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Abstract 
 

Cellular Mechanisms Responsible for Development of Sensitivity of the 

Bovine Corpus Luteum to Prostaglandin F2 alpha 

Madhusudan P. Goravanahally 
Prostaglandin F2 alpha (PGF2α) brings about regression of the bovine corpus luteum (CL). This 
luteolytic property of PGF2α is used in beef and dairy cattle to synchronize estrus. A limitation 
of this protocol is an insensitivity of the early CL to luteolytic actions of PGF2α. The 
mechanisms underlying this differential luteal sensitivity are poorly understood. Therefore the 
main objective of the current study is to understand the cellular mechanism of luteal 
insensitivity. The developing CL has a maximum number of PGF2α receptors; therefore 
differences in signaling events might be responsible for luteal insensitivity. Hence differential 
gene expression at two developmental stages of CL, days 4 (D-4) and 10 (D-10) post estrus, 
might account for differences in signal transduction pathways associated with luteal sensitivity. 
For example, differential expression of protein kinase C epsilon (PKCε /PRKCE) and its ability 
to regulate PGF2α -stimulated rise in intracellular calcium concentration have been proposed to 
be part of luteal resistance mechanism. Therefore the current study investigates the: 1) 
physiological role of PRKCE in regulating the ability of PGF2α to inhibit progesterone 
synthesis, 2) role of PGF2α -stimulated rise in intracellular calcium in progesterone inhibitory 
actions of PGF2α, 3) differential expression of a large portion of the luteal transcriptome during 
its developmental transition from early to mature stage, and 4) role of differentially expressed 
CAMKK2 in acquisition of luteolytic sensitivity to PGF2α. Down-regulation of PRKCE 
significantly reduced the ability of PGF2α to inhibit LH-stimulated progesterone accumulation. 
A pharmacological increase in intracellular calcium concentration [Ca2+]i significantly 
inhibited LH-stimulated progesterone accumulation irrespective of luteal developmental stage. 
More importantly, buffering the rise in [Ca2+]i reduced the ability of PGF2α to inhibit 
progesterone accumulation. Microarray analysis identified 167 genes that were expressed 
differentially (p < 0.05). These were categorized into genes involved in cell signaling (12%), 
steroidogenesis and metabolism (10.2%), protein degradation (5.3%), transcription regulation 
and DNA biosynthesis (18.5%), protein biosynthesis and modification (18.5%), extracellular 
matrix and cytoskeletal proteins (9.5%), antioxidant property (3%), miscellaneous (17%), and 
unknown functions (6%). In addition, the in vivo administration of PGF2α increased the 
expression of a guanine nucleotide binding protein (G protein), beta polypeptide 1 (GNB1) in 
D-4 CL and calcium/calmodulin dependent kinase kinase 2, beta (CAMKK2) in D-10 CL. 
Furthermore, large and small luteal steroidogenic cells, known to be targets for actions of 
PGF2α were demonstrated to be a cellular source for CAMKK2. More importantly, in vitro, a 
CAMKK2 inhibitor significantly reduced the ability of PGF2α to inhibit progesterone 
accumulation. In summary, a developmental increase in PRKCE expression combined with its 
ability to regulate [Ca2+]i and the availability of CAMKK2 to mediated the actions of rise in 
[Ca2+]i might be important components of the mechanism rendering the bovine CL sensitive to 
PGF2α.  
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Chapter I: Review of literature 

I. History 

It was Regnier de Graaf who first described that “globular bodies” appeared on rabbit ovary after 

coitus and remained there until after parturition [De Graaf R, 1643]. The term corpora lutea, 

meaning “yellow bodies” was first given by Marcello Malpighi [Malpighi M, 1689]. Prenant 

[Prenant LA, 1898] suggested that corpus luteum might produce substances that regulate 

pregnancy and act as a gland of internal secretion. Beard [Beard J, 1897] proposed that corpora 

lutea were responsible for inhibition of estrus and ovulation during pregnancy. In rabbit that the 

corpora lutea were required for implantation and maintenance of pregnancy was first 

demonstrated by Fraenkel [Fraenkel L, 1903]. Later, Corner and Allen [Corner GW and Allen 

WM, 1929] demonstrated that the alcoholic extract of corpora lutea from sows was capable of 

maintaining pregnancy in ovariectomized rabbits. Subsequently in 1934, four different groups of 

scientists isolated and purified a crystalline form of luteal factor [Allen WM and Wintersteiner 

O, 1934; Butenandt A et al, 1934; Hartmann H and Wettstein A, 1934; Slotta KH et al, 1934]. In 

the same year, Slotta et al. described the structural formula of luteal factor and named it as 

progesterone [Slotta KH et al, 1934].  

 

 II. Development of Corpus luteum 

The corpus luteum (CL) is a transient endocrine gland formed from the ovulated follicle, and it 

secretes the primary steroid hormone progesterone. The development of CL is a complex 

process. The rate of growth of CL is very rapid and can be compared to the process of wound 

healing and tumor formation [Smith MF et al, 1994]. For example, the CL of cattle weighs an 

average of 3 g during Day 3 after ovulation, whereas it weighs on average of 5.1 g on Days 14 

post-estrus [Fields MJ and Fields PA, 1996]. The pre-ovulatory surge of luteinizing hormone 

(LH) induces ovulation of a follicle followed by luteinization and differentiation of residual 

follicular cells [Lipner H, 1988; McClellan MC et al, 1975; Niswender GD and Nett TM, 1988]. 

The luteinization process is a transition of pre-ovulatory follicle into a highly vascular tissue 

capable of secreting large quantities of progesterone. The capacity to secrete high rates of 

progesterone is accomplished by increased expression of progesterone producing enzymes such 

as cholesterol side-chain cleavage cytochrome P-450 complex (P-450scc) and 3beta -
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hydroxysteroid dehydrogenase/delta5, delta 4, isomerase (3beta -HSD), steroid acute regulatory 

protein (StAR), 3-hydroxy-3-methlylgluaryl coenzyme A (HMG-CoA) and decreased expression 

of the enzymes that convert progesterone to estrogens such as 17 -hydroxylase cytochrome P-

450 and aromatase cytochrome P-450 [Bao B and Garverick HA, 1998]. Granulosal cells express 

low amounts of HDL prior to luteinization [O'Shaughnessy PJ et al, 1990]. However, there is an 

increased expression of mRNA for HDL-receptor after luteinization [Landschulz KT et al, 1996]. 

During differentiation and growth of CL, there is an extensive tissue remodeling including, 

intermixing and migration of endothelial cells, thecal cells and fibroblasts in such a way that they 

are in close proximity to one another. During initial development, the wall of the follicle 

collapses into folds [Pederson ES, 1951; Priedkalns J and Weber AF, 1968] and capillaries 

invade the developing CL which appears to be under the influence of angiogenic and mitogenic 

factors such as fibroblast growth factor [Gospodarowicz D et al, 1985], platelet-derived growth 

factor [Khachigian LM et al, 1996], insulin-like factor-1 [Suh DY et al, 1992], heparin binding 

growth factor [Grazul-Bilska AT et al, 1992], and vascular endothelial growth factor (VEGF) 

[Redmer DA and Reynolds LP, 1996]. Neovascularization is an important process that occurs 

during the CL development. It consists of breakdown of the basement membrane, migration and 

proliferation of pericytes and endothelial cells followed by the development of capillaries. 

Capillary lumina constitute about 22% of total CL weight and endothelial cells constitute 

approximately 50% of the total luteal cell population. Consequently, the rate of blood flow to the 

CL is approximately 6-10 ml/gm/min and rate of oxygen consumption per unit weight is six 

times greater than liver, kidney, or heart. Granulosal cells undergo hypertrophy without 

proliferation whereas the thecal and endothelial cells, and fibroblasts undergo mitosis and 

migration during the development of CL. For example, in sheep, from days 4 to 16 of estrous 

cycle fibroblasts approximately get double in number (from 21 to 50 × 106), whereas the number 

of endothelial cells increased by six–fold (18 to 120 × 106) [Farin CE et al, 1986].  

The cells secreting progesterone are derived from differentiation of resident granulosal and 

thecal cells. The large luteal cells (20-30 µm) designated as LLCs are derived from granulosal 

cells and small luteal cells (<20 µm) designated as SLCs are derived from thecal cells [Alila HW 

and Hansel W, 1984].  During the development, the number of SLCs increases 5-fold (10 to 50 × 

106), however size remains constant, whereas the size of LLCs increase approximately to two-

fold while their number remains constant (15× 106/ CL in sheep). Cellular hypertropy during the 
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development is associated with an increase in cytoplasmic:nuclear ratio, increased  number of 

smooth endoplasmic reticulum, increase in size of golgi apparatus, and increased number and 

complexity of mitochondria [Cavazos LF et al, 1969; Priedkalns J et al, 1968]. In terms of total 

cellular percentage of luteal tissue, LLCs constitute 4% and SLCs comprise 19% [Rodgers RJ et 

al, 1984]. It is important to note that LLCs make up 25% of the volume of the CL even though 

they add up to only 4% of luteal cell population. In addition to their morphological differences, 

they exhibit distinct biochemical differences and similarities. The basal amount of progesterone 

produced by LLCs is more than that produced by SLCs. For example, in monkey and sheep, 

large cells produce more than 10 times as much progesterone as produced by small cells, 

whereas human large cells produce twice as much as small cells [Ohara A et al, 1987]. In 

addition, LLCs do not respond to progesterone stimulatory action of LH, whereas SLCs respond 

to LH by increased production of progesterone [Fitz TA et al, 1982]. Immune cells such as 

plasma cells, lymphocytes and granular leukocytes form the important cellular components (7%) 

of CL in addition to steroidogenic luteal cells. 

In ruminants, development and maturation of CL is under the influence of several hormones. For 

example in ruminants and primates, LH is the primary luteotropic hormone that supports the 

growth of CL. In primates [Fraser HM et al, 1986] and sheep [Kaltenbach CC et al, 1968] 

hypophysectomy caused regression of CL and this effect can be reversed by exogenous LH. In 

addition, pulses of LH are required for growth and development of fully functional CL in cattle, 

and to maintain secretion of progesterone during late luteal phase in sheep [Peters KE et al, 

1994]. In dogs and cats, both LH and prolactin appear to be important for normal development of 

CL, however their specific requirements appear to differs with different stages of luteal 

development and pregnancy [Concannon PW et al, 2009]. 

In rodents, prolactin plays an important role in maintaining the function of the CL throughout the 

pregnancy. The important function of prolactin is to prevent premature expression of 

progesterone catabolizing enzyme, 20α-hydroxysteroid dehydrogenase (20αHSD).  In addition, 

estradiol secreted by luteal cells has been shown to support the development of the CL by 

stimulating the synthesis of progesterone, vascularization and growth of CL [Stocco C et al, 

2007]. In 1981, Rothchild [Rothchild I, 1981] proposed that progesterone secreted from CL 

might play an important protective role against regression. Accordingly, several investigators 

provided evidences to support this hypothesis. For example, in rats, administration of 
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progesterone antibody or progesterone receptor antagonist directly into the ovary inhibited the 

production of progesterone and administration of synthetic progesterone enhanced the synthesis 

of progesterone [Telleria CM and Deis RP, 1994; Telleria CM et al, 1999]. The ability of 

progesterone to auto-stimulate its own synthesis might be due to its ability to down-regulate the 

progesterone-metabolizing enzyme, 20α-hydroxysteroid dehydrogenase (20α-HSD) [Telleria 

CM et al, 1999]. In addition, progesterone inhibited luteal cell death by decreasing the 

expression of Fas [Kuranaga E et al, 2000]. In rodents, prolactin (PRL) has been shown to 

sustain the function of the CL by preventing the premature expression of 20α-HSD 

[Grosdemouge I et al, 2003]. In agreement to Rothchild’s hypothesis, in sheep progesterone 

might prevent the apoptosis of small luteal cells by preventing the ability of oxytocin to stimulate 

an increase in intracellular calcium [Niswender GD et al, 2007]. 

 

III. Synthesis of progesterone by luteal tissue  

1. Source and substrate 

Progesterone is the primary steroid hormone secreted by the bovine CL. However, pigs, rats, 

humans, cattle, and other species retain their ability to produce estradiol. The synthesis of 

progesterone is the least complex steroidogenic pathway in the ovary. Cholesterol is the starting 

substrate for the synthesis of P4. It has been shown that ovarian tissue preferentially utilizes 

lipoprotein-derived cholesterol rather than de novo synthesized cholesterol [Andersen JM and 

Dietschy JM, 1978]. However, luteal cells are capable of utilizing acetate as a source of 

cholesterol under the conditions of lipid deprivation [Cook B et al, 1967]. Most of the cholesterol 

for steroidogenesis in the CL is derived from low-density lipoprotein (LDL) and high-density 

lipoprotein (HDL) [Hwang J and Menon KM, 1983; Ohashi M et al, 1982]. LDL is transported 

into the luteal cell via receptor-mediated endocytosis [Brown MS and Goldstein JL, 1986], 

where in the cell the endosome combines with lysosome to release free cholesterol and LDL 

receptor is recycled [Grummer RR and Carroll DJ, 1988].  HDL uptake into the cell occurs after 

binding to a plasma membrane-bound HDL binding protein; however, the exact mechanism of 

release and transport of cholesterol inside the cell is not clear [Lestavel S and Fruchart JC, 1994].  

Once the free cholesterol is released inside the cell, it can be utilized in steroidogenesis or re-

esterified with fatty acids by cholesterol ester synthetase and stored in the form of lipid droplets. 

Stored cellular cholesterol ester can be utilized as free cholesterol after being hydrolyzed by a 
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cholesterol esterase [Johnson WJ et al, 1997]. This step is hormonally controlled as cholesterol 

esterase is activated by protein kinase A (PKA)-dependent phosphorylation [Caffrey JL et al, 

1979; Pittman RC et al, 1975]. 

 

2. Transport of cholesterol into the mitochondria 

Cholesterol is transported to the inner mitochondrial membrane by a complex process. The 

transport of cholesterol from outer to inner mitochondrial membrane is the rate-limiting step 

during steroidogenic pathway. During this transport mechanism that peptide hormones and the 

secondary messenger cAMP accelerate the transport of cholesterol and enhance steroidogenesis 

[Miller WL, 1988; Simpson ER and Waterman MR, 1983]. The transport of cholesterol to outer 

mitochondrial membrane appears to be mediated by cytoskeleton [Crivello JF and Jefcoate CR, 

1978] and sterol binding proteins [Scallen TJ et al, 1985]. Steroidogenic acute regulatory protein 

(StAR) [Stocco DM and Clark BJ, 1996] and peripheral-type benzodiazepine receptor (PBR) 

[Papadopoulos V, 1993] are involved in the transport of cholesterol from outer to inner 

mitochondrial membrane. StAR is initially formed as a 37 kDa and subsequently cleaved to 

inactive 30- and 32-kDa proteins upon transport to mitochondria. The X-ray crystal structure of 

StAR has homology to MLN64, a domain found in other lipid-transfer molecules, and can bind 

to sterol and facilitate the transfer of cholesterol from sterol rich unilammelar vesicles to 

acceptor membranes [Tsujishita Y and Hurley JH, 2000] [Kallen CB et al, 1998; Tuckey RC et 

al, 2002]. Supporting its role, addition of StAR to isolated mitochondria stimulated 

steroidogenesis [Bose H et al, 2002]. It has been proposed that cholesterol is being transported 

into the inner mitochondrial membrane during the insertion of StAR protein. Mutations in the 

StAR gene significantly reduced adrenal and gonadal steroid synthesis in patients affected with 

congenital lipoid adrenal hyperplasia, clearly suggesting the critical role of StAR in 

mitochondrial cholesterol transport. PBR is an 18 kDa protein and has high affinity for 

benzodiazipine diazepam [Gavish M et al, 1999; Papadopoulos V, 1993]. The ligands for PBR 

stimulated steroid synthesis in various cell types, and in isolated mitochondria [Lacapere JJ and 

Papadopoulos V, 2003; Papadopoulos V, 1993]. Greater concentrations of PBR have been 

reported to be located at outer/inner mitochondrial membrane sites [Culty ML et al, 1999] and it 

has high affinity to bind the cytosolic carboxy-terminal domain of the cholesterol [Lacapere JJ et 

al, 2001; Li H and Papadopoulos V, 1998]. Further, fluorescent resonance energy transfer 
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between StAR and PBR has indicated that these two molecules might interact such that StAR 

might transport the cholesterol to PBR in outer mitochondrial membrane [West LA et al, 2001]. 

 

3. Conversion of cholesterol to progesterone 

The enzymes present in contact with the inner mitochondrial hydrophobic membrane, 

cytochrome P450 side-chain cleavage (P450scc), and matrix enzymes such as adrenodixin and 

adrenodoxin reductases catalyze the conversion of cholesterol to pregnenolone [Stone D and 

Hechter O, 1954]. This reaction consists of three steps, 20α-hydroxylation, 22-hydroxylation, 

and cleavage of cholesterol side chain to yield pregnenolone and isocaproic acid. Each step of 

catalysis requires 3 molecules of nicotinamide adenine dinucleotide phosphate (NAPDH). 

Adrenodixin and adrenodoxin reductase enzyme help in transport of electron from NADPH to 

P450scc. 

Pregnenolone is then transported into smooth endoplasmic reticulum and converted into 

progesterone by an enzyme, 3-beta-hydroxysteroid dehydrogenase (3-βHSD) [Hanukoglu I, 

1992; Stocco C et al, 2007]. This enzyme is a 42 kDa protein that has both dehydrogenase and 

isomerase activity in a single protein. Progesterone then appears to diffuse out of the cells as 

there is no evidence for its cellular storage. Corpora lutea of cattle secrete additional steroids 

such as 20beta-hydroxy-preg-4-en-3-one, and 20alpha –hydroxyl steroids. 

 

4. Regulation of Progesterone synthesis 

In most species, LH is the primary hormone involved in the regulation of progesterone synthesis 

and secretion from a CL. LH stimulated the synthesis of progesterone in sheep [Hoyer PB et al, 

1984], cattle [Alila HW et al, 1988b], human [Ohara A et al, 1987], and pig [Tekpetey FR and 

Armstrong DT, 1991].  In primates, secretion of progesterone is dependent on the pulsatile 

secretion of LH throughout the luteal phase [Fraser HM et al, 1986], whereas in sheep, only 

basal amounts of LH secretion are sufficient to maintain the secretion of progesterone [McNeilly 

AS et al, 1992]. In cattle, it appears that only basal amounts of LH are required to maintain the 

secretion of progesterone during the later luteal phase, however the pulsatile secretion of LH is 

necessary for the development of CL [Peters KE et al, 1994]. In rodents, prolactin (PRL) 

produced from the pituitary gland in response to mating reflex has role in maintaining the 

secretion of progesterone from CL [Richards JS and Williams JJ, 1976]. However, the role of 
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prolactin in regulation of luteal function is not clear in cattle [Hansel W et al, 1973] and sheep 

[Niswender GD, 1974].  

 

The action of LH on steroidogenic cells is mediated via cell membrane receptors. In cattle 

[Chegini N et al, 1991] and sheep [Harrison LM et al, 1987], the receptors for LH are present on 

both LLC and SLC, however only SLCs are responsive to progesterone stimulatory actions of 

LH. Upon binding to its receptors, LH activates adenylate cyclase to release the secondary 

messenger, cAMP. An enzyme, protein kinase A (PKA) is then activated by cAMP to mediate 

the actions of LH [Davis JS et al, 1996; Hoyer PB et al, 1984; Marsh JM, 1976]. It has been 

shown that LH does not affect the transcription or the activity of P-450scc or 3beta –HSD 

[Marsh JM, 1976; Wiltbank MC et al, 1993]. However, it seems that LH is required for the 

normal expression of StAR, P-450scc and 3beta –HSD during development of CL [Niswender 

GD et al, 2000]. The evidence has indicated that the acute stimulatory action of LH on 

progesterone secretion is independent of transcription mechanisms [Marsh JM, 1970].  It is now 

clear that PKA enhances progesterone synthesis by phosphorylation of StAR, thereby enhancing 

the rate of transport of cholesterol into the mitochondrial membrane [Arakane F et al, 1997; 

Epstein LF and Orme-Johnson NR, 1991]. In addition, LH has been shown to activate 

cholesterol esterase, however the amount of progesterone stimulation with this mechanism 

appears to be minimal [Wiltbank MC et al, 1993]. LH has been shown to activate phospholipase 

C/protein kinase C (PLC/PRKC) system in SLCs.  However, the role this system in activation of 

progesterone is not clear [Davis JS et al, 1996]. Binding of LH to its receptors on LLC does not 

affect the intracellular concentrations of cAMP or increase the progesterone. However, LLC 

secrete large quantities of progesterone (> 80%) independent of LH stimulation and it appears 

that PKA is constitutively active in these cells [Hoyer PB et al, 1984]. In addition to LH, various 

other hormones influence the synthesis and secretion of progesterone from the luteal tissue. For 

example, growth hormone (GH) [Liebermann J and Schams D, 1994] and Insulin-like growth 

factor-1 (IGF-1) [Constantino CX et al, 1991; Devoto L et al, 1995] have been shown to increase 

the secretion of P4. Supporting their action, receptors for GH have been characterized in bovine, 

ovine, and rat luteal tissue [Carlsson B et al, 1993; Juengel JL et al, 1997; Lucy MC et al, 1993]. 

It has been shown that early CL produce greater amounts of prostaglandin E and I series, so 

authors suggested they have role in the development of CL. Accordingly, prostacyclin (PGI2) 
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and PGE2 stimulated progesterone synthesis from luteal tissues of cattle, sheep and humans 

[Alila HW et al, 1988a; Bennegard B et al, 1990; Fitz TA et al, 1984]. In addition, PGF2α 

stimulated luteal progesterone synthesis during early luteal phase [Choudhary E et al, 2005]. 

Ability of PGE2 and PGF2α to stimulate progesterone synthesis has been shown to be important 

in preventing the apoptosis of steroidogenic cells [Bowolaksono A et al, 2008].  

 

IV. Identification of PGF2α as a luteolytic factor 

In general the estrous cycle consists of short follicular phase followed by long luteal phase. 

During the follicular phase, increasing concentration of estrogen secreted from growing 

follicles stimulates LH surge. This is followed by ovulation of the dominant follicle and 

formation of CL. If animal become pregnant, luteal function must be maintained throughout 

gestation, but if fertilization does not occur, luteal regression (luteolysis) has to occur for 

initiation of new ovarian cycle with another chance for pregnancy [McCracken JA et al, 1999]. 

The factors involved in regression of CL and their detailed cellular mechanism of action has 

been an area of intense investigation. During luteolysis two related events occur; first there is a 

loss or reduction in the capacity to synthesize and secrete progesterone. Subsequently, decline 

in progesterone is followed by the loss of luteal cellular components [Knickerbocker JJ et al, 

1988; McGuire WJ et al, 1994]. Several observations have indicated that uterus is involved in 

the process of luteolysis. In 1923, Loeb was the first investigator to demonstrate that uterus 

might be involved in controlling the life span of CL by providing evidence that hysterectomy 

in guinea pigs extended life of the CL [Loeb L, 1923]. Subsequently, similar results were 

reported in other species such as pseudopregnant rats [Bradbury J, Brown WE, Gray LA, 

1950], mice [Bartke A, 1970], hamsters [Caldwell BV et al, 1967], cattle, sheep [Wiltbank J, 

Casida, LE., 1956], and horses [Stabenfeldt GH et al, 1974]. In these animals, unilateral 

hysterectomy prolonged the life of the ipsilateral CL only if the vascular connection from the 

intact uterine horned is blocked [O'Shea JD et al, 1974].  However, hysterectomy did not 

prolong the length of the cycle or life of the CL in primates or humans, mouse, squirrel, 

opossum, and dogs [Niswender GD and Nett TM, 1994]. 

