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ABSTRACT 
 

Synchronization of Coupled and Periodically Forced Chemical 

Oscillators 
 

Razan Snari 
 

Physiological rhythms are essential in all living organisms. Such rhythms are 
regulated through the interactions of many cells. Deviation of a biological system from its 
normal rhythms can lead to physiological maladies. The tremor and symptoms associated 
with Parkinson’s disease are thought to emerge from abnormal synchrony of neuronal 
activity within the neural network of the brain. Deep brain stimulation is a therapeutic 
technique that can remove this pathological synchronization by the application of a periodic 
desynchronizing signal. Herein, we used the photosensitive Belousov–Zhabotinsky (BZ) 
chemical reaction to test the mechanism of deep brain stimulation. A collection of oscillators 
are initially synchronized using a regular light signal. Desynchronization is then attempted 
using an appropriately chosen desynchronizing signal based on information found in the 
phase response curve.  

Coupled oscillators in various network topologies form the most common prototypical 
systems for studying networks of dynamical elements. In the present study, we couple 
discrete BZ photochemical oscillators in a network configuration. Different behaviors are 
observed on varying the coupling strength and the frequency heterogeneity, including 
incoherent oscillations to partial and full frequency entrainment. Phase clusters are 
organized symmetrically or non-symmetrically in phase-lag synchronization structures, a 
novel phase wave entrainment behavior in non-continuous media. The behavior is observed 
over a range of moderate coupling strengths and a broad frequency distribution of the 
oscillators. 
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Chapter 1 

1. Synchronization 

1.1 Introduction 

Synchronization phenomena are universal, and refer to the adjustment of the rhythms of 

interacting oscillators. This occurs when all oscillators in a system spontaneously adjust their 

individual frequencies to a common frequency from their intrinsic initial state. Synchronization 

is essential for many functions in living systems, including intellectual, physiological, 

behavioral, and social activities. In the seventeenth century, synchronization was first studied by 

the Dutch physicist Christiaan Huygens with two pendulum clocks, which were hung from the 

same support and exhibited out-of-phase synchrony [1]. The mutual synchronization in Huygens’ 

clocks resulted from their mutual coupling through the beam support [2]. Since then, there has 

been great interest in studying synchronization in many physical and biological systems that 

reveal patterns of spontaneous rhythm alignment.  

A striking biological example of synchronization is found in Southeast Asia fireflies, in 

which a group of males light up in unison because of visual feedback from neighboring fireflies 

[3]. Moreover, the phenomenon can be reproduced in laboratory experiments with an artificial 

light stimulus, which induces synchronous flashing in populations of fireflies [4]. When the 

rhythm adjustment is toward a specific source of oscillation, such as a pacemaker or a common 

external stimulus, the synchrony is referred to as entrainment. An example is the entrainment of 

circadian systems to environmental signals. Biological clocks in humans, animals, and plants are 

entrained by the 24 hour periodic perturbation of the day-night cycle. The effect of light in 

resetting timing phases in circadian clocks on physiological function in plants was first 



2 

recognized by Erwin Bünning in 1936 [5], which was followed by his findings of circadian 

clocks in insects in 1960 [6]. This concept was developed further, with manipulation of 

oscillations by visible light in 1983 in an oscillatory chemical system [7], where the light-

sensitive form of the Belousov–Zhabotinsky (BZ) reaction was introduced. The synchronization 

of BZ oscillators is illustrated in Figure 1.1. Applying light for feedback control of 

photosensitive oscillators provides the potential to explore the synchronization behavior of 

coupled and uncoupled oscillators. 

 

FIG.  1.1: Individual time series showing synchronization in the chemical Belousov–Zhabotinsky (BZ) 

system. BZ reaction mixture composition: malonic acid, [𝑀𝐴] = 0.08 M; sodium bromide, [𝑁𝑎𝐵𝑟] =

0.02 M; sulfuric acid, [𝐻2𝑆𝑂4] = 0.78 M; sodium bromate, [𝑁𝑎𝐵𝑟𝑂3] = 0.48 M. System of 20 micro-

oscillators loaded with Ru(bpy)3
2+catalyst. 
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1.2 Biology Background 

Physiological rhythms are essential to all living organisms, including the sleep-wake cycle 

[8], heart beat [9], respiration [10], and many other complicated intellectual, physiological, and 

social activities. These bodily rhythms reflect the interaction of many physiological oscillators in 

response to changes in their inner and outer environments, and thus fluctuate over time resulting 

in their intended action or activity [11]. Any deviations of a biological system from its normal 

rhythms may cause behavioral disorders or diseases, with many studies suggesting that 

disruption of neuronal synchrony is associated with dysfunctions found in Autism, 

Schizophrenia, Epilepsy, Alzheimer’s disease, and Parkinson’s disease (PD) [12]. Tremors in PD 

are suggested to emerge from a spontaneous increase of neural activity that leads to synchronized 

oscillations [13]. These abnormal synchronous oscillations are accompanied by defective 

stimulation of the motor cortical system by neuronal circuits responsible for controlling body 

movements [14]. These neurons comprise a group of interconnected areas deep inside the brain 

termed the basal ganglia, including the substantia nigra, subthalamic nucleus, globus pallidus 

internal and external, and putamen and caudate nucleus, as shown in Figure 1.2 [15]. The basal 

ganglia plays a role in controlling the neural feedback loop by providing essential activation or 

inhibition [16]. Therefore, the basal ganglia has been a target for neurosurgical therapies using 

various techniques including ablative surgeries and, more recently, safer procedures for deep 

brain stimulation (DBS). DBS involves the use of a neurosurgical pulse generator, with the main 

objective of inducing a desynchronized state among the neurons to reestablish normal 

information flow within their feedback loops for proper physiological activities [16].  
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FIG.  1.2: Basal ganglia structures. Illustrated image is from ref. [15]. 

 

There is now widespread interest in the use of electrical stimulation of the brain for 

neurobehavioral studies and as a treatment for neurological diseases. In 1874, Robert Bartholow 

pioneered the use of direct brain stimulation in the cerebral cortex of humans [17]. In 1947, a 

three-dimensional scanning technique using stereotactic devices to perform deep brain lesioning 

surgery was reported. However, lesioning surgery (i.e., tissue freezing, burning, or treating with 

chemical substances) is accompanied by irreversible side effects [18]. In 1963, Albe-Fessard 

reported that high frequency stimulations of 100–200 Hz in humans could reduce tremors [19]. 

Permanent implantation of electrodes in deep brain structures as a therapeutic treatment was 

performed, from which the modern technique of DBS was developed [19].  

DBS was first introduced in 1987 in France by Benabid and co-workers for controlling 

movement and tremor [20]. DBS involves the implantation of electrodes with stereotactic 

technology into a selected structure of deep brain regions to treat various dysfunctions associated 

with neural diseases, as illustrated in Figure 1.3 [21]. For example, the two most common sites 

for controlling PD are the subthalamic nucleus and globus pallidus internal [16], while the 

thalamus is typically targeted to control essential tremor [21]. A periodic train of pulses emitted 

from a pulse generator is transmitted by electrodes. The generator is placed under the skin near 

the clavicle of the patient and has an on/off switch [21].  
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FIG.  1.3: Deep brain stimulation. a) A cross section of the brain shows the electrode placement in the 

subthalamic nucleus for deep brain stimulation for Parkinson’s disease. b) Illustration of the stereotactic 

device. Illustrated images are from ref. [21]. 

 

DBS has promising potential for controlling epileptic seizures [22] and PD [23, 24], and 

has been tried in several animal models [25, 26]. In 2002, DBS was approved to treat PD by the 

Food and Drug Administration after its initial approval to treat essential tremors in 1997 [27]. 

DBS had now become an essential clinical tool for improving the quality of life for patients with 

neurological disorders. However, despite the extensive clinical use of DBS, its therapeutic 

mechanism and pathology for relieving disease symptoms remains controversial. Computational 

models using nonlinear dynamics have been developed in an attempt to improve the mechanistic 

understanding of DBS. There are two main hypotheses of the therapeutic mechanism of DBS in 

these models. Some computational models of DBS have a stimulus entrainment mechanism [28, 

29], while an alternative mechanism involves a disruption of the pattern of neural synchrony 

[30]. A model has been developed for a population of coupled oscillators in the presence of 

noise. The difficulty in developing and testing models of biological systems has led to alternative 

experimental systems that have features resembling neural relaxation oscillators, such as the BZ 

chemical reaction described in Section 1.3.  
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1.3 Chemistry Background: The BZ Reaction 

Oscillations can be observed in a wide range of biological, physical, and chemical systems, 

such as in heart pacemakers, electronic circuits that generate radio-frequency power, and the BZ 

chemical reaction. The BZ reaction is a catalyzed redox reaction that gives rise to oscillations 

and supports wave propagation. The Russian biochemist Boris Pavlovich Belousov was the first 

to observe the oscillatory behavior of this reaction in a stirred homogenous solution. He wrote an 

unpublished manuscript in 1951 on his discovery, which was finally published in 1981, eleven 

years after his death [31]. A graduate student, Anatol Zhabotinsky, studied and modified the 

system in 1961, and published the results in English in 1968 [32]. The BZ reaction has been used 

extensively for modeling complex biological oscillatory systems.  

Self-sustained oscillatory systems maintain their natural periodic rhythm and return back to 

their intrinsic rhythm following small perturbations [2]. The graphical representation of self-

sustained oscillations is depicted as a limit cycle oscillator (attractor), which is a closed 

orbit/trajectory where all variables periodically repeat themselves each cycle [33]. At least two 

variables are required to describe the waveform of an oscillation. In Figure 1.4, two variables 

form the coordinates of the phase plane to represent the limit cycle. If the concentration of one 

variable increases and decreases rapidly while the other variable slowly relaxes, then a relaxation 

oscillator is obtained [33]. The BZ chemical reaction can generate spontaneous relaxation 

oscillations in which the shape of an oscillation appears as a sequence of spikes, as shown in 

Figure 1.5a, b. These oscillations are similar to the spikes seen during neuronal firing. In this 

process, the intracellular potential variable slowly reaches a threshold voltage difference between 

the inside and outside of the neuronal cell. Thus, a rapid spike occurs with the discharging of the 

cell and the process repeats, as shown in Figure 1.5c [34]. 
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FIG.  1.4: A limit cycle curve of periodic oscillations in the phase plane and the corresponding time series 

plot. Points with the same numbers are of the same phase and are repeated for each period or cycle. 

Schematic diagram is from ref. [2]. 

 

 

FIG.  1.5: Relaxation oscillators. a) A relaxation Belousov–Zhabotinsky (BZ) oscillation from a model 

simulation with two variables, x and z, where x represents the fast variable, bromous acid, and z 

represents the slow variable, the catalyst. b) A relaxation BZ oscillation shown in the catalyst 

concentration in a BZ reaction experiment. c) Rapid neural firing generates a spike each time the cell 

potential slowly reaches −53 mV, and the cell then discharges and is reset to −70 mV. Schematic diagram 

is from ref. [34]. 
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In the BZ reaction, the oscillations of the system are observed as a periodic color change. 

The main reactants are malonic acid, bromate, sulfuric acid, and a catalyst, such as ferroin 

(Fe(phen)3
2+) or tris(bipyridine)ruthenium(II) (Ru(bpy)3

2+). The photosensitive ruthenium 

catalyst can be used to induce or suppress oscillations by controlling the light intensity imposed 

on the system. The catalyst in the reaction serves as an oscillation indicator that changes its 

redox state and color periodically depending on the state of the system. The resulting 

intermediates, bromous acid as the autocatalyst and bromide as the inhibitor, act to regulate the 

oscillations in the system. Each intermediate, along with the catalyst, is represented by a first-

order ordinary differential equation as seen in the BZ kinetic models, the Oregonator [35] and the 

modified Zhabotinsky, Buchholtz, Kiyatkin, and Epstein (ZBKE) [36] models. This reaction 

with its available models has been widely used by chemists and physicists to study temporal and 

spatiotemporal dynamics.  

The BZ reaction has been studied in gels [37, 38], droplets of aqueous solution in oil media 

[39], and with catalyst-loaded cation exchange beads [40-43], and is widely used to examine the 

synchronization of coupled oscillators. The photosensitive form of the BZ reaction, where 

ruthenium (II) is the catalyst, has been increasingly used to explore the nonlinear dynamics of 

coupled and uncoupled oscillators. We used the features of the photosensitive discrete oscillator 

system to mimic neuronal behavior with external forcing of uncoupled oscillators. More details 

on the photosensitive BZ model and the experimental setup are discussed in Chapter 2. In 

Chapters 3 and 4, the desynchronization effects of dark periodic perturbations in BZ 

photochemical oscillators coupled by periodic pulses or colored noise were verified 

experimentally. The results of initiating desynchronization by a regular stimulus were in 

agreement with predictions of a theoretical model of DBS [30]. In Chapter 5, phase-lag 



9 

synchronization in a network of discrete oscillators was explored, which has a different 

mechanism than the reaction-diffusion behaviors seen in continuous media [44, 45], quasi-

continuous media [43, 46-48], and discrete media with distance dependent coupling [49], and has 

not been observed in populations of discrete non-diffusively coupled BZ oscillators [50]. 

1.4 Synchronization Setup 

Synchronization is observed when mutual coupling is established among oscillators with 

two-way interactions. In addition, it can be established by exerting external forcing on oscillators 

that show one-way interactions. The remainder of this chapter describes these two processes. 

1.4.1 Synchronization via Mutual Coupling  

Oscillators of naturally distributed frequencies may undergo weak interactions, or 

coupling, and as a result they may become synchronized. The resulting collective behavior 

depends on the coupling strength and the frequency distribution. When an oscillatory system has 

no coupling, each oscillator oscillates with its own natural frequency. However, when the 

coupling is large, the variations of the natural frequencies become negligible and the system is 

synchronized [2].  

The intensity of light, for example, is a form of coupling strength in the synchronization of 

fireflies. Each firefly communicates and responds to all others in the group based on the emitted 

light pulses by the whole population. This interaction is called all-to-all coupling, where all 

oscillators interact with each other until the entire population adjusts to a common period or 

frequency, termed frequency locking or frequency synchronization. Synchronization occurs 

when the coupling among oscillators overcomes the heterogeneity of the system.  
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Frequency synchronization may be followed by phase locking. The phase is the quantity 

that locates cyclic oscillators at each repeated period. Figure 1.6 shows the common phase 

locking cases include in-phase synchronization and antiphase synchronization, where the phase 

shift is constant.  

 

FIG.  1.6: Two main types of synchronization. a) In-phase synchronization of two oscillators. b) Antiphase 

synchronization of two oscillators. 

 

An oscillatory medium can be continuous, quasi-continuous, or discrete. A discrete system 

can be arranged in chain, ring, lattice network structures, or many possible irregular network 

structures. These systems can have different coupling structures, and synchronization depends on 

the nature of the interactions. A basic form occurs when each element interacts with all other 

elements, leading to all-to-all coupling. When each element only interacts with its neighbors or 

with extended neighbors, then the coupling is considered to be local [43] or non-local [50], 
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respectively. Many studies have focused on the dynamical behavior of oscillators as a function of 

coupling strength. Fukuda et al. [43] investigated synchronization dynamics in a chain of 

chemical bead oscillators (0.90 ± 0.01 mm diameter) that were distributed spatially in one 

dimension, with a pacemaker oscillatory bead of a higher frequency. As the distance between the 

beads was decreased, more beads in the chain became entrained by the pacemaker until all of the 

beads were synchronized.  

The Kuramoto model is a theoretical tool to describe spontaneous synchronization in a 

population of weakly coupled oscillators. The simple form of the phase equation for a population 

of N oscillators with a natural frequency distribution and all-to-all sinusoidal coupling is 

described as follows [51]: 

𝜃�̇� = 𝜔𝑖 + 
Κ

N
∑ sin(𝜃𝑗 − 𝜃𝑖)N

 𝑗 =1 , 𝑖 =  1, 2, … , N.  (1.1) 

where 𝜃𝑖 is the phase of oscillator 𝑖 with the natural frequency 𝜔𝑖 . Oscillator 𝑖 is coupled to all 

other oscillators by the sine of the phase difference, sin(𝜃𝑗 − 𝜃𝑖), times the normalized coupling 

strength 
Κ

N
. The order parameter 𝑟 is a quantity to measure the phase coherence of weakly 

interacting oscillators, where the phase of each oscillator tends toward the average phase 𝜓 and 

 0 ≤  𝑟 ≤ 1. This can be calculated using the following equation [51]:  

𝑟ei𝜓 =
1

Ν
∑ ei𝜃𝑗N

𝑗=1 .  (1.2) 

 Multiplying the order parameter equation by 𝑒−𝑖𝜃𝑖  , and then substituting it into the phase 

equation, leads to the following governing equation for phase synchronization transition in terms 

of the order parameter [51]: 

𝜃�̇� = 𝜔𝑖 + Κ 𝑟 sin(𝜓 − 𝜃𝑖) ,       𝑖 =  1, 2, … , N. (1.3) 
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resulting in collective behavior that can vary from being completely synchronous (𝑟 = 1) to non-

synchronous (𝑟 = 0). Figure 1.7 shows the variation of coupling strength from weak to strong 

couplings, which leads to a phase synchronization transition at the threshold of critical coupling 

strength Κ𝑐. 

 

FIG.  1.7: Kuramoto model plot describing the order parameter r to measure oscillator synchronization as 

a function of the coupling strength, Κ. The transition to synchronization occurs at the critical threshold of 

the coupling strength K𝑐.  

