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ABSTRACT 
The Effect of Different Road Load Implementation Strategies on Fuel Economy of USPS 

Step Vans 

Seiar Ahmad Zia 

  

 West Virginia University (WVU) is continuously improving and updating their testing 
quality, procedures and goals. As tests are conducted on the Transportable Heavy Duty Vehicle 
Emissions Testing Laboratory (THDVETL), real world implementation is crucial in order to 
compare and contrast vehicles within fleets, use of exhaust aftertreatment devices and hybridized 
vehicles.  WVU implements road loads on the chassis dynamometer using a method described in 
40 CFR §86.1229-85. The proposed method requires three variables from the vehicle: maximum 
height, maximum width and vehicle weight. The issue with this method arises due to the fact that 
it does not cover a wide range of heavy duty vehicle physical characteristics.  
 An alternative form of implementing road loads is to conduct on-road coastdowns and 
use regression analysis to determine the vehicles‟ characteristics such as coefficient of drag and 
coefficient of rolling resistance. The coastdown procedure involves driving a vehicle to a speed 
and setting the transmission to neutral and letting the vehicle slow until it reaches a complete 
stop. Since there is no power being transmitted to the wheels, regression analysis of the speed 
versus time can be used to determine physical characteristics of the vehicle. Using the road load 
equation, which consists of four components (hill climbing load, inertial load, aerodynamic 
resistance and rolling resistance) one can implement real world power demand on the chassis 
dynamometer.  
 20 tests were conducted using the FTP-75 test schedule and two USPS step vans with one 
being a hybridized version. Four test configurations were used for this study, loaded and 
unloaded for each of the two vehicles. The empirical method of road load implementation proved 
to be more suitable for this USPS step van compared to the theoretical method. The theoretical 
method assumes that the vehicle‟s aerodynamic drag is 0.735 compared to the empirical 
method‟s equates to 0.669. WVU uses eddy current dynamometers as a power absorption system 
to simulate aerodynamic drag and rolling resistance. The power absorption setting for the 
theoretical model was higher than that of empirical model, as expected. A noticeable fuel 
economy comparison for both vehicles arose due to more aggressive setting from the theoretical 
method compared to that of empirical method. The hybrid vehicle showed a 34.4% better fuel 
economy compared to the baseline vehicle using the empirical method. The theoretical method 
showed an improvement of 24.8% from the hybrid vehicle compared to the baseline vehicle. 
Comparing the amount of work done for each vehicle during the test cycles, the theoretical 
method showed a 2.29% difference between the two vehicles compared to the empirical method 
of 15.0%. This study proves that the theoretical model forces the hybrid vehicle to operate at 
higher loads where the full potential of the system is not used.   
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1. Introduction 
 

 Chassis dynamometer testing has been developed to evaluate exhaust emissions and fuel 

economy based on a test schedule developed to simulate vehicles‟ behavior on the road. West 

Virginia University (WVU) Center for Alternative Fuels, Engines and Emissions (CAFEE) has 

specialized in chassis testing over the past decade with many projects [1-5] on heavy duty 

vehicles using their Transportable Heavy Duty Vehicle Emissions Testing Laboratory 

(THDVETL) which employs a chassis dynamometer capable of transient vehicle operations. The 

benefits of using the THDVETL for emissions testing are repeatability of the test schedule and 

providing a cost effective means of generating emissions data for customers to use for United 

States regulation [6]. Other benefits of the THDVETL are local businesses‟ inventory checks and 

verification of aftertreatment devices and retrofits. In order to implement real world road loads 

on chassis dynamometers, power absorber settings must be computed for simulation which 

involves using the road load equation [7]. The unknowns for the road load equation can be 

determined from either theoretical or empirical methods.  

1.1. Goal 

 The primary goal of this study is to compare and contrast an empirical method of 

coastdowns to a theoretical method through the Federal Test Procedure 75 cycle using WVU‟s 

THDVETL and two United States Postal Service (USPS 2-ton) medium duty trucks. The 

theoretical model, which was the primary method of determining road loads for WVU, involves 

using a model developed by the Environmental Protection Agency (EPA). The alternative 
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method uses the on-road coastdowns and regression analysis to determine the road load 

characteristics.      

1.2. Objectives 

 The primary objective of this study was to show how empirical coastdowns can be more 

representative of determining the road load constants for chassis testing than the theoretical 

method that is implemented by EPA. This study could have been done with just a traditional 

medium duty diesel vehicle, but the addition of a hybrid diesel vehicle will provide another set of 

data to compare for repeatability of the different coastdown methods.  

 In addition to investigating the different coastdown methods, another objective was to 

compare the performance and fuel economy of the baseline vehicle to that of a hybrid vehicle. 

The work done by each vehicle should be similar, but with hybridization of one vehicle equates 

to better fuel economy. The proper implementation of road loads is crucial in comparing a 

hybridized vehicle to a baseline vehicle through chassis dynamometer testing.     

 Lastly, this study will see how an aggressive power absorber setting influences the 

performance of the hybrid vehicle and fuel economy. The settings of the power absorbers are 

determined by the coastdowns.   
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2. Literature Review 
 

 In order to verify road load conditions, the past literature of fuel economy and actual on 

road behavior of vehicles during chassis testing were examined. With the price and demand for 

fuel increasing, fuel economy is one of the three main concerns of the engine manufacturers. The 

other two concerns are reduction of Oxides of Nitrogen (NOx) and Particulate Matter (PM) [8, 

9]. One way to improve fuel economy is to reduce a vehicle‟s transient power usage during 

driving and operate at average power during the demand period. Reduction of power during 

transient demand can be accomplished by integrating a vehicle with a hybrid system [2, 10]. 

During the period of acceleration the hybrid propulsion system would drive the vehicle while the 

internal combustion engine would be the secondary propulsions system. Numerous papers have 

been published showing the benefits of hybridization of vehicles in improving fuel economy and 

reduction of emissions. The results of these publications will be discussed in more detail in the 

following subsections of this thesis.  

 In order to investigate fuel economy and emissions from a fleet of vehicles, a test 

schedule must be used that is best representative of the actual vehicle usage. CAFEE specializes 

in vehicle data logging and developing cycles that are based on the vehicle‟s driving behavior 

during its operation [3, 4, 11]. Data logging involves monitoring parameters such as speed, 

fueling, throttle position from the ECU and/or instrumented hardware on the vehicle.  
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2.1. Hybrid Vehicles and Fuel Economy 

 

2.1.1. Hino Motors 

Hino Motors of Japan successfully developed light duty hybrid trucks that showed three 

significant achievements: reduction in emissions of NOx, reduction in emissions of PM, and 

increased fuel economy. Hino Motor‟s Hybrid Vehicle Development Division completely 

redesigned their first light duty hybrid truck with the goal of reducing the size of components of 

hybrid systems and reducing costs. Hino recognized parallel hybrids as the most cost effective 

design for development due to the attracted attention from transportation and grocery store 

commercial businesses. The addition of hybrid vehicles can benefit a truck fleet that has a route 

with many delivery stops. According to Hino, the design of parallel systems is simple with the 

engine being the main contributor of propulsion for the vehicle and the hybrid propulsion being 

mainly used for taking off and accelerating. The fuel consumption of the vehicle decreases while 

the hybrid system operates during transient and high torque operations, and the diesel engine 

operates at lower speeds. In conclusion, Hino Motors achieved fuel economy improvements of 

18% to 48%, which were evaluated using various assessment patterns. Concurrently, NOx 

emissions were reduced by 10% and PM was reduced by 50%. These achievements come from 

multiple sources such as regenerative control, motor assist control, engine control, weight 

reduction, and optimization of the overall hybrid system over the course of the evaluation [12].  

 

2.1.2. Idaho National Laboratory 

 US Department of Energy‟s Advance Vehicle Testing Activity (AVTA) conducted tests 

baseline performance and fuel economy on a fleet of hybrid passenger and small duty trucks 

from 2004 to 2006 accumulating 1.4 million miles between 28 hybrid electric vehicles. Even 
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though most of the vehicles tested in this study were non-diesel heavy duty vehicles, the study 

presented a detailed explanation of various methods of fuel economy testing, battery life cycle 

testing, fleet maintenance, and repair cycle costs. The performances of non-hybrid vehicles were 

equivalent to the performances of hybridized vehicles of the same model. Some classes of 

vehicles were designed to maximize performance and some vehicles, such as the Toyota Prius 

and the Honda Insight, were primarily concentrating on increasing the fuel economy. AVTA also 

demonstrated the significant impact of air conditioning usage on fuel economy. Fuel economy 

decreased an average of 21% when air conditioning was in use at the maximum during the SAE 

J1634 tests. SAE J1634 technical procedure was used for fuel economy testing. Hybrid electric 

vehicle repair and maintenance increased considerably as the vehicle progressively aged 

according to AVTA. There were no correlations between battery degradation and fuel economy 

loss during battery cycle testing. The Toyota Prius demonstrated a 61.6% reduction in the battery 

pack‟s capacity to hold charge. This decreased the fuel economy by 1.3%. AVTA advised that 

the 1.3% change in fuel economy could also be affected by drive train efficiency, driver 

variability, and sample size of testing. Similar hypotheses can be stated about heavy duty 

vehicle‟s battery performance affecting the fuel economy efficiency [13].  

 

2.1.3. Organization for the Promotion of Low Emission Vehicles (LEVO) 

 Takada and et al. [10] investigated fuel economy and NOx emissions from light duty 

hybrid truck in actual traffic conditions. The significance of this study was that it showed 

correlation among two comparisons consisting of four different factors: fuel economy of the 

baseline vehicle vs. fuel economy of the hybrid vehicle, and NOx emissions of the baseline 

vehicle vs. NOx emissions of the hybrid vehicle. Another factor that was evaluated was the 

payload of the vehicle over the course of the testing. The hybrid vehicle was a 2003 Hino 2 ton 
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grocery delivery truck with a parallel hybrid system consisting of motor/generator, control unit, 

and battery storage system. The baseline model of this truck did not exist, so a similarly designed 

vehicle was used to model baseline performance and emissions. The test route consisted of four 

sections: suburban trip 1, highway trip, urban trip, and suburban trip 2. The total distance the 

route covered was about 51.8 kilometers and the average speed of the tests was between 22.3 

km/hr to 29.6 km/hr. The variation of the average speed was caused by the traffic conditions 

among the tests. Payloads were set to full, half, and light loading to see how payloads influence 

fuel economy and NOx emissions for the hybrid vehicle. The results of fuel economy testing 

showed an improvement of 20% to 40% during the urban trip and both of the suburban trips 

compared to the baseline truck. There were no improvements in fuel economy on the highway 

for the hybrid vehicle compared to the baseline vehicle. The emission of NOx improved by 30% 

to 40% compared to the baseline truck. NOx improvements include the effect of differences in 

engine specification, engine control strategy of the hybrid, and the idling stop mechanism. NOx 

emissions was proportional to vehicle payload during the urban trips and both suburban trips, 

and fuel economy was inversely proportional for trips. Fuel economy and NOx emission showed 

to be constant for the highway trip for the payloads. In the end, the hybrid vehicle demonstrated 

improvements in fuel economy and NOx emissions for the urban and both suburban trips which 

had utilized many stop-and-go modes. The hybrid vehicle showed to be ineffective during the 

highway trip and it can be concluded not to be cost effective for the truck fleets.   
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2.1.4. West Virginia University 

