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Abstract

POTENTIAL FIELD THEORY AND ITS APPLICATIONS TO
CLASSICAL MECHANICAL PROBLEMS

Shannon Rae Stillwagon

Advances in many scientific fields are expected to come from work in
nanotechnology. Engineering at nano-scales presents novel problems that classical
mechanics cannot solve. Many engineers are uncomfortable designing at this level
because classical or continuum mechanics does not apply and quantum mechanics is said
to apply in a tangible way. There are unique opportunities to contribute to the design,
controls, and analysis of systems that are particulatly suited to mechanical engineering.
Within the derivations of classical mechanics are assumptions that limit its use to bulk
engineering. These assumptions are examined to determine what principles can be
extended to smaller scales. To allow engineers to do their job at these scales, it is
necessary to understand strength and how changing scales affects the strength of material
this leads directly to sets of variables necessary for engineering at any scale. Potential field
theory is an old method that is experiencing a resurgence of interest. Potential fields are
used to study quantum mechanics at the atomic scale, crack and dislocation mobility at
the micro-scale, and even bulk analysis. It encompasses many problems that can be
formulated using partial differential equations. These series solutions are well suited for
computerized numerical approximation. Because of recent advances in computational
abilities, potential field theory deserves a fresh look as a candidate for multiscale modeling
and as the math that binds each level together.
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PREFACE

The Blind Men and the Elephant
John Godfrey Saxe (1816-1887)

It was six men of Indostan

To learning much inclined,

Who went to see the Elephant
(Though all of them were blind),
That each by observation

Might satisfy his mind.

The First approached the Elephant,

And happening to fall

Against his broad and sturdy side,
At once began to bawl:

"God bless me! but the Elephant
Is very like a WALL!"

The Second, feeling of the tusk,
Cried, "Ho, what have we here,
So very round and smooth and
sharp?

To me 'tis mighty clear

This wonder of an Elephant

Is very like a SPEAR!"

The Third approached the animal,
And happening to take

The squirming trunk within his
hands,

Thus boldly up and spake:

"I see," quoth he, "the Elephant
Is very like a SNAKE!"

The Fourth reached out an eager hand,
And felt about the knee

"What most this wondrous beast is like
Is mighty plain," quoth he:

"'Tis clear enough the Elephant

Is very like a TREE!"

The Fifth, who chanced to touch the ear,
Said: "E'en the blindest man

Can tell what this resembles most;

Deny the fact who can,

This marvel of an Elephant

Is very like a FAN!"

The Sxth no sooner had begun
About the beast to grope,

Than seizing on the swinging tail
That fell within his scope,

"I see," quoth he, "the Elephant
Is very like a ROPE!"

And so these men of Indostan
Disputed loud and long,

Each in his own opinion

Exceeding stiff and strong,

Though each was partly in the right,
And all were in the wrong!

xi



Reference for Understanding this Text

Figures come directly from references sited in the caption unless they are diagrams, which
have been prepared by the author. The original captions have been retained for context
but their caption numbers have been removed to avoid confusion with this documents
numbering system. Diagrams are original illustrations by the author which have

references sited if they are adaptations of another author’s work.

References are not abbreviated in any way to facilitate ease in locating rare and unfamiliar
journals. References are sited in brackets, like [205], where the number is linked to the
reference number in alphabetical order by the primary author’s last name. Headings
followed by reference numbers in brackets, indicate references of interest to the topic for

further review.

Equations are numbered by the chapter number and indexed 1, 2, 3, etc. in each chapter.
Because many equations are reproduced from sources outside of the field of engineering,
in many instances a symbol’s meaning is not familiar and not consistent, between math,
physics, or chemistry derivations. Therefore, an effort has been made to define the
symbols with the equation that introduces the symbol along with an explanation and
engineering comparison, if necessary; and unrelated symbol duplication is avoided to
prevent confusion. When specific equations have been reproduced from a single source,
the reference is sited in the caption. However, many equations are general derivations
that are found in many texts; these general equations can be found in many reference

books but are only referenced in the text to sources from the bibliography that contain



these general expressions. The original source and initial derivation is not sited or used in
this document. A table of equations with captions and page numbers is provided for easy

reference.

Each sub-heading in the chapters contains a specific contribution to the chapter as a
whole, but there is no natural order to these components. This is aggravated by the fact
that many headings have a synergistic relationship to one another. Because of this, the
order that topics are discussed may appear arbitrary and many headings and figures are
cross-referenced before they are formally introduced. The Microsoft Word document is
linked to jump forwards and backwards to the cross-referenced sections, demonstrating
how everything is linked together and interdependent. The navigation is like a web page
to avoid repetition and circular arguments. To facilitate and encourage correct navigation
of this text, page numbers and section headings for cross-referenced items are included.
This web page style linkage allows parallels to be made that otherwise would be lost, and

it emphasizes the equal weight given to each component or sub-heading.



1.0 Introduction

Potential field theory is an old method that is experiencing a resurgence of interest due to
advances in computational ability and the method’s flexibility in modeling disparate
phenomenon. Potential field theory is the mathematical study of partial differential
equations of which Laplace’s equation is particularly important to stress and strain
analysis. Advances made in numerous scientific fields in the modeling and solving of
partial differential equations lead to results that are applicable to Classical Mechanical

engineering problems.

Strength is investigated in Section and the elephant of the preface is a fitting symbol
of strength. The men represent the sciences, each having their own theories and
definitions yet blind and argumentative towards the others. This Section covers all
aspects of strength using the methods gleaned from their observations for the purposes
of engineering. To understand the entire elephant requires cross-discipline investigation

and a synthesis of their respective models.

The changes in material properties has been a serious handicap for mechanical engineers
wanting to contribute to nano-tech because many of the assumptions based on bulk
properties are invalidated at micro and nano scale, and many phenomena go contrary to
(bulk) experience . An entirely new set of tables for engineering materials has to be
created for different scales, because the bulk tests are difficult if not impossible to
extrapolate to smaller scales [[[12]. This is an incredible amount of work and testing at a

tremendous expense because of the sensitive equipment necessary to observe small-scale

3



response. Just one material will have to be tested at several scales to produce a curve
representing the effect of scale on strength (and changes in material properties), and this
needs to be repeated for all engineering materials. To better understand strength and the
strength of materials, many well-known methods and analyses are revisited in Section
in an attempt to tie together phenomena that are inconsistent with bulk assumptions

about strength. For instance, the increase in strength witnessed in materials as the scale is

reduced (from millimeter to micro- and to nano-) [See Figure 2-3 | Figure 2-4 | Figure 2-5]|

It has become important to investigate what engineering principles do apply at small
scales. The founding fathers of this science were indistinguishable from physicists, and
most of their principles were formulated without a dependence on scale as is discussed in
Section and The assumptions made in the study of elasticity are noted and their
limitations are explored. The fields that are approximately solved by bulk elastic models
are exactly solved by potential field functions as illustrated in Dally, @ These

functions produce photoelastic-like graphs and are the recognized exact solutions to

stress and strain problems [See Figure 3-3] Figure 4-3| [Figure 4-4] Figure 8-1] and

references @ Analytical solutions for these problems are very difficult and when

solvable they involve infinite series, gpherical harmonics| (Legendre polynomials-

spherical coordinates), and Bessel functions (cylindrical coordinates). The stress fields
produced in this manner are scale invariant, (the material constants of strength vary with

scale), and the computer capabilities to numerically solve and graph these functions are

now available [@ @ .



and the mathematical approach to solving Section outlines potential field theory] its

use in engineering,. The physical or experimental expression of the potential field is

photoelasticity | Graphical isostatic stress fields generated using potential theory are

identical to the isochromatic fringes produced in photoelastic experiments. The stress

function also has an glectromagnetic analogy| James Clerk Maxwell introduced both

electromagnetic equations and experimental photoelasticity in the late eighteen hundreds

. Static electromagnetic field equations must satisfy Laplace’s equation

yielding electromagnetic fields similar to mechanical stress fields [See

Section [/.3 [Electromagnetic Analogy].

Applying potential field theory to the simplest classical mechanical problem, a beam in
tension, produces interesting results demonstrated in Sections and The results
justify bulk assumptions meant to simplify the model and are mathematical realizations of

photoelastic experiments. Saint-Venant’s principle is well-modeled in the results.

The final analogy to quantum physics is interesting as well [See Section . Solutions to

Schrédinger’s Wave function can be expressed as Bpherical Harmonics and Legendre

which have been used to demonstrate the shape of the shells where
electrons are most likely to be found. It is fitting that electromagnetic and quantum
solutions should find their way into the explanation of strength, because it is just these

properties at work in the atomic scale which give rise to the bulk behavior of materials

from the strength of between atoms and molecules @
[102] [i03] [f04] [1os] [r12] (74 [19] [28] [27] [30] i3]
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138]. Several scientific groups are modeling these forces to produce models of atomic

interaction that can be scaled upwards to generate bulk properties [See Section

Material Advances in Nanotechnology].

This entire work is a literature review that crosses many discipline boundaries,
demonstrating and acknowledging the need for cross-discipline teams to work on this
subject. Potential field theory is a powerful tool that is applied at every scale and in many
field applications. The development of material models from the atomic level up to bulk
structures is making use of this flexibility. To meet the needs of nanotechnology

engineers are needed to design at smaller scales.

All work presented in this evaluation is the labor of great scientists of the past that has
been continued by many notable scientists of today and references have been liberally

sited.

1.1 Approach

* Review of strength, the variables, and how strength is effected by scale, Section

Literature Review of Strength |

¢ Review of classical mechanics derivations to observe where scale invariance is

lost, Section B.0 [Literature review and Detivation of Elasticity |

* Introduce Potential Field Theory as the math that binds the scales and variables

in strength, Section #.0|Potential Field Theory Applied to Mechanics |

*  Model classical beam problem using Potential Fields for illustrative purposes,

Section Error! Reference source not found.|[Error! Reference source not |




Comparison of Classical Theory and Potential Theory solutions, Section ErTOr!
Reference source not found. [Error! Reference source not found. |

Review analogous systems that use and advance Potential Field Theory, Section

[-0]Analogous Systems|

Describe advances made in modeling and computation that make progressive

work in Potential Field theory feasible, and the advances made in materials that

make Potential Field theory necessary, Section hdvances in Computation and |

Material Science|

Define the needs of Nanotech that are keenly suited to mechanical engineering

expertise, Sections nd

Objectives:

1.

To support the use of Potential Field Theory in the modeling of mechanical
problems,

To demonstrate the similarities between Potential Field Theory, Photoelasticity,
and Electromagnetic phenomenon,

To provide background to the issues of strength and the loss of scale invariance,
To demonstrate the method of separation of variables to solve PDE’s, and

To model a beam in tension to show the deviation from classical theory.

1.2 Problem Statement

As advances are made in nanotechnology, needs for design, controls and analysis,

particularly thermal and mechanical stress are becoming available in this new field. Work

that typically comes under the auspices of engineering is needed, but many engineers are

uncomfortable designing at this level because classical or continuum mechanics does not

apply and quantum mechanics is said to apply in a tangible way [EI @I



B2 3] 4] 9] Bol B1] B3] B3] o] 9] 3] B3] pe] [102] [r03] fo4] [toe] [07] [12] 18] [123]

. More precisely, why are classical methods ineffective on smaller scales? What

are the assumptions that lead to classical method abandonment at small scales, and what

needs to be changed to allow engineers to do their job at these scales?

To answer these questions, it is necessary to understand strength, in all of its
manifestations, and how changing scales affects the strength of materials. This leads
directly to sets of variables necessaty for engineering at any scale. A nano-engineer must
understand these variables in material properties and their scaling behavior like a material

scientist.

Within the derivations of classical mechanics are assumptions that limit its use to bulk
engineering. What are these assumptions, where do they come into the equations, and

can they be changed to extend their use to smaller scales?

Potential field theory may or may not be familiar to engineers; as a design tool, it is scale
invariant. Potential fields are used to study quantum mechanics at the atomic scale, crack
and dislocation mobility at the micro-scale, and even bulk analysis. However, it is rarely
used for bulk calculations; because the math is formidable, and even the few analytical
solutions must use numerical approximations to solve the infinite series. Potential field
theory encompasses many problems that can be formulated using partial differential

equations.



Because of recent advances in computational abilities, potential field theory deserves a
fresh look as a candidate for multiscale modeling and as the math that binds each level

together.

To design competently at any scale, the nano-engineer:

*  Must understand material properties at each scale,

*  Must understand quantum and electromagnetic contributions, and

*  Must understand potential fields, their boundary conditions, and their solutions.
Advances in many fields are expected to come from work in nanotech. There is an
opportunity to contribute to the design, controls, and analysis of systems that is uniquely
suited to mechanical engineering if the challenges can be met. With this in mind, the
following pages attempt to define the needs of mechanical design at multiscale, the role
of potential theory in multiscale applications, and what steps can be made to attack this

challenge.

1.3 Examples of Specific Nanotech Problems

Many nanotechnology problems lie in the field of engineering expertise. Classical

mechanics cannot solve these difficult problems; it requires a cross-discipline approach.

* The solution of cantilever beam vibrations at the microscale, while respecting

nano- and microscale contributions, applies to the quartz crystal microbalance, a

delicate  experimental ~testing apparatus. [See ponds| hanotechnology]

fibration/impact | 7]




The solution of vibration and kinking in strings, one-dimensional problems that
are very difficult to model with finite element software, applies to dislocations,

nanocarbon tubes, and whiskers important to high strength applications and

wiring in nano-components. [See
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2.0 Literature Review of Strength

Strength is the ability to resist change and to be able to recover from stress. There are
many different measures of strength, Young’s modulus, yield strength, fracture
toughness, hardness, and others. However, it is not one measurement that makes a
material strong, but the combination of values selected to satisfy a particular purpose and
withstand a particular load at a particular scale. Spider silk has a maximum tensile strength
of 1.3 GPa as compared to mild steel’s 400 MPa while carbon nanotubes boast over 100
times the tensile strength of steel . Superhard materials are being developed at more
than 40 GPa with applications to coatings and thin films to replace materials that are

environmentally hazardous [[133].

2.1 Scale

There are many levels of aggregation from atoms to large engineering structures [, but
this thesis will only be concerned with three, Bulk or macro, micro, and nano. Bulk or
macro-scale properties are those that work at the level with which engineers are familiar
and can be observed with the unaided eye. Micro-scale properties can be observed with a
microscope and are the link to nano-scale. At the molecular and atomic level, quantum
mechanics are active and are different from bulk behavior. Some properties, labeled scale
independent in are apparent at all scales, though the effects may be different
at each. Some of the complexities of scale are illustrated in and are discussed

throughout this chapter.
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Bulk or Macro Properties

Size Dependency
Geometry Micro Properties
Ductile-Brittle transition Grain Size

Measures of Strength — Dimensional Ratios see Constants, | Defects
Bulk Moduli-Poisson’s Ratio, Young’s modulus, Shear | Dislocations

modulus, Bulk modulus, Fracture toughness, Resilience Plasticity similarities to fluid flow
Temperature Density Fluctuations
Density
Nano Properties Scale Independent Properties
Atomic Bonds, binding energy, Theoretical Strength
Defects vs. Purity Isotropy or Anisotropy
Quantum effects Geometric- Notches, Cracks
Hopping Crystallography and Geometry (Anisotropy)
Phonons Temperature Dependence- Thermal Expansion
Plasmons Time Dependence- History Effects
Photons Force Distribution
Electron wind (damping) - Hydrostatic Pressure
Charge Density - Vibration and Impact
Surface and Atmospheric Conditions
Scale or Gauge Dependency

Figure 2-1. Diagram of the relationships between properties and scale dependence as concluded from the literature
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A nanocrystalline material is defined as having grain sizes less than 100

nanometers or one millionth of a millimeter [[[22]. Figure 2-2| shows the spatial and

temporal scales and where different methods of analysis and experimentation occur with

respect to characteristic lengths and time scales.

Dependence on sample size is one of the most important issues to multiscale engineering.

