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ABSTRACT 

 
Synthesis of a Basket-Shaped C56H38 Hydrocarbon as a Precursor  

Toward an End-Cap Template for (6,6) Carbon Nanotubes 

 

Hu Cui 
 

     A basket-shaped C56H38 hydrocarbon (70) possessing a 30-carbon 

difluorenonaphthacenyl core that can be mapped onto the surface of C78 was synthesized 

from 4-bromo-1-indanone. The first stage of the synthesis involved the preparation of 

tetraketone 3 as a key intermediate.  

     The use of cascade cyclization reactions of benzannulated enyne−allenes as key 

features in the next stage of the synthetic sequence provides an efficient route to 70 from 

4-bromo-1-indanone in 12 steps. The all-cis relationship among the methyl groups and 

the methine hydrogens causes the two benzofluorenyl units in 70 to be in an essentially 

perpendicular orientation to each other. Hydrocarbon 70 and its derivatives could serve as 

attractive precursors leading to a geodesic C68H26 end-cap template for (6,6) carbon 

nanotubes. 
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CHAPTER I 

 

Synthesis of a C22H14O4 Tetraketone Bearing a 20-Carbon Framework 
of Dicyclopenta[def, mno]chrysene 

 

1. Introduction 

     The synthesis of bowl-shaped polycyclic aromatic hydrocarbons (PAH), usually 

referred to as buckybowls (Figure 1), with carbon frameworks that could be mapped on 

the surface of buckminsterfullerenes, has been intensely investigated in recent years due 

to their promising potential for wide applications in nanotechnology, electronics, optics, 

and other fields of materials science. In 1996, the discoverers of buckminsterfullerene C60, 

H. W. Kroto, R. F. Curl, and R. E. Smalley, were awarded the Nobel Prize in Chemistry.1 

As the smallest fullerene, buckminsterfullerene C60 is composed of twenty hexagonal 

rings and twelve pentagonal rings.  

C20H10 C22H10 C26H12 C30H12

Corannulene Acecorannulene Tetrabenzopyracylene [5,5]Circulene  

 

Figure 1. Various bowl-shaped polycyclic aromatic hydrocarbons. 

     Corannulene, a bowl-shaped C20H10 hydrocarbon bearing a 20-carbon framework 

identifiable on the surface of C60, was first synthesized by Barth and Lawton in 1966 by 

solution-phase chemistry.2 It represents the smallest fullerene fragment possessing  

 1



 

a significant curvature and the strain from its core area is responsible for its curved 

molecular shape. The structure of corannulene C20H10 contains a central five-membered 

ring surrounded by five fused benzene rings.  

 

     More recently, the use of flash vacuum pyrolysis (FVP) to connect distantly separated 

carbons in planar polycyclic aromatic precursors provides more direct access to this 

strained molecule and many other bowl-shaped PAHs that were previously considered 

difficult to prepare by other methods.3 However, under high reaction temperatures (900 

°C or higher), the buckybowl precursors with more delicate structures may not survive 

the harsh conditions. In addition, unwanted thermal rearrangements of the molecular 

framework could occur.  

 

     To overcome these drawbacks, recent efforts have focused on the development of 

practical, non-pyrolytic, and milder synthetic methods for the construction of buckybowls 

in order to realize the full potential of this emerging new field. Several solution-phase 

syntheses of corannulene and its derivatives have also been reported.4 Corannulene 

derivatives have been used as precursors for the construction of larger bowl-shaped 

polycyclic aromatic hydrocarbons (Figure 2).3g,4g Recently, Dr. Lawrence T. Scott’s 

group finished the preparation of complete family of all indenocorannulenes from various 

bromocorannulenes and chlorocorannulenes by iterative microwave-assisted 

intramolecular arylations (Figure 3).5 
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Cl

Cl

Cl

Cl

Cl

Br

Br

Br

Br

Br

Br

Br

1,2,5,6-tetrabromocorannulene 1,3,5,7,9-pentachlorocorannulene1,2,5-tribromocorannulene  

Figure 2. Various bowl-shaped halogenated corannulenes. 

 

1,2,3- tri-IC tetra-IC penta-IC  

 

Figure 3. Indenocorannulenes prepared by Scott et al. 

 

2. Research Objective 

 

     Although corannulene has a significant curvature, the presence of only sp2-hybridized 

carbons causes the structure to be relatively flat compared to the structures that contain 

sp3-hybridized carbons. As a result, the indene structures on the periphery of 1,2,3-tir-IC, 

tetra-IC and penta-IC are relatively far apart from one another, making it difficult to 

connect them together by solution-phase chemistry.5 

     We envisioned an alternative approach to buckybowls by replacing the core sp2-

hybridized carbons with sp3-hybridized carbons. Such a substitution will greatly relieve 

the molecular strain associated with the corresponding fully aromatized system, making it  

 3



 

more feasible for further intramolecular carbon-carbon bond formations. 

     Drs. Yu-Hsuan Wang and Hua Yang of our research group reported the use of 

diketone 1 as a key intermediate for the preparation of the C56H40 hydrocarbon 2 bearing 

a 54-carbon framework represented on the surface of C60 (Scheme 1).6 The structures of 

diketone 1 and several products derived from 1 contain multiple sp3-hybridized carbons 

in their structures. 

 

O

O O

H HPh Ph

H H H H

1 2  

Scheme 1.  The C56H40 hydrocarbon 2 derived from diketone 1. 

 

     Encouraged by this achievement, we envisioned an alternative approach to 

buckybowls by starting from tetraketone 3 as a key intermediate leading toward larger 

bowl-shaped fullerene fragments. It is worth noting that the structure of tetraketone 3 

contains the 20-carbon framework of dicyclopenta[def,mno]chrysene (4). Compared to 

the much studied corannulene, the C20H10 fullerene fragment 4 remains virtually 

unexplored. The structure of 4 can be regarded as having an inner 1,3-butadiene 

surrounded by an outer [16]annulene containing only two cis double bonds.7 The MM-2 

optimized structure of 4 shows that it also possesses a significant curvature. In addition, 

the six-membered rings in 4 are either part of a reactive ortho-quinodimethane moiety8 or 

part of a reactive para-quinodimethane moiety,9 rendering the molecule potentially too  

 4



 

unstable to prepare. However, tetraketone 3 does not possess those reactive structure 

features and could serve as an excellent precursor for the construction of larger bowl-

shaped or basket-shaped fullerene fragments.  

4

H

H

Me

Me
O

O

O

O

3  

Figure 4.  The structures of tetraketone 3 and dicyclopenta[def,mno]chrysene (4). 

 

3. Literature Survey of Synthesis of Buckybowls 

 

     Although buckminsterfullerene C60 was discovered in 1985, the first solution-phase 

synthesis of the smallest buckybowl, corannulene, was reported by Barth and Lawton 19 

years earlier in 1966 (Scheme 2).2 However, due to its lengthy synthetic route of 16 steps 

and narrow applications, the report of the synthesis of corannulene failed to arouse 

enthusiasm in this new research area. Renewed interest lead organic chemists to 

investigate alternative synthetic routes for bowl-shaped polycyclic aromatic hydrocarbons 

only after the remarkable interest given to C60. 

CO2Me

corannulene

HO

5
 

Scheme 2.  Barth and Lawson’s pathway to corannulene. 
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     In 1991, a new synthesis of corannulene by flash vacuum pyrolysis (FVP) was 

reported by Scott et al. in 3 steps. Various other buckybowls have since been prepared by 

the FVP method.3 

 

     Scott et al. reported the use of 6 for the synthesis of corannulene by FVP (Scheme 3). 

Presumably, the reaction proceeds through carbene intermediates to form corannulene in 

10% yield.2a  

H H

1000°C

FVP
H

C

H

corannulene

10%

6  

Scheme 3.  Synthesis of corannulene via FVP method. 

 

     Several other examples of coranullene synthesis by FVP were also reported (Scheme 

4).2  

 

 

 

 

 

 

 

 

 

 

 

 

 6



 

TMSO OTMS Br Br

Br Br

Br
Br

Br
Br

TMS TMS

ClCl
carannulene

8%

15%

18%

23% 40%

7 8 9

10 11

FVP
FVP FVP

FVPFVP

 

Scheme 4.  Corannulene prepared from various precursor via FVP. 

 

   However, when applying FVP methodology for the synthesis of larger fullerene   

fragments, many isomers and by-products were formed. As a result, the yields were lower, 

and separations of products from the reaction mixture became very difficult due to 

similar polarities (Scheme 5).10 
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C22H10

Acecorannulene

10-15%

Cl Cl

FVP

37%

Tetrabenzopyracylene

FVP

BrBr

Cl Cl

5%

FVP

C30H12

[5,5]Circulene

ClCl

12 13 14 15

16 17  

Scheme 5.  Larger fullerene fragments prepared via FVP. 

     While the FV al fullerene 

   In 1996, Siegel et al. prepared corannulene derivatives by the solution-phase synthesis. 

P method has found success in the synthesis of sever

fragments, it has some serious limitations. These limitations prevent its further 

applications, especially for larger fullerene fragments due to low yield, many byproducts, 

difficulty in scaling up, lack of functional group tolerance, notorious separation processes 

and lack of applicability to nonvolatile systems.11 

 

  

Using a McMurry-type reductive coupling of tetrabromide 19 with TiCl3/LiAlH4 

followed by DDQ-promoted dehydrogenation, dimethylcorannulene 20 was obtained in 

moderate yield (Scheme 6).12 Later on, Siegel and Rabideau’s groups adopt this 

methodology for the preparation of several more complex corannulene derivatives.13,4b,4c 
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Br Br
O O

Br Br

1. TiCl3, LiAlH4

2. DDQ

18 19 20  

Scheme 6.  Siegel’s pathway to dimethylcorannulene 20. 

 
     In 2000, Rabideau et al. reported a new non-pyrolytic synthesis of 

tetrabromocorannulene 22 in a convenient and inexpensive way by simply refluxing 21 

under a mild condition in the presence of a small amount of NaOH in aqueous dioxane 

(Scheme 7).4d,4f,14 

Br
Br

Br Br

Br
Br

Br Br

Br
Br

Br
Br

NaOH
Dioxane: H2O = 2.5: 1

reflux, 15 min, 83%

21 22  

Scheme 7.  Rabideau’s synthesis of tetrabromocorannulene 22. 

     Scott et al. also reported a three-step synthesis of dibenzo[a,g]corannulene by 

 

employing palladium-catalyzed intramolecular arylation reactions (Scheme 8). At 150 °C, 

dibromide 25 was converted to the bowl-shaped dibenzocorannulene 26 in 60% yield 

using a suitable palladium catalyst and 1, 8-diazabicycloundec-7-ene (DBU) in N, N-

dimethylformamide (DMF).15 

OO

+

Br Br

O

KOH Br Br Pd(0)

23 24 25 26
heat

HO(CH2)2OH

DBU

 

Scheme 8.  Scott’s synthesis of dibenzocorannulene 26. 
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     In 2009, Scott et al. reported the synthesis of the complete family of all five 

indenocorannulenes via iterative microwave-assisted intramolecular arylations from the 

various halogenated corannulenes as the starting materials (Scheme 9).5a Depending on 

the amounts of IBr used in the reaction, bromocorannulene 27 and tribromocorannulene 

28 were produced with high efficiency. Tetrabromocorannulene 22 was prepared by the 

pathway reported by Rabideau et al.14 The direct 5-fold chlorination of corannulene with 

12.5 equiv of ICl afforded pentachlorocorannulene 29. Using the Suzuki−Miyaura 

coupling reaction, the halo groups were coupled with ortho-chlorophenyl boronic acid to 

yield corannulene derivatives containing 2-chlorophenyl substituents.16 Subsequent 

palladium-catalyzed intramolecular arylations under microwave heating produced various 

indenocorannulenes ranging in size from C26H12 to C50H20. Their strategy of stepwise 

introduction of curvature proved highly efficient to construct these fully aromatized 

hydrocarbons. In addition, their remarkable progress in preparing larger fullerene 

fragments demonstrated the advantage of using well-understood solution-phase chemistry 

for their construction. 
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corannulene

Br
Br

Br

mixture of position isomer

Cl

Cl

Cl

Cl

Cl

1.9 equiv IBr

99%

9.0 equiv IBr

92%

12.5 equiv ICl
37%

+

Cl

B(OH)2 Pd2(dba)3

Cs2CO3

Cl Cl

Cl

Cl

Cl

penta-IC

Pd(PCy3)2Cl2, DBU, DMAC

microwave, 35%

27
28

29 30

 

Scheme 9.  Scott’s synthesis of indenocorannulenes. 

