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ABSTRACT 
 

Identification of AtHD2C as a Novel Regulator of ABA Signaling In  
Arabidopsis thaliana 

 
Sunandini Sridhar 

 
 

When plants transition from the heterotrophic phase of embryogenesis into the autotrophic phase 
of sporophytic development, they need to proceed through dormancy and desiccation events. 
These processes are vital because the commitment to germinate is irreversible, beyond that 
premature germination would be fatal for the plant. Therefore, maintenance and timely exit from 
these phases is important. Smooth regulation of this procedure is executed by Abscisic acid 
(ABA), a plant-specific hormone. In addition, ABA assumes an important role during extreme 
periods when plants are threatened by abiotic stresses such as drought and high salinity. This 
report describes AtHD2C as a regulator of the ABA controlled events. AtHD2C is a member of 
the HD2-type histone deacetylase family. A GFP (green florescent protein) co-localization assay 
revealed that AtHD2C localized to the nucleus in Arabidopsis. Oligonucleotide-directed 
mutagenesis, that was utilized to create site specific mutations in AtHD2A, identified that the 
residues important for repression activity reside at the N-terminal pentapeptide and at H25 of the 
sequence. A semi-quantitative RT-PCR assay determined the spatial expression profile of the 
HD2 gene family, with higher transcript accumulation in the reproductive organs. These results 
indicated an overall physiological significance for the HD2 proteins as well as a possible 
involvement in embryo development. In continuum with this, seeds overexpressing AtHD2C 
were insensitive to ABA, NaCl and mannitol at germination. This phenotype was supported by 
ABA-responsive gene expression patterns in the transgenic plants that implicated a negative role 
for AtHD2C in ABA response regulation in this developmental window. Additionally, the 
AtHD2C transcript accumulation was down-regulated by ABA that was reflected by the down-
regulation of AtHD2C promoter driven GUS. In contrast to its function in the germination-post 
germination phase, AtHD2C seemed to play a positive role in ABA response regulation during 
the vegetative stage. AtHD2C overexpressing mature plants were able to survive extreme 
osmotic shock and drought conditions. The expression of AtHD2C promoter driven GUS in all 
vegetative tissues confirmed the presence of AtHD2C in this stage. The predominantly closed 
stomata and up-regulated ABA-responsive genes support the stress-tolerant phenotype of the 
35S:AtHD2C transgenic plants. The information obtained from this investigation delineates a 
dual role for the AtHD2C in the regulation of the ABA response signaling in two developmental 
stages. 
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INTRODUCTION 
 

Abiotic stress is often the cause of huge losses in the agriculture industry as it is a big hindrance 

to crop productivity. Therefore, it is very desirable to engineer crops with enhanced stress 

tolerance to drought, salinity, osmotic shock, cold and other oppressing environmental stresses. 

This comprises one of the main long-term objectives of agronomic research in addition to other 

motives such as, increasing crop yield or pathogen resistance. To understand how the study of 

genetics can tell us about the ultimate physiological responses of an organism, we can refer to 

the central dogma of molecular biology (Figure 1). DNA codes for all the information that is 

required for the behavioral responses of the plant. Therefore, it is extremely important that the 

message encrypted in the DNA be processed efficiently into the functional biocatalysts, proteins. 

Between DNA and proteins there are messenger molecules, RNAs that keep the information 

processing intact. Hence, the formation of RNA or transcription is crucial for information relay. 

Consequently, gene expression can be controlled at the very first step of relay, transcription. It 

can also be controlled at later steps of post-transcription, translation or post-translation (Verbsky, 

2001). Many aspects of development involve epigenetic regulation: mitotically and/or 

meiotically heritable yet reversible changes in gene expression without changes in DNA 

sequence (Steimer et al, 2004). Many epigenetic changes depend on the recognition of sequence 

homology at the DNA or RNA level. This recognition can led to transcriptional gene silencing 

(TGS), that is associated with DNA methylation and/or chromatin modifications, or to post 

transcriptional gene silencing (PTGS), either by sequence specific RNA degradation or by 
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inhibition of translation. The focus of my study is transcriptional gene silencing and its role in 

the physiology and development of the plant. 

(i)  The mechanisms to control gene expression at the transcription level 

The accurate regulation of gene expression in space and time is fundamental for development. 

Only certain genes need to be expressed at certain times and specific locations. Other genes need 

to be turned off at these times and locations in order to maintain normal growth transitions 

(Finnegan E.J, 2001). If all genes in the genome were expressed at the same time, there would be 

chaos in the biological system as contradicting signals would be generated that would cancel out 

each other’s effect and the net result would be zero development. Therefore, agents that expedite 

transcriptional repression and activation are essential for maintaining homeostasis in 

developmental signaling. 

 To better understand regulation of gene expression, we have to understand that genes are 

a constituent of nuclear DNA that is compacted into chromatin (Figure 2). Regulation of higher 

order chromatin structure is directly coupled with regulation of the expression and integrity of 

the genetic information of plants (Verbsky, 2001) and other eukaryotes. In particular, the 

packaging of DNA into heterochromatin exerts epigenetic control over important biological 

processes (Kadonaga et al, 1998). Chromatin is a complex structure built from repeating units, 

the nucleosomes (Kornberg and Lorch, 1999). These consist of 145 bp of DNA wrapped around 

an octamer of basic proteins, the core histones. The octamer is formed by histones H2A, H2B, 

H3 and H4 (Chen and Pikaard, 1997) as depicted in Figure 3. At least two different domains can 

be distinguished in core histones: a globular domain involved in histone-histone interactions  
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1 

 
 
 
         Figure 2 . Compaction of genomic DNA into chromatin and chromosomes.  
 
 
 
                                                 
1 http://www.path.queensu.ca/present/lillicrap/path425transcription2004march.ppt#256,13,Slide 13 
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(containing the ‘histone fold’ motif) and the flexible N-terminal tails of H3 and H4, and N- and 

C-terminal tails of H2A and H2B (Loidl, 2004). A series of consecutive nucleosomes produces a 

‘beads on a string’ structure or 10 nm fiber. A further level of compaction is the 30 nm fiber with 

six nucleosomes per turn in a solenoid arrangement (Kornberg and Lorch, 1999). The traditional 

picture of eukaryotic chromatin as a static and largely repressive functional state has, over recent 

years, changed to a more complex view of chromatin as a highly dynamic state that is essential 

for regulating cellular functions. Epigenetic regulation of developmental patterning and 

programming is now recognized to play critical roles in plant growth (Steimer et al, 2004). The 

dynamic properties of chromatin are mediated by multiprotein complexes with different 

functions that set marks overlying the stable information of the DNA (Arhinger, 2000; Lusser, 

2002; Verbsky, 2001; Kadonaga, 1998). The most prominent factors that influence chromatin 

structure and function are enzymes that modify the histones and chromatin remodeling machines 

that utilize ATP (Lusser, 2002; Norton et al, 1989; Alfrey et al, 1964; Struhl et al, 1998). 

Therefore, in addition to changes in the DNA sequence itself, that led to alteration in 

transcription rates, the epigenetic modifications mediated by affecting histones is a major 

mechanism regulating transcription (Steimer et al, 2004). 

 Histones have been conserved during evolution. However, they are dynamically changed 

by post-translational modifications (Grunstein, 1992). These modifications include acetylation, 

methylation, phosphorylation, ubiquitination, glycosylation, ADP ribosylation, carbonylation, 

sumoylation and biotinylation (Loidl, 2004), that can all cause structural and functional 

rearrangements in chromatin and are therefore essential elements of the complex ‘epigenetic 

histone code’ (Figure 4).   
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Figure 3. (A) Organization of a single nucleosome: 146bp of DNA wrapped twice around a 

histone octamer core consisting of H2A, H2B, H3 and H4. Linker DNA is 10~100bp. (B) 

Structural comparison of the four Histone proteins. The ‘Histone fold’ is common to all four 

proteins (Loidl, 2001). 

 
Figure 3. Organization of a single nucleosome

A 

B 
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Also, DNA methylation is one of the ways in that transcription can be regulated. There is ample 

evidence for an interrelation between DNA methylation and histone modifications (Volpe et al, 

2002). The relationships and hierarchy between DNA methylation, H3 methylation, H4 

acetylation and heterochromatin assembly has been proposed to play a role in nucleolar 

dominance (Chen and Pikaard, 1997). As a result, a tentative model was proposed in that four 

key players act in a coordinated manner. Following DNA replication, maintenance DNA 

methyltransferase acts on chromatin with acetylated H4 lysine-16. DNA methylation precedes 

and governs H3 lysine-9 methylation. The chromatin remodeling factor DDM1 could finally 

trigger the deacetylation of H4 lysine-16 (Soppe et al, 2002). Also, ATP-dependant chromatin 

remodeling factors use the energy derived from ATP hydrolysis to catalyze nucleosome 

mobilization, that is a net change in the position of the histone octamer relative to the DNA 

(Cairns, 1998). All these epigenetic phenomena work in conjunction to expedite transcription 

regulation. 

(ii)  Acetylation and deacetylation mechanisms 
 
Acetylation and deacetylation of nucleosomal core histones has been an intensely investigated 

field in the recent years. Acetylation at the lysine residues on the amino terminal tail of histones 

neutralizes the charge of the histone tails, thereby reducing their affinity for DNA (Norton et al, 

1989). Consequently, histone acetylation alters nucleosomal conformation and makes it more 

accessible for the transcription regulatory proteins to contact the chromatin templates (Imhof et 

al, 1997). Hypoacetylation on the other hand, is associated with transcriptionaly silent chromatin 

(Figure 5). These enzymes can be present and functional in the chromatin context ubiquitously, 

or may be specifically recruited by special repressor complexes (Ahringer, 2000). The enzymes 
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Figure 4. Post-translation modification sites of Histone proteins which lead to epigenetic 

regulation. Core histones are targets for post-translational modifications at distinct amino acid 

residues. The modifications depicted are acetylation (Ac, purple), methylation (Me, green), 

phosphorylation (P, red) and ubiquitination (Ub, orange).  Methylating enzymes identified to 

date include PRMT1 , CARM1 , PRMT5 , Set1 , Set2 , SET7/9 , SET8 , PR-Set7 , SUV39H1 , 

SUVH4 , SETDB1 , G9a , E(z) , KRYPTONITE , dim-5 , Ash1 , MLL , Dot1 , ATX1 and 

NSD1. In plants, ZmHAT-B has been shown to acetylate specifically lysines (K) 5 and 12 of H4, 

and the deacetylase ZmRpd3 can specifically deacetylate this distinct acetylation pattern. The 

plant-specific acetylation of lysine 20 of H4 is marked with an asterisk (p); methylation of H3 

lysines 14, 18 and 23 has only been detected in plants and are not included in the cartoon. A red 

frame marks lysine-9 in H3, which can be modified by acetylation as well as methylation (Loidl, 

2001). 

 

Figure 4. Post-translation modification sites of Histone proteins which lead to epigenetic 
regulation
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that catalyze hyper acetylation are called histone acetyl transferases (HATs) and the ones that 

catalyze hypoacetylation or removal of acetyl groups from the core histones, are called histone 

deacetylases (HDACs). Pioneer studies about the classification and function of histone 

modifying enzymes have been conducted in yeasts, but plants and fungi have also emerged as 

significant model systems (Graessle, 2001; Lusser, 2001). The molecular mechanism of action of 

the HATs and HDACs is illustrated in Figure 3. 

(iii)  Classification of HATs and HDACs 
 

By sequence analysis, four distinct families of HATs can be distinguished: (i) the GNAT-MYST 

family; (ii) the p300/CBP coactivator family; (iii) the TAFII250-related family; and (iv) the 

nuclear receptor coactivator family that is present in vertebrates but not in plants or fungi 

(Pandey et al, 2002). The HDACs on the other hand, have been classified into two groups in all 

eukaryotes: (i) members of the ATHDA1/HDA superfamily (Hu et al, 2000; Aravind et al, 1998; 

Groezinger et al, 1999) and (ii) members of the sirtuin family related to yeast SIR2 (Imai et al, 

2000). In contrast to other eukaryotes, plants contain the HD2-type deacetylases, a plant specific 

class that is unrelated to the other HDAC classes and forms the third HDAC class in plants 

(Lusser et al, 1997). The HD2 class has arisen from a series of gene duplications and diversions 

from parent populations. These proteins are thought to have taken over the function of the SIR 

proteins that are under-represented in plants (Dangl et al, 2001). Due to their unique disposition, 

this group of proteins forms a very interesting subject for study, with regards to what might be 

their functional role.   
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Figure 5. (A) Reversible transition of the chromatin from acetylated to deacetylated state. DNA 

is negatively charged and histone are positively charged, which leads to the strong histone–DNA 

interactions. When acetyl groups are added to histone tails, the Histones gain negative charge 

decreasing their affinity for DNA. Thus the DNA falls of the histone core and is exposed to 

transcription machinery. (B) Compacted, condensed form or chromatin when DNA is tightly 

wrapped around the histone octamer, leaving little space for transcriptional activation. (C) 

Acetylation of N-terminal histone tails leading to transcriptional activation. 

 
Figure 5. Reversible transition of the chromatin from acetylated to deacetylated state
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(iv) HDACs 

Histone deacetylases were have been reported in a different biological systems, including several 

mammalian cell lines and tissues (Taunton et al., 1996), fungi (Waterborg et al, 1982), plants 

(Sendra et al, 1988) and yeast (Carmen et al, 1999). Several histone deacetylases have been 

cloned and sequenced (Yang and Seto, 1997; Taunton et al, 1996). Histone deacetylase (HDAC) 

genes have been isolated and characterised in a number of eukaryotes including humans, mice, 

chicken (Gallus gallus), fruit-fly (Drosophila melanogaster) and the yeast Saccharomyces 

cerevisae and Arabidopsis thaliana (Yang and Seto, 2003). It is evident that in all of these 

organisms, the HDACs form a highly conserved protein family, that encodes isoforms of the 

enzyme that differ extensively in substrate specificity, intracellular localization and post-

translational modification (Khochbin and Wolffe, 1997).  

Three mammalian HDAC isoforms (HDAC1-3) and five yeast HDACs had been 

identified and several of these were biochemically characterized (Rundlett et al, 1996). These 

HDACs, taken together with the prokaryotic enzymes acetylspermine deacetylase (ASD) and 

acetoin utilization protein (acuC), constitute a deacetylase superfamily (Leipe and Landsman, 

1997). In yeast, members of this superfamily can be subdivided into two classes based on size 

and sequence considerations, as well as the observation that AtHDA1p and Hda1p function in 

biochemically distinct complexes (Robyr et al, 2002). The first class (I) consists of AtHDA1p, 

Hos1p, and Hos2p, and the second class contains Hda1p (Fischle et al, 1999). Similarly, in 

mammals, HDAC1, HDAC2, and HDAC3 conform to class I criteria and three human class II 

HDAC enzymes, HDAC4, HDAC5, and HDAC6 were found to deacetylate all four core histones 

in vitro (Groezinger et al, 1999; Fischle et al, 2001).  HDAC3, that is the smallest mammalian 

isoform, can be encoded by at least three different splice variants (Yang et al, 1997) and the 
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human HDAC1/HDAC2 proteins are very similar at the amino acid level and are about 60 

residues longer than HDAC3 at the C-termini. This extra domain is quite repetitive and is rich in 

charged amino acids. An even larger member of the HDAC/AtHDA1 family is the HDA1-p75 

component of the HDA histone deacetylase complex in yeast nuclei (Carmen et al,1996; 

Rundlett et al, 1996). HDA1 is functionally distinct to yeast AtHDA1, that is less sensitive to 

TSA and contained in the HDB histone deacetylase complex (Rundlett et al, 1996), and HDA1 is 

not involved in transcriptional regulation of those genes controlled by AtHDA1 (Rundlett et al, 

1998). Based on coimmunoprecipitation experiments, these HDACs are not associated with the 

previously identified NRD and mSin3A complexes that contain HDAC1 and HDAC2, and 

therefore are likely to be components of distinct complexes that perform alternate functions 

(Rundlett et al, 1996). The picture appears to be less complicated in Drosophila, that has only 

two known orthologues of AtHDA1: d-AtHDA1 (De Rubertis et al, 1996), also known as 

dHDAC1, and dHDAC3 (Johnson et al, 2002).  In plants, different HDAC genes have been 

identified and classified into three distinct gene families (Pandey et al, 2002). The first family, 

named the HDA gene family, contains members related to the yeast sequences AtHDA1 and 

HDA1 (Rundlett et al, 1996; Taunton et al, 1996; Rossi et al, 1998; Lechner et al, 2000). This 

family is further divided into three classes based on their degree of homology with AtHDA1 

(class I), HDA1 (class II), or a third group of sequences phylogenetically distinct from the first 

two classes. The members of the second family of plant HDACs, termed the SRT family, are 

related to yeast Sir2 (Imai et al, 2000; Frye, 1999). In contrast to other eukaryotes, plants contain 

a third family of enzymes, the nucleolar-phosphoproteins HD2 (HDT gene family), that appear to 

be plant-specific (Lusser et al, 1997; Dangl et al, 2001). 
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  There are three regions of very highly conserved amino acid residues (histidines, 

aspartates and glycines) that are shared by all members of the HDAC/AtHDA1 family, 

irrespective of the highly divergent nature of the C-terminal regions (Dangl et al, 2001). These 

regions are presumed to form part of the active site, since the mutation of conserved aspartate 

and histidine residues to asparganine or alanine could abolish most, if not all, histone deacetylase 

activity of HDAC1 (Hassig et al, 1998). In addition, the interactions with the corepressor 

proteins mSin3A and RpAp48 were lost in all HDAC1 mutants except histidine 141 (Dangl et al, 

2001). This suggests that some of the conserved residues are involved in catalysis and others in 

maintaining the interactions between HDAC1 and other members of the corepressor complex. 

(v)  HD2-type histone deacetylases 

The HD2-type HDAC gene family was first discovered in maize as a heavy molecular weight 

acidic nucleolar protein that could be activated/deactivated by phosphorylation (Lusser et al, 

1997). Subsequently, this family was uncovered in Arabidopsis thaliana with four genes 

comprising this group (Wu et al, 2000).  A subsequent search with the use of the PSI-BLAST 

program, that incorporated a conservation profile of two plant histone deacetylases,  revealed 

statistically significant (the probability of a random match was below 10 3 in each case and was 

as low as 5 × 10 7 for FKB1_SPOFR) sequence similarity to insect proteins identified as FKBP 

family peptidyl-prolyl cis-trans isomerases (PPIases) and to a trypanosomal RNA-binding 

protein (Dangl et al, 1997; Altshul et al, 1997). The conserved region included an NH2-terminal 

domain found in    each of these proteins and was distinct from the PPIase domain and the 

database of expressed sequence tags (ESTs) with these sequences resulted in the characterization 

of a novel family, that includes proteins from plants, yeast, and two parasitic apicomplexans, 

Toxoplasma gondii and Cryptosporidium parvum. Thus, this new protein family, HD2, for that 
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histone deacetylase activity was predicted, appeared to be widespread among eukaryotes, 

although the absence of members from vertebrates was conspicuous.  