Holding the strain rate constant, the yield stress is a monotonically decreasing function of

sample size, . Holding the sample size constant and increasing the strain rate

also produces an increase in yield strength, Figure 2-43|. This variable behavior in a

material constant becomes a major issue at small scales, and defects, Section are the

main cause of this behavior.

One of the most interesting characteristics of scale is that materials tend to be stronger at

smaller scales [See Figure 2-3|and Figure 2-5]. Figure 2-3|and Figure 2-5|both show

increased yield strength as scale is reduced. Continuum Mechanics cannot account for this

phenomenon, and bulk materials are 100 times weaker than theoretical strength predicts

using chemical bond strengths [[141]. In Figure 2-5| there is a logarithmic relationship

between yield stress divided by Young’s modulus, for a normalized non-dimensional

quantity, and the sample size.
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Figure 2-2. Relationships between scales, models, and measuring techniques [|L12]
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Figure 2-4. At constant size, 1384 atoms 7.8 nm x 4.0 nm, yield stress increases with
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Sample Size is the Primary Determinant of Yield Stress
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Figure 2-5. Yield stress by adiabatic modulus compared to specimen size @I

2.2 Chemical Strength

The source of the strength of a material is linked to atomic bonds. Even before direct
evidence of atoms and electrons, this theory supposed a smallest unit of matter, an atom,
bound to another . The attraction and repulsion between these units, graphed in
determined whether a material was a solid, liquid, or gas and basic properties like
strength. At the smallest level, bond strength is the first determining factor to strength.
Figure 2-6| is a qualitative model of bond repulsion-attraction. The attraction is
electromagnetic, and the repulsion is a quantum effect from the Pauli exclusion principle,

which prevents electrons from having the same quantum numbers and in effect over-

lapping [[L04],
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Figure 2-6. Bond repulsion-attraction model, potential energy vs. atomic radius [131]

Atoms come in over 100 shapes and sizes as witnessed in the periodic table, and, according
to strict rules, they can combine to produce compounds. The electronic configuration,
especially of the outer shell, determines what arrangement and which bonding is available

and favorable. Electronic configuration, shells (s,p,d), spins, and orbital shapes are

understood/modeled using quantum mechanics and specifically, Pchrodinger’s wave

Spurred by nanotechnology, new materials, new applications and new methods
for producing designer materials are continually being explored because of the wealth of

atomic building blocks.
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2.2.1 Atomic Bonding

Primary bonding comes in three principle varieties with smooth transitions between the
poles or vertices, see the bonding triangle from Gilman [ Within the triangle
lie mixtures of the pure bonding achieved at the vertices. The bond strength varies from 60
to 300 kcal/mole . Secondary bonding or Van der Waals forces are less than 10
kcal/mole, and these ate due to dipole interactions and include hydrogen bonding and

London dispersion forces [[127].

lonic Covalent
C

Figure 2-7. Diagram of the bonding triangle from Gilman

Covalent bonds share at least one pair of electrons between atoms, trying to achieve a full
outer shell in each of the contributors. Covalently bonded materials are intrinsically harder
than metals or ionic solids, and they resist plastic deformation . They are especially
resistant to shear, and the shear moduli are often larger than the bulk moduli [ The
covalent bond was measured in a bond-breaking experiment that found it to be 600 times

stronger than non-specific bonding and 10 times stronger than hydrogen bonding . Itis
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in general the strongest type of bond; it has high melting temperatures and a more open

crystal structure .

lonic bonds occur between metallic and non-metallic elements, where the valence electron
is completely given to the non-metal creating a cation (negative charge) and anion (positive)
pair. The ions gain stability by having full outer shells and a charge from the gain or loss of
electrons. This electromagnetic charge is what binds the compound. It is found in salts and

ceramics and has a densely packed crystal structure.

Metallic bonds metallic bonds have a surplus of electrons, which congregate in an electron

cloud giving metallic compounds their characteristic ability to conduct electricity [

Molecular bonds are the weakest, and are present in polymers, rubber, noble gases, and
between layers of materials, like graphite or mica . They are secondary bonding forces
that include dipole interaction and hydrogen bonding. Neutral atoms in close proximity
induce dipoles in the atoms resulting in London forces [ These forces are responsible
for bonding between fibers into bundles and between lamellae to form flakes, as in

graphite. Hydrogen bonding is also an induced dipole and gives water its unusual and life-

supporting properties [@ . It is present and important to many organic

compounds, like proteins, as well as polymers [ .

The strongest compounds tend to be those with the highest melting points and heats of

formation .
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2.2.2 Crystallography-Geometry

[2e] B8] ps] o] 4] B3] 5] 0] [06] [40]

Crystals have petiodic structure as illustrated in Material constants [See Section

B.2.4|Constants|on page (1] can vary in different directions with respect to the lattice; this is

an anisotropic structure [See [Equation 3-16 Anisotropy coefficient|. Isotropic ctystal

properties are independent of direction. Homogeneous materials may also display isotropic
values because of a homogenous mix of crystal grain orientation, for example steel. Crystal

shape and symmetry bare an important relationship to the number of constants needed to

describe a material’s properties or response [See Section P.2.4]fonstants]on page pl]and

References ] 5] 2 ) 5] 0] 7S] )

Amorphous materials or glasses have chaotic structures with random patterns or non-
periodic bonding as opposed to crystalline structures. The lack of periodicity impedes
dislocation mobility and the materials are brittle and may cry (acoustic emission) during
yielding . Amorphous literally means without form in contrast with crystalline, which

has a geometric form. Glass and ceramics are the most common amorphous materials.
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Figure 2-8. Crystal lattice and symmetry
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2.2.3 Defects

Any defect in a material results in a stress concentration [@, which significantly lowers the

ideal strength[lof a material [p6] §3]} Defects include, but are not limited to:

1 1deal, Theoretical, and True Strength are terms used to describe the maximum strength a material can achieve based
on the chemical bonds, temperature, and a failure theory assuming the method of dissolution or separation of the
material [See Theoretical Strength on page 30].
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Thermal vibrations or phonons, excitons, color centers, stacking faults,

interstitials, vacancies, impurities, micro-cracks, line defects, slip planes, twinning,
and environmental contaminants (on the surface boundary) [
)]

Figure 2-9|displays the relative size of different types of defects. Point defects include
vacancies-missing atoms, interstitials-extra atoms, and substitutional-extra foreign atoms.
Point defects can diffuse, either through volume diffusion or through grain boundary

diffusion depending on available energy.

ELECTRONC POINT ATOMSC POINT
DEFECTS W"II"‘ P_ME.EEEE_.1
rﬂ.EEIL..I r-MI’...I
‘ LT [ o

1ot

o=

Dimensional ranges of different classes of defects.

Figure 2-9. Relative size of defects [124]

Dislocations are characterized by line defects, edge defects, or screw defects, and they move
by dislocation glide on slip planes, or glide planes . Dislocations can meander through a
body-centered cubic metal in various directions and across planes in an entirely chaotic
manner, similar to Brownian motion or random walk. They are opposed by the drag created
by free electrons and by phonons . The Orowan mechanism describes how dislocations
cross planes causing pinning, tangling, and as a result, work-hardening . Dislocation

bypass by Orowan mechanism accounts for variation in strength when particles or
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obstacles ate between 100-150 nm and shear stress is approximately 1/500 of the shear
modulus . Line dislocations do not follow conventional statistical mechanics, but an
understanding and modeling of their effects provides the critical link between atomic and
continuum scales . A Monte-Carlo simulation of these effects is currently being
investigated by CMSN (the Computational Materials Science Network) group at Lawrence

Livermore National Laboratory [ Other defect simulations and generation studies

inciude [F] 2} 5) 0] 7 73 [ 12 53

Peietls stress is the frictional shear generated by a dislocation as it moves through the lattice,
but for metals, this stress under-estimates experimental strength [ The Peie]fls-NabarroE|
is a mechanical model (a classical model not applicable to atomic scale) that does not give
good correlation qualitatively or quantitatively, partly because the potential is continuous

when, in fact, dislocation cores are singularities [

2.3 Measures of Strength

When designing a mechanical system, the strength of the constituent materials is of vital
importance. This strength is either part of the initial conditions, or else the entire design
hinges from the unknown parameter of strength. Factors of safety are based on it and

failure theories are built around it. Determining and utilizing a material’s strength is of

paramount importance to engineering applications [See Section B.2.4|{Constants|on page

. Some of the constants and ratios defined in mechanical engineering are enumerated

below:
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Young’s modulus (E), the resistance to tensile force, is the ratio of axial stress to axial
strain under tensile loading [See [Figure 2-10]. Also called stiffness, it characterizes a
material’s ability to withstand tensile force and is the slope of the stress-strain diagram

before yield. It is related to the speed of sound through isotropic materials by equation

where V is the speed of sound [See and P is the density.

Equation 2-1 Relationship between sound and stiffness

is a graph of Young’s modulus for the elements in the petiodic chatt. The

atomic number identifies the element, and the periodic curve is due to outer shell electron

interactions. oraphs the velocity of sound propagating through the elements of

the periodic chart. The velocity is related to Young’s modulus through equation,

D-1

2 Nabarro was a student of Orowan.
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Figure 2-10. Young’s Modulus vs. Atomic Number [hitp://www.webelements.com|]
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Figure 2-11. Velocity of sound vs. Atomic Number [http://www.webelements.com(]
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Poisson’s ratio (V) is the ratio of transverse extension to longitudinal contraction [See

Figure 2-12]. Figure 2-12|demonstrates the elements departure from pure isotropic crystals.

One constant isotropy predicts a value of 0.3 for Poisson’s ratio, which is not achieved by

the majority of elements [See also Figure 3-1)Equation 3-16] and Cauchy relation:]}

WebElements

Poisson's ratio [dimensionless] plotted against atomic number
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Figure 2-12. Poisson’s ratio vs. Atomic Number [http://www.webelements.com(]

Bulk modulus (B or K), the resistance to dilatation or volumetric change, is the volumetric

tesistance to pressure changes [See [Figure 2-13] [Figure 2-13|shows how bulk modulus is

related to the elements in the periodic chart. A high bulk modulus allows materials to resist

hydrostatic compression and shear [
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Figure 2-13. Bulk modulus vs. Atomic Number [http://www.webelements.com|]
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Shear modulus or Modulus of Rigidity (G), the resistance to shape changes, is the ratio
between shear stress and shear strain [See Shear modulus or modulus of

rigidity is resistance to shear and is very important to plastic deformation (similar to

viscosity in fluids). shows how rigidity is related to the elements in the petiodic

chart. A strong solid combines both a high rigidity and a high Young’s modulus

23],
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Hardness is the resistance to plastic deformation [See Figure 2-15|and Figure 2-16]. It

cannot be understood solely in terms of classical mechanics . The relative hardness of
various elements is most easily visualized using Moh scale, as in [Figure 2-15] The scale is

approximately logarithmic, as noted in the caption, and can be compared to other hardness

scales in
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Figure 2-16. Comparison of relative hardness-Brinnell, Rockwell, and Moh scales-with
material samples [[127]
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Fracture toughness is the area under the stress-strain curve signifying a materials ability to

absorb energy to failure (or fracture) [@ .

Resilience or Modulus of resiliency is the potential energy of deformation and the area

under the elastic portion of the stress-strain curve [@

2.4 Theoretical Strength
“A brief reflection shows that ‘true strength’, even if it existed and if it could be measured

correctly, would have no practical importance for applications in engineering.”
~QOrowan 1948/49

2.4.1 Egon Orowan

The emphasis has been added to Orowan’s discussion of the true tensile strength of
matetials . When he wrote this passage there was indeed no practical engineering
applications towards which ‘true strength’ theories could be applied. However, recent
advances in nanotechnology coupled with the ability to manipulate individual layers of
atoms and the superior strength characteristics of thin wires and perfect crystals or strong

solids, leads one to the conclusion that there is an absolute need for reliable theoretical

strength models [

Physicists use First Principles Calculations to predict properties, especially those of alloys,

to reduce time in production and testing of new combinations [See hanotechnology|and

. Density functional theory is also leading to better modeling at the atomic level .
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These models yield approximate values for many important physical properties including

strength, based on atomic interactions [See section Quantum Analogy| and references EI

5]

The properties of engineering materials have been carefully catalogued through
experimental methods (one such database is Stability Constants (SC-) Database) [See
Section . At the micro- and nano-scale, with the possibilities of prefect crystal structure,
very little of the previous experimentation is valid or extrapolatable to the smaller scales [p3)]
118]. Even failure theories for bulk materials are invalidated at the smaller scales [@ @I

. This has been countered by microscale simulations using stress concentrations and

embedded cracks [See Section and references B .

2.4.2 Nucleation vs. Propagation

Using the chemical bonds to determine strength of a material produces an ideal strength
estimate, which is rarely achieved by bulk materials . Steel performs at less than
1% of its ideal strength . During the 1930’s a German school arguing nucleation vs.
propagation of defects, attempted to explain why plastic flow occurred at a level so low in

N

compatison with ideal strength. The theoretical strength of strong solids® was used to
prove the existence of defects and failure mechanisms acting well below the theoretical limit
. With the advent of diffraction techniques and crystallography, this theory was

validated and fracture mechanics was born . Fracture mechanics deals with holes,

cracks, and discontinuities embedded in an ideal mechanical continuum [ This theory is

3 Strong Solids ate solid materials that ate strong in tension.
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important to explain the low strength relative to theory and, according to Gilman ,
even a perfect specimen will spontaneously produce defects when subjected to stress.

Meaning even a perfect specimen cannot achieve theoretical strength.

2.4.3 A. Kelly’s “Strong Solids” [F6]

The assumption, made by KellyE! is that any solid has a theoretical failure stress determined
solely by chemical binding forces and temperature as applied to perfect specimens with no
cracks, inclusions, foreign atoms, dislocations or other definable imperfections . This

failure stress is known as ideal strength but it does not take into account plasticity.

Ideal strength is the ultimate strength that a material can physically achieve [66]. At bulk
levels, yield occurs at less than 1% for many engineering materials making this a useless
calculation [P3]. However, at smaller and smaller scales and under strict laboratory
conditions working strength is boosted . Many of the factors that make the yield
strength so low at bulk scales are eliminated at small scales; for example, the probability that
a defect or crack is present decreases with decreasing characteristic lengths. Also, the
presence of a critical size crack is removed from samples of a size smaller than the

corresponding critical size.

Some whiskers have even done the impossible and surpassed the theoretical limit . An
order of magnitude estimate of theoretical strength was sufficient for Orowan’s applications

, but a second investigation is warranted for nano-scale engineering applications. The

4 Kelly was introduced to the subject of strong solids by Cottrell who worked with Orowan [93].
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study of ideal strength is not to supplant current methods but to design competently at the

smaller scales by knowing the upper limit of a material’s strength [See Section

Principles Calculations and Statistical Mechanics]. Empirical scaling laws are being

formulated to scale strength from theoretical to bulk following simple scaling laws and

using multiscale experimentally obtained data [@

2.5 Temperature Dependence

Temperature is intimately related to strength. Without a temperature specification, a
strength measurement is worthless, because strength is a function of temperature above the
Debye temperatureEl . Below the Debye temperature, strength is independent of
temperature [ In most common mechanics equations, temperature is not explicitly

mentioned; unless the problem is one of temperature distribution, heat transfer, or

thermoelastic behavior [@ . The assumption is that isothermal
conditions exist when temperature is not explicitly mentioned [@ .

Many other assumptions will be examined as they arise in this study.

Isothermal condition is a significant simplification, requiring that no temperature changes

occur and that temperature is not a variable in the problem @ .

