Upon completion of this research endeavor of an innovative wheelchair 

mechanism, this thesis will show that the investigator completed the following tasks: 

 
� Designed an innovative mechanism that incorporates the elliptical path of the 

semi-circular stroke pattern that can be used to power a standard wheelchair.  

This mechanism allows for simple construction and can be able to be retrofit 

onto existing wheelchairs. The mechanics of this new design should not 

inhibit symmetric muscle usage during its operation.  Thus, it should have the 

potential of reducing repetitive motion injuries common to standard manual 

wheelchair users.   
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� Provided theoretical and practical modeling of the innovative mechanism.  

The function of the innovative mechanism can be easily seen.   

� Designed and constructed a prototype of the innovative mechanism that was 

retrofitted into a standard wheelchair.   

� Designed and constructed a testing station for the sole purpose of analyzing 

and comparing the innovative mechanism to standard wheelchair propulsion. 

� Showed a comparative analysis of the innovative mechanism to the standard 

wheels on a wheelchair.  This analysis included tables, graphs, and good 

engineering data and assumptions to support the hypothesis.   

 

 

2 Mechanism Development 

 The new mechanism that has been conceived is unlike any of the conventional 

wheelchair or lever-actuated propulsion systems on the market today.  Many of the other 

lever-actuated motion devices use a ratcheting motion, that in turn only allows for 

propulsion in one direction.  These types of devices do not strengthen both sides of the 

shoulder and upper arm complex simultaneously.  Instead, addition exercise and strength 

training are needed to reduce the risk of rotator cuff and other wheelchair related 

injuries3.  The new mechanism operates on a push/pull motion.  Power is provided 

during the entire stroke, and not just in one direction.  This should lead to a more 

desired symmetric muscle development.  This would eliminate problems that are 

associated with only developing one set of muscles.  In addition, this mechanism may be 

able to reduce the injuries that occur from harsh accelerations of the shoulder, elbow, and 
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hands.  From the past research presented in the literature review section of the 

report, it can be seen that the best stroke pattern for wheelchair users was found to 

be the semi-circular (SC) stroke5.  It would be ideal if the new mechanism had the 

handle path of an ellipse.  This new innovative mechanism travels recreates the SC stroke 

pattern.  An additional advantage could be a decrease in acceleration and a smaller 

flexion/extension and shoulder abduction/adduction acceleration5.  These advantages 

coupled with the fact that the mechanism propels the wheelchair during its entire 

elliptical travel path should give the user a more symmetric muscle development.  It was 

hypothesized that the new mechanism being proposed will relieve the burden of using the 

smaller muscles that are injury-prone, and place more emphasis on the larger muscle 

groups that have the ability to sustain more effort without injury. 

 

2.1 Proposed Design 

 This new mechanism employs a lever-actuated elliptical input motion and a 

Cardan gear system that changes the elliptical input into rotary output.  The new 

mechanism will not be easily understood until the Cardan gear system is explained.   

2.2 Cardan Gear System 

A Cardan gear mechanism is a hypocycloidal gear train that is used to convert 

rotation (circular motion) into straight-line motion.  A hypocycloidal curve is generated 

when one circle (gear) is rolled along the inside of another circle (gear).  Whenever the 

ratio of the diameters of the gears is 1:2 the output arm will translate the rotation to a 

linear path.  The following figure gives an illustration of a true Cardan Gearing System.   
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Figure 9- Cardan Gearing System 

One of the basic design criteria for most manual wheelchair manufacturing is to 

minimize the equipment weight.  The Cardan system can be made lighter by excluding 

the use of an outside internal gear. The use of internal gearing added complexity and 

weight to the design that was needed to power a wheelchair.  In the proposed mechanism, 

the use of an internal gear can be neglected by inserting an idler gear in between the inner 

fixed spur gear (sun) and the smaller outside spur gear (planet).  Figure 10 gives an 

example of this new configuration. 

 

Figure 10 - Cardan Gearing Without Internal Gear 
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In Figure 10, it can be seen that only standard spur gears are needed, and that the 

entire design has been reduced in complexity.  The only requirement was that the fixed 

gear and the outermost gear must be in the 1:2 ratio.  The idler gear (middle gear) does 

not add to the mechanical advantage of the mechanism.  The idler gear was used to 

change direction of rotation of the planet gear.  As long as the outer arm and the inner 

arm are the same length, the output motion will be linear.  If the length of either arm is 

changed with respect to the other, eccentricity can be added to the gear system and the 

path will be elliptical.  In the proposed mechanism, these lengths were changed and an 

elliptical path recreating the SC motion was obtained.   

To further simplify the mechanism and reduce its weight, one change was needed.    

The idler gear was removed and replaced with a roller chain connecting the sun and 

planetary gears.  The spur gears were replaced with roller chain sprockets.  The following 

figure gives an example of the current system that is being used for wheelchair 

propulsion.   
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Figure 11 - Simplified Cardan System With Eccentricity 

 
 Whenever the user propels the handle, the planet gear turns about the sun gear.  

The back connecting lever in turn also rotates around the sun gear.  A roller chain 

sprocket was attached to the back connecting lever.  The roller chain sprocket on the back 

connecting lever was connected to a roller chain sprocket on the axle of the rear wheel 

through a roller chain.  So, as the back connecting lever rotates around the sun gear, the 

wheelchair is propelled in a forward or backward motion.  It can be seen that the 

simplified Cardan gear system is a compact mechanism that produces the desired 

elliptical output. This discussion of the Cardan gear system gives a general description of 

the innovative mechanism used to power the wheelchair.  A detail discussion of the 

parameters for each of the components of the new innovative mechanism will be given 

later.  The innovative mechanism must be fitted into a standard wheelchair.  This thesis 

will continue with a discussion of how the mechanism can be retrofitted into an existing 

wheelchair frame. 

 

Sun Gear 

Planet Gear 

Lever A 

Lever B

Handle

Back Connecting Lever 

Roller Chain Sprocket 
(Attaches To Rear Axle) 
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2.3 Adapting the Innovative Mechanism to a Wheelchair Frame 

A sprocket was attached to the innovative mechanism that was then mounted on a 

shaft on the side of the wheelchair.  The inside sprocket on the innovative mechanism 

was attached to a sprocket on the axle of the wheelchair by a roller chain.  A figure of the 

entire drive system without the driving chains can be found in Figure 12. 

 

Figure 12 - Wheelchair View With Mechanism and Sprockets 

The front and back wheels have been eliminated from the model for ease of 

visualization.  The inside sprocket of the mechanism on the front of the wheelchair 

attaches to the sprocket shown on the rear axle of the wheelchair by a driving chain (not 

shown).  As stated earlier the handle of the innovative mechanism follows an elliptical 

path of travel.  The following figure gives an example of the elliptical path of the 

mechanism handle. 
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Figure 13 - Example of Elliptical Path of Mechanism Handle 

 
The elliptical path of the handle was designed to serve the same function as the 

SC stroke pattern does for wheelchair users.  In addition, the initial starting angle (major 

axis of orientation of the elliptical path) of the mechanism handle can be adjusted so that 

it can be initially set at any angular displacement along the inner radius.  Thus its 

parameters can be customized to the user.  The following two figures are used to 

demonstrate this feature. 

 

Figure 14 - Mechanism Position 0 Degrees Offset 
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Figure 15 - Mechanism Position 45 Degrees Offset 

 

There are different initial angle positions that can be calculated for each 

individual user.  The initial angle at which the innovative mechanism is set allows for the 

torque curve for the mechanism to be adjusted. Results of the tests of this concept are 

presented in the analysis section.      

 

2.4 Parametric Design Criteria of the Components of the Innovative 

Propulsion system    

2.4.1 Gear Selection 

 As it was discussed earlier, one of the requirements was to have the ratio between 

the sun and planetary gears to be 2:1.  The following figure gives a view of how the 

various parts were defined. 
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Figure 16- Labeling System for Gear Selection 

 
As seen in Figure 16, only two sprockets are used to create the elliptical handle motion.  

The sun and planet gear must be in a 2:1 ratio.  In addition, for a true linear motion Lever 

A and Lever B would have to be the same length.  But, for this application, elliptical 

motion was achieved by making Lever B shorter than Lever A.  The actual dimensional 

drawings of the gears can be found in Appendix A. 

2.4.2 Roller Chair Selection 

 The planet gear and the sun gear on the innovative mechanism were connected 

using a roller chain.  In addition, the inside sprocket on the mechanism and the sprocket 

on the axle of the wheelchair were connected using a roller chain.  The equation that was 

used to find the proper length of the length roller chain is given below.   

  L/P = 2C/P + (N1 + N2)/2 +( N1 - N2)2/(4π2(C/P))   Equation 115 

Where L is the chain length, P is the chain pitch, C is the center distance between 

sprockets, N1 is the number of teeth on the small sprocket, and N2 is the number of teeth 

Handle Position Sun Gear  
(Rs=2Rp) 

Planet Gear 
(Rp) 

Lever A 

Lever B 
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on the larger sprocket.  The length of the roller chain is measured in inches, but can also 

be converted to pitches for chain selection.  It is preferable to have an even number of 

pitches, or an offset link will be needed for the application15.   

2.4.3 Gear Arm Design 

 The gear arm (Lever A) was designed to maintain the position of the plant gear 

with respect to the sun gear.  In addition, Lever A must contain a bearing so that it can 

rotate about a shaft.  The dimensions were selected based on basic stress and moment 

calculations. It is not within the scope of this thesis to carry out an entire force analysis of 

the innovative mechanism and size each component accordingly.   

To allow Lever A to rotate on the given shaft, needle bearings were chosen.  Needle  

bearings have a small outside diameter for a given inside diameter.  This saves on radial  

space in the design of the arm.   

Figure 17 shows the gear arm (Lever A).  As you can see, the size of the lever was 

actually a function of the size of bearing that will be used.   

 

 

 

 

 

Figure 17 - Design of Gear Arm (Lever A) 

Gear Arm (Lever A) 
Needle Bearing 
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2.4.4 Lever B Design  

The same design process was followed for Lever B as was followed for Lever A.  

Lever B needed to be attached to Lever A, and be able to rotate about Lever A, and be 

able to accommodate a handle attachment.  Fixing Lever B to a shaft and allowing it to 

rotate with the planet gear accomplished the rotation of Lever B about Lever A.  This in 

turn gave one rotation of Lever B for each rotation of the planet gear.  Lever B was 

attached to the shaft through a gripping-type attachment.  The screw was tightened until a 

secure fit was obtained between the shaft and Lever B.  The handle was simply attached 

to Lever B by a threaded stud and nut.  The handle contains its own rotational ability.  