        In 1969, Pharriss and Wyngarden [Pharriss BB and Wyngarden LJ, 1969] demonstrated 

that PGF2α brings about luteolysis in pseudopregnant rats. They reported that injections of large 
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amounts of PGF2α (1mg/kg/day S.C) into rats shortened the length of pseudopregnancy and 

decreased the progesterone content of the CL. In sheep, intra-arterial infusion (carotid artery) of 

PGF2α into the auto-transplanted ovary with vascular anastomoses to the vessels of the neck 

decreased the concentrations of progesterone in ovarian venous blood [McCracken J, 1971], 

which has been further elucidated [Bonnin P et al, 1999]. In sheep, it was demonstrated that 

[H3]PGF2α was transferred from  uterine vein to ovarian artery by a countercurrent transfer 

mechanism [McCracken JA et al, 1971]. In addition, infusion of [H3]PGF2α into uterine vein 

appeared in adjacent ovary after a time period of 20-30 min[McCracken JA et al, 1972]. Similar 

experiments have demonstrated that PGF2α is a luteolytic factor that is released from the uterus 

and delivered back to the corpus luteum, where it initiates the process of luteolysis.  In cow, 

arachidonic acid released from endometrium was initially proposed to be a luteolytic substance 

[Hansel W et al, 1975]. Subsequently, PGF2α has been shown to increased in an episodic 

manner in ovarian venous blood around the time of luteolysis [Nancarrow CD et al, 1973]. In 

agreement with this finding, PGFM, a metabolite of PGF2α increased in peripheral blood of 

cattle during luteolysis [Kindahl H et al, 1980]. It is clear that PGF2α is the primary luteolytic 

factor that initiates the process of luteolysis in most of the animal species studied for example 

pig [Bazer FW and Thatcher WW, 1977], mares [Douglas RH and Ginther OJ, 1976], goats 

[Homeida AM and Cooke RG, 1982], guinea pigs [Horton EW and Poyser NL, 1976], and rat 

[Pharriss BB and Wyngarden LJ, 1969].  

V. PGF2α biosynthesis and transport mechanism 

Prostaglandins (PGs) belong to family of eicosanoids, which are unsaturated lipids derived from 

arachidonic acid (C20:4, n-6) or similar polyunsaturated fatty acid precursors. Chemically, PGs are 

polyunsaturated 20-carbon fatty acids having a cyclopentane ring. PGs are designated by letters 

from A-J, indicating the nature and location of substitutes on the cyclopentane ring, and the 

position of double bonds within the ring. The numerical subscript (1, 2 or 3) has been attached 

based on the number of double bonds in the alkyl side chains. PGF2α belongs to 2-series which 

are derived from eicosatetraenoic acid (arachidonic acid). The subscript alpha (α) indicates the 

spatial position of the hydroxyl group at C-9 in the cylcopentane ring and the molecule has 

additional double bonds at position 5 and 6 [Moore PK, 1985]. 

 



 10 

1. Biosynthesis of PGF2α in Uterus 

In uterus, PGF2α is synthesized in endometrium and epithelial cells of endometrium synthesize 

large quantities of PGF2α, whereas, stromal cells preferentially synthesize PGE2 [Fortier MA et 

al, 1988]. The release of arachidonic acid from membrane lipids is the first step in a series of 

enzymatic reactions leading to formation of PGF2α. These actions are mediated by a group of 

enzymes of the phospholipase A2 family [Clark JD et al, 1995]. These enzymes catalyze the 

release of fatty acids from sn-2 position of phospholipids. Two formas of PLA2 in mammalian 

cells are secretory PLA2 (sPLA2) and cytosolic PLA2 (cPLA2) [Ackermann EJ and Dennis 

EA, 1995; Clark JD et al, 1995; Dennis EA, 1994; Kudo I et al, 1993]. These enzymes are 

calcium (Ca2+)-independent and mediate the release of arachidonic acid in several cell types. 

cPLA2 preferentially catalyzes the release of arachidonic acid from sn-2 position of lipids 

[Clark JD et al, 1991; Sharp JD et al, 1991]. Intracellular Ca2+ is required for translocation and 

binding of cPLA2 to the membrane [Channon JY and Leslie CC, 1990]. cPLA2 can be 

activated by various cytokines and growth factors such as interleukin-1, tumor necrosis factor 

(TNF), colony-stimulating factor (CSF), epidermal growth factor, c-Kit ligand, and interferon-

γ (IFNγ) [Clark JD et al, 1995]. The activity of cPLA2 has been localized primarily to nuclear 

membrane and endoplasmic reticulum (ER). Interestingly, these sites are shared by 

cyclooxygenase-2 (COX-2), an important enzymes involved in PG synthesis. 

Next step during the synthesis of PG is conversion of arachidonic acid to an endoperoxide, 

PGH2, by prostaglandin G/H synthase (PGHS) (also called cyclooxygenase, COX). These 

enzymes are present on the luminal surface of ER and capable of moving between ER and 

nuclear membrane [Spencer AG et al, 1998]. Two biochemically identical forms of PGHS are 

PGHS-1 (COX-1) and PGHS-2 (COX-2), and share 60% of the sequence similarity [Smith WL 

et al, 1996]. Despite their similarities in the reaction catalyzed, they are subjected to different 

regulatory mechanism and have different mRNA stability [Dubois RN et al, 1998; Smith WL 

et al, 2000]. PGHS-1 is expressed constitutively in most of the mammalian tissues, whereas 

PGHS-2 is an inducible enzyme that can be induced rapidly by cytokines, growth factors and 

tumor inducers [Herschman HR, 1996]. PGH2 can be utilized to make other types of 

prostanoids such as PGD2, PGE2, or PGF2α by isomerase/reductases. PGH2 can be directly 

converted into PGF2α by 9,11-endoperoxide reductase commonly called as PGF synthase 
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(PGFS). It reduces the 9-, 11-endoperoxide group of PGH2 to two -hydroxyl groups of PGF2α. 

Alternatively, PGD2 can be converted into PGF2α by 11-ketoreductase or PGE2 can be 

converted into PGF2α by 9-keto-prostaglandin reductase (9K-PGR). In bovine endometrium, 

9K-PGR has been shown to produce PGF2α and it has an additional capacity to metabolize 

progesterone by its 20α-hydroxysteroid (20α-HSD) activity [Asselin E and Fortier MA, 2000]. 

In presence of NADPH, PGFS can convert PGD2 to 9α, 11α -PGF2, and these are involved in 

the contractibility of vascular smooth muscle and airway tract [Watanabe K, 2002].  

In cow, three different types of PGFS have been isolated, the lung types PGFS1 [Watanabe K 

et al, 1985] and PGFS2 [Watanabe K et al, 1985], and the liver type dihydrodiol 

dehydrogenase 3 (DDBX) [Suzuki T et al, 1999]. PGFS purified from bovine lung is a 36.6 

kDa monomeric protein and consists of 323 amino acids and it has high sequence similarity to 

family members of aldo-keto reductase (AKR). A recently identified AKR1B5 has been shown 

to be primarily responsible for the production of PGF2α in bovine endometrium and it has 

capacity to metabolize progesterone due to its 20α-HSD activity [Madore E et al, 2003].  

 

2. CL as an additional source of PGF2α  

In addition to uterus, corpora lutea of most mammalian species produce prostaglandins 

[Olofsson J and Leung PC, 1994] and CL is a rich source of arachidonic acid. Luteal cells from 

cattle [Milvae RA et al, 1983; Pate JL, 1988], sheep [Rexroad CE, Jr. and Guthrie HD, 1979], 

pseudopregnant rats  [Olofsson J et al, 1992], pigs [Guthrie HD et al, 1978], and rhesus 

monkeys [Johnson MS et al, 1988] produce prostaglandins. Sheep CL express mRNAs for 

COX-1, COX-2, and prostaglandin metabolizing enzyme prostaglandin-15 dehydrogenase 

(PGDH) [Tsai SJ and Wiltbank MC, 1997]. Recently, CL of cattle have been shown to have 

machinery for biosynthesis and transport of PGs [Arosh JA et al, 2004]. These studies have 

indicated that bovine CL express constant amounts of COX-1, PGDH and PGFS (AKR1B5) 

throughout the lifespan of CL, whereas expression of PGES, PG transporter, receptor for PGE 

and PGF2α vary with the stages of estrous cycle. Authors have suggested that CL preferentially 

produces PGF2α during luteolysis, whereas greater amount of PGE2 production occurs during 

the luteal maintenance. 
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3. Transport of PGF2α  

PGF2α synthesized in endometrium is transported to ovary by a utero-ovarian vascular pathway 

to initiate the process of luteolysis [McCracken JA et al, 1972]. The transfer of PGs from 

uterine venous vessels to ovarian artery primarily occurs at a specialized vascular network 

called utero-ovarian plexus (UOP) [Ginther OJ, 1981]. In pigs, the direction of release of 

endometrial PGF2α differ depending on the need and function, for example it is preferentially 

released into circulation during luteolysis, whereas it is secreted directly into the lumen of 

uterus during maternal recognition of pregnancy [Bazer FW and Thatcher WW, 1977]. This 

directional transport of PGs cannot be explained by simple diffusion. PGs are charged anions 

and therefore have poor capacity to pass through biological membranes by simple diffusion 

and moreover the rate of transport of PGs by this mechanism is too slow to bring about their 

biological effects [Nelson DL and COX MM, 2000]. Therefore, it was proposed that the 

carrier-mediated proteins are required to selectively transport PGs.  Prostaglandin transporter 

(PGT) has been identified in human liver [Lu R et al, 1996], rat kidney [Kanai N et al, 1995], 

and mouse lung [Pucci ML et al, 1999].  

PGT is a polypeptide belonging to super family of 12-transmembrane organic anion 

transporting polypeptides (OATPs) [Schuster VL, 1998; Schuster VL, 2002].  It mediates 

efflux and influx of newly synthesized PGs and it is highly expressed in tissues producing large 

quantities of PGs [Bao Y et al, 2002]. In cattle, both mRNA and protein of PGT are expressed 

in endometrium, myometrium, and smooth muscle cells of UOP. Its expression pattern is 

consistent with its role in the compartmental transport of PGF2α from uterus to ovary during 

luteolysis [Banu SK et al, 2003]. The compartmental transport of PGF2α is important because 

of its high rate of clearance via lung, for example, 65% and 99% of PG is metabolized by 

single pass through the lung in cattle and sheep, respectively [McCracken JA et al, 1999]. 

Bovine CL expresses PGT, specifically on LLC and its mRNA expression is greatest during 

late luteal phase of the estrous cycle (Days 13-15). However the amount of protein remains 

constant throughout the estrous cycle. Therefore, authors suggested that PGT might play an 

important role in influx and efflux of available luteal PGE2 or PGF2α in a competitive manner 

for their autocrine or paracrine effects [Arosh JA et al, 2004].  
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VI. Regulation of PGF2α synthesis and initiation of luteolysis; 

The release of free AA from phospholipids is a rate-limiting step during PG synthesis [Kunze 

H and Vogt W, 1971; Lands WE and Samuelsson B, 1968]. Released AA is quickly converted 

to PGF2α by cyclooxygenases [Vane JR and Botting RM, 1995]. However, during luteolysis, 

PGF2α is secreted from uterus in the form of 4 to 8 discrete pulses at intervals of 6 to 8 h 

[Nancarrow CD et al, 1973; Thorburn GD et al, 1973]. The exact mechanism of the initiation 

of PGF2α synthesis from uterus is not clearly understood. In sheep, pulses of oxytocin or 

neurophysin occured concurrently with the PGFM pulses during luteolysis [Hooper SB et al, 

1986]. In agreement, large pulses of oxytocin/neurophysin have been reported to occur in cattle 

[Walters DL and Schallenberger E, 1984] and goats [Cooke RG and Homeida AM, 1984] 

during luteolysis. In addition, oxytocin stimulated the synthesis of PGF2α in the uterus [Roberts 

JS and McCracken JA, 1976; Sharma SC and Fitzpatrick RJ, 1974][Schams D, 1989]. 

Neurophysin is released in an episodic manner lasting for few minutes at a frequency of 3 

pulses per hour in sheep during follicular phase and in ovariectomized ewes during estradiol 

replacement [McCracken JA et al, 1991]. Authors of this study indicated that an episodic 

pattern of release of oxytocin might cause large pulsatile episodes of uterine PGF2α, proposing 

that neurohypophyseal oxytocin might act as a central pulse generator signal.  

         In cattle and sheep, corpora lutea secrete large quantities of oxytocin [Fields PA et al, 

1983][Wathes DC and Swann RW, 1982]. In cattle and sheep, LLC appear to be the cellular 

source of oxytocin [Fields MJ and Fields PA, 1986; Fields PA et al, 1983][Rodgers RJ et al, 

1983]. Moreover, in cattle exogenous PGF2α increased oxytocin in jugular venous blood that 

peaked within 15-20 min [Schams D and Karg H, 1982]. In sheep, treatment with cloprostenol, 

an analog of PGF2α, increased the secretion of oxytocin from the ovary with the CL and not 

from the opposite ovary or the brain [Flint AP and Sheldrick EL, 1982]. This study clearly 

indicated that the oxytocin came from the CL and not from neurohypophysis following PGF2α, 

injection. It was proposed that oxytocin synthesized in CL is totally discharged with each pulse 

of PGF2α, and an interval between pulses of PGF2α might be required to re-synthesize luteal 

oxytocin for subsequent secretion [Flint AP et al, 1990]. However, this was shown to be 

unlikely because of the low mRNA for oxytocin during luteolysis in sheep [Ivell R et al, 1990]. 

The contribution of neurohypophysis to circulating oxytocin during luteolysis is ~10%, whereas 
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~50% from CL. However, as luteolysis progresses, the relative contribution of oxytocin from 

the neurophysis is proportionately greater [McCracken JA et al, 1996]. Regardless of the 

magnitudes of contributions of oxytocin from CL or neurohypophysis, it has been proposed that 

small increases in circulating concentrations of oxytocin, due to central oxytocin pulse 

generator, stimulate the subluteolytic amounts of PGF2α, from uterus, which in turn stimulate 

large supplemental release of luteal oxytocin [McCracken JA et al, 1999]. Subsequently, 

stimulating large quantities of uterine PGF2α, to initiate the process of luteolysis. Importantly, in 

sheep both in vivo and in vitro treatment with PGF2α, stimulated the luteal production of PGF2α 

[Tsai SJ and Wiltbank MC, 1997]. The authors of these studies have proposed that local 

production of luteal PGF2α can act in an autocrine or paracrine manner to increase the luteolytic 

effect of uterine PGF2α, by forming positive feedback loop during luteolysis. 

It has been shown that the ability of oxytocin to stimulate uterine PGF2α, synthesis in 

ovariectomized animals depends on the pre-exposure to progesterone and can be enhanced by 

acute or chronic treatment with estrogen. In ovariectomized cows and ewes, oxytocin stimulated 

the secretion of uterine PGF2α, only after animals had been exposed to progesterone for 7-10 

days [Homanics GE and Silvia WJ, 1988; Lafrance M and Goff AK, 1988]. The pre-exposure of 

uterus to progesterone has been proposed to prime the uterus for the release of PGF2α by 

increasing the accumulation of lipid precursors [Nissenson R et al, 1978; Soloff MS et al, 1983] 

[Boshier DP and Holloway H, 1973; McCracken JA, 1980]. It has been shown that progesterone 

prevented the ability of estrogen to up-regulate oxytocin receptors [Leavitt WW et al, 1985]. In 

addition, progesterone inhibited the action of oxytocin in uterus by non-genomic action by 

changing the conformation of oxytocin receptors [Grazzini E et al, 1998]. In sheep, withdrawal 

of progesterone increased the receptors for oxytocin in endometrium within 6 h. Importantly,  

exposure to progesterone for 7-14 days down-regulated its own receptor in endometrium 

[Clarke CL, 1990; Milgrom E et al, 1973] and hypothalamus [Blaustein JD and Feder HH, 

1979; Moguilewsky M and Raynaud JP, 1979]. Therefore, a model has been proposed for 

hormonal regulation of PGF2α and initiation of luteolysis as follows (reviewed by [McCracken 

JA et al, 1999]). 1) The loss of progesterone receptors during the late luteal phase prevents the 

suppressing effect of progesterone on oxytocin receptors and allows estrogen to upregulate 

estrogen receptors in uterus, 2) Returning action of estrogen will stimulate the release of 

hypothalamic oxytocin pulse generator to stimulate low episodic levels of oxytocin, 3) Oxytocin 
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will then stimulate the subluteolytic release of PGF2α from uterus, which in turn stimulates the 

additional release of oxytocin from CL, 4) Increased oxytocin will further stimulate the 

secretion of PGF2α from uterus and CL in positive feedback manner, 5) Additionally, PGF2α 

released from CL stimulate its own synthesis of PGF2α in a autocrine manner to complete the 

process of luteolysis. 

 

VII. PGF2α signaling during luteolysis: 

1. Receptors for PGF2α  

Fried et al. [Fried J et al, 1969] were the first to provide evidence for presence of PGF2α 

receptors in endometrium by showing that 7-oxa-acetylenic analogs of PGF1α prevented the 

contractibility of uterus. Later, binding sites for PGF2α in CL have been identified in sheep 

[Balapure AK et al, 1989; Powell WS et al, 1974], rat [Bussmann LE, 1989], pig [Gadsby JE et 

al, 1990], and humans [Rao CV et al, 1977]. Subsequently, receptors for PGF2α (FP) have been 

cloned and characterized in various tissues including CL in cattle [Sakamoto K et al, 1994], 

human [Lake S et al, 1994], rat [Kitanaka J et al, 1994], mouse [Sugimoto Y et al, 1994], and 

sheep [Graves PE et al, 1995]. FP receptors are members of seven-transmembrane domain 

receptor family and coupled to G-protein. It appears that in cattle there is single gene for FP 

consisting of 40 kilobases (kb)[Ezashi T et al, 1997] and organized with three exons and two 

introns, which is conserved across human, mouse, and cattle [Betz R et al, 1999; Hasumoto K et 

al, 1997]. The molecular weight of FP is 40 kDa and it appears to be similar among species. The 

open reading frame of FP consists of 362 amino acid residues in cattle and sheep, 366 in mouse 

and rat, and 359 amino acids in human beings. The homology of bovine FP amino acid 

sequence is 98% with ovine, 86% with human beings, 80% with murine and 78% with rat 

[Anderson LE et al, 2001]. There are two isoforms of FP, FPA and FPB [Pierce KL et al, 1997]. 

These isoforms have been suggested to arise from alternative mRNA splicing mechanism. FPB 

is a truncated form of FPA, lacking 46 amino acids at the carboxy-terminal end and four putative 

protein kinase C (PKC) phosphorylation sites. FPA isoform is phosphorylated by PGF2α via 

PKC dependent pathway, whereas FPB is not phosphorylated, so it was suggested that FP 

isoforms are regulated differentially by PGF2α [Fujino H et al, 2000]. In cattle, mRNAs for FP 

receptor are expressed on LLC, SLC, and endothelial cells [Mamluk R et al, 1998], whereas in 
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sheep, they are present on only LLC [Juengel JL et al, 1996] and expression of FP on luteal 

endothelial cells has not been confirmed. In cattle, FP mRNAs increased from early to late 

phase of estrous cycle, and decreased markedly in regressing CL [Sakamoto K et al, 1995]. 

Similar pattern of expression was reported in sheep [Graves PE et al, 1995] and pig [Gadsby JE 

et al, 1990] CL. Importantly, in cattle and sheep, in vivo and in vitro treatments with PGF2α 

decreased the FP receptors similar to that observed during natural luteolysis [Juengel JL et al, 

2000; Mamluk R et al, 1998]. The physiological significance of down-regulation of FP 

receptors during luteolysis is not clear,  

2a. PRKC/calcium signaling pathway 

PGF2α has been shown to affect composition and fluidity of the luteal lipid membrane [Carlson 

JC et al, 1984; Leung PC et al, 1986; Raymond V et al, 1983]. Later it was shown that the 

action of PGF2α might be mediated through an increase in intracellular Ca2+ derived from 

internal sources in rat luteal cells [Dorflinger LJ et al, 1984]. Around the same time, it was 

reported that hydrolysis of phoshatidylinositol 4, 5 –biphosphate by phospholipase C (PLC) 

leads to the generation of secondary messenger inositol 1-4-5-trisphosphate (IP3), which in turn 

stimulated the release of Ca2+ from ER [Berridge MJ and Irvine RF, 1984; Spat A et al, 1986]. 

Similarly, in steroidogenic cells of the ruminant CL, PGF2α activated G-protein coupled FP 

receptors leading to activation of PLC. Once active, PLC acts on membrane lipids to produce 

intracellular secondary messengers such as IP3 and diacylglycerol (DAG) [Davis JS et al, 1988]. 

Acordingly, in bovine luteal cells, hydrolysis of phoshatidylinositol 4, 5 –biphosphate and 

mobilization of intracellular Ca2+ were stimulated by PGF2α [Davis JS et al, 1987b]. 

Furthermore, Ca2+ and PRKC mediated the intracellular actions of PGF2α in luteal cells 

[Wiltbank MC et al, 1991].  In bovine luteal cells, PGF2α activated the Raf/MEK1/mitogen-

activated protein kinase (MAPK) signaling pathway [Chen DB et al, 1998]. Activation of this 

pathway by PGF2α increased the expression of c-fos and c-jun and activated transcription factors 

called activator protein-1 (AP-1). More recently, it has been shown that activation of 

Raf/MEK1/MAPK pathway by PGF2α is mediated by PRKC in bovine luteal cells [Chen D et 

al, 2001] [Stocco C et al, 2007]. The constituents of AP-1 transcription factors, c-fos and c-jun, 

regulated the expression of genes having AP-1 binding site on their promotor. Therefore, it was 

proposed that activation of AP-1 by PGF2α in bovine luteal cells might modulate the expression 
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of genes during luteolysis. However, the detailed cellular and molecular mechanisms of 

luteolysis initiated by PGF2α are not understood. The schematic representation of PGF2α 

signaling pathway in bovine CL is indicated in figure 1. 

 

 

Figure 1. PGF2α signaling pathway: PLC: phospholipase C; PGF2α: PGF2α receptor; ER: 

endoplasmic reticulum; PRKC: protein kinase C; P4: progesterone; Gp: G-protein; DAG: 

diacylglycerol; IP3: inositoltriphosphate   

2b. PRKC 

Protein kinase C (PRKC) is a family of serine/threonine kinases with 11 isozymes. These 

enzymes are single polypeptide chain with regulatory region located at amino-terminal region 

having molecular weight of 20-70 kDa, whereas the catalytic unit is located at the carboxy-

terminal end with molecular weight of 45 kDa. Different isozymes have different subcellular 

localization and co-factor requirements [Nishizuka Y, 1988; Quest AF, 1996]. The conventional 

PRKC category includes four isozymes, alpha (α), beta I (ßI), beta II (ßII), and gamma (γ). The 
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novel PRKC category includes four additional isozymes, delta (δ), epsilon (ε), theta (θ), and eta 

(η). Finally, three more isozymes make up the atypical PRKC group, lambda (λ), zeta (ς), and 

mu (µ). The conventional isozymes are activated by diacylgycerol (DAG), Ca2+, and  

 

 Figure 2. PRKC isozyme specific domains and co-factor requirement (adapted from [Newton 

AC, 2001]). 

phosphatidylserine, whereas, the novel isozymes depend on DAG and phosphotidylserine for 

their activation and atypical isozymes  are activated by phosphotidylserine. The regulatory unit 

consists of two important domains, one is an autoinhibitory sequence (pseudosubstrate) and the 

other includes one or two membrane targeting modules (C1 and C2). Pseudosubstrate 

allosterically regulates the enzyme activity. During the inactive state of an enzyme, 

pseudosubstrate covers the substrate-binding site. Whenever the enzyme is activated by co-

factor or co-factor- independent mechanisms, there will be a release of pseudosubstrate from the 

kinase core [Orr JW and Newton AC, 1994b; Orr JW and Newton AC, 1994a]. It has been 

shown that increased intracellular Ca2+ is essential for translocation of PRKC to membrane by 

increasing its affinity towards anionic lipids. Ca2+ binding with the enzyme engages C2 domain 

with the lipid membrane, thereby decreasing the dimensionality and increasing the probability 

of engaging C1 domain with DAG. Binding of PRKC domains to membrane releases the energy 

required to release pseudosubstrate from an active catalytic site, thereby activating the enzyme 

[Johnson JE et al, 2000]. In addition DAG, and phorbol esters act by increasing the affinity of 

PRKC to membranes by acting as molecular glue. It has been shown that the DAG binding to 

C1 domain results in presentation of contiguous hydrophobic surface, allowing increased 
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affinity towards lipid membrane [Zhang G et al, 1995]. However, the action of DAG does not 

last long because of its rapid metabolism and therefore phorbol esters are 2 times more potent 

than DAG.  In addition to these regulatory molecules, the anchoring proteins of PRKC are very 

important for translocation to its substrate, or regulators such as phosphatases and kinases, or to 

specific intracellular compartments [Mochly-Rosen D, 1995]. Accordingly, peptide agonists can 

be used to activate PRKC enzymes that are regulated by the anchoring proteins such as 

receptors for activated kinases (RACKs) [Csukai M and Mochly-Rosen D, 1999]. It has been 

proposed that the site on the enzymes that binds to anchoring proteins are masked by masking 

domain called pseudo-RACK sequence. This sequence is similar to the sequence of binding site 

on the anchoring protein. Therefore, peptide agonists similar to this sequence can disrupt 

intramolecular interaction by disengaging the pseudosubstrate RACK sequence from anchoring 

to the protein-binding site, thereby activating the enzyme. Accordingly, it has been show that 

C2 domain of PKCε (official symbol, PRKCE) has a pseudo-RACK sequence NDAPIGYD (V1 

region) [Csukai M et al, 1997; Dorn GW, 2nd et al, 1999]. Agonists or antagonist with 

sequences similar to pseudo-RACK has been extensively utilized to activate or inactivate 

PRKCE in several cell systems. 