  Inspection of the HD2 family alignment shows a number of conserved hydrophobic 

positions as well as two conserved polar residues (Dangl et al, 2001), namely, an invariant 

aspartic acid and a histidine, that is replaced by an arginine in the trypanosomal RNA-binding 

protein Nopp44/46 and in the yeast FKBP (Alnemri et al, 1994). It appears that the invariant 

aspartic acid is the nucleophile involved directly in lysine deacetylation, that may be facilitated 

through a charge relay system with the conserved histidine (arginine). Multiple alignment-based 

secondary structure prediction indicated an all-beta structure for the histone deacetylase domain, 

without detectable similarity to any known protein fold. The domain organization of the 

(predicted) histone deacetylases of the HD2 family is of particular interest. In addition to the 

deacetylase domain, they all contain acidic stretches of various length, that may be diagnostic of 

nucleolar localization, or of association with basic tails of histones. Besides HD2, nucleolar 

localization has been shown for the trypanosomal RNA-binding protein Nopp44/46 and for one 

of the yeast FKBPs, whereas the Spodoptera FKBP46 is a nuclear protein that binds DNA in 

vitro. The presence of a histone deacetylase and a PPIase in one protein as distinct domains 

makes functional sense, because in order to be targeted to the specific sites of their action on 

chromatin, histone deacetylases form complexes with a variety of chromatin-associated proteins. 

The chaperone-like activity of FKBPs may be required for the proper assembly of such 

complexes. FK506 binding proteins (FKBPs) are a family of distinct proline isomerases that are 

targets for a number of clinically important immunosuppressive drugs (Martin et al, 1995). 

Members of both families catalyze cis/trans isomerization of peptidyl-prolyl bonds that can be a 

rate-limiting step during protein folding in vitro and in vivo. These proteins are known to play a 
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role in stress response pathways in yeast. Alternatively, the FKBP domain of HD2 proteins may 

be involved in changing the conformation of proline-rich segments in histone COOH-terminal 

tails, perhaps concomitantly with deacetylation. Additionally, the zinc finger structure at the 

COOH-terminal of six of the eight HD2 proteins is unique to plant proteins and cannot be 

observed in the related FKBPs or trapanosomal Nopp44/46 proteins. Because of the nature and 

spacing of the zinc chelating residues (CX2CX2-4FX5LX2HX3-5H), they belong to the TFIIIA-

type zinc fingers that are involved directly in DNA binding (Takatsuji, 1998). Apart from DNA 

binding, the zinc fingers can also mediate protein-protein interactions, where individual fingers 

are sufficient to confer interaction (Mackay and Crossley, 1998). This is well in line with 

previous results demonstrating that ZmHD2a was isolated in a 400KDa protein complex. 

 In previous studies conducted on  the HD2 gene family, one of the members, AtHD2A, 

was able to mediate transcriptional repression when targeted to the promoter of a reporter gene 

(Wu et al, 2000). When AtHD2A was knocked out in Arabidopsis thaliana using antisense RNA, 

the seed development was aborted, indicating that these genes might play a role in seed 

development. Isolation of HD2 proteins from maize embryos by Lusser et al (2000). implicates 

that the HD2 family might play a role in the regulation of gene expression essential in embryo 

development. Additionally, plant growth and yield potential are significantly influenced by 

various abiotic stresses such as drought, salinity, and cold. A common feature found in plants 

grown under water stress is a transient increase in the level of the phytohormone abscisic acid 

(ABA) (Finklestein and Rock, 2002). ABA plays important roles in many aspects of plant 

growth and development such as embryo maturation, seed dormancy, germination, stomatal 

aperture, as well as sugar signaling and regulation of expression of stress-responsive genes 

(Gazzarrini and McCourt, 2001). It is quite interesting to investigate the role of HDACs in 
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hormone signaling because little information is available on the involvement of chromatin 

modifiers in stress signaling. 

(vi)  ABA-a seed maturation and stress signaling molecule 

When plants transition from heterotrophic to autotrophic growth, the regulation of this phase 

shift is very tight. Plants have evolved protective mechanisms to ensure their survival under 

adverse environmental conditions during this transition (Albinsky et al, 1999). Also, plants have 

developed intrinsic defense mechanisms to tolerate oppressive environmental conditions. The 

plant hormone abscisic acid (ABA) is the forerunner stress responsive agent that plants produce 

under these extreme situations. ABA regulates many aspects of plant development and 

physiology, including seed maturation and dormancy, as well as responses to environmental 

stress conditions, such as drought, salinity, and low temperature (Fedoroff, 2002; Finkelstein et 

al, 2002; Himmelbach et al, 2003). Components of the ABA signal transduction pathways 

(Giraudat, 1995) range from early signaling intermediates such as G proteins  and protein 

kinases/phosphatases, to late stage transcription factors and RNA metabolic proteins (Cowan, 

2001). Whereas some components appear to be regulators of multiple ABA responses, few are 

required for all responses, suggesting that ABA responses in different cell types or at various 

developmental stages may differ to certain extent.     
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Figure 6. (A) Structure of ABA, a C-15 compound (Finkelstein and Rock, 2002). (B) Table 

displaying the different enzymes essential during de novo ABA synthesis in plants (Bray, 2002). 

Figure 6. Structure of ABA, a C-15  
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(vii) Chemical nature of ABA 

ABA is a sesquiterpenoid (C15H20O4) with one asymmetric, optically active carbon atom at C-1’ 

(Finklestein and Rock, 2002). The naturally occurring form is S-(+)-ABA (Figure 6). ABA 

biosynthesis branches from the carotenoid biosynthetic pathway. Many of the genes involved in 

ABA biosynthesis are members of multi-gene families. Members have identical functions the 

expression of the genes may control ABA biosynthesis in response to different environmental 

stimuli or developmental cues and permit regulation of ABA biosynthesis (Holdsworth et al, 

1999) in different organs or tissues.  

(viii)  ABA biosynthetic mutants 

The first-described ABA-deficient mutant of Arabidopsis emerged out of an allelic series of 

mutations, aba (now designated aba1). These mutant forms were isolated from a suppressor 

screen of the non-germinating gibberellin- deficient ga1 mutant (Koornneef et al, 1982). The 

different enzymes involved in ABA biosynthesis are depicted in Figure 6. The transposon-

tagged, non-dormant wilty mutant of Nicotiana plumbaginifolia (Npaba2) was shown to be 

orthologous to Arabidopsis aba1 (Marin et al, 1996), from that the aba1 gene was first 

identified. The reduction in AtZEP transcript levels was identified as the molecular basis for two 

aba1 mutant alleles (Audran et al, 2001). In seeds of Arabidopsis and tobacco, the 

ABA1/NpABA2 mRNA level peaks around the middle of development when ABA levels begin to 

increase. NpABA2 overexpression in transgenic plants led to increased mRNA levels that 

increased ABA levels in mature seeds and delayed germination, while antisense NpABA2 

expression resulted in a reduced ABA abundance in transgenic seeds and rapid seed germination 

(Frey et al, 1999). The rice OsABA1 gene is an orthologue of ABA1 since a transposon-tagged 

Osaba1 mutant was viviparous, wilty, and ABA-deficient (Agrawal et al, 2001). Two additional 
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Arabidopsis ABA biosynthetic mutants aba2, aba3 (Leon-Kloosterziel et al, 1996) were 

identified. Screens related to hormones, sugar, salt, or stress has led to discovery of more alleles 

including aba1, aba2 and aba3. Protein extracts from aba2 and aba3 plants display a reduced 

ability to convert xanthoxal to ABA (Schwartz et al, 1997). The aba2 mutant is blocked in the 

conversion of xanthoxal to ABA-aldehyde and aba3 mutant is impaired in the conversion of 

ABA-aldehyde to ABA (Schwartz et al, 1997). The aao3 mutant is ABA-deficient in leaves and 

has no detectable AO (Aldehyde Oxidase) activity, but seed dormancy is nearly normal, unlike 

all other ABA-deficient mutants (Akaba et al., 1998). The epoxy-carotenoid cleavage enzyme 

(termed NCED, for 9- cis-epoxy-carotenoid dioxygenase) is considered to be the key ABA 

biosynthetic step, in terms of potential regulation by environmental and developmental cues 

(Chernys et al, 2000). Ectopic expression of a tomato NCED cDNA causes overproduction of 

ABA in tomato and tobacco, that suggests that NCED is rate limiting for ABA biosynthesis 

(Thompson et al, 2000b). Increased seed dormancy has been reported for transgenic tobacco 

expressing the bean PvNCED1 (Akaba, 2002). By contrast, drought-intolerant phenotype was 

evidenced as a result of antisense suppression and T-DNA knockout lines of AtNCED3. It is 

evident that the de novo production of ABA is essential for proper seed development and 

germination. Additionally, it is also a requirement for effective stress signaling in plants when 

they are faced with environmental challenges.  

(ix)  ABA signaling 

Once ABA is produced, how does it expedite its physiological effects? Hormone response 

mutants have traditionally been defined as individuals that resemble mutants with defects in 

hormone biosynthesis yet can not be restored to a Wild type phenotype by addition of the 

relevant hormone (Finklestein and Rock, 2002).  The genetic screens and selections that have 



 21

been used to date include production of non-dormant seeds (Koornneef et al, 1982), loss or gain 

of sensitivity to ABA at germination (Koornneef et al, 1984; Finkelstein, 1994; Cutler et al, 

1996), seedling growth (Lopez-Molina and Chua, 2000), root growth (Himmelbach et al, 1998), 

misexpression of reporter genes (Ishitani et al, 1997; Foster and Chua, 1999; Delseny et al, 

2001) and screens for suppressors or enhancers of GA-deficient non-germinating lines or ABA-

INSENSITIVE (ABI) lines (Steber et al, 1998; Beaudoin et al, 2000; Ghassemian et al, 2000). 

Additional mutants have been isolated with defects in responses to multiple signals, including 

ABA, via non-ABA-based screens such as salt-resistant germination (Quesada et al, 2000), 

sugar-resistant seedling growth or gene expression (Arenas-Huertero et al, 2000; Huijser et al, 

2000; Laby et al, 2000; Rook et al, 2001), or defects in auxin, brassinosteroid or ethylene 

response (Wilson et al, 1990; Alonso et al, 1999; Ephritikhine et al, 1999; Li et al, 2001).  

Broadly speaking, the ABA response mutants can be categorized into two groups. ABA 

hypersensitive mutants include mutations in protein farnesylation agent ERA1, Inositol signaling 

agent FRY1 and RNA processing and turnover agents ABH1, HYL1, SAD (Finklestein and 

Somerville, 1990). ABA insensitive mutants include phosphatases, ABI1 and ABI2 and 

transcription factors ABI3, ABI4 and ABI5. Another set of mutants isolated in a screen for ABA 

resistant root-growth was the growth control by ABA (gca1-gca8) mutants (Finklestein et al, 

2002). 
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Figure 7.  Model for ABA mediated signal cascade in Arabidopsis.  Once ABA binds to its 

receptor (putative) on the membrane, which is a G-protein coupled receptor, it induces the 

exchange for a GTP molecule. This event activates the PLD/PLC enzymes which produce DAG 

and IP3. Subsequently, IP3 travels into the cytosol and activates the ER Ca2+channel. 

Ca2+release into the cytosol generates more Ca2+channels to open from the plasma membrane. 

This intracellular Ca2+is bound by Calcium binding proteins (CBPs), which can activate the 

protein kinases (PKs). The activated PKs can travel to the nucleus and phosphorylate the ABI 

transcription factors, thus activating them, leading to LEA synthesis. ERA1 inhibits this cascade 

by recruiting the Rop/Rac GTPases to the membrane. Also, the ABI1/ABI2 proteins de-

phosphorylate the phosphoproteins (PKs?) to inhibit activation of nuclear ABI transcription 

factors. The arrows indicate activation an the perpendicular bars indicate repression. 

Figure 7.  Model for ABA mediated signal cascade in Arabidopsis. 
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(x) Known signaling cascade 

Biochemical and pharmacological studies have shown that early events in ABA signaling 

involve participation of GTP binding proteins, phospholipases (Hirayama et al, 1995), protein 

kinases (Cadenas et al, 1999) and phosphatases (Gosti et al, 1999).  Downstream signaling 

includes transcription factors that expedite signals at the development level. Figure 7 illustrates is 

a schematic of how the signaling might be regulated at various steps. In the plasma membrane, a 

putative ABA receptor has been shown to induce PLD (Phospholipase D) activity (Gampala et 

al, 2001; Fan et al, 1997; Katagiri et al, 2001). Also, transgenic studies have shown that the 

small GTPase Rop6/AtRac1 can inhibit ABA effects on actin cytoskeleton reorganization in 

guard cells (Hwang et al, 2001), that might indicate G-protein nature for this putative receptor 

(Hong et al, 1997). After contact with ABA, this receptor will activate PLD/PLC (Phospholipase 

C) activity to produce DAG (Diacyl glycerol) and IP3 (Inositol triphosphate). IP3 will induce Ca2+ 

release from intracellular stores and this will led to Ca2+ induced Ca2+ release from the plasma 

membrane channels (Hamilton et al, 2000). This Ca2+ elevation will led to the activation of 

protein kinases that can travel into the nucleus and phosphorylate transcription factors such as 

ABI4 and ABI5 (Knetsch et al, 1996). Both the ABI4 and ABI5 gene products contain Ser/Thr-

rich domains that could be sites of phosphorylation (Finkelstein et al, 1998; Finkelstein and 

Lynch, 2000) and recent studies have demonstrated that ABI5 protein is stabilized by ABA 

induced phosphorylation (Lopez-Molina et al, 2001). This could further led to the activation of 

these transcription factors, thus allowing development signals to proceed. The ERA1 protein acts 

as a negative regulator of this process, by adding farnesyl groups to the GTPases that tether them 

to the membrane, thus recruiting them to the G protein coupled receptors (Cutler et al, 1996). 

Additionally, phosphatases such as ABI1 (Gosti et al, 1999; Hagenbeek et al, 2000) and ABI2 
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might dephosphorylate protein kinases thereby inactivating them, leding to inactivation of ABI4 

and ABI5. Although either ABI4 or ABI5 could be a substrate for dephosphorylation by the ABI 

PP2Cs, consistent with a negative regulatory role for the PP2Cs, neither interacts with ABI1 in a 

two-hybrid assay (Nakamura et al, 2001)  despite showing strong genetic interactions as digenic 

mutants (Finkelstein, 1994). 

(xi)  ABA signaling in maturing seed germination and growth 

When developing embryos undergo a transition into the maturation phase (Holdsworth et al, 

1999), they arrest growth by inhibiting cell division and inducing cell enlargement and begin to 

accumulate storage reserves (Figure 8). This growth phase transition is correlated with a 

subsequent increase in seed ABA content that appears to be required for cell cycle arrest at the 

G1/S transition (Levi et al, 1993; Liu et al, 1994). LEC gene function is required to prevent 

premature germination at the end of the cell division phase of embryogenesis (Raz et al, 2001). 

LEC works in conjunction with cyclin-dependent kinase inhibitors such as ICK1. This level of 

control is achieved by the maternal peak of ABA in the first phase of maturation (Karssen et al, 

1983). In the second phase of maturation, the embryonic peak of ABA allows the LEA (late 

embryogenesis abundant) proteins to accumulate. These signals induce accumulation of 

protectants such as small hydrophilic proteins, sugars, proline, and glycine-betaine, that serve as 

storage reserves and prepare the seed for desiccation (Bray, 2002). ABI3, ABI4 and ABI5 are 

essential for maintaining the dormancy of the seed and LEA synthesis. Ectopic expression of 

either ABI3 or ABI4 results in ABA hypersensitivity of vegetative tissues, including ABA-

inducible vegetative expression of several “seed-specific” genes, that is partly dependent on 

increased ABI5 expression (Parcy et al, 1994; Söderman et al, 20 00). Additionally, ABI3 and 
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Figure 8. Model for ABA signaling during embryo-development. Left; Phase I of seed 

maturation when ABA is of maternal origin. ABA signals travel through the plasma membrane 

and cytosol and reach the nucleus probably via a MAP Kinase like pathway. Once in the nucleus,  

essential transcription factors like LEC, which control cell cycle are activated. Also, reserve 

accumulation promoting actors like ABI3 are activated. Right; Phase II of seed maturation is 

initiated by a second peak of ABA contributed by the embryo. This time, nuclear transcription 

factors ABI4 and ABI5 are activated in addition to LEC1 and ABI3. These factors promote LEA 

synthesis and desiccation tolerance. This dormancy property is down-regulated by ABI1/ABI2 

and ERA1 as they disrupt the signals from reaching the nucleus. The arrows indicate activation 

an the perpendicular bars indicate repression. 

 
Figure 8. Model for ABA signaling during embryo-development.
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ABI5 display direct and synergistic interactions in two-hybrid analyses in yeast and transient 

reporter activation assays in rice protoplasts (Hobo et al, 1999; Gampala et al, 2001; Nakamura 

et al, 2001). 

 The commitment to germinate is also controlled by antagonistic interactions between 

ABA and gibberellins, ethylene, and brassinosteroids (BR) (Finklestein et al, 2002). The ability 

to induce ABI5 accumulation is strongly correlated with maintenance of desiccation tolerance in 

these seedlings. ABA, the induced ABI5, and potentially other interacting factors may prevent 

the loss of desiccation tolerance by delaying escape from phase two of germination under 

conditions of low moisture (Lopez-Molina et al, 2001). Although the precise roles of the ABIs in 

regulating lateral root growth are not understood, it is noteworthy that ABI5 is specifically 

expressed in root tips from emergence onward (Brocard et al, 2002). A putative model for the 

ABA signal cascade during this phase is presented in Figure 9. 

 ABI3 expression is localized to the meristem and appears to regulate vegetative 

quiescence processes, plastid differentiation, and floral determination (Rohde et al, 1999; Kurup 

et al, 2000). During stress imposition upon plants, there is a concomitant increase in ABA and its 

signaling molecules. Many of these encode proteins that are structurally similar to some of the 

LEA proteins that accumulate during the acquisition of desiccation tolerance in seeds, while 

others encode proteases, presumed chaperonins, enzymes of sugar or other compatible solute 

metabolism, ion and water-channel proteins, and enzymes that detoxify active oxygen species 

(Bray, 2004). Drought signals and osmotic shock induce ABA synthesis in the plant system and 

this has direct effects on stomatal aperture in addition to cell development ABA activates rise in 

intracellular Ca2+ that led to activation of S-type anion channel activity that ultimately led to the 

de-polarization of the guard cells (Hwang et al, 2001). The series of chemical events that take 

place upon ABA activation are diagramed in Figure 10. 
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Figure 9. Model for ABA signaling during germination-post germination phase. During this 

phase transition, ABA signaling has to be down-regulated to allow germination, the PCKL (PcG 

proteins) are known to repress LEC1 in non-seed maturation growth stages. The arrows indicate 

activation and the perpendicular bars indicate repression. 

