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ABSTRACT

Oocyte Morphology and Estrogen Concentrations Following a Reduction in
Progesterone in Beef Cattle

Robert A. Taft Jr.

Low dosages of progestogens promote persistent follicles, high systemic estrogen
and low fertility. The objectives of this study were to determine effects of a reduction in
progesterone on (1) morphology of oocytes  and  intrafollicular concentrations of
estradiol.  Cows on low progesterone (n=12) received used intravaginal progesterone
inserts on d 4 after estrus and prostaglandin (PG) F2α (25 mg, i.m.) on d 6. Control
animals (n=12) received saline on d6.  The oocyte and follicular fluid were recovered
from the largest follicle on d 8 or d 10.

Serum estradiol was lower during d 4-6 but greater (P < .01) during d 7-10 in
cows treated with progesterone inserts and PGF2α while the largest follicle was larger in
treated cows on day 10 only (14 vs. 12 mm; P < .05).  Intrafollicular concentrations of
estrogen were greater in treated than in control cows (990± 87 vs 191±106; P < .01).
Progesterone in follicular fluid (mean = 42 ng/ml) did not differ. Oocytes were observed
in oocyte nuclear stage I in the control group on d 8.  All other oocytes were in nuclear
stage II.  In addition, the degree of clumping of mitochondria, the percentage of intact
cumulus cell processes and percentage of normally shaped mitochondria was greater in
oocytes from d 8 control cows than in all other groups.

Changes in concentrations of estradiol and oocyte morphology typically
associated with the preovulatory period had occurred within 2 d after a reduction in
progesterone, even when low peripheral concentrations of progesterone were maintained.
These earliest stages of oocyte maturation occurred in response to a reduction in
progesterone.  Similar changes in oocyte morphology were observed in control animals
by d 10 of the estrous cycle, probably representing the onset of atresia.
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INTRODUCTION

This review will focus on ways in which the endocrine environment may affect

follicular function and oocyte maturation in the cow.  Excellent reviews of follicular

development in cattle (Fortune, 1994; Campbell et al., 1995; Bevers et al., 1996; Ginther

et al., 1996) and of oocyte maturation in mammals (Wickramasinghe and Albertini, 1993;

Eppig, 1996; Taieb et al., 1997) have been published in the last five years.  Those reviews

give a broader treatment of these topics than will be presented here.

Two to three periods of follicular development are observed during the estrous

cycle of cows of Bos Taurus breeding.  In each period, the number of cells increases in a

cohort of follicles, in response to an increase in follicle stimulating hormone (FSH).

Increasing amounts of inhibin and estrogen are produced as follicles grow and these

inhibit the secretion of FSH from the anterior pituitary.

Follicular granulosal cells acquire luteinizing hormone (LH) receptors in response

to FSH.  Having receptors for LH purportedly allows granulosal cells to survive when

FSH declines by shifting their dependence upon gonadotrophic support from FSH to LH

(reviewed by Campbell et al., 1995).  While granulosal cells of all follicles could acquire

LH receptors, they do not develop in all follicles at the same time.  Follicles that lack

sufficient LH receptors become atretic as concentrations of FSH decline.  Selection is the

term that denotes the process whereby follicles that acquire LH receptors continue growth

and those that do not acquire LH receptors undergo atresia.  In cattle, only one follicle

from each period of growth normally remains after this selection process.  During the

luteal phase, this follicle persists for a few days. Because recruitment and growth of other

follicles are suppressed during that period, the single large follicle has been described as

“dominant” before it undergoes atresia.  Demise of the dominant follicle reduces negative
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feedback from estradiol and inhibin and allows secretion of FSH to increase and recruit

another group of follicles.  The repetition of this pattern of follicular development has

been termed a follicular wave.

The increase in the frequency of pulses of LH that occurs after concentrations of

progesterone decline during luteolysis breaks the cycle of follicular growth and demise

and supports the continued growth of the truly dominant follicle.  In the absence of

progesterone, estrogen produced by this follicle triggers ovulation by stimulating the

release of a surge of LH.

Controlling follicular growth and ovulation is essential to the development of

effective regimens for synchronization of estrus.  Because most of the estrous cycle

consists of the luteal phase, approaches to shorten or lengthen the luteal phase often have

been tried. The luteal phase can be shortened using exogenous prostaglandin F2α

(PGF2α), but this approach cannot synchronize estrus at the beginning of the luteal phase

or during periods of anestrus.  Progestogens can be used to extend the luteal phase, as

even low (equivalent to <2.0 ng/ml of progesterone) peripheral concentrations of

progestogen are capable of preventing the LH surge.  The degree of estrous synchrony

has been variable, but often is tight following withdrawal of progestogen, making this a

desirable approach.  However, fertility following breeding at the synchronized estrus

after progestogen withdrawal has been unacceptably low in most reports (Patterson,

1990).

During treatment with low dosages of exogenous progestogen, increases occurred

in both the frequency of pulses of LH and in peripheral concentrations of estrogen.

During this time the largest follicle continued to increase in size and  was said to “persist”
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on the ovary as its lifespan was prolonged (reviewed by Kinder et al., 1996).  Oocytes in

follicles that developed during treatment with low doses of progesterone prematurely

completed meiosis (Revah and Butler, 1996).  When these follicles were allowed to

ovulate, oocytes were fertilized at a normal rate, but most of the resulting zygotes

recovered on d 6 of pregnancy had not developed beyond the 16 cell stage (Ahmad et al.,

1995).

Changes in follicular function or in the timing of preovulatory events may be the

cause of low pregnancy rates.  When the persistent follicle was ablated and another

follicle ovulated pregnancy rates were not decreased in cows, so the effect appeared to be

confined to the oocyte in the persistent follicle (Fike et al., 1997).  However, Johnson et

al. (1996) reported that persistence of follicles in ewes resulted in a decrease in fertility

rather than in prolificacy and suggested that the effect was systemic in that species.

Transfer of embryos to cows previously treated with low dosages of progesterone

produced pregnancy rates equal to control animals, demonstrating that the effect of the

persistent follicle is not on the uterus (Wehrman et al., 1997), but effects on the oviduct

have not been excluded.

It can be concluded that the function of large follicles is altered in response to

increased stimulation by LH, resulting in the ovulation of an oocyte that has matured

prematurely and may not be viable after fertilization.  However, the ways in which

follicular and oocyte function are changed so that embryonic development is impaired are

not known.  Understanding how increased stimulation by LH affects the function of large

follicles and oocytes may help to explain why pregnancy rates are low following

treatment with low dosages of progesterone.
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REVIEW OF LITERATURE

Control of the Growth and Function of Large Follicles by Gonadotropins

Large follicles present on the ovaries of cattle have two possible fates, ovulation

or atresia.  The fate of a large follicle is determined by the endocrine environment in

which the follicle develops.  In non-manipulated heifers, a 5-mm follicle has a 20%

chance of becoming dominant (Bodensteiner et al., 1996).  Furthermore, many follicles

respond to FSH (Bo et al., 1994) and before selection, produce similar quantities of

estrogen, regardless of whether they will become dominant or not (Ginther et al., 1996).

Therefore, it is unlikely that the fate of a follicle is predetermined, but rather it is

dependent upon the environment in which the follicle develops and the time it begins to

grow.  In fact, Gastal et al.  (1999) have demonstrated that subordinate follicles can

become dominant after removal of the dominant follicle.

Follicle Stimulating Hormone

Receptors for FSH are found exclusively on granulosal cells (Xu et al., 1995;

Evans and Fortune, 1997).  FSH influences cellular function by binding to a

transmembrane receptor connected to a cyclic adenosine mono-phosphate (cAMP)

dependent pathway (Funkenstein et al., 1984) that activates protein kinase A (Lavoie et

al., 1999).  FSH is required for the recruitment and growth of small follicles (<5 mm) and

supports steroidogenesis in small follicles.

The increasing secretion of inhibin and estrogen by large follicles results in

decreasing concentrations of FSH (Ireland and Roche, 1987; Badinga et al., 1992), which

alter follicular function before the onset of atresia (Mihm et al., 1997).  Acquisition of

receptors for LH on granulosal cells does not eliminate dependence of large follicles
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upon FSH.  Acute decreases in FSH result in the atresia of large follicles (Turzillo and

Fortune, 1993), so although large follicles may require less FSH, FSH is required to

support their growth.

Administration of FSH before and during selection results in the continued

growth of multiple follicles with several becoming co-dominant (Revah and Butler,

1996).  Expression of aromatase and 3β hydroxy-steroid dehydrogenase (3βHSD) were

not affected by FSH.  However, FSH did increase the expression of steroidogenic acute

regulatory (StAR) protein and side chain cleavage enzyme (SCC; Xu et al., 1995; Tian et

al., 1995), thereby increasing substrate availability.  The effects of FSH on transcription

are mediated by cAMP response elements found in the promoters of genes involved in

steroidogenesis (Carlone et al., 1997; Sugawara et al., 1997).  It is not known how

transcription of a portion of the genes encoding steroidogenic enzymes is enhanced

selectively.  Transcription of certain genes may be facilitated by altered transcription of A

kinase anchoring proteins by FSH.  These proteins target the actions of protein kinase A

(PKA) to specific intracellular locations (reviewed by Scott, 1997).

