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Advances in many scientific fields are expected to come from work in 
nanotechnology. Engineering at nano-scales presents novel problems that classical 
mechanics cannot solve. Many engineers are uncomfortable designing at this level 
because classical or continuum mechanics does not apply and quantum mechanics is said 
to apply in a tangible way. There are unique opportunities to contribute to the design, 
controls, and analysis of systems that are particularly suited to mechanical engineering. 
Within the derivations of classical mechanics are assumptions that limit its use to bulk 
engineering. These assumptions are examined to determine what principles can be 
extended to smaller scales. To allow engineers to do their job at these scales, it is 
necessary to understand strength and how changing scales affects the strength of material 
this leads directly to sets of variables necessary for engineering at any scale. Potential field 
theory is an old method that is experiencing a resurgence of interest. Potential fields are 
used to study quantum mechanics at the atomic scale, crack and dislocation mobility at 
the micro-scale, and even bulk analysis. It encompasses many problems that can be 
formulated using partial differential equations. These series solutions are well suited for 
computerized numerical approximation. Because of recent advances in computational 
abilities, potential field theory deserves a fresh look as a candidate for multiscale modeling 
and as the math that binds each level together. 
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PREFACE 

The Blind Men and the Elephant 
John Godfrey Saxe (1816-1887) 

It was six men of Indostan 
To learning much inclined, 
Who went to see the Elephant 
(Though all of them were blind), 
That each by observation 
Might satisfy his mind. 

The Fourth reached out an eager hand,  
And felt about the knee 
"What most this wondrous beast is like 
Is mighty plain," quoth he: 
"'Tis clear enough the Elephant 
Is very like a TREE!" 

The First approached the Elephant,
And happening to fall 
Against his broad and sturdy side, 
At once began to bawl: 
"God bless me! but the Elephant 
Is very like a WALL!" 

The Fifth, who chanced to touch the ear, 
Said: "E'en the blindest man 
Can tell what this resembles most; 
Deny the fact who can, 
This marvel of an Elephant 
Is very like a FAN!" 

The Second, feeling of the tusk, 
Cried, "Ho, what have we here, 
So very round and smooth and 
sharp? 
To me 'tis mighty clear 
This wonder of an Elephant 
Is very like a SPEAR!" 

The Sixth no sooner had begun 
About the beast to grope, 
Than seizing on the swinging tail 
That fell within his scope, 
"I see," quoth he, "the Elephant 
Is very like a ROPE!" 

The Third approached the animal, 
And happening to take 
The squirming trunk within his 
hands, 
Thus boldly up and spake: 
"I see," quoth he, "the Elephant 
Is very like a SNAKE!" 

And so these men of Indostan 
Disputed loud and long, 
Each in his own opinion 
Exceeding stiff and strong, 
Though each was partly in the right, 
And all were in the wrong! 
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Reference for Understanding this Text 

Figures come directly from references sited in the caption unless they are diagrams, which 

have been prepared by the author. The original captions have been retained for context 

but their caption numbers have been removed to avoid confusion with this documents 

numbering system. Diagrams are original illustrations by the author which have 

references sited if they are adaptations of another author�s work. 

References are not abbreviated in any way to facilitate ease in locating rare and unfamiliar 

journals. References are sited in brackets, like [205], where the number is linked to the 

reference number in alphabetical order by the primary author�s last name. Headings 

followed by reference numbers in brackets, indicate references of interest to the topic for 

further review. 

Equations are numbered by the chapter number and indexed 1, 2, 3, etc. in each chapter. 

Because many equations are reproduced from sources outside of the field of engineering, 

in many instances a symbol�s meaning is not familiar and not consistent, between math, 

physics, or chemistry derivations. Therefore, an effort has been made to define the 

symbols with the equation that introduces the symbol along with an explanation and 

engineering comparison, if necessary; and unrelated symbol duplication is avoided to 

prevent confusion. When specific equations have been reproduced from a single source, 

the reference is sited in the caption. However, many equations are general derivations 

that are found in many texts; these general equations can be found in many reference 

books but are only referenced in the text to sources from the bibliography that contain 
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these general expressions. The original source and initial derivation is not sited or used in 

this document. A table of equations with captions and page numbers is provided for easy 

reference. 

Each sub-heading in the chapters contains a specific contribution to the chapter as a 

whole, but there is no natural order to these components. This is aggravated by the fact 

that many headings have a synergistic relationship to one another. Because of this, the 

order that topics are discussed may appear arbitrary and many headings and figures are 

cross-referenced before they are formally introduced. The Microsoft Word document is 

linked to jump forwards and backwards to the cross-referenced sections, demonstrating 

how everything is linked together and interdependent. The navigation is like a web page 

to avoid repetition and circular arguments. To facilitate and encourage correct navigation 

of this text, page numbers and section headings for cross-referenced items are included. 

This web page style linkage allows parallels to be made that otherwise would be lost, and 

it emphasizes the equal weight given to each component or sub-heading.  
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1.0 Introduction 

Potential field theory is an old method that is experiencing a resurgence of interest due to 

advances in computational ability and the method�s flexibility in modeling disparate 

phenomenon. Potential field theory is the mathematical study of partial differential 

equations of which Laplace�s equation is particularly important to stress and strain 

analysis. Advances made in numerous scientific fields in the modeling and solving of 

partial differential equations lead to results that are applicable to Classical Mechanical 

engineering problems. 

Strength is investigated in Section 2.0, and the elephant of the preface is a fitting symbol 

of strength. The men represent the sciences, each having their own theories and 

definitions yet blind and argumentative towards the others. This Section covers all 

aspects of strength using the methods gleaned from their observations for the purposes 

of engineering. To understand the entire elephant requires cross-discipline investigation 

and a synthesis of their respective models.   

The changes in material properties has been a serious handicap for mechanical engineers 

wanting to contribute to nano-tech because many of the assumptions based on bulk 

properties are invalidated at micro and nano scale, and many phenomena go contrary to 

(bulk) experience [112]. An entirely new set of tables for engineering materials has to be 

created for different scales, because the bulk tests are difficult if not impossible to 

extrapolate to smaller scales [112]. This is an incredible amount of work and testing at a 

tremendous expense because of the sensitive equipment necessary to observe small-scale 
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response. Just one material will have to be tested at several scales to produce a curve 

representing the effect of scale on strength (and changes in material properties), and this 

needs to be repeated for all engineering materials. To better understand strength and the 

strength of materials, many well-known methods and analyses are revisited in Section 2.0 

in an attempt to tie together phenomena that are inconsistent with bulk assumptions 

about strength. For instance, the increase in strength witnessed in materials as the scale is 

reduced (from millimeter to micro- and to nano-) [See Figure 2-3, Figure 2-4, Figure 2-5]. 

It has become important to investigate what engineering principles do apply at small 

scales. The founding fathers of this science were indistinguishable from physicists, and 

most of their principles were formulated without a dependence on scale as is discussed in 

Section 2.0 and 3.0. The assumptions made in the study of elasticity are noted and their 

limitations are explored. The fields that are approximately solved by bulk elastic models 

are exactly solved by potential field functions as illustrated in Dally, [37, 30]. These 

functions produce photoelastic-like graphs and are the recognized exact solutions to 

stress and strain problems [See Figure 3-3, Figure 4-3, Figure 4-4, Figure 8-1, and 

references 78, 90]. Analytical solutions for these problems are very difficult and when 

solvable they involve infinite series, spherical harmonics (Legendre polynomials-

spherical coordinates), and Bessel functions (cylindrical coordinates). The stress fields 

produced in this manner are scale invariant, (the material constants of strength vary with 

scale), and the computer capabilities to numerically solve and graph these functions are 

now available [2, 20, 23, 31, 73, 102, 121].  
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and the mathematical approach to solving Section 4.0 outlines potential field theory, its 

use in engineering,. The physical or experimental expression of the potential field is 

photoelasticity . Graphical isostatic stress fields generated using potential theory are 

identical to the isochromatic fringes produced in photoelastic experiments. The stress 

function also has an electromagnetic analogy. James Clerk Maxwell introduced both 

electromagnetic equations and experimental photoelasticity in the late eighteen hundreds 

[83, 84, 86]. Static electromagnetic field equations must satisfy Laplace�s equation 

(Equation 3-28) yielding electromagnetic fields similar to mechanical stress fields [See 

Section 7.3 Electromagnetic Analogy].  

Applying potential field theory to the simplest classical mechanical problem, a beam in 

tension, produces interesting results demonstrated in Sections 5.0 and 6.0. The results 

justify bulk assumptions meant to simplify the model and are mathematical realizations of 

photoelastic experiments. Saint-Venant�s principle is well-modeled in the results. 

The final analogy to quantum physics is interesting as well [See Section 7.2]. Solutions to 

Schrödinger�s Wave function can be expressed as Spherical Harmonics and Legendre 

Polynomials, which have been used to demonstrate the shape of the shells where 

electrons are most likely to be found. It is fitting that electromagnetic and quantum 

solutions should find their way into the explanation of strength, because it is just these 

properties at work in the atomic scale which give rise to the bulk behavior of materials 

from the strength of bonds between atoms and molecules [28, 37, 42, 43, 53, 65, 66, 70, 

73, 75, 83, 84, 87, 88, 93, 96, 98, 102, 103, 104, 106, 112, 114, 119, 128, 127, 130, 133, 
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138]. Several scientific groups are modeling these forces to produce models of atomic 

interaction that can be scaled upwards to generate bulk properties [See Section 8.2 

Material Advances in Nanotechnology]. 

This entire work is a literature review that crosses many discipline boundaries, 

demonstrating and acknowledging the need for cross-discipline teams to work on this 

subject. Potential field theory is a powerful tool that is applied at every scale and in many 

field applications. The development of material models from the atomic level up to bulk 

structures is making use of this flexibility.  To meet the needs of nanotechnology 

engineers are needed to design at smaller scales.  

All work presented in this evaluation is the labor of great scientists of the past that has 

been continued by many notable scientists of today and references have been liberally 

sited. 

1.1 Approach 

• Review of strength, the variables, and how strength is effected by scale, Section 

2.0 Literature Review of Strength  

• Review of classical mechanics derivations to observe where scale invariance is 

lost, Section 3.0 Literature review and Derivation of Elasticity 

• Introduce Potential Field Theory as the math that binds the scales and variables 

in strength, Section 4.0 Potential Field Theory Applied to Mechanics 

• Model classical beam problem using Potential Fields for illustrative purposes, 

Section Error! Reference source not found. Error! Reference source not 
found. 
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• Comparison of Classical Theory and Potential Theory solutions, Section Error! 
Reference source not found. Error! Reference source not found. 

• Review analogous systems that use and advance Potential Field Theory, Section 

7.0 Analogous Systems 

• Describe advances made in modeling and computation that make progressive 

work in Potential Field theory feasible, and the advances made in materials that 

make Potential Field theory necessary, Section 8.0 Advances in Computation and 

Material Science 

• Define the needs of Nanotech that are keenly suited to mechanical engineering 

expertise, Sections 1.0 and 8.0. 

Objectives: 
1. To support the use of Potential Field Theory in the modeling of mechanical 

problems, 

2. To demonstrate the similarities between Potential Field Theory, Photoelasticity, 

and Electromagnetic phenomenon, 

3. To provide background to the issues of strength and the loss of scale invariance, 

4. To demonstrate the method of separation of variables to solve PDE�s, and 

5. To model a beam in tension to show the deviation from classical theory. 

 

 

1.2 Problem Statement 
As advances are made in nanotechnology, needs for design, controls and analysis, 

particularly thermal and mechanical stress are becoming available in this new field. Work 

that typically comes under the auspices of engineering is needed, but many engineers are 

uncomfortable designing at this level because classical or continuum mechanics does not 

apply and quantum mechanics is said to apply in a tangible way [2, 17, 20, 23, 32, 38, 39, 
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42, 43, 44, 49, 50, 51, 53, 63, 66, 69, 73, 83, 96, 102, 103, 104, 106, 107, 112, 118, 123, 

133, 140]. More precisely, why are classical methods ineffective on smaller scales? What 

are the assumptions that lead to classical method abandonment at small scales, and what 

needs to be changed to allow engineers to do their job at these scales? 

To answer these questions, it is necessary to understand strength, in all of its 

manifestations, and how changing scales affects the strength of materials. This leads 

directly to sets of variables necessary for engineering at any scale. A nano-engineer must 

understand these variables in material properties and their scaling behavior like a material 

scientist. 

Within the derivations of classical mechanics are assumptions that limit its use to bulk 

engineering. What are these assumptions, where do they come into the equations, and 

can they be changed to extend their use to smaller scales? 

Potential field theory may or may not be familiar to engineers; as a design tool, it is scale 

invariant. Potential fields are used to study quantum mechanics at the atomic scale, crack 

and dislocation mobility at the micro-scale, and even bulk analysis. However, it is rarely 

used for bulk calculations; because the math is formidable, and even the few analytical 

solutions must use numerical approximations to solve the infinite series. Potential field 

theory encompasses many problems that can be formulated using partial differential 

equations.  



 

 9

Because of recent advances in computational abilities, potential field theory deserves a 

fresh look as a candidate for multiscale modeling and as the math that binds each level 

together. 

To design competently at any scale, the nano-engineer: 

• Must understand material properties at each scale, 

• Must understand quantum and electromagnetic contributions, and 

• Must understand potential fields, their boundary conditions, and their solutions. 

Advances in many fields are expected to come from work in nanotech. There is an 

opportunity to contribute to the design, controls, and analysis of systems that is uniquely 

suited to mechanical engineering if the challenges can be met. With this in mind, the 

following pages attempt to define the needs of mechanical design at multiscale, the role 

of potential theory in multiscale applications, and what steps can be made to attack this 

challenge. 

1.3 Examples of Specific Nanotech Problems  
Many nanotechnology problems lie in the field of engineering expertise. Classical 

mechanics cannot solve these difficult problems; it requires a cross-discipline approach. 

• The solution of cantilever beam vibrations at the microscale, while respecting 

nano- and microscale contributions, applies to the quartz crystal microbalance, a 

delicate experimental testing apparatus. [See bonds, nanotechnology, 

vibration/impact , 11, 13, 27]  
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• The solution of vibration and kinking in strings, one-dimensional problems that 

are very difficult to model with finite element software, applies to dislocations, 

nanocarbon tubes, and whiskers important to high strength applications and 

wiring in nano-components. [See Nonlinearity, 13, 27, 66] 
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2.0 Literature Review of Strength 

Strength is the ability to resist change and to be able to recover from stress. There are 

many different measures of strength, Young�s modulus, yield strength, fracture 

toughness, hardness, and others. However, it is not one measurement that makes a 

material strong, but the combination of values selected to satisfy a particular purpose and 

withstand a particular load at a particular scale. Spider silk has a maximum tensile strength 

of 1.3 GPa as compared to mild steel�s 400 MPa while carbon nanotubes boast over 100 

times the tensile strength of steel [25]. Superhard materials are being developed at more 

than 40 GPa with applications to coatings and thin films to replace materials that are 

environmentally hazardous [133]. 

2.1 Scale 
[23, 25, 41, 127] 

There are many levels of aggregation from atoms to large engineering structures [53], but 

this thesis will only be concerned with three, Bulk or macro, micro, and nano. Bulk or 

macro-scale properties are those that work at the level with which engineers are familiar 

and can be observed with the unaided eye. Micro-scale properties can be observed with a 

microscope and are the link to nano-scale. At the molecular and atomic level, quantum 

mechanics are active and are different from bulk behavior. Some properties, labeled scale 

independent in Figure 2-1, are apparent at all scales, though the effects may be different 

at each. Some of the complexities of scale are illustrated in Figure 2-1 and are discussed 

throughout this chapter. 



 

 

 

 

 

 

 

 

 

 

 

Figure 2-1. Diagram of the relationships between properties and scale dependence as concluded from the literature 
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A nanocrystalline material is defined as having grain sizes (Grain Size) less than 100 

nanometers or one millionth of a millimeter [122]. Figure 2-2 shows the spatial and 

temporal scales and where different methods of analysis and experimentation occur with 

respect to characteristic lengths and time scales.  

Dependence on sample size is one of the most important issues to multiscale engineering.  