 

Figure 9. Model for ABA signaling during germination-post germination phase. 
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Figure 10.  Model for ABA signaling in stomatal guard cells. 

(1) ABA binds to as yet uncharacterized receptor(s). Although shown here on the plasma 

membrane, there is evidence for both intra- and extra-cellular perception. (2) ABA induces 

oscillating increases in cytosolic via production of  reactive oxygen species that contribute to 

opening of plasma membrane Ca2+in channels -release from internal stores through three types of 

Ca2+channels regulated by IP3 (produced by phospholipase C), cyclic ADPribose (cADPR), and 

Ca2+itself. (3) The increased Ca2+ inhibits plasma membrane H+ pumps -inhibits K+ in channels, 

and -activates Clout (anion) channels, resulting in depolarization of the membrane. (4) 

Depolarization activates K+ out and further inhibits K+ in channels. (5) ABA induces PLD-

mediated production of phosphatidic acid (PA), which inactivates K+ in channels. (6) ABA 

causes an increase in cytosolic pH which (7) activates K+ out channels and inhibits H+ pump 

activity by depleting the substrate) (8) K+ and anions to be released across the plasma membrane 

are first released into the cytosol from guard cell vacuoles. The net result is that K+ and anions 

leave the guard cell, guard cell turgor decreases, and the stomata close. These 

electrophysiological and volume changes are accompanied by, and require, reorganization of the 

actin cytoskeleton and at least a two-fold change in plasma membrane surface area (Finkelstein 

and Rock, 2002). 

                       Figure 10.  Model for ABA signaling in stomatal guard cells. 
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METHODS AND MATERIALS 
 

 

(i)  DNA and protein sequence analysis  

DNA and protein sequence analysis was carried out using blast searches (Altschult et al 

1990) and the vector NTI suite program (InforMax Inc., Bethesda, MD, USA). 

(ii)  RT-PCR analysis  

One microgram of total RNA was used for the first-strand cDNA synthesis after incubation at 

65°C for 10 min as described by Weigel and Glazebrook, (2002).  cDNA was synthesized in 

a volume of 20 µl that contained MoMLV RT buffer (Promega, Madison, WI, USA), 10 mm 

dithiothreitol, 1.5 µm poly (dT) primer, 0.5 mm dNTPs, 2 U of MoMLV RT at 37°C for 1 h. 

All PCR reactions were performed with 0.5 U of Taq polymerase (PGC Scientific, 

Gaithersburg, MD, USA), the buffer provided by the supplier, 0.2 µM dNTPs, and a pair of 

primers (0.1 µM each) in a final volume of 20 µl. PCR parameters differed for each gene: 

thermocycling conditions were 94°C for 2 min followed by 25-40 cycles of 94°C for 1 min, 

62-65°C for 1 min, and 72°C for 2 min, with a final polymerization step at 72°C for 10 min. 

The primers used for RT-PCR are listed in Table VI. The primers used for the HD2 family 

spatial profiling are listed in Table V (21N2pr1/21N2pr4, HD2Bpr3/HD2Bpr4, 

HD2Cpr3/HD2Cpr4, and HD2Dpr1/HD2Dpr2). The primers used for subcloning the HD2 

genes and primers used for their RT-PCR profiling are the same. 

(iii)  GFP localization  

Protoplasts were isolated from Arabidopsis seedlings as described by Wigel and Glazebrook 

(2002). Transgenic seedlings germinated in the dark to reduce chlorophyll content) were 
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macerated and incubated in enzyme solution (Maceroenzyme R10 and Cellulase R10) for 10 

minutes. Subsequently, the tissue-enzyme mixture was subjected to vacuum for thirty 

minutes. The solution was then incubated at room-temperature shaking for 90 minutes at 40 

rpm, after that the solution was filtered through a 70-µm nylon mesh and ready for use. The 

fluorescence photographs of protoplasts were taken using an Olympus florescent microscope 

fitted with fluorescein isothiocyanate filters (excitation filter, 450-490 nm; emission filter, 

520 nm; and dichroic mirror, 510 nm). 

(iv)  Particle gun-delivery assays 

Tobacco (SR1) plants were grown in vitro in half-strength MS medium (Murashige and 

Skoog, 1962) in Magenta boxes (Magenta Corp., Chicago, USA) and kept in a growth 

chamber at 25°C. After transfer to fresh medium for 2-3 weeks, uniform-sized leaves (about 

3 cm in width) were cut off from the plants and placed on a medium consisting of MS salts, 

B5 vitamins (Gamborg et al, 1968), 1 mg l 1 6-benzyladenine, 0.1 mg l 1 naphthalene acetic 

acid, 3% sucrose, and 0.25% Gelrite in a 20 mm  15 mm Petri dish. The leaves were pre-

conditioned on this medium for 1 day prior to gene delivery. Plasmid DNA was isolated 

using the Qiagen Plasmid Midi Kit (Qiagen, Valencia, CA, USA). The reporter plasmid was 

mixed with an effector plasmid at a 1: 1 ratio (weight). In the control, the reporter plasmid 

was mixed with an equal amount of the control plasmid pUC19. A modified particle inflow 

gun (Brown et al, 1994) was used for DNA delivery to the tobacco leaves. Twenty-four 

hours after bombardment, GUS gene expression was determined by recording the number of 

GUS reporter gene expression events as indicated by the number of blue foci per explant 

(Jefferson et al, 1987). 
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(v)  Promoter Motif Analysis 

To identify potential stimulus responsive cis-elements in the AtHD2B and AtHD2C promoter, 

sequence 3000 bp upstream to the transcription start site of the genomic AtHD2B and 

AtHD2C was submitted to PlantCARE database at the TAIR cis-element resource website 

(http://oberon.fvms.ugent.be:8080/PlantCARE/index.html). The motifs of interest were 

grouped  appropriately. 

(vi)   Histochemical GUS staining 

Transgenic tissue expressing promoter driven GUS was harvested and incubated in β-

glucuronide solution for a period of 12 hours at 37°C. Whole plants were immersed in 1 mM 

5-bromo-4-chloro-3-indolyl-glucuronic acid solution in 100 mM sodium phosphate, pH 7.0, 

0.1 mM EDTA, 0.5 mM ferricyanide, 0.5 mM ferrocyanide, and 0.1% Triton X-100. 

(vii) ABA and salt treatment of the GUS transgenic lines 

The AtHD2C promoter:GUS transgenic seedlings were germinated in MS medium free of 

ABA or salt. Two to six day old seedlings were transferred onto media containing 100 µM of 

ABA for 6 hours. Also, these seedlings were transferred to medium containing 200 mM NaCl 

for 6-12 hours. Subsequent to the treatment, the seedlings were incubated in the X-gluc 

staining solution at 37ºC for 12 hours. 

(viii) Plasmid constructions 

For each of the plasmid constructs, the general procedure (Sambrook and Russell, 2001) was 

followed. The sequences to be cloned were amplified by PCR (Table I) from either cDNA 

templates or from genomic DNA sequences prepared from plant extracts. The primers used to 

amplify these sequences contained restriction sites in their 5’ ends. Simultaneously, the vector 
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into that the sequence was to be inserted was digested (Table II) with the same restriction 

enzymes. Subsequently, the amplified DNA sequences and the digested vector (excised band 

from gel) were purified using the Qiagen DNA purification kit. The DNA fragments were 

digested with restriction enzymes and purified once again after digestion. Then the purified 

vector as well as the cDNA fragments were mixed together in a ligation (Table III) reaction. The 

ligation reaction was transformed into E. coli. The bacteria were plated on LB medium 

containing either ampicillin or kanamycin and colonies resistant to antibiotics were selected. The 

transformants were then used to isolate plasmid DNA. This plasmid DNA was digested with 

restriction enzymes specific to each clone and electrophoresed to identify vector and insert. This 

would confirm that the colony carried the desired construct. The list of enzymes and primer 

sequences used for different constructs is provided in Table IV.  

(a)  E. coli transformation  

Electro-competent cells (Top 10 or DH5-α) that are pre-prepared were retrieved from their -80ºC 

storage and were thawed on ice. At the same time cuvettes for the transformation are UV-

sterilized. Subsequently, 1-2 µl of the ligation reaction mix was added into the melted competent 

cells and mixed. The mixture was then transferred into the cuvette cavity and the cuvette was 

then placed in the electroporater (Bio-Rad MicroPulser). The cuvette was pulsed with an electric 

shock for a millisecond. The cuvette was then removed from the electroporater and 1 ml of 

sterile LB medium was used to wash the cavity of the cuvette. This medium carrying the 

transformed cells was then incubated with shaking at 37ºC for 1 hour. Subsequently, the 
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            Table I Standard PCR reaction used for all reactions 
 

Contents of 
Reaction 

Supplier 
Company 

 
Amount 

10X Taq Polymerase 
Buffer 

    Promega        5µl 

25mM MgCl2     Promega        3µl 

2.5mM dNTP     Promega        3µl 

DNA template     Own        1µl 

Primer1     Invitrogen        1µl 

Primer2   Invitrogen        1µl 

Taq Polymerase    Promega        1µl 

Distilled Water     Own            
      35µl 

Total Volume              
     50µl 

 

Template amount and MgCl2 amount was 

changed from time to time when the give 

quantities were not sufficient to give enough 

PCR product. PCR reaction tubes are set up 

for required (20-30) amount of cycles at 

calculated annealing temperature in the 

automated thermocycler. 
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       Table II Standard double restriction enzyme digestion for all reactions used 
 

Contents of Reaction    Supplier Company   Amount 
10X Reaction Buffer     New England Biolabs        2µl 
DNA to be digested       Self-prepared        8µl 
Restriction Enzyme 1    New England Biolabs        1µl 
Restriction Enzyme 2     New England Biolabs        1µl 
double distilled Water       Self-prepared        8µl 
         20µl 

 

If the amount of DNA was increased for the reaction (20µl) then the 

reaction volume was increased to 40µl. Reaction volume should always be 

10X of that of the reaction buffer. Therefore for 40µl, 4µl of buffer would 

be added. The reaction buffer is to be chosen carefully considering 

maximum enzyme efficiency for both enzymes being used. Usually, the 

Multicore buffer is an all-purpose buffer. Restriction digestion reaction 

tubes are set at 37ºC overnight for complete digestion. 

 

 

Total volume 
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                                 Table III. Standard Ligation reaction used for all reactions 
 

Contents of 
Reaction 

Supplier 
Company 

 
Amount

10X Ligation Buffer Promega        1µl 

Vector DNA 
(digested) 

Own        2µl 

Insert DNA 
(digested) 

New England 
Biolabs 

       2µl 

T4 DNA Ligase  New England 
Biolabs 

       1µl 

Distilled Water Own        4µl 

Total Volume           
      10µl 

 

Ligation reactions are set up at room temperature for 1 

hour or at 4ºC overnight. 



 40

                  Table IV. Primers, restriction enzymes, selective media and vectors used in subcloning 
 

 

 

 

 

 

 

 

 

 

 

 

 
CONSTRUCTS 

 
VECTOR 

SELECTION 
Bact/Plants 

RESTRICTION 
Digest 

PRIMER 
Pairs 

35S:HD2B pCAMBIA1302 Kan/Hyg 5’NcoI/3’BglII HD2Bpr3 
HD2Bpr4 

35S:HD2C pCAMBIA1302 Kan/Hyg 5’NcoI/3’BglII HD2Cpr3 
HD2Cpr4 

HD2Bpro:GUS pCAMBIA1381 Kan/Hyg 5’SalI/3’NcoI HD2Bpropr1 
HD2Cpropr2 

HD2Cpro:GUS pCAMBIA1381 Kan/Hyg 5’EcoRI/3’HindII
I 

HD2Cprpr3s 
HD2Cpropr2 

pG4BDHD2B pGBD21-C3 Ampicillin 5’EcoRI/3’BglII HD2Bpr7 
HD2Bpr4 

pG4BDHD2C pGBD21-C3 Ampicillin 5’XmaI/3’BglII HD2Cpr3 
HD2Cpr4 

35S:GAL4-HD2A(∆) pCAMBIA2300 Kanamycin 5’XmaI/3’SacI PRM1s 
PR4 

35S:GAL4-HD2A(H25A) pCAMBIA2300 Kanamycin 5’XmaI/3’SacI FM1a/PR1 
RM1S/PR4 

35S:GAL4-HD2A(D69A) pCAMBIA2300 Kanamycin 5’XmaI/3’SacI FM2a/PR1 
RM2S/PR4 
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            Table V Primers and their sequences used for subcloning 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
PRIMERS 

       
      SEQUENCE 

21N2pr1 5'atggagttctggggaatttg3' 

21N2pr4 5'cgtgcttggccttgttgtgag3' 

HD2Bpr3 5'atggagttctggggtgttgaag3' 

HD2Bpr4 5'tcaagcagctgcactgtgtttg-3' 

HD2Bpr7 5’aattgaattcatggagttctggggagttg3’ 

HD2Cpr3 5'atggagttctggggtgttgaag3' 

HD2Cpr4 5'tcaagcagctgcactgtgtttg3' 

HD2Dpr1 5'atggagttttggggtatcg3' 

HD2Dpr2 5'ctactttttgcaagagggac3' 

UBQpr1 5'gatctttgccggaaaacaattggaggatggt3' 

UBQpr2 5'gacttgtcattagaaagaaagagataacagg3' 

HD2Bpropr1 5’aattgtcgacatgcagtgattagggaagag3’ 

HD2Cpropr2 5’atatccatggttgttgaacgaggaagagag3’ 

HD2Cprpr3s 5’aattgaattcgcaaagctaaaagaggaac’ 

HD2Cpropr2 5’atataagcttgtgcgaggtagtgtgatc3’ 

HD2Cpr3 5'atggagttctggggtgttgaag3' 

HD2Cpr4 5'tcaagcagctgcactgtgtttg3' 

PRM1s 5'aattcccgggaattgaagttaaatcaggaaagc3' 

PR4 5'acgtgagctcagaaaccacttcacttggc3' 

FM1a 5'ctgagaaacggcgataagaatgccttcttcag3' 

RM1S 5'cattcttatcgccgtttctcaggcatcgcttg3' 

FM2a 5'tccccaagtggcagaaagctcaaactccttg3 

RM2S 5'gagctttctgccacttggggaaaaggaagtg3 
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Table VI Primers sequences used for RT-PCR  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 SEQUENCES 

LEC 5’ 5’ctgataatgcccttctgagc3’ 

LEC 3’ 5’tctttaagaggcaagaccc3’ 

RD29B 5’ 5’gataccttccgaccagatagc3’ 

RD29B 3’ 5’cgaaaaccccatagtcccaac3’ 

RAB18 5’ 5’cagctctagctcggaggatg3’ 

RAB18 3’ 5’ccgggaagcttttccttgatc3’ 

ICK1 5’ 5’gaggaaaacgatggaggagac3’ 

ICK1 3’ 5’ctaatggcttctccttctcg3’ 

ADH1 5’ 5’aactgcagacggattagaagccgccgagcgggtgacagccctccgagcttgcatgcaacttcttttc3’ 

ADH1 3’ 5’ttgcaagcttcatggagttgattgtatgcttgg3’ 

ABI1 5’ 5’gccatgtcgagatccattgg3’ 

ABI1 3’ 5’aacgatgcatccccagccac3’ 

ABI2 5’ 5’caagatccattggcgatagatacc3’ 

ABI2 3’ 5’cctcttttctccgcccggaag3’ 

AREB 5’ 5’gaagccagatgtcacctgat3’ 

AREB 3’ 5’caatgtccttcgcaagcatt3’ 

KAT1 5’ 5’cttcatgaaacttagagggcaac3’ 

KAT1 3’ 5’ccactttggctctctctatc3’ 

KAT2 5’ 5’aggttgctctgatgcagatc3’ 

KAT2 3’ 5’ccgcattcgtgacctttgtg3’ 

SKOR 5’ 5’gtggctccaaagagcctaaag3’ 

SKOR 3' 5’acacaagaagcctccggaac3’ 

GFPpr1 
 5’actgtctagaccatggtagatctgact3’ 

GFPpr3 5’aattgggcccctagctttgtatagttcatcc3’ 
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transformed cells are plated onto ampicillin / kanamycin containing LB medium plate 

(Sambrook and Russell, 2001) 

(b)    Plasmid DNA isolation 

Transformed colonies were inoculated into 2 ml LB medium containing selective antibiotics 

(amp/kan) overnight. Next day, 1.5 ml of culture was spun in eppendorf tubes for 1 minute. 

Supernatant was poured off and the 200 µl of cell resuspension solution was added to the 

pellet. After dissolving the pellet, 200 µl of cell-lysis solution was added. After mixing the 

solution, neutralization buffer was added. Subsequent to mixing, the tubes were spun for 5 

minutes. Supernatant was retrieved and mixed with 0.5 ml of 100% ethanol. DNA pellet was 

retrieved and washed with 75% ethanol (Sambrook and Russell, 2001). Subsequently, the 

pellet was air-dried and dissolved in 1X TE buffer and stored in -20ºC.  

(ix) Plant transformation and growth 

(a) Transformation 

Arabidopsis thaliana (ecotype Columbia) plants were grown in a growth chamber (16 h of 

light and 8 h of darkness at 23°C) after a 2-4-day vernalization period for the seeds sown. 

These plants were grown for a period of 35 days, until the plants bolted and floral buds 

opened. Plant transformation plasmids were electroporated into Agrobacterium tumefaciens 

GV3101 as described by Shaw (1995) and plated on LB medium containing 

rifampicin/kanamycin/hygromycin and incubated at 30°C. The Agrobacterium-mediated 

transformation of A. thaliana was performed as described by Clough and Bent (1998). T1 

seeds were harvested from the fully grown mature transformed plants and dried at 25°C.  
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Seeds were germinated on sterile medium containing 40 µg ml 1 kanamycin or hygromycin 

to select the transformants. Surviving T1 plantlets were transferred to soil to set seeds (T2). 