     In 2008, Sakur chiral buckybowl ai et al. reported the first asymmetric synthesis of a 

33 in a non-pyrolytic synthetic pathway (Scheme 10).17 The chiral buckybowl 33 was 

obtained after the final aromatization step to convert sp3-hybridized carbons to sp2-

hybridized carbons. 
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O

O

O

O

I

Pd(OAc)2, PPh3

Bu4NOAc, Na2CO3

55%
31 32 33  

Scheme 10.  Sakurai’s synthesis of chiral buckybowl 33. 

     More recently, Drs. Yu-Hsuan Wang and Hua Yang of our research group reported the 

 

use of diketone 1, derived from cyclopentadienone 34 as the starting material for 

preparation of 2 containing a 54-carbon framework represented on the surface of C60 

(Scheme 11).6   The final intramolecular cyclization steps were carried out under mild 

conditions to afford the C56H40 hydrocarbon 2. The presence of multiple sp3-hybridized 

carbons in 35 greatly facilitated the intramolecular alkalation reactions to form 2. 

O OO

O O

O

O O

I I

H HPh Ph

NaO-t-Bu

H HPh Ph

H H H H

34 1

35 2  

Scheme 11.  Drs. Yu-Hsuan Wang and Hua Yang’s synthesis of the basket-shaped 

     Dr. Yu-Hsuan Wang also did some prelim nary investigation to construct a diketone  

C54H40 hydrocarbon 2. 

 

i
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39 having a skeleton similar to tetraketone 3 (Scheme 12). Diketone 36 was treated with 

sodium hydride and diethyl carbonate to form the corresponding diester, which was 

methylated to give 37. However, the attempts to carry out methylenations of keto groups 

in 37 failed under a variety of reaction conditions. 

O
O

O

OEt

EtO

OO

O

NaH/ Et2CO3

OEt

EtO
x

O

O
O

O

MeI/TBAF

37 38 3936  

Scheme 12.  Dr. Yu-Hsuan Wang’s efforts for the attempted synthesis of diketone 39. 

4.

.1 Synthesis of rac-41 by tert-butyl peroxide-promoted coupling of 43 

one rac-41, 

ould be 

 Results and Discussions 

 

4

     Our initial strategy for the construction of diketone 40 started with diket

which could be prepared from 1-indanone 43 (Scheme 13).  After diacetylation18 

followed dimethylation and enol triflate formation, it was anticipated that rac-41 c

converted into 42. It was envisioned that 42 undergo the Pd-catalyzed intramolecular 

arylation19 reactions to produce the desired diketone 40. 

O O

H

H

Me

Me
O

O
O

H

H
TfO

OTf

O

H

H

rac-414240  

Scheme 13.  A retro synthesis analysis for the preparation of diketone 40. 
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     It was previously reported by Dr. Yulin Lam’s group that rac-41 could be obtained in 

43% yield by tert-butyl peroxide-promoted coupling of 1-indanone (43) (Scheme 14)20.  

However, in our hand, treatment of the commercially available 1-indanone (43) with tert-

butyl peroxide only produced an essentially 1:1 mixture of the rac-41 and meso-41 

isomers in less than 5% combined yield. 

O

O

O

H

H

O

O

H

H

+

( 1:1 mixture)
rac-41 meso-41

43

tert-butyl peroxide

< 5%

 

 

Scheme 14.   Synthesis of rac-41 by tert-butyl peroxide-promoted coupling of 43. 

4.2

amide 

 Preparation of rac-41 via Cu(II) chloride-promoted coupling of dianion 44 

     Alternatively, treatment of 1-indanone with an excess of lithium diisopropyl

(LDA, 2.5 equiv) at -78 °C to room temperature afforded dianion 44,21 which on 

exposure to the Cu(II) chloride for the coupling reaction furnished a 1:1 mixture of the 

rac-41 and meso-41 isomers in 62% combined yield (Scheme 15).22  

O O

O O

LDA CuCl2

O

H

H

H

+

O

H

( 1:1 mixture)
rac-41 meso-41

43 44

 

Scheme 15.   Preparation of rac-41 via Cu(II) chloride-promoted coupling of dianion 44. 
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4.3 Preparation of rac-41 via the silyl enol ether of 1-indanone 

     A different synthetic route to rac-41 was also developed (Scheme 16).  Treatment of 

1-indanone with trimethylsilyl chloride produced the corresponding silyl enol ether 45 in 

quantitative yield.  As an indene derivative, the methylene hydrogens in 45 are relatively 

acidic, allowing lithiation with lithium diisopropylamide (LDA) to form the 

corresponding carbanion. Treatment of the resulting carbanion with Cu(II) chloride for 

the coupling reaction followed by desilylation with tetrabutylammonium fluoride 

(TBAF)  then produced an essentially 1:1 mixture of the rac-41 and meso-41 isomers in 

70% yield. 

23

24

O O

O OTMS

CuCl2

O

H

H

H

+

O

H

( 1:1 mixture)

TMSCl

NaI

LDA

TBAF

rac-41 rac-41

4543

 

Scheme 16.   Preparation of rac-41 via the silyl enol ether of 1-indanone. 

 

4.4 Attempted synthesis of enol triflate 42 

     Treatment of rac-41 with lithium diisopropylamide (LDA) followed by 1-

acetylimidazole (46) produced tetraketone 47 in 40% yield (Scheme 17).18  The acidic 

hydrogen between the two keto carbonyls was replaced with methyl groups by 

methylation with methyl iodide in the presence of TBAF to give 48 in 85% yield.

 

 

25 
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O

O

H

H

O

O

H

H
O

O

N N

O

+
LDA

O

O

H

H
O

OH

H

TBAF
MeI

rac-41

46

47 48

40%
85%

 

Scheme 17. Synthesis of tetraketone 48.  

 

     Unfortunately, treatment of tetraketone 48 with potassium hexamethyldisilazide 

(KHMDS) followed by N-phenyl bis-trifluoromethanesulfonimide (PhNTf2) failed to 

give the desired enol triflate 42 (Scheme 18).26 

OO

O

H

H
O

O OTf
H

O

H
TfO

KHMDS

PhNTf2
X

48 42  

 

Scheme 18. Attempted synthesis of enol triflate 42. 

4.5 Preparation of diketone rac-51 from 4-bromo-1-indanone 49 

A different synthe from 4-bromo-1-

vailable 4-bromo-1-

tic route to 40 was also investigated by starting 

indanone (49) (Scheme 19).27 Treatment of the commercially a

indanone (49) with triisopropylsilyl trifluoromethanesulfonate produced the 

corresponding silyl enol ether 50 in quantitative yield (Scheme 19).28 The methylene 

hydrogens in 50 are also relatively acidic, allowing lithiation with lithium 

diisopropylamide (LDA) to form the corresponding carbanion. Treatment of the resulting  
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carbanion with Cu(II) chloride for the coupling reaction followed by desilylation with 

tetrabutylammonium fluoride (TBAF) then produced an essentially 1:1 mixture of the 

rac-51 and meso-51 isomers in 82% combined yield. The use of the corresponding 

trimethylsilyl enol ether for coupling gave only ca. 50% yield of a 1:1 mixture. It was 

possible to separate small fractions of pure rac-51 and meso-51 by silica gel column 

chromatography for structure elucidation. However, the majority of the fractions are still 

mixtures of the rac and meso isomers. The structures of rac-51 and meso-51 were 

established by X-ray structure analyses (Figure 5). 

O

Br

(i-Pr)3SiOTf

rt, 30 min
Et3N

OSi(i-Pr)3

Br 50, 99%

1. LDA,   78  C°

O O

2. CuCl2,   78  C°

3. TBAF

O

H

H

Br

Br

H
Br

Br

O

H
+

rac-51 meso-51
(82%, 1:1 mixture)

49

 

Scheme 19.   Preparation of  rac-51 silyl enol ether from 4-bromo-1-indanone 49.  
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                                meso-51                                                              rac-51                

Figure 5. ORTEP drawing of the molecular structures of meso-51 and rac-51 
 

cular 

cycliz

ysilylacetylene to attach acetylene groups on the benzene rings 

29 

4.6 Attempted synthesis of diketone 55 by the Au(І) induced intramole

ation reactions 

     Dibromide rac-51 was then treated with bis(triphenylphosphine)palladium(II) 

dichloride and trimeth

(Scheme 20). The progress of the reaction was slow, requiring 72 hours at 60 ºC and the 

yield was less than 10%. Desilylation with TBAF followed by silylation with 

triisopropylsilyl trifluoromethanesulfonate produced silyl enol ether 54 in quantitatively 

yield. 

 

Scheme 20.   Preparation of silyl enol ether 54 from diketone rac-51. 
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the protocol reported by Dean Toste et al., 54 was treated with a Au(І) complex 

r tetrafluoroborate to try to induce intramolecular cyclization reactions (Scheme 

21).30 However, the reaction failed to produce 53 was recovered. 

     Using 

and silve

55 and only diketone 

 

Scheme 21. Attempted synthesis of diketone 55 by the Au(І) induced intramolecular 

cyclization reactions. 

 

4.

carboethoxylation reactions 

   The palladium-catalyzed carboethoxylation reactions of a 1:1 mixture of rac-51 and 

odiesters 

31

ixture of the monocarboethoxylation products and the 

triphenylphosphine to the reaction mixture, the black Pd(0) precipitation never appeared 

chromatography to give rac-57 in 44% isolated yield and meso-57 in 42% isolated yield 

with a combined yield of 86%. A sample of pure rac-51 was also subjected to the same  

7 Synthesis of dikediester rac-57 and meso-57 via the palladium-catalyzed 

  

meso-51 was successful in producing a 1:1 mixture of the corresponding diket

rac-57 and meso-57 (Scheme 22).  In this reaction, black Pd(0) precipitated out within 

several hours during the reaction and the catalytic activity was lost. As a result, the 

product was always a m

dicarboethoxylation products rac-57 and meso-57. Fortunately, by adding 4 equiv of 

and the yield was improved to 90%.  

     It was possible to separate the resulting two isomers by silica gel column 
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reaction condition for carboethoxylation to form rac-57 (90% yield) for structure 

identification. 

CO, 130 psi
Pd(PPh3)2Cl2

PPh3, EtOH
115  C, 48 h°

O

O

H

H

O

CO2Et

CO2Et

O O

O

H

H

CO2Et

CO2Et+

rac-57, 44% meso-57, 42%
separated separated

O

H

H

Br

Br

H
Br

Br

O

H

+

rac-51 meso-51

 

Scheme 22. Synthesis of diketodiester rac-57 and meso-57 via the palladium-catalyzed 

carboethoxylation reactions. 

 

.8 Synthesis of 59 via intamolecular Claisen-type condensation 

  

caused decomposition of the starting material. Fortunately, treatment of rac-57 with 

luene promoted an 

4

    Treatment of rac-57 with lithium diisopropylamide (LDA) or potassium tert-butoxide

sodium hydride in the presence of ethanol in refluxing to

intramolecular Claisen-type condensation to afford triketone 59 in 73% isolated yield 

(Scheme 23). 

