
Graduate Theses, Dissertations, and Problem Reports 

2012 

Development of a powertrain control algorithm for a compound-Development of a powertrain control algorithm for a compound-

split diesel hybrid-electric vehicle split diesel hybrid-electric vehicle 

Douglas Alan Ward 
West Virginia University 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

Recommended Citation Recommended Citation 
Ward, Douglas Alan, "Development of a powertrain control algorithm for a compound-split diesel hybrid-
electric vehicle" (2012). Graduate Theses, Dissertations, and Problem Reports. 334. 
https://researchrepository.wvu.edu/etd/334 

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F334&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/334?utm_source=researchrepository.wvu.edu%2Fetd%2F334&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


DEVELOPMENT OF A POWERTRAIN CONTROL ALGORITHM FOR A 

COMPOUND-SPLIT DIESEL HYBRID-ELECTRIC VEHICLE 

by 

 

Douglas Alan Ward 

 

 

Thesis submitted to the 
Benjamin M. Statler College of Engineering and Mineral Resources 

at West Virginia University 
in partial fulfillment of the requirements 

for the degree of 
 

 

Master of Science 
in 

Mechanical Engineering 
 

 

W. Scott Wayne, Ph.D., Chair 
Christopher M. Atkinson, Sc.D. 

James E. Smith, Ph.D. 
 
 

Department of Mechanical and Aerospace Engineering 
 
 
 
 
 

Morgantown, West Virginia 
2012 

 

 

 

Keywords: Controls; Hybrid Vehicles; Electric Vehicles; Emissions; Fuel Efficiency; EcoCAR 

 

 

 



DEVELOPMENT OF A POWERTRAIN CONTROL ALGORITHM FOR A 

COMPOUND-SPLIT DIESEL HYBRID-ELECTRIC VEHICLE 

Douglas Alan Ward 

Abstract 

  

 The goal of this research was to develop a unique powertrain control algorithm for a diesel-

powered compound-split hybrid crossover utility vehicle (CUV) and evaluate the fuel consumption and 

greenhouse gas emissions benefits that can be realized compared to existing non-hybrid, gasoline-

powered CUVs.  This was achieved through the implementation of engine on/off functionality, 

regenerative braking, and electric-only drive.  The research was conducted in conjunction with the 

university’s participation in EcoCAR: The NeXt Challenge, an inter-collegiate advanced vehicle 

engineering competition focused on developing alternatively powered vehicles in the interest of providing 

improved fuel efficiency and reduced tailpipe emissions while maintaining useful vehicle functionality.  

Prior to construction, the proposed vehicle was simulated for fuel efficiency and carbon dioxide emissions 

using the Powertrain System Analysis Toolkit.  Initial simulation results indicated that the proposed 

compound-split hybrid vehicle would achieve 35 mpgge combined fuel economy and produce carbon 

dioxide at a rate of 242 g/mi.  A 2009 Saturn Vue was modified to accept the proposed hybrid powertrain 

consisting of a 1.3 liter diesel engine, 2-mode compound-split transaxle, and lithium-ion high-voltage 

battery system.  This vehicle served as the platform for the development and validation of the powertrain 

control algorithm.  Using the vehicle’s CAN communication capabilities, auxiliary control units were 

integrated to manage the new powertrain components and implement the control strategy.  The project 

vehicle and control algorithm were validated and tested on-road for fuel efficiency and performance.  The 

final powertrain control algorithm developed through this research included automatic engine start/stop, 

regenerative braking, and full-electric driving capability at speeds up to 25 mph.  In its final configuration, 

the WVU 2-mode hybrid-electric vehicle achieved city/highway fuel economy of 24.5/31.5 mpgge.  

Compared to the base vehicle, the project vehicle achieved a 28.9% improvement in city fuel economy, a 

21.2% improvement in highway fuel economy, and a 20% reduction of in-use CO2 emissions. 
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1. Introduction & Objectives 

1.1 Introduction 

 The world's oil reserves are limited.  While all of the oil held below the surface of the earth will 

never run out, the amount of oil that is economically and practically feasible to extract is finite.  It is 

projected that oil production around the world will halt by the end of this century [1].  This is a problem 

because currently the world uses oil at a rate of around 88 million barrels per day. The United States 

alone consumes about 19 million barrels per day [3].  Of this, 70% is used specifically for transportation.  

If petroleum remains the primary source for transportation fuel for the next 90 years and production 

suddenly ends, the consequences would be disastrous.  Many essential everyday functions rely on 

transportation.  Food would not arrive to the market, coal would stay at the mine site instead of fueling the 

combustor at the power plant, and emergency vehicles would stay parked in the garage. 

 Groups like the U.S. Energy Information Agency (EIA), British Petroleum (BP), and Oak Ridge 

National Laboratory have been working to increase awareness by publishing reports describing current 

and future energy usage.  Of particular interest are data regarding how much imported oil the United 

States consumes and how much we pay for it.  About 50% of the oil consumed in the United States is 

imported.  In 2010, the U.S. spent about $175 billion on imported oil, with over 40% going to Organization 

of Petroleum Exporting Countries (OPEC) members and another 15% going to non-OPEC Middle Eastern 

nations [2]. 

 The United States government has steadily been increasing fuel economy requirements for new 

on-road vehicles in an effort to reduce the nation's oil consumption and, ultimately, our dependence on oil 

sourced from unstable Middle Eastern countries. This has caused automobile manufacturers to develop 

and produce more fuel efficient vehicles.  In order to produce these fuel efficient vehicles, the 

manufacturers have started developing alternatives to the conventional powertrain consisting of an 

internal combustion engine connected to a transmission that drives the wheels. 

The United States Department of Energy (DOE) has been trying to facilitate the design of 

alternative vehicles for more than 20 years.  Since 1987, the U.S. DOE has been holding advanced 

vehicle technology competitions in cooperation with the major U.S. vehicle manufacturers to allow 

engineering students from across the United States, Canada, and Mexico the opportunity to help further 

the development of these new technologies.  West Virginia University has built a 2-mode diesel-powered 

hybrid vehicle to compete in EcoCAR: The NeXt Challenge, sponsored by the DOE.  By replacing the 

gasoline engine with a small diesel engine and installing a compound-split hybrid transaxle, the proposed 

project vehicle was expected to achieve much improved fuel efficiency while emitting lower levels of 

greenhouse gases.  The research discussed in this thesis involved developing the powertrain control 

algorithm for the project vehicle and conducting on-road fuel efficiency and performance testing. 



 2 

As a graduate research assistant working for the project, the author was involved in all aspects of 

the vehicle design process including mechanical design, component selection, and integration.  While the 

research focus of the work presented here was the development and validation of the powertrain control 

algorithm, the background work performed to produce the project vehicle has been included to provide a 

clear description of the project vehicle, its capabilities, and its limitations.  This document will discuss the 

design and construction of the project vehicle in addition to detailing the powertrain control algorithm and 

on-road testing performed through the research. 

1.2 Research Objectives 

The goal of this research was to develop a unique powertrain control algorithm for a diesel-

powered compound-split hybrid crossover utility vehicle built in conjunction with the university’s 

participation in the EcoCAR competition and evaluate the fuel consumption and greenhouse gas 

emissions benefits that can be achieved compared to existing non-hybrid, gasoline-powered CUVs.    

Within the scope of the research, goals pertaining to the powertrain control algorithm were defined: 

 

 Implement a novel diesel hybrid-electric powertrain architecture through the use of the GM front-

wheel-drive 2-mode compound-split transaxle 

 Develop a safe, efficient, and robust powertrain control algorithm to take full advantage of the 

capabilities of the 2-mode hybrid architecture 

 Include engine on/off functionality, regenerative braking, and electric-only drive 

 Maintain high energy efficiency without degrading vehicle performance 

 Develop detailed on-road test plans 

 Test multiple control strategies to determine how to most efficiently propel the project vehicle 

 Conduct rigorous testing to validate the design of the project vehicle in terms of fuel efficiency, 

emissions, and performance 

 Validate the accuracy of the computer simulations of the project vehicle 
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2. Literature Review 

2.1 Petroleum Energy Usage In Transportation 

 It has been well-documented that the world's supply of crude oil is finite.  Current projections 

show that world oil production will likely begin to decline sharply before the year 2050 with production 

essentially ceasing by the year 2100 [1].  Over the next 25 years, petroleum consumption by the 

transportation sector in the United States is projected to increase from around 14 million barrels per day 

in 2011 to 17 million barrels per day, an increase of 21% [2].  The transportation sector accounts for 

about 70% of the total petroleum usage in this country.  To understand the scale of the petroleum energy 

requirement of the United States, Figure 1 is an ExxonMobil projection of the worldwide transportation 

fuel demand through the year 2040 [26]. 

 

Figure 1. Future Transportation Fuel Demand [26] 
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 Today, worldwide petroleum consumption totals around 48 million barrels per day with the United 

States accounting for nearly 30% [26].  The projections show that gasoline consumption is going to settle 

into a constant 20 million barrels of oil per day, roughly 10% less than the amount consumed today.  

Diesel fuel demand, however, is expected to increase by 85% over the next three decades.  ExxonMobil 

predicts that heavy-duty vehicles will be utilized more heavily in the coming years and although future 

heavy-duty diesel engines will be more efficient, road congestion is expected to become an issue [26].  

Figure 2 displays how the commercial sector (right) is predicted to dominate transportation petroleum 

energy usage in the future.  Note that the Commercial sector includes aviation, marine, and rail as well as 

over-the-road and off-road heavy-duty vehicles. 

 

Figure 2. Transportation Fuel Demand: Personal vs. Commercial [26] 

 The commercial sector is expected to grow so rapidly due to development in non-OECD nations 

including China [26].  In spite of the number of vehicles comprising the global light-duty fleet nearly 

doubling to 1.6 billion by the year 2040, the amount of petroleum consumed by light-duty personal 

vehicles (left) is predicted to begin a gradual decline around the year 2015.  This is due to a predicted 

increase in the average fuel efficiency of new model light-duty vehicles and the increased development 
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and market proliferation of alternative vehicles such as hybrid-electric and full electric vehicles. Figure 3 

displays the projected average fuel economy of new vehicles in the year 2040 [26]. 

 

Figure 3. Fuel Economy of New Light-Duty Vehicles [26] 

 Currently, the average fuel economy of new light-duty vehicles is around 27 mpg and ExxonMobil 

predicts that the average will increase to 48 mpg by the year 2040.  This is due to an increase in the 

number of hybrid vehicles on the road and the implementation of strong, lightweight materials in 

constructing automobiles [26].   

2.2 Emissions Regulations 

 Since the Clean Air Act was passed in 1970, the United States Environmental Protection Agency 

has been regulating emissions from mobile and stationary sources in an attempt to reduce air pollution.  

The Clean Air Act of 1970 established the first set of standards and limits for exhaust emissions from 

automobiles.  The EPA was established the same year to enforce this new set of regulations. 

Over the years, amendments have been made to the Clean Air Act including revisions made in 

1990 regulating toxic emissions and ozone-depleting compounds including oxides of nitrogen (NOX) [48].  
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Toxic pollutants are considered those that pose potential risks to humans and the environment.  

Examples of regulated toxic pollutants include benzene, formaldehyde, naphthalene, and phosphorus.  In 

Title III of the 1990 amendments, toxic compounds are defined as those that cause cancer, reproductive 

dysfunctions, neurological disorders, and genetic mutations [49].   

Currently, the EPA regulates exhaust emissions for every type of on- and off-road vehicle 

including passenger cars, heavy-duty trucks, and locomotives.  Each class of vehicle has its own unique 

set of standards and limits.  Light-duty vehicles are defined as those with a gross vehicle weight rating 

less than 8500 lb [50].  Beginning in 1991, the EPA adopted a scale for rating the emission levels 

produced by new vehicles.  These Tier 1 standards were phased in between 1994 and 1997, giving 

manufacturers four model years to comply.  The Tier 1 standards were concerned with emissions of 

hydrocarbons (unburned fuel), carbon monoxide, NOX, and particulate matter (PM).  The hydrocarbon 

emissions were divided into non-methane (NMHC) as well as total (THC).  Table 1 lists the EPA Tier 1 

emission standards for new light-duty vehicles.  Note that all emissions values are listed in g/mi [51]. 

Table 1. EPA Light-Duty FTP-75 Tier 1 Emissions Standards [51] 

  THC NMHC CO 
NOX 

(Diesel) 
NOX 

(Gasoline) 
PM 

< 50,000mi./5 yrs. 0.41 0.25 3.4 1.0 0.4 0.08 

> 100,000mi./10 yrs. - 0.31 4.2 1.25 0.6 0.10 

 

The Tier 1 standards required that the vehicles be in compliance when new and after having been 

in-use for 100,000 miles or ten years.  The standards for older vehicles were less stringent than for the 

new vehicles.  The emissions were measured while driving the vehicles over the EPA’s FTP-75 schedule.  

Beginning in the year 2000, the EPA instituted a supplemental federal test procedure (SFTP) for certifying 

new vehicles.  This new procedure included the EPA’s aggressive highway test cycle (US06) as well as 

its urban cycle with air conditioning operating (SC03).  Table 2 lists the Tier 1 SFTP standards for light-

duty vehicles.  Note that the NMHC+NOX emissions are the weighted sum of these emissions from the 

FTP-75, US06, and SC03 test cycles with all values being listed in g/mi [51]. 

Table 2. SFTP Tier 1 Emission Standards [51] 

  
NMHC+NOX 
(Weighted) 

CO 

US06 SC03 

< 50,000mi./5 yrs. 1.48 9.0 3.0 

> 100,000mi./10 yrs. 2.07 11.1 3.7 

 

The EPA adopted a new set of emissions standards at the end of 1999.  The new Tier 2 

standards were more descriptive than the previous Tier 1 standards with the addition of classification bins 

for new vehicle emissions.  While the test procedure was the same for Tier 2 as in Tier 1, NOX standards 
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were no longer fuel-specific, THC emissions were replaced with non-methane organic gas (NMOG) 

emissions, and formaldehyde (HCHO) was added to the list of regulated emissions.  The Tier 2 emissions 

standards were phased in between 2004 and 2009.  Table 3 lists the EPA Tier 2 FTP-75 emissions 

standards.  Note that all values are listed in g/mi [52]. 

Table 3. EPA Light-Duty FTP-75 Tier 2 Emissions Standards [52] 

  
< 50,000 mi./5 years > 120,000 mi./15 years 

NOX NMOG CO PM HCHO NOX NMOG CO PM HCHO 

Bin 11 0.60 0.195 5.0 - 0.022 0.90 0.28 7.3 0.12 0.032 

Bin 10 0.40 0.125 3.4 - 0.015 0.60 0.156 4.2 0.08 0.018 

Bin 9 0.20 0.075 3.4 - 0.015 0.30 0.09 4.2 0.06 0.018 

Bin 8 0.14 0.100 3.4 - 0.015 0.20 0.125 4.2 0.02 0.018 

Bin 7 0.11 0.075 3.4 - 0.015 0.15 0.09 4.2 0.02 0.018 

Bin 6 0.08 0.075 3.4 - 0.015 0.10 0.09 4.2 0.01 0.018 

Bin 5 0.05 0.075 3.4 - 0.015 0.07 0.09 4.2 0.01 0.018 

Bin 4 - - - - - 0.04 0.07 2.1 0.01 0.011 

Bin 3 - - - - - 0.03 0.055 2.1 0.01 0.011 

Bin 2 - - - - - 0.02 0.01 2.1 0.01 0.004 

Bin 1 - - - - - 0 0 0 0 0 

 

Bins 9-11 expired in 2006 as they were implemented during the phase-in process only.  All light-

duty cars were required to meet Tier 2 Bin 8 standards by model year 2007 with all light-duty vehicles 

including trucks meeting the standards by 2009 [50].  Similar to the Tier 1 test procedure, Tier 2 

certification included a supplemental test to simulate more extreme driving situations.  The Tier 2 SFTP 

certification was not divided into bins.  Again, NMHC+NOX was a weighted sum of the emissions 

measured during the FTP-75, US06, and SC03 test cycles.  Table 4 lists the standards for Tier 2 SFTP 

emissions.  All values are listed in g/mi [50]. 

Table 4. SFTP Tier 2 Emissions Standards [50] 

US06 SC03 

NMHC+NOx CO NMHC+NOx CO 

0.14 8.0 0.2 2.7 

 

Unlike Tier 1 standards, Tier 2 SFTP standards have no provision for vehicle age or mileage.  

Tier 2 SFTP standards were set to be equivalent to the Tier 1 standard minus 35% of the difference 

between the Tier 1 and Tier 2 FTP-75 standards. 
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2.3 Unconventional Light-Duty Vehicle Types 

 Automobiles have been built dating back as far as the 17th century.  The first automobile to utilize 

an Otto-cycle engine was built in 1886 by Karl Benz of Germany.  The Benz-Patent Motorwagen is 

considered the first "modern automobile" by the fact that it was intentionally designed to be self-propelled 

and not pulled by horses.  The three-wheeled Motorwagen featured a state-of-the-art single cylinder Otto-

cycle internal combustion engine producing 2/3 hp [20].  The Otto-cycle internal combustion engine went 

on to become the standard power generator for automobiles and continues to be so to this day.  

However, the availability issues associated with crude oil and the harmful emissions resulting from the 

combustion of petroleum-derived fuels have led to increasing interest in alternative methods for propelling 

automobiles. 

2.3.1 Gasoline Engine Alternatives 

 Gasoline engines have been used in everything from 1:10 scale remote control cars to lawn care 

equipment, boats, airplanes, and passenger vehicles.  However, concerns regarding the operation of 

gasoline-powered internal combustion engines have driven engineers worldwide to develop suitable 

alternatives. 

2.3.1.1 Compression-Ignition Engines 

 Around the same time as developmental work was being performed on Otto-cycle gasoline 

engines, Rudolf Diesel was working on an alternative internal combustion engine design.  In contrast to 

the spark-ignited gasoline engine, Diesel's proposed heat engine used only the heat caused by 

compressing air to ignite the fuel.  United States Patent number 608,845 was filed on August 9th, 1898 

for Diesel's engine.  The patent described in great detail how this new engine was designed to operate 

and how it differed from the gasoline engines of the day.  The spark ignition source was replaced by a 

fuel supply valve, now known as a fuel injector, used to initiate the combustion process.  The piston-

cylinder assembly in Diesel's engine provided sufficient compression to raise the in-cylinder temperature 

past the fuel's auto-ignition temperature, meaning that combustion would begin as soon as fuel was 

introduced into the combustion chamber [19]. 

 A notable advantage compression-ignition engines hold over conventional spark-ignited engines 

is higher compression.  Spark-ignited gasoline engines cannot tolerate compression ratios high enough to 

auto-ignite the gasoline in the cylinder because this uncontrolled ignition, known as knock, causes 

damage to the different mechanical components of the engine [21].  However, this is the same principal 

upon which compression-ignition diesel engines operate.  For this reason, compression-ignition engines 

allow considerably higher compression ratios.  Where an average spark-ignited engine may have a 

compression ratio of up to around 11:1, compression-ignition engines can tolerate compression ratios as 

high as 24:1.  This is advantageous because a higher compression ratio produces more work output for 

the same amount of fuel energy consumed, increasing both potential power and thermal efficiency [21].  
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In addition, diesel fuel contains more energy per gallon than gasoline.  Where gasoline has an energy 

content of roughly 125,000 BTU/gal, diesel fuel increases energy content to around 138,700 BTU/gal.  

Light-duty vehicles equipped with compression-ignition diesel engines typically achieve 20-40% better 

fuel efficiency than similar gasoline-powered vehicles [22]. 

 Today, diesel engines are used almost exclusively in heavy-duty over-the-road and off-road 

equipment such as class 8 tractors and locomotives.  This is likely due to the torque potential and 

efficiency provided by the high compression ratio of compression-ignition engines.  Light-duty diesel 

engines are slowly gaining popularity with the car-buying public, but diesel has yet to reach the light-duty 

mainstream.  Over the past decade, light-duty diesel vehicles only account for about 2-3% of all light-duty 

vehicles sold in the United States [22]. 

2.3.1.2 Natural Gas 

 With the discovery of vast natural gas reserves in the United States including the Marcellus Shale 

formation located under Pennsylvania, Ohio, New York, and West Virginia, the automotive industry will 

have more fueling options for new vehicles in the future.  Natural gas can be combusted in spark-ignited 

and compression-ignited engines with minimal modifications.  Like gasoline, natural gas requires an 

ignition source such as a spark to begin combustion.  Natural gas has a higher octane rating than 

traditional gasoline so an engine designed to run on natural gas can have a higher compression ratio than 

a comparable gasoline engine.  Similar to compression-ignition engines that run on diesel fuel, the higher 

compression ratio allowed by natural gas increases the efficiency of the engine [23].  In transportation, 

natural gas is stored either as a compressed gas (CNG) or a liquid (LNG).  CNG is the more popular form 

of natural gas used in transportation due to LNG requiring refrigeration to maintain its liquefied state. 

 In addition to the increased efficiency of natural gas engines, the combustion of natural gas also 

produces fewer harmful exhaust emissions than the combustion of gasoline.  It should be noted that the 

combustion of natural gas does produce higher levels of methane gas (CH4) which, while not contributing 

to smog, does act as a greenhouse gas.  Depending on the design of the engine, natural gas has the 

potential to reduce carbon monoxide emissions by up to 97%, NOX could be reduced by up to 60%, and 

non-methane hydrocarbon emissions could be reduced by as much as 75% [23].  However, CNG 

contains roughly ¼ the energy in gasoline per gallon meaning that more fuel would need to be stored on-

board to maintain a vehicle’s range between refills.  These large high pressure storage vessels add to the 

price of CNG vehicles.  Similar to light-duty diesel vehicles, CNG vehicles typically cost between $3,500 

and $6,000 more than equivalent gasoline vehicles [23]. 

 Currently, there is only one new model light-duty vehicle sold in the United States that runs on 

CNG.  The Honda Civic Natural Gas (formerly GX) is designed to run exclusively on CNG and is the only 

sedan sold in this country that runs on natural gas.  Chevrolet is planning a CNG Silverado 2500HD that 

will be capable of running on either CNG or gasoline to be on-sale later this year.  Ram has begun selling 

a CNG 2500 heavy-duty pickup similar in concept to the system in the CNG Silverado.  However, there is 
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another class of unconventional vehicles that outsells natural gas and diesel-powered light-duty vehicles 

year after year. 

2.3.2 Hybrid Vehicles 

 A hybrid vehicle is defined as any vehicle that utilizes two or more forms of energy storage for 

producing propelling power [25].  The popular light-duty hybrid vehicles on-sale today such as the Toyota 

Prius and Honda Insight utilize a spark-ignited gasoline engine for on-board power generation and 

supplement the engine with electric motors for propelling the vehicle.  Hybrid vehicles are designed to 

reduce the fuel consumption and emissions generated by the transportation sector by reducing the 

amount of petroleum products consumed. 

 The major advantage a hybrid vehicle holds over a conventional vehicle is the ability to recapture 

otherwise wasted energy used to slow the vehicle during braking and store that energy for use in 

propelling the vehicle at a later time.  In a hybrid-electric vehicle this energy is stored in a high-voltage 

battery [25].  Another advantage of incorporating powerful electric motors in the powertrain is the ability to 

turn the engine on and off quickly.  This functionality allows hybrid vehicles to turn their engines off when 

the vehicle is stationary, thereby saving fuel that would otherwise be wasted while idling the engine.  

Depending on the size of the electric motor, some hybrid vehicles are even capable of electric-only drive 

with the engine turned off [25]. 

2.3.2.1 Series Hybrids 

 HEVs can be classified based on how the electric motors and engine are arranged in the 

powertrain.  A series hybrid uses only the electric motor to drive the wheels with the engine driving an 

electric generator used to recharge the high voltage battery.  Series hybrids require larger high voltage 

batteries than other hybrids because propulsion comes solely from the electric motor [25].  Currently the 

only commercially available series hybrid light-duty vehicles for sale in the United States are the limited 

production Fisker Karma and the Chevrolet Volt, although others are under development. 