The following figure gives an example of the Lever B, handle, and shaft assembly.   

 

 

 

 

Figure 18 - Lever B, Handle, and Shaft Complex 

 

Planet Gear 
Handle 

Lever B 



 34

2.4.5 Back Connecting Lever 

The final component of the mechanism developed was the back connecting lever.  

The back connecting lever was used to add strength to the mechanism so that a moment 

applied on the handle will not have to be loaded totally on Lever A.  In addition, the back 

connecting lever has the roller chain sprocket attached to it that was also connected to the 

sprocket on the axle of the rear wheel by a roller chain.  The following figure shows the 

back connecting lever complete with needle bearings.   

 

Figure 19 - Back Connecting Lever 

 
 
2.5 Innovative Mechanism Parameters 

Drawings of each of the above mentioned parts can be found in Appendix A.   The  

following table gives a compilation of some of the important dimensions for various parts  

of the innovative mechanism. 

 
 
 
 
 
 
 
 

Back Connecting Lever 

Roller Chain Sprocket 

Needle Bearing 
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Table 2 - Compilation Table of Various Mechanism Parameters 

Length of Lever A                          = 3.15 In 
Length of Lever B                          = 1.5 In 
Length of Back Connecting Lever   = 3.15 In 
Pitch of Planet Sprocket               = 12.5 teeth/in 
Pitch Diameter of Planet Sprocket   = 1.598 In 
Number of Teeth Planet Sprocket   = 20 teeth  
Chain Length (Plant-Sun)              = 14.43 inches 

 
 
 

 
In addition, the following figure and table gives data about the elliptical path that 

the handle on the innovative mechanism follows. 

 

 

 

 

 

 

 

 

 

Figure 20 - Elliptical Path Labels 

 

 

 

Pitch Sun Sprocket                                     = 12.6 teeth/in 
Pitch Diameter Sun Sprocket                        = 3.187 in 
Number of Teeth Sun Sprocket                     = 40 teeth  
Pitch Chair Connecting Sprocket                  =  8.4 teeth/in 
Pitch Diameter Chair Connecting Sprocket      = 3.11 in 
Number of Teeth Chair Connecting Sprocket  = 26 teeth 
Chain Length (Chair – Axle)                          = 59.19 inches 

Major Axis

Minor 
Axis Elliptical Handle Path 
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Table 3 - Ellipse Compilation Data 

Major Axis  (Stroke Length)      = 9.3 inches 
Minor Axis                              = 3.3 inches 
Circumference                         = 21.921 inches 

 
 
2.6 Mechanism Assembly 

 
 Each of the entities described above were fit together to obtain the innovative 

mechanism.  Figure 21 shows an exploded view of the entire mechanism complete with 

Teflon washers and bushings.   

 
Figure 21 - Exploded View of Innovative Mechanism 
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Figure 22 - Side View Of Innovative Mechanism 

The stroke length for the innovative mechanism was found by measuring the 

distance that a person’s hand travels in the propulsion phase of the wheelchair.  This 

measurement was taken on members of the original Innovative Wheelchair Team. This 

distance was converted in the innovative mechanism to one complete stroke. The two 

strokes to one advantage results from the fact that the innovative mechanism gives 

propulsive force around the entire path of the ellipse.  After the innovative mechanism 

was developed, the next step was to start analyzing the current mechanism.  The first step 

in this process was to develop a program or spreadsheet that would allow the researcher 

to visualize the path of travel for the handle of the innovative mechanism. 

 
2.7 Visualization of Mechanism Handle Motion 

 In order to visualize the movements and path that the handle of the mechanism 

will take, an Excel spreadsheet was formulated.  The following figure shows the 

coordinates that will be used for the analysis. 
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Figure 23 - Coordinate System Definition for Mechanism Position Analysis 

  

From Figure 23, it can be seen that Lever A moves in a clockwise rotation, while 

Lever B rotates counterclockwise.  The joint at the origin and the joint between the two 

levers were considered pin joints.  These joints only allow rotation and not translation.  

The analysis was conducted by first calculating the position of Lever A, and then the 

Position of Lever B and adding the two positions together to get the final position of the 

handle.  The following set of equations was used to find the position of the end of Lever 

A. 

LAX = (Length of Lever A) *COS(θ1)    Equation 2 

 
   LAY = (Length of Lever A) * SIN(θ1)    Equation 3 

 
 The position of Lever B was found in a similar manner to Lever A using the 

following relationship. 

     Θ2 = - Θ1    Equation 4 

 

Handle Position 
Θ1

Lever A
Lever B

Θ2 
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The above equation was used because the rotation of Lever B was in the opposite 

direction of the rotation of Lever A.  One rotation of Lever A will equal one rotation of 

Lever B.  The following equations were used to find the location of the end of Lever B.   

   LBX = (Length of Lever B) * COS(θ2)   Equation 5 

 
   LBY = (Length of Lever B) * SIN(θ2)   Equation 6 

 
The final position of the handle was found by using a moving coordinate system.  The 

global coordinate system was placed at the origin, and a moving coordinate system was 

placed at the end of Lever A.  With these conditions in place, the X and Y position of the 

handle could be found by simply adding the respective X and Y components of Equations 

2,3,5, and 6.  The following are equations that were used to figure the X and Y positions 

of the handle.   

 HX = (Length of Lever A) *COS(θ1) + (Length of Lever B) * COS(θ2)  Equation 7 

 
 HY = (Length of LeverA) * SIN(θ1) + (Length of Lever B) * SIN(θ2)  Equation 8 

 
 This spreadsheet gives a visual concept of the path of the mechanism.  It also 

provided the researcher with a way of analyzing various handle motions of the 

mechanism. A torque analysis was incorporated into the Excel spreadsheet. 

2.8 Manufacturing of Prototype 

 The spreadsheet was used to design the parameters that were incorporated into 

engineering drawings.  These drawings were submitted to Laser Processing, our 

industrial partner, where components were CNC machined.  The appropriate sprockets 

and roller chains were purchased from McMaster Carr Supply Company.  A wheelchair 

was obtained from the Civil Engineering Department at WVU.  Steel plates were welded 
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to the side of the wheelchair to support the mechanism, and the appropriate diameter 

sprockets were welded to the rear wheel axles.  The assembled mechanism was fitted into 

the side plates on the frame, and the driving gears were connected via roller chain.   

 A testing platform on which a mock-up of a standard wheelchair could be 

mounted was designed and manufactured in the MAE shop.  An X-Y table was purchased 

from McMaster Carr and mounted to the testing platform.  A dynamometer, purchased 

from Magtrol, was mounted on the X-Y table were it could be adjusted to proper tension.  

With this work completed, the researcher could develop an experimental design and 

protocol to compare the effectiveness of the new innovative mechanism and the standard 

manual wheelchair.   

  

3 Experimental Setup 

After the basic idea for the innovative mechanism was conceived, a prototype of the 

mechanism was developed.  The goal of the research project then shifted to finding a way 

to test the new innovative mechanism against a standard manually powered wheelchair.   

The researcher established the following criteria to be met by the testing apparatus:   

� The testing station had to be portable.  
 
� Be able to simulate actual wheelchair use. 

� The researcher had to be able to change the testing procedures 

between standard wheelchair wheels, and innovative 

mechanism sprockets. 

The first consideration that was analyzed was a source from which a load could be  
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applied to the wheelchair test subjects.  A number of different ways of applying loads 

were considered.  The researcher looked at applying a load with a friction style brake, 

such as the friction load system of a stationary exercise bicycle.  This method of applying 

a load was simple, but there was not a simple way to get a reading on the amount of load 

that was being applied to the wheelchair test subjects.  The researcher settled on a 

dynamometer system to apply the load.  A dynamometer is a device that allows for a load 

to be applied as a torque on a shaft.  The idea of using dynamometers was not new.  For 

years, many members of the innovative wheelchair team have worked with engine testing 

dynamometers.    

Before any final design was settled on, the researcher looked at many other 

research projects that involved wheelchair testing to get ideas on how to design the 

dynamometer testing station.  Many of the research projects that were analyzed used a 

SMARTWheel 5  wheel design.  The SMARTWheel measures the amount and direction of 

force the user applies to a given wheelchair wheel.  Since this design consists of an 

innovative mechanism, the SMARTWheel design will not meet the needs of this testing.  In 

addition, a way of applying a load would still be needed with the SMARTWheel approach.   

The next step was to look at other dynamometer testing stations.  The University of 

Pittsburgh has done work in the past using wheelchair testing techniques.  But, all of the 

testing machines that were found in the literature reviewed by the researcher from the 

University of Pittsburgh used a drum system that allowed the wheels of the wheelchair to 

turn on a drum.  This type of testing apparatus is very useful but was beyond the scope of 

this preliminary research.  The researcher was looking for a procedure for collecting data 

to evaluate the innovative mechanism.   
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After reviewing several other research designs, the researcher concluded that a 

replica of a standard wheelchair would be fabricated and attached to a solid base.  The 

dynamometer would be mounted behind the wheelchair and attached to a solid shaft by a 

belt drive.   For engine testing purposes, a dynamometer is normally mounted on the side 

of the engine and the load is directly applied to a shaft on the motor.  But, for this 

application, the load applied was small in comparison to normal motor testing loads, and 

the angular velocities (RPM’s) of the wheels would not be large enough to create a 

significant error.  The following two figures provide a view of the total dynamometer 

setup.   

 

 

Figure 24 - Isometric View of Dynamometer Setup 
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Figure 25 - Rear View of Dynamometer Setup 

 

 Figure 24 and Figure 25 show that a timing belt was fitted across the pulley on the 

dynamometer and the pulley on the shaft connecting the wheels.  The wheelchair wheels 

are attached together through a solid axle system.  The solid axle system does not allow 

for independent rotation of the wheels.  This design was selected because it was difficult 

to attach a dynamometer to evaluate the power from two independent wheels.  The 

following sections will explain the various features and parts of the dynamometer testing 

apparatus.  Figure 145 is contained in Appendix C and has the labels for all of the below 

mentioned features.   

3.1 Dynamometer 

 Based on human design requirements, several dynamometer manufacturers were 

contacted.  Upon talking to the sales and technical teams for each manufacturer, the 

Magtrol HD-705-6N dynamometer (Figure 26) was selected16.  The following table gives 

an overview of the capabilities and requirements of the Magtrol dynamometer. 
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Table 4 - Magtrol Dynamometer Requirements 

 
 

From inspection of Table 4, it can be seen that our application will never reach the 

maximum angular speeds that are allowed by the dynamometer.  The real application of 

this dynamometer is for testing small electric motors.  The level of control that can be 

obtained with this dynamometer will probably never be used for this project.  This 

dynamometer has the capabilities of being able to test our subjects, with both the 

innovative mechanisms and the standard wheelchair wheels, and show preliminary data 

on the conception of the mechanism.     