Pharmacological activation of PKC with the phorbol esters inhibited steroidogenesis in luteal 

cells from human [Abayasekara DR et al, 1993] and sheep [Wiltbank MC et al, 1991]. In sheep 

luteal cells, PGF2α prevented the lipoprotein-stimulated progesterone synthesis and had no effect 

in PRKC-deficient cells [Wiltbank MC et al, 1990]. It has been shown that anti-steroidogenic 

actions of PRKC might be due its ability to inhibit the expression of mRNAs encoding P-450scc 

and 3β-HSD [McGuire WJ et al, 1994]. Moreover, in rat testicular microsomes, the activation 

of PLC activated PRKC resulting in decreased activity of 3β-HSD, which suggested that PRKC 

might modulate the activity of 3β-HSD [Cooke GM and Robaire B, 1988]. In addition, 

activation of PRKC inhibited the transport of cholesterol across mitochondrial membrane 

[Wiltbank MC et al, 1993].  However, the detailed cellular mechanism by which PRKCs 

mediate the anti-steroidogenic actions of PGF2α needs further investigation. 
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2c. Ca2+-calmodulin dependent kinase kinase 2, beta  (official symbol, CAMKK2/ 

CAMKKβ) 

CAMKK is a recently discovered enzyme and first discovered in rat brain, where it activated an 

inactive recombinant CaMK1V [Okuno S and Fujisawa H, 1993]. CAMKKs belong to protein 

kinase superfamily and perform the function of serine/threonine phosphorylation. Two types of 

CAMKK have been characterized in rat brain, CAMKK alpha and CAMKK beta [Edelman AM 

et al, 1996]. Bovine CAMKK2 is a 63 kDa protein and consists of 579 amino acids. Both forms 

are expressed from distinct genes and both appear to be activated by Ca2+- CaM and capable of 

Ca2+-CaM-dependent autophosphorylation. Both forms activated downstream enzymes, CaMK1 

and CaMK1V by phosphorylation-dependent mechanism. Accordingly, CAMMK2 stimulated 

CaMK1 by 25-fold and CaMKIV by 12-fold by phosphorylating amino acid residues at Thr177 

and Thr200, respectively. However, in brain CAMKK2 and CaMK1V were co-localized in 

cerebellar region suggesting that CaMK1V might be acutely regulated by CAMKK2 [Anderson 

KA et al, 1998]. It has been suggested that CAMKK alpha might specifically regulate CaMK1. 

However, because of its ubiquitous distribution, it is unclear which of the isoforms regulate the 

activity of CaMK1 [Haribabu B et al, 1995; Picciotto MR et al, 1993]. Similar to other CaM 

kinase family, CAMKK2 has capacity to undergo an autophosphorylation upon binding with 

Ca2+-CaM. Phosphorylation will prevent the reformation of autoinhibitory conformation, 

thereby keeping the enzyme in an autonomously active state [Braun AP and Schulman H, 

1995]. This property of autophosphorylation is observed with CaMK1 and CaMK1V. The 

activity of CAMKK2 is independent of Ca2+-CaM binding and subsequent autophosphorylation, 

however, these mechanisms can enhance its activity [Edelman AM et al, 1996]. Neverthless, it 

has been proposed that these mechanisms in vivo might have physiological consequences such 

as cellular distribution and protein-protein interaction with downstream signaling molecules. 

Neuronal tissue has been shown to be primary site of expression and expressed at lower 

amounts in testis, thymus, and spleen [Anderson KA et al, 1998; Tokumitsu H et al, 1995]. 

CaMK IV is expressed in steroidogenic tissues such as ovary, testis, and adrenal gland in 

addition to brain, thymus, and bone marrow, whereas, CaMKI is ubiquitously expressed 

[Haribabu B et al, 1995; Means AR et al, 1997]. However, there is no evidence on the 

expression and role of CAMKK2 in ovarian tissue to date. In rabbit aortic smooth muscle cells, 

epinephrine stimulated the activity of CaMKII followed by increase in mobilization of 
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arachidonic acid [Muthalif MM et al, 1996]. In addition, Ca2+ play a very important role in 

oxytocin-induced PGF2α release in bovine endometrium [Burns PD et al, 1998]. In agreement, 

oxytocin stimulated PGF2α synthesis in ovine endometrium by activating ERK1/2. The 

activation of ERK1/2 depends on Ca2+-CaM in luteinized granulosal cells [Stocco CO et al, 

2002].  Therefore, CAMKK2 might play a very important role in stimulation of PGF2α synthesis 

from uterus and CL. In addition, the possibility of direct participation of CAMKK2 in mediating 

the antisteroidogenic actions of the rise in intracellular Ca2+ stimulated by PGF2α needs further 

investigation.  

VIII. Functional luteolysis: inhibition of progesterone synthesis 

The pulsatile release of PGF2α from the uterus around 17-18 days of estrous cycle initiates the 

process of luteolysis in the ruminant CL [Kindahl H et al, 1976; Wolfenson D et al, 1985] 

[Shirasuna K et al, 2004]. In cattle, direct measurement of PGF2α in uterine-venous blood 

indicated that concentrations of PGF2α increase on Day 14 and remain elevated on Days 15-20 

[Shemesh M and Hansel W, 1975b]. It has been suggested that finite number of frequent PGF2α 

pulses occurring over a period of ~24 h was necessary for the initiation of functional luteolysis. 

Accordingly, PGF2α inhibited the synthesis of progesterone in vivo in cattle, sheep, pigs, 

monkeys, human beings, pseudopregnant rats and rabbits [Niswender GD and Nett TM, 1994].  

Similarly, in vitro PGF2α treatment inhibited the synthesis and secretion of progesterone in 

luteal cells of mid to late CL [Niswender GD et al, 2000]. The decline in progesterone occurs 

over a period of ~ 24-36 h and reduction in progesterone starts after the first pulse of PGF2α in 

sheep, whereas in monkeys, the decline in progesterone occur over a period of ~48 h. 

 

1. Antisteroidogenic actions of PGF2α 

Juengel et al [Juengel JL et al, 1994] suggested that the down-regulation of receptors for LH by 

PGF2α might be one of the mechanisms for antisteroidogenic actions of PGF2α. However, in 

cows [Spicer LJ et al, 1981] and ewes [Diekman MA et al, 1978], the decline in progesterone 

preceded the decrease in mRNA for LH receptor. It had been shown that PGF2α might interfere 

with progesterone stimulatory actions of LH by affecting PKA. Accordingly, it was reported 

that the activity of PKA might be reduced by an increased degradation of cAMP due to the 
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activition of phosphodiesterase enzyme [Agudo LS et al, 1984; Garverick HA et al, 1985]. This 

mechanism might be important in inhibiting the expression of StAR, because cAMP activated 

the promoter for StAR in MA-10 cells. LLC account for the most of  the basal progesterone due 

to constitutively high activity of PKA [Diaz FJ et al, 2002]. Therefore, decrease in the activity 

of PKA by PGF2α might be responsible for the inhibition of progesterone synthesis in LLC. 

PGF2α decreased sterol carrier protein  (SCP-2) [McLean MP et al, 1995] and cytoskeleton 

[Murdoch WJ, 1996] that are involved in cholesterol transport. Negative regulation of 

progesterone synthesis by affecting the activity of StAR has been suggested to be the major 

point of regulation by PGF2α. Both, in vivo and in vitro treatment of luteal tissues with PGF2α 

decreased the expression of StAR mRNA in sheep and cattle. In addition, it was proposed that 

that PGF2α might inhibit the translation of StAR mRNA. The orphan nuclear receptor, DAX-1 

was proposed to mediate the inhibitory action of PGF2α on StAR mRNA expression, because 

DAX-1 bound to a DNA hairpin structure on the StAR promoter. Accordingly. PGF2α induced 

DAX-1 RNA and inhibited progesterone synthesis in rat CL [Sandhoff TW and McLean MP, 

1999; Zazopoulos E et al, 1997]. Activation of the proteosome system by PGF2α might be 

another mechanism of regulation of StAR, because the inhibitors of proteosome system 

increased StAR protein and stimulated progesterone synthesis in rat and human granulosa-luteal 

cells [Tajima K et al, 2001]. Phosphorylation of StAR at positions Ser194/195 by PKA 

increased the steroidogenic activity [Arakane F et al, 1997]. Therefore, inhibitory actions of 

PGF2α on PKA activity might reduce the ability of StAR to transport cholesterol into 

mitochondria. Activation of PKC partially inhibited progesterone in luteal cells supplied with 

25-hydroxycholesterol and this effect was abolished in PKC deficient cells, which suggested 

that PKC inhibited cholesterol side chain cleavage enzyme [Wiltbank MC et al, 1990]. 

However, inhibition of progesterone by PGF2α was not associated with decrease in mRNA or 

protein of P450Scc enzyme complex [Belfiore CJ et al, 1994; Rodgers RJ et al, 1995]. In 

addition, PGF2α did not reduced 3β-HSD during its initial 24 h of treatment. Therefore, it was 

proposed that progesterone inhibitory actions of PGF2α might not be mediated by inhibition of 

P450Scc or 3β-HSD. 

In cattle, FP receptors are present on both LLC and SLC, however in sheep high affinity FP 

receptors are absent on SLC [Fitz TA et al, 1982] [Wiltbank MC et al, 1993].  However, 
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activation of PRKC inhibited PKA-stimulated progesterone synthesis in SLC suggesting that 

antisteroidogenic actions of PGF2α in ovine SLC might be indirect. Therefore, the identity of the 

factor that activate PKC in ovine CL was not known until recent. The receptors for oxytocin are 

present on SLC and treatment of luteal tissues with oxytocin decreased the secretion of 

progesterone [Bennegard-Eden B et al, 1995; Pitzel L et al, 1993]. In addition, PGF2α stimulated 

the secretion of oxytocin from luteal tissue [Flint AP and Sheldrick EL, 1982]. Therefore, it is 

tempting to speculate that oxytocin might be the ideal candidate to mediate antisteroidogenic 

actions of PGF2α in SLC. More recently, it was shown that oxytocin stimulated increase in 

intracellular Ca2+ in SLC, and this action was abolished by progesterone [Niswender GD et al, 

2007]. These authors have proposed that PGF2α stimulate LLC to secrete oxytocin, which then 

bind to its receptors on SLC and inhibit synthesis of progesterone. Once the intraluteal 

concentrations of progesterone declines, then oxytocin might induce the apoptosis of SLC by 

raising [Ca2+]i.  

 

2. Mediators of antisteroidogenic actions of PGF2α 

In cattle, PGF2α increased endothelin-1 (EDN1) in regressing CL and ovarian venous blood, 

which suggested that EDN1 might be a mediator of luteolysis [Ohtani M et al, 1998]. In 

addition, EDN1 and angiotensin II (AngII) inhibited progesterone synthesis in bovine luteal 

cells [Girsh E et al, 1996; Miyamoto A et al, 1997]. Both LLC and SLC express mRNA for ET 

type A receptor (ETA) [Meidan R et al, 1999] and action of EDN1 is mediated through selective 

ETA type receptor [Girsh E et al, 1996]. Therefore, it is clear that in cattle, EDN1 mediate the 

antisteroidogenic actions of PGF2α. Delivery of EDNRA and EDNRB receptor antagonists into 

the ovine CL inhibited progesterone inhibitory actions of PGF2α during first 12 h, which 

indicated the role of EDN1 in mediating the antisteroidogenic actions of PGF2α [Doerr MD et al, 

2008]. In cattle, a donor of nitric oxide (NO) inhibited the synthesis of progesterone in luteal 

cells  [Skarzynski DJ and Okuda K, 2000]. In addition, administration of NO synthase (NOS) 

inhibitor to cow inhibited luteolytic actions of PGF2α, which was indicated by prolonged length 

of estrous cycle [Skarzynski DJ et al, 2003]. NO mediated the acute increase in luteal blood 

flow during first 30 min to 2 h after PGF2α administration.  Accordingly, in cattle, PGF2α -

induced expression of endothelial nitric oxide synthase (eNOS) in the periphery of CL and NO 
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donor induced acute increase in the luteal blood flow and decreased the length of estrous cycle 

[Acosta TJ et al, 2002; Shirasuna K et al, 2008]. This acute increase in blood flow has been 

proposed to be important in stimulating capillary endothelial cells to secrete vasoactive amines 

such as EDN1 and Ang II. These vasoactive amines facilitate a decrease in the luteal blood flow 

by vasoconstriction and inhibition of progesterone synthesis [Acosta TJ et al, 2002; Ohtani M et 

al, 1998]. In addition, early luteal resistance to PGF2α was suggested to be due to the lack of 

ability of PGF2α to induce eNOS in the periphery of CL and subsequent absence of acute 

increase in luteal blood flow [Shirasuna K et al, 2008].  

However, it has been shown that there is an inverse relationship between the expression of 

EDN1 and NOS throughout the estrous cycle. The expression of NOS (both eNOS and iNOS) 

was elevated in the early CL and declined towards the end of cycle, whereas the expression of 

EDN1 increased during luteolysis. In addition, NO inhibited the expression of EDN1 in luteal 

endothelial cells. Therefore, it was proposed that low amounts of NO during luteolysis might 

facilitate an increased expression of EDN1 and greater amounts of NO during the early luteal 

stages might be responsible for low EDN1 expression [Rosiansky-Sultan M et al, 2006]. In 

addition, lower expression of EDN1 during early CL and inability of PGF2α to induce its 

expression has been suggested to be part of mechanism responsible for early luteal resistance to 

PGF2α. However, the expression pattern of NOS and its role throughout the estrous cycle 

remains controversial.  

In cattle, tumor necrosis factor alpha (TNFα) and its receptors are expressed in CL [Sakumoto 

R et al, 2000]. In cattle and sheep, TNFα secretion was increased in regressing CL suggesting 

its role during luteolysis [Ji I et al, 1991; Shaw DW and Britt JH, 1995]. In cattle, TNFα 

inhibited in vivo progesterone synthesis in CL only after pre-exposure to PGF2α and EDN1 

[Ohtani M et al, 2004]. Supporting this observation, TNFα and PGF2α were synergistically 

inhibited progesterone synthesis in porcine CL [Wuttke W et al, 1998]. Therefore, it was 

proposed that TNFα facilitates a rapid decline in progesterone synthesis after initial decline by 

PGF2α and EDN1.  

IX. Structural regression of CL 

Structural regression is characterized by decrease in the weight and size of CL. In cattle, 

structural luteolysis started 12h after an initial functional luteolysis following the administration 
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of PGF2α [Neuvians TP et al, 2004].  As a consequence, the size of the regressed CL is greatly 

reduced to a tiny white scary structure called corpus albicans, which is eventually reabsorbed 

and replaced with ovarian stroma. It is well established that the structural regression of CL 

occurs by the process of apoptosis of luteal and endothelial cells. Morphological changes were 

not evident until 24-36 h after PGF2α injection and interestingly endothelial cells were first to 

undergo apoptosis [Sawyer HR et al, 1990]. There is a substantial amount of evidence 

supporting the participation of immune cells in structural luteolysis [Murdoch WJ et al, 1988]. 

Injection of PGF2α into mid cycle cows and ewes resulted in an increased expression of 

monocyte chemo-attractant protein-1 (MCP-1), which is a potent chemo-attractant to immune 

cells [Tsai SJ et al, 1997]. In addition, MCP-1 was highly expressed in regressing rat CL 

[Townson DH et al, 1996]. Therefore, MCP-1 appears to be initial trigger for the infiltration of 

immune cells during luteolysis. The primary role of macrophages during luteolysis appears to 

be phagocytosis of apoptotic luteal cells and degradation of the extracellular matrix [Paavola 

LG, 1979; Pepperell JR et al, 1992]. In addition, T-lymphocytes secrete interferon-γ (IFN-γ) that 

induces the expression of major histocompatibility complex antigens on cultured bovine luteal 

cells [Fairchild DL and Pate JL, 1989]. The cytokines, TNFα, IL-1, and IFN-γ were 

synergistically stimulated the synthesis of PGF2α from bovine luteal cells [Benyo DF and Pate 

JL, 1992; Nothnick WB and Pate JL, 1990]. These cytokines induced apoptosis in various cell 

types [Gupta S, 2003]. In cattle, Fas and Fas-ligand system appear to play an important role in 

the regulation of luteal cell- apoptosis. For example, expression of Fas is greater during 

structural regression of CL (Days 19-21). Futhermore, IFN-γ increased the expression of Fas 

mRNA in luteal cells. Importantly, Fas-ligand induced apoptosis in luteal cells that were pre-

exposed to IFN-γ alone or with TNFα [Taniguchi H et al, 2002]. In addition, progesterone 

antagonist increased the expression of Fas mRNA and subsequent treatment with Fas ligand 

induced an apoptosis in bovine luteal cells [Okuda K et al, 2004]. This observation strongly 

supports the luteo-protective role of progesterone and it could be the reason for initiation of 

structural luteolysis after decline in progesterone. 

PGF2α induced apoptosis in luteal cells of several species [Niswender GD et al, 2000]. 

Formation of DNA ladder is an indication of cells undergoing apoptosis. In cattle, 

administration of PGF2α induced DNA ladder formation in CL after 24-48 h [Juengel JL et al, 
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1993]. The pro-apoptotic protein mRNAs of bax and caspase-3 were increased in regressing CL 

on Days 21 of cycle, whereas low amounts of these mRNAs were observed in pregnant CL 

[Rueda BR et al, 1997]. In addition, the reactive oxygen species (ROS) have been shown to be 

involved in apoptosis of luteal cells and addition of PGF2α induced apoptosis by increasing the 

production of ROS [Sakka E et al, 1997]. In luteal cells, NO mediated PGF2α-induced apoptosis 

by inducing the expression of Fas, caspase-3, and DNA ladder formation, which suggested that 

NO might play role in structural luteolysis [Korzekwa AJ et al, 2006]. 
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Chapter II: Statement of problem 

The regression of CL is initiated by PGF2α in most species studied, including cattle [McCracken 

JA et al, 1970; Niswender GD et al, 2000]. Because of this property, PGF2α has been routinely 

used for synchronization of estrous. However, the limitation of this approach is that the 

sensitivity of CL to PGF2α- induced luteolysis varies depending on the developmental stage of 

CL. Specifically in cattle, the early developmental stages (on or before day-5) of CL is 

insensitive to the luteolytic actions of PGF2α and the aging CL has increased sensitivity to 

PGF2α compared to the early CL [Choudhary E et al, 2005; Copelin JP et al, 1988; Inskeep EK, 

1973; Sayre BL et al, 2000; Watts TL and Fuquay JW, 1985]. Therefore it is clear that: 1) 

PGF2α is the initiator of luteolysis in the cattle, and 2) the sensitivity of CL is increased with 

developmental aging. However, the cellular mechanisms responsible for this developmental 

differences to PGF2α is not clearly understood. 

Several ideas have been proposed to be part of mechanisms responsible for developmental 

sensitiveness of CL as follows. 1) Alterations in the luteal expression of components associated 

with PGF2α metabolism. For instance, resistance of early ovine CL has been attributed to 

increased expression of the PGF2α catabolizing enzyme, hydroxyprostaglandin dehydrogenase 

15-(NAD) (HPGD) [Silva PJ et al, 2000]. The inability of PGF2α to induce the expression of 

prostaglandin-endoperoxide synthase 2 (PTGS2) and subsequent intraluteal PGF2α synthesis in 

the early bovine CL was implicated in luteolytic insensitivity to PGF2α [Tsai SJ and Wiltbank 

MC, 1998]. 2) Differences in signal transduction due to differential expression of genes 

associated with PGF2α receptor. For example, increased expression of protein kinase C 

inhibitor-1 (PKCI-1) [now known as histidine triad nucleotide binding protein, (HINT1)] and 

kinase C inhibitor protein-1 (KCIP-1) [now known as tyrosine 3monooxygenase/tryptophan 5-

monooxygense activation protein, zeta polypeptide (YWHAZ)] were reported to be involved in 

insensitivity of the early ovine CL [Juengel JL et al, 1998]. Greater expression of PRKCE in D-

10 bovine CL has been proposed to participate in acquisition of luteolytic sensitivity to PGF2α 

[Sen A et al, 2005]. 3) Alterations in the expression of locally produced hormones/factors that 

mediate the anitsteroidogenic actions of PGF2α. Inability of PGF2α to induce eNOS in the early 
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bovine CL and subsequent absence of acute increase in luteal blood flow has been proposed be 

mechanism of early luteal resistance [Shirasuna K et al, 2008]. PGF2α caused an acute increase 

in luteal blood flow during the initial stages of luteolysis and this event has been proposed to be 

due to ability of PGF2α to induce vasodilator eNOS. In addition, low expression of endothelin 

converting enzyme-1 (ECE-1) and EDN1 peptide in early CL and inability of PGF2α to induce 

EDN1 in early CL has been proposed to be one of the mechanisms responsible for refractoriness 

of early CL [Levy N et al, 2001; Levy N et al, 2000]. 4) The ability of the early CL to 

preferentially produce greater amount luteo-protective PGE2. The expression of PGES was 

greater in the early CL and decreased in regressing CL [Arosh JA et al, 2004]. In addition, the 

ability of PGES to convert PGH2 to PGE2 was 150-fold greater than conversion of PGH2 to 

PGF2α by PGFS, there by producing greater amounts of PGE2 [Madore E et al, 2003]. PGE2 

has been shown to be luteo-protective by promoting progesterone synthesis. In addition, PGF2α 

has stimulated its own synthesis in CL via PRKC/Ca2+ pathways by inducing the expression of 

COX-2 [Tsai SJ and Wiltbank MC, 1997]. Accordingly, the inability of PGF2α to induce COX-2 

in th early CL had been implicated in the mechanism of luteolytic sensitivity [Tsai SJ and 

Wiltbank MC, 1998]. 

Sen et al [Sen A et al, 2004] analyzed the expression pattern of array of PKC specific isozymes 

at two developmental (D-4 and -10) stages of bovine CL. The expression of PRKCE was greater 

in D-10 CL compared to D-4 CL. This observation led these authors to propose that the 

differential expression of PRKCE as a function of development could play a role in the 

observed transitional resistance/susceptibility to PGF2α-induced luteal regression. In addition, 

specific PRKCE inhibitors abrogated the increase in [Ca2+]i stimulated by PGF2α, [Sen A et al, 

2005]. Moreover, the magnitude of intracellular Ca2+ signal stimulated by PGF2α is greater in D-

10 CL compared to early CL [Choudhary E et al, 2005; Sen A et al, 2005].  Therefore the ability 

of PGF2α to stimulate greater magnitudes of [Ca2+]i  coincides with an increased expression of 

PRKCE. Therefore it was proposed that regulation of [Ca2+]i might be a cellular mechanism 

through which PRKCE could mediate  the inhibitory actions of PGF2α on progesterone 

synthesis. 

Further, effect of intracellular Ca2+ on steroidogenesis appears to be biphasic.  In addition to 

inhibitory actions of high cytoplasmic Ca2+ on progesterone synthesis, the stimulatory effect of 
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Ca2+ on LH-stimulated progesterone has been reported. For example, absence of Ca2+ in culture 

media reduced the ability of LH/hCG to stimulate progesterone synthesis by 50% [Manna PR et 

al, 1999; Sullivan MH and Cooke BA, 1986]. In addition, Ca2+ ionophore A23187 stimulated 

hCG-stimulated progesterone synthesis and STAR expression in an additive manner [Manna PR 

et al, 1999], which inidcated that effect of Ca2+ is not related to LH binding, but rather to 

cytoplasmic events. The stimulatory effect of Angiotensin II (Ang II) on adrenal steroidogenesis 

was associated with PLC activity and subsequent generation of IP3 and mobilization of 

intracellular Ca2+ [Barrett PQ et al, 1989]. The stimulatory effect of Ca2+ on LH-stimlated 

progesterone is implied in the observations that a luteotrophic hormone increased IP3, and 

[Ca2+]i in bovine luteal cells and porcine granulosa cells [Alila HW et al, 1990; Davis JS et al, 

1987a; Flores JA et al, 1998]. Furthermore, PGF2α stimulated LH-stimulated progesterone 

synthesis in the early bovine CL [Choudhary E et al, 2005; Levy N et al, 2001]. Therefore, the 

magnitude of Ca2+ signal stimulated by an agonist through its receptor might determine if the 

cellular response is luteolytic or luteotrophic at given developmental stage. The important 

implications of this interpretation is that by simply raising [Ca2+]i to the appropriate threshold, 

one might be able to reduce progesterone regardless of the luteal developmental stage.  