 An advantage to the series configuration is the ability to operate the engine independent of the 

desired axle torque requested by the driver.  This allows the engine to be operated in states of maximum 

efficiency with little throttling and limited transient operation [28].  Another advantage to the series hybrid 

layout is the ability to operate the vehicle with the engine off for extended periods of time depending on 

the state of charge of the high voltage battery.  This is the reason that the batteries in both the Karma and 

the Volt are capable of being charged from a standard household electrical receptacle.  These plug-in 

hybrid-electric vehicles are each capable of travelling from 20-40 miles on a full charge without turning the 

engine on [28]. 

 The major drawback to a series powertrain configuration is that the conversion efficiency of the 

generator cannot be bypassed.  In the event that the engine is running and the vehicle is in motion, all of 

the power generated by the engine must first be converted to electricity before reaching the wheels.  

Where a typical transmission is around 90-95% efficient at transferring engine power to the wheels, the 
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conversion efficiency of a generator in a series hybrid is rarely this high and there are losses associated 

with charging and discharging the high voltage battery [33]. 

2.3.2.2 Parallel Hybrids 

 A parallel hybrid has the engine and electric motors arranged in such a way that propelling power 

can be provided by any combination of the engine or electric motors.  The parallel powertrain layout is the 

most popular due to the ability to draw power from the engine and electric motors depending upon driving 

conditions to maintain maximum vehicle energy efficiency [25].  This allows the installation of smaller, 

lighter battery packs in parallel hybrids compared to those found in series hybrids and full electric 

vehicles.  Most of the hybrid vehicles on the road today are parallel hybrids. 

 In a parallel hybrid configuration, the engine, the electric motor, or a combination of both can be 

used to propel the vehicle.  This eliminates the losses associated with constantly converting the 

mechanical energy produced by the engine to electrical energy through the generator by allowing the 

engine to directly propel the vehicle.  Typically, parallel hybrids rely on the electric motors for acceleration 

during transient low-speed vehicle operation and use the engine to propel the vehicle during periods of 

sustained vehicle speed.  In general, parallel hybrids are more efficient during highway driving than series 

hybrids with the opposite being true for city driving [33]. 

2.3.3 Full Electric Vehicles 

 While the hybrid vehicles described previously incorporate electrical machines to provide 

propelling power, they all still rely on internal combustion engines for on-board power production through 

the combustion of fossil fuel.  In addition to petroleum-derived fuels and natural gas, automobile 

manufacturers have been considering the idea of using only electricity to provide vehicle propelling 

power.  At the dawn of the 20
th
 Century, electric vehicles were preferred because the earliest internal 

combustion engines tended to backfire due to low quality fuel, scaring any horses that may be nearby.  

These early electrics were generally used as “city cars” for running errands around town because they 

lacked the power to achieve speeds higher than 20 mph.  Early electric vehicles generally allowed driving 

ranges on a full charge of between 25 and 40 miles [18]. 

 Thanks to advances in automobile design and battery technology, today's EVs are designed to be 

capable of achieving highway speeds with ranges of at least 100 miles between charges [29].  According 

to EV manufacturer Tesla, their Roadster model is capable of a range of 220 miles.  Assuming an EV 

consumes 1 kWh of energy every 3 miles, the cost to recharge the high voltage battery at the national 

average rate of 11.7 ¢/kWh would come out to 3.9 ¢/mile [30].  By comparison, a conventional vehicle 

that achieves an average fuel economy of 28 mpg at a fuel price of $3.80/gallon would cost 13.57 ¢/mile 

to operate.  At 50 mpg, the operational cost would be 7.6 ¢/mile, roughly double that of the EV. 

 While electric vehicles consume no fuel, produce no emissions while driving, and cost 

considerably less to operate travelling down the road, they have yet to reach the popularity of hybrids.  

This is due to the range anxiety stigma associated with operating EVs.  Charging times for the large 
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batteries found in PHEVs and EVs can be as long as 11 hours using a standard 110/120 V electrical 

receptacle [28].  Consumers are afraid of being stranded with a depleted battery and no way to recharge 

it.  This is the major advantage hybrid vehicles hold over full electric vehicles. 

2.3.4 Future Light-Duty Vehicle Market Trends 

 Since the introduction of the Echo-based first generation Toyota Prius in 2000, more than one 

million Toyota Prius models have been sold in the United States with the worldwide total eclipsing four 

million.  The number of diesel-powered and CNG-fueled vehicles sold in the United States is negligible 

compared to the total light-duty vehicles sold, and this trend is expected to continue.  According to the 

EIA, there were 128 million new cars sold in the United States in 2011.  Of those, 1.5 million were hybrid-

electrics, 1.03 million were diesel vehicles, and 30,000 were natural gas vehicles [27].  Figure 4 is a chart 

of the projected composition of the worldwide light-duty vehicle fleet through the year 2040 [26]. 

 

Figure 4. Worldwide Light-Duty Vehicle Fleet [26] 

 The chart illustrates how hybrid vehicles are projected to comprise around 35% of the light-duty 

vehicle fleet by the year 2040.  It also depicts the declining market shares of diesel-powered and 
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gasoline-powered vehicles from 98% today down to 50% in 2040 with only 35% of the new vehicles sold 

being conventionally powered.  This sharp decline is projected due to increasingly stringent fuel economy 

and emissions regulations.  Natural gas and electric vehicles are expected to continually increase to 

around 5% of the global fleet in 2040 [26]. 

2.4 Automotive Battery Technology 

 A major concern among consumers considering purchasing hybrids and EVs is the durability and 

safety of their high voltage systems.  Detractors often cite battery replacement costs as a reason not to 

purchase HEVs and EVs.  While a battery replacement in a Toyota Prius costs around $4,000, the 

frequency with which replacements occur is about one in 40,000 vehicles [32].  Battery technology has 

advanced over the past decade to the point that there are multiple viable options for automobile 

manufacturers when selecting what type of batteries to use in new hybrid vehicles. 

2.4.1 Lead-Acid 

 Lead-acid batteries can be found in almost every light-duty vehicle on the road today.  Commonly 

used for engine starting, lead-acid batteries have been proven durable and stable over billions of on-road 

miles in the past century.  Lead-acid batteries are the least expensive automotive battery technology 

currently available.  In addition, lead-acid batteries are more resistant to voltage drop when cold 

compared to other battery technologies.  However, there are limitations to lead-acid batteries in hybrid 

applications [31]. 

 The reason that lead-acid batteries work so well as starting batteries is that current is only drawn 

from the battery at high rates for a limited time while the starter motor is spinning the engine.  Lead-acid 

batteries cannot withstand long periods of current draw before becoming unstable.  The major 

disadvantage of lead-acid batteries, however, is low energy density.  A lead-acid battery large enough to 

store the energy required by today's HEVs would be too heavy to be feasible [31]. 

2.4.2 Nickel-Metal Hydride (NiMH) 

 Nickel-metal hydride batteries were the most popular battery technology being used in new hybrid 

vehicles until recently.  There was a time when all hybrid vehicles sold in the United States utilized NiMH 

batteries for electrical energy storage.  With higher energy density than lead-acid batteries, NiMH 

batteries can be sized appropriately to fit well into passenger vehicles without adding as much mass as a 

similarly sized lead-acid battery pack [31]. 

 The Toyota Prius utilized NiMH batteries from the beginning and those battery packs have proven 

durable over the lifetime of the vehicles.  According to Toyota, the battery replacement rate for the 

extremely popular second generation Prius was 0.003% [32].  However, Toyota has recently replaced the 

NiMH batteries in their hybrids with new lithium-ion units.  Currently, NiMH batteries are available in every 

Honda hybrid model as well as the full-size pickup and SUV hybrids built by General Motors. 
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 NiMH batteries have been known to generate significant heat when operated at high 

temperatures, indicating an internal inefficiency that wastes energy that could otherwise be used to propel 

the vehicle.  They are also known to generate hydrogen gas under certain circumstances which must be 

avoided to eliminate the chance of an explosion [32].  While NiMH batteries were the standard in HEV 

high voltage battery packs, lithium-ion battery technology has been increasingly implemented in new 

hybrids and EVs. 

2.4.3 Lithium-Ion 

 Lithium-ion batteries are the current state-of-the-art in hybrid vehicle electrical energy storage.  

This style of battery has been used successfully in laptop computers and cellular phones for years.  

Recently, larger lithium-ion batteries have been developed for use in electrified vehicles, displacing NiMH 

batteries formerly used in vehicles such as the Toyota Prius and Ford Escape Hybrid. 

 Of the three technologies discussed, lithium-ion batteries have the highest specific energy 

meaning that a battery pack with a given energy storage capacity would be lighter and physically smaller 

than a NiMH or lead-acid battery of equivalent capacity.  For this reason, lithium-ion batteries are 

currently the most ideal technology for use in alternative automotive applications [31].  However, lithium-

ion batteries must be closely monitored and controlled to maintain the battery pack at a safe temperature.  

If lithium-ion batteries are allowed to get above roughly 60°C, reactions will begin to occur spontaneously 

inside the battery modules until the temperature rises to the point that the batteries could catch on fire or 

explode [31].  This uncontrolled discharging was the cause for laptop computer fires in the past. 

2.4.4 Safety Concerns 

Recently, the Chevrolet Volt has drawn attention to the danger surrounding high-voltage batteries 

used in automobiles.  Following side-impact crash testing performed by the National Highway Traffic 

Safety Administration (NHTSA) a Chevrolet Volt caught on fire three weeks after the test with the wrecked 

vehicle sitting in a lot outside of the NHTSA facility.  The fire was investigated and the cause was found to 

be that coolant had leaked out of the battery’s liquid cooling system due to a frame member piercing the 

side of the T-shaped battery pack located between the front seats.  The leaked coolant seeped into the 

high-voltage battery and created short circuits inside the battery pack leading to elevated temperatures 

and the eventual fire [34].  GM subsequently recalled every Volt that had been sold to prevent this from 

occurring again.  NHTSA has since revised their post-testing procedure to include draining the fuel tank 

and discharging any batteries installed in wrecked test vehicles.  According to NHTSA there have been 

no reported incidents involving battery fires in electrified automobiles [35]. 

2.5 Production Hybrid Systems 

 Today's hybrid-electric vehicles can be classified according to their level of hybridization or the 

degree to which electrical energy is used for propulsion.  Different hybrid powertrains are designed to 
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utilize fuel energy and electrical energy at different rates under certain driving conditions but each design 

has limitations on how much power the engine or electric motors can provide to propel the vehicle.  

Systems that rely mostly on the engine for propelling power are referred to as "mild hybrids" while 

systems that are capable of a more even split between engine power and electric motor power are called 

"strong hybrids." A mild hybrid system typically utilizes a small electric motor/generator used to assist the 

engine during acceleration and cruising, but the electric motor alone typically cannot power the vehicle.  

Strong hybrids utilize larger electric machines typically capable of powering the vehicle on electricity 

alone [25].  Examples of mild hybrid architectures include GM's Belt Alternator/Starter system and 

Honda's Integrated Motor Assist (IMA) system.  Strong hybrid systems include GM's 2-mode and Toyota's 

Hybrid Synergy Drive. 

2.5.1 GM’s Belt Alternator/Starter 

2.5.1.1 Generation I 

 General Motors first developed the BAS system to be installed in the 2007 Saturn Vue Green 

Line hybrid CUV and the 2007 Saturn Aura Green Line hybrid sedan.  The first-generation BAS system 

consisted of a 2.4 liter four cylinder gasoline engine with an electric motor/generator driven off of the 

engine crankshaft via a rubber belt.  Table 5 lists the specifications of the first generation BAS system in 

the 2007 Vue Green Line [24]. 

Table 5. GM First Generation BAS Specifications [24] 

Engine Type 2.4 L Gasoline 

Engine Power 127 kW 

Engine Torque 220 N-m 

Electric Motor Power > 4 kW 

Electric Motor Torque > 60 N-m 

Battery Type NiMH 

Battery Voltage 36 V 

 

 The first generation system was only available with a modified 4T45-E conventional four speed 

automatic transaxle.  Modifications included adding an auxiliary transmission fluid pump to maintain 

pressure in the automatic transmission when the engine was not running to avoid transmission slippage 

when pulling away from a stop as well as other minor changes to reduce rolling resistance during coast-

down and regenerative braking [24].  An advantage of the BAS system was its ease of integration into 

vehicles constructed on an assembly line.  The 36 V battery enclosure housed the hybrid system control 

hardware and the motor/generator mounted in place of a conventional alternator on the front of the 

engine minimizing hybrid-specific work during final assembly [24]. 
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 The BAS system was capable of engine-off idling and regenerative braking.  In addition, the 

electric motor/generator provided supplemental torque during acceleration and cruising, reducing the 

amount of fuel consumed by the engine during these events.  In the 2007 Saturn Vue Green Line, the 

BAS system increased city fuel economy by 23% and increased highway fuel economy by 19% over the 

base 2007 Saturn Vue model.  In addition, the Vue Green Line accelerated from 0-60 mph one second 

faster than the base Vue [24].  The first generation BAS system was available on the discussed Saturn 

hybrid models as well as the Chevrolet Malibu hybrid model.  General Motors discontinued its BAS 

system after the 2010 model year. 

2.5.1.2 Generation II (eAssist) 

 General Motors launched its second generation BAS system, renamed eAssist, in the 2012 Buick 

LaCrosse and Regal eAssist models.  The eAssist system was an evolution of the original BAS system 

maintaining the original system's layout and functions.  Table 6 lists the specifications for the eAssist 

system in comparison to the original BAS system [41]. 

Table 6. GM eAssist System Specifications [41] 

  BAS eAssist 

Engine Type 2.4 L Gasoline 2.4 L DI Gasoline 

Engine Power 127 kW 136 kW 

Engine Torque 220 N-m 233 N-m 

Electric Motor Power > 4 kW > 14 kW 

Electric Motor Torque > 60 N-m > 60 N-m 

Battery Type NiMH Li-Ion 

Battery Voltage 36 V 115 V 

 

 The 2.4 liter engine in the eAssist system had direct injection and higher compression than the 

previous BAS engine (11.2:1 vs. 10.4:1).  The new lithium-ion battery was both smaller and lighter than 

the NiMH battery used in the first generation system [41].  GM's eAssist system utilized a modified 6T40 

six speed automatic transaxle in place of the four speed unit in the first generation BAS system.  The new 

transmission was already equipped to allow for low-drag coasting requiring only the addition of an 

auxiliary oil pump and a new torque converter seal for use in eAssist applications [41]. 

 The new eAssist system retained the engine-off idling and regenerative braking capabilities of the 

previous BAS system as well as provided supplemental torque during acceleration and cruising.  

However, due to the increased power of the electric motor/generator and the addition of a wide ribbed 

belt, the eAssist system was capable of momentary electric-only drive while the engine was started [41].  

According to road load calculations performed by GM powertrain engineers, the new eAssist system 

could provide 33% improved city fuel economy and 20% improved highway fuel economy compared to a 
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standard vehicle [41].  Currently, eAssist is available on the Buick Regal and LaCrosse eAssist models as 

well as the new Chevrolet Malibu Eco. 

2.5.2 Honda’s Integrated Motor Assist 

 Honda's Integrated Motor Assist system debuted on the 1999 Insight model equipped with a 1.0 

liter three cylinder engine producing 50 kW and an electric motor producing an additional 10 kW [38].  

Honda's mild hybrid IMA system is similar to General Motors' BAS/eAssist system in that it utilizes an 

electric motor to provide additional torque during acceleration to reduce the fuel consumed by the engine 

during transient operation.  However, where the GM systems located the motor/generator at the front of 

the engine and connect it to the crankshaft via a rubber belt, Honda's IMA system located the electric 

motor between the engine and transmission with the motor directly connected to the engine's crankshaft.  

Figure 5 is a drawing illustrating the placement of the electric motor in the IMA system [38]. 

 

Figure 5. First Generation Honda IMA Hybrid System Layout [38] 

 By attaching the rotor of the electric motor directly to the engine's crankshaft, there were no 

bearings in the 60 mm wide electric motor.  The three cylinder engine was selected for its minimal 

mechanical losses to improve the energy efficiency of the powertrain further.  Combined with the 6.5 Ah 

NiMH battery pack and cooling system for the electric motor, the entire IMA system in the first generation 

Honda Insight weighed less than 80 kg [38]. 

 Over the years, the basic architecture of the IMA system has remained unchanged.  The system 

has been updated and installed behind four cylinder engines in the Civic and six cylinder engines in the 

Accord.  The electric motors have increased to 15 kW in recent iterations as well [39].  The latest iteration 

of the IMA system is capable of engine start/stop and regenerative braking similar to the GM BAS/eAssist 

systems.  IMA is also capable of low speed electric-only propulsion through the use of cylinder 

deactivation via Honda's Variable Valve Timing and Lift Electronic Control (VTEC) system.  Because the 
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electric motor rotor is connected directly to the engine's crankshaft, the engine is required to rotate any 

time the vehicle is in motion.  Using VTEC, the intake and exhaust valves in the engine are held open to 

reduce pumping losses during electric-only driving [40]. 

 While GM's eAssist is only available with a six speed automatic transaxle, Honda offers its IMA 

system in front of conventional automatics, continuously variable transmissions, and manual 

transmissions in the case of the CRZ model [42]. 

2.5.3 Toyota’s Hybrid Synergy Drive 

Toyota’s Prius model has become synonymous with the word “hybrid” as it relates to 

automobiles.  Toyota’s hybrid system, marketed today as “Hybrid Synergy Drive,” is a strong hybrid 

system capable of regenerative braking, engine start/stop, and electric-only drive.  Introduced in 1997 

based on the Echo model, the Toyota Prius has become the most popular alternative vehicle in the world 

with millions having been sold [45].  The basis of the Toyota hybrid system was a single planetary gear 

set that was used to split input power between a 43 kW 1.5 liter Atkinson cycle engine and a 30 kW 

electric motor.  The third element of the planetary gear set was connected to a generator for charging the 

high-voltage battery.  Figure 6 is a schematic of the Toyota hybrid system [45]. 

 

Figure 6. First Generation Toyota Hybrid System [45] 

Halfway through the first generation, Toyota increased the power output of the engine to 53 kW 

and the electric motor to 33 kW.  This was done to improve the performance of the vehicle so that it would 

be better received in the United States and Europe [45].  The second generation Prius debuted in 2003 

featuring distinctive Kammback styling and a more powerful hybrid system.  Engine power was increased 

to 57 kW and the electric motor was increased to 50 kW.  Beginning in 2007, the Toyota hybrid system 

was offered in other Toyota models including the Camry and Highlander crossover utility vehicle. 

The current generation model of the Toyota Prius was introduced in 2009.  Changes over 

previous iterations included an increase in engine displacement from 1.5 liters to 1.8 liters.  While the 

basic powertrain configuration remained unchanged aside from a gearing update, the engine and electric 
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motor were up-rated again.  The 1.8 liter Atkinson cycle engine now produced 73 kW and the electric 

motor produced 60 kW [46]. 

While each generation of the Toyota Prius produced more power than previous versions, the fuel 

efficiency of the Prius model has continued to improve.  Table 7 lists the EPA fuel economy test results 

for each of the three Prius generations [47]. 

Table 7. Toyota Prius Fuel Economy by Generation [47] 

  Gen. 1 Gen. 2 Gen. 3 

Engine Power 53 kW 57 kW 70 kW 

EPA City Fuel Economy 42 mpg 48 mpg 51 mpg 

EPA Highway Fuel Economy 41 mpg 45 mpg 48 mpg 

EPA Combined Fuel Economy 41 mpg 46 mpg 50 mpg 

 

2.5.4 GM’s 2-mode 

 The General Motors 2-mode system was a strong hybrid system similar to Toyota's Hybrid 

Synergy Drive system in that there are two electric motors and an engine connected to the wheels 

through a planetary gear set.  However, unlike the Toyota system, GM originally began working on a 2-

mode electrically variable transmission (EVT) to be used in heavy-duty buses in 2003 in an effort to 

improve stop-and-go fuel economy while maintaining similar acceleration performance [36]. 

GM's light-duty 2-mode utilized three planetary gear sets (two in the cancelled front-wheel drive 

2-mode) and a collection of hydraulically-actuated clutches inside the transmission that are engaged and 

released at different times to allow the transmission to operate in one of two EVT modes as well as four 

fixed gear ratios via the planetary gear sets.  A 300 V NiMH battery system was utilized for electrical 

energy storage in both the RWD and FWD applications.  The major advantage the 2-mode transmission 

held over the 1-mode EVT system in the Toyota Prius was its ability to provide high power as well as 

increased fuel economy [36]. 

2.5.4.1 Rear-Wheel-Drive 

 The rear-wheel-drive 2-mode hybrid transmission is available in full-size pickups and sport utility 

vehicles sold by Chevrolet, GMC, and Cadillac.  The vehicles offered with the 2-mode transmission 

include the Chevrolet Silverado 1500, Chevrolet Tahoe, GMC Sierra 1500, GMC Yukon, and Cadillac 

Escalade.  The rear-wheel-drive 2-mode transmission was designed to handle the larger V-8 engines 

offered in these vehicles while maintaining towing capacity.  Figure 7 is a schematic stick diagram of 

GM’s rear-wheel-drive 2-mode hybrid transmission [36]. 
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Figure 7. General Motors RWD 2-Mode Transmission [36] 

 Torque input comes from the V-8 engine transferred through the torsional damper designed to 

reduce engine shudder during engine starting and stopping.  The pump pressurizes the transmission fluid 

for cooling the electric motors and actuating the hydraulic clutches labeled C1 through C4.  These 

clutches are used for shifting the transmission between EVT modes as well as producing the four fixed 

gear ratios that are used during high-load situations such as grade climbing and towing. 

Each vehicle is equipped with an Atkinson cycle 6.0 liter V-8 capable of producing 332 hp with the 

electric motors in the transmission producing 80 hp each.  This powertrain configuration is available in 

both two- and four-wheel-drive vehicles [6].  The three planetary gear set design of the GM 2-mode 

makes it possible to maintain each vehicle’s 5300 lb towing capacity while also improving fuel economy 

during both city and highway driving.  Table 8 displays the fuel efficiency improvements afforded by the 2-

mode transmission installed in a RWD Chevrolet Tahoe SUV [36]. 

Table 8. 2-mode Fuel Efficiency Improvements [36] 

  Tahoe RWD 2-mode Tahoe RWD % Improvement 

EPA City Fuel Economy 14 mpg 21 mpg 50% 

EPA Highway Fuel Economy 20 mpg 22 mpg 10% 

 

The 50% improvement in city fuel economy is due to the 2-mode’s ability to propel the vehicle 

using only the electric motors when pulling away from a stop up to a speed of 30 mph.  Additionally, the 

2-mode Tahoe Hybrid, as well as all of the other full-size truck hybrids equipped with the 2-mode 

transmission, turns its engine off when the vehicle slows to a stop and is capable of providing up to 100% 

of the braking torque via the electric motors during regenerative braking [36].  On the highway, a 10% fuel 

economy improvement is due to the ability of the 2-mode to provide an electric boost for up to 10 seconds 

when accelerating or climbing a grade.  This electric boost supplements the engine power and reduces 

the transient operation of the engine, thus reducing the fuel consumed by the engine [6]. 
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2.5.4.2 Front-Wheel-Drive 

Similar to the RWD 2-mode transmission, GM developed a FWD 2-mode variant to be installed in 

the 2009 Saturn Vue 2-mode Hybrid with a 3.6 liter spark-ignited engine.  The FWD 2-mode was 

designed to be installed in place of the contemporary six-speed automatic transaxle used across GM’s 

brands.  In packaging the 2-mode system for use in FWD applications, one of the three planetary gear 

sets was eliminated.  The FWD 2-mode transaxle still utilized four hydraulic clutches to select the EVT 

modes and four fixed gear ratios.  Figure 8 is a schematic stick diagram of the front-wheel-drive 2-mode 

transmission [44]. 