 

The mechanism of Kuramoto spontaneous synchronous transition can be illustrated using 

the example of the firefly. A small group of nearby fireflies can exert mutual interactions and 

emit light in synchrony. Each individual firefly monitors photic inputs from neighbors, which it 

uses as feedback to adjust its own rhythm. The new adjusted inputs will enhance the overall 

maximum light intensities by a reduction in the frequency detuning. As a result, coupling 

becomes more pronounced and facilitates the synchrony transition. This step can be extended to 

the next neighbors until the entire population eventually exhibits synchronous flashing. 

Partial synchronization, where only a portion of the oscillators is synchronized, can occur 

with intermediate coupling after the threshold. A synchronous cluster may occur when a portion 

of the system exhibits a stronger interaction than the other parts. Synchronized clusters in 
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homogenous extended systems are seen with local and global feedback, where coupling among 

neighbors is stronger than with the rest of the medium [52]. Local coupling or local feedback 

represents any form of coupling that ensures that only neighbors or adjacent links in networks 

interact. Nishiyama and Eto investigated asymmetric coupling in a triangular arrangement of 

three beads of size 110, 90, and 90 µm in diameter spaced at 170, 150, and 140 µm, and found 

spontaneous switching between two out-of-phase oscillatory behaviors [49].  

Another factor affecting the resulting collective behavior of the system involves 

heterogeneity in natural periods or frequencies of the oscillators, as shown in Figure 1.8. A 

tighter distribution has an earlier synchronization transition than a broader distribution. Based on 

the frequency distribution of a system, partial synchronization instead of complete 

synchronization may be obtained. Generally, a higher coupling is required to overcome 

heterogeneity in a system to reach a complete synchronization. Synchronized clusters can result 

from introducing heterogeneity in initial conditions [46] or in coupling [50]. In yeast cell studies, 

Weber et al. [53] reported that heterogeneous oscillatory yeast cells have a transition to cluster 

synchronization, each with the same frequency range, after a threshold of increasing population 

density. Taylor et al. [54] demonstrated evidence of phase cluster states, where groups of 

oscillators are both frequency and phase synchronized in stirred heterogeneous discrete BZ 

oscillators. Tinsley et al. [50] also observed phase clusters in heterogeneous coupling of discrete 

BZ oscillators. In network studies, where ‘links’ between network elements (nodes) replaces the 

notation of diffusively coupled systems, a pattern of synchronized clusters is also observed. 

Pecora et al. [55] reported synchronized clusters in an electro-optic network, with decreasing 

connections by removal of links of an all-to-all connected network. Different representations of 

an all-to-all network, bidirectional network, or unidirectional network are illustrated in Figure 
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1.9. A distinct case is the unidirectional network, which leads to entrainment behavior, where 

one oscillator acts as an external force on the rest of the coupled oscillators. Synchronization by 

external forcing will be discussed in the following section.  

 

FIG.  1.8: Natural period distributions. a) A narrow distribution of natural periods. b) A wide distribution 

of natural periods.   

 

 

FIG.  1.9: Network connections. a) An all-to-all network, where each node is connected to all other nodes 

in the network. b) A bidirectional network, where pairs of oscillators influence each other equally. c) A 

unidirectional network, where the interaction is in one direction. 
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1.4.2 Synchronization via External Forcing  

Synchronization driven by external forcing represents a case of entrainment where the 

interaction between an oscillator and the external signal is unidirectional and non-mutual. An 

example is the biological clock in living systems entrained to the 24 hour light-dark cycle, where 

the circadian rhythms of cells are entrained to the external periodic stimulation originating from 

Earth’s regular revolution around its axis [56, 57]. Each weak external perturbation can cause a 

phase change, depending on the time of the perturbation in the oscillator cycle. Figure 1.10 

describes a phase point on the limit cycle that moves to a new position of the perturbed state, 

while the amplitude relaxes back to the same amplitude [2]. A weak perturbation affects only the 

phase of the oscillators, but not the amplitude or shape of the limit cycle. To understand the 

influence of perturbations on these oscillations, the phase dynamics after perturbations are 

described using the Phase Response Curve (PRC) in Chapter 2. 

 

FIG.  1.10: Perturbation influence on oscillations. The external weak perturbation changes the phase point 

(filled circle) to a new position in the perturbed state (dashed circles). The initial phase of the oscillator 

is ϕ0. Schematic diagram is from ref. [2]. 

 

For frequency synchronization to occur with a weak external forcing, the difference in the 

frequency of the oscillators and the frequency of the forcing (i.e., detuning) should be small [2]. 
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The relationship between forcing amplitude and frequency in a given detuning range is shown in 

Figure 1.11. The synchronization region is described by the gray triangle, known as an Arnold 

tongue [2].  

 

FIG.  1.11: The relationship between the forcing amplitude and frequency detuning, i.e., how much the 

external forcing frequency 𝜔 differs from the oscillator frequency 𝜔0. The gray area reflects the Arnold 

tongue for the synchronization region. Schematic diagram adapted from ref. [2]. 

 

Different frequency-locking regimes can be observed depending on the frequency of the 

external force (𝑓𝑒) that varies as a 𝑞: 𝑝 ratio from the locked oscillatory frequency (𝑓𝑙) of the 

system, in which repeated 𝑝 firing events arise from each forcing frequency 𝑞𝑓𝑒  [58]. The general 

synchronization formula is: 

𝑞𝑓𝑒 = 𝑝𝑓𝑙,       𝑞 & 𝑝 = 1, 2, 3, ….  (1.4) 

In 1997, Petrov et al. [59] studied the external forcing on a light sensitive BZ reaction, and 

observed 1:1, 2:1, 3:1, and 3:2 regimes of frequency synchronization in a homogeneous BZ 

extended medium. Frequency synchronization can be accompanied by phase synchronization. In 

the case where the ratio is 1:1 and the system oscillates homogeneously to the frequency of the 

external forcing, then in-phase synchronization is observed. When the ratio is 2:1 and two 
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batches in the system oscillate by a 𝜋 phase difference, then out-of-phase synchronization is 

seen. Other regions with different phase shift patterns are observed [60].  

Phase synchronization refers to a constant phase shift maintained between the phase of the 

oscillator 𝜃(𝑡) and that of the external forcing 𝜃𝑒(𝑡). The constant phase shift is established after 

frequency synchronization, i.e., only within the regions in the Arnold tongue. The special case of 

phase locking with zero lag occurs when there is no mismatch of the frequency of the force and 

that of the oscillator. Phase synchronization occurs if the external forcing is of the correct 

amplitude and is applied at particular phases. Phase locking of biological oscillations by external 

periodic forcing is important for understanding many rhythmic biological functions. Applications 

include heart pacemakers [61, 62], mechanical breathing aids [10, 63], and stimulation of neuron 

firing [18, 23]. 

An irregular form of perturbation, noise, is used for studying synchronization in natural 

systems subject to noise and random fluctuations. Noise is shown to enhance order and coherent 

patterns and allow amplification of weak signals (termed stochastic resonance). Noise supported 

wave propagation in subexcitable BZ media has been studied in a photosensitive BZ extended 

solution, where stochastic resonance was observed [64-66]. Noise-enhanced phase 

synchronization of chaotic and uncoupled oscillators has been studied in other systems, but not 

in the BZ reaction. Examples include coupled chaotic electrochemical oscillators [67, 68] and 

uncoupled sensory neuronal oscillators of paddlefish [69]. Noise-induced synchronization has 

never been studied in BZ systems or other non-biological systems. Chapters 3 and 4 discuss the 

behavior of uncoupled BZ oscillators subjected to periodic forcing (pulses) and aperiodic forcing 

(noise) while stimulating these systems with dark periodic perturbations. 
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Chapter 2 

2. Photosensitive BZ Chemical Oscillators 

2.1 Introduction 

The photosensitive modification of the BZ reaction, where the tris(2,2-bipyridine) 

ruthenium complex, Ru(bpy)3
2+, is used as a catalyst, was first reported by Demas and Diemente 

[1] in 1973. The ruthenium complex was used as a luminescence indicator, where the reaction 

mixture was irradiated with UV light to visualize the oscillatory behavior. In 1983, the 

ruthenium-catalyzed BZ reaction was shown to be sensitive to irradiation by visible light, with λ 

= 445 nm [2]. Illuminated ruthenium-catalyzed BZ systems have since been used to demonstrate 

variation of spatial and temporal behaviors, such as the triggering of diffusion phase waves [3], 

annihilation [4, 5], initiation [6, 7], controlling waves [8-11], and suppression or activation of 

oscillations [2]. In the present study, a photosensitive BZ system was used to allow for 

monitoring of oscillatory particles, with a certain coupling topology, and for external forcing 

with photochemical feedback imposed through illumination by visible light, with 𝜆 = 440 −

460 nm. Moreover, for uncoupled oscillators, the characteristic features of individual oscillators’ 

response to perturbations was measured to construct the phase response curve (PRC).  

2.1.1 The BZ Mechanism 

The BZ reaction can be described as the oxidation of an organic reagent (e.g., malonic 

acid, 𝑀𝐴 ≡ 𝐶𝐻2 (𝐶𝑂𝑂𝐻)2) by bromate, 𝐵𝑟𝑂3
−, in an acidic solution (e.g., 𝐻2𝑆𝑂4) in the 
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presence of a metal complex catalyst (e.g., Ru(bpy)3
2+), which is given by the following overall 

reaction [12]: 

2BrO3
− (aq) + 3MA (aq)  +  2H+ (aq) → 2BrMA (aq) + 4H2O (l)  +  3CO2 (g) (2.1) 

This reaction proceeds by cyclic production of the intermediate species bromous acid, 𝐻𝐵𝑟𝑂2, 

and bromide ions, 𝐵𝑟−. It involves a complex mechanism that was described by a ten-step basic 

mechanism proposed by Noyes et al. termed the FKN mechanism [13]. The Oregonator model, 

developed by Field and Noyes in 1974, reduced the FKN mechanism to five steps, which reflects 

the essential features of BZ dynamics [14]. Recently, the ZBKE mechanism, as shown in Table 

2.1, was proposed for effective simulations of experimental observations [15]. The species 

𝐻𝐵𝑟𝑂2
+ is considered to play an active part in the ZBKE model. The abbreviations 𝑐𝑎𝑡𝑟𝑒𝑑 and 

 𝑐𝑎𝑡𝑜𝑥 represent the reduced and oxidized states of the metal complex catalysts, respectively.  

 

Table  2.1: The Detailed Zhabotinsky, Buchholtz, Kiyatkin, and Epstein (ZBKE) Mechanism of 

the Belousov–Zhabotinsky (BZ) Reaction [15]. 

Reaction Reaction number 

𝐻+  + 𝐵𝑟−  + 𝐻𝑂𝐵𝑟 ⇄  𝐵𝑟2  +  𝐻2𝑂 

𝐻+  + 𝐵𝑟−  + 𝐻𝐵𝑟𝑂2  ⇄  2𝐻𝑂𝐵𝑟 

𝐻+  + 𝐵𝑟−  + 𝐻𝐵𝑟𝑂3  ⇄ 𝐻𝐵𝑟𝑂2  +  𝐻𝑂𝐵𝑟 

2𝐻𝐵𝑟𝑂2  ⇄ 𝐻𝐵𝑟𝑂3  +  𝐻𝑂𝐵𝑟 

𝐻+  +  𝐻𝐵𝑟𝑂2  ⇄ 𝐻2𝐵𝑟𝑂2
+ 

𝐻𝐵𝑟𝑂2  +  𝐻2𝐵𝑟𝑂2
+ ⇄ 𝐻𝐵𝑟𝑂3  +  𝐻𝑂𝐵𝑟 +  𝐻+  

𝐻+  +  𝐵𝑟𝑂3
−  ⇄ 𝐻𝐵𝑟𝑂3 

𝐻+  +  𝐻𝐵𝑟𝑂3  +  𝐻𝐵𝑟𝑂2  ⇄ 𝐻𝐵𝑟𝑂2
+  +  𝐵𝑟𝑂2

∙  +  𝐻2𝑂 

ZBKE/(R1) 

ZBKE/(R2) 

ZBKE/(R3) 

ZBKE/(R4a) 

ZBKE/(R4b) 

ZBKE/(R4c) 

ZBKE/(R5a) 

ZBKE/(R5b) 



31 

𝐻+  + 𝐵𝑟𝑂2
∙  ⇄ 𝐻𝐵𝑟𝑂2

+  

𝑐𝑎𝑡𝑟𝑒𝑑  +  𝐻𝐵𝑟𝑂2
+  ⇄ 𝑐𝑎𝑡𝑜𝑥  +  𝐻𝐵𝑟𝑂2 

𝑐𝑎𝑡𝑜𝑥  +  𝐶𝐻𝐵𝑟(𝐶𝑂𝑂𝐻)2  ⇄ 𝑐𝑎𝑡𝑟𝑒𝑑  +  𝐶𝐵𝑟(𝐶𝑂𝑂𝐻)2
∙  +  𝐻+  

𝐻2𝑂 +  𝐶𝐵𝑟(𝐶𝑂𝑂𝐻)2
∙  → 𝐵𝑟−  +  𝐻+ +  𝐶𝑂𝐻(𝐶𝑂𝑂𝐻)2

∙   

𝐻2𝑂 +  𝐶𝐻𝐵𝑟(𝐶𝑂𝑂𝐻)2  → 𝐵𝑟−  +  𝐻+ + 𝐶𝐻𝑂𝐻(𝐶𝑂𝑂𝐻)2 

2𝐶𝑂𝐻(𝐶𝑂𝑂𝐻)2
∙  → 𝐶𝐻𝑂𝐻(𝐶𝑂𝑂𝐻)2  +  𝐶𝑂(𝐶𝑂𝑂𝐻)2 

𝐶𝑂𝐻(𝐶𝑂𝑂𝐻)2
∙  +  𝐶𝐵𝑟(𝐶𝑂𝑂𝐻)2

∙ → 𝐶𝐻𝐵𝑟(𝐶𝑂𝑂𝐻)2  +  𝐶𝑂(𝐶𝑂𝑂𝐻)2 

𝐻𝑂𝐵𝑟 +  𝐶𝐻𝐵𝑟(𝐶𝑂𝑂𝐻)2 → 𝐶𝐵𝑟2(𝐶𝑂𝑂𝐻)2  +  𝐻2𝑂 

𝐵𝑟2 +  𝐶𝐻𝐵𝑟(𝐶𝑂𝑂𝐻)2 → 𝐶𝐵𝑟2(𝐶𝑂𝑂𝐻)2  +  𝐻+  + 𝐵𝑟− 

ZBKE/(R5c) 

ZBKE/(R6) 

ZBKE/(R7) 

ZBKE/(R8) 

ZBKE/(R9) 

ZBKE/(R10) 

ZBKE/(R11) 

ZBKE/(RA-1) 

ZBKE/(RA-2) 

 

A simplification of the BZ mechanism into three primary processes, A, B, and C, has been 

suggested to capture the essence of the BZ reaction to allow the construction of mathematical 

models [15]. In process A, removing the inhibitor species of the reaction, 𝐵𝑟−, takes place. In 

process B, autocatalytic production of the activator species of the reaction, 𝐻𝐵𝑟𝑂2, takes place 

while oxidizing the catalyst. More of the inhibitory species, 𝐵𝑟−, is then formed by reducing the 

catalyst in process C, which suppresses process B and restarts process A. The key equations 

summarizing processes A, B, and C in the ZBKE scheme are described as follows [16]. 

Process (A): Removal of the inhibitor, 𝐵𝑟−. 

(A1) HBrO3  +  Br− +  H+  ⇄ HBrO2  +  HOBr (2.2)  

(A2) HBrO2  +  Br−  +  H+ ⇄  2HOBr (2.3)   

__________________________________________________________ 

(A) HBrO3  +  2Br− + 2H+  ⇄  3HOBr (2.4)  

Process (B): Autocatalytic production of the activator, 𝐻𝐵𝑟𝑂2. 
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(B1) HBrO3  +  HBrO2  +  2H+ ⇄ 2HBrO2
+  +  H2O (2.5) 

(B2) {catred  +  HBrO2
+  ⇄ catox  +  HBrO2         }  × 2 (2.6) 

 __________________________________________________________ 

(B) HBrO2 + 2catred + HBrO3 + 2H+ → 2HBrO2 + 2catox +  H2O (2.7) 

where the autocatalytic production of the activator is limited by the following equation 

[12]: 

(B3) 2HBrO2  ⇄ HBrO3  +  HOBr (2.8) 

Process (C): Regeneration of the inhibitor, Br−. 

(C1) catox  +  B ⇄ catred  +  B∙  +  H+ (2.9) 

(C2)B∙  → ƒ Br−  + products (2.10) 

(C2) B → Br−  (2.11) 

__________________________________________________________ 

(C) catox  +  B ⇄ catred  +  ƒ Br−  +  H+ + products  (2.12) 

Here, 𝐵 is (MA + BrMA) and ƒ is a stoichiometric factor that indicates the amount of 

production of bromide ions per one unit of the reduced catalyst or photochemical decomposition 

of oxidized organic species [17]. The BZ mechanism can be described via three processes. First, 

the consumption of the initial concentration of bromide ion, 𝐵𝑟−, by reaction with bromate, 

𝐵𝑟𝑂3
−, occurs in A. In this process, the intermediate species bromous acid, 𝐻𝐵𝑟𝑂2, is maintained 

at a low steady state concentration. In the next process, B, bromous acid is autocatalytically 

produced and the cycle of oscillations in the catalyst oxidation state is initiated (from orange, the 

reduced form, Ru(bpy)3
2+, to green, the oxidized form, Ru(bpy)3

3+). Here, the bromous acid 

concentration is several orders of magnitude greater than that in process A, while the bromide ion 

reaches its lowest concentration. In the final process, C, the malonic acid, 𝑀𝐴, and 
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bromomalonic acid, 𝐵𝑟𝑀𝐴, sustain the oscillation cycle by the production of the reduced form of 

the catalyst and the regeneration of 𝐵𝑟−, until it becomes sufficient to inhibit the autocatalytic 

production of bromous acid. Thus, the process will switch from process C to process A, initiating 

the cycle again [13, 18]. The oscillation cycle repeats until the reaction reaches equilibrium, 

where all the malonic acid is depleted and is transformed into organic products and the free 

energy of the system is minimized [19].  