FSH influences steroidogenesis indirectly by increasing the production of IGF-I,

decreasing IGF binding-protein secretion (Resnick et al., 1998) or altering the forms of

inhibin being produced.  As FSH declines during selection, the bioavailability of IGF-I

decreases, as does the production of the 34-kDA form of inhibin. Increases in FSH delay

changes in availability of IGF-I and in isoforms of  inhibin and support follicular growth

(Mihm et al., 1997).  Inhibin and IGF-I may mediate the effects of FSH by acting directly

on granulosal cells to promote follicular growth.  However, the effects of FSH on

granulosal cells at the molecular level are not well understood.
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Luteinizing Hormone

Crucial to large follicles is the development of receptors for LH on granulosal

cells in response to stimulation by FSH (Ratoosh and Richards, 1985; Tian et al., 1995;

Xu et al., 1995, Evans and Fortune, 1997).  While some FSH is necessary to support

continued growth and function of large follicles, LH becomes their primary support.

During the luteal phase, increased sensitivity to LH allows large follicles to continue to

grow despite the declining or low rate of secretion of LH (Bao et al., 1997).  However,

dominant follicles are sensitive to changes in the frequency of pulses of LH, the duration

of their dominance being shortened by treatments which decrease pulse frequency

(Anderson and Day, 1994) and lengthened by treatments that increase pulse frequency

(Stock and Fortune, 1993).

During the estrous cycle, the tonic secretion of LH is increased after luteolysis

and before the LH surge.  This period is referred to as the follicular phase and in cattle is

associated with the growth of a single large follicle with the capacity to synthesize

estrogen.  The follicle continues to grow, producing more estrogen until elevated

concentrations of estrogen trigger a surge of LH that initiates ovulation (see reviews by

Fortune, 1994; Campbell et al., 1995 and Ginther et al., 1996).  In granulosal cells,

expression of side chain cleavage enzyme (SCC) and 3βHSD increased following the

initiation of luteal regression, but expression of aromatase was not increased.  In thecal

cells, expression of SCC and 3β-HSD increased by 24 h.  However, expression of 17α-

hydroxylase was increased by 12 h and the subsequent increase in androgen production

was reflected in increased concentrations of estrogen in follicular fluid.  Therefore,
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androgen synthesis, not aromatization of androgens, is the limiting step in estrogen

synthesis during the follicular phase (Xu et al., 1995; Tian et al., 1995).

The role of LH in follicular growth has been examined by altering the frequency

and amplitude of pulses of LH.  Follicles undergo the same changes when luteolysis is

induced by exogenous PGF2α as they do when luteolysis is initiated naturally (Tian et al.,

1995).  However, the time from initiation of luteolysis to estrus varies during the estrous

cycle.  Estrus occurs sooner if luteolysis is initiated during the dominance phase than if

luteolysis is initiated early in the development of a wave.  The larger number of cells and

increased number of receptors per cell in large dominant follicles may allow them to

respond more robustly and more quickly than smaller follicles.  However, the

concentration of progesterone at the time luteolysis is initiated is also important (Deaver

et al., 1986) and it is difficult to be sure whether progesterone or follicular status is the

most important determinant of intervals to onset of estrus, the LH surge, and ovulation.

Treatment with progesterone has long been used to synchronize estrus (Christian

and Casida, 1948).  In developing regimens for synchronization of estrus, low dosages of

progestogens were selected based on their ability to inhibit behavioral estrus and

ovulation, but fertility at the synchronized estrus often has been disappointing (Odde,

1990).  Low pregnancy rates are probably the result of changes in hormone secretion and

follicular function occurring as a result of maintaining low concentrations of

progesterone. As suggested by Ulberg et al. (1951), maintaining low (1-2 ng/ml)

concentrations of progesterone increased the frequency of pulses of LH (Ireland and

Roche, 1982), which may induce changes in follicular function that result in reduced

fertility.
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Changes in follicular growth or function during treatment with low dosages of

progesterone were first observed by Ulberg et al. (1951) who reported unusually large

follicles and indications of increased estrogen production during treatment with

progesterone.  Sirois and Fortune (1990) also observed increased concentrations of

peripheral estrogen and a prolonged period of follicular dominance when low

concentrations of progesterone were maintained.  The lengthened dominance phase was

thought to be the result of the increased frequency of pulses of LH during treatment with

progesterone (Sirois and Fortune, 1990). Taft et al. (1996) demonstrated that dominant

follicles were maintained when the frequency of pulses of LH was increased during a

normal luteal phase. In that study, concentrations of peripheral estrogen were not

increased.  However, Glencross et al. (1987) observed increases in peripheral estrogen

following injection of a GnRH analog at a frequency greater than that used for LH by

Taft et al. (1996).  Nonetheless, the following observations lead to the suggestion that

follicular function can be altered as a result of an intraovarian effect of progesterone or

the CL: 1) concentrations of estrogen increased before LH at luteolysis (Bergfeld et al.,

1996), 2) progesterone can inhibit estrogen synthesis in vitro, 3) granulosal cells have

progesterone receptors (Rae et al., 1998), and 4) estrogen increased after luteolysis even

when the rise in LH was suppressed in the cow and ewe (Fogwell et al., 1978; Gust et al.,

1984).

Just as increased secretion of LH prolongs the growth of large follicles,

decreasing LH hastens their demise.  Early workers observed a dose effect of

progesterone, as follicles did not become as large when larger dosages of progesterone

were used.  Anderson and Day (1994) and Manikkam and Rajamahendran (1997)
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demonstrated that an acute increase in progestogen resulted in the demise of large

follicles previously maintained during treatment with a lower dosage, an observation

supported by other workers.  Not surprisingly, increases in the concentration of

progesterone are associated with decreases in the frequency of pulse of LH (Jolly, 1994b;

Bergfeldt et al., 1996; Bao et al., 1997).

Effects of LH at the Cellular Level

Receptors for LH are found on thecal cells of growing follicles.  Granulosal cells

from follicles less than 8 mm in diameter usually lack LH receptors, while granulosal

cells from follicles greater than 8 mm in diameter usually have LH receptors (Tian et al.,

1997).  The number of LH receptors per cell in both the thecal and granulosal layers

increases with size of the follicle (Ireland and Roche, 1983).  However, only the

dominant follicle in a cohort acquires enough LH receptors to continue growing.

Therefore, the ability of the dominant follicle to respond to LH can increase even when

the concentration or pulse frequency of LH does not change.  However, a frequency of

pulses of LH that maintained dominant follicles in heifers and dry cows during the luteal

phase (Taft et al., 1996) was not sufficient to maintain dominance in lactating beef cows

(Cole, 1997).

LH receptors are transmembrane receptors similar to those for other protein

hormones.  The second messenger system used by LH receptors has traditionally been

thought to be cAMP, which activates protein kinase A (PKA), in turn phosphorylating

various proteins to cause the end effects of LH stimulation.  That granulosal and thecal

cells have multiple isoforms of the regulatory and catalytic subunits of PKA (Ratoosh

and Richards, 1985), multiple protein kinase A anchoring proteins (Hunzicker- Dunn et

al., 1998) and multiple phosphodiesterases (Carr et al., 1993; Furger et al., 1996)
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demonstrates the complexity of cellular regulation.  Evidence also exists that LH can

activate other second messenger pathways, resulting in production of phospholipase C

and inositol triphosphate, release of calcium (Davis et al., 1986; Dimino et al., 1987) and

activation of protein kinase C (Gudermann et al., 1992; Morris and Richards, 1993).  The

consequences of activation of multiple second messenger pathways by LH are not

known.

Oocyte Maturation

Oocytes are arrested in prophase of the first meiotic division throughout adult life

until near the time of ovulation.  However, they are not inactive, only prevented from

resuming meiosis.  Arrested oocytes transcribe RNA, produce proteins (Fair, 1997),

coordinate the organization of the follicle (Li and Mather, 1997) and secrete substances

capable of altering follicular steroidogenesis (Lanuza et al., 1998).  Communication

between the oocyte and surrounding cumulus cells is bi-directional as substances from

the granulosa can affect oocyte function and act as the source of signals to the oocyte for

maintenance or release of meiotic arrest.  Therefore, the function of the follicle and its

interaction with the oocyte may influence whether or not a viable embryo will be

produced after mating.  Some aspects of the interplay between the oocyte and the follicle

were reviewed by Driancourt and Thuel (1998).
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Maintenance of Meiotic Arrest

Morphologically, the oocyte of a large growing follicle is characterized by a

spherical nucleus located in the periphery of the oocyte and a compact, dense, fibrillar

nucleolus (Hyttel et al., 1987a,b; Assey et al., 1994a,b).  Chromosomes are not

condensed, allowing for transcription.  Mitochondria are in the periphery of the oocyte,

are often pleomorphic in shape and are in close contact with endoplasmic reticulum.

Lipid droplets are distributed throughout the cytoplasm.  The perivitelline space is not

readily apparent, but intimate points of contact occur between the oocyte and cumulus

cell processes.  These processes extend through the zona pellucida to the oolemma where

gap junctions form between the bulbous termini of the processes and the oolemma

(Zamboni et al., 1972).  Microvilli are present at the surface of the oocyte and in some

cases wrap around the endings of the cumulus cell process (Flemming and Saacke, 1972;

Hyttel et al., 1987; Assey et al., 1994a,b).

Cumulus cell processes allow communication between the oocyte and the

cumulus cells (Anderson and Albertini, 1976).  Although the cytoplasms do not

commingle, the presence of gap junctions and pinocytotic vesicles between the process

endings and the oolemma are evidence that material is passed between these cells.