 West Virginia University THDVETL was used to characterize emissions from a diesel 

hybrid-powered transit bus, a conventional-drive diesel-powered transit bus, and liquefied 

natural gas (LNG)-powered transit buses. This program utilized three vehicles for testing: a 

series-drive diesel hybrid-electric transit bus, a conventional-drive diesel-powered transit bus, 

and a conventional-drive LNG-powered transit bus. This study followed SAE J2711 

Recommended Practice for testing hybrid-electric vehicles for buses. SAE J2711 recommended 

using the Manhattan cycle, the Orange County Transit Authority cycle (OCTA), and the Urban 

Dynamometer Driving Schedule (UDDS) presenting low-speed operations, intermediate-speed 

operations, and high-speed operations, respectively. This study also emphasized the use of longer 

test cycles, because a single drive cycle is unlikely to affect the state of charge (SOC) at a level 

sufficient to cause the engine management system to provide additional power to the 

rechargeable energy storage system (RESS). The use of longer test cycles increases the 

probability of a smaller net energy change (NEC). SAE J2711 recommended using test cycles 

around 30 minutes in length. Through the use of statistics, all schedules were modified to fit SAE 

J2711 criteria. All three vehicles were prepared in accordance to CFR Title 40, Part 86 Subpart 

N, SAE J2711, and WVU THDVETL standard operating procedures. For road load simulation, 

WVU used the coastdown experimental method to determine aerodynamics of the vehicle and 

rolling resistance of the tires. For SOC correction, SAE J2711 recommends determining the 

energy used by the vehicle from fuel and storage devices. If the % NEC over the cycle is less 

than 1%, then there is no need for SOC correction. If the % NEC over the cycle is between 1% 

and 5%, then SAE J2711 outlines the procedure for emissions and fuel economy correction. And 

if the % change is greater than 5 %, the test is considered invalid and must be repeated. A 

significant amount of motive energy is stored onboard the vehicle within RESS and the vehicle 
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may remove or add to the energy in the reservoir, depending on the duty cycle. To compare the 

emissions and fuel economy between hybrid vehicles and conventional vehicles, the data must be 

corrected so that the NEC in the RESS is essentially zero. In conclusion, the hybrid-electric bus 

showed the potential to reduce NOx emissions by 50% compared to the conventional bus and by 

10% compared to the LNG powered bus. PM was reduced by 90%, on average, over the different 

test cycles performed compared to the conventional bus. It was recognized that the hybrid bus 

was equipped with a catalyzed particulate filter, whereas the conventional diesel bus was 

equipped with an oxidation catalyst. The hybrid bus showed an average carbon monoxide (CO) 

reduction of 70% over the four test cycles and hydrocarbon (HC) reduction of 98% compared to 

the conventional diesel bus.  There was no fuel economy improvement from the hybrid bus 

compared to the conventional bus, as was expected [14, 15]. 

 

2.1.5.  West Virginia University 

 West Virginia University THDVETL was used to compare five Lockheed Martin-Orion 

Hybrid-diesel buses to conventional buses. The vehicles were exercised through three cycles: the 

Manhattan cycle, the Central Business District cycle, and the New York Bus cycle. The 

significance of this project was oriented towards the importance of SOC correction and 

emissions benefits of regeneration. WVU showed comparison of actual emissions produced by 

the energy used to propel the vehicle to the baseline vehicle. This study used similar laboratory 

procedures and methods as a previous WVU study [5]. For hybrid testing, WVU used SAE 

J1711 procedures for testing the hybrid vehicles and even though these procedures are for light 

duty vehicles, they include similar practices for SOC correction as SAE J2711. The data show 

that the emissions of NOx and PM were reduced. NOx emissions were reduced from 18% to 40% 

depending on the cycle and fuel utilized. Carbon balance was utilized in this study for 
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measurement of fuel economy. NOx, CO2, and battery SOC were graphed versus time to show 

the how they are correlated to each other and why SOC correction is required [2, 15].   

 

2.2. Chassis Testing and Road Load Implementation 

  

2.2.1. West Virginia University 

 WVU developed a heavy-heavy duty diesel truck (HHDDT) test schedule from speed-

time data gathered from 171 heavy duty trucks. The original schedule was considered too 

aggressive for direct application for HHDDT emissions characterization on a chassis 

dynamometer. Most class 8 vehicles were determined through prior testing to be unable to follow 

the original schedule on a chassis dynamometer due to excessive acceleration and deceleration. 

The new test schedule that was developed used the data from the 171 heavy duty trucks which 

had produced 1,600 hours or 5.8 million records which was gathered by a global positioning 

system (GPS). The researcher‟s development analysis and methodology used HHDDT trips and 

microtrips. A trip is defined as engine key on and key off and microtrip is defined as stop-to-stop 

vehicle travel. The results from the data analysis revealed distinct multi-mode patterns of 

operation defined as idle, creep, transient, and cruise modes and were then reflected in the 

schedule development [4]. Following preliminary testing, the researchers adopted a test protocol 

that set the time between each mode to 10 minutes and contained specific driver instructions. The 

filtered data reduced acceleration and deceleration rate by approximately 50%.  
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2.2.2. National Renewable Energy Laboratory  

 The National Renewable Energy Laboratory (NREL) in conjunction with Oshkosh Truck 

Corporation developed metrics for evaluating duty cycles from a vehicle‟s energy usage. This 

study is significant in that it compared hybrid and non-hybrid energy usage independent of the 

vehicles being used since the equations are derived from the road load equation. By deriving the 

energy equation from vehicle motion, three applications were introduced. First, metrics were 

developed to compare and contrast duty cycles from an energy standpoint for their similarities 

and applicability for hybrid vehicle usage. Second, an equation was formulated from the metrics 

of the duty cycles to determine the fuel consumption of the vehicle over the target application. 

The last application includes using a metric developed to check predictions and comparison of 

hybrid advantage based on how non-propulsion fuel consumption compares to fuel for thrust 

force of the vehicle [11].  

 

2.2.3. General Motors  

  General Motors implemented a theoretical basis of coastdown testing for establishing the 

dynamometer loads which simulate the vehicle road loads during fuel economy and emissions 

testing. Correction for the effects of the ambient conditions on road is also defined in this project. 

This study was approached by defining the form of the major forces acting on a car as a function 

of speed with some assumptions, including a level road, steady winds, wind speed being less 

then vehicle speed, and aerodynamic yaw angles remaining small. Through a series of testing 

and analyses, it was confirmed that wind is the major source of variance in coastdown data. And 

it was shown in this study that reducing wind effects on the vehicle can enhance repeatability of 

the tests. Correction for ambient conditions also significantly reduced the variance in the road 

test results. These ambient conditions include temperature, barometric pressure, and wind. In the 
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end, dynamometer absorber settings were placed to test vehicles with analytically derived 

variables and it was proven that this was a feasible approach to using coastdowns for road loads 

[16].  

 

2.2.4. University of Maryland 

 The University of Maryland addressed the problem of fuel consumption with the study of 

a heavy duty vehicle‟s aerodynamic drag. A data reduction procedure was presented and 

successfully used to analyze coastdown data obtained in a windy environment to provide a 

measure of the aerodynamic drag of a full scale heavy duty vehicle as a function of the yaw 

angle of the vehicle. The variable being changed in this study is the aerodynamic drag using drag 

reducing equipment on the vehicle and using coastdown data to produce a drag coefficient. 

Using coefficients from coastdowns, which is governed by the equation of motion, aerodynamic 

drag was determined for drag reducing equipment. The highest drag reduction achieved by this 

process was 32% at 0º yaw and 21% reduction in wind [17].  

 

2.2.5. Loughborough University  

 Loughborough University conducted a detailed drag study using the coastdown method. 

The difference between this project and that of WVU [14] is that Loughborough University first 

used a wind tunnel testing to determine coefficient of drag (Cd) and it also derived an equation to 

account for mechanical losses. These mechanical losses included tire losses through rolling 

resistance (Crr), drivetrain losses, and un-drive tire losses. An anemometer was mounted on the 

vehicle to establish a time history of relative wind speed and direction. The author stressed the 

fact that the ambient condition showed to have influence in this analysis just as it was in 

publication [17]. Through the mathematical model, the author described the aerodynamic drag 
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and mechanical drag and determined the total drag as a function of velocity of the vehicle. Four 

unknown coefficients arise with this final mathematical model of total drag and determinations 

of these coefficients are the object of this study. For the coastdown, the vehicle was driven at 80 

km/hr for 20 minutes to warm up the engine and other components such as the tires, 

transmission, and differential oil. For the results, the Cd from the experimental method was 7.5% 

higher than that of the wind tunnel testing. To have a Cd within 1%, the researcher had 

determined that the user must run 80 coastdown tests. With the 20 tests that were conducted in 

this study, the accuracy of the four coefficients at the 95% confidence level were 2.5%, 10.8 %, 

1.9%, and 47%. The 47% accuracy is originated from the variation of Cd from yaw angle. A 

significant note of this paper is the relatively large losses from tires due to change in inflation 

pressure [18].  

 

2.3. Drag 

 

2.3.1. University of Maryland 

 The University of Maryland conducted a study in which the aerodynamic drags of class 8 

heavy duty vehicles were determined. This is the same procedure used for publication in SAE 

technical procedure in [17] in order to compare the Cd from different drag reducing equipment. 

This article describes three different test method selections for determining aerodynamic drag 

forces acting on heavy duty trucks. One test method, which has been previously described, is 

coastdowns. The other two test methods, hill-rolling and constant speed tests, were both found to 

have more drawbacks than benefits. The vehicle chosen for this experiment was baselined in a 

wind tunnel in a previous program with three different configurations for drag. Drag reducing 
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equipment was designed by the University of Maryland to change the drag configuration for the 

vehicles. Through a theoretical procedure, equations for all the drag forces were determined. 

Using coastdowns, anemometers and a few other types of equipment, the constants were 

determined for the theoretical equations. The results of this study will be correlated in another 

publication [18] with full scale wind-tunnel tests [19].      