Holding the strain rate constant, the yield stress is a monotonically decreasing function of 

sample size, Figure 2-3 [23]. Holding the sample size constant and increasing the strain rate 

also produces an increase in yield strength, Figure 2-4[23]. This variable behavior in a 

material constant becomes a major issue at small scales, and defects, Section 2.2.3, are the 

main cause of this behavior. 

One of the most interesting characteristics of scale is that materials tend to be stronger at 

smaller scales [See Figure 2-3 and Figure 2-5]. Figure 2-3 and Figure 2-5 both show 

increased yield strength as scale is reduced. Continuum Mechanics cannot account for this 

phenomenon, and bulk materials are 100 times weaker than theoretical strength predicts 

using chemical bond strengths [141]. In Figure 2-5, there is a logarithmic relationship 

between yield stress divided by Young�s modulus, for a normalized non-dimensional 

quantity, and the sample size. 
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Figure 2-2. Relationships between scales, models, and measuring techniques [112] 
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Figure 2-3. At a constant strain rate, yield stress increases as sample size decreases [23] 

 

 

Figure 2-4. At constant size, 1384 atoms 7.8 nm x 4.0 nm, yield stress increases with 
increasing strain rate [23] 
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Figure 2-5. Yield stress by adiabatic modulus compared to specimen size [23]  
 

2.2 Chemical Strength 
The source of the strength of a material is linked to atomic bonds. Even before direct 

evidence of atoms and electrons, this theory supposed a smallest unit of matter, an atom, 

bound to another [75]. The attraction and repulsion between these units, graphed in Figure 

2-6, determined whether a material was a solid, liquid, or gas and basic properties like 

strength. At the smallest level, bond strength is the first determining factor to strength. 

Figure 2-6 is a qualitative model of bond repulsion-attraction. The attraction is 

electromagnetic, and the repulsion is a quantum effect from the Pauli exclusion principle, 

which prevents electrons from having the same quantum numbers and in effect over-

lapping [104]. 

Size is taken as an appropriate 
volume/surface ratio 

Scatter is mainly due to strain rate 
and orientation effects 

Dislocation nucleation at free 
surfaces is the dominant 
mechanism 

Yield stress varies as size-1/2 

Sample Size is the Primary Determinant of Yield Stress 
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Figure 2-6. Bond repulsion-attraction model, potential energy vs. atomic radius [131] 

 

Atoms come in over 100 shapes and sizes as witnessed in the periodic table, and, according 

to strict rules, they can combine to produce compounds. The electronic configuration, 

especially of the outer shell, determines what arrangement and which bonding is available 

and favorable. Electronic configuration, shells (s,p,d), spins, and orbital shapes are 

understood/modeled using quantum mechanics and specifically, Schrödinger�s wave 

equation. Spurred by nanotechnology, new materials, new applications and new methods 

for producing designer materials are continually being explored because of the wealth of 

atomic building blocks. 
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2.2.1 Atomic Bonding 
[11, 15, 39, 53, 125] 

Primary bonding comes in three principle varieties with smooth transitions between the 

poles or vertices, see Figure 2-7, the bonding triangle from Gilman [53]. Within the triangle 

lie mixtures of the pure bonding achieved at the vertices. The bond strength varies from 60 

to 300 kcal/mole [127]. Secondary bonding or Van der Waals forces are less than 10 

kcal/mole, and these are due to dipole interactions and include hydrogen bonding and 

London dispersion forces [127].  

 

 

 

 

Figure 2-7. Diagram of the bonding triangle from Gilman [53] 

Covalent bonds share at least one pair of electrons between atoms, trying to achieve a full 

outer shell in each of the contributors.  Covalently bonded materials are intrinsically harder 

than metals or ionic solids, and they resist plastic deformation [53]. They are especially 

resistant to shear, and the shear moduli are often larger than the bulk moduli [53]. The 

covalent bond was measured in a bond-breaking experiment that found it to be 600 times 

stronger than non-specific bonding and 10 times stronger than hydrogen bonding [11]. It is 

Ionic                            Covalent 
       NaCl      ZnSe        C 
 
 
               PbS         Sn 
 
 
                       Al 
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in general the strongest type of bond; it has high melting temperatures and a more open 

crystal structure [28].  

Ionic bonds occur between metallic and non-metallic elements, where the valence electron 

is completely given to the non-metal creating a cation (negative charge) and anion (positive) 

pair. The ions gain stability by having full outer shells and a charge from the gain or loss of 

electrons. This electromagnetic charge is what binds the compound. It is found in salts and 

ceramics and has a densely packed crystal structure. 

Metallic bonds metallic bonds have a surplus of electrons, which congregate in an electron 

cloud giving metallic compounds their characteristic ability to conduct electricity [119]. 

Molecular bonds are the weakest, and are present in polymers, rubber, noble gases, and 

between layers of materials, like graphite or mica [53]. They are secondary bonding forces 

that include dipole interaction and hydrogen bonding. Neutral atoms in close proximity 

induce dipoles in the atoms resulting in London forces [88]. These forces are responsible 

for bonding between fibers into bundles and between lamellae to form flakes, as in 

graphite. Hydrogen bonding is also an induced dipole and gives water its unusual and life-

supporting properties [9, 104, 135]. It is present and important to many organic 

compounds, like proteins, as well as polymers [26, 41].  

The strongest compounds tend to be those with the highest melting points and heats of 

formation [53]. 
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2.2.2 Crystallography-Geometry 
[26, 28, 38, 40, 44, 63, 65, 70, 106, 140] 

Crystals have periodic structure as illustrated in Figure 2-8. Material constants [See Section 

3.2.4 Constants on page 61] can vary in different directions with respect to the lattice; this is 

an anisotropic structure [See Equation 3-16 Anisotropy coefficient]. Isotropic crystal 

properties are independent of direction. Homogeneous materials may also display isotropic 

values because of a homogenous mix of crystal grain orientation, for example steel. Crystal 

shape and symmetry bare an important relationship to the number of constants needed to 

describe a material�s properties or response [See Section 3.2.4 Constants on page 61 and 

References 6, 28, 42, 63, 65, 106, 118, 140].    

Amorphous materials or glasses have chaotic structures with random patterns or non-

periodic bonding as opposed to crystalline structures. The lack of periodicity impedes 

dislocation mobility and the materials are brittle and may cry (acoustic emission) during 

yielding [53]. Amorphous literally means without form in contrast with crystalline, which 

has a geometric form. Glass and ceramics are the most common amorphous materials. 
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Figure 2-8. Crystal lattice and symmetry  

[http://www.chem..ox.ac.uk/icl/heyes/structure_of_solids/Lacture1/Lec1.html ] 

2.2.3 Defects 
[42, 53] 

Any defect in a material results in a stress concentration [6], which significantly lowers the 

ideal strength1 of a material [66, 93]. Defects include, but are not limited to: 

                                                 
1 Ideal, Theoretical, and True Strength are terms used to describe the maximum strength a material can achieve based 

on the chemical bonds, temperature, and a failure theory assuming the method of dissolution or separation of the 
material [See Theoretical Strength on page 30].  
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Thermal vibrations or phonons, excitons, color centers, stacking faults, 

interstitials, vacancies, impurities, micro-cracks, line defects, slip planes, twinning, 

and environmental contaminants (on the surface boundary) [28, 38, 48, 53, 65, 66, 

93, 106, 140]. 

Figure 2-9 displays the relative size of different types of defects. Point defects include 

vacancies-missing atoms, interstitials-extra atoms, and substitutional-extra foreign atoms. 

Point defects can diffuse, either through volume diffusion or through grain boundary 

diffusion depending on available energy.  

 

Figure 2-9. Relative size of defects [124] 

Dislocations are characterized by line defects, edge defects, or screw defects, and they move 

by dislocation glide on slip planes, or glide planes [53]. Dislocations can meander through a 

body-centered cubic metal in various directions and across planes in an entirely chaotic 

manner, similar to Brownian motion or random walk. They are opposed by the drag created 

by free electrons and by phonons [53]. The Orowan mechanism describes how dislocations 

cross planes causing pinning, tangling, and as a result, work-hardening [93]. Dislocation 

bypass by Orowan mechanism accounts for variation in strength when particles or 
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obstacles are between 100-150 nm and shear stress is approximately 1/500 of the shear 

modulus [53]. Line dislocations do not follow conventional statistical mechanics, but an 

understanding and modeling of their effects provides the critical link between atomic and 

continuum scales [53, 73]. A Monte-Carlo simulation of these effects is currently being 

investigated by CMSN (the Computational Materials Science Network) group at Lawrence 

Livermore National Laboratory [73]. Other defect simulations and generation studies 

include [5, 42, 48, 50, 70, 73, 106, 112, 118]. 

Peierls stress is the frictional shear generated by a dislocation as it moves through the lattice, 

but for metals, this stress under-estimates experimental strength [15]. The Peierls-Nabarro2 

is a mechanical model (a classical model not applicable to atomic scale) that does not give 

good correlation qualitatively or quantitatively, partly because the potential is continuous 

when, in fact, dislocation cores are singularities [53]. 

2.3 Measures of Strength 
When designing a mechanical system, the strength of the constituent materials is of vital 

importance. This strength is either part of the initial conditions, or else the entire design 

hinges from the unknown parameter of strength. Factors of safety are based on it and 

failure theories are built around it. Determining and utilizing a material�s strength is of 

paramount importance to engineering applications [See Section 3.2.4 Constants on page 

61]. Some of the constants and ratios defined in mechanical engineering are enumerated 

below:  
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Young’s modulus (E), the resistance to tensile force, is the ratio of axial stress to axial 

strain under tensile loading [See Figure 2-10]. Also called stiffness, it characterizes a 

material�s ability to withstand tensile force and is the slope of the stress-strain diagram 

before yield. It is related to the speed of sound through isotropic materials by equation 

Equation 2-1, where V is the speed of sound [See Figure 2-11] and ρ  is the density. 

ρ
= EV  

Equation 2-1 Relationship between sound and stiffness 

Figure 2-10 is a graph of Young�s modulus for the elements in the periodic chart. The 

atomic number identifies the element, and the periodic curve is due to outer shell electron 

interactions. Figure 2-11 graphs the velocity of sound propagating through the elements of 

the periodic chart. The velocity is related to Young�s modulus through equation, Equation 

2-1. 

                                                                                                                                             
2 Nabarro was a student of Orowan. 
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Figure 2-10. Young’s Modulus vs. Atomic Number  [http://www.webelements.com ] 

 

Figure 2-11. Velocity of sound vs. Atomic Number [http://www.webelements.com ] 

http://www.webelements.com/
http://www.webelements.com/
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Poisson’s ratio (v) is the ratio of transverse extension to longitudinal contraction [See 

Figure 2-12]. Figure 2-12 demonstrates the elements departure from pure isotropic crystals. 

One constant isotropy predicts a value of 0.3 for Poisson�s ratio, which is not achieved by 

the majority of elements [See also Figure 3-1, Equation 3-16, and Cauchy relation:]. 

 

Figure 2-12. Poisson’s ratio vs. Atomic Number [http://www.webelements.com ] 

Bulk modulus (B or K), the resistance to dilatation or volumetric change, is the volumetric 

resistance to pressure changes [See Figure 2-13]. Figure 2-13 shows how bulk modulus is 

related to the elements in the periodic chart. A high bulk modulus allows materials to resist 

hydrostatic compression and shear [53, 66, 125]. 

 

http://www.webelements.com/
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Figure 2-13. Bulk modulus vs. Atomic Number [http://www.webelements.com ] 

 

Shear modulus or Modulus of Rigidity (G), the resistance to shape changes, is the ratio 

between shear stress and shear strain [See Figure 2-14] Shear modulus or modulus of 

rigidity is resistance to shear and is very important to plastic deformation (similar to 

viscosity in fluids). Figure 2-14 shows how rigidity is related to the elements in the periodic 

chart. A strong solid combines both a high rigidity and a high Young�s modulus [53, 66, 

125]. 

 

 

http://www.webelements.com/
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Figure 2-14. Rigidity Modulus vs. Atomic Number [http://www.webelements.com ] 

 

Hardness is the resistance to plastic deformation [See Figure 2-15 and Figure 2-16]. It 

cannot be understood solely in terms of classical mechanics [53]. The relative hardness of 

various elements is most easily visualized using Moh scale, as in Figure 2-15. The scale is 

approximately logarithmic, as noted in the caption, and can be compared to other hardness 

scales in Figure 2-16. 

 

 

http://www.webelements.com/
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Figure 2-15. Hardness in Moh Scale vs. Atomic Number, approximately logarithmic  
[http://www.webelements.com ] 

 

Figure 2-16. Comparison of relative hardness-Brinnell, Rockwell, and Moh scales-with 
material samples [127] 

http://www.webelements.com/


 

 30

Fracture toughness is the area under the stress-strain curve signifying a materials ability to 

absorb energy to failure (or fracture) [30, 37, 75, 53, 59, 119, 130].  

Resilience or Modulus of resiliency is the potential energy of deformation and the area 

under the elastic portion of the stress-strain curve [30, 37, 75, 53, 59, 119, 130].  

2.4 Theoretical Strength 
“A brief reflection shows that ‘true strength’, even if it existed and if it could be measured 

correctly, would have no practical importance for applications in engineering.” 

~Orowan 1948/49 

2.4.1 Egon Orowan 
[16, 53, 93, 98] 

The emphasis has been added to Orowan�s discussion of the true tensile strength of 

materials [93]. When he wrote this passage there was indeed no practical engineering 

applications towards which �true strength� theories could be applied. However, recent 

advances in nanotechnology coupled with the ability to manipulate individual layers of 

atoms and the superior strength characteristics of thin wires and perfect crystals or strong 

solids, leads one to the conclusion that there is an absolute need for reliable theoretical 

strength models [112]. 

Physicists use First Principles Calculations to predict properties, especially those of alloys, 

to reduce time in production and testing of new combinations [See nanotechnology and 

19]. Density functional theory is also leading to better modeling at the atomic level [17]. 



 

 31

These models yield approximate values for many important physical properties including 

strength, based on atomic interactions [See section 7.2 Quantum Analogy  and references 2, 

88]. 

The properties of engineering materials have been carefully catalogued through 

experimental methods (one such database is Stability Constants (SC-) Database) [See 

Section 8.0]. At the micro- and nano-scale, with the possibilities of prefect crystal structure, 

very little of the previous experimentation is valid or extrapolatable to the smaller scales [53, 

118]. Even failure theories for bulk materials are invalidated at the smaller scales [50, 53, 70, 

73, 106]. This has been countered by microscale simulations using stress concentrations and 

embedded cracks [See Section 8.1 and references 5, 42, 48, 50, 70, 73, 106, 112, 118]. 

2.4.2 Nucleation vs. Propagation 
Using the chemical bonds to determine strength of a material produces an ideal strength 

estimate, which is rarely achieved by bulk materials [66, 65, 88]. Steel performs at less than 

1% of its ideal strength [93]. During the 1930�s a German school arguing nucleation vs. 

propagation of defects, attempted to explain why plastic flow occurred at a level so low in 

comparison with ideal strength. The theoretical strength of strong solids3 was used to 

prove the existence of defects and failure mechanisms acting well below the theoretical limit 

[93]. With the advent of diffraction techniques and crystallography, this theory was 

validated and fracture mechanics was born [93]. Fracture mechanics deals with holes, 

cracks, and discontinuities embedded in an ideal mechanical continuum [132]. This theory is 

                                                 
3 Strong Solids are solid materials that are strong in tension. 
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important to explain the low strength relative to theory and, according to Gilman [53, 140], 

even a perfect specimen will spontaneously produce defects when subjected to stress. 

Meaning even a perfect specimen cannot achieve theoretical strength. 

2.4.3 A. Kelly’s “Strong Solids” [66] 
The assumption, made by Kelly4, is that any solid has a theoretical failure stress determined 

solely by chemical binding forces and temperature as applied to perfect specimens with no 

cracks, inclusions, foreign atoms, dislocations or other definable imperfections [66]. This 

failure stress is known as ideal strength but it does not take into account plasticity. 

Ideal strength is the ultimate strength that a material can physically achieve [66]. At bulk 

levels, yield occurs at less than 1% for many engineering materials making this a useless 

calculation [93]. However, at smaller and smaller scales and under strict laboratory 

conditions working strength is boosted [112]. Many of the factors that make the yield 

strength so low at bulk scales are eliminated at small scales; for example, the probability that 

a defect or crack is present decreases with decreasing characteristic lengths. Also, the 

presence of a critical size crack is removed from samples of a size smaller than the 

corresponding critical size.  