The effects of hot and cold in real life conditions are important to keep in mind, because

many extraordinary failures have been the result of neglecting temperature. Low quality

5 Debye temperature is a material constant that is used to calculate heat capacity (Cv) and relates to the velocity of sound,
phonon interactions, and Young’s Modulus.
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steel becomes brittle in icy waters, causing failures in bridges, cables, ships, and airplanes.
Most notably, the Titanic failure and Liberty ships during WWII were cracked open mainly

due to the brittle transition of the steel used in the design [

o, Stress
<4— Isothermal Condition

g, =aT, Strain due to
temperature change

Quick Loading (or Adiabatic)
Quick Unloading
(Increased Modulus)

€, Strain

Figure 2-17. Diagram of the effect of non-isothermal conditions when a load is applied

quickly [B2) 73 E0[E0).
As [Figure 2-17| demonstrates, the isothermal condition is not just a restriction in

temperature, but in time as well. When a load is applied quickly, the ratio of stress to strain
(or Young’s Modulus) is increased and the temperature of the specimen drops . The
material is in effect stronger because it cannot respond at the rate that the load is applied
[See also . If the load is maintained, when the material achieves thermal
equilibrium, then an increased strain, or elastic aftereffect, is observed due to the

thermoelastic behavior . This effect in steel is small, about 1/3 of 1% elongation, but it
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can become significant in repetitive loading or vibration, because the complete cycle
represents a loss of energy to internal friction which is actively damping the motion [p3].
Thermoelastic material analysis is important in crack tip analysis , and is considered as a

supplement to photoelastic experimentation [[39]|

The fracture or failure of a material has been likened to the dissolution of a material at a

certain temperature, the melting point [

2.6 Time Dependence

[ b1l

Time dependence, or anelastic response, includes thermo-elastic effect, hopping of small
atoms like carbon in a matrix of larger atoms, and stress induced ordering .
Although bonding is primarily an electrostatic phenomenon, hopping is an important

electrodynamic fluctuation, listed below [ .

* Electrons hopping between ions (covalent bonding)

* Photons hopping between molecules, or atoms (London or Casimir

bonds)

* Protons hopping between atoms (Hydrogen bonding)

Phonons hopping between conduction electrons (superconductivity)

In the study of elasticity, time is only explicitly stated when the load is cyclical, as in fatigue

failure [@ . A before and after snapshot of a dynamic process is
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contained in the familiar state equations of stress and strain. A more exact model would be
one defining the final equation of elasticity as the summation of a time dependent series
that converges to a state of stress (or diverges to failure). The assumption is that enough
time has passed that the final picture is one of stable equilibrium [@
130]. This assumption has proved fruitful within its field of applicability, but has
complicated the theory of plasticity, where time dependence is necessary [See also

[Vibration and Impactfand references EI @ @I . Incubation time is

proposed as a material parameter for high-rate loading leading to fracture [@

2.7 Plasticity

(711 £63 3] o] o] f1 91 601 p3] pol

Plasticity is not homogeneous; it is highly irregular in creation and propagation of defects [EI
@I IEI . Elastic deformation is usually temporary, well ordered,
and propagates quickly on elastic waves, in contrast, plastic deformation is usually
permanent, chaotic, and propagates relatively slowly . Plasticity is the result of
dissipative or non-conservative forces [See conservative force field on page . The
system’s energy is lost to internal friction [Peierls] and bonds are broken. As a result, the
material is plastically deformed; it cannot return to its original configuration without
additional energy . A close correlation exists between band gap and glide activation
energy, the energy needed to start a dislocation moving . In high-rate loading,

incubation time to fracture is a definable material property needed to initiate failure.
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If time dependence were included in elastic equations, then the role of dissipative forces
could be modeled, even when the material is not strained above the elastic limit. Time

dependence is modeled when using nonlinear analysis or micro-scale modeling [E]

@I IEI [106] [112] [118] [128]. This effect is observable in real materials, but not

included in most models not dealing specifically with plasticity.

Failure is a plastic phenomenon, and the unification of failure and nonlinear elasticity
produced the theory of continuum damage mechanics with special applications to rock

mechanics [ Modeling plasticity at the microscale is very difficult in part due to highly

chaotic grain boundaries [See also in Section B.1.1| [Crystal Structure], and

incomplete understanding of stress transmission through grains [See also Figure 2-18|in

Section P.11|(Grain Sizeand Figure 7-1in Section J.1 [Fluid and Wave Analogy]

2.8 Ductile vs. Brittle

Resistance to plastic flow cannot be explained with continuum mechanics; some materials
are hard and brittle while others are soft and ductile, and the difference requires a quantum
approach . Polarizability is inversely related to shear moduli, meaning that highly
ductile materials have low polarization and brittle materials are highly polarizable [p3].
Dislocation mobility also defines whether a material will be brittle or ductile [Iﬂ
. When dislocations move quickly, the material is ductile, but if barriers are
present, then the material fails in a brittle manner. Where definite yield stresses are

observed, there are barriers to the mobility within the specimen, defects that prevent

dislocation flow [ .
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“It remains to be explained why there is a size effect in notch brittleness on a centimeter
scale. A square rod of 0.5 cm with a machined notch may bend in an entirely ductile
manner while a geometrically similar sample of 10 ¢cm breaks explosively in bending
tests.” ~Timoshenko

The appearance of size dependent ductility suggests that when the specimen is of a scale
geometrically similar to Griffith critical crack size, that there will be a corresponding notch
brittleness effect [ @ . An enhanced Griffith crack of ~1mm
will not usually be present in a virgin specimen but must grow in a ductile manner .
From this it can be inferred that the high strength of wires with thickness less than or equal

to 1Imm, is due to an absence of the critical Griffith crack [

Orowan based his notch brittleness calculation on Hencky and Prandtl’s indentation of

ideally plastic solid by a rigid punch [:

If Y is yield stress, Stress-max cannot exceed 3Y, and B is brittle strength; then for

B<Y the material is brittle.

*  For Y<B<3Y the material is ductile in tensile tests, but notch brittle.

*  TFor B>3Y the material is fully ductile (not notch brittle).

* Thus, B is hardly altered at low temperatures, but Y is roughly trebled. Therefore, a

material notch brittle at room temperature will be brittle at low temperatures.
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Solidity index (S) is another method for determining brittleness and defining liquid-solid
transition [p3]. G is shear modulus and B is the bulk modulus in the equation below,
Fquation 2-2| The most solid of materials is diamond with the maximum solidity index of
1.3; solidity of zero indicates a liquid [ At §>0.23 materials become brittle. For cubic
materials, G equals C,, or 0.5%(C,;-C,,), depending on the crystal structure; these values are

equivalent for isotropic materials [
S=3/n)|G/B] = (3/4)|G/B]

Equation 2-2 Solidity Index

2.9 Hardening Mechanisms-History Effects

Many time dependent processes can increase strength while molding the shape of the final
part. In general, any process that increases density (and increases dislocation density) also
increases the tensile modulus . Working a material can work-harden or work-soften
depending on the chemical composition and following the Orowan mechanism . By
combining cold temperatures (liquid nitrogen) and cold-working, researches at Johns-
Hopkins were able to increase the hardness of pure copper by six times without sacrificing
ductility or adding impurities, alloying . Dislocations and nano-engineering were the
main strengthening mechanisms. The cold slowed dislocation mobility while the cold rolling
to Imm thickness created a high density of dislocations, similar to the process of folding
steel [ . The thickness is significant as the apparent crossover point to increased
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strength due to absence of enhanced Griffith crack [ . The sample was then allowed
to recrystallize at 200 C; this produced ultrafine grains because dislocation density before
recrystallization is inversely proportional to grain size . The team controlled the grain
size growth to produce a bimodal mix of ultrafine and larger grains, which gave the copper
its high strength (due to ultrafine grain) while retaining ductility (due to larger grain) [
Chaotic mixing of grain size can also create increased strength as defined in the

section as related to strength on page

Pure elements can be combined to form alloys with properties more desirable than their
constituent elements, like steel made from iron (Fe) and less than 6% carbon (C) [ .
High strength steels are produced by adding impurities to the compound like nickel,
chromium, molybdenum, and others. Alloying increases hardness, in general, especially
between atoms not located near one another on the periodic table . This increase in
critical shear stress is a result of slowing dislocation mobility by nonhomogeneous material

made of dissimilar atoms [

2.10 Hydrostatic Pressure

The lesson learned from hydrostatic pressure should convince one of the importance of the
gradient as compared to yield strength [See Potential Theory and Divergence|. A material
subjected to intense hydrostatic pressure refuses to fail at the values obtained from failure
theories, though at high enough pressures materials can compress to crystal structures that

have greater stability [ . Between 10 - 100 Mbar of pressure, all elements become
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metals (Herzfeld’s criterion); physicists define a metal by its ability to conduct electricity

B3]

2.11 Grain Size

Grains are single crystals made of homogenous material that are orientated . The size
can range from microns to visible grains to single crystal parts like turbine blades. In
general, the smaller the grain size, the higher the strength, with the exception that a single
crystal is the strongest and most ductile form of a material . Grain size is an important
strength factor at any scale. A material can be strengthened by a recrystallization process
that forms smaller or more symmetric grains . Smaller grains relieve stress

concentrations from dislocation pile-ups [p3]

The Hall-Petch effect states that stress (0) is equal to the applied stress (0,) plus a factor
that takes into account the diameter of the grain, d, and K, a constant representing the

significance of grain boundaries to increased strength [P8]|

K
0 =0, +—= Hall-Petch Effect

Jd

Y O L Hall - Petch Relation

Jd

Equation 2-3 Hall-Petch Relation
In the Hall-Petch relation [@ , yield stress (Y) is proportional to the inverse of

the square root of the diameter of the grain size (). The important crossover point where
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smaller diameters stop being inversely related to strength is being investigated and modeled

by CMSN, the Computational Materials Science Network [@

Existing cracks will propagate if it lowers the total energy of the system [ Griffith in

1920, assumed a simple energy balance, a decrease in strain energy is used to create new

crack surfaces [@ . His theory estimates theoretical strength of

brittle solids and gives the correct relationship between fracture strength and defect size

. This was improved upon by Irwin in 1950 by developing the stress intensity approach

9 7 3 ) ) 500

The boundary or interface between grains is a stress concentrator [See also in

Section B.1.1|Crystal Structure]. It is more difficult to propagate a crack through a single

crystal than to separate two grains. (However, dislocations have no trouble propagating
through single crystals in Figure 8-1) The boundary is less symmetric and has fewer and
weaker bonds holding the grains . The bonds are fewer because the ideal
arrangement is that of a single crystal and weaker because there is internal stress due to
misalignment of cell structure [ . Many of the defects found in materials are
concentrated at the boundaries including: interstitials, vacancies, impurities, micro-cracks,

line defects, slip planes, twinning, and environmental contaminants (on the surface

boundary) 1] ]

Grain size is a vital consideration in thermoelastic and heat transfer models [[139] Like

elastic properties, thermoelasticity is dependent upon orientation, meaning different grains
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will possess different temperatures when the material is quickly stressed or at stress
concentrations like crack tips . The heat contained in a grain is per volume, while the
heat exchange, is per surface area. Less surface area in smaller grains allows better heat
transfer and greater loss of mechanical energy to internal friction . This suggests that

better damping characteristics are attainable with smaller grain size.

The experimental work done on cohesionless materials suggests that different
mechanics control the transmission of stress from grain to grain. shows a
photoelastic stress distribution though grains. In contrast to continuum mechanical
(classical elasto-plastic) models that use hyperbolic or elliptic equations, the results pictured
in using photoelastic techniques, show a diffusive transmission of stress
through the medium entirely contained within a parabola [[l08]. Continuum mechanics
predicts a bell shaped or gaussian distribution for the same boundary conditions while the
relatively recent hyperbolic model would propagate along rays [[L08]. This result is not
apparent in the individual tests, but in the superimposed, ensemble averaged results from
different grain configurations [ These results have been used to model granular
materials with applications in soil mechanics, but the findings bear relationships to solid
materials composed of grains. These grains of solids resist sliding and shear deformation
better than the test materials, but the final response may be a linear combination of

diffusive stress transmission and the resistance to grain slide or shear.

This diffusive model can be simulated using cellular automaton methods and the diffusion

equation is part of potential theory [See Section |Analogous Systems]. The ensemble
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averaging technique is similar mathematically to probability density used in statistical
mechanics . The shifting of the grains is like running a probability experiment
to produce general behavior, since the exact path of stress transmission through the
material is random but follows a fundamental probability distribution over many
experiments. Even though real materials have different sized grains, defects, and non-
homogeneous distributions in the layers, this diffusive model suggests an interesting
relationship that should be examined further. Photoelastic experiments on indentation tests
at the micro-level could demonstrate whether this phenomenon is transferred to solids
through the response of grains, and ensemble averaging appears to be an excellent

technique to produce characterization and probability of response.

Steel is the favored material for mechanical engineers; much of the curriculum, literature,
and experimental work are devoted to steel and it’s alloys. However, the properties, which
make steel ideal for an engineering material, are grain dependent and therefore a micro-scale
phenomenon. At the nano-scale, steel will not be as important as silicon or more stable,

covalently bonded materials.
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Figure 2-18. Typical Photoelastic Figure 2-19. Superimposed results
results of the stress transmission from 10 experiments with shifted grain
experiment through a cohesionless alignment demonstrating probability
material density of stress distribution.
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2.12 Vibration and Impact

[B1 (1] 131 0l 7] o] o] 29 34]

A common mechanical engineering experiment to determine tensile modulus involves
measuring the speed with which a vibration/impact travels through a known length of
material. This acquired modulus is actually higher than that obtained from isothermal tensile
tests, and the difference can be used to determine the ratio of specific heat at constant
stress (pressure) to the specific heat at constant volume . At the nanoscale, it is much
more difficult to calculate the amplitude of vibration [, if this were possible then the

exact strength of atomic bonds could be experimentally obtained by using a microbalance,

QCM, instead of the relative bond strength [See Section Material Advances in

Nanotechnology] Section [.3]Examples of Specific Nanotech Problems]and Reference [1].

Time dependence becomes very clear during impact experiments . The speed of the
applied load is the determining factor to the response of the system. At relatively slow
speeds, thermoelastic response is minimal, but at high rates, material properties become rate
dependent, already demonstrated in [ During impact, a material’s strength is
increased and ductile materials can respond explosively brittle. The strength increase is
mostly due to the inability to respond to the force as quickly as it is applied. This resembles

the resistance to failure of materials subjected to large hydrostatic forces []10]}

2.13 Chaos

Another aspect that requires attention is [Chaos|and Nonlinearity] Chaos has built in

scaling phenomena, and where there is nonlinearity, there is chaos. Bifurcation is the route
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to chaos [P4], when two equilibrium states are separated by an infinitesimal amount.
However, chaos does not mean instability, a chaotic system can recover from small
perturbations demonstrating global stability even with local unpredictability. Examples of
this are found throughout nature: the weather, the movements of the planets, the
movement of a pendulum (large angle), the human heart, oscillating circuits, frequency
locking, and dripping faucets . Therefore, to retain this rich behavior in mechanical
systems, the nonlinear terms should be retained in the stress equations .
Nonlinear terms drop out in situations where the simplifying assumptions are valid, making

the cut-off points for the applicability of linear equations more obvious [P4]]

In the case of an aluminum-based compound [, neutron scattering aided the production
of an amorphous rather than crystalline structure, which proves to be more elastic (higher

Young’s modulus) than the same material with grain boundaries present [See Section

Crystallography-Geometry] Neutron scattering, one of the diffraction techniques for

visualizing micro-scales and molecular dynamics, is a very important testing technique for
studying property or phase changes and for producing disordered (chaotic) or amorphous
materials with higher strength and resistive properties [ . Some applications include:
improving cobalt- and titanium-based medical engineering materials, testing of degradation

of materials responsible for containment of radioactive materials, and amorphous

semiconductors [ .

Glass is the most common example of an amorphous material and has been described as

super-cooled or frozen liquid, but this comparison (or the fluid analogy) should not confuse
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the liquid and solid states of matter [ Glass may have the amorphous form of a liquid

but it has a much higher viscosity [ .