 

2.3.2. University of Illinois 

 The University of Illinois, in conjunction with GM Corporation, Chrysler Corporation, 

Firestone Corporation, and Goodyear Tire Corporation, evaluated vehicle drag contribution from 

coastdown tests. The evaluation method was based on the mathematical analysis of a simplified 

dynamic model which not only allows the separation of aerodynamic and rolling resistance 

forces, but also utilizes the closed mathematical form of the solution to eliminate the need for 

differentiating an experimentally determined data curve. A key note stated in this study is the 

significance of rolling resistance as a function of speed, and affirming that the Crr is distinctly 

constant up to 70 mph for conventional tires, but increases by 53% if it exceeds that speed. It 

also provides an illustrated comparison of coastdown tests with variation in tire inflation 

pressures and stating how it could decrease coastdown time. This decrease in coastdown time 

could affect Cd if Crr was noted as constant in calculations. The University of Illinois method of 

determining drag data yielded good results, but cannot be fully considered as a standard method 

of determining Crr due to some large discrepancy in the data for some runs compared to other 

sources [20].  
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2.3.3. The Motor Industry Research Association 

 White developed an early stage of determining aerodynamic drag of passenger vehicles 

based on nine feature categories and rating numbers for each category. This method was not 

intended to be a substitute for wind tunnel testing, but to provide guidelines for the graphic 

designer so that they can avoid undesirable body features in the early stages of design. Even 

though this method seems to be a crude way of estimating Cd, the publication shows results with 

an accuracy of ±7% compared to wind tunnel values. The method first takes a vehicle and 

divides it into six zones and some zones are divided into subzones. For example, the front would 

be considered zone one and the subzones of one are the outline plan and elevation. All of the 

zone and subzones add up to a total of nine categories. This method can be the first stage of 

determining if the Cd derived from a coastdown method is realistic if there are not wind tunnel 

data for the vehicle being tested [21].  

 

2.4. Rolling Resistance 

 

2.4.1. General Motors 

 Two different departments from GM investigated the energy losses from Crr from vehicle 

tires. They approached this problem by using a simple model of the tire touching a flat ground 

and applying Newton‟s Second Law. The uncomplicated model did not depict the magnitude of 

the rolling resistance to a high level of accuracy; however, the general purpose of this study was 

simply to expose the basic physics of the Crr. The amount of energy lost from force required to 

overcome Crr was determined through mathematical calculation. The expression of the simple 

model was shown as the square of the axle speed with the assumption that the parameters are 
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characteristic of a given tire. It was concluded from the theoretical analysis that any of the 

following characteristics could decrease Crr: increasing diameter of the tire, lowering the tread 

mass, increasing the tire pressure or tire stiffness and/or decreasing the load which deceases 

footprint length, and also decreasing elasticity of the tire [22].  

 

2.4.2. Jet Propulsion Laboratory  

 The Jet Propulsion Laboratory (JPL) conducted a study to determining Crr from 

coastdown tests. It emphasizes the actuality that most of the resistive force is generated from 

aerodynamic drag and tire rolling resistance, but also notes other mechanical resistances. The 

report draws attention to the need for understanding other mechanical losses and shows the 

theoretical calculation for determining these values for an accurate value of Crr. The resistive 

forces from mechanical losses are considered negligible at low speeds, but drastically increase at 

higher speeds. In the results, large emphasis was placed on the preparation of the test for accurate 

results. Characteristic information about the tire deemed to be more important than the Crr that 

was provided by other sources even if it was the same tire. Firestone Tires‟ calibration done on a 

tire showed to have different Crr according to JPL. Drum calibration performed by Firestone 

Tires to determine Crr agreed quantitatively with that achieved by the coastdown tests of JPL 

[23].   

 

2.4.3. GM Road Surface Study 

 GM investigated the effects of road surface textures on tire Crr in great detail with both 

indoor testing and outdoor testing. Data obtained from laboratory tire dynamometer tests and 

outdoor tests conducted on various paved public type roads indicate that losses associated with 

tire rolling resistance increase as road surface texture increases. As aforementioned in [21, 22], 
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Crr is based on the characteristic of the tire, but in this publication the characteristic of the tire 

was divided into four categories. One category is tire design which includes the type of tire, such 

as bias or radial, as well as material for that design. Another category is tire operating parameters 

such as load, speed, inflation pressure, steer torque inputs, and driver habit or tire cycle. The 

third category is ambient conditions, such as temperature and pressure, around the tire. The last 

category is highway design which generally includes the construction of the road material:  

gravel, concrete, or asphalt. The results of the laboratory and outdoor tests showed that the 

rolling resistance of the tire increases with increasing surface texture. The increase in rolling 

resistance varies from 5% to 30% based on the environment, road surface, and tire type.  The 

study emphasized the need for more testing of individual categories to correlate laboratory 

testing with real world performance. [24].  
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3. Experimental Setup  
 

 In order to compare fuel economy and coastdowns for the two USPS step vans, 

repeatability and accuracy of the tests are crucial. WVU‟s new 2007 transportable laboratory in 

conjunction with a medium duty chassis dynamometer was used, shown in Figure 1 and Figure 

2, to verify the findings of the two different methods of implementing road loads. One of the 

main benefits of using chassis dynamometer testing over on-road testing is the repeatability of 

the results. Numerous studies done by WVU have shown the many benefits of chassis 

dynamometer testing over the course of last decade [1 - 4]. The new trailer utilizes state of the art 

equipment and it has been designed to comply with the EPA‟s new 40 CFR Part 1065 regulation. 

The new 40 CFR Part 1065 regulation mandates stricter testing standards compared to the 40 

CFR Part 86 [26]. Many aspects of the new EPA 40 CFR Part 1065 regulations, as well as the 

new technologies in the 2007 theoretical laboratory, will not be covered in this report because 

they do not pertain to the goals of this report. An ASME technical paper written by Wu et al. 

covers numerous aspects of the 2007 theoretical laboratory including structural design, gaseous 

emissions, PM emissions collecting [27]. 
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Figure 1. WVU‟s medium duty chassis dynamometer with a Hybrid USPS Step Van installed at 
WVU‟s Westover Laboratory 

 

 

Figure 2. WVU‟s 2007 analytical trailer utilizing EPA 40 CFR Part 1065 regulation at WVU‟s 

Westover Laboratory 

 

 The vehicles used for characterization of fuel economy and performance from various 

coastdown techniques were USPS step vans. Figure 3 below illustrates the vehicle employed on 
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a medium duty dynamometer. The exterior dimensions of the hybrid vehicle were exactly the 

same as the baseline (stock) vehicle. A stock vehicle was retrofitted with hybrid components that 

added 600 lbs of weight to measured curb weight. The Hybrid USPS step van utilized an Eaton 

hybrid pre transmission parallel configuration. Due proprietary design of the hybrid system, 

WVU was not provided specification of the hybrid system by Eaton. Both vehicles were 

powered by 2003 Mercedes Benz 904 diesel engines. More detailed specifications of the vehicles 

are shown in Table 20 and Table 21 in the appendixes. 

 

 

Figure 3. One of the two USPS step van step employed on the chassis dynamometer 

 

 For the measurement system, WVU‟s new analytical laboratory was utilized for these 

tests. The data acquisition system in the laboratory, developed by WVU, was constructed with 

the National Instrument SCXI 1001 data acquisition system and the Dyne System‟s Dyn-Loc IV. 

A Dyn-Loc IV digital dynamometer controller was used to control the dynamometer 
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components. Dyn-Loc IV communicates to SCXI 1001 data acquisition system through a serial 

adapter which provides feedback from the dynamometer.  

 A medium duty chassis dynamometer was employed with the new analytical trailer to 

simulate road loads and vehicle weights. The medium duty chassis dynamometer is capable of 

simulating the vehicle weights ranging from 3,000 lbs to roughly 22,000 lbs.  The medium duty 

chassis dynamometer is comprised of six main components: inertia flywheels, power absorber, 

two-speed transfer case, AC variable speed motor, inline torque transducer, and tire rollers. 

Figure 4 and Figure 5 illustrates the six major components of the dynamometer. The design of 

WVU„s chassis dynamometer has been described in previously published papers [28, 29]. 

 The transfer case provides flexibility in having wider range of speeds.  The two possible 

ratios for speed are 1:1 or 2.04:1. The 25 HP AC motor was used to overcome drivetrain losses 

of the chassis dynamometer and keep the rollers moving during coasting periods of the test. A 

SAE technical paper by Wang et al. discusses calculations of the road load as well the losses 

from the mechanical system of the heavy duty chassis dynamometer. The technical paper uses 

Newton‟s second law to determine the mathematical model for the WVU transportable heavy 

duty testing laboratory which can also be applied to the medium duty testing laboratory. Through 

the various arrangements of the flywheels, a wide of range of inertial load can be simulated in 

conjunction with the power absorbers. The inertial flywheels and the power absorbers are part of 

the power absorption system which simulates vehicle road load for a given speed [29]. 
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Figure 4. Four of the six components of the medium duty chassis dynamometer  

 

 

Figure 5. The other two components of the medium duty chassis dynamometer  
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 The FTP-75 cycle was exercised on the medium duty chassis dynamometer for fuel 

economy and coastdowns comparison. Figure 6 below shows the FTP-75 test cycle, which has 

been used for emission certification of light duty vehicles in the United States [25]. The length of 

the test cycle is 1,874 seconds and covers a distance of 11.04 miles. The transient cycle simulates 

typical traffic conditions with excessive acceleration and deceleration. A basic summary of the 

cycle is provided below in the Table 1. The FTP-75 may not be the ideal cycle for the hybrid 

USPS step van for evaluation of fuel economy, but the idea for having two different vehicles was 

to show unbiased results from a single vehicle on a set of coastdowns. Recommended cycles for 

testing hybrid vehicles, according to SAE J2711, are the Manhattan cycle, the UDDS driving 

cycle, Orange county cycle, or Central Business District cycle [15].  

 

 

Figure 6. FTP-75 chassis cycle that was exercised for the comparison of coastdowns 

 

Table 1. The Basic metrics of the FTP-75 test cycle 

Duratio
n 

Average 
Speed 

Max 
Speed 

Max 
Deceleration 

Max 
Acceleration 

Idle 
Period 

Distance 
Traveled  

(s) (mph) (mph) (mph/s) (mph/s) (s) (miles) 

1874 21.2 56.7 3.3 3.3 356 11.04 
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 Fuel economy was monitored using the gravimetric method. For the gravimetric method, 

an Ohaus CD-11 scale was used for the fuel weight. The gravimetric fuel measurement system 

provided the best accuracy and simplicity. The fuel used for this project was from a local retail 

fueling station and the specification of the fuel is provided in Table 22 of the appendixes. The 

commercial ultra low sulfur fuel was stored in a 30-gallon stainless steel drum on the Ohaus 

scale. The vehicles‟ fuel lines were disconnected from the storage tank and rerouted to the 

stainless steel drum. One of the features of the Ohaus CD-11 scale, a RS232 serial connecter, 

was used to log fuel weight during a test.  

 For on road coastdown evaluation, the speed of the vehicle must be monitored and 

recorded during each test.  GPS was one method of recording vehicle speed during the 

coastdown. The GPS system was comprised of three components as shown in Figure 7. The main 

rectangular box housed the main system of the GPS with two connections. The first connection 

was for a roof-mounted sensor, which gathered data (at 1 Hertz) from satellites. The second 

connection is a Universal Serial Bus (USB) connection that attaches to a car cigarette lighter 12-

volt adapter. Since all of USPS vehicles do not have a standard car cigarette lighter socket in the 

vehicle, an adapter cable was made to connect to the battery terminals in the vehicle. 
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Figure 7. GPS unit used for the on road coastdowns 

 

 In order for a non-commercial driver to operate vehicle, its gross vehicle weight rating 

(GVWR) must be under the commercial vehicle limits of 26,001 lb. The GVWR for the vehicles 

were about 14,000 lbs, and the curb weights for the vehicles were about 10,000 lbs which 

allowed a non-commercial driver to operate this vehicle. Equation 1 below shows the calculation 

of the test weight for the vehicles where it requires the GVWR and curb weight. Both GVWR 

and the curb weight are shown in Table 20 and Table 21 in the appendixes.  