(b)  Seed germination 

For growth under sterile conditions, seeds were surface sterilized (10 min incubation in 5% 

(v/v) sodium hypochlorite, and rinsed thrice with sterile distilled water) and sown on half-

strength Murashige and Skoog (MS) salts (Murashige and Skoog, 1962) supplemented with 

1% sucrose, pH 5.7, and 0.8% (w/v) agar in Petri dishes (MS media preparation). For direct 

germination in soil, the seed sterilization is not necessary and seeds can be directly sown on 

soil after 2-4 day vernalization period (Weigel and Glazebrook, 2002). 

(x)  Plant DNA isolation 

For DNA extraction from Arabidopsis, plant tissue was ground with liquid nitrogen, 3-4 

times. One ml of plant DNAzol® (Invitrogen, Carlsbad, CA, USA) was added and the plant 

tissues were further ground. Once the tissues melted, they were collected in eppendorf tubes 

and incubated at room temperature for 5 minutes. Subsequently, 600 µl of 100% chloroform 

(Fisher Scientific, Fairlawn, NJ, USA) was added to the plant extract and mixed. This 

mixture was incubated for 10 minutes at room temperature and subsequently spun for 10 

minutes. The supernatant was retrieved and mixed with 1 ml of 100% ethanol (Fisher 

Scientific, Fairlawn, NJ, USA) and incubated for 5 minutes at room temperature. The 

mixture was spun for 10 minutes to pellet the DNA. The pellet was then washed with Plant 

DNAzol Wash (0.75 ml 100% ethanol + 1 ml of DNAzol) , then with 70% ethanol and air-

dried. The DNA was dissolved in sterile distilled water.   
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(xi)  Plant RNA isolation 

For RNA extraction from Arabidopsis, plant tissue was ground with liquid nitrogen. One  ml 

of TRIzol® (Invitrogen) reagent was added and the tissue was further ground. Once the tissue 

melted, it was collected in eppendorf tubes and was incubated at room temperature for 5 

minutes. Subsequently, 200 µl of 100% chloroform (Fisher Scientific, Fairlawn, NJ, USA) 

was added to the plant extract and mixed. This mixture was incubated for 10 minutes at room 

temperature and subsequently spun for 15 minutes at 4ºC. The supernatant was retrieved and 

mixed with 0.5 ml of Isopropanol (Fisher Scientific, Fairlawn, NJ, USA)   and incubated for 

10 minutes on at room temperature. The mixture was spun for 10 minutes to pellet the RNA 

at 4ºC. The pellet was then washed with 70% ethanol and air-dried. The RNA was dissolved 

in sterile DEPC treated water. 

(xii)  Dose response media preparation 

Half-strength Murashige and Skoog (MS) salts (Murashige and Skoog,1962) medium 

supplemented with 1% sucrose, pH 5.7, and 0.8% (w/v) agar was prepared and, after 

autoclaving , was cooled to 55°C. Subsequently, sterile ABA, Nacl and Mannitol 

preparations of required concentrations were inoculated into the medium in the sterile hood 

environment. ABA was dissolved in 75% ethanol to prepare specified concentrations. The 

medium was mixed thoroughly (120 rotations) before plating. 

(xiii)  T-DNA insertion mutants  

The desired gene knock-out lines were obtained from the ABRC (http://signal.salk.edu/cgi-

bin/tdnaexpress). T1 seeds were procured initially and subsequently grown for three more 
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generations on kanamycin to confirm transgenic lines and homozygosity of these lines. 

(Concentration of kanamycin used for selection of these mutants is to be kept low (20 µg/ml) 

as these plants have low resistance initially.) 

(xiv)  Yeast transformation 

HF7c cells were inoculated into 5 ml YPD medium supplemented with 0.2% adenine and 

cultured overnight. The next morning, the HF7c culture was transferred into 500 ml YPDA 

medium and grown to mid-log phase for about 3-4 hours in 30ºC with shaking. The OD of 

the culture was measured until it reached 0.8-1 (~2×. 107 cells/ml). Subsequently, the culture 

was spun at 3500-5000 rpm to retrieve cells. The cells were then washed with sterile water 

with subsequent rounds of spinning. Subsequently, cells were suspended in 1 ml of 100 mM 

LiAc and then transferred into 1.5 ml eppendorf tubes. In the meantime, the co-

transformation mix was prepared by mixing 1 µl of Plasmid DNA with 36 µl 1M LiAc, 25 µl 

of boiled and chilled salmon sperm DNA and 50 µl of water. 

Subsequently, 240 µl of 50% w/v PEG was layered on top of the competent HF7c cells, after 

that the transformation mix was added to the tubes. These contents of the tubes were mixed 

by gentle pipetting and incubated in a 42ºC water bath for 15 minutes. Subsequently, cells 

were mixed with 500 µl of sterile water and plated onto SD selective medium (Leu-Trp-). 

This protocol was adapted from Sambrook and Russell (2001). 

.
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SPECIFIC AIMS 
 

(i)  Analysis of the expression patterns of HD2-type histone deacetylases 
 
(a) Characterization of the spatial expression profile of the HD2-type histone deacetylase gene 

family in Arabidopsis thaliana. (b) Identification of sub-cellular localization of HD2 proteins, 

AtHD2B and AtHD2C. (c) Identification of essential residues in AtHD2A protein sequence. 

It was unknown whether all the four members of the HD2 gene family would have similar 

spatial profiles. The HD2 proteins were expected to localize to the nucleus as they are 

putative transcription factors. In addition, certain conserved histidine and aspartate residues 

and the N-terminal motif were expected to be essential for catalysis. 

(ii)  AtHD2C promoter analysis 
 
(a) Promoter motif prediction to identify putative cis-elements in the AtHD2B and AtHD2C 

promoter. (b) Generation of AtHD2B promoter:GUS and AtHD2Cpromoter:GUS transgenic 

lines and examination of the spatial expression profile of the GUS reporter driven by the 

AtHD2B and AtHD2C promoters in different developmental windows. (c) Analyze the effect of 

ABA on AtHD2C promoter regulation of GUS expression.  

We expected to find ABA-response elements and seed regulation elements in the AtHD2B 

and AtHD2C promoter sequences that would support their involvement in embryo 

development. The GUS gene spatial expression profile was expected to be similar to the HD2 

gene family expression profile analyzed in the first set of experiments. 
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(iii)  Analysis of the functional role of HD2-type histone deacetylases in the 

development of Arabidopsis thaliana, using the reverse genetics approach . 

(a) Examination of the developmental defects in the AtHD2B and AtHD2C overexpression lines. 

(b) Analyze ABA, salt and mannitol sensitivity of the AtHD2C overexpression and T-DNA 

insertion lines in different developmental stages. (c) Analyze the ABA-inducible gene expression 

patterns in the AtHD2C overexpression and T-DNA insertion lines in respective developmental 

stages.  

Since the HD2 proteins were found to accumulate in the embryos and AtHD2A 

overexpression led to down-regulation of ‘seed-specific’ genes, it was expected that the 

AtHD2B and AtHD2C ectopic expression might led to seed-specific effects. Consequently, 

we expected to observe changed ABA response phenotypes in the overexpression lines. 

(iv)  Investigate physical interaction between AtHD2B/AtHD2C proteins and RPD3 

(HDA1) type histone deacetylase proteins 

Mammalian systems demonstrated interaction amongst different members of HDAC classes. 

Based on this report, we expected to find interaction between HD2-type histone deacetylases 

and class I HDAC (AtHDA1) proteins. 

                                    



 49

                                                    RESULTS 
 

(i)  Expression Patterns of the HD2-Type Histone Deacetylases in Arabidopsis 
 

(a)  Spatial expression profile of the HD2-type histone deacetylase gene family 

Little information is available with regards to the expression and function of the HD2-type 

HDACs in Arabidopsis. Antisense knockout of AtHD2A led to aborted seed development, 

implicating the HD2-proteins to be involved in seed maturation (Wu et al, 2000). Protein 

sequence alignment of the four HD2 family members revealed that all of them contain 

similar structural organization (Figure 11A) and have an N-terminal domain where catalytic 

activity is predicted to reside (Aravind and Koonin, 2001). They have an acidic stretch in the 

central domain that is responsible for phosphorylation-regulation of the protein and possibly 

for nuclear localization. AtHD2A and AtHD2C contain Zn fingers in their C-terminal regions 

whereas AtHD2B and AtHD2D do not contain Zn finger domains. We analyzed the spatial 

expression profile of the HD2 gene family in Arabidopsis. Different tissues including 

seedlings (1 week old), mature leaves, stems, flowers and siliques were collected for 

analysis. Total RNA was isolated from these tissues and gene expression was analyzed using 

RT-PCR (Weigel and Glazebrook, 2002). It was observed that HD2A, HD2B and HD2C 

accumulated in all tissues examined with varying quantities in the different tissues (Figure 

11B). However, HD2D formed the anomaly in this family by exhibiting flower-specific 

expression with weaker expression in stems. This suggests that some of the HD2 family 

genes may be differentially expressed in Arabidopsis.  These results supported the idea that 

the HD2-type histone deacetylases may play differential functional roles owing to their 

different expression patterns.  
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Figure 11. The HD2 gene family of Arabidopsis thaliana. (A) Sequence comparison of the 

four HD2 proteins in Arabidopsis thaliana. The N-terminal, HDAC box represents the 

catalytic domain of the HD2 proteins. The central box represents the acidic domain rich in E 

and D residues. The C-terminal boxes in AtHD2A and AtHD2C represent Zn2+ finger 

domains, which might have a role in recruiting the protein by forming protein-DNA or 

protein-protein contacts. The figure underscores the fact that the four proteins are very 

similar in their alignment  with differences only due to possession of the Zn finger motifs by 

AtHD2A and AtHD2C. (B) An RT-PCR assay to examine the spatial expression profile of 

the HD2 gene family. RNA was isolated from different plant tissues: leaf, root, stem, flower 

and seedling. cDNA was prepared from  RNA and gene expression was analyzed by PCR 

using gene specific primers. The figure depicts ubiquitous expression of the HD2 gene family 

with AtHD2D being the exception due to flower and stem  specific expression. 

Figure 11. The HD2 gene family of Arabidopsis thaliana. 
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(b) HD2C localizes to the nucleus in Arabidopsis 

The HD2 proteins were first isolated as nucleolar proteins in maize (Lusser et al, 1997). 

Subsequently, they were identified in Arabidopsis thaliana (Wu et al, 2000). The 

nuclear/nucleolar localization of the HD2 proteins had not yet been demonstrated in 

Arabidopsis. The nuclear localization of a protein confirms its status as a transcription factor. 

Therefore, I decided to test the sub-cellular localization of HD2C. 35S:AtHD2C-GFP and 

35S:AtHD2B-GFP constructs were generated and transformed into Arabidopsis to create 

transgenic plants expressing HD2C-GFP and HD2B-GFP fusion proteins (Table IV). The 

cDNA sequence of HD2C and HD2B was fused to the GFP reporter gene driven by the 35S 

promoter of the cauliflower mosaic virus (Figure 12A and 12D). The constructs were used to 

transform Arabidopsis (ecotype Columbia) plants as described by Clough and Bent (1998). 

Four independent AtHD2C-GFP lines (35S: AtHD2C1, 35S:AtHD2C2, 35S:AtHD2C3 and 

35S:AtHD2C4) and three independent AtHD2B-GFP lines (35S: AtHD2B1, 35S:AtHD2B2, 

35S:AtHD2B3) were further assayed for presence and expression of transgene. Lines 

expressing higher levels of HD2C (35S:AtHD2C1 and 35S:AtHD2C2) were selected for 

detailed studies. The transgenic lines were confirmed for transgene expression using PCR 

(Figure 12B and 12E) and RT-PCR (12C and 12F) before functional assays were conducted. 

Genomic DNA was extracted from Wild-type, 35S:AtHD2C-GFP (1-4) and  35S:AtHD2B-

GFP (1-3)  transgenic lines  and used as a template for amplification rounds with three 

different sets of primers: X- HD2Bpr3/GFPpr3 (~1.35 kb), Y-HD2Bpr3/HD2Cpr4 (~800 bp), 

Z-GFPpr3/GFPpr4 (~500 bp) and P-HD2Cpr3/HD2Cpr4 (~800 bp), Q- HD2Cpr3/GFPpr3 

(~1.35 kb). RT-PCR analysis was performed by using RNA samples extracted from 1-week 

old seedlings that were reverse transcribed to cDNA copies. The cDNA was used as a  
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Figure 12. PCR and RT-PCR confirmation of the 35S:AtHD2B and 35S:AtHD2C transgenic 
lines. 
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Figure 12. (A) Map of the 35S:AtHD2B construct,  AtHD2B was subcloned upstream to GFP 

driven by the CaMV 35S promoter in the pCAMBIA1302 vector. (B) PCR analysis of 

Arabidopsis transgenic lines expressing 35S:AtHD2B transgene; Genomic DNA was 

extracted from wild-type (WT) and 35S:AtHD2B transgenic lines (1-3) and used as a 

template for PCR amplification with three different sets of primers: X-HD2Bpr3 and GFPpr3 

(~1.35kb), Y-HD2Bpr3 and HD2Bpr4 (~800bp), Z-GFPpr3 and GFPpr4 (~500bp). (C) RT-

PCR analysis to assay levels of expression of the  35S:AtHD2B transgene; 1µg of RNA 

samples extracted from 1-week old seedlings was reverse transcribed to cDNA. The cDNA 

was used as a template for amplification with three different sets of primers: X, Y and Z. 

UBIQUITIN served as internal control. (D) Map of the 35S:AtHD2C construct: AtHD2C was 

subcloned upstream to GFP driven by the CaMv 35S promoter, into the pCAMBIA1302 

vector. (E) PCR analysis of Arabidopsis transgenic lines expressing 35S:AtHD2C transgene: 

Genomic DNA was extracted from wild-type (WT) and 35S:AtHD2C transgenic lines (1-4) 

and used as a template for PCR amplification with three different sets of primers; P-

HD2Cpr3 and GFPpr3 (~1.3kb), Q-HD2Cpr3 and HD2Cpr4 (~800bp), Z-GFPpr3 and 

GFPpr4 (~500bp). (F) RT-PCR analysis to assay levels of expression of the  35S:AtHD2C 

transgene; 1 µg of RNA samples extracted from 1-week old seedlings were reverse 

transcribed to cDNA. The cDNA was used as a template for amplification with three 

different sets of primers; P, Q and Z. UBIQUITIN served as internal control.  

*Lines: 1-35S:AtHD2B/C1, 2-35S:AtHD2B/C2, 3-35S:AtHD2B/C3, 4-35S:AtHD2C4 
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Figure 13. Subcellular localization of AtHD2C, The 35S:AtHD2C-GFP overexpression line was 

used to isolate transgenic protoplasts and GFP fluorescence was examined by fluorescence 

microscopy. (A1) Single 35S:AtHD2C-GFP transgenic protoplast under bright light. (A2) 

nuclear localization of the HD2C protein imaged by GFP fluorescence under UV light. (B1) 

Single 35S:GFP transgenic protoplast under bright light. (B2) Cytoplasmic localization of the 

GFP protein from the control line imaged by GFP fluorescence under UV light. 
Figure 13. Subcellular localization of AtHD2C 
 

A1 

B1 B2 

A2 
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template for PCR amplification rounds with three different sets of primers: X, Y and Z or P, 

Q and Z. Both assays confirmed the presence and expression of AtHD2C transgene in the 

plants. Subsequently, 35S:AtHD2C T3 homozygous seedlings were selected after subsequent 

rounds of generation. In the first two generations (T1 and T2), transgenic seeds grown in 

Hygromycin selective medium germinated in 3:1 (germinated: non-germinated) ratios. The 

hygromycin resistant seedlings were selected for selfing and subsequent harvest. In the next 

set of germination (T3) on hygromycin selective medium, all seeds germinated giving 100% 

hygromycin resistant phenotype. This was used as an indicator for possible homozygosity 

amongst transgenic plants. AtHD2C1 T2 plants germinated in a ratio of 62:21 (~3:1) and 

AtHD2C2 T2 plants germinated in a ratio of 77:15 (~3:1). These two lines were further 

selected for T3 generation seeds that were 100% resistant to hygromycin.  Protoplasts were 

isolated from these transgenic lines and were examined for GFP florescence signal within the 

cells. Distinct bright green spots were observed under florescence light in the boundary 

confining the nuclear space within the cells for both the HD2C-GFP lines (Figure 13A2). 

This confirmed the nuclear localization of the proteins. Additionally, the bright green spots 

had sharp boundaries and were localized to a particular region within the nucleus and not 

diffused throughout. This implicated nucleolar localization, but further analysis is required to 

confirm this. 35S:GFP transformed plants served as a control as the GFP from these 

protoplasts was localized throughout the cytoplasm. 

(c)  The N-terminal motif and H25 are essential for AtHD2A mediated Repression 

It had been previously demonstrated that HD2A, HD2B, and HD2C repressed transcription 

as GAL4 fusion proteins when directed to a promoter containing GAL4-binding sites (Wu et 

al, 2003). We wanted to investigate residues that are essential for mediating this repression. 
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Therefore, we used site-directed mutagenesis to identify residues in HD2A that are required 

for gene repression activity. Sequence alignments of all known HD2 proteins revealed that 

the N-terminal region of HD2 proteins contain an MEFWG motif as well as 18 conserved 

amino acid residues (Dangl et al, 2000). It was proposed that the invariant aspartic acid is the 

nucleophile involved directly in lysine deacetylation that may be facilitated through a charge 

relay system with the conserved histidine (Dangl et al, 2000). To determine the relevance of 

each of these residues, three mutation constructs were generated: a deletion of the N-terminal 

EFWG motif (∆AtHD2A) (Figure 14A), a substitution of the Histidine 25 to Alanine (H25A) 

(Figure14A) and a substitution of Aspartate 69 to Alanine (D69A) (Figure 14A). These 

mutation constructs were co-transformed with a reporter construct in a transient expression 

assay and the activity of gene repression was assessed by the level of expression of the GUS 

reporter. As shown in Figure 14C, deletion of the N-terminal EFWG motif resulted in loss of 

gene repression activity, whereas the H25A mutant yielded decreased gene repression 

activity compared with Wild-type.  The D69A mutant, however, showed little change in gene 

repression activity compared with Wild-type protein. The experiment was repeated thrice 

with similar results. These results indicated that the N-terminal EFWG motif is essential for 

the gene repression activity, and that the amino acid residue H25 may also be important, but 

to a lesser extent. 
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Figure 14.  Mutation analysis of the essential catalytic residues in the AtHD2A protein. (A) 

and (B) Schematic diagram of effector and reporter constructs, respectively, used in a co-

bombardment assay used to investigate the extent of gene repression caused by the HD2A 

protein. The effector constructs contain the GAL4 DNA binding domain (GAL4BD) which 

will bind to the UAS sequence in the UASGAL4-tCUP-GUS reporter and recruit  the fused 

HD2A protein to the promoter. ∆HD2A was a deletion in the N-terminal  EFWG motif of 

HD2A protein: H25A was a substitution of the conserved histidine motif at position 25 to an 

alanine residue, D69A was a substitution of the conserved aspartate residue at position 69 to 

an alanine residue. The orange signs indicate relative positions of the substitutions on the 

HD2A protein. (C) Repression of the GUS reporter gene expression. D69A displays  

approximately the same activity as the full length protein. pUC19 served as the control 

plasmid. Each of the effector plasmids were co-bombarded with the reporter plasmid and 

GUS activity was measured in a transient expression assay. Bars indicate the SE of three 

replicates. 