 

 

Figure 26 - Picture of Magtrol Dynamometer 

                               Magtrol HD-705-6N Dynamometer  
Maximum Torque Range                   = 50 lb*in 
Digital Torque Resolution                  = 0.1 lb*in 
Maximum Power Rating (5 Minutes)   = 1400 Watts 
Maximum Power Rating (Continuous) = 300 Watts 
Maximum Speed                              = 10,000 RPM 
Brake Cooling Method                      = Convection  
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3.2 Dynamometer Controller 

The controller that was selected for this application was a DSP6000 from Magtrol 

(Figure 27).  This controller allowed for full control over the torque loading of the 

dynamometer, and it allowed for a computer to be used to collect the needed output data.   

 

 
Figure 27 - Magtrol DSP6000 Controller 

 
3.3 Rear Axle 

 Upon first inspection, the rear axle of the dynamometer testing station may not 

seem important, but that is not true.  The amount of stress that was being applied to the 

shaft was of concern because if the user applies too much stress, the shaft will fail, and 

injury to the user could result.  In addition, the deflection of the shaft had to be controlled 

because too much deflection at the dynamometer connection could lead to inaccurate or 

false data.  The following section will outline the design process that was employed for 

the rear axle.   
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 For the analysis of the rear axle, a series of singularity functions were formulated 

for the axle using the innovative mechanism, and another set for the standard wheelchair 

wheels.  Whenever the innovative mechanisms were in use, the standard wheelchair 

wheels will be taken off of the testing apparatus.  In addition, the sprockets for the 

innovative mechanism were taken off for testing with the standard wheelchair wheels.  

The singularity functions for the standard wheelchair wheels will be presented first.   

 

3.3.1 Singularity Function – Standard Wheels 

 The first step was to draw a free body diagram for the rear axle.  The following 

two figures show free body diagrams for both the X and Y directions of the rear axle.   

 

 

 

 

 

 

 

Figure 28 - Y - Direction Free Body Diagram (Wheels) 

 
 
 
 
 
 
 
 
 
 
 
 

               7.768 lbs 7.768 lbs

8.586 lbs

RAY   RBY

4” 1.5” 14.5” 4” 



 47

 
 

 

 

 

 

 

 

Figure 29 - X - Direction Free Body Diagram (Wheels) 

 
 
Where RAX, RAY, RBX, RBY are the support reactions for the rear axle which sets in pillow 

blocks.  The 7.768 lb and 1.768 lb in the preceding figures are the amount of hand force 

that the user must apply to the wheel to reach the dynamometer maximum load of 50 

in*lbs.  The 8.585 lbs and the 47.775 lbs are the component forces for the dynamometer 

at a rated condition of 50 in*lbs.    

The next step was to formulate the equations to solve for the reaction forces.  

These are seen below.   

ΣMRAY = 4(7.768) –1.5(8.580) + RBY*16 – 20(7.768) = 0  Equation 9  

 
  ΣFY = 0 = -7.768 + RAY – 8.586 + RBY – 7.768   Equation 10 

 
  ΣMRAX = 0 = 4(1.768) + 1.5(47.775 – 16(RBX) – 20(1.768)  Equation 11 

 
  ΣFY = 0 = -1.768 – RAX + 47.775 – RBX – 1.768   Equation 12 

 
 
The following set of results was obtained for the reaction in the previous equations. 
 

RBY = 8.573 lbs. 
 

1.768 lbs1.768 lbs 
RAX        RBX 

47.775 lbs 

4” 4” 14.5”1.5” 
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RAY = 15.549 lbs. 
 

RBX = 2.7115 lbs. 
 

RAX = 41.528 lbs. 

 

 Next, the shear and moment diagrams were drawn for the X and Y directions.  

The following figures contain the given shear and moment diagrams for the X and Y 

directions.   

 
 
 

 

 

 
 

 

 

Figure 30  - Y-Direction Shear Diagram For Wheels 

 
 

 

 

 

 

 

 

 

 

Figure 31 - Y-Direction Moment Diagram For Wheels 

-7.768 lb 

7.781 lb

-0.805 lb

7.768 lb 

-31.072 in*lb -31.072 in*lb 

-19.4005 in*lb
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Figure 32 - X-Direction Shear Diagram for Wheels 

 
 

 

 

 

 

 

 

Figure 33 - Y-Direction Moment Diagram For Wheels 

 
 The shear and moment diagrams were then used to set the boundary conditions 

for the singularity functions.  The following equations contain the singularity functions 

for the condition with the wheelchair wheels in use in the X direction.   

q = -FX-ARM<x>-1 – RAX<x-4>-1 + FDYNO<x-5.5>-1 – RBX<x-20>-1 - FX-ARM<x-24>-1  Equation 13 

 

V= -FX-ARM<x>0 – RAX<x-4>0 + FDYNO<x-5.5>0 – RBX<x-20>0 - FX-ARM<x-24>0 + C1 Equation 14 

 

M=-FX-ARM<x>1 –RAX<x-4>1 +FDYNO<x-5.5>1 –RBX<x-20>1 -FX-ARM<x-24>1 +C1(x) +C2 Equation 15 

1.7675 lb

4.479 lb

-43.296 lb
-1.768 lb 

-7.032 in*lb 

-71.976 in*lb

-7.0305 in*lb 
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EIΘ=-FX-ARM/2<x>2–RAX/2<x-4>2 +FDYNO/2<x-5.5>2 –RBX/2<x-20>2 -FX-ARM/2<x-24>2 +C1/2(x2) +C2(x)+C3 Equation 16 

 

EIY=-FX-ARM/6<x>3–RAX/6<x-4>3 +FDYNO/6<x-5.5>3–RBX/6<x-20>3 -FX-ARM/6<x-24>3 +C1/6(x3) +C2/2(x2)+C3(x)+C4Equation 17 

 
 The following set of equations contains the singularity functions for the condition 

with the wheels in use in the Y direction.   

q = -FY-ARM<x>-1 + RAY<x-4>-1 - FDYNO<x-5.5>-1 + RBY<x-20>-1 – FY-ARM<x-24>-1  Equation 18  

 

V= -FY-ARM<x>0 + RAY<x-4>0 - FDYNO<x-5.5>0 + RBY<x-20>0 – FY-ARM<x-24>0 + C1 Equation 19  

 

M=-FY-ARM<x>1 +RAY<x-4>1 -FDYNO<x-5.5>1 +RBY<x-20>1 –FY-ARM<x-24>1 +C1(x) +C2 Equation 20 

 

EIΘ=-FY-ARM/2<x>2+RAY/2<x-4>2 -FDYNO/2<x-5.5>2 +RBY/2<x-20>2 –FY-ARM/2<x-24>2 +C1/2(x2) +C2(x)+C3 Equation 21  

 

EIY=-FY-ARM/6<x>3+RAY/6<x-4>3 -FDYNO/6<x-5.5>3 +RBY/6<x-20>3 –FY-ARM/6<x-24>3+C1/6(x3) +C2/2(x2)+C3(x)+C4Equation 22 

Where FY-ARM  and FX-ARM are the X and Y components of the arm force exerted by the 

user to reach the rated dynamometer load, and FDYNO is the X and Y components of the 

dynamometer force whenever the dynamometer is at the rated load, while C1 through C4 

are the constants of integration.   

The results for the boundary conditions and the results for the constants of 

integration are presented in the following table.   
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Table 5 - Results Of Boundary Conditions and Integration Constants 

     With Wheel With Wheel 
RAY (lb) RBY (lb) 
15.549 8.573 

  
RAx (lb) RBx (lb) 
41.528 2.711 

  
Y-Direction X-Direction 

at x=3 V=-7.768 at x=3 V=-1.768 
c1 c1 

-7.768 -1.768 
at x=4 M=-31.072 at x=4 M=-7.032 

c2 c2 

0.0028 0.0391 
  

c3 c3 

1170.642 660.387 
at x=4 y=0 at x=4 y=0 

c4 c4 

-9026.252592 -6785.072814 
 

 

3.3.2 Singularity Function – Roller Chain Sprockets 

The following section uses the singularity function approach for the condition 

with the innovative mechanisms and roller chain sprockets on the testing apparatus, and 

the wheels taken off.  The first step was to draw a free body diagram for the rear axle.  

The following two figures show free body diagrams for both the X and Y directions on 

the rear axle. 
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Figure 34 - X - Direction Free Body Diagram (Sprocket) 

 

 

 

 

 

 

 

 

 

Figure 35 - Y - Direction Free Body Diagram (Sprocket) 

 
Where 3.903 lbs and 3.903 lbs are the X and Y components of the arm force that was 

applied to the wheels at maximum torque.  The forces were applied at 2 inches from the 

end of the shaft to obtain a tighter clearance with the side of the wheelchair apparatus.   

The next step was to formulate the equations to solve for the reaction forces in the 

above equations.  The following set of equations was used to solve for these reaction 

forces. 

ΣMRax = 0 = 2(3.581) + 1.5(47.775) +16*RBX – 18(3.581)  Equation 23 

         3.581 lbs 3.581 lb 

RAX RBX 

47.775 lb

8.586 lb

3.903 lb 
         3.903 lb 

RAY 
   RBY

2” 2” 1.5” 14.5” 2” 2” 
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ΣFY = 0 = -3.581 – 3.581 – RAX – RBX + 47.775   Equation 24 

 

ΣMAY = 0 = 2(3.903) + 8.586(1.5) – 18(3.903) –16*RBY  Equation 25 

 

ΣFY = 0 = 3.903 + RAY – 8.586 + RBY + 3.903   Equation 26 

 
 
The following set of results was obtained for the reaction in the previous equations. 
 

RBY = -3.098 lbs. 
 

RAY = 3.878 lbs. 
 

RBX = 0.897 lbs. 
 

RAX = 39.716 lbs. 

 

 Next, the shear and moment diagrams were drawn for the X and Y directions.  

The following figures contain the given shear and moment diagrams.  