 

 

Equation 1. Test weight determination for the vehicles 

  

 In accordance to SAE J2711, the fuel economy results from a test cycle must be corrected 

for SOC after each run if they are to be considered valid. When a conventional vehicle completes 

a chassis cycle, the work done by the vehicle is equal to the work required to finish that cycle, 

and this is consistent from test to test. However, for a hybrid electric vehicle, which encompasses 
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an energy storage system, there is a significant amount of energy stored in the vehicle which can 

be removed or added to the system during a cycle. In order to compare the results of a hybrid 

electric vehicle with the results of a conventional vehicle, the data must be corrected so that the 

energy change in the energy storage system is essentially zero [15]. The energy of the vehicle is 

the combination of the energy of the diesel fuel and at the battery storage system. SAE J2711 

outlined the procedure for determining the energy comparison of the test cycle to energy change 

in the hybrid energy storage. Eaton Corporation provided WVU with Road Ranger software to 

monitor the battery storage system. The software was installed on a laptop and a Deutsch 

connector, in conjunction with Dearborn adapter, was used to monitor voltage and SOC of the 

energy storage system.  The software did not provide any flexibility in monitoring the SOC and 

voltage during the test cycles. Hence, the state of charge and voltage could not be logged during 

the test cycle. It only provided instantaneous results.    
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4. Procedure  
 

4.1. Empirical and Theoretical Model  

4.1.1. Road Load Equation 

 

 The purpose of the coastdown technique is to determine the rate of deceleration of a 

vehicle coasting. In order to determine the dynamometer settings from coastdowns, the first step 

is to evaluate the road load equation. 

 

Equation 2. Load road equation [7] 

Where: 

 = density of air 
Cd = coefficient of drag 
M = gravimetric mass of the vehicle 
A = frontal area of the vehicle 
V = velocity 
Crr = coefficient of rolling resistance 
g = acceleration due to gravity 
sin  = road grade 

 = power 

 The first term in Equation 2 is the required power to overcome aerodynamic drag. In this 

term the density of air, frontal area of the vehicle, gravimetric mass of the vehicle, and velocity 

are all known or can be found using a known source. The Cd is determined from the physical 

features of the vehicle from various types of testing, such as wind tunnel usage.  For density of 

air, it was assumed to be 0.075 lbs/ft3 , using a referenced standard temperature and pressure[34]. 

The gravimetric masses of the vehicles are given in Table 20 and Table 21. The baseline vehicle 

and the hybrid vehicle are identical in shape and design, so for the frontal area, A, 71.25 ft2 was 
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used for both vehicles. This was determined by multiplying the maximum height of the vehicle 

by the maximum width of the vehicle. 

 The second term of Equation 2 is the required power to overcome rolling resistance of the 

tires. The gravimetric mass of the vehicle will be a combination of the test weight and the mass 

of the vehicle. As mentioned by Hucho, at a constant speed on a level road, rolling resistance 

usually exceeds aerodynamic drag at high speeds such as 50 mph [34]. With the test schedule 

used for this project, a significant part of the test cycle consists primarily of acceleration and 

deceleration. The constant speed required to have Crr overcome Cd in the test cycle is 

insignificant, because over 50 % of energy from the fuel is used to accelerate the vehicle and 

over 30 % is used for overcoming aerodynamic drag of the vehicle. Less than 10 % of the energy 

is used to overcome Crr at high speeds.   

 The third term in the Equation 2 is the power required to overcome inertial force. This, as 

mentioned before, is simulated using large metal flywheels as shown in Figure 5.  

The procedure for determining what configurations of flywheels are needed is provided in a 

technical paper by Wang et al. [29]. Table 2 below summarizes all the flywheel weight 

arrangements and the four weights that will be tested on the chassis dynamometer. For the hybrid 

vehicle, 1,770 lbs were simulated through the flywheels and similarly for baseline vehicle 2,070 

lbs were simulated.  There were total of two empirical tests and two analytical tests.  

 

Table 2. Test matrix of the weights and weight of the flywheels used  

 Hybrid Vehicle Baseline Vehicle 
Curb Weight 10,600 lbs 10,000 lbs 
Test Weight 1,770 lbs 2,070 lbs 
Loaded Weight 12,370 lbs 12,070 lbs 
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 The last term in Equation 2 is the power required for overcoming altitude change. This 

term was assumed to be zero during the evaluation of the coastdowns; this was because the 

variation of altitude change was minimal during the runs. Small variation was achieved by 

conducting the runs on the same strip of highway, but in the opposite direction. According to 

Cha, increasing the number of parameters to the model of the road load does not necessarily 

increase the accuracy of the results. The coefficients of the more complicated models derived by 

Cha became unstable during the regression analysis as the number of parameters increased. [35] 

A key note from Cha‟s study was the high rolling resistance achieved from his models. The 

higher rolling resistance maybe contributed from the losses in the drivetrain.   

 

4.1.2. Empirical Model 

 

 The empirical model was developed from the on-road coastdowns conducted. The model 

involves determining the deceleration of the vehicle while no power is being delivered to the 

wheels through the transmission. A second order polynomial is the shape of the on road 

coastdown deceleration curve as shown by Equation 3 below.  

 

Equation 3. Regression analysis of the deceleration curve 

Where: 
V = velocity 
t = time 

 = constants 
  

In the equation above, constants a1 and a3 correspond to the rolling resistance of the vehicle and 

constant a2 correspond to aerodynamic drag of the vehicle.  
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 The PA controller requires a six digit input which would represent the road loads. 

The constants can be evaluated using numerical analysis by applying regression analysis to the 

speed versus deceleration model, the shape of this curve would be a third order polynomial as 

shown in Equation 4 below.  

 

 

Equation 4. Regression analysis of deceleration versus speed 

Where: 
D = deceleration 
V = velocity 
b1,b2 ,b3, and b4 = constants 

 

4.1.3. Theoretical Model 

  

 For the Theoretical model setup of the vehicle, THDVETL followed the procedure set by 

the 40 CFR part 86 subpart M section 1200 which had a large involvement in the chassis 

dynamometer setup [36]. Even though 40 CFR part 86 subpart M section 1200 was test for 

evaporative emissions, the procedure it outlines for chassis dynamometer calibration, pretests, 

and determination of road load power can be used for all types of tests. To determine the two 

coefficients of Cd and Crr the Equation 5 below was applied:  
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Equation 5. Road load equation as provided by the 40 CFR part 86 subpart M [36] 

Where: 
RLP = Road Load Power in Horsepower at 50 mph 
F = 1.00 for tractor trailers, 0.85 for urban buses 
H = Maximum Height of the vehicle in feet 
W = Maximum Width of the vehicle in feet 
LVW = Loaded Vehicle Weight in Pounds   
 

 If aerodynamics are evaluated as function of height and width; and rolling resistance as 

function of weight primarily, then Equation 5 can be split up in to two terms. In the first term, 

height and width are known variables, so this can be equal to the first term of Equation 2. 

Similarly, the second term of Equation 5 can be equaled to the second term of Equation 2. All the 

variables in the two equations are known except for Cd and Crr which can be solved for using 

speed of 50 mph as a reference speed.  

 

4.2. Vehicle Preparations and Coastdowns Procedure     

 

 The coastdowns and the FTP test were done in July and August of 2008. When the 

vehicles arrived at West Virginia University, they were inspected for proper tire pressure and the 

fuel tank was filled before determining the weight of the vehicle. An A. P. T. Axle Weigher 

produced by Intercomp was used to determine the weights of the vehicles. The hybrid vehicle 

weighed about 600 pounds more than the baseline vehicle due to extra components. These 

included the battery storage, control box, electric motor, and any other extra parts from being 

hybridized.  The weights of the hybrid vehicle and baseline vehicle were approximately 10,600 

and 10,000 pounds, respectively.  
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 West Virginia‟s terrain was too mountainous and the variation in the elevation would 

have voided the coastdown tests. An assumption that was made during the road load 

determination was that the coastdown was done on a flat road. Therefore, the coastdowns were 

done on PA-43 in Pennsylvania which is about 45 minutes north of Morgantown, West Virginia. 

The PA-43 is relative flat terrain and the low traffic makes a suitable place for coastdowns. A 

map of the road, which spans about 10 miles, is shown Figure 8.  

 

 

Figure 8. PA-43, which stretches about 10 miles, is where the coastdown tests were conducted 
[30] 

 

 Once the vehicle arrived to its destination on PA-43, the GPS was activated. A stretch of 

straight road and a minimal elevation change was where the coastdown procedure began. Even 

though the data could be extracted from the coastdowns on mountainous road, the error would 

have arisen from the data reduction. The vehicle was accelerated until it reached 50 mph than the 
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transmission was set to neutral. At this point there was no power going to the wheels through the 

transmission and vehicle began coasting until it reached zero mph. A similar procedure was 

attempted again except on the opposite side of the road going the opposite way. The purpose of 

this was to avoid any change in elevation when the averages of the coastdowns were evaluated 

for road load characterization. Multiple runs were attempted and the average time for the 

coasting period was a little over two minutes. Figure 9 below illustrates the altitude profile of the 

exact place where the coastdowns were conducted on PA-43. The GPS unit provides satellite 

location and using Google, altitude profile can be drawn for that location. 

 

 

Figure 9. Elevation profile of the road where the coastdowns were conducted [31] 

 

  For the baseline vehicle, coastdowns were done with the loaded configuration and the 

unladen configuration. Calibrated weights from WVU‟s engine laboratory were used as a cargo 

load. The weights were configured in 25 lbs, 50 lbs, and 10 lbs. The unladen configuration was 

the vehicle‟s weight only for the coastdown. Due to the time constraint of the project, the hybrid 

vehicle coastdown was only done with the unladen configuration. Equation 1 was used to 

determine the test weight of the vehicles during general testing. Due to changes in weather 

conditions between test days it was difficult to see any change from the cargo loads.  
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4.2.1. Vehicle Installation and Instrumentation  

  

 The vehicles were driven onto the chassis dynamometer rollers where they were balanced 

between two rollers. The front wheels of the vehicles were raised using heavy duty jacks, placed 

on stands, and was leveled with the back wheels as illustrated by Figure 3. The rear axles 

housing of the vehicles were chained to the dynamometer beds to avoid losing friction between 

the tires and the rollers. The tensions in the chains are not as tight as possible due the over 

flexing of the tires on the rollers. Study done by Clark et al. [37] concluded that the deflection of 

the tire on the flat service was smaller than that on drum roll. The excesses tension on the chains 

could result in the vehicle in doing more work to overcome the stresses in tires due to deflection.    

For the hybrid vehicle, a Dearborn 4 adapter was connected the ECU in order to monitor SOC 

and nominal voltage during the FTP-75 test cycles. The driver was provided with a visual trace 

of the scheduled speed versus time on a video monitor. The video monitor displayed the 

prescribed speed while the actual speed was displayed as a line trace.  