This model is adjusted to incorporate light sensitivity in ruthenium-catalyzed BZ system. 

In the present study, a mechanism of positive feedback in process B is included to increase the 

autocatalytic production of 𝐻𝐵𝑟𝑂2 in the above ZBKE mechanism. However, in a photo-

inhibitory scheme, a mechanism for negative feedback in process C is included. The primary step 

in the ruthenium-catalyzed BZ reaction is the absorption of light by Ru(bpy)3
2+and the transition 

to its excited state, Ru(bpy)3
2+∗, which is a strong reducing agent. The reduction potential of 

Ru(bpy)3
3+/Ru(bpy)3

2+∗ is -0.86 V, while that for Ru(bpy)3
3+/Ru(bpy)3

2+ is 1.26 V [12]. Thus, 

the excited form of the catalyst reacts directly with bromate, 𝐵𝑟𝑂3
−, leading to the formation of 

the activator species, 𝐻𝐵𝑟𝑂2. The mechanism accounting for photo-induction of the Ru(bpy)3
2+- 

catalyzed reaction was proposed by Hanazaki et al. as follows [20]: 

Ru(bpy)3
2+∗  + BrO3

−  + 2H+  →  BrO2 
∙ + Ru(bpy)3

3+ +  H2O   (2.13) 

BrO2 
∙ + Ru(bpy)3

2+ +  H+  →  Ru(bpy)3
3+  +  HBrO2 (2.14)   

____________________________________________________________ 

Ru(bpy)3
2+∗  +  Ru(bpy)3

2+  + BrO3
−  + 3H+  →  HBrO2  +  2Ru(bpy)3

3+ +  H2O   (2.15) 

This reaction will increase the production of activator species at the expense of production 

of inhibitor in the reaction, as illustrated by Eq. 2.3 in process (A). Thus, illumination will 
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enhance the original autocatalytic net reaction, as given by Eq. 2.7 in process (B). The further 

reduction of excess of HBrO2 to bromide ions has also been suggested to occur as follows [20]: 

Ru(bpy)3
2+∗ +  3Ru(bpy)3

2+ +  HBrO2 + 3H+ →  Br− +  4Ru(bpy)3
3+ +  2H2O  (2.16) 

2.1.2 The ZBKE Model 

The ZBKE model reduces the full BZ mechanism, which involves many steps, into three-

variable and two-variable mathematical models. The model allows frequency heterogeneity in the 

chemical oscillators, while the original Oregonator model does not permit significant variation in 

oscillator frequency [21, 22]. The ZBKE model in Table 2.2 is written using the following 

definitions of reaction species [14, 15, 16]: 𝑋 = [𝐻𝐵𝑟𝑂2], 𝑌 = [𝐵𝑟−], 𝑍 = [𝑐𝑎𝑡𝑜𝑥], 𝑈 =

[𝐻𝐵𝑟𝑂2
+], 𝐴 = [𝐻𝐵𝑟𝑂3] = ℎ0[𝑁𝑎𝐵𝑟𝑂3]0 (0.2 + ℎ0)⁄ , where ℎ0 is the Hammet acidity function, 

𝐻 = ℎ0, 𝐾𝐻𝐵𝑟𝑂3
=  0.2 + ℎ0, 𝐵 = [𝐶𝐻𝐵𝑟(𝐶𝑂𝑂𝐻)2], 𝐵. = [𝐶𝐵𝑟(𝐶𝑂𝑂𝐻)2

.], 𝐶 = ([𝑐𝑎𝑡𝑜𝑥] +

[𝑐𝑎𝑡𝑟𝑒𝑑]), 𝑃 and 𝑄 are 𝐻𝑂𝐵𝑟 and organic products, respectively, that do not affect the dynamics, 

while 𝑞 is an adjustable stoichiometric factor that can be varied from 0.5 to 1.0 for the oscillatory 

regime [16]. 

 

Table  2.2: The Zhabotinsky, Buchholtz, Kiyatkin, and Epstein Model. 

𝑋 + 𝑌 + 𝐻
𝑘2
→ 2𝑃   (2.17) 

A + Y + 𝐻
k3
→ X + P (2.18) 

2𝑋
𝑘4
→ 𝑃 + 𝐴 (2.19) 

𝐴 + 𝑋 + 𝐻
𝑘5

⇌
𝑘−5

2U (2.20) 
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𝑈 + (𝐶 − 𝑍)
𝑘6

⇌
𝑘−6

𝑋 + 𝑍 (2.21) 

𝑍 + 𝐵
𝑘7

⇌
𝑘−7

(𝐶 − 𝑍)  + 𝐵∙  +  𝐻  (2.22) 

𝐵∙  
𝑘8
→  𝑞𝑌 + 𝑄 (2.23) 

𝐵
𝑘9
→  𝑌 (2.24) 

 

By assuming the concentrations of A , B, C, and H as constant and treating the intermediate 

species 𝐵∙ and U with a steady-state approximation, the overall ZBKE differential equations are 

reduced to the three variable differential equation, with the following dimensionless form [24]: 

dX

dt
= −k2h0XY + k3h0AY−2k4X2 − k5h0AX + k−5Uss

2 + k6 Uss(C − Z) − k−6XZ  (2.25) 

dY

dt
=  −k2h0XY − k3h0AX + q [

k7k8BZ

k8+k−7 h0(C−Z)
]  + k9B  (2.26) 

dZ

dt
=  k6 Uss (C − Z) − k−6XZ −  [

k7k8BZ

k8+k−7 h0(C−Z)
]  (2.27) 

where the value of U is at the steady state concentration. 

Uss =
1

4k−5
 (k6(C − Z) + [k6

2(C − Z)2  + 16k5k−5h0Ax + 8k−5k−6xz]1/2)  (2.28)  

The dimensionless ZBKE equations after scaling, as shown in Table 2.3, are given by 

dx

dτ
=

1

ε1
 (− x2 − x +  ε2γuss

2 + uss (1 − z) + δxz +  μy −  xy)  (2.29) 

dy

dτ
=  

1

ε4
 (−xy − μy +  q [

αZ

(ε3 +1 −z)
+ β])  (2.30) 

dz

dτ
=   uss (1 − z) − δxz −  [

αz

(ε3 +1 −z)
]  (2.31)  
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Table  2.3: Scaling Parameters for the Dimensionless Zhabotinsky, Buchholtz, Kiyatkin, and 

Epstein Model [24]. 

Variable Scaling 

𝑋 

𝑌 

𝑍 

𝑈 

𝑡 

𝑘5ℎ0𝐴𝑥 2𝑘4⁄  

𝑘5𝐴𝑦 𝑘2⁄  

𝐶𝑧 

(𝑘5ℎ0𝐴)2𝑢 2𝑘4𝑘6⁄ 𝐶 

2𝑘4𝐶𝑧 (𝑘5ℎ0𝐴)2⁄  

Parameter Scaling 

휀1 

휀2 

휀3 

휀4 

𝛼 

𝛽 

𝜇 

𝛾 

𝛿 

𝑘5ℎ0𝐴 2𝑘4𝐶⁄  

(𝑘5ℎ0𝐴)2 2𝑘4⁄ 𝑘6𝐶 

𝑘8 𝑘−7⁄ ℎ0𝐶 

𝑘5𝐴 𝑘2⁄ 𝐶 

2𝑘4𝑘7𝑘8𝐵 𝑘5
2𝑘−7ℎ0

3⁄ 𝐴2 

2𝑘4𝑘9𝐵 (𝑘5ℎ0𝐴)2⁄  

2𝑘3𝑘4 𝑘2𝑘5ℎ0⁄  

𝑘−5 𝑘6⁄  

𝑘−6𝐶 𝑘5ℎ0𝐴⁄  

 

For an excitatory system, the 𝐻𝐵𝑟𝑂2 species contributes to the observed behavior at a 

lower concentration of 𝑀𝐴 and 𝐵𝑟− in the recipe, while increasing the concentration of the acid 

and bromate reactants. In this case, the inhibitor species bromide ion [𝑌] can be treated with the 
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steady state approximation, and the ZBKE model can be reduced to a two-variable system as 

follows [15]:  

𝑑𝑋

𝑑𝑡
= [

−𝑘2𝑋+ 𝑘3𝐴

𝑘2𝑋+ 𝑘3𝐴
] (𝑞 [

𝑘7𝑘8𝐵𝑍

𝑘8+𝑘−7 ℎ0(𝐶−𝑍)
] + 𝑘9𝐵) −2𝑘4𝑋2 − 𝑘5ℎ0𝐴𝑋 + 𝑘−5𝑈𝑠𝑠

2 +

𝑘6 𝑈𝑠𝑠(𝐶 − 𝑍) − 𝑘−6𝑋𝑍  (2.32) 

𝑑𝑍

𝑑𝑡
= 𝑘6 𝑈𝑠𝑠 (𝐶 − 𝑍) − 𝑘−6𝑋𝑍 −  [

𝑘7𝑘8𝐵𝑍

𝑘8+𝑘−7 ℎ0(𝐶−𝑍)
]   (2.33)  

A simulation of the BZ reaction with the two-variable model is shown in Figure 2.1. 

 

 

 

FIG.  2.1: Simulation of the Belousov–Zhabotinsky (BZ) reaction with the ZBKE model. a) The 

oscillation in bromous acid, 𝑋 (blue), and the catalyst, 𝑍 (red). b) A plot of 𝑋 vs. 𝑍 showing the limit 

cycle of the BZ reaction. 
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2.1.3 The Modified ZBKE Model for the Photosensitive BZ 

System 

In 1990 Krug et al. [17] proposed a simple modified Oregonator model for the 

photosensitive BZ reaction. The model accounts for the inhibiting effects of illumination that 

accompanies the production of bromide from bromomalonic acid, which in turn inhibits the 

autocatalytic production of bromous acid. This model was further modified in 1997 by Kadar et 

al. to include the photochemical production of bromous acid from bromate ion at high intensity 

illumination [25]. In the present study, we used the photochemical excitatory effects of the 

ruthenium-catalyzed BZ system, where illumination promotes the oxidation of  Ru(bpy)3
2+, 

which accelerates the autocatalytic reaction. The key equation for the photo-excitatory ZBKE 

model to account for generation of activator, 𝑋, from the reaction of Ru(bpy)3
2+∗, 𝐸, with BrO3

−, 

𝐴, is as follows [25]: 

𝐸 + 𝐴 → 𝑋 +  2𝑍  (2.34) 

while a competitive reaction accounts for generation of inhibitor, 𝑌, from the reaction of 

Ru(bpy)3
2+∗, 𝐸, with BrMA, 𝐵, is as follows [25]:  

𝐸 + 𝐵 → 𝑌 +  𝑍  (2.35)  

Krug et al. [17] and then Vanag et al. [27] incorporated a term 𝜑 to account for the 

production of bromide ions in a photo-inhibition scheme by illumination. Addition of the photo-

production term to the non-dimensional two-variable ZBKE model using the scaling parameters 

for 𝐻𝐵𝑟𝑂2, 𝑥, and Ru(bpy)3
3+, 𝑧, is described as follows [26]: 

𝑑𝑥 𝑑𝜏⁄ =
1

𝜀1
(𝜑 − 𝑥2 − 𝑥 + 휀2𝛾𝑢𝑠𝑠

2 + 𝑢𝑠𝑠 (1 − 𝑧) + [
(𝜇 −𝑥)

(𝜇+𝑥)
] [

𝑞𝛼𝑍

(𝜀3 +1 −𝑧)
+  𝛽])  (2.36) 

𝑑𝑧 𝑑𝜏⁄ = 𝜑 +  𝑢𝑠𝑠 (1 − 𝑧)  −  [
𝛼𝑧

(𝜀3 +1 −𝑧)
]  (2.37) 
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Figure 2.2 shows a simulation of a photosensitive BZ reaction compared with a BZ 

reaction simulation using the two-variable equations and the appropriate values of the scaled 

parameters, as shown in Table 2.4.  A photosensitive BZ system exhibits a reduction in the 

period of oscillation.  

 

FIG.  2.2: Zhabotinsky, Buchholtz, Kiyatkin, and Epstein (ZBKE) and photo-ZBKE simulations. a) Time 

series showing oscillation in the catalyst, 𝑍, with a longer oscillatory period, 3. 93 × 105 , in the typical 

Belousov–Zhabotinsky (BZ) system. b) Time series showing oscillation in the catalyst, 𝑍, with a shorter 

oscillatory period, 3.43 × 105, in the photosensitive BZ system. 
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Table  2.4: Parameter Values for the Two-Variable Zhabotinsky, Buchholtz, Kiyatkin, and 

Epstein Simulation [26]. 

Parameter Value Parameter Value 

휀1 

휀2 

휀3 

𝛼 

0.11 

1.7 × 10−5 

0.016 

0.1 

𝛽 

𝛾 

𝜇 

𝑞 

1.7 × 10−5 

1.2 

2.4 × 10−4 

0.8 

 

2.2 Phase Response Curve with Positive and Negative 

Perturbations  

A stable limit cycle oscillator recovers to its standard natural frequency ( 𝑓 ), the number of 

oscillations per time unit, after an external perturbation causes a transient change of the firing 

rate or the oscillation period [28]. The oscillation period ( 𝑇 ) is the time required to complete 

one cycle of oscillation, where 𝑓 = 1/𝑇. The changes due to perturbation can be measured 

quantitatively by a phase response curve (PRC) [28], a graphical representation of an oscillators’ 

response to systematic perturbations at different times of a cyclic oscillation (i.e., phases). Thus, 

the PRC for phase shifting experiments describes the magnitude of phase shifts made by 

perturbations at different phases of the cycle. Oscillations can be represented on a time or phase 

scale via the relation 𝑡 =
𝜃

2𝜋
 × 𝑇0, as illustrated in Figure 2.3. For the phase 𝜃, the perturbation 

applied is calculated as the elapsed time from the most recent spiking time of the oscillator 

(𝑡𝑝𝑒𝑎𝑘) to the stimulus time (𝑡𝑠) divided by the unperturbed period (𝑇0), as described by Eq. 2.38. 

For simplicity, 𝜃 = 0 is set at the spiking event of an oscillation, and the phase can take any 
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value between 0 and 2𝜋. The phase shift (𝛿𝜃) is a measure of the change in a period with respect 

to its prior unperturbed period divided by the time of the unperturbed period, as described by Eq. 

2.39 and shown in Figure 2.4. 

𝜃 = 2𝜋(𝑡𝑠 − 𝑡𝑝𝑒𝑎𝑘)/𝑇0  (2.38) 

𝛿𝜃 = 2𝜋(𝑇0 − 𝑇1)/𝑇0   (2.39) 

 

 

FIG.  2.3: Time-phase conversion. a) A time series showing the successive periods 𝑇0, each starting at the 

spiking event 𝑡𝑝𝑒𝑎𝑘. b) The corresponding phase representation of the time series where each period is of 

size 2𝜋. 



42 

 

FIG.  2.4: Phase and a phase shift illustration in a phase response curve experiment. Periodic perturbation, 

𝑡𝑠 (green lines), applied at different phase of the cycle 𝜃 ∈ [0,2𝜋), where 𝜃 = 0 is set at 𝑡𝑝𝑒𝑎𝑘. The 

perturbation affects the spiking time, causing phase advancement. This example is from the Belousov–

Zhabotinsky excitatory experiment with a negative perturbation. The natural period was 𝑇0 and the period 

shortens to 𝑇1 after the perturbation. 

 

Pulse perturbations can be described by amplitude and duration variables, which can be 

adjusted via light control. The amplitude corresponds to a weak perturbation and is confined 

within a gray scale range (0 − 250). The duration is a few percent of the autonomous period. 

Figure 2.5 shows that the interval of successive perturbations includes at least one unperturbed 

cycle. Differing perturbation intensities and durations cause different magnitudes of the phase 

shift. The phase shift ∆𝜃 is plotted for each perturbed oscillation cycle at a given phase 𝜃 to 

obtain the PRC. The PRC provides a prediction of an oscillators’ phase behavior and its ability to 

synchronize/desynchronize to external forcing and in feedback-coupled systems [29-33]. 
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FIG.  2.5: Phase response curve experiment. The interval of successive perturbations (green lines) requires 

inclusion of at least one unperturbed cycle to define a phase shift according to a prior unperturbed period. 

 

The PRC has been widely used to understand and predict the dynamics in neuronal systems 

and circadian clocks. An early form of the PRC was reported by Hastings and Sweeney, who 

studied the light-induced phase shifts in the luminescent organism clock Gonyaulax [34]. The 

concept of the PRC was further developed by Winfree through his extensive studies of circadian 

rhythms, which make a complete cycle every 24 hours [35]. Oscillators vary in their response to 

light perturbations depending on the phase, which can create advancements, delays, or dead 

zones in the PRC, where no phase shift results. A PRC shape can be classified as type I, 

monophasic (only advanced phases), as originally described by Hodgkin in 1947 [36], or type II, 

biphasic (advanced and delayed phase). In simulation of the BZ excitatory model, a positive 

stimulus results in phase advancing or delaying. However, a negative stimulus only results in 

phase advancing [21], as shown in Figure 2.6.  
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FIG.  2.6: Simulation of dark perturbation (blue plot) and light perturbation (red plot). Plotted data is from 

ref. [21]. 

 

Neuronal models were shown to better synchronize uncoupled oscillators to common 

inputs when a PRC shape exhibits both phase retardation and advancement compared with only 

phase advancement. Thus, a type II PRC leads to faster convergence than a type I PRC [37, 38]. 