 

 

 

 

 

 

 

 

 

 

Figure 36  - X - Direction Shear Diagram (Sprockets) 

3.599 lb 

-43.297 lb

          -3.581 lb 

           -3.581 lb 



 54

 

 

 

 

 

 

 

 

Figure 37 – X - Direction Moment Diagram (Sprockets) 

 

 

 

 

 

 

 

 

Figure 38 – Y - Direction Shear Diagram (Sprockets) 

 
 

 

 

 

 

 

Figure 39 – Y - Direction Moment Diagram (Sprockets) 

 

-7.177 in*lb 

-72.1075 in*lb

-7.162 in*lb 

-3.903 lb -0.805 lb

7.781 lb 

3.903 lb 

7.805 in*lb 

19.4775 in*lb

     7.80 in*lb 
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The shear and moment diagrams were then used to set the boundary conditions 

for the singularity functions.  The following equations contain the singularity functions 

for the condition with roller chain sprockets in use in the X direction. 

q = -FMX<x-2>-1 –RAX<x-4>-1 +FDX<x-5.5>-1 –RBX<x-20>-1 –FMX<x-22>-1  Equation 27 

 

v = -FMX<x-2>0 –RAX<x-4>0 +FDX<x-5.5>0 –RBX<x-20>0 –FMX<x-22>0 +C1  Equation 28  

 

M = -FMX<x-2>1 –RAX<x-4>1 +FDX<x-5.5>1 –RBX<x-20>1 –FMX<x-22>1 +C1(x) +C2 Equation 29  

 

EIΘ = -FMX/2<x-2>2 –RAX/2<x-4>2 +FDX/2<x-5.5>2 –RBX/2<x-20>2 –FMX/2<x-22>2 +C1/2(x)2 +C2(x) +C3 Equation 30 

 

EIΘ = -FMX/2<x-2>3–RAX/2<x-4>3+FDX/2<x-5.5>3–RBX/2<x-20>3–FMX/2<x-22>3+C1/2(x)3+C2(x2)+C3(x)+C4 Equation 31 

  

The following set of equations contains the singularity functions for the condition 

with roller chain sprockets in use in the Y direction.   

q = FMY<x-2>-1 +RAY<x-4>-1 -FDY<x-5.5>-1 +RBY<x-20>-1 +FMY<x-22>-1  Equation 32  

 

v = FMY<x-2>0 +RAY<x-4>0 -FDY<x-5.5>0 +RBY<x-20>0 +FMY<x-22>0 +C1  Equation 33  

 

M = FMY<x-2>1 +RAY<x-4>1 -FDY<x-5.5>1 +RBY<x-20>1 +FMY<x-22>1 +C1(x) +C2 Equation 34  

 

EIΘ = FMY/2<x-2>2 +RAY/2<x-4>2 -FDY/2<x-5.5>2 +RBY/2<x-20>2 +FMY/2<x-22>2 +C1/2(x)2 +C2(x) +C3 Equation 35 

 

EIΘ=FMY/6<x-2>3+RAY/6<x-4>3-FDY/6<x-5.5>3+RBY/6<x-20>3+FMY/6<x-22>3+C1/6(x)3+C2/2(x)2+C3(x)+C4 Equation 36 
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The following table contains the results for the boundary conditions and the 

results for the constants of integration. 

 

Table 6 - Results of Boundary Conditions and Integration Constants 

With 
Mechanism 

With 
 Mechanism 

 
RAY (lb) RBY (lb) 
3.878 -3.098 

  
RAx (lb) RBx (lb) 
39.715 0.898 

  
Y-Direction X-Direction 

at x=3 V=3.903 at x=3 V=-3.581 
c1 c1 

3.903 -3.581 
at x=4 M=7.806 at x=2 M=0 

c2 c2 

-7.806 7.162 
At x=20 y=0 at x=20 y=0 

c3 c3 

-462.96 918.238 
at x=4 y=0 at x=4 y=0 

c4 c4 

3541.428 -7754.109 
 
 

3.3.3 Rear Axle Validation 

The final step in the design of the rear axle was to validate the deflection and 

stress results.  The following two tables give a summary of the deflection data. 
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Table 7 - Results of Analysis With Wheelchair Wheels 

Deflection @ x=24 Deflection @ x=24 Magnatude (24)  
-0.0539 -0.0441 0.0697 in 

Deflection @ x=0 Deflection @ x=0 Magnatude (0)  
-0.098 -0.074 0.1228 in 

Deflection @ x=5.5 Deflection @ x=5.5 Magnatude (5.5)  
-0.0327 -0.0356 0.0483 in 

Deflection @ x=4 Deflection @ x = 4   
-0.0490 -0.0454   

Deflection @ x = 20 Deflection @ x=20   
-0.00081 -0.02564   

 

 

Table 8 - Results of Analysis With Innovative Mechanisms 

 

 

 

In the previous tables, the left hand column is for the Y direction, and the right hand 

column is for the X direction.  It can be seen that the maximum displacement with the 

wheels attached occurred at one end of the shaft, while the maximum deflection with the 

innovative mechanisms attached occurred at the dynamometer sprocket connection.  Each 

of these deflections was small in comparison to the total length of the shaft, and thus they 

were determined to be within the safe operating limits of the dynamometer testing 

apparatus.   

Deflection @ x=24 Deflection @ x=24 Magnitude (24)  
0.0237 -0.0086 0.0253 in 

Deflection @ x=0 Deflection @ x=0 Magnitude (0)  
0.0385 -0.084 0.0927 in 

Deflection @ x=5.5 Deflection @ x=5.5 Magnitude (5.5)  
0.0390 -0.0298 0.0491 in 

Deflection @ x=4 Deflection  x=4   
0.0182 -0.044208473   

Deflection @ x=20 Deflection @ x=20   
0.0000 0.01033   
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 In Table 16 through Table 18 the results of a stress analysis can also be seen.  The 

bending stress was calculated at the point of the maximum moment and the results 

yielded a safety factor of approximately 4.  This value was within the limits of the yield 

stress for the material.   

3.4 Rear Axle Sprockets 

The gears were tuned to equal arc distances per stroke with the innovative 

mechanism and standard wheelchair wheels.  The angular velocity of the rear axle 

sprockets and the inside sprocket of the back connecting lever are related with the 

following relationship. 

    ABS(ω1/ω2) = D2 / D1    Equation 3715 

 

Where ω is the angular velocity of one of the sprockets in rev/min, and D is the diameter 

of one of the sprockets in inches.  In addition, the rotation of one sprocket with respect to 

the other can be calculated using the formula  

    (REV1 / REV2) = D2 / D1    Equation 38 

 

where REV is the revolution of the sprocket, and D is the diameter of the sprocket.  Once 

the desired revolution ratio for the sprockets was determined, the sprockets were sized 

accordingly.  The sprockets that were selected have the following dimensions. 
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Table 9 - Summation of Sprocket Sizes 

 Sprocket 
Number 

Outside Diameter 
(in) 

Pitch Diameter (in) # of Teeth

Rear Axle Sprocket 35A26 3.31 3.111 26 
Back Connecting Lever 35H84 10.25 10.029 84 

 

3.5 Dynamometer Sprockets 

 The sprockets for the dynamometer were selected based on size requirements for 

the rear axle of the wheelchair on the dynamometer, and on the horsepower requirements 

of the dynamometer.  The only real requirements for the sprockets were that they should 

be as small as possible to eliminate rotational inertia, and they had to be the same 

diameter.  The sprockets on the rear axle and the dynamometer will be the same size so 

that a multiplication of torque does not occur.     

3.6 Complete Testing Apparatus 

The following figures contain pictures of the entire wheelchair testing apparatus.  

These pictures are presented to give a total conceptual view of the testing apparatus.   
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Figure 40 - Testing Apparatus Picture 1 

 

 
Figure 41 - Testing Apparatus Picture 2 
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Figure 42  - Testing Apparatus Picture 3 

 

 With its current design and application, the dynamometer testing station will 

allow for the application of a torque load, and for data to be obtained on output RPM.   

 
4 Experimental Design and Testing 

4.1 Prelude 

At the present state of development of the wheelchair driven by the innovative 

mechanism, two types of experiments were done.  As described earlier, the orientation of 

major axis of the elliptical motion could be changed. In the first set of experiments, the 

change of this axis from horizontal to downward (angular offset) direction of the angle 

from shoulder to mid-thigh was evaluated against a constant torque load provided by the 

dynamometer.  The results of this test will establish the existence of any advantage in the 

change of elliptical angle.  The second test was a simulation of propelling a wheelchair 

up an incline plane.  To accomplish this simulation, a constant torque was applied to the 

rear axle of wheelchair by the dynamometer.  The test subjects were asked to propel the 
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wheelchair at the constant load.  A comparison of the angular velocities (RPM’s) required 

by the standard wheelchair and the innovative mechanism will provide a direct evaluation 

of their comparative efficiencies.  The mode of propulsion with the lower RPM will have 

the higher efficiency.   

4.2 Handle Motion Analysis  

The first set of experimental results that were obtained was for the handle motion 

analysis.  In order to calculate the motion of the mechanism handle, the user must input a 

few parameters of the mechanism so that the position analysis can be completed.  The 

following table lists the parameters that must be inserted by the user.   

 

Table 10 - Parameter Inputs for Mechanism Handle Position 

 
 
 

 

 

As you can see from Table 10 the spreadsheet allowed the user to input the initial 

angle of the mechanism, the length of Lever A, and the length of Lever B.  The initial 

angle of Lever A feature was incorporated to allow for the tuning of the angular position 

of the mechanism.  It had always been the vision of the researcher that the mechanism 

would be positioned with the major axis of the ellipse lying along the path from the user’s 

shoulder to his or her mid-thigh.  The following two figures give examples of how the 

spreadsheet program can be changed and manipulated to give different mechanism 

handle paths for different configurations.   

         MECHANISM PARAMETERS 
Length of Lever A 3.15 In 
Length of Lever B 1.5 In 
Initial Angle Lever A 0 degrees 
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Figure 43 - Example of Handle Path (0-Degrees) 

 

 

 



 64

PO SIT IO N ANALYSIS O F M EC HANISM

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

INCHES

IN
C

H
ES

M echanism

 

Figure 44 - Second Example of Handle Path (45-Degrees) 

 

  

4.3 Torque Analysis 

After the handle position analysis was complete, the next step was to conduct a 

study to find the parameters of various human subjects and obtain a curve fit for the angle 

that was obtained by drawing a line from the shoulder through the mid-thigh.  This angle 

was needed to find the angle for the major axis of the ellipse to lie along in order to 

provide maximum torque. The following figure gives an illustration of the above stated 

angle.   
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Figure 45 - Measurement of Human Angle 

 

This angle, Θ, would then allow for the innovative mechanism to be positioned in 

line with the user’s physical parameters.  By placing the innovative mechanism in the 

best possible configuration for each user, a true custom match between user and 

innovative mechanism can be accomplished.  In order to obtain the given data, ten 

random subjects were selected, and the following measurements were made:  

 

� Seat to Shoulder Height 

� Back to Mid-Thigh Length 

The following table gives the results of the human angle analysis.  The human 

angle is the actual angle Θ on the human test subject.  The test subjects who were 

recruited were between the ages of 20 and 71. There were nine males and one female test 

subject.  All were healthy, able-bodied individuals.   