Figure 14.  Mutation analysis of the essential catalytic residues in the AtHD2A protein. 
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(ii) Analysis of AtHD2B and AtHD2C promoter Activities 
 

(a)   AtHD2B and AtHD2C promoter motif analysis 

A 3000 bp sequence 5’ upstream to the transcription start site of the genomic sequences of 

AtHD2B and AtHD2C was submitted to PlantCARE database 

(http://oberon.fvms.ugent.be:8080/PlantCARE/index.html) was submitted to PlantCARE (cis 

acting regulatory elements) in the TAIR database for motif prediction. The AtHD2B and 

AtHD2C promoter contained motifs for ABA, seed-specific regulation and cell cycle inhibition 

(Figure 15 and 16). The ABA response motifs found in these promoters are ABREs that are G-

box, elements (Finklestein and Rock, 2002). The ACGT core element that is essential to the 

ABRE G-box can be found in the AtHD2B and AtHD2C promoter sequences. Another cis-acting 

sequence required for ABA-inducibility, RY-element, was found in these two promoters. RY 

elements are bound by B3 domain proteins such as ABI3 (Ezcurra et al, 2000).   The MRE (Myc 

regulation element) motif was also found within these promoters. This element is bound by the 

Myc class transcription factors, that have the b-HLH-ZIP domain structure and are ABA-

inducible (Abe et al, 1997). The presence of the MSA regulator in these promoters suggested 

that these genes might be targets of cell-cycle mediating proteins (Ito et al, 2001). The positions 

and sequences of these different elements in the AtHD2B and AtHD2C promoters is outlined in 

Figure 15A and 15C Subsequent to this preliminary study, we subcloned 1.7 kb of the AtHD2B  
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Figure 15.  Motif prediction in the AtHD2C promoter sequence 3000bp 5’ upstream to the 

transcription start site was submitted to PlantCARE database for identification of putative cis-

elements. (A) Map of the AtHD2C promoter with the different putative elements depicted in 

different color codes in their respective positions in the sequence. (B) Table describing the color 

codes for the cis-elements, indicating their upstream distance relative to the transcription start 

site (+1), sequence and known function. 
 
 
Figure 15.  Motif prediction in the AtHD2C promoter sequence
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Figure 16.  Motif prediction in the AtHD2B promoter sequence 3000bp 5’ upstream to the 

transcription start site was submitted to PlantCARE database for identification of putative cis-

elements. (A) Map of the AtHD2B promoter with the different putative elements depicted in 

different color codes in their respective positions in the sequence. (B) Table describing the color 

codes for the cis-elements, indicating their upstream distance relative to the transcription start 

site (+1), sequence and known function. 

 
Figure 16.  Motif prediction in the AtHD2B promoter sequence  
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and AtHD2C promoter sequences into the pCAMBIA1381 vector to generate transgenic 

promoter lines expressing GUS driven by the AtHD2B and AtHD2C promoter. These 

transgenic promoter lines were used for subsequent assays. 

(b)   AtHD2B promoter and AtHD2C promoter driven GUS is expressed in all mature 
vegetative tissues 

The AtHD2B and AtHD2C promoter GUS fusion constructs are depicted in Figure 16. From 

the previous RT-PCR data, AtHD2B and AtHD2C expression was detected in all tissue types, 

e.g., leaves, stems, flowers, siliques and seedlings. Therefore, we examined the expression of 

the GUS reporter in the AtHD2B promoter:GUS (Figure 17B) and AtHD2C promoter:GUS 

(Figure 17A) transformed tissues. Figure 17 demonstrates that  GUS was strongly expressed 

in all tissues examined in both AtHD2B and AtHD2C promoter lines including mature rosette 

leaves, floral meristems, stems, flowers (anthers, pollen, carpel, sepals) and silique (funiculus 

and mature seeds), the only exception being petals where there was a conspicuous absence of 

GUS.  

(c)   AtHD2C promoter:GUS expression is down-regulated by ABA and NaCl in the post-
germination stage 

To investigate the regulation of AtHD2C expression in response to ABA at the post-

germination stage, AtHD2C promoter:GUS expression was assayed by histochemical β-

glucuronidase staining of the transgenic plants. GUS reporter gene was expressed in all parts 

of the seedling with weaker staining in the RAM (root apical meristem) (Figure 18A).
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Figure 17 (A) Diagram of AtHD2B promoter:GUS construct. (B) Histochemical GUS 

staining of the AtHD2B promoter activity in vegetative tissues. T3 plants were stained with 

5-bromo-4-chloro-3-indolyl--glucuronic acid for 12 hrs; Staining of (a) mature rosette leaf, 

(b) stem, c. post-imbibition seeds-:stained after 2-days stratification, (d) mature flower, (e) 

stamen and (f) siliques. (C) Diagram of AtHD2C promoter:GUS construct. (D) Histochemical 

GUS staining of the AtHD2C promoter activity in vegetative tissues. Plants were stained with 

5-bromo-4-chloro-3-indolyl--glucuronic acid for 12 hrs. Staining of (a) mature rosette leaf, 

(b) stem, (c) post-imbibition seeds, stained after 2-days stratification, (d) mature flower, (e) 

carpel, (f) stamen and (g) siliques (arrow indicates stained funiculus).  

 
  
Figure 17 Diagram of AtHD2B and AtHD2C promoter driven GUS spatial profile.
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Interestingly, the AtHD2C promoter was induced in the RAM after ABA treatment. Without 

ABA application there was very little or no GUS accumulation in the RAM. Additionally, 

AtHD2C promoter activity was quite strong in the shoot apical meristem, both before and 

after ABA application, as opposed to other seedling parts that showed a slight reduction in 

staining after ABA application. Thus GUS accumulation at the meristems seems to be an 

ABA induced phenomenon implicating a synergistic interaction between ABA signal 

mediators and AtHD2C promoter expression at specific locations. The AtHD2C 

promoter:GUS bearing plants, demonstrated downregulation of the GUS accumulation in the 

seedlings upon NaCl application (Figure 18B). Also, GUS accumulation in the SAM was 

maintained after NaCl treatment (Figure 18B) and was induced in the RAM post-treatment 

(Figure 18B) that is similar to the response observed for the ABA treated plants. These 

results indicate that AtHD2C down-regulates ABA dependant salt stress signaling during 

germination and post-germination growth stages. 

(iii)  Reverse Genetics Approach to Study the HD2–Type HDACs 
 

(a)  Growth phenotypes of 35S:AtHD2C Overexpression Lines  
 
To investigate the function of AtHD2C in planta, transgenic plants overexpressing HD2C were 

generated and T3 plants were selected as described in section I. Compared to wild-type plants, 

the 35S:AtHD2C-GFP lines exhibited some abnormal phenotypes. The 35S:AtHD2C1 and 

35S:AtHD2C2 seeds germinated 6 hours before the wild-type seeds (Figure 19A) and the 
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f.  

Figure 18. (A) Effect of ABA on the AtHD2C promoter:GUS. T3 AtHD2C promoter:GUS 

transgenic seedlings grown on ABA-free MS medium were transferred to medium containing 

100 µM ABA for 6 hours and were subsequently collected for staining with 5-bromo-4-

chloro-3-indolyl--glucuronic acid. (a) 6-day-old seedling (post-germination), (b) 2-day-old 

seedling, (c) shoot apical meristem (SAM-arrowhead), (d) Em (embryonic) root, (e) root 

apical meristem. (f)-(j) tissues incubated on 100 µM ABA. (f) 6-day-old seedling (arrowhead 

points to GUS accumulation in RAM),  (g) GUS accumulation in RAM after ABA treatment, 

(h) 2-day-old seedling, (i) Em (embryonic) root, (j) root apical meristem. (B) Effect of NaCl 

on the AtHD2C promoter driven GUS. AtHD2C promoter:GUS transgenic seedlings grown 

on NaCl-free MS medium were transferred to medium containing 400 mM NaCl for 12 hours 

and were subsequently collected for staining with 5-bromo-4-chloro-3-indolyl--glucuronic 

acid. (a)-(c) tissues grown on NaCl free medium. (a) 6-day-old seedling (post-germination). 

(b) 2-day-old seedling. (c) Root apical meristem (RAM). (d)-(f) tissues incubated on 400 mM 

NaCl. (d) 6-day old-seedling;  (e) 2-day-old seedling; (f) Root apical meristem (RAM).  

 
 
Figure 18.  Effect of ABA on the AtHD2C promoter:GUS activity
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35S:AtHD2C1 and 35S:AtHD2C2 seedlings demonstrated robust growth and larger sized plants 

than their wild-type counterparts (Figure 19C). The transgenic plants flowered much earlier than 

the wild-type plants (Figure 19B) and one prominent abnormality observed in the 35S:AtHD2C 

transformed plants was the improper development of mature rosette leaves into a ‘squeezed’ leaf 

phenotype (Figure 19B). The relative number of the ‘squeezed’ leaf found in the different lines is 

listed in Table VI. A large population of siliques in the 35S:AtHD2C1 and 35S:AtHD2C2 

transgenic plants were shorter than the normal wild-type siliques (Figure 19, Table IX). 

Additionally, the seed count was reduced in the transgenic siliques as compared with the wild-

type siliques (Table VIII). The empty vector transformed lines (35S:GFP) demonstrated same 

behavioral patterns as wild-type (data not shown) and served as control. However, these results 

do not identify a definitive role for HD2C in Arabidopsis development as ectopic expression may 

cause abnormal hierarchical cascades leading to evident phenotypes.  

(b)  AtHD2C T-DNA insertion line analysis  

We identified a T-DNA insertion mutant of HD2C in the Salk collection of T-DNA lines, 

SALK_039784 (http://signal.salk.edu/cgi-bin/tdnaexpress). T-DNA insertion lines were selected 

over subsequent generations by their ability to germinate in the presence of kanamycin. 

Homozygosity was confirmed by using PCR for three plants of the same SALK_039784 insertion 

lines (Figure 20B). The T-DNA insertion lies in the sixth exon of AtHD2C (Figure 20A) and is 

localized at the nucleotide 2116 of the HD2C gene (numbering refers to relative nucleotide 

position to the ATG start codon). This insertion may lead to the disruption of AtHD2C 

expression. RT-PCR (Figure 20C) failed to detect HD2C transcript accumulation in the insertion 

lines, confirming the knockout of HD2C in these lines. 
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Figure 19. Growth phenotypes of the AtHD2C overexpression lines (A) Germination rates of 

the WT, 35S:AtHD2C1 and 35S:AtHD2C2 transgenic lines on ABA-free medium. 8-week 

old seeds were plated on ABA-free medium after 2 days of cold treatment and germination 

(full radicle emergence and cotyledon formation) was scored starting at 0 hours of incubation 

up to 34 hours post-incubation, counting germination at 6 days intervals. Standard error is 

plotted for three replicate assays with ~100 seeds (n=100) in each plate. (B) Abnormalities 

associated with the transgenic plants: ‘Squeezed leaf’ in the 35S:AtHD2C1 and 

35S:AtHD2C2 transgenic lines. Early flowering phenotype at 24 days after germination 

(DAG). (C) Growth of the transgenic seedlings on ABA-free medium. Seeds were plated on 

ABA-free medium after 2 days of cold treatment. Post-germination growth (cotyledon 

greening/expansion and embryonic root elongation) was monitored and seedling sizes 

compared. (D) Fully mature siliques in WT, 35S:AtHD2C1 and 35S:AtHD2C2 transgenic 

lines. 

 

Figure 19. Growth phenotypes of the 35S:AtHD2C overexpression lines
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Table VII   Average percentage of squeezed leaves in WT and 35S:AtHD2C lines 
Table VIII Average number of seeds in stunted siliques in WT and 35S:AtHD2C lines 
Table IX    Average percentage of mature stunted siliques in WT and 35S:AtHD2C lines 
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This insertion line was subsequently used for ABA, salt and mannitol sensitivity assays in the 

seedling stage. The T-DNA insertion line demonstrated similar phenotypic sensitivity as the 

wild-type plants to treatment with ABA, salt or mannitol (Figure 20D-G). The germination 

rates and root length elongation efficiency was the same as wild-type. Also, the T-DNA 

insertion plants were as sensitive to salt and drought in the vegetative stage as the wild-type 

plants (Figure 20E). 

(c)   35S:AtHD2C seeds are insensitive to ABA, NaCl and Mannitol during germination 
and post- germination development phase  
 

ABA response 

ABA is instrumental for embryo maturation and maintaining smooth transitions between 

developmental windows, such as radicle emergence and seedling growth (Hoecker et al, 

1995). Based on previous reports describing accumulation of HD2B and HD2C mRNA in 

geminating embryos of Arabidopsis and down-regulation of ‘seed specific’ genes in AtHD2A 

mutant (Wu et al, 2004), we tested ABA sensitivity of the 35S:AtHD2C plants. The 

35S:AtHD2C seeds were not viviparous and did not demonstrate defects in chlorophyll loss 

or attaining desiccation tolerance as evidenced by the normal maturation and hardening of 

the seeds. The loss of green color and hardening of seed-coat in normal time-span was the 

indicator of ABA production in the transgenic seeds. We further examined the sensitivity of 

the transgenic lines to ABA, during the germination post-germination events of radicle 

emergence, seedling greening and expansion. 35S:AtHD2C transgenic seeds were 
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Figure 20. SALK_039784 (T-DNA insertion Line) plants are sensitive to ABA and stress in 

germination/post-germination and vegetative stages. (A) Map of the AtHD2C gene, black 

boxes indicating position of exons. The open triangle indicates position of insertion of the T-

DNA. The arrow inside the triangle indicates T-DNA specific primer used in the PCR 

analysis. (B) PCR analysis to confirm homozygosity of the insertion lines. Genomic DNA 

was extracted from T3 plants selected on kanamycin and was used as a template for PCR 

using the primer pairs a 5’ AtHD2C specific primer and a 3’ T-DNA (Indicated by an arrow 

inside the triangle) LB primer. Three plants of the same insertion line were examined, i.e., 

SALK_039784-1, SALK_039784-2, SALK_039784-3. (C) RT-PCR analysis to confirm 

decrease in AtHD2C transcript accumulation. RNA levels of AtHD2C were determined by  

RT-PCR using total RNA isolated from 4-week old plant grown in soil in the 16 hour light 

photoperiod. (D) Root growth of WT and SALK_039784 (T-DNA insertion Line) seedlings 

on ABA medium. Seeds were germinated on MS medium containing varying concentrations 

of ABA ranging from 0-0.2 µM. Root elongation was measured 5 days after incubation. The 

experiments were performed more than three times, sometimes and the results were 

consistent. The bars represent standard errors (n=40). (E) Root growth of WT, SALK_039784 

(T-DNA insertion Line) seedlings on NaCl medium. Root elongation was measured 5 days 

after incubation. The small bars represent standard errors (n=40). (F) Root growth of WT, 

SALK_039784 (T-DNA insertion Line) seedlings on mannitol medium. (G) Draught and Salt  

sensitivity of the SALK_039784 (T-DNA insertion Line) plants.  

 

Figure 20. ABA and stress sensitivity of  the SALK_039784 (T-DNA insertion Line) plants in 
the germination/post-germination and vegetative stages.
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incubated on medium with ABA concentrations ranging from 0.05 µM-0.2 µM, 2 days post-

stratification. The wild-type plants were able to germinate and form cotyledons on medium 

with 0.05 µM of ABA, but they displayed acute sensitivity to 0.1 µM ABA (Figure 21A). 

Subsequent to seed-coat breakage and radicle emergence, there was growth arrest with 

inhibition of cotyledon formation and further development on medium with 0.1 µM ABA. 

On the other hand, the 35S:AtHD2C transgenic seeds were able to germinate and grow 

unrestricted at this ABA concentration and successfully developed healthy cotyledons and 

true leaves. Like the study conducted by Kang et al, (2002), we wanted to determine the 

stage specificity of the ABA response. Therefore, we analyzed the ability of the 35S:AtHD2C 

seeds to germinate and develop embryonic root in the presence of ABA. At 0.1 µM 

concentration of ABA, 63% retardation in the germination rate of the wild-type plants was 

observed. However, there was only 28% retardation in the germination rate of the two 

35S:AtHD2C transgenic lines (Figure 21C). A 0.05 µM concentration of ABA was able to 

restrict root growth in the wild-type seedlings by a margin of 97.3%. At the same time, the 

35S:AtHD2C transgenic seedlings were able to elongate root primordia with a minimal 

inhibition of 6.7% compared to control rates. Additionally, the development of the aerial 

parts from the shoot apical meristem was severely limited in wild-type seedlings at the 

concentration of 0.05 µM ABA, whereas the 35S:AtHD2C transgenic seedlings continued to 

develop cotyledons and true leaves at a concentration of 0.1 µM ABA (Figure 21D and 21B). 

Upon further increasing ABA concentrations to 0.15 µM, the transgenic cotyledons displayed 

growth arrest, thus succumbing to retardation. These results reflect the ability of 
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Figure 21.  ABA sensitivity of the 35S:AtHD2C1 and 35S:AtHD2C2 lines in germination 

and post-germination stage. (A) Growth of WT, 35S:AtHD2C1 and 35S:AtHD2C2 transgenic 

seedlings on MS medium containing 0.05 µM and 0.1 µM of ABA respectively. Seeds were 

germinated and grown for 12 days. (B) Growth of WT, 35S:AtHD2C1 and 35S:AtHD2C2 

transgenic seedlings on MS medium containing 0.1µM ABA. Seeds were germinated on the 

medium for 4 days, and representative plants (out of forty examined) were shown. (C) 

Germination rate of WT, 35S:AtHD2C1 and 35S:AtHD2C2 transgenic seeds on ABA. 8-

week old T3 seeds were pre-chilled for 2 days at 4ºC and were germinated on MS medium 

containing 0.1µM of ABA. Seedlings with fully emerged radicles and cotyledons were 

scored to obtain percent germination. Experiments were performed in triplicate (n=100 each), 

and the bars show standard errors. (D) Root growth of WT, 35S:AtHD2C1 and 

35S:AtHD2C2 transgenic seedlings on ABA. 8-week old T3 seeds were germinated on MS 

medium containing varying concentrations of ABA ranging from 0-0.2µM. Root elongation 

was measured 5 days after incubation. The experiments were performed more than three 

times. The bars represent standard errors (n=40). (E) Expression of ABA-regulated genes in 

the germination/post-germination phase in WT, 35S:AtHD2C1 and 35S:AtHD2C2 transgenic 

lines, and SALK_039784 (T-DNA Line), ABA-responsive genes were determined by RT-

PCR using total RNAs isolated from 1-week-old plants grown on MS plates. Ubiquitin 

served as the internal control. (F) Expression of AtHD2C in WT treated with ABA; RNA 

levels of AtHD2C were determined by RT-PCR using total 1µg RNAs isolated from 1-week-

old wild-type seedlings. 