Experiments using dyes and other markers have demonstrated the coupling and passage

of materials from cumulus cells directly to the oocyte (Gilula et al., 1978; Moore et al.,

1980; 1983).  Maintenance of cell to cell communication is essential for oocyte growth

(Eppig, 1979).  Disruption of cumulus-oocyte communication leads to resumption of

meiosis in oocytes competent to undergo nuclear maturation (Dekel and Beers, 1978; De

Smedt and Szollosi, 1991).  Conversely, inhibiting the breakdown of cell to cell
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communication prevents resumption of meiosis in vitro (Wert and Larsen, 1989).  Some

of the compounds passed between cumulus and oocyte are involved in oocyte maturation.

cAMP

In cattle, cAMP of granulosal origin is an inhibitor of oocyte maturation that may

be responsible for maintaining meiotic arrest. Injection of dbcAMP, phosphodiesterase

inhibitors, or stimulators of adenylate cyclase into oocytes prevents resumption of

meiosis in cattle (Wiersman et al., 1998; Aktas et al., 1995 a,b) and rats (Richards et al.,

1998).  Granulosal cAMP passes through the cumulus cell processes to the oocyte,

explaining why disruption of communication between the cumulus cells and oocyte leads

to the resumption of meiosis.  The effect of cAMP is mediated by PKA, because injection

of the catalytic subunit of PKA in the presence of high concentrations of cAMP prevents

GVBD (Aktas et al., 1995).  It appears that PKA maintains the activation of a

phosphatase, preventing the activation of cell cycle control proteins (Matten et al., 1994).

Understanding the actions of PKA is complicated by the existence of two

isoforms of PKA.  Type I PKA is found in the oocyte and prevents GVBD, while type II

is found in the granulosa and promotes cumulus expansion and GVBD (Downs and

Hunzicker Dunn, 1995).  The distribution of the type I and type II enzymes seems to be

controlled by the presence of A kinase anchoring proteins (AKAPs).  Thirty-six AKAPs

have been identified in the rat, illustrating the complex regulation of cAMP-dependent

signaling. Controlling the localization of A kinases within a cell is one way in which

ligand specific responses can occur following stimulation of common second messenger

pathways (reviewed by Scott, 1997).  Little is known about the role of AKAPs in oocyte

function but FSH, a more potent stimulator of meiosis in vitro than LH (Van Tol, 1996),



13

selectively induces an AKAP specific for the type II enzyme (Carr et al., 1993). The

conclusion that FSH has greater potency might be presumptuous. Oocytes for in vitro

studies usually are collected from small to medium size follicles, and cumulus cells from

these follicles do not have receptors for LH (Van Tol et al., 1996).

Calcium

Unlike cAMP, calcium regulates pathways stimulating oocyte maturation

(reviewed by Homa et al., 1995). Blocking phophoinositol-dependent increases in

intracellular calcium blocks progression of meiosis (Homa, 1991; Kaufman and Homa,

1993).  Conversely, injecting oocytes with inositol triphosphate (IP3) can partially

overcome the cAMP-mediated block to meiosis in bovine oocytes (Homa et al., 1993).

The observation that bovine oocytes have receptors for IP3 further supports this line of

reasoning (Yue et al., 1995).  Mechanical disruption of contact between cumulus cells

and the oocyte results in release of calcium and spontaneous resumption of meiosis

(McConnell et al., 1995).  Once mobilized, calcium can activate PKC and calmodulin-

dependent protein kinase (CAM-II), both of which have been shown to regulate

maturation promoting factor (MPF) activity (Gabrielli et al., 1993; Coskun and Lin,

1995).

Treatment of bovine cumulus oocyte complexes in vitro with LH resulted in

oscillating release of calcium (Zuelke et al., 1991; Mattioli et al., 1998).  The calcium

came from the cumulus cells and was associated with suppressed adenylate cyclase

activity and a reduction in concentrations of cAMP (Preston et al., 1987).  This appears

contradictory, because LH is typically thought to stimulate adenylate cyclase activity.

However, LH can use either cAMP or calcium as a second messenger (Davis et al., 1981;

Sadighian et al., 1989).  Interestingly, the activation of both second messenger pathways
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is mediated by one receptor (Gudermann et al., 1992).  Thus, calcium influences the

timing of the resumption of meiosis by reducing the synthesis of cAMP as well as by

directly stimulating kinases that interact with proteins that control the cell cycle.

Resumption of Meiosis

Oocyte maturation can occur spontaneously or in response to stimulation by LH

and FSH (Pincus and Enzman, 1935; Lonergan, 1994).  Therefore, initiation of oocyte

maturation is probably controlled by several different pathways that intersect at a

common point that regulates components of the cell cycle.  Gap junctions between

cumulus cell processes play an important role in stimulated and spontaneous oocyte

maturation as they facilitate the passage of inhibitory and stimulatory compounds to the

oocyte. However, not all regulators of meiosis have to pass through gap junctions.

Examples of such compounds include (1) meiosis activating sterol (MAS), (2) a protein

produced by thecal cells that affects cumulus cells and (3) a protein in follicular fluid that

inhibits oocyte maturation (Sirard and First, 1988; Richard and Sirard et al., 1996,1997;

Mottlik et al., 1996; Byskov et al., 1997).

Morphological Changes
In vivo and in vitro, disruption of cell-cell contact between the cumulus cells and

oocyte precedes the resumption of meiosis.  Gap junctions between cumulus cell

processes and the oocyte disappear and the processes begin to degenerate.  Consequently,

the nucleus becomes eccentrically located, and the nuclear membrane becomes irregular.

The nucleolus becomes vacuolated during this time, possibly representing an increase in

transcription before protein synthesis supporting oocyte maturation.  Mitochondria are
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clustered near the nucleus in close association with endoplasmic reticulum.  Cortical

granules move to the periphery of the oocyte and the perivitelline space becomes

apparent.  Chromosomes begin to condense and the nuclear membrane or germinal

vesicle folds back on itself, forming invaginations before breaking down as meiosis

proceeds (Flemming and Saacke, 1972; Hyttel et al., 1987b).  Breakdown of the germinal

vesicle allows mixing of cytoplasmic and nuclear components, a process important for

the completion of meiosis.  During this time, a bipolar spindle forms and separation of

pairs of chromosomes soon follows.  One set of chromosomes is then extruded from the

cell with a small amount of cytoplasm to form the first polar body.  After completion of

the first meiotic division, the second one begins without reformation of the nuclear

membrane, replication of DNA or decondensation of chromosomes.  However, the

second meiotic division is arrested during metaphase until fertilization (reviewed by

Wickramasinghe and Albertini, 1993; Albertini, 1992).

The timing of the resumption of meiosis is crucial to fertility. Maturation begins

within 24 h after the initiation of luteolysis in the cow.  However, breakdown of the

germinal vesicle and completion of the first meiotic division generally do not occur until

after the LH surge (Assey et al., 1994a,b).  Following superovulation, the time between

initiation of luteolysis and the LH surge is decreased, and some of the oocytes ovulated

are incapable of completing meiosis (Sirard et al., 1989; Kastrop et al., 1991).

Decreasing the time between the initiation of luteolysis and the surge of LH may not

allow oocytes enough time to synthesize the proteins needed to complete meiosis

(reviewed by Greve et al., 1995).  Consequently, some oocytes could be deficient in

proteins needed for the cell cycle to advance.  Conversely, delaying the LH surge results
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in the ovulation of oocytes that do not develop after fertilization, and appear to be

degenerated (Wise et al., 1994).  Revah and Butler (1996) reported that meiosis was

resumed prematurely in oocytes collected on day 13 following maintenance of low

concentrations of progesterone on d 7-13 of the estrous cycle.  Alteration in the timing of

meiotic events may lead to the ovulation of an aged oocyte incapable of developing after

fertilization, thus accounting for the low pregnancy rates in these animals.  However, it is

not known when maturation begins in these oocytes, or if maturation proceeds normally.

Modulators of Oocyte Maturation

Gonadotropins
The LH surge is thought to be the normal preovulatory trigger for oocyte

maturation to begin in mammals (reviewed by Eppig, 1993).  However, in the cow,

changes in oocyte ultrastructure are observed during the period between the initiation of

luteolysis and the LH surge, a period during which the secretion of LH increases.

Dosages of gonadotropin ¼ to ½ of that required for ovulation stimulate oocyte

maturation in rabbits (Pincus and Enzman, 1935).  Oocytes maturing in this manner are

capable of normal development if removed near the time ovulation would have occurred

(Clewe et al., 1958).  In the rat, dosages of LH incapable of causing ovulation also

stimulate oocyte maturation.  Advancing the time oocyte maturation by as little as eight

hours with this treatment resulted in low fertility (Mattheij et al., 1993; Dekel et al.,

1995).  Therefore, abnormal patterns of secretion of LH can influence oocyte function

independently of ovulation.

Cumulus-enclosed oocytes resume meiosis spontaneously in vitro, but do so more

quickly after exposure to LH and FSH (De Smedt and Szollosi, 1991; Dominko and First,
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1997).  Because oocytes do not have receptors for LH or FSH, communication between

cumulus cells and the oocyte is essential to transfer this signal (Fagbohun et al., 1991;

Van Tol et al., 1994). Similarly, meiotic arrest maintained by treatment with cAMP or

hypoxanthine (rats) can be overcome by the treatment of cumulus-enclosed oocytes with

LH or FSH but not by treatment of denuded oocytes with these compounds.  Thus,

cumulus produced stimulators of oocyte maturation must mediate the effects of

gonadotropins (De Smedt and Szollosi, 1991; Dominko and First, 1997).  The stimulatory

effects of LH and FSH may be due to activation of a second messenger pathway

involving IP3 and calcium.  Calcium and IP3 are increased in cumulus cells following

treatment with LH, and both are transported to the oocyte where they activate proteins

involved in control of the cell cycle.