In a mathematical representation, convergence and divergence of nearby phases is estimated via 

the Lyapunov exponent [39]. The absolute value of the Lyapunov exponent corresponds to the 

rate of convergence or divergence in a synchronization/desynchronization processes. The sign of 

the Lyapunov exponent, which is represented by the slope of the PRC, determines whether the 

stimulus will synchronize, desynchronize, or will not affect the oscillations [40]. A negative 

Lyapunov exponent indicates convergence of nearby trajectories, which leads to synchronization, 

while a positive Lyapunov exponent indicates divergence of closed trajectories and chaos, which 

leads to desynchronization. A zero Lyapunov exponent corresponds to no phase behavior 

difference [39]. 

2.2.1 Experimental Setup 

The system used in all experiments in this study involves photosensitive micro-oscillators 

loaded with the ruthenium BZ catalyst in a catalyst-free BZ solution. The BZ system is 
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monitored by a camera imaging system for quantifying the behaviors of interest. The 

preparations of the loaded particles for the BZ solution and their typical instrumentation are 

discussed below. 

2.2.1.1 Preparation of Ruthenium (II) Catalyst Particles 

The particles are made of ion exchange beads (DOWEX 50WX2-100; Sigma-Aldrich, 

Carlsbad, CA, USA), in which 3.0 g of the resin was mixed with 1.0 ml of a ruthenium(II) 

complex (25.0 mM) to obtain the catalyst-loaded particles with a catalyst concentration of 

8.33 × 10−6 mol/g resin. The mixture was stirred for 24 hours, and the particles were then 

washed with distilled water and filtered before use. The ruthenium (II) complex solution was 

previously prepared by dissolving 0.468 g of tris(2,2-bipyridine) ruthenium(II) chloride 

hexahydrate, [Ru(bpy)3]Cl2. 6H2O, in 25.0 ml of distilled water, which was kept in a 

refrigerator prior to use. 

2.2.1.2 Preparation of Catalyst-Free BZ Solution 

The BZ solution was obtained by preparing a mixture of reactants to ensure an excitatory 

oscillatory medium for the individual particles. The catalyst-free solution consisted of 0.08 M 

malonic acid (𝑀𝐴), 0.02 M sodium bromide (𝑁𝑎𝐵𝑟), 0.78 M sulfuric acid (𝐻2𝑆𝑂4), and 0.48 M 

sodium bromate (𝑁𝑎𝐵𝑟𝑂3). The solution was prepared in a 25.0 ml flask for each experiment 

from fresh malonic acid and stock prepared solutions, and was used after ten minutes. The stock 

solutions were 1.0 M 𝑁𝑎𝐵𝑟, 3.0 M 𝐻2𝑆𝑂4, and 2.0 M 𝑁𝑎𝐵𝑟𝑂3. All chemicals were purchased 

from Fisher (Fair Lawn, NJ, USA). 



46 

2.2.1.3 Instrumental Design  

Catalyst loaded particles were set in a Plexiglas vessel of 35.0 mm diameter and 12.0 mm 

height, and then immersed in 3.0 mm of catalyst-free BZ solution. The light was projected into 

the reaction vessel by a spatial light modulator (SLM), consisting of a projector, band pass filter 

(440 − 460 nm), and beam splitter. Real-time imaging using a CCD camera with a PC computer 

was then used to record background and bead illumination intensities resulting from a 

periodically changing catalyst redox state. The experimental setup is illustrated in Figure 2.7. 

 

 

FIG.  2.7: Experimental setup. The light is supplied from the projector only, and is filtered and reflected 

by a beam splitter onto the ruthenium-loaded particles. Images are recorded in real time by the camera 

and processed via a computer. 

2.2.2 PRC Experimental Technique and Procedures 

Two experiments were performed using positive or negative perturbations to obtain the 

PRC of the individual BZ oscillators. Positive perturbations involved applying a periodic light 
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intensity that was above the baseline light intensity for natural oscillations, whereas for negative 

perturbations, a periodic light intensity below the baseline light intensity of natural oscillations 

was applied. The reference baseline intensity was chosen as 𝐼0 = 1.67 𝑚𝑊 𝑐𝑚−2, which 

corresponds to a gray scale of 180 [41]. In the reactor vessel, the particles were kept at least 

three diameters apart to prevent diffusive coupling, as shown in Figure 2.8. The positive/negative 

perturbations relative to the background intensity were introduced by setting the light intensity to 

its highest/lowest value on the gray scale (250 and 0, respectively). Each perturbation of 

determined amplitude lasted for 2.0 s, after which the background intensity of 𝐼0 was restored. 

The light intensity of gray scale 250 corresponded to 𝐼0 = 2.31 𝑚𝑊 𝑐𝑚−2. The perturbation 

interval was chosen to include more than twice the averaged period of the oscillators for each 

experiment. The interval in the positive-perturbation experiment was chosen as 300.0 s, with an 

averaged period of the oscillators of 107.5 s. The interval in the negative-perturbation 

experiment was 150.0 s, with an averaged period of the oscillators of 65.0 s. The phase change 

was calculated after each perturbation to plot a phase change vs. phase cycle (0 − 2𝜋) graph. The 

total data set is shown in Figure 2.9a. The data points of phases were averaged, and a mean phase 

change was obtained to represent the smoothed PRC for the oscillators, as shown in Figure 2.9b. 

 

FIG.  2.8: Arrangement of catalyst particles in a catalyst-free Belousov–Zhabotinsky solution to maintain 

a discrete uncoupled system. 
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FIG.  2.9: An averaged and smoothed PRC of several oscillators. a) A phase response curve (PRC) of 19 

individual oscillators with negative perturbations. b) The smoothed PRC from 19 beads in the PRC 

experiment. 

2.2.3 Experimental Results 

The PRC experiments showed that both positive and negative perturbations lead to phase 

advancement of the spiking-time, 𝛿𝜃 > 0. For negative perturbations, Figure 2.10a shows that 

only a positive region was observed because of phase advancement, as previously reported in a 

simulation [21]. This one phasic PRC is classified as type (I), which was found experimentally 

by Gutkin et al. and in a model of cortical neurons [42]. Positive perturbations, however, resulted 

in a discontinuity that separates the positive region from a dead zone where no phase changes are 

observed, 𝛿𝜃 = 0. Unlike simulation of BZ excitatory system with positive perturbations [21], 

which produced a small region of retardation, 𝛿𝜃 < 0, Figure 2.10b shows that no negative 
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region was detectable in the experiment. This simulated PRC is identified as type (II), which was 

resolved in the experimental results of positive perturbations to non-cortical neurons [30], as 

shown in Figure 2.10c. 

 

FIG.  2.10: PRC from negative and positive perturbations. a) Experimental data from negative perturbation 

(blue plot), 𝐼 = −1.67 𝑚𝑊 𝑐𝑚−2 below the background intensity. The standard errors are indicated by 

black bars. b) Experimental data from positive perturbation (red plot), 𝐼 = 0.65 𝑚𝑊 𝑐𝑚−2 above the 

background intensity. The standard errors are indicated by black bars. c) Simulation of dark perturbation 

(black plot) of neurons fitted to data points and averaged (gray plot) from the experiment. The plotted 

data set (c) is from ref. [42]. 



50 

All previous observations were obtained from the excitatory photosensitive system, where 

increasing light intensity enhances the autocatalytic production of activator species, HBrO2, as 

seen in by Eq. 2.15 and Eq. 2.34 in Section 2.1.1 and 2.1.3, respectively. The strength of the 

perturbation is chosen to be the largest possible magnitude in the gray scale in order to match 

with target experiments in Chapter 3. The negative and positive values of the stimulus relative to 

the chosen background lead to the different classes of PRC. The detailed observations based on 

the BZ mechanism are as follows:  

In the negative perturbation experiments, only phase advancement was found 

experimentally. Phase advancement represents shortening of the period at which the perturbation 

is applied in reference to the preceding period. This happens when process B is turned on as the 

activator/inhibitor reaches the critical threshold, as previously reported in Section 2.1.1. In a 

photosensitive excitatory system, the light intensity primarily affects 𝐻𝐵𝑟𝑂2 production. 

Decreasing the light intensity will produce less 𝐻𝐵𝑟𝑂2 via alterations of the process of catalyst 

oxidation and bromate reduction, as shown in Eq. 2.15. The inhibitor species is merely generated 

via process C and removed via process A. Thus, the observation of only a positive region is an 

indication of the release of 𝐻𝐵𝑟𝑂2 and the effective removal of 𝐵𝑟− as governed by Eq. 2.2 in 

process A. The positive region is small and shifted to the end of the cycle, indicating that 

activator production is small and is taking a longer time to reach the critical threshold, which 

delays the firing event via process B. The maximum advancement of a phase occurred near 3π/2. 

Therefore, the PRC results produced by negative perturbations can be attributed to maintaining 

the cycle for a longer time in process A.  

In the positive perturbation experiment, 𝐼 = 0.65 𝑚𝑊 𝑐𝑚−2 is chosen to be a perturbation 

greater than the background intensity of 𝐼0. The region of discontinuity is the region between 
3𝜋

4
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and 𝜋. Phase advancement occurred at perturbations between 𝜋 and 2𝜋 of the oscillation cycle. 

The maximum advancement of a phase occurred near 𝜋. The dead zone is represented by a zero 

line region in the PRC. In the dead zone, perturbations occurred in the refractory phase of 

oscillation. Such perturbations had no effects on the period early in the phase cycle. In addition, 

with high light intensity, the photochemical production of HBrO2 from bromate via Eq. 2.34 can 

be offset by the competitive reaction of photochemical production of 𝐵𝑟− from bromomalonic 

acid via Eq. 2.35, which prevents activator accumulation from the beginning of the cycle. Phase 

retardation represents the lengthening of the stimulated period in reference to the preceding non-

stimulated period. Phase retardation was not observed in the experiment, while the simulation 

indicated a small region of delayed phases before the discontinuity. The appearance of a negative 

region in the PRC indicates the presence of 𝐵𝑟− above its critical threshold in this region before 

the discontinuity. 𝐵𝑟− is removed rapidly when the autocatalysis is switched on. Phase 

advancement results near the last half of the phase cycle as the autocatalytic process produces 

more activator species. The discontinuity appears with the instantaneous buildup of the activator, 

the fast variable. This increase in activator species is promoted by positive perturbations in a 

photosensitive system via Eq. 2.15. The size and position of the discontinuity on the phase cycle 

depends on the size of perturbations. Larger perturbations lead to a larger positive region, which 

is in agreement with models of biological oscillators [43] and BZ modeling [21]. The position of 

the positive region shifts to earlier regions with a higher perturbation size. Figure 2.11 shows that 

the maximum advancement of a phase by larger (𝐼 = 0.65 𝑚𝑊 𝑐𝑚−2) and smaller ( 𝐼 =

0.19 𝑚𝑊 𝑐𝑚−2) positive perturbations occurred near 𝜋 and 
3𝜋

2
, respectively. 
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FIG.  2.11: PRC with different positive perturbation sizes. a) Data points (blue circles) and averaged 

points (red plot) from experiment with positive perturbation, 𝐼 = 0.65 𝑚𝑊 𝑐𝑚−2.  b) Data points (blue 

circles) and averaged points (red plot) from experiment with positive perturbation  𝐼 = 0.19 𝑚𝑊 𝑐𝑚−2.   

 

By comparison to the simulation [21], increasing the size of perturbations shifts the 

advanced region to occur earlier in the cycle than that in the simulation, which may overcome 

any delayed region that can be observed experimentally. The excess of the activator effectively 

removed the inhibitor in Eq. 2.3, where the photosensitive system with positive perturbations 

enhances the autocatalytic process at the expense of inhibitor production. In addition, the small 

region delayed by smaller positive perturbations is difficult to resolve because of the interference 

of noise in the experiment. However, the discontinuity is an indication of the presence of this 

unresolved feature in the PRC, in comparison with the monophasic PRC by negative 

perturbations, as shown in Figure 2.9a. 
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The main objective of these experiments is to determine the type of perturbation suitable 

for synchronization or desynchronization based on the shape of the PRCs. In addition, PRCs 

provide information on the time of perturbation during the phase cycle, as discussed in Chapter 

3.  
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Chapter 3  

3. Synchronization and Desynchronization in Populations of 
Uncoupled Chemical Oscillators with Periodic Forcing 

3.1 Introduction 

Desynchronization is a method for reestablishing normal neuronal function following 

pathological synchrony. According to the gate theory [1], controlling the flow of signals to the 

brain via a neurological gate depends on the activation medium of spinal cord nerves and other 

neural circuits in the brain [2]. Signals conveyed by a higher activation medium can be blocked, 

whereas signals conveyed by a smaller activated medium pass through the gate [1]. In this sense, 

neuronal signaling that is related to mental, emotional, or physical activities becomes distorted 

because of increased neuronal activities and synchronization, which further leads to blocked 

signals. Indeed, rhythmic output by the basal ganglia correlates with abnormal activities [3-5], 

such as tremors in Parkinson’s disease (PD) [6-9]. Some studies have therefore focused on 

synchrony regulation to treat neural diseases. Deep brain stimulation (DBS), a neurosurgical 

therapy, has been suggested to relieve symptoms of PD through a desynchronization mechanism 

[10-12] rather than an entrainment mechanism [13-15]. Desynchronization has been theoretically 

verified via a mechanism that induces unlearned synaptic interactions among neural networks 

[16, 17]. DBS has been broadly used as a high-frequency, pulsatile signal and as an open-loop 

controller. Low-energy control methods have been validated numerically to model 

desynchronization of a population of neurons [18-20]. These methods consume less energy and 

may cause less tissue damage than the currently available DBS methods.  
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Desynchronization of coupled oscillators can be controlled via a feedback approach or by 

regulating the timing of external forcing. Effective desynchronization of the bursting neuron 

model was theoretically demonstrated via time-delayed feedback [21]. Desynchronization and 

cluster formation of coupled and synchronized electrochemical oscillators has been 

experimentally examined by applying time-delayed feedback [22]. For an external forcing 

approach, the perturbation of heart tissue by an electrical pulse can lead to rhythm 

desynchronization if the pulse is delivered at certain phases after the refractory phase [23]. The 

combination of feedback control with external forcing methods has been examined, and 

computational studies show that perturbations of double pulses after synchronization lead to 

desynchronized oscillators, even in the presence of noise [11]. A model of a synchronized 

neuronal population was theoretically examined and showed desynchronization through an 

intermediate cluster state [24]. The model was modified to use the properties of adaptive 

neuronal firing via spike timing-dependent plasticity [25]. In this context, pathological 

connections speed up abnormal neuronal synchrony (kindling), while controlled 

desynchronization methods induce anti-kindling. Desynchronization involves splitting the 

synchronized population into clusters by lowering the rate of coincident firing. This model has 

been supported by inducing desynchronization in epileptic rats [16]. Optimal desynchronization 

with a single input has been numerically examined, and this method leads to exponential 

desynchronization of coupled oscillators [19].  

Our method uses an adaptive stimulus with periodic single pulses applied to a population 

of uncoupled BZ oscillators. The perturbation’s frequency is within the time scale of an 

oscillator’s frequency. Perturbations are applied in a controlled manner by choosing the 

appropriate timing during the phase cycle, in contrast to the common open-loop application of 
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DBS. This chapter discusses experimental and simulation studies of desynchronization of 

synchronized oscillators. The experiments are based on information from previous PRC 

experiments, which were discussed in the previous chapter. 

3.2 Synchronization and Desynchronization Measurements 

External forcing experiments involve constructing synchronized signals and then forcing 

them to desynchronize. The degree of synchronization can be determined by a combination of 

approaches. One approach involves appropriate external forcing based on measurements from 

PRC experiments and qualitative consideration of the Lyapunov exponent. Then, the degree of 

phase coherence is measured by qualitatively evaluating the mean signal of the time series and 

quantitatively measuring the order parameter, 𝑟. This approach is discussed below. 

3.2.1 Lyapunov Exponent and the Phase Response Curve 

The prediction of synchronization or desynchronization by external perturbations can be 

made by analyzing the shape of the PRC. The PRC in Figure 3.1a shows that a positive 

perturbation has only a negative slope (excluding regions of discontinuity). Negative 

perturbations, however, have both positive and negative slopes (blue plot), as shown in Figure 

3.1b. 
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FIG.  3.1: Phase response curves. a) Positive perturbations result in a PRC with only a negative slope, 

which can be seen over the last half of the cycle. b) Negative perturbations result in a PRC with positive 

and negative slopes, where the first half of the cycle exhibits a small positive slope. 