 

4.2.2. Vehicle Coastdown on Chassis Dynamometer and Determination of Parasitic 

Losses  

 

 Before conducting the test scheduled for each of the vehicles, THDVETL was required to 

do a few preliminary procedures according to test protocols developed at WVU. The vehicle 

must be operated on the dynamometer for minimum of ten minutes to increase the temperatures 

of the tires, and the fluids in the axles as well as transmissions. If the tires‟ temperatures are 

relatively low, the vehicle tends to vibrate excessively during the test drives due to the stiff 
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rubber. The temperature of the oil is warmed up to 100ºF to decrease viscosity and subsequently 

reduce losses in the system.  

 As discussed in previous section, the 25 HP AC motor is used to overcome system losses 

during the test. These parasitic losses include friction from all the bearings, differentials, and 

universal joint couplings on the medium duty chassis dynamometer. An SAE technical paper by 

Wang et al. discusses the determination of the parasitic losses for a chassis dynamometer [38]. 

This paper develops a theoretical model for energy consumption which describes the mechanics 

of the vehicle system, the motion experience of the system, and predicts the capabilities of the 

system performance.  

 There are two methods of determining the parasitic losses for a dynamometer. The first is 

the steady-state method, where the vehicle is driven at various constant speeds and the 

corresponding torques are measured at the driving wheels. From the vehicle system equation, a 

coefficient of the losses can be determined from least square approximation. The other method 

was coastdown, which is the selected method for this report. The vehicle is driven to a specific 

speed, at which the transmission is set to neutral, and the vehicle is allowed to decelerate freely. 

A velocity time characteristic is obtained from which the coefficients of the losses are 

determined using least square curve. Equation 6 below shows the equation derived for parasitic 

losses of the chassis dynamometer. [38] 

 

Equation 6. Parasitic losses of the chassis dynamometer 

Where: 
 = speed of the rollers 

a1 and a2 = constants 
T – torque  
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4.2.3. FTP -75 Test Procedure and State of Charge Determination 

 

 Before the actual FTP-75 was conducted a few issues arose. The vehicle‟s ECU showed a 

faulty code when it recognized the vehicle‟s front wheels were not moving through the Anti-lock 

Brake System (ABS) unit. This was corrected by using the signal from the back wheels ABS unit 

and rerouting back to the front; initially setting up a parallel system. Once the vehicle was 

prepared and warmed up, the driver began the FTP-75 test cycle by following a trace provided 

by the data acquisition system from the trailer. The driver followed the trace as close as possible 

during the 30 minute period of the test.  

 For the hybrid vehicle, the SOC was monitored during the FTP-75 test cycle in order to 

ensure correct energy consumption of the vehicle in accordance with J2711. For conventional 

internal combustion engine systems, the energy source (fuel) used by the vehicle to complete the 

test would be very consistent from run-to-run.  For hybrid drive systems, fuel energy may be 

stored, and stored energy may be depleted during a given test run.  Therefore, an energy 

correction must be performed so that vehicle performance characteristics are normalized by 

energy required to complete the test cycle.  SOC correction will help to reduce test-to-test 

variation, and provide a more representative energy characterization by which performance may 

be normalized.  

 To determine if a test run has an acceptable NEC, that does not require SOC correction, 

divide NEC by total cycle energy. If the absolute value of the calculation yields a percentage less 

than or equal to 1%, the NEC variance is within tolerance. The emission and fuel economy 

values for the test run do not need to be corrected for SOC.  

 If the absolute value of the calculation yields a percentage greater than 1%, but less than 

or equal to 5%, emission and fuel economy values from the test run need to be corrected for SOC 
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as described below. Test runs with NEC variance greater than ±5% are considered invalid or, if 

the vehicle is consistently depleting charge, may have to be tested under the charge-depleting 

vehicle recommendations. 

 In order to compute a state of charge correction for fuel economy, the fuel economy 

values for each run must be plotted against the NEC for each run. A linear interpolation (in some 

cases extrapolation may be allowed) is performed to establish the fuel economy at a NEC of zero 

(i.e., the data is corrected to reflect a net zero change in SOC). The equation below was used to 

determine the NEC of Eaton‟s energy storage system. 

 

Equation 7. Net energy change in batteries [15] 

where: 
SOCinitial = Battery SOC at the beginning of the test cycle  
SOCfinal = Battery SOC at the end of the test cycle 
Vsystem = Nominal Voltage of the battery 
K1= Conversion factor 
 

 Equation 8 below was used to determine the total fuel energy consumed by the vehicle. 

The total fuel energy will be compared to the NEC of the batteries in order to determine the % 

change.  

 

Equation 8. Fuel Energy consumed by the vehicle [15] 

where: 
NHVfuel= Net heating value per consumable fuel analysis as specified by ASTM D240 or D 4809 
mfuel= Total mass of the fuel consumed over the test cycle
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5. Results 
 

 The results are representative of the coastdowns conducted on PA-43, coastdowns 

conducted on the chassis lab, and the all of the FTP-75 tests. Individual test results for each the 

different methods of coastdown are provided in the appendixes as well as individual on road 

coastdown evaluation.    

5.1. Coastdown 

5.1.1. On-road Coastdowns 

 

Figure 10. A set of data from the GPS unit during the hybrid vehicle Coastdown on PA-43  

 

 Figure 10 above shows a set of results from the hybrid vehicle on-road coastdowns in 

which test runs 1 and 4 are two coastdowns that were considered valid. Starting from around 50 

mph, the speed of the vehicle steadily decreased to 0 mph and took a period of about 140 

seconds. Coastdown 2 was another run, but starting from 20 mph an increase of speed occurred 

causing it to be invalid. The sudden change in speed for run 2 could be the result of sudden 
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increase in wind, significant change in altitude, or lane change due to safety precaution.  Sections 

3 and 5 represent the vehicle braking while on an on-ramp and an off-ramp.  

 A closer investigation of the runs in Figure 30 and Figure 31 in the appendixes shows 

how run 2 was considered invalid. From the elevation change in Figure 31, it shows that the 

vehicle began coasting at a lower altitude then it increased too much higher altitude and 

decreased once again. The increase in the elevation during test run 2 led to the increase in the 

period of the coastdown of about 170 seconds.  

 

Figure 11. Set of data from the GPS during the unladen baseline vehicle coastdown 

 



 
 

39 
 

 

Figure 12. Set of data from the GPS during the loaded baseline vehicle emission 

 

 Figure 11 and Figure 12 show the GPS data for the unladen baseline vehicle and loaded 

baseline vehicle, respectively. For the unladen baseline vehicle, the GPS data provided only two 

valid runs. Two valid runs were also evaluated from the loaded baseline vehicle. In Figure 11, 
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runs 1 and 3 were chosen to be evaluated and the results of the runs can be seen in Figure 32 and

 

Figure 33 in the appendixes. Out of four runs from the loaded baseline vehicle only two were 

used, runs 1 and 3. Figure 34 and Figure 35 in the appendixes shows how change in elevation 

drastically causes an increase speed and longer coastdown period.  

 Figure 13 shows the statistical comparison of the average coastdowns for all three 

vehicles. The maximum standard deviation is about 2.64, but the coefficient of variation is about 

58 %. Looking closer at the Figure 13 where the COV is much higher compared to the rest of the 

results, it may be inferred that rolling resistance of the different tires and conditions of the tires 

may contribute to the variation in the results. A small change in pressure of the tire causes 

significant change in the rolling resistance of the vehicle [23]. Also, COV towards the end of the 

runs increases due to low speed and a significant change in COV was seen due to small changes 

in speed.  
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Figure 13. The statistical information about the average coastdowns of both vehicles  

 

 Figure 14 shows the statistical comparison of the baseline vehicle for both loaded and 

unladen on-road coastdown methods. At higher speeds, the aerodynamic influence, which is the 

3rd term of the regression equation, is apparent. The curviness of the plot represents the 

aerodynamic drag and shows that the force exerted on the vehicle is primary from that. Rolling 

resistance is also a significant contributor to the force exerted and should be ignored; this can be 

more noticeable at lower speeds [23].   
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Figure 14. The comparison the loaded coastdown and unladen coastdown using the baseline 
vehicle 
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5.1.2. Evaluation of Coastdowns  

 

 Figure 15 shows the results of the on road coastdowns conducted on PA-43. The red and 

the blue lines are from the baseline vehicle with relatively similar characteristics as can be seen 

by the regression analysis.  This can be explained by a windy condition, where aerodynamic drag 

is a function of speed squared having a nonlinear characteristic. The loaded vehicle took longer 

to coast to a vehicle speed of zero as expected and as can be seen in the figure below. 

 

 

Figure 15. The comparison of the average coastdowns with regression analysis 
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 Figure 16 shows the deceleration of all vehicles versus speed with blue and red lines 

representing the baseline vehicle and the green line representing the hybrid vehicle. It should be 

noted that all the coastdowns were conducted on different days. The coastdowns of the baseline 

vehicle were conducted on the same week which had similar weather condition. The hybrid 

vehicle seems to have a more aggressive deceleration at the higher speed and smoother 

deceleration at lower speeds.  

 

 

Figure 16. The deceleration of all the vehicles with respect to speed 
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 Figure 17 shows how similar the baseline vehicles‟ coastdowns are. The loaded vehicle 

has a little higher influence than unladen vehicle as expected. The added weight for the loaded 

vehicle only affects the rolling resistance term.   

   

 

Figure 17. The regression analysis of the loaded versus the unladen baseline vehicle coastdowns.  
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5.1.3. Empirical and Theoretical Model Results 

 

 The empirical model will mainly be based on the coastdown done with the hybrid vehicle 

and baseline vehicle on the PA-43 road. Coastdowns from the GPS provided speed versus time 

data and from this an average of runs were taken, as shown in Figure 30, Figure 32, Figure 34 

and Figure 15. In Table 3, the effect of the test weight between the two baseline vehicles can be 

seen. The third term in Table 3 below represents the influence of the Cd which consists of the 

vehicle‟s external design and wind turbulence. The first and the second term represent the Crr of 

the vehicle. The added test weight would not have an effect on the Cd due to the fact the weights 

were placed inside of the vehicle and had no way of increasing the frontal area. The 3.5 % 

change in the third term can contributed from the variation in wind direction during the runs. The 

coastdowns for the baseline vehicles were conducted on separate days of the week. The Crr 

would have been affected more with the increase of the vehicle weight then Cd, but coastdowns 

only showed a change of about one % [20, 32]. 

 

Table 3. The characteristics of the coastdown curves 

Average Coastdown Characteristics 
Vehicle 3rd Term 2nd Term 1st term R squared 
Eaton Hybrid 1.319E-03 -0.5397 51.22 0.9984 
Unladen Baseline 9.749E-04 -0.4985 52.78 0.9967 
Loaded Baseline 1.010E-03 -0.5034 52.56 0.9968 

 

 A linear regression was applied to average coastdowns to determine the deceleration of 

the vehicles. From Equation 2, if it is assumed the changes in road grade is minimal and no 

power is delivered to the wheels, it can be written as: 
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Equation 9. Deceleration of the vehicle 

 

 In Equation 9,   and  are constants and by least-square-error regression of 

acceleration ( ) versus velocity squared can be used to determine the unknown coefficients. The 

acceleration ( ) can be derived from the coastdown results. Density of air, frontal area, weight, 

and gravitational force are all known values in this equation [33[.  From Equation 9, Cd equated 

to 0.669 and the Crr equated to 0.0139. The Cd coefficient for these vehicles from the empirical 

formula was a reasonable value based on information for commercial vehicles, but the Crr 

coefficient was a little high [34]. The road load equation does not account for the losses in the 

drivertrain, hence it equated in Crr.  