 

refluxing

24 h

O

O

H

H

CO2Et

59, 89%

O H

NaH
cat. EtOH

toluene

O

O

H

H

CO2Et

CO2Et

rac-57

refluxing

48 h

NaH
cat. EtOH

toluene

O
H O

H

X
H

HO
O

58  

Scheme 23. Synthesis of 59 via intamolecular Claisen-type condensation. 
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     Even after longer reaction time, the 1H and 13C NMR spectra of 59 (Figure 6) clearly   

showed that only one intramolecular Claisen-type condensation occurred. The second 

intramolecular Claisen-type condensation did not occur to form the corresponding 

tetraketone 58.  

.9 NMR study of triketone 59 

 

4
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Figure 6. 1H and 13C NMR spectra of triketone 59. 
 
4.10 Study of MM-2 optimized structure of dienolate 60 

   59 is cis to the two central methine 

hydrogens as indicated by NOE measurements. The lack of a second intramolecular 

Claisen-type condensation to form the corresponding tetraketone 58 may be attributed to 

the difficulty of producing dienolate 60 depicted in Figure 7 after an enolate is formed 

from deprotonation of the more acidic α-hydrogen between the two keto carbonyls. 

Perhaps more importantly, the formation of the enolate between the two keto carbonyls 

causes dienolate 60 to adopt a more planar geometry as shown in Figure 7, preventing the 

positioning of the ester carbonyl in a parallel orientation on top of the π electrons of the 

second enolate for condensation.  

 

  The hydrogen between the two keto carbonyls in 
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O

H

H

CO2Et

O

O

60  

Figure 7. MM-2 optimized structure of dienolate 60. 
 
4.11 Synthesis of 3 via an intamolecular Claisen-type condensation reaction 

     In an attempt to replace the acidic hydrogen between the two keto carbonyls with a 

methyl group by methylation with methyl iodide in the presence of TBAF in acetonitrile 

at room temperature,26 it was gratifying to observe that the second Claisen-type 

condensation also ive tetraketone 3 

tion to form 61, the second 

occurred along with a subsequent methylation to g

directly (Scheme 24). Apparently after an initial methyla

condensation occurred readily even under such a mild reaction condition because the 

ester carbonyl could now be placed in a parallel orientation on top of the π electrons of 

the enolate or the corresponding enol for condensation to form 62. A subsequent 

methylation then produced 3.  
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H
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Me
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O

3
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 Scheme 24. Synthesis of 3 via an intamolecular Claisen-type condensation reaction. 

 

4.12 Failed attempts to convert triketone 61 to tetraketone 3 

59

Triketone 59 is not very stable on silica gel column, making it necessary to perform the 

     The purity of 59 is of crucial importance to achieving high yield for 3. It is necessary 

to purify  by flash chromatography in order to remove high polarity byproducts. 

purification process quickly. Without careful purification of 59, the majority of the 

onomethylated triketone 61. Attempts to converted 61 to 3 under a 

variety of reaction conditions were unsuccessful (Scheme 25). 

 

product is the m

H

H

Me

Me
O

O

O

O

3

H

H

Me

Me
O

O

O

O

X
p-toluenesulfonic acid

TBAF/MeI

O

O

H

H

CO2Et

O
Me

61

trifluoroacetic acid

TBAF/MeI
X

3  
  

Scheme 25. Failed attempts to convert triketone 61 to tetraketone 3. 
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4.13 Possible mechanism for the transformation from triketone 59 to tetraketone 3 

     The exact reagents that were involved in converting triketone 59 to tetraketone 3 by 

treatment with TBAF and methyl iodide are not very clear at the present time. 

Presumably, hydrofluoric acid is generated to catalyze the Claisen-type condensation to 

form 62 (Scheme 26).  A subsequent methylation then produced tetraketone 3.  

O

O

H

H

CO2Et

59

O
H

TBAF

acetonitrile

MeI

O

O

H

H

CO2Et

O
Me

H

H

Me

H
O

O

O

O

62

H

H

Me

Me
O

O

O

O

3

H-F

OH

O

H

HO Me

O
OH

O

O

H

HO Me

OH
O

H

 

1 etrical molecule was 

produced from 59 because only three signals in the aromatic region along with one 

methine signal and one methyl signal in the aliphatic region were observed (Figure 8). 

The presence of a C2 symmetry in tetraketone 3 was confirmed by X-ray structural 

analysis (Figure 9). The methyl groups and the methine hydrogens in 3 are all cis to one 

another, indicating that the two methylation reactions occurred from the less hindered  

Scheme 26. Possible mechanism for the transformation from triketone 59 to tetraketone 3.  

 

     The H NMR spectrum gave the first indication that a symm
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o 

 

 

convex side. The all cis relationship causes 3 to have a bent structure with the tw

benzene rings in essentially perpendicular orientation. 

 

4.14 NMR study of tetraketone 3 
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Figure 8. 1H and 13C NMR spectra of tetraketone 3. 

 

Figure 9. ORTEP drawing of the molecular structure of tetraketone 3 viewing from two                               
different perspectives.  
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5. Conclusions 

     In conclusion, tetraketone 3 bearing a 20-carbon framework of 

dicyclopenta[def,mno]chrysene was synthesized from the readily available 4-bromo-1-

indanone in five steps. The molecule is chiral, possessing only C2 symmetry. The X-ray 

structure of 3 revealed that the methyl groups and the central methine hydrogens are cis 

to one another, causing the molecule to have a bent structure with the two benzene rings 

in essentially perpendicular orientation. The presence of four keto groups in 3 provides 

multiple handles for condensations with benzannulated enediynes32 for potential 

transformations to larger bowl-shaped or basket-shaped fullerene fragments. Such a 

strategy has found success in the synthesis of a C56H40 hydrocarbon bearing a 54-carbon 

framework of C60.
6 
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CHAPTER II 

 

 

     In 1991, Iijima’s discovery of multi-walled carbon nanotubes ignited the enthusiasm 

leading to exciting discoveries in materials science, computer science and in the 

     Carbon nanotubes are still being made today by empirical methods, such as arc-

nd chemical vapor deposition.34 Unfortunately, homogeneous 

ple in which all the carbon nanotubes have the uniform diameter and chirality (ring 

mpirical methods. Unlike fullerenes, carbon 

anotubes made by empirical methods cannot be separated and purified to achieve 

omogeneity by chromatographic methods or simple recrystallization since they are 

on organic solvents. On the other hand, well-understood 

lution-phase chemistry for the construction of fullerenes might find its useful 

pplication in preparing homogeneous samples of nanotubes.    

    Due to the orientation of the benzene rings along the shaft, nanotubes can be chiral or 

chiral. The chiral tubes vary according to the appearance of their rims as either 

armchair” or “zig-zag” (Figure 10). 

Synthesis of a Basket-Shaped C56H38 Hydrocarbon as a Precursor 

Toward an End-Cap Template for (6,6) Carbon Nanotubes 

1. Introduction 

of scientists.33 As more and more unique properties of carbon nanotubes were discovered, 

research on carbon nanotubes became an area of intense interest due to their potential in 

emerging domain of nanotechnology.  

discharge, laser ablation, a

sam

orientation) cannot be prepared by e

n

h

totally insoluble in comm

so

a

 

a

“
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     As an important variety of carbon nanotubes, single-walled, armchair nanotubes 

exhibit unique metallic properties. In theory, metallic nantotubes can carry an electrical 

current density 1000 times greater than copper.35 In addition, compared with multi-walled 

nanotubes, single-walled nanotubes are easier targets for organic

Figure 10. Armchair, zig-zag, and chiral carbon nanotubes. 

 chemist to synthesis. As 

ng carbon nanotubes, organic chemists adopted 

ifferent strategies to approach their targets. For example, Bertozzi’s group first finished  

a result, single-walled carbon nanotubes called “armchair” are the focus of the research 

efforts of several synthetic organic groups. 

     To reach the goal of constructi

d

 30



 

the synthesis of carbon nanohoops, the fundamental unit of an armchair carbon nanotube 

(Scheme 28).36a, 36b The nanohoops can be considered as the shortest-possible segment of 

a single-walled armchair carbon nanotube. Their diameter varies with the number of 

benzene rings in the loop. Bertozzi’s strategy involved producing precursor containing 

multiple benzene rings connected through 1,4-cyclohexadienyl rings. After the 

macrocyclic precursors were formed, the aromatization reactions were applied to convert 

the  1, 4-cyclohexadienyl rings to benzene rings. 

 

n

n = 5, 8, 14

MeO

MeO

OMe

OMe

m

m = 2, 3, 5

Li+

 

Scheme 28. Bertozzi’s synthesis of nanohoops. 

     Bodwell’s group introduced long chain sp a bridge to connect 3-hybridized carbons as 

two pyrene units at their 2-position.36c Repeated Rieche formylation and McMurry 

coupling then allowed the connection of the other end. The final steps involving valence 

isomerization/dehydration produced one half of an aromatic belt, which could be mapped 

onto an [8,8] single-walled carbon nanotube (Scheme 29).  
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Scheme 29. Bodwell’s synthesis of an aromatic belt. 

     Scott’s group adopted the strategy of stepwise introduction of curvature, which was 

highly efficient for t ns (Scheme 30).5 In 

 

f five 

he construction of fully unsaturated hydrocarbo

this pathway, corannulene was used as the seed. After five chlorine atoms were attached

to corannulene, the Suzuki−Miyaura coupling reactions allowed the installation o

ortho-chlorophenyl groups on the peripheral phenyl rings.5 Subsequent palladium-

catalyzed intramolecular arylations under microwave heating finished the synthesis of 

pentaindenocorannulene. 
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Scheme 30. Scott’s synthesis of pentaindenocorannulene. 

 

mchair C3v carbon [6,6]nanotube.37a 

   Our continuing interest in the synthesis of bowl-shaped and basket-shaped polycyclic 

romatic compounds38 led us to select 68, a C66H12 polycyclic aromatic hydrocarbon, and 

s partially hydrogenated and methylated derivative 69 (C68H26) as alternative end-cap 

mplates for carbon [6,6]nanotubes (Figure 11). The structure of 68 can be regarded as  

2. Research Objective 

     The use of open geodesic polyarenes as end-cap seeds for growing single-walled 

carbon nanotubes (SWNTs) is an attractive strategy for the construction of SWNTs with 

a uniform diameter.37 The advantages of such a rational synthetic approach over empirical 

methods, such as arc-discharge, laser ablation, and chemical vapor deposition, were 

eloquently stated in the proposition for the synthesis of a geodesic C60H12 end-cap 

template for growing an ar

  

a

it

te
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having an interior 30-carbon framework of difluoreno[2,1,9,8,7-defghi:2′,1′,9′,8′,7′-

mnopqr]naphthacene39 fused at the rim with a [6]cycloparaphenylene, which represents a 

nanohoop segment36 of carbon [6,6]nanotubes. Compared to 68, the presence of 10 sp3-

hybridized carbons in the interior 30-carbon core of 69 appears to alleviate the molecular 

strain significantly. We have made progress toward the construction of 69 by successfully 

synthesizing 70, a C56H38 hydrocarbon, as its potential precursor (Figure 12). The 

structure of 70 retains the 30-carbon interior core of 69. However, two phenyl groups of 

the [6]cycloparaphenylene rim are removed along with the cleavage of four additional 

carbon−carbon bonds connecting two of the four remaining phenyl groups on the rim to

the rest of the molecule. 

 

MeH

HMe

H
H H

H
H H

68 69  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 11.  MM2-optimized structures of 68 and 69. 
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Figure 12.  MM2-optimized structure of the C56H38 hydrocarbon 70. 
 