 

 Figure 8. General Motors FWD 2-Mode Transmission [44] 

While eliminating the third planetary gear set reduced the torque capacity of the FWD 2-mode 

transmission, the FWD version maintained all of the hybrid functionality of the RWD 2-mode.  The electric 

motors were designed using concentrated windings to minimize the required physical size of the motors 

to produce the desired output torque.  This electric motor design was capable of being scaled up or down 

depending on what engine was in the vehicle.  The FWD 2-mode system was designed to be used behind 

gasoline and diesel engines displacing from 2.0 to 3.6 liters [44]. 

While the FWD 2-mode Vue was never released to the public, development was nearly complete 

when the EPA performed its standard fuel economy testing on the 2-mode Vue Hybrid.  As can be seen 

in Table 9, the 2-mode 2009 Saturn Vue equipped with the 3.6 liter V-6 engine achieved EPA combined 

fuel economy of 28 mpg, a 47% improvement over the non-hybrid 3.6 liter Vue [8].  While the BAS Vue 

Hybrid with the 2.4 liter engine also returned combined fuel economy of 28 mpg, this system produced 

half of the power of the 2-mode.  Compared with the base 2.4 liter Vue, the BAS system improved 

combined fuel economy by 27% [8]. 



 22 

Table 9. 2009 Saturn Vue Lineup Fuel Efficiency [8] 

2009 Saturn Vue FWD Lineup EPA Fuel Economy Ratings 

Model Engine Hybrid Hybrid Type City MPG Highway MPG Combined MPG 

Base XE 2.4 I-4 N - 19 26 22 

XR 3.6 V-6 N - 17 24 19 

Hybrid 2.4 I-4 Y BAS 25 32 28 

2-mode Hybrid 3.6 V-6 Y 2-mode 27 30 28 
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3. Background: Vehicle Design Process 

The vehicle design and implementation process consumed over two years of the project.  This 

chapter will discuss in great detail the modeling, design, and integration activities performed to produce 

the completed project vehicle.  While the author was involved in a majority of the activities discussed in 

this chapter, the research focus of this thesis is detailed in Chapter 4. 

3.1 Simulation & Modeling 

 The first phase of the project involved deciding what vehicle architecture and components would 

be used to construct the project vehicle.  These decisions were made based on simulation models built to 

represent the different hybrid architectures.  The author was not involved in activities performed during 

the simulation and modeling stage of the project so all credit for the simulation and modeling work must 

be given to the team that performed the work.  The majority of the information presented in this section 

has been collected from progress reports written during this phase of the project. 

The team had the option of building either a series or parallel HEV, a PHEV, an extended-range 

electric vehicle (E-REV) or a full electric vehicle (EV).  On-board power generation options included 

spark-ignited engines fueled by E85 ethanol (a mixture of 85 percent ethanol and 15 percent gasoline), 

compression-ignited engines fueled by B20 biodiesel (a mixture of 80 percent number 2 ultra-low sulfur 

diesel fuel and 20 percent biodiesel) and hydrogen fuel cells donated from GM's Chevrolet Equinox Fuel 

Cell Electric Vehicle program.  PSAT was used for simulation and modeling of the different vehicles. 

3.1.1 Proposed Hybrid Strategies 

The decision was made to build a hybrid-electric vehicle instead of a fuel cell vehicle or pure EV 

due to the complexity of implementing either of these architectures.  By retaining a more conventional 

powertrain layout consisting of an internal combustion engine and transmission, there would be fewer 

vehicle modifications required to construct the proposed project vehicle.  Three possible HEV 

architectures were explored: the GM 2-mode electrically variable transmission, a belted alternator/starter 

with rear traction assist (BAS+RTA), and a parallel plug-in hybrid-electric vehicle (PHEV).  Each 

architecture was simulated using different combinations of engines and batteries to determine which 

powertrain configuration provided the best balance between reduced emissions, improved fuel efficiency, 

and vehicle performance potential [43]. 

3.1.1.1 2-Mode 

In 2008, the front-wheel-drive GM 2-mode system was still under development, but GM was able 

to provide the team a PSAT model of the 2-mode electrically variable transmission for simulation.  Of the 

three proposed hybrid strategies, the 2-mode system was considered by the project team to be the 

easiest to mechanically integrate due to the packaging of the 2-mode transmission with the electric 
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motors being housed inside the automatic transmission case.  The proposed 2-mode architecture 

required a high-voltage battery exceeding 300 V to drive the electric motors in the transmission.  A 320 V 

lithium-ion battery system supplied by A123 Systems was specified for use in the proposed 2-mode 

vehicle. 

 A major advantage the proposed 2-mode architecture held over the others during the selection 

process was its ease of integration.  With most of the major components housed in a conventional 

transmission-sized package, it was decided that the 2-mode architecture would produce the most 

seamless integration.  The lone disadvantage realized during the selection process of the 2-mode system 

was the possibility of a challenging control algorithm development process due to the system’s complexity 

and functions [43]. 

3.1.1.2 BAS+RTA 

WVU had past experience constructing a through-the-road parallel hybrid vehicle in the 

Challenge X advanced vehicle technology competition.  However, unlike the previous effort the new 

project vehicle would utilize lithium-ion batteries for electrical energy storage instead of the capacitors 

used in the past.  With the similarities between the 2005 Chevrolet Equinox used during Challenge X and 

the 2009 Saturn Vue, many of the lessons learned while designing and building the Equinox could be 

applied if another BAS vehicle were built. 

The proposed BAS+RTA system would utilize an 18 kW motor/generator for providing engine 

starting and electric boost to aid the engine during acceleration.  A single 55 kW induction motor would be 

installed between the rear wheels to provide further electric boost as well as regenerative braking with a 

gear reduction installed after the rear traction motor to prevent over-revving.  A 280 V lithium-ion battery 

system would provide electrical energy storage. 

The major advantage the BAS+RTA system held over the others was WVU’s familiarity with the 

architecture and the issues associated with it.  In addition, the high combined power output of the electric 

motors would help maintain vehicle performance.  However, there were inherent inefficiencies associated 

the BAS system and its ability to provide regenerative energy for charging the high-voltage battery using 

only the rear wheels.  Also, the mechanical integration of a BAS+RTA powertrain would likely be more 

difficult than with the 2-mode system [43]. 

3.1.1.3 Parallel PHEV 

The final proposed hybrid architecture was similar to the BAS+RTA design although it eliminated 

the engine-driven motor/generator and included a more powerful high-voltage battery pack.  The L20 

battery system provided by A123 Systems would be the basis for this design that would include a plug for 

charging the vehicle from a standard 110/120 V wall receptacle.  At typical speeds, the engine would be 

turned off with all propelling power being provided by the 55 kW rear traction motor.  At high vehicle 

speeds or when the battery was depleted to a set level, the engine would be turned on and continue 

driving the front wheels of the vehicle through a conventional automatic transaxle. 
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The proposed parallel PHEV architecture would produce integration issues similar to the 

BAS+RTA system.  However, this system would also produce the slowest vehicle performance due its 

lower combined power output compared to both the 2-mode and BAS+RTA architectures. 

3.1.2 Engines Considered 

The project team only considered gasoline engines that were capable of running on both 

traditional 87 octane gasoline and E85 ethanol.  The two four-cylinder gasoline engines seriously 

considered displaced 1.6 and 1.8 liters respectively.  The 1.6 liter Ecotec engine produced 105 hp and 

111 lb-ft of torque and the 1.8 liter Ecotec engine made 140 hp and 129 lb-ft of torque.  Both engines 

utilized variable valve timing and featured 10.5:1 compression ratios.  Both of these engines were 

sourced from GM’s European Opel division [43]. 

In addition to the spark-ignited engines, the use of small diesel engines from Opel was also 

explored.  Two four-cylinder diesel engines were considered: a 1.3 liter out of the 2008 Corsa model and 

a 2.0 liter from the 2008 Vectra.  Both of these engines featured variable valve timing, variable geometry 

turbochargers, and direct diesel injection.  The 1.3 liter variant produced 90 hp and 148 lb-ft of torque 

while the 2.0 liter engine produced 158 hp and 258 lb-ft of torque.   

3.1.3 Simulation Method 

 The PSAT software included models to represent the different components considered including 

the engines, transmissions, batteries, and the vehicle body.  PSAT was capable of building a complete 

vehicle model using any combination of powertrain components and simulating that vehicle model over a 

specified driving cycle.  The results of the PSAT simulations included fuel efficiency information, hybrid 

battery status, and control system-related information.  PSAT would simulate all vehicle functions 

including transmission gear, engine on/off status, and high-voltage battery current and plot all of this 

information for review following each simulation. 

The first step in the simulation process involved simulating an unmodified 2009 Saturn Vue over 

the EPA’s city and highway driving cycles as well as testing the acceleration performance of the base 

vehicle model.  This was done to validate the PSAT model compared to the real-world testing results for a 

2.4L base model Saturn Vue.  Table 10 displays a comparison between the PSAT simulation results and 

the actual test data [43]. 

Table 10. PSAT Baseline Simulation Results [43] 

  Actual PSAT % Difference 

Acceleration 0-60 mph 10.6 sec 10.8 sec 1.89% 

Acceleration 50-70 mph 5 sec 5.5 sec 10.00% 

Combined Fuel Economy 28.3 mpgge 28.25 mpgge -0.18% 
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 The PSAT model of the base vehicle differed by less than 2% in terms of fuel efficiency and 0-60 

mph acceleration.  The difference of 0.5 seconds in the 50-70 mph acceleration simulation was in part 

due to the PSAT driver model.  During simulation, it was discovered that the driver model parameters 

could potentially affect the vehicle’s ability to follow the different test schedules.  By adjusting the gains in 

the driver model by 15%, the driver’s ability to match the test cycle varied by up to 5% [43]. 

 Once the baseline was determined in PSAT, the different proposed hybrid architectures were 

simulated.  The results of these simulations were weighted with greater importance placed on fuel 

efficiency and emissions.  Table 11 lists the different simulation results and the weighting factors applied 

to each [43]. 

Table 11. PSAT Powertrain Selection Weighting Factors [43] 

 
Minimum Performance 

Criteria 
Final Design Target 

Weighting 
Factor 

Fuel Economy, CAFE 
Unadjusted, Combined 

32 mpgge 35 mpgge .21 

WTW Petroleum Use ≤ 0.77 kWh/km ≤ 0.40 kWh/km .21 

WTW GHG Emissions ≤ 244 g/km (392 g/mi) ≤ 150 g/km (242 g/mi) .21 

Tailpipe Emissions EPA Tier II Bin 5 EPA Tier II Bin 5 .09 

Range ≥ 200mi ≥ 350mi 0.01 

Towing Capacity ≥ 680 kg ≥ 700 kg .07 

Acceleration (0-60 mph) ≤ 14 sec 8.0 sec 0.09 

Acceleration (50-70 mph) ≤ 10 sec 4.6 sec 0.07 

Vehicle Mass ≤ 2268 kg (5000 lb) < 1979 kg (4363 lb) 0.03 

Cargo Capacity 0.83 m
3 

0.83 m
3
 0.01 

 

 Using these weighting factors, each of the three proposed hybrid powertrain architectures was 

simulated with up to twelve different combinations of engines and high-voltage batteries.  The highest-

scoring configurations for each hybrid architecture were all compared with the 1.3 liter diesel engine and 

2-mode electrically variable transmission scoring the highest.  Table 12 lists the results of the preliminary 

PSAT simulations [43]. 
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Table 12. PSAT Simulation Results [43] 

 2-Mode BAS+RTA PHEV 

UDDS FE mpgge 38.05 29.17 31.55 

HWFET FE mpgge 38.23 33.23 40.35 

Combined FE mpgge 38.13 30.87 34.98 

WTW PEU kWh/km 0.30 0.37 0.53 

WTW GHG g/km 89.54 106.88 164.47 

CO2 Emissions g/mi 0.465 0.465 - 

Range mi 269 222 252 

Towing Accel. sec 7.3 6.7 5.8 

0-60 mph sec 8.4 8.3 13.1 

50-70 mph sec 4.3 4.1 7.4 

Weight lbs 4363 4307 5005 

Cargo Capacity m
3
 0.79 0.83 0.79 

Passenger Capacity 5 5 5 

Final Score 89.9 66.4 70.9 

 

3.1.4 Preliminary PSAT Simulation Results 

 Following the simulations of the different models, the combination of the GM 2-mode transaxle, 

1.3 liter diesel engine, and A123 Systems battery pack provided predicted city/highway fuel economy of 

38.05/38.23 mpgge with an overall EPA combined fuel economy of 38.13 mpgge.  The PSAT simulation 

produced a 0-60 mph acceleration time of 8.4 seconds, a 50-70 mph acceleration time of 4.3 seconds, 

and a 60-0 mph braking distance of 150 feet.  These performance numbers were deemed acceptable and 

this design achieved the best fuel economy of the twelve different 2-mode configurations tested so it was 

selected as the design the project team would build and validate. 

3.1.5 Battery Cooling Thermal Analysis 

 Before the university could receive the selected A123 battery system, thermal analysis needed to 

be performed and approved by engineers at A123 Systems.  The battery thermal analysis began with 

simulating the proposed vehicle over the EPA's aggressive highway driving US06 test cycle using PSAT.  

Figure 9 is a trace of the US06 supplemental federal test procedure [15]. 
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Figure 9. EPA US06 Aggressive Highway Cycle [15] 

 The EPA developed the US06 test cycle to more accurately simulate actual highway driving in the 

United States.  This aggressive test schedule produces a maximum speed of 80.3 mph with an average 

speed of 48.37 mph [15].  The US06 cycle was used for the battery thermal analysis because it 

represented an extreme case with high speeds and aggressive acceleration and braking events, thereby 

heavily taxing the high-voltage battery system.  PSAT had the capability of reporting the total current 

flowing into and out of the high-voltage battery over the US06 cycle.  Figure 10 is a plot of the current flow 

for the high voltage battery simulated across the US06 cycle [16]. 

 

Figure 10. High Voltage Battery Current During US06 Cycle [16] 

 The vehicle requested the most current from the high voltage battery during periods of 

acceleration when the electric motors in the 2-mode transmission provided an electric boost.  Negative 

0

10

20

30

40

50

60

70

80

90

0 100 200 300 400 500 600

V
e

h
ic

le
 S

p
e

e
d

 (
m

p
h

)

Time (sec)

-200

-100

0

100

200

300

400

500

0 100 200 300 400 500 600

B
at

te
ry

 C
u

rr
e

n
t 

(A
m

p
s)

Time (sec)

B
a
tt

e
ry

 C
u

rr
e
n

t 
(A

) 



 29 

currents represent periods of regenerative braking.  Using this current data, the total heat energy was 

calculated according to: 

 

             
                   (1) 

 

The total resistance of the four modules comprising the high-voltage battery was 0.120 Ω and the average 

current from the PSAT simulation was 60.9 A producing an average heat generation of 445 W.  The 

maximum instantaneous heat generation was calculated to be 23.67 kW.  Figure 11 is a plot of the heat 

generated by the high voltage battery over the US06 test cycle [16]. 

 

Figure 11. Heat Generated During US06 Cycle [16] 

 According to the PSAT simulation results, the cooling system would need to be capable of 

dissipating heat at a rate of no less than 445 W.  More cooling capacity was desired as the vehicle would 

be tested at the GM Desert Proving Ground outside of Yuma, Arizona in the Summer of 2010.  The 

selected A123 battery modules were designed to be cooled by conduction to liquid cooling plates through 

metallic fins and straps lining the sides of the modules.  The proposed cooling system consisted of two 

liquid cooling plates, each responsible for dissipating the heat from two battery modules at a minimum 

average rate of 222.5 W. 

3.1.5.1 Heat Exchanger Selection 

 An ambient temperature of 45 °C (113 °F) was assumed during the design of a suitable heat 

exchanger to simulate a Summer day in the Arizona desert.  A heat exchanger was selected that 

provided the necessary cooling capacity to maintain the high voltage battery at temperatures below 50 °C 

under extreme driving conditions like those simulated in the US06 test cycle.  A Lytron ES-0714 liquid-air 
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heat exchanger was selected for its ability to exceed the performance requirements and its small overall 

size.  Table 13 lists the specifications of the Lytron heat exchanger. 

Table 13. ES-0714 Heat Exchanger Specifications 

Height 214 mm 

Width 458 mm 

Depth 79 mm 

Core and Fin Material Aluminum 

Maximum Temperature 205 °C 

Fluid Volume 508 mL 

Pressure Drop 31 kPa 

 

 This heat exchanger featured a single inlet and a single exit with provisions for mounting two 

electric fans to pull cool air through the core.  The selected fans were designed to move air at a rate of 

440 CFM through the heat exchanger.  Assuming a coolant flow rate of 3.5 gallons per minute (gpm), the 

total heat rejection rate from the Lytron heat exchanger was calculated to be 562.65 W [16].  This heat 

exchanger could reject heat at a rate over 100 W more than the requirement, leaving extra cooling 

capacity in the event that the batteries and ambient temperature ever got over 45°C. 

3.1.5.2 Cooling System Design 

 The cooling plates each consisted of one inlet and one outlet with a meandering channel 

connecting the two ports.  A coolant channel was designed to be milled in the aluminum plates that 

maximized the cooling capacity of the plates while producing minimal pressure drop from inlet to outlet.  

The coolant channel had a rectangular cross-section and included 12 90° corners and a fill port located 

along the top edge.  This fill port was also used to help bleed air from the cooling system.  Figure 12 is a 

drawing of the cooling plate illustrating the coolant channel design. 
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Figure 12. High Voltage Battery Cooling Plate 

 The fill port was the vertical tapped hole along the top edge of the plate.  The top port on the right 

edge was the inlet with the outlet below.  The length of each channel was 2 meters.  To construct one 

cooling plate, two aluminum halves with this channel cut into them were welded together.  Each plate was 

designed to be installed between two battery modules inside the high voltage battery enclosure.  The 

coolant to be used for the battery cooling system was a mixture of 50% water and 50% ethylene glycol.  

This coolant had a density (ρ) of 1077 kg/m
3
 with a dynamic viscosity (μ) of 2.8 centipoise. 

 The two cooling plates were designed to be plumbed in parallel with a single pump driving the 

liquid cooling system.  The remaining piping between the pump, heat exchanger, and cooling plates was 

assumed to contain ten 90° bends constructed using stainless steel piping.  The steel piping system was 

expected to be around 7.25 meters in length.  Table 14 lists the fluid flow characteristics of the liquid 

cooling system. 

 Table 14. Cooling System Fluid Properties 

  Aluminum Cooling Plates Steel Piping 

Hydraulic Diameter (Dh) 0.0168 m 0.0127 m 

Roughness (k) 0.001 mm 0.0015 mm 

Friction Coefficient (f) 0.01025 0.0082 

Minor Loss Coefficient (c) 1.3 0.3 

Number of 90° Bends 12 10 

Length 2 m 7.25 m 
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 This information was used to calculate the total pressure drop in the system as well as the 

required volumetric flow rate to be provided by the coolant pump.  The equivalent lengths of the cooling 

plates and piping were found according to: 

 

                           
  

 
      (2) 

 

Using the equivalent lengths for the different components, the total head loss in meters was calculated: 

 

      
                      

 

      
       (3) 

 

Finally, the pressure drop for the piping and cooling plates was calculated using: 

 

                       (4) 

 

Table 15 lists the pressure drop for the different components as well as the entire system. 

Table 15. Cooling System Physical Properties 

  Aluminum Cooling Plates Stainless Steel Piping 

Equivalent Length 27.57 m 11.96 m 

Head Loss 0.415 m 1.19 m 

Pressure Drop 3.10 psi (Two Cooling Plates Plus Piping) 

Total Pressure Drop 7.10 psi (Including Heat Exchanger) 

 

 This information was used to select a coolant pump for the cooling system.  The pump needed to 

be able to maintain a flow rate of at least 3.5 gallons per minute while producing 10 psi of pressure, 

enough pressure to overcome the 7.10 psi pressure drop through the cooling system.  Shurflo Pumps 

model number 2088-514-500 was selected for its ability to operate under these conditions as well as its 

compatibility with 50% ethylene glycol coolant. 

3.2 Mechanical Design 

 By the end of the vehicle design process, the project vehicle would include myriad components 

not originally installed at the factory including high-voltage batteries, electric motors, a new engine, on-

board computers, a redesigned exhaust system, after-treatment devices, a new fuel tank, modified 

suspension components, safety devices, and the list goes on.  However, installing new components 

requires designing new mounts and analyzing them for strength and longevity before implementation. 
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3.2.1 Required Design Work 

 The proposed compound-split hybrid-electric vehicle architecture required that many new mounts 

and enclosures for the engine and battery be designed and analyzed.  Parts relating to mounting the 

engine and high-voltage battery pack were required to achieve a minimum factor of safety greater than 2.  

To aid in the design of different components and mounts, the university had access to full 3-D models of 

the 2009 Saturn Vue as well as models of the 1.3 liter diesel engine and 2-mode transmission.  Using 

these models the battery enclosure, front engine mount, transmission adapter, and axle bearing mount 

were all designed.  A student version of Autodesk Inventor Professional was utilized for all design and 

simulation work.  This CAD package was selected for its high feature content and intuitive layout. 

3.2.1.1 Axle Bearing Mount 

 Front-wheel-drive vehicles are commonly constructed in such a way that the engine occupies the 

passenger side of the engine compartment with the transmission behind it on the driver's side.  The 

transmission has two axle shafts to transmit the output torque to the wheels.  Because of the offset 

location of the transmission in the vehicle, the axle shaft between the transmission output and the front 

passenger side wheel is very long with a constant velocity (CV) coupling in the middle to allow for 

suspension travel.  In order to prohibit the shaft from rotating eccentrically at random, a bearing is placed 

before the CV joint and this bearing is supported by a mount bolted to the block or oil pan of the engine. 

 In order to begin this design, a suitable mounting location on the engine needed to be chosen.  

The 1.3 liter engine had provisions low on the block on the side facing the vehicle’s firewall for mounting a 

conventional belt-driven air conditioning compressor.  However, the 2-mode Vue arrived with a high-

voltage electric air conditioning compressor to allow the passenger compartment to be cooled during 

engine-off operation.  It was decided to retain the electric air conditioning compressor and mount it on top 

of the engine, allowing the use of the existing air conditioning compressor mounting bolt holes for 

installing the new axle bearing mount. 

 Taking measurements of both the engine block and the axle shaft bearing housing, a wedge-

shaped mount was designed.  The angle of the wedge was critical to keep the axle shaft properly oriented 

and level where it entered the transmission.  Figure 13 is an image of the designed axle bearing mount. 
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Figure 13. Axle Bearing Mount 

 The rectangular flat plate was bolted to the engine block and the angled triangular piece had 

three tapped holes for attaching the axle bearing housing.  The angle of the triangular piece was 

designed to be 12.8° as this was the angle of the stock axle bearing mount in the 3-D CAD model.  The 

actual part was machined in two separate pieces and welded together to form the desired angle.  This 

part, as well as all of the machined parts discussed in Section 3.2.1, was constructed by Morgantown 

Machine & Hydraulics, Inc. located on Goshen Road just outside of Morgantown. 

3.2.1.2 Exhaust System 

 Similar to the engine mounts, a new exhaust system was required for integrating the new diesel 

engine into the project vehicle.  The production Saturn Vue was only offered with gasoline engines and 

the exhaust system included one three-way catalyst for each cylinder bank with the exhaust streams 

merging and passing through a pair of mufflers before exiting at the rear of the vehicle below the rear 

bumper cover.  However, none of the production exhaust system was retained in the project vehicle. 