At room temperature: Viscosity:
Water 0.01 poise
Lead ~10" poise
Glass ~10” poise
Glass @ melting temperature. ~5%10" poise

Note: at room temperature it would take longer than the lifetime of the universe for glass to

flow a noticeable distance and the waves present in glass is due entirely to the

manufacturing process [

Adobe is an example of how chaotic mixing can increase the strength of a material
. The constituents of adobe are soft, but the mixture is like concrete [ . Large
grains are held together by small grains, which are in turn surrounded by smaller grains.
This scaling pattern has an optimum mixture to obtain the best building qualities of the
mixtute . Metals can benefit from this study as demonstrated in where
pure copper’s hardness was increased without sacrificing ductility by controlling grain

growth and mixture.
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Fracture progresses in an entirely chaotic fashion, apparently random, but cellular

automaton efforts have been made to model the random walk behavior of crack

propagation [

2.14 Failure

Failure criteria were developed closely following experimental evidence and work well (if
selectively) applied to bulk materials . Steps have been made in computational
mechanics to bridge the steps from nano- to micro- to macro/bulk behavior [E] @I
@I . To date, the transitions have not been accomplished smoothly. At
the limit, nano-mechanics must describe bulk behavior or continuum mechanics; just as
quantum mechanics is expected to describe macroscopic behavior or Newtonian physics in
its limit. For this reason, potential theory is ideal for modeling material response. The same

equations and numerical methods that are used to solve quantum phenomena are applicable

to bulk behavior [See Section #.0 [Potential Field Theory Applied to Mechanics|}

Testing has begun on tiny cantilever beams, thin films, and quantum structures in an effort
to understand micro- and nano-mechanics . This testing is currently being
conducted to produce a data set that can be fit by a new failure theory, proceeding in the
same manner that has worked for bulk materials, albeit with smaller, more sensitive, and
more expensive testing apparatus. Following this lead, each new nano-component will have
to be run through a battery of tests comparable to the past 200 years of bulk material
testing and performed at enough different scales that a sensible understanding of properties

can be assembled before design can be attempted. While experimental testing is an
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important part of design, computer modeling [p) B0] [70] could

take over most of the tedious job of producing property curves. This of course necessitates
that the modeling is accurate and produces a good representation of nano- and micro-scale

effects.

At the atomic level, failure is not isotropic [See also in Section . There are

not enough grains for a homogenous mix, and failure stress is highly dependent on
orientation of crystals [See Section Constants]. Quantum mechanical effects also
appear in a rangible way [P] [7) 0} 3] B2] 8] po] 2] 3] fr4] 9] B0] b1j 3] B3] o] b9] 3]
[102] [03] 04] [r06] {071 [12] (18] [23] {33] [40].

Most failure theories do not account for differences in tensile or compressive loading,
allowing the tensile curve to reflect across the strain axis. However, many materials are
stronger in compression than tension, and even stronger than theory predicts for

hydrostatic compression. These factors need to be addressed in modeling compression and

hysteresis effects [

2.15 Conclusions about Strength

Although the idea of a material performing at a percentage of its maximum, or ideal
strength, is not important for bulk calculations, it has become important to nano-scale
calculations and especially in modeling material response. Each of the variables that
contribute to strength must be included in a comprehensive model, not only to

demonstrate their effect, but also to observe the limiting conditions (where the variables
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can safely be eliminated). Some excellent modeling programs have been developed

exclusively for the atomic and molecular scale for chemists and physicists [See also

on page and Section B.1[[Applied Math and Modeling|. These can serve as the first

level to modeling independent of scale and an aid to engineers working and designing with

IlaﬂO—COl’l’lpOl'lCﬂtS .

2.16 Further References

See references to the works sited in this chapter, since many are collections of years of

historical work, especially Love [[/5] and Timoshenko []30]
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3.0 Literature review and Derivation of Elasticity

The founding fathers of this science were indistinguishable from physicists, and most of
their principles were formulated without a dependence on scale, but some of the

assumptions preclude the use of these equations at smaller scales [

130]. In each of the following sections, these limitations are highlighted.

3.1 Conservative Field

If in a gradient force field F, the work done by the force upon a particle moving from A to
B is the same for all paths, and work done on a closed path is zero, then the force field is
said to be conservative . Work is done when an object or particle is moved by a

force in the direction of that force and the units are energy [[L19] . Power is work by

time or distance times velocity [B0]
F is conservative if and only if curl F= 0 [See n page nd reference .

Conservation of energy requires that the sum of all energy, kinetic (KE) and potential (PE),

be constant in any closed system.
KE+PE= constant

Equation 3-1 Conservation of Energy

Frictional forces are non-conservative or dissipative; meaning KE is reduced without an

increase in PE and work is path dependent [[143].
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§F [dr Z#0 for a non-conservative field
(o4

Equation 3-2 Non-conservative field

§ F Ldr =0 for a conservative field and F is the gradient of a scalar function

c

and circulation is zero [[143].

Equation 3-3 Conservative field

In a three-dimensional conservative field where F is a gradient field; @ is a potential

function for I; and P, Q, R are components.

If F=Pi+Qj+Rkand P,Q,R are f(x,y,z), then:

P _9Q 9Q _dR AR _0P

dy Ox 0z Oy Ox 0z

Equation 3-4 Conservative field derivatives

Conservative Field|Assumption is invalidated at microscale where plastic deformations

can occur at any temperature, sometimes with no load . (Figure 8-1|in Section B.1.1]is

from a simulation, but is visually representative of this phenomenon.) Defects, cracks, and

dislocations are topological disorders that result in the material not simply connected, thus

path dependent. Plasticity is the evolution of a material not in equilibrium.

3.2 Equilibrium

(91 B7 591 B2l
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Stress Equations of Equilibrium, can be derived by isolating an element in

the body; the summation of forces in each direction must be zero to maintain equilibrium

59 57 3 ) [0 503

3.2.1 Stress fields:

6TVX+6 W, TyZ+F 0o
ox y z 7
6TZX+0TYZ+ 2 F =0
ox oy z

Equation 3-5 Equilibrium stress fields

quilibrium|{Assumption, requires that the body is at a constant state of

equilibrium, but at nanoscales, the isolated element is in a different state of equilibrium.
Stress fluctuations are caused by vibrating atomic components @ . This is a

natural state of matter, and even if the material is theoretically cooled to absolute zero, there

are still quantum vibrations [ .

Summation of moments leads to the conclusion that:

T, =Ty
T,=T,
T, =T,

Equation 3-6 Summation of moments

54



This, prevents the body from rotating due to unbalanced shearing forces [@I

7 75165 ) ) 500

3.2.2 Body Force Fields
Q=1(xY,2)
_0Q c __0Q F = 0Q

I:x: W 5! z
ox 7 oy 0z

Equation 3-7 Body force fields
The body forces, F,, F, F,, are a function of the body force field, Q, The

units of Q are pressure or force per unit area, and the units of body forces are in force per
unit volume. They are a result of mass in a field that can be gravitational, centrifugal,
magnetic, or any inertial force that adds acceleration to the element. They differ from

surface forces in that they are applied by a field rather than at the surface of the body.

Surface forces translate into stress fields contained in Equation 3-5] When weight is

neglected, body forces are set to zero. [@

Body Force Fields Assumption must be adjusted to accommodate different fields at
smaller scales. Gravity is insignificant at nanoscales; no atomic structure can be built
thinking in terms of gravity because electromagnetic forces are so much stronger at that
scale, by a factor of approximately 10” for electrons and protons . Important frictional
forces include: photons (quanta of light), phonons (temperature or quanta of lattice

oscillations), and plasmons (quanta of plasma oscillations of electron gas) [
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3.2.3 Strain — Displacement

The derivations of elasticity theory can be found in any elementary text on elasticity, but the
main points have been highlighted with their nonlinear counterparts to observe simplifying
assumptions and similarities to electromagnetic fields [@ . The
source of the Strain-Displacement relations can be followed very cleatly in [ and [ In
the following equations, (x,y,z) are the coordinate axis and u,v,w are the displacements. In
the nonlinear formulations, the displacements (u,v,w) can be functions of x,y,z. The linear
strains are denoted by ¢ while the nonlinear strains are € (Greek ¢) to avoid confusion.

Shear strains are denoted by Y, and rotations by &

Linear Nonlinear
B 2 2 27]
v oX “ox 2|\ox X X
ov - -
S =5y _ov tl(au) (ov) (ow)
y aW_6_+§ =+ 6_ + a_
ow y 2|\oy y y) |
e,=—
0z _ow  1|(auY (ov) (ow)
€ =—+—||— | +| —| +|—
- Z 9z 2|\oz 0z 0z
ou v e = ou N Q ou du avav ow ow
S =Y T 5y T ax v loy ox) ox ay ox ay 0x oy
e =y _0u_ ow e = @J’_W]ﬁﬁu@u v v, dwow
“ % 9z ox 0z ox) 0xodz ox 62 Ox 9z
e, =y _ov ow e = o, aw L0udu _odvav owow
T oz oy = ~\az" oy ) " ayaz oyoz ay oz

Equation 3-8 Linear strain-
displacement
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Linear Nonlinear

ow ov ov 1 ou
2 N T A A yxy+ ;= S _yxy_ 2 = A
dy 0z 2 0x 2 0
2 a_U - a_\N y = a_U ly - = a_VV
Yooz ox 27 Y 9z 27 Y ox
@ - a_u ly +w = a_W ly —_ = Q
 ox oy Yoo eyt 27 Y oz
Equation 3-10 Linear rotation- Equation 3-11 Non-linear rotation-
displacement displacement

Equation 3-12 Non-linear strain to linear strain and rotation

Roughly speaking the linear equations are used for the deformation of massive bodies whereas

the nonlinear equations are useful for flexible bodies especially with large deflections or rotations

pal
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Strain-Displacement| Assumption applies to small scales but many nano-structures, like

carbon nanotubes and thin films, have nonlinear geometry, and require the more difficult non-

linear formulas.

3.2.4 Hooke's Law

—Stress is a linear combination of strain.

For many materials acting within elastic limits, Hooke’s Law is a good approximation [@]
. Some theorize that it is the first term of a Taylor expansion, but for small
displacements the elastic portion of a material’s response is such a small strain, second order
corrections are too small to measure. The constants of Section follow directly from

Hooke’s Law.

3.2.5 Constants:

Continuum solid mechanics cannot account for the magnitudes of the tensor coefficients, thus it
is incomplete. A theory of coefficients requires quantum mechanics to show how atomic
bonding energies and bonding forces arise [F] [7] 0] 0]
fe] 91 73] 31 e 02 031 [0 [0 073 12 5 (23] (53 )

In indicial or tensor notation, the relationships and constants (stiffnesses or compliances)

between stress and strain can be compactly written as follows:

1,j, kI, m,n =1,2,3

0y = Zcijklakl Elastic stiffnesses (Cy,)
7]
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& = z S Elastic compliances (S;)
K
c s 5 5 . . . 9, =lifk=m
S = nversion equation:
ijkl ~jmn kn™~Im v qu 6kn =0 ifk#m

Equation 3-13 Stress-stiffness and strain-compliance relationships [

The most general description of the elastic state requires the complete state of stress and strain,
each containing nine components leading to a general matrix of 81 components. This can be
reduced to a 6 by 6 matrix by symmetry, equilibrium, and no net torque (0;; =0 ;). Since elastic

deformation is reversible, the strained body contains strain energy that is a scalar proportional to

the square of the strain. This requires that the 6 by 6 matrix be symmetric leaving 21

independent constants, [@

Gll Cllll C1122 CI]33 CI]IZ C”23 Clll3 eIl
0-22 C2222 C2233 C2212 c:2223 c:2213 e22
033 - C3333 C3312 C3323 C3313 e33
T12 C1212 c:1223 C1213 yIZ
T23 wm 02323 c:2313 y23
T13 L C1313 _ y13

Equation 3-14 Triclinic elastic stiffness matrix [
This matrix, describes the most general triclinic crystal symmetry system with

three crystal axes of differing length and three different angles between the axes (crystal

symmetry). For orthorhombic symmetry, nine coefficients are necessary; for tetragonal

symmetry only six coefficients; and for cubic, three coefficients are needed, [@
£30].
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Oy Cii G Cin 0 0 0 €
O Cii Cin 0 0 0 €y
O3 — Cin 0 0 0 €
Ti Coi 0 0 Yi2
Ty Sym Cii 0 Y23
T | Clzlz_ Yis

Equation 3-15 Cubic elastic stiffness matrix

For cubic systems, there are only three independent constants, but isotropic crystals can be

further simplified since C,,,, =C,,,, +2C,,,,, reducing the constants to two [@I

[30]. This definition is important in experimentation, because the coefficients can be
measured @, and determining how isotropic a material behaves, justifies the use of simplified

equations based on isotropic behavior. Using the isotropic assumption sets Poisson’s ratio to 0.3,

but many materials do not obey this rule as observed in rom Section

onstants|Assumption of stiffnesses and compliances is useful for crystalline microstructure,

but isotropy is not very common, especially at smaller scales.

K1

Figure 3-1. Diagram of the atomic bonds in a cubic isotropic crystal
Kl and K2in are linear spring constants representing central atomic forces between

atoms [@I . For an isotropic crystal, K1 must equal K2 [ For identical
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atoms, the geometry must be skewed to be isotropic, but ionic compounds can use the geometry

illustrated in n the left. The anisotropy coefficient is:
A=2C,,,/(Ci111-Cii)

Equation 3-16 Anisotropy coefficient

When A is equal to 1, then the material is completely isotropic: tungsten is 1; diamond is 1.6; and

salt, NaCl, is 0.7 [F3]

The two Constants for isotropic materials can be defined by any combination of the following

B7]:

* Lame’s constant (A) with no physical meaning, used to simplify equations and is equal

to K-2/3 U

*  Shear Modulus or Modulus of Rigidity (L or G) equal to shear stress by shear strain=

T/y
* Poisson’s Ratio (V)equal to transverse strain by axial strain=¢€,, /€,

*  Young’s Modulus (E) equal to Axial stress by axial strain= 0, /€,

Bulk Modulus (K or B) equal to Hydrostatic Pressure by volume dilatation=-p/D

shows the relationship and conversions between these constants; only two of which

are independent in isotropic crystals.
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Relationships between the elnstic consianis
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L | A3+ 2p) . M+ 2w
e P 2 + p) =
LE At + [E- 1) At = (E=d)| At (3 +E)
a 4l f
e .15_1 £ 2| A1+ vl — h-_b J.[[a:l.-l
Iy v Iw
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o 1 K-a K-
I
i uiZn — E) E—ip uE
o E-u 2 Wiu - E)
2w 2ul + )
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i IK —In _?E- K —2u
- 3 K +a K + )
+E E E
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Figure 3-2. Dalley’s table of constants and their conversion @]

3.3 Elastic Equations Using Isotropic Conditions

The following equations substitute constants using isotropic conditions and are the general

derivations of elasticity @ .
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3.3.1 Strain-Stress

Using [Equation 3-13] [Equation 3-15|and [Equation 3-8|the strain to stress and displacement

to stress equations can be written:

exxzéoxx—v(ow+ozz)] €y = Yy :&Txy
eyy :é o-W _V(o-xx +0E)] exz = yxz :&sz
eﬂ:éO’zz—V(O'XX'FO'W)] eyzzyzyzﬁ-[zy

Equation 3-17 Strain — Stress relations (linear)

3.3.2 Displacement-Stress

Using the linear equations and substituting [Equation 3-8| in [Equation 3-17]yields the

displacement to stress equations below:

ou ov 1
81l o, +o.] w L
ov _ 1 ou ow _1
a—y-EGW‘V(Gxx’szz)] E*&-ETH
a_W:i[o' —V(O' +0 )] @_'_a_VV:lT
0z E" “ o 0z oy p ”

Equation 3-18 Displacement — stress relations (linear)

3.3.3 Stress — Strain

allElsEwE

These equations inverted can be compactly written as:
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XX

aQ Q Q

J =e,te, +e,

Ty = HY
o, =\, +2ue, v
_ Te =HYy
g, =AJ, +2ue,
Ty = HY
0, =AJ, +2ue, i Y
orintermsof Vand E:
O, . (I-v) v v € Ty
o, =————— 1-v Y e T
Yoo (1+v)(1-2v) (1=v) “ “
o, v v 1-v)|le, T,

e |
2(1+v) Yy
Yy

Equation 3-19 Linear, isotropic stress — strain relations [

3.3.4 Stress-Displacement

When the circumstances allow, stress to displacement field equations may be written:

Ju T, =M 6_u+@
— Y dy 0x
(1-v) Y Y 0X
ov _ (0u ow
= 1-v) Y — T, =W —+—
Yo a+v)(1-2v) ay 0z ox
. Y Y (1-v) ow
re T, =H @+6_W
9z i 0z dy

Equation 3-20 Linear, isotropic Stress — Displacement relations

displacement filed without first calculating the strain.