More importantly, lack of functional PGF2α receptors does not seem to explain the mechanism 

of luteal insensitivity, because early CL (by Day-2) already express PGF2α receptors with equal 

affinity and concentrations as observed in mature CL [Wiltbank MC et al, 1995]. Supporting 

this observation, PGF2α can elicit distinct physiological responses in the early corpora lutea 

[Choudhary E et al, 2005; Levy N et al, 2000]. Therefore, the general idea upon which our 

current hypotheses were formulated was that the differences in components of signal 

transduction associated with luteal FP receptors at different developmental stages might be, at 

least in part, responsible for observed differences elicited by PGF2α. Furthermore, looking at the 

differential expression of single gene at a time might not be effective in unraveling the 

differences in complex signal transduction pathway associated with PGF2α receptor. Therefore, 

studying global changes in the luteal transcriptome during its transition from early to mature 

stage might identify several genes that might play a role in developmental sensitiveness.  

The hypotheses have been formulated based on the above discussed observations as follows: 
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Hypothesis 1a:  PRKCE-mediates the anti-steroidogenic actions of PGF2α. 

This hypothesis was tested using siRNA strategy to down- regulate the expression of PRKCE in 

steroidogenic cells. The expectancy was that PRKCE-specific siRNA should downregulate 

significant amount of mRNA and protein of PRKCE. This should allow us to test the role of 

PRKCE in mediating the antisteroidogenic actions of PGF2α on LH-stimulated progesterone 

synthesis. Under low cellular concentrations of PRKCE, we predicted that the ability of PGF2α 

to inhibit LH-stimulated progesterone synthesis might be compromised.  

Hypothesis1b: PRKCE was necessary for the expression of key genes of prostaglandin 

synthesis/metabolism that would favor PGF2α synthesis; whereas in PRKCE down-regulated 

cells, the expression of key genes of prostaglandin synthesis/metabolism would be such that 

synthesis of PGE2 would be favored. This hypothesis was tested by determining changes in the 

expressions of key prostaglandin metabolic genes in PRKCE-down-regulated cells by real-time 

PCR. 

Hypothesis 2: The rise in [Ca2+]i is the cellular mechanism through which PGF2α inhibits luteal 

progesterone. We reason that if a pharmacological treatment (calcium ionophore, A23187) is 

used to increase [Ca2+]i, this should inhibit LH-stimulated progesterone syntheis with equal 

effectiveness, regardless of the developmental stage (D-4 or -10) of CL. In addition, if the 

PGF2α -stimulated increase in [Ca2+]i is prevented with a intracellular Ca2+ chelator (BAPTA-

AM), then PGF2α will not be able to inhibit progesterone secretion 

Hypothesis 3a: The differential gene expression during the developmental transition of corpora 

lutea from D-4 to D-10 might include genes encoding components of signal transduction 

pathways that might change the nature of the elicited response, or the luteal sensitivity to 

luteolytic actions of PGF2α. This hypothesis was tested by utilizing array that contained 8,329 

unique bovine genes that was developed by Center for Animal Functional Genomics (CAFG) at 

Michigan State University. The expected result was that at least a portion of genes on the array 

might be differentially expressed in D-10 CL that could potentially explain the differential 

sensitivity of the bovine CL to PGF2α 
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Hypothesis 3b: Some of the selected genes that are differentially expressed during transition 

from D-4 to D-10 developmental stage might be responsive to in vivo PGF2α  treatment on the D-

4 or -10 of the estrous cycle. We selected some differentially expressed genes based on the 

literature that indicated these genes might participate in PGF2α signaling. This hypothesis was 

tested utilizing real-time PCR using gene specific primers. The expected result was that the 

expression of some of the selected genes might be altered (increased/decreased) by exogenous 

PGF2α that might potentially explain their role in acquisition of luteolytic sensitivity to PGF2α. 

Hypothesis 3c: CAMKK2 mediates the actions of increasing [Ca2+]i  stimulated by PGF2α on 

inhibiting progesterone. Observations from our microarray results have indicated that the 

expression of CAMMK2 was more than two fold greater in D-10 CL compared to D-4 CL. 

Furthermore, our preliminary studies have indicated that exogenous PGF2α increased the 

expression of CAMKK2. This increase in CAMKK2 occurred at a luteal developmental stage 

that is sensitive to PGF2α. More importantly, its increased expression coincides with the luteal 

developmental stage at which PGF2α has ability to elicit a greater rise in [Ca2+]i [Choudhary E et 

al, 2005]. In many biological system, the actions of raising [Ca2+]i  are mediated via 

calmodulin-dependent protein kinases. Therefore we chose to study the role of CAMKK2 

during the antisteroidogenic actions of PGF2α. Our prediction was that if the activity of 

CAMMK2 is inhibited, then the ability of PGF2α to inhibit the progesterone synthesis is 

compromised under in vitro conditions. This hypothesis was tested using commercially 

available STO-609, which has been shown to be CAMMK2 specific inhibitor [Tokumitsu H et 

al, 2002].  
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Chapter III: PKC epsilon and an increase in intracellular calcium concentration are 

necessary for PGF2alpha to inhibit LH-stimulated progesterone secretion in cultured 

bovine steroidogenic luteal cells 

 

Introduction 

The corpus luteum (CL) is a transient endocrine gland whose primary secretory product is 

progesterone (P4). The life span of the CL and consequently the amount of P4 it secretes is 

regulated according to reproductive physiological status. Substances reducing P4 secretion and 

shortening the luteal life span are said to be luteolytic [McCracken JA et al, 1999; Niswender 

GD and Nett TM, 1994].  

            In most species, including human beings, PGF2α is recognized as an important if not the 

main luteolytic factor [Arosh JA et al, 2004; Auletta FJ and Flint AP, 1988; Guthrie HD et al, 

1978; Olofsson J et al, 1992; Pate JL, 1988; Patwardhan VV and Lanthier A, 1980; Rexroad 

CE, Jr. and Guthrie HD, 1979]. During the ovarian cycle, the transition from early to mid-luteal 

phase is associated with changes in resistance/ susceptibility to the luteolysin PGF2α; in cows, 

the CL is resistant to exogenous PGF2α prior to day 5 of the estrous cycle [Choudhary E et al, 

2005; Copelin JP et al, 1988; Inskeep EK, 1973; Sayre BL et al, 2000; Silva PJ et al, 2000; 

Silvia WJ and Niswender GD, 1984; Tsai SJ and Wiltbank MC, 1997; Wiltbank MC et al, 

1995]. The cellular basis controlling luteal function during these physiological transitions, 

although studied intensely, is incompletely understood.  

           In steroidogenic cells of the ruminant CL, PGF2α activates its plasma membrane G-

protein-coupled receptor, which in turn activates the membrane-bound phosphoinositide 

specific phospholipase C (PLC), yielding inositol 1,4,5 trisphosphate (IP3) and diacylglycerol 

[Davis JS et al, 1988]. Indeed, in bovine luteal cells, PGF2α stimulated phosphatidylinositol 

4,5-biphosphate hydrolysis and mobilized intracellular Ca2+ [Davis JS et al, 1987b]. 

Accordingly, calcium and PRKC have been shown to be the intracellular mediators of PGF2α 

actions in luteal cells [Wiltbank MC et al, 1991]. The regulatory effects of intracellular calcium 

concentration ([Ca2+]i) on progesterone might be biphasic as there is also evidence for a 
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calcium requirement to support P4 synthesis by bovine luteal cells and LH, a luteotrophic 

hormone, increases IP3, and [Ca2+]i in bovine luteal cells and in porcine granulosa cells [Alila 

HW et al, 1990; Davis JS et al, 1987a; Flores JA et al, 1998]. Therefore, there might exist 

thresholds of [Ca2+]i that support or inhibit P4 synthesis.  

           Choudhary et al, [Choudhary E et al, 2005] tested the ability of increasing 

concentrations of PGF2α to increase the [Ca2+]i in large (LLC) and small (SLC) bovine luteal 

cells as function of development. Day-10 steroidogenic cells were more responsive to PGF2α 

than Day-4 cell. Response amplitudes and number of responding cells were significantly 

affected by agonist concentration, luteal development and cell type. Response amplitudes were 

greater in LLC than in SLC; responses of maximal amplitude were elicited with lower agonist 

concentrations from Day-10 than from Day -4 cells. Furthermore, on Day-10, as concentrations 

of PGF2α increased, larger percentages of SLC responded. Based on those results Choudhary et 

al proposed that the lower efficacy of PGF2α in the early CL was likely related to signal 

transduction differences associated with the PGF2α receptor at those two developmental stages 

[Choudhary E et al, 2005].  

 

        The array of PKC isozymes expressed in whole bovine CL includes α, βI, βII, ε and µ 

[Davis JS et al, 1996; Orwig KE et al, 1994; Sen A et al, 2004; Sen A et al, 2005]; and it has 

been demonstrated that the amount of PKCε (PRKCE) expressed in the Day10 CL is greater 

than in the Day-4 CL [Sen A et al, 2004]. The latter observation led Sen et al, to propose that 

differential expression of PRKCE as a function of development could play a role in the 

observed transitional resistance/susceptibility to PGF2α-induced luteal regression [Sen A et al, 

2004; Sen A et al, 2005]. Sen et al, had further hypothesized that regulation of [Ca2+]i was a 

cellular mechanism through which PRKCE could mediate actions of PGF2α on P4 secretion 

[Sen A et al, 2005]. Additionally, there is evidence indicating that when bovine follicular theca 

cells are isolated and their luteinization is induced under in vitro tissue culture conditions, they 

express PKCδ [Budnik LT and Mukhopadhyay AK, 2002]. As PKCδ has been reported to play 

an important role in other species such as in rabbits and rodents [Maizels ET et al, 1996; Peters 

CA et al, 2000], this PKC isozyme might also be important for the physiology of the bovine 

ovary.  
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           Endothelial cells of the bovine CL do not express PRKCE, although they do express the 

other PRKC isozymes described in the bovine CL [Sen A et al, 2006]. Data obtained with 

Western blot and immunohistological assays indicated that steroidogenic cells are the main 

source of PRKCE in the bovine CL [Sen A et al, 2006]. Therefore, in experiment 1, in order to 

assess the potential physiological role of PRKCE, we have used a siRNA strategy to down- 

regulate the expression of this PKC isozyme in luteal steroidogenic cells. In experiment 2, we 

used the PRKCE down-regulated cells to test two hypotheses. Our first working hypothesis 

was that PRKCE expression was necessary for PGF2α to inhibit LH-stimulated P4 secretion in 

vitro. The second working hypothesis was that PRKCE was necessary for the expression of key 

genes of prostaglandin synthesis/metabolism that would favor PGF2α synthesis; whereas in 

PRKCE down regulated cells, the expression of key genes of prostaglandin 

synthesis/metabolism would be such that synthesis of PGE2 would be favored. Finally, in 

experiment 3, we tested the hypothesis that [Ca2+]i is the cellular mechanism through which 

PGF2α inhibits luteal progesterone. We reasoned that if a pharmacological treatment is used to 

increase [Ca2+]i, this should inhibit luteal progesterone secretion with equally effectiveness, 

regardless of the developmental stage of the CL. Therefore, we used a pharmacological agent 

to increase [Ca2+]i and examine its effects on LH-induced P4 secretion in luteal cells collected 

from early (Day-4) and mid-cycle (Day-10) bovine CL. Furthermore, this hypothesis was also 

tested by using a pharmacological agent to buffer any increase in [Ca2+]i and examine, under 

conditions of low [Ca2+]i, the anti-steroidogenic effect of PGF2α on LH-induced P4 secretion in 

cultures of luteal cells collected from mid-cycle (Day-10) CL. 

 

Methods  

Tissue collection  

             Non-lactating beef (experiments 1 and 2) or dairy (experiment 3) cows were observed 

visually for estrus twice daily at approximately 12-h intervals for a minimum of 30 min per 

observation. The day when standing estrus was observed was designated as Day 0 [Casida LE, 

1959]. For experiments 1 and 2, the CL from four beef cows on Day-6 of the estrous cycle 

were collected in ice-cold saline and transported to the laboratory for luteal cell dispersion as 
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described below. For experiment 3, 14 non-lactating dairy cows were synchronized with 25 mg 

PGF2α analog (Lutalyse®; Pfizer Animal Health., New York, NY) and ovaries on Day-4 (n = 

4) or CL on Day-10 (n = 10) were collected surgically as described below and transported to 

the laboratory in ice-cold saline for dissociation and luteal cell enrichment as described below. 

The surgical procedure was performed via supravaginal incision under epidural anesthesia. For 

the epidural anesthesia, 6–9 ml 2% lidocaine was administered for cows weighing 450–700 kg 

(Butler Company, Columbus, OH). After surgery, penicillin (300,000 units) was administered 

intramuscularly to protect against post-surgical infection. The CL or ovary was collected into 

ice-cold saline at pH 7.4 and transported to the laboratory within 15 to 30 min after collection. 

The Animal Care and Use Committee of West Virginia University approved all procedures for 

these experiments (ACUC protocol # 060401). 

 Luteal cell dispersion and purification  

             In the laboratory, the CL was dissected free of connective tissue, weighed, placed into 

cell dispersion medium (CDM, M-199 containing 0.1% BSA, 25 mM Hepes, 100 U/ml 

fungicide), and cut into small (about 1 mm3) fragments. The tissue fragments were processed 

for tissue dissociation as previously described [Choudhary E et al, 2005]. Luteal endothelial 

cells were separated by a procedure previously described [Choudhary E et al, 2005; Levy N et 

al, 2001; Mamluk R et al, 1998; Webb BL et al, 1997]. Briefly, magnetic tosylactivated beads 

(Dynal Biotech, Lake Success, NY) were used to separate endothelial cells and the non-

adherent cells, steroidogenic enriched luteal cells) were collected. The cell population 

designated as steroidogenic cells represented a heterogeneous population of cells including 

fibroblasts, pericytes, lymphoid and possibly few endothelial cells not removed by the 

separation procedure. Cell viability and density were determined using Trypan Blue exclusion 

and a hemocytometer; luteal cell viability was usually greater than 96%. 

 

 Experiment 1. Validation of siRNA methodology for specifically downregulating PRKCE 

expression in enriched steroidogenic luteal cells. 

             Day-6 dissociated luteal steroidogenic cells were cultured overnight at a cell density of 

1 × 106 cells/well in 35 mm 24 – well culture dishes (Corning Inc, Corning NY) containing 1 

ml Medium 199 supplemented with 5% fetal calf serum (FCS, GIBCO) at 37°C (95% air, 5% 
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CO2). The next day cells were transiently transfected with PRKCE-specific siRNA kit (Upstate 

Cell Signaling solutions, Lake Placid NY) using lipofectin 2000 kit (Invitrogen Life 

Technologies) following the procedure recommended by the manufacturer. After transfection 

for 4 hr, the cultures were provided with M199 supplemented with 10% FCS, and incubated for 

a total of 48, 72 or 96 hours. After each of these time points, the cells were collected by adding 

2 ml M199 containing 0.25% trypsin (GIBCO) to cover the monolayer and leaving the culture 

dish for about 1 min at room temperature. The cells were aspirated and washed one time with 

M199 containing 5% FCS and once with M199 without FCS. Cells collected from duplicate 

wells were pooled and the efficiency of transfection at 48, 72 and 96 h was analyzed by RT-

PCR and Western blot analysis. Control groups included cells cultured in presence of M199 

alone, M199 and transfecting reagent, and cells treated with non-specific siRNA duplex (non-

specific siRNA).  

 

Experiment 2. Effects of down-regulating PRKCE expression by the siRNA protocol on: A) the 

ability of PGF2α to inhibit the LH-stimulated P4 accumulation, and B) on the expression of key 

genes involved in prostaglandin synthesis and metabolism.  

Hypothesis 1: PRKCE is necessary for PGF2α to be able to inhibit P4 secretion. To examine the 

ability of PGF2α (Cayman Chemical, Ann Arbor, MI) to inhibit LH-induced progesterone 

accumulation, the siRNA transfected and control cells (not treated with PRKCE siRNA) were 

treated, after 96 h, with100 ng/ml of LH, 1000 ng/ml of PGF2α, or a combination of LH and 

PGF2α for 4 hrs. After this time, the cell free medium was collected from each treatment and 

frozen until determination of P4 by radioimmunoassay (RIA). The RIA used for measurements 

of P4 in the culture media has been described previously [Sheffel CE et al, 1982]. The standard 

curve for this RIA ranged from 10 pg/ml to 800 pg/ml, and the intra- and interassay 

coefficients of variation were 9.2% and 12.8%, respectively.  

Hypothesis 2: PRKCE is necessary for the expression of key prostaglandin 

biosynthetic/metabolizing enzymes. For the real time quantitative determination of gene 

expression of key prostaglandin biosynthetic/metabolizing enzymes in PRKCE down-regulated 

and control (not downregulated) cells, RNA samples were obtained from the cells collected in 

the experiment described under Hypothesis 1. The genes examined were: aldoketoredutase 1B5 
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(AKR1B5), prostaglandin-15 dehydrogenase (PGDH), prostaglandin E synthase (PGES), 9-

keto-prostagalndin reductase (9K-PGR), and cyclooxygenase-2 (COX-2). Enriched 

steroidogenic cells were treated with the PRKCE siRNA protocol and after 96 h of culture the 

cells were treated with LH (100 ng/ml), PGF2α (1000 ng/ml), or a combination of LH and 

PGF2α for 4 h. The cells were collected by a brief trypsin treatment and total RNA was isolated 

with Trizol reagent according to the manufacturer's instructions (GIBCO). Total RNA was 

quantified spectroscopically at 260 nm and integrity of the RNA was determined by 2% 

agarose gel electrophoresis. Specific primers were designed by using primer3 software. The 

primer sequences and their accession numbers are shown in table 1. The single-step RT-PCR 

was carried out and cDNA product for each gene was column purified. Ten-fold serial dilutions 

of cDNA for each of the genes were used as templates to generate standard curves. Total RNA 

samples were reverse transcribed and used as templates in an iQ5 cycler (Bio-Rad 

Laboratories, Hercules, CA). The 25 µl reaction mixture contained 12.5 µl SYBER green mix 

(BioRad Laboratories), 2 µl cDNA sample, 2.5 µl each sense and antisense primers (0.5 µmol) 

and 5.5 µl of RNAse free H2O. The standard curves of threshold cycle (ct value) versus log 

starting quantity for the genes of interest were obtained. The conditions used were as follows: 

inactivation of RT enzyme, 95°C/3 min; denaturation, 95°C/30 sec; annealing, 55°C/30 sec; 

and extension, 72°C/1 min with fluorescence acquisition. The melt-curves were generated from 

55°C to 95°C with 0.5°C increments in temperature. The melt-curves were observed for 

presence of single amplification product. The slope and intercept values obtained from the 

standard curve were used to determine the starting quantity for each gene using linear 

regression equation and gene expression for the desired gene was normalized using β-actin as 

the reference gene.  

 

Experiment 3. The working hypothesis was that a rise in [Ca2+]i is the cellular mechanism 

through which PGF2α inhibits luteal P4.  

Effect of a pharmacological increase in [Ca2+]i on the LH-stimulated P4 secretion in Day-4 

and -10 luteal steroidogenic cells. We predicted that if [Ca2+]i is increased by a 

pharmacological treatment, this increase in [Ca2+]i should be equally effective in reducing the 

LH-stimulated P4 secretion regardless of the developmental stage of the CL. The enriched 

steroidogenic cells (1 × 105 cells/well) isolated from Day-10 and Day-4 CL of PGF2α-
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synchronized non-lactating dairy cows were cultured overnight in 15 mm 24 -well culture 

plates in medium M199 supplemented with 0.1% BSA and 0.5% FCS. The next morning, the 

cells were treated in duplicate wells for 24 hr with M199 (control), LH (100 ng/ml), PGF2α, 

(1.0 µg/ml), and a combination of LH and PGF2α. The ability of increasing concentrations of 

the calcium ionophore, A23187 (0.1, 1, 10, or 100 µmol, (Invitrogen Detection Technologies), 

to inhibit basal and LH -stimulated P4 synthesis/secretion was tested in duplicate wells. The 

medium for the control group contained 0.1% dimethylsufoxide (DMSO, Pierce Rockport, IL), 

the solvent used for PGF2α and A23187. The cell-free media were collected and frozen until 

later measurements of P4 by RIA. The concentrations of A23187 used were based on single-

cell studies, in which a concentration of 1 µmol A23187 was usually effective in increasing 

[Ca2+]i to values comparable to those seen when cells were stimulated with PGF2α at a 

concentration of 1000 ng/ml. The concentration range used of the Ca2+ ionophore should assure 

a very good probability of eliciting a wide range in increases in [Ca2+]i that would allow testing 

its effect on the LH-stimulated P4 synthesis/secretion in Day-4 and -10 steroidogenic cells. 

If the PGF2α -stimulated increase in [Ca2+]i is prevented, PGF2α will not be able to inhibit P4 

secretion. This experiment examined the ability of PGF2α to inhibit LH-stimulated P4 secretion 

in Day-10 luteal cells under conditions in which elevations in [Ca2+]i were buffered. This was 

accomplished by testing the effect of 1,2-bis (2-aminophenoxy) ethane-N, N, N', N'-teyracetic 

acid tetrakis acetomethyl ester, Bapta-AM (Invitrogen Detection Technologies, Carlsbad, CA), 

an effective pharmacological agent known to buffer changes in [Ca2+]i [Midzak AS et al, 2007; 

Nikonenko I et al, 2005]. The concentration range chosen, 0.1 to 1000 µmol, was based on 

preliminary single-cell studies indicating that at the concentration of 10 µmol, Bapta-AM 

effectively prevented the typical increase in [Ca2+]i induced by PGF2 in luteal steroidogenic 

cells. The enriched Day-10 steroidogenic cells (1 × 105 cells/well) isolated as described above 

were cultured overnight in 15 mm 24 -well culture plates in medium M199 supplemented with 

0.1% BSA and 0.5% FCS. The next morning, the cells were treated in duplicate wells for 24 hr 

with M199 (control), LH (100 ng/ml), PGF2α, (1.0 µg/ml), and a combination of LH and PGF2α 

with increasing concentration of Bapta-AM (0.1, 1, 10, 100 or 1000 µmol). The effect of each 

treatment on basal and LH -stimulated P4 synthesis/secretion was tested in duplicate wells. The 

medium for the control group contained 0.1% dimethylsufoxide (DMSO, Pierce Rockport, IL), 

the solvent used for PGF2α and Bapta. The cell-free media were collected and frozen until later 
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measurements of P4 by RIA.  

 Semi-quantitative RT-PCR  

The time-course effectiveness of the siRNA treatment in down-regulating PRKCE mRNA 

expression was determined by a semi-quantitative RT-PCR procedure (RT-PCR, Qiagen, 

Valencia, CA) previously validated and described [Orwig KE et al, 1994]. In this RT-PCR 

assay, PRKCE expression was normalized to the expression of GAPDH as the reference gene. 

The sequence of the PRKCE and GAPDH primers were those previously published: 

[Choudhary E et al, 2005], sense 5'-AGCTTGAAGCCCACAGCCTG-3'; antisense 5'-

CTTGTGGCCGTTGACCTGATG-3'; and (34), sense 5'TGTTCCAGTATGATTCCACCC-3'; 

antisense 5'- TGTTCCAGTATGATTCCACCC-3' respectively. The specificity for these 

primer sets have been documented [Choudhary E et al, 2005; Orwig KE et al, 

1994][Choudhary E et al, 2005; Orwig KE et al, 1994], and confirmed here by using the 

nucleotide database of National Center for Biotechnology Information with BLAST. The RT-

PCR assay conditions were as follows: 50°C for 30min for reverse transcription reaction, 95°C 

for 15min for inactivation of RT enzyme, and then for PCR cycles consisted of 95°C for 

50seconds for denaturing, 58°C for 30seconds for annealing, 72°C for 1min for extension and a 

final extension of 5min at 72°C. The RT-PCR products were electrophoresed on 2% agarose 

gel stained with ethidium bromide and viewed using the Fluro-S MultiImager (Bio-Rad 

Laboratories). Data were collected using densitometric analysis of Quantity One quantification 

software package (Version 4, Bio-Rad Laboratories). The intensity of the signal corresponding 

to PKC isozyme was standardized by the corresponding intensity of GAPDH control in that 

sample.  