Figure 21.  ABA sensitivity of the 35S:AtHD2C1 and 35S:AtHD2C2 lines in germination and 
post-germination stage. 
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AtHD2C to interfere with ABA-mediated growth retardation at the germination and post-

germination growth stages. 

  LEC1, RD29B and AREB1 genes are typical markers of the different phases of 

embryonic maturation (Finklestein and Rock, 2002). Therefore, we examined the alteration in 

expression patterns of these genes in the 35S:AtHD2C transgenic seedlings (Figure 21E). 

35S:AtHD2C transgenic seedlings were collected immediately after cotyledon formation and 

embryonic root establishment (4 days post-germination) and were assayed for ABA-inducible 

gene expression patterns. LEC1 functions at the terminal stage of the cell division phase of 

embryogenesis to prevent further cell division and precocious germination (Holdsworth et al, 

1999). The expression of this gene was down-regulated in the 35S:AtHD2C transgenic seedlings. 

Corresponding to this observation, the expression of the AREB1 was also down- regulated. 

AREB proteins are bZIP class transcription factors that work synergistically during embryonic 

growth (reviewed in Holdsworth et al, 1999, 2001). The ICK1 gene works hand-in-hand with 

LEC1 in the process of cell division termination as it is an inhibitor of cyclin dependant kinases 

that propagate cell division (Finklestein and Rock, 2002). The expression of LEA (Late 

embryogenesis abundant) gene, RD29B that is essential for maintaining dormancy (Delseny et 

al, 2001) was also decreased. Transcript accumulation of all these genes was also examined in 

the SALK_039784 (T-DNA insertion line) line (characterized in Figure 20). Expression of these 

genes was weaker in the SALK_039784 line compared with wild-type. There is speculation about 

role of post-germination down-regulation of embryogenesis promoting regulators such as LEC1 

by epigenetic modification mechanisms (Ogas et al., 1999). To analyze the response of AtHD2C 

to ectopic application of ABA in the seedling stage, the transcript accumulation of AtHD2C in 

response to 6 hours ABA (100 µM) treatment was analyzed.  
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Figure 22. NaCl sensitivity of the 35S:AtHD2C1 and 35S:AtHD2C2 lines in germination and 

post-germination stage . (A) Growth of WT, 35S:AtHD2C1 and 35S:AtHD2C2 transgenic 

seedlings on MS medium containing 50 mM and 100 mM of Nacl, respectively. Seeds were 

germinated and grown for 12 days. (B) Growth of WT, 35S:AtHD2C1 and 35S:AtHD2C2 

transgenic seedlings on MS medium containing 100 mM Nacl. Seed were germinated on the 

medium for 4 days, and representative plants (out of forty examined) are shown. (C) 

Germination rate of WT, 35S:AtHD2C1 and 35S:AtHD2C2 transgenic seeds on NaCl. 8-

week old T3 seeds were pre-chilled for 2 days at 4ºC and were germinated on MS medium 

containing 100 mM of NaCl. Seedlings with fully emerged radicles and cotyledons were 

scored to obtain percent germination. Experiments were performed in triplicate  (n=100 

each), and the bars represent standard errors. (D) Root growth of WT, 35S:AtHD2C1 and 

35S:AtHD2C2 transgenic seedlings on NaCl media. Seeds were germinated on MS medium 

containing varying concentrations of NaCl from 0-200 mM. Root elongation was measured 5 

days after incubation. The bars represent standard errors (n=40).  

 

Figure 22. NaCl sensitivity of the 35S:AtHD2C1 and 35S:AtHD2C2 lines in germination and 
post-germination stage
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 It was observed that the AtHD2C transcript was partially reduced in the seedlings by ABA 

treatment (Figure 21F). This observation supports the idea that ABA regulates AtHD2C 

expression negatively at certain steps in the signaling cascade, probably to de-repress 

essential signal transducers. Both germination and post-germination growth stages are 

insensitive to ABA and this is supported by the down-regulation of the ABA-inducible genes 

in the 35S:AtHD2C seedlings.  

NaCl response 

There now is substantial evidence for cross talk between signaling pathways regulating 

response to ABA and assorted stresses (e.g., drought, salinity, and cold) (Ishitani et al, 1997), 

sugars (Arenas-Huertero et al, 2000; Finkelstein and Lynch, 2000; Huijser et al, 2000; Laby 

et al, 2000), and even meristem function (Ziegelhoffer et al, 2000). Therefore, we tested the 

salt sensitivity of the AtHD2C overexpression line based on its resistance to ABA. All ABA-

deficient (aba) and ABA-insensitive (abi) mutants tend to exhibit salt insensitivity during 

germination (Leon-Kloosterziel et al., 1996). Figure 22C depicts that 100 mM of NaCl was 

able to reduce germination of the wild-type plants by a margin of 45.9% whereas the 

germination efficiencies of the 35S:AtHD2C1 and 35S:AtHD2C2 lines were reduced by mere 

margins of 11.2% and 14.17% respectively. Additionally, the 35S:AtHD2C overexpression 

lines demonstrated healthy germination, radicle emergence, cotyledon expansion and true 

leaf formation when grown on increasing concentrations of NaCl ranging from 50-110 mM 

(Figure 22A), after that root elongation was curbed and growth was halted.
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Figure 23.  Mannitol sensitivity of the 35S:AtHD2C1 and 35S:AtHD2C2 lines in 

germination and post-germination stage. (A) Growth of WT, 35S:AtHD2C1 and 

35S:AtHD2C2 transgenic seedlings on MS medium containing 50 mM and 250 mM of 

mannitol respectively. Seeds were germinated and grown for 12 days. (B) Growth of WT, 

35S:AtHD2C1 and 35S:AtHD2C2 transgenic seedlings on MS medium containing 250 mM 

mannitol. Seeds were germinated on the medium for 4 days, and representative plants (out of 

forty examined) are shown. (C) Germination rate of WT, 35S:AtHD2C1 and 35S:AtHD2C2 

transgenic seeds on a mannitol medium. Seeds were pre-chilled for 2 days at 4ºC and were 

germinated on MS medium containing 250 mM concentration of mannitol. Seedlings with 

fully emerged radicles and cotyledons were scored to obtain percent germination. 

Experiments were performed in triplicate  (n=100 each), and the bars represent standard 

errors. (D) Root growth of WT, 35S:AtHD2C1 and 35S:AtHD2C2 transgenic seedlings on 

mannitol. 8-week old T3 seeds were germinated on MS medium containing varying 

concentrations of mannitol ranging from 0-400 mM. Root elongation was measured 5 days 

after incubation. The bars represent standard errors (n=40).  

 

Figure 23.  Mannitol sensitivity of the 35S:AtHD2C1 and 35S:AtHD2C2 lines in germination and 
post-germination stage. 
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At 50 mM of NaCl, the wild-type root elongation dropped by 18%, whereas the 35S:AtHD2C 

transgenic lines lost 3.9% and 3% of their root elongation efficacy at the same concentration 

for 35S:AtHD2C1 and 35S:AtHD2C2 lines respectively (Figure 22D). At a 100 mM 

concentration of NaCl could we observed a distinct difference in the behavior of the wild-

type and transgenic lines; wild-type plants showed a decrease in root length by 48% as 

compared to the 11.9% and 14.4% drop of the 35S:AtHD2C1 and 35S:AtHD2C2 lines, 

respectively (Figure 22B). Further increase in NaCl concentration proved to be toxic and 

growth inhibitory for the transgenic plants. The root elongation pattern differences can be 

evidenced in Figure 20B. Down-regulation of LEC and RD29B in the 35S:AtHD2C lines 

(Figure 22E) was regarded as a marker for reduction in ABA mediated NaCl signaling in 

these lines as salt inhibits cell division and enhances desiccation tolerance via ABA 

signaling.  

Mannitol response 

Mannitol accumulation increases when plants are exposed to low water potential (Patonnier 

et al, 1999), and accumulation is regulated by inhibition of competing pathways and 

decreased mannitol consumption and catabolism (Pharr et al, 1995; Stoop et al, 1996). 

Mannitol is used to asses the response of plants to osmotic stress. 35S:AtHD2C transgenic 

seedlings were germinated 2 days post-stratification on MS medium containing 0-400 mM 

concentrations of mannitol; Columbia wild-type seedlings could grow and develop on 

medium containing 225-240 mM of mannitol. A 250 mM concentration of mannitol arrested 

their post-germination development. However, the wild-type seedlings could germinate and 

develop true-leaves, but the seedlings were unhealthy (yellow in color). Whereas, the 

35S:AtHD2C transgenic plants demonstrated insensitivity to the same concentrations of 
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mannitol as germination was robust and root elongation was expansive (Figure 23A). 

Germination was reduced by 52.2% in wild-type seeds at 252 mM of mannitol, whereas the 

35S:AtHD2C1 and 35S:AtHD2C2 lines lost only 19.8% and 22.8% of their germination 

efficiency, respectively, at the same concentration of mannitol (Figure 23C).  

  Additionally, root development was monitored for embryonic root extension and 

cotyledon expansion. Wild type seedlings did not develop healthy green cotyledons 

subsequent to germination and radicle establishment on medium containing 250 mM 

concentration of mannitol. Rather, they incurred a massive reduction of 67.3% in root growth 

that declined further on higher concentrations. The 35S:AtHD2C1 and 35S:AtHD2C2 lines 

however were able to establish embryonic root and form healthy green cotyledons and 

suffered a relatively minor loss of 28.5% and 18.2% in their root growth, respectively (Figure 

23B and 23D). This data indicates a role for AtHD2C not only in ionic stress response, but 

also in regulation of osmotic stress networks. 

(d)  35S:AtHD2C plants demonstrate vegetative stress tolerance in response to NaCl and 
drought  

Apart from its critical function in maintaining seed dormancy regulating germination and 

seedling growth, ABA helps in optimizing vegetative growth during environmental stress 

conditions by maintaining osmotic homeostasis. At the cellular level, ABA is known to 

promote tolerance to abiotic stresses such as cold, drought and salinity (reviewed in Rock, 

2000; Shinozaki and Yamaguchi-Shinozaki, 2000; Xiong and Zhu, 2001; Larkindale and 

Knight, 2002). Our results indicated a function for AtHD2C in the ABA mediated regulation 

of germination and post-germinative programming. We sought to investigate the response of 

the 35S:AtHD2C transgenic plants to abiotic stress imposition by exposing them to 

physiological concentrations of salt and low-water stress.  
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 Wild-type plants and 35S:AtHD2C transgenic, 30-day old plants were watered with 300 

mM of NaCl for a period of 25 days. Differences between wild-type and transgenic plants in 

their ability to tolerate ion toxicity and osmotic stress became evident 5th day onwards. The 

wild-type leaves demonstrated yellowing and manifestation of senescence, whereas the 

transgenic leaves maintained a healthy green appearance and very little cellular decay. This 

survival efficiency was measured as the percentage of green leaves over the time-span. On 

the 5th day after treatment (DAT), 63% of the wild-type leaves were green whereas 93.9% 

and 90.9% of the 35S:AtHD2C1 and 35S:AtHD2C2 leaves survived, respectively. The 

35S:AtHD2C1 and 35S:AtHD2C2 leaves stayed green and the plants bolted, with senescence 

setting in at 20 days after treatment (60.4% and 56.5%), at that point onwards there was a 

sharp decline to 20.4% and 15.6% survival rates respectively. This was in significant contrast 

to the wild-type counterparts, that senesced to 34.3% by the 10th day and further perished by 

the 20th day, when their survival rate was just 5.2%. The wild- type plants never bolted and 

consequently never transited to flowering (Figure 24) ABA has been shown to be involved in 

the regulation of many stress-induced genes, and in some instances has been shown to be 

required for changes in gene expression in response to water-deficit stress (Bray, 1997). 

Twenty-two day old wild-type and transgenic plants were grown in pots that were left 

unwatered for a period of 25 days. Significant difference between wild-type and transgenic 

plants was observed 10 days after the plants were left unwatered. 
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Figure 24. Salt tolerant phenotype of the 35S:AtHD2C plants in the vegetative stage. (A) Salt 

sensitivity of WT plants. Plants were germinated and grown on soil for 22 days and the 

mature rosettes were subsequently supplemented with water containing 300 mM of NaCl for 

25 days. The photographs were taken at every five day intervals. (B) Salt tolerance of 

35S:AtHD2C1 and transgenic plants. Transgenic plants were germinated and grown on soil 

for 22 days and the mature rosettes were subsequently supplemented with water containing 

300 mM NaCl for 25 days. The photographs were taken at very five day intervals. (C) Salt 

tolerance of 35S:AtHD2C2 and transgenic plants. Transgenic plants were germinated and 

grown on soil for 22 days and the mature rosettes were subsequently supplemented with 

water containing 300 mM of  Nacl for 25 days. The photographs were taken at very five day 

intervals. (D) Leaf survival rate of the WT, 35S:AtHD2C1 and 35S:AtHD2C2 transgenic 

plants in salt stress conditions. Plants were germinated and grown on soil for 30 days and the 

mature rosettes were subsequently supplemented with water containing 300mM of NaCl for 

25 days. Number of green leaves in a rosette were counted at five day intervals for 40 plants 

to obtain the survival curve. Bars depict standard error (n=40).  

 
Figure 24. Salt tolerant phenotype of the 35S:AtHD2C plants in the vegetative stage. 
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The marker for survival here also, was the percentage of leaves sustaining chlorophyll after 

treatment. On the 10th day, the survival count dropped to 44.4% for the wild-type plants, 

whereas it was relatively stable for the two transgenic lines at 88.6% and 80%, respectively. 

From this point onwards both wild-type and transgenic lines demonstrated sharp declines in 

their respective survival rates, but the transgenic plant decayed at much slower rate when 

compared with wild-types. On the 15th day, 6.7% of the wild-type leaves survived whereas 

35S:AtHD2C1 and 35S:AtHD2C2 plants maintained 47.6% and 45.1% leaf survival, 

respectively (Figure25A, 25C and 25D). 

 We also measured the fresh weights of the wild-type and transgenic plants with 

these treatment conditions. As shown in Figure 25B, the 35S:AtHD2C1 and 35S:AtHD2C2 

plants maintained a slow decline from their pre-treatment weights as compared with the wild-

type plants that experienced a drastic drop in their weight when exposed to drought. 

Additionally, the stomatal aperture was investigated in the wild-type and transgenic plants in 

the middle of the dehydration treatment. It was evident that, the stomata in the AtHD2C1 and 

AtHD2C2 leaves were either partially or completely open as opposed to the wild-type 

stomata that were closed in dehydrating conditions (Figure 26). Water-deficit or high-salt 

conditions induce dehydration of plant cells, that may trigger physiological and biochemical 

responses against such stresses. Most of the genes that respond to dehydration, salinity and 

low temperature are inducible by ABA (Nordin and Palva, 1992). Many genes that respond 

to ABA are also expressed at the late stages of embryogenesis during the development of 

seeds and are thought to function in the protection of cell dehydration. Therefore, we checked 

the expression levels (Figure 27) of LEA class genes, RD29B and RAB18 that function
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Figure 25. Drought tolerance of the 35S:AtHD2C plants; (A) Leaf survival rate of the WT, 

35S:AtHD2C1 and 35S:AtHD2C2 transgenic plants in draught stress conditions. Plants were 

germinated and grown on soil for 30 days and the mature rosettes were subsequently 

withheld from water for 25 days. Number of green leaves in a rosette were counted at five 

day intervals for 40 plants to obtain the survival curve. Bars represent standard error (n=40). 

(B) Fresh weight loss of the WT, 35S:AtHD2C1 and 35S:AtHD2C2 transgenic plants in 

draught stress conditions. Plants were germinated and grown on soil for 22 days and the 

mature rosettes were subsequently withheld from water for 25 days. The fresh weight of 

detached rosettes was measured at every five day intervals for 20 plants. Bars represent 

standard error (n=20). (C) Draught sensitivity of wild-type plants. Plants were germinated 

and grown on soil for 22 days and the mature rosettes were subsequently withheld from 

water for 25 days. The photographs were taken at every five day intervals. (D) Drought  

tolerance of 35S:AtHD2C1 and transgenic plants. Transgenic plants were germinated and 

grown on soil for 22 days and the mature rosettes were subsequently withheld from water for 

25 days. The photographs were taken at very five day intervals.  

 

Figure 25. Drought tolerant of the 35S:AtHD2C plants
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during the late phase of seed maturation to confer desiccation tolerance to the seed and are 

known to accumulate during dehydration stress in the vegetative stage.A distinct up-

regulation of these genes was observed in 35S:AtHD2C1 and 35S:AtHD2C2 transgenic 

tissue, collected from mature rosette leaves (30 days after germination). Genetic studies have 

established that ABI1 and ABI2 are negative regulators of ABA transduction signals (Gosti et 

al, 1999; Leung et al, 2001). The concomitant increases of ABI1 and ABI2 mRNA levels and 

corresponding protein phosphatase activities induced by ABA have led to a model (Merlot et 

al, 1997) in that ABI1 and ABI2 take part in a negative feedback regulatory loop that 

continuously resets the ABA signaling cascade to adjust the response to the ABA level 

(Cherel et al, 2002). These two genes are positioned upstream to Ca2+ induced S-type anion 

channel activation whereby, K+ efflux is initiated in the guard cells leading to stomatal 

closure (Hamilton et al, 2000). ABI1 accumulation was unaffected in the 35S:AtHD2C 

transgenic lines, but ABI2 levels were severely reduced in the transgenic lines. These results 

were complemented by a weak rescue of ABI2 expression in the S28601 line, indicating 

specific targeting of the ABI2 dependant signal processing. This led us to examine expression 

of ABI2 inducible gene ADH1, as de Bruxelles et al, (1996) demonstrated a reduction in 

ADH1 accumulation in the abi2 mutants. Accordingly, a down-regulation of ADH1 was 

observed in the 35S:AtHD2C transgenic lines. KAT1 and KAT2 are K+ inward rectifying 

channels that are regulated by their phosphorylation status and are inhibited by ABA 

production during dehydration stress (Gaymard et al, 1998). This mediates the closing of 

stomata due to turgor loss and membrane depolarization that permits retention of water 

during deficit. The expression of both of these genes was reduced in the 35S:AtHD2C  
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Figure 26.  Stomatal aperture of the WT, 35S:AtHD2C1 and 35S:AtHD2C2 transgenic plants; 

Stomatal guard cells were observed in the middle of the dry period (15 days after dewatering). 