3.3.5 Displacement Equations of Equilibrium

form the displacement equations of equilibrium [p7]
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Equation 3-20 |shows that for some problems the stress can be calculated directly from a

The stress displacement equations and the stress equilibrium equations can be combined to



0%u + 1 i a_u+ﬁ+a_w +lFX:()
1-2vox\ox oy 0z) M
D2V+ 1 i 6_u+@ a_VV +le:0
1-2voy\ox ody 0z)

(1w + 1 i @+ﬂ+a_vv +lF =0
1-2voz\ox dy 0z) p °

Equation 3-21 Displacement equilibrium relations [E]

In IETID’A‘UUH_STZT,' the Laplacian operator is defined as [° =i+i+i [See

ox 0y o0z

IMathematical Terms and Theorems|in Section . This forms a displacement field similar

to the stress field of and stress compatibility equations of [Equation 3-23
Solving this PDE yields displacements that can be used to obtain strains, [Equation 3-8|and

Hquation 3-6] or stresses, Equation 3-20

3.3.6 Compatibility
There are six strain equations of compatibility, whose satisfaction prevents

voids from opening in the body . The last two strain equations

of compatibility (B and C) are automatically satistied by plane stress or plane strain field

where there is no z dependence [@

The stress equations of compatibility are built up from [Equation 3-22] Equation 3-5| and

the stress-strain relations, [Equation 3-17] The importance of these equations,

is that they depend only on Poisson’s ratio (in the linear, cubic case because of
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Equation 3-17]. This is the reason that photoelastic experiments do not depend on Young’s
modulus and can model materials with different stiffnesses if Poisson’s ratio is similar [@

The material must also be simply connected and body forces must be zero for

kquation] Equation 3-28][B7].

0%, 0%, 9%, D. 0%, _0 (_ Ny , W, avny

dy> o oxdy dydz x| ox oy oz

%, N 0’e,, _ d%y,, E. Zazgw _9 oy,, 9y, N ay,,

dy> 9z°  oyoz 0xdz ody\ ox o9y 0z

Oty , 0%, _ 07V, P ,0%, _0(%y. 0y, Oy
: > 0x0z "oz

0z 0x X oxdy 0z\ ox dy 0z

Equation 3-22 Strain compatibility relations

Compatibility Assumption requires changes at the microscale because dislocations and

other defects create singularities and discontinuities in the field.
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Y 1+voey? ' 1-vlox 9y oz ay
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2
|:|2TZX+_1 a_|1:— aFZ +ai
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Equation 3-23 Stress equations of compatibility [

Equations Equation 3-5] Equation 3-7)and Equation 3-23 kombine to form:

(0.3, ij:

0? (o +0,, [ij

Equation 3-24 Laplace’s equation in two-dimensions
In two-dimensions, [Equation 3-24] it is apparent that the solution depends at most, on

Poisson’s ratio, V . When body forces are constant or zero, then the entire function

simplifies to Laplace’s equation,

3.3.7 Potential Stress Functions

Stresses are assumed to satisfy these stress functions or potential field equations:
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® 6y2 37 +Q And in two-dimensions:
0°Pd, 0’0
w = 6x23+ 622l Q o =62¢+Q
’d, 90 Cooy
z = 22 2] +Q _ R
ox* oy 0,=— +Q
RO ox
_ 3
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0P T - 0@
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Equation 3-25 Potential field equations in three and two-dimensions [@

3.3.8 Biharmonic Equation

Substituting Equation 3-25linto Equation 3-24 yields the biharmonic function [:

D(o +0,, =0

J:D (1—2v) j

DZ(DZCD): D' = D{ﬂ()j
l1-v

Equation 3-26 Biharmonic function of @

A comprehensive collection of analytically solvable mechanical engineering problems has
not been compiled. It would be an asset to understanding basic engineering problems
(beams, plates, pressure vessels, etc.), especially as an exact solution to compare to classical

and finite element methods.
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3.4 Mathematical Terms and Theorems

The following terms and theorems are significant to the derivations of elasticity and

potential theory.

3.4.1 James Clerk Maxwell

Curl Definition

Maxwell first introduced the word cutl in his studies of electromagnetism . Where curl F
is zero then the flow is irrotational. For div F equal to zero, then the fluid is incompressible

or analogously, in electromagnetics a field is solenoidal when div F equal to zero [See

Frvergencelon page [1]

F is a gradient field; @ is a potential function for F; and P, Q, R are components [[143]. If

F=Pi+Qj+Rkand P,Q,R are f (x,y,z), then

i
curl F=0xF = i
[1)4

O%Im—-
oY=

P
OR OQ OP O_R a_Q oP K
ox oy

a_y az az ax

Equation 3-27 Curl [[143]
3.4.2 Saint-Venant’s Relation

Many classical elasticity problems can be solved directly in terms of stresses without using

displacements by applying compatibility conditions [@ These compatibility conditions are
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differential equations derived by Saint-Venant for strain components or integrability

conditions for strain and displacements [See Equation 3-22|and . Saint-Venant’s

principle states that a system of forces acting over a small region of the boundary can be
replaced by a statically equivalent system of forces without introducing appreciable changes

in the distribution of stresses in regions well removed from the area of application |

3.4.3 Laplace’s Equation

Pierre Simon Marquis de Laplace (1749-1827) was the first to study this group of
differential equations. Laplace’s equation is defined in a number of equivalent ways, which

are enumerated below [[143]:

0°®d =0
divgrad ® =0
Oe P =0
AP =0

Equation 3-28 Laplace’s equation

The first version will be used in any mathematical derivations, whereas the second will be
used in any text explanations, “the divergence of the gradient of phi” or the Laplacian of a
function. The third is the dot product of the gradient, and the final form, the del operator,
is very common in physics. means that if the Laplacian is equal to zero then
everywhere in the field the function is equal to its average value of neighboring points, or in

other words, if u satisfies Laplace’s equation then u represents a state of equilibrium .
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When 0% u (at a specific point) is greater than zero, then the average of neighboring points
is greater than u where it was evaluated, and vice versa, if 0% u is less than zero, u is less

than the average. Any solutions to the Laplacian are harmonic, and solutions to [*u are

biharmonic. Solutions to Laplace’s equation are one of the classes of equations covered

under the subject of partial differential equations [

3.4.4  Airy Stress Functions

Airy stress functions are polynomial approximations of potential functions, which depend

at most only on Poisson’s ratio, Equation 3-24|and [Equation 3-25] and are formulated to

satisfy harmonic equations, [Laplace’s equation|(Equation 3-28). Airy Stress Functions are

valid only to plane strain or plane stress problems, i.e. two-dimensional problems, and body
forces must be zero or a scalar function of position . The stress functions are valid at

midpoint but only approximations at boundaries because of enforcing weak boundary

conditions at the ends [See Section Method of Solution]. Airy functions are most

commonly used for beams and pressure vessel (cylindrical) problems. Airy’s paper of 1862
inspired Maxwell to write his paper on reciprocal figures in1864 . The method of virtual

load is closely related to the reciprocal figures. Maxwell corrected a term related to shear in

Airy’s paper and extended the results to three-dimensions in 1870@. shows

one of the original drawings from Airy’s paper of a beam in bending.
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Figure 3-3. Figures of beam in bending from Airy’s original treatise on stress functions. The
curves are drawn from tables also included in the paper.
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3.4.5 Westergaard Complex Stress Functions

In 1939, Westergaard formulated complex equations whose real and imaginary parts satisfy
potential functions around mode I fracture cracks . This was extended to other fracture
modes, but not beyond the general vicinity of cracks. According to Pacey, et al,
Westergaard equations are limited to uniform stress fields, but cracks usually grow under

varying fields. This was improved upon by formulating more generally applicable potential

functions [

3.4.6 George Green

Green’s Theorem of 1828 is used to obtain the stress equations of equilibrium.

_r[0Q , oP
dex+Qdy— 'LI(&-FO_deA

§Fmds=ijEFdA
c R

Equation 3-29 Green’s theorem [[143]
3.4.7 Divergence or Gauss’s Theorem

This theorem, Equation 3-30] relates the integral over a surface, S, to the divergence of a

field over a volume, D.
[[(F th)da = [[[OFaV = [[[divFdv
S D D

Equation 3-30 Divergence [[143]
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Flux is the flow through a surface element, for a velocity field F, n normal, and da area:

Flux = _U(F Dh)da

Equation 3-31 Flux [|143]

Gauss’s theorem or divergence states that the flux through a surface area is equal to the

divergence of a field through a volume .

3.4.8 Stoke’s Theorem

Green’s theorem in three-dimensions is Stoke’s theorem:

0Q, 9P R

dex+ Qdy + Rdz = 'LI(& +6_y E]dA

§F tndr = [[((OF ) th)ds

Equation 3-32 Stoke’s theorem [[[43]
Note: n is upper normal [See

3.4.9 Cauchy-Riemann

The Cauchy-Riemann condition:

ou _ ov da_u:—ﬁleads‘m:
ox dy ady  ox

o’u __a'v

oxdy  Oxdy

Equation 3-33 The Cauchy-Riemann condition [[143]
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If u and v satisfy this condition, then they also satisfy Laplace’s equation,
To obtain an analytical solution, the problem must be well posed, the Cauchy-Riemann
condition must be satisfied, and the boundary conditions must be defined. In two-
dimensional problems, this is always theoretically possible, because there is a unique
solution for a set of boundary conditions . Since the solution is a linear combination, a
complicated geometry can be broken down into simple blocks and the sum of the solutions
yield the total potential. Many problems have already been solved analytically, and for more
complicated geometries recourse to computer programs with numerical methods and finite

element modeling are currently available, though not widely used in the study of mechanical

stress and strain [See Matlab’s PDE toolbox and flexPDE].

The goal of the solution for three-dimensional problems is a triply orthogonal set of
surfaces corresponding to the principal stresses or “isostatic surfaces” [ There is always
a set of isostatic surfaces in two-dimensional problems . Three-dimensional problems

are, of course, much more difficult, and in general, the three-dimensional orthogonal set

might not exist, according to Boussinesq (1872) [

Cauchy relation:

The Cauchy relation, C12=C44, is the result of isotropic assumption that the crystal is
bound only by central forces [ Cauchy’s relations led to rari-constant theory, that

isotropic materials can be described by one constant with Poisson’s ratio equal to Y4 [See

for comparison and references . Only 20% of crystals satisfy these

75



relations according to experiments preformed by Voigt (ca. 1887), and many materials are

closer to 1/3 rather than 1/4, thus resolving an age-old argument [f3].

3.5 Nonlinear Formulation, Chaos, and Stability
3.5.1 Nonlinearity

Plasticity is not the only nonlinear phenomena present in mechanics; the very difficult
solution of nonlinear geometry that acts within elastic limits is applicable to structures such
as nanocarbon tubes [ﬁ Strings, slender columns, and even the vibrations of membranes
are very difficult to model using finite element programs (especially if non-linear solutions
are not available). The power of Novozhilov’s compact monograph on nonlinear elasticity

is in the presentation of equations that reduce to classical theory when their assumptions

are applied [.

Using the nonlinear equations I1.43 and 11.44 from Novozhilov yields six equations with 12
unknowns. Six additional equations relating stress to displacements are formulated from

strain energy relations.

These....express the law according to which the material of the given body resists various
forms of deformations. A theoretical explanation of this law would necessarily require an
insight into the nature of intermolecular forces which seek to keep the particles of the solid
body at definite distances from one another. The present state of scientific development,

however, offers no adequate solution to this difficult problem. [Russia in 1948]

- Novozhilov
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Thus, the importance and necessity of experimental results for specific material

relationships between stress and strain is acknowledged.

Nonlinearities can be introduced into the theory of elasticity in three ways [:

* Formulas of strain components
* Equations of equilibrium of volume element

*  Stress-strain relationships

This leads to four types of problems, with separate methods of simplification, in the theory

of elasticity [:

1. Physically and geometrically linear. Example, rod extension within the limit of

proportionality

2. Physically nonlinear but geometrically linear. Example, rod extension that exceeds

the limit of proportionality leads to a nonlinear stress-strain relation

3. Physically linear and geometrically nonlinear. Example, bending of a thin steel strip

with large angles of rotation but strains within the limit of proportionality

4. Physically and geometrically nonlinear. Example, bending of a thin steel strip with

large angles of rotation and strains exceed the limit of proportionality
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Nonlinear problems of type two and four are the subjects of the theory of plasticity, type

one belongs to classical or linear theory of elasticity, and type three contains elastic

problems with nonlinear geometries [ .

3.5.2  Jules Henri Poincaré
In a doctoral dissertation of 1879, Jules Henri Poincaré (1854-1912) studied general

geometric properties of ordinary differential equations. He was the first to discover a
chaotic deterministic problem, the three-body problem important to the stability of celestial
mechanics; and his research outlined methods for the study of chaotic deterministic systems
and the starting point of algebraic topology . Poincaré recurrence time is important to
entropy, and he understood the implications of quantum theory's difference from classical

physics. He also sketched a version of special theory of relativity.

Interest in the qualitative behavior of these equations had to wait on computers that can
quickly run simple programs to produce maps of qualitative behavior based on initial
conditions ‘ This method was neglected until 1963 when Edward Lorenz discovered a
chaotic deterministic system in a simple weather model, and Benoit Mandelbrot's work on

the scientific study of fractals and fractal scaling begun in 1975 [ @

3.5.3 What is Chaos?

6 This section is about a young science that crosses all disciplines and is highly philosophical in tone and content.
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“...you know the right equations but they’'re just not helpful. You add up all the microscopic pieces and
you...cannot extend them to the long term. They're not what’s important in the problem. It completely

changes what it means to Know Something.” ~Feigenbaum [p4]

An acceptable definition of chaos is not forth-coming from the sources. Wolfram and
Gleick call it “a new kind of science” ; mathematicians call it ergodic, non-
deterministic, or stochastic; engineers call it turbulence, buckling, and random. Chaos is
apparent, though not fully understood, in fields like dynamical systems, nonlinear dynamics,
fractals, and even cellular automata . The fact that the starting conditions are not
exactly known and that infinitesimally small differences in initial conditions lead, in time, to
large variations in the state of the system when data becomes uncorrelated, means that the
system is responding chaotically. Nearby trajectories diverge exponentially. This is one of
the reasons why weather is so difficult to predict (and may be impossible) . However,
just because the behavior is complex, does not mean that the governing equations cannot

be simple.

Stability

At resonance, amplitude increases unbounded until the system self-destructs, but when
displacements become large additional physics come into play, such as nonlinear elasticity,

plastic deformation, heat transfer, buckling and others [p9]
Examples of equations whose chaotic nature has only recently been acknowledged:

Planetary Motion\ Celestial Mechanics, Duffing, Rayleigh-Van der Pol, Lorenz,
and Logistics equations [
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All of these equations involve derivatives, and depending on the coefficients the behavior
may be chaotic and unstable, chaotic but petiodic, or stable. Chaotic but petiodic cycles
include the weather, the movement of a pendulum (large angle), the human heart,

oscillating circuits, frequency locking, and dripping faucets [

Scaling

(el o1 Bl

Scaling is a chaotic characteristic demonstrated by fractals, Julia patterns, coastline topology
(fractional dimensions), and fern-like plants. Scaling is an inherent characteristic of chaos
and cellular automata . Properties that are scale invariant are important to self-
similarity and understanding how scales link together to produce experimentally observable
effects. Revealing these scale invariant properties contributes to the understanding (and
modeling) of properties that change with scale, like strength. An attempt is made in [[142] to
reveal universal scaling properties of isotropic and anisotropic fluid flows and their
connection to the rate of decay of forcing functions in developed turbulence. Because
chaos is universal (or mathematical) invariants in one system, bare significance to
completely different systems. For example, the rate of bifurcation is a constant whether the

data is from the stock market or fish populations [

3.5.4 Non-uniqueness

In the classical theory, using Hooke’s law and omitting the nonlinear terms, leads to a
unique solution of equilibrium 128]. However, reality and stability demonstrate that

more than one equilibrium position may exist.
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For Maxwell, this meant a scientific instance of free will.