 For the Theoretical model, using Equation 5 and an F of 1 as assumed, the road load 

power at 50 mph can be estimated. The other variables in Equation 5 are known. The following 

results were provided from the Theoretical model shown in  

Table 4.  

 

Table 4. Road load power required at 50 mph 

RLP (HP) Loaded Unladen 

Baseline Vehicle 58.81 56.22 
Hybrid Vehicle 59.18 56.97 

 

  Using the derived Equation 9 and the results from  

Table 4, the coefficients Cd and Crr was evaluated and provided in the Table 5. The frontal area of 

both the hybrid vehicle and baseline vehicle are identical, hence the nearly similar Cd coefficient. 
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Unless the weight of the vehicle is significantly different by a magnitude of 10,000 lbs, Crr is 

constant.   

Table 5. The results of the Theoretical Cd and Crr based on the EPA model 

  Cd Crr 

Baseline Vehicle 0.735 0.00937 
Hybrid Vehicle 0.735 0.00937 

 

5.1.4. Evaluation of Chassis Coastdowns Results  

 

 Figure 18 and Figure 19 show the results of the chassis dynamometer coastdown runs. 

Both figures show distinct differences between the theoretical and empirical coastdowns. Figure 

20 below shows all the coastdowns conducted for this study. The on-road coastdowns are the 

average of multiple runs conducted on PA-43 where the dynamometer coastdown consists of one 

run for each method.   
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Figure 18. Comparison of the chassis coastdown runs for the hybrid vehicle 

 

Figure 19. Comparison of chassis coastdown runs for the baseline vehicle 
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Figure 20. The comparison of the on-road coastdown versus coastdowns conducted on chassis 
dynamometer 
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5.2. Test Cycle Verification 

 

5.2.1. FTP Cycles 

 

 The tables below show the comparison of the test results from the different methods. The 

purpose of Table 6 and Table 7 is to verify the actual distance traveled and average speed with 

that of the FTP-75 cycle. Table 6 shows the results for the baseline vehicle with different 

methods of coastdown used and Table 7 shows the results from the hybrid vehicle. The average 

speeds of each individual method were evaluated and compared with that of FTP-75 average 

speed. The difference was relative small with the largest being 1.16% for the theoretical loaded 

coastdown method. The average distances traveled for each individual method were slightly 

higher compared with the average speed for four methods. The total distance traveled, as shown 

in Table 6 and Table 7, for the four methods are less than FTP-75 test cycle which can be 

explained by few factors. FTP-75 test cycle was conducted by multiple drivers on the chassis 

dynamometer with various experience levels. When a driver is matching the speed of the vehicle 

with that of speed trace provided by video monitor, one must recognize when to begin 

accelerating the vehicle. An experienced driver would be aware of this and may be able to better 

follow the speed trace provided by the video monitor.      
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Table 6. The FTP-75 test cycle verification for the baseline vehicle 

Method Used 

Average 

Distance 

Traveled 

% 

Difference 

Average 

Speed 

% 

Difference 

Baseline Vehicle (miles) (%) (mph) (%) 

Empirical Loaded coastdown  11.10 -0.58 21.3 -0.57 
Empirical Unladen coastdown  11.11 -0.61 21.3 -0.60 
Theoretical Loaded Coastdown  10.91 1.15 21.0 1.16 
Theoretical Unladen Coastdown  10.73 2.78 21.1 0.66 
FTP 75 Test Cycle 11.04 - 21.2 - 

 

Table 7. The FTP-75 test cycle verification for the hybrid vehicle 

Method Used 

Average 

Distance 

Traveled 

% 

Difference 

Average 

Speed 

% 

Difference 

Hybrid Vehicle (miles) (%) (mph) (%) 

Empirical Loaded coastdown  10.90 1.29 20.94 0.01 
Empirical Unladen coastdown N/A N/A N/A N/A 
Theoretical Loaded Coastdown  10.91 1.21 20.95 0.01 
Theoretical Unladen Coastdown  10.96 0.74 21.05 0.01 
FTP 75 Test Cycle 11.04 - 21.2 - 

 

 In the appendixes, Table 23 to Table 29 each show individual tests for the methods used. 

The correlation coefficient for all the tests are well above 0.99 stating that the vehicle speed was 

very close to the speed trace set by the test schedule. The highest standard error for all the 

methods was 1.47 for the hybrid vehicle, using the loaded theoretical method of coastdown as 

shown in  

Table 28. Most of the testing was conducted by inexperienced drivers for the hybrid vehicle 

hence the higher standard error for all the tests compared to that of the baseline vehicle. As the 

inexperienced drivers became more aware of the vehicles behavior, the standard error decreased 

as well as the correlation coefficient.  
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5.2.2. State of Charge Results 

 

 The service ranger software provided information SOC for the energy storage system for 

the hybrid vehicle during the FTP-75 tests which was used to determine if SOC correction was 

required for fuel economy.  Table 8 provides a summary of the determination of SOC for all the 

runs of the FTP-75. The voltage of the battery was not monitored during the test cycles, but a 

nominal 340 volts DC was used for calculation of SOC correction. Heating value foe the diesel 

fuel was assumed to be 19,300 btu/lb, a k factor of 3600 was used for conversion purposes. The 

NEC showed to be minimal compared to total energy hence the change in SOC had an 

insignificant effect over the course of the test cycle. Table 8 below shows the summary runs for 

the hybrid vehicle. 

 

Table 8. Summary of all the runs for the hybrid vehicle and the determination of the SOC 

Run 
SOC 
Initial 

SOC 
Final Δ SOC NEC Fuel 

Total Fuel 
Energy 

Total Cycle 
Energy 

% 
Change 

# (%) (%) (amp-hrs) (BTU) (lbs) (btu) (btu) 
 1 37.6 32.6 -1.75E-03 2.26 6.22 1.20E+05 1.20E+05 -0.002 

2 31.6 32.8 4.20E-04 0.542 6.35 1.23E+05 1.23E+05 0.000 
3 32.8 31.6 -4.20E-04 0.542 6.26 1.21E+05 1.21E+05 0.000 
4 28.8 32.8 1.40E-03 1.81 5.73 1.11E+05 1.11E+05 0.002 
5 32.8 32.8 0.00E+00 0.000 5.73 1.11E+05 1.11E+05 0.000 
6 28.8 33.6 1.68E-03 2.17 5.82 1.12E+05 1.12E+05 0.002 
7 33.6 34.8 4.20E-04 0.542 5.69 1.10E+05 1.10E+05 0.000 
8 34.8 33.6 -4.20E-04 0.542 5.60 1.08E+05 1.08E+05 -0.001 
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5.3. Power Absorber Settings Based on the Method of Coastdown 

5.3.1. Hybrid Vehicle 

 PA settings during the testing of the hybrid vehicle can be seen in Table 9,  

 

Table 10, and Table 11. The PA setting for the loaded theoretical method is more aggressive than 

that of the loaded empirical method during the FTP-75 test schedule. This also can be noticed in 

Figure 21 and Figure 22, especially at high speeds. This can be explained by the fact that the 

theoretical coastdown assumes a higher Cd and Crr for this particular vehicle as shown in Table 5. 

On average, the loaded theoretical method is simulating 27.47 % more load on the vehicle 

compared to the empirical method for this vehicle application. 

 

Table 9. The PA setting for the hybrid vehicle during the FTP-75 test schedule using method of 
theoretical loaded coastdown 

  Max (HP) Min (HP) Average (HP) 
PA Setpoint 59.6 0.00 7.27 
PA Actual 59.5 0.00 7.28 
Added Motor Power 0.073 0.00 0.00 

 

 

Table 10. The PA setting for the hybrid vehicle during the FTP-75 test schedule using method of 
empirical loaded coastdown 

   Max (HP) Min (HP) Average (HP) 
PA Setpoint 19.9 0.00 5.36 
PA Actual 23.7 0.00 5.28 
Added Motor Power 0.00 0.00 0.00 
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Figure 21. The average of PA settings and the speeds of hybrid vehicle with loaded theoretical 
method during FTP-75 test schedule, and no motor power was needed during idle periods. 
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Figure 22. The average of the PA settings and the speeds of the hybrid vehicle with loaded 
empirical method during FTP-75 test schedule, and no motor power were needed during idle 

periods 

 

 A noticeable change can be seen between the loaded coastdown and the unladen 

coastdown methods. Table 11 and Figure 23 show the results of the unladen theoretical 

coastdown method during FTP-75 test schedule. On average, the PA setting for the loaded 

coastdown was 8 % higher than that of the unladen coastdown method. The added test weight 

would only influence the loading of PA‟s from rolling resistance due to the fact the load was 

placed inside the vehicle and had no effect on the frontal area of the vehicle during the 

coastdown period. Unfortunately, a valid conclusion could not be drawn for the loading of the 

empirical method due to the data mismanagement of the empirical unladen coastdown tests. But 

an engineering estimate could was drawn from the data available from the baseline vehicle. 

Using extrapolation and the relationship between the loaded and unladen baseline PA results, the 

setting for the unladen empirical coastdown could be around 3.77 HP.  Some causes of error that 
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contribute to this conclusion include losses from the drivetrain of the hybrid vehicle, limited 

number of runs available for the regression analysis, and day to day variation in weather.  

 

Table 11. The PA setting for the hybrid vehicle during the FTP-75 test schedule using method of 
theoretical unladen coastdown 

 Max (HP) Min (HP) Average (HP) 
PA Setpoint 54.2 0.00 6.69 
PA Actual 54.1 0.00 6.70 
Added Motor Power 0.00 0.00 0.00 

 

 

Figure 23. The average of the PA settings and speeds of hybrid vehicle with Curb theoretical 
method, no added motor power was required during idling periods 

 

 Table 30, Table 31 and Table 32 show the analysis of power data for the hybrid vehicle. 

The runs from the analysis show a correlation coefficient of 0.99 or greater except for run 34 

where the correlation coefficient is 0.874. These numbers are acceptable and verify that the set 
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point numbers match the actual points. For run 34, where the correlation coefficient was 0.874 

and standard error of 1.901 was due to no response in the controller in the analytical laboratory. 

The no response period lasted about 40 to 45 seconds of the whole cycle, which is less than 2.4 

% of the whole cycle.  

 

5.3.2. Baseline Vehicle 

 

 Table 12 and Table 13 show the PA settings for the theoretical loaded method and 

empirical loaded method, respectively, from the FTP-75 test cycle. The theoretical method is 

simulating 44.86 % higher road loads than that of empirical method for the baseline vehicle. 

Figure 24 and Figure 25 show the power, speed and motor torque over the course of the test 

cycle. As stated before, the theoretical method shows, on average, higher road loads than that of 

empirical method.   