 

The optimal stimulus to entrain uncoupled oscillators was mathematically developed by 

Wilson and Moehlis [26] in 2014 to model the circadian activity of Drosophila by referring to 

the value of the Lyapunov exponent [27]. If the Lyapunov exponent is negative, each nearby 

oscillator will converge at an exponential rate, leading to synchronization with the applied 

stimulus. However, if the Lyapunov exponent is positive, oscillators with nearby phases will 

exponentially diverge and lead to desynchronization with the applied stimulus [28]. The phase 

rate change resulting from a perturbation of an oscillator of phase 𝜃 with a natural frequency 

𝜔 was defined by Brown et al. [29] as follows: 

�̇� =  𝜔 + 𝑍(𝜃)𝐼(𝑡), (3.1)  
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where the oscillator’s phase response curve is defined as 𝑍(𝜃)  by a stimulus 𝐼(𝑡). The Lyapunov 

exponent is related to the slope of the PRC. The expression for the finite time Lyapunov 

exponent, Λ, over a period 𝑇 for an oscillator undergoing negative perturbations, 𝐼𝑛𝑒𝑔, with the 

phase response curve 𝑍𝑛𝑒𝑔(𝜃), is given by the following [19]: 

Λ =  
1

𝑇
∫ (𝑍′

𝑛𝑒𝑔(𝜃)𝐼𝑛𝑒𝑔(𝑡))  𝑑𝑡
𝑇

0
, (3.2) 

where ′ = 𝑑/𝑑𝜃 is the slope of the PRC with negative perturbations.  If the slope is positive, 

(𝑍′
𝑛𝑒𝑔(𝜃)𝐼𝑛𝑒𝑔(𝑡)) > 0, then the finite time Lyapunov exponent is positive, indicating 

desynchronization. The phase separation of two oscillators, Φ, in terms of the faster 

desynchronized oscillator, 𝜃𝑓𝑎𝑠𝑡 =  𝜃 + Φ, can be increased to the maximum shift (i.e., antiphase 

clusters). The phase separation of two oscillators with natural frequency differences ∆𝜔 =

 𝜔𝑓𝑎𝑠𝑡 −  𝜔  in relation to the Lyapunov exponent, Λ, of a single negative PRC perturbation, 

𝜌 =
1

𝑇
∫ (𝑍𝑛𝑒𝑔(𝜃)𝐼𝑛𝑒𝑔(𝑡)) 𝑑𝑡

𝑇

0
, over one period, 𝑇, can be found from the following equation 

[26]:  

Φ̇ =  ∆𝜔 +
1

𝑇
∫ (𝑍𝑛𝑒𝑔(𝜃 +  Φ)𝐼𝑛𝑒𝑔(𝑡))  𝑑𝑡

𝑇

0
  (3.3) 

Using a Taylor expansion and truncating, yields: 

Φ̇ =  ∆𝜔 +
1

𝑇
∫ (𝑍𝑛𝑒𝑔(𝜃)𝐼𝑛𝑒𝑔(𝑡)) 𝑑𝑡 +

1

𝑇
∫ (𝑍′

𝑛𝑒𝑔(𝜃)𝐼𝑛𝑒𝑔(𝑡))  𝑑𝑡Φ +  𝒪(Φ2)
𝑇

0

𝑇

0
 (3.4)  

Φ(𝑡) =  
∆𝜔+𝜌 

Λ
(𝑒Λt − 1) (3.5) 

3.2.2 Mean Signal 

The mean signal gives a qualitative measurement of phase coherence and can be obtained 

by averaging individual oscillator intensities at a given time. A non-synchronized state is 
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characterized by a noisy mean signal, as illustrated by the black plot in Figure 3.2a. The mean 

signal in Figure 3.2b represents a partial synchronized state when the coupling is not adequate to 

show a complete synchronization state. Figure 3.2c shows a regular mean signal over time that 

exhibits a fully synchronized state in both phase and frequency. The mean signal allows for 

visualization of the antiphase state, which makes it a complementary tool with quantitative 

measurements.  

 

FIG.  3.2: Mean signals. a) A time series showing a noisy mean signal (black) on top of four individual 

oscillators with non-coherent phases. b) A mean signal (black) of four individual oscillators that are 

partially synchronized and showing some degree of phase coherence. c) A mean signal (black) of four 

individual oscillators that are fully synchronized, showing phase coherence. 
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3.2.3 Order Parameter 

The Kuramoto order parameter 𝑟 is a quantitative measurement of phase coherence. The 

order parameter ranges from 0 (no synchronization) to 1 (perfect synchronization), which can be 

calculated from Eq. 1.2 in Section 1.4.1 of Chapter 1. It is typically presented with 𝑟 as the y-

axis, as shown previously in Figure 1.7. Here, the order parameter values are plotted as a 

function of time to show the sum of the phases at each time point. Based on the phase of each 

oscillator, a non-coherent state leads to a lower value of the order parameter. The order 

parameter of a fully synchronized state approaches 1, whereas that of a partially synchronized 

state typically fluctuates in mid-range, as illustrated in Figure 3.3. The order parameter alone 

cannot distinguish an antiphase case from non-coherent phases, because the phases cancel each 

other in both cases. If an antiphase state occurs in a system, the order parameter will be near 

zero, which deceptively indicates a non-coherent state. In this case, the mean signal will remove 

the misperception, as shown in Figure 3.4.   
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FIG.  3.3: Order parameter 𝑟 indicating the degree of a phase coherence. a) Order parameter (red) near 0 

indicates little coherence in the phases. b) Fluctuations of the order parameter (red) to higher values 

indicate a partially synchronized state. c) Order parameter (red) of 1 indicates complete synchronization. 
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FIG.  3.4: Mean intensity (black) and the order parameter (red) from antiphase synchronization to 

complete in phase synchronization. The system shows the evolution from antiphase synchronization to 

partial synchronization to in phase synchronization. The order parameter alone cannot distinguish the 

antiphase case from the non-coherent case. 

 

3.3 Experimental Design 

Two experimental designs were used for the creation of a signal synchronized by external 

periodic perturbations. Experiments were performed using 35 uncoupled photosensitive BZ 

oscillators. Five oscillators were used as a control for the applied signals based on their changes 

in natural frequency. The particles were prepared, immersed in catalyst-free BZ solution, and 

monitored by an imaging system, with the same recipe and instrumentation as described in 

Section 2.2.1 in Chapter 2. 

3.3.1 Synchronization Experiments 

Periodic positive pulse signals were used for synchronizing uncoupled heterogeneous BZ 

oscillators. Initially, 30 oscillators oscillate with their natural frequencies for 126.0 s, as shown in 
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Figure 3.5a. The natural periods are measured and displayed in the histogram shown in Figure 

3.5b. The periodic positive pulses were then introduced at t = 126.0 s. Figure 3.6 shows projected 

light intensities that were applied as a repeated positive pulse forcing above the baseline light 

intensity for natural oscillations, 𝐼0 = 1.67 𝑚𝑊 𝑐𝑚−2, corresponding to 180 in the gray scale. 

The light intensity for a pulse was set to  𝐼 = 2.22 𝑚𝑊 𝑐𝑚−2, corresponding to 240 on the gray 

scale. Each positive pulse of a fixed amplitude lasted for 9.0 s, after which the background 

intensity of  𝐼0 was restored. The positive pulse was applied with an adaptive frequency, which 

was greater than the mean oscillator frequency. These pulses were periodic, with adaptive 

periods 9.0 s less than the mean period of five randomly selected control beads, which 

corresponds to the time for three image frames in the experiment. The five control oscillators 

were maintained at their natural frequency at a constant light intensity during the experiment. 

The mean natural period of the five control beads was measured and the forcing signal was 

adjusted during the experiment. The forcing signal is an adaptive signal in order to compensate 

for the natural drift in the oscillator frequency. Figure 3.7 shows the adaptive period of the 

applied positive pulses to a representative control bead. 
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FIG.  3.5: Oscillators at their natural frequency with no external signal. a) The individual time series of 30 

oscillators showing their natural oscillations. b) A histogram showing the distribution of the natural 

periods of 30 oscillators. 

 

 

FIG.  3.6: Periodic positive pulses with amplitude 𝐼 = 0.56 𝑚𝑊 𝑐𝑚−2 above the background intensity. 

The perturbations are introduced at t = 126.0 s and are shown in gray scale. 
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FIG.  3.7: Adaptive periodic positive pulses to the mean periods of five control oscillators. The figure 

shows one control bead representing the mean natural period of the system, T0. The pulse signals are 

applied with the adaptive period Tsig = T0 − 9.0 s. 

3.3.2 Desynchronization Experiments 

After establishing synchronized signals, periodic negative pulse perturbations were 

introduced at t = 1200.0 s by setting the background intensity to its lowest value on the gray 

scale, as shown in Figure 3.8. The perturbation is applied immediately after the end of the 

synchronizing positive pulse signal and lasts for the first half of the period. The timing of each 

negative perturbation was applied in a controlled manner for consecutive cycles. The negative 

perturbation was based on the PRC, in which a positive slope appeared in the first half of the 

phase cycle. 
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FIG.  3.8: Periodic negative pulses with amplitude 𝐼 = 1.67  𝑚𝑊 𝑐𝑚−2 below the background intensity 

introduced at t = 1200.0 s after the positive pulses, 𝐼 = 0.56 𝑚𝑊 𝑐𝑚−2, above the background intensity. 

 

3.4 Experimental Results 

3.4.1 Synchronization 

The application of periodic positive pulses results in the entrainment of uncoupled BZ 

oscillators with a frequency that is equal to the driving frequency of external forcing. Figure 3.9a 

shows an enhanced mean signal in the black plot, where peaks occurred after 6.0 s from the 

forced signal in the blue plot. The mean signal was entrained to the period of the external 

positive pulses, showing frequency and phase locking. Figure 3.9b shows a representative 

synchronized time series from ten individual oscillators, while Figure 3.9c shows the order 

parameter with a mean of 𝑟𝑚𝑒𝑎𝑛 = 0.91, indicating a high degree of synchronization.  
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FIG.  3.9: Signal synchronized to external periodic positive pulses in 30 oscillators. a) Positive light pulse 

(blue) introduced at t = 126.0 s, with a period faster than the mean period of five control oscillators by 9.0 

s with a width of 9.0 s. The mean signal (black) is regular and synchronized to the period of the positive 

pulse. b) Individual time series of ten representative oscillators, which show high-phase coherence. c) The 

order parameter (red) is close to 1.0, indicating a high degree of synchronization. System of 30 micro-

oscillators loaded with Ru(bpy)3
2+ catalyst, with a mean natural period of 79.9 s. The background 

intensity is 𝐼0 = 1.67 𝑚𝑊 𝑐𝑚−2. BZ reaction mixture composition: malonic acid, [𝑀𝐴] = 0.08 M; 

sodium bromide, [𝑁𝑎𝐵𝑟] = 0.02 M; sulfuric acid, [𝐻2𝑆𝑂4] = 0.78 M; sodium bromate, [𝑁𝑎𝐵𝑟𝑂3] =

0.48 M.  

 

Discrete BZ oscillators that are synchronized to external pulses resemble the rhythmic 

patterns of neurons, which are coupled in a pulse-like style manner [30]. Entrainment occurred 



75 

when the frequency of the external pulses was on the same order as the frequency of the 

oscillators, with a few seconds offset. This has some similarity to the synchronization in 24-h 

circadian rhythms [31, 32]. In our system, a frequency forcing signal greater than the mean 

frequency of the control beads leads to effective entrainment and, subsequently, a fully 

synchronized state. A similar result was shown by Lin et al. [33] in a photosensitive BZ extended 

system, where the 1:1 entrainment region (Arnold tongue) was shifted toward higher frequencies 

of the forcing perturbations while increasing the forcing amplitude. Our results also resemble the 

entrainment to a higher frequency source shown in experimental studies of BZ extended systems 

[34]. There have been no experiments previously reported for the synchronization of discrete 

uncoupled oscillators by external forcing in a BZ system. The entrainment of discrete oscillators 

resembles entrainment of heart pacemaker cells to external electric signals [23, 35]. 

3.4.2 Desynchronization 

Negative pulses are introduced after t = 1200.0 s. The frequency of negative pulses is equal 

to the frequency of the positive pulses. PRC analysis suggests that negative pulses should be 

applied at the first half of the phase cycle to lead to desynchronization, as discussed in Section 

3.2.1 and shown in Figure 3.1b. The resulting behavior is shown in Figure 3.10. The mean 

signal, the individual time series of some representative oscillators, and the order parameter 

indicate desynchronization as a result of introducing the negative signal into the system. Figure 

3.10a shows a reduction in mean signal and cluster formation, indicating the initiation of a 

desynchronization state. Figure 3.10b shows synchronized time series signals for ten oscillators, 

where some oscillators were pulled out from the original synchronized state. In agreement with 

the PRC analysis, negative perturbations caused phase advancement of some oscillators with 



76 

desynchronization. Figure 3.10c shows a decreasing order parameter after the introduction of 

negative pulses at t = 1200.0 s. The order parameter decreased to 𝑟𝑚𝑒𝑎𝑛 = 0.46, demonstrating 

the capability of negative pulses to desynchronize the signal.  

 

FIG.  3.10: Positive square wave-forcing signal followed by negative pulses during the first half of the 

period. a) The positive light pulse signal (blue) was introduced at t = 126.0 s, while the negative light 

pulse signal was introduced at t = 1200.0 s, immediately after the positive pulses and lasting for the first 

half of the mean period. The mean signal (black) after 1200.0 s was attenuated and irregular, indicating 

desynchronization. b) Individual time series of ten representative oscillators. c) The order parameter (red) 

is reduced after introducing the negative pulse, indicating desynchronization. System of 30 micro-

oscillators loaded with Ru(bpy)3
2+ catalyst, with a mean natural period of 78.7 s. The background 

intensity is 𝐼0 = 1.67 𝑚𝑊 𝑐𝑚−2. The BZ reaction mixture composition is the same as in Figure 3.9. 
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The dominant hypothesis for using regular DBS is that it alleviates symptoms by regulating 

the firing rate of neurons [13, 15, 36]. Our results, however, demonstrate the effectiveness of a 

periodic pulse stimulus for a desynchronizing mechanism, as proposed in theoretical neuron 

models [19]. In contrast to the irregular stimulus that induces desynchronization in the Nabi et al. 

model [18], the stimulus in this study was regular. Moreover, this study applied the stimulus in a 

defined manner, which mimics the perturbations applied in heart fibrillation, where only 

perturbations at an early specific phase lead to desynchronization [23].  

The applied negative perturbations have been further tested for the last half of the period to 

confirm that the PRC positive slope is essential for desynchronization. Figure 3.11 shows the 

result of applying negative pulses at the end of the phase cycle of the synchronized mean signal. 

The mean signal and individual time series of ten representative oscillators showed that a regular 

mean signal and a coherent time series were maintained. The order parameter during the 

experiment was close to 1.0, indicating sustained synchronization after applying negative pulses 

at the last half of the phase cycle. The calculated mean order parameter was 𝑟𝑚𝑒𝑎𝑛 = 0.94, which 

confirms a synchronization state. 
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FIG.  3.11: Square wave-forcing signal followed by dark pulses in the last half of the period. a) The 

positive light pulse signal (blue) is introduced at t = 126.0 s, while the negative light pulse signal is 

introduced at t = 1200.0 s, immediately after the positive pulses and lasting for the last half of the mean 

period. The mean signal (black) after 1200.0 s preserves regularity, indicating that the negative pulses are 

not able to desynchronize the oscillators. b) Individual time series of ten representative oscillators. c) The 

order parameter (red) remains close to 1.0 after introducing the negative pulse, indicating a 

synchronization state. The system is made up of 30 micro-oscillators loaded with Ru(bpy)3
2+ catalyst, 

with a mean natural period of 83.7 s. The background intensity is 𝐼0 = 1.67 𝑚𝑊 𝑐𝑚−2. The BZ reaction 

mixture composition is the same as in Figure 3.9. 
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Other sets of experiments were conducted by allowing uncoupled oscillators to 

synchronize with another type of regular signal—the positive half-sine wave signal. The sine 

wave was obtained according to the following equation: 

𝐼 = 𝐼0  + 𝐴 sin 2𝜋 𝑇⁄ .   (3.6) 

 In our study, the sine wave of period 𝑇 had an amplitude of 𝐴 = 100, corresponding to the 

maximum light intensity 𝐼 =  0.93 𝑚𝑊 𝑐𝑚−2 above the background intensity 𝐼0 =

1.29 𝑚𝑊 𝑐𝑚−2, which corresponded to 140 in the gray scale. The applied positive half-sine 

wave was introduced at t = 126.0 s, which has a shorter period than the mean control bead period 

by 9.0 s. Synchronization of the system was achieved with the positive signal for the first 1200.0 

s; it was then forced by periodic negative pulse perturbations for the rest of the duration of the 

experiment, as shown in Figure 3.12.  

 

FIG.  3.12: Periodic positive half-sine wave with amplitude of 100 on the gray scale, corresponding to 

0.93 𝑚𝑊 𝑐𝑚−2 above the background intensity, was introduced at t = 126.0 s. Periodic negative pulses 

with light intensity 𝐼 = 1.29  𝑚𝑊 𝑐𝑚−2 below the background intensity were introduced after 1200.0 s.  
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The negative pulse signal was applied for the first half of the cycle, initiated by a 3.0 s 

offset before the end of the positive half-sine wave signal. This offset removed part of the sine 

wave. This was acceptable because only the first part of the half-sine wave was responsible for 

entrainment. Our experiments show that the peak of the mean signal in the synchronized region 

corresponds to the maximum of a ±3.0 s half-sine wave signal. Therefore, applying negative 

pulses at the latter half of the half-sine wave signal will exclude the portion of the half sine wave 

responsible for entrainment. Applying a negative pulse at the latter half of the mean cycle signal 

was not possible because it would remove the earlier portion of the half sine wave responsible 

for entrainment. 