3. Results and Discussions 

3.1 Attempted synthesis of symmetrical diols 

     There are two sets of keto carbonyls in the molecule of tetraketone 3.   Presumably, 

the keto carbonyls on t

 

he six-membered rings and the keto carbonyls on the five-

membered rings might have different reactivities due to different steric hindrance and 

ring strain. Our initial plan involved converting the keto carbonyls on the six-membered 

ring into methylene groups to form 71. Subsequent cascade cyclization reaction of the 

benzannulated enyne-allene40 systems could then provide 72. The final intramolecular 

alkylation reactions for the carbon-carbon formations could then lead to 3 (Scheme 31). 7

H

H

H

H

H

73 72

O

O

H

H

71H

O

O

O

O

H

H

3

 

.  A retro synthesis analysis for the preparation of the C56H38 hydrocarbon 73. Scheme 31



 

     It was envisioned at condensation with two equiv of methyl lithium or 

methylmagnesium bromide to give the desired diols, followed by dehydration could 

achieve the goal. Treatment of tetraketone 3 with methylmagnesium bromide produced a 

mixture of products which could not be purified and identified. With methyllithium, 

tetraketone 3 was completed consumed but without producing identifiable products 

cheme 3

th

(S 2).  

O

O

O

O

H

H

3

MeMgBr MeLi

sterically hindered, preventing the Wittig reaction from occurring. The use of  Tebbe 

reagent caused the starting material to decompose.  A variety of reagents were also tried 

to convert the keto carbonyls into methylene groups, but no desired product was obtained 

(Table 1). 

 

 

 

 

 

decomposedmixture could not
be seperated

 

Scheme 32.  Attempted synthesis of symmetrical diols. 

 

3.2 Attempted synthesis of diene 71 

      The Wittig reaction also was tried, but only the starting tetraketone 3 was recovered 

(Scheme 33). Presumably, the triphenylphosphonium group and tetraketone 3 are both 
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Scheme 33.  Attempted synthesis of diene 71. 

 

reagent result 

 

 

Ph3P
Li
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decomposed 

S

Li decomposed 

 

Si
Si

Li

 

decomposed 

S CH2 Li
 

decomposed 

S

S
Li

 

decomposed 

Si
 

decomposed N=N=N

Li

OTMS no reaction 

OTMS

+
HO S

O

O

F

F
F

 

Table 1. Reagents for reaction with 3.  
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3.3 Synthesis of symmetrical diols 74 and 75 

     When tetraketone 3 was treated with (trimethylsilyl)methyllithium, diols 74 and 75 

were obtained in 1:3 ratio (Scheme 34). It is worth noting that the carbonyl groups in the 

5-membered ring were attacked preferentially, and only the symmetrical diols 74 and 75 

inantly. These two diols could not be separated by silica gel 

column chromatogra e 3 with 

(trimethylsilyl)methylmagnesium chloride resulted in decomposition of 3. 

were produced predom

phy due to similar polarities. Treatment of tetraketon

O

O

O

O

H

H

3

TMSCH2MgCl TMSCH2Lidecomposition

O

OH

HO

O

H

H

TMSTMS +

OH

O

TMS

O

HO

H

H

TMS74 75

(74: 7557% = 1: 3)
 

Scheme 34.   Synthesis of symmetri d 75. 

 

3.4 Synthesis of diene 76 via the Peterson olefinatio

     The mixture of diols 74 and 75 was treated with concentrated sulfuric acid to induce 

the Peterson olefination reaction. We were surprised to find that diol 74 resisted the 

Peterson olefination, wh 76 

(Scheme 35). Since the polarity of 76 was greatly reduced from that of 75, it was possible 

to separate diene 76 from diol 74 by silica gel column chromatography. A single crystal  

cal diols 74 an

n reactions 

ereas diol 75 underwent elimination to furnished diene 

 38



 

of diene 76 was obtained by recrystallization from a mixture of ethyl acetate and hexanes 

for X-ray structure analysis (Figure 13). 
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93%
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2 4
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Scheme 35.  Synthesis of diene 76 via the Peterson olefination reactions. 

 

 

Figure 13.  ORTEP drawing of the crystal structure of 76. 

 

3.5 Reaction of diol 78 with thionyl chloride 

     Diene 76 was treated with lithium acetylide 77 to yield 78. However, treatments of 

diol 78 with thionyl chloride for the Schmittel cyclization reaction appeared to produce 

the undesired [2+2] cycloaddition adduct 79 predominantly (Scheme 36). 
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Scheme 36.  Reaction of diol 78 with thionyl chloride. 

 

3.6 Attempted reduction of diol 78 

     Attempt to reduce 78 with triethylsilane in the presence of trifluoroacetic acid were 

unsuccessful in producing the reduced product 80 (Scheme 37).  

79  

H

H

H

H

OH

HO

H

H

8078

Et3SiH/CF3CO2H
X

3.7 Synthesis of diols 81 and 82 

Treatment of 3 with 77 likewise produced symmetrical diols 81 and 82 in a 3:1 ratio, 

which could not be separated by silica gel column chromatography due to similar  

 

Scheme 37.  Attempted reduction of diol 78. 
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polarities (Scheme 38). 
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Scheme 38.  Synthesis of diols 81 and 82

 

. 

3.8 Synthesis of diols 84 and 85 

     Treatment of tetraketone 3 with an excess of freshly prepared 

pentafluorophenyllithium (83) at -78 ℃ afforded diols 84 and 85 in a 1:1 ratio. Diols 84 

and 85 could be easily separated by silica gel column chromatography. Unfortunately, 

attempts to convert the keto carbonyls on the six-membered rings of 84 to the methylene 

groups with the Tebbe reagent were unsuccessful (Scheme 39). 

 

 

 

 

 41



 

O

O

H

H

O

O

3

+

83

Li
F

F

F

F

F

O

OH

HO

O

H

H

RR

OH

O

O

HO

H

H

R

R

+

R= F

FF

F F
84 85

70%

Tebbe 
reagent

x

OH

HO

H

H

RR

 

Scheme 39.  Synthesis of diols 84 and 85. 

 

3.9 Synthesis of diols 86 and 87. 

     The lithium acetylide-ethylenediamine complex attacked the keto carbonyls on the 

six-membered rings of 3 from the convex side to form diols 86 preferentially (Scheme 

40). The structure of 86 were established by X-ray structure analysis (Figure 14). 

O

O

H

H

O

O

3

Li.EDA
excess

H2O

O

OH

HO

O

H

H

OH

OH

O

HO

H
+

90%

86

(86:87 =  5:1)
87

 

Scheme 40.   Synthesis of diols 86 and 87. 
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Figure 14. ORTEP drawing of the crystal structure of diol 86. 
 

     It is also interesting to note that even in the presence of large excess of lithium 

acetylide-ethylenediamine complex, the NMR spectrum indicated that only the 

symmetrical diols 86 and 87 were produced (Figure 15). The unsymmetrical diols, triols, 

d. Similarly, with a large excess of lithium 

nly 

 

 

 

 

 

 

 

and tetraols were not detecte

(trimethylsilyl)acetylide, which formed a homogeneous solution with 3 in THF, o

symmetrical diols 86 and 87 were obtained after desilylation (Scheme 41).  
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3.10 NMR study of crude product mixture of 86 and 87 

 

Figure 15. 1H NMR spectrum of the crude product mixture of 86 and 87. 
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lyl)acetylene 3.11 Synthesis of diols 86 and 87 via lithium (trimethylsi
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Scheme 41. Synthesis of diols 86 and 87 via lithium (trimethylsilyl)acetylene. 

 

3.12 Synthesis of allenic dibromide 90, 91, and 92 

     Treatment of the mixture of 86 and 87 (5:1) with thionyl bromide41 produced allenic 

dibromide 90 and its isomers (Scheme 42). 
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Scheme 42. Synthesis of allenic dibromide 90, 91, and 92. 

 

3.13 NMR study of symmetrical allenic dibromide 90 

     The NMR spectrum indicated that the symmetrical allenic dibromide 90 was produced 

as the m N

gure 16).42 Minor amounts of an 

mmetrical dibromide 92 (16%), presumably 

erived from 87, were also observed. The structure of 90 was established by X-ray 

ructure analysis (Figure 17). 

 

ajor product (71%), most likely via an S i′ pathway with both of the two bromo 

substituents pointing toward the concave side (Fi

unsymmetrical dibromide 91 (13%), presumably with one of the two bromo substituents 

pointing toward the convex side and a sy

d

st
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Figure 16. 1H NMR  spectrum of symmetrical allenic dibromide 90. 

 

Figure 17. ORTEP drawing of the crystal structure of 90. 

 47



 

3.14 Synthesis of 96 via palladium-catalyzed coupling reactions followed by the  

Schmittel cyclization reactions 

     The palladium-catalyzed coupling reactions43 between 90 and arylzinc chloride 93 

produced, in situ, the benzannulated enyne−allene 94. After 12 hours at room temperature, 

the 1H NMR spectrum indicated that a mixture of 94, the corresponding monocyclized 

adduct 95, and the dicyclized benzofluorenyl dione 96 was formed in ratios of 1.0:1.6:1.1. 

Upon heating the reaction mixture at 50 °C for one hour, the mixture was transformed to 

96 completely (Scheme 43).  
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Scheme 43.  Synthesis of 96 via palladium-catalyzed coupling reactions followed by the  

Schmittel cyclization reactions. 
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essful formation of 96 came from the appearance of the 

regain aromaticity as reported previously.40 

3.15  AB pattern of diketone 96 show on the 1H NMR spectrum 

     The first indication of the succ

characteristic AB splitting pattern in the 1H NMR spectrum with a large coupling 

constant of 23.0 Hz that can be attributed to the two groups of methylene hydrogens on 

the five-membered rings of the benzofluorenyl structures (Figure 18).44 Presumably, the 

transformation proceeded through Schmittel cyclization reactions of 94 to produce the 

corresponding biradicals followed by intramolecular radical−radical couplings and 

prototropic rearrangements to 

 

 

Figure 18.  AB pattern of diketone show on the 1H NMR spectrum.  96 

 49



 

transformations to 

9 with meta-

chloroperoxybenzoic acid (m-CPBA) or dimethyldioxirane (DMDO) only caused 

decomposition of 97. 

3.16 Methylenation with the Tebbe reagent and attempted 

diiodide 98 and epoxide 99 

     Methylenation of 96 with the Tebbe reagent then produced diene 97 (Scheme 44).45 

The indication of the successful formation of 97 came from the appearance of the 

characteristic vinyl proton signals in the 1H NMR spectrum (Figure 19). Treatment of 97 

with BH3−THF followed by iodination with iodine monochloride failed to give 98. The 

attempted transformation of 97 to 98 via hydrozirconation followed by iodination only 

resulted in recovery of 97. Transformation of 97 to epoxide 9

O

O
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H
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Scheme 44.  Methylenation with the Tebbe reagent and attempted transformations to 

diiodide 98 and epoxide 99. 
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3.17 NMR study of diene 97 

 

 

Figure 19.  Partial 1H NMR spectrum of symmetrical diene 97. 

 

3.18 Synthesis of diols 100 from diene 97 

     Diene 97 on treatment with BH3−THF followed by oxidation then provided diol 100 

(Scheme 45). The hydroboration reactions also occurred from the convex side. As a result, 

the two hydroxymethyl groups were forced to point inward toward the endohedral 

(c e 

endohedral side of 100 was of crucial importance to the success of the subsequent 

intramolecular carbon−carbon bond forming reactions.  

oncave) side of 100. The orientation of the two hydroxymethyl groups toward th
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Scheme 45. Synthesis of diols 100 from diene 97. 