 

Table 12. The PA setting for the baseline vehicle during the FTP-75 test schedule using method 
of theoretical loaded coastdown 

  Max (HP) Min (HP) Average (HP) 
PA Setpoint 79.7 0.00 10.8 
PA Actual  102 0.00 10.9 
Added Motor Power 0.00 0.00 0.00 

 

Table 13. The PA setting for the baseline vehicle during the FTP-75 test schedule using method 
of empirical loaded coastdown 

  Max (HP) Min (HP) Average (HP) 
PA Setpoint 21.8 0.00 5.98 
PA Actual  23.36 0.00 6.01 
Added Motor Power 0.00 0.00 0.00 
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Figure 24. The average of the PA settings and speeds of baseline vehicle with loaded empirical 
method, no added motor power was required during idling periods 

 

Figure 25. The average of the PA settings and speeds of baseline vehicle with loaded theoretical 
method, no added motor power was required during idling periods 
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 Table 33 and Table 34 show the analysis of the power data for the baseline vehicle. The 

loaded empirical method had reasonable numbers with a correlation coefficient above 0.980 and 

a standard error of less than 1.00 for all three runs shown in Table 34. The standard error of the 

loaded theoretical method was 5.75 for run 3, being the highest. The correlation coefficient for 

all the runs was still above 0.980. 

 Table 14 and Table 15 show the PA settings for the theoretical unladen method and the 

empirical unladen method for the baseline vehicle. The PA response of the theoretical unladen 

coastdown was higher than the empirical. The PA actual was, on average, 45% higher setting 

than that of PA setpoint. On average, the PA actual setting for the empirical method was 79% 

less than that of the PA actual setting for the theoretical method. Comparing the results for the 

baseline vehicle from the empirical method, the test weight added 25% load to truck from the 

PA. Figure 26 and Figure 27 show the power, speed and motor torque over the course of the test 

cycle. Both methods show to have the motor torque added during the idle periods of the test. But 

with such low values that it can be considered as noise. 

Table 14. The PA settings for the baseline vehicle during the FTP-75 test schedule using method 
of theoretical unladen coastdown  

  Max (HP) Min (HP) Average (HP) 

PA Setpoint 82.2 0.00 11.6 

PA Actual  103 0.00 21.1 

Added Motor 
Power 0.008 0.00 0.000 

 

Table 15. The PA setting for the baseline vehicle during the FTP-75 test schedule using method 
of empirical unladed coastdown 

  Max (HP) Min (HP) Average (HP) 

PA Setpoint 16.6 0 4.4 

PA Actual  18 0 4.5 

Added Motor 
Power 0.055 0 0.002 
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Figure 26. The average of the PA settings and speeds of baseline vehicle with unladen theoretical 
method during FTP-75 test schedule 

 

Figure 27. The average of the PA settings and speeds of baseline vehicle with unladen empirical 
method during FTP-75 test schedule 
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 Table 33, Table 34, Table 35, and Table 36 show the analysis of power data for the 

baseline vehicle. The standard errors for the empirical method were all around 0.50 with the 

correlation coefficient of 0.99. For the theoretical method the standard error was around 5.0 for 

all the runs; being ten times higher than empirical method. The variation in the power regression 

could be explained by few things, as it was explained by Clark et al. [28]. The difference in 

regression could be explained by the difference in the drivers‟ experiences. The driver finds a 

need to remain close the trace line, leading some drivers to employ severe pedal position 

changes. Yet other drivers feel that the pedal position changes should be subtle, and compromise 

at the best they can between maintaining schedule speed and avoiding harsh control.   

 

5.4. Fuel Economy and Work 

 

 Table 16 and Figure 28 below show the summary for both methods and both vehicles. 

The loaded hybrid configuration and unladen baseline configuration both showed an 

improvement in fuel economy from the empirical method compared to the theoretical method. 

However, the loaded baseline configuration showed a 5.31% difference from the empirical 

method compared to the theoretical method. Conditions that may have caused this may be 

weather conditions, error in the regression analysis, or tire rolling resistance.  As mentioned 

before, a 10.0% change in rolling resistance leads to a change of 2.00% in fuel economy. A 

conclusion could not be drawn for the method of empirical unladen hybrid.  

 Table 17 shows the comparison of fuel economy for the hybrid vehicle to baseline 

vehicle for each type of road load implementation. For the theoretical method of coastdowns, the 

hybrid vehicle showed a 24.8% improvement over the baseline vehicle with additional test 
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weight. For the loaded empirical method, the hybrid vehicle showed a 34.4% improvement over 

the baseline vehicle. Without the additional test weight, there was a 27.7% improvement in fuel 

economy for the hybrid vehicle compare to the baseline vehicle. The 10.0% between the two 

methods could be combination of things as previously investigated. The main contributor could 

be the aggressive PA settings based on the theoretical coastdown method used. Another could 

include weather conditions during the empirical coastdowns, tire temperature, tire pressure, and 

losses in the drivetrain which is not accounted for in the road load equation.  

  

Table 16. Summary of the average fuel economy for both methods and vehicles 

Fuel Economy Empirical Method (mpg) Theoretical Method (mpg) % Difference 

Loaded Hybrid 13.5 12.4 8.15 

Loaded Baseline 8.86 9.33 5.31 

Unladen Hybrid N/A 13.5 N/A 

Unladen Baseline 12.0 9.76 18.7 

 

 

Figure 28. Fuel economy comparison of both vehicles for each configuration 
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Table 17. Fuel economy comparisons of the loaded vehicles with different methods of road load 
implementation 

 MPG Loaded 
Hybrid 

Loaded 
Baseline 

% Difference 

Empirical method  13.5 8.86 34.4 

Theoretical 
Method  

12.4 9.33 24.8 

 

 Table 18 and Figure 29 show the summary of work done during the FTP-75 test cycle. 

The reason the data is illustrated in units of work per distance traveled is to balance results.  In 

depth results of all the runs for both the empirical method and theoretical method are shown 

Table 37 to Table 43. The distance traveled by the vehicle may vary run to run, due to driver‟s 

ability to follow the trace on the monitor. If the driver is unable to follow the trace, the distance 

traveled may be less that of the cycle, but the driver over shoots the trace than the distance 

traveled is more than that set by the test cycle. Work per distance proportions all the runs 

accordingly. Table 18 below shows that the empirical method was 2.29 % different for the two 

loaded vehicles compared to the 13.0 % of the theoretical method. For the theoretical method, it 

shows a 15.0 % between the unladen vehicles.  

  

 Table 18. Summary of work per distance traveled for both methods and vehicles. 

Work Per 
Distance 

Empirical Method 
(whp/hr mi) 

Theoretical Method 
(whp/hr mi) 

% Difference 

Loaded Hybrid 0.829 0.922 28.3 

Loaded Baseline 0.848 1.06 25.0 

Unladen Hybrid N/A 0.843 N/A 

Unladen Baseline 0.695 1.00 43.9 
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Figure 29. Work per distance comparison for both vehicles for all four configurations 

 

 Table 19 below shows the comparison of work per distance for both vehicles with respect 

to each method. This is an interesting statistic, as it shows if the full capability of the hybrid 

vehicle was used during the test cycle. The theoretical method showed a difference of 2.29% 

between the two vehicles compared to the 15.0% from the empirical method. The result of this 

concludes that the engine was operating on high loads during the test cycle due to the 

implementation of more aggressive PA settings from the theoretical method.  

 

Table 19. Comparison of the Vehicles with different coastdown method under loaded condition. 

  
Loaded Hybrid 
(whp/hr mi) 

Loaded Baseline 
(whp/hr mi) 

% Difference  

Theoretical Method 0.829 0.848 2.29 
Empirical method 0.922 1.06 15.0 
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6. Conclusion and Recommendations 
 

6.1. Conclusion  

 

 The primary goal of this study is to compare and contrast an empirical method of 

coastdowns to a theoretical method through Federal Test Procedure 75 cycle using WVU‟s 

THDEVETL and two United States Postal Service (USPS 2-ton) medium duty trucks. For both 

of the vehicles, the theoretical method showed higher road loads than that of the empirical 

method. As shown in the empirical and the theoretical model, using regression analysis, the Cd 

from the theoretical method estimates a value of 0.735 as compared to that of 0.669 from the 

empirical method. From the theoretical model, Crr equated to 0.00937 compare to the empirical 

model which equated to 0.0139.  

 The rolling resistance based on the empirical model was much higher than it should be, 

due to the fact it took into the account the losses in the drivetrain as well as weather conditions at 

the time. The rolling resistance provided by the tire companies may not be the same as the ones 

experienced on road, where the ambient conditions, road material, and variation in weight have 

an influence. The information provided by the GPS unit showed to have large variation in 

altitude and speed in small increments of time. Even though the vehicle was driven in the 

opposite direction to minimize altitude change, the variation still existed from the GPS unit. 

Figure 10, Figure 11, and Figure 12 show the raw data from the GPS unit. Although there are 

areas where the speed of the vehicle was constant,  the figure shows variation in speed was 

present.  
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  With the theoretical method, the hybrid vehicle showed a 24.8 % improvement in fuel 

economy as compared to 34.4 % obtained in the empirical method. Fuel economy comparison 

showed to be affected the most with change of 10 % between the two methods. If a more 

aggressive road load implementation was used for the comparison of the hybrid vehicle versus 

the baseline vehicle, the results might be misleading.  

 Table 19 shows how effective the hybrid system was for each method. For the theoretical 

method, work per distance traveled proved to be 2.29% between the hybrid vehicle and the 

baseline vehicle. For the empirical method, work per distance traveled proved to be 15.0% 

between the two vehicles. The hybrid USPS step van proved to be more effective under the 

empirical method of road load implementation.  

6.2. Recommendations 

 For future work, a better method of logging of speed and altitude is inevitable. Rather 

than relying on the GPS unit to record speed, use of the CAN adapter to record data from the 

ECU could provide stable results. Due to time constraints and availability of the vehicles, 

coastdowns were conducted on different days of the month which in turn caused some error in 

the results from variation in weather conditions. If possible, a recommendation is to conduct all 

the on road coastdowns on same day or days where the weather conditions are similar. 