Some whiskers have even done the impossible and surpassed the theoretical limit [66]. An 

order of magnitude estimate of theoretical strength was sufficient for Orowan�s applications 

[93], but a second investigation is warranted for nano-scale engineering applications. The 

                                                 
4 Kelly was introduced to the subject of strong solids by Cottrell who worked with Orowan [93]. 
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study of ideal strength is not to supplant current methods but to design competently at the 

smaller scales by knowing the upper limit of a material�s strength [See Section 8.1.3 First 

Principles Calculations and Statistical Mechanics]. Empirical scaling laws are being 

formulated to scale strength from theoretical to bulk following simple scaling laws and 

using multiscale experimentally obtained data [50]. 

2.5 Temperature Dependence 
[38, 53, 87, 96] 

Temperature is intimately related to strength. Without a temperature specification, a 

strength measurement is worthless, because strength is a function of temperature above the 

Debye temperature5 [88]. Below the Debye temperature, strength is independent of 

temperature [88]. In most common mechanics equations, temperature is not explicitly 

mentioned; unless the problem is one of temperature distribution, heat transfer, or 

thermoelastic behavior [30, 37, 75, 53, 59, 119, 130]. The assumption is that isothermal 

conditions exist when temperature is not explicitly mentioned [30, 37, 75, 53, 59, 119, 130]. 

Many other assumptions will be examined as they arise in this study. 

Isothermal condition is a significant simplification, requiring that no temperature changes 

occur and that temperature is not a variable in the problem [30, 37, 75, 53, 59, 119, 130]. 

The effects of hot and cold in real life conditions are important to keep in mind, because 

many extraordinary failures have been the result of neglecting temperature. Low quality 

                                                 
5 Debye temperature is a material constant that is used to calculate heat capacity (Cv) and relates to the velocity of sound, 

phonon interactions, and Young�s Modulus. 
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steel becomes brittle in icy waters, causing failures in bridges, cables, ships, and airplanes. 

Most notably, the Titanic failure and Liberty ships during WWII were cracked open mainly 

due to the brittle transition of the steel used in the design [93].  

 

 

Figure 2-17. Diagram of the effect of non-isothermal conditions when a load is applied 
quickly [32, 75, 120, 130].  

As Figure 2-17 demonstrates, the isothermal condition is not just a restriction in 

temperature, but in time as well. When a load is applied quickly, the ratio of stress to strain 

(or Young�s Modulus) is increased and the temperature of the specimen drops [75]. The 

material is in effect stronger because it cannot respond at the rate that the load is applied 

[See also Figure 2-4]. If the load is maintained, when the material achieves thermal 

equilibrium, then an increased strain, or elastic aftereffect, is observed due to the 

thermoelastic behavior [75]. This effect in steel is small, about 1/3 of 1% elongation, but it 
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can become significant in repetitive loading or vibration, because the complete cycle 

represents a loss of energy to internal friction which is actively damping the motion [53]. 

Thermoelastic material analysis is important in crack tip analysis [92], and is considered as a 

supplement to photoelastic experimentation [139]. 

The fracture or failure of a material has been likened to the dissolution of a material at a 

certain temperature, the melting point [88]. 

2.6 Time Dependence 
[60, 91 ] 

Time dependence, or anelastic response, includes thermo-elastic effect, hopping of small 

atoms like carbon in a matrix of larger atoms, and stress induced ordering [42, 53, 65]. 

Although bonding is primarily an electrostatic phenomenon, hopping is an important 

electrodynamic fluctuation, listed below [53, 88]. 

• Electrons hopping between ions (covalent bonding) 

• Photons hopping between molecules, or atoms (London or Casimir 

bonds) 

• Protons hopping between atoms (Hydrogen bonding) 

• Phonons hopping between conduction electrons (superconductivity) 

In the study of elasticity, time is only explicitly stated when the load is cyclical, as in fatigue 

failure [30, 37, 75, 53, 59, 119, 130]. A before and after snapshot of a dynamic process is 
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contained in the familiar state equations of stress and strain. A more exact model would be 

one defining the final equation of elasticity as the summation of a time dependent series 

that converges to a state of stress (or diverges to failure).  The assumption is that enough 

time has passed that the final picture is one of stable equilibrium [30, 37, 75, 53, 59, 119, 

130]. This assumption has proved fruitful within its field of applicability, but has 

complicated the theory of plasticity, where time dependence is necessary [See also 2.12 

Vibration and Impact and references 5, 42, 48, 50, 70, 73, 106, 112, 118].  Incubation time is 

proposed as a material parameter for high-rate loading leading to fracture [91]. 

2.7 Plasticity 
[7, 8, 16, 23, 26, 36, 39, 49, 50, 53, 96] 

Plasticity is not homogeneous; it is highly irregular in creation and propagation of defects [5, 

42, 48, 50, 53, 70, 73, 106, 112, 118]. Elastic deformation is usually temporary, well ordered, 

and propagates quickly on elastic waves, in contrast, plastic deformation is usually 

permanent, chaotic, and propagates relatively slowly [53]. Plasticity is the result of 

dissipative or non-conservative forces [See conservative force field on page 52]. The 

system�s energy is lost to internal friction [Peierls] and bonds are broken. As a result, the 

material is plastically deformed; it cannot return to its original configuration without 

additional energy [88]. A close correlation exists between band gap and glide activation 

energy, the energy needed to start a dislocation moving [53, 88]. In high-rate loading, 

incubation time to fracture [91] is a definable material property needed to initiate failure. 
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If time dependence were included in elastic equations, then the role of dissipative forces 

could be modeled, even when the material is not strained above the elastic limit. Time 

dependence is modeled when using nonlinear analysis or micro-scale modeling [5, 42, 48, 

50, 70, 73, 94, 106, 112, 118, 128]. This effect is observable in real materials, but not 

included in most models not dealing specifically with plasticity. 

Failure is a plastic phenomenon, and the unification of failure and nonlinear elasticity 

produced the theory of continuum damage mechanics with special applications to rock 

mechanics [132]. Modeling plasticity at the microscale is very difficult in part due to highly 

chaotic grain boundaries [See also Figure 8-1 in Section 8.1.1 Crystal Structure], and 

incomplete understanding of stress transmission through grains [See also Figure 2-18 in 

Section 2.11 Grain Size and Figure 7-1 in Section 7.1 Fluid and Wave Analogy]. 

2.8 Ductile vs. Brittle 
Resistance to plastic flow cannot be explained with continuum mechanics; some materials 

are hard and brittle while others are soft and ductile, and the difference requires a quantum 

approach [53, 88]. Polarizability is inversely related to shear moduli, meaning that highly 

ductile materials have low polarization and brittle materials are highly polarizable [53]. 

Dislocation mobility also defines whether a material will be brittle or ductile [1, 7, 16, 23, 53, 

88, 96, 122].  When dislocations move quickly, the material is ductile, but if barriers are 

present, then the material fails in a brittle manner. Where definite yield stresses are 

observed, there are barriers to the mobility within the specimen, defects that prevent 

dislocation flow [53, 88, 93]. 
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“It remains to be explained why there is a size effect in notch brittleness on a centimeter 

scale. A square rod of 0.5 cm with a machined notch may bend in an entirely ductile 

manner while a geometrically similar sample of 10 cm breaks explosively in bending 

tests.” ~Timoshenko  

The appearance of size dependent ductility suggests that when the specimen is of a scale 

geometrically similar to Griffith critical crack size, that there will be a corresponding notch 

brittleness effect [93, 30, 37, 75, 53, 59, 119, 130]. An enhanced Griffith crack of ~1mm 

will not usually be present in a virgin specimen but must grow in a ductile manner [93]. 

From this it can be inferred that the high strength of wires with thickness less than or equal 

to 1mm, is due to an absence of the critical Griffith crack [93]. 

Orowan based his notch brittleness calculation on Hencky and Prandtl�s indentation of 

ideally plastic solid by a rigid punch [93]: 

• If Y is yield stress, Stress-max cannot exceed 3Y, and B is brittle strength; then for  

B<Y the material is brittle. 

• For Y<B<3Y the material is ductile in tensile tests, but notch brittle. 

• For B>3Y the material is fully ductile (not notch brittle). 

• Thus, B is hardly altered at low temperatures, but Y is roughly trebled. Therefore, a 

material notch brittle at room temperature will be brittle at low temperatures. 
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Solidity index (S) is another method for determining brittleness and defining liquid-solid 

transition [53]. G is shear modulus and B is the bulk modulus in the equation below, 

Equation 2-2. The most solid of materials is diamond with the maximum solidity index of 

1.3; solidity of zero indicates a liquid [53]. At S>0.23 materials become brittle. For cubic 

materials, G equals C44 or 0.5*(C11-C12), depending on the crystal structure; these values are 

equivalent for isotropic materials [53]. 

S=(3/π)[G/B] ≈  (3/4)[G/B]  

Equation 2-2 Solidity Index [53] 

 

2.9 Hardening Mechanisms-History Effects 
[26, 48, 122] 

Many time dependent processes can increase strength while molding the shape of the final 

part. In general, any process that increases density (and increases dislocation density) also 

increases the tensile modulus [53]. Working a material can work-harden or work-soften 

depending on the chemical composition and following the Orowan mechanism [48, 53]. By 

combining cold temperatures (liquid nitrogen) and cold-working, researches at Johns-

Hopkins were able to increase the hardness of pure copper by six times without sacrificing 

ductility or adding impurities, alloying [122]. Dislocations and nano-engineering were the 

main strengthening mechanisms. The cold slowed dislocation mobility while the cold rolling 

to 1mm thickness created a high density of dislocations, similar to the process of folding 

steel [53, 122]. The thickness is significant as the apparent crossover point to increased 
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strength due to absence of enhanced Griffith crack [93, 122]. The sample was then allowed 

to recrystallize at 200 C; this produced ultrafine grains because dislocation density before 

recrystallization is inversely proportional to grain size [122]. The team controlled the grain 

size growth to produce a bimodal mix of ultrafine and larger grains, which gave the copper 

its high strength (due to ultrafine grain) while retaining ductility (due to larger grain) [122]. 

Chaotic mixing of grain size can also create increased strength as defined in the Chaos 

section as related to strength on page 46. 

Pure elements can be combined to form alloys with properties more desirable than their 

constituent elements, like steel made from iron (Fe) and less than 6% carbon (C) [19, 48]. 

High strength steels are produced by adding impurities to the compound like nickel, 

chromium, molybdenum, and others. Alloying increases hardness, in general, especially 

between atoms not located near one another on the periodic table [53, 88]. This increase in 

critical shear stress is a result of slowing dislocation mobility by nonhomogeneous material 

made of dissimilar atoms [53]. 

2.10 Hydrostatic Pressure 
The lesson learned from hydrostatic pressure should convince one of the importance of the 

gradient as compared to yield strength [See Potential Theory and Divergence]. A material 

subjected to intense hydrostatic pressure refuses to fail at the values obtained from failure 

theories, though at high enough pressures materials can compress to crystal structures that 

have greater stability [93, 88]. Between 10 - 100 Mbar of pressure, all elements become 
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metals (Herzfeld�s criterion); physicists define a metal by its ability to conduct electricity 

[53]. 

2.11 Grain Size  
Grains are single crystals made of homogenous material that are orientated [88]. The size 

can range from microns to visible grains to single crystal parts like turbine blades. In 

general, the smaller the grain size, the higher the strength, with the exception that a single 

crystal is the strongest and most ductile form of a material [53]. Grain size is an important 

strength factor at any scale. A material can be strengthened by a recrystallization process 

that forms smaller or more symmetric grains [88, 122]. Smaller grains relieve stress 

concentrations from dislocation pile-ups [53]. 

The Hall-Petch effect states that stress (σ ) is equal to the applied stress ( 0σ ) plus a factor 

that takes into account the diameter of the grain, d , and yK , a constant representing the 

significance of grain boundaries to increased strength [98]. 

RelationPetch -Hall         1Y

EffectPetch -Hall  0

d

d

K y

∝

+σ=σ
 

Equation 2-3 Hall-Petch Relation 

In the Hall-Petch relation [30, 48, 59, 75], yield stress (Y) is proportional to the inverse of 

the square root of the diameter of the grain size (d). The important crossover point where 
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smaller diameters stop being inversely related to strength is being investigated and modeled 

by CMSN, the Computational Materials Science Network [73].  

Existing cracks will propagate if it lowers the total energy of the system [53]. Griffith in 

1920, assumed a simple energy balance, a decrease in strain energy is used to create new 

crack surfaces [30, 37, 75, 53, 59, 119, 130]. His theory estimates theoretical strength of 

brittle solids and gives the correct relationship between fracture strength and defect size 

[53]. This was improved upon by Irwin in 1950 by developing the stress intensity approach 

[30, 37, 75, 53, 59, 119, 130]. 

The boundary or interface between grains is a stress concentrator [See also Figure 8-1 in 

Section 8.1.1 Crystal Structure]. It is more difficult to propagate a crack through a single 

crystal than to separate two grains. (However, dislocations have no trouble propagating 

through single crystals in Figure 8-1) The boundary is less symmetric and has fewer and 

weaker bonds holding the grains [53, 88]. The bonds are fewer because the ideal 

arrangement is that of a single crystal and weaker because there is internal stress due to 

misalignment of cell structure [53, 65, 66, 88]. Many of the defects found in materials are 

concentrated at the boundaries including: interstitials, vacancies, impurities, micro-cracks, 

line defects, slip planes, twinning, and environmental contaminants (on the surface 

boundary) [5, 7, 28, 42, 63, 65, 106]. 

Grain size is a vital consideration in thermoelastic and heat transfer models [139]. Like 

elastic properties, thermoelasticity is dependent upon orientation, meaning different grains 
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will possess different temperatures when the material is quickly stressed or at stress 

concentrations like crack tips [92]. The heat contained in a grain is per volume, while the 

heat exchange, is per surface area. Less surface area in smaller grains allows better heat 

transfer and greater loss of mechanical energy to internal friction [53]. This suggests that 

better damping characteristics are attainable with smaller grain size. 

The experimental work done on cohesionless materials [108] suggests that different 

mechanics control the transmission of stress from grain to grain. Figure 2-18 shows a 

photoelastic stress distribution though grains. In contrast to continuum mechanical 

(classical elasto-plastic) models that use hyperbolic or elliptic equations, the results pictured 

in Figure 2-19 using photoelastic techniques, show a diffusive transmission of stress 

through the medium entirely contained within a parabola [108]. Continuum mechanics 

predicts a bell shaped or gaussian distribution for the same boundary conditions while the 

relatively recent hyperbolic model would propagate along rays [108]. This result is not 

apparent in the individual tests, but in the superimposed, ensemble averaged results from 

different grain configurations [108].  These results have been used to model granular 

materials with applications in soil mechanics, but the findings bear relationships to solid 

materials composed of grains. These grains of solids resist sliding and shear deformation 

better than the test materials, but the final response may be a linear combination of 

diffusive stress transmission and the resistance to grain slide or shear.  

This diffusive model can be simulated using cellular automaton methods and the diffusion 

equation is part of potential theory [See Section 7.0 Analogous Systems]. The ensemble 
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averaging technique [108] is similar mathematically to probability density used in statistical 

mechanics [83, 88, 103]. The shifting of the grains is like running a probability experiment 

to produce general behavior, since the exact path of stress transmission through the 

material is random but follows a fundamental probability distribution over many 

experiments. Even though real materials have different sized grains, defects, and non-

homogeneous distributions in the layers, this diffusive model suggests an interesting 

relationship that should be examined further. Photoelastic experiments on indentation tests 

at the micro-level could demonstrate whether this phenomenon is transferred to solids 

through the response of grains, and ensemble averaging appears to be an excellent 

technique to produce characterization and probability of response.  