 

3.19 Synthesis of dimesylate 101 

     Diol 100 was then transformed to the corresponding methanesulfonate 101 with 

methanesulfonyl chloride in the presence of triethylamine (Scheme 46).  
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Scheme 46. Synthesis of dimesylate 101. 

3.20 Synthesis of the C56H38 hydrocarbon 70 

     The methylene hydrogens on the five-membered rings of the benzofluorenyl structures 

are relatively acidic, making the corresponding carbanions readily accessible as observed 

previously.  Treatment of 101 with potassium t-butoxide for the intramolecular 

alkylation reactions then produced 70 in excellent yield (Scheme 47). The close 

proximities between the carbons bearing the mesylate groups and the respective  

 

38a
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neighboring methylene carbons on the benzofluorenyl structures also contribute to the 

high efficiencies of the intramolecular alkylation reactions. 

H
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95%

O
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1

Scheme 47.  Synthesis of the C56H38 hydrocarbon 70. 

3.21 Assignments of H NMR signals in δ values to the MM-2 optimized structure of 

hydrocarbon 70 

     The structure of 70 was elucidated by 1H and 13C NMR spectroscopy and high-

resolution MS. The presence of symmetry was apparent on the 1H NMR spectrum with 

the appearance of only a singlet signal for the two methyl groups and 5 additional signals 

for the remaining 10 hydrogens on the sp3-hybridzed carbons. The assignments and 

connectivity of these aliphatic hydrogens were established on the basis of their coupling 

patterns and NOE measurements (Figure 20).  
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Figure 20.  Assignments of 1H NMR signals in δ values to the MM-2 optimized structure 

 of the basket-shaped C56H38 hydrocarbon 70 

 

 

 

 

 

 

of hydrocarbon 70. 

 

3.22 NOE studies

     The all-cis relationship among the methine hydrogens (H1, H3, and H5) and the 

methyl groups was confirmed by irradiating the methyl signal at δ 2.12 and observing 

significant NOE enhancements for the signals of the methine hydrogens at δ 4.33 (H1), 

4.28 (H3), and 4.14 (H5) (Figure 21).  
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Figure 21.  NOE studies of the basket-shaped C56H38 hydrocarbon 70. 

 

     Additional NOE experiments by irradiating H1, H3, H5, and H2exo signals further 

confirmed the structure assignment. In addition, irradiations of the H1 and H3 signals 

also resulted in significant NOE enhancements for the aromatic signals at δ 7.54 and 6.83, 

respectively. Furthermore, irradiation of the H2exo signal also caused significant NOE 

enhancements for both of these two aromatic signals (Figure 22).   
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Figure 22.  Additional NOE studies of the basket-shaped C56H40 hydrocarbon 70. 

y the observation of a 

rge coupling constant of 12.4 Hz between H1 and H2endo indicating an anti relationship 

nd a coupling constant of 9.7 Hz between H2exo and H3 indicating a near eclipsed 

lationship (Figure 23). 

 

3.23 1H NMR coupling patterns of the basket-shaped C56H38 hydrocarbon 70 

     The MM2-optimized structure of 70 indicates that the six-membered ring containing 

C1 to C4 carbons would adopt a boat conformation with H1 and the methyl group on C4 

assuming the flagpole positions. Such a conformation is supported b

la

a

re
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Figure 23.  1H NMR coupling patterns of the basket-shaped C56H38 hydrocarbon 70. 

     The upfield shift of an aromatic hydrogen at δ 6.50 is typical of a 5-

phenylbenzofluorenyl structure with the phenyl substituent in essential perpendicular 

orientation with respect to the benzofluorenyl group, placing one of the neighboring 

aromatic hydrogens in a shielding region of the induced magnetic field as observed 

previously.    

4. Conclusions 

     Compared to an earlier synthesis of a basket-shaped C56H40 hydrocarbon38a, the 30-

carbon core in 70 is fully connected.  The presence of 10 sp3-hybridized carbons in the 

30-carbon core appears to relieve substantial molecular strain associated with the  
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corresponding fully aromatized system. The synthetic sequence could be adopted to allow 

the introduction of two additional phenyl groups at the periphery for further construction 

of a rim containing a unit of [6]cycloparaphenylene, which represents a nanohoop 

segment of carbon [6,6]nanotubes. Such a rim construction process could be initiated by 

condensation of 96 with two equiv of 2,6-dichlorobenzylmagnesium bromide followed 

by dehydration, attaching two more functionalized phenyl groups to the 30-carbon core 

for subsequent intramolecular arylation reactions. The presence of 10 sp3-hybridized 

carbons in the interior core places the phenyl groups at the periphery in close proximity 

to one another, making it feasible to connect them to form a paraphenylene rim.   
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CHAPTER III 
 

Experimental Section 

1 13

1 13

 

     All reactions were conducted in oven-dried (110 °C) glassware under a nitrogen or  

argon atmosphere. Diethyl ether (Et2O) and tetrahydrofuran (THF) were distilled from 

benzophenone ketyl prior to use. Methylene chloride, chloroform, benzene, acetonitrile, 

and toluene were distilled over calcium hydride (CaH2) prior to use. Silica gel for flash 

column chromatography was purchased from chemical suppliers. Melting points were 

uncorrected. H (600 MHz) and C (150 MHz) NMR spectra were recorded in CDCl3 

using CHCl3 ( H δ 7.26) and CDCl3 ( C δ 77.0) as internal standards on a 600-MHz 

NMR spectrometer (Varian VXR-600). IR spectra were taken on a Perkin-Elmer LX10-

704 Spectrum One FT-IR spectrometer. Mass spectra and high resolution mass spectra 

ere obtained on Hewlett Packard 5970B GC/MSD instrument at 70 eV, VG 7070 by 

EI, VG-ZAB by FAB and DE-STR by MALDI. 3D structural modeling was obtained 

n computations using an MM2 program. 

-Butyllithium (2.5 M) in hexanes, lithium diisopropylamide (LDA, 1.8 M) in THF/n-

eptane/ethylbenzene, copper(II) chloride, triethylsilane, trifluoroacetic acid, potassium 

rt-butoxide, 2-methyl-2-propanol, triethylamine, phenylacetylene, 

rimethylsilyl)acetylene, Pd(PPh3)2Cl2, copper(I) iodide, triphenylphosphine, zinc 

hloride (1.0 M solution in diethyl ether), tetrakis(triphenylphosphine)palladium, Tebbe 

agent (1.0 M solution in toluene), borane-THF (1.0 M solution in THF)  were 

urchased from chemical suppliers and were used as received. 

8
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n
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     Diketone Rac-41 and Diketon L of a 1.8 M solution of lithium 

iisopropylamide (2.9 mmol) w llowed by 0.133 g (1.0 mmol) 

f 1-indanone in 5 mL of THF via cannula at −78 C under argon. The reaction mixture 

d 

to 

the dianion was transferred into 100-mL flask containing Cu(II) chloride at −78 C with 

vigorous stirring. The color of the solution changed into black immediately. The solution 

was stirred at −78 C for 30 min before it was quenched with 20 mL of a 0.5 M solution 

of hydrochloric acid. An additional 20 mL of waterwas introduced and the reaction 

mixture was extracted with methylene chloride (3 × 10 mL). The combined organic 

layers were dried over sodium sulfate and concentrated. The residue was purified by 

chromatography (silica gel/10% ethyl acetate in hexanes) to provide 0.039 g of rac-41 

(0.15 mmol, 30%) as a white solid and 0.041g of meso-41 (0.16 mmol, 32%) as a white 

solid.  rac-41: 1H (CDCl , 600 MHz) δ 7.77 (2 H, d, J = 7.8 Hz), 7.68 (2 H, td, J = 7.8, 

1.2 Hz), 7.65 (1 H, t, J = 7.2 Hz), 7.45 (1 H, td, J = 7.2, 1.2 Hz), 4.17 (2 H, m), 2.46 (2 H, 

dd, J = 19.2, 1.8 Hz), 1.89 (2H, dd, J = 19.2, 7.2 Hz); 13C (CDCl , 150 MHz) δ 204.5, 

156.0, 137.6, 135.1, 128.3, 125.1, 124.0, 40.7, 37.8. meso-41: 1H (CDCl , 600 MHz) δ 

7.74 (2 H, d, J = 7.8 Hz), 7.48 (2 H, t, J = 7.8 Hz), 7.41 (1 H, t, J = 7.8 Hz), 6.94 (1 H, t, 

J = 7.8 Hz), 4.10 (2 H, m), 2.86 (2 H, dd, J = 19.2, 7.2 Hz), 2.19 (2H, d, J = 19.2 Hz); 13C 

(CDCl , 150 MHz) δ 204.6, 154.7, 138.3, 134.8, 128.4, 125.8, 123.9, 41.5, 40.0 

e meso-41. To 1.6 m

d as added 10 mL of THF fo

o

was stirred at −78 C for 60 min. Then the mixture was allowed to warm to 0 C an

stirred for 2 h to form the corresponding dianion. The color of the solution changed 

wine red and the solution was cooled to −78 C again. In another 100-mL flask, 0.160 g 

of Cu(II) chloride was mixed with 10 mL of THF and cooled to −78 C. The solution of 

3

3

3

3
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     Tetraketone 47. To 6.7 mL of a 1.8 M solution of lithium diisopropylamide (12 mmol) 

was added 30 mL of THF followed by 0.262 g (1.0 mmol) of -  in 20 mL of THF at 

−78 C under argon. The reaction mixture was stirred at −78 C for 60 min. Then this 

rac 41

reaction mixture was added via cannula a solution of 0.56 g (5.1 mmol) of 1-

acetylimidazole in 30 mL of THF. The reaction mixture was allowed to stir at −78 C for 

1h before it was quenched with 100 mL of a 1.0 M solution of hydrochloric acid.  The 

aqueous layer was extracted with methylene chloride (3 × 20 mL). The combined organic 

layers were dried over sodium sulfate and concentrated. The residue was recrystallized  

from a diethyl ether-hexanes solution to afford 0.140 g of 47 (0.4 mmol, 40%) as a 

yellow solid: 1H (CDCl3, 600 MHz) δ 14.18 (2 H, s), 7.53 (2 H, d, J = 7.2 Hz), 7.25 (2 H, 

d, J = 7.2 Hz), 7.16 (2 H, t, J = 7.2 Hz), 7.14 (2 H, d, J = 7.8 Hz), 4.46 (2 H, s), 2.39 (6 H, 

s); 13C (CDCl3, 150 MHz) δ 193.9, 174.8, 147.7, 137.7, 133.0, 128.0, 124.8, 123.1, 113.5, 

43.8, 20.8. 

     Tetraketone 48. To a flask containing a solution of 69 mg (0.2 mmol) of 47 in 1 mL 

of THF was added 0.8 mL of TBAF in THF (1.0 M).  Then 142 mg of methyl iodide (1.0 

mmol) was added. The reaction mixture was stirred for 30 min before another 0.8 mL of 

TBAF in THF (1.0 M) was added. The reaction mixture was quenched after 30 min. 