Stimulation by gonadotropins can decrease the number of gap junctions between

cumulus cells and the oocyte.  Treatment with gonadotropins may increase cAMP in

cumulus cells but abolishing gap junctions blocks transport of cAMP from cumulus cells

to the oocyte, allowing meiosis to proceed (Dekel, 1978).  In rats, cumulus-oocyte

coupling was decreased by 55% within 1h and 80% within 2h of culture with LH

(Sherizly et al., 1988). Treatment with LH and FSH disrupts cell-cell communication

through phosphorylation of gap junctions, rendering them inactive, and through decreases

in the transcription of Connexin 43, an essential component of gap junctions (Granot and

Dekel, 1994, 1998) identified in bovine cumulus oocyte complexes (Sutovsky et al.,

1993; Wrenzycki et al., 1996).
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Growth Factors

The growth factors IGF-I and EGF are produced in the ovary and can promote

oocyte maturation (Levesque et al., 1995; Lorenzo et al., 1994, 1995).  They are thought

to act in concert with gonadotropins to promote resumption of meiosis. Similar to LH and

FSH, either of these growth factors can reduce the function of gap junctions.  Oocytes

have receptors for IGF-I and EGF, indicating the potential for a direct effect on the

oocyte.  In fact, IGF-I and EGF hastened maturation and improved viability of embryos

from denuded oocytes in some (Sirotkin et al., 1998; Lonergan et al., 1996), but not all

(Lorenzo et al., 1994) studies.  The ability of EGF and IGF I to activate transcription

through the estrogen receptor via a MAP-kinase-dependent pathway may have important

effects on oocyte maturation (Bunone et al., 1996; reviewed by Smith, 1998).

Steroids
In mammals, steroids (estrogens, progesterone and androgens) have been

implicated as influencing oocyte maturation and can inhibit as well as initiate meiosis,

but are not required for completion of meiosis (Sirotkin et al., 1992).  However,

alterations in steroidogenesis alter post fertilization development (Yoshimura et al.,

1988).  Osborne and Moor (1983) concluded that the correct sequence and balance of

steroids was essential for normal protein synthesis by ovine oocytes. Inclusion of

estradiol in maturation media in vitro often improved the proportion of oocytes maturing

and their subsequent developmental potential (Sirotkin et al., 1992).  Disruption of

steroidogenesis in vivo altered protein synthesis by oocytes, but effects were more severe

when the ratio of estrogen to progesterone was altered than when steroidogenesis was
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completely blocked (Osborn and Moor, 1983; Osborn et al., 1986; Nagai et al., 1993;

Zelinski-Wooten et al., 1989).  The identification of estrogen receptors in oocytes from

mice and humans and the observation that incubation of oocytes with estrogen results in

oscillations of calcium, established that oocytes can respond directly to estrogen (Tesarik

and Mendoza, 1995). Progesterone, which is the trigger for oocyte maturation in

Xenopus, can act similarly in bovine oocytes (Sirotkin et al., 1992).

Prolonged exposure of oocytes to preovulatory concentrations of estrogen

lowered fertility and increased the frequency of embryonic anomalies in rats in which the

follicular phase was prolonged by aging or by injection of sodium pentobarbital (Butcher

et al., 1979). During treatment of cows with low doses of progesterone, peripheral

estrogen was elevated and the oocyte was exposed to higher concentrations of estrogen

for longer times (Ahmad et al., 1995).  However, Revah et al. (1996) observed elevated

peripheral concentrations of estrogen early during treatment, but did not observe elevated

concentrations of estrogen in the follicular fluid of superstimulated follicles maintained

by treatment with low progesterone and collected on d 13, yet oocytes from these

follicles had completed meiosis prematurely. Deleterious effects of treatment of cows

with low dosages of progesterone on oocyte function could be due to direct effects of

estrogen or to changes in LH secretion.

Cell Cycle Regulation of Meiosis

During meiosis in oocytes, two blocks to progression of the cell cycle occur, the

first during prophase of the first meiotic division and the second during metaphase of the

second meiotic division.  Therefore, understanding control of the cell cycle is important

for understanding how oocyte maturation is regulated.  Fortunately the mechanisms
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controlling mitosis and meiosis appear to be very similar and are highly conserved across

species.  However, the factors that trigger or inhibit progression of the cell cycle vary

with species.

Importantly, the oocyte is dependent on stored mRNA during maturation and

early embryogenesis.  A prolonged follicular phase may lower fertility by prematurely

exhausting the supply of mRNA needed for the production of proteins essential for

control of the cell cycle in the oocyte.  For example, MPF activity in MII oocytes can be

maintained for only 30 h in vitro (Wu et al., 1997).  In vivo, maintenance of oocytes at

MII might occur during treatment with low dosages of progestogen, disrupting spindle

structure and causing shortages of key cell cycle proteins during embryogenesis.

Maturation Promoting Factor

The mechanisms controlling cell cycle progression seem to converge at one point,

the regulation of maturation, mitosis or M phase Promoting Factor (MPF; see reviews by

Eppig, 1993; Wickramasinghe and Albertini, 1993; Taieb et al., 1997).  In meiosis as

well as mitosis, MPF seems to be central in controlling cell cycle progression.  MPF is a

dimer of the cell division control (Cdc) 2 gene product and a cyclin.  Cdc2 is a 34 KDa

protein, which when activated, has serine/threonine kinase activity.  Structurally, Cdc2 is

similar to cAMP-dependent protein kinase and has been modeled based on the structure

of that protein.  Points of interest on Cdc2 include the cyclin binding site and

phosphorylation sites at threonine 161, threonine 14, and tyrosine 15, all of which are

important regulatory sites.  The binding of cyclin facilitates phosphorylation of these

residues (Marcote et al., 1993).
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Conformational changes induced by cyclin binding facilitate phosphorylation of

threonine 161 of Cdc2.  Phosphorylation of threonine 161 stabilizes the Cdc-2: cyclin b

dimer, maintaining the structure of the catalytic site.  An analogous protein (threonine-

197) in cAMP-dependent protein kinase is crucial for recognition of substrates and

inhibitors.  This may explain why threonine-161, like threonine-197, is essential for

proper catalytic activity.  The other two phosphorylation sites are inhibitory and require

dephosphorylation for enzyme activity. The major site of regulation by

dephosphorylation is tyrosine 15 and activity of the phosphatase that dephosphorylates

this residue is regulated by cAMP.  Decreasing cAMP activates the phosphatase that

activates MPF.  Phosphorylation of tyrosine 15 occurs only after binding of cyclin and

inhibits enzyme function by altering the positioning of sites involved in peptide

recognition (Marcote et al., 1993; Novak and Tyson, 1993).

Role of MPF

During oocyte maturation, MPF seems to be an essential regulatory protein

controlling resumption of the cell cycle during meiosis.  A requirement for MPF has been

documented for several processes required for oocyte maturation; among these are

GVBD, chromosome condensation, changes in spindle organization and maintenance of

metaphase II arrest (reviewed by Parrish et al., 1992; Eppig, 1993; Wickramasinghe and

Albertini, 1993).

Germinal Vesicle Breakdown

Key to disassembly of the nuclear membrane is the phosphorylation and

subsequent depolymerization of lamins, a major polypeptide component of the nuclear
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membrane (Gerace and Blobel, 1980; Whytock et al., 1990).  The injection of Xenopus

MPF into oocytes from several species results in GVBD, demonstrating the importance

of MPF in GVBD and the conservation of mechanisms to regulate the cell cycle

(Hashimoto and Kishimoto, 1988).  In Xenopus oocyte extracts, nuclear lamin C is

phosphorylated by MPF, accompanied by depolymerization/disassembly of lamin

filaments in the nuclear membrane, thus MPF acts directly on components of the nuclear

membrane to promote GVBD (Ward et al., 1990).

Chromosome Condensation

During mitosis and meiosis, condensation of chromosomes is essential if the cell

cycle is to continue.  The phosphorylation of histones and other proteins facilitates

chromosome condensation (Bradley et al., 1974).  Because MPF phosphorylates histones

(Langan et al., 1989), it is quite likely that MPF plays a key role in inducing chromosome

condensation.

Changes in spindle organization

Changes in the organization and length of microtubules are essential during cell

division, as microtubules are needed for chromosome segregation.  In cell free Xenopus

systems, MPF maintains spindle length, supporting the idea that MPF influences spindle

organization (Verde et al., 1990).  MPF can be co-localized with centrosomes and

microtubules (Ookata et al., 1993) as can cyclin B, one of the subunits of MPF.  The

binding of cyclin to centrosomes may target centrosomes and microtubule associated

proteins as substrates for MPF kinase activity.   MPF phosphorylates proteins such the
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kinesin-related motor proteins.  Preventing phosphorylation of these proteins prevents

formation of bipolar spindles (Blangy et al., 1995).