 

Semi-quantitative Western blots 

            Proteins were isolated from cells of siRNA treated and control groups using previously 

described methodology [Orwig KE et al, 1994]. Details for the semi-quantitative Western blot 

protocol used here have been described elsewhere [Sen A et al, 2004]. Briefly, protein samples 

(10 µg/lane) were resolved on an 8% polyacrylamide gel. The resolved proteins were 

transferred to polyvinylidene fluoride membrane (Biotechnology Systems, Boston, MA). The 

membranes were treated for immunodetection of the proteins of interest. The following 
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primary antibodies were used: a mouse anti-actin monoclonal antibody ([used at a dilution of 

1:3000 (v/v] Chemichon International, Inc., Temecula, CA); PKC isozyme specific (α, βI, βII, 

ε,) polyclonal antibodies and their antigenic peptides ([antibodies used at dilution 1:1000] 

Gibco, Grand Island, NY). The following horseradish peroxidase-conjugated secondary 

antibodies were used here: anti-rabbit (1:5000, v/v; Amersham Pharmacia Biotech, and anti-

mouse (1:30,000 v/v; GIBCO). Densitometry of the bands of interest were performed using 

Quantity One quantitation software. The intensity of the signal corresponding to the protein of 

interest was standardized by the corresponding intensity of the actin control in that sample. 

This normalization of data allows an estimate, in a semi quantitative manner, the amount of 

protein in the samples of interest, as described earlier [Sen A et al, 2004].  

 

Statistics  

            The statistical software program from Statistical Analysis System, JMP 3.0 was used 

for data analyses [Cary NC]. Data were expressed as means ± SEM for all the experiments. 

One-way ANOVA was used to determine effects of different treatments. Tukey – Kramer HSD 

was used to compare the different treatments subgroups. A value of P < 0.05 was considered 

statistically significant.  

 

Results  

Experiment 1  

            Culturing steroidogenic cells collected from the Day-6 CL spontaneously induced the 

expression of PRKCE (data not shown). Expression of PRKCE was induced gradually by the 

tissue culture conditions, and as Day-6 luteal cells were cultured up to 6 days, PRKCE 

expression had been spontaneously increased to values comparable to those seen in Day-10 CL 

(data not shown). Fig. 1A shows a typical result of the time-course siRNA experiments 

performed. The summarized data shown in Fig. 1B indicate that there was a significant (P < 

0.05) decrease in the amounts of mRNA encoding PRKCE after 72 h of transfection (0.36 ± 

0.07) compared to the media treated control group (1.03 ± 0.05). Panels A and B in Fig. 1 show 

that this approach reduced PRKCE expression 65 and 75% (0.23 ± 0.04) by 72 and 96 hrs of 

treatment respectively. This reduction was specific because no similar changes were observed 
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in treatments receiving only experimental media (Media), receiving non-specific siRNA 

duplexes (Non-Sp siRNA), or receiving only transfection reagents (Transfection reagent, Fig. 

1B).  

            The effectiveness of the siRNA transfection in reducing protein corresponding to 

PRKCE can be seen in the semiquantitative western blotting (Fig 2A). A visual reduction in 

protein was detected 72 h after transfection (Fig. 2A). However, the semi-quantitative analysis 

of the data indicated that a significant reduction (P < 0.05) in the amount of PRKCE protein 

had not occurred until 96 h after transfection. At this time, there was a 50% reduction in the 

siRNA -treated group (0.39 ± 0.02) compared to control group (0.82 ± 0.07, Media, Fig. 2B). 

Figure 3 demonstrates the specificity of the siRNA transfection in down-regulating the PRKCE 

isozyme. This Western blot was carried out for other PKC isozymes, PKCα and PKCβ II, and 

there was no reduction in the amounts of these isozyme proteins even at 96 h after transfection 

with PRKCE-specific siRNA; a time by which there was significant reduction in PRKCE (Fig. 

2B).  

 

Experiment 2 

 Hypothesis 1: Effect of PRKCE down-regulation on the ability of PGF2α to decrease the LH-

induced P4 accumulation. Enriched steroidogenic cells (n = 4) transfected with PRKCE siRNA 

were cultured for 96 h and treated with LH, PGF2α, and combination of LH and PGF2α for 4 h. 

The control group included cells treated with the hormones described above, but expressing 

normal amount of PRKCE. PRKCE down-regulation did not induce a decrease in the amount 

of P4 accumulation in the LH-stimulated cells (158.4 ± 18.1) compared to the control (202.4 ± 

11.4). As in previous experiments, the accumulation of P4 was significantly reduced (P < 0.05) 

by PGF2α (42.9 ± 2.6) compared to LH -treated control group (202.4 ± 11.4). There was no 

difference in the amounts of accumulated P4 between PGF2α treated PRKCE down-regulated 

cells (34.9 ± 8.1) and control group (42.9 ± 2.6). However, the ability of PGF2α to decrease 

LH-stimulated P4 accumulation was significantly (P < 0.05) inhibited in the PKC ε down-

regulated group, 124.4 ± 7.4 compared to control, 51.4 ± 4.1 (Fig. 4).  

Hypothesis 2: Gene expression of key prostaglandin biosynthetic/metabolizing enzymes in 

PRKCE down-regulated cells. Real-time PCR analysis of total RNA for mRNA encoding Cox-
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2, AKR1B5, PGES, PGDH and PGE (2) -9-ketoreductase indicated that there were no 

significant differences in the expression of any of these genes as a functions of PRKCE down-

regulation, LH or PGF2α treatment (Fig. 7).  

 

Experiment 3 

 A rise in [Ca2+]i is the cellular mechanism through which PGF2α inhibits luteal P4. Effect of a 

pharmacological increase in [Ca2+]i on the LH-stimulated P4 synthesis/secretion in Day-4 and 

-10 luteal steroidogenic cells. As reported in previous studies [Choudhary E et al, 2005], basal 

P4 accumulation in cells collected form Day -4 CL was significantly lower than in those 

collected from Day -10 (7.6 ± 2.2 and 29.2 ± 1.8 respectively, Fig. 5A and 5B). LH 

significantly increased (P < 0.05) the luteal progesterone accumulation in both Day- 4 (49.5 ± 

16.3) and -10 cells (65.7 ± 3.7). This effect of LH was not inhibited by PGF2α in Day- 4 cells 

(44.6 ± 17.5), whereas it was significantly inhibited in Day-10 cells (31 ± 1.9, Fig. 5A and 5B). 

When used at 0.1 µmol, A23187 did not reduce LH-stimulated P4 accumulation in Day -4 or -

10 cells; but at higher concentration (1.0 – 100 µmol), it negated the stimulatory effect of LH 

on P4 (P < 0.05, Fig. 5A – B). Basal P4 accumulation in Day -4 and -10 cells was not affected 

by any concentrations of A23187 tested (Fig. 5A and 5B, only 100 µmol A23187 shown).  

 

If the PGF2 -stimulated increase in [Ca]i is prevented, PGF2α will not be able to inhibit P4 

secretion. LH significantly increased (P < 0.05) the luteal progesterone accumulation in Day-

10 cells (64.6 ± 3, Fig. 6). This effect of LH was completely inhibited by PGF2α (21.1 ± 2.1, 

Fig. 6). Importantly, basal P4 accumulation (Fig. 6) was not affected by the Bapta-AM 

treatment, not even the highest concentration used (20.9 ± 4.1). When Bapta-AM was used at 

0.1, 1, 10 and 100 µmol in combination with LH, the values on P4 accumulation became 

intermediate between those observe for basal and LH alone (Fig. 6); and the stimulatory effect 

of LH was completely eliminated by 1000 µmol Bapta (data not shown). Consequently, the 

effect of Bapta-AM on the anti-steroidogenic action of PGF2α could only be tested up to 100 

µmol. The inhibitory effect of PGF2α on LH-stimulated luteal P4 accumulation was not affected 

by Bapta when used at concentrations not exceeding 1 µmol, as the values for P4 accumulation 

clearly were not different from those observed for basal values (P < 0.05, Fig. 6). However, at 
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10 and 100 µmol, Bapta-AM effectively reduced the ability of PGF2α to inhibit the stimulatory 

effect of LH on P4 accumulation (Fig. 6).  

 

Discussion  

            The roles of specific PKC isozymes in luteal physiology have received little attention to 

date. As discussed below, these studies were designed to test the effects of ablating PRKCE 

expression in order to examine its hypothesized function. Previous studies had indicated that a 

potential function for PRKCE might be to regulate quantitatively the intracellular calcium 

signal initiated by PGF2α on one of its luteal targets, the steroidogenic cells. The present studies 

validate the effective and specific down-regulation of PRKCE by siRNA technology and 

provide strong evidence about the function of this PKC isozyme in luteal physiology. The data 

support the overall hypothesis that downregulating expression of PRKCE reduces the 

effectiveness of PGF2α in reducing progesterone secretion. This observation extends the report 

that when PRKCE was inhibited with PRKCE-specific inhibitors, the PGF2α – induced rise in 

[Ca2+]i was decreased in LLC and SLC and that this in turn had consequences (at least in part) 

in the ability of PGF2α to inhibit LH-stimulated P4 secretion at this developmental stage [Sen A 

et al, 2005]. As previously reported [Choudhary E et al, 2005], LH induced an increase in the 

amount of P4 secretion. Interestingly, in the group where PRKCE expression was down 

regulated, the inhibitory effect of PGF2α on LH-stimulated P4 secretion was significantly 

mitigated (Fig. 3). This observation has an important physiological corollary: both PGF2α-

receptors and PRKCE are expressed in the same luteal cell type. Therefore, the isozyme 

PRKCE has an important compatible time (mid-luteal phase) and place (small and large luteal 

steroidogenic cells) of expression, for it to have a role in the luteal transition from resistance to 

sensitivity to luteolytic actions of PGF2α. Furthermore, if PRKCE expression is down -

regulated (this study) or if its activation is inhibited [Sen A et al, 2005], the anti-steroidogenic 

effect of PGF2α on LH-stimulated P4 secretion is impaired.  

 

              Experiment 2 also tested the hypothesis that down-regulating PRKCE could influence 

the expression of key PG metabolizing enzymes that, in turn, could influence the balance of PG 

production from luteo-protective or luteotrophic to luteolytic. The mechanism for luteal 
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resistance is not exactly known. However there is now evidence that regulation of key PG 

metabolizing enzymes observed during physiological states in which the life span of the CL is 

modified is likely to play an important role in this complex process [Asselin E and Fortier MA, 

2000; Asselin E et al, 1997; Griffeth RJ et al, 2002; Hu YF et al, 1990; Patek CE and Watson J, 

1976; Rexroad CE, Jr. and Guthrie HD, 1979; Shemesh M and Hansel W, 1975a; Silva PJ et al, 

2000; Xiao CW et al, 1998]. The selection of the examined genes was based on the available 

evidence that, because of their key positions in the PG biosynthetic pathway, these genes have 

been shown to determine the accumulation of luteolytic or luteotrophic classes of PG [Asselin 

E and Fortier MA, 2000; Asselin E et al, 1997; Patek CE and Watson J, 1976; Shemesh M and 

Hansel W, 1975a; Xiao CW et al, 1998]. For example, we examined the effects of down-

regulating PRKCE on the expression of PGE2 and F synthases because of their more direct 

effect on determining whether PGH2 is metabolized to PGE2 or PGF2α. The results obtained 

were unexpected; the prediction was that because of low expression of PRKCE, exogenous 

PGF2α would not be able to induce high increases in the cytosolic concentration of calcium, 

and consequently, the expression of PGE2 synthase/PGF2α synthase ratio would favor PGE2 

synthesis. The above conditions would favor luteal function. However, it is worth pointing out 

the importance of looking beyond steady states of mRNA encoding these enzymes; sometimes 

regulation may be at the level of protein or even enzyme activity and additional work is 

necessary before rejecting the tested hypothesis.  

             The developmental significance of a regulatory role played by cytosolic calcium 

concentrations in mediating the inhibitory actions of PGF2α is documented by results obtained 

in experiment 3. As reported in previous studies [Choudhary E et al, 2005], PGF2α reduced LH-

stimulated P4 secretion in Day10 cells only. Basal P4 secretion was not affected by the PGF2α-

treatment at any of the two developmental stages tested. As the working hypothesis predicted, 

the pharmacological increase in [Ca2+]i induced by A23187 effectively mimicked the inhibitory 

effect of PGF2α in Day -10 steroidogenic cells. Furthermore, as predicted by the working 

hypothesis, the A23187 treatment also inhibited LH-stimulated P4 secretion in Day -4 

steroidogenic cells. This inhibitory effect of A23187 is most likely due to its demonstrated 

effect in increasing the intracellular concentration of calcium ions [Sen A et al, 2005] in these 

cells and not due to other non-specific effects. This interpretation is also supported by the 

observation that treatment with A23187 had no negative effect on basal P4 secretion at any of 
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the two developmental stages tested.  

          Further support for the significance of a regulatory role played by the increase in [Ca2+]i 

in mediating the inhibitory actions of PGF2α is documented by results obtained in experiment 3 

where the cytoplasmic calcium buffering capacity of the cells was increased by Bapta-AM. At 

lower concentrations (0.1 and 1.0 µmol), the calcium buffering capacity of Bapta-AM was, 

most likely, at values that still allowed a PGF2α-stimulated increase in [Ca2+]i; which in turn, 

preserved the ability of PGF2α to inhibit LH-stimulated P4 secretion (Fig. 6). However, as the 

calcium buffering capacity in the cytoplasm of the steroidogenic cells was increased by 

increasing the concentration of Bapta AM (10 and 100 µmol), the calcium signaling feature of 

activating the PGF2α receptors was most likely eliminated or at least reduced, and 

consequently, the ability of PGF2α to inhibit LH-stimulated P4 secretion was also significantly 

reduced (Fig. 6). Similar effects of Bapta-AM on basal and hormonal-stimulated 

steroidogenesis have been reported in MA-10 Leydig cells (34). Therefore, the results of 

experiment 3 stress the calcium requirement for PGF2α to inhibit LH-stimulated P4 secretion in 

the midphase CL and support the reported observation that the lower efficacy of PGF2α to 

inhibit P4 secretion in the early CL is related to the reduced ability of PGF2α to increase the 

cytoplasmic concentration of calcium at this developmental stage [Choudhary E et al, 2005]. 

Taken together, the results obtained in the A23187 and Bapta-AM experiments, strongly 

support the proposed hypothesis that an attenuation of the luteolytic actions of PGF2α is 

associated with a compromise in the ability of PGF2α to induce a rise in [Ca2+]i [Sen A et al, 

2005]. Therefore these studies provide a strong linkage between the signal transduction utilized 

by the PGF2α receptor at different developmental stages and quantitative aspects of the known 

intracellular mediator of PGF2α actions in the CL, [Ca2+]i. In this regard, species differences do 

exist, as in rat luteal cells the antigonadotropic action of PGF2α is not mediated by elevated 

cytosolic calcium levels [Pepperell JR et al, 1989]. It appears that the bovine CL therefore, has 

the following commonalities with human CL: 1) in both species, PGF2α is luteolysin, 2) the 

luteolytic effect of PGF2α appears only during mid- and late-luteal phase, and 3) in both, the 

humans and cows, changes in intracellular calcium appear to regulate luteal function ([Ottander 

U et al, 1999] and this study).  

             In summary, the evidence presented here strongly supports the idea that PRKCE, an 

isozyme highly expressed in steroidogenic luteal cells with acquired luteolytic response to 
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PGF2α, has an important regulatory role in the ability of PGF2α to inhibit LH-stimulated P4 

secretion in vitro at this developmental stage. The data presented strongly support the 

hypothesis that luteal resistance to the luteolytic actions of PGF2α is associated with a 

compromised ability of PGF2α to induce a rise in [Ca2+]i. If the PGF2α receptor and its 

associated signal transduction is bypassed with a pharmacological agent to increase the [Ca2+]i, 

the LH-stimulated P4 secretion in Day-4 steroidogenic cells is eliminated, an action that cannot 

be induced by PGF2α at this developmental stage. Conversely, if the increase in [Ca2+]i typically 

induced by PGF2α on Day-10 steroidogenic luteal cells is buffered by a pharmacological agent, 

then the ability of PGF2α to inhibit the LH-stimulated P4 secretion is abrogated.  

 
 
 
 
 

Table 1. Primer sequence, accession number, of investigated genes 
 

Gene Forward primer Reverse primer Acc# 

β-Actin GACATCCGCAAGGACCTCTA ACGGAGTACTTGCGCTCAG BC102948 

PGDH GGAAAGCTGGACATCTTGGT GCAAATTGCGTTCAGTCTCA BC102458 

PGES GAACGACCCAGATGTGGAA ATACGGCCCAGGAAGAAGAC NM174443 

AKR1B5 GACCTTGGGTACCGTCACAT TCTTTCTCACTGGGAATCACG S54973 

9K-PGR AAGAAATGCAGCCGTGAACT GCTCCTTCTTCTGGGCTTTT BC102943 

COX-2 CATGATGTTCTTTGTTGGCATT GCGAATTCCAACTTTCCATC AF031698 
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Figure 1. Time-course reduction in PKCε (PRKCE) mRNA expression after transfection of 

luteal steroidogenic cells with PRKCE specific siRNA. (A) Representative RT-PCR products 

obtained from total RNA using the PRKCE and GAPDH primers. The amount of total RNA 

was adjusted to 200 ng per reaction and 40 cycles were used for PRKCE; while 28 cycles were 

used for GAPDH. The size of the amplified products for the GAPDH and PRKCE were 900 

and 500 bp, respectively. PRKCE and GAPDH mRNA expression after 48, 72, and 96 h of 

transfection with PRKCE specific siRNA are shown. Lanes labeled media, non-specific  (Non-

sp) siRNA, and Transfection reagent represent respective treatments without PRKCE specific 
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siRNA treatment. GAPDH was used as the control gene to normalize the PRKCE mRNA 

expression. (B) Quantitative analysis of the RT-PCR products obtained in four (n = 4) 

replicates similar to those shown in panel A. Data are the mean ± SEM of the densitometry 

measurements for PRKCE relative to GAPDH mRNA. Statistical comparisons were made 

between different treatments. Different letters above each SEM represent different values (P < 

0.05). 

 

 

Figure 2. Reduction in PRKCE protein. (A) Representative Western blot showing the amount 

of PRKCE and actin expressed in protein samples prepared from luteal steroidogenic cells after 

48, 72, and 96 h of transfection with PRKCE specific siRNA (lanes 1–3).  Lanes labeled 4 – 6, 

contained protein samples from indicated control treatments (media, Non-sp siRNA, and 

transfection reagent, respectively). (B) Semi-quantitative analysis of the densitometry derived 
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from four experiments similar to the one shown in panel A. the y-axis shows the ratio of the 

optical density ratio of PRKCE to that of its corresponding β-actin. The data are shown as 

mean ± SEM, and comparisons were made between different treatments. Values with different 

letters denote differences by one-way ANOVA followed by Tukey-Kramer honestly significant 

difference (P < 0.05). 

 

Figure 3. PKCα and PKCβII protein after 96 h transfection of luteal steroidogenic cells with 

PRKCE specific siRNA. (A) Representative Western blot showing the amount of PKCα, 

PKCβII KCε and actin detected in protein samples prepared from luteal steroidogenic cells 

after 96 h of transfection with PRKCE specific siRNA (lane 1). Lanes labeled 2 – 4, contained 

protein samples from indicated control treatments (media, Non-sp siRNA, and transfection 

reagent, respectively. B and C) Semi-quantitative analysis of the densitometry derived from 

four experiments similar to the one shown in panel A for PKCα (B) and PKCβII (C). The y-

axis shows the ratio of the optical density ratio of PKC isozyme to that of its corresponding β-

actin. The data are shown as mean ± SEM, and comparisons were made between different 
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treatments by one-way ANOVA followed by Tukey-Kramer honestly significant difference. 

 

Figure 4. Effects of PRKCE down-regulation on the ability of PGF2α to inhibit the LH-

stimulated progesterone synthesis/secretion in cultures of steroidogenic luteal cells transfected 

for 96 h with PRKCE specific siRNA (filled bars) or with transfection regents  (control, open 

bars). Progesterone accumulation was determined in culture media after 4 h of incubation in the 

following treatments: LH (100 ng/ml), PGF2α (1 µg/ml) and a combination of PGF2α and LH. 

Data are presented as mean  ± SEM of four individual replicates (n = 4 cows). For each 

treatment group, statistical comparisons were made between PRKCE down-regulated (PRKCE 

siRNA) and control (not PRKCE down-regulated); different letters above each SEM denote 

different values, P < 0.05. 
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Figure 5. Effect of the Ca2+ ionophore, A23187, on basal and LH-stimulated progesterone 

synthesis/secretion (ng/ml) in cultured steroidogenic cells collected from Day 4 (panel A) and 

Day 10 (panel B) bovine CL. Progesterone accumulated in culture media was determined after 

4 h of incubation in the following treatments: media alone (Media), LH (100 ng/ml), LH and 

PGF2α (1000 ng/ml), or LH and A23187 (0.1, 1, 10, and 100 µmol). As explained in Materials 

and Methods, these treatments also contained 0.1% of the solvent used for PGF2α and A23187, 

DMSO. Data are presented as the mean ± SEM of four Day 4 and 10 Day 10 individual 

replicates (n = 4 and 10 cows respectively). Statistical comparisons were made across 

treatments, and means with different letters, differ within each panel (P < 0.05) 
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Figure 6. Effect of the cell-permeable calcium chelator, Bapta-AM, on basal and LH-

stimulated progesterone synthesis/secretion (ng/ml) in cultured steroidogenic cells collected 

Day 10 bovine CL. Progesterone accumulated in culture media was determined after 4 h of 

incubation in the following treatments: media alone (Media), LH (100 ng/ml), LH and PGF2α 

(1000 ng/ml), or LH and Bapta-AM (0.1, 1, 10, and 100 µmol). As explained in Materials and 

Methods, these treatments also contained 0.1% of the solvent used for PGF2α and Bapta-AM, 

DMSO. Data are presented as the mean ± SEM of four Day 10 individual replicates (n = 4 CL 

obtained from 4 cows). Statistical comparisons were made across treatments, and means with 

different letters denote different values, P < 0.05. 
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Figure 7. Real-time PCR analysis of the effect of down-regulation of PRKCE mRNA on the 

expression of PGF2α metabolic genes. Comparisons of mRNA expression data were made 

between the control (without PRKCE down-regulation) and PRKCE down-regulated 

steroidogenic cells treated either with PGF2α (A), LH (B), and combination of PGF2α and LH 

(C). The genes analyzed were as follows: aldoketoredutase 1B5 (AKR1B5), prostaglandin-15 

dehydrogenase (PGDH), prostaglandinE synthase (PGES), 9-keto-prostagalndin reductase (9K-

PGR), and cyclooxygenase-2 (COX-2). The expression data were presented as mean ± SE. The 

comparison of means between treatments by t-test did not show significant differences with any 

of the genes analyzed.   
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Chapter IV: Differential Gene Expression in the Bovine Corpus Luteum During 

Transition from Early to Mid-Phase and Its Potential Role in Acquisition of Luteolytic 

Sensitivity to Prostaglandin F2 Alpha 

 

Introduction 

Luteal regression is required for normal ovarian cyclic activity. Prostaglandin F2α (PGF2α) 

initiates luteal regression or luteolysis in cattle and most domestic species [McCracken JA et 

al, 1970; Niswender GD et al, 2000], and has been used for estrous synchronization in beef and 

dairy cattle [Inskeep EK, 1973; Lamb GC et al, 2006; Lauderdale JW et al, 1974; Silva E et al, 

2007]. However, the bovine corpus luteum (CL) is resistant to luteolysis by exogenous PGF2α 

prior to day 5 of the estrous cycle [Choudhary E et al, 2005; Copelin JP et al, 1988; 

Goravanahally MP et al, 2007; Inskeep EK, 1973; Sayre BL et al, 2000; Watts TL and Fuquay 

JW, 1985; Wiltbank MC et al, 1995]. The cellular basis controlling luteal function during this 

physiological transition, although studied intensely, is incompletely understood. As in many 

biological systems, cellular responsiveness to a given agonist can be altered during 

development. Lack of PGF2α receptors does not seem to explain luteal insensitivity to PGF2α as 

the developing CL already expresses high affinity PGF2α (FP) receptors [Sakamoto K et al, 

1994; Wiltbank MC et al, 1995], and PGF2α can elicit distinct physiological responses in the 

early CL [Sayre BL et al, 2000; Sen A et al, 2005; Tsai SJ and Wiltbank MC, 1998]. Therefore 

the nature of the elicited response or the ineffectiveness of PGF2α to induced luteolysis in 

developing CL might be due to differences in post-receptor signaling events. Several studies 

have indicated that the lower efficacy of PGF2α in inducing regression of early CL might be 

related to differences in signal transduction due to differential expressions of genes associated 

with the FP receptor at those two developmental stages. For instance, increased expression of 

protein kinase C inhibitor-1 (now known as histidine triad nucleotide binding protein, (HINT1) 

and tyrosine 3monooxygenase/tryptophan 5-monooxygense activation protein, zeta polypeptide 

(YWHAZ) was reported to be involved in the insensitivity of the early ovine CL [Juengel JL et 

al, 1998]. Higher expression of PRKCE in D10 bovine CL has been reported to be involved in 

acquisition of sensitivity of the CL to PGF2α-induced luteolysis [Sen A et al, 2005]. It has been 

suggested that the lack of luteolytic action by PGF2α in the developing bovine CL might be due 

to alterations in components of the signal transduction associated with the receptor by locally 
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produced hormones. For instance, resistance of early ovine CL has been attributed to increased 

expression of the PGF2α catabolizing enzyme, hydroxyprostaglandin dehydrogenase 15-(NAD) 

(HPGD) [Silva PJ et al, 2000]. The inability of PGF2α to induce expression of prostaglandin-

endoperoxide synthase 2 (PTGS2) and intraluteal PGF2α synthesis in the early bovine CL was 

implicated in luteolytic insensitivity to PGF2α [Tsai SJ and Wiltbank MC, 1998]. Therefore, the 

hypothesis tested was that differential gene expression during the developmental transition of 

corpora lutea from D-4 to D-10 might include genes encoding components of signal 

transduction pathways that might change the nature of the elicited response, or the luteal 

sensitivity to luteolytic actions of PGF2α. The two objectives of the present study were to 1) use 

a microarray-based approach to systematically analyze a large portion of the bovine CL 

transcriptome during the developmental transition from D-4 to –10, when the luteolytic 

capability to PGF2α is acquired; and 2) determine the responsiveness of selected genes found to 

be differentially expressed during this transition to an exogenous in vivo treatment with PGF2α 

on the D-4 or -10 of the estrous cycle.    