 
 
 

Shoulder 

Mid-Thigh

Θ
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Table 11 - Results of Human Angle Analysis 

Subject # Human Angle 
 (Degrees) 
1 58.63 
2 59.24 
3 60.48 
4 55.27 
5 64.49 
6 59.70 
7 56.80 
8 58.95 
9 53.83 
10 56.03 

 

Once the human angles were obtained, a torque analysis was then completed on 

the innovative mechanism.  The torque curves for each subject were obtained using the 

handle position analysis.  The torque at each point along the path of the ellipse was 

calculated by taking the cross product between the force applied by a human subject and 

the position lever of the handle.  The values for the lengths of Lever A and B were kept 

the same as they can be found on the actual innovative mechanism.  Values were then 

entered for the Initial Angle of Lever A in the spreadsheet.  A nominal force of 1 pound 

was used for the human applied force.  The following three figures give an example of 

how the torque curves change as the initial angle (major axis orientation) of Lever A 

changes.   
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Figure 46 - Torque Analysis - 45 Degrees Offset 
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Figure 47 - Torque Analysis - 60 Degree Offset 
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Figure 48 - Torque Analysis - 70 Degrees Offset 

The human angles for each of the human subjects were calculated, and a torque 

curve was developed for each of the subjects.  As you can see, there does seem to exist a 

point at which the minimums on the curves can be maximized.  That is to say, the sharply 

sloping valleys can be maximized.  The torque curves for each subject were made as 

smooth a possible by changing the initial angle of Lever A.  The torque curves for each 

individual subject can be found in the Appendix C.   

 Once the torque curves were maximized, the maximized angle (derived 

mechanism angle) of Lever A was plotted verses the human angle to obtain a curve fit 

and equation for the angle that is needed on Lever A for any given human angle.  The 

following figure contains the results of the curve fit analysis.   
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Curve Fit Analysis For Angle of Lever A
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Figure 49 - Results of Curve Fit Analysis 

  

From Figure 49, it can be seen that a curve fit was made with a linear function that 

resulted in an R2 of 0.9972.  The best possible value of an R2 value is 1.0.  A value of 1.0 

would be a perfect fit.  The curve was used to accurately calculate the derived mechanism 

angle.  From the above analysis, the mechanism angle can be calculated from the 

following equation.   

Derived Mech. Angle = 1.453*Human Angle –22.069  Equation 39 
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 The following table contains a comparison of the mechanism position angle 

calculated from the curve fit analysis compared to the same angle that was calculated 

from the torque curve method.   

Table 12 - Comparison of Results For Mechanism Position Angle 

 Measured Estimated From Torque Curves Calculated From Curve Fit Analysis 
Subject # Human Angle  Mech. Pos. Angle Mech. Pos. Angle Percent Difference

 (Degrees) (Degrees) (Degrees) (Percent) 
1 58.63 63 63.12 0.184 
2 59.24 64 64.00 0.004 
3 60.48 65.5 65.81 0.466 
4 55.27 58 58.24 0.412 
5 64.49 72 71.63 0.517 
6 59.70 64.5 64.68 0.279 
7 56.80 60.5 60.46 0.058 
8 58.95 63.5 63.58 0.124 
9 53.83 56.5 56.14 0.640 
10 56.03 59.5 59.35 0.259 

 
 

These results were then used in the testing of the human subjects.  The final step 

before testing of human subjects could begin was to determine what load should be 

applied on the dynamometer.   

4.4 Testing Load Calculation 

The standard slopes that a wheelchair user must negotiate shall not exceed 1:20 for 

curbs coming from streets17.   
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Figure 50 - Diagram of Wheelchair Ramp Requirements17 

In order to calculate the load that a person must apply to the wheels in order to 

propel the wheelchair a spreadsheet program was developed.  A copy of the spreadsheet 

can be found in the Appendix C.   From the spreadsheet in Appendix C, it can be seen 

that calculating the load on the wheelchair and user was quite simple.  But, this 

spreadsheet was sensitive to the value that was entered for the coefficient of friction 

between the wheels and the rolling surface.  It was because of this sensitivity that the 

spreadsheet was never used to its fullest extent.  A small error in the coefficient of 

friction resulted in a large error in the calculated force needed to propel the wheels.  

Instead, trial runs were completed to compare the two types of wheel propulsion.  Once a 

load was reached that did not allow for the wheels to have a free rotation, this load was 

used.  The next step was to start testing human subjects.   

4.5 Testing of Human Subjects – Different Mechanism Angles 

The first set of human experimental data that was taken was for the innovative 

mechanism positioned at two different angles.  Earlier in the description of the 

mechanism, the possibility of varying the major axis of the ellipse was described.  The 

benefits of that feature are being tested in this section.  The stroke efficiency of two 

angles was evaluated.  The first angle that was used was 0 degrees, that is, with the major 

axis of the ellipse parallel to the thigh of the subject.  The second angle tested was the 



 73

mechanism position angle derived from the human angle measurements described in a 

previous section.  Generally, this angle was based on the angle from the shoulder to the 

mid-thigh.   

For each of the above stated tests, the human subjects had to propel the innovative 

mechanism against a load of 10 in*lbs.  This constant load allowed for comparison of the 

angular velocity (RPM) and horsepower outputs as recorded by the dynamometer, 

controller, and computer setup.  The load of 10 in*lbs was chosen just to give a reference 

point from which all of the given results can be compared.  In addition, the entire test 

lasted for 3 minutes with data being taken at one second intervals for a total of 180 data 

points.  The subjects were asked to propel the innovative mechanism set at one of the 

angles during the first testing session, and then the subjects were asked to return at a later 

date in order to test the other angle.   

The data was collected for each of the human subjects, and graphs were configured 

to show the results.  For each subject, a graph was made for output torque, RPM, and 

horsepower.  Whenever each subject was tested on the dynamometer apparatus, the 

output torque load was first analyzed to make sure that the subject had correctly kept the 

output torque as close as possible to 10 in*lbs.  In addition, the output had to be relatively 

steady, in that large jumps would cause the data to be inconclusive.  If the subjects were 

unable to sustain the load, they were asked to start over, or a new subject was recruited.  

For our testing procedures, each of the human subjects was able to propel the innovative 

mechanisms for the test period of three minutes.  The torque RPM, and Horsepower 

graphs for each given subject can be found in the Appendix C labeled in Figure 88 

through Figure 117. 
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4.6 Testing of Human Subjects – Mechanism/Wheel Comparison 

 
One of the main focuses of this research project was to compare the output 

characteristics of a standard manually powered wheelchair with the innovative 

mechanism that has been developed.  This section contains the comparison, and the 

results are presented in graphical and tabular form.   

For testing purposes, the same ten subjects were recruited for this part of the testing 

procedure as were tested previously.  Although, subject 5 was unable to take part in this 

portion of the innovative mechanism testing procedure because of scheduling and 

physical problems.  So, a total of nine human subjects were included   

The load that was applied on the dynamometer setup for this part of the testing 

procedure was 10 in*lbs.  This load was applied in a constant manner and will allow for a 

comparison to be made between the innovative mechanism and the standard manually 

powered wheelchair.  The load was applied to the test subjects for a total of three 

minutes, with data being taken every 1 second, same as before.   

The human test subjects were recruited and asked whether or not they had shoulder 

or upper arm problems and/or pain before the testing procedure started.  By recruiting 

only able-bodied subjects with no prior wheelchair experience, there will not be a bias 

toward one method of propulsion or the other.   The exact method of wheelchair stroke 

pattern was not noted.  After the initial question session, the subjects were given a couple 

minutes to familiarize themselves with the testing procedure and the way in which the 

wheels had to be powered.  For each of the tests, the torque that was being applied was 

carefully observed to make sure that each subject kept the output torque constant, within 
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reason, to the input torque of 10 in*lbs.  There are variations in the output torque, but 

each variation lies within the given scope of allowed variation from 10 in*lbs.  In 

addition, there are points on some of the subjects torque curves that show a few very low 

torque values.  These points were directly dependant upon a subject’s ability to keep the 

wheels moving during propulsion.  A couple subjects momentarily stopped the wheel 

whenever they applied the propulsion stroke.   

 Each of the nine subjects powered the wheelchair dynamometer using the 

innovative mechanisms, and then they were asked to return at a later date or time in order 

to complete a test using only the standard wheels for propulsion.  None of the subjects 

were allowed to complete the second test procedure immediately after the first due to the 

possibility of fatigue.  After the data was acquired for each of the human test subjects 

using both the innovative mechanisms and the standard wheelchair wheels for propulsion, 

the data was tabulated and any necessary conversion factors were applied to the data.  

The one conversion factor that was needed was a conversion of the power from watts to 

horsepower.  But, this was simply a multiplication operation, and none of the original 

data was altered in any way.  Once the data was compiled in the necessary format, charts 

and graphs were made for output torque, angular velocity (RPM), and horsepower for 

each of the nine human test subjects.  The graphs of output torque, angular velocity, and 

horsepower can be found in Appendix C labeled as Figure 118 through Figure 144.  The 

same issue arose with this set of graphs as arose with the set of graphs in the previous 

section.  The horsepower graphs are simply a scaled version of the angular velocity.  

Once again, this condition exists because horsepower was simply equal to torque 

multiplied by the angular velocity and divided by a constant.  So, if the output torque was 
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constant, the only variable that was changing was the angular velocity.  This was the 

reason why the angular velocity and horsepower graphs look very similar to one another.   

In order to analyze the given data, a method had to be documented whereby the data 

could be analyzed in a scientific and objective manner.  The following pages contain the 

data reduction for the comparison between the manually powered wheelchair wheels and 

the manually powered innovative mechanism. 

 

5 Results 

5.1 Results of Testing of Subjects at Different Mechanism Angles 

The following paragraphs will be used to explain the results for the ten human test 

subjects in detail. 

The first graphs that were constructed for each of the 10 subjects were for the 

output torque.  Each output torque was analyzed to make sure the torque was being held 

at a relatively constant value.  However, there are sticking points that exist in the 

mechanism due to the moment arm that is being produced, and because of the line of 

action of the subject’s input force.  If the torque dropped too close to 0 at the same time 

as the angular velocity (RPM) dropped to a value close to 0, this was deemed a sticking 

point and the testing was allowed to progress.  Each of the ten subjects data that was 

analyzed in this part of the Results section had data that fell within the range of the 

allowable deviation.   