 Metaphase II arrest

When the first meiotic division has been completed, the oocyte immediately

begins the second meiotic division.  However, the cell cycle is again arrested, but this

time during metaphase instead of prophase.  As long as MPF activity is maintained at

metaphase concentrations, meiosis will be arrested (Huchon et al., 1993). Normally, MPF

activity is maintained by cystostatic factor (CSF) which stabilizes MPF and prevents the

degradation of cyclin, thereby arresting the cell cycle by preventing the reformation of

the nuclear envelope and decondensation of chromosomes (Masui and Markert, 1971;

Sagata et al., 1989).  The product of the Mos gene, a serine/threonine protein kinase

(Yew et al., 1992), is able to mimic the effects of CSF in Xenopus by maintaining cell

cycle arrest.  Blocking synthesis of the product of the Mos gene results in failure of

meiosis to continue as chromosomes decondense and the nuclear lamina reforms

(O’Keefe et al., 1989).  Therefore, Mos may be CSF, or a component of CSF (Sagata et

al., 1989) or may phosphorylate another protein that prevents the inactivation of MPF.

Regulation of MPF
The regulation of MPF activity is accomplished through three mechanisms; 1)

cyclin degradation, 2) phosphorylation / dephosphorylation of inhibitory sites on Cdc2,

and 3) phosphorylation/dephosphorylation of stimulatory sites (Marcote et al., 1993;

Novak and Tyson, 1993).  These different mechanisms form a complex control system

linking second messenger systems to proteins that control the cell cycle.
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Cyclin Availability

Cyclin binding is necessary for MPF activation.  Cyclin B is synthesized by

bovine oocytes before the resumption of meiosis, is not present in immature oocytes, and

when injected causes otherwise immature oocytes to mature (Levesque and Sirard, 1996).

The binding of cyclin to cdc2 alters the structure of cdc2, facilitating its phosphorylation.

Conversely, the degradation of cyclin results in the inactivation of MPF.  Surprisingly,

MPF initiates a cascade that ultimately results in the degradation of cyclin (Lorca et al.,

1991).  How the lag between MPF activation and cyclin degradation is controlled is not

known.

Control of cyclin degradation plays an important role during the second meiotic

division. CSF stabilizes the Cdc2:cyclin complex, preventing the ubiquitination of cyclin,

thus leading to the metaphase II arrest.  Following fertilization, cyclin is degraded and

CSF is inactivated, as is MPF, permitting the cell cycle and meiosis to continue (Lorca et

al., 1993).

Phosphorylation/Dephosphorylation of Inhibitory Sites

At least three enzymes (wee1, myt1, cdc25) control the phosphorylation state of

the inhibitory phosphorylation sites at threonine 14 and tyrosine 15.  Phosphorylation of

these sites by wee1 and/or Myt1 inactivates MPF.  Before the onset of maturation in

mouse oocytes, Cdc2 is phosphorylated in a way consistent with tyrosine 15

phosphorylation.  Thus, phosphorylation at this site may prevent premature entry into

meiosis (Choi et al., 1991).  In Sacchromyces pombe, mutation of wee1 hastened entry

into mitosis, while overexpression delayed entry into mitosis.  Antagonistic to the actions
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of wee1 and myt1 is cdc25, a phosphatase that dephosphorylates threonine 14 and

tyrosine 15, leading to activation of MPF.  Preventing the activation of cdc25 by mutation

in drosophila (Ripoll et al. 1992) or by antibodies to cdc25 in HeLa cells arrests the cell

cycle (Sadhu et al. 1990; Galaktionov and Beach, 1991).

Phosphorylation/Dephosphorylation of an Activating Site

Regulation of phosphorylation of threonine161 also can control the activation of

MPF.  The enzymes CAK (cdc2 activating kinase) and INH (a form of phosphatase 2A)

are thought to play antagonistic roles in controlling the phosphorylation state of threonine

161.  INH was first identified in Xenopus oocytes and postulated to inhibit the activation

of MPF (Cyert and Kirshner, 1988), because it can dephosphorylate threonine 161

(Solomon et al., 1990; Lee et al., 1991).  In bovine and porcine oocytes incubation with

okadaic acid, an inhibitor of phosphatase, especially phosphatase 2A  (PPA2) activates

MPF (Levesque and Sirard, 1995).  However, based on work in Xenopus, PPA2 may

inactivate MPF by stimulating the activity of a tyrosine kinase that phosphorylates

tyrosine 15 (Rime et al., 1995).  In addition, PPA2 may block a step in the pathway

leading to CAK activation, thereby preventing the phosphorylation of threonine 161 (Lee

et al., 1991).
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STATEMENT OF PROBLEM

Maintenance of low (1-2 ng/ml) concentrations of peripheral progesterone in the

cow altered follicular and oocyte function. The dominance phase of follicular growth is

prolonged and peripheral concentrations of estrogen are increased in response to

increased secretion of LH.  When progesterone is withdrawn, the dominant follicle

maintained during treatment with progesterone ovulates, and while fertilization rate is

normal, pregnancy rate is low.  Bovine oocytes collected at the end of treatment with low

dosages of progesterone or other progestogens, but before withdrawal of progestogen,

have completed the first meiotic division.  Therefore, by the time fertilization occurs,

oocytes have been arrested at metaphase II for an abnormally long time.  The resulting

embryos die between the two and 16 cell stages (Ahmad et al., 1995), perhaps due to the

premature activation of the oocyte.  Because germinal vesicle breakdown and extrusion

of the polar body occur by the end of treatment with progestogen, changes that result in

the initiation of meiosis must occur earlier.  However, follicular function and oocyte

morphology have not been examined during the early stages of treatment with low

dosages of progesterone.   The present study was conducted to test the null hypothesis

that reducing progesterone on day 6 of the estrous cycle does not alter the maturation

state of oocytes in follicles of the first wave of development within 2 or 4 days.
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OOCYTE MORPHOLOGY AND CONCENTRATIONS OF ESTROGEN

FOLLOWING A REDUCTION OF PROGESTERONE IN BEEF COWS
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INTRODUCTION

Low dosages of progesterone or progestogens have been used since the late 1940s

to synchronize estrus (Christian and Casida, 1948), but pregnancy rates following

breeding at the synchronized estrus have been highly variable and often low (Odde,

1990).  Maintaining low peripheral concentrations of progesterone increased the

frequency of pulses of LH to a rate greater than that normally observed during the luteal

phase (Cupp et al., 1992; Bergfeld et al., 1996; Taft et al., 1996).  These changes in

secretion of LH, after the initiation of luteolysis or a reduction in progesterone, prolonged

the growth of the largest follicle and resulted in increased peripheral concentrations of

estradiol (Stock and Fortune, 1993; NE-161, 1996).

Estradiol typically increases before estrus, but prolonged exposure to increased

concentrations of estradiol may reduce fertility.  Butcher and Pope (1979) demonstrated

in rats that prolonged exposure to preovulatory concentrations of estradiol decreased the

number of normal embryos on d 4 and the number of implantation sites on d 11.

Similarly in cattle, peripheral concentrations of estradiol were elevated for six days

before estrus (d 15) in cows maintained from d 6 to 13 on a low dosage of progesterone,

but were increased for only two days in control animals given PGF2α on d 6 that were in

estrus on d 9 (Ahmad et al., 1995).  Sixteen of 18 embryos recovered from treated cows

on d 6 after breeding had only 2  to fewer than 16 cells whereas 16/18 control embryos

had reached the morula stage.  Ahmad et al., (1995) proposed that changes in the oocyte

before ovulation reduced embryo survival and development by d 6.  Revah and Butler

(1996) observed condensed chromatin and germinal vesicle breakdown in oocytes after 9

d of treatment with a low dosage of progesterone.  Mihm et al. (1994, 1999) observed
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that when follicular dominance was maintained for 10 d, oocytes underwent germinal

vesicle breakdown and extrusion of the first polar body by the end of treatment and

pregnancy rates were reduced.  Thus, oocytes resumed meiosis prematurely during

treatment with low dosages of progesterone.

Premature maturation of oocytes can be induced in rats and rabbits by treatment

with dosages of LH that are insufficient to cause ovulation (Dekel et al., 1995; Mattheij et

al., 1993).  Increased release of LH during treatment with low dosages of progesterone

may have a similar effect.  Although the LH surge normally triggers resumption of

meiosis, the development of irregularities in the nuclear membrane and a redistribution of

mitochondria, changes  thought to precede germinal vesicle breakdown and the

resumption of meiosis, were observed in oocytes collected 24 h after initiation of

luteolysis (Hyttel et al., 1987; Assey et al., 1994 a,b).  Oocytes in those studies were

collected well before the LH surge, but during a period when secretion of LH and

estrogen increased.  Therefore, changes in follicular function and oocyte morphology

began soon after reductions in circulating concentrations of progesterone.

Mihm et al. (1999) reduced progesterone concentrations by inducing luteolysis

after 2 d of follicular dominance.  Low peripheral concentrations of progesterone were

maintained by treatment with progestogen and oocytes were collected from follicles 2 d

later.  After 4 d of dominance the morphology of oocytes was similar to that described for

oocytes collected 24 h after the initiation of luteolysis (Hyttel et al., 1987; Assey et al.,

1994a,b).  However, Mihm et al. (1999) collected oocytes 18 h after removal of

progestogen, so it could not be determined whether changes in oocyte morphology

occurred before or after withdrawal of exogenous progestogen. It is unknown whether
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changes in oocyte morphology occur soon after the initiation of luteolysis during

treatment with a low dosage of progesterone.

The objectives of this study were to determine 1) if concentrations of estradiol in

follicular fluid were increased during the early stages of treatment with a low dosage of

progesterone following regression of the CL and 2) if oocytes collected from these

follicles differed from oocytes from follicles of the same age from cows with functional

CL.  In previous studies (Mihm et al., 1994, 1999; Revah and Butler, 1996), oocytes from

control cows were collected at an earlier stage of follicular growth than oocytes from

treated animals, thus effects of time and treatment could not be separated.  Collection of

oocytes from control and treated cows on the same days of the estrous cycle allowed

examination for effects of time and treatment.