 

 Materials and Methods   

  Animal handling and surgical procedures  

 Non-lactating beef cows were observed visually for estrus twice daily at approximately 12-h 

intervals for a minimum of 30 min per observation. The day when standing estrus was 

observed was designated as Day 0. For experiment 1, ovaries on Day -4 (n = 3) or CL on Day -

10 (n = 3) were collected surgically as described previously [Choudhary E et al, 2005] and 

transported to the laboratory in ice-cold saline for RNA isolation. Briefly, the surgical 

procedure was performed via supravaginal incision under epidural anesthesia (6-9 ml 2% 

lidocaine hydrochloride; Butler Company, Columbus, OH) administered for cows weighing 

450 -700 kg.  For experiment 2, beef cows on Day 4 or 9 of estrous cycle were treated with 25 

mg of PGF2α analog  (Lutalyse; Pfizer Animal Health, New York, NY) and control groups 

received 5 ml of normal saline (n=3 per group per day). After 24h, Day -5 or -10 ovaries or, CL 

were collected as described above. For experiment 4, beef cows on days 10 (n=4) were utilized 

for CL collection. For experiment 5, corpora lutea from beef cows (n=4 per group) on days -4 

and -10 were collected. The ovary or CL was collected into ice-cold saline (PBS) and 
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transported to the laboratory within 15 to 30 min after collection. Developing corpora lutea 

were removed from the ovary in the laboratory because of the danger of crushing tissue if 

pressure is applied to the ovary during surgical collection. The Animal Care and Use 

Committee of West Virginia University approved all procedures for these experiments (ACUC 

protocol # 06-0401).   

 

Isolation of total RNA    

Total RNA was isolated using Tri reagent (MRC, Cincinnati, OH) according to the 

manufacturer’s instructions. Briefly, frozen CL tissue was mechanically pulverized while 

immersed in liquid nitrogen using an RNAase-free porcelain mortar. The pulverized tissue was 

homogenized in Tri reagent using a glass homogenizer. The RNA was solubilized in RNAse-

free-water and its integrity was assessed using 1% agarose gel electrophoresis, all samples 

were deemed of high quality. Final RNA concentration and purity were determined by 

spectrophotometry using a NanoDROP 3000 (Nano Drop technologies,Wilmington, DE).     

 

Luteal cell dispersion and purification  

For experiment 4, luteal tissue was trimmed to remove surrounding connective tissue, weighed 

and cut in to small fragments of approximately 1 mm3 size. During these procedures, tissue 

was immersed in cell dispersion media (CDM, M-199 containing 0.1% BSA, 25 mM Hepes, 

100 U/ml fungicide). Tissue fragments were dissociated as previously described [Choudhary E 

et al, 2005] and luteal endothelial cells were separated according to standard procedures 

[Choudhary E et al, 2005; Levy N et al, 2001; Mamluk R et al, 1998]. Briefly, magnetic 

tosylactivated beads (Dynal Biotech, Lake Success, NY) which, specifically attach endothelial 

cells were added to luteal cell suspension at bead to endothelial cell ratio of 1:3 and endothelial 

cells were separated. The remaining cell suspension represented an enriched steroidogenic cell 

population, which also contained other cell types of CL such as fibroblasts, pericytes, immune 

cells, and possibly few endothelial cells that were not separated by this procedure. Cell 

viability and density were determined using 4% Trypan Blue exclusion procedure and a 

hemocytometer; luteal cell viability was usually greater than 95%. 
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Experiment 1:  Microarray -based approach for systematically analyzing the bovine CL 

transcriptome at two developmental stages: Day-4 and –10, a transition when the luteolytic 

capability to PGF2α is acquired     

 

Microarray, cDNA labeling, and Hybridization   

The microarray assays were performed in Laboratory of Animal Biotechnology and Genomics, 

Division of Animal and Nutritional Sciences, WVU. Individual RNA samples were used to 

produce labeled cDNA that was hybridized to the bovine 70-mer long oligo nucleotide probes 

spotted in duplicates. This array contained 8,329 unique bovine genes developed by Center for 

Animal Functional Genomics (CAFG) at Michigan State University. Information on the list of 

genes and their annotations are available via GeneLink database http://cafg.msu.edu. 

Comparisons were made between RNA samples from PGF2α insensitive and -sensitive CL for 

the changes in gene expression using a total of 6 beef cows (3 replicates x 2 groups). The 

procedure for cDNA labeling and microarray hybridizations was followed as described 

previously [Salem M et al, 2006]. Briefly, 30 µg total RNA was reverse transcribed using 

Supertscript II reversetrancriptase (Invitrogen, Hercules, CA) to generate cDNAcontaining 

minoallyl-dUTP. The cDNAs from two experimental groups were labeled randomly with N-

hydroxysuccinate-derived Cy3 or Cy5 dyes  (GEHealthcare, Piscataway, NJ) to limit the effect 

of differential dye incorporation. Unincorporated dyes were removed from the cDNA product 

using a PCR purification kit (Quiagen, Valencia, CA), followed by mixing the Cy3 and Cy5-

labeled cDNAs. The labeled cDNAs were concentrated to 20µl using Microcon YM-30 

(Millipore, Billerica, MA) and mixed with 130 µl of Slidehyb 3 solution (Ambion, Austin, 

Texas). The Tecan HS400 automated microarray hybridization station (Tecan US, Durham, 

NC) was used for array hybridization. The steps in the hybridization were as follows: 1) the 

slides were subjected to 60°C for 2 min and prehybridized at 55°C for 30 m using 

prehybridization solution (5 SSC, 1% SDS, 1% BSA) with medium agitation, 2) brief washing 

was carried out at 60°C for 1 min and 140µl of labeled cDNA mixture was loaded onto the 

hybridization chamber, 3) hybridization was performed at 60 °C for 3 h followed by 55°C for 

13 h, 4) washing was carried out twice with in 2X SSC, 0.1% SDS and twice with in 0.1X 

SSC, 0.1% SDS at room temperature,  and 5) two more washes were given with 0.1X  SSC 

followed by rinsing the slides with water and finally drying by centrifugation.    
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 Microarray Data analysis  

After hybridization, the gene array was scanned for spots using ScanArray Lite microarray 

scanner  (Perkin Elmer). The spots were aligned, integrated with original GAL files and signal 

intensities were quantified using ScanArray Express software (Perkin Elmer, Wellesley, MA). 

Micro array raw data were processed using GenePix Auto Processor (GPAP) software 

(http://darwin.biochem.okstate.edu/gpap3/) as described previously [Salem M et al, 2006]. 

Briefly, GPAP utilizes R statistical language, Bioconductor and a LIMMA package to 

preprocess the raw data by signal filtering, background correction and normalization. The data 

points with signal intensity values in both channels less than baseline value of 200 were 

filtered-out and the spots with log-transformed (base 2) ratio outside of 2 standard deviations 

from the mean were removed as outliers and average of technical replicates within and across 

replicates were calculated. Raw data were quality controlled manually by flagging and 

removing any spurious spots from analysis. The preprocessed expression data were normalized 

by the Loess-global intensity-dependent normalization.  The GPAP output value consisted of 

M value [log2  (cy5/cy3)], t-statistic, P value (probability), and B-statistics for each spot. Two-

fold or more changes in the expressions of genes were indicated by M value ≥ 1.0 (up-

regulated) or ≤ -1.0 (down-regulated). The genes with two-fold or more changes in expression 

with P < 0.05 were considered significantly different and selected for further analysis. The 

microarray data were deposited (according to Microarray Gene Expression Data Society 

Standards) in NCBI gene expression omnibus (GEO). The curated microarray data can be 

retrieved with the series accession number GSE10662.      

 

Validation of Microarray Data by Real-time RT-PCR   

The pattern of gene expression observed in microarray analysis was confirmed by real-time 

RT-PCR.  Total RNA from CL samples was used for cDNA synthesis using Superscript II 

reverse transcriptase  (Invitrogen). The real-time PCR was performed according to the method 

described by Pfaffl in 2001 [Pfaffl MW, 2001].  This approach takes into consideration the 

actual efficiency of each primer. The cDNA generated from pooled RNA samples (D-4 and -10 

CL) was diluted serially 10-fold and calibration curve for each gene was generated to 

determine the efficiency of each primer. The PCR reaction was standardized for optimum 
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efficiency between 95 to 105% for 9 selected genes. The sequences of each gene primer were 

designed using primer3 software [Rozen S and Skaletsky H, 2000]. The names, abbreviations, 

primer sequences and accession numbers for the examined genes are listed in Table 1. The 

real-time PCR reaction was performed using 25 µl total reaction containing 2x SYBR Green 

supermix (BIORAD) and 0.5 µM primer concentration and 2µl of cDNA prepared from 20µl 

reverse transcriptase reaction using 1µg of total RNA. The conditions for the real-time PCR 

reactions were as follows: an initial reverse transcriptase inactivation and Taq polymerase 

activation step at 94 °C for 3 min, followed by total 40 cycles of 94°C for 30s to denature; 55-

60 °C to anneal; and an extension at 72°C for 1 min. The melt-curve was analyzed to make 

sure genes of interest produced single amplicons. The internal control glyceraldehydes-3-

phosphate dehydrogenase (GAPDH) was used to normalize the expression values due to 

differences in amount of RNA. Previous studies from our laboratory and by other investigators 

have validated the use of GAPDH as a normalizing standard while assessing gene expression at 

different luteal developmental stages [Buratini J, Jr. et al, 2007; Wright MF et al, 2001]. In the 

current studies, there were no differences in the values of GAPDH expression from samples 

collected on day 4 and day 10. The day-4 expression value was set as a calibrator sample 

(control) and the data were expressed as fold change in day-10 CL mRNA compared to D-4 CL 

mRNA normalized to GAPDH. The differences in the mean values of mRNA expression 

between two groups were analyzed by t-test using statistical analysis system JMP 3.0. Gene 

expression values with a P< 0.05 were considered significantly different.     

 

Experiment 2: Responsiveness of selected differentially expressed genes to in vivo treatment 

with exogenous PGF2α.    

Real-time RT-PCR. Luteal tissues were collected and RNA samples were isolated for real-time 

RT-PCR as described above. The selected genes analyzed in this experiment were 

calcium/calmodulin-dependent protein kinase kinase 2, beta (CAMKK2), protein kinase N1 

(PKN1), tyrosine 3monooxygenase/tryptophan 5-monooxygense activation protein, zeta 

polypeptide (YWHAZ), regulator of G-protein signaling 2, 24 kDa (RGS2), guanine nucleotide 

binding protein (G protein), beta polypeptide 1  (GNB1), SPARC-like 1 (hevin) (SPARCL1). 

The selection of these genes was based on unpublished results from our laboratory and from 

literature review of genes whose expression was likely to be affected by PGF2α [Choudhary E et 
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al, 2005; Juengel JL et al, 1998; Sen A et al, 2005]. The sequences and accession numbers of 

the primers are represented in Table 1. 

 

Experiment 3: Semi-quantitative Western Blotting and Immunohistochemistry -based 

Approaches for Analyzing CAMKK2 Expression in the Bovine CL During Developmental 

Transition from Day-4 to –10, and Identifying the Luteal Cellular Source of CaMKK2.     

Semi-quantitative Western Blotting. Proteins from frozen luteal tissue were isolated as 

previously described [Sen A et al, 2004]. Briefly, pulverized frozen tissue was homogenized in 

homogenization buffer (containing 20 nM Tris-HCL, 0.25 M sucrose, 1.2 mM EGTA, 0.1 mM 

phenylmethylsulfonyl fluoride (Eastman Kodak Company, Rochester, NY), 20 (g/ml leupeptin, 

and 20 mM 2-mercaptoethanol (Gibco BRL, Gaithersburg, MD). The luteal-homogenate was 

centrifuged at 100 X g for 10 min to separate coarse cellular particles. Protein concentration in 

the samples was determined by BioRad assay (Hercules, CA) with BSA (Gibco) as standard. 

Initially, 5, 10, 20, and 40 (g / lane of sample protein were used for semiquantitative western 

blot analysis as previously described {Sen, 2004 #148]. For assessment of development and 

treatment effects on amount of CAMKK2 expression, 40 µg / lane of sample protein were used. 

The following primary antibodies were used in this experiment: mouse anti-actin monoclonal 

antibody (used at a dilution of 1:3000 [v / v]; Chemicon International, Inc., Temecula, CA); 

three CAMKK2 polyclonal antibodies were tested: SC 50341, SC 9629 (Santa Cruz 

Biotechnology, Santa Cruz, CA), and AP7117b (ABGENT, San Diego, CA). The antibodies 

were used at a dilution of 1:200, 1:200, and 1:50 [v / v] respectively. The following secondary 

antibodies were used in this experiment:  anti-rabbit (1:5000 [v / v]; Amersham Pharmacia 

Biotech, Piscataway, NJ), anti-goat (1:5000), and antimouse (1:30,000 [v / v]; Gibco) and anti-

goat (1:4000 v / v; Gibco]) horseradish peroxide-conjugated antibodies.   

 

Validation of the semi-quantitative western blot analysis and stripping conditions has been 

determined previously [Sen A et al, 2004]. The intensity of the signal corresponding to the 

protein of interest was standardized by the corresponding intensity of the actin control in that 

sample. Normalization of data allowed us to estimate, in a semi-quantitative manner, the 

amounts of protein in the samples of interest.     
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Immunohistochemistry. Approximately one hour after surgical collection, portions of corpora 

lutea were fixed for 48 h by immersion in Bouin’s solution (75 ml saturated picric acid, 25 ml 

formaldehyde, 5 ml glacial acetic acid). The tissue was processed by standard histology 

methodology for embedding tissue in paraffin (Paraplast plus; Tyco Healthcare Group LP, 

Manfield MA). Ten µm thick sections were prepared from Day-10 bovine CL (n = 3 different 

cows) using a HM 325 microtome (Fischer Scientific, Pittsburgh PA). Deparaffinized tissue 

sections were processed for immunohistochemistry according to the manufacturer instructions 

of a VECTASTIN Universal Quick kit (Vector Laboratories, Inc. Burlingame, CA). Briefly, 

after quenching endogenous peroxidase activity in 0.3% H2O2 in methanol for 30 minutes, 

sections were incubated in working solution of blocking serum to reduce non-specific binding. 

Sections were incubated overnight at 4°C with primary antibody, CAMKK2 goat polyclonal 

IgG (SC9629, Santa Cruz Biotechnology, Santa Cruz, CA) at a dilution of 1:100 (vol/vol). The 

antibodies, SC50341 (Santa Cruz Biotechnology) and AP71176 (ABGENTA) were also tested 

at a dilution of 1:100 and 1:25  (vol/vol) respectively. Incubation with secondary antibody and 

strepavidin/peroxidase complex were carried out as indicated by the manufacturer’s 

instructions (Universal Quick kit). Detection was made using the substrate, 3,3-

diaminobenzidine tetrahydrochloride chromogen solution (DAB, prepared according to the 

manufacturer’s instructions; Biomedia Corp. Foster City, CA) at room temperature for 3 min. 

Slides were counterstained in Harris’s Hematoxylin for 30 sec, and serially dehydrated at room 

temperature in ethanol and finally transferred into xylene for the application of cover slips 

using a mounting medium (Gel/Mount Biomedia Corp. Foster City, CA). The specificity 

control for the immunohistological detection was determined by 1) pre-incubation of the 

primary antibody with excess antigenic peptide (1 µg peptide/1 µg antibody prepared in 

blocking serum, SC9629 and AP71176), and 2) incubation with normal rabbit or goat serum in 

lieu of the primary antibody (for the rabbit and the goat primary antibodies). These slides were 

later observed under an Olympus PROVIS AX70 microscope  (Olympus America Inc., 

Melville, NY) for the presence/absence of specific brown color accumulation indicating 

immunoreactivity and for microphotography. 
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Experiment 4: Role of CAMKK2 in mediating the antisteroidogenic actions of increase in 

[Ca2+]i stimulated by  PGF2α  

The working hypothesis for this experiment was that the CAMKK2 mediate the progesterone 

inhibitory actions of increased [Ca2+]i stimulated by PGF2α.  Our prediction was that if the 

activity of CAMMK2 is inhibited, then ability of PGF2α to inhibit the progesterone synthesis is 

abolished under in vitro conditions. We used commercially available STO-609 (Tocris 

Bioscience, Ellisville, MO) as CAMKK2 inhibitor. STO-609 (7H-Benz [de] benzimidazo[2,1-

a]isoquinoline-7-one-3-carboxylic Acid)  is utilized as specific inhibitor of CAMKK. It has no 

significant effect on activities of CaM-KII (IC50 ~ 10 µg/ml), MLCK, CaM-KI, CaM-KIV, 

PKA, PKC, and p42 MAP kinase (IC50 > 10 µg/ml). Indeed, STO-609 is 5-fold more potent in 

inhibiting CAMKK beta than CAMKK alpha.  The working concentration of 10-20 µg/ml of 

STO-609 was able to completely inhibit the activity of CAMKK beta without significantly 

affecting the activity of other CaM kinases [Mount PF et al, 2008; Stahmann N et al, 2006; 

Tokumitsu H et al, 2002]. The enriched steroidogenic cells isolated from Day-10 of non-

lactating beef cows were plated in 15 mm 24 -well culture plates at a cell density of 1× 105
 

cells/well containing medium M199. Plated cells were treated with 20 µg/ml of STO-609 in 

presence or absence of PGF2α (1000 ng/ml) and incubated overnight at 37° C in presence of 5% 

CO2. Following day, media was collected and frozen for progesterone estimation by RIA. The 

RIA used for measurements of progesterone in the culture media has been described previously 

[Sheffel CE et al, 1982]. The standard curve for this RIA ranged from 10 pg/ml to 800 pg/ml. 

 

Results  

Experiment 1: Microarray analysis of the bovine CL transcriptome during the developmental 

transition from Day-4 to -10.   

Our microarray analysis identified 167 genes (~2% of the analyzed transcriptome) that were 

differentially expressed as (with ≥ 2 fold change in expression; M value ≤ -1 or ≥ 1; P < 0.05) 

the bovine CL transitioned from a PGF2α-resistant (D-4) to a PGF2α-sensitive (D-10) stage. Of 

these 167 genes, the majority was up-regulated in D-10 CL (77%).  Gene families that were 

dynamically up-regulated during this developmental transition most likely reflect a 

combination of genes involved in the process of active steroid secretion and in acquisition of 
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sensitivity to PGF2α-induced luteolysis. The Gene ontology classification of the differentially 

expressed is shown in Table 2. List of genes with in different categories are listed in Tables 3-

11.   

 

One objective of this study was to identify potential genes involved in cell signaling that might 

participate in acquisition of luteolytic sensitivity to PGF2α. Twenty differentially expressed 

transcripts were found to be involved in various cell-signaling pathways. The identity, 

accession numbers, P values and foldchange data of these transcripts are presented in Table 3. 

Interestingly, nine of these twenty genes are linked to cell-signaling associated with G-protein 

coupled receptors. For example, a component of the heterotrimeric G-protein complex, guanine 

nucleotide-binding protein (G protein), beta polypeptide 1  (GNB1) was up-regulated in D-10 

CL relative to D-4 CL, as were other genes such as SLIT-ROBO Rho GTPase-activating 

protein 1 (SRGAP1), Rho GTPase activating protein 8 isoform 1 (ARHGAP8), adenosine A1 

receptor (ADORA1), protein kinase N1 isoform 1 (PKN1), and ADP-ribosylation factor 6  

(ARF6). Genes in this same category but that were down-regulated in D-10 CL relative to D-4 

included: a potent inhibitor of G protein signaling, regulator of G-protein signaling 2, 24 kDa 

(RGS2); the adrenergic, alpha-1B, receptor (ADRA1B); and a gene encoding the G-protein 

coupled receptor-98 (GPR98). The transcripts of casein kinase 2, alpha prime polypeptide and 

NOTCH2 preprotein were up-regulated in D10 CL and these proteins are involved in notch 

signaling. The mRNAs of two genes mediating Ca2+ signaling, such as, calcium/calmodulin-

dependent protein kinase kinase 2, beta (CAMKK2) was upregulated in D-10 CL. Additional 

cell-signaling genes which were down-regulated in D-10 relative to D4 included a calcium-

binding protein P22 (CHP); transcripts encoding tyrosine 3monooxygenase/tryptophan 5-

monooxygense activation protein, zeta polypeptide (YWHAZ); and a gene called unc-51-like 

kinase 1 (ULK1).     

 

Validation of microarray by real-time RT-PCR  

Nine genes that were identified differentially expressed by microarray were selected for 

quantification of mRNA by real-time RT-PCR to validate the microarray results. The pattern of 

expression observed by real-time RT-PCR was similar to the patterns observed by the 
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microarray analysis. The fold changes in expression of genes in D-10 relative to D-4 with each 

approach are presented side-by-side for comparison in figure 1. All nine genes showed 

statistically significant differential expression (P < 0.05)      

 

Experiment 2: Responsiveness of selected differentially expressed genes to exogenous in vivo 

PGF2α treatment     

There were developmentally related significant differences in expression of all 6 genes 

examined.  Transcripts for CAMKK2, GNB1, SPARC-like 1 and PKN1 were all increased as 

the CL transitioned from D-4 to D-10; while transcripts for RGS2 and YWHAZ were 

decreased in this developmental comparison  (figure. 2). Furthermore, expression of CAMKK2 

and GNB1 were sensitive to exogenous PGF2α in D-10 and D-4 CL samples respectively. 

Expression of CAMKK2 increased in D-10 CL from 1.16 ± 0.04 with saline to 2.0 ± 0.25 after 

treatment with PGF2α (P < 0.05) without affecting its expression in D-4 CL. In contrast, the 

expression of GNB1 was increased >10 fold in PGF2α treated D-4 CL compared to its saline D-

4 control (D-4 CL saline, 0.16 ± 0.05; D-4 CL with PGF2α, 1.94 ± 0.43). The expression of 

GNB1 was not affected by treatment with PGF2α in D-10 CL. There was no significant effect 

of treatment on the expressions of RGS2, SPARCL1, YWHAZ, and PKN1 within the 

examined developmental stages. 