There are certain cases in which a material system, when it comes to a phase in which the
particular path which it is describing coincides with the envelope of all such paths may
either continue in the particular path or take to the envelope (which in these cases is also a
possible path), and which course it takes is not determined by the forces of the system
(which are the same for both cases) but when the bifurcation of path occurs, the system,
ipso facto, involves some determining principle which is extra physical (but not extra

material) to determine which of the two paths it is to follow.

When it is on the enveloping path it may at any instant, at its own sweet will, without
exerting any force or spending any energy, go off along that one of the particular paths

which happens to coincide with the actual condition of the system at that instant.
-J C Maxwell in a letter to Francis Galton, February 26,1879E|
When more than one equilibrium position exists (according to Novozhilov) the classical
solution is ordinarily unstable, which can have catastrophic effects when blindly applied to

actual structures.

The moment of appearance of a possible bifurcation in the solution corresponds to the
critical load. Hence, two positions of equilibrium corresponding to an infinitesimal

increment in the critical load differ from one another by an infinitesimal amount.
This last condition will be used as a basis for the determination of critical loads. [§4]
This is observed in the theory of Euler’s equations of columns, and in such real

manifestations as the Tacoma Narrows bridge failure.

7 Maxwell died of cancer November 5 of that same year at age 48.
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3.5.5 Potential Theory, Chaos, and Scaling

Potential theory retains nonlinearity that is inseparable from chaos and present in ordinary
and partial differential equations. If chaotic response at the microscale is the link between
bulk behavior and theoretical strength at the nano-level, then the nonlinearities must be
retained to preserve (and model) that behavior. The difficulty is in modeling grains under
the influence of a field that has discontinuities and singularities. Part of this has been

achieved in using functions like omplex stress functions to model cracks, and

in multi-atomic models of grains [See Section Applied Math and Modeling| and

references b] 2] 48] bo] 0] 18]

As chaos (and cellular automata) has demonstrated, complex behavior does not necessarily
mean a complex model . The links between each level require
statistical behavior and probability. One-thousand time steps (nanoseconds) over 1000 nm
(one-dimension) by 1000 nm (two-dimensions) by 1000 nm (three-dimensions) yields one
billion cells and one trillion calculations to achieve one microsecond in one cubic
micrometer of matter. This process must be repeated, one billion cells and one trillion
calculations, to achieve the response of just one cubic millimeter during one second.
Considering the time it would take a computer to perform these calculations, it would
appear to be quicker and easier to test a specimen experimentally and let the material do the
calculations naturally. This suggests that some scaling relation is present adding up all those
nanoseconds to obtain discontinuities at the microscale, dislocations and grain boundaries;

and they are scaled again to obtain the mostly homogenous continuum at the bulk level.
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3.6 Derivation References
References for general math derivations are found in [[LO5] ; general mechanics

derivations are contained in [@I ; and additional sources for chaos,

fractals and their relation to geological and scaling phenomena can be found on the

Internet.
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4.0 Potential Field Theory Applied to Mechanics

[221 b2 b8 8] po] B2} [109] [15] i31]

The potential field theory covers many diverse areas [See also Section

including electromagnetic fields, mechanical stress and strain fields, geologic and

gravity fields, quantum mechanics, and others @ . Potential theory is
the preferential method for solving many field problems [@ @l

. The technique involves the solution of partial differential equations (PDE) of
which Laplace’s equation is important for engineering applications. Diffusion and heat
transfer equations can also be formulated using PDE’s. Some of the equations studied in

potential field theory are enumerated below:

Laplace’s Equation — Elliptic PDE, a static (equilibrium) or time independent equation
Wave Equation — Hyperbolic PDE, Maxwell’s electromagnetic equations

Schrédinger Equation — Second order linear PDE, basic law of quantum mechanics
Navier-Stokes Equation — Parabolic PDE, turbulence, dissipative system

Diffusion Equation — Simpler Parabolic PDE, chemical diffusion, heat conduction and

random walks

Vlasov Equations — PDE Combination of electromagnetism and fluid mechanics,

plasma physics, MHD (magneto-hydrodynamics)
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The Field Theory Handbook [@ covers Laplace’s equation, Poisson equation, diffusion
equation, and vector and scalar wave equations. It contains the general three-dimensional
solutions for separable equations in 11 general coordinate systems illustrated in
plus 29 additional systems. The approach is to transform the PDE to a coordinate system
that takes advantage of symmetry in the geometry of the problem and allows for separation
of variables. The use of unusual coordinate systems allows for simple description of the
boundary conditions. (If the boundaries cannot be described in this manner, then the
problem cannot be solved analytically.) The variables are then separated into three ordinary
differential equations (ODE) that can be solved for particular solutions. The boundary

conditions are applied and the unique solution can be built up from the general solutions.

For engineering applications, the potential function is usually denoted by ¢, but for

electromagnetic derivations, V denotes the potential field, and it is associated with voltage.

Potential functions are designed to be harmonic functions and solutions of

Equation|(Equation 3-28) or biharmonic and solutions to
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The eleven coordinate systems:
Cylindrical

1. Rectangular (X, Y, Z)

2. Circular-cylinder (r, 9, 2)

3. Elliptic-cylinder (N, ¢, 2)

4. Parabolic-cylinder (M,V, )

Rotational

5. Spherical (r,8,9,)

6. Prolate spheroidal (N,6,9)
7. Oblate spheroidal (n,0, )
8. Parabolic (p,v,$)

General

9. Conical (r,0,A)

10. Ellipsoidal (n,6,A)
11. Paraboloidal (u,V,A)

Figure 4-1. lllustration of 11 coordinate systems for solving partial differential equations [90]

i = vm
— — I oy e
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4.1 Method of Solution
One method for solving Laplace’s equation, is by separation of variables.

Many problems are separable and many coordinate systems are available. Many problems
not separable require numerical solutions, but can easily be solved using PDE software. The

solution is uniquely determined if either:
a) Dirichlet boundary condition - the function is specified on all boundaties, or if

b) Neuman boundary condition - the normal derivative of the function is specified on all

boundaties, or both,

¢) A mixed combination such that all boundaries are speciﬁed[ @

To demonstrate this method, a simple separation in two and three variables is derived from

equations [Equation 4-1| to Equation 4-13} For illustrative purposes, consider a two-

dimensional harmonic problem, in this example the constants are applicable to a
temperature distribution or an electrostatic voltage distribution on a rectangular plate. The
topic of the simplest classical mechanical problem, a beam in tension, is btharmonic and
contains twice as many terms and boundary conditions. A biharmonic problem in it’s
simplest form is the subject of Topics in the Spectral Theory of Fourth Order Elliptic Differential
Operators a dissertation produced in 1996 . To solve the harmonic problem analytically,

the solution is assumed to be in the form of a product.

Two-dimensional Three-dimensional
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D(x,y) = X(X)Y(y) D(x,y,2) = X(X)Y(y)Z(2)

Equation 4-1 Separable potential function in Two-dimensional

® is the potential function and it depends only on X (a function of x only) and Y (a
function of y only) in the two-dimensional case. Applying Laplace’s equation,

yields the relationship between partial derivatives and these are the PDE’s in

12
Two-dimensional Three-dimensional
02d(x, y) = 0°d(x,y,2) =
2 2 2 2 2
GX(X)Y(y)+6 X(X)Y(y):() 6¢+6 (D+6CD:0
ox’ ay’ ox> ody’ 0z’

Equation 4-2 Partial differential equations

Evaluating and dividing by X(x)Y (y):

Two-dimensional Three-dimensional
1 d’X 1d%Y
I + — = 0 2 2 2
X dx> Y dy? id>2<+ld\2(+ld\2(20
or X dx* Ydy- Ydy
i d?X N l dzy —k
X dx* Y dy?

Equation 4-3 Ordinary differential equations
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Two-dimensional Three-dimensional

dzz 2 2 2 2
=Y’Z  a’+B’+y’ =0
2 2 2
‘Zz(:ﬁx and ‘;j=—)\zv dZZX
X y 2
or =a°X
2 2 d 2
dX - ex and dY _xy z(
dx’ dy’ dwy _ 2y
av: P

Equation 4-4 Separation of variables

Where a,[3,Y,and A are constants.

Hquation 4-3|separates into [Equation 4-4] and the boundary conditions determine which

equation of applies. The solutions of these ordinary differential equations are

simple. Note that the derivatives are no longer partial because each derivative is dependent

on one variable only. The solutions are:

Two-dimensional Three-dimensional

X(X) = AsinhAx + Bcosh Ax 5

_ fork=A" 20 ax
Y(y) =CsinAy + D cosAy X(x)=ae” +a,e
or Y(y) = bleBy + bze—By
X(X) = asin AX + [3COSAX
Y(y) = ysinhAy + dcosh Ay

—QaX
Z(z)=ce” +c,e’”

}fork =N <0

Equation 4-5 Solutions to two-dimensional separable PDE
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Where A,B,C,D,k,a,,a,,b,,b,,c,,c, are constants. The two-dimensional equation in

F.quation 4-5|is related to exponentials in through identities and Eulet’s

formula. The three-dimensional equation is left in exponential form:

X(x) =c,e™ +c,e™

A=c,+c,andB=c, —cC, .
fork=A"=0
Y(y)=ce" +c,e™

C=c,-candD=c, +¢,
or
— AX —AX
X(x)=c,e™” +c,e

a=c,+c,andB=c, —C, .
o oy fork =A" <0
Y(y)_c1e +C,e

Y=¢C,—-candd=c¢, +cC,

Equation 4-6 Equivalent exponential solutions to two-dimensional

These solutions form orthogonal sets with trigonometric equations and hyperbolic
equations. The difficult part is assigning boundary conditions and solving for the constants.
Where there are free surfaces, the potential is zero. This is a Neuman condition, and every
surface must have defined boundary conditions (Dirichlet, Neuman, or mixed boundary

conditions).

For the two-dimensional problem of a plate, when there is symmetry about the x-axis then
the second solution set can be used, the left and right surfaces have zero
potential, and voltage (or temperature) is applied to the top and bottom ends. If the beam
were oriented horizontally with symmetry about the y-axis, then the first set of solutions

applies. Solutions that display time dependent or periodic solutions should use the set that
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includes sine as a function of the dependent variable. The constants in the potential

function, A,B,C,D, and A, must be derived using the boundary conditions, but only four

are independent.

Two-dimensional

(X y) = X(X)Y(y)
d(x,y) = [Asin)\x+ Bcos}\x][Csinh Ay + Dcosh}\ﬂ

Three-dimensional

O(x,Y,2) = X()Y(Y)Z(2)
o(xy,2) = 3 [a (@)™ +a,(a)e ™[, @B)e” +b, @)™ ¢, (v)e” +c, (y)e™]

Equation 4-7 Potential function

The dimensions of the plate are 0<y<b and 0<x<a. Applying the boundary condition that

the left and right surfaces are at zero potential requires:

@®(0,y) =0 then B=0;
®(a,y)=0 thensinAx=0
mTt

A, =— form=1,2,3...
a

Equation 4-8 Applying boundary conditions to two-dimensional equations yield B and A

The resulting potential has this form:
(XY= {sin@x}{cm sinhﬂTy +D, coshm—ny}
a a a
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Equation 4-9 Potential function

In order to satisfy the remaining boundary conditions, all of the solutions to
must be superimposed to form an infinite series. Applying the end condition, where V is

the potential or stress at the fixed ends, yields:

®_(XY) =i[sn—x}{c smh—y+D cosh—y}

m=

@, (x,0)=V, = Z[Dmsinm%x}

m=1

Equation 4-10 Series solution to boundary conditions
Both sides of this equation, [Equation 4-10] are multiplied by a sine function with a different

index then integrated to take advantage of orthogonality and solved for D. This
mathematical trick is applied again for the top boundary condition yielding a formula for C.
V, and V, can be removed from the integration when they are not functions of x or y,

respectively.

= 2o fi- (-]

o, (x,b)=V, = Z[smmfx}[c S|nh—b+D cosh—b}

m=1

Cm = D—r”;]n|:£—coshmb:|
sinh—"b a
a

Equation 4-11 Solving for D and C
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The final analytical solution is which can be easily programmed or solved

numerically.
D(x,y) =
sinhm—ny
Z%[l—(—l)m][sinm—nx} Ve _cosp M| a ~ +cosh Dy
m=1 T a Vb a thﬂ'[b a
a

Equation 4-12 Final form of potential function

Equations |[Equation 4-1| to [Equation 4-12] are taken directly from electrostatics field

derivations from lecture notes for an undergraduate physics electromagnetics laboratory
and reference [[148]. Additional sources for this derivation can be found in [@
and [105]. This potential distribution is displayed in the Matlab model below,

1)

F.quation 4-12]was solved for the potential field using the following substitutions: the x and

y axis are arbitrary units of length; the dimensions set to one by one (a=b=1 unit); V; and
V, are set to 100; and the left and right sides ate at zero potential. The scale is in potential
units, which are volts for electrostatic problems, temperature for heat diffusion problems,
and stress for mechanical problems. However, the particular boundary conditions of this
example do not correspond to a physically possible load condition. The potential scale may

be interpreted also as a percentage because of the choice of values.
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Potential Field Potential
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Figure 4-2. Electrostatic potential derived using potential fields and plotted in Matlab PDE
toolbox

If the derived potential was for the biharmonic mechanical stress, then to solve for stresses,
is used, and the derivatives of the potential function yield the stresses.
Because the Laplacian of the voltage is equal to zero and the Laplacian of mechanical
stresses is also zero, there is a direct relationship between the first invariant (I;) and voltage.

They are proportional and for this reason, voltage is used to produce isopachic lines that

can be related to average stress or to the invariant (1)) [See also Jt.3.1[Photoelastic Theory|

and [.0]Analogous Systems].

Westergaard Complex Stress Functions|in Section make use of the orthogonality of

complex equations to obtain separable solutions to Laplace’s equation, [Equation 3-28 .
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These equations are applied to the area near and around cracks and have been formulated

for the particular modes of failure, but not for entire structures like Airy stress functions

[See Section B.4.4|Airy Stress Functions]. Martell [ contains derivations and equations

with comparisons for reference, and graphically represents the agreement

between experiment and simulation based on Westergaard-based solutions.

The complexity of [Equation 4-12|explains why these equations are not generally used for

bulk mechanical calculations, but many computer programs including Matlab’s PDE

toolbox, Mathematica, and PDE solvers like flexPDE, offer numerical solutions to

potential field equations overlaid on a familiar finite element grid [See Section

fin Computation and Material Science|. Because potential fields are so prevalent in nature,

many of these programs are cross-discipline and offer solutions to many specialized

problems [See Section [[.0][Analogous Systems].

4.2 Spherical Harmonics and Legendre Polynomials

The study of spherical harmonics began in 1782 in a paper by Legendre on zonal harmonics
(1785 See bibliography in , which inspired Laplace’s paper dealing with general spherical
harmonics and the theory of the potential . Spherical harmonics are the series
solutions for potential field problems with spherical symmetry and are covered in
undergraduate physics, electrostatics [ Spherical harmonics were applied to the theory

of gases by Maxwell in 1879, which was highly regarded by Boltzman whose pioneering

work in led to statistical mechanics [ . Spherical harmonics are
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expanded in Legendre polynomials, also known as zonal harmonics, and are the solutions

to the Legendre wave equation [ .