Steel is the favored material for mechanical engineers; much of the curriculum, literature, 

and experimental work are devoted to steel and it�s alloys. However, the properties, which 

make steel ideal for an engineering material, are grain dependent and therefore a micro-scale 

phenomenon. At the nano-scale, steel will not be as important as silicon or more stable, 

covalently bonded materials. 
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Figure 2-18. Typical Photoelastic 
results of the stress transmission 
experiment through a cohesionless 
material [108] 

 

Figure 2-19. Superimposed results 
from 10 experiments with shifted grain 
alignment demonstrating probability 
density of stress distribution. [108] 
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2.12 Vibration and Impact 
[8, 11, 13, 20, 27, 36, 45, 129, 134] 

A common mechanical engineering experiment to determine tensile modulus involves 

measuring the speed with which a vibration/impact travels through a known length of 

material. This acquired modulus is actually higher than that obtained from isothermal tensile 

tests, and the difference can be used to determine the ratio of specific heat at constant 

stress (pressure) to the specific heat at constant volume [75]. At the nanoscale, it is much 

more difficult to calculate the amplitude of vibration [11], if this were possible then the 

exact strength of atomic bonds could be experimentally obtained by using a microbalance, 

QCM, instead of the relative bond strength [See Section 8.2 Material Advances in 

Nanotechnology, Section 1.3 Examples of Specific Nanotech Problems, and Reference 11]. 

Time dependence becomes very clear during impact experiments [106]. The speed of the 

applied load is the determining factor to the response of the system. At relatively slow 

speeds, thermoelastic response is minimal, but at high rates, material properties become rate 

dependent, already demonstrated in Figure 2-4 [53]. During impact, a material�s strength is 

increased and ductile materials can respond explosively brittle. The strength increase is 

mostly due to the inability to respond to the force as quickly as it is applied. This resembles 

the resistance to failure of materials subjected to large hydrostatic forces [110]. 

2.13 Chaos 
Another aspect that requires attention is Chaos and Nonlinearity. Chaos has built in 

scaling phenomena, and where there is nonlinearity, there is chaos. Bifurcation is the route 
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to chaos [94], when two equilibrium states are separated by an infinitesimal amount. 

However, chaos does not mean instability, a chaotic system can recover from small 

perturbations demonstrating global stability even with local unpredictability. Examples of 

this are found throughout nature: the weather, the movements of the planets, the 

movement of a pendulum (large angle), the human heart, oscillating circuits, frequency 

locking, and dripping faucets [54]. Therefore, to retain this rich behavior in mechanical 

systems, the nonlinear terms should be retained in the stress equations [Equation 3-12, 94]. 

Nonlinear terms drop out in situations where the simplifying assumptions are valid, making 

the cut-off points for the applicability of linear equations more obvious [94]. 

In the case of an aluminum-based compound [69], neutron scattering aided the production 

of an amorphous rather than crystalline structure, which proves to be more elastic (higher 

Young�s modulus) than the same material with grain boundaries present [See Section 2.2.2 

Crystallography-Geometry]. Neutron scattering, one of the diffraction techniques for 

visualizing micro-scales and molecular dynamics, is a very important testing technique for 

studying property or phase changes and for producing disordered (chaotic) or amorphous 

materials with higher strength and resistive properties [69, 122]. Some applications include: 

improving cobalt- and titanium-based medical engineering materials, testing of degradation 

of materials responsible for containment of radioactive materials, and amorphous 

semiconductors [69, 102, 104]. 

Glass is the most common example of an amorphous material and has been described as 

super-cooled or frozen liquid, but this comparison (or the fluid analogy) should not confuse 
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the liquid and solid states of matter [56]. Glass may have the amorphous form of a liquid 

but it has a much higher viscosity [56, 88]. 

At room temperature: Viscosity: 

Water    0.01 poise 

Lead  ~1010 poise 

Glass  ~1020 poise 

Glass @ melting temperature. ~5*107 poise 

Note: at room temperature it would take longer than the lifetime of the universe for glass to 

flow a noticeable distance and the waves present in glass is due entirely to the 

manufacturing process [56]. 

Adobe is an example of how chaotic mixing can increase the strength of a material [54, 

102]. The constituents of adobe are soft, but the mixture is like concrete [54, 102]. Large 

grains are held together by small grains, which are in turn surrounded by smaller grains. 

This scaling pattern has an optimum mixture to obtain the best building qualities of the 

mixture [54, 79, 80 102]. Metals can benefit from this study as demonstrated in [122] where 

pure copper�s hardness was increased without sacrificing ductility by controlling grain 

growth and mixture. 
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Fracture progresses in an entirely chaotic fashion, apparently random, but cellular 

automaton efforts have been made to model the random walk behavior of crack 

propagation [102, 138]. 

2.14 Failure 
Failure criteria were developed closely following experimental evidence and work well (if 

selectively) applied to bulk materials [53]. Steps have been made in computational 

mechanics to bridge the steps from nano- to micro- to macro/bulk behavior [5, 42, 48, 50, 

70, 73, 106, 112, 118]. To date, the transitions have not been accomplished smoothly. At 

the limit, nano-mechanics must describe bulk behavior or continuum mechanics; just as 

quantum mechanics is expected to describe macroscopic behavior or Newtonian physics in 

its limit. For this reason, potential theory is ideal for modeling material response. The same 

equations and numerical methods that are used to solve quantum phenomena are applicable 

to bulk behavior [See Section 4.0 Potential Field Theory Applied to Mechanics]. 

Testing has begun on tiny cantilever beams, thin films, and quantum structures in an effort 

to understand micro- and nano-mechanics [23, 113]. This testing is currently being 

conducted to produce a data set that can be fit by a new failure theory, proceeding in the 

same manner that has worked for bulk materials, albeit with smaller, more sensitive, and 

more expensive testing apparatus. Following this lead, each new nano-component will have 

to be run through a battery of tests comparable to the past 200 years of bulk material 

testing and performed at enough different scales that a sensible understanding of properties 

can be assembled before design can be attempted. While experimental testing is an 
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important part of design, computer modeling [5, 42, 48, 50, 70, 73, 106, 112, 118] could 

take over most of the tedious job of producing property curves. This of course necessitates 

that the modeling is accurate and produces a good representation of nano- and micro-scale 

effects.  

At the atomic level, failure is not isotropic [See also Figure 8-1 in Section 8.1.1]. There are 

not enough grains for a homogenous mix, and failure stress is highly dependent on 

orientation of crystals [See Section 3.2.5 Constants]. Quantum mechanical effects also 

appear in a tangible way [2, 17, 20, 23, 32, 38, 39, 42, 43, 44, 49, 50, 51, 53, 63, 66, 69, 73, 

83, 96, 102, 103, 104, 106, 107, 112, 118, 123, 133, 140]. 

Most failure theories do not account for differences in tensile or compressive loading, 

allowing the tensile curve to reflect across the strain axis. However, many materials are 

stronger in compression than tension, and even stronger than theory predicts for 

hydrostatic compression. These factors need to be addressed in modeling compression and 

hysteresis effects [49]. 

2.15 Conclusions about Strength 
Although the idea of a material performing at a percentage of its maximum, or ideal 

strength, is not important for bulk calculations, it has become important to nano-scale 

calculations and especially in modeling material response. Each of the variables that 

contribute to strength must be included in a comprehensive model, not only to 

demonstrate their effect, but also to observe the limiting conditions (where the variables 
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can safely be eliminated). Some excellent modeling programs have been developed 

exclusively for the atomic and molecular scale for chemists and physicists [See also Figure 

8-2 on page 127 and Section 8.1 Applied Math and Modeling]. These can serve as the first 

level to modeling independent of scale and an aid to engineers working and designing with 

nano-components.  

2.16 Further References 
See references to the works sited in this chapter, since many are collections of years of 

historical work, especially Love [75] and Timoshenko [130]. 
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3.0 Literature review and Derivation of Elasticity 

The founding fathers of this science were indistinguishable from physicists, and most of 

their principles were formulated without a dependence on scale, but some of the 

assumptions preclude the use of these equations at smaller scales [12, 55, 57, 58, 75, 84, 93, 

130]. In each of the following sections, these limitations are highlighted. 

3.1 Conservative Field 
If in a gradient force field F, the work done by the force upon a particle moving from A to 

B is the same for all paths, and work done on a closed path is zero, then the force field is 

said to be conservative [75, 143]. Work is done when an object or particle is moved by a 

force in the direction of that force and the units are energy [119, 143]. Power is work by 

time or distance times velocity [30, 37, 75, 53, 59, 119, 130, 143]. 

F is conservative if and only if curl F= 0 [See curl on page 69 and reference 143]. 

Conservation of energy requires that the sum of all energy, kinetic (KE) and potential (PE), 

be constant in any closed system. 

KE+PE= constant 

Equation 3-1 Conservation of Energy 

Frictional forces are non-conservative or dissipative; meaning KE is reduced without an 

increase in PE and work is path dependent [143]. 
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0≠⋅∫
c

drF     for a non-conservative field 

Equation 3-2 Non-conservative field 

0∫ =⋅
c

drF     for a conservative field and F is the gradient of a scalar function 

and circulation is zero [143]. 

Equation 3-3 Conservative field 

In a three-dimensional conservative field where F is a gradient field; Φ  is a potential 

function for F; and P, Q, R are components. 

 If z),y,(x, are RQ,P, andRk QjPiF f++= then: 
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Equation 3-4 Conservative field derivatives 

Conservative Field Assumption is invalidated at microscale where plastic deformations 

can occur at any temperature, sometimes with no load [53]. (Figure 8-1 in Section 8.1.1 is 

from a simulation, but is visually representative of this phenomenon.) Defects, cracks, and 

dislocations are topological disorders that result in the material not simply connected, thus 

path dependent. Plasticity is the evolution of a material not in equilibrium. 

3.2 Equilibrium 
[30, 37, 59, 85] 
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Stress Equations of Equilibrium, Equation 3-5, can be derived by isolating an element in 

the body; the summation of forces in each direction must be zero to maintain equilibrium 

[30, 37, 75, 53, 59, 119, 130]:   

3.2.1 Stress fields: 
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Equation 3-5 Equilibrium stress fields 

Equilibrium Assumption, Equation 3-5, requires that the body is at a constant state of 

equilibrium, but at nanoscales, the isolated element is in a different state of equilibrium. 

Stress fluctuations are caused by vibrating atomic components [51, 53, 60, 88]. This is a 

natural state of matter, and even if the material is theoretically cooled to absolute zero, there 

are still quantum vibrations [53, 88].  

Summation of moments leads to the conclusion that:  

xzzx

zyyz

xyyx

τ=τ

τ=τ

τ=τ

 

Equation 3-6 Summation of moments 
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This, Equation 3-6, prevents the body from rotating due to unbalanced shearing forces [30, 

37, 75, 53, 59, 119, 130]. 

3.2.2 Body Force Fields  

z
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y
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x
F
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zyx ∂
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Ω∂−=

∂
Ω∂−=

=Ω

       ,

                  

,

),,(
                                              

Equation 3-7 Body force fields  

The body forces, Fx, Fy, Fz, are a function of the body force field, Ω , Equation 3-5. The 

units of Ω  are pressure or force per unit area, and the units of body forces are in force per 

unit volume. They are a result of mass in a field that can be gravitational, centrifugal, 

magnetic, or any inertial force that adds acceleration to the element. They differ from 

surface forces in that they are applied by a field rather than at the surface of the body. 

Surface forces translate into stress fields contained in Equation 3-5. When weight is 

neglected, body forces are set to zero. [30, 37, 75, 53, 59, 119, 130] 

Body Force Fields Assumption must be adjusted to accommodate different fields at 

smaller scales. Gravity is insignificant at nanoscales; no atomic structure can be built 

thinking in terms of gravity because electromagnetic forces are so much stronger at that 

scale, by a factor of approximately 1039 for electrons and protons [119]. Important frictional 

forces include: photons (quanta of light), phonons (temperature or quanta of lattice 

oscillations), and plasmons (quanta of plasma oscillations of electron gas) [88, 119]. 
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3.2.3 Strain – Displacement  
The derivations of elasticity theory can be found in any elementary text on elasticity, but the 

main points have been highlighted with their nonlinear counterparts to observe simplifying 

assumptions and similarities to electromagnetic fields [30, 37, 75, 53, 59, 119, 130]. The 

source of the Strain-Displacement relations can be followed very clearly in [94] and [75]. In 

the following equations, (x,y,z) are the coordinate axis and u,v,w are the displacements. In 

the nonlinear formulations, the displacements (u,v,w) can be functions of x,y,z. The linear 

strains are denoted by e while the nonlinear strains are ε  (Greek e) to avoid confusion. 

Shear strains are denoted by γ , and rotations by ω. 

Linear Nonlinear [94] 
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Equation 3-8 Linear strain-
displacement         

Equation 3-9 Non-linear strain-
displacement
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Linear Nonlinear [94]     
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Equation 3-10 Linear rotation-
displacement   

 Equation 3-11 Non-linear rotation-
displacement

 

( )

( )

( )

( )

( )

( ) zzxzyxzyyyyxzzxyzyyz

zzyxzxzyzxyyxzxxxzxz

xzyyxzyyzxyzxyxxxyxy

xzyyxzzzzzzz

xzyzxyyyyyyy

yxzzxyxxxxxx

ee

ee

ee

ee

ee

ee







 ω+γ+






 ω−γ+






 ω+γ





 ω−γ+γ=ε







 ω−γ+






 ω−γ





 ω+γ+






 ω+γ+γ=ε







 ω+γ





 ω−γ+






 ω+γ+






 ω−γ+γ=ε


















 ω−γ+






 ω+γ++=ε


















 ω+γ+






 ω−γ++=ε


















 ω−γ+






 ω+γ++=ε

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

22
2

22
2

22
2

 

Equation 3-12 Non-linear strain to linear strain and rotation [94] 

Roughly speaking the linear equations are used for the deformation of massive bodies whereas 

the nonlinear equations are useful for flexible bodies especially with large deflections or rotations 

[94]. 
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Strain-Displacement Assumption applies to small scales but many nano-structures, like 

carbon nanotubes and thin films, have nonlinear geometry, and require the more difficult non-

linear formulas. 

3.2.4 Hooke’s Law 
�Stress is a linear combination of strain. 

For many materials acting within elastic limits, Hooke�s Law is a good approximation [30, 37, 75, 

53, 59, 119, 130]. Some theorize that it is the first term of a Taylor expansion, but for small 

displacements the elastic portion of a material�s response is such a small strain, second order 

corrections are too small to measure. The constants of Section 3.2.5 follow directly from 

Hooke�s Law. 

3.2.5 Constants: 
Continuum solid mechanics cannot account for the magnitudes of the tensor coefficients, thus it 

is incomplete. A theory of coefficients requires quantum mechanics to show how atomic 

bonding energies and bonding forces arise [2, 17, 20, 23, 32, 38, 39, 42, 43, 44, 49, 50, 51, 53, 63, 

66, 69, 73, 83, 96, 102, 103, 104, 106, 107, 112, 118, 123, 133, 140]. 

In indicial or tensor notation, the relationships and constants (stiffnesses or compliances) 

between stress and strain can be compactly written as follows: 

i, j, k, l, m, n  = 1, 2, 3 

∑ ε=σ
kl

klijklij C  Elastic stiffnesses (Cijkl) 
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∑ σ=ε
kl

klijklij S  Elastic compliances (Sijkl) 

lmknijmnijkl SC δδ=  Inversion equation: 
mk if 0
mk if 1

≠=δ
==δ

kn

kn  

Equation 3-13 Stress-stiffness and strain-compliance relationships [53] 

The most general description of the elastic state requires the complete state of stress and strain, 

each containing nine components leading to a general matrix of 81 components. This can be 

reduced to a 6 by 6 matrix by symmetry, equilibrium, and no net torque ( jiij σ=σ ). Since elastic 

deformation is reversible, the strained body contains strain energy that is a scalar proportional to 

the square of the strain. This requires that the 6 by 6 matrix be symmetric leaving 21 

independent constants, Equation 3-14 [30, 37, 75, 53, 59, 119, 130].  
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Equation 3-14 Triclinic elastic stiffness matrix [53] 

This matrix, Equation 3-14, describes the most general triclinic crystal symmetry system with 

three crystal axes of differing length and three different angles between the axes (crystal 

symmetry). For orthorhombic symmetry, nine coefficients are necessary; for tetragonal 

symmetry only six coefficients; and for cubic, three coefficients are needed, Equation 3-15 [30, 

37, 75, 53, 59, 119, 130]. 
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Equation 3-15 Cubic elastic stiffness matrix 

For cubic systems, there are only three independent constants, but isotropic crystals can be 

further simplified since 121211221111 2CCC += , reducing the constants to two [30, 37, 75, 53, 59, 

119, 130]. This definition is important in experimentation, because the coefficients can be 

measured [37], and determining how isotropic a material behaves, justifies the use of simplified 

equations based on isotropic behavior. Using the isotropic assumption sets Poisson�s ratio to 0.3, 

but many materials do not obey this rule as observed in Figure 2-12 from Section 2.3.  