The first set of results that will be compared are for subjects 6,7, and 8.   
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Figure 51 - RPM Results For Subject 6 (10*lbs) 

 

 

Figure 52 - RPM Results For Subject 7 (10 in*lbs) 
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RPM vs. Time - Subject 8
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Figure 53 - RPM Results For Subject 8 (10 in*lbs) 

 
By inspection of the RPM curves for these three given subjects, it can be observed 

that there was not an appreciable difference between the angular velocities that were 

obtained with the innovative mechanism set at 0 degrees and the angular velocities with 

the mechanism set at the derived mechanism angle.  The horsepower results are similar to 

the angular velocity results.  This phenomenon was expected because horsepower is 

simply the torque multiplied by the angular velocity and divided by a constant.  So, if the 

angular velocities for a subject were higher for one of the angle orientations, the 

horsepower for the same subject will also be higher for that angle orientation because the 

torque output of the mechanism was constant.  The points on the angular velocity curve 

that dip down to 0 are the sticking points.  These points are reached where the moment 

arm becomes equal to 0.  In addition, the line of action of the user’s input force can cause 

these sticking points.  The subject’s arm was fully extended and no moment arm was 

present, which resulted in the locking of the mechanism.  Also, when the subject’s arm 
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was fully extended, the subject was propelling along the line of action, so no force was 

being transmitted.    

Subjects 1 and 2 had a higher overall angular velocity (RPM) range with the 

innovative mechanisms orientated at the derived mechanism angle.   
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Figure 54 - RPM Results For Subject 1 (10 in*lbs) 
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RPM vs. Time - Subject 2
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Figure 55 - RPM Results For Subject 2 (10 in*lbs) 

 

 

In addition, these two subjects experienced angular velocity values that were also 

higher overall for the derived mechanism angle.  The higher overall trend of angular 

velocity values could stem from the fact that the user was able to supply more bodily 

force to the mechanism in this configuration, or this configuration may have allowed for 

the given user to have a higher mechanical advantage.   

Subject 3 had a higher range of angular velocity values with the mechanism set at 

the derived mechanism angle, but there was not a noticeable difference in the overall 

trends of the angular velocity (RPM) curves. 
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RPM vs. Time - Subject 3
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Figure 56 - RPM Results For Subject 3 (10 in*lbs) 

  Whereas, subject 4 demonstrated a higher overall trend in angular velocity with 

the mechanism angle set at 0 degrees, but did not have a noticeable shift in the overall 

range of angular velocity values that were obtained.  
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RPM vs. Time  - Subject 4
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Figure 57 - RPM Results For Subject 4 (10 in*lbs) 

Subjects 5, 9, and 10 demonstrated a higher range of angular velocity (RPM) values 

for the 0 degree mechanism angle condition, in addition to a higher overall angular 

velocity trend for the 0 degree mechanism position.   
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Figure 58 - RPM Results For Subject 5 (10 in*lbs) 



 83

 
RPM vs. Time  - Subject 9
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Figure 59 - RPM Results For Subject 9 (10 in*lbs) 

 
RPM vs. Time - Subject 10
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Figure 60 - RPM Results For Subject 10 (10 in*lbs) 

 

 The results show that there was not a definitive difference in the angular velocity 

(RPM) values between the angle orientations of the major axis of the ellipse.   
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5.2 Results of Testing Subjects – Mechanism/Wheel Comparison  

 The first set of results that will be presented are the results from the angular 

velocity (RPM) comparison data.  It was originally the goal of the team to design a 

mechanism that would allow for the user to propel a manually powered wheelchair with 

less effort.  The range of angular velocities that a person must use in order to propel the 

wheelchair provides a direct relationship to the amount of energy that a person must use 

to propel the wheelchair.   In order to obtain a way of comparing the angular velocity 

(RPM) graphs for each of the test subjects, a linear curve fit was made for each set of 

data on the graph.  A linear fit was used so that a simple curve or trend could be seen in 

the data.  The linear curve fit for the wheelchair wheel data is marked with a dotted line 

on the graphs, whereas the linear fit for the innovative mechanism data is marked with a 

solid line on the graphs.  Once the curve fits were completed, a point in time in the 

middle of the testing window was chosen to evaluate each curve.  Since these are linear 

curve fits, the value in the middle will be equal to approximately the average of the data 

points.  This idea will be further stated later in the results section.  The following table 

gives a comparison of the angular velocity data results for both the standard wheels and 

the innovative mechanism.   

Table 13 - Comparison of RPM Data For Wheels and Innovative Mechanism 

Subject RPM (Wheels) RPM (0 Degrees) Ratio RPM(W)/RPM(0)
1 22.542 18.021 1.251
2 31.099 20.381 1.526
3 30.373 23.808 1.276
4 31.794 27.181 1.170
5 Uncompleted Uncompleted
6 27.748 19.926 1.393
7 49.993 26.748 1.869
8 42.145 26.425 1.595
9 44.375 19.368 2.291
10 48.711 20.399 2.388

AVERAGE 36.531 22.473 1.640
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  The angular velocities (RPM’s) in Table 13 were compared for a time of 90 

seconds.  This allowed for a comparison in the middle of the three-minute testing 

window.  It can also be seen that the highest ratio of RPM(W) to RPM(0) was 2.388, 

whereas the lowest ratio was 1.170.  This wide range of values could be due to each 

person’s own personal way of propelling the wheelchair.  Some subjects would set 

further up in the chair, whereas others would set completely back in the chair.  Each 

subject had a different style of propulsion along with a different cadence at which they 

propelled the wheels.  The only instruction that was given to the test subjects was 

whether or not they were holding the output torque values within the given range of 10 

in*lbs.  The cadence and seating position was then left up to the test subjects.  The given 

values of RPM(W) and RPM(0) were then averaged in order to give an average angular 

velocity (RPM) value for each set of data.  The average angular velocity value of the 

wheel method of propulsion, RPM(W) was 36.531 RPM’s, whereas the average angular 

velocity value for the innovative mechanism method of propulsion, RPM(0) was 22.473 

RPM’s.  The average ratio of the RPM(W)/RPM(0) that was obtained was 1.640.  The 

ratio of the wheel angular velocity (RPM) to the innovative mechanism angular velocity 

(RPM) was formulated to demonstrate the mechanical advantage that was being created 

by the innovative mechanism at a given load of 10 in*lbs.  This value of 1.640 means that 

the standard wheelchair propulsion system requires 1.640 times the angular velocity 

(RPM) required by the innovative mechanism to sustain the same load.  

 By inspection of the graphs in Appendix C, it can be seen that subjects 1, 3, 4, 6, 

8, and 10 demonstrated a general trend of slowly decreasing RPM values for the wheel 
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method of propulsion, whereas they demonstrated a slightly increasing RPM value for the 

innovative mechanism method of propulsion. 
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Figure 61 - RPM Results For Subject 1 - Wheels (10 in*lbs) 
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RPM vs. Time - Subject 3 (Wheels)
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Figure 62 - RPM Results For Subject 3 - Wheels (10 in*lbs) 
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Figure 63 - RPM Results For Subject 4 - Wheels (10 in*lbs) 
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RPM vs Time - Subject 6 (Wheels)
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Figure 64 - RPM Results For Subject 6 - Wheels (10 in*lbs) 
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Figure 65 - RPM Results For Subject 8 - Wheels (10 in*lbs) 
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RPM vs Time - Subject 10 (Wheel)
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Figure 66 - RPM Results For Subject 10 - Wheels (10 in*lbs) 

 
 
   This general trend could mean that fatigue was setting in during the wheel method 

of propulsion, but the innovative mechanisms did not result in the subjects entering the 

fatigue state as quickly.  Subject 7 was the only subject that showed a steady RPM curve 

for each of the two types of propulsion, but with the RPM values of the wheel propulsion 

method still higher than the RPM range for the innovative mechanism propulsion.   
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RPM vs. Time - Subject 7
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Figure 67 - RPM Results For Subject 7 - Wheels (10 in*lbs) 

           

Subject 2 demonstrated an RPM increase in both the wheel and innovative 

mechanism methods of propulsion. Whereas, subject 9 demonstrated an increase in RPM 

for the wheel method of propulsion, but a decline in RPM for the innovative mechanism 

method of propulsion.   
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RPM vs. Time - Subject 2 (Wheels)
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Figure 68 - RPM Results For Subject 2 - Wheels (10 in*lbs) 

RPM vs. Time - Subject 9 (Wheels)
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Figure 69 - RPM Results For Subject 9 - Wheels (10 in*lbs) 

 

The overall range of the RPM values was larger in each case for the wheel 

method of propulsion as compared to the innovative mechanism method of propulsion.  
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This general trend could explain the fact that eight of the nine subjects experienced 

shoulder or upper-arm discomfort after the testing procedure.  The shoulder was being 

made to rapidly accelerate and move in an abnormal range of motion.  This reiterates the 

conclusions that have been drawn by other investigators, see Literature Review for 

examples.       

 The next set of data that was analyzed was for horsepower results of the nine 

human test subjects.  The horsepower results look very reminiscent of the RPM value 

results, but the horsepower results are shown to give validity to the analysis procedure 

that was used.  The horsepower curves were also fitted with a linear curve fit and point at 

90 seconds was analyzed.  Once again, this provided a way of comparing the actual 

graphs of the horsepower.  The following table contains the results of the horsepower 

section of the analysis. 

Table 14 - Horsepower Comparison of Wheel and Innovative Mechanism Propulsion Methods 

 
 
The same general trends can be seen in Table 14 as were seen for the RPM results.  The 

average ratio of the horsepower used to propel the wheels, HP(W), to the horsepower 

used to propel the innovative mechanism, HP(0), was 1.631.  This value is essentially the 

same as the value that was obtained for the RPM(W) to RPM(0) results.  Any differences 

Subject HP (Wheels) HP (0 Degrees) Ratio HP(W)/HP(0)
1 0.00342 0.0028 1.221
2 0.00508 0.00318 1.597
3 0.00481 0.00376 1.279
4 0.00504 0.00429 1.175
5 Uncompleted Uncompleted
6 0.00436 0.003618 1.205
7 0.007927 0.004273 1.855
8 0.00667 0.00415 1.607
9 0.00706 0.00305 2.315

10 0.00774 0.00319 2.426
AVERAGE 0.00579 0.00359 1.63128
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are simply a result of rounding error in the calculations.  The same general trends in the 

horsepower curves can also be seen for each subject.  Once again, the horsepower results 

look very similar to the RPM results because there is simply a scaling factor used to go 

between the two values.   