Figure 3.13 shows behavior resulting from applying negative pulses at the first half of the 

cycle of the mean signal. The degree of desynchronization shown via the mean signal, the 

individual time series, and the order parameter was less than what was observed with the square-

wave forcing system. The amount of desynchronization was measured by the mean order 

parameter, 𝑟𝑚𝑒𝑎𝑛 = 0.80, which was greater than in the previous external positive and negative 

pulse desynchronization experiment shown in Figure 3.10c. 
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FIG.  3.13: Half-sine wave forcing signal followed by negative pulses applied for the first half of the mean 

period with a 3.0 s offset from the half-sine wave signal. a) The positive half-sine wave light signal (blue) 

is introduced at t = 126.0 s, while the negative light pulse signal is introduced at t = 1200.0 s, with a 3.0 s 

offset from the end of the half-sine wave signal that lasted for the first half of the mean period. The mean 

signal (black) is slightly reduced after 1200.0 s, indicating some desynchronization. b) Individual time 

series of ten representative oscillators, showing some loss of phase coherence among the oscillators. c) 

The order parameter (red) is slightly reduced after introducing the negative pulse, indicating some extent 

of desynchronization. The system is made up of 30 micro-oscillators loaded with Ru(bpy)3
2+ catalyst, 

with a mean natural period of 90.1 s. The background intensity is  𝐼0 = 1.29  𝑚𝑊 𝑐𝑚−2. The BZ reaction 

mixture composition is the same as in Figure 3.9. 
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The desynchronization was less pronounced when using a positive half-sine wave signal, 

because of its broader nature. This required initiating negative pulses at the last portion of the 

positive half-sine wave signal, which covers the first quarter of the synchronized period. Figure 

3.14 shows applied negative pulses with a 6.0 s offset from the end of the positive half-sine wave 

signal. After applying negative pulses, the order parameter was reduced from 𝑟𝑚𝑒𝑎𝑛 = 0.72 of 

the synchronized region to 𝑟𝑚𝑒𝑎𝑛 = 0.40, indicating significant desynchronization. The degree of 

desynchronization was more than when applying negative pulses with only a 3.0 s offset before 

the end of the positive sine wave signal.  
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FIG.  3.14: Sine wave forcing signal followed by negative pulses for the first half of the mean period with 

a 6.0 s offset from the half-sine wave signal. a) A positive half-sine wave light signal (blue) introduced at 

t = 126.0 s, while the negative light pulse signal is introduced at t = 1200.0 s, with a 3.0 s offset from the 

end of the half-sine wave signal that lasted for the first half of the mean period. The mean signal (black) is 

reduced after 1200.0 s, indicating desynchronization. b) Individual time series of ten representative 

oscillators show loss of phase coherence among oscillators. c) The order parameter (red) is reduced after 

introducing the negative pulse, indicating desynchronization. System of 30 micro-oscillators loaded with 

Ru(bpy)3
2+catalyst, with a mean natural period of 62.4 s. The background intensity is 

𝐼0 = 1.29 𝑚𝑊 𝑐𝑚−2. The BZ reaction mixture composition is the same as in Figure 3.9. 
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3.5 Simulation 

3.5.1 Model 

The pulse forcing experiments were modeled with the dimensionless two-variable ZBKE 

model for the photosensitive BZ reaction [37], as follows:  

𝑑𝑥 𝑑𝜏⁄ = 𝜑𝑝𝑜𝑠 + 𝜑𝑛𝑒𝑔 + 𝑓(𝑥, 𝑧),  (3.7) 

𝑑𝑧 𝑑𝜏⁄ = 𝜑𝑝𝑜𝑠 + 𝜑𝑛𝑒𝑔 + 𝑔 (𝑥, 𝑧), (3.8) 

where 𝜑𝑝𝑜𝑠 and 𝜑𝑛𝑒𝑔 describes forcing positive and negative light signals. The chemical rates of 

the system are given by the functions 𝑓 and 𝑔, where 𝑥 and 𝑧 are the concentrations of HBrO2 

and Ru(bpy)3
3+, respectively. The simulation was performed with eight oscillators for 1,000,000 

time steps. The Euler method was used in the simulations, where ∆𝑡 = 0.0008. The frequency 

heterogeneity of the eight oscillators is defined by the period variation of 35.4 ± 1.7. The 

system was allowed to synchronize from a random initial phase distribution by periodic forcing 

with a positive light pulse, with the maximum value 𝜑𝑝𝑜𝑠 = 1 × 10−3. Negative pulses of a 

maximum 𝜑𝑛𝑒𝑔 = 7 × 10−3 were then applied at different times of the applied positive signal. 

Two different timings of the negative perturbations were carried out for a comparison of the 

simulations and experiments, with one at the beginning and the other at the end of the phase 

cycle. 

3.5.2 Simulation Results  

The simulation results qualitatively agree with the experimental results. Figure 3.15 shows 

the simulation results of applying negative pulses at the beginning of the phase cycle. Figure 
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3.15a shows enhancement of the mean signal in the black plot, in the first 521,000 steps, which 

coincides with the period of external positive pulses (32,800 time steps) in the blue plot. This 

shows the initial condition of phase locking prior to desynchronization. After t = 521,000 steps, a 

negative pulse was introduced after each positive pulse at the beginning of the cycle. Figure 

3.15a shows that the mean signal collapses into a noisy signal, indicating desynchronization. 

Figure 3.15b shows individual time series signals for the eight oscillators, with loss of phase 

coherence after introducing the negative pulses. Figure 3.15c shows a decrease in the order 

parameter from 𝑟𝑚𝑒𝑎𝑛 = 1.0 for the fully synchronized state to 𝑟𝑚𝑒𝑎𝑛 = 0.48, which confirms 

that the negative pulses desynchronize the oscillators.  
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FIG.  3.15: Positive square-wave forcing signal followed by negative pulses applied from the beginning of 

the phase cycle of the synchronized mean signal of eight oscillators. a) The positive light pulse signal 

(blue) is introduced at t = 160 000 time steps, while the negative light pulse signal is introduced at t = 521 

000 time steps immediately after the positive pulses. The mean signal (black) decreases and becomes 

irregular after 521 000 time steps, indicating desynchronization. b) Individual time series of the eight 

oscillators shows phase incoherence. c) The order parameter (red) is reduced after introducing the 

negative pulse, indicating desynchronization. 

 

The system was further tested by introducing negative perturbations at the end of the cycle. 

Figure 3.16 shows simulation results from applying negative pulses at the end of the phase cycle. 

The mean signal and time series of eight oscillators showed that the synchronized behavior 

remained after negative perturbations were applied. The order parameter also demonstrates 
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sustained synchronization after applying negative pulses at the end of the phase cycle. The 

calculated mean order parameter was maintained at 𝑟𝑚𝑒𝑎𝑛 = 1, representing a fully synchronized 

state. 

  

FIG.  3.16: Positive square-wave forcing signal followed by negative pulses applied at the end of the phase 

cycle of the synchronized mean signal of eight oscillators. a) The positive light pulse signal (blue) is 

introduced at t = 160 000 time steps, while the negative light pulse signal is introduced at t = 521 000 

time steps, before the positive pulses at the end of the phase cycle. The mean signal (black) preserved its 

regularity after 521 000 time steps, indicating that these negative pulses are not able to desynchronize the 

signal. b) Individual time series of the eight oscillators maintains their phase coherence. c) The order 

parameter (red) continues to be one after introducing the negative pulse, indicating maintenance of the 

synchronized signal. 
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The optimal position for applying negative perturbation was determined by the sign of the 

Lyapunov exponent expressed by the slope of PRC [19]. The simulation results demonstrated 

that the PRC slope is essential in the desynchronization with regular negative pulse 

perturbations. This implies the necessity of determining the cycle phase in a known synchronized 

state to ensure that the timing of perturbations is applied during the beginning of the phase cycle 

for effective desynchronization. 

3.6 Summary 

This study was carried out by establishing a synchronized signal with positive 

perturbations and then forcing it with appropriate negative perturbations to cause 

desynchronization. The timing of negative pulse perturbations was based on a PRC analysis and 

the sign of the Lyapunov exponent. Both simulation and experimental results confirm that 

application of negative perturbations at phases of the positive slope region of the PRC can lead to 

desynchronization. Information about synchronization/desynchronization was displayed via 

mean signals, individual time series, and order parameter calculations. These results support 

theoretical desynchronization mechanisms of DBS over entrainment mechanisms [10-12, 16]. 

The theoretical method reported by Wilson and Moehlis [19], based only on PRC information, 

was experimentally verified in this study using the BZ system. This method can be introduced to 

desynchronize abnormal synchronous oscillations in the basal ganglia, which are thought to 

correlate to tremors in PD [6-8]. Further studies should include closed-loop feedback to update 

information during desynchronization in the BZ system. This step may be important in designing 

a new generation of a control DBS to replace the currently available permanent DBS [25, 26]. 

The closed-loop system has the advantage of applying therapy only as needed with less tissue 

damage and more energy efficiency. In this study, we used a quasi-closed-loop system, where 
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oscillators’ phases were synchronized with an adaptive positive stimulus prior to administration 

of a regular desynchronizing stimulus. This allowed for information about the synchronized 

mean signal to be obtained, which aided in the application of negative pulses in consecutive 

cycles. 
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Chapter 4 

4. Desynchronization in Populations of Uncoupled Chemical 
Oscillators with Colored Noise by Periodic Forcing  

4.1 Introduction  

Oscillators in natural settings are inevitably influenced by their noisy environment. As 

generally understood, background noise induces disorder and degrades signal quality. However, 

in some cases, noise induces order and improves the quality of signal detection. Physiological 

oscillators typically fluctuate over time in response to changes in their environments [1]. A study 

in neural information coding suggested that neural rhythms are a result of an intrinsic noise 

mechanism [2], where the synaptic background inputs resemble white or colored (filtered) noise 

[3]. In vitro experiments have shown a noise-induced order in spiking time of cortical neurons 

[2]. Moreover, a study by Fellous et al. [4] showed that synaptic background noise enhances 

phase-locked spiking of pyramidal cells. Synchronization or rhythmic activities are important in 

many bodily functions, such as the sleep-wake cycle [5], heart beating [6], and respiration [7]. 

However, in some cases, synchronization is considered abnormal and leads to diseases, as in the 

case of tremors in Parkinson’s disease [8-12]. Abnormally synchronized neural activities may be 

attributed to the interference of intrinsic noise acting as an external forcing signal, which 

synchronizes neural activities or enhances their synchronization process. This hypothesis has 

support from both theoretical and experimental noise studies. Noise is shown to induce order and 

coherent patterns, as well as allow amplification and coherence of weak signals, such as 

stochastic resonance [13] and stochastic synchronization [14]. The role of common noise in 

enhancing order, with or without periodic forcing, which gives rise to coherence resonance [15], 
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is theoretically verified in many systems, such as in climate [16], laser [17], and neuronal       

[18, 19] models. Moreover, the role of noise has been experimentally investigated in excitable 

and oscillatory coupled BZ systems. Noise-enhanced order and supported wave propagation has 

been studied in subexcitable photosensitive BZ extended media, where stochastic resonance was 

observed [20-22]. Noise forcing was studied in BZ reactions by Ohtaki et al. [15], which showed 

noise-enhanced synchronization of diffuse, weakly coupled, excitable oscillators and in a study 

by Fukuda et al. [23] that showed optimization of the synchronization order among diffusively 

coupled BZ oscillators. Noise-enhanced synchronization of coupled oscillators has been 

experimentally studied in other fields. Examples include coupled chaotic electrochemical 

oscillators [24, 25], and coupled chaotic laser systems [26]. 

Noise-induced synchronization was theoretically studied in uncoupled limit-cycle 

oscillators with white [27, 28] and colored noise [18, 29], as well as in globally [24, 25] and 

locally coupled oscillators [30-32], and synchrony of separated populations by climate 

fluctuations [33]. The synchronized behavior of oscillators driven by common noise was 

attributed to inducing negative Lyapunov exponents [27, 28, 34], which leads to convergence of 

nearby phases [35]. A noise-enhanced synchronization demonstrated in a study by Mori and Kai 

[36] showed that noise enhances brainwave entrainment, which improves visual processing. 

Moreover, noise-induced synchronization of oscillators has been experimentally studied in 

uncoupled neurons. A synchronized population of neurons was observed in vitro, where 

uncoupled mitral cells of mouse olfactory bulbs, which were subjected to aperiodic noise input, 

became synchronized [37]. In addition, synchronization is observed in vivo with uncoupled 

sensory neuronal oscillators of paddlefish subjected to a common noise [38]. However, there are 
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no experimental studies on noise-induced synchronization of uncoupled oscillatory systems 

driven purely by a common noise in the BZ reaction or other inanimate systems. 

From evidence that points to the possibility of noise-induced synchronization, we chose to 

use noisy inputs for synchronization of uncoupled BZ oscillators to mimic synaptic background 

noise that affects neural activity. Our main aim was to allow the synchronized signal to 

desynchronize in the presence of noise with periodic pulses. Desynchronization of a population 

of coupled oscillators with double pulses in the presence of noise has been theoretically 

demonstrated [39]. Our study was motivated by the theoretical neuronal model of Wilson et al. 

[40], which showed the effectiveness of periodic pulse signals for desynchronization of 

uncoupled neurons in the presence of noise. 

In this Chapter, we forced uncoupled BZ oscillators with a noise signal to obtain 

synchronized oscillators while stimulating the system with periodic perturbations to cause 

desynchronization. The forcing we used was colored noise to establish a synchronized signal. 

We then forced the system with periodic pulses in the presence of the noise signal to test for 

desynchronization in an open-loop mode that is characteristic of the commonly used DBS      

[41-43]. We then compared the open-loop method results with the adaptive control method 

results seen previously in Chapter 3. 

4.2 Experimental Design 

Three sets of experimental designs were performed with 27 ± 3 photosensitive BZ 

oscillators. The three experimental conditions were noise-forcing, noise with pulse forcing, and 

no external forcing. The photosensitive catalyst particles were spaced to ensure the oscillators 

were uncoupled in a catalyst-free BZ solution. Experiments were monitored with a computer 
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governing a camera imaging system, with the same setup and preparations described in Section 

2.2.1 in Chapter 2. 

4.2.1 Noise-Induced Synchronization Experiments 

Noise signals were used to induce synchronization among uncoupled heterogeneous BZ 

oscillators. The uncoupled BZ oscillator reactor was illuminated from a projector with random 

light intensity values that were adjusted to include lower-frequency colored noise signals. The 

frequencies were from the visible region of the electromagnetic spectrum. Colored noise can be 

generated using the Ornstein-Ohlenbeck equation as follows [44]: 

�̇�(𝑡) =  − 
1

𝜏
𝜉 +  

√𝐷

𝜏
𝜉𝑤(𝑡), (4.1)  

where 𝜉 is the colored noise, 𝜉𝑤 is the white noise, 𝜏 is the correlation time scale, and 𝐷 is noise 

strength. Figure 4.1a shows an uncorrelated white noise signal produced by a random number 

generator that yields all frequencies. In the time domain, the amplitudes of random light 

intensities comprising white noise signals were uniformly distributed around the baseline light 

intensity. Figure 4.1b shows the colored noise signal with frequency components closer to the 

time scale of the BZ system. Fourier transform power spectra were used to determine the 

frequency content of the colored noise signal, as shown in Figure 4.2.  
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FIG.  4.1: Two typical noise signals. a) White noise with a fast signal comprising all frequencies. b) 

Colored noise with a slow signal having dominant frequencies. 

 

 

FIG.  4.2: A Fourier transform power spectrum shows lower frequency domains of the colored noise 

signal. 
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In the noise set experiments, the oscillators initially oscillate at their natural frequencies at 

the background intensity, 𝐼0 = 1.29 𝑚𝑊 𝑐𝑚−2, which corresponded to 140 in the gray scale. 

The illumination of the reactor with the colored noise signal was then introduced at t = 126.0 s. 

The intensity of each oscillator was monitored and the values for all oscillators were summed to 

create a mean signal during the experiment. For comparison purposes, another set of experiments 

was carried out with the BZ oscillators exposed to a constant background light intensity, 𝐼0, 

without a forcing signal. 

4.2.2 Desynchronization Experiments 

In this set of experiments, the photosensitive BZ oscillators with random initial conditions 

were exposed to both negative pulses and noise signals at t = 126.0 s as shown in Figure 4.3. The 

presence of the noise pushes the system toward synchronization, while the periodic negative 

pulse perturbations give rise to desynchronization under the continuous effect of the noise signal. 

The negative pulses were of a 9.0 s offset period adapted to the mean period of control beads 

oscillating at their natural frequency under constant illumination. The perturbations were applied 

without knowledge or control of the phase of the synchronized oscillators. The negative intensity 

pulses had an amplitude of 𝐼 = 1.29 𝑚𝑊 𝑐𝑚−2 below the background intensity, which 

corresponded to a maximum value at the background intensity of 140 to a minimum of 0 in gray 

scale. The pulses lasted for a quarter of the mean natural period.  
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FIG.  4.3: Periodic negative pulses with amplitude 𝐼 = 1.29 𝑚𝑊 𝑐𝑚−2 below the background intensity 

introduced at t = 126.0 s along with the colored noise forcing. 

 

To describe the average behavior of purely noise-induced synchronization versus 

stochastic desynchronization experiments, the three different sets of experiments are compared. 

Mean order parameters for ten noise-driven experiments, pulse- and noise-driven experiments, 

and random intrinsic oscillation experiments are reported. The mean and standard deviation of 

the mean order parameter values of ten representative experiments of each set were calculated. 

Then, the Student’s t-test, which is often used for small data sets, was measured to distinguish 

differences among two sets of experimental values based on mean, standard deviation, and 

number of data points. The Formula of the t-test is as follows [45]:  

𝑡 =  
�̅�1− �̅�2

[(
𝜎1

2 (𝑛1−1)+ 𝜎2
2 (𝑛2−1)

𝑛1+𝑛2−2
)×(1 𝑛1⁄ +1 𝑛2⁄  )]

1 2⁄ ,  (4.2)  

where �̅�1 and �̅�2 are the means of the first and second set of experimental values, respectively, 

with the total number of values 𝑛1 and 𝑛2, and 𝜎1 and 𝜎2 are standard deviations of the first and 

second set, respectively. 
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4.3 Experimental Results 

4.3.1 Signal in the Presence of Noise 

Applying colored noise illumination to uncoupled BZ oscillators provides evidence of a 

noise-induced synchronization phenomenon. Data were analyzed from the mean signal, 

individual time series, and order parameter. Figure 4.4a shows regions of enhancement of the 

mean signal (black plot) when applying colored noise (blue plot). Figure 4.4b shows 

representative individual time series signals from ten individual oscillators, which reveals 

coherence in some regions. Figure 4.4c shows the order parameter with a mean of 𝑟𝑚𝑒𝑎𝑛 = 0.64, 

indicating a moderate degree of synchronization. 