Constants Assumption of stiffnesses and compliances is useful for crystalline microstructure, 

but isotropy is not very common, especially at smaller scales. 

 

 

 

Figure 3-1. Diagram of the atomic bonds in a cubic isotropic crystal 

K1 and K 2 in Figure 3-1 are linear spring constants representing central atomic forces between 

atoms [30, 37, 75, 53, 59, 119, 130]. For an isotropic crystal, K1 must equal K2 [53]. For identical 

 
K1 
 
K2 
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atoms, the geometry must be skewed to be isotropic, but ionic compounds can use the geometry 

illustrated in Figure 3-1 on the left. The anisotropy coefficient is: 

A=2C1212/(C1111-C1122) 

Equation 3-16 Anisotropy coefficient [53] 

When A is equal to 1, then the material is completely isotropic: tungsten is 1; diamond is 1.6; and 

salt, NaCl, is 0.7 [53].  

The two Constants for isotropic materials can be defined by any combination of the following 

[37]: 

• Lame�s constant ( λ ) with no physical meaning, used to simplify equations and is equal 

to K-2/3 µ  

• Shear Modulus or Modulus of Rigidity (µ  or G) equal to shear stress by shear strain= 

γτ /  

• Poisson�s Ratio ( ν )equal to transverse strain by axial strain= yyxx εε /   

• Young�s Modulus (E) equal to Axial stress by axial strain= xxxx εσ /  

• Bulk Modulus (K or B) equal to Hydrostatic Pressure by volume dilatation=-p/D 

Figure 3-2 shows the relationship and conversions between these constants; only two of which 

are independent in isotropic crystals.  
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Figure 3-2. Dalley’s table of constants and their conversion [37] 

 

3.3 Elastic Equations Using Isotropic Conditions 
The following equations substitute constants using isotropic conditions and are the general 

derivations of elasticity [30, 37, 75, 53, 59, 119, 130].  
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3.3.1 Strain-Stress 
Using Equation 3-13, Equation 3-15 and Equation 3-8 the strain to stress and displacement 

to stress equations can be written: 
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Equation 3-17 Strain – Stress relations (linear) 

3.3.2 Displacement-Stress 
Using the linear equations and substituting Equation 3-8 in Equation 3-17 yields the 

displacement to stress equations below: 
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Equation 3-18 Displacement – stress relations (linear) 

3.3.3 Stress – Strain 
[30, 37, 75, 53, 59, 119, 130] 

These equations inverted can be compactly written as: 
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Equation 3-19 Linear, isotropic stress – strain relations [37]                     

3.3.4 Stress-Displacement 
When the circumstances allow, stress to displacement field equations may be written: 
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Equation 3-20 Linear, isotropic  Stress – Displacement relations 

Equation 3-20 shows that for some problems the stress can be calculated directly from a 

displacement filed without first calculating the strain. 

3.3.5 Displacement Equations of Equilibrium 
The stress displacement equations and the stress equilibrium equations can be combined to 

form the displacement equations of equilibrium [37]. 
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Equation 3-21 Displacement equilibrium relations [37]  

 

In Equation 3-21, the Laplacian operator is defined as 
zyx ∂

∂+
∂
∂+

∂
∂=∇ 2  [See 

Mathematical Terms and Theorems in Section 3.4]. This forms a displacement field similar 

to the stress field of Equation 3-5 and stress compatibility equations of Equation 3-23. 

Solving this PDE yields displacements that can be used to obtain strains, Equation 3-8 and 

Equation 3-6, or stresses, Equation 3-20. 

3.3.6 Compatibility 
There are six strain equations of compatibility, Equation 3-22, whose satisfaction prevents 

voids from opening in the body [30, 37, 75, 53, 59, 119, 130]. The last two strain equations 

of compatibility (B and C) are automatically satisfied by plane stress or plane strain field 

where there is no z dependence [37]. 

The stress equations of compatibility are built up from Equation 3-22, Equation 3-5, and 

the stress-strain relations, Equation 3-17. The importance of these equations, Equation 

3-23, is that they depend only on Poisson�s ratio (in the linear, cubic case because of 
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Equation 3-17). This is the reason that photoelastic experiments do not depend on Young�s 

modulus and can model materials with different stiffnesses if Poisson�s ratio is similar [37]. 

The material must also be simply connected and body forces must be zero for Laplace�s 

equation, Equation 3-28 [37]. 
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Equation 3-22 Strain compatibility relations 

Compatibility Assumption requires changes at the microscale because dislocations and 

other defects create singularities and discontinuities in the field.  

D.
 
 
E. 
 
 
F.
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Equation 3-23 Stress equations of compatibility [37] 

Equations Equation 3-5, Equation 3-7, and Equation 3-23 combine to form: 
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Equation 3-24 Laplace’s equation in two-dimensions 

In two-dimensions, Equation 3-24, it is apparent that the solution depends at most, on 

Poisson�s ratio, v [37]. When body forces are constant or zero, then the entire function 

simplifies to Laplace�s equation, Equation 3-28. 

3.3.7 Potential Stress Functions 
Stresses are assumed to satisfy these stress functions or potential field equations: 
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Equation 3-25 Potential field equations in three and two-dimensions [75] 

3.3.8 Biharmonic Equation 
Substituting Equation 3-25 into Equation 3-24 yields the biharmonic function [99]: 
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Equation 3-26 Biharmonic function of Φ  

A comprehensive collection of analytically solvable mechanical engineering problems has 

not been compiled. It would be an asset to understanding basic engineering problems 

(beams, plates, pressure vessels, etc.), especially as an exact solution to compare to classical 

and finite element methods.   

And in two-dimensions:
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3.4 Mathematical Terms and Theorems 
The following terms and theorems are significant to the derivations of elasticity and 

potential theory. 

3.4.1 James Clerk Maxwell  

Curl Definition 

[75, 83, 84, 85, 86, 87, 143] 

Maxwell first introduced the word curl in his studies of electromagnetism [84]. Where curl F 

is zero then the flow is irrotational. For div F equal to zero, then the fluid is incompressible 

or analogously, in electromagnetics a field is solenoidal when div F equal to zero [See 

divergence on page 74].  

F is a gradient field; Φ  is a potential function for F; and P, Q, R are components [143]. If 
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Equation 3-27 Curl [143] 

3.4.2 Saint-Venant’s Relation 
[24, 55, 75] 

Many classical elasticity problems can be solved directly in terms of stresses without using 

displacements by applying compatibility conditions [37]. These compatibility conditions are 
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differential equations derived by Saint-Venant for strain components or integrability 

conditions for strain and displacements [See Equation 3-22 and 75]. Saint-Venant�s 

principle states that a system of forces acting over a small region of the boundary can be 

replaced by a statically equivalent system of forces without introducing appreciable changes 

in the distribution of stresses in regions well removed from the area of application [75].  

3.4.3 Laplace’s Equation 
[14, 34, 77, 134, 137] 

Pierre Simon Marquis de Laplace (1749-1827) was the first to study this group of 

differential equations. Laplace�s equation is defined in a number of equivalent ways, which 

are enumerated below [143]: 

0
0

0  
02

=∆Φ
=Φ∇•∇

=Φ
=Φ∇

graddiv  

Equation 3-28 Laplace’s equation 

The first version will be used in any mathematical derivations, whereas the second will be 

used in any text explanations, �the divergence of the gradient of phi� or the Laplacian of a 

function. The third is the dot product of the gradient, and the final form, the del operator, 

is very common in physics.  Equation 3-28, means that if the Laplacian is equal to zero then 

everywhere in the field the function is equal to its average value of neighboring points, or in 

other words, if u satisfies Laplace�s equation then u represents a state of equilibrium [52]. 
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When 2∇ u (at a specific point) is greater than zero, then the average of neighboring points 

is greater than u where it was evaluated, and vice versa, if 2∇ u is less than zero, u is less 

than the average. Any solutions to the Laplacian are harmonic, and solutions to 4∇ u are 

biharmonic. Solutions to Laplace�s equation are one of the classes of equations covered 

under the subject of partial differential equations [52, 68, 105, 109, 131]. 

3.4.4 Airy Stress Functions 
[12, 37, 86, 97] 

 Airy stress functions are polynomial approximations of potential functions, which depend 

at most only on Poisson�s ratio, Equation 3-24 and Equation 3-25, and are formulated to 

satisfy harmonic equations, Laplace�s equation (Equation 3-28). Airy Stress Functions are 

valid only to plane strain or plane stress problems, i.e. two-dimensional problems, and body 

forces must be zero or a scalar function of position [37]. The stress functions are valid at 

midpoint but only approximations at boundaries because of enforcing weak boundary 

conditions at the ends [See Section 4.1 Method of Solution]. Airy functions are most 

commonly used for beams and pressure vessel (cylindrical) problems. Airy�s paper of 1862 

inspired Maxwell to write his paper on reciprocal figures in1864 [75]. The method of virtual 

load is closely related to the reciprocal figures. Maxwell corrected a term related to shear in 

Airy�s paper and extended the results to three-dimensions in 1870[75]. Figure 3-3 shows 

one of the original drawings from Airy�s paper of a beam in bending. 
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Figure 3-3. Figures of beam in bending from Airy’s original treatise on stress functions. The 
curves are drawn from tables also included in the paper. [12] 
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3.4.5 Westergaard Complex Stress Functions 
[68, 81, 92, 100] 

In 1939, Westergaard formulated complex equations whose real and imaginary parts satisfy 

potential functions around mode I fracture cracks [81]. This was extended to other fracture 

modes, but not beyond the general vicinity of cracks. According to Pacey, et al., 

Westergaard equations are limited to uniform stress fields, but cracks usually grow under 

varying fields. This was improved upon by formulating more generally applicable potential 

functions [100]. 

3.4.6 George Green 
Green�s Theorem of 1828 is used to obtain the stress equations of equilibrium. 
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Equation 3-29 Green’s theorem [143] 

3.4.7 Divergence or Gauss’s Theorem 
This theorem, Equation 3-30, relates the integral over a surface, S, to the divergence of a 

field over a volume, D. 

( ) ∫∫∫∫∫∫∫∫ =∇=⋅
DDS

divFdVFdVdanF  

Equation 3-30 Divergence [143] 
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Flux is the flow through a surface element, for a velocity field F, n normal, and da area: 

( )∫∫ ⋅=
S

danFFlux  

Equation 3-31 Flux [143] 

Gauss�s theorem or divergence states that the flux through a surface area is equal to the 

divergence of a field through a volume [75, 143].  

3.4.8 Stoke’s Theorem 
Green�s theorem in three-dimensions is Stoke�s theorem: 
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Equation 3-32 Stoke’s theorem [143] 

Note: n is upper normal [See curl]  

3.4.9 Cauchy-Riemann 
The Cauchy-Riemann condition: 
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Equation 3-33 The Cauchy-Riemann condition [143] 
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 If u and v satisfy this condition, then they also satisfy Laplace�s equation, Equation 3-28. 

To obtain an analytical solution, the problem must be well posed, the Cauchy-Riemann 

condition must be satisfied, and the boundary conditions must be defined. In two-

dimensional problems, this is always theoretically possible, because there is a unique 

solution for a set of boundary conditions [75]. Since the solution is a linear combination, a 

complicated geometry can be broken down into simple blocks and the sum of the solutions 

yield the total potential. Many problems have already been solved analytically, and for more 

complicated geometries recourse to computer programs with numerical methods and finite 

element modeling are currently available, though not widely used in the study of mechanical 

stress and strain [See Matlab�s PDE toolbox and flexPDE]. 

The goal of the solution for three-dimensional problems is a triply orthogonal set of 

surfaces corresponding to the principal stresses or �isostatic surfaces� [75]. There is always 

a set of isostatic surfaces in two-dimensional problems [75]. Three-dimensional problems 

are, of course, much more difficult, and in general, the three-dimensional orthogonal set 

might not exist, according to Boussinesq (1872) [75]. 

 Cauchy relation: 

The Cauchy relation, C12=C44, is the result of isotropic assumption that the crystal is 

bound only by central forces [53]. Cauchy�s relations led to rari-constant theory, that 

isotropic materials can be described by one constant with Poisson�s ratio equal to ¼ [See  

Figure 2-12 for comparison and references 53, 75]. Only 20% of crystals satisfy these 
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relations according to experiments preformed by Voigt (ca. 1887), and many materials are 

closer to 1/3 rather than 1/4, thus resolving an age-old argument [53].  

3.5 Nonlinear Formulation, Chaos, and Stability 
3.5.1 Nonlinearity 
[94, 95, 105, 128] 

Plasticity is not the only nonlinear phenomena present in mechanics; the very difficult 

solution of nonlinear geometry that acts within elastic limits is applicable to structures such 

as nanocarbon tubes [4]. Strings, slender columns, and even the vibrations of membranes 

are very difficult to model using finite element programs (especially if non-linear solutions 

are not available). The power of Novozhilov�s compact monograph on nonlinear elasticity 

is in the presentation of equations that reduce to classical theory when their assumptions 

are applied [94].  

Using the nonlinear equations II.43 and II.44 from Novozhilov yields six equations with 12 

unknowns. Six additional equations relating stress to displacements are formulated from 

strain energy relations.  

These…express the law according to which the material of the given body resists various 

forms of deformations. A theoretical explanation of this law would necessarily require an 

insight into the nature of intermolecular forces which seek to keep the particles of the solid 

body at definite distances from one another. The present state of scientific development, 

however, offers no adequate solution to this difficult problem. [Russia in 1948] 

- Novozhilov [94] 
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Thus, the importance and necessity of experimental results for specific material 

relationships between stress and strain is acknowledged.  

Nonlinearities can be introduced into the theory of elasticity in three ways [94]: 

• Formulas of strain components 

• Equations of equilibrium of volume element 

• Stress-strain relationships 

This leads to four types of problems, with separate methods of simplification, in the theory 

of elasticity [94]: 

1. Physically and geometrically linear. Example, rod extension within the limit of 

proportionality 

2. Physically nonlinear but geometrically linear. Example, rod extension that exceeds 

the limit of proportionality leads to a nonlinear stress-strain relation 

3. Physically linear and geometrically nonlinear. Example, bending of a thin steel strip 

with large angles of rotation but strains within the limit of proportionality 

4. Physically and geometrically nonlinear. Example, bending of a thin steel strip with 

large angles of rotation and strains exceed the limit of proportionality 
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Nonlinear problems of type two and four are the subjects of the theory of plasticity, type 

one belongs to classical or linear theory of elasticity, and type three contains elastic 

problems with nonlinear geometries [94, 128].    

3.5.2 Jules Henri Poincaré 
In a doctoral dissertation of 1879, Jules Henri Poincaré (1854-1912) studied general 

geometric properties of ordinary differential equations. He was the first to discover a 

chaotic deterministic problem, the three-body problem important to the stability of celestial 

mechanics; and his research outlined methods for the study of chaotic deterministic systems 

and the starting point of algebraic topology [54]. Poincaré recurrence time is important to 

entropy, and he understood the implications of quantum theory's difference from classical 

physics. He also sketched a version of special theory of relativity.  

Interest in the qualitative behavior of these equations had to wait on computers that can 

quickly run simple programs to produce maps of qualitative behavior based on initial 

conditions [54]. This method was neglected until 1963 when Edward Lorenz discovered a 

chaotic deterministic system in a simple weather model, and Benoit Mandelbrot's work on 

the scientific study of fractals and fractal scaling begun in 1975 [54, 79, 80].   

3.5.3 What is Chaos? 6 
[18, 45, 54, 74, 76, 79, 80, 101, 128, 138] 

                                                 
6 This section is about a young science that crosses all disciplines and is highly philosophical in tone and content. 



 

 79

“…you know the right equations but they’re just not helpful. You add up all the microscopic pieces and 

you…cannot extend them to the long term. They’re not what’s important in the problem. It completely 

changes what it means to Know Something.” ~Feigenbaum [54] 

An acceptable definition of chaos is not forth-coming from the sources. Wolfram and 

Gleick call it �a new kind of science� [138, 54]; mathematicians call it ergodic, non-

deterministic, or stochastic; engineers call it turbulence, buckling, and random. Chaos is 

apparent, though not fully understood, in fields like dynamical systems, nonlinear dynamics, 

fractals, and even cellular automata [101, 138]. The fact that the starting conditions are not 

exactly known and that infinitesimally small differences in initial conditions lead, in time, to 

large variations in the state of the system when data becomes uncorrelated, means that the 

system is responding chaotically. Nearby trajectories diverge exponentially.  This is one of 

the reasons why weather is so difficult to predict (and may be impossible) [54]. However, 

just because the behavior is complex, does not mean that the governing equations cannot 

be simple. 