The final set of results that were tabulated were for an energy analysis on the 

wheel and innovative mechanism methods of propulsion.  The data that was obtained 

from the human testing included a column of data in watts.  In order to give an energy 

comparison the watts were divided by 1000 and multiplied by the number of hours each 

subject spent in the test procedure.  Each subject spent a total of 3 minutes in each test.  3 

minutes gives a total of 0.05 hours.  The energy results were then in kw-hrs.  This is a 

basic unit of energy that most people understand.  In order to obtain one solid number for 

the number of kilowatts that were used, an average was taken of all of the data points that 

were obtained over the three-minute testing period.  The comparison of the energy results 

to the RPM and horsepower results will provide of method of verifying the various 

methods of analysis.  The following table gives a comparison of energy analysis for each 

of the propulsion methods.   
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Table 15 - Results of Energy Analysis for Wheels and Innovative Mechanism Propulsion 

Subject  Energy (Wheels) Energy ( 0-Degrees) Ratio Energy(W)/Energy(0) 
 (kw-hrs) (kw-hrs)  

1 0.000126246 0.000105652 1.194918215 
2 0.000188653 0.000120706 1.562906623 
3 0.000179672 0.000140006 1.283322372 
4 0.000188008 0.000160881 1.168620612 
5 Uncompleted Uncompleted  
6 0.00016287 0.000117425 1.387008574 
7 0.000295986 0.000158439 1.868140048 
8 0.000249042 0.000156508 1.591234871 
9 0.000262593 0.000114663 2.290134863 

10 0.000288119 0.000120254 2.395922038 
AVERAGE 0.000215688 0.000132726 1.638023135 

 
 
 
 

By inspection of Table 15 it can be seen that the average ratio of the energy used to 

propel the wheels, Energy(W), to the energy used to propel the innovative mechanism, 

Energy(0), was 1.638.  This value of 1.638 means that is takes 1.638 times that energy to 

propel the wheels as it takes to propel the innovative mechanism.  In addition, the energy 

ratio average of 1.638 was very comparable to the RPM ratio average of 1.640 and the 

horsepower ratio average of 1.631.  Since approximately the same advantage was found 

throughout the three different analysis techniques, the results are confirmed.  The 

conclusion section contains a summary of the results that were obtained.   

 

6 Conclusions 

� A new innovative mechanism that can be adapted to traditional wheelchairs has been 

designed, modeled, constructed, and tested.   

� The test results indicate that preferential orientation of the major axis of the ellipse on 

the propulsion system creates no distinct mechanical advantage.  There was evidence 
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of significant frequency of sticking in the offset angle condition.  It is believed this 

was due to the lack of moment arm as the human arm was locked at the elbow, and 

the because of the line of action of the human input force.   

� When compared with the innovative mechanism propulsion system, it was shown that 

an increase of 1.640 times the angular velocity of the innovative mechanism 

propulsion system was required by the standard wheelchair propulsion system to 

sustain a constant torque load of 10 in*lbs.   

� Subjects that were used to test both methods of propulsion inevitably experienced and 

complained of shoulder pain while using the traditional method of wheelchair 

propulsion.  No complaints of discomfort were experienced for the innovative 

mechanism method of propulsion.   

The innovative mechanism propulsion system has been shown to allow for 

advantages over standard wheelchair propulsion.   However, it must be noted that data 

was only taken on the output side.  Data needs to be taken on the input parameters to 

determine the amount of work that is actually going into propelling the different modes of 

propulsion.   

 The methods of testing and obtaining data should be revised.  The experimental 

procedures that were used in this project were only concerned with maintaining a 

constant torque load.  A testing regime should be developed that uses the dynamometer to 

apply a load, and the subjects are instructed to hold the RPM’s as constant to a given 

value as possible.  This new testing methods would then assure that each of the 

propulsion methods allowed the wheelchair to travel approximately the same distance.  
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The oxygen, heart rate, and muscle activation data could then be obtained to give a true 

comparison between the two propulsion methods.    

 

6.1 Specific Accomplishments of This Research (What’s New) 

� A new innovative propulsion system based on Cardan gearing was invented for 

wheelchair propulsion application.   

� Engineering drawings for the mechanism were compiled based on mathematical 

models to simulate the SC wheelchair propulsion stroke.  These drawings were used 

by Laser Processing to manufacture four complete propulsion units.   

� The propulsion units were retrofitted onto a standard wheelchair frame in the MAE 

shop.   

� A testing station was design and fabricated to test wheelchair propulsion methods in 

the MAE shop.  A dynamometer was sized, purchased, and mounted on the testing 

station.   

� Human subjects were recruited and tested for both mechanism angle efficiency and 

propulsion method comparison.   

� Testing has shown that angular orientation does not demonstrate any efficiency in the 

innovative mechanism propulsion system.   

� Testing has shown that the innovative propulsion system required less angular 

velocity (RPM) to maintain a constant load as compared to the standard method of 

wheelchair propulsion.   
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7 Recommendations 

The work that has been done so far on the innovative wheelchair project has laid the 

groundwork upon which further work can be based.  The innovative mechanism has 

already been shown to work, and it has also been shown that the innovative mechanism 

has advantages over standard wheelchair propulsion.  The next step of this design process 

should include data on which muscles are being used, and on the amount of work that the 

person is actually doing in the wheelchair.  This thesis has shown an energy advantage by 

using the innovative mechanism, but this was only based on the outputs of the system.  

Tests should be run to obtain the oxygen consumption, heart rate, and breathing rate of 

test subjects using both the innovative mechanism and the standard wheelchair wheels.  

All of this data may not be able to be collected during the same phase of the project, but 

the investigators should look at the amount of energy consumption that is required for a 

person to propel both modes of propulsion.  In addition, an EKG machine or some other 

method of obtaining muscle contraction data should be used to validate which muscles 

are being used with both the innovative mechanism and the standard wheelchair wheels.  

It is my belief that once these future steps are accomplished, a real advantage will be seen 

in the innovative mechanism.   

On the design side of the project, a method should be investigated as to how the play 

in the mechanism, especially around the bearings, could be prevented.  Whenever the 

user pushes on the handle, a large moment is generated at the bearings, and subsequent 

wear of the shaft follows.  In addition, before the innovative mechanism can be marketed, 

a housing should be made that encloses the working parts of the mechanism.  This 
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housing will keep people’s clothes and other objects form coming in contact with the 

sprockets and roller chains.    

Work also needs to be done on installing a gearing or transmission system on the 

retrofitted wheelchair.  There also needs to be work done on the scotch yoke system that 

has been talked about.  In addition, a method needs to be designed to add a coast phase 

into the gearing of the innovative mechanism.  Hand brakes will also have to be designed 

in conjunction with the coast mechanism phase of development.   

Funding has also been a problem, but now that the initial groundwork has been laid 

and data has been taken to initially validate the innovative mechanism, funding should be 

easier to come by, and more doors will be open.   

This may seem like a lot of work that still should be done on the project, but when I 

started, all that I had was the basic design of the innovative mechanism.  This project has 

come a long way in the past 18 months.  One of my main concerns on this project was 

accessing the benefits of the innovative mechanism because there are serious health and 

social benefits that can be accomplished with this project! 
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Figure 70 - Drawing Of Back Connecting Lever 
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Figure 71 - Drawing Of Lever B 
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Figure 72 - Drawing Of Lever A (Gear Bar) 
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Figure 73 - Drawing Of Mechanism Shaft #1 
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Figure 74 - Drawing Of Shaft #2 
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Figure 75 - Drawing Of Sun Sprocket 
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Figure 76 - Drawing Of Planet Sprocket 
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Figure 77 - Drawing Of Connecting Roller Chain Sprocket 

 

 



 110

 

 

 

 

 

 

 

 

 

 

 

 

Appendix B



 111

 

Table 16 - Results For Deflection and Stress Analysis -Table 1 

 
�dyno �mech �arm 
10.189 47.463 45 

   
   

Fx dyno 47.775  
Fy dyno 8.586  

   
Fx mech 3.581  
Fy mech 3.903  

   
Fx arm 1.768 
Fy arm 1.768 

Fy arm& wheel 7.768 
  

E (psi) 3.00E+07
I (in^4) 0.003

Diameter (in)  = 0.5
Area (in^2)     = 0.1963
C (in)            = 0.25
I (in^4)           = 0.003068

With Wheel  Safety Factor     = 3.7
With Mechanism Safety Factor  = 3.9
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Table 17 - Results for Deflection and Stress Analysis -Table 2 

 

 

With Wheel   
RAY (lb) RBY (lb)  
15.549 8.573  

   
RAx (lb) RBx (lb)  
41.528 2.711  

   
Y-Direction X-Direction  

at x=3 V=-7.768 at x=3 V=-1.768  
c1 c1  

-7.768 -1.768  
at x=4 M=-31.072 at x=4 M=-7.032  

c2 c2  
0.0028 0.0391  

   
c3 c3  

1170.642 660.387  
at x=4 y=0 at x=4 y=0  

c4 c4  
-9026.252592 -6785.072814  

Deflection @ x=24 Deflection @ x=24 Magnatude (24) 
-0.0539 -0.0441 0.0697 

Deflection @ x=0 Deflection @ x=0 Magnatude (0) 
-0.098 -0.074 0.1228 

Deflection @ x=5.5 Deflection @ x=5.5 Magnatude (5.5) 
-0.0327 -0.0356 0.0483 

Deflection @ x=4 Deflection @ x = 4  
-0.0490 -0.0454  

Deflection @ x = 20 Deflection @ x=20  
-0.00081 -0.02564  
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Table 18 - Results of Deflection and Stress Analysis - Table 3 

 

 

With 
Mechanism 

   

RAY (lb) RBY (lb)   
3.878 -3.098   

    
RAx (lb) RBx (lb)   
39.715 0.898   

    
Y-Direction X-Direction   

at x=3 V=3.903 at x=3 V=-3.581   
c1 c1   

3.903 -3.581   
at x=4 M=7.806 at x=2 M=0   

c2 c2   
-7.806 7.162   

at x=20 y=0 at x=20 y=0   
c3 c3   

-462.96 918.238   
at x=4 y=0 at x=4 y=0   

c4 c4   
3541.428 -7754.109   

Deflection @ x=24 Deflection @ x=24 Magnitude (24)  
0.0237 -0.0086 0.0253 in 

Deflection @ x=0 Deflection @ x=0 Magnitude (0)  
0.0385 -0.084 0.0927 in 

Deflection @ x=5.5 Deflection @ x=5.5 Magnitude (5.5)  
0.0390 -0.0298 0.0491 in 

Deflection @ x=4 Deflection  x=4   
0.0182 -0.044208473   

Deflection @ x=20 Deflection @ x=20   
0.0000 0.01033   
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Torque Analysis - Subject 1
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Figure 78 - Results of Torque Analysis For Subject 1 