Legendre polynomials are the expansion to the series solution of separable equations in

spherical coordinates. The general equation is:

@(r,0) = i(A'r' + B,r‘('”))P, (cos8)

Equation 4-13 General solution to axially symmetric separable equations in spherical

coordinates
Where B (cos0)is the Legendre polynomial and the first 3 terms are listed below with the

recursive formula for generating the polynomials.

Recursive formula
P, (cosB) =1
(1 +1)P,, (cosB) = (2I +1)(cosB)P (cosB) - IP_, (cos8)

P, (cos8) = cos6 . .

A and B are constants. The variables are r, radius, and 6,
P, (cosB) =1/2(3cos6-1) o _
angle, and the indices are | and i.

Equation 4-14 Recursive formula and first three Legendre polynomials [[35]

Using Legendre polynomials or spherical harmonics as an interpolative tool yield interesting
results that can have increased accuracy depending on the terms retained. Legendre
polynomials are employed for post-processing finite element results. According to [[41],
using Legendre polynomials produces better point-wise stress extraction by the
complementary energy principle (SEC) when the exact FEM solution is not smooth. Bessel

functions are well known to engineering even if their source is unfamiliar. Solutions to
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differential equations in cylindrical coordinates can be expressed in terms of Bessel

Foncrions 2] 5] 5] O

Spherical harmonics are also used to solve Bchrodinger’s wave equation|[See Section [7.2
p g q

Quantum Analogy| to obtain the shells of atomic theory and the field density describing

where electrons are likely to be found [[104] . Atomic simulations of atoms, crystals, and

grains are constructed using potential theory [EI El @ @ . This means

that quantum mechanics is also an application of potential field theory [See Section

Quantum Analogyl].

4.3 Photoelastic Fields

An experimental realization of potential fields is produced using photoelastic materials.
Stress analysis using photoelasticity is a well-developed experimental method for
determining the state of stress at a point based on fringe numbers utilizing isochromatic
and isoclinic information. Many advances in technique, apparatus, and numerical methods
are responsible for continued interest in photoelastic testing [ . However,
potential theory can dramatically improve upon the accuracy obtained by photoelastic

methods. Comparison with photoelastic results demonstrates a qualitative experimental

verification of potential theory models [See Figure 4-3 jand Figure 4-4]|

demonstrates the characteristic photoelastic pattern generated at a crack tip. The
similarities to the dipole illustrated in (right) are unmistakable. PDE Software

used to generate the dipole pattern can also be used to generate the stress pattern allowing
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for better numerical extraction at specified points. The numerical values can be compared
to photoelastic results for correlation with experimental data. Note the simulation in
which shows an excellent qualitative correlation to the actual photoelastic experiments
of crack tips. The potential functions used in this particular simulation are similar to

Westergaard stress functions [

PACEY M.N., PATTERSON E.A_, JTAMES M.N.

Phuegraphs showing examples of (leit) s Fringe pattern near & noch ap and (rght)
the fringe pattern nesr a crack tp, beth osder mods 1 londing

Figure 4-3. Photoelastic response at a crack tip
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Photoelastic determination of stress intensity
factors by using the 3-parameter method
Electrostatic Dipole

Figure 4-4. Photoelastic experiment and VIP simulation of crack tip compared with dipole
(right) generated with Equipotential 3.1 software [{4]

4.3.1 Photoelastic Theory

(291 BO] 71 4] B9) b41 1] 21 [00] [26] [36]

The experimental stress analysis method of photoelasticity allows one to visualize the
complex interplay of stress fields on bil’efl’ingentﬂmaterials using polarized light. Modeling
of complex parts and structures is possible using these materials . The results are
applicable to common engineering materials under specific circumstances and conditions,
even though the test material and the building material may have different material property

constants @ By matching Poisson’s ratio, the photoelastic material can be expected to

8 Birefringent materials allow light to pass through the material at different speeds depending on the orientation of the
sample.
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respond like the building material [ This is also the result obtained from the stress

equations of compatibility,

The equations used to extract stresses from photoelastic data are @
30]:

or Where = ;(n1 -n,)

Equation 4-15 Photoelastic stress extraction equations

The difference in principal stresses (or 2 times the maximum in-plane shear stress) is
determined from the number of fringes (N), divided by the thickness () of the model, and
multiplied by a constant factor (f_) determined by calibrating the model material. The

color of the fringe comes into the equation in the definition of N; A is the wavelength of

light and the indices of refraction (N) are associated with the principle stress directions.

However, these equations only describe how the light is affected by stress in a birefringent
material. They are not the equations of interest for modeling or mathematically describing

the pattern. Potential field theory is needed for the mathematical model.

The visual similarities to electromagnetic fields should be apparent, and occur because

electrostatics must also satisfy Laplace’s equation, [Equation 3-28]([[135]. This similarity is

useful for another two-dimensional experimental technique in which conductive, Teledeltos
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paper is cut to the same geometry as that of the test specimen . A voltage is applied to
the edges at an electrical potential to simulate the mechanical stress potential, and a
complete circuit is made to the ground, corresponding to the end conditions of a
mechanical system [ By probing anywhere within the model, a voltage is obtained that is
proportional to the average stress at that point [B7]. Lines of constant voltage are isopachic
lines, where the sum of the two principle stresses is constant . These are the

equipotential lines of electrostatics [|35]}

Photoelasticity has experienced a resurgence of interest due to a reduction in the cost of
equipment and better computer imaging software . The results are more
realistic than finite element software solutions with less cost in terms of computer time and
man-hours spent programming, especially for complicated geometries, but there is a limit to
the accuracy that can be expected from this method, even using sophisticated computer
image capture, processing, and advanced photoelastic testing equipment. One of the
difficulties in interpreting photoelastic results lies in knowing which fringes, located in
different parts of the model, are of equivalent stresses . New combined methods
using thermoelastic and photoelastic data still have errors ranging from 10% to more than

30% and without good resolution [|39].

4.3.2 Comparison

The process of performing a photoelastic experiment and interpreting the results has been

described as part art and part science . The incredible work by Thamm, and

where the lines of stress and force were hand drawn over photoelastic results is
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an example. The goals of photoelasticity can be modeled more accurately using PDE
software. The ability to model a part, visualize the flow, and then easily make adjustments
like cutting holes or adding components to the model, is indispensable as a design tool and
very instructive to the student learning about the “flow of stress” . Photoelastic
models cannot be easily modified, and the material ages badly, creating stress

concentrations at points where excess humidity is absorbed into the model [@
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Figure 4-5. Thamm’s hand drawn stress fields for component design, beam in bending
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Figure 4-6. Thamm’s hand drawn stress fields for engine component design
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Potential Theory Photoelastic Theory

Isostatics = Isochromatics
O O
Lines of Force =  Isoclinics

Figure 4-7. Diagram of the comparison between potential theory and photoelastic theory

In potential theory, isostatics are lines of constant stress and so ate
isochromatics. Isostatics are perpendicular to the flow of the force lines as isoclinics are

perpendicular to the isochromatics. The lines of force are indistinguishable from isoclinics.

Because potential theory models create fields virtually identical to the delicate photoelastic
patterns, many of the same arguments for using photoelastic techniques are applicable to

potential theory models without the complications of experimental measurements.

Many of the reasons for not developing potential theory into an aid for mechanical

stress/strain analysis have been eliminated in recent yeats.

Old Problems

* Difficult Math-Elliptic integrals
¢ No closed form solutions
¢ Infinite series

* Inseparable variables
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* Difficulty generalizing results

New Solutions

e Handbooks

* Advances in potential theory in related sciences:

Geology , Electromagnetics, Quantum
physics, Vibrations and Acoustics, Gravity [,
and Math

¢ Numerical Methods-

Computers, Parallel processing, Finite elements,
Chaos and nonlinear solutions

Note that potential theory has a long history of being used an aid for fluids,

electromagnetics, quantum mechanics, geology, and other sciences. [See Section

[Analogous Systems fand Section B.0|Advances in Computation and Material Science]
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5.0 Model of Beam Using PDE

The following models were created using Matlab’s PDE toolbox; this allows Matlab’s
powerful numerical solvers to calculate the series solutions. An arbitrary aspect ratio of four
and arbitrary loading is used to produce clear field patterns. The beam being modeled is
under simple tension that produces a constant stress field according to classical theory;

therefore any deviation from a constant field will be cleatly visible.

The classical model is the typical free-body diagram of a beam in tension; both ends are free
and the load produces a constant stress (force by area) throughout the model. There is

deflection due to the force equal to the strain (Young’s modulus by stress) distributed over

the length of the beam and there is contraction through the width, The

assigned constants and calculated values are noted below.

E=1000 v=0.3 Beam0.5x2.0

(o)

_P_ _O% _
GW—X—IOO ey—?—o.l
0]
g, =0 g, =-v—==-0.003
E
T, =0 6=&, 5,=02, &,=-0.0015
AE

Equation 5-1 Classical mechanical equations for a beam in tension with assigned constants
and calculated values

Modeling a free-body diagram is difficult because it is capable of rigid body translation and

rotation. To simulate the beam in tension, two Matlab models are described with different
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end conditions or boundary conditions and the subtle differences are exposed. A third
model with similar deflection but different boundary conditions and entirely different
potential field is modeled to demonstrate the difficulties in assigning boundary conditions

and their effects. The unstressed model is also shown for comparison.

The Structural-Mechanics/Plane Stress application is chosen for this model from the
choices of: Generic Scalar, Generic System, Structural Mechanics/Plane Stress, Structural
Mechanics/Plane Strain, Electrostatics, Magnetostatics, AC Power Electromagnetics,
Conductive Media DC, Heat Transfer, or Diffusion. All of these problems are solved using

PDE’s with application specific variables and graphs. The equation solved by Matlab is:
The boundary conditions for the Matlab models and equations are:

Dirichlet-

h*u=r

hil hi2 ful _rl
h21 h22{u2 r2

Weight-h
Potential-u
Displacement-r

Fixed end condition:
1 Ojul 0
0 1ju2 0

Neuman-

n*c* grad(u)+gq*u=g

n* c* [ ul N gqll ql2 ulzgl
u2 g21 g22|u2 g2

Normal - N
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Potential - U
Surface tractions- ¢

Free surface boundary condition:

g=9=0
Traction across surface:
gl=0, =0
g2=0, =100
2G+u 0 0 !
c= 0 G G 0
0 G G 0
V! 0 0 2G+p

In the following models, the first beam is classically solved, the second is without applied
stress, the third follows Dirichlet conditions where the displacement is prescribed on the
bottom, and the fourth follows Neuman conditions with stress prescribed on the bottom.
All four models are shown in each graph. The deformed models are not to scale, but are
exaggerated. Matlab uses a finite element framework with triangular elements for the
numerical solution of the PDE. These equations are different from typical finite element
packages like Ansys or Abaqus, though they can be modified to perform the necessary

operations.
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6.0 Results of Comparison

These results demonstrate the character and structure of potential field solutions even in
the simplest classical model of a beam in tension. This method justifies simplifying
assumptions by the good agreement to the classical model. It shows interesting results of
Saint-Venant’s principle, which are the reasons for not focusing too closely on where the

loads are applied.

In the absolute displacement is calculated and the graph shows that at the fixed
ends, the isostatic surfaces curve away from the ends. The fixed ends maintain their original

width and taper to approximately the same width as the classical model.

Absolute Displacement in Beam in Tension Displacement

Doae abups) Dempdecesers hisd
el T T T T T | T ¥ T

Figure 6-1. Absolute displacement of a beam in tension
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The X-displacement of shows clearly how the fixed ends affect the flow. Note
that the x-displacement is 100 times smaller than the displacement in the direction of the

force and has a very small contribution to the total field. Symmetry is apparent about the

vertical centetline of the beam.

X-Displacement in Beam in Tension Displacement s
Tole a Desplscararid v}

S H e Iu1-l-l-ll B o T |rl|.|.l.|.|.|.|.|1|.lldl|.| - e @A R

Figure 6-2. X-displacement of a beam in tension
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shows the Von Mises stress of the beam, which is simply constant for the
classical model. The color-coding allows for greater resolution of the isostatic surfaces and
is reminiscent of photoelastic models. The color could be coded to photoelastic data

producing purely computational, photoelastic-like fringes to compare to real models.

Von Mises Stress in Beam in Tension Stress
Coltrwan e ingbcsmart f
il ! ! J T I T | T 1 T
" A : 87000 | #50ee |1
-2 Se— :I ....... =5 = .
P . . it A R
i i| 100 g
i 1. S——-1 —— : NE—— .-_
*i |- : a | P 4 A - -i i- i .
Chsical  Unstressent vedenis  FivedFne i
" Mol Stale | Model | SN D N
il el [uabhdits - Skt R S 1 1 1 L. e
] 1 ] n 1] 1 16 | a8 1 15 i

Figure 6-3. Von Mises Stress of a beam in tension
Most of the model, is in a state of constant stress of 100% of the applied stress.

It is interesting to note that the stress actually drops at the fixed ends, and a stress
concentration is located at the surface labeled 103 extending almost a third of the model for

fixed ends and one quarter into the fixed-free model.
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The first principal stress in the classical model is zero (stress in the x-direction). The
maximum attained in the PDE models is 25% applied stress and occurs at the fixed ends,
The fixed ends prevent the beam from relaxing in the x-direction causing stress,
whereas the center of the beam experiences only strain.

Principal Stress 1 in Beam in Tension Stress

Caler B Daplecemar [us
1

Figure 6-4. First principal stress of a beam in tension
The second principal stress in the classical model is stress in the y-direction. The

shows the expected stress concentration at the corners of the fixed ends. In this figure there
is also a small reduction of stress at the center of the fixed ends and a small stress

concentration less than one quarter from the fixed ends on both models.
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The fixed-fixed model has a significantly higher corner concentration and the fixed-free
model shows lower stresses at top center and more pronounced lower stresses along the
sides near the quarter mark. Again, the color scheme was chosen to simulate photoelasticity

and highlight the isostatic surfaces.

Principal Stress 2 in Beam in Tension Stress

ol 5l (lapiscemar g«
! ! ! T | ! T !
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Figure 6-5. Second principal stress of a beam in tension

The final figure, is not from the same series of models presented. A variation in
boundary conditions produced a deformed shape similar to the previous models, but a field
of a different pattern. The top end is fixed with Dirichlet condition, and the bottom is a
free surface (Neuman), but the sides have an applied traction downwards in the negative y-

direction (Neuman). The previous models have left the side surfaces free.
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This is not a typical boundary condition but compare with to see how the field is
warped. From the deformed state, this appears as a beam in tension, but the field displays a
different shape. This potential field form may be the result of extruding a material or
viewing the stress through the thickness of a material clamped in the x-direction and
stretched in the negative y-direction. This result also demonstrates the importance of
choosing possible and correct boundary conditions for the model, and of the value of

performing photoelastic experiments for correlation.

X-Displacement in Beam in Tension Displacement
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Figure 6-6. X-displacement of alternative boundary conditions for a beam in tension
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7.0 Analogous Systems

Potential Force Fields in analogous systems are defined as:

In electrical problems, ¢ represents electric potential or voltage; in magnetic problems, ¢
is the magnetic scalar potential (ampere-turns); in thermal problems, ¢ is the temperature
(Celsius); in gravitation, @ is the gravitational potential (J/Kg); in vibration applications, ¢

is the displacement (m); in hydrodynamics and acoustics, ¢ is the velocity potential (m®/s)

o],

7.1 Fluid and Wave Analogy

Granular jet experiments produced jets from glass beads (sand) impacted by a lead
sphere, similar to jets of water known as Worthington jets, This is significant to
engineering and geology, demonstrating the similarities in response between granular
medium and fluids . If attention is confined to plane longitudinal waves moving
normal to the faces of a slab, normal shearing forces arise. Then there is quite a good

analogy between elastic solids and fluids [[[17]
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Figure 7-1. Worthington jets produced by spherical beads of sand [[L29]

The interaction between grains is very important to microscale mechanics and the strength

of materials. from Section B.1.1|[rystal Structure| demonstrates the complex

interactions between grains and dislocations, and the experimental results illustrated in

Figure 2-18|and Figure 2-19| show that theory is still not consistent with experimental

models. Plasticity is one of the most complicated problems for engineers. During plastic

deformation, materials that are solids behave like liquids, especially at high strain rates or

impaces (53] 7] 31 B3 ) 91 501

7.2 Quantum Analogy

In 1925, Schrédinger described the wave-like nature of particles by equations similar to the

differential equations that desctibe acoustic, elastic, and electromagnetic waves [[04] [[35].
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There are no exact analytical solutions for most forms of the Schrédinger’s wave equation

only numerical approximations, and spherical harmonics are utilized to obtain seties

solutions [[104. . Difficulties in solving the equation are similar to the three-body

problem of gravitation [See Section B.5.2][ules Henri Poincaré|, which is also solvable only

numerically [ .