Our result was consistent with an experimental in vivo study of uncoupled sensory 

neuronal oscillators, which shows evidence of synchronization by a common noise [38]. In 

addition, the results are in agreement with predicted behavior from earlier theoretical studies by 

Pikovsky and coworkers [46, 47], which demonstrate noise-induced synchronization in models 

of uncoupled identical oscillators driven by random pulse signals and white noise. These studies 

indicate negative Lyapunov exponents for noise-induced synchronization mechanisms. Our 

system, however, used uncoupled heterogeneous BZ oscillators driven by colored noise. Noise-

induced coherence was demonstrated with heterogeneity in the theoretical work of Zhou et al. 

[48].  
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FIG.  4.4: Oscillators synchronized by external colored noise. a) The colored noise light signal (blue) is 

introduced at t = 126.0 s. The mean signal (black) shows regions of enhancement, indicating a noise-

induced synchronization phenomenon. b) Individual time series of ten representative oscillators, showing 

moderate coherence in phase. c) The mean of the order parameter (red) is 0.64, indicating a moderate 

degree of synchronization. A system of 30 micro-oscillators loaded with Ru(bpy)3
2+ catalyst, with a mean 

natural period of 63.7 s. The background intensity is 𝐼0 = 1.29 𝑚𝑊 𝑐𝑚−2. The BZ reaction mixture 

composition: malonic acid, [MA] = 0.08 M; sodium bromide, [NaBr] = 0.02 M; sulfuric acid, [H2SO4] = 

0.78 M; sodium bromate, [NaBrO3] = 0.48 M. 

 

The behavior observed in a noise-driven system was compared with experiments using BZ 

oscillators in the absence of noise. Figure 4.5 shows the behavior of uncoupled oscillators with 

no external forcing. The mean signal is noisy and almost flat, which indicates no synchronized 
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behavior. The individual time series shows no coherence in phases, and the order parameter is 

very low. In addition, applying a Fourier transform to the corresponding mean signals of the 

noise-forced system and the non-forced system reveals dominate frequencies corresponding to 

periods of around 50.0 s with the noise forcing experiment but a lack of a dominate frequency 

with the non-forced system, as shown in Figure 4.6. 

 

FIG.  4.5: Intrinsic oscillations of uncoupled BZ oscillators. a) The oscillators are maintained at a constant 

background light intensity. The mean signal (black) shows a noisy signal, indicating no synchronization. 

b) Individual time series of ten representative oscillators show non-coherent phases. c) The mean of the 

order parameter (red) is 0.14, indicating no synchronization. System of 30 micro-oscillators loaded with 

Ru(bpy)3
2+ catalyst, with a mean natural period of 85.8 s. The background intensity is 

𝐼0 = 1.29 𝑚𝑊 𝑐𝑚−2. The BZ reaction mixture composition is the same as in Figure 4.4.  
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FIG.  4.6: Fourier transform power spectra for noise-driven and autonomous BZ systems. a) The power 

spectrum of the mean signal from a noise-driven BZ system shows a narrow range of dominate 

frequencies, indicating noise-induced synchronization. b) The power spectrum of the mean signal from 

intrinsic oscillations of uncoupled BZ oscillators shows the lack of a dominant frequency, indicating no 

synchronization when no forcing signal is applied. 

4.3.2 Signal in the Presence of Noise and Negative 

Perturbations 

Applying negative pulses in the presence of a noise signal leads to desynchronization. 

Figure 4.7 shows the mean signal is an irregular noisy signal when negative pulses are applied, 

indicating desynchronization. The time series of ten representative oscillators show non-coherent 

phases and a mean order parameter of 0.24, which indicates desynchronization. 
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FIG.  4.7: Uncoupled BZ oscillators subjected to both negative pulses and colored noise. a) Negative 

pulses (red) and noise signals introduced at t = 126.0 s (blue). The mean signal (black) shows a noisy 

signal, indicating desynchronization. b) The time series of ten representative oscillators show non-

coherent phases. c) The mean order parameter (red) is 0.24, which is low and indicates desynchronization. 

System of 30 micro-oscillators loaded with Ru(bpy)3
2+ catalyst, with a mean natural period of 86.0 s. The 

background intensity is 𝐼0 = 1.29 𝑚𝑊 𝑐𝑚−2. The BZ reaction mixture composition is the same as in 

Figure 4.4. 

 

We compared the results of the three different experiments by performing ten experiments 

in each set and calculated the mean order parameters, as shown in Table 4.1. Group A represents 

experiments with noise forcing, where the average mean order parameter values of ten 

experiments is 0.53, indicating significant synchronization. Group B represents experiments with 
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noise and negative pulse forcing, where the average mean order parameter values of ten 

experiments is 0.27, indicating desynchronization. Group C represents experiments with no 

forcing, where the average mean order parameter values of ten experiments is 0.16, indicating no 

synchronization.  

 

Table  4.1: Data of Mean Order Parameters Values in Each Set of Experiments. 

    A 

Noise Forcing 

B 

Pulse & Noise Forcing 

C 

No Forcing 

Experiments Mean order 

parameter 

Number 

of beads 

Mean order 

parameter 

Number 

of beads 

Mean order 

parameter 

Number 

of beads 

1 0.44 30 0.26 30 0.13 28 

2 0.57 30 0.28 30 0.17 27 

3 0.64 30 0.24 30 0.13 30 

4 0.47 30 0.20 30 0.15 30 

5 0.43 30 0.20 30 0.18 30 

6 0.66 25 0.22 30 0.14 30 

7 0.58 30 0.27 30 0.16 25 

8 0.48 25 0.30 30 0.20 26 

9 0.55 25 0.33 30 0.21 30 

10 0.49 30 0.36 30 0.16 25 

Average 0.53 0.27 0.16 

SD 0.08 0.05 0.03 

 

We further performed a statistical analysis of the average behavior of both sets using t-

tests, as shown in Table 4.2. The tests showed that there is a significant difference among two 

sets of the three different experiments with regard to the mean order parameter values. The 

calculated values of the t-test in all two-grouped sets exceeded the corresponding tabulated value 

of 3.92 for probability of p = 0.0005 [49], suggesting a 99.95% chance that the average of the 

mean order parameters of different sets were significantly different from each other. Noise-

driven experiments were shown to have different results than experiments with noise and pulse-
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driving signals and those with no driving signal, which indicates the ability of a purely common 

noise signal to induce synchronization among uncoupled BZ oscillators. It also shows the ability 

of negative pulses for desynchronization in an open-loop fashion.  

 

Table  4.2: Calculated t-test from Two Different Sets of Experiments (A = noise-forcing 

experiments; B = negative pulse and noise-forcing experiments; C = no forcing experiments). 

Experiments Sets Student’ t-test 

A & B 8.7 

A & C 13.6 

B & C 5.48 

 

Moreover, we tested the effects of applying positive periodic pulse perturbations in the 

presence of noise. The results show that applying positive pulses in the presence of noise does 

not lead to desynchronization. Figure 4.8a shows an enhancement of the mean signal when 

applying both positive pulses and colored noise. Figure 4.8b shows representative individual 

time series signals from ten individual oscillators, which reveals phase coherence. Figure 4.8c 

shows the order parameter with a mean of 0.85, indicating a high degree of synchronization.  
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FIG.  4.8: Oscillators synchronized by external positive pulses in the presence of noise. a) Positive pulses 

(red) and colored noise light signal (blue) introduced at t = 126.0 s. The mean signal (black) shows 

enhancements and regular signal, indicating synchronization. b) The time series of ten representative 

oscillators show aligned coherence in phase. c) The mean of the order parameter (red) is 0.85, indicating a 

high degree of synchronization. System of 27 micro-oscillators loaded with Ru(bpy)3
2+ catalyst, with 

mean natural period of 69.4 s. The background intensity is 𝐼0 = 1.29 𝑚𝑊 𝑐𝑚−2. The BZ reaction mixture 

composition is the same as in Figure 4.4. 

 

The observed behavior is analogous to the phenomenon of “stochastic synchronization,” 

where noise- and periodic-forcing signals are applied together to enhance weak signals. 

Stochastic synchronization was theoretically demonstrated in a model of an uncoupled oscillator 

array, where the mean frequency from the mean signal was locked to the forcing signal due to 
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the presence of noise [50]. In addition, the behavior was shown numerically in coupled network 

systems, where stochastic synchronization among networks occurred in the presence of noise 

[51]. In contrast to previous theoretical work, our results show that synchronization of a discrete 

uncoupled system forced by a positive square wave signal could be maintained in the presence of 

noise. 

4.4 Discussion 

Random signals in the noisy environment of neurons have been experimentally 

demonstrated to mediate synchronization [2, 4]. We have investigated the effect of colored noise 

in inducing synchronization. We used uncoupled BZ oscillators subjected to a common noise 

signal and then stimulated this system via periodic negative pulses to investigate a 

desynchronization mechanism for DBS [39, 40]. Our results demonstrated the ability of a noise 

signal to induce synchronization. This resembles the theoretical study by Teramae and Tanaka 

[27], which showed the ability of noise to induce order in independent limit cycle oscillators. 

Our results correlate with results from in vitro and in vivo experiments, respectively, where noise 

was shown to induce order [37, 38]. Moreover, the behavior is in agreement with other 

experimental studies. For instance, an experimental study by Zhou et al. [24], which investigated 

the effect of noise with no other external forcing, showed that synchronization is obtained in 

coupled chaotic oscillators in the presence of noise. Noise has been shown to facilitate wave 

propagation in BZ extended excitable media [20]. Noise-enhanced synchronization was shown in 

a BZ reaction [15] of weakly and diffusively coupled excitable oscillators, and in the Fukuda et 

al. study [23] that showed optimization in the order of synchronization among weakly and 

diffusively coupled BZ oscillators. However, there are no experimental studies on the 
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synchronization of discrete and uncoupled BZ oscillators or other uncoupled non-biological 

oscillators driven by common noise.  

The application of a noisy signal is different than applying a regular pulse or a sine-wave 

signal in this study, because it does not depend on the continuous measurement of oscillator 

frequency. When comparing this system to our previous periodic stimulus study in Chapter 3, we 

find that the heterogeneous system of uncoupled BZ oscillators is less sensitive to the common 

noise input than a common regular positive signal. Synchronization to a noisy input occurs, but 

synchronization is not complete. The mean of the order parameters of ten experiments was 

moderate and significantly different from the mean of the order parameters of non-forced 

systems and systems that underwent regular negative forcing. Moreover, we find that the 

introduction of a negative stimulus promotes desynchronization. The degree of 

desynchronization is distinct, but less than complete desynchronization where no stimulus is 

applied. Noise with pulse-driving experiments were carried out in an open-loop fashion as 

opposed to the earlier pulse-driving experiments, where the oscillators’ phases were 

synchronized with a positive stimulus prior to administration of a desynchronizing stimulus.  

The application of periodic positive pulses in the presence of noise was shown to lead to a 

different observation than when negative pulses were applied in the presence of noise. The 

behavior can be discussed in terms of the Lyapunov exponents, where negative Lyapunov 

exponents lead to convergence of nearby oscillators and eventual synchronization, while positive 

Lyapunov exponents cause nearby oscillators to diverge, thereby leading to desynchronization 

[35]. The positive pulses lead only to a negative slope in the phase response curve (PRC), while 

the PRC with negative pulses has both negative and positive slopes. Although negative 

perturbations are periodic and applied to random phases, desynchronization is observed in the 
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noise forcing system. This can be understood based on the PRC slope caused by negative 

perturbations, where more of the curve has a positive slope. The positive slope occupied two 

thirds of the PRC, while the negative slope, responsible for synchronization, occupied only a 

third of the PRC, as shown in Figure 3.1 in Chapter 3. Therefore, our system may show 

desynchronization with negative pulses, because the probability of phase divergence becomes 

dominant over phase convergence.  

Although the inclusion of both periodic and noisy components in much of the literature 

suggests a stochastic resonance phenomenon [2, 18, 20, 21, 50] or stochastic synchronization [4, 

36, 51], our results indicate that the application of negative pulses in the presence of noise leads 

to stochastic desynchronization.  

4.5 Summary 

In this chapter, we have demonstrated the synchronizing of uncoupled BZ oscillators by a 

common colored noise signal. An open-loop desynchronization stimulation of BZ synchronized 

oscillators was considered. We showed that negative perturbations cause desynchronization even 

when applying the perturbations in an open-loop manner. This is due to regions in the PRC 

giving rise to divergence by negative perturbations.  

The synchronization/desynchronization results are displayed via mean signals, individual 

time series, order parameters, and t-test calculations. These results support the theoretical 

desynchronization mechanism of DBS over the entrainment mechanism, as in the theoretical 

neuronal model by Wilson et al. [40], which suggested the effectiveness of periodic pulse signals 

for desynchronization of uncoupled neurons in the presence of noise. However, our results 

suggest that the pulse type is a significant factor for effective desynchronization via establishing 

positive Lyapunov exponents. The periodic negative pulse desynchronization can be introduced 
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to desynchronize the abnormal synchronous oscillations in neuron circuits responsible for 

tremors in Parkinson’s disease [9-11]. Future studies can facilitate closed-loop desynchronization 

methods in the presence of noise. Positive pulse perturbations can be administrated first to bring 

the system to a well-defined synchronized signal. An experimental design can be created to 

allow for the control of the perturbations based on read-time monitoring of the maxima of the 

mean signal in the presence of random fluctuations.  

In conclusion, our main results are that appropriate common noise induces 

synchronization, while appropriate common regular signals can induce desynchronization among 

independent BZ oscillators. 
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Chapter 5 

5. Phase-Lag Synchronization in a Chemical Oscillator Network  

5.1 Introduction 

Neural clustering mediated by network connections has been suggested to be important for 

brain functions [1]. This view is supported by a number of studies in visual perception 
 
[2, 3], 

sound processing [4], information coding [1], and motor rhythm experiments [5]. 

Synchronization can also have pathological consequences. For example, cluster synchronization 

of neurons correlates with tremors in Parkinson’s disease [6]. Accordingly, studying cluster 

synchronization in discrete systems is important from a biological point of view. Clusters and 

phase-synchronization patterns have been studied in a BZ reaction system via heterogeneous 

coupling through both inhibitory and excitatory species [7], or heterogeneity of non-identical 

oscillators [8]. Taylor et al. [7] demonstrated phase-cluster states in the global coupling of stirred 

non-identical BZ oscillators. Moreover, Taylor et al. [8] observed phase clusters in globally 

coupled heterogeneous populations of discrete photochemical BZ oscillators. Phase-cluster 

synchronization has also been studied in other systems. Cluster formation has been observed 

experimentally in coupled electrochemical oscillators [9-11] and in coupled lasers with 

unidirectional ring connections when applying time-delayed feedback [12]. Moreover, the 

underling symmetry of phase-cluster formation was experimentally demonstrated by Pecora et 

al. [13] in a network of identical optical oscillators.  

In this study, we were motivated by Pecora et al. [13] who showed how symmetry plays a 

role in cluster synchronization. Our study of a network of non-identical oscillators in a light-

sensitive BZ set-up reveals a new type of wave-like phase synchronization. This phase-lag 
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synchronization has not been observed before in non-continuous media or in a network. The 

behavior correlates with the suggested mechanism of motor patterns, where, in addition to zero-

lag synchronization within segments, phase-lag synchronization [14] between segments becomes 

a mechanism for coherent motion [15, 16]. Examples include the swimming of fish via fixed-

phase relations [17, 18] and with non-precise phasing during leech crawling [19-21]. It is also 

known that phase waves, with constant phase-lag relationships, are a local response of 

participating motor neurons through network connectivity, which is governed by neural circuits 

called “central pattern generators” [16, 22].  

Phase waves were first predicted for oscillatory chemical reactions in 1973 [23]. This was 

later experimentally demonstrated in 1987 in a BZ continuous system perturbed with laser beams 

by Bodet et al. [24], where a phase wave occurred as a result of imposed differences in reaction 

rates. In 1994, Aliev observed phase waves in a light-sensitive BZ reaction [25]. A study of a 

spatially extended oscillatory BZ system showed regions of shifted phase with light illumination 

control [26]. A theoretical study of limb movements has shown that bidirectional network 

connections can lead to constant phase-lag cluster synchronization [27]. 

 In this work, we report on experimentally observed phase-lag cluster synchronization, 

where groups of phase-coherent clusters were sequentially formed with a constant phase 

difference. Clusters have phase shifts that, in total, cover only part of the phase cycle of 2π. A 

cluster can be composed of one or more oscillators. In phase-lag cluster synchronization, each 

cluster is made up of phase synchronized oscillators which are frequency synchronized with all 

other clusters. In this chapter, we discuss different types of synchronization behaviors observed 

experimentally in a network of heterogeneous photochemical BZ oscillators with bidirectional 

coupling.  
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5.2 Network Experimental Design 

In this set of experiments, we use a small bidirectional network of 10 nodes, as shown in 

Figure 5.1. The network has a number of symmetrical permutation properties, where collections 

of nodes, or a symmetry cluster, can be exchanged without changing the original topology [28]. 

Large networks with non-trivial symmetries can be obtained by using computer software [29]. 

The experiment was conducted by placing photosensitive oscillators of broad frequency 

heterogeneity into a catalyst-free BZ solution. Details of the set-up and experimental 

preparations were the same as shown in Section 2.2.1 in Chapter 2. 

 

 

FIG.  5.1: A bidirectional 10-node network. Nodes that are the same color represent a symmetry cluster, 

and links (gray lines) represent the network connectivity. 

 

Positive photochemical feedback was used to provide coupling via activator species 

production [8]. Each oscillator was recorded by an imaging system composed of a charge-

coupled device camera attached to a spatial light modulator projector, which was controlled by a 

computer. The transmitted light from an oscillator measured in gray scale was used to determine 

the feedback. The calculated feedback illumination was projected onto each oscillator.  