Arrows indicate guard cells, and the insets show representative stomata. The bars at the bottom 

of  the pictures represent the magnification under which these bright field pictures were taken. 

Table X Percentage of open stomata (adaxial surface) counted for wild-type and transgenic leaves 
Figure 26.  Stomatal aperture of the WT, 35S:AtHD2C1 and 35S:AtHD2C2 transgenic plants 
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transgenic lines and rescued in the SALK_039784 lines, further supporting a positive role for 

AtHD2C in vegetative ABA mediated stress signaling Xylem K+ content is regulated by 

activity of a stelar K+ outward rectifier (SKOR) (Gaymard et al, 1998) that is repressed by 

ABA. Repression of its expression has been suggested to be part of adaptive water stress 

response mediated by ABA. Expression of this gene was significantly reduced in the 

35S:AtHD2C transgenic lines indicating a positive role for AtHD2C in ABA signaling. The 

ABA-regulated genes, expression patterns in the 35S:AtHD2C vegetative tissues delineated a 

positive regulatory role for AtHD2C in ABA mediated stress signaling. As the results appear, 

ABA signaling mediators and AtHD2C seem to share a positive as well as a negative 

relationship at distinct spatial windows of germination. 

(iv) Interaction between HD2-Type HDACs and RPD3-Type HDACs 

(a)   AtHD2B/AtHD2C and AtHDA1 do not interact 
 

To better understand the molecular mechanism of the HD2 family, we thought it important to 

determine, proteins they form complexes with. HDACs are recruited in complexes with other 

HDACs and co-repressors (Pandey et al, 2002). Therefore, we tested if HD2 genes were 

indeed HDACs, associate with other HDACs. Hence, a yeast two hybrid screen was 

conducted to examine if AtHD2B and AtHD2C could interact with AtHDA1 that is a class I 

HDAC. AtHD2B and AtHD2C were subcloned downstream to the DNA binding domain of 

the yeast GAL4 gene (Figure 28A and 28C). HDA1 was subcloned downstream to the 

activation domain of the GAL4 gene. The AtHD2B/AtHD2C-GAL4BD constructs and the 

AtHDA1-GAL4AD construct pairs were transformed sequentially into a yeast host strain 

(HF7C). 
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Figure  27. Expression of ABA-regulated genes in the vegetative phase in wild-type, 

35S:AtHD2C1 and 35S:AtHD2C2 transgenic lines and SALK_039784 (T-DNA Line); RNA 

levels of ABA-responsive genes were determined by RT-PCR using total RNAs isolated from 4-

week old plants grown in soil in 16 hour light photoperiod. 

 
 
Figure  27. Expression of ABA-regulated genes in the vegetative phase in wild-type
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No interaction was observed between AtHD2B and AtHDA1 (Figure 28B) and between 

AtHD2C and AtHDA1 (Figure 28D). This conclusion was based on the disability of the co-

transformants to thrive on the histidine free medium as compared to the positive control. 

Additionally, interaction was not detected between AtHD2B/AtHD2C and AtHDA1 in the 

LacZ assay as compared to the positive control (data not shown). The HD2 family members 

might interact with some other transcription factors and this is yet to be uncovered. 
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Figure 28. Yeast two hybrid screen for interaction between AtHD2B/AtHD2C and  HDA1. (A) 

Map of PGBDHD2B. (B) Plate assay to test interaction between PGBDHD2B and PGADHDA1 

(C) Map of PGBDHD2C. (D) Plate assay to test interaction between PGBDHD2C and 

PGADHDA1. 

Figure 28. Yeast two hybrid screen for interaction between AtHD2B/AtHD2C and  HDA1 
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 DISCUSSION AND CONCLUSIONS 
 
 

(i)   HD2 proteins act as transcription repressors 
 

Studies conducted on the HD2 gene family, have been channeled towards deciphering the 

functional significance of these genes in the developmental context (Wu et al, 2000; Lusser 

et al, 1997). To further characterize this family, we demonstrated that the AtHD2A, AtHD2B, 

AtHD2C had the same spatial pattern of expression as they accumulated in all the organs 

examined, but at different levels. Similar spatial patterns of expression have been observed 

for genes that control embryogenesis, such as WUSCHEL and somatic embryogenesis 

receptor kinase (SERK) (Mayer et al, 1998) where they are involved in the maintenance of 

both shoot apical meristems and embryonic stem cells. An in situ hybridization performed by 

Zhou et al, (2004) showed the strongest expression of the AtHD2A, AtHD2B, and AtHD2C 

genes in embryos, implicating  that the aborted seed phenotype that was observed in the 

AtHD2A antisense plants (Wu et al, 2000) might result from a defect in embryogenesis, 

resulting from the silencing of AtHD2A. Additionally, in this same report, ectopic expression 

of BBM that can induce somatic embryogenesis allowed for the expression of AtHD2A, 

AtHD2B, and AtHD2C, particularly in pre-embryonic tissues and somatic embryos. This data 

indicated that the expression of these genes is tightly correlated with both somatic and 

zygotic embryogenesis and is likely to be essential for embryo development.  AtHD2D on the 

other hand, formed the exception in this group by accumulating selectively in the flowers and 

to a much smaller extent in the stems. It might play a specialized role in flower development 

that is yet to be investigated. The expansive pattern of expression of this gene family 

implicates that these genes have some special function in the developmental pathways of the 
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plants. However, the similarity of AtHD2A, AtHD2B, and AtHD2C expression patterns also 

raises the possibility of functional redundancy.  

 The control of intracellular location is an important regulatory mechanism for 

HDAC proteins in yeast and mammalian cells (Hirschler-Laszkiewicz et al, 2001). It was 

demonstrated that mammalian HDA1-type HDACs were mobilized from the cytoplasm to 

the nucleus by phosphorylation. Using GFP fusions, we demonstrated that HD2A, HD2B, 

and HD2C accumulated in the nuclei of Arabidopsis cells. Recently, it was found that 

Arabidopsis HD2A is present in the Arabidopsis nuclear matrix using ESI tandem mass 

spectrometry to study the nucleoprotein complexes (Calikowsk et al, 2003). In addition, 

maize HD2 was also localized in the nucleolus (Lusser et al, 1997). This study indicated that 

Arabidopsis HD2 proteins may also be localized into nucleolus. The nucleolar localization of 

other types of HDACs has also been demonstrated in yeast and mammalian cells (Hirschler-

Laszkiewicz et al, 2001). The nucleolus is recognized as the site of rRNA transcription, 

rRNA processing, and ribosome assembly. However, recent studies suggest that the 

nucleolus functions more broadly in gene expression (Pederson, 1998) and may play a crucial 

role in cellular processes such as the control of cell cycle, aging, and mRNA export. 

Therefore, the HD2 proteins might play crucial roles in these essential developmental 

processes. 

 Most ZmHD2a homologs show a characteristic domain structure. A conserved 

NH2-terminal region, a central part consisting of two acidic stretches interrupted by a region 

rich in basic residues and another basic domain adjacent to the second acidic stretch, that 

contains putative nuclear localization signals (Dangl et al, 2000). The amino terminal of 

these proteins consists of  an invariable pentapeptide motif (MEFWG) as well as two 
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conserved amino acid residues, that have been postulated to be critical for catalytic activity 

(Aravind and Koonin, 1998), a histidine at position 25 surrounded by hydrophobic amino 

acids and an aspartate (glutamate in At-HD2c) at position 72. The presence of these residues 

in all sequences analyzed strongly suggests that they are indeed HDACs, although enzymatic 

activity has not yet been determined. Three distinct domains have been identified in the HD2 

family of proteins: the predicted N-terminal deacetylase catalytic domain, the middle region 

consisting of the extended acidic domain, and the C-terminal domain (Aravind and Koonin, 

1998; Dangl et al, 2001; Lusser et al, 1997; Wu et al, 2000). Both AtHD2A and AtHD2C 

have a putative zinc-finger domain in their C-terminal, whereas AtHD2B and AtHD2D do 

not. Deletion of the C-terminal domain from AtHD2A did not affect gene repression activity, 

indicating that this domain is not required for gene repression (Wu et al, 2000). Deletion of 

the extended acidic domain and the domain containing predicted catalytic residues of 

AtHD2A resulted in the loss of gene repression activity, suggesting that both domains may 

be essential for AtHD2A function. At the very C-terminus, six of the eight proteins show a 

single, putative zinc-finger motif. The study conducted here, indicated that the N-terminal 

EFWG motif is essential, and H25 is important for gene repression activity of AtHD2A. H25 

has been suggested to be important for the activity in HD2-type HDACs (Aravind and 

Koonin, 1998). It is speculated that the invariant aspartic acid is the nucleophile involved 

directly in lysine deacetylation, that may be facilitated through a charge relay system with the 

conserved histidine (arginine), thus making the histidine essential for catalysis. 

(ii)   AtHD2C expression is regulated by ABA 

Upon examination of the AtHD2B and AtHD2C promoters, several motifs involved in seed-

development regulation and ABA regulation were found. These elements are grouped into 
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Tables in figure 15 and 16 where the core consensus sequences and functions of these motifs 

are outlined. The cis-acting sequences essential for ABA responsiveness can be classified 

into four main groups (reviewed by Finklestein and Rock, 2002): the G-box elements 

designated ABREs (CACGTG) and the functionally equivalent CE3 (coupling element)-like 

sequences, the RY/Sph (CATGCATG) elements, and recognition sequences for MYB 

(YAAC (G/T) G) and MYC (CANNTG) class transcription factors (Rock, 2000). The 

AtHD2C promoter has ABRE (ABA response element) and RY elements. Both of these 

elements are involved in ABA response. The bZIP class transcription factors such as ABI5 

bind to the ABRE in the target genes by interacting with the B3 domain transcription factor 

ABI3 and tether them onto their target promoters (Nakamura et al, 2001). On the other hand 

the ABI3 transcription factors are known to bind the RY motifs (Kim et al, 1997; 2000; Uno 

et al, 2000). Additionally, Chandrasekharan et al, (2003) demonstrated that there is RY 

module specific activation of the phaseolin promoter during embryogenesis, further 

confirming that the presence of the RY elements in the promoter implicates involvement in 

seed maturation. It could be possible that these transcription factors could be targeting the 

AtHD2C promoter and recruiting other repressors to, to down-regulate its expression. 

Additionally, the AtHD2C promoter also contained the cell-cycle regulation motif MSA (M-

specific activator) that suggests that these proteins might be recruited to enhance cell-cycle 

progression rates and therefore MSA needs to be silenced in the early phase of seed 

maturation when cell-cycle is arrested for developmental transition (Ito et al, 2001).The 

periodic expression of B-type cyclin genes is regulated at least in part by a periodic change in 

the activity of their promoters in the cell cycle (Shaul et al, 1996; Ito et al, 1998; Colón-

Carmona et al, 1999; Tréhin et al., 1999). It was demonstrated that the  promoter activation 
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timing of the cyclin B1 gene, CycB1, from Catharanthus roseus during the cell cycle, is 

determined by a single type of cis element called MSA (M-specific activator), that is 

necessary and sufficient for periodic promoter activation (Ito et al, 1998a). MSA-like motifs 

are found in B-type cyclin promoters from various plant species. Additionally, these elements 

are bound by MYB class of transcription activators that are ABA-inducible (Ito et al, 2001). 

Therefore, the presence of this element in the HD2B and HD2C promoter implicates that 

these genes may be targeted by ABA-regulated transcription factors that in turn control the 

timing of cell cycle progression that has an intricate involvement with histone acetylation 

status (Jasencakova et al, 2001). The MBS or MYB binding site (CAACTG) element found 

in the HD2B and HD2C promoters is drought inducible and is bound by the MYB class 

transcription factors, that are bHLH- type proteins (Yamaguchi-Shinozaki and Shinozaki, 

1994; Abe et al, 1997). The presence of this motif might explain the involvement of HD2C in 

drought response of the 35S:AtHD2C transgenic plants. The HD2C promoter could be up-

regulated by the binding of the MYB transcription factors during drought to de-repress stress 

response genes. The HD2C promoter also contained endosperm–expression motifs Skn-

1(GTCAT) and GCN4 (GTCA) that indicate a function for this protein in some aspects of 

seed development (Hoecker et al, 1995). These elements were previously identified to be 

essential for endosperm expression in the rice storage protein glutelin GLU-B1HAT. This is 

quite interesting as the repressor is activated in some situations. We speculate that the 

expression of HD2 genes expression could be up-regulated by seed maturation factors, either 

dependant or independent of ABA to regulate endosperm formation. 

 The AtHD2B and AtHD2C promoter driven GUS expression patterns were also 

examined in the vegetative stage to determine if the expression patterns were the same as that 
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observed in the spatial profiling of the HD2 gene family. Additionally, we wanted to confirm 

if the HD2 proteins are expressed in vegetative and flowering phases of plant development 

that would indirectly implicate a function for them in these stages. GUS was found to be 

expressed in almost all mature tissues examined including leaves, flowers, siliques and all 

parts of the flower except the petals. These results suggest that the HD2 protein accumulation 

in the vegetative phase might facilitate their positive regulatory role during stress 

impositions. Why the HD2 proteins might act as a developmental switch is very complicated 

as there are very few examples in nature when proteins exercise different levels of control in 

different developmental stages. One of the examples where a protein exercises a dual role in 

stage–specific manner is c-myc protein that was found to be expressed in the embryogenesis 

stages of development of mice , but down-regulated in the adult stages (Cre'ancier et al, 

2000). 

  We examined GUS reporter expression driven by the AtHD2C promoters in the 

germination stage to check if it supports the results observed in the ABA sensitivity assay. 

Accordingly, the GUS expression was down-regulated in seedlings at early (2 days) and late 

(6 days) post-germination stages. This observation signifies that ABA down-regulates 

AtHD2C expression in the post-germination phase. This can be interpreted in a way that 

when there is a stressful environment during the time of germination or post-germination, 

ABA down-regulates post-germinative growth promoting factors such as HD2 proteins to 

induce transient dormancy to tide over the challenging period. Post-germinative growth 

involves a range of biochemical processes to function smoothly including lipid catabolism 

and activation of the glyoxalate cycle (Eastmond et al, 2000). It is possible that the HD2 

proteins might be involved in propitiating these processes to help keep the transition smooth. 
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Although the precise roles of the ABIs in regulating lateral root growth are not understood, it 

is noteworthy that ABI5 is specifically expressed in root tips from emergence onward 

(Brocard et al, 2002). We found an accumulation of GUS at the root tips after ABA 

treatment. It has been demonstrated that root meristems and shoot meristems have different 

responses to hypoxic stress (Ellis et al, 1999). This result led us to speculate if AtHD2C 

accumulates in the root tips concomitantly with ABI5 to down-regulate any growth inhibition 

attempts by the ABA signal cascade. Alternatively, HD2 proteins could also be part of the 

ABA feedback loop mechanism. When stress levels increase, ABI5 and AtHD2C (and other 

HD2 proteins) might accumulate in the root tips and the ABI5 will enhance growth inhibition 

and transient dormancy. On the other hand, AtHD2C might just sit in that location ‘poised’ 

for action. Once the stressful period is over, HD2 proteins will serve to down-regulate the 

ABI5 (AREB) proteins, thereby relieving ABA mediated repression. Also, as can be seen the 

GUS accumulation was very high in the post-imbibition seeds, i.e., seeds that are ready to 

germinate. This indicated that at the time of phase transition to post-germinative growth, the 

HD2 proteins accumulate in high levels. Therefore, results thus far indicate that ABA and 

HD2 proteins share an antagonistic relationship that is to be further analyzed.  

(iii)    AtHD2C  is involved in ABA response 

The AtHD2C was ectopically expressed in Arabidopsis to asses the range of developmental 

processes this gene might regulate. To complement this study, an AtHD2C T-DNA insertion 

line was also analyzed. The AtHD2C overexpression lines had some obvious phenotypes. 

Marked early flowering, reduction in seed number, stunted siliques and early germination. 

Ectopic expression of AtHD2A as a fusion protein disrupted normal development and 

generated many pleiotropic effects in a variety of somatic and reproductive tissues (Zhou et 
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al, 2004). This observation indicated that the components needed for specificity may be 

absent in non-target tissues and/or that ectopically expressed GFP HD2A may be acting on 

atypical non-specific target sites. However, the results obtained from overexpressing genes 

needs to be interpreted carefully. Overexpression may induce direct or secondary effects on 

gene expression. For example, overexpressing AtHD2A may induce silencing of endogenous 

HD2 genes. Overexpression might lead to hierarchical cascades that result in the apparent 

phenotypes rather than gene-specific abnormality (Finklestein et al, 2002). However, the 

early germination phenotype is consistent with the involvement of the HD2 proteins in 

embryo development. Additionally, the effects on flowering were consistent upon several 

examinations and were very prominent. This indicates that the HD2 proteins might be 

involved in flowering time regulation. The role of histone deacetylases and other repressors 

in regulating transition from vegetative to reproductive phase is gradually coming to light 

(Kornreef et al, 1998). It is a quite well known fact that the polycomb group of proteins 

control the embryo and floral development by regulating respective homeotic genes 

(Chanvivattana et al, 2004). Additionally, there have been reports about the interaction 

between PcG proteins and HDACs speculating that the PcGs might recruit the HDACs to 

achieve repression (Finklestein and Rock, 2002). The HD2 proteins might be a part of this 

repression complex as it was initially isolated in a large 400KDa complex (Lusser et al, 

1997). Also, these proteins have Zn-fingers at their C-terminal ends through which they can 

mediate protein-protein or protein-DNA interactions (Dangl et al, 2001). The abnormal leaf 

phenotypes demonstrated by the overexpression lines might be due to the role of the HD2 

proteins in multiple development pathways or it might be an artifact of overexpression. The 

reduced fruit and seed phenotype may also be due to the involvement of the HD2 gene family 
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with seed maturation and development and partly due to the exaggerated environment of 

ectopic expression. It can be observed in Tables VII, VIII and IX that there is a very low 

frequency of naturally occurring abnormalities in the wild-type plants itself. However, the 

frequency in the overexpression lines was markedly different from that of wild-type 

supporting a vital role for the HD2 proteins in the overall developmental context.  