 For the diesel engine, the exhaust system required different components for removing pollutants 

from the exhaust to meet the emissions standards set by the EPA.  A passive diesel oxidation catalyst 

(DOC) was installed directly after the turbocharger's turbine exit followed by a diesel particulate filter.  The 

DOC was employed to reduce emissions of unburned hydrocarbons (HC) and carbon monoxide (CO) and 

the DPF was intended to remove particulate matter from the exhaust.  Between the DOC and DPF were 

ports for measuring the exhaust gas pressure and temperature.  The pressure reading was used to detect 

high exhaust back-pressure caused by a clogged or partially clogged DPF.  In the case of high exhaust 

back-pressure before the DPF, the diesel engine ECU would inject more fuel into the cylinders so that the 

unburned fuel would be oxidized in the DOC and increase the exhaust gas temperature to greater than 

600 °C to burn the PM captured in the DPF [11]. 
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 Following the DOC/DPF, a selective catalytic reduction (SCR) system was installed in order to 

reduce the emission of harmful oxides of nitrogen.  NOX reacts with different organic compounds in the 

atmosphere to produce ground level ozone or smog, acid rain, and other products harmful to humans and 

the environment [12].  The SCR system included another temperature sensor, a urea injector, and the 

catalyst itself.  For the SCR system to function properly, liquid urea needed to be injected into the exhaust 

stream prior to the SCR catalyst.  The catalyst needed to be above 200 °C for the reaction to occur 

properly.  When the exhaust temperature was below 200 °C before the SCR catalyst, the injector needed 

to be turned off so that raw urea would not be emitted into the atmosphere.  When functioning properly, 

the SCR system would convert the input NOX and urea into diatomic nitrogen (N2) and water [13]. 

 With these components included in the exhaust system as well as the turbocharger, the new 

exhaust system did not require a dedicated muffler to eliminate engine exhaust noise from entering the 

passenger compartment.  The DOC was bolted directly to the turbine outlet of the turbocharger.  Figure 

14 is a photograph of the complete exhaust system, excluding the DOC, removed from the vehicle. 

 

Figure 14. New Diesel Exhaust System 

 At the foreground are the temperature and pressure sensors used by the diesel engine ECU for 

determining when a DPF regeneration was needed.  The first major component is the DPF followed by 

the thermocouple used to measure exhaust temperature prior to the SCR catalyst, the other major 
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component.  The urea injector was aimed directly at the inlet of the SCR catalyst to eliminate any urea 

getting trapped on the walls of the exhaust tubing and not mixing with the exhaust gas stream.  The 

tubing was bent after the SCR catalyst to route around the fuel tank and rear sub-frame.  The entire 

system was installed in the vehicle using conventional rubber exhaust system hangers.  A single exhaust 

outlet was located below the bottom of the rear bumper cover offset to the passenger side. 

3.2.1.3 High-Voltage Battery Enclosure 

 As well as models of the vehicle and all of its components, 3-D models of all of the components 

necessary to construct the high-voltage battery system including the individual modules, the battery 

management system (BMS) computer, and the contactor circuitry were also available.  Using a model of 

the cargo area of the vehicle, the battery enclosure was designed such that it would securely house all 

the components and physically fit inside the project vehicle.  The battery enclosure needed to be 

completely sealed and isolated from the passenger compartment to eliminate any chance of harmful 

gases generated inside the battery enclosure getting into the cabin air.  In addition, the pack needed to be 

able to withstand 20 g frontal and side impacts as well as an 8 g downward impact without rupturing or 

becoming so deformed as to damage the battery modules inside. 

 The components necessary to construct the 330 V battery system included the lithium-ion battery 

modules, the BMS, and the electrical distribution system (EDS) including the main battery contactors 

mounted on a dedicated base with a dielectric composite cover that needed to be retained for safety 

when working inside the battery enclosure.  The team was charged with designing a cooling system for 

the battery pack that needed to be approved by the engineers at A123 before the battery modules would 

be shipped to the school.  Once the designed liquid cooling system design was approved, the new battery 

enclosure could be designed to house all the battery components as well as the aluminum cooling plates. 

 Inside the high-voltage battery enclosure, the battery modules were to be bolted to the base plate 

and the liquid cooling plates were placed between the modules.  The cooling plates were held in place by 

pressure from the surrounding battery modules to ensure maximum contact between the battery modules 

and the cooling plates facilitating conduction heat transfer.  Figure 15 is a drawing of the modules and 

cooling plates as they were arranged inside the high-voltage battery enclosure. 

 

Figure 15. Battery Modules with Cooling Plates 

Cooling 

Plates 
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 The four battery modules were intended to be cooled by two liquid cooling plates plumbed in 

parallel from a single pump located outside of the battery enclosure.  Each cooling plate was responsible 

for dissipating the heat from two battery modules.  The width of this arrangement of battery modules and 

cooling plates dictated the interior width of the high-voltage battery enclosure.  A tight fit was desired 

inside the enclosure so that the outboard battery modules also made contact with the walls of the 

enclosure, further increasing the amount of conduction heat transfer potential. 

 The next step in the design process involved locating the different components used to monitor 

and control the high-voltage battery modules including the BMS and EDS as well as two quick-blow 

fuses, one installed between modules 2 and 3 and one installed on the positive line before it exited the 

battery enclosure.  To mount these components and keep them isolated from the heat generated by the 

battery modules, a partition was implemented inside the enclosure.  Figure 16 is a drawing of the 

proposed layout of the components inside the high-voltage battery enclosure. 

 

Figure 16. High-Voltage Battery Component Layout 

 The battery modules are illustrated in yellow at the top of the figure.  The modules were 

numbered 1-4 left-to-right.  The partition can be seen behind the battery modules with the EDS and BMS 

illustrated in green.  The figure also shows the high voltage wiring of the battery pack with positive lines in 

red and negative lines in black.  The yellow fuse at the bottom of the figure is the mid-pack fuse located 

between battery modules 2 and 3. 

 With all the components located inside the high-voltage battery enclosure, the exterior 

dimensions could be set.  The intent was to design the enclosure with as little empty space as possible to 

maintain cargo capacity in the project vehicle.  Figure 17 is a drawing of the high-voltage battery 

enclosure installed into a 3-D model of the project vehicle. 
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Figure 17. High-Voltage Battery Enclosure 

 Once installed, the new high-voltage battery enclosure would require that the floor of the cargo 

area in the rear of the vehicle be raised about six inches.  Cutting out the floor to mount the battery lower 

in the vehicle would have helped to maintain cargo capacity but this modification was deemed impractical 

given the time constraints of the project deadline schedule.  In addition, maintaining the original floor 

would help reduce road and wind noise.  By mounting the high-voltage battery below the original floor 

level, the enclosure would have been exposed to moisture and road debris kicked up under the project 

vehicle which would be undesirable as well. 

 To save weight, the high-voltage battery enclosure was designed to be constructed entirely of 

aluminum.  The battery enclosure needed to meet certain strength requirements to be implemented into 

the project vehicle.  Discussion of the high-voltage battery enclosure strength analysis can be found in 

"wvuEssDesign V4FIN" which was submitted to A123 Systems for approval on April 15, 2010.  This 

document discusses in great detail the mechanical design and analysis of the different components 

comprising the high-voltage battery enclosure [37]. 

3.2.1.4 High-Voltage Battery Mount 

 To install the high-voltage battery enclosure into the project vehicle, a mounting plate needed to 

be designed to securely fix the enclosure to the frame and body of the vehicle.  Because the supplied 2-

mode Vue arrived with a 300 V NiMH battery pack installed behind the rear seats, there were existing 

mounting points in the cargo area of the project vehicle that could be used for installing the new high-

voltage battery enclosure.  Some of these mounting points were originally used for installing a spare tire 

in non-hybrid versions of the Saturn Vue, but the 2-mode hybrid did not come with a spare tire to make 

room for the original high-voltage battery. 
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 Using the CAD model of the vehicle body, measurements were taken for locating the ten existing 

mounting points in the floor pan that would be used for installing the new high-voltage battery mounting 

plate.  The contour of the floor was also measured as the mounting points existed on four different 

planes.  Once the dimensions of the vehicle body were known, the mounting locations for the high-

voltage battery enclosure were finalized so that they did not interfere with any of the mounting points for 

the battery mounting plate.  Figure 18 is a profile drawing illustrating the different levels required for the 

battery mount to properly attach to the vehicle floor. 

 

Figure 18. High-Voltage Battery Mount Side-View 

 The high-voltage battery enclosure was designed to be mounted using six rubber-isolated pads.  

The mounting pads bolted to the mounting plate using two bolts each and were arranged with the middle 

mount on both sides rotated 90° so that all of the pads would fit on the mounting plate.  Figure 19 is an 

image of the designed high-voltage battery mount. 
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Figure 19. High-Voltage Battery Mounting Plate 

 The mounting plate was designed to be constructed from 3/8" 6061 aluminum.  The mounting 

pad bolt holes were threaded and tapped for M14-sized bolts with the remaining holes drilled through to 

attach the mounting plate to the ten threaded studs installed in the vehicle from the factory.  Figure 20 is 

an image of the mounting plate as it was intended to be installed in the project vehicle to illustrate the 

orientation of the rubber battery enclosure mounts.  The figure also illustrates the locations of the various 

mounting points used to install the battery mounting plate in the cargo area of the project vehicle. 

 

Figure 20. High-Voltage Battery Mount Installed In Vehicle Model 
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 All ten mounting points were utilized using nuts and bolts sized M12 with the two at the front of 

the mounting plate also used to install supports for a firewall that was installed to separate the high-

voltage battery from the passenger compartment. 

3.2.1.5 Transmission Adapter 

 The 2-mode transmission and 1.3 liter diesel engine were not designed to be mated together and 

no bolt holes between the engine and transmission directly lined up.  This required the design of an 

engine-transmission adapter with bolt holes corresponding to those in the engine block and transmission 

case.  In addition to physically bolting the transmission to the engine, proper alignment of the two 

components was of the utmost importance.  The input shaft of the 2-mode transmission needed to be in 

perfect alignment with the engine crankshaft centerline to ensure there would be no bending moment 

applied to either.  Additionally, any eccentric offset between the two would result in vibrations being 

transmitted into the vehicle cabin as well as a fatigue load being applied to the transmission input shaft 

resulting in premature failure. 

 The design of the transmission adapter began with taking measurements from 3-D CAD models 

of both the 2-mode transmission and 1.3 liter diesel engine.  A polar coordinate system was setup for 

measuring the locations of the different bolt holes with the origin being set at the crankshaft/input shaft 

rotational axis.  The linear distance from the rotational axis was measured in millimeters and the angular 

location of the bolt hole from level was measured in degrees.  The CAD models also illustrated which 

holes in the adapter would need to be threaded and which would need to be through-holes.  Bolt sizes 

were determined from the CAD models as well. 

 Using Autodesk Inventor, the locations of all the bolt holes were drawn first to begin laying out the 

physical geometry of the transmission adapter.  During this step, it was discovered that one bolt from the 

engine and one bolt from the transmission interfered with one another.  A bolt shear analysis was 

performed and it was concluded that these two bolts could be safely omitted from the final assembly as 

the transmission retained six M10-sized attaching bolts and one M12 bolt and the engine retained two 

M12 and two M14 bolts.  Figure 21 is one of four technical drawings illustrating the locations of the 

different holes in the transmission adapter. 
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Figure 21. Transmission Adapter Bolt Hole Orientation 

This drawing shows the angular locations of some of the different holes required in the engine-

transmission adapter.  Other drawings were generated that specified the distance each hole was from the 

center as well as the size of each hole and whether it was threaded or not.  After the bolt holes for the 

engine and transmission were laid out and verified, the overall shape of the adapter plate was designed.  

Figure 22 is an image of the designed adapter plate viewed from the transmission mounting face. 



 43 

 

Figure 22. Engine-Transmission Adapter 

 The outside shape of the adapter was designed to follow the shape of the mating face of the 2-

mode transmission as the crankcase of the 1.3 liter diesel engine was considerably smaller than that of 

the stock 3.6 liter V-6.  The inside diameter had a recess to accommodate the two lower bolts attaching 

the engine to the adapter due to the small block of the diesel engine.  This inside diameter was selected 

to allow sufficient clearance for the flywheel and torsional damper to rotate freely.  The cut out of right-

hand edge was made to clear the passenger side transmission output shaft.  The adapter was designed 

to be 40 mm thick to properly engage the torsional damper on the 2-mode transmission input shaft based 

on the width of the flywheel.  Discussion of the transmission adapter strength analysis can be found in 

Section 3.2.2 of this document. 

3.2.1.6 Flywheel 

Although the diesel engine was shipped with a flywheel already installed, the torsional damper 

required for connecting the engine to the 2-mode transmission would not bolt to it.  In order to properly 

mate the diesel engine and 2-mode transmission, a new flywheel needed to be designed.  Similar to the 

transmission adapter, properly sizing the flywheel was essential to ensure smooth operation of the engine 

and to protect both the engine and 2-mode transmission from damaging eccentricity. 
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Because the 3-D CAD model of the 1.3 liter diesel engine did not include a flywheel, the new 

flywheel was designed by measuring the original once the engine was shipped to WVU.  The bolt holes 

for attaching the flywheel to the crankshaft snout were located first.  The eight holes were equally spaced 

about a 63 mm diameter circle centered at the axis of rotation.  A smaller offset key was used to properly 

locate the flywheel on the crankshaft.  The torsional damper attached to the flywheel using four bolts 

located on a 250 mm diameter circle centered at the axis of rotation.  Figure 23 is a drawing illustrating 

the locations of the bolt holes required in the flywheel.  All diameters are given in millimeters. 

 

Figure 23. Flywheel Bolt Layout 

The 1.3 liter diesel engine utilized a stamped steel inductive pick-up wheel riveted to the flywheel 

to track the orientation of the engine.  An induction sensor in the engine block sent pulses to the engine 

ECU used for fuel injection timing.  After removing the pick-up wheel from the stock flywheel, the contour 

of the front face of the flywheel could be designed.  The flywheel needed to mimic the shape of the 

induction wheel as closely as possible to eliminate any chance of the pick-up wheel vibrating and sending 

a false reading to the ECU.  Exact measurements of the induction wheel were taken and the overall 

shape of the face of the flywheel was determined.  Figure 24 is a drawing showing the cross-sectional 

shape of the flywheel including dimensions.  The overall thickness was set at just under 52 mm to 

properly locate the torsional damper on the splined input shaft of the 2-mode transmission. 
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Figure 24. Flywheel Cross-Section 

With the critical dimensions set, the only remaining design parameter was the overall weight of 

the flywheel and torsional damper.  The original flywheel and clutch assembly weighed 32lb.  This was 

the target weight for the new flywheel and torsional damper assembly.  After weighing the torsional 

damper, the flywheel target weight was around 13lb.  The flywheel was designed to be machined from 

SAE 4140 steel with a density of 7.85 g/cm
3
 [14].  Using the calculated volume provided by the Autodesk 

Inventor software, material was removed from the transmission side of the flywheel until the calculated 

mass of the flywheel and torsional damper matched as closely as possible the mass of the original 

flywheel and clutch assembly.  Figure 25 is a drawing of the new flywheel. 
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Figure 25. Flywheel 

The figure illustrates the flywheel when viewed from the engine side.  The new flywheel was 

heavier than the target weight, weighing 21.7 lb.  The required geometry of the flywheel did not allow any 

more material to be removed from the design.  When installed, the induction pick-up was installed 

between the flywheel and engine crankshaft with an offset dowel in the crankshaft ensuring that both the 

pick-up and flywheel were installed in the correct position. 

3.2.1.7 Front Engine Mount 

 The front of the engine is defined in this context as the side with the accessory belt drive 

perpendicular to the axis of crankshaft rotation.  Because the 1.3 liter diesel engine was never intended to 

be installed in the 2009 Saturn Vue, a new front engine mount was required to secure it to the passenger 

side frame rail.  Fortunately, the other mounts for securing the powertrain in the vehicle required no 

modifications as the remaining three mounting points attached to the 2-mode transmission case which 

was originally installed in the vehicle.  The diesel engine arrived with mounts and components for 

installation into a 2008 Opel Corsa 1.3 CDTi and the supplied front engine mount was used as a basis for 

the design of a new mount for installation into the project vehicle.  Figure 26 is a photograph of the engine 

mount shipped with the engine. 
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Figure 26. Supplied Front Engine Mount 

 The four posts on the opposite side of the mount sat flush against the front of the diesel engine's 

block and the three bolt holes on the protruding mounting pad in the foreground were used to attach the 

engine mount to the frame mount in an Opel Corsa.  However, the frame mount installed in the 2009 

Saturn Vue project vehicle did not line up with this front engine mount.  In addition, the frame mount in the 

Saturn only used two bolts instead of three. 

 The front engine mount design process began with measuring the length and location of the four 

posts that attached to the engine block.  Once this geometry was established, the location of the 

mounting points for the frame mount in the Vue needed to be determined.  This was accomplished using 

the supplied CAD models of the of the Saturn Vue and 1.3 liter diesel engine.  The engine was fixed to 

the 2-mode transmission via the new adapter plate and the powertrain was then put into the CAD model 

of the vehicle and situated as it would be installed.  Measurements were taken in the CAD software and 

the front mounting pad geometry was designed.  Figure 27 is an image of the new front engine mount. 
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Figure 27. New Front Engine Mount 

 The mounting pad was raised up and moved to the left relative to the mounting pad on the 

supplied engine mount due to the higher frame rail location in the Saturn Vue compared to the Opel 

Corsa which was a compact car.  This part was analyzed for strength prior to machining.  Discussion of 

the front engine mount strength analysis can be found in Section 3.2.3 of this document. 

3.2.1.8 Fuel Tank 

 A new fuel tank was designed for the project vehicle for two reasons.  The stock composite fuel 

tank had a 16 gallon capacity but according to the simulations, the project vehicle could maintain a 200 

mile range with an eight gallon fuel tank.  Also, it was desired that the fuel tank be easily removed for on-

road fuel economy testing where the tank could be weighed between tests.  To aid in removal and 

installation of the full fuel tank, an electric winch was installed under the vehicle to raise and lower the fuel 

tank.  A 12 gallon aluminum fuel tank was purchased and modified to fit in the project vehicle.  Figure 28 

is a photograph of the aluminum fuel tank as-purchased. 
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Figure 28. Aluminum Fuel Tank Prior to Modification 

 The purchased fuel tank included a fill port, a fuel level sensor, and fuel feed and return ports 

already installed.  The tank was modified to fit in the location of the production tank.  Ground clearance 

and exhaust routing were the two major concerns when the fuel tank was being designed and modified.  

The vehicle’s minimum ground clearance was specified to be 5 inches to cope with the quality of roads 

found in and around Morgantown.  For this reason, a 1 inch section was cut out of each side of the fuel 

tank to decrease its height, thereby increasing the vehicle's ground clearance.  To make room for exhaust 

routing, the left side of the tank was reshaped to allow ample exhaust system clearance.  Figure 29 is a 

drawing of the fuel tank after modifications.  

 

Figure 29. Modified Fuel Tank 
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 The fill port was moved to the side of the tank so that the fuel tank could be mounted closer to the 

underside of the vehicle.  For safety, the fuel tank could not protrude below the vehicle frame rails.  Three 

tabs were to be welded to the top of the tank for attaching the lift cable from the electric winch.  Quick-

disconnects for the fuel feed and return lines were to be installed at the front of the tank to further ease 

removal and installation. 

 In order to retain the ability to fill the fuel tank through the production fuel filler neck, the opening 

under the fuel filler cap was enlarged to accept the larger diesel fuel pump nozzle.  After modifications, 

the new fuel tank held nine gallons.  The fuel tank was analyzed for natural frequencies and the results of 

this analysis can be found in Section 3.2.4 of this document. 

3.2.1.9 Intercooler 

The diesel engine utilized a turbocharger to compress the intake air before it entered the 

combustion chambers.  Turbocharging is common in compression-ignition engines to increase power 

output by allowing more fuel to be injected while maintaining the proper equivalence ratio [21].  However, 

the temperature of the intake air increases when it is compressed in the turbocharger, reducing its density 

and effectively negating the benefits of the turbocharger.  While the heating of the intake air may not be 

an issue at low boost levels, the turbocharger on the 1.3 liter diesel engine was capable of producing 18 

psi of boost which could significantly heat the intake air.  This necessitated the design and installation of a 

heat exchanger, known as an intercooler, in the intake system after the turbocharger compressor. 

There are two major types of intercoolers available: air-to-air and water-to-air.  An air-to-air 

intercooler uses only air flowing across the heat exchanger to cool the intake air passing through it.  A 

water-to-air intercooler utilizes a liquid coolant to cool the intake air similar to refrigerant coils in an air 

conditioning system.  An advantage of a water-to-air setup is that the intercooler can be mounted 

anywhere on the vehicle whereas an air-to-air intercooler must be installed in a location that gets good air 

flow typically at the front of the vehicle.  However, water-to-air intercooler systems require the addition of 

a coolant pump and piping and another heat exchanger for removing heat from the coolant mounted 

elsewhere in the vehicle.  An air-to-air intercooler system is less complex in that it only requires one heat 

exchanger.  Water-to-air intercoolers are typically used in high performance vehicles with most production 

turbocharged vehicles implementing air-to-air systems so an air-to-air intercooler was designed for use in 

the project vehicle. 

The design of the intercooler began with selecting a mounting location and measuring the 

available space.  By the time the intercooler was designed, the project vehicle had arrived at WVU so all 

measurements were taken by hand.  In order to ensure maximum airflow through the intercooler, a 

location in front of the engine radiator behind the front bumper was selected.  Taking measurements, the 

maximum size of the intercooler was 16 in. tall, 24 in. wide, and 2 in. deep. 

Using this maximum size information, the required size was calculated with the aid of technical 

support at Bell Intercoolers.  According to the Bell engineers, the minimum flow rate in cubic feet per 

minute (CFM) required through the intercooler core was equivalent to 1.5 times the rated power output of 



 51 

the engine in horsepower.  The diesel engine produced 90 hp, resulting in a minimum flow rate of 135 

CFM through the intercooler.  The Bell engineers also stated that the intercooler core should be as thin as 

possible to improve the overall cooling efficiency.  With this information, intercooler core #A200075090 

was selected.  Table 16 lists the specifications for the designed intercooler. 

Table 16. Intercooler Specifications 

Length 9.00 in. 

Height 7.50 in. 

Width 2.00 in. 

Flow Rate 161.6 CFM 

 

The selected intercooler provided a maximum flow rate greater than what the 1.3 liter diesel 

engine required.  The dimensions refer to the size of the heat exchanger core and not the inlet and outlet 

tanks.  The inlet and outlet ports were 2 inches in diameter and the required size of the intercooler would 

facilitate installation in multiple locations.  Figure 30 is a photograph of the intercooler. 

 

Figure 30. Intercooler 

The inlet and outlet ports were oriented in the same direction so that the intercooler could be 

installed offset to one side of the project vehicle to simplify and shorten the plumbing for the intake 

system.  Bell included multiple tapped mounting locations so that the mounting scheme could be 

designed once the intercooler arrived. 

3.2.2 Transmission Adapter Strength Analysis 

 The engine-transmission adapter plate was analyzed for strength using Autodesk Inventor's finite 

element analysis (FEA) package for various load cases.  The adapter was designed to be machined from 

6061 aluminum.  The material properties used for 6061 aluminum are shown in Table 17 [14]. 
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Table 17. 6061 Aluminum Material Properties [14] 

Density 2.70 g/cm
3
 

Yield Strength 276MPa 

Ultimate Tensile Strength 310 MPa 

Young's Modulus of Elasticity 68.9 GPa 

Shear Modulus 26.0 GPa 

Poisson's Ratio 0.330 

 

 For the first four simulations, impact forces were analyzed.  The engine and transmission were 

assumed to weigh 318 kg (700 lb) combined and an impact acceleration of 20 g was simulated to model 

the forces exerted on the part in the event of a collision with a solid object.  The part was held stationary 

and a force of 43 kN was applied to each of the 14 bolt holes with each force oriented in the same 

direction.  Simulation 1 applied this load vertically pulling down on the bolt holes.  The FEA results for 

Adapter Plate Simulation 1 are listed in Table 18. 