MATERIALS AND METHODS

Experimental Design

Crossbred beef cows (N=24) previously observed to have normal estrous cycles

were used for this experiment.  Cows had ad libitum access to hay and water and were

observed twice daily for signs of estrus.  At estrus, (day 0) each cow was assigned at

random to one of four experimental groups.  A 2 x 2 factorial design was used with two

expected concentrations of progesterone (normal, greater than 2 ng/ml  and low, 1-2

ng/ml) and collection of follicles on 2 d (d 8 and 10).  These days for were chosen to

facilitate comparisons of first wave follicles during a normal luteal phase and during

maintenance of low progesterone for 2 or 4 d.  Controlled Internal Drug Releasing

Devices -Bovine (CIDR-B, InterAg, Division of DEC International, Hamilton, New
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Zealand) containing progesterone, previously used for seven days, were inserted on d 4

after estrus to provide exogenous progesterone in the low progesterone groups (LP-d 8,

LP- d 10).  These cows were given two intramuscular injections of prostaglandin F2α (25

mg, Lutalyse, Pharmacia and Upjohn Inc., Kalamazoo, MI) 12 h apart on d 6 to regress

the CL.  Animals in the control groups (Cont-d 8, Cont-d 10) had a blank CIDR inserted

on d 4 and received two injections of 3 ml of saline (intramuscularly) 12 h apart on d 6.

CIDRs were removed at the time of ovariectomy on either d 8 or 10 of the cycle (2 or 4 d

of low progesterone).

Ultrasonography

Follicular development was monitored by transrectal ultrasonography using an

Aloka 500 (Aloka Ltd., Japan) ultrasound machine equipped with a 7.5 MHz linear array

transducer.  Ultrasonography was performed daily beginning on d 4 and continued until

ovariectomy.  The relative locations and diameters of all follicles greater than 5 mm in

diameter were recorded each day.

Transvaginal Ovariectomy and Oocyte Collection

Ovaries were removed using the technique described by Casida (1959).  Briefly,

10 ml of 2% lidocaine were administered as an epidural block, a supravaginal incision

was made, the ovary containing the largest follicle was retracted into the vagina and the

ovarian pedicle was severed using an ecrasure.  Following hemi-ovariectomy, follicular

fluid from the largest follicle was aspirated and the oocyte was retrieved.  Follicular fluid

was frozen at –80° C until assay, and oocytes were fixed in 1% glutaraldehyde in .1M

phosphate buffer.
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Blood Sampling and Hormone Assays

Jugular blood samples were collected by venipuncture every day at the time of

ultrasonography, beginning on d 4 and continuing until the time of ovariectomy.

Samples were stored overnight at 4 °C then centrifuged for 20 minutes at 1800 x g.

Serum was removed and stored at –20 °C until assayed for progesterone (Sheffel, et al.,

1982) and estrogen (Rozell and Keisler, 1990; Tortonese et al., 1990).  Assay sensitivity

was 20 pg per tube for progesterone and .5 pg per tube for estrogen.  Intra-assay

coefficients of variation were 7% and 9% and inter-assay coefficients of variation were

8% and 12% for progesterone and estrogen, respectively.  Samples of follicular fluid

were diluted in assay buffer before being assayed (1:100 for progesterone and 1:10,000

for estrogen).

Electron Microscopy and Oocyte Evaluation

Oocytes were embedded individually in Epon and stained with lead acetate and

propidium iodide. Ultrathin sections (700 nm) were cut on a Leica Ultracut microtome by

an experienced technician.  Ultrastructural evaluations and photography were performed

on a Jeol JEM 1220 transmission electron microscope (Jeol, Tokyo, Japan).

Cumulus and oocyte morphology were evaluated blindly and independently by

two people.  Scores of the two readers were in such close agreement that no statistical

evaluation of reader differences was made. The degree of cumulus expansion, degree of

clustering of mitochondria and shape of the nucleus were evaluated separately on a scale

of 0, 1 or 2.  A score of 0 represented no expansion of the cumulus, no clustering of

mitochondria or that the nucleus was round.  A score of 1 represented some expansion of

cumulus cells, some mitochondria were in clusters or that slight to moderate irregularity
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in the nuclear membrane were present.  A score of 2 indicated that the cumulus had

expanded, that mitochondria were found in large clusters or that the shape of the nucleus

was highly irregular. The ends of cumulus cell processes were classified as intact,

degenerating/separating (appeared to be superficial and separating from oolema or

contained vacuoles) or degenerated/separated (no apparent contact with oolema).  The

morphology of mitochondria was evaluated by counting 100 mitochondria and

determining the frequency of normally shaped mitochondria, hooded mitochondria or

mitochondria with other shapes.  The computer program Optimas  (Bioscan Inc.,

Edwards WA) was used to evaluate the circularity of nuclei and the percentages of

cytoplasmic area occupied by mitochondria and lipid.  Nuclear morphology was

classified according to Assey et al. (1994a).  Oocytes in nucleus stage I (ONI) have a

spherical nucleus located in the periphery of the oocyte and represent immature,

meiotically arrested oocytes. Oocytes in nucleus stage II (ONII) were characterized by

irregularity of the nuclear envelope thought to represent activation of the oocyte nucleus.

The oocyte nucleus breakdown stage (ONBD) was identified by breakdown of the

nuclear envelope and the presence of condensed chromatin.  The metaphase I (MI) stage

is characterized by the presence of chromosomes in the ooplasm.  The final stage,

metaphase II (MII), is characterized by the presence of the first polar body.

Analyses of Data

Twenty-four cows were assigned to this experiment. Data were not collected from

one cow in which the dominant first wave follicle began to regress prior to ovariectomy.

During the recovery, processing and sectioning of oocytes, seven were lost or damaged

so that no data relative to cumulus and oocyte morphology were available from these
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animals.  Size of the largest follicle and concentrations of peripheral hormones were

examined using the PROC MIXED procedure of SAS (SAS, 1988) with treatment, day of

the estrous cycle and the treatment by day interaction included in the model. Cow within

treatment was used as the error term in this analysis.  Data on cumulus cell and oocyte

morphology were analyzed as a 2 x 2 factorial design using the GLM procedure of SAS

with treatment, day of ovariectomy and their interaction included in the model.  The

percentages of cumulus cell processes that were intact, degenerating or degenerated were

analyzed following arcsine transformation. When interactions were detected, differences

among individual treatments were determined by the test of least significant difference

(SAS, 1988).   The proportions of oocytes in the ONI or ONII stage were examined using

Lancaster’s Chi-square analysis.

RESULTS

Peripheral Concentrations of Progesterone and Estrogen and Follicular Dynamics

Initiation of luteolysis during treatment with a low dosage of progesterone created

changes in the patterns of peripheral progesterone (Fig. 1) that altered the pattern of

secretion of estradiol.  Although low dosages of progesterone did not increase peripheral

progesterone during d 4 to 6, peripheral concentrations of estradiol declined after

insertion of a CIDR on d 4 and remained lower (P < .05) than in controls until after d 6.

After luteal regression was initiated on d 6 of the estrous cycle, peripheral concentrations

of progesterone declined to less than 2 ng/ml and remained low in all treated cows, as

expected (Fig. 1).  Twenty four hours after initiation of luteal regression (d 7), as

progesterone declined, peripheral concentrations of estradiol increased and tended (P <

.06) to be higher in treated than in control cows.  During the period 48 to 96 h (d 8 to 10)
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after initiation of luteal regression, peripheral concentrations of estrogen were greater (P

< .01) in treated than in control cows (Fig. 2). Concentrations of progesterone in treated

cows declined to 1 to 1.5 ng/ml during this period, but increased to >2 ng/ml in controls.

Diameter of the largest follicle did not differ between treatments on d 8 but by d 10

diameter of the largest follicle was greater (P < .05) in treated than in control cows (Fig.

3).  Growth of the largest follicle appeared to plateau by d 8 in control but not in treated

cows (Fig. 3).

Concentrations of Steroids in Follicular Fluid

Intrafollicular concentrations of progesterone did not differ with treatment, day of

ovariectomy or their interaction.  Furthermore, the ratio of estradiol to progesterone was

> 1 in all follicles, indicating that all were estrogen active and should not have been

atretic.  Concentrations of estradiol in follicular fluid were several fold greater (P <

.0001) in treated than in control cows on both d 8 and d 10 and no treatment by day

interaction was detected (Fig. 4).

Characteristics of Cumulus Cells and Oocytes

Nuclear Morphology of Oocytes
Oocytes from treated animals on d 8 and 10 and control animals on d 10 were

more advanced in their development as evidenced by a day by treatment interaction for

stage of the nucleus and for degree of irregularity of the nuclear membrane (Table 1).

Two of three oocytes collected from control animals on d 8 were at the ONI (Hyttel et al.,

1987; Assey et al, 1994a,b); whereas, all oocytes in the other groups were at ONII (Fig.

5, a-d).  A greater degree of irregularity in the shape of the nucleus in oocytes observed

when control d 8 oocytes were compared to oocytes in all other groups (P < .05; Table 1).
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In some oocytes collected on d 10 in both groups the nuclear membrane was highly

irregular, folding back on itself and forming invaginations (Fig. 6d).  While germinal

vesicle breakdown was not observed, the typical bilayer structure of the membrane was

not present in some areas at which the nuclear membrane was highly convoluted (Fig.