Chromatography (silica gel/15% ethyl acetate in hexanes)  afforded 64 mg of 48 (0.17 

mmol, 85%) as a white solid: 1H (CDCl3, 600 MHz) δ 7.72 (2 H, d, J = 7.2 Hz), 7.38 (2 H, 

t, J = 7.2 Hz), 7.34 (2 H, t, J = 7.2 Hz), 7.06 (2 H, d, J = 7.8 Hz), 3.64 (2 H, s,), 2.37 (6 H, 

s), 1.70 (6 H, s); 13C (CDCl3, 150 MHz) δ 207.0, 202.2, 151.9, 135.1, 134.2, 129.2, 128.0, 

124.4, 69.7, 51.5, 29.1, 22.2. 
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72 mmol) of triisopropylsilyl trifluoromethanesulfonate under argon. After 30 

z) δ 153.5, 143.8, 142.5, 128.2, 128.0, 118.9, 117.4, 106.0,  

Attempted Synthesis of Enol Triflate 42.  To 0.6 mL of a 0.5 M solution of potassium 

bis(trimethylsilyl)amide (KHMDS) (0.3 mmol) was added 3 mL of THF. The solution 

was cooled to −78 C for 10 min and then 50 mg of 48 (0.13 mmol) in 4 mL of THF was 

added at −78 C.  The solution was stirred at −78 C and then 0.19 g (0.53 mmol) of N, 

N-bis(trifluoromethylsulfonyl)aniline in 3 mL of THF was added at −78 C under argon.  

The reaction mixture was stirred at −78 C for 1 h before it was quenched with 10 mL of 

a 1.0 M solution of hydrochloric acid. The reaction mixture was extracted with methylene 

chloride (3 × 6 mL). The combined organic layers were dried over sodium sulfate and 

concentrated. 1H NMR showed that there was no desired product formed after the 

reaction. 

Triisopropylsilyl Enol Ether 50. To a mixture of 0.330 g (1.56 mmol) of 4-bromo-1-

indanone and 0.30 mL (2.2 mmol) of triethylamine in 20 mL of chloroform was added 

0.46 mL (1.

min of stirring at room temperature, 10 mL of a saturated sodium bicarbonate solution 

was introduced. The organic layer was separated, and the aqueous layer was extracted 

with methylene chloride (3 × 10 mL). The combined organic layers were dried over 

sodium sulfate and concentrated. The residue was purified by flash column 

chromatography (basic aluminum oxide/hexanes) to provide 0.570 g of 50 (1.55 mmol, 

99%) as a colorless oil: IR (neat) 1596, 1563, 1355, 866 cm−1; 1H (CDCl3, 600 MHz) δ 

7.39 (1 H, d, J = 7.5 Hz), 7.36 (1 H, d, J = 7.9 Hz), 7.21 (1 H, t, J = 7.6 Hz), 5.49 (1 H, t, 

J = 2.3 Hz), 3.25 (2 H, d, J = 2.4 Hz), 1.34 (3 H, septet, J = 7.5 Hz), 1.16 (18 H, d, J = 

7.6 Hz); 13C (CDCl3, 150 MH
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was introduced, and the organic layer was separated. The aqueous layer was 

ba

35.2, 17.9, 12.5; MS m/z 369, 367 (MH+); HRMS calcd for C18H28BrOSi (MH+) 

367.1087, found 367.1090. 

 Dibromides rac-51 and meso-51. To a mixture of 0.330 g (1.55 mmol) of 50 in 20 

mL of THF at −78 C was added 1.0 mL of a 1.8 M solution of lithium diisopropylamide 

(1.8 mmol) under argon. The reaction mixture was stirred at −78 °C for 10 min before it 

was transferred via cannula to a flask containing 0.240 g (1.80 mmol) of copper(II) 

chloride and 10 mL of THF at −78 C. The color of the solution turned black 

immediately. The solution was allowed to warm to −30 C and stirred for 30 min before 

it was quenched with 10 mL of a saturated sodium dihydrogen phosphate solution. Water 

(50 mL) 

ck extracted with methylene chloride (3 × 15 mL). The combined organic layers were 

treated with 5 mL of a 1.0 M solution of TBAF in THF under argon. After 1 hour of 

stirring, the solution was concentrated in vacuo. The residue was purified by flash 

column chromatography (silica gel/10% ethyl acetate in methylene chloride) to provide 

0.270 g (0.64 mmol, 82%) of an essentially 1:1 mixture of rac-51 and meso-51 as a light 

yellow solid. rac-51: mp 242−244 °C; IR 1711, 1590, 1260, 793 cm−1; 1H (CDCl3, 600 

MHz) δ 7.84 (2 H, d, J = 7.8 Hz), 7.73 (2 H, d, J = 7.5 Hz), 7.35 (2 H, t, J = 7.7 Hz), 4.80 

(2 H, d, J = 7.6 Hz), 2.42 (2 H, dd, J = 19.6, 8.2 Hz), 1.79 (2 H, dd, J = 19.7, 1.5 Hz); 13C 

(CDCl3, 150 MHz) δ 203.3, 154.4, 140.1, 138.9, 130.2, 123.0, 121.3, 38.9, 37.3; MS m/z 

423, 421, 419 (MH+); HRMS calcd for C18H13Br2O2 (MH+) 418.9277, found 418.9280. 

meso-51: mp 258−259 °C; IR 1717, 1588, 1261, 793 cm−1; 1H (CDCl3, 600 MHz) δ 7.65 

(2 H, d, J = 7.6 Hz), 7.64 (2 H, d, J = 7.8 Hz), 7.29 (2 H, t, J = 7.6 Hz), 4.33 (2 H, d, J =  
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7.8 Hz), 2.86 (2 H, dd, J = 18.6, 7.9 Hz), 2.30 (2 H, d, J = 18.6 Hz); 13C (CDCl3, 150 

MHz) δ 203.1, 152.9, 140.3, 138.3, 130.4, 123.2, 122.8, 42.5, 42.2; MS m/z 423, 421, 419 

(M

n

H+); HRMS calcd for C18H13Br2O2 (MH+) 418.9277, found 418.9281. In a separate run, 

additional silica gel column chromatography allowed the separation of a fraction of pure 

rac-51 and a fraction of pure meso-51 for structure elucidation. Recrystallization of the 

separated rac-51 and meso-51 from methylene chloride/hexanes produced crystals 

suitable for X-ray structure analyses. 

Diacteylene 53. To a solution of 0.119 g of  rac-51 (0.28 mmol) in 5.0 mL of toluene 

and 0.16 mL of triethylamine (1.2 mmol) was added 0.020 g of 

bis(triphenylphosphine)palladium(II) dichloride (0.029 mmol) and 9 mg of copper iodide 

(0.053 mmol) and 0.16 mL of trimethylsilyl acetylene (1.06 mmol) . The reaction mixture 

was refluxed for 5 days before it was allowed to cool to room temperature. Triethylamine 

and THF are removed under reduced pressure. The residue was dissolved in methylene 

chloride and purified by column chromatography (silica gel/8 % ethyl acetate in hexanes) 

to afford 12 mg of 52 (0.027 mmol, 9%) as a light yellow oil. 52:  1H (CDCl3, 600 MHz) 

δ 7.76 (2 H, d, J = 7.2Hz), 7.73 (2 H, d, J = 7.8 Hz), 7.40 (2 H, t, J = 7.8 Hz), 5.19 (2 H, 

m), 2.49 (2 H, dd, J = 19.8, 7.2 Hz), 1.79 (2 H, dd, J = 19.8, 3.0 Hz), 0.00 (18 H, s); 13C 

(CDCl3, 150 MHz) δ 204.1, 158.1, 139.2, 138.2, 129.45, 128.4, 120.5, 84.0, 80.6, 38.5, 

37.3. 

To a solution of 12 mg (0.027 mmol) of 52 i  3 mL of THF was added 1.5 mL of a 1.0 

M solution of TBAF (1.5 mmol) in THF. The solution was stirred for 1h before it was 

quenched. THF was evaporated and the residue was purified by chromatography (silica  
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gel/10 % ethyl acetate in hexanes) to afford 8 mg of 53 (0.027 mmol, 98%) as a light 

yellow solid.  53:  1H (CDCl3, 600 MHz) δ 7.80 (2 H, dd, J = 7.2, 1.2 Hz), 7.77 (2 H, d, J 

= 7.2, 1.2 Hz), 7.44 (2 H, t, J = 7.2 Hz), 5.02 (2 H, m), 3.49 (2 H, s), 2.43 (2 H, dd, J = 

19.8, 7.8 Hz), 1.79 (2 H, dd, J = 19.8, 3.0 Hz). 

     Diketodiesters rac-57 and meso-57. To a solution of 0.270 g of a 1:1 mixture of rac-

51 and meso-51 (0.64 mmol) in 6.0 mL of ethanol and 1.0 mL of triethylamine (7.19 

mmol) in a 15-mL heavy wall cylindrical glass vessel were added 0.050 g of 

bi

, 2.1 Hz), 1.41 (6 H, t, J = 7.1 Hz); 13C (CDCl3, 150 MHz) δ 204.2, 165.8, 156.6, 

13

s(triphenylphosphine)palladium(II) dichloride (0.071 mmol) and 0.100 g of 

triphenylphosphine (0.38 mmol). The vessel was pressurized to 130 psi with carbon 

monoxide and heated to 115 °C for 48 h before it was allowed to cool to room 

temperature. The extra carbon monoxide was then released in a well ventilated hood, and 

the solution was concentrated in vacuo. The residue was dissolved in methylene chloride 

and purified by column chromatography (silica gel/15% ethyl acetate in hexanes) to 

afford 0.113 g of rac-57 (0.28 mmol, 44%) as a light yellow solid and 0.110 g of meso-57 

(0.27 mmol, 42%) as a light yellow solid. rac-57: mp 145−146 °C; IR 1717, 1259, 1134, 

754 cm−1; 1H (CDCl3, 600 MHz) δ 8.21 (2 H, dd, J = 7.6, 1.2 Hz), 7.92 (2 H, dd, J = 7.6, 

1.2 Hz), 7.52 (2 H, t, J = 7.6 Hz), 4.93 (2 H, dd, J = 4.5, 2.4 Hz), 4.45 (2 H, dq, J = 10.8, 

7.2 Hz), 4.38 (2 H, dq, J = 10.8, 7.1 Hz), 2.46 (2 H, dd, J = 19.4, 8.2 Hz), 1.82 (2 H, dd, J 

= 19.4

8.8, 136.7, 129.6, 128.4, 127.7, 61.5, 40.5, 39.6, 14.3; MS m/z 407 (MH+), 379, 361; 

HRMS calcd for C24H23O6 (MH+) 407.1489, found 407.1492. meso-57: mp 183−184 °C; 

IR 1716, 1259, 1133, 754 cm−1; 1H (CDCl3, 600 MHz) δ 8.04 (2 H, dd, J = 7.6, 1.2 Hz),  
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7.

60.9, 42.5, 42.1, 14.0; MS m/z 407 (MH+), 

79 (2 H, dd, J = 7.6, 1.1 Hz), 7.45 (2 H, t, J = 7.5 Hz), 4.94 (2 H, d, J = 7.8 Hz), 4.17 (2 

H, dq, J = 10.8, 7.1 Hz), 4.10 (2 H, dq, J = 10.8, 7.2 Hz), 2.79 (2 H, dd, J = 18.4, 7.8 Hz), 

2.24 (2 H, dd, J = 18.5 Hz), 1.32 (6 H, t, J = 7.1 Hz); 13C (CDCl3, 150 MHz) δ 203.6, 

165.2, 154.5, 139.0, 135.8, 130.2 128.4, 127.2, 

379, 361; HRMS calcd for C24H23O6 (MH+) 407.1489, found 407.1492. 

     By using the same experimental procedure, pure rac-51 was converted to rac-57 in 

90% isolated yield. 

     Triketone 59. To 0.359 g (0.884 mmol) of rac-57 in 10 mL of anhydrous toluene 

under an argon atmosphere was added 0.20 g of a 60% sodium hydride (5.0 mmol) by 

weight in mineral oil followed by 0.05 mL of absolute ethanol (0.85 mmol). The color of 

the solution immediately turned green. The reaction mixture was heated to reflux for 24 h 

before it was allowed to cool to room temperature. A saturated sodium dihydrogen 

phosphate solution (30 mL) was introduced followed by 30 mL of methylene chloride. 