Table 18. Adapter Plate Simulation 1 Results 

Maximum Von Mises Stress 57.08 MPa 

Minimum Safety Factor 4.82 

 

 Adapter Plate Simulation 2 had the forces vertically pulling up on the bolt holes producing the 

same results.  These two simulations produced a minimum factor of safety of 4.82, more than double the 

minimum required factor of safety of 2.  

 Adapter Plate Simulation 3 applied the force on the bolt holes at a 45 degree angle pointing down 

and toward the rear of the vehicle to simulate a curb or pothole impact with the vehicle in motion.  This 

situation was analyzed because it was believed to be a condition that would be encountered during 

normal driving.  Figure 17 displays the setup for Adapter Plate Simulation 3.  The bolt holes are 

highlighted in light blue and the yellow arrows represent some of the applied forces. 
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Figure 31. Adapter Plate Simulation 3 Setup 

 Table 19 lists the FEA results for Adapter Plate Simulation 3. 

Table 19. Adapter Plate Simulation 3 Results 

Maximum Von Mises Stress 37.16 MPa 

Minimum Safety Factor 7.4 

 

 Adapter Plate Simulation 3 produced a factor of safety of 7.4, nearly four times the minimum 

requirement.  Figure 32 displays the locations of the maximum and minimum Von Mises stresses for 

Simulation 3.  Most of the plate was under stresses less than 5 MPa.  The point with the maximum stress 

concentration was a location where a bolt hole for the engine came close to the surface of the inner 

radius of the opening in the plate.  In the actual part, this bolt hole broke through the surface during 

machining due to this close tolerance caused by the size difference between the crankcase dimensions of 

the stock 3.6 liter gasoline engine and the 1.3 liter diesel engine. 
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Figure 32. Von Mises Stress for Adapter Plate Simulation 3 

 Figure 33 displays the factor of safety for every point on the adapter plate.  Again, the critical 

point was where the engine bolt hole is near the surface of the inner radius.  Otherwise, the rest of the 

part had a factor of safety of over 10. 

 

Figure 33. Safety Factor for Adapter Plate Simulation 3 

 Adapter Plate Simulation 4 applied the force only in the x-direction toward the front of the vehicle 

to simulate a collision with an immovable object or another vehicle.  This condition was required to be 

simulated to get the GM engineers overseeing the design of the components to approve the design 

before it could be implemented into the project vehicle.  Table 20 lists the FEA results for Adapter Plate 

Simulation 4. 



 55 

Table 20. Adapter Plate Simulation 4 Results 

Maximum Von Mises Stress 54.99 MPa 

Minimum Safety Factor 5 

 

 Adapter Plate Simulation 4 produced a factor of safety of 5, over two times the minimum 

requirement.  Figure 34 displays the Von Mises stress for Simulation 4.  Similar to the previous 

simulations, the point of the maximum Von Mises stress of 54.99 MPa was where the engine bolt hole is 

close to the inner radius surface.  The remainder of the plate experienced stresses less than 10 MPa. 

 

Figure 34. Von Mises Stress for Adapter Plate Simulation 4 

 Figure 35 displays the factor of safety results for Adapter Plate Simulation 4.  In this orientation, 

the engine bolt hole that comes near to the surface of the inner radius can be seen below the minimum 

flag. 
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Figure 35. Safety Factor for Adapter Plate Simulation 4 

 Adapter Plate Simulation 5 simulated a torque being applied to the plate in the case where the 

engine is producing maximum torque but the transmission resists spinning.  All bolt holes were fixed and 

a moment of 400 N-m, double the maximum torque output from the diesel engine, was applied to the 

inside of the plate.  This resulted in a safety factor of 15 or greater for every point on the plate and thus 

was not an extreme case. 

 After performing these simulations, the minimum observed factor of safety was 4.82 encountered 

in Adapter Plate Simulations 1 and 2.  This is more than double the minimum requirement. The adapter 

was stronger than needed because the physical geometry of the part dictated the design.  The 40 mm 

adapter thickness was a critical dimension to properly engage the input shaft of the 2-mode transmission 

in the torsional damper bolted to the crankshaft of the engine.  The 40 mm thickness was the reason that 

the transmission adapter exceeded the minimum factor of safety of 2 for every load case.  Were the part 

ever redesigned, material could be removed from non-critical areas to reduce mass while maintaining an 

acceptable factor of safety. 

3.2.3 Front Engine Mount Strength Analysis 

 The front engine mount was also analyzed for strength using Autodesk Inventor's FEA package 

for various load cases.  The engine mount was designed to be machined from 6061 aluminum.  The 

material properties used for 6061 aluminum are shown in Table 17 [14].  The front engine mount was 

analyzed under load cases similar to those used for simulating the transmission adapter in the previous 

section.  For every simulation, the mount was constrained at the four bolt holes used to attach it to the 

engine block as well as the mating faces between the front engine mount and the engine block.  Figure 

36 displays the constraints used for the simulations. 



 57 

 

Figure 36. Front Engine Mount Analysis Constraints 

 Engine Mount Simulation 1 involved applying a vertical force upward on two bolt mounting pad 

used to attach the front engine mount to the frame of the project vehicle via a rubber-isolated mount.  An 

acceleration of 8 g was used to simulate an extreme vertical impact such as driving over a parking block 

or high curb.  Again, the entire weight of the engine and transmission (318 kg) was used, producing a 

total vertical force of 25 kN.  Table 21 lists the results of Engine Mount Simulation 1. 

Table 21. Engine Mount Simulation 1 Results 

Maximum Von Mises Stress 55.08 MPa 

Minimum Safety Factor 4.99 

 

 Engine Mount Simulation 1 was not a critical case as the minimum factor of safety more than 

doubled the required minimum of 2.  Figure 37 displays the stress distribution in the front engine mount in 

Engine Mount Simulation 1. 

 

Figure 37. Von Mises Stress for Engine Mount Simulation 1 
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 The location of the maximum stress was at the edge of one of the upper mount-to-engine bolt 

holes.  Most of the front engine mount was under stress less than 30 MPa.  Figure 38 displays the factor 

of safety for every point on the front engine mount for Engine Mount Simulation 1.  The front engine 

mount achieved a minimum factor of safety of 4.99 with the majority of the part exceeding 15. 

 

Figure 38. Safety Factor for Engine Mount Simulation 1 

 Engine Mount Simulation 2 involved simulating a collision with an immovable object.  This was 

achieved by applying a 20 g impact force (63 kN) only in the positive x-direction.  This condition was 

required to be simulated per the competition rules to get the GM engineers overseeing the design of the 

components to approve the design before it could be implemented into the project vehicle.  Table 22 lists 

the FEA results for Engine Mount Simulation 2. 

Table 22. Engine Mount Simulation 2 Results 

Maximum Von Mises Stress 121.57 MPa 

Minimum Safety Factor 2.26 

 

 Engine Mount Simulation 2 would prove to be the critical case of those tested, producing a 

minimum factor of safety of 2.26.  Figure 39 displays the stress distribution in the front engine mount in 

Engine Mount Simulation 2. 
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Figure 39. Von Mises Stress for Engine Mount Simulation 2 

 For Engine Mount Simulation 2, the stress was concentrated in the area where the mount-to-

frame mounting pad connected to the main vertical body of the front engine mount.  With the 90° angle 

between the two surfaces, this stress concentration was expected but could not be avoided due to the 

geometry of the rubber-isolated frame mount.  To minimize this stress concentration, the lower surface of 

the mounting pad was designed to attach to the main body at a 45° angle.  Figure 40 displays the factor 

of safety for Engine Mount Simulation 2. 

 

Figure 40. Safety Factor for Engine Mount Simulation 2 

 The minimum factor of safety of 2.26 was located at one of the frame-to-mount bolt holes.  Similar 

to the stress distribution, the factor of safety of the mounting pad and the surrounding area indicated that 

this was the critical region of the front engine mount.  While the main body of the front engine mount 
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achieved a factor of safety of over 15, the mounting pad area averaged a factor of safety between 4 and 

6.  However, the minimum factor of safety exceeded the lower limit set by the competition organizers. 

 Engine Mount Simulation 3 involved applying the same 63 kN force on the frame mounting pad at 

a 45° angle.  The force was aimed down toward the rear of the vehicle.  Table 23 lists the FEA results for 

Engine Mount Simulation 3. 

Table 23. Engine Mount Simulation 3 Results 

Maximum Von Mises Stress 100.53 MPa 

Minimum Safety Factor 2.74 

 

 This load case did not prove to be the critical case as it produced a minimum factor of safety of 

2.74.  However, this simulation was performed to investigate the effect of changing the angle of the 20 g 

impact force.  While multiple angles were tested, Engine Mount Simulation 3 represents the most extreme 

case of those tested.  Figure 41 displays the stress distribution for Engine Mount Simulation 3. 

 

Figure 41. Von Mises Stress for Engine Mount Simulation 3 

 Similar to Engine Mount Simulation 1, the location of the maximum stress was the rear-most 

upper engine-to-mount bolt hole.  Stress concentration again occurred where the frame mounting pad 

attached to the main body of the engine mount.  However, the majority of the part was under stress less 

than 20 MPa.  Figure 42 displays the factor of safety for Engine Mount Simulation 3.  Similar to Engine 

Mount Simulation 2, lower factors of safety occurred around the area of the frame mounting pad. 
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Figure 42. Safety Factor for Engine Mount Simulation 3 

 For Engine Mount Simulation 4, the engine-to-mount bolt holes were unconstrained and a 

moment of 400 N-m, double the maximum torque of the diesel engine, was applied to the mount.  In 

addition, the total weight of the engine and transmission (3.2 kN) was applied to the mount.  This 

simulation was performed to verify that the front engine mount was capable of withstanding moment loads 

in the event that the engine and 2-mode transmission were producing maximum torque at the same time.  

Figure 43 shows the load setup for Engine Mount Simulation 4. 

 

Figure 43. Engine Mount Simulation 4 Setup 

 Table 24 lists the FEA results for Engine Mount Simulation 4. 

Table 24. Engine Mount Simulation 4 Results 

Maximum Von Mises Stress 35.30 MPa 

Minimum Safety Factor 7.79 
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 Producing a minimum factor of safety of 7.79, this did not prove to be a critical case.  Figure 44 

displays the stress distribution for Engine Mount Simulation 4. 

 

Figure 44. Von Mises Stress for Engine Mount Simulation 4 

 For this load case, the stress was mostly concentrated in the stand-offs attaching the mount to 

the engine block.  However, the maximum stress of 35.3 MPa was the lowest of all of the simulations.  

Aside from the location of the maximum stress, the factor of safety exceeded 15 for the majority of the 

part. 

 Through all of the simulations performed, the front engine mount proved to be well-designed and 

more than strong enough to function as-intended for the life of the project vehicle.  The critical load case 

encountered in Engine Mount Simulation 2 involved a 20 g deceleration resulting from a frontal impact 

with a solid object.  However, the resulting minimum factor of safety of 2.26 exceeded the minimum 

requirement and the design was approved and implemented into the project vehicle.  The load cases 

examined for the front engine mount were extreme compared to the conditions the part would be 

subjected to as-installed. Similar to the transmission adapter, the mass of the front engine mount could be 

reduced through the removal of material from non-critical areas. 

3.2.4 Fuel Tank Frequency Analysis 

 The modified fuel tank was analyzed for possible natural frequencies using ANSYS.  This 

analysis was performed to verify that the sides of the aluminum fuel tank would not undergo 

displacements large enough to stress the welds to the point of failure in the event that a natural frequency 

was ever introduced.  The lowest natural frequency was found to be around 460 Hz according to the 

ANSYS analysis.  The maximum speed of the diesel engine was known to be 5000 rpm or 83.3 Hz so the 

engine could not produce this natural frequency.  The case examined was driving over highway rumble 

strips at a speed of 70 mph. 
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 The rumble strip frequency analysis was performed assuming the vehicle was traversing a West 

Virginia interstate at the posted speed limit.  According to the West Virginia Department of Transportation 

(WV DOT), milled rumble strips on interstate highways are placed 5 inches apart with each indentation 

being 7 inches wide and between 1/2 and 5/8 inches deep [17].  This would produce a frequency of one 

undulation per foot of vehicle movement.  Were the vehicle travelling at a constant 70 mph over WV DOT 

rumble strips, the fuel tank would experience a frequency of 102.67 Hz, well below its 460 Hz natural 

frequency.  For reference, a frequency of 460 Hz would be achieved if the vehicle were travelling at 313.6 

mph which was mechanically impossible for the project vehicle to achieve.  In addition, the presence of 

fuel inside the tank would aid in damping any frequencies imparted on the fuel tank. 

3.3 Components & Integration 

 Once the overall designs of the project vehicle and the compound-split hybrid architecture were 

finalized, the university acquired the 2009 Saturn Vue base vehicle in the Fall of 2009.  Integration of new 

components and development of the control algorithm began soon afterward and by May of 2010, all 

major hardware components were installed in the vehicle. 

3.3.1 A123 Systems Battery Pack 

 The new high-voltage battery was the first major component installed in the project vehicle.  The 

battery pack consisted of four A123 Systems 25s2p modules connected in series.  Each module 

consisted of 50 3.3 volt cells, two strings of 25 series cells connected in parallel.  The new pack was 

located below the rear load floor behind the rear seats.  Before the high-voltage battery enclosure could 

be integrated into the project vehicle, the high-voltage battery mount needed to be installed.  Figure 45 is 

a photograph of the high-voltage battery enclosure mount installed in the project vehicle. 

 

Figure 45. High-Voltage Battery Enclosure Mount 
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The photograph was taken from the rear of the vehicle, through the opened lift-gate.  The high-

voltage battery enclosure bolted to the mount using the six black rubber mounting points shown in the 

figure.  Once the enclosure was installed in the project vehicle, the various components comprising the 

high-voltage battery pack were installed including the four battery modules and the control components 

supplied by A123 Systems.  The high-voltage battery pack was cooled by a liquid cooling system 

consisting of two cooling plates plumbed in parallel with a recirculation pump mounted to the vehicle's 

rear sub frame below the floor.  Figure 46 shows the layout of the modules inside the battery enclosure 

and the locations of the liquid cooling plates. 

 

Figure 46. High-Voltage Battery Pack Layout 

 Each cooling plate cooled the two adjacent battery modules.  A temperature sensor was attached 

to the surface of the left cooling plate to monitor the battery pack temperature to prevent overheating.  

Behind the battery connectors inside the enclosure were the battery pre-charge and main contactors.  

These were controlled by the BMS which determined whether the high-voltage battery pack was in a 

suitable state to be connected to the vehicle based on the integrity of the high-voltage interlock loop 

(HVIL), the presence of a ground fault, and the state of charge (SOC) of the battery.  If the vehicle was in 

a safe state, the hybrid control processor (HCP) would send a message to the BMS to close the main 

battery contactors and energize the high-voltage bus when the ignition key was turned to the Run 

position. 

 The after-treatment control unit (ACU) in the figure was a new controller installed to control the 

diesel exhaust after-treatment system.  This computer also acted as a CAN communication gateway 

between the BMS and the HCP.  The ACU was installed behind the rear wheel housing on the passenger 

side of the vehicle, underneath an interior panel.  A conventional 12 V automotive battery was installed on 

the opposite side of the cargo area behind the other interior panel which was removed in the photograph.  
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This 12 V battery supplied voltage to the conventional 12 V circuits in the project vehicle such as the 

interior and exterior lighting and the radio. 

  The HVIL was a low-voltage circuit that ran through all the high-voltage components in the 

vehicle.  This circuit also ran through different safety devices in the vehicle including the inertia switch 

which acted as a crash sensor, the two emergency stop buttons installed in the vehicle, the under-hood 

hybrid system safety cover, and the battery's mid-pack disconnect (blue battery connector).  The grey 

battery connector was the direct link between the high-voltage battery and the inverter module located at 

the front of the vehicle in the engine bay which inverted the high-voltage DC battery current to AC current 

to drive the electric motors in the 2-mode transmission.  The charger contactors were always closed 

during normal vehicle operation.  When the vehicle was powered down, these contactors would open to 

isolate the vehicle from the high-voltage battery.  The function of these contactors was to keep the vehicle 

isolated from the battery during on-plug charging when the high-voltage battery's main contactors must be 

closed. 

 The orange battery connector was for the high-voltage battery charger located on the front of the 

battery enclosure directly behind the rear seats.  A charger supplied by Brusa was installed in the vehicle 

to maintain the high-voltage battery SOC during development of the control strategy.  There were periods 

during the design process when the engine was not capable of running or not installed in the vehicle.  

Once the project vehicle was fully functional, the on-board charger would be unnecessary because the 

engine and regenerative braking function would supply enough power to charge the high-voltage battery 

and maintain a safe SOC.  Figure 47 is a photograph of the front of the high-voltage battery enclosure. 

 

Figure 47. Front of High-Voltage Battery Enclosure 
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 The Brusa NLG-513 battery charger was bolted to the front of the enclosure with the overflow 

tank for the liquid cooling system mounted to the left.  An aluminum firewall was fabricated to isolate all of 

the high-voltage components from the passenger compartment.  This firewall attached to the two black 

steel posts on either side of the high-voltage battery enclosure in the photograph.  The rear seats rested 

against this firewall when installed and upright.  From this angle, the plumbing for the two cooling plates 

inside the battery enclosure can also be seen.  The coolant lines from the cooling plates merged 

underneath the Brusa charger and ran through the floor to the coolant pump mounted under the vehicle.  

To dissipate the heat from the cooling system, two heat exchangers were installed in the floor under the 

battery enclosure.  Figure 48 is a photograph of the cooling system components mounted to the bottom of 

the vehicle. 

 

Figure 48. High-Voltage Battery Cooling System 

 The 12 V Dayton coolant pump was rated to flow 20 gallons per minute.  The hot coolant from the 

cooling plates entered the left heat exchanger through the disconnected port.  The coolant flowed out the 

left heat exchanger directly into the right heat exchanger before entering the coolant pump to be pumped 

back into the cooling plates.  The electric fans pulled air from the interior of the vehicle through the heat 

exchangers.  The coolant pump was relocated after this photograph was taken, but the system functioned 

in the same manner.  Figure 49 is a photograph of the heat exchangers as they appear from inside the 

vehicle. 
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Figure 49. Heat Exchangers (Interior View) 

 Two holes were cut in the floor of the cargo area of the vehicle and rubber seals were applied to 

the edges of the holes.  The heat exchangers were bolted to the floor and the high-voltage battery 

enclosure was installed over the heat exchangers.  A four inch gap was left between the bottom of the 

high-voltage battery enclosure and the floor to allow sufficient airflow underneath the enclosure to reach 

the heat exchangers.  In order to eliminate any chance of water, exhaust gas, or road debris from 

entering the vehicle through the heat exchangers, dampers were installed over the cooling fans.  Figure 

50 is a photograph of the heat exchanger dampers. 

 

Figure 50. Heat Exchangers with Dampers Installed 
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 The dampers were constructed of thin gauge steel and riveted together.  Flapper doors were 

installed with hinges at the top so that air could escape when the fans were turned on.  The doors opened 

inward toward the center of the vehicle.  Rubber gaskets around the flapper door openings sealed the 

dampers when the fans were off.  The coolant pump was relocated in between the heat exchangers to 

make room for the electric winch used to raise and lower the fuel tank.   

 To maintain the cargo-carrying capability of the project vehicle, an aluminum cover was designed 

to sit on top of the high-voltage battery enclosure.  This cover served two purposes: to protect the high-

voltage battery and other components installed in the rear of the vehicle and hide these components from 

view.  The battery cover was upholstered with carpeting matching the color of the carpet originally 

installed in the project vehicle.  Figure 51 is a photograph of the cargo area of the vehicle with the battery 

cover installed. 

 

Figure 51. Project Vehicle Cargo Area 

3.3.2 GM 1.3 Liter Turbocharged Diesel Engine 

The diesel engine was the second major powertrain component installed in the project vehicle.  

The four cylinder 1.3 liter turbocharged diesel engine came from the European Opel division of General 

Motors and was originally installed in the 2008 Corsa model.  Once the transmission adapter, front engine 

mount, and new flywheel were designed and machined, the diesel engine was installed in the project 

vehicle.  Figure 52 is a photograph showing the locations of major components under the hood of the 

project vehicle. 
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Figure 52. Engine Bay Integration 

The engine was mounted transversely in the passenger side of the engine bay with the 2-mode 

transmission located to the right of the engine, under the Transmission Powertrain Inverter Module 

(TPIM).  The TPIM controlled the power electronics to invert 330 V DC supplied by the lithium-ion battery 

to 275 V AC to drive the two electric motors in the 2-mode transmission and to charge the high-voltage 

battery when the electric motors generated power during engine-on operation and through regenerative 

braking.  Behind the TPIM was a disconnect switch for the 12 V electrical system.  The air conditioning 

compressor was mounted to the left of the engine, just in front of the diesel engine’s electronic control unit 

(ECU).  Located on the inside of the passenger side fender was the supervisory control unit (SCU) which 

implemented the powertrain control algorithm and handled CAN communication between the engine, 2-

mode transmission, and high-voltage battery controllers.  All of the orange wiring carried high-voltage. 

The intercooler for the turbocharged diesel engine was initially intended to be installed in front of 

the radiator and condenser for the air conditioning system behind the front bumper.  However, the 

decision was made to install the intercooler in front of the passenger side front wheel as this area was 

large enough and would allow equivalent airflow to the original location while decreasing the length of the 

required intake plumbing, thereby reducing the pressure drop from the turbocharger compressor outlet to 

the engine’s intake manifold.  Figure 53 is a photograph of the intercooler as it was installed in the project 

vehicle. 
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Figure 53. Intercooler As-Installed 

To ensure that the intercooler received adequate airflow, the stock front bumper was replaced 

with the bumper designed for the 2009 Saturn Vue Redline model.  This new bumper included large air 

intake ducts located directly in front of the intercooler.  These ducts were enlarged and new grilles were 

designed and installed to maximize the airflow potential to the intercooler.  Figure 54 is a photograph of 

the new air duct created for the intercooler.  The intercooler can be seen through the grille.  A matching 

opening was made on the driver's side of the front bumper to maintain aesthetic symmetry. 

 

Figure 54. Intercooler Bumper Duct 
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3.3.3 Exhaust & After-treatment Systems 

The new exhaust system was designed on the project vehicle and constructed one piece at a 

time starting at the engine.  Once the routing of the exhaust tubing and the locations of the different 

components of the after-treatment system were set, the entire system was welded and tested for leaks.  

This was done by sealing one end of the system and pressurizing the system using compressed air.  With 

the exhaust system pressurized, a mixture of soap and water was sprayed on the welds, causing any air 

leaks to produce bubbles.  The exhaust system was required to be leak-free so that the after-treatment 

system would be as effective as possible.  Completely sealing the exhaust system involved re-welding 

any leaks and testing the system again until no more leaks were present. 

With the exhaust system free of leaks, final installation of the exhaust and after-treatment 

systems commenced.  The exhaust system was installed using conventional rubber exhaust hangers.  In 

the area where the exhaust was routed around the fuel tank, the fuel tank was wrapped with insulating 

material to prevent the exhaust from heating the diesel fuel inside the fuel tank.  In addition, heat shields 

were installed on the bottom of the vehicle body above the locations of the DPF and SCR.  Figure 55 is a 

photograph of the exhaust system as it was installed under the project vehicle. 

 

Figure 55. Completed Exhaust System 

The urea injector for the selective catalytic reduction system can be seen installed ahead of the 

SCR catalyst.  This injector was controlled by the after-treatment control unit installed inside the project 

vehicle.  Using input from the thermocouple installed just ahead of the injector, the ACU would determine 

a urea dosing rate based on the engine speed, engine load, and exhaust temperature.  Figure 56 is a 

close-up photograph of the urea injector and thermocouple. 