Stability 

At resonance, amplitude increases unbounded until the system self-destructs, but when 

displacements become large additional physics come into play, such as nonlinear elasticity, 

plastic deformation, heat transfer, buckling and others [59]. 

Examples of equations whose chaotic nature has only recently been acknowledged: 

Planetary Motion\Celestial Mechanics, Duffing, Rayleigh-Van der Pol, Lorenz, 

and Logistics equations [54] 
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All of these equations involve derivatives, and depending on the coefficients the behavior 

may be chaotic and unstable, chaotic but periodic, or stable. Chaotic but periodic cycles 

include the weather, the movement of a pendulum (large angle), the human heart, 

oscillating circuits, frequency locking, and dripping faucets [54]. 

Scaling 

[76, 79, 80] 

Scaling is a chaotic characteristic demonstrated by fractals, Julia patterns, coastline topology 

(fractional dimensions), and fern-like plants. Scaling is an inherent characteristic of chaos 

and cellular automata [79, 80]. Properties that are scale invariant are important to self-

similarity and understanding how scales link together to produce experimentally observable 

effects.  Revealing these scale invariant properties contributes to the understanding (and 

modeling) of properties that change with scale, like strength. An attempt is made in [142] to 

reveal universal scaling properties of isotropic and anisotropic fluid flows and their 

connection to the rate of decay of forcing functions in developed turbulence. Because 

chaos is universal (or mathematical) invariants in one system, bare significance to 

completely different systems. For example, the rate of bifurcation is a constant whether the 

data is from the stock market or fish populations [54]. 

3.5.4 Non-uniqueness 
In the classical theory, using Hooke�s law and omitting the nonlinear terms, leads to a 

unique solution of equilibrium [94, 128]. However, reality and stability demonstrate that 

more than one equilibrium position may exist. 
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For Maxwell, this meant a scientific instance of free will. 

There are certain cases in which a material system, when it comes to a phase in which the 

particular path which it is describing coincides with the envelope of all such paths may 

either continue in the particular path or take to the envelope (which in these cases is also a 

possible path), and which course it takes is not determined by the forces of the system 

(which are the same for both cases) but when the bifurcation of path occurs, the system, 

ipso facto, involves some determining principle which is extra physical (but not extra 

material) to determine which of the two paths it is to follow. 

When it is on the enveloping path it may at any instant, at its own sweet will, without 

exerting any force or spending any energy, go off along that one of the particular paths 

which happens to coincide with the actual condition of the system at that instant. 

-J C Maxwell in a letter to Francis Galton, February 26,18797 [83] 

When more than one equilibrium position exists (according to Novozhilov) the classical 

solution is ordinarily unstable, which can have catastrophic effects when blindly applied to 

actual structures.   

The moment of appearance of a possible bifurcation in the solution corresponds to the 

critical load. Hence, two positions of equilibrium corresponding to an infinitesimal 

increment in the critical load differ from one another by an infinitesimal amount. 

This last condition will be used as a basis for the determination of critical loads. [94] 

This is observed in the theory of Euler�s equations of columns, and in such real 

manifestations as the Tacoma Narrows bridge failure. 

                                                 
7 Maxwell died of cancer November 5 of that same year at age 48. 
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3.5.5 Potential Theory, Chaos, and Scaling 
Potential theory retains nonlinearity that is inseparable from chaos and present in ordinary 

and partial differential equations. If chaotic response at the microscale is the link between 

bulk behavior and theoretical strength at the nano-level, then the nonlinearities must be 

retained to preserve (and model) that behavior. The difficulty is in modeling grains under 

the influence of a field that has discontinuities and singularities. Part of this has been 

achieved in using functions like Westergaard complex stress functions to model cracks, and 

in multi-atomic models of grains [See Section 8.1 Applied Math and Modeling and 

references 5, 42, 48, 50, 70, 73, 106, 112, 118]. 

As chaos (and cellular automata) has demonstrated, complex behavior does not necessarily 

mean a complex model [54, 94, 101, 128, 138]. The links between each level require 

statistical behavior and probability. One-thousand time steps (nanoseconds) over 1000 nm 

(one-dimension) by 1000 nm (two-dimensions) by 1000 nm (three-dimensions) yields one 

billion cells and one trillion calculations to achieve one microsecond in one cubic 

micrometer of matter. This process must be repeated, one billion cells and one trillion 

calculations, to achieve the response of just one cubic millimeter during one second. 

Considering the time it would take a computer to perform these calculations, it would 

appear to be quicker and easier to test a specimen experimentally and let the material do the 

calculations naturally. This suggests that some scaling relation is present adding up all those 

nanoseconds to obtain discontinuities at the microscale, dislocations and grain boundaries; 

and they are scaled again to obtain the mostly homogenous continuum at the bulk level. 
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3.6 Derivation References 
References for general math derivations are found in [105, 119, 143]; general mechanics 

derivations are contained in [30, 37, 75, 53, 59, 119, 130]; and additional sources for chaos, 

fractals and their relation to geological and scaling phenomena can be found on the 

Internet. 
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4.0 Potential Field Theory Applied to Mechanics 

[22, 52, 68, 78, 90, 82, 109, 115, 131]  

The potential field theory covers many diverse areas [See also Section 7.0 analogous 

systems] including electromagnetic fields, mechanical stress and strain fields, geologic and 

gravity fields, quantum mechanics, and others [52, 68, 78, 90, 109, 131]. Potential theory is 

the preferential method for solving many field problems [9, 34, 35, 52, 68, 78, 90, 104, 109, 

131, 135]. The technique involves the solution of partial differential equations (PDE) of 

which Laplace�s equation is important for engineering applications. Diffusion and heat 

transfer equations can also be formulated using PDE�s. Some of the equations studied in 

potential field theory are enumerated below: 

Laplace�s Equation � Elliptic PDE, a static (equilibrium) or time independent equation 

Wave Equation � Hyperbolic PDE, Maxwell�s electromagnetic equations 

Schrödinger Equation � Second order linear PDE, basic law of quantum mechanics 

Navier-Stokes Equation � Parabolic PDE, turbulence, dissipative system 

Diffusion Equation � Simpler Parabolic PDE, chemical diffusion, heat conduction and 

random walks 

Vlasov Equations � PDE Combination of electromagnetism and fluid mechanics, 

plasma physics, MHD (magneto-hydrodynamics)  
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The Field Theory Handbook [90] covers Laplace�s equation, Poisson equation, diffusion 

equation, and vector and scalar wave equations. It contains the general three-dimensional 

solutions for separable equations in 11 general coordinate systems illustrated in Figure 4-1, 

plus 29 additional systems. The approach is to transform the PDE to a coordinate system 

that takes advantage of symmetry in the geometry of the problem and allows for separation 

of variables. The use of unusual coordinate systems allows for simple description of the 

boundary conditions. (If the boundaries cannot be described in this manner, then the 

problem cannot be solved analytically.) The variables are then separated into three ordinary 

differential equations (ODE) that can be solved for particular solutions. The boundary 

conditions are applied and the unique solution can be built up from the general solutions.  

For engineering applications, the potential function is usually denoted by ϕ , but for 

electromagnetic derivations, V denotes the potential field, and it is associated with voltage. 

Potential functions are designed to be harmonic functions and solutions of Laplace�s 

equation (Equation 3-28) or biharmonic and solutions to Equation 3-26.  



 

 

The eleven coordinate systems: 
Cylindrical 
1. Rectangular ),,( zyx  
2. Circular-cylinder ),,( zr ϕ  
3. Elliptic-cylinder ),,( zϕη  
4. Parabolic-cylinder ),,( zνµ  
 
Rotational 
5. Spherical ),,,( ϕθr  
6. Prolate spheroidal ),,( ϕθη  
7. Oblate spheroidal ),,( ϕθη  
8. Parabolic )( ϕν,µ,  
 
General 
9. Conical ),,( λθr  
10. Ellipsoidal ),,( λθη  
11. Paraboloidal )( λν,µ,  
 

 

 

Figure 4-1. Illustration of 11 coordinate systems for solving partial differential equations [90]
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4.1 Method of Solution 
One method for solving Laplace�s equation, Equation 3-28, is by separation of variables. 

Many problems are separable and many coordinate systems are available. Many problems 

not separable require numerical solutions, but can easily be solved using PDE software. The 

solution is uniquely determined if either:  

a) Dirichlet boundary condition - the function is specified on all boundaries, or if  

b) Neuman boundary condition - the normal derivative of the function is specified on all 

boundaries, or both, 

c) A mixed combination such that all boundaries are specified[52, 68, 78, 90, 109, 131]. 

To demonstrate this method, a simple separation in two and three variables is derived from 

equations Equation 4-1 to Equation 4-13. For illustrative purposes, consider a two-

dimensional harmonic problem, in this example the constants are applicable to a 

temperature distribution or an electrostatic voltage distribution on a rectangular plate. The 

topic of the simplest classical mechanical problem, a beam in tension, is biharmonic and 

contains twice as many terms and boundary conditions. A biharmonic problem in it�s 

simplest form is the subject of Topics in the Spectral Theory of Fourth Order Elliptic Differential 

Operators a dissertation produced in 1996 [99]. To solve the harmonic problem analytically, 

the solution is assumed to be in the form of a product.  

Two-dimensional Three-dimensional  
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)()(),( yYxXyx =Φ  )()()(),,( zZyYxXzyx =Φ  

Equation 4-1 Separable potential function in Two-dimensional  

Φ  is the potential function and it depends only on X (a function of x only) and Y (a 

function of y only) in the two-dimensional  case. Applying Laplace�s equation, Equation 

3-28, yields the relationship between partial derivatives and these are the PDE�s in Equation 

4-2: 
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Equation 4-2 Partial differential equations 

Evaluating and dividing by X(x)Y(y): 
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Equation 4-3 Ordinary differential equations  
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Two-dimensional Three-dimensional 
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Equation 4-4 Separation of variables 

Where constants. are  and    λγβα ,,,  

Equation 4-3 separates into Equation 4-4, and the boundary conditions determine which 

equation of Equation 4-3 applies. The solutions of these ordinary differential equations are 

simple. Note that the derivatives are no longer partial because each derivative is dependent 

on one variable only. The solutions are: 
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Equation 4-5 Solutions to two-dimensional separable PDE 
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constants. are  Where 212121 ccbbaakDCBA ,,,,,,,,,, The two-dimensional equation in 

Equation 4-5 is related to exponentials in Equation 4-6 through identities and Euler�s 

formula. The three-dimensional equation is left in exponential form: 
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Equation 4-6 Equivalent exponential solutions to two-dimensional 

These solutions form orthogonal sets with trigonometric equations and hyperbolic 

equations. The difficult part is assigning boundary conditions and solving for the constants. 

Where there are free surfaces, the potential is zero. This is a Neuman condition, and every 

surface must have defined boundary conditions (Dirichlet, Neuman, or mixed boundary 

conditions). 

For the two-dimensional problem of a plate, when there is symmetry about the x-axis then 

the second solution set can be used, Equation 4-5; the left and right surfaces have zero 

potential, and voltage (or temperature) is applied to the top and bottom ends. If the beam 

were oriented horizontally with symmetry about the y-axis, then the first set of solutions 

applies. Solutions that display time dependent or periodic solutions should use the set that 
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includes sine as a function of the dependent variable. The constants in the potential 

function, A,B,C,D, and λ , must be derived using the boundary conditions, but only four 

are independent.  

       Two-dimensional  

[ ][ ]yDyCxBxAyx
yYxXyx
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Equation 4-7 Potential function 

The dimensions of the plate are 0<y<b and 0<x<a. Applying the boundary condition that 

the left and right surfaces are at zero potential requires: 
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Equation 4-8 Applying boundary conditions to two-dimensional equations yield B and λ   

The resulting potential has this form:  
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Equation 4-9 Potential function 

In order to satisfy the remaining boundary conditions, all of the solutions to Equation 4-9 

must be superimposed to form an infinite series. Applying the end condition, where V is 

the potential or stress at the fixed ends, yields: 
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Equation 4-10 Series solution to boundary conditions 

Both sides of this equation, Equation 4-10, are multiplied by a sine function with a different 

index then integrated to take advantage of orthogonality and solved for D. This 

mathematical trick is applied again for the top boundary condition yielding a formula for C. 

Vb and Vt can be removed from the integration when they are not functions of x or y, 

respectively. 
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Equation 4-11 Solving for D and C 
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The final analytical solution is Equation 4-12, which can be easily programmed or solved 

numerically. 
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Equation 4-12 Final form of potential function 

Equations Equation 4-1 to Equation 4-12 are taken directly from electrostatics field 

derivations from lecture notes for an undergraduate physics electromagnetics laboratory 

and reference [148]. Additional sources for this derivation can be found in [9, 135, 82, 52, 

131, and 105]. This potential distribution is displayed in the Matlab model below, Figure 

4-2. 

Equation 4-12 was solved for the potential field using the following substitutions: the x and 

y axis are arbitrary units of length; the dimensions set to one by one (a=b=1 unit); Vb and 

Vt are set to 100; and the left and right sides are at zero potential. The scale is in potential 

units, which are volts for electrostatic problems, temperature for heat diffusion problems, 

and stress for mechanical problems. However, the particular boundary conditions of this 

example do not correspond to a physically possible load condition. The potential scale may 

be interpreted also as a percentage because of the choice of values. 
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Figure 4-2. Electrostatic potential derived using potential fields and plotted in Matlab PDE 
toolbox 

If the derived potential was for the biharmonic mechanical stress, then to solve for stresses, 

Equation 3-25 is used, and the derivatives of the potential function yield the stresses. 

Because the Laplacian of the voltage is equal to zero and the Laplacian of mechanical 

stresses is also zero, there is a direct relationship between the first invariant (I1) and voltage. 

They are proportional and for this reason, voltage is used to produce isopachic lines that 

can be related to average stress or to the invariant (I1) [See also 4.3.1 Photoelastic Theory 

and 7.0 Analogous Systems]. 

Westergaard Complex Stress Functions in Section 3.4.5 make use of the orthogonality of 

complex equations to obtain separable solutions to Laplace�s equation, Equation 3-28 [81]. 
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These equations are applied to the area near and around cracks and have been formulated 

for the particular modes of failure, but not for entire structures like Airy stress functions 

[See Section 3.4.4 Airy Stress Functions]. Martell [81] contains derivations and equations 

with comparisons for reference, and Figure 4-4 graphically represents the agreement 

between experiment and simulation based on Westergaard-based solutions. 

The complexity of Equation 4-12 explains why these equations are not generally used for 

bulk mechanical calculations, but many computer programs including Matlab�s PDE 

toolbox, Mathematica, and PDE solvers like flexPDE, offer numerical solutions to 

potential field equations overlaid on a familiar finite element grid [See Section 8.0 Advances 

in Computation and Material Science]. Because potential fields are so prevalent in nature, 

many of these programs are cross-discipline and offer solutions to many specialized 

problems [See Section 7.0 Analogous Systems].  

4.2 Spherical Harmonics and Legendre Polynomials 
The study of spherical harmonics began in 1782 in a paper by Legendre on zonal harmonics 

(1785 See bibliography in 78), which inspired Laplace�s paper dealing with general spherical 

harmonics and the theory of the potential [78, 84]. Spherical harmonics are the series 

solutions for potential field problems with spherical symmetry and are covered in 

undergraduate physics, electrostatics [135]. Spherical harmonics were applied to the theory 

of gases by Maxwell in 1879, which was highly regarded by Boltzman whose pioneering 

work in kinetic theory led to statistical mechanics [83, 103]. Spherical harmonics are 
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expanded in Legendre polynomials, also known as zonal harmonics, and are the solutions 

to the Legendre wave equation [135, 104].  