6e).

Cumulus Cells

The degree of cumulus expansion varied with day (P < .05) being greater on d 10

than on d 8 (score of 1.5 vs 1.0).  No treatment or day by treatment interaction could be

detected statistically.  A significant treatment by day interaction was detected (P< .05) in

the proportion of intact cumulus cell process endings due to the high proportion in control

cows on d 8 relative to the other groups(Table 1).  The majority of cumulus cell processes

appeared to be in close contact with the oocyte in the control d 8 cows.  In all other

groups many cumulus cell processes appeared to be retracting, more superficial and

degenerating as evidenced by the presence of vacuoles, lysosomes and in some cases,

breakdown of the cell membrane.

Cytoplasmic Morphology

Although no differences were detected in the percent of the cytoplasm occupied

by lipid or by mitochondria, the distribution of mitochondria changed from peripheral

and diffuse in control cows on d 8 to more cortical and clustered in all other groups

(P<.05; Table 1).  In addition, mitochondrial morphology differed between oocytes from

control cows on d 8 and all other groups (P<.05) with the percentage of normal

mitochondria being greatest in control cows on d 8.   The percentage of hooded
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mitochondria was greater in oocytes from treated animals on d 8 and in both groups on d

10 than in control cows on d 8 (Table 1). Hooded mitochondria are a form of

pleomorphic mitochondria and are a distinctive feature of oocytes from ruminants, found

in very few other species or tissues ( Flemming and Saacke, 1970; Stephens and Bills,

1965; Assey et al., 1994a,b; Fig. 6c).
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Fig. 1.  Patterns of concentrations of progesterone in serum of cows treated

with low dosages of progesterone (triangles) and in control cows (squares)

from d 4 until ovariectomy on d 8 or 10 of the estrous cycle.
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Fig. 2.  Patterns of concentrations of estradiol in serum of cows treated with low

dosages of progesterone (triangles) and in control cows (squares) from d 4 until

ovariectomy on d 8 or 10 of the estrous cycle.
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Fig. 3.  Diameter of the largest follicle in cows treated with low dosages of

progesterone (triangles) and in control cows (squares) from d 4 through d 8 or 10

of the estrous cycle.
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Fig. 4.  Concentrations of estradiol (black bar) and progesterone (striped bar) in

follicular fluid collected on d 8 or d 10 after estrus in cows treated with a low

dosage after d 6 of progesterone or in control cows.
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Table1.  Summary of data for characteristics of cumulus cells and oocytes

Control Low Progesterone
Variables Day 8 Day 10 Day 8 Day 10
Cumulus Cell

     Expansionc 0.50 ± 0.35 1.80 ± 0.27 1.50 ± 0.35 1.70 ± 0.27

Cumulus Cell
Processes

    Intact (%) 73. ± 13a 16. ± 9.87b 30 ±13b 23 ± 10b

    Degenerating (%) 19 ± 11 31 ± 8 45 ± 9 41 ± 7

    Degenerated (%) 4 ± 16 52 ± 11 25 ±13 36 ± 10

Nucleus

Stage I 2/3 a 0/5 b 0/3 b 0/5 b

Stage II 1/3 a 5/5 b 3/3 b 5/5 b

Irregularity
 of nucleusc

0.33 ±  0.33a 1.50 ±   0.28b 1.33 ± 0.33 b 1.60 ±  0.25 b

Circularity
16 ± 3 19 ± 3 21 ± 3 25 ± 3

Mitochondria

     %area 6.2 ± 1.8 5.7 ± 1.5 7.6 ± 1.6 5.4 ± 1.4

     Clusteringc 0.3 ± 0.3a 1.8 ± 0.2b 1.7 ± 0.3b 1.4 ± 0.2b

   Shape

     Normal (%) 73 ± 6a 48.20 ± 5b 46.00 ± 6b 50 ± 5b

     Hooded (%) 25 ±  6a 49 ± 5b 51 ±  6b 46 ± 5b

     Other (%) 1 ±1 1 ± 1 3 ± 1 4 ± 1

Lipid (%area) 25 ± 6 26 ± 5 29 ± 6 35 ± 4

a,b Values (mean ± SEM) with different superscripts in same row differ (P < .05).

cVariable was evaluated on a scale of 0, 1 or 2; see text for details.
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Fig. 5 Representative micrographs- CC, cumulus cells; N nucleus; ZP, zona

pelucida; L, Lipid; M, mitochondria (1,100 X).  Cows were treated either with a low dose

of progesterone and PF2α to produce low peripheral concentrations of progesterone or

received no treatment (control).  (a) Oocyte recovered on d 8 from control cow, note

round nucleus and peripheral distribution of mitochondria.  Notice irregular shape of the

nucleus, clustering of mitochondria and expansion of cumulus cells, in oocytes from (b) a

treated cow on d 8 (c) a control cow on d 10 or (d) a treated cow on d 10.
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Fig. 6.  Representative micrographs (a) Intact endings of cumulus cell processes

in control animal on d 8 (arrows; 33,000X).  (b) Degenerated endings of cumulus cell

processes lacking contact with oolema (arrows) and on the right (arrowheads), appearing

to have broken down completely (35,000X) in oocyte from treated cow on d 10. (c)

Hooded mitochondria (27,500X) in oocyte from treated cow on d 8.  (d) Invagination in

nuclear envelope (21,000X) in oocyte from control cow on d 10.  (e) Section of nuclear

membrane that appears to be breaking down in oocyte from control cow on d 10, note

intact section on left (arrows) and disrupted section on right (arrowheads; 41,250X).
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DISCUSSION

Follicular function and oocyte morphology were altered in this study within 48 h

after a reduction in progesterone to a sustained low concentration.  Similar changes were

observed previously as a result of maintaining low progesterone (Ahmad et al., 1995;

Revah and Butler, 1996; NE-161, 1996; Taft et al., 1996) for 7d or more.  However,

comparisons to follicles of the same age were not made (Mihm et al., 1994, 1999; Revah

and Butler, 1996, Revah et al. 1997).  In contrast, oocytes in this study were collected

shortly after peripheral concentrations of progesterone were reduced and comparisons

were made to follicles of a similar age.

Both peripheral and intrafollicular concentrations of estrogen increased after d 6

in treated cows, but size of the largest follicle was not greater than in control cows until d

10.  In previous studies, a reduction, or maintenance of low concentrations of

progesterone, resulted in an increase in the frequency of pulses of LH in peripheral

circulation (Roche and Ireland, 1982; Stock and Fortune, 1993; NE-161, 1996; Bergfeld

et al., 1997). Expression of aromatase in granulosal cells was not increased after a

reduction in progesterone (Tian et al., 1995).  Instead, thecal expression of side chain

cleavage enzyme (SCC), 3β hydroxysteroid deydrogenase (3βHSD), and 17 α

hydroxylase increased, making more androstenedione available for aromatization by

granulosal cells (Tian et al., 1995; Xu et al., 1995). Thus, increased expression of

steroidogenic enzymes in the thecal layer, as a response to increased frequency of pulse

of LH, could account for the increase in estradiol in cows with low concentrations of

progerone.
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Alternatively, increased synthesis of estradiol in the present study may have

resulted from reduction of the direct inhibitory effect of progesterone or the CL.  After

withdrawal of progestogens, Bergfeld et al. (1997) reported that peripheral concentrations

of estrogen increased before changes in secretion of LH were detected.  Gust et al. (1984)

found that peripheral concentrations of estrogen increased within 4 h after the initiation

of luteal regression in ewes, even when changes in secretion of LH were blocked by

systemic infusion with dopamine.  Fogwell et al. (1978) prevented increased secretion of

LH in cows after luteal regression and observed that concentrations of estrogen were

increased. In cows, with normal concentrations of progesterone (Taft et al., 1996)

mimicked the pattern of secretion of LH (1 exogenous pulse every 2 h) observed during

maintenance of low peripheral concentrations of progesterone.  Peripheral concentrations

of estrogen were not increased by LH in this case, although GnRH at a greater frequency

(1 exogenous pulse per h) did increase estrogen secretion in heifers during the luteal

phase (Glencross et al., 1987).

Intrafollicular concentrations of estradiol in treated cows were increased to

approximately 1µg/ml, a value similar to that reported for follicular fluid from

preovulatory follicles (Ireland and Roche, 1982). In both cases, peripheral concentrations

of progesterone were reduced and the frequency of pulses of LH was increased as were

peripheral and intrafollicular concentrations of estrogen (Cupp et al., 1992; Bergfeld et al,

1996; Taft et al., 1996; Revah and Butler, 1996; Bigelow and Fortune, 1998).  In the

absence of exogenous progesterone, these changes in follicular function culminate in the

LH surge and ovulation, but during treatment with low progesterone the surge of LH and

ovulation are delayed until after withdrawal of progesterone.
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The idea that similar changes in follicular function occur after luteolysis

regardless of whether low concentrations of exogenous progesterone are present was

supported by the changes in oocyte morphology observed in this study.  Oocytes from

control animals on d 8, had a round nucleus, mitochondria were dispersed and located in

the periphery, cumulus cell processes were in contact with the oocyte, and cumulus cells

had not expanded (Hyttel et al., 1987; Assey et al., 1994a,b).  In oocytes collected on d 8

and 10 during treatment with low dosages of progesterone, the nucleus was irregular in

shape and had an irregular nuclear membrane.  Mitochondria were found in clusters and

were located more centrally. Endings of cumulus cell processes appeared to be retracting

and degenerating and cumulus cells were partially expanded.  The morphology of the

oocytes was similar to that of oocytes in other studies collected 24 h after initiation of

luteal regression, but well before the LH surge (Hyttel et al., 1987, Assey et al., 1994a,b).