 72 

 

Figure 56. Urea Injection System 

A urea storage tank was installed under the hood of the project vehicle.  The urea system 

included an electric urea pump and a pressure regulator to limit the pressure delivered to the urea injector 

to no more than 60 psi.  The urea injection system also included an air compressor and pressurized air 

tank that were used to clean the urea injector after shutting the vehicle down.  Once the ignition key was 

turned to the off position, the ACU would command a solenoid in the urea injector plumbing to switch from 

the urea circuit to the air circuit, sending air pressurized to 90 psi through the injector to clean out any 

residual urea deposited inside.  This was to prevent the urea injector from becoming clogged by 

crystallized urea were the project vehicle ever parked for an extended period of time.  A pressure switch 

installed in the air storage tank would turn on the compressor and maintain a constant 90 psi inside the 

tank at all times. 

3.3.4 Fuel Tank 

Stainless steel tubing was bent to form the fuel feed and return lines that were permanently 

attached to the ports in the aluminum fuel tank.  To maintain the ground clearance of the project vehicle, 

the bottom of the fuel tank was raised one inch by cutting a section out of each side of the tank.  

Additionally, a portion of the rectangular fuel tank was removed to allow ample room for the exhaust 

system to route toward the rear of the vehicle.  Figure 57 is a photograph of the completed fuel tank. 
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Figure 57. Modified Fuel Tank 

Mounting points for the quick disconnects for the fuel feed and return lines were installed on the 

front of the fuel tank.  The photograph was taken before all modifications were completed regarding fuel 

line plumbing and winch cable attachment.  The lift cable from the electric winch attached to the fuel tank 

using a single attachment point located above the center of gravity of the fuel tank to maintain stability 

during removal and installation.  This attachment point was located inside a depression in the top of the 

fuel tank to make room for the pulley bolted to the vehicle underbody over which the winch cable was 

routed.  Figure 58 is a photograph illustrating the final configuration of the fuel line plumbing and cable 

attachment scheme. 

 

Figure 58. Fuel Tank Winch Cable Attachment 

In order to install the new fuel tank in the project vehicle, a mounting system needed to be 

developed and implemented.  In addition, the electric winch used to raise and lower the tank required a 

system of pulleys to lift the tank correctly.  The first step in integrating the new fuel tank involved installing 
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rubber bumpers on the bottom of the vehicle's body against which the fuel tank would be secured.  Three 

rubber suspension bump stops were modified and bolted to the vehicle's underbody above the location 

where the fuel tank would be installed.  Figure 59 is a photograph of the fuel tank mounting pads. 

 

Figure 59. Fuel Tank Mounting Pads 

 Once the mounting pads were modified and installed, the electric winch and pulley system was 

designed.  Because space above the fuel tank was limited, the winch was installed behind the fuel tank 

under the project vehicle and a pulley was installed above the center of gravity of the new fuel tank.  The 

winch cable was routed over the pulley and attached to the fuel tank using a quick-disconnect.  Once 

these were installed, the fuel tank was put in place and new fuel tank installation straps were bent to 

follow the shape of the fuel tank.  Figure 60 is a photograph of the new fuel tank installed in the project 

vehicle. 

 

Figure 60. Modified Fuel Tank As-Installed 

 The electric winch is circled in red and the fuel line quick-disconnects are circled in blue.  The 

exhaust was routed to the left of the fuel tank, around the modified corner.  A switch to toggle the winch 
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on and off was installed in the cargo area of the project vehicle and the control switch wiring was 

extended so that the winch could be operated from a safe distance when the vehicle was raised on a 

vehicle lift.  Figure 61 is a photograph of the location of the winch power toggle and control cable. 

 

Figure 61. Fuel Tank Winch Controls 

3.3.5 Controllers 

 Two new programmable electronic controllers were installed in the vehicle to implement the 

control algorithm written to control and monitor the operation of the compound-split hybrid powertrain.  

Supplied by Woodward/Mototron, the new controllers were capable of receiving analog voltage inputs as 

well as digital inputs and communicating with the project vehicle systems through CAN.  The control 

modules were also capable of sending voltage signals to control relays to turn other components in the 

vehicle on or off.  One of the new controllers was installed as a CAN gateway between the production 

vehicle's CAN network and the new diesel engine and the other controller served a similar purpose for the 

high-voltage battery system. 

 The supervisory control unit implemented the newly-developed powertrain control algorithm.  

Receiving accelerator and brake pedal inputs from the driver and using CAN information regarding 

vehicle speed and transmission status, the SCU would determine when to turn the engine on or off, the 

desired engine speed, and when to shift the transmission.  This controller was installed between the two 

CAN networks in the production vehicle and the new CAN network installed for the additional control 

modules.  Figure 62 is a photograph illustrating the location of the SCU under the hood of the project 

vehicle. 
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Figure 62. SCU Location 

 The SCU was installed on the inside of the passenger front fender just ahead of the shock tower.  

The Mototron controllers were water-tight facilitating installation in any location so the under-hood location 

was selected for its proximity to both the engine ECU and the two CAN buses installed in the project 

vehicle.  The SCU was installed using rubber vibration damping mounts bolted directly to the body of the 

project vehicle.  This location allowed easy access to the controller and offered protection from any road 

debris that may have entered the engine bay while driving. 

 The after-treatment control unit communicated with the high-voltage battery and also controlled 

the urea injection system in the exhaust.  This controller was utilized as a CAN communication gateway 

between the high-voltage battery system and the rest of the vehicle.  It was also used to control different 

relays for powering the fuel pump as well as the coolant pump and electric fans for the high-voltage 

battery’s liquid cooling system.  The ACU was installed behind the passenger side interior panel in the 

cargo area of the project vehicle.  Figure 63 is a photograph of the ACU installed in the vehicle.  The 

after-treatment control unit is circled in red. 

 

Figure 63. ACU Location 
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3.3.6 Safety Components 

3.3.6.1 Information Displays 

 In order to give the driver of the project vehicle important information regarding the state of the 

high-voltage system, auxiliary information displays were developed and installed.  A seven inch screen 

was installed on top of the dashboard above the radio to display high-voltage battery information.  The 

display was designed to show the state of charge and temperature of the high-voltage battery using 

Vector software.  The large screen also displayed the presence of a ground fault being detected in the 

high-voltage system.  All of the information displayed on the screen was read from the vehicle's CAN 

communication.  Figure 64 is a photograph of the display screen as it was installed in the project vehicle. 

 

Figure 64. Auxiliary Information Display 

 The photograph also shows the location of the red ground fault detection warning light directly 

above the radio display.  The presence of a ground fault could be very dangerous to any person in or 

around the project vehicle so a redundant warning system was implemented.  A ground fault would occur 

if the high-voltage circuit were to ever short to ground which was the chassis of the project vehicle.  The 

center air vent was eliminated and replaced with another display screen.  The center vent display gave 

the driver information regarding instantaneous current flow into and out of the high-voltage battery as well 

as a GPS-based vehicle speed. 

3.3.6.2 Regenerative Braking & After-treatment Disable Switches 

 A toggle switch was installed within reach of the driver to disable regenerative braking.  When the 

brake pedal was depressed, the powertrain control algorithm would request that a certain percentage of 
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the braking torque be generated by one of the electric motors in the 2-mode transmission, converting the 

braking energy into electricity to be stored in the high-voltage battery.  The remaining braking torque was 

supplied by the vehicle's conventional hydraulic disc brakes.   A simple toggle switch was used to 

completely disable this blended braking so that all braking torque was applied by the vehicle's 

conventional brakes when the regenerative brake disable switch was activated. 

 Ammonia slip occurs when some or all of the urea that is injected into the exhaust is not 

consumed in the SCR process and allowed to exit the tailpipe.  Unconsumed urea has the capability of 

destroying sensitive emissions testing equipment.  If the operator of the emissions test detected ammonia 

in the exhaust emissions, the switch could be tripped, disabling the urea injector and all its associated 

components.  Figure 65 is a photograph of both the regenerative braking and after-treatment disabling 

switches. 

 

Figure 65. Disable Switches 

 Both of the disable switches were installed above the cup holder in the center console between 

the front seats in the project vehicle where the driver could have access while belted into the driver's seat.  

In the photograph, the after-treatment disable switch on the left is activated thereby disabling the urea 

injection system in the exhaust. 

3.3.6.3 Inertia Switch & Emergency Stop Buttons 

As a prototype vehicle, it was desirable to have a method of quickly disabling the engine and 

high-voltage systems in the event of a fault.  To accomplish this function, two emergency stop buttons 

were installed in the project vehicle.  The emergency stop buttons were wired in such a manner that 

depressing one or both of them cut power to the engine ECU and fuel pump as well as breaking the high-

voltage interlock circuit which would disable the entire high-voltage system and open the contactors in the 

lithium-ion battery pack. 

One emergency stop button was installed on the passenger side quarter panel so that someone 

standing outside of the vehicle could disable the engine and high-voltage systems in the event of a fault.  
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The other emergency stop button was installed to the left of the steering column within reach of the belted 

driver.  These two emergency stop buttons were wired in series.  Figure 66 is a pair of photographs of the 

two emergency stop buttons.  The picture to the left shows the driver’s emergency stop button with the 

exterior button shown on the right. 

 

Figure 66. Emergency Stop Buttons 

In addition to the emergency stop buttons, an inertia switch was installed to cut power to the 

engine ECU and fuel pump as well as disable the high-voltage system in the event that the vehicle were 

ever involved in a collision.  This inertia switch was installed in series with the two emergency stop 

buttons so that tripping any of the three would perform the same function.  The inertia switch was installed 

behind the dashboard above the front passenger foot well. 

3.3.7 Deviations from the Original Design 

Inevitably during the design and construction of the project vehicle, some components did not 

install as they were originally intended.  This was partly due to designing many parts using an incorrect 

CAD model of the engine as well as not having the dimensions of some of the components beforehand.  

Working within a team of 25 or more required constant communication to keep the team informed on what 

had been designed and ordered and what tasks needed completed.  However, this communication could 

break-down at times and, for instance, some of the designed components would be impossible to install 

where they were intended. 

A single heat exchanger was initially specified for cooling the high-voltage battery but the 

purchased heat exchanger was not automotive-grade and included two fans that required 120 V AC so 

the split heat exchanger configuration discussed previously was designed and installed.  The new 

automotive-grade heat exchanger array maintained the intended cooling area and produced a similar 

pressure drop to the original design. 

The high-voltage battery was originally intended to be constructed using eight A123 12s8p 

modules.  However, after the initial simulations were completed A123 released the 25s2p modules and 

offered to supply them because the specified high-voltage battery was within the 300-330 V range.  The 
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new modules were comparable to the previously selected modules but provided simplified packaging as 

only four of the 25s2p modules would be required to produce a 330 V battery.  The decision was made to 

use the new battery 25s2p modules. 

All of the brackets and mounts designed for the diesel engine were designed twice due to the 

initial use of an incorrect CAD model of the new engine.  While a correct CAD model of the 1.3 liter diesel 

engine was eventually sourced, some parts of the engine were missing in the model.  Once the engine 

was shipped to WVU, it was apparent that the 300 V air conditioning compressor supplied with the 2-

mode Saturn Vue could not be installed where it was originally intended.  The CAD model of the diesel 

engine did not include the diesel oxidation catalyst that connected to the turbine outlet of the turbocharger 

and the electric air conditioning compressor interfered with the exhaust.  A new mounting bracket was 

designed to install the compressor on top of the front engine mount. 
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4. Control Strategy Development & Vehicle Testing 

With the design and construction of the project vehicle explained, the remaining sections of this 

document will detail the graduate research performed for this thesis.  Through this research, a powertrain 

control strategy was developed to manage the operation of the diesel engine, high-voltage battery, and 2-

mode transmission installed in the project vehicle.  The research was focused on developing a control 

algorithm designed to improve the fuel efficiency and reduce the CO2 emissions of the project vehicle 

through the implementation of engine on/off functionality, regenerative braking, and electric-only drive.  

Once the control algorithm was developed and implemented, the project vehicle was tested on-road for 

fuel efficiency, emissions, and performance. 

4.1 Powertrain Control Algorithm 

While the mechanical components of the project vehicle were being integrated, the control 

algorithm for the diesel hybrid-electric powertrain was being developed.  This algorithm was implemented 

entirely through CAN communication between the newly installed SCU, the engine ECU, the HCP, the 

transmission control module (TCM), and the body control module (BCM). 

4.1.1 Powertrain State 

The first decision made within the powertrain control algorithm was determining whether the 

driver was attempting to accelerate or brake the project vehicle.  This was determined based on the 

depression percentage of the brake pedal.  If the brake pedal was not depressed, the powertrain control 

algorithm would enter the Propelling state.  If the brake pedal position was above 0%, the control 

algorithm entered the Braking state.  These two powertrain states controlled the engine on/off function, 

engine torque, transmission shifting, regenerative braking, and the commanded axle torque. 

4.1.1.1 Braking Powertrain State 

The braking powertrain state controlled the amount of regenerative braking provided when the 

driver depressed the brake pedal.  Based on the high-voltage battery SOC, vehicle speed, and brake 

pedal position (BPP) the regenerative braking control algorithm would calculate the required negative axle 

torque.  Figure 67 illustrates the regenerative braking control algorithm. 
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Figure 67. Regenerative Braking Control Algorithm 

If the regenerative braking disable switch (RBDS) was activated, the algorithm would disable the 

regenerative braking function and command 0 N-m of regenerative braking axle torque.  Otherwise, the 

algorithm would enter the “RB_Active” subroutine where a desired regenerative braking axle torque was 

calculated.  Figure 68 is a block diagram of the regenerative braking active subroutine. 

 

Figure 68. Regenerative Braking Active Control Algorithm 

In the upper loop of the program, the BPP and vehicle speed were input into a look-up table to 

produce a desired regenerative braking axle torque.  In the lower loop, the high-voltage battery state-of-

charge was used to provide extra regenerative braking in the event that the high-voltage battery was ever 

deeply discharged.  Conversely, in the event that the high-voltage battery was fully charged, the lower 

loop would return 0 N-m.  The results from the two loops were compared with the highest value being 

sent to the HCP.  Note that the maximum value would represent the highest numerical value as braking 

axle torque was calculated using negative values.  Figure 69 is a plot of the regenerative braking look-up 

table. 
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Figure 69. Regenerative Braking Look-Up Table 

The colored lines represent lines of constant BPP.  It was desired to request as much 

regenerative braking as possible to minimize energy wasted by the project vehicle's conventional 

hydraulic braking system.  As the vehicle speed dropped below 6 mph, the amount of regenerative 

braking torque was ramped down to zero by the time the vehicle speed reached 5 mph.  This was done 

once it was discovered that ramping out regenerative braking right before the vehicle came to a complete 

stop produced an uncomfortable lurch that would catch the driver off-guard and possibly cause the project 

vehicle to bump into another vehicle at a stop light.  A maximum value of -390 N-m was selected as the 

maximum possible requested regenerative braking axle torque to protect the high-voltage system from 

currents above 150 A. 

4.1.1.2 Propelling Powertrain State 

The propelling powertrain state controlled the amount of axle torque based on the accelerator 

pedal depression percentage.  The propelling state in the powertrain control algorithm handled 

transmission shifting, engine on/off status, engine speed, and engine torque.  The HCP would receive a 

total axle torque command from the SCU based on the accelerator pedal position (APP) and divide this 

value into a commanded engine torque and a commanded torque from the electric motors in the 2-mode 

transmission.  The powertrain control algorithm did not directly modify the electric motor torque as no 

modifications were made to the program in the hybrid control processor.  Control of the individual electric 

motors was performed by the HCP algorithm. 

A two-dimensional look-up table was developed for directly translating driver accelerator pedal 

input to a requested amount of axle torque to be sent to the HCP.  The SIMULINK control model written 

to determine the axle torque command can be seen in Figure 70. 
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Figure 70. Axle Torque Command Control Model 
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The voltage signal from the accelerator pedal was converted to a percentage in the first look-up 

table with this value written to the controller memory for use elsewhere in the control algorithm.  This 

percentage, as well as the vehicle speed, was then fed into a second look-up table used to produce a 

commanded axle torque to be sent to the HCP.  Figure 71 is a plot of the axle torque look-up table. 

 

Figure 71. Axle Torque Command Look-Up Table 

The colored lines in the figure represent lines of constant accelerator pedal position.  Linear 

interpolation was used for APP values between those shown in the look-up table.  Based on the vehicle 

speed in miles-per-hour and APP, a total commanded axle torque was selected and sent out via CAN to 

the HCP.  At 0% APP, a constant creep torque of 80 N-m was commanded at all times to maintain the 

ability of the vehicle to creep with no accelerator pedal application.  This was done to mimic the behavior 

of a vehicle equipped with a conventional automatic transmission.  At vehicle speeds above 75 mph, the 

commanded axle torque would remain at the value set for a vehicle speed of 75 mph.  The HCP would 

then return a CAN message containing the requested engine torque to the SCU where this value was 

converted to a pair of voltage outputs simulating a conventional throttle-by-wire accelerator pedal that 

were then sent to the diesel engine ECU.  Figure 72 displays the engine accelerator pedal subsystem. 
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Figure 72. Engine Accelerator Pedal Algorithm 
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The engine speed and commanded engine torque from the HCP were input into a 2-D look-up 

table to produce a simulated engine accelerator pedal position.  The simulated engine APP was then 

converted into two separate voltages, one twice the value of the other.  These two voltages were then 

output from the SCU and sent to the diesel engine ECU.  The diesel engine ECU would interpret the 

voltage pair and increase or decrease the engine torque accordingly. 

4.1.1.3 Reverse 

If the gear selector were placed in Reverse, the control algorithm would enter Reverse mode.  In 

reverse mode, the engine was always commanded off unless the high-voltage battery was severely 

discharged or overheated.  A two-dimensional look-up table was developed to translate the percentage of 

depression of the accelerator pedal to a commanded axle torque.  All axle torque was provided by the 

high-voltage battery and electric motors in the 2-mode transmission.  There was no regenerative braking 

commanded while in reverse mode. 

4.1.1.4 Park & Neutral 

With the gear selector placed in Park or Neutral, the powertrain control algorithm would not 

command axle torque regardless of the accelerator pedal input from the driver.  While the SCU would 

receive voltage signals from the accelerator pedal, the algorithm sent out a constant commanded axle 

torque of 0 N-m.  This was done as a safety feature to eliminate the chance of the project vehicle moving 

unexpectedly.  Unless the battery was discharged below 20%, the diesel engine was commanded off 

when the transmission was in Park or Neutral. 

4.1.2 Engine On/Off 

 The ability for a hybrid vehicle to turn its engine off when not needed is one of the most effective 

methods used to reduce the vehicle’s fuel consumption.  In an attempt to maximize fuel efficiency, this 

function was incorporated into the project vehicle as well.  The stateflow routine written to control the 

engine on/off function can be seen in Figure 73 on the next page. 

 



 88 

 

Figure 73. Engine On/Off Stateflow 



 89 

 The engine on/off control algorithm was based on four criteria: vehicle speed, accelerator pedal 

position, high-voltage battery SOC, and transmission mode.  The engine on/off function would use these 

four pieces of information while applying different degrees of priority to each.  The lowest priority 

parameter for turning the engine on was the vehicle speed.  Limits were set in the algorithm to turn the 

engine on and off when the vehicle reached set speeds.  A 5 mph hysteresis was used between the “on” 

and “off” vehicle speeds to keep the engine from continually turning on and off while cruising.  For 

example, the engine would be commanded on when the vehicle speed was over 20 mph and the engine 

would remain on until the vehicle speed dropped below 15 mph.  The engine would not, under any 

circumstances, turn off until the vehicle speed dropped below the set value. 

 The next highest priority parameter for turning the engine on was the high-voltage battery SOC. 

This was done to protect the lithium-ion battery pack from being discharged too deeply.  A target value for 

the SOC was set and the algorithm would command an increasing amount of power from the engine to 

charge the high-voltage battery as the SOC dropped further below the target.  Once this power command 

was above a set value, the engine would turn on and remain on until the commanded engine power from 

the high voltage battery dropped below the set point.  Conversely, once the high voltage battery SOC was 

above the set target, the engine power commanded to charge the battery was reduced. 

 Similar to the high-voltage battery SOC, the accelerator pedal position was also converted into a 

desired amount of engine power.  This value was added to the power command from the high-voltage 

battery.  This total power command was then compared to the set power command above which the 

engine would be turned on.  There was also a “Performance Mode” that was enabled when the 

accelerator pedal was depressed past 80%.  If the driver depressed the accelerator pedal past 80%, this 

would override all other parameters and the engine would be commanded on immediately.  Figure 74 is 

the stateflow routine that determined whether to enable performance mode.  The actual accelerator pedal 

position was referred to as “PhysicalAPP” in this stateflow. 

 

Figure 74. Performance Mode Stateflow 

 The design of the 2-mode transmission required that the engine be on before the transmission 

could be shifted from the low speed range (EVT mode 1) to the high speed range (EVT mode 2).  Once in 

high range, the engine was required to remain on until the transmission was shifted back to low range.  

The transmission range was the highest priority parameter considered when turning the engine off.  The 

engine would only turn off when the transmission was in EVT mode 1, Park, or Reverse.  Under normal 

conditions, the engine would be commanded off when the transmission was in park or reverse.  Only 
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when the high voltage battery SOC was below 20% would the vehicle reverse or idle with the engine 

turned on. 

4.1.3 Transmission Shifting 

 Unlike the engine on/off control, the transmission shift strategy was based exclusively on vehicle 

speed.  On the recommendation of 2-mode engineers, the decision was made to only utilize the two EVT 

modes available from the 2-mode transmission as well as fixed gear ratio 2 which was used to shift 

between the two EVT modes.  In the initial iteration of the control algorithm, the transmission shifted up 

from EVT mode 1 to EVT mode 2 when the vehicle speed reached 30 mph and it would downshift back to 

EVT mode 1 once the vehicle speed dropped below 25 mph.  A 5 mph hysteresis was used to keep the 

transmission from repeatedly shifting between EVT modes while the vehicle cruised around the shift 

speeds.  Figure 75 is the transmission stateflow shifting routine.  Note that in this iteration, the upshift 

speed was raised to 35 mph. 

 

Figure 75. Transmission Shifting Stateflow 

The transmission would remain in EVT mode 1 until the engine was on, the vehicle speed was 

greater than or equal to 35 mph, and the transmission control module broadcasted via CAN that a shift to 

EVT mode 2 was possible (M2Allowed==1).  Only then would the state change from the top “mode 1” 

block down to the “mode 2” block.  In the mode 2 state, the “TransGearCmnd” would change from 1 to 2 

signaling a shift from EVT mode 1 to mode 2.  In order for the transmission to downshift to EVT mode 1, 

the TCM was required to broadcast that a shift to mode 1 was possible (M1Allowed==1).  In addition, 
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either the vehicle speed needed to drop below 25 mph or the engine needed to be commanded off to 

allow the state to return to the mode 1 block. 

To make the shift as smooth as possible, the engine speed was commanded to remain constant 

while the shift was performed.  The engine was held at a speed of about 2500 rpm which produced a 

speed ratio through the transmission of 1.88:1, the same ratio as fixed gear 2.  This produced a smooth 

EVT mode shift and helped protect the engine and 2-mode transmission from damaging drive train 

shocks.  To shift the transmission to the desired EVT mode or fixed gear 2, a CAN message was 

generated by the control algorithm with a value of 1 corresponding to EVT mode 1 and 2 for EVT mode 2.  

During the shift, the TCM would command fixed gear 2 automatically without any input from the SCU 

control algorithm. 

4.1.4 Engine Speed Control 

 Similar to the transmission shift points, engine speed was controlled based solely on vehicle 

speed.  Early in the vehicle design process, 2-mode engineers had recommended that the diesel engine 

not be allowed to spin slower than 1000 rpm, possibly due to a natural frequency or some other 

weakness inherent in the 2-mode transmission's design.  For this reason, the minimum commanded 

engine speed allowed by the control algorithm was set at 1250 rpm.  A two-dimensional look-up table was 

assembled translating the vehicle's linear speed in miles per hour to a commanded engine speed in 

revolutions per minute.  Figure 76 is a chart of the two-dimensional engine speed look-up table. 