Legendre polynomials are the expansion to the series solution of separable equations in 

spherical coordinates. The general equation is: 

( )( )∑
∞

=

+− θ+=θφ
0

1

l
l

l
l

l
l PrBrAr )(cos),(  

Equation 4-13 General solution to axially symmetric separable equations in spherical 
coordinates [135] 

Where )(cosθlP is the Legendre polynomial and the first 3 terms are listed below with the 

recursive formula for generating the polynomials. 
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Equation 4-14 Recursive formula and first three Legendre polynomials [135] 

Using Legendre polynomials or spherical harmonics as an interpolative tool yield interesting 

results that can have increased accuracy depending on the terms retained. Legendre 

polynomials are employed for post-processing finite element results. According to [141], 

using Legendre polynomials produces better point-wise stress extraction by the 

complementary energy principle (SEC) when the exact FEM solution is not smooth. Bessel 

functions are well known to engineering even if their source is unfamiliar. Solutions to 
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differential equations in cylindrical coordinates can be expressed in terms of Bessel 

functions [52, 68, 78, 90, 109, 131]. 

Spherical harmonics are also used to solve Schrödinger�s wave equation [See Section 7.2 

Quantum Analogy] to obtain the shells of atomic theory and the field density describing 

where electrons are likely to be found [104, 135]. Atomic simulations of atoms, crystals, and 

grains are constructed using potential theory [2, 8, 20, 31, 49, 60, 63, 102, 118]. This means 

that quantum mechanics is also an application of potential field theory [See Section 7.2 

Quantum Analogy]. 

4.3 Photoelastic Fields 
An experimental realization of potential fields is produced using photoelastic materials. 

Stress analysis using photoelasticity is a well-developed experimental method for 

determining the state of stress at a point based on fringe numbers utilizing isochromatic 

and isoclinic information. Many advances in technique, apparatus, and numerical methods 

are responsible for continued interest in photoelastic testing [61, 126, 139]. However, 

potential theory can dramatically improve upon the accuracy obtained by photoelastic 

methods. Comparison with photoelastic results demonstrates a qualitative experimental 

verification of potential theory models [See Figure 4-3 and Figure 4-4]. 

Figure 4-3 demonstrates the characteristic photoelastic pattern generated at a crack tip. The 

similarities to the dipole illustrated in Figure 4-4 (right) are unmistakable. PDE Software 

used to generate the dipole pattern can also be used to generate the stress pattern allowing 
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for better numerical extraction at specified points. The numerical values can be compared 

to photoelastic results for correlation with experimental data. Note the simulation in Figure 

4-4, which shows an excellent qualitative correlation to the actual photoelastic experiments 

of crack tips. The potential functions used in this particular simulation are similar to 

Westergaard stress functions [44]. 

 

Figure 4-3. Photoelastic response at a crack tip [100] 
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 Electrostatic Dipole 

Figure 4-4. Photoelastic experiment and VIP simulation of crack tip compared with dipole 
(right) generated with Equipotential 3.1 software [44] 

4.3.1 Photoelastic Theory 
[29, 30, 37, 44, 59, 64, 71, 72, 100, 126, 136]  

The experimental stress analysis method of photoelasticity allows one to visualize the 

complex interplay of stress fields on birefringent8 materials using polarized light.  Modeling 

of complex parts and structures is possible using these materials [37]. The results are 

applicable to common engineering materials under specific circumstances and conditions, 

even though the test material and the building material may have different material property 

constants [37]. By matching Poisson�s ratio, the photoelastic material can be expected to 

                                                 
8 Birefringent materials allow light to pass through the material at different speeds depending on the orientation of the 

sample. 
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respond like the building material [37]. This is also the result obtained from the stress 

equations of compatibility, Equation 3-23. 

The equations used to extract stresses from photoelastic data are [30, 37, 75, 53, 59, 119, 

130]:  

or  

h
Nf

h
Nf

2

21

σ

σ

=τ

=σ−σ

max

        Where           )( 21 nnhN −
λ

=  

Equation 4-15 Photoelastic stress extraction equations 

The difference in principal stresses (or 2 times the maximum in-plane shear stress) is 

determined from the number of fringes (N), divided by the thickness (h) of the model, and 

multiplied by a constant factor ( σf ) determined by calibrating the model material. The 

color of the fringe comes into the equation in the definition of N; λ  is the wavelength of 

light and the indices of refraction (n) are associated with the principle stress directions. 

However, these equations only describe how the light is affected by stress in a birefringent 

material. They are not the equations of interest for modeling or mathematically describing 

the pattern. Potential field theory is needed for the mathematical model.  

The visual similarities to electromagnetic fields should be apparent, and occur because 

electrostatics must also satisfy Laplace�s equation, Equation 3-28 [135]. This similarity is 

useful for another two-dimensional experimental technique in which conductive, Teledeltos 
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paper is cut to the same geometry as that of the test specimen [37]. A voltage is applied to 

the edges at an electrical potential to simulate the mechanical stress potential, and a 

complete circuit is made to the ground, corresponding to the end conditions of a 

mechanical system [37]. By probing anywhere within the model, a voltage is obtained that is 

proportional to the average stress at that point [37]. Lines of constant voltage are isopachic 

lines, where the sum of the two principle stresses is constant [37]. These are the 

equipotential lines of electrostatics [135]. 

Photoelasticity has experienced a resurgence of interest due to a reduction in the cost of 

equipment and better computer imaging software [61, 71, 136, 139].  The results are more 

realistic than finite element software solutions with less cost in terms of computer time and 

man-hours spent programming, especially for complicated geometries, but there is a limit to 

the accuracy that can be expected from this method, even using sophisticated computer 

image capture, processing, and advanced photoelastic testing equipment. One of the 

difficulties in interpreting photoelastic results lies in knowing which fringes, located in 

different parts of the model, are of equivalent stresses [37, 139]. New combined methods 

using thermoelastic and photoelastic data still have errors ranging from 10% to more than 

30% and without good resolution [139]. 

4.3.2 Comparison 
The process of performing a photoelastic experiment and interpreting the results has been 

described as part art and part science [61]. The incredible work by Thamm, Figure 4-5 and 

Figure 4-6, where the lines of stress and force were hand drawn over photoelastic results is 
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an example. The goals of photoelasticity can be modeled more accurately using PDE 

software. The ability to model a part, visualize the flow, and then easily make adjustments 

like cutting holes or adding components to the model, is indispensable as a design tool and 

very instructive to the student learning about the �flow of stress� [37, 126]. Photoelastic 

models cannot be easily modified, and the material ages badly, creating stress 

concentrations at points where excess humidity is absorbed into the model [37].  
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Figure 4-5. Thamm’s hand drawn stress fields for component design, beam in bending [126] 
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Figure 4-6. Thamm’s hand drawn stress fields for engine component design [126] 
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Potential Theory               Photoelastic Theory 

Isoclinics           Force of Lines     
                                          

icsIsochromat              Isostatics         

≡
⊥⊥

≡
 

Figure 4-7. Diagram of the comparison between potential theory and photoelastic theory 

In potential theory, Figure 4-7, isostatics are lines of constant stress and so are 

isochromatics. Isostatics are perpendicular to the flow of the force lines as isoclinics are 

perpendicular to the isochromatics. The lines of force are indistinguishable from isoclinics.  

Because potential theory models create fields virtually identical to the delicate photoelastic 

patterns, many of the same arguments for using photoelastic techniques are applicable to 

potential theory models without the complications of experimental measurements. 

Many of the reasons for not developing potential theory into an aid for mechanical 

stress/strain analysis have been eliminated in recent years. 

Old Problems                                               

• Difficult Math-Elliptic integrals 

• No closed form solutions 

• Infinite series 

• Inseparable variables 
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• Difficulty generalizing results 
New Solutions 

• Handbooks 
 

• Advances in potential theory in related sciences: 
Geology [81, 110], Electromagnetics, Quantum 
physics, Vibrations and Acoustics, Gravity [35], 
and Math  

 

• Numerical Methods-  
Computers, Parallel processing, Finite elements, 
Chaos and nonlinear solutions 

 
Note that potential theory has a long history of being used an aid for fluids, 

electromagnetics, quantum mechanics, geology, and other sciences. [See Section 7.0 

Analogous Systems and Section 8.0 Advances in Computation and Material Science] 
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5.0 Model of Beam Using PDE 

The following models were created using Matlab�s PDE toolbox; this allows Matlab�s 

powerful numerical solvers to calculate the series solutions. An arbitrary aspect ratio of four 

and arbitrary loading is used to produce clear field patterns. The beam being modeled is 

under simple tension that produces a constant stress field according to classical theory; 

therefore any deviation from a constant field will be clearly visible.  

The classical model is the typical free-body diagram of a beam in tension; both ends are free 

and the load produces a constant stress (force by area) throughout the model. There is 

deflection due to the force equal to the strain (Young�s modulus by stress) distributed over 

the length of the beam and there is contraction through the width, Equation 5-1. The 

assigned constants and calculated values are noted below.  
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Equation 5-1 Classical mechanical equations for a beam in tension with assigned constants 
and calculated values   

Modeling a free-body diagram is difficult because it is capable of rigid body translation and 

rotation. To simulate the beam in tension, two Matlab models are described with different 
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end conditions or boundary conditions and the subtle differences are exposed. A third 

model with similar deflection but different boundary conditions and entirely different 

potential field is modeled to demonstrate the difficulties in assigning boundary conditions 

and their effects. The unstressed model is also shown for comparison. 

The Structural-Mechanics/Plane Stress application is chosen for this model from the 

choices of: Generic Scalar, Generic System, Structural Mechanics/Plane Stress, Structural 

Mechanics/Plane Strain, Electrostatics, Magnetostatics, AC Power Electromagnetics, 

Conductive Media DC, Heat Transfer, or Diffusion. All of these problems are solved using 

PDE�s with application specific variables and graphs. The equation solved by Matlab is: 

The boundary conditions for the Matlab models and equations are: 

Dirichlet- 
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Potential u-  
Surface tractions g-  
 

 Free surface boundary condition: 
0== qg  
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1002
01

=σ=
=σ=

yy

xx

g
g

 



















µ+µ

µµ+

=

G
G

GG
G

c

20
0G

0
     0    

    0  
0

0
02

 

In the following models, the first beam is classically solved, the second is without applied 

stress, the third follows Dirichlet conditions where the displacement is prescribed on the 

bottom, and the fourth follows Neuman conditions with stress prescribed on the bottom. 

All four models are shown in each graph. The deformed models are not to scale, but are 

exaggerated. Matlab uses a finite element framework with triangular elements for the 

numerical solution of the PDE. These equations are different from typical finite element 

packages like Ansys or Abaqus, though they can be modified to perform the necessary 

operations. 
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6.0 Results of Comparison 

These results demonstrate the character and structure of potential field solutions even in 

the simplest classical model of a beam in tension. This method justifies simplifying 

assumptions by the good agreement to the classical model. It shows interesting results of 

Saint-Venant�s principle, which are the reasons for not focusing too closely on where the 

loads are applied.  

In Figure 6-1, the absolute displacement is calculated and the graph shows that at the fixed 

ends, the isostatic surfaces curve away from the ends. The fixed ends maintain their original 

width and taper to approximately the same width as the classical model. 

 

Figure 6-1. Absolute displacement of a beam in tension 

Absolute Displacement in Beam in Tension                     Displacement 
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The X-displacement of Figure 6-2 shows clearly how the fixed ends affect the flow. Note 

that the x-displacement is 100 times smaller than the displacement in the direction of the 

force and has a very small contribution to the total field. Symmetry is apparent about the 

vertical centerline of the beam. 

 

Figure 6-2. X-displacement of a beam in tension 

 

 

 

X-Displacement in Beam in Tension                     Displacement
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Figure 6-3 shows the Von Mises stress of the beam, which is simply constant for the 

classical model. The color-coding allows for greater resolution of the isostatic surfaces and 

is reminiscent of photoelastic models. The color could be coded to photoelastic data 

producing purely computational, photoelastic-like fringes to compare to real models. 

 

Figure 6-3. Von Mises Stress of a beam in tension 

Most of the model, Figure 6-3, is in a state of constant stress of 100% of the applied stress. 

It is interesting to note that the stress actually drops at the fixed ends, and a stress 

concentration is located at the surface labeled 103 extending almost a third of the model for 

fixed ends and one quarter into the fixed-free model. 

 

Von Mises Stress in Beam in Tension                            Stress 
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The first principal stress in the classical model is zero (stress in the x-direction). The 

maximum attained in the PDE models is 25% applied stress and occurs at the fixed ends, 

Figure 6-4. The fixed ends prevent the beam from relaxing in the x-direction causing stress, 

whereas the center of the beam experiences only strain. 

 

Figure 6-4. First principal stress of a beam in tension 

The second principal stress in the classical model is stress in the y-direction. The Figure 6-5 

shows the expected stress concentration at the corners of the fixed ends. In this figure there 

is also a small reduction of stress at the center of the fixed ends and a small stress 

concentration less than one quarter from the fixed ends on both models.  

 

Principal Stress 1 in Beam in Tension                               Stress 
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The fixed-fixed model has a significantly higher corner concentration and the fixed-free 

model shows lower stresses at top center and more pronounced lower stresses along the 

sides near the quarter mark. Again, the color scheme was chosen to simulate photoelasticity 

and highlight the isostatic surfaces. 

 

Figure 6-5. Second principal stress of a beam in tension 

The final figure, Figure 6-6, is not from the same series of models presented. A variation in 

boundary conditions produced a deformed shape similar to the previous models, but a field 

of a different pattern. The top end is fixed with Dirichlet condition, and the bottom is a 

free surface (Neuman), but the sides have an applied traction downwards in the negative y-

direction (Neuman). The previous models have left the side surfaces free.  

Principal Stress 2 in Beam in Tension                               Stress 
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This is not a typical boundary condition but compare with Figure 6-2 to see how the field is 

warped. From the deformed state, this appears as a beam in tension, but the field displays a 

different shape. This potential field form may be the result of extruding a material or 

viewing the stress through the thickness of a material clamped in the x-direction and 

stretched in the negative y-direction. This result also demonstrates the importance of 

choosing possible and correct boundary conditions for the model, and of the value of 

performing photoelastic experiments for correlation. 

 
Figure 6-6. X-displacement of alternative boundary conditions for a beam in tension 

X-Displacement in Beam in Tension                    Displacement 
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7.0 Analogous Systems 

Potential Force Fields in analogous systems are defined as: 

In electrical problems, ϕ  represents electric potential or voltage; in magnetic problems, ϕ  

is the magnetic scalar potential (ampere-turns); in thermal problems, ϕ  is the temperature 

(Celsius); in gravitation, ϕ  is the gravitational potential (J/Kg); in vibration applications, ϕ  

is the displacement (m); in hydrodynamics and acoustics, ϕ  is the velocity potential (m2/s) 

[90]. 

7.1 Fluid and Wave Analogy 
[21, 36, 129, 117] 

Granular jet experiments [129] produced jets from glass beads (sand) impacted by a lead 

sphere, similar to jets of water known as Worthington jets, Figure 7-1.  This is significant to 

engineering and geology, demonstrating the similarities in response between granular 

medium and fluids [129, 134]. If attention is confined to plane longitudinal waves moving 

normal to the faces of a slab, normal shearing forces arise. Then there is quite a good 

analogy between elastic solids and fluids [117].  
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Figure 7-1. Worthington jets produced by spherical beads of sand [129] 

The interaction between grains is very important to microscale mechanics and the strength 

of materials. Figure 8-1, from Section 8.1.1 Crystal Structure, demonstrates the complex 

interactions between grains and dislocations, and the experimental results illustrated in 

Figure 2-18 and Figure 2-19 show that theory is still not consistent with experimental 

models. Plasticity is one of the most complicated problems for engineers. During plastic 

deformation, materials that are solids behave like liquids, especially at high strain rates or 

impacts [30, 37, 75, 53, 59, 119, 130]. 

7.2 Quantum Analogy 
[43, 53, 104] 

In 1925, Schrödinger described the wave-like nature of particles by equations similar to the 

differential equations that describe acoustic, elastic, and electromagnetic waves [104, 135]. 
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There are no exact analytical solutions for most forms of the Schrödinger�s wave equation 

only numerical approximations, and spherical harmonics are utilized to obtain series 

solutions [104, 135]. Difficulties in solving the equation are similar to the three-body 

problem of gravitation [See Section 3.5.2 Jules Henri Poincaré], which is also solvable only 

numerically [35, 54, 119]. 