The following equation was used to calculate the feedback illumination 𝜑𝑖 for each node i 

of the N node network:  



126 

𝜑𝑖 = 𝜑0 +  
K

𝑘𝑖
 ∑ 𝐴𝑖𝑗(𝑧𝑗 −  𝑧𝑖) 𝑁

𝑗=1  (5.1) 

The network topology is defined by an adjacency matrix 𝐴𝑖𝑗. The feedback is determined from 

the differences in light intensities of the coupled oscillators (𝑧𝑗 −  𝑧𝑖), which is obtained from the 

measured normalized gray scale values that represent the oxidized catalyst concentration. The 

background light intensity 𝜑0 for natural unperturbed oscillations corresponds to 140 on the gray 

level scale. The coupling strength, K, is normalized by dividing it by the degree 𝑘𝑖 of the i
th

 node, 

which represents the number of links with other nodes. 

The ten oscillators were initially globally coupled to produce in-phase synchronization. 

The specific topology of node connections was introduced at t = 200.0 s for 17 ± 5 periods. The 

individual natural periods were measured with constant background intensity and no coupling at 

the end of the experiment. Experiments were run at various coupling strengths. For data analysis, 

nodes were re-sorted according to the order of their firing relative to the phase-leader node. This 

allowed visualization of cluster numbers in the topology based upon their connectivity in the 

adjacency matrix. The firing sequence of each node was displayed using the recorded gray scale 

values of all ordered oscillators. These sequences were aligned on top of each other starting with 

the phase-leader firing pattern during the time of the experiment. The Kuramoto order parameter 

was used to measure synchronization among all nodes and groups of nodes that form separate 

clusters. The phase-lag gradient was obtained through linear fitting based on the phase 

occurrence of each node of each synchronized cluster. 
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5.3 Experimental Results 

5.3.1 Symmetry Cluster Phase-Lag Synchronization 

The mutual coupling in our 10-node network, consisting of BZ oscillators of broad 

frequency heterogeneity, results in phase-lag cluster synchronization. At higher values of 

coupling strength, the oscillator with the highest frequency entrains all other nodes to its 

frequency. This leads to frequency-locked synchronization among all nodes, which are grouped 

into a sequence of in-phase clusters. Figure 5.2 summarizes the results of symmetry cluster 

phase-lag synchronization. Figure 5.2a shows the reduced representation of the original 10-node 

network in Figure 5.1, where each node or group of nodes that forms a symmetry cluster is 

represented by one node.  The coupling strength and heterogeneity were found to facilitate full 

entrainment of a sequence of oscillators to the phase leader via the shortest path. Figure 5.2b 

shows a total of three synchronization groups, which are color based on the network connectivity 

to the phase leader node (red circle). Figure 5.2c shows the heterogeneity of the system with the 

natural period of each oscillator, where the mean natural period was 35.04 s with a standard 

deviation of 1.04 s. Figure 5.2d shows the firing of each oscillator node, recorded as normalized 

gray-scale values during the experiment. The results show a wave pattern of phase-lag 

synchronization through the symmetry clusters, which are color coded as in Figure 5.1. The 

nodes are renumbered by their connectivity to the phase leader, which are coded as in Figure 

5.2b. The order parameter for each cluster was close to 1.0, as shown in Figure 5.2e, indicating 

in-phase synchronization of the synchronization groups. The global order parameter for all nodes 

was significantly lower due to the phase lag between synchronization groups. The phase shift 

between the groups is constant, as demonstrated by a linear fit through the phase of each node 
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from each synchronization group, as shown in Figure 5.2f. This result is in contrast to results 

obtained by Pecora et al. [13], which showed phase-cluster formation according to the 

underlying permutation symmetries. Our results demonstrate the existence of phase-wave 

behavior, where there is a constant phase lag between synchronization groups.  

 

FIG.  5.2: Phase-lag symmetry cluster synchronization. a) A reduced network topology showing the 

number of symmetry clusters represented by different colors, a simplification of Figure 5.1. b) Network 

topology showing three synchronization groups, each with simultaneously firing nodes, indicated by 

different colors (red, blue, and green). The phase leader is node 1 (red), which corresponds to the green 

node in the symmetry representations of the network in Figure 5.1. c) A plot of the natural period of each 

oscillator without coupling. d) The recorded gray-scale values for each node ordered by its connectivity to 
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the phase leader. The wave pattern of simultaneously firing oscillators is the synchronization groups, 

which are separated by red lines. The color coding for the symmetry clusters as in Figure 5.1 and for the 

synchronization groups as in (b). The node index is numbered according to network representation in (b). 

e) Order parameter after coupling was introduced at t = 200.0 s. The order parameter of all nodes (black 

plot) shows no overall zero-lag phase synchronization in the system, whereas the order parameter for each 

synchronization group is close to 1.0, indicating phase synchronization. The color coding is as in (b). f) A 

linear fit of oscillator phases against their synchronization group index, showing phase-lag 

synchronization with a constant phase shift; color coding is as in (b). A system of 10 micro-oscillators 

loaded with Ru(bpy)3
2+ catalyst, with a mean natural period of 35.04 s. The coupling strength is K= 2.0. 

The BZ reaction mixture composition: malonic acid, [MA] = 0.08 M; sodium bromide, [NaBr] = 0.02 M; 

sulfuric acid, [H2SO4] = 0.78 M; sodium bromate, [NaBrO3] = 0.48 M. 

5.3.2 Partial Symmetry Cluster Phase-Lag Synchronization 

In this experiment, the position of the highest frequency oscillator yielded partial symmetry 

cluster synchronization, with a longer path for the same topology and higher coupling strength, 

as shown in Figure 5.3a. The role of the highest frequency oscillator to entrain other oscillators 

was experimentally demonstrated by Kheowan et al. [30], showing that the highest frequency 

oscillatory source, the pacemaker, entrained the entire BZ medium. However, if entrainment 

does not lead to complete frequency and phase synchronization, then phase-lag behavior may 

result [31]. The heterogeneity of the system can be seen from the natural periods of the 

oscillators, as shown in Figure 5.3b. The mean natural period and standard deviation in the 

system are 50.65 s and 3.65 s, respectively. The system resulted in a phase-lag synchronization, 

which was observed from the gray-scale values of firing events for each oscillator ordered 

relative to the highest frequency oscillator, as shown in Figure 5.3c. In Figure 5.3d, the order 
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parameters of each synchronization group is close to 1.0, which demonstrates synchronization 

among each group, while the global order parameter of all nodes shows there is no overall zero-

lag phase synchronization. The phase-lag synchronization is constant with the linear relationship 

between the phases of each synchronization group, as shown in Figure 5.3e. 

 

FIG.  5.3: Phase-lag synchronization. a) The network topology showing four groups of simultaneous firing 

nodes, indicated by different colors (red, blue, green, and magenta). b) A plot of the natural periods of all 

oscillators with no coupling. c) The recorded gray-scale values for each node, as ordered by connectivity 

to the phase leader, showing a wave pattern of the synchronization groups, separated by red lines. The 

phase leader is node 1 (red), which corresponds to one of the nodes forming a symmetry cluster, but not a 

complete cluster. The color coding for the symmetry clusters is as in Figure 5.1. The node index is 
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numbered and colored according to the synchronization groups in (a). d) Order parameter after the 

coupling introduced at t = 200.0 s indicating in-phase synchronization groups, where the order parameter 

is close to 1.0 for each group. The global order parameter of all nodes (black plot) shows no overall zero-

lag phase synchronization in this system. The color code is as in (a). e) A linear fit of oscillator phases 

against the synchronization group index, showing phase-lag synchronization with a constant phase shift; 

color coding is as in (a). A system of 10 micro-oscillators loaded with a Ru(bpy)3
2+ catalyst, with a mean 

natural period of 50.65 s. The coupling strength is K= 2.0. The BZ reaction mixture composition is the 

same as in Figure 5.2. 

5.3.3 Partial Synchronization 

Upon decreasing the coupling strength, partial frequency synchronization of two separated 

groups is observed. Figure 5.4 shows results from an experiment in which coupling strength was 

not adequate for complete frequency synchronization. Instead, partial synchronization with two 

groups of different synchronized frequencies was observed, as shown in Figure 5.4. The mean 

natural period and standard deviation in the system are 55.68 s and 8.14 s, respectively. After 

switching to network coupling, the system splits into two groups with different mean 

synchronized periods (57 s and 52 s), as shown in Figure 5.4b. In this experiment, the phase 

leader node entrained most of the nodes, except for nodes 8 and 9, which appear in the bounded 

blue lines in Figure 5.4c. This leads to partial phase-lag synchronization within the separated 

group, as seen from the deviation of the wave-form pattern from complete phase-lag 

synchronization based on network connectivity. Partial synchronization was predicted by 

Winfree [32] in his model of coupled identical oscillators, where increasing coupling strength 

allows for cluster synchrony after incoherent behavior. However, his model suggested phase 

coherence with complete synchronization in phase and frequency, while our non-identical 
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oscillators showed frequency and phase-lag synchronization with increased coupling strength, as 

shown previously in Figures 5.2 and 5.3.  

 

 

FIG.  5.4: Partial frequency synchronization. a) The 10-node network topology of all permutation 

symmetry clusters shown with different colors. b) A plot of the periods of all beads after switching on 

coupling, showing splitting into two synchronized periods, which indicates partial frequency 

synchronization. c) The recorded gray-scale values for each node, as ordered by connectivity to the phase 

leader. Deviation of phase-lag patterns in nodes 8 and 9 is observed. The node index is numbered and 

colored according to network representation in (a). A system of 10 micro-oscillators loaded with 

Ru(bpy)3
2+ catalyst, with a mean natural period of 55.68 s. The coupling strength is K= 0.60. The BZ 

reaction mixture composition is the same as in Figure 5.2. 

5.3.4 Independent Phase Oscillations 

Upon further decreasing the coupling strength, no form of synchronization was obtained in 

the network. The oscillator of highest frequency could not entrain any of the symmetry clusters 
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shown in Figure 5.5a. Figure 5.5b shows a wide distribution of periods after coupling and 

independent oscillations during the experiment. The mean natural period and the standard 

deviation with no coupling were 55.97 s and 1.95 s, respectively. There was no phase coherence, 

as indicated by the pattern of firing of each node according to gray-scale recordings, as shown in 

Figure 5.5c. 

 

FIG.  5.5: Incoherent oscillation. a) The 10-node network topology of all permutation symmetry clusters 

with different colors. b) A plot of the periods of all beads after switching on coupling. A wide distribution 

of periods indicates no synchronization. c) The recorded gray-scale values for each node, showing an 

irregular pattern. The node index is numbered and colored according to network representation in (a). A 

system of 10 micro-oscillators loaded with Ru(bpy)3
2+ catalyst, with a mean natural period of 55.97 s. 

The coupling strength is K = 0.05. The BZ reaction mixture composition is the same as in Figure 5.2. 
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5.4 Discussion  

We considered a network of 10 non-identical, photosensitive, BZ micro-oscillators. The 

network connection is bidirectional between node pairs and is represented mathematically using 

an adjacency matrix. Photochemical feedback is used to vary the coupling strength and different 

synchronization behaviors are observed. We chose a network with an underlying permutation 

symmetry to investigate synchronization. In our study, we observed a wave pattern of symmetry 

cluster synchronization. Phase-lag propagation is initiated by a phase leader, with the phase 

leader resembling a pacemaker as the wave source [30]. The phase leader represents the node of 

the highest natural frequency in the network. However, unlike entrainment by a pacemaker in a 

continuous medium, where oscillators undergo diffusive coupling, the entrainment of oscillators 

by a phase leader in a network depends on the hierarchical connectivity of links in the topology.  

The heterogeneity in our system did not allow zero-lag synchronization. Instead, we obtain 

phase-lag synchronization when an appropriate coupling strength threshold is satisfied. The 

phase leader influences the nearest oscillators, which form a phase-locked synchronization 

group, and then the oscillators further away are similarly synchronized. As was theoretically 

shown, the ability for a system to synchronize depends on both coupling strength and frequency 

heterogeneity, with the coupling strength needing to be above a critical value for frequency 

synchronization [33]. The clusters that are entrained by the phase leader form frequency-locked 

synchronization groups in a discrete heterogeneous medium. Similar phase-lag behavior was 

described in the swimming and coherent motion of lamprey fish [15-18]. 

We focused on synchronization behaviors as a function of coupling strength. Our results 

are relevant to theoretical results on motor behavior, which show that the type of phase-lag 

relationships observed in locomotion is dependent on coupling strength and/or frequency 
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heterogeneity of the oscillators [18, 20, 34]. When applying higher coupling strength, we 

observed phase-lag synchronization, where the system splits into synchronization groups that are 

shifted in time with respect to each other. This can be considered to be a case of group synchrony 

with phase-lag synchronization, which was first suggested by Rosenblum et al. [14] in their 

theoretical work on mutually coupled, non-identical chaotic oscillators. Lag synchronization has 

also been observed experimentally in circuits of electronic oscillators [35, 36] and lasers [37]. In 

our system, there is frequency locking among all oscillators in the network. In addition to 

frequency locking, each synchronization group is locked to the same phase. Moreover, the 

synchronized behavior that we observed exhibited phase-lag behavior. Phase clusters in a 

network with no phase-lag were demonstrated theoretically in a network of coupled identical 

chaotic oscillators [38, 39]. In addition, our results differ from the recent experimental results 

obtained by Pecora et al. [13], who found phase clusters instead of phase-lag synchronization 

groups with coupled identical optical oscillators. Our observations correlate with the 

suggested phase-lag synchronization mechanisms for some brain functions, such as locomotion 

[15, 16], attention [40], and memory [41].  

The Pecora et al. experiments [13] reveal how the inherent symmetry in networks can 

lead to symmetry cluster synchronization. In our study, when coupling is adequate, the 

position of the highest frequency oscillator determines whether one obtains complete or partial 

symmetry cluster phase-lag synchronization. Different pathways of entrainment are observed 

according to the phase-leader placement. Phase-lag synchronization follows the shortest path if 

symmetry cluster synchronization is obtained. This is important, because a network’s underlying 

symmetry can provide the shortest path and, thus, allow network robustness and simplification 

without losing the information. This was supported theoretically in food web networks [42] and 
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in protein network interactions [43], where some nodes possess more symmetry than others, 

which allows for reduction of an entire network. 

The position of the highest frequency oscillator may cause phase-lag synchronization via 

partial symmetry clusters with longer paths for the same topology. Different paths with different 

clusters confirm the biological view of synchronization. For example, in information coding, 

neurons re-participate over and over in different cluster formations to facilitate different contexts 

rather than having specialized neurons assembled for each specific action [44-46]. This has been 

demonstrated in changes in neural patterns in visual, parietal, and motor areas based on different 

contexts of cat activity [47]. In addition, functional heterogeneity of cells is observed 

experimentally among segmental oscillators that produce a leech swimming rhythm with a 

longer path [48]. 

This study has demonstrated that frequency synchronization coexists with phase-

synchronized groups. By increasing the coupling strength, there is a transition from non-coherent 

oscillations to partially synchronized oscillations, and eventually to coherent phase-lag 

synchronization groups. A model of coupled neural networks shows parallel phase-cluster 

synchronization, which can lead to zero phase-lag synchronization, with or without delay [49, 

50]. In our system, however, we attained global frequency synchronization among a sequence of 

phase-lag synchronization groups, each with zero-lag synchronization, by increasing coupling 

strength. 

5.5 Summary 

Networks are important and widespread in the real world, such as in social, biological, and 

manmade networks. Many theoretical studies have been performed to understand the dynamics 

of networks and their architectures of interacting ensembles [51-54]. Some studies have been 
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empirical [12, 55-59], and some focused on network symmetry while studying phase-locked 

relations [13, 60, 61]. Many theoretical [38, 39] and empirical [5-13] studies that focused on 

phase synchronization have revealed the phenomenon of phase-cluster synchronization. In 

contrast, we demonstrated the existence of phase-lag synchronization groups in coupled, non-

identical BZ oscillators with bidirectional network connections. This study used a small network 

with underlying symmetry to mimic an actual network system, such as a protein network [43], 

food web network [42], or cortices network [62, 63]. Different behaviors are observed while 

varying the coupling strength in the system. By introducing topology coupling, all nodes of the 

same frequency were organized into groups of phase-synchronized oscillators at appropriate 

coupling strengths. The combination of synchronization groups and phase-lag synchronization is 

a new type of synchronization behavior. It represents groups of frequency-synchronized 

oscillators with a constant phase difference among consecutive groups based on their network 

connectivity. In our heterogeneous system, the transition of a non-phase coherent state to phase-

lag synchronization groups is obtained with increased coupling strength. This is consistent with 

the theoretical demonstration of adding delays in assemblies of excitatory connections, which 

can prevent zero-lag synchronization in neural model representations [64, 65]. In addition, these 

results shed light on the mechanism of phase-lag synchronization in some brain functions [15, 

16, 40, 41]. Accordingly, this study mimics the behavior of real biological networks involving 

clustering with a non-zero phase-lag mechanism.  

Our work shows that networks with an underlying symmetry have different pathways of 

synchronization depending on circumstances. Some theoretical studies have investigated the 

controllability of networks to recover a lost network function [22] and to control network 

robustness and signal transmission [66]. Here, we suggest the need for further study on 
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controlling network dynamics by imposing different pathways in the same topology based on 

knowledge of network symmetry. Future results could provide insights into the mechanisms 

involved in the control of real-world networks. This can be achieved by stimulation of one or 

more nodes to choose a possible dynamic pathway. Pathways of synchronization may also be 

controlled through weighted coupling between links. The results may provide a better 

understanding of the dynamics of neural network modulations [67].  
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