Together with the Pauli principle and spin, Schrodinger’s equation accounts for the
differences in hardness between pure metals and pure semiconductors, and it plays an

important role in determining the shear stiffness of solids [

Electrons follow field equations similar to acoustical vibrations and electromagnetic waves.

The equations are given below in [:

. 0°u _ 1(0%u
acoustics ~ — = —
x> v.lot’
2 2
el ectromagnetism ~ 9 123:%[6 ]25]
ox- c | ot

guantum field ~

Equation 7-1. Analogous equations of potential fields [E]

In the acoustic equation, the velocity is the speed of sound (of the transmission material);

for the electric field (E) and the magnetic field (B), the speed is light-speed, C; and for the
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E
quantum field, the speed is defined as — or energy over momentum. The field variable is

the probability amplitude (¥) for the quantum case, and W is the probability density .
This is analogous to the field variables U, E, and B, which signify respectively the
displacement amplitude, the electric field amplitude, and the magnetic field amplitude .

(Also, to find the intensity of the EM fields, the square of the field variable is calculated.)

7.3 Electromagnetic Analogy

[P1 B3] B8] (9] 135

The electromagnetic analogy is very fitting, because James Clerk Maxwell both derived
electromagnetic equations and introduced experimental photoelasticity [ .
Electrostatics must also satisfy Laplace’s equation when charge densities are zero [[l35].
When there is a total charge density, then Poisson’s equation must be satisfied, which sets

the Laplacian equal to a constant [[L35]|

Most PDE solvers are equipped to handle electrostatic problems because they are more
commonly approached using potential functions. However, any problems with potential
fields use the same algorithms to find numerical values and represent fields, including:
gravitation, atomic interactions, fluid flow, thermal, electromagnetic, as well as mechanical
stress and strain @ . PDE software is usually designed to handle
any of these fields, because it is only a matter of changing the labels of coefficients; the

programming remains unchanged for any field solution.
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8.0 Advances in Computation and Material Science

“...you know the right equations but they're just not helpful. You add up all the microscopic pieces and
you...cannot extend them to the long term. They’re not what’s important in the problem. It completely
changes what it means to Know Something.” ~Feigenbaum [

Analytical solutions to the field equations for many general classical mechanics problems
have long been unattainable. The approximations to the solution of the field equations,
made by Airy [Section , Westergaard [Section [3.4.5], and others, are simplifications
obtained by relaxing certain boundary conditions. Advances have been made in
mathematically formulating and solving PDE’s, in the capacity of computers to numerically
solve PDE’s, and in sister sciences that use potential fields similar mathematically but of
physically different natures. These advances can be applied to mechanical problems with
the result of more realistic behavior in models, and closer correlation to experimental

results. Computer programs for solving PDE problems are becoming more prominent and

widely used.

8.1 Applied Math and Modeling

123} B1] 2] 0] i3} fr41 5] fre] o] B3 FO] 8] [21] f24]

CMSN, the Computational Materials Science Network, defined one of the greatest
challenges in realistic simulation of the mechanical behavior of polycrystalline materials as:
the unification of models from different length and time scales . Many of the sources
and funding agencies recognize that this must be a cross-discipline effort. Multiscale
Simulation of Complex Materials, or MUSIC, is a multidisciplinary project being explored

by the Advanced Materials Division of ENEA in Rome, Italy (in a white paper by F. Cleri,
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May 1999). Molecular dynamics simulation is using interatomic potentials to model shock-
induced plasticity, phase transformations, and dislocation mobility. This work is being
carried out at LANL, Brown University, Cal Tech, MIT, LLNL, and in St. Petersburg,
Russia. Molecular dynamics (MD) computer simulation combines time-scales to determine
viscosity of liquids (similar to shear modulus in solids) with respect to time from ensemble
averages of the stress fluctuations, and is described as similar to recent calculations of elastic
constants of solids from strain fluctuations with spatial dependence rather than time

dependence observed in liquids [@
Mathematical improvements include:

- New advances to the solutions of elliptic problems, significant to potential

theory ;
- Generating cellular patterns [[L01] ;

- FE improvement using potential theory for elliptic PDE solver;
- Fast field solvers for the Poisson equation (Laplacian equal to a constant);

- Successive node reduction used by Hs-Thermanal (Microsystems on IC chips)
and 2D-Sunred ; and

- Finite element method of stress extraction using complementary energy

principle [[141]-
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8.1.1 Crystal Structure

(2] b2] {01 731

Improvements in modeling microstructure include: three-dimensional density functions (or
Morse functions) are used to describe the positions and crystal topology of characteristic
elements neglecting quantum effects and Ortep-3 used for the stereoscopic modeling
of crystals; see figures in . Quantum mechanical effects, like resonant tunneling,
superposition, and cellular automata based on quantum dots, are being developed to create
quantum computation . The model utilizes parallel computing and is
related to topology . Modeling of grains at the microscale is the hardest and most

significant advance towards bridging the scales [[[12].

New molecular software, Stability Constants (SC-) Database contains the definitive
collection of metal-complex stability constants from all significant publications in journals
from 1898 to 2000. Presently the database contains 85,000 records from 19,000 references

of 8,000 ligands.

is the most cross-referenced figure in this thesis. It visually represents many of
the issues in modeling microscale behavior. is from the paper Atomic-scale
Simulations of the Mechanical Deformation of Nanocrystalline Metals, and contains the response of
16 grains and 100, 000 atoms. Note the discontinuities in strain at the grain boundaries, this

is why conservative field based theories do not apply at this scale.
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Figure 8-1. Figures from microscale grain simulation. Note: bottom right graph of the rate

dependence
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8.1.2 Modeling Fracture

201 1] b2] 3] [r10] 18] f21]

Dynamic cracking analysis, uses ABAQUS and DYNA3D, to model dynamic crack
formation and propagation was simulated with starter cracks embedded in the model and
more realistic based models utilizing interfacial cohesion forces combined with typical
continuum finite elements . This is important for highly explosive materials [@,
spalling, and high deformation manufacturing techniques. Griffith crack and
stress functions contributed to the success of these models. VIP, a computer program using
five mechanical parameters (experimentally defined), produced excellent similarities to
photoelastic results of fringes around crack tips, . Studies of fracture
suggested a new material parameter, incubation time as the minimal interval needed to

initiate fracture in high-rate loading conditions, and the only parameter for dynamic

strength [

8.1.3 First Principles Calculations and Statistical Mechanics

18] 2]

Caltech Center for Simulation of Dynamic Response of Materials is using first principles
computation to model materials from the quantum level using successively larger scales of
time and length to produce parameters useful for continuum calculations [ﬂ Density
functional theory (DFT) is producing excellent correlation to ground state properties, while
Quasiparticle theory (QT) is used to adjust the DFT model to account for excited states.

As of 1999, molecular dynamic simulations were preformed modeling 1 million particles, at
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distances of 25 nm, for time scales of 10 ns, and using up to 500 processors [ 16 grains
and 100,000 atoms are modeled in demonstrating stress concentrations at grain
boundaries [. First principles computation for prediction of material properties is also
being conducted at MIT according to the 2002 Material Research newsletter. Molecular
dynamics (MD) computer simulation combines time-scales to determine viscosity of liquids
from ensemble averages (with respect to time) of the stress fluctuations [@ and is
described as similar to recent calculations of elastic constants of solids from strain
fluctuations with spatial dependence rather than time dependence observed in liquids.
Evolutionary schemes have also been developed for finding new materials with specialized
properties [@ . Mathematical models of hysteresis and its application to problems of
finding minimum energy configuration were discussed at the Understanding Complex

Systems Symposium in Chicago in June of 2001 [

Statistical mechanics has problems being applied to isolated nanostructures [ ,
because these structures have a significant statistical variation in properties that are not well

understood and fluctuate with time [| 12].

Northwestern University has been studying and modeling high strength steel using
quantum theory and supercomputing at the Pittsburgh Supercomputing Center. Greg
Olson and Art Freeman began their collaborative efforts in 1985, and in 1991, their work

was responsible for the design of a new kind of steel for bearings used in the space shuttle.
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Computational Mechanics using mesh-less boundary node method (BNM) are being used
for three-dimensional potential theory, linear elasticity, and fracture mechanics, as well as
adaptive meshing. The random walk method is also being explored in an attempt to find

solutions to solid and structural mechanics problems.

An efficient method for solving parabolic partial differential equations for quantum
mechanical solutions is implemented in Mathematica for solving numerical simulation
experiments: a double slit experiment; tunneling (barrier penetration); scattering of a particle
from a cylindrical potential barrier; and interaction of two wave-packets. This is an
application of solving the two-dimensional time-dependent Schrédinger’s equation [See

Mathematica website].

Using density functional theory from a chemistry viewpoint, [Figure 8-2|is a simulation of

the elements in lock and key formation showing the chemistry of how elements fit together
to form compounds [See text in figure captions|. This type of software also models
complicated compounds like proteins and amino acids, and can be used to determine if
reactions will occur [@ This is very important for bioengineering applications where

reactivity is a vital concern.
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8.2 Material Advances in Nanotechnology

[ B L1 9 2ol B3] 1] o B3] o] [12] 18]

The goals of nanotechnology include understanding size-dependence of properties,
fluctuations in properties, properties of nanostructures, and assembly at the nanoscale.
Nanoscience is expected to solve many long-standing questions in many scientific fields
including physics, material science, and mechanical engineering . Areas of active
research and development in nanotechnology include: understanding of properties of
nanostructures and components; precision, high out-put, inexpensive nano-manufacturing;
and designer nano-materials and nanostructures using computer aided tools [[[12]. Both
kinetic theory and thermodynamics is being studied to understand relative stability of
different structural phases and to map phase transformations in nanostructures [[[12].

Funding agencies are interested in cross-discipline research and collaboration.

Micro and nano-technology are an open frontier including: thin films, micro-testing devices,
nano and micro-components, manufacturing methods, and biological applications. Some
samples of the wealth of investigative possibilities are the quantum corral, carbon
nanotubes gears, and the quartz crystal microbalance. The Quantum corral is constructed of
iron atoms arranged with the tip of a tunneling microscope on a copper surface,
The goal of this component is to trap electrons and force them into particular quantum
states (superposition), a component for quantum computing. The carbon nanotubes,

with benzene teeth is a gear for futuristic NEMS, nanoelectromechanical systems [ 12]
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Figure 8-3. Quantum corral nanotech component [[12]

Carbon nanoiibe-based gears wilh Beneyne teclh (Han e al. 1997 reproduced by permission).

Figure 8-4. Carbon nanotube with benzene teeth gear, nanotech component @
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Combining components into machines and analyzing their mechanical systems and stress
distributions is particularly suited for mechanical engineers, but the properties of these

components must be understood before design can be contemplated.

Quartz crystal microbalance (QCM) is being used at Cambridge to detect the acoustic noise
of bonds breaking and has applications to biosensors . QCM is being used to investigate

bonds and their relative strengths, and is one of the problems mentioned in Section

[Examples of Specific Nanotech Problems)

Materials references include: [EI El EE] IZ]
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9.0 In Conclusion

The ability to design at the nano-level, to choose and create new materials or applications
and to model from atomic (first principles) up to the bulk level is beyond present
engineering ability. It requires a cross discipline investigation and synthesis of methods and
ideas from different fields. The mathematical foundation of this work comes under
potential field theory and covers most of the goals of engineering at the nano-scale. Recent

computer advances make this approach realistic and numerically solvable.

Potential field theory has been used by physicists to solve static electromagnetic field
problems since Maxwell derived the equations and is the recognized exact solution to
mechanical stress and strain fields. In the past, considerable work has been done to
analytically solve these very complicated partial differential equations, but recent computer
advances were necessary to obtain numerical solutions. The nature of the field depends on
scale, but not the solution. Failure criteria are dependent on strength and although the idea
of a material performing at a percentage of its maximum, or theoretical strength, is not
important for bulk calculations, it has become important to nano-scale calculations and
especially in modeling material response. The constants and variables of strength are not
scale invariant; these material properties depend on scale and cannot be neglected at scales

smaller than 1 mm.

Because Potential theory is so flexible and is used to model atomic interactions, grain
interactions, defects, and cracks, making the natural extension to bulk mechanics using

PDE solvers sets the stage for combining the levels into a truly multiscale application.
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To circumvent the need for costly, explorative experiments at the nano-scale, theoretical
strength models can be used for assigning values to the measures of strength and the

crystallographic constants, and experimentation can be used to verify the computer models.

The upper bound of material strength is close to the strength achieved by nano-
components, as observed from the few experiments that have already been conducted [See
. This gives engineers the opportunity to design nano-mechanical
systems making use of the new nano-components. Because of the additional problems of
plasticity, dislocations and grains, the micro-scale is still just a modeling tool that needs

more work before it can be used as a design tool.

This investigation has also highlighted how important cross-discipline work is to the
development and solution of multiscale problems. Each of the variables that contribute to
strength must be included in a comprehensive model, not only to demonstrate their effect,
but also to observe the limiting conditions (where the variables can safely be eliminated).
Some excellent modeling programs have been developed exclusively for the atomic and
molecular scale for chemists and physicists. These can serve as the first level to modeling
independent of scale and an aid to engineers working and designing with nano-

COl’l’lpOflCI’ltS .

9.1 Limitations

Potential fields are observed and modeled at every scale. The math is scale invariant, but the

material properties vary with spatial and temporal scales. To design at scales other than the
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bulk level requires cross-collaboration to obtain good material models and accurate
descriptions of the various fields involved in a particular problem. Setting boundary

conditions is always an important issue, as is apparent in Section

Many problems cannot be analytically solved. For inseparable partial differential equations,
there are only numerical solutions. Solutions and computer programs utilizing truly three-
dimensional coordinates that are not spherical are rare. Microscale and plasticity are still
difficult to model, and may not be completely defined using potential field theory. Chaos
and nonlinear processes are not adequately understood at this scale, and although strides
have been made in microscale modeling, there are numerous conflicts that need to be

resolved before microscale modeling becomes an effective design tool.

9.2 Recommendations

The next step is using potential theory methods to solve, catalog, and explore the
limitations of the method as applied to general and specialized engineering problems. The
many problems that can be analytically solved have not been explored and combined for
easy reference. This can be expanded into three-dimensional modeling programs and even
further by developing four-dimensional models of vibration and impact with time as the

fourth variable.

Potential field theory can be applied to all levels and scales in material response simulation;

at every level, there is a field controlling the material’s response. At the nano-scale, the field

is electromagnetic potential [See Section Quantum Analogy| and Section
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[Electromagnetic Analogy], at bulk scale, the potential field can be modeled as stress (or

strain); at the micro-scale, a potential field, made of elastic waves, drives dislocations and

grain boundary interactions, requiring a more sophisticated model.

The main reason for adopting potential field theory as opposed to a more familiar finite
element solver that uses traditional bulk mechanical solutions, like Ansys, Abaqus, and
others, is that potential theory can be applied through all the size and time scales. The
algorithms and methods for numerically solving quantum and microscale problems are
equally applicable to solving the PDE’s governing the bulk problems. The extension from
atomic behavior to grains and to bulk structures can be accomplished using potential theory

and massive computational resources.
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