 
Torque Analysis - Subject 2
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Figure 79 - Results of Torque Analysis For Subject 2 
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Torque Analysis - Subject 3
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Figure 80 - Results of Torque Analysis For Subject 3 

 
Torque Analysis - Subject 4
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Figure 81 - Results of Torque Analysis For Subject 4 
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Torque Analysis - Subject 5
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Figure 82 - Results of Torque Analysis For Subject 5 

 
Toque Analysis - Subject 6
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Figure 83 - Results of Torque Analysis For Subject 6 
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Toque Analysis - Subject 7
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Figure 84 - Results of Torque Analysis For Subject 7 

 
Torque Analysis - Subject 8
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Figure 85 - Results of Torque Analysis For Subject 8 
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Torque Analysis - Subject 9
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Figure 86 - Results of Torque Analysis For Subject 9 

 
Torque Analysis - Subject 10
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Figure 87 - Results of Torque Analysis For Subject 10 
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Table 19 - Testing Torque Calculation Spreadsheet 

Input Rise of Ramp        = 1 In 
Input Run of Ramp        = 20 In 
Input Inclination Angle     = 0.049958 Radians 
Inclination Angle             = 2.862405 Degrees 
Input Human Weight       = Lbs 
Input Wheelchair Weight = Lbs 
Input Coeff. Of Friction    = 
Input Wheel Diameter    = In 
SIN (THETA) 0.049938
COS(THETA) 0.998752
Input Initial Arm Angle    = Degrees 
Arm Angle                    = 0 Radians 
SIN (ARM ANGLE)       = 0                          Test Torque Calculations 
COS (ARM ANGLE)       = 1

  
 Two-Sided Arm Force FARM  = 0
  One-Sided Arm Force  FARM  = 0 lbs 
 Total Normal Force N = 0 lbs 
  
  One Arm -Total Torque Torque = 0 in*lbs 
 Two Arm - Total Torque Torque =  0 in*lbs 
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Output Torque vs. Time - Subject 1
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Figure 88 - Torque Results For Subject 1 (10 in*lbs) 

 
RPM vs. Time - Subject 1

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120 140 160 180 200

Time (s)

R
PM

 (r
ev

/m
in

)

0 Degrees
55.43 Degrees

 
Figure 89 - RPM Results For Subject 1 (10 in*lbs) 
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HP Output vs. Time - Subject 1 
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Figure 90 - Horsepower Results for Subject 1 (10 in*lbs) 

 
Output Torque vs Time - Subject 2
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Figure 91 - Torque Results For Subject 2 (10 in*lbs) 
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RPM vs. Time - Subject 2
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Figure 92 - RPM Results For Subject 2 (10 in*lbs) 

 
Horsepower vs. Time - Subject 2
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Figure 93 - Horsepower Results For Subject 2 (10 in*lbs) 
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Output Torque vs. Time - Subject 3
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Figure 94 - Torque Results For Subject 3 (10 in*lbs) 

 
RPM vs. Time - Subject 3

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100 120 140 160 180 200

Time (s)

R
PM

 (r
ev

/m
in

)

0 Degrees
54.02 Degrees

 
Figure 95 - RPM Results For Subject 3 (10 in*lbs) 
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Output Horsepower vs. Time - Subject 3
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Figure 96 - Horsepower Results For Subject 3 (10 in*lbs) 
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Figure 97 - Torque Results For Subject 4 (10 in*lbs) 

 



 126

RPM vs. Time  - Subject 4
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Figure 98 - RPM Results For Subject 4 (10 in*lbs) 
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Figure 99 - Horsepower Results For Subject 4 (10 in*lbs) 
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Output Torque vs. Time - Subject 5
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Figure 100 - Torque Results For Subject 5 (10 in*lbs) 
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Figure 101 - RPM Results For Subject 5 (10 in*lbs) 
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Horsepower vs. Time - Subject 5
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Figure 102 - Horsepower Results For Subject 5 (10 in*lbs) 

 
Output Torque vs. Time - Subject 6
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Figure 103 - Torque Results For Subject 6 (10 in*lbs) 
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RPM vs. Time -Subject 6
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Figure 104 - RPM Results For Subject 6 (10 in*lbs) 

 
Horsepower vs. Time - Subject 6
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Figure 105 - Horsepower Results For Subject 6 (10 in*lbs) 
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Output Torque vs. Time - Subject 7
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Figure 106 - Torque Results For Subject 7 (10 in*lbs) 
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Figure 107 - RPM Results For Subject 7 (10 in*lbs) 
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Horsepower vs Time - Subject 7
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Figure 108 - Horsepower Results For Subject 7 (10 in*lbs) 
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Figure 109 - Torque Results For Subject 8 (10 in*lbs) 
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RPM vs. Time - Subject 8
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Figure 110 - RPM Results For Subject 8 (10 in*lbs) 

 
Horsepower vs. Time - Subject 8
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Figure 111 - Horsepower Results For Subject 8 (10 in*lbs) 
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Output Torque vs. Time - Subject 9
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Figure 112 - Torque Results For Subject 9 (10 in*lbs) 
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Figure 113 - RPM Results For Subject 9 (10 in*lbs) 
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Horsepower vs. Time - Subject 9
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Figure 114 - Horsepower Results For Subject 9 (10 in*lbs) 

 
Output Torque vs. Time - Subject 10

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120 140 160 180 200

Time (s)

O
ut

pu
t T

or
qu

e 
(lb

*in
)

0 Degrees
64.27 Degrees

 
Figure 115 - Torque Results For Subject 10 (10 in*lbs) 
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RPM vs. Time - Subject 10
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Figure 116 - RPM Results For Subject 10 (10 in*lbs) 

 
Horsepower vs. Time - Subject 10
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Figure 117 - Horsepower Results For Subject 10 (10 in*lbs) 
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Output Torque vs. Time - Subject 1 (Wheels)
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Figure 118 - Torque Results - Subject 1 - Wheels (10 in*lbs) 
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Figure 119 - RPM Results - Subject 1 - Wheels (10 in*lbs) 
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Horsepower vs. Time - Subject 1 (Wheels)
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Figure 120 - Horsepower Results - Subject 1 - Wheels (10 in*lbs) 

 
Output Torque vs. Time - Subject 2 (Wheels)
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Figure 121 - Torque Results - Subject 2 - Wheels (10 in*lbs) 
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RPM vs. Time - Subject 2 (Wheels)
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Figure 122 - RPM Results - Subject 2 - Wheels (10 in*lbs) 

 
Horsepower vs. Time - Subject 2 (Wheels)

y = 2E-06x + 0.0049

y = 2E-06x + 0.003

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 20 40 60 80 100 120 140 160 180 200

Time (s)

H
or

se
po

w
er

 (H
P)

0 Degrees
Wheels
Linear (Wheels)
Linear (0 Degrees)

 
Figure 123 - Horsepower Results - Subject 2 - Wheels (10 in*lbs) 
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Output Torque vs. Time - Subject 3 (Wheels)
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Figure 124 - Torque Results - Subject 3 - Wheels (10 in*lbs) 
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Figure 125 - RPM Results - Subject 3 - Wheels (10 in*lbs) 
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Horsepower vs. Time - Subject 3 (Wheels)
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Figure 126 - Horsepower Results - Subject 3 - Wheels (10 in*lbs) 
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Figure 127 - Torque Results - Subject 4 - Wheels (10 in*lbs) 
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RPM vs. Time -Subject 4 (Wheels)
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Figure 128 - RPM Results - Subject 4 - Wheels (10 in*lbs) 
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Figure 129 - Horsepower Results - Subject 4 - Wheels (10 in*lbs) 
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Output Torque vs. Time - Subject 6 (Wheels)
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Figure 130 - Torque Results - Subject 6 - Wheels (10 in*lbs) 

 
RPM vs Time - Subject 6 (Wheels)
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Figure 131 - RPM Results - Subject 6 - Wheels (10 in*lbs) 
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Horsepower vs. Time - Subject 6 (Wheels)
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Figure 132 - Horsepower Results - Subject 6 - Wheels (10 in*lbs) 

 
Output Torque vs. Time - Subject 7
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Figure 133 - Torque Results - Subject 7 - Wheels (10 in*lbs) 
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RPM vs. Time - Subject 7
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Figure 134 - RPM Results - Subject 7 - Wheels (10 in*lbs) 

 
Horsepower vs. Time - Subject 7
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Figure 135 - Horsepower Results - Subject 7 - Wheels (10 in*lbs) 
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Output Torque vs. Time - Subject 8  (Wheels)
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Figure 136 - Torque Results - Subject 8 - Wheels (10 in*lbs) 

 
RPM vs. Time - Subject 8 (Wheel)
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Figure 137 - RPM Results - Subject 8 - Wheels (10 in*lbs) 
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Horsepower vs. Time - Subject 8 (Wheels)
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Figure 138 - Horsepower Results - Subject 8 - Wheels (10 in*lbs) 

 
Output Torque vs. Time - Subject 9 (Wheels)

9.8

10

10.2

10.4

10.6

10.8

11

11.2

11.4

11.6

11.8

0 20 40 60 80 100 120 140 160 180 200
Time (s)

O
ut

pu
t T

or
qu

e 
(in

*lb
s)

0 Degrees
Wheels

 
Figure 139 - Torque Results - Subject 9 - Wheels (10 in*lbs) 
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RPM vs. Time - Subject 9 (Wheels)
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Figure 140 - RPM Results - Subject 9 - Wheels (10 in*lbs) 

 
Horsepower vs. Time - Subject 9 (Wheels)
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Figure 141 - Horsepower Results - Subject 9 - Wheels (10 in*lbs) 

 



 148

Output Torque vs. Time - Subject 10 (Wheels)
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Figure 142 - Torque Results - Subject 10 - Wheels (10 in*lbs) 

 
RPM vs Time - Subject 10 (Wheel)
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Figure 143 - RPM Results - Subject 10 - Wheels (10 in*lbs) 
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Horsepower vs. Time - Subject 10 (Wheels)
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Figure 144 - Horsepower Results - Subject 10 (10 in*lbs) 
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Figure 145 - Labeled Parts For Dynamometer Setup 
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