 

Experiment 3: Semi-quantitative Western Blotting and Immunohistochemistry -based 

Approaches for Analyzing CaMKK2 Protein Expression in the Bovine CL During 

Developmental Transition from Day-4 to –10, and Identifying the Luteal Cellular Source of 

CaMKK2 Protein.     

Semi-quantitative Western Blotting. From the three CAMKK2-specific antibodies tested, only 

the Santa Cruz antibodies SC 50341and SC 9629 detected a protein band of approximately 66 

kDa (figure 3 and panel A figure 4). However, because the antigenic peptide for SC 50341 is 

not commercially available, the SC 9629 was selected for further Western blot analysis. The 

specificity of this 66 kDa protein was demonstrated because its intensity was greatly reduced or 

abolished by incubating the antibody with its antigenic peptide. The antibody sometimes 

detected additional faint bands of high molecular weight, but these were not abolished when 
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the antibody was pre-incubated with its antigenic peptide (figure 3).  The 66 kDa molecular 

weight band identified corresponds closely to the published size band for this 

kinase[Tokumitsu H et al, 1995]. This 66 kDa protein band was detected at all protein 

concentrations (5, 10, 20, and 40 µg) tested in the samples from all D-10 CL (Panel A figure 

4). In contrast, it required 40 µg protein isolated from D-4 CL to obtain a comparable 

expression signal obtained with 5 µg of protein isolated from D-10 CL (Panel A, figure 4). As 

in previous studies from our laboratory, a 43-kDa protein was detected with the antibody for 

actin. The intensity of this 43-kDa band was similar for each corresponding protein 

concentration used regardless of luteal development (Panel A, figure 4). The semi-quantitative 

Western blot analysis using 40 µg/lane allowed us to estimate the amount of protein 

corresponding to CAMKK2 expressed in samples prepared from d-4 and -10 CL (Panel B, 

figure 4). The mean ± SEM for the actin corrected ratio for CAMKK2 in the D-10 CL was 1.0 

± 0.1, while for the D-4 CL, it was only 0.57 ± 0.04   (P< 0.01) (Panel B figure 3). In contrast, 

PGF2α treatment had no effect on CAMKK2 expression in any of the luteal developmental 

stages examined, D-4 (0.61 ± .08) and D-10 (0.93 ± 0.1samples (Panel B, figure 4).     

 

 Immunohistochemistry.  

All three CAMKK2-specific antibodies tested in the immunohistochemistry assay were 

effective in identifying luteal immunoreactive cells in a consistent manner. Cellular 

localization of CAMKK2 was routinely examined by immunohistochemistry in al least two 

areas from three corpora lutea (n=3, d-10 CL) using the SC 9699 antibody. Similar results were 

obtained with the other two antibodies tested. Representative photographs of cells expressing 

immunoreactivity are displayed in figure 5. Repeating the immunohistochemistry procedure on 

serial sections from each CL on different areas produced similar results to those displayed in 

figure 5. Specific CAMKK2 immunoreactivity was clearly detected in large and small luteal 

steroidogenic cells (figure 5, panels B-D). This immunoreactivity was eliminated when the 

antibody was pre-incubated with the antigenic peptide prior to immunodetection (figure 5, 

panel A) and the other control described in materials and methods (data not shown). 

Endothelial cells were not immunoreactive (figure 5, panel D).     
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Experiment 4: Role of CAMKK2 in mediating the antisteroidogenic actions of increase in 

[Ca2+]i stimulated by  PGF2α.  

The values of progesterone were expressed as percent of control because of the variations in its 

concentrations among animals. Therefore the value of the mean basal progesterone 

concentration is represented as one. The results are presented in figure 6. Treatment with 

PGF2α significantly (P<0.02) inhibited the basal accumulation of progesterone (0.78 ± 0.1). 

Basal amounts of progesterone accumulation in the media were not affected by STO-609 (0.99 

± 0.03). The inhibitory effect of PGF2α on basal progesterone was prevented (1.2± 0.06) in 

presence of STO-609. These observations support our hypothesis that CAMKK2 mediate the 

antisteroidogenic actions of increased intracellular Ca2+- stimulated by PGF2α. 

 

Discussion   

The present study identified 167 transcripts that are differentially expressed in the 

developmental transition when the CL acquires sensitivity to luteolytic actions of PGF2α. This 

represents a significant narrowing-down of the list of potential genes involved in modifying the 

intracellular signaling utilized by PGF2α on its target cells, in such a way, that the actions of 

PGF2α on the CL become luteolytic. The gene ontologies of the list of differentially expressed 

genes in corpora lutea from the early through mid-stage, further narrowed the list by allowing 

identification of 20 genes that were both differentially expressed and whose function was 

associated with multiple cell-signaling pathways (Table 2). The results from the second 

experiment allowed the list of genes whose expression might determine that the actions of 

PGF2α in the CL become luteolytic to be narrowed further. Expression of both CAMKK2 and 

GNB1 were sensitive to exogenous PGF2α. The combined increase in expression of CAMKK2 

due to the developmental transition and the PGF2α treatment might play a critical role in 

increased luteolytic sensitivity to PGF2α. This increase in CAMKK2 occurred at a 

developmental stage when PGF2α has an increased ability to elicit a rise in [Ca2+]i compared to  

Day-4 CL [Choudhary E et al, 2005; Sen A et al, 2005]. CAMKK2 has been reported to 

mediate the action of increasing intracellular Ca 2+ via phosphorylation of Ca2+/calmodulin-

dependent protein kinases (CAMKs) such as calcium/calmodulin-dependent protein kinases I 

and IV (CAMK1 and CAMK4). Once phosphorylated, the activity of these kinases is increased 
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10-20 fold [Haribabu B et al, 1995; Selbert MA et al, 1995].  Furthermore, CAMKs have been 

shown to activate mitogen-activated protein kinases (MAPKs) such as MAPK1 and MAPK3, 

formerly known as extracellular signal regulated kinase 1/2 or ERK1/2, in several ligand-

stimulated pathways [Illario M et al, 2003; Nguyen A et al, 2004; Rosengart MR et al, 2000]. 

The significance of this possibility is highlighted when considering that CAMK2 has been 

shown to mediate the actions of PGF2α by activating MAPKs in cat iris sphincter smooth 

muscle [Ansari HR et al, 2001]. Also, MAPKs/ERKs signaling inhibited gonadotropin-

stimulated steroidogenesis in rat granulosal-derived cell lines [Seger R et al, 2001]. There is 

significance in the observation that MAPK1 and 3 mediated the PGF2α-stimulated expression 

of prostaglandin-endoperoxidase synthase 2  (PTGS2 or COX2) in neoplastic endometrial 

epithelial cells, which in turn stimulated the synthesis of PGF2α in a positive feedback 

mechanism [Jabbour HN et al, 2005]. Such a positive feedback loop has been suggested to be 

operational within the CL with luteolytic capacity. MAPKs/ERKs have been involved in the 

PGF2αmediated effects in the bovine and rodent CL. For instance, MAPK/ERKs mediate the 

PGF2α-induced apoptosis in the buffalo CL [Yadav VK et al, 2005]; and induction of FOS and 

JUN mRNA expression by PGF2α is mediated by protein kinase C-dependent-MAPK/ERK 

pathway in bovine luteal cells [Chen D et al, 2001]. Furthermore, a calcium/caldmodulin-

dependent activation of MAPK1 and 3 mediates JUND phosphorylation and induction of nur77 

and 20α-hsd genes by PGF2α in luteinized rat granulosal cells [Stocco CO et al, 2002]. 

Transcriptional activation of CAMKK2 appears to be regulated by activation of G-protein 

coupled receptor 54 (GPCR54), acting through Gq/11 family of heterotrimeric G-proteins 

[Becker JA et al, 2005]. Further, transcription of CAMKK2 was regulated by an increase in 

intracellular Ca 2+ [Okuno S et al, 1997]. Given that in the bovine CL, PGF2α stimulates 

hydrolysis of phosphatidylinositol 4, 5-biphosphate and mobilizes intracellular Ca 2+  [Davis JS 

et al, 1987b; Wiltbank MC et al, 1991] these mechanisms of transcriptional regulation might be 

relevant.  In support of the importance of CAMKK2 in the acquisition of luteal sensitivity to 

the luteolytic actions of PGF2α is the finding that YWHAZ was down-regulated in D-10 CL. 

This would be in agreement with the report that the protein encoded by YWHAZ inhibits the 

action of CAMKK2 [Davare MA et al, 2004], because down-regulation would increase the 

activity of CAMKK2. Therefore, taken together, the observations in these studies that a greater 

expression of CAMKK2 associated with the D-4 to D-10 CL transition, and the ability of 
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PGF2α to further stimulate its expression in the D-10 CL, and its role in mediating the 

antisteroidogenic actions of PGF2α strongly supports the interpretation that CAMKK2 might be 

involved in acquisition of luteal sensitivity to the luteolytic actions of PGF2α. This 

interpretation is strongly supported by the finding that there was a parallel increase in the 

amount of CAMKK2 associated with the D-4 to D-10 CL transition (figure 3). More 

importantly, ability of PGF2α to inhibit the progesterone synthesis was prevented by CAMKK2 

inhibitor (figure 6). Although the in vivo effect of exogenous PGF2α increased the mRNA 

encoding CAMKK2, there was no concomitant increase in the amount of CAMKK2 in D-10 

CL. This might be simply due to the fact that it takes longer for the effect of PGF2α to be 

observed at the protein than at the mRNA level. However it is also possible that despite the 

changes in mRNA, the protein is not stabilized by exogenous PGF2α. Important to the 

interpretation that CAMKK2 might be involved in acquisition of luteal sensitivity to the 

luteolytic actions of PGF2α is the observation that both small and large steroidogenic cells are 

luteal sources of CAMKK2. These cells are then both target for PGF2α actions, and also 

express mRNA and protein encoding calcium/calmodulin dependent kinase kinase 2, beta in a 

developmental manner that agrees with our suggestion that CAMKK2 might be involved in 

acquisition of luteal sensitivity to the luteolytic actions of PGF2α. Identifying the luteal  

steroidogenic cells as sources of mRNA and protein encoding Ca2+/calmodulin dependent 

kinase kinase  2, beta is also important from the point of view of designing functional studies to 

up- and down-regulate  the expression of this gene in order to test its function.  

The expression of gene encoding the protein kinase C inhibitor, YWHAZ, was down-regulated 

in the D-10 CL and treatment with PGF2α did not affect its expression either in D-4 or -10 CL 

[Robinson K et al, 1994; Toker A et al, 1990]. YWHAZ has been shown to inhibit the activity 

of PKCs by interacting with a cystein-rich C1 domain [Robinson K et al, 1994; Toker A et al, 

1990]. Importantly, PKCs mediate the luteolytic actions of PGF2α [Wiltbank MC et al, 1991]. 

Down-regulation of YWHAZ in the D-10 CL is in agreement with the findings by Juengel et al 

[Juengel JL et al, 1998] that mRNAs for YWHAZ was greater in D-5 sheep CL compared to D-

10 and -15 CL and that PGF2α did not affect its expression. Based on these observations, they 

suggested that YWHAZ might be involved in the luteolytic resistance in the early ovine CL 

[Juengel JL et al, 1998]. Similarly, lowered expression of YWHAZ during latter stages of the 

bovine CL development might increase luteal sensitivity to PGF2α. At the same time, their data 
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provides an independent validation of the data obtained in experiments 1 and 2 of the current 

study. Lower expression of GNB1 in the D-4 CL might explain, at least in part, the mechanism 

responsible for luteal insensitivity to PGF2α in the early CL. The luteal FP receptors are coupled 

to heterotrimeric G proteins [Miwa M et al, 1990; Olofsson JI and Leung PC, 1996]. Activation 

of the linked G protein leads to dissociation of Gα and Gβγ subunits from the heterotrimeric 

complex [Davis JS et al, 1987b; Gilman AG, 1987; Simon MI et al, 1991; Wiltbank MC et al, 

1991]. Both Gα and Gβγ subunits activate downstream signal transduction mechanisms. It is 

conceivable that lower expression of GNB1 in the early CL could restrict, in part, full 

intracellular signaling by FP receptors. Indeed, reduced amounts of GNB1 in D-4 CL might 

explain the reduced ability of PGF2α to stimulate a rise in [Ca 2+]i in D-4 CL [Sen A et al, 2005]. 

In rabbit CL, PLC activators had luteolytic effects similar to that induced by PGF2α, not only on 

D-9 and D-13 CL, but also in D-4 CL, in which PGF2α was completely ineffective [Boiti C et al, 

2001]. Boiti et al [Boiti C et al, 2001] suggested that the resistance of early CL might be due to 

impairment in G-proteins coupled to PGF2α receptor. Interestingly, exogenous PGF2α increased 

the expression of GNB1 in D-4 CL but not in D-10 CL. The magnitude of the increase in GNB1 

expression in D-4 CL after exogenous PGF2α was similar to that seen in D-10 CL; perhaps 

indicating that expression of this gene was already maximally stimulated during the 

developmental transition from D-4 to D-10. It has been reported that repeated injections of 

PGF2α could regress the bovine CL during its early stage [Sayre BL et al, 2000]; thus increased 

expression of GNB1 after PGF2α injection might be one mechanism that makes the early CL 

acquire luteolytic sensitivity to PGF2α. An additional argument in favor of the significance of 

differential expression of GNB1 in the mechanism of luteolytic sensitivity to PGF2α is the report 

that Gβ1γ1 interacts with RACK1, a scaffold protein that interacts selectively with a specific 

PKC isozyme, PKCβ11 [Dell EJ et al, 2002; Stebbins EG and Mochly-Rosen D, 2001]. Each 

specific PKC isozymes has been shown to interact with a specific type of RACK protein. The 

protein kinase C specific isozymes, PRKCB and PRKCE, were differentially up-regulated in D-

10 CL, and were activated following treatment with PGF2α [Sen A et al, 2004]. Therefore, 

greater amounts of GNB1 in D-10 CL might help to localize the RACK1 to the membrane, 

followed by recruitment of activated PRKCB to the membrane and initiation of signal 

transduction. This mechanism might participate in acquisition of luteolytic sensitivity to PGF2α. 

The developmental down-regulation of RGS2 as the CL transitioned from D-4 to D-10 could 
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participate in the mechanism of greater luteolytic sensitivity of the bovine CL. RGS proteins 

attenuate the signaling initiated by G proteins by two mechanisms, one by acting as GTPase-

activating proteins (GAPs) [Berman DM et al, 1996; Hepler JR et al, 1997], and also by 

inhibiting G-protein/effector interaction [Heximer SP et al, 1997]. Studies using in vivo and in 

vitro methods have demonstrated that RGS2 was a potent inhibitor for Gαq signaling [Heximer 

SP et al, 1999; Ingi T et al, 1998]. The Gq has been shown to activate phospholipace C, beta 1 

(PLCB1) leading to downstream signaling such as increases in intracellular calcium and 

activation of protein kinase C [Berridge MJ and Irvine RF, 1984]. Interestingly, FP receptors 

are coupled to Gq family of G proteins and activate its downstream signaling pathway, such as 

increase in intracellular Ca2+ and activation of protein kinase C [Abramovitz M et al, 1994; 

Graves PE et al, 1995; Pierce KL et al, 1999; Watanabe T et al, 1994]. In this regard, the 

activity of RGS2 was inhibited by protein kinase C in a phosphorylation-dependent manner, 

thereby potentiating the G-protein stimulated signaling pathway [Cunningham ML et al, 2001]. 

Therefore decreased expression of RGS2 in D-10 CL might potentiate G-protein signaling, 

thereby increasing sensitivity of the CL to PGF2α-induced luteolysis.  However, exogenous 

PGF2α did not affect the expression of RGS2 either in D-4 or D-10 CL indicating a PGF2α -

independent mechanism of transcriptional regulation for this gene during this developmental 

transition. The developmental down-regulation of adrenergic, alpha-1B, receptors during the 

luteal transition from D-4 to D-10 could be an additional mechanism contributing to the lower 

sensitivity to PGF2α. In vitro studies utilizing bovine luteal cells have indicated that 

noradrenaline (NA) stimulated progesterone secretion and reduced the ability of PGF2α to 

increase the [Ca 2+]i [Skarzynski DJ et al, 2000]. A reduction in the expression of adrenergic 

receptors would abolish luteo-protective effects of NA, and consequently, would increase the 

sensitivity of the CL to the luteolytic actions of PGF2α.  In summary, these studies have 

effectively identified CAMKK2, the protein kinase C inhibitor, YWHAZ, GNB1, and RGS2 as 

important genes that might play important roles in the acquisition of luteal sensitivity to PGF2α-

induced regression. Manipulating the expression of these genes might prove to be effective 

strategies for developing more effective estrous synchronization practices in mammals, thereby 

overcoming the limitation of insensitiveness of early CL to luteolytic actions of PGF2α. 

However many other genes, which were differentially expressed in this study might be of 

relevance in many aspects of luteal physiology, and needs further investigation. Finally, it 
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should be stressed that the above discussion is based on reported actions of these genes in other 

systems, and therefore, is speculative in nature. 

  

TABLE 1.  List of primers and their sequences 

Gene Forward primer Reverse primer Accession No 
CAMKK2 TGGAGACGAGTATTGCGACA CGCCCAACGTAGTCAAACTT XM587244 
YWHAZ AACGAAGACCGAAACCTCCT GGTAGGCCTTCACCTTCTCC NM1744492 
BXLBv68 CGGAGGCTGTGCAGTATTATG GCACACGATGTAGCGAATGA XM872283 
PTPRR GAGAGGCGAGGGTCCAAC AGCTGCGACCTTGTGAGAAT NM001015662 
CL1 ACCTCCTGGGTGATGCAGAT ATGAAGGCGACAGCTCCA NM205779 
RGS2 CGAGGAGAAGCGAGAGAAGA CCTCAGGAGAAGGCTTGATG NM001075596 
INPP1 ACCACGTTCAAGTGGGACTC TTTCCCACGTGATACACCAG NM174364 
AURKB AGCGAACAGCCACGATCA ACCAGCCGAAGTCAGCAAT NM183084 
GNB1 GACAGGGCAGGGGTCTTG GTCACTGTGGCGTCCACCT NM175777 
SPARCL1 GACCAAGTTTGTGGCACTGA GAAGTCCGTACAAGCAGGAA NM001034302 
PKN1 ACTTTGGGAAGGTGCTGCT ATTGGTCACAGCTGCCAAG XM585967 
GAPDH AATATCATCCCTGCTTCTACTGG CATACTTGGCAGGTTTCTCCA NM001034034 

 

 

TABLE 2. Classification of differentially expressed genes according to their functions 

Gene category Upregulated Downregulated Percentage 
Steroidogensis and metabolism 14 3 10.2 
Transcription regulation and DNA    
biosynthesis 25 6 18.5 

Protein biosynthesis and modification 29 2 18.5 
Antioxidant property 5 - 3 
Extracellular matrix and cytoskeletal 
proteins 12 4 9.5 

Hormonal cell signaling 14 6 12 
Protein degradation 9 0 5.3 
Miscellaneous 14 14 17 
Unknown functions 6 4 6 

Percentage = percentage of total differentially expressed genes and includes both up and 

downregulated genes in the particular gene category 
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TABLE 3: Genes classified under hormonal cell signaling 

Genes                                                                                   Accession No.           M                P 

Casein kinase 2, alpha prime polypeptide (CSNK2A2) CK769872 1.69 0.03 

Inositol polyphosphate-1-phosphatase (INPP1) CK773631 1.43 0.01 

Protein inhibitor of activated STAT, 3 (PIAS3) CK847890 1.37 0.04 
Guanine nucleotide-binding protein (G protein), beta 
polypeptide 1 (GNB1)  

CK775516 1.34 0.05 

Regulator of Calcineurin 2 (RCAN2) CK846982 1.32 0.01 
Protein tyrosine phosphatase, receptor type, R (PTPRR) CK773728 1.26 0.01 

Calcium/calmodulin-dependent protein kinase kinase 2, 
beta (CAMKK2) 

CK777876 1.22 0.01 

Protein kinase N1 isoform 1 (PKN1) CK777128 1.3 0.04 

SLIT-ROBO Rho GTPase activating protein 1 (SRGAP1) CK849538 1.12 0.04 

Formin binding protein 4 (FNBP4) CK775025 1.04 0.01 

Adenosine A1 receptor (ADORA1) CK774279 1.12 0.01 
ADP-ribosylation factor 6 (ARF6) CK771198 1.09 0.04 

Unc-51-like kinase 1 (ULK1) CK778217 1.07 0.01 

Rho GTPase activating protein 8 isoform 1 ( ARHGAP8) CK847626 1.26 0.03 

NOTCH homolog 2 preproprotein (NOTCH2) CK848127 1.05 0.02 

 Adrenergic, alpha-1B-, receptor (ADRA1B) CK771135 -1.54 0.01 

Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase 
activation protein, zeta polypeptide (YWHAZ) 

CK849522 -1.06 0.01 

Calcium binding protein P22 (CHP) CK849565 -1.00 0.01 

Regulator of G-protein signaling 2, 24 kDa (RGS2) CK948092 -1.06 0.01 

 G-protein coupled receptor 98 (GRP98) CK774105 -1.03 0.01 

      1M = 2fold change 
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TABLE 4. Steroidogenesis and Metabolism 

Name of the gene                                                   Accession No.          M          P 

Aldehyde dehydrogenase 1 CK849144 1.69 0.03 
NADH-cytochrome b5 reductase CK849313 1.48 0.01 

Ubiquinol-cytochrome c reductase complex 7.2kDa 
protein isoform a 

CK777947 1.30 0.02 

Proline dehydrogenase (oxidase) 1 CK770371 1.35 0.01 
Ornithine decarboxylase-like protein CK776792 1.24 0.03 
Pyruvate kinase, liver and RBC (PKLR) CK778286 1.15 0.02 
ATP citrate lyase (ACLY) CK956511 1.12 0.01 
Tricarboxylate transport protein  (CTP) CK773874 1.95 0.01 

Glycine dehydrogenase CK770834 -1.50 0.02 

Glutamine-fructose-6-phosphate transaminase CK776508 -1.15 0.02 
Dolichyl-phosphate beta-glucosyltransferase CK775119 -1.01 0.03 
Apolipoprotein A1 (APOA1) CK943048 1.79 0.01 
Fatty acid binding protein (heart) CK848552 2.30 0.01 

Alpha-2-macroglobulin receptor-associated protein 
precursor 

CK770545 1.71 0.01 

Mevalonate (diphospho) decarboxylase CK778011 1.42 0.01 

Homolog of yeast long chain polyunsaturated 
fatty acid elongation 

CK943782 1.25 0.01 

Lipid phosphate phosphatase-related protein type 2 CK778352 1.24 0.01 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 76 

TABLE 5. RNA processing, transcription regulation and DNA synthesis 
Name of the gene                                                    Accession No.           M               P 

Activating transcription factor 4 CK949341 2.02 0.02 

Zinc finger protein 652 isoform 2 CK770292 1.83 0.01 

Zinc finger protein 287 ((Zinc finger protein SKAT-2) CK771322 1.88 0.01 
Homeodomain interacting protein kinase 4 CK775259 1.46 0.01 
LIM homeobox 9 CK772768 1.45 0.01 
CDC-like kinase 1 CK848317 1.38 0.01 
RNA-binding protein S1 CK773442 1.63 0.01 

Ring finger protein 5 isoform 1 CK774044 1.24 0.05 

Williams Beuren syndrome chromosome region 22  CK774061 1.47 0.01 

Ring finger protein 38 (RNF38) CK778301 1.18 0.02 

Paired box protein Pax-8 CK774334 1.18 0.01 

Suppressor of Ty 6 homolog CK954466 1.23 0.01 

Zinc finger protein 197 (ZnF20) CK776693 1.13 0.01 

PHD finger protein 10 CK847333 1.17 0.01 

R3H domain containing 1 CK775332 1.13 0.03 

E2F family member 8 CK774280 1.03 0.01 

DNA-directed RNA polymerase III 47 kDa polypeptide 
((RPC4)) 

CK772296 
 

1.05 0.01 

U5 snRNP specific CK769585 -1.29 0.01 
Pirin CK776403 -1.16 0.01 
Nuclear receptor subfamily 1, group H, member 2 CK773128 1.02 0.02 
Steroid receptor (TR2-11) CK769911 -1.27 0.01 
G16 (HsRma1) (Ring finger protein 5) CK775904 1.01 0.01 
TAR DNA-binding protein-43 (TDP-43) CK849045 -1.29 0.02 
Early B-cell factor associated zinc finger transcription 
factor 