 Since the HD2 proteins accumulated in the ovules (Zhou et al, 2004), knockout of 

AtHD2A led to aborted seed development (Wu et al, 2000) and the ‘seed-specific’ gene 

expression was found to be down-regulated in the AtHD2A overexpression lines, it was 

speculated that the HD2 proteins might be involved in a process regulated by another embryo 

development regulator, Abscisic acid (ABA). The common method for identifying 

involvement with ABA signaling is the germination and post-germination growth sensitivity 

assay (Gazzarrini and McCourt, 2001). The distinguishing feature between hormone 

biosynthetic mutants and response mutants is that the response mutants are insensitive even 

to ectopic application of the hormone, whereas the biosynthesis mutants will have restored 

phenotype upon hormone application (Finklestein and Rock, 2002). The AtHD2C and 

AtHD2B overexpression lines had early germination, even on ABA supplemented plates 

indicating that are deficient in ABA response. Subsequently, these lines were able to 

establish cotyledons and begin the vegetative development process when their wild-type 

counter-parts were unable to form the aerial parts on the same or higher concentrations of 

ABA. At the gene regulation level, the four ABA-inducible or responsive genes were down-

regulated in the overexpression lines. LEC1 and ICK1 are essential for embryo transition 

from first phase of maturation to the second (Finklestein and Rock, 2002). Also, AREB, that 

is a bZIP class transcription factor, will induce the expression of LEA gene RD29B to initiate 
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desiccation tolerance and dormancy (Bray, 2004, 2001). When seeds exit from the dormancy 

phase to enter the vegetative growth phase, they need to down-regulate the factors that might 

prevent this process (Delseny et al, 2001), such as ABA signaling factors. It was reported 

that PICKLE (PKL), that is a transcription factor belonging to the PcG group of repressors, 

represses post-germination expression of embryogenesis promoting regulators such as LEC1 

(Ogas et al, 1999). Since the HD2 overexpression led to repression of LEC1 and three other 

embryogenesis promoting and maintenance factors, it led us to speculate that HD2 proteins 

might be involved in the transition from dormancy to germination by down-regulating ‘gate 

keeping ‘  ABA signals. The down-regulation of LEC1 and ICK1 might also explain the early 

germination, as these two genes ensure termination of cell division to prevent precocious 

germination.  

 Salt, drought, and to some extent, cold stress cause an increased biosynthesis and 

accumulation of ABA, that can be rapidly catabolized following the relief of stress 

(Shinozaki and Yamaguchi-Shinozaki, 2000). The role of ABA in osmotic stress signal 

transduction was previously addressed by studying the stress induction of several of these 

genes in the Arabidopsis ABA-deficient mutants (Akaba et al., 1998; Assmann et al, 2001; 

Audran et al, 1998; Audran et al, 2000; Chernys and Zeevaart, 2000). In genetic screens, a 

group of mutants that exhibit diminished expression of RD29A-LUC under osmotic stress 

compared with Wild-type plants was recovered (Lee et al, 1998; Zhu, 2000). Two of the loci 

defined by these mutants, LOS5 and LOS6, have been characterized and the genes isolated. In 

los5, the expression of several stress-responsive genes, such as RD29A, COR15, COR47, 

RD22, and P5CS, was severely reduced or even completely blocked during salt stress 

(Ingram and Bartels, 1996). The molecular cloning of los5 revealed that LOS5 encodes a 
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molybdenum cofactor sulfurase (MCSU) and is allelic to ABA3 and the los5 plants were 

defective in drought-induced ABA biosynthesis (Bittner et al, 2001). When exogenous ABA 

was applied, salt induction of RD29A-LUC was restored to the wild-type level, demonstrating 

that the ABA deficiency was responsible for the defect in osmotic stress regulation of gene 

expression (Finklestein and Rock, 2002). These findings suggested that osmotic stress 

induction of these stress-responsive genes is almost entirely dependent on ABA. Therefore, 

we expected that if a mutant is unresponsive to ABA, it would show insensitivity even to 

osmotic stress such as salt and sugar. Accordingly, the AtHD2C and AtHD2B overexpression 

lines demonstrated insensitivity to salt application depicted in the germination assay graphs 

and root length curve in figure 22. The commitment to germinate is irreversible that is why 

there are many checkpoints before the seed can enter into this process. The most major 

checkpoint is the environment-sensitive ABA response. If there is the slightest hint of 

osmotic stress or environmental shock, the ABA biosynthesis is induced, that results in the 

accumulation of the ABI3-5 (AREBs) transcription factors and the consequent accumulation 

of the LEA proteins, such as RD29B that maintain the dormancy and prevent mobilization of 

reserves (Ingram and Bartels, 1996). Therefore, we perceived the down-regulation of RD29B 

and AREB in the overexpression lines as a marker for ability to germinate in salt medium. 

NaCl resistance of the HD2 overexpression lines implicates that they are not only resistant to 

osmotic stress, but also to ion toxicity. However, the effects of mannitol were less severe on 

the wild-type as compared with ABA or salt. Mannitol is an important stress management 

factor that plants accumulate in harsh environments (Abebe et al, 2003). Although the wild-

type plants were able to germinate and establish true leaves, the plants were extremely 

unhealthy and very few of them survived to set seed in the mannitol supplemented medium. 
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On the other hand, the overexpression line flourished on the mannitol supplemented medium 

displaying healthy transitions and development. These results indicate a definite role for 

AtHD2C in the regulation of dormancy to post germination growth switch. It is most likely 

that the other HD2 family members may play the same role during this phase owing to their 

intra-familial homology interaction potential. Additionally, these HD2 proteins might be 

working in conjunction with other regulatory factors such as PcG proteins and other HDAC 

class members, but this remains to be tested.    

 To complement the overexpression study, we incorporated an AtHD2C T-DNA 

insertion line into the experiment with the expectation that the T-DNA line would most 

probably give the opposite phenotype to the overexpression thereby, making our results 

comprehensive. Upon examination of the response of the T-DNA lines to stress treatment, it 

appeared that the plants had the same phenotype as Wild-type in the post-germination stage 

and in the vegetative stress environment when exposed to ABA, salt, mannitol and drought. 

This is not consistent with our expectation but there could be a few reasons, as to why we 

obtained this result. AtHD2C is just one of the members of the HD2 protein family and its 

loss may be substituted by the presence of other HD2 family members. Therefore, the 

functional loss of the gene is not evident as a phenotype. We would have to do multiple gene 

knockouts to examine importance of these proteins function. Alternatively, RNAi lines can 

be used as they might be able to achieve obliteration of HD2 protein family by using the 

RNA specific sequence for one member. Nevertheless, the T-DNA line was able to 

demonstrate some differences at the gene expression level as can be seen in Figure 20. This 

could be possible although the gene could not affect the plants development at a visually 

manifested level, it could introduce subtle changes in expression of specific target genes. 
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However, it can be seen that the rescue of the various genes examined is not very robust 

owing to the HD2 family gene redundancy in the system.  

 The down-regulation of AtHD2C in response to ABA was confirmed by 

examining actual AtHD2C expression in response to ABA. It was observed that there was a 

partial reduction in AtHD2A, AtHD2B, AtHD2C message levels upon 3-6 hours of ABA 

treatment. The partial reduction pattern can be explained by that. HD2 proteins may not be 

the only proteins exercising this level of control, i.e., they may be part of a huge complex 

(Lusser et al, 1997), and therefore, they are not targeted to obliteration, maybe below 

functional threshold levels. Alternatively, even the proteins may play a crucial role in this 

process, the applied ABA treatment and time of action were not enough to detect acute 

reduction levels. 

 A critical function of ABA during vegetative growth is to optimize growth during 

environmental stress by maintaining osmotic homeostasis (Finklestein and Rock, 2002). At 

the cellular level, ABA can promote tolerance of some abiotic stresses including drought, 

salinity, and cold or heat (reviewed in Rock, 2000; Shinozaki and Yamaguchi- Shinozaki, 

2000; Xiong and Zhu, 2001; Larkindale and Knight, 2002). In addition, it can induce 

tolerance of hypoxic stress in roots, but not shoots (Ellis et al., 1999). Within the first 3 hours 

of stress induction, ABA levels are known to peak, inducing the MAPK pathway to 

subsequently led to activation of transcription factors that can induce LEA protein 

accumulation within the next 10 hours when ABA levels peak again (reviewed in Shinozaki 

and Yamaguchi-Shinozaki., 2000; Xiong and Zhu., 2001). Therefore, ABA is not only a 

germination checkpoint regulator, it is also an important stress-relief agent in the later stages 

of the plant life. We wanted to examine if the HD2 proteins had some functional role at this 
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developmental stage owing to their involvement in the germination stage. Therefore, mature 

AtHD2C overexpression plants were exposed to artificial salt stress and drought stress. To 

our surprise, the overexpression lines were resistant to both these conditions (Figure 24 & 

25). Interestingly, the number of closed stomata in the overexpression lines was much 

reduced in comparison to wild-type stomata (Table X) under drought conditions. This 

observation was different from our expectations as the partially open stomata in the 

transgenic lines did not support their drought resistant phenotype. The accumulation of 

inorganic ions, organic acids, sugars, and other compounds is required to maintain the 

internal water balance (Leigh, 1997). In principle, increased vacuolar solute accumulation 

could confer salt and drought tolerance. The sequestration of ions such as sodium could 

increase the osmotic pressure of the plant and at the same time reduce the toxic effects of this 

cation. Also, plants accumulate a variety of organic osmoprotectant solutes through a 

biochemical mechanism which improves their ability to withstand stresses. Of these solutes, 

betaines (fully N-methylated amino acids) appear to play a major role in conferring 

resistance to drought, salinity and temperature stresses. Additionally, when stomata remain 

open, Co2 is fixed and the plants photosynthetic accumulation increases. Therefore, the 

paradoxical finding of open stomata in the transgenic plants during drought stress indicates 

that the 35S:AtHD2C plants are using alternate biochemical pathways other than shutting 

down stomata to achieve stress tolerance. HD2C might upregulate pathways leading to the 

accumulation of osmoprotectants such as glycine betaine or may be enhancing 

photosynthetic efficiencies by increasing Co2 fixation. These theories have to be investigated 

to identify the molecular reason behind the open stomata supporting stress tolerance 

phenotype. As we established a negative regulatory role for AtHD2C in the germination 
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stage, it was expected that the ABA insensitive plants would succumb to environmental 

stress. This paradoxical finding was further investigated at the gene expression level. RNA 

collected from mature rosette leaves of the overexpression lines and several ABA signaling 

pathway genes were examined. It was observed that RD29B that was repressed in the 

seedling stage, was up-regulated in the vegetative phase that could explain the survival of the 

transgenic plants for longer periods of time. Additionally, the AREB gene that was down-

regulated during the germination phase was also up-regulated in the vegetative phase 

supporting the up-regulation of the RD29B gene.  ABI1 that is a negative regulator of ABA 

signaling was unaffected in the transgenic lines indicating that HD2 protein regulation of the 

signaling cascade was independent of ABI1 targeting. On the other hand, ABI2 was 

distinctly down-regulated. ABI1 and ABI2 act either at distinct steps or in parallel pathways 

(Pei et al., 1997). Yeast two-hybrid studies have shown an interaction between ABI2 and 

SOS2 (Xiong and Zhu, 2001). SOS2 is a serine/threonine protein kinase identified on the 

basis of its role in salt-stress signaling (Liu et al., 2000). Both the ABI4 and ABI5 gene 

products contain ser/thr-rich domains that could be sites of phosphorylation (Finkelstein et 

al., 1998; Finkelstein and Lynch., 2000) and recent studies have demonstrated that ABI5 

protein is stabilized by ABA induced phosphorylation (Lopez-Molina et al., 2001).  It is quite 

possible that the PP2C proteins might dephosphorylate ABI4/5 and thereby inhibit their 

accumulation and ABA signal. The down-regulation of ABI2 and ABI2 controlled target 

ADH1 (de Bruxelles et al., 1996) indicated that the HD2 proteins may play a positive 

regulatory role during this developmental stage. 

 To further support this idea, the K+ inward rectifying channels KAT1 and KAT2 

genes were down-regulated in the transgenic lines. Stomatal closing is another essential 
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aspect of coping with water deficit in addition to accumulation of LEA proteins that help 

overcome desiccation (Liu et al., 2000). Stomatal closing is induced by ABA by inhibiting 

K+ inward rectifying channels so that the guard cells can be de-polarized (Gaymard et al., 

1998; Allan et al., 1994). Therefore, down-regulation of these ABA-regulated K+ inward 

rectifying channels in the AtHD2C overexpression lines indicates that AtHD2C may be 

involved in helping mediate the ABA inhibition of these channels. SKOR is a K+ outward 

rectifier that is repressed by ABA to maintain K+ content in the apoplast during loss of K+ 

from the individual cells (Lancombe et al., 2000).  The repression of this gene in the AtHD2C 

overexpression lines indicates that AtHD2C helps maintain apoplastic osmotic potential by 

enhancing ABA mediated repression of K+ outward rectifiers in this location. All the results 

obtained from this part of the study underscore the relevance of a new type of regulator that 

can exercise opposite effects in different developmental stages.  

(iv)   AtHD2B and AtHD2C do not interact with AtHDA1 

Based on the structural analysis of the HD2C protein sequence, we expected it to associate 

with a protein complex as HD2 proteins were first isolated in a large complex (Lusser et al., 

1997). The reason for our expectation was the presence of a Zn finger motif at the C-

terminus as the Zn finger is instrumental in direct DNA contact and protein interactions 

(Dangl et al., 2001). Additionally, Zn-finger proteins have been identified to be involved in 

stress responses by directly contacting core ACGT sequences (Sakamoto et al., 2004). This 

led us to speculate if HD2C might have ability to directly contact target genes. However, the 

ideal way to examine the complex members would have been a library screen. We started the 

process by conducting a two-hybrid screen. We chose to test interaction between AtHD2C 

and AtHDA1 (Class I HDAC) because there are reports of HDACs being recruited to target 
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sites as HDAC complexes consisting of different class members. Therefore, we wanted to 

investigate if HD2 proteins also participate in this HDAC complex targeting. Neither 

AtHD2B nor AtHD2C interact with AtHDA1 proteins (Figure 28). However, we don’t rule 

out the possibility that there might be interaction between these proteins, owing to the non-

reliable heterologus yeast system to examine plant protein interactions.  
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                                                       SPECULATION 
 

(i)   Model during seed maturation 

Seed maturation consists of two phases; early and late. In the early phase, ABA- inducible 

LEC/FUS3 repress cell-division via recruiting mediators such as ICK1 to the CDPKs 

(Finklestein and Rock., 2002). From our results, we will tentatively place AtHD2C (and 

other HD2 proteins) upstream of LEC1 based on the down-regulation of this gene in our 

investigation. Therefore, at this upstream position if HD2 proteins can inhibit cell-cycle 

arrest by indirectly inhibiting ICK1 expression, then they can inhibit the protein 

accumulation in the second phase or affect AREB (ABI5), RD29B (LEA) expression. This is 

sequence of events might be executed in the post-germinative growth phase when ABA 

signaling is not needed. However, in the embryo-maturation phase, although HD2 proteins 

are present at particular positions, they do not execute their function as they are silenced by 

ABA peaks in these stages. This idea stems from the observation that the HD2 genes were 

down-regulated by ABA application. What ABA-signaled factors silence the HD2 genes is 

not known (Figure 29). It could it be the cell-cycle regulation factors, as there is a cell-cycle 

regulation motif in the promoter of AtHD2C..  

(ii)   Model during post-germination growth  

Essentially, the paradigm here is a continuation of the model presented above. As we 

established HD2 proteins upstream to LEC1 in the seed maturation phase, the repressor 

function is not executed due to down-regulation of HD2 genes expression by unknown ABA 

signaled factors. But in the post-germination phase, as the ABA 
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Figure 29. Model for HD2 participation in ABA signaling during embryo-development. The 

PCKL group of proteins (and HD2 proteins) are kept silent by unknown ABA signals, thereby 

permitting normal embryo maturation. The arrows indicate activation an the perpendicular bars 

indicate repression. 

Figure 29. Model for HD2 participation in ABA signaling during embryo-development. 
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Figure 30. Model for HD2 participation in ABA signaling during Germination-post germination 

phase. The PCKL group of proteins (and HD2 proteins) are de-repressed as ABA levels goes 

down and they down-regulate ABA-responsive factors to expedite the transit from growth arrest. 

The arrows indicate activation an the perpendicular bars indicate repression. 

Figure 30. Model for HD2 participation in ABA signaling during Germination-post germination 
phase. 



 117

 

levels go down, the HD2 expression is de-repressed and thereby, LEC1 down-regulation 

mediated repression of the ABA- response pathway is down-regulated to prevent growth 

inhibition (Figure  30). 

(iii) Model during vegetative stress response  

In the vegetative phase, a switch in the function of the HD2 proteins was observed. This role 

reversal led us to speculate that the HD2 proteins can function downstream to some ABA–

responsive kinases that can phosphorylate the HD2 proteins and led to their activation. Once the 

HD2 proteins are activated, they might led to down-regulation of phophoprotein phosphatases 

(ABI2) that negatively regulate ABA- responsive transcription factors such as ABI3/5 and ser/thr 

protein kinases. ABI1 and ABI2 take part in a negative feedback regulatory loop that 

continuously resets the ABA signaling cascade to adjust the response to endogenous ABA levels. 

Also, protein phosphorylation is one of the most important mechanisms in ion transport in guard 

cells (Liu et al, 2000). KAT1 guard cell channel has been shown to be phosphorylated by 

calcium-dependent and (ABA)-regulated protein kinase activities (Li et al., 1998; Mori et al., 

2000). ABI1/2 phosphatases have been implicated in regulating the K+ opening and closing 

(Chérel et al., 2002). We propose that the HD2 proteins may have additional level of regulation 

other than controlling LEC1 downstream signals. We place HD2 proteins in the early ABA 

signaling cascade, i.e., on the plasma membrane location. HD2 can repress ABI2 expression and 

thereby, prolong the ABA signal relay. Also, the HD2 proteins can regulate K+ inward rectifying 

channel gene expression by a mechanism independent of ABI2. It cannot be concluded from 

these results if all the genes affected by HD2 overexpression are directly contacted by the HD2 

proteins, but certainly they are in the path of the HD2 regulation loop (Figure 31).                     
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Figure 31. Model for HD2 participation in ABA signaling during vegetative stress response in 

the guard cells. By down-regulation ABI2, KAT1 and KAT2 expression in the nucleus, the HD2 

proteins (HD2C) inhibit de- phosphorylation of K+ out channels and inhibit K+ channels 

respectively. The arrows indicate activation an the perpendicular bars indicate repression. 

Figure 31. Model for HD2 participation in ABA signaling during vegetative stress response in 
the guard cells. 
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