After 30 min of stirring, the organic layer was separated, and the aqueous layer was 

extracted with methylene chloride (3 × 30 mL). The combined organic layers were dried 

over sodium sulfate and concentrated. The residue was washed with a solution of 50% 

diethyl ether in hexanes (3 × 15 mL) to remove dark color materials and mineral oil from 

sodium hydride. The resulting gray residue was dissolved in methylene chloride and 

purified by column chromatography (silica gel/50% ethyl acetate in hexanes) to afford 

0.284 g of 59 (0.789 mmol, 89%) as a white solid: mp 244−245 °C; IR 1718, 1693, 1290, 

1261 cm−1; 1H (CDCl3, 600 MHz) δ 8.40 (1 H, dd, J = 7.6, 0.6 Hz), 8.04 (1 H, d, J = 7.5 

Hz), 7.92 (1 H, d, J = 7.5 Hz), 7.82 (1 H, d, J = 7.6 Hz), 7.55 (1 H, t, J = 7.6 Hz), 7.51 (1  
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H, t, J = 7.5 Hz), 5.40 (1 H, dd, J = 11.1, 7.5 Hz), 4.50 (1 H, qd, J = 7.0, 3.2 Hz), 4.48 (1 

H, qd, J = 7.0, 3.2 Hz), 4.17 (1 H, dt, J = 11.1, 7.0 Hz), 4.07 (1 H, d, J = 7.5 Hz), 2.99 (2 

H, dd, J = 17.9, 7.0 Hz), 2.08 (2 H, dd, J = 17.9, 7.0 Hz), 1.49 (3 H, t, J = 7.1 Hz); 13C 

(CDCl3, 150 MHz) δ 202.8, 197.4, 191.2, 165.1, 156.7, 154.4, 137.4, 137.2, 136.1, 132.6, 

130.7, 129.7, 129.5, 129.3, 129.1, 128.7, 63.6, 61.8, 43.4, 39.5, 35.4, 14.3; MS m/z 361 

s to be used immediately for the preparation of tetraketone 3. 

(MH+); HRMS calcd for C22H17O5 (MH+) 361.1071, found 361.1073. Triketone 59 is not 

very stable and need

     Triketone 61. To a 10-mL flask containing 0.046 g (0.13 mmol) of 59 and 4  mL of 

THF was added 0.2 mL of methyl iodide (6.4 mmol) followed by dropwise addition of 

1.0 mL of a 1.0 M solution of TBAF (1.4 mmol) in THF. After TLC showed the reaction 

was complete, the THF was removed by vacuum distillation and the residue was purified 

by silica gel column to produce 37 mg of 61 (0.098 mmol, 75%) as a colorless oil. 61: 1H 

(CDCl3, 600 MHz) δ 8.40 (1 H, d, J = 7.8 Hz), 7.97 (1 H, d, J = 7.8 Hz), 7.87 (1 H, d, J = 

7.2 Hz), 7.78 (1 H, d, J = 7.8 Hz), 7.54 (1 H, t, J = 7.8 Hz), 7.49 (1 H, t, J = 7.8 Hz), 4.95 

(1 H, dd, J = 11.1, 7.5 Hz), 4.48 (2 H, q, J = 7.2 Hz), 4.17 (1 H, dt, J = 10.8, 7.2 Hz), 2.97 

(1 H, dd, J = 18.0, 7.2 Hz), 2.04 (1 H, dd, J = 18.0, 7.2 Hz), 1.59 (3 H, s);), 1.49 (3 H, t, J 

= 7.2 Hz); 13C (CDCl3, 150 MHz) δ 203.0, 201.8, 194.0, 165.1, 156.2, 154.0, 137.0, 

135.9, 135.8, 133.4, 130.6, 130. 0,  129.9, 129.3, 129.1, 128.2, 65.2, 61.8, 48.6, 43.4, 35.3, 

21.8, 14.3. 

     Tetraketone 3. To a 50-mL plastic tubing containing 0.120 g (0.333 mmol) of 7 and 

0.073 g of sodium fluoride (1.74 mmol) in 35 mL of THF was added 0.40 mL of methyl 

iodide (6.4 mmol) followed by dropwise addition of 1.4 mL of a 1.0 M solution of TBAF  
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(1.4 mmol) in THF. After 2 h of stirring at room temperature, the solution was transferred 

to a flask and concentrated in vacuo. The residue was purified by column 

chromatography (silica gel/10% ethyl acetate in hexanes) to provide 0.083 g (0.243 mmol, 

73%) of 3 as a white solid: mp 311 °C (decomposed); IR 1727, 1257, 962 cm−1; 1H 

(CDCl3, 600 MHz) δ 7.93 (2 H, dd, J = 7.6, 0.9 Hz), 7.87 (2 H, dd, J = 7.5, 0.8 Hz), 7.47 

(2 H, t, J = 7.6 Hz), 4.05 (2 H, s), 1.91 (6 H, s); 13C (CDCl3, 150 MHz) δ 196.9, 189.6, 

155.0, 136.1, 132.8, 130.1, 130.0, 128.9, 67.0, 40.8, 19.9; MS m/z 343 (MH+); HRMS 

ded 4 drops of concentrated sulfuric acid (98%) . The solution was refluxed 

calcd for C22H15O4 (MH+) 343.0965, found 343.0967. Recrystallization of tetraketone 3 

from methylene chloride/diethyl ether produced a crystal suitable for X-ray structure 

analysis. 

     Diol 74 and Diene 76.  To a solution of 0.156 g of  3 (0.46 mmol) in 75 mL of THF 

added 1.5 mg of 1 M of (trimethylsilyl)methyllithium in pentanes at −78 C. The reaction 

mixture was stirred for 1 h before it was quenched with 1.0 mL of a 2.0 M solution of 

hydrochloric acid. THF are removed under reduced pressure. The residue was dissolved 

in methylene chloride and purified by column chromatography (silica gel/5% ethyl 

acetate in hexanes) to afford 137 mg of a mixture (0.26 mmol, 57%) of 74 and 75 (74: 75 

= 3:1) as a white solid.  

     To a solution of 137 mg of a mixture of 74 and 75 (0.26 mmol) of 52 in 10 mL of 

THF was ad

for 5h before it was quenched with 20 mL of water. The aqueous layer was extracted with 

methylene chloride (3 × 10 mL). The combined organic layers were dried over sodium 

sulfate and concentrated. The residue was purified by flash column chromatography  
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(silica gel/5% ethyl acetate in hexanes) to provide 95 mg of 74 as a white solid and 20 mg 

of 76 (0.058 mmol, 93%) as white solid. 74: 1H (CDCl3, 600 MHz) δ 7.64 (2 H, dd, J = 

7.8, 1.8 Hz), 7.20 (2 H, t, J = 8.4 Hz), 7.18 (2 H, t, J = 7.8 Hz), 5.30 (2 H, m), 3.63 (2 H, 

s), 1.64 (6 H, s), 1.25 (2 H, d, J = 15.0 Hz). 76: 1H (CDCl3, 600 MHz) δ 7.55 (2 H, d, J = 

7.8 Hz), 7.49 (2 H, d, J = 7.8 Hz), 7.21 (2 H, t, J = 7.8 Hz), 5.72 (2 H, s), 5.56 (2 H, s), 

3.85 (2 H, s), 1.80 (6 H, s). 

     Propargylic Diols 86 and 87. To a flask containing 0.325 g of lithium 

acetylide−ethylenediamine complex (3.51 mmol) in 100 mL of THF at −78 C was added 

via cannula 0.150 g of tetraketone 3 (0.439 mmol) in 90 mL of THF. The solution was 

then allowed to warm to 0 C in 2 h before it was quenched with 0.5 mL of a 2.0 M 

 s), 1.90 (6 H, s); 13C (CDCl3, 150 MHz) δ 210.3, 151.6, 138.9, 

solution of hydrochloric acid. The solution was then allowed to warm to room 

temperature and stirred for 10 min. The solution was concentrated in vacuo, and the 

residue was purified by flash column chromatography (basic aluminum oxide/30% ethyl 

acetate in methylene chloride) to provide 0.156 g (0.395 mmol, 90%) of a mixture of 86 

and 87 (5:1) as a white solid. 86: IR 3400, 3305, 1690 cm−1; 1H (CDCl3, 600 MHz) δ 7.73 

(2 H, dd, J = 7.3, 1.2 Hz), 7.31 (2 H, d, J = 7.8 Hz), 7.26 (2 H, t, J = 7.6 Hz), 5.55 (2 H, s), 

4.03 (2 H, s), 2.75 (2 H,

134.1, 129.45, 129.36, 123.2, 81.0, 74.9, 72.8, 57.5, 44.5, 19.9 ; MS m/z 395 (MH+), 381 

376, 359; HRMS calcd for C26H19O4 (MH+) 395.1278, found 395.1280. 

     A minor set of 1H NMR signals (partial) attributable to 87 were observed at δ 7.67 (2 

H, dd, J = 7.5, 1.0 Hz), 7.57 (2 H, dd, J = 7.9, 0.9 Hz), 6.10 (2 H, s), 3.94 (2 H, s), 2.76 (2 

H, s), 1.86 (6 H, s). 

 69



 

     Allenic Dibromide 90. To a mixture of 0.156 g (0.396 mmol) of a mixture of 86 and 

87 in 20 mL of methylene chloride at −78 C was added 0.3 mL of pyridine (3.72 mmol) 

followed by 0.08 mL of thionyl bromide (1.03 mmol). The solution was allowed to warm 

to 0 C in 1 h before it was quenched with 20 mL of a 2.0 M solution of hydrochloric 

acid. Water (10 mL) was introduced, and the organic layer was separated. The aqueous 

layer was back extracted with methylene chloride (2 × 10 mL). The combined organic 

of 1-bromo-2-

10 min before 2.74 mL of a 1.0 M solution of zinc chloride (2.74  

layers were dried over sodium sulfate and concentrated. The residue was purified by flash 

column chromatography (silica gel/30% ethyl acetate in methylene chloride) to provide 

0.176 g (0.338 mmol, 85%) of a mixture of the symmetrical allenic dibromide 90 (71%), 

the corresponding unsymmetrical allenic dibromide (13%), and a symmetrical allenic 

dibromide (16%) derived from 87 as a yellow solid.  In a separated run, additional silica 

gel column chromatography allowed the separation of a fraction containing essentially 

only the symmetrical allenic dibromide 90 for structure elucidation. 90: mp 198 °C 

(decomposed); IR 1941, 1717 cm−1; 1H (CDCl3, 600 MHz) δ 7.57 (2 H, d, J = 7.5 Hz), 

7.39 (2 H, d, J = 7.5 Hz), 7.29 (2 H, t, J = 7.5 Hz), 6.71 (2 H, s), 3.63 (2 H, s), 1.77 (6 H, 

s); 13C (CDCl3, 150 MHz) δ 203.4, 203.0, 149.0, 135.4, 132.7, 129.3, 128.1, 124.6, 110.8, 

78.7, 54.1, 42.3, 22.7; MS m/z 523, 521, 519 (MH+), 441, 439; HRMS calcd for 

C26H17Br2O2  (MH+) 518.9590, found 518.9592.  