 

Figure 76. Engine Speed Command Look-Up Table 

 The minimum engine speed commanded was set at 1250 rpm with this being the desired engine 

speed were the engine ever turned on with the vehicle at a standstill.  The engine speed increased 

linearly as the vehicle speed increased to 20 mph.  At that point, the engine speed was commanded to 
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increase more rapidly in preparation for the shift between EVT mode 1 and EVT mode 2.  As the vehicle 

speed increased to the set shift speed of 30 mph, the engine speed increased linearly to 2450 rpm.  This 

engine speed was selected because it produced a speed ratio between the transmission input and output 

shafts of 1.88, the same ratio as fixed gear 2 [7].  This was done to make the shift between EVT mode 1 

and EVT mode 2 as smooth as possible because fixed gear 2 was used to shift between the EVT modes. 

 Once the transmission was in EVT mode 2, the engine was required to be on until the 

transmission was downshifted back to mode 1.  In mode 2, the engine speed was linearly increased as 

the vehicle speed increased up to a vehicle speed of 90 mph where the engine was commanded to run at 

4600 rpm, the highest engine speed commanded by the control algorithm.  At vehicle speeds higher than 

90 mph, the engine speed was commanded to remain constant at 4600 rpm. 

4.1.5 Initial Testing 

 Once the vehicle was fully assembled and deemed roadworthy, it was taken on multiple test 

drives around the Evansdale Campus with special attention being paid to throttle response, brake 

function, transmission shifting, and battery SOC.  Initially, the vehicle was driven in EV mode only to 

validate the function of the high-voltage electrical systems.  This required that speeds be kept below 30 

mph because this was the selected shift speed for the 2-mode transmission.  Regenerative braking was 

also verified at this time. 

 During EV testing, it was discovered that the A123 lithium-ion high-voltage battery system had a 

built-in safety feature to prohibit dangerously deep discharging.  Once the high-voltage battery SOC 

dropped below 18% of full charge, the BMS would broadcast via CAN that the SOC was down to 0%.  

When the HCP received this message, it would command the high-voltage battery contactors open and 

disable the diesel hybrid-electric powertrain.  This required that an absolute lower limit for the high-

voltage battery SOC be set in the control algorithm.  A value of 25% was selected.  If the high-voltage 

battery SOC ever dropped below 25%, the diesel engine would be commanded on at all times to provide 

battery charging. 

 After the electric drive and braking systems were verified to be fully functional, engine testing 

began.  First with the vehicle stationary in Park, the engine was commanded on and off through a 

calibration in the control algorithm using a laptop computer plugged into the CAN.  The engine's response 

to a simulated accelerator pedal was measured by commanding engine torque and reading the CAN 

message displaying the actual input torque into the 2-mode transmission.  Similar to a diesel-electric 

locomotive, the 2-mode transmission allowed the engine to be loaded using the electric motors. This 

allowed high engine torque to be commanded.  However, it was during this phase of testing that an issue 

with the engine producing no more than 50% of its maximum rated torque was discovered.  Fortunately, 

this condition improved during final fuel efficiency and performance testing.  Figure 77 is a plot of engine 

torque and speed data recorded during this phase of testing. 
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Figure 77. Engine Speed & Torque Test Data 

The purple trace at the top of the figure is the input torque requested using the calibration in the 

control algorithm.  The light green line below it is the actual engine torque response.  The highest torque 

value requested during this test was 90 N-m.  Requesting an engine torque of 100 N-m or higher resulted 

in the engine reverting to producing a constant 80 N-m until the torque request dropped below 100 N-m.  

The dark red trace at the bottom of the figure represents the engine speed request with the green line 

above it being the actual engine speed response.  The engine speed request was varied from 1500 rpm 

to 1400 rpm to 1600 rpm to 1200 rpm and the diesel engine essentially followed the request exactly.  The 

duration of this test was around 280 seconds. 

 Another issue discovered during initial testing was the rough manner in which the diesel engine 

would turn off.  The 2-mode transmission would use one of its electric motors to quickly stop the engine 

from rotating when the HCP commanded the engine off.  During engine shutdowns, there were noticeable 

shutters transmitted into the passenger compartment by the diesel engine as it slowed down.  The control 

strategy in production 2-mode vehicles included an active damping feature to make engine shutdowns 

smooth using a combination of engine and electric motor control.  However, this feature was disabled for 

the 2-mode transmission in the project vehicle due to its complexity. 

 Engine issues notwithstanding, the project vehicle was deemed ready for on-road testing at 

speeds above 30 mph.  This required shifting the 2-mode transmission into EVT mode 2 for the first time.  

Initial shift attempts were made by first commanding the transmission to shift through Neutral with a one 

second delay when shifting up or down between EVT mode 1 and EVT mode 2.  This was done to 

minimize the chance of damaging the 2-mode transmission.  Once the shift to EVT mode 2 through 

Neutral was achieved and the data thoroughly analyzed, the next step was shifting through Fixed Gear 2 

between EVT mode 1 and EVT mode 2.  Once this function was tested and deemed safe and reliable, the 

vehicle was ready to be fully tested and optimized. 
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4.2 Preliminary Testing 

 During all test driving, CAN communication was monitored in real-time using the Vector 

CANCaseXL and CANoe software.  This software allowed the user to view every message being sent 

over CAN as well as providing traces of selected messages so the user could quickly determine 

parameters such as high-voltage battery SOC, high-voltage current flow, vehicle speed, accelerator pedal 

position, commanded and delivered axle torque, high-voltage battery and power electronics 

temperatures, and transmission range.  Another useful feature of the software was its ability to store and 

replay tests up to 45 minutes in length.  The data collected could also be exported to Excel to be 

analyzed further. 

4.2.1 Preliminary Testing and Optimization 

 During preliminary testing, the project vehicle was subjected to numerous on-road tests to verify 

the function of the different components and to ensure that the control algorithm was robust and free of 

errors.  Although the diesel engine remained in a reduced power state, the vehicle performed reliably 

without issue during initial testing.  Figure 78 is a plot illustrating the diesel engine’s inability to produce 

more than 100 N-m of torque during a test drive. 

 

Figure 78. Diesel Engine Torque Limitation 

Note that although the HCP would command over 200 N-m of engine torque, the diesel engine 

never produced more than 100 N-m.  However, at times when the HCP commanded less than 100 N-m, 

the diesel engine would follow the command. 

 Multiple attempts were made to smooth engine shutdowns, but none were entirely effective.  The 

power to the diesel engine ECU was turned off during shutdowns to eliminate the chance that the ECU 

was injecting extra fuel in an attempt to keep the engine from stalling.  The commanded engine torque 
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during shutdowns was set to 0 N-m.  The only change that had an effect was turning the engine off while 

the vehicle was travelling at speeds higher than 15 mph.  At these speeds the engine shutdowns were 

still rough, but were less noticeable inside the passenger compartment. 

 With the engine producing half of its rated power, the project vehicle would sometimes have 

trouble climbing long grades.  This was due to the electric motors having to provide more power to propel 

the vehicle and thus commanding more current from the high-voltage battery.  The 2-mode transmission 

itself was designed to only allow a few seconds of sustained electric boost when ascending a grade at 

high speeds to protect the electric motors, power electronics, and high-voltage battery from overheating 

[6].  As stated in SAE Paper 2010-01-0826, the electric assist would be ramped out after a few seconds 

of sustained high load operation and would only return upon the driver reapplying the accelerator pedal 

[6].  This was the same behavior exhibited by the project vehicle when climbing hills with the engine 

operating in its reduced power state.  Figure 79 is a plot of the vehicle speed, accelerator pedal position, 

and high-voltage battery current recorded during an acceleration test illustrating the reduction in electric 

boost after about ten seconds. 

 

Figure 79. Electric Boost Reduction 

The bottom plot is the accelerator pedal position.  For this acceleration test, the accelerator pedal 

was held at 100% until the vehicle speed reached about 70 mph.  The brown plot in the middle of the 
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figure is the current coming out of the high-voltage battery.  About ten seconds into the acceleration test, 

the high-voltage battery current began to ramp down and continued decreasing until the accelerator pedal 

was released.  This is shown inside the red circle in the figure. 

 Transmission shift points and engine on/off limits were tested during this time as well to 

determine which combination provided the best balance of vehicle performance and energy efficiency.  

Initially, more emphasis was placed on drivability and performance to ensure that the project vehicle was 

safe to be driven at-speed on public roads.  The engine was required on at vehicle speeds above 20 mph 

and could be turned off again once the vehicle speed dropped below 15 mph.  The 2-mode transmission 

was upshifted once the vehicle speed exceeded 27 mph and downshifted when the vehicle speed 

dropped below 24 mph.  Figure 80 is a plot of engine speed and vehicle speed data during one of these 

initial test runs. 

 

Figure 80. Engine Speed Control 

 The project vehicle was accelerated up to approximately 40 mph with the engine turning on just 

as the vehicle speed reached over 20 mph.  The plot illustrates how the engine speed followed the 

vehicle speed as the project vehicle sped up and slowed down.  Once the vehicle speed dropped below 

15 mph, the diesel engine turned off.  With the diesel engine ECU powered off, the final engine speed 

reported remained on the CAN bus which is why the blue line representing engine speed remains 

constant until the end of the test. 

With these powertrain and high-voltage battery control parameters set, the vehicle was shipped to 

the GM Milford Proving Ground at the end of May, 2011 for the final event in the EcoCAR competition. 
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4.2.2 EcoCAR Final Competition 

 In order to compete in dynamic events at the final competition, each vehicle needed to first pass a 

safety technical inspection.  This inspection checked everything from tire pressure to ground clearance to 

full functionality of the vehicle airbag system.  The project vehicle required a minor change to the control 

algorithm that would disable the vehicle if it were started without the brake pedal depressed.  Once this 

change was made, the vehicle was the eighth to pass the technical inspection and be cleared to compete 

in all dynamic events. 

4.2.2.1 EcoCAR Final Competition Events 

 There were many different events designed to test the performance, build quality, efficiency, and 

emissions of the 16 vehicles.  Some events were scored while others were simply pass/fail.  The scored 

events included the lane change, acceleration, braking, AVL drive quality, and emissions and energy 

consumption tests.  The pass/fail events included the on-road safety evaluation (ORSE) and towing 

events. 

 The on-road safety evaluation was the first event the project vehicle entered after passing safety 

inspection.  The ORSE event involved various handling and braking tests performed at both low and high 

speeds.  The first portion of the ORSE involved driving the project vehicle through a cone slalom at a 

speed of about 30 mph and then performing a moderate stop.  Next, the vehicle was accelerated around 

a skid-pad to a speed of 60 mph and run through another slalom followed by a hard stop.  The final test 

began with accelerating the project vehicle to a speed of 75 mph and performing an emergency lane-

change maneuver followed by a hard stop, engaging the vehicle's anti-lock braking system.  The WVU 

project vehicle passed the ORSE and was allowed to enter the remaining dynamic events 

 The lane change event was a test of the maximum road holding ability of the vehicle, measured in 

g of lateral acceleration.  The vehicle was driven at a constant 70 mph while the driver gradually turned 

the vehicle, reducing the radius of the turn to the point where the vehicle began to lose traction.  The 

WVU vehicle earned the highest score in this event, producing a maximum lateral acceleration of 0.84 g 

and earning the maximum 20 points. 

 The vehicle's acceleration times from 0-60 mph and from 50-70 mph were measured in seconds 

and the score was reported as the average of three runs.  However, the WVU vehicle was unable to 

accelerate from 50-70 mph in the distance allowed and received participation points only for that event.  

Also, the vehicle failed to reach 60 mph on one attempt due to the engine operating in a reduced power 

state so the score represents the average of only two runs instead of three.  Braking distance from 60-0 

mph was measured in feet with the final score being the average of three attempts.  WVU scored 3.2 out 

of 20 points in both of the acceleration tests, lowest of all teams that entered the events.  In the braking 

event, WVU earned 7.94 out of a possible 15 points. 

 The emissions and energy consumption events involved driving the vehicle over a distance of 

160 miles around a 4.5 mile circle track and measuring energy consumption and emissions.  It was during 
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this test that the WVU vehicle broke down with two miles to go.  Because the engine was not producing 

rated power, the high-voltage battery was slowly discharged to the point where it became nearly fully 

discharged.  Although the project vehicle returned to the garage under its own power, the break-down 

lasted for about five minutes and WVU received 16.5 participation points out of a possible 105 points for 

each of these four events.  Were the WVU vehicle able to complete the final 2 miles without breaking 

down, the WVU team would have likely finished the competition in seventh place or better as the highest-

finishing 2-mode vehicle. 

 The dynamic consumer acceptability event involved measuring drive-by noise during acceleration 

and interior noise while driving the vehicle over rough surfaces.  Shift firmness, engine on/off 

smoothness, and sound deadening were all scrutinized for this test.  The diesel engine in the project 

vehicle was prone to rough, noticeable start-ups and shutdowns.  In spite of this, the vehicle passed this 

event and scored the lowest drive-by noise level.  The WVU vehicle earned 39.2 out of a possible 50 

points, second place behind Virginia Tech. 

 The towing event involved pulling a 500 lb trailer up a simulated 5% grade for 20 minutes at a 

constant 45 mph.  The trailer contained an eddy current dynamometer connected to the wheels to apply a 

resistance equivalent to that of driving up a 5% grade and the vehicle was driven around a flat circular 

track.  The WVU vehicle passed the towing event and earned 15 out of 15 points. 

 The AVL drive quality event was a test of vehicle drivability with particular emphasis placed on 

throttle tip-in and powertrain responsiveness.  The vehicle would be stopped and the accelerator 

depressed a set percentage and held until a specified speed was reached.  Then, the accelerator was 

released and the vehicle allowed to coast down to a specified speed.  For this test, the low power output 

of the diesel engine was a benefit as the vehicle earned high scores for smooth responses to accelerator 

inputs.  However, some of the tests required the vehicle to coast down to low speeds and the WVU 

vehicle would not slow down enough due to the amount of creep or off-throttle torque programmed into 

the drive train.  Fortunately, the judge performing the test was willing to overlook that fact and the vehicle 

passed the AVL event scoring 31.86 out of a possible 45 points. 

 At the end of the competition week, the final event was an autocross in which the project vehicles 

were raced against the clock around a cone course laid out in a large paved area inside the Proving 

Ground.  This event was optional and only 10 of the 16 teams participated.  Each team got three runs 

with the best time being the scored time.  The WVU vehicle finished mid-pack with a time of 61.30 sec, 

around seven seconds behind the leader earning 17.08 out of a possible 25 points.  Figure 81 is a 

photograph of the project vehicle in action on the autocross course. 
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Figure 81. WVU Vehicle Navigating the Cones 

4.2.2.2 EcoCAR Final Competition Results 

 After seven days at the Proving Ground, the dynamic events were closed and the scores were 

tabulated.  All teams but one passed technical inspection and were allowed to compete.  Over the course 

of the week, teams broke parts, replaced major components, and one completely redefined their 

propulsion strategy.  Fortunately, the WVU vehicle was very reliable and competed in every event.  Table 

25 displays how the project vehicle performed compared to the stock vehicle in the scored events.  The 

data for the stock vehicle were recorded at the time of the final competition. 

Table 25. Final Competition Performance Results 

  Stock WVU 

Maximum Lateral Acceleration 0.85 g 0.8372g 

Acceleration (0-60 mph) 11.81 sec 25.78 sec 

Acceleration (50-70 mph) 6.76 sec DNF 

Braking Distance (60-0 mph) 141.66 ft 148.53 ft 

 

 The sluggish acceleration performance of the project vehicle compared to stock can be attributed 

to the diesel engine's inability to produce over 100 N-m of torque when the stock 3.6 liter gasoline engine 

was capable of producing 336 N-m of torque.  The lower maximum lateral acceleration and longer 

stopping distance are results of the increased mass of the vehicle when compared to the base vehicle.  

An unmodified base model front-wheel-drive 2009 Saturn Vue with the 2.4 liter engine weighed 3664 lb 

while the WVU vehicle weighed 4552 lb, an increase of 888 lb.  This weight increase was due to the 

addition of the compound-split hybrid drive train and high-voltage battery pack that alone weighed an 

estimated 500 lb.  Additionally, the braking distance could have been shorter were the author not as timid 

during the first run, resulting in a distance of over 150 ft.  Both subsequent attempts were around 145 ft. 
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 Following the completion of dynamic testing in Milford, the project vehicles were shipped to 

Washington, D.C. for the closing ceremonies and finish line event held outside the U.S. Department of 

Energy on L’Enfant Plaza.  In addition to scoring the dynamic events, teams were required to give 

technical presentations in Washington.  There was also a public relations aspect to the competition 

requiring the schools to get media attention for the project.  All of these activities were also scored.  Once 

the final scores were computed, the WVU team officially was scored in 10
th
 place overall.  However, a 10 

point deduction was wrongfully applied to the score for a non-functional air conditioning system.  

Removing this deduction, the WVU team earned a 9
th
 place finish in EcoCAR: The NeXt Challenge. 

4.3 Final Testing & Validation 

 In order to validate the functionality of the compound-split diesel hybrid-electric powertrain and 

control strategy, a dynamic on-road testing plan was established.  Tests were designed to measure the 

performance and efficiency of the project vehicle under different driving conditions.  Because the 

university did not have a functional light-duty chassis dynamometer for simulated on-road testing of 

passenger vehicles, dynamic testing needed to be performed with the project vehicle on the ground 

driving on public roads.  This required the development of testing schedules similar to those used by the 

EPA to measure the fuel efficiency of new automobiles.  Performance characteristics such as 

acceleration and braking would also need to be tested. 

 When searching for suitable locations to conduct on-road testing in Morgantown there were two 

major concerns: elevation changes and traffic.  A flat location was desired to remove any effects grade 

may have had on the vehicle's performance and fuel consumption.  A traffic-free location would be more 

controllable so that repeat tests could be performed under nearly the same conditions.  Also, some of the 

tests would require stopping and starting and it would be safer to perform these tests without other 

vehicles on the road. 

 Flat roads are scarce in and around Morgantown.  Some of the locations considered but not 

chosen included the parking lot around the WVU Law School and the access road around the Suncrest 

Towne Centre shopping area.  These locations, while flat, were too confined to allow safe testing of the 

vehicle at speeds above 30 mph.  However, it was while scouting the location around the Suncrest Town 

Centre that the diesel engine began producing maximum power for the first time since being installed in 

the project vehicle.  This was an interesting development as no changes had been made to the vehicle or 

the control algorithm since it had returned from the EcoCAR final event.  Fortunately, this development 

meant that the subsequent testing would be performed with a fully functioning vehicle. 

 To test the fuel efficiency of the project vehicle, the decision was made to mimic as closely as 

possible the EPA’s test cycles for city and highway driving.  This was done to produce fuel efficiency 

results that could be compared to EPA-rated fuel economy for different vehicles, making the results more 

intuitive and easier to interpret and understand. 
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4.3.1 Mall Urban Driving Schedule 

 The first step in developing an on-road test cycle to simulate city driving was selecting a suitable 

location.  As discussed previously, the major concerns were grade and traffic.  Searching the area and 

using elevation data provided by Google Earth, the selected location for city testing was the loop 

surrounding the Morgantown Mall.  The minimum elevation was 1046 ft and the maximum was 1069 ft, a 

change of 23 ft.  The length of one circuit was 1.02 mi.  This produced an average grade of 0.43% which 

was deemed acceptably flat.  Figure 82 shows the location for city driving testing.  The test route is 

outlined in green. 

 

Figure 82. City Cycle Test Location 

 The EPA runs two different test cycles to obtain what they refer to as "city" and "highway" fuel 

efficiency.  The EPA city cycle, known as the Urban Dynamometer Driving Schedule (UDDS), consists of 

multiple starts and stops with a top speed of 56.7 mph.  During this test cycle, the vehicle is subjected to 

many periods of acceleration and deceleration with one high-speed portion with speeds above 50 mph 

and one period of sustained driving at a speed of about 26 mph.  The test is 1369 seconds in duration, 

covers 7.45 miles, and the average vehicle speed is 19.59 mph [4].  Figure 83 is a trace of the EPA 

UDDS cycle. 
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Figure 83. EPA UDDS City Cycle [4] 

 Using the UDDS as a guide, a new city cycle was designed to be run around the Morgantown 

Mall.  The first step in the design process involved analyzing the UDDS in great detail.  The rate of 

acceleration, vehicle speed, and the lengths of every dynamic and stationary event were scrutinized and 

this information was recorded for use when designing the new cycle. 

 Certain characteristics of the UDDS would have been difficult to replicate at the chosen location.  

For example, a maximum speed of 56.7 mph was deemed unsafe to attain at the Morgantown Mall.  

Additionally, some of the dynamic events in the UDDS lasted for nearly one mile and this would have 

required that the project vehicle disregard two Stop signs during testing which was also decidedly unsafe 

as well as illegal.  However, many of the details of the UDDS were possible to be re-created around the 

selected test route. 

 To build the new city cycle, the vehicle was driven around the Morgantown Mall while a laptop 

was recording all CAN communications including the vehicle speed.  The passenger was charged with 

telling the driver when to accelerate and how quickly, what speed to attain, how long to hold that speed, 

when to stop, and how long to remain stationary based on the notes taken about the UDDS.  Between 10 

and 20 runs were made with each run including three circuits of the test route.  This data was then 

analyzed and averaged to produce the Mall Urban Driving Schedule.  Figure 84 shows the newly 

designed MUDS city cycle. 
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Figure 84. WVU MUDS City Cycle 

 The MUDS included multiple starts and stops, similar to the UDDS with a high speed period at 

the beginning.  The new cycle was very similar to the UDDS, only shortened by around 60%.  This was to 

allow more tests to be performed in the short amount of time in the morning before traffic would become 

an issue.  Table 26 is a comparison between the EPA's UDDS and WVU's MUDS. 

Table 26. UDDS vs. MUDS Comparison 

  UDDS MUDS 

Duration 1369 sec 575 sec 

Distance 7.45 mi 3.2 mi 

Maximum Speed 56.7 mph 45.3 mph 

Average Speed 19.59 mph 20.1 mph 

Number of Stops 17 8 

Average Time Between Stops 80.5 sec 71.9 sec 

 

 The two most important characteristics of the two cycles are the average speed and the average 

time between stops.  A shorter average time between stops indicates that the vehicle would spend more 

time accelerating and braking which are the two most inefficient actions encountered during driving.  

Comparing these values between the two cycles, the MUDS test cycle would produce slightly lower fuel 

efficiency compared to the UDDS due to the slightly higher average speed and shorter average time 

between stops. 
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4.3.2 Route 19 Highway Fuel Efficiency Test 

 Similar to the design of the MUDS city test cycle, the first step in designing a simulated highway 

driving cycle was finding a suitable test location.  High speed testing limited the possible test locations to 

those with speed limits above 50 mph.  The selected location was a 2.98 mile stretch of U.S. Route 19 

beginning just past the Sheetz convenience store at the intersection of U.S. 19 and Route 7/Monongahela 

Boulevard and ending at the first major hill.  The minimum elevation of this route was 903 ft and the 

maximum was 1055 ft, a total change of 152 ft.  This produced an average grade of 0.97%.  While a 

grade of less than 1% is generally accepted as flat, one test would include driving the test route in both 

directions in an attempt to negate any effect grade may have had on the amount of fuel consumed.  

Figure 85 shows the route selected for highway testing.  The test route is outlined in blue. 