Hyttel (1987) and Assey (1994a,b) concluded that changes in oocyte morphology

following luteolysis indicated that activation and “prematuration” of the oocyte had

occurred.  These steps preceded germinal vesicle breakdown and resumption of meiosis

and were thought to represent changes in the oocyte that were necessary for transcription

of ribosomal RNA and synthesis of proteins required for germinal vesicle breakdown and

condensation of chromatin (Sirard et al., 1989; Kastrop et al., 1991; Fissore et al., 1996;

Levesque and Sirard, 1996).  Altering the timing of these processes likely would reduce

the subsequent developmental capacity of the oocyte (Greve et al., 1995).

Although the kinetics of oocyte maturation have not been evaluated, it is apparent

that treatment with a low dosage of progesterone extended the interval between the

prematuration and subsequent developmental processes in this study and in others (Mihm
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et al., 1994, 1999; Revah and Butler, 1996).  Lengthening the interval between initiation

of oocyte maturation and activation of the embryonic genome at the 8 to 16 cell stage of

embryonic development (Frei et al., 1989) may have exhausted stores of mRNA upon

which oocytes and embryos depend.  Consequently, oocytes were unable to make

proteins needed for development, resulting in death of embryos. Revah et al. 1997

observed that maturation promoting factor kinase activity was reduced and that chromatin

was condensed and scattered in oocytes collected after low progesterone had been

maintained for 7 d.  Those oocytes may have been unable to continue to synthesize

proteins needed to control the cell cycle and maintain spindle structure when the time

between initiation of maturation and ovulation was extended.  Therefore, intrafollicular

aging may account for the reduced developmental capacity of oocytes from follicles in

which growth is prolonged by maintaining low concentrations of progesterone.

If oocytes from large follicles normally undergo prematuration following

luteolysis and can complete meiosis before exogenous progesterone is withdrawn, when

does oocyte maturation begin?  In general, the LH surge is presumed to initiate oocyte

maturation.  However, in rats and rabbits, dosages of LH that were insufficient to cause

ovulation stimulated oocytes to resume meiosis (Pincus and Enzmann, 1935; Mattheij et

al., 1994; Dekel et al., 1995). The increased secretion of LH following a reduction in

progesterone may initiate oocyte maturation.  Prematuration may represent the earliest

stages of oocyte maturation rather than a separate process.

The mechanisms by which LH could promote meiosis include effects on cumulus

cells to reduce the function and number of gap junctions between cumulus cells and

oocytes (Sherizly et al., 1988), blocking the flow of a meiosis inhibiting factor (Dekel et
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al., 1978,1991) or stimulating the thecal production of sterols that promote meiosis

(Richard and Sirard, 1993, Mottlik et al., 1996).  However, Mihm et al. (1999) did not

detect changes in secretion of LH, but observed that oocytes had undergone

prematuration when collected after four days of dominance, the last two of which

occurred during maintenance of low progesterone.  Oocytes in the study by Mihm et al.

(1999) were collected 18 h after progestogen withdrawal and were not compared to

oocytes from cows in which progestogen treatment had been continued; prematuration

may have occurred as the result of ending treatment rather than as a result of treatment.

Aside from the possible adverse effects of extending the time between the

initiation of meiosis and subsequent developmental events, prolonged exposure to

elevated concentrations of estrogen may have an adverse impact on the oocyte.

Receptors for estrogen are found on oocytes (Wu et al., 1992, 1993) and in rats,

prolonged exposure of oocytes to elevated concentrations of estrogen within the follicle

reduced the percentage of normal embryos after mating (Butcher and Pope, 1979).

Prolonged exposure to increased concentrations of estrogen may have similar adverse

effects in cattle  (Breuel et al., 1993; Wehrman et al., 1993; Ahmad et al., 1995).

Alternatively, in cattle, increased estrogen may be only a marker for effects of increased

LH or other changes in follicular function that initiate oocyte maturation during the

cascade of preovulatory events.  Ablation of estrogen and replacement therapy have not

been tested in this species.

Oocytes collected on d 10 from control cows were similar in morphology to

oocytes from treated animals indicating that prematuration occurred not only as a

consequence of treatment with low dosages of progesterone but as a consequence of
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aging of the follicle in animals with normal progesterone.    Growth of the largest follicle

in control cows plateaued by d 10, but follicles were estrogen-active and based on the

ratio of estrogen to progesterone were not atretic  (Ireland and Roche, 1983).  However,

an appreciable amount of apoptosis occurs before the ability of a follicle to produce

estradiol declines (Jolly et al, 1997a,b).  Jolly (1994) observed that signs of apoptosis

could be detected in 80% of follicles with a ratio of estrogen to progesterone greater than

one.  Therefore, changes in oocytes were probably a sign that atresia was beginning and

that communication between the cumulus cells and oocyte had broken down as evidenced

by the decrease in intact endings of cumulus cell processes. Ovulation of an aged oocyte

may occur in this situation as oocytes from atretic follicles can resume meiosis and some

atretic follicles can ovulate.  However, Moor and Trounson (1977) observed that oocytes

recovered from the atretic follicles of ewes had difficulty in progressing to metaphase II.

It is not known if bovine oocytes have similar defects.

Reduced pregnancy rates following treatment with PGF2α on d 10  (Momont and

Seguin, 1984; Watts and Fuquay, 1985) may be the result of ovulation of aged oocytes

from early atretic follicles. Growth of the first wave follicle usually plateaus near d 10

and the next cohort of follicles is recruited near this time as well (Pierson and Ginther,

1987; Sirois and Fortune, 1988).  Hence, initiation of luteolysis on d 10 may result in the

ovulation of first wave follicles that contain oocytes that have begun to mature

prematurely.  Changes in oocyte morphology such as irregularities in the nuclear

membrane and alterations in distribution of organelles may be early markers for atresia as

cell-cell communication is impaired and the flow of inhibitors of meiosis to the oocyte is

blocked.  In support of this idea, Hagemann et al. (1999), reported that oocytes from



53

follicles whose growth had plateaued did not develop as well as oocytes from growing

follicles following in vitro fertilization.

 Because oocytes are capable of secreting substances that can alter follicular

function, an interesting possibility is that changes in oocyte function as atresia begins

could alter follicular function, hastening atresia.  Factors originating in the oocyte have

been implicated in such follicular functions as luteinization (El –Fouly et al., 1970),

steroidogenesis and expression of gonadotrophin receptors (Vanderhyden et al., 1998;

Eppig, 1993).  Other authors have observed no effects of oocytes on these same processes

(Channing and Tsafriri, 1977).  It would be interesting to relate changes in oocyte

morphology to other indices of atresia and to determine if oocytes affect the process of

atresia.

One common feature of oocytes from all groups was the presence of pleomorphic

mitochondria.  While many were hooded, other shapes including dumbbell and cloverleaf

shapes were noted, but vacuolated mitochondria as described in compact bovine morulae

(Crosier et al., 1999) were not observed.  Hooded mitochondria have been described

previously as common in bovine oocytes (Senger and Saacke, 1970; Fleming and Saacke,

1972; Hyttel et al., 1987; Assey et al., 1994a,b).  Fleming and Saacke proposed that the

hood served to increase surface area and facilitated transport from the endoplasmic

reticulum  to hooded mitochondria.  They proposed that hooded mitochondria were a

unique feature of ruminant oocytes as they were found also in oocytes from goats and

sheep.  However, they have been observed in opossum oocytes, in normal rat liver and in

rat liver following induction of vitamin B-12 deficiency with hydroxycobalamin

(Stephens and Bills, 1965; Tandler et al., 1991).  Induction of vitamin B-12 deficiency
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results in the production of metabolic intermediates that interfere with mitochondrial

metabolism.  During this deficiency, the number of mitochondria is increased and hooded

mitochondria become prevalent, but the link between form and function is unknown.

The observation that changes in the shape of mitochondria occur in a variety of

species including turkeys, mice, pigs, cows, sheep and goats may be more important than

the actual shape assumed (Senger and Saacke, 1970; Cran and Moor, 1980; Assey et al.,

1994a,b; Carlson et al., 1996).  Changes in mitochondrial shape may indicate changes in

oocyte function that are similar in the various species; what differs is the way

mitochondria respond.  Given the role of mitochondria in metabolism, changes in the

shape and distribution of mitochondria are likely the result of changes in metabolism

within oocytes. Changes in mitochondrial morphology were observed in this study at the

same time cumulus cell processes began to breakdown and the distribution of

mitochondria became more clustered often in association with lipid droplets. These

changes may represent a shift in oocyte metabolism from a dependence on the cumulus

cells to a dependence on internal stores of energy and nutrients.  Further studies into

oocyte mitochondrial function may yield interesting information about oocyte

metabolism.

In conclusion, changes in concentrations of estradiol and oocyte morphology

typically associated with the preovulatory period occurred on d 8 two days after a

reduction in progesterone, although low peripheral concentrations of progesterone were

maintained.  It appeared that these earliest stages of oocyte maturation occurred in

response to a reduction in progesterone.  Similar changes in oocyte morphology were

observed in control animals on d 10 of the estrous cycle.  Thus, while changes in oocyte
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morphology in the treated group on d 8 were the result of changes in progesterone and/or

secretion of LH or estradiol, changes in control animals on d 10 probably represent the

onset of atresia.
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