     Benzofluorenyl Dione 96. To a mixture of 0.700 g 

(phenylethynyl)benzene (2.72 mmol) in 10 mL of THF at −78 C was added dropwise 

1.70 mL of a 1.6 M solution of butyllithium (2.72 mmol) in hexanes. The solution was 

stirred at −78 C for 
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mmol) in diethyl ether was introduced to form 93. The solution was allowed to warm to 

−30 C and stirred for 1 h. In a separate flask, 0.176 g of a mixture of 90 and its isomers 

(0.338 mmol) and 0.078 g of tetrakis(triphenylphosphine)palladium (0.068 mmol) were 

dissolved in 10 mL of THF. The mixture was stirred at room temperature for 15 min 

before it was transferred into the flask containing the zinc reagent 93. The mixture was 

stirred at room temperature for 12 h and then heated at 50 C for 1 h before it was 

allowed to cool to room temperature. The reaction mixture was then quenched with 1.0 

mL of a 2.0 M solution of hydrochloric acid. The solution was then filtered through a 

short aluminum oxide column and concentrated in vacuo. The residue was purified by 

column chromatography (silica gel/5% ethyl acetate in hexanes) to afford 0.145 g of 96 

(0.20 mmol, 60%) as a light yellow solid: mp 355 °C (decomposed); IR 1709, 1616, 778 

cm−1; 1H (CDCl3, 600 MHz) δ 7.62 (2 H, d, J = 7.6 Hz), 7.58 (2 H, dt, J = 7.4, 1.2 Hz), 

7.53 (2 H, tt, J = 7.4, 1.4 Hz), 7.50 (2 H, td, J = 7.5, 1.2 Hz), 7.37 (2 H, d, J = 8.6 Hz), 

7.34−7.31 (4 H, m), 7.27 (2 H, t, J = 7.5 Hz), 7.20 (2 H, d, J = 7.3 Hz), 6.98 (2 H, t, J = 

7.6 Hz), 6.34 (2 H, d, J = 7.9 Hz), 4.95 (2 H, d, J = 23.0 Hz), 4.47 (2 H, t, J = 23.0 Hz), 

4.16 (2 H, s), 2.33 (6 H, s); 13C (CDCl3, 150 MHz) δ 202.9, 150.1, 145.1, 143.2, 142.7, 

139.8, 138.2, 136.0, 133.9, 129.9, 129.8, 129.6, 129.3, 129.2, 128.8, 128.1, 128.0, 127.1, 

126.3, 124.64, 124.61, 124.1, 119.1, 58.8, 44.5, 36.8, 19.8; MS m/z 715 (MH+); HRMS 

Mcalcd for C54H35O2  ( H+) 715.2632, found 715.2639. 

     A minor set of 1H NMR signals (partial) presumably arising from the presence of an 

isomeric benzofluorenyldione (8%) derived from the allenic dibromide 92 were observed  

 

 71



 

at δ 7.13 (2 H, d, J = 9.0 Hz), 7.01 (2 H, t, J = 7.8 Hz), 6.59 (2 H, d, J = 7.8 Hz), 4.71 (2 

H, d, J = 23.0 Hz), 4.55 (2 H, s), 4.42 (2 H, d, J = 23.0 Hz), 2.38 (6 H, s).   

     Benzofluorenyl Diene 97. To 0.050 g (0.070 mmol) of 96 in 10 mL of THF at 0 C 

was added 0.8 mL of a 0.5 M solution of the Tebbe reagent (Cp2TiCl(CH2)Al(CH3)2, 0.4 

mmol) in toluene. The solution was then allowed to warm to room temperature. After 1 h, 

it was quenched with 1 mL of a 2.0 M solution of hydrochloric acid at 0 C.  The solution 

was filtered through a short aluminum oxide column and then concentrated in vacuo. The 

residue was purified by column chromatography (silica gel/hexanes) to afford 0.045 g of 

97 (0.063 mmol, 90%) as a yellow solid: IR 1463, 1264, 739 cm−1; 1H (CDCl3, 600 MHz) 

δ 7.54 (2 H, td, J = 7.3, 1.6 Hz), 7.53 (2 H, d, J = 7.5 Hz), 7.50 (2 H, tt, J = 7.5, 1.4 Hz), 

7.47 (2 H, td, J = 7.5, 1.8 Hz), 7.33 (2 H, d, J = 7.5 Hz), 7.24 (2 H, d, J = 8.5 Hz), 7.22 (2 

H, dt, J = 7.0, 1.8 Hz), 7.185 (2 H, td, J = 7.5, 1.0 Hz), 7.179 (2 H, d, J = 8.8 Hz), 6.94 (2 

H, t, J = 7.4 Hz), 6.30 (2 H, d, J = 7.9 Hz), 5.90 (2 H, s), 5.74 (2 H, s), 4.73 (2 H, d, J = 

22.0 Hz), 4.21 (2 H, d, J = 22.0 Hz), 3.88 (2 H, s), 2.17 (6 H, s); 13C (CDCl3, 150 MHz) δ 

154.9, 144.1, 140.7, 140.3, 139.1, 138.9, 138.3, 137.0, 133.1, 132.6, 131.8, 130.0, 129.9, 

129.0, 128.9, 127.6, 126.9, 126.2, 125.5, 124.3, 123.6, 118.4, 107.8, 57.7, 47.4, 36.6, 21.6; 

MS m/z 711 (MH+), 710, 709; HRMS calcd for C56H39  (MH+) 711.3046, found 711.3046.  

     Benzofluorenyl Diol 100. To a solution of 0.078 g (0.11 mmol) of 97 in 5 mL of THF 

at 0 C was added 0.6 mL of a 1.0 M borane-THF solution (0.6 mmol) in THF.  The 

solution was allowed to warm to room temperature and stirred for 2 h. The reaction 

mixture was then cooled to 0 C before 3 mL of 95% ethanol, 1.0 mL of a 1.0 M solution  
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of sodium hydroxide (1.0 mmol), and 0.09 mL of a 30% hydrogen peroxide solution 

chloride were 

(0.88 mmol, 9.8 M) were introduced sequentially. The solution was stirred at 40 C for 1 

h and then cooled to 0 C before 15 mL of water and 10 mL of methylene 

introduced. The organic layer was separated, and the aqueous layer was extracted with 

methylene chloride (2 × 10 mL). The combined organic layers were dried over sodium 

sulfate and concentrated in vacuo. The residue was purified by column chromatography 

(silica gel/20% ethyl acetate in hexanes) to provide 0.070 g (0.094 mmol, 86%) of 100 as 

a light yellow solid: IR 3576, 1463, 728 cm−1; 1H (CDCl3, 600 MHz) δ 7.58−7.55 (4 H, 

m), 7.52 (2 H, tt, J = 7.3, 1.4 Hz), 7.50 (2 H, td, J = 7.3, 1.5 Hz), 7.38 (2 H, d, J = 7.5 Hz), 

7.25−7.22 (4 H, m), 7.17 (2 H, d, J = 8.6 Hz), 7.07 (2 H, d, J = 8.6 Hz), 7.01 (2 H, t, J = 

7.6 Hz), 6.40 (2 H, d, J = 7.9 Hz), 5.00 (2 H, d, J = 22.1 Hz), 4.38 (2 H, d, J = 22.0 Hz), 

3.90 (2 H, s), 3.87 (6 H, s), 2.45 (6 H, s); 13C (CDCl3, 150 MHz) δ 143.5, 140.8, 139.7, 

138.9, 137.9, 137.5, 137.0, 133.2, 132.0, 131.5, 130.1, 129.8, 129.1, 128.9, 127.7, 127.6, 

126.9, 126.4, 124.8, 124.3, 123.6, 121.5, 62.7, 62.5, 56.0, 52.6, 39.7, 28.8; MS m/z 747 

(MH+), 746, 710, 709; HRMS calcd for C56H43O2  (MH+) 747.3258, found 747.3222. 

     Benzofluorenyl Dimethanesulfonate 101. To a solution of 0.070 g (0.094 mmol) of 

100 in 7 mL of methylene chloride at 0 C was added 0.13 mL of triethylamine (0.94 

mmol) followed by 0.06 mL of methanesulfonyl chloride (0.75 mmol). The solution was 

stirred for 30 min before 10 mL of a 1.0 M solution of hydrochloric acid was added. The 

organic layer was separated, and the aqueous layer was extracted with methylene chloride 

(2 × 5 mL). The combined organic layers were dried over sodium sulfate and 

concentrated in vacuo. The residue was purified by column chromatography (silica  
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gel/20% ethyl acetate in hexanes) to provide 0.081 g (0.090 mmol, 96%) of 101 as a 

yellow solid: IR 1463, 1358, 1175, 944, 732 cm−1; 1H (CDCl3, 600 MHz) δ 7.59−7.56 (4 

H, m), 7.55−7.53 (4 H, m), 7.37 (2 H, dm, J = 7.5, 0.9 Hz), 7.31 (2 H, m), 7.26 (2 H, d, J 

= 4.0 Hz), 7.24 (2 H, td, J = 3.7, 1.0 Hz), 7.15 (2 H, d, J = 8.6 Hz), 7.02 (2 H, t, J = 7.4 

Hz), 6.42 (2 H, d, J = 7.9 Hz), 4.65 (2 H, d, J = 21.8 Hz), 4.44 (2 H, d, J = 21.8 Hz), 4.34 

(2 H, dd, J = 10.8, 5.2 Hz), 4.13 (2 H, t, J = 5.1 Hz), 4.03 (2 H, dd, J = 10.8, 4.9 Hz), 3.96 

(2 H, s), 2.46 (6 H, s), 2.37 (6 H, s); 13C (CDCl3, 150 MHz) δ 143.0, 140.7, 139.5, 138.7, 

138.4, 137.3, 135.2, 133.5, 132.3, 131.1, 130.1, 129.7, 129.3, 129.0, 127.8, 127.5, 127.2, 

126.7, 125.3, 124.4, 123.7, 121.5, 70.1, 59.8, 55.0, 53.4, 40.0, 37.0, 29.7; MS m/z 903 

(MH+), 902, 808, 807; HRMS calcd for C58H47O6S2  (MH+) 903.2809, found 903.2776.  

     C56H38 Hydrocarbon 70. To a solution of 0.055 g (0.061 mmol) of 101 in 10 mL of 

THF at 40 C was added dropwise 2.0 mL of a 0.1 M solution of potassium tert-butoxide 

in THF. The solution was stirred for 30 min before 20 mL of a saturated ammonium 

chloride solution and 10 mL of methylene chloride were added sequentially. The organic 

layer was separated and the aqueous layer was back extracted with methylene chloride (2 

2.6,  

× 10 mL). The combined organic layers were dried over sodium sulfate and concentrated 

in vacuo to provide 0.041 g (0.058 mmol, 95%) of 70 as a gray solid: IR 1467, 737, 700 

cm−1; 1H (CDCl3, 600 MHz) δ 7.53 (4 H, m), 7.47 (2 H, d, J = 7.6 Hz), 7.45 (2 H, tt, J = 

7.3, 1.4 Hz), 7.40 (2 H, td, J = 7.5, 0.8 Hz), 7.19 (2 H, td, J = 7.4, 0.9 Hz), 7.14 (2 H, d, J 

= 8.6 Hz), 7.09 (2 H, d, J = 7.6 Hz), 6.97 (2 H, t, J = 7.6 Hz), 6.83 (2 H, d, J = 8.6 Hz), 

6.50 (2 H, d, J = 7.8 Hz), 4.33 (2 H, dd, J = 12.2, 7.0 Hz), 4.28 (2 H, dd, J = 9.5, 6.3 Hz), 

4.13 (2 H, s), 3.41 (2 H, ddd, J = 12.8, 9.7, 7.0 Hz), 2.12 (6 H, s), 1.17 (2 H, td, J = 1
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6.3 Hz); 13C (CDCl3, 150 MHz) δ 149.0, 143.3, 142.5, 142.2, 138.7, 136.1, 135.1, 131.9, 

131.7, 130.9, 130.4, 129.8, 128.7, 128.6, 127.4, 126.81, 126.76, 125.1, 125.0, 124.5, 

123.3, 121.8, 53.13, 53.09, 45.2, 40.3, 33.2, 26.3; MS m/z 711 (MH+), 710, 709; HRMS 

calcd for C56H39  (MH+) 711.3046, found 711.3005. 
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