 

Figure 85. Highway Cycle Test Location 

 The EPA’s Highway Fuel Efficiency Test (HWFET) is used to measure the “highway” fuel 

efficiency of new vehicles.  This test cycle includes sustained high-speed driving with no stops and less 

acceleration than the UDDS cycle.  The test is 765 seconds in duration, covers a total distance of 10.2 

miles, and has an average speed of 48.2 mph.  The maximum speed attained during the HWFET cycle is 

60 mph [5].  Figure 86 is a trace of the EPA HWFET cycle. 
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Figure 86. EPA HWFET Highway Cycle [5] 

 The HWFET cycle can be broken into two distinct pieces; a period of sustained 45 mph driving 

and a portion of sustained 55 mph driving.  The Route 19 Highway Fuel Efficiency Test was designed 

following the EPA’s HWFET very closely.  Fortunately, the selected stretch of U.S. Route 19 had an initial 

speed limit of 45 mph with an increase to 55 mph in the middle.  This simplified the design process, 

enabling the driver to simply follow the speed limit over the selected test route.  The R19 HWFET cycle 

was constructed by connecting a laptop to the vehicle’s CAN and recording the vehicle speed while 

running the route multiple times.  The data collected during these runs were averaged and the WVU R19 

HWFET cycle was completed.  Figure 87 is a trace of the R19 HWFET cycle. 

 

Figure 87. WVU R19 HWFET Highway Cycle 
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 As stated previously, a full R19 HWFET sequence would include running the route in both 

directions for a total distance of 5.94 miles.  One direction would have the 45 mph portion first and the 

return trip would start with the 55 mph section.  The new cycle was shorter than the EPA’s HWFET cycle 

by about 40%.  Table 27 is a comparison between the EPA’s HWFET cycle and WVU’s R19 HWFET. 

Table 27. HWFET vs. R19 HWFET Comparison 

  EPA HWFET WVU R19 HWFET 

Duration 765 sec 484 sec 

Distance 10.2 mi 5.94 mi 

Maximum Speed 60 mph 59.6 mph 

Average Speed 48.2 mph 45.8 mph 

 

 The R19 HWFET cycle had a lower average speed and fewer accelerations and decelerations 

than the EPA’s HWFET.  Due to these differences, the WVU-designed test cycle would produce slightly 

higher fuel efficiency results than if the vehicle were to run the EPA’s highway cycle. 

 Regardless of the differences between the EPA's test cycles and the cycles designed by WVU, 

these new cycles were very repeatable and could possibly be made into standard cycles for testing future 

advanced vehicle technology project vehicles constructed at the university.  All of the information 

regarding the new cycles will remain at WVU including speed vs. time information and plots of the traces. 

4.3.3 Testing Procedure 

 Prior to on-road testing, a test plan was developed to compare the performance of the project 

vehicle with different control algorithms to determine what configuration produced the best combination of 

fuel efficiency and vehicle performance.  A total of ten different control strategies were written, each with 

different values set for parameters such as transmission shift points, engine on/off limits, high voltage 

battery SOC target, and engine speed.  Each configuration was tested with regenerative braking enabled 

and disabled to determine how this function affected fuel efficiency and drivability. 

 Once the drive cycles were designed and the selected locations deemed acceptable, final testing 

of the project vehicle commenced in the Summer of 2011.  In order to avoid traffic, all testing was 

performed in the mornings between 6 a.m. and 9 a.m. over multiple days.  While testing at night would 

have reduced the risk of running into traffic even more, daylight testing was preferred both for safety and 

repeatability of the tests.  The driver needed to be able to see ahead of the vehicle to locate reference 

points used to set the vehicle speed.  All testing was performed with one passenger in the vehicle to run 

the data logger and inform the driver how fast to drive and when to accelerate and brake. 

 Once the vehicle systems were all up to operating temperature, the first fuel efficiency test could 

be performed with the base control algorithm loaded into the vehicle.  After completing a full test cycle, 

regenerative braking was disabled and the test was run again with the same control algorithm as the 
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previous test.  After running the test with regenerative braking disabled, the project vehicle was parked 

and turned off so the next control algorithm could be flashed to the SCU.  This process was repeated for 

each of the ten control algorithms.  Each control algorithm was tested over both the MUDS and R19 

HWFET cycles. 

 For city testing at the Morgantown Mall, cones were setup around the test route to use as 

reference points for accelerations and stops.  Each MUDS test cycle included three full circuits of the test 

route with each lap including different unique events and varied target speeds.  Each test took roughly ten 

minutes to complete.  If another vehicle entered the test route and affected the cadence of the project 

vehicle while running the MUDS, that test was disregarded and the vehicle was returned to the start point 

to begin that test cycle again. 

 Highway testing simply involved following the posted speed limit over the selected test route.  The 

R19 HWFET route was run in both directions, turning the vehicle around halfway through the test.  

Because the engine was turned off and thus not burning any fuel while the vehicle was stationary at the 

turnaround point, the data logger remained on during this period.  Traffic was more of a concern during 

highway testing as U.S. Route 19 was fairly busy at most times during the day.  Many R19 HWFET cycles 

were thrown out due to traffic intrusions. 

 In addition to fuel efficiency testing, each control algorithm was also subjected to acceleration 

testing.  Testing the acceleration performance of the project vehicle involved recording the vehicle speed 

through CAN and accelerating the vehicle from a standstill to 75 mph.  This test was performed on a 

straight stretch of Route 19 located at the end of the R19 HWFET test route. 

 During fuel efficiency and performance testing, careful attention was paid to the drivability and 

performance of the project vehicle.  Engine starting, transmission shifting, and available axle torque were 

considered the most important characteristics with regard to drivability.  Turning the engine on and off at 

higher vehicle speeds was tested in an attempt to quell the rough nature of the engine during start-up and 

shutdown.  However, this also meant that the vehicle would have less available power during low speed 

acceleration so there was always a trade-off between efficiency, drivability, and performance.  Similarly, 

shifting the transmission at higher vehicle speeds helped provide more low speed axle torque.  However, 

this lowered the efficiency of the electric motors by spinning them beyond their most efficient operating 

speeds.  The purpose of testing ten different control configurations was to find the best combination of 

fuel/energy efficiency and performance. 

4.3.4 Control Algorithm Configurations 

 The different control strategies were based on a single configuration.  The base configuration was 

built with the various parameters set in the middle of their respective safe ranges to allow adjustments to 

be made in either direction in an attempt to improve efficiency, drivability, and/or performance.  Table 28 

lists the values set for the control parameters being tested in the base program. 
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Table 28. Base Control Algorithm 

Shift Up Speed 30 mph 

Shift Down Speed 25 mph 

Engine On Speed 20 mph 

Engine Off Speed 15 mph 

Target SOC 45% 

 

 The design of the 2-mode transmission necessitated that the engine be running at vehicle speeds 

above 30 mph to decrease the rotational speed of the pinion gears in the planetary gear set.  Because of 

this fact, the maximum vehicle speed for engine-off operation was set at 28 mph to protect the 

transmission.  The parameters listed in the table were all changed and a total of ten unique control 

algorithms were written and tested. 

 The ten different control algorithms were all based on the base control algorithm with only one 

parameter adjusted with the final best configuration containing all the best-performing adjustments.  For 

example, one configuration included a lowered upshift speed while another contained a higher upshift 

speed.  The same was done to test the effect of raising or lowering the downshift speed as well as the 

vehicle speeds at which the engine was turned on and off.  The target state-of-charge of the high-voltage 

battery was adjusted as changing this parameter affected the ability of the vehicle to maintain a suitable 

SOC buffer in the high-voltage battery.  Each control algorithm was tested for fuel efficiency and 

drivability over the MUDS and R19 HWFET cycles as well as performance tested for 0-60 mph and 50-70 

mph acceleration. 

4.3.5 Final Vehicle Control Algorithm 

 The final control algorithm provided the best balance between vehicle performance and fuel 

efficiency.  Table 29 lists the control parameters set in the final vehicle control algorithm. 

Table 29. Final Control Algorithm 

Shift Up Speed 35 mph 

Shift Down Speed 30 mph 

Engine On Speed 25 mph 

Engine Off Speed 20 mph 

Target SOC 50% 

 

 The best control configuration included higher upshift and downshift speeds as well as higher 

engine on and off speed limits.  Raising the transmission shift point caused the 2-mode transmission to 

spend more time in the low-range mode 1.  Mode 1 provided more mechanical advantage by producing 
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numerically higher gear ratios, improving the acceleration performance of the project vehicle.  However, 

this meant that more fuel and electrical energy was being consumed at low vehicle speeds.  This effect 

was offset by raising the vehicle speeds at which the engine was required to be turned on and off.  At low 

vehicle speeds when the driver was requesting low axle torque, the engine could remain off for longer, 

reducing fuel consumption during city driving.  Varying the target state-of-charge of the high-voltage 

battery had little effect on the project vehicle’s ability to maintain suitable charging and discharging 

buffers. 

 This configuration produced the best balance between acceleration performance and overall 

energy efficiency.  For instance, increasing the upshift point of the transmission to 45 mph produced 

quicker acceleration times and improved low-speed throttle response, but city fuel economy was 

compromised.  Turning the engine on and off at lower vehicle speeds also improved low-speed vehicle 

performance, but this also produced undesirable vibrations that were transferred into the passenger 

compartment.  By turning the engine on and off at higher vehicle speeds, these vibrations blended into 

those produced by the road surface and thus were less noticeable to passengers and the driver. 
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5. Discussion & Results 

5.1 Fuel Efficiency & Performance Results 

Once the diesel engine began producing full power, final vehicle testing commenced in June of 

2011.  This was an important development because the vehicle could be tested for fuel efficiency and 

performance while fully functioning as-designed.  In addition to on-road testing, the PSAT simulation 

model was updated to include the final control algorithm in an attempt to validate the simulation results. 

5.1.1 Simulation Validation 

To validate the simulations performed in PSAT, the new city and highway fuel efficiency test 

cycles were transferred into the simulation program.  The final vehicle control algorithm was simulated in 

PSAT before it was tested on-road.  Table 30 displays the results of performance testing in PSAT and the 

actual on-road test results. 

Table 30. PSAT Performance Simulation Validation 

  PSAT On-Road Difference 

0-60 mph Acceleration 14.6 sec 16 sec -9.6% 

50-70 mph Acceleration 8.6 sec 10 sec -16.3% 

Braking Distance 150 ft 148.5 ft 1.0% 

 

 Much time was spent building the PSAT simulation so that it matched as closely as possible the 

project vehicle built at WVU.  The PSAT simulation produced acceleration times lower than those 

recorded during on-road testing.  However, each acceleration time produced by the simulation was only 

1.4 seconds lower than the actual acceleration times achieved by the project vehicle.  The differences 

could have been due to the unknown algorithm running in the HCP and how torque was divided between 

the diesel engine and electric motors.  In addition, PSAT did not take into account the elevation of 

Morgantown as well as the local atmospheric pressure, air temperature, and humidity on the day of on-

road testing.  The braking distance from 60-0 mph reported by PSAT was essentially identical to the 

actual on-road result. 

While PSAT was capable of simulating vehicle performance, it was primarily developed as a fuel 

efficiency testing program for advanced and alternative vehicles such as hybrid-electrics like the WVU 

project vehicle.  Fuel efficiency results were listed as city, highway, and a calculated combined value.  

The EPA calculates combined fuel economy according to the following equation [53]: 
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In this calculation, city fuel efficiency is weighted more heavily than highway fuel efficiency.  Table 31 

displays the results of fuel efficiency testing over the MUDS and R19 HWFET cycles in PSAT and the 

actual on-road results.  Note that the on-road testing results are listed in gasoline-equivalent miles per 

gallon. 

 Table 31. PSAT Fuel Efficiency Simulation Validation 

  PSAT On-Road Difference 

MUDS City Fuel 
Efficiency 

28.4 mpgge 24.5 mpgge 13.6% 

R19 HWFET Fuel 
Efficiency 

29.4 mpgge 31.5 mpgge -7.1% 

Combined Fuel 
Efficiency 

28.8 mpgge 27.2 mpgge 5.5% 

 

While the combined fuel economy reported by PSAT was close to the actual observed fuel 

economy, the city fuel economy predicted by PSAT was higher than the actual city fuel economy by 3.9 

mpgge.  The highway fuel efficiency predicted in PSAT was 1.1 mpgge lower than the actual on-road 

highway fuel efficiency.  These differences could have been due to the control algorithm governing the 

split of engine and electrical power in the inverter module and production hybrid control processor, neither 

of which were modified.  The program in the HCP was approximated based on data collected during on-

road testing and written into PSAT for simulation.  Regardless, the simulation built in PSAT was deemed 

to be a valid indicator of both vehicle performance and combined fuel economy which, according to the 

EPA, is the most accurate predictor of observed vehicle fuel efficiency assuming typical vehicle usage 

and driving characteristics. 

5.1.2 On-Road Testing Results 

5.1.2.1 Performance Testing Results 

The performance of the project vehicle was tested by measuring its ability to accelerate and 

brake.  After weighing the vehicle with a full tank of fuel and no driver, the vehicle’s 0-60 mph and 50-70 

mph acceleration times were taken.  Then the project vehicle’s stopping distance from 60-0 mph was 

measured.  Table 32 lists the results of on-road performance testing. 

Table 32. On-Road Performance Test Results 

  Base 2.4L Vue 3.6L 2-Mode Vue WVU 2-Mode 

0-60 mph Acceleration 11.8 sec 7.3 sec 16 sec 

50-70 mph Acceleration 6.8 sec - 10 sec 

Braking Distance 141.7 ft 140 ft 148.5 ft 

Curb Weight 3875 lb 4125 lb 4552 lb 
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The increased mass of the project vehicle was likely to blame for its sluggish acceleration 

performance and increased braking distance compared to both the base Vue and the gasoline-powered 

2-mode version.  The 1.3 liter diesel engine also produced less torque than the 3.6 liter V-6 by a margin 

of 136 N-m.  However, the project vehicle performed much better once the engine began producing 

maximum power.  Table 33 shows the improvement in acceleration performance from the EcoCAR 

acceleration event results where the engine torque was limited to 100 N-m. 

Table 33. Acceleration Improvement with Full Engine Power 

  
EcoCAR  
Results 

Full Engine 
Power 

Improvement 

Acceleration (0-60 mph) 25.78 sec 16 sec 37.9% 

Acceleration (50-70 mph) DNF 10 sec - 

 

The project vehicle was unable to reach a speed of 70 mph at the final event in Milford due to the 

limited engine power.  At full engine power, the project vehicle was capable of reaching speeds in excess 

of 90 mph. 

5.1.2.2 Fuel Efficiency Testing Results 

With the final powertrain control algorithm loaded into the SCU and the diesel engine producing 

its rated power and torque, the project vehicle was tested on-road over both the MUDS and R19 HWFET 

cycles for fuel efficiency and drivability.  Table 34 lists the on-road fuel economy testing results. 

Table 34. On-Road Fuel Efficiency Test Results 

  Base 2.4L Vue 3.6L 2-Mode Vue WVU 2-Mode 

City Fuel Economy 19 mpg 27 mpg 
28 mpg              

(24.5 mpgge) 

Highway Fuel Economy 26 mpg 30 mpg 
36 mpg            

(31.5 mpgge) 

Combined Fuel Economy 22.2 mpg 28.4 mpg 
31.6 mpg         

(27.2 mpgge) 

 

The project vehicle performed without fault during on-road testing and returned improved fuel 

economy when compared to the base 2.4 liter Vue.  City fuel efficiency improved by 28.9% and highway 

fuel economy improved by 21.2% compared to the base vehicle based on the calculated gasoline 

equivalent results.  Combined fuel economy improved by 22.5% on a gasoline equivalent basis.  While 

highway fuel efficiency improved by 5% compared to the 3.6 liter 2-mode Vue on a gasoline equivalent 

basis, city fuel economy reduced by 9.3%.  Gasoline equivalent combined fuel efficiency reduced by 4.2% 

compared to the gasoline-powered 2-mode Vue.  This indicates that the project vehicle became less 

energy efficient after replacing the 3.6 liter gasoline engine and small NiMH battery pack with the 1.3 liter 
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diesel engine and A123 lithium-ion battery system.  This could be attributed to both the increased mass of 

the project vehicle and the powertrain control algorithm.  Unfortunately, the required voltage of the high-

voltage battery necessitated the size and mass of the high-voltage battery installed in the project vehicle. 

However, while gasoline equivalent fuel economy is indicative of an alternative vehicle’s actual 

energy efficiency compared to conventional gasoline-powered vehicles, volumetric fuel economy is what 

drivers will experience in real-world driving.  In this respect, the project vehicle was able to improve upon 

the gasoline-powered 2-mode Vue’s fuel economy.  Table 35 shows how the project vehicle’s gasoline 

equivalent and volumetric fuel economy compared to the base Vue and gasoline-powered 2-mode. 

Table 35. Project Vehicle Fuel Economy Comparison 

  

Gasoline Equivalent Volumetric 

Improvement 
over Base 

Improvement 
over 2-Mode 

Improvement 
over Base 

Improvement 
over 2-Mode 

City 28.9% -9.3% 47.4% 3.7% 

Highway 21.2% 5.0% 38.5% 20.0% 

Combined 22.5% -4.2% 42.3% 11.3% 

 

Because diesel fuel contains more energy per gallon than gasoline, equivalent fuel economy is 

always lower than volumetric fuel economy.  Switching to the real-world volumetric consumption 

comparison, the project vehicle achieved 11.3% better combined fuel efficiency compared to the 

gasoline-powered 2-mode Vue and improved upon the base model’s combined fuel economy by 42.3%. 

5.1.2.3 Emissions Reduction Results 

While the total exhaust emissions were not directly measured, the carbon dioxide emissions can 

be calculated based on the fuel economy results according to the following equation: 

 

    
           

           
            (6) 

 

The CO2 produced from burning one gallon of gasoline is 8.8 kg and 10.1 kg from burning one gallon of 

diesel fuel.  The fuel economy used in the calculation should be the actual volume-based fuel economy of 

the vehicle.  This equation gives results in terms of grams per mile of vehicle travel.  Table 36 lists the 

results of the CO2 analysis. 
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Table 36. Carbon Dioxide Production Results 

  Base 2.4L 3.6L 2-Mode WVU 2-Mode 

Combined Fuel Economy 22 mpg 28.4 mpg 31.6 mpg Diesel 

CO2 From Fuel 8.8 kg/gal 8.8 kg/gal 10.1 kg/gal Diesel 

CO2 Produced 400 g/mi. 310 g/mi. 320 g/mi. 

Reduction 20% -3.2% - 

 

The project vehicle reduced carbon dioxide emissions by 20% compared to the base 2.4 liter 

Vue.  However, the higher carbon content of diesel fuel compared to gasoline caused the CO2 emissions 

of the project vehicle to be 3.2% higher than the emissions from the gasoline-powered 2-mode Vue.  For 

further comparison, a non-hybrid 3.6 liter Vue achieved 19 mpg combined fuel economy, producing CO2 

at a rate of 463 g/mi.  The project vehicle improved upon the non-hybrid 3.6 liter Vue’s carbon dioxide 

emissions by 30.9%. 

5.2 Conclusions 

The three year vehicle design process for this project included solving countless problems related 

to the control algorithm and overall vehicle layout and design.  Along the way, the proposed architecture 

was modified slightly but the resulting project vehicle was essentially constructed as-intended when the 

compound-split diesel hybrid-electric powertrain was selected during the simulation and modeling 

activities.  While the project vehicle achieved 4.2% lower combined fuel economy than the pre-production 

gasoline-powered 2-mode Vue, it returned 22.5% improved fuel economy compared to the base 2009 

Saturn Vue.  In addition, the project vehicle produced 3.2% more CO2 than the gasoline 2-mode but 20% 

less than the base vehicle. 

While some of the differences between the actual vehicle performance and the original PSAT 

model results may have been due to the limitations of the computer model, the control algorithm was 

likely responsible as well.  The final powertrain control strategy developed through this research was 

mostly based on vehicle speed while the control strategy used during the preliminary modeling exercise 

was much more complicated, utilizing fixed gear ratios in the transmission and varying engine speed and 

torque based on the input command from the accelerator pedal.  The revised PSAT results listed in Table 

35 on page 115 included a more accurate representation of the final control algorithm with the project 

vehicle missing the combined fuel efficiency PSAT prediction by 5.5%. 

The project vehicle achieved significantly improved fuel efficiency and reduced CO2 emissions 

compared to the base vehicle through the implementation of the diesel hybrid-electric powertrain and 

control strategy.  The control algorithm included all of the desired hybrid functions and proved to be very 

robust throughout testing with the diesel engine functioning properly.  The on-road test plans developed 

were very repeatable and may be used by future advanced vehicle technology projects at the university.  
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A CUV that holds five people comfortably and returns 36 mpg diesel (31.5 mpgge) would be very 

appealing in the current automotive marketplace.  The completed project vehicle drove well, performed 

adequately, achieved excellent fuel economy, and maintained all of the functions and capabilities 

expected of new cars through the implementation of the powertrain control algorithm developed as a 

result of this research. 

5.3 Recommendations 

Although further testing of the project vehicle is currently on-hold until the transmission can be 

repaired, there are some recommendations the author can make regarding future testing and control 

algorithm development. 

5.3.1 Fuel Efficiency Testing 

The fuel efficiency testing performed in the Summer of 2011 was based solely on CAN 

communication regarding the instantaneous fuel injection rate of the diesel engine and vehicle speed 

information.  The results were calculated based on the CAN data recorded during the different test runs.  

Ideally, this type of testing would be performed by removing and weighing the fuel tank prior to and 

immediately after completing the designated test cycle.  This would have been difficult to accomplish 

based on the locations of the WVU-designed city and highway test cycles due to the amount of traffic that 

may have been encountered en route to either location. 

Traffic, as well as the different grades between the Engineering Sciences Building and the test 

locations, would reduce the repeatability of fuel efficiency testing so the CAN-based method was 

selected.  If a mass-based method were employed, the best way to eliminate these repeatability issues 

would be to remove and weigh the fuel tank on-site at the test location.  However, removal of the fuel tank 

currently installed in the project vehicle would be difficult without access to a vehicle lift so a fuel tank 

could be designed and employed specifically for fuel economy testing.  For ease of removal, the new fuel 

tank could be installed in the cargo area of the vehicle with new fuel lines run up to the engine.  The test 

crew would need to bring extra fuel and an accurate scale for weighing the fuel tank before and after each 

test run. 

5.3.2 Future Control Development 

The final control algorithm loaded into the project vehicle included a somewhat simplistic method 

for controlling the compound-split diesel hybrid-electric powertrain and high-voltage battery.  The 2-mode 

transmission installed in the project vehicle was a new and untested technology at the time and the 

control algorithm was written conservatively in an effort to protect the transmission hardware.  The 

commanded engine speed was directly related to vehicle speed such that no matter what axle torque the 

driver commanded with the accelerator pedal, the engine speed would not change until the vehicle speed 

changed.  Ideally, if the driver commanded maximum axle torque, the engine would speed up to a point 
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where it could produce as much torque as possible in an attempt to meet the driver’s torque request.  A 

load-based engine speed control algorithm would provide improved vehicle performance at low speeds 

and improve the high-speed fuel efficiency of the project vehicle as the current control algorithm has the 

diesel engine spinning at 4000 rpm when the vehicle is travelling 70 mph.  In addition, limiting the engine 

to operate only in its most efficient speed and torque envelope would further improve the fuel efficiency of 

the project vehicle. 

Likewise, the transmission shift strategy could also be converted to a load-based method where 

the transmission would allow downshifting at higher speeds if the driver requested more axle torque than 

could be provided in the current gear or EVT mode.  The current transmission control algorithm only 

makes use of the two EVT modes with fixed gear 2 used for speed-matching during the shift between 

modes.  This was done at the recommendation of the GM engineers as requesting fixed gears required 

more in-depth control of the 2-mode transmission.  However, under certain circumstances such as towing 

heavy loads or traversing grades at high speeds, it would be more energy efficient to utilize one of the 2-

mode transmission’s four fixed gear ratios instead of the EVT modes.  Future control algorithm 

development could explore commanding fixed gear ratios at high speeds. 
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