 Together with the Pauli principle and spin, Schrödinger�s equation accounts for the 

differences in hardness between pure metals and pure semiconductors, and it plays an 

important role in determining the shear stiffness of solids [53]. 

Electrons follow field equations similar to acoustical vibrations and electromagnetic waves. 

The equations are given below in Equation 7-1 [53]: 
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Equation 7-1. Analogous equations of potential fields [53] 

In the acoustic equation, the velocity is the speed of sound (of the transmission material); 

for the electric field (E) and the magnetic field (B), the speed is light-speed, c ; and for the 
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quantum field, the speed is defined as 
p
E  or energy over momentum. The field variable is 

the probability amplitude (Ψ) for the quantum case, and Ψ2 is the probability density [53]. 

This is analogous to the field variables u, E, and B, which signify respectively the 

displacement amplitude, the electric field amplitude, and the magnetic field amplitude [53]. 

(Also, to find the intensity of the EM fields, the square of the field variable is calculated.) 

7.3 Electromagnetic Analogy 
[9, 43, 88, 119, 135] 

The electromagnetic analogy is very fitting, because James Clerk Maxwell both derived 

electromagnetic equations and introduced experimental photoelasticity [75, 84, 88, 135]. 

Electrostatics must also satisfy Laplace�s equation when charge densities are zero [135]. 

When there is a total charge density, then Poisson�s equation must be satisfied, which sets 

the Laplacian equal to a constant [135]. 

 Most PDE solvers are equipped to handle electrostatic problems because they are more 

commonly approached using potential functions. However, any problems with potential 

fields use the same algorithms to find numerical values and represent fields, including: 

gravitation, atomic interactions, fluid flow, thermal, electromagnetic, as well as mechanical 

stress and strain [52, 68, 78, 90, 109, 131, 135]. PDE software is usually designed to handle 

any of these fields, because it is only a matter of changing the labels of coefficients; the 

programming remains unchanged for any field solution. 
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8.0 Advances in Computation and Material Science 

“…you know the right equations but they’re just not helpful. You add up all the microscopic pieces and 
you…cannot extend them to the long term. They’re not what’s important in the problem. It completely 
changes what it means to Know Something.” ~Feigenbaum [54] 
 
Analytical solutions to the field equations for many general classical mechanics problems 

have long been unattainable. The approximations to the solution of the field equations, 

made by Airy [Section 3.4.4], Westergaard [Section 3.4.5], and others, are simplifications 

obtained by relaxing certain boundary conditions. Advances have been made in 

mathematically formulating and solving PDE�s, in the capacity of computers to numerically 

solve PDE�s, and in sister sciences that use potential fields similar mathematically but of 

physically different natures. These advances can be applied to mechanical problems with 

the result of more realistic behavior in models, and closer correlation to experimental 

results. Computer programs for solving PDE problems are becoming more prominent and 

widely used. 

8.1 Applied Math and Modeling 
[23, 31, 32, 40, 43, 44, 45, 46, 49, 53, 50, 118, 121, 124] 

CMSN, the Computational Materials Science Network, defined one of the greatest 

challenges in realistic simulation of the mechanical behavior of polycrystalline materials as:  

the unification of models from different length and time scales [73]. Many of the sources 

and funding agencies recognize that this must be a cross-discipline effort. Multiscale 

Simulation of Complex Materials, or MUSIC, is a multidisciplinary project being explored 

by the Advanced Materials Division of ENEA in Rome, Italy (in a white paper by F. Cleri, 



 

 121

May 1999). Molecular dynamics simulation is using interatomic potentials to model shock-

induced plasticity, phase transformations, and dislocation mobility. This work is being 

carried out at LANL, Brown University, Cal Tech, MIT, LLNL, and in St. Petersburg, 

Russia. Molecular dynamics (MD) computer simulation combines time-scales to determine 

viscosity of liquids (similar to shear modulus in solids) with respect to time from ensemble 

averages of the stress fluctuations, and is described as similar to recent calculations of elastic 

constants of solids from strain fluctuations with spatial dependence rather than time 

dependence observed in liquids [60]. 

Mathematical improvements include: 

- New advances to the solutions of elliptic problems, significant to potential 

theory [62]; 

- Generating cellular patterns [101, 138]; 

- FE improvement using potential theory for elliptic PDE solver; 

- Fast field solvers for the Poisson equation (Laplacian equal to a constant); 

 - Successive node reduction used by µ s-Thermanal (Microsystems on IC chips) 

and 2D-Sunred [62, 124]; and  

- Finite element method of stress extraction using complementary energy 

principle [141]. 
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8.1.1 Crystal Structure 
[42, 62, 70, 73] 

Improvements in modeling microstructure include: three-dimensional density functions (or 

Morse functions) are used to describe the positions and crystal topology of characteristic 

elements neglecting quantum effects [62] and Ortep-3 used for the stereoscopic modeling 

of crystals; see figures in [31, 63]. Quantum mechanical effects, like resonant tunneling, 

superposition, and cellular automata based on quantum dots, are being developed to create 

quantum computation [112].  The CMSN  [73] model utilizes parallel computing and is 

related to topology [63, 31]. Modeling of grains at the microscale is the hardest and most 

significant advance towards bridging the scales [112]. 

New molecular software, Stability Constants (SC-) Database contains the definitive 

collection of metal-complex stability constants from all significant publications in journals 

from 1898 to 2000. Presently the database contains 85,000 records from 19,000 references 

of 8,000 ligands. 

Figure 8-1 is the most cross-referenced figure in this thesis. It visually represents many of 

the issues in modeling microscale behavior. Figure 8-1 is from the paper Atomic-scale 

Simulations of the Mechanical Deformation of Nanocrystalline Metals, and contains the response of 

16 grains and 100, 000 atoms. Note the discontinuities in strain at the grain boundaries, this 

is why conservative field based theories do not apply at this scale. 
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Figure 8-1. Figures from microscale grain simulation. Note: bottom right graph of the rate 
dependence [118] 
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8.1.2 Modeling Fracture  
[20, 91, 92, 93, 110, 118, 121] 

Dynamic cracking analysis, uses ABAQUS and DYNA3D, to model dynamic crack 

formation and propagation was simulated with starter cracks embedded in the model and 

more realistic based models utilizing interfacial cohesion forces combined with typical 

continuum finite elements [118]. This is important for highly explosive materials [20], 

spalling, and high deformation manufacturing techniques. Griffith crack and Westergaard 

stress functions contributed to the success of these models. VIP, a computer program using 

five mechanical parameters (experimentally defined), produced excellent similarities to 

photoelastic results of fringes around crack tips, Figure 4-4 [44]. Studies of fracture 

suggested a new material parameter, incubation time as the minimal interval needed to 

initiate fracture in high-rate loading conditions, and the only parameter for dynamic 

strength [91].  

8.1.3 First Principles Calculations and Statistical Mechanics 
[2, 38, 42] 

Caltech Center for Simulation of Dynamic Response of Materials is using first principles 

computation to model materials from the quantum level using successively larger scales of 

time and length to produce parameters useful for continuum calculations [5]. Density 

functional theory (DFT) is producing excellent correlation to ground state properties, while 

Quasiparticle theory  (QT) is used to adjust the DFT model to account for excited states. 

As of 1999, molecular dynamic simulations were preformed modeling 1 million particles, at 
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distances of 25 nm, for time scales of 10 ns, and using up to 500 processors [112]. 16 grains 

and 100,000 atoms are modeled in Figure 8-1, demonstrating stress concentrations at grain 

boundaries [118]. First principles computation for prediction of material properties is also 

being conducted at MIT according to the 2002 Material Research newsletter. Molecular 

dynamics (MD) computer simulation combines time-scales to determine viscosity of liquids 

from ensemble averages (with respect to time) of the stress fluctuations [60] and is 

described as similar to recent calculations of elastic constants of solids from strain 

fluctuations with spatial dependence rather than time dependence observed in liquids. 

Evolutionary schemes have also been developed for finding new materials with specialized 

properties [2, 19]. Mathematical models of hysteresis and its application to problems of 

finding minimum energy configuration were discussed at the Understanding Complex 

Systems Symposium in Chicago in June of 2001 [49].  

Statistical mechanics has problems being applied to isolated nanostructures [53, 103], 

because these structures have a significant statistical variation in properties that are not well 

understood and fluctuate with time [112]. 

Northwestern University has been studying and modeling high strength steel using 

quantum theory and supercomputing at the Pittsburgh Supercomputing Center. Greg 

Olson and Art Freeman began their collaborative efforts in 1985, and in 1991, their work 

was responsible for the design of a new kind of steel for bearings used in the space shuttle. 
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Computational Mechanics using mesh-less boundary node method (BNM) are being used 

for three-dimensional potential theory, linear elasticity, and fracture mechanics, as well as 

adaptive meshing. The random walk method is also being explored in an attempt to find 

solutions to solid and structural mechanics problems. 

An efficient method for solving parabolic partial differential equations for quantum 

mechanical solutions is implemented in Mathematica for solving numerical simulation 

experiments: a double slit experiment; tunneling (barrier penetration); scattering of a particle 

from a cylindrical potential barrier; and interaction of two wave-packets. This is an 

application of solving the two-dimensional time-dependent Schrödinger�s equation [See 

Mathematica website]. 

Using density functional theory from a chemistry viewpoint, Figure 8-2 is a simulation of 

the elements in lock and key formation showing the chemistry of how elements fit together 

to form compounds [See text in figure captions]. This type of software also models 

complicated compounds like proteins and amino acids, and can be used to determine if 

reactions will occur [17]. This is very important for bioengineering applications where 

reactivity is a vital concern. 
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Figure 8-2. Bader’s atomic simulations using quantum and functional theory for chemistry 
diagrams [17] 
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8.2 Material Advances in Nanotechnology 
[4, 5, 11, 19, 20, 23, 41, 50, 53, 89, 112, 118]  

The goals of nanotechnology include understanding size-dependence of properties, 

fluctuations in properties, properties of nanostructures, and assembly at the nanoscale. 

Nanoscience is expected to solve many long-standing questions in many scientific fields 

including physics, material science, and mechanical engineering [112]. Areas of active 

research and development in nanotechnology include: understanding of properties of 

nanostructures and components; precision, high out-put, inexpensive nano-manufacturing; 

and designer nano-materials and nanostructures using computer aided tools [112]. Both 

kinetic theory and thermodynamics is being studied to understand relative stability of 

different structural phases and to map phase transformations in nanostructures [112]. 

Funding agencies are interested in cross-discipline research and collaboration.  

Micro and nano-technology are an open frontier including: thin films, micro-testing devices, 

nano and micro-components, manufacturing methods, and biological applications. Some 

samples of the wealth of investigative possibilities are the quantum corral, carbon 

nanotubes gears, and the quartz crystal microbalance. The Quantum corral is constructed of 

iron atoms arranged with the tip of a tunneling microscope on a copper surface, Figure 8-3. 

The goal of this component is to trap electrons and force them into particular quantum 

states (superposition), a component for quantum computing. The carbon nanotubes, Figure 

8-4, with benzene teeth is a gear for futuristic NEMS, nanoelectromechanical systems [112].  
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Figure 8-3. Quantum corral nanotech component [112] 

 

Figure 8-4. Carbon nanotube with benzene teeth gear, nanotech component [112] 
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Combining components into machines and analyzing their mechanical systems and stress 

distributions is particularly suited for mechanical engineers, but the properties of these 

components must be understood before design can be contemplated.  

Quartz crystal microbalance (QCM) is being used at Cambridge to detect the acoustic noise 

of bonds breaking and has applications to biosensors [11]. QCM is being used to investigate 

bonds and their relative strengths, and is one of the problems mentioned in Section 1.3 

Examples of Specific Nanotech Problems. 

Materials references include: [1, 4, 5,6, 7, 15, 16, 19, 26, 41, 56, 59, 66, 96, 98, 107, 122, 123, 

125, 128, 130] 
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9.0 In Conclusion 

The ability to design at the nano-level, to choose and create new materials or applications 

and to model from atomic (first principles) up to the bulk level is beyond present 

engineering ability. It requires a cross discipline investigation and synthesis of methods and 

ideas from different fields. The mathematical foundation of this work comes under 

potential field theory and covers most of the goals of engineering at the nano-scale. Recent 

computer advances make this approach realistic and numerically solvable.   

Potential field theory has been used by physicists to solve static electromagnetic field 

problems since Maxwell derived the equations and is the recognized exact solution to 

mechanical stress and strain fields. In the past, considerable work has been done to 

analytically solve these very complicated partial differential equations, but recent computer 

advances were necessary to obtain numerical solutions. The nature of the field depends on 

scale, but not the solution. Failure criteria are dependent on strength and although the idea 

of a material performing at a percentage of its maximum, or theoretical strength, is not 

important for bulk calculations, it has become important to nano-scale calculations and 

especially in modeling material response. The constants and variables of strength are not 

scale invariant; these material properties depend on scale and cannot be neglected at scales 

smaller than 1 mm. 

Because Potential theory is so flexible and is used to model atomic interactions, grain 

interactions, defects, and cracks, making the natural extension to bulk mechanics using 

PDE solvers sets the stage for combining the levels into a truly multiscale application. 
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To circumvent the need for costly, explorative experiments at the nano-scale, theoretical 

strength models can be used for assigning values to the measures of strength and the 

crystallographic constants, and experimentation can be used to verify the computer models.  

The upper bound of material strength is close to the strength achieved by nano-

components, as observed from the few experiments that have already been conducted [See 

23, 66, 88, 93, 112]. This gives engineers the opportunity to design nano-mechanical 

systems making use of the new nano-components. Because of the additional problems of 

plasticity, dislocations and grains, the micro-scale is still just a modeling tool that needs 

more work before it can be used as a design tool. 

This investigation has also highlighted how important cross-discipline work is to the 

development and solution of multiscale problems. Each of the variables that contribute to 

strength must be included in a comprehensive model, not only to demonstrate their effect, 

but also to observe the limiting conditions (where the variables can safely be eliminated). 

Some excellent modeling programs have been developed exclusively for the atomic and 

molecular scale for chemists and physicists. These can serve as the first level to modeling 

independent of scale and an aid to engineers working and designing with nano-

components. 

9.1 Limitations 
Potential fields are observed and modeled at every scale. The math is scale invariant, but the 

material properties vary with spatial and temporal scales. To design at scales other than the 
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bulk level requires cross-collaboration to obtain good material models and accurate 

descriptions of the various fields involved in a particular problem. Setting boundary 

conditions is always an important issue, as is apparent in Section 6.0. 

Many problems cannot be analytically solved. For inseparable partial differential equations, 

there are only numerical solutions. Solutions and computer programs utilizing truly three-

dimensional coordinates that are not spherical are rare. Microscale and plasticity are still 

difficult to model, and may not be completely defined using potential field theory. Chaos 

and nonlinear processes are not adequately understood at this scale, and although strides 

have been made in microscale modeling, there are numerous conflicts that need to be 

resolved before microscale modeling becomes an effective design tool. 

9.2 Recommendations 
The next step is using potential theory methods to solve, catalog, and explore the 

limitations of the method as applied to general and specialized engineering problems. The 

many problems that can be analytically solved have not been explored and combined for 

easy reference. This can be expanded into three-dimensional modeling programs and even 

further by developing four-dimensional models of vibration and impact with time as the 

fourth variable. 

Potential field theory can be applied to all levels and scales in material response simulation; 

at every level, there is a field controlling the material�s response. At the nano-scale, the field 

is electromagnetic potential [See Section 7.2 Quantum Analogy and Section 7.3 
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Electromagnetic Analogy]; at bulk scale, the potential field can be modeled as stress (or 

strain); at the micro-scale, a potential field, made of elastic waves, drives dislocations and 

grain boundary interactions, requiring a more sophisticated model.  

The main reason for adopting potential field theory as opposed to a more familiar finite 

element solver that uses traditional bulk mechanical solutions, like Ansys, Abaqus, and 

others, is that potential theory can be applied through all the size and time scales. The 

algorithms and methods for numerically solving quantum and microscale problems are 

equally applicable to solving the PDE�s governing the bulk problems. The extension from 

atomic behavior to grains and to bulk structures can be accomplished using potential theory 

and massive computational resources. 
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