CK847452 -1.05 0.02 

Estrogen receptor-related protein CK846360 1.03 0.03 
RNA binding motif protein 19 CK846624 1.02 0.03 

GIY-YIG domain containing 2 CK778699 1.50 0.05 

Polymerase (DNA directed), alpha 2 (70kD subunit) CK774876 1.39 0.01 

DNA polymerase delta subunit 3 CK773351 1.28 0.02 

Tyrosyl-DNA phosphodiesterase 1 CK775329 -1.03 0.01 
C-terminal binding protein 2 (CTBP2) CK771864 2.10 0.04 
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TABLE 6. Protein biosynthesis and modification 
Name of the gene                                                      Accession No.        M                P 

Eukaryotic translation initiation factor 4A, isoform 2 CK846258 1.31 0.01 

Activator of 90 kDa heat shock protein ATPase homolog 1 
(AHA1) 

CK776415 
 

1.24 0.01 

Disulfide isomerase CK776692 1.17 0.02 

Eukaryotic translation initiation factor 3 CK849347 1.14 0.01 
Elongation factor 1-gamma (EF-1-gamma) CK773855 1.15 0.01 
Elongation factor for selenoprotein translation CK772036 1.42 0.03 
60 ribosomal protein L17 CK771192 1.23 0.02 

40S ribosomal protein S27 CK771367 1.23 0.05 
40S ribosomal protein S10 CK772050 1.39 0.01 
40S ribosomal protein S9 CK772107 1.66 0.01 
60S ribosomal protein L31 CK773025 1.98 0.01 
40S ribosomal protein S15 CK774452 1.23 0.02 
40S ribosomal protein S25 CK775730 1.02 0.02 
Ribosomal protein L27 CK776228 1.28 0.01 
60S acidic ribosomal protein P2 CK776925 1.35 0.01 
40S ribosomal protein S29 CK846156 1.04 0.01 
40S ribosomal protein S24 CK847945 2.03 0.02 
60S ribosomal protein L26 CK848441 1.32 0.01 
60S ribosomal protein L12 CK848743 1.27 0.01 
Ribosomal protein, large, P0 (RPLP0) CK849066 1.14 0.01 
60S ribosomal protein L7a CK849145 1.69 0.01 
60S ribosomal protein L9 CK849400 1.14 0.01 
40S ribosomal protein S7 CK849595 1.17 0.02 
60S ribosomal protein L13 CK849627 1.92 0.01 
40S ribosomal protein S5 CK849697 1.60 0.01 
40S ribosomal protein S11 CK945135 1.71 0.01 
60S ribosomal protein L13 CK946216 1.33 0.01 
40S ribosomal protein S29 CK949225 1.28 0.01 
40S ribosomal protein S15a CK953239 1.14 0.01 
Heat shock 70kDa protein 5 (grp78) CK848695 -1.4 0.02 
Translation initiation factor IF-2, mitochondrial precursor 
(IF-2Mt) 

CK769193 -1.07 0.02 
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TABLE 7. Antioxidant property 
 

Name of the gene                                                        Accession No.         M                  P 

Selenoprotein P-like protein precursor CK777177 2.05 0.05 
Peroxiredoxin 5 CK773035 1.86 0.02 

Glutathione S-transferase A2 CK774267 1.67 0.01 

Glutathione S-transferase A1 CK778456 1.57 0.01 
Glutathione peroxidase 3 CK770347 1.49 0.01 

 
TABLE 8. Extracellular matrix and cytoskeletal proteins 

Name of the gene                                                       Accession No.          M                P 

SPARC-like 1 CK849369 1.77 0.01 
Chondroitin sulfate glucuronyltransferase CK775983 1.58 0.02 

Proteoglycan 1 precursor-like CK769587 1.47 0.02 

Serine protease inhibitor, Kunitz type, 2 CK849325 1.33 0.01 
Plakophilin 1- cell to cell adhesion molecule CK774824 1.31 0.01 
Metalloproteinase inhibitor 4 precursor (TIMP-4) CK849811 1.23 0.01 
Putative hyaluronan receptor for endocytosis CK778012 1.16 0.02 
Collagen, type XXII, alpha 1 CK847130 1.29 0.01 

Serine/threonine-protein kinase MARK1 CK771345 1.05 0.01 

Keratin 7 CK848899 1.23 0.03 

Dynactin-1 (150 kDa dynein-associated polypeptide) CK774327 1.11 0.05 

Actin-related protein 6 (hArp6) CK776995 -1.09 0.02 
Keratin 8 CK778284 -1.29 0.03 
Type V preprocollagen alpha 2 chain CK849288 -1.14 0.02 
Plakophilin 2 CK776740 -1.65 0.02 
Myosin regulatory light polypeptide 9 CK848506 1.26 0.02 
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TABLE 9. Miscellaneous 
Name of the gene                                                    Accession No.          M               P 

Solute carrier family 39 (zinc transporter), member 4 CK776598 1.20 0.03 

Lutheran blood group CK772614 1.38 0.02 

SPATA2 CK773652 1.68 0.01 

Prostate stromal protein ps20 CK777307 1.23 0.01 
SYAP1 CK769966 1.12 0.01 
Potassium voltage-gated channel KQT-like protein 2 
isoform c 

CK772601 1.10 0.01 

Secretion regulating guanine nucleotide exchange factor CK846026 1.04 0.01 
Solute carrier family 35, member C2 CK777438 1.06 0.03 
Survival motor neuron protein CK774453 1.10 0.01 

Dendritic cell protein GA17 CK848907 1.03 0.05 

Ferritin H subunit CK848958 1.04 0.01 

ERIC1 CK940341 1.38 0.05 

Transmembrane protein 176A (TMEM176) CK770329 -1.37 0.01 

Macrophage C-type lectin Mincle 
 

CK770579 -1.19 0.02 

Aurora kinase B (AURKB) CK771597 -1.10 0.02 

Potassium voltage-gated channel subfamily H member 2 CK773510 -1.71 0.01 

Fat cell-specific low molecular weight protein CK774965 -1.71 0.04 

Sialin CK845898 -1.30 0.02 

PKC-interacting cousin of thioredoxin (thioredoxin-like) CK848430 -1.05 0.01 

Sprouty-like protein CK849801 -1.13 0.02 

Chromosome 10 open reading frame 119 CK848711 -2.50 0.01 

Synleurin TC313344 -1.04 0.01 

ABC transporter ATP-binding protein CK845991 -1.19 0.02 

Chloride channel 2 TC351877 -1.00 0.05 

Nuclear casein kinase and cyclin-dependent kinase 
substrate 1 (Nucks1) 

CK770111 -1.04 0.04 

Solute carrier family 35, member F2 CK770565 -1.09 0.05 

Phosphoglycerate mutase family member 5 (PGAM5) CK847884 1.14 0.03 
Tumor protein, translationally-controlled 1 (TPT1), P23 CK774391 1.16 0.01 
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 TABLE 10. Protein degradation 
Name of the gene                                                       Accession No.       M                P 

Cathepsin K preproprotein (CTSK) CK849357 1.29 0.01 

F-box protein 36 CK944568 1.37 0.03 

Napsin A preproprotein CK770924 1.24 0.05 

Pleckstrin homology-like domain family A member 1 CK773551 1.24 0.03 
Apoptosis-associated speck-like protein containing a 
CARD (ASC) 

CK954618 1.21 0.03 

AFG3-like protein 1 CK776738 1.22 0.02 

Granzyme M precursor CK774851 1.16 0.04 

UV excision repair protein RAD23   homolog A CK776179 1.15 0.02 

Matrix metallopeptidase 23 (MMP-23) CK846714 1.02 0.05 

 
TABLE 11. Unknown functions 

Accession No.          M                 P                  Accession No.              M               P 

CK777911 1.70 0.01 CK846545 1.08 0.01 

CK773556 1.63 0.05 CK770138 1.16 0.04 

CK773395 1.61 0.02 CK773493 1.02 0.03 

CK773691 1.30 0.02 CK774123 1.49 0.01 

CK778328 1.34 0.03 CK775464 1.01 0.03 

CK777602 1.33 0.01 CK846118 1.00 0.01 

CK848506 1.26 0.02 CK770657 -1.02 0.05 

CK845982 1.26 0.04 CK772076 -1.28 0.01 

CK774613 1.15 0.03 CK775423 -1.33 0.01 

CK769920 1.10 0.02 CK773288 -1.01 0.01 
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Figure 1. Real-time RT-PCR confirmation of 9 differentially expressed genes in Day-10 CL 

compared to Day-4 CL that were identified by microarray analysis, P<0.05. CAMKK2: 

calcium/calmodulin dependent kinase kinase 2, beta; YWHA: tyrosine 3-

monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide; PGAM5: 

phosphoglycerate mutase family member 5; PTPRR: protein tyrosine phosphatase, receptor type, 

R; AURKB: aurora kinase B; GNB1: guanine nucleotide binding protein (G protein), beta 

polypeptide 1; TMEM176A: transmembrane protein 176A; RGS2: regulator of G protein 

signaling 2, 24kDa; INPP1: inositol polyphosphate-1 phosphatase. The data is shown as mean ± 

SEM, values with differing letters denoting statistically significant differences  (P<0.05). 
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Figure 2. Real-time RT-PCR analysis of the effect of exogenous PGF2α on expression of 

selected genes that are identified by microarray to be differentially expressed in Day-10 CL 

compared to Day-CL, P<0.05. NS represents normal saline. CAMKK2: calcium/calmodulin 

dependent kinase kinase 2, beta; YWHAZ: tyrosine 3-monooxygenase/tryptophan 5-

monooxygenase activation protein, zeta polypeptide; RGS2: regulator of G protein signaling 2, 

24kDa; GNB1: guanine nucleotide binding protein (G protein), beta polypeptide 1; SPARCL1: 

SPARC-like 1; PKN1: protein kinase N1. The data is shown as mean ± SEM, values with 

differing letters denoting statistically significant differences (P<0.05). 
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Figure 3. Specificity of the 66 kDa protein band detected by the SC 9629 antibody.  In this 

representative Western blot, 30 µg sample proteins isolated from a day10 corpus luteum was 

run in each lane. The right lane is a representative Western blot demonstrating that the 

CaMKK2 antibody detected a protein band of approximately 66 kDa (right panel). The left 

lane correspond with the experimental conditions where the primary antibody was 

preincubated with an excess amount of antigenic peptide prior to its use in the Western blot. 
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Figure 4. Representative Western blot analysis of the calcium/calmodulin dependent kinase 

kinase 2, beta  (CAMKK2) expressed in the bovine CL and semi-quantitative analysis of the 

densitometry derived from Western blots using protein samples isolated from d-4 and d-10 

bovine corpora lutea. Panel A compares the total sample protein needed to detect CaMKK2 in 

protein samples isolated from day 4 and 10 corpora lutea. For each developmental stage, 5, 10, 

20, and 40 µg / lane sample protein were used. This representative Western blot demonstrates 

the amount of CaMKK2 and actin expressed in each protein samples collected at d-4 (lanes 1-

4) and d-10 (lanes 5-8) of the estrous cycle. The CaMKK2 antibody detected a protein band of 

approximately 66 kDa, whereas the actin antibody detected a protein band of about 43 kDa. In 

panel B, the y-axis shows the ratio of the optical density (o.d) for CaMKK2 corrected by the 

detected o. d. for its corresponding actin. The data is shown as mean ± SEM, values with 

differing letters denoting statistically significant differences (P<0.001). 
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Figure 5. Specific detection of calcium/calmodulin dependent kinase kinase 2, beta 

(CAMKK2) in day 10 bovine CL (panels A and B) by immunohistochemistry. Panel A 

demonstrates the specificity of the assay by a dramatic reduction of immunoreactivity when the 

primary antibody was pre-incubated with the antigenic peptide. Panel C shows 

immunoreactivity in small (S) and large luteal cells (L). Panel D illustrate lack of 

immunoreactivity in endothelial cells (arrow labeled E) and immunoreactivity in the cytoplasm 

of a large (arrow labeled L) and small (arrow labeled (S) luteal cells. Some unidentified cells 

are observed in the lumen of the blood vessel. Images in panels A and B are shown at the same 

magnification and the bar on the lower right corner of panel A indicates 100 µm. In panels C 

and D, the bars in the lower right corners indicate 100 and 50 µm respectively.  The nuclei 

were counterstained by brief exposure to Harris’s Hematoxylin solution. 

 



 86 

 

Figure 6. Role of CAMKK2 in mediating the antisteroidogenic actions of PGF2α. This figure 

represents the accumulation of progesterone in media secreted by steroidogenic cells derived 

from D-10 CL (n=4) over a period of 12 h. The treatments include media (control), CAMKK2 

inhibitor, STO-609 in presence or absence of PGF2α. The progesterone values are expressed as 

percentage of control (mean ± SE), and the bars with symbol * and ** indicate significant 

differences (P<0.05) between treatment groups.  
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Chapter V: Discussion and future studies 

The current studies were carried out to investigate the mechanisms responsible for insensitivity 

of the early developmental stages of the bovine CL to luteolytic actions of PGF2α.  Lack of 

PGF2α receptors does not seem to explain this differential response because early CL already 

have high affinity receptors and PGF2α can elicit distinct physiological response in early CL 

[Choudhary E et al, 2005; Levy N et al, 2000]. This led to general working hypothesis that 

differences in post-receptor signaling events activated by PGF2α in the early versus the mature 

CL might be responsible for differential responsiveness to luteolytic actions of PGF2α.   

 

Previous study by Sen et al [Sen A et al, 2004] investigated the expression of array of PRKC 

isozymes in the developing and mature CL. The results of this study showed that bovine CL 

expressed α, ßI, ßII, ε and µ isozymes. Interestingly, the amount of PRKCE was greater in D-10 

CL compared to the D-4 CL and only steroidogenic cells expressed PRKCE. These observations 

led authors to propose that differential expression of PRKCE could explain the mechanism of 

early luteal resistance to PGF2α. Therefore, ablation or over-expression of PRKCE in 

steroidogenic cells might provide useful technique to assess its physiological significance and 

mechanism in acquisition of luteolytic sensitivity. Therefore, siRNA approach was used to 

specifically downregulate PRKCE mRNA in steroidogenic cells. This approach has effectively 

downregulated the amount of PRKCE mRNA by ~75% and protein by ~50% and permitted 

examination of the specific function of PRKCE. Under the reduced cellular concentrations of 

PRKCE, the ability of PGF2α to inhibit LH-stimulated progesterone accumulation was 

significantly inhibited. This observation strongly supported our hypothesis that low 

amounts/absence of PRKCE in the early CL might be responsible for inability of PGF2α to 

inhibit progesterone synthesis. In general, PRKCs mediated antisteroidogenic actions of PGF2α 

[Abayasekara DR et al, 1993; Wiltbank MC et al, 1990; Wiltbank MC et al, 1991], however the 

role of PRKC specific isozymes has drawn little attention to date. Therefore, our results are 

direct evidence that PRKCE mediate progesterone inhibitory actions of PGF2α.  However, 

detailed mechanism of action and its cellular targets are not known. Inhibition of activity of 

PRKCE abolished the ability of PGF2α
 to increase [Ca2+]i, which suggested that PRKCE might  

regulate amounts of [Ca2+]i [Sen A et al, 2005]. However, the exact mechanism by which 
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PRKCE regulates [Ca2+]i needs to be investigated. In astrocytes activation of PRKCE increased 

the expression of mRNAs for voltage- dependent calcium channels (VGCCs). In addition, 

overexpression of PRKCE increased the density of Ca2+ currents [Burgos M et al, 2007]. 

Therefore, the role of PRKCE in expression of VGGCs or their direct activation by 

phosphorylation-dependent mechanism needs to be investigated. In addition, cellular co-

localization studies of PRKCE with VGGCs might provide insight into its specific target sites of 

action.  

 

It has been proposed that uterine PGF2α amplifies its luteolytic effect by stimulating its own 

synthesis from CL [Tsai SJ and Wiltbank MC, 1997]. PGF2α released from CL acts in an 

autocrine manner to complete the process of luteolysis. In early CL, the inability of PGF2α to 

induce COX-2 expression, a key enzyme in biosynthesis of PGF2α, had been suggested to be 

cause for early luteal insensitivity [Tsai SJ and Wiltbank MC, 1998](discussed in chapter III). 

Moreover, the increase in [Ca2+]i activated PLA2 and subsequently released arachidonic acid 

[Rosenthal MD et al, 1995]. Therefore, expression of PRKCE and its activation by PGF2α in 

the late CL might increase [Ca2+]i sufficient to induce COX-2  expression and probably other 

important genes involved in the metabolism of  PGF2α. Supporting this idea, PRKCE induced 

the expression of COX-2 via Raf1-MEK1/2-p44/42 MAPK pathway in cardiac muscle [Xuan 

YT et al, 2005]. Therefore, the expression of key PG metabolic genes including COX-2 in 

PKCε-down regulated cells was innvestigated. Surprisingly, PRKCE-downregulation did not 

show significant effects on the expression of any of the genes tested (discussed in Chapter III). 

However, in the bovine luteal cells, activation of PRKC by PGF2α stimulated 

Raf/MEK1/MAPKMAP pathway, which was suggested to activate the luteal genes containing 

AP-1 binding sites [Chen DB et al, 1998]. Therefore, possibility of involvement of other 

PRKC-specific isozymes in activating this metabolic pathway and subsequent induction of 

PGF2α-metabolic genes during luteolysis needs to be investigated. 

 

The role of Ca2+ in inhibiting and supporting the synthesis of progesterone has been reported, 

which suggested its biphasic role in steroidogenesis (discussed in chapter III). Our observations 

strongly suggested that by simply raising the intraluteal Ca2+ concentration, one could inhibit 
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progesterone synthesis irrespective of the developmental stage of CL. However, we did not 

quantified the amounts of [Ca2+]i that are required to inhibit progesterone synthesis. Therefore, 

titrating the quantity of progesterone-inhibitory concentrations of Ca2+ might be very important 

in designing suitable Ca2+- based estrous synchronization protocols. In addition, understanding 

the [Ca2+]i homeostasis in CL is important in designing calcium based protocols. It is known 

that PGF2α stimulates a the rise in [Ca2+]i via release from internal source (ER). However, the 

function of Ca2+ that is derived via VGGCs during PGF2α stimulated anti-steroidogenesis needs 

further investigation. Recently it has been reported that human luteinized granulosal cells 

express L- and T-type VGCCs and T-type channel regulate LH-stimulated influx of Ca2+ and 

steroidogenesis [Agoston A et al, 2004].  In addition, PGF2α stimulated influx of extracellular 

Ca2+ via receptor linked Ca2+ channels during uterine contraction [Perusquia M and Kubli-

Garfias C, 1992]. Importantly, our preliminary results (data not shown) showed that mRNAs 

for L, N, and T-type VGGCs are expressed in bovine CL. Therefore utilization of specific Ca2+ 

channel blockers during inhibition of LH-stimulated progesterone by PGF2α
 might provide 

insight into their specific roles during luteolysis. In addition, studying the expression patterns 

of VGCCs and IP3 receptors in early and mature CL might help to understand the mechanisms 

responsible for ability of PGF2α to stimulate greater magnitudes of [Ca2+]i. 

 

It is apparent from our previous results that there were difference in the developmental 

expression/quantities of certain signal molecules (for example, PKCε/ [Ca2+]i )  that might 

partly explain the difference in responsiveness of CL to PGF2α. Supporting this observation, 

investigators have reported that differential expression of PRKC inhibitors (YWHAZ, PKCI-

1), or PGF2α metabolic enzymes (COX-2, PGDH) might be responsible for differential luteal 

sensitivity (discussed in chapter IV). Therefore, there might be global changes in the 

expression of genes associated with PGF2α signaling during transition of CL from early to mid-

developmental stage.  This approach could explore and identify the novel signaling molecules 

that might play an important role during acquisition of luteal sensitivity. Accordingly, our 

microarray approach has identified 167 genes that are differentially expressed during transition 

from D4 to D-10 CL and the gene ontology allowed us to categorize the identified genes into 

various functional groups. Consistent with our hypothesis, we identified 20 various hormonal 

cell signaling genes that were developmentally differentially expressed (table 3, chapter IV). 
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The role of one of these 20 cell-signaling genes, CAMKK2 during acquisition of luteolytic 

sensitivity to PGF2α was investigated. The expression of both mRNA and protein of CAMKK2 

were up-regulated in the D-10 CL. Importantly, increased CAMKK2 expression occurred at a 

developmental stage at which PGF2α can stimulate a greater magnitude of [Ca2+]i. Therefore, 

greater availability of CAMKK2 in the mature CL might be important in mediating the actions 

of rise in  [Ca2+]i stimulated by PGF2α and subsequent inhibition of progesterone synthesis. 

Supporting its role in antisteroidogenesis, both SLC and LLC expressed CAMKK2 and 

endothelial cells do not appear to express CAMKK2. Importantly, inhibitor of CAMKK2 

prevented the ability PGF2α
 to inhibit progesterone synthesis, providing direct evidence for 

involvement of CAMKK2 in antisteroidogenic action of PGF2α.  However, the specific 

intracellular targets and mechanism of action of CAMMK2 needs to be examined. It has been 

shown that CAMKK2 is the upstream activator of AMPK and activation of AMPK with 

metformin inhibited progesterone synthesis in bovine granulosal cells [Hurley RL et al, 2005; 

Tosca L et al, 2007; Woods A et al, 2005]. AMPK inhibits the rate limiting enzymes in fatty 

acid and cholesterol biosynthesis such as acetylcoenzyme A carboxylase (ACC), fatty acid 

synthase, and 3-hydroxy-3-methylglutaryl-coenzyme A. Cholesterol is a precursor for the 

synthesis of progesterone in ovarian cells. Accordingly, activation of AMPK inhibited 

synthesis of progesterone through mitogen-activated protein kinases (MAPKs) such as 

extracellular signal regulated kinase 1/2 (ERK1/2) in rat granulosal cells [Tosca L et al, 2005]. 

Therefore, we propose that AMPK might be a likely target for CAMKK2 during its 

antisteroidognic action and needs future attention. However as a preliminary step, we examined 

the expression of AMPK subunit isoforms in two developmental stages of CL. The results 

indicated that α1, α2, β1, β2, and γ3 AMPK subunits were upregulated in D-10 CL (data not 

shown). However, the significance of differential expression of AMPK subunits during 

acquisition of luteolytic sensitivity to PGF2α needs to be investigated. In addition, the activation 

of AMPK is due to direct phosphorylation at threonine 172 (Thr172) [Hurley RL et al, 2005]. 

Therefore, examination of activation of AMPK (phosphorylation studies) by PGF2α might 

provide direct evidence for its participation during luteolysis.  

Based on the results from our current studies, general model for luteolytic signaling pathway 

induced by PGF2α can be proposed as shown in figure 1. Increased expression of PRKCE in 

Day-10 CL and its activation by PGF2α results in stimulation of greater magnitude of rise in 
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[Ca2+]i . Greater availability of CAMKK2 in D-10 CL might be activated by the rise in [Ca2+]i. 

Subsequently, CAMKK2 might activate its downstream targets such as MAPKs and AMPK to 

inhibit P4 synthesis. Decline in P4 is followed induction of apoptosis by intracellular Ca2+.  

In summary, current observations strongly indicated that differential expression of PRKCE and 

CAMKK2 might be important factors during acquisition of luteolytic sensitivity to PGF2α. In 

addition, magnitude of  [Ca2+]i stimulated by PGF2α
  is critical in inhibiting synthesis of 

progesterone synthesis, which suggested that by altering [Ca2+]i in CL, one could effectively 

inhibit progesterone synthesis irrespective of the developmental stage of CL. Studying the 

physiological roles of intracellular signaling molecules such as GNB1, RGS2, YWHAZ during  

acquisition of lueolytic sensitivity might help to answer the complexity of intracellular 

mechanism associated with early luteal resistance to luteolytic actions of PGF2α.  

 

Figure 1. Proposed model for PGF2α-induced luteolytic signaling pathway. PLC: phospholipase 

C; PGF2α: PGF2α receptor; ER: endoplasmic reticulum; PRKC: protein kinase C; PRKCE: 

protein kinase C epsilon; P4: progesterone; Gp: G-protein; DAG: diacylglycerol; IP3: 

inositoltriphosphate; CAMKK2: calcium-calmodulin-dependent kinase kinase 2, beta; AMPK: 

adenosine 5' monophosphate-activated protein kinase; MAPKs: mitogen-activated protein 

kinases. 
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