 To further decrease variation in the power and speed from the FTP cycle, having an 

experienced driver to conduct all of the test schedules would be beneficial. The SOC correction 

calculated used an instantaneous result from the service ranger software. It would be interesting 

to see how the hybrid system behaves during a test cycle by monitoring the voltage and SOC of 

the energy storage system throughout the whole test.  
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8. Appendix  
 

Table 20.  Eaton Hybrid Vehicle Description 

Vehicle: USPS 2-Ton Truck 

Mfr: Freightliner 

Year (Vehicle): 2003 

Engine Mfr: Mercedes Benz 904  

Engine ID: 0904327768 

Year (Engine): 2003 

Displacement: 4.25 liters 

Aspiration: Turbocharged 

Engine Controls: ECM, Turbo, Charge Air Cooler, Direct 
Injection, Eaton Hybrid 

VIN: 4UZAANCPX4CL85770 

Vehicle Gross Vehicle Weight Rating 
(GVWR) 

14140 lbs 

Measured Curb Weight (Unloaded) 10600 lbs 
Half of Payload ½*(GVWR – Curb) 1770 lbs 
Calculated Half-Payload Test Weight 12370 lbs 
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Table 21.  Baseline (stock) Vehicle Description 

Vehicle: USPS 2-Ton Truck 

Mfr: Freightliner 

Year (Vehicle): 2003 

Engine Mfr: Mercedes Benz 904  

Engine ID: 0904298964 

Year (Engine): 2003 

Displacement: 4.25 liters 

Aspiration: Turbocharged 

Engine Controls: ECM, Turbo, Charge Air Cooler, Direct 
Injection,  

VIN: 4UZAANCPO3CL84903 

Vehicle Gross Vehicle Weight Rating 
(GVWR) 

14140 lbs 

Measured Curb Weight (Unloaded) 10000 lbs 
Half of Payload ½*(GVWR – Curb) 2070 lbs 
Calculated Half-Payload Test Weight 12070 lbs 
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Figure 30. Coastdown comparisons of the hybrid vehicle 

 

Figure 31. The elevation change for the hybrid vehicle coastdowns 
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Figure 32. Coastdown comparisons of the unladen baseline vehicle 

 

Figure 33. Elevation change for the unladen baseline vehicle for three coastdowns runs 
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Figure 34. Coastdown comparisons of the loaded baseline vehicle 

 

Figure 35. Elevation change for the loaded baseline vehicle for the four runs 
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Table 22. Fuel specification from local station 

Fuel Information 

SG (60 F) 0.848 
 Water Density (60 F) 8.337 lb/gallon 

Density (60 F) 7.072 lb/gallon 
 

Table 23. The coefficient of regression from analysis of speed data from FTP-75 test schedule 
using the method of theoretical unladen coastdown 

  Slope  Intercept 
Std. 
Error  

Correlation Coefficient 
(R2) 

Run 1 0.991 0.026 1.04 0.996 
Run 2 0.991 0.068 0.878 0.997 
Run 3 0.993 0.081 0.810 0.997 

 

Table 24. The coefficient of regression from analysis of speed data from FTP-75 test schedule 
using the method of theoretical loaded coastdown 

  Slope  Intercept Std. Error  Correlation Coefficient (R2) 
Run 1 0.981 0.188 1.27 0.993 
Run 2 0.988 0.027 0.846 0.997 
Run 3 0.987 0.048 0.831 0.997 

 

Table 25. The coefficient of regression from analysis of speed data from FTP-75 test schedule 
using the method of empirical loaded coastdown 

  Slope Intercept std. Error Correlation Coefficient (R2) 
Run 1 0.993 0.487 1.20 0.994 
Run 2 0.992 0.168 0.732 0.998 
Run 3 0.995 0.232 1.08 0.995 

 

Table 26. The coefficient of regression from analysis of speed data from FTP-75 test schedule 
using the empirical unladed coastdown 

  Slope Intercept Std. Error Correlation Coefficient (R2) 
Run 1 0.998 0.140 0.773 0.998 
Run 2 1.00 0.139 0.719 0.998 
Run 3 1.00 0.155 0.727 0.998 
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Table 27. The coefficient of regression from analysis of speed data from FTP-75 test schedule 
using the method of empirical loaded coastdown 

  Slope Intercept Std. Error Correlation Coefficient (R2) 
Run 32 0.987 -0.016 1.34 0.993 
Run 33 0.991 0.003 1.34 0.993 
Run 34 0.986 0.028 1.34 0.993 

 

Table 28. The coefficient of regression from the analysis of speed data from FTP-75 test 
schedule using the method of theoretical loaded coastdown 

  Slope Intercept Std. Error Correlation Coefficient (R2) 
Run 21 0.978 0.248 1.47 0.991 
Run 22 0.978 0.243 1.47 0.991 
Run 23 0.978 0.217 1.47 0.991 

 

Table 29. The coefficient of regression from the analysis of speed data from FTP-75 test 
schedule using the method of theoretical unladen coastdown 

  Slope Intercept Std. Error Correlation Coefficient (R2) 
Run 30 0.988 0.155 1.12 0.995 
Run 31 0.988 0.105 1.13 0.995 

 

Table 30. The coefficient of regression from the analysis of power data from the FTP-75 test 
schedule using the method of theoretical unladed coastdown 

  Slope Intercept Std. Error Correlation Coefficient (R2) 
Run 30 0.998 0.026 0.558 0.998 
Run 31 0.999 0.020 0.548 0.998 

 

Table 31. The coefficient of regression from the analysis of power data from the FTP-75 test 
schedule using the method of theoretical loaded coastdown 

  Slope Intercept Std. Error Correlation Coefficient (R2) 
Run 21 0.998 0.024 0.483 0.999 
Run 22 0.998 0.021 0.498 0.999 
Run 23 0.998 0.022 0.521 0.999 
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Table 32. The coefficient of regression from the analysis of power data from the FTP-75 test 
schedule using the method of empirical coastdown 

  Slope Intercept Std. Error Correlation Coefficient (R2) 
Run 32 1.003 -0.006 0.188 0.999 
Run 33 1.002 -0.002 0.273 0.998 
Run 34 0.917 0.176 1.90 0.874 

 

Table 33. The coefficient of regression from the analysis of power data from the FTP-75 test 
schedule using the method of theoretical loaded coastdown 

  Slope  Intercept Std. Error  Correlation Coefficient (R2) 
Run 1 1.09 -0.507 3.79 0.965 
Run 2 1.07 -0.537 4.66 0.946 
Run 3 1.00 -0.297 5.75 0.910 

 

Table 34. The coefficient of regression from the analysis of power data from the FTP-75 test 
schedule using the method of empirical loaded coastdown 

  Slope Intercept Std. Error Correlation Coefficient (R2) 
Run 1 1.02 -0.061 0.496 0.991 
Run 2 1.02 -0.072 0.426 0.993 
Run 3 1.01 -0.051 0.553 0.988 

 

Table 35. The coefficient of regression from the analysis of power data from the FTP-75 test 
schedule theoretical unladed coastdown 

  Slope  Intercept Std. Error  Correlation Coefficient (R2) 
Run 1 1.09 -0.545 4.10 0.963 
Run 2 1.01 -0.376 5.42 0.930 
Run 3 0.993 -0.387 5.93 0.914 

 

Table 36. The coefficient of regression from the analysis of power data from the FTP-75 test 
schedule using the method of empirical unladed coastdown 

  Slope Intercept Std. Error Correlation Coefficient (R2) 
Run 1 1.02 -0.074 0.397 0.990 
Run 2 1.02 -0.084 0.407 0.990 
Run 3 1.02 -0.087 0.408 0.990 
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Table 37. FTP-75 test results from the baseline vehicle using the loaded empirical coastdown 

Test Run 
Distance 

Traveled (mi)  

Volume 

(gallons) 
MPG Work/Hr 

Work 

(whphr) 

Fuel / Work 

(lbs/whphr) 

4 1 11.2 1.26 8.89 18.11 9.43 0.492 
4 2 11.1 1.22 9.07 18.0 9.36 0.481 
4 3 11.0 1.28 8.63 18.2 9.45 0.498 
average   11.1 1.25 8.86 18.1 9.41 0.490 
std   0.087 0.029 0.224 0.094 0.049 0.009 
COV %   0.784 2.28 2.53 0.518 0.518 1.77 

 

Table 38. FTP-75 test results from the baseline vehicle using the unladen empirical coastdown 

Test Run 
Distance 

Traveled (mi)  

Volume 

(gallons) 
MPG Work/Hr 

Work 

(whphr) 

Fuel / Work 

(lbs/whphr) 

3 1 11.1 0.967 11.5 14.7 7.64 0.466 
3 2 11.1 0.910 12.2 15.0 7.78 0.431 
3 3 11.1 0.910 12.2 14.86 7.74 0.433 
average   11.1 0.929 12.0 14.8 7.72 0.443 
std   0.027 0.032 0.436 0.141 0.074 0.020 
COV %   0.243 3.49 3.64 0.954 0.954 4.42 

 

Table 39. FTP-75 test results from the baseline vehicle using the loaded theoretical coastdown  

Test Run 
Distance 

Traveled (mi)  

Volume 

(gallons) 
MPG Work/Hr 

Work 

(whphr) 

Fuel / Work 

(lbs/whphr) 

5 1 10.9 1.15 9.46 22.1 11.5 0.370 
5 2 10.9 1.20 9.12 22.6 11.7 0.375 
5 3 10.9 1.16 9.41 22.0 11.4 0.374 
average   10.9 1.17 9.33 22.2 11.6 0.373 
std   0.004 0.024 0.185 0.327 0.170 0.003 
COV %   0.033 2.02 1.99 1.47 1.47 0.824 
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Table 40. FTP-75 test results from the baseline vehicle using the unladen theoretical coastdown 

Test Run 
Distance 

Traveled (mi)  

Volume 

(gallons) 
MPG Work/Hr 

Work 

(whphr) 

Fuel / Work 

(lbs/whphr) 

2 1 10.8 1.13 9.54 21.2 11.1 0.376 
2 2 10.9 1.09 10.0 20.4 10.6 0.376 
2 3 10.6 1.09 9.75 20.4 10.6 0.376 
average   10.7 1.10 9.76 20.7 10.8 0.376 
std   0.139 0.025 0.227 0.462 0.241 0.000 
COV %   1.29 2.29 2.32 2.23 2.23 0.074 

 

Table 41. FTP-75 test results from the hybrid vehicle using the loaded empirical coastdown 

Test Run 
Distance 

Traveled (mi)  

Volume 

(gallons) 
MPG Work/Hr 

Work 

(whphr) 

Fuel / Work 

(lbs/whphr) 

8 32 10.9 0.823 13.2 17.3 9.01 0.646 
8 33 10.9 0.804 13.6 17.4 9.08 0.627 
8 34 10.9 0.792 13.8 17.3 9.01 0.622 
average   10.9 0.807 13.5 17.4 9.03 0.632 
std   0.026 0.016 0.274 0.074 0.038 0.013 
COV (%)   0.234 1.95 2.03 0.425 0.425 2.03 

 

Table 42. FTP-75 test results from the hybrid vehicle using the unladen theoretical coastdown 

Test Run 
Distance 

Traveled (mi)  

Volume 

(gallons) 
MPG Work/Hr 

Work 

(whphr) 

Fuel / Work 

(lbs/whphr) 

7 30 11.0 0.811 13.5 17.8 9.29 0.617 
7 31 11.0 0.811 13.5 17.7 9.20 0.623 
average   11.0 0.811 13.5 17.8 9.24 0.620 
std   0.018 0.000 0.022 0.122 0.063 0.004 
COV (%)   0.163 0.000 0.163 0.685 0.685 0.685 
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Table 43. FTP-75 results from the hybrid vehicle using the loaded theoretical coastdown 

Test Run 
Distance 

Traveled (mi)  

Volume 

(gallons) 
MPG Work/Hr 

Work 

(whphr) 

Fuel / Work 

(lbs/whphr) 

3 21 10.9 0.879 12.4 19.3 10.1 0.618 
4 22 10.9 0.886 12.3 19.3 10.1 0.623 
4 23 10.9 0.873 12.5 19.3 10.1 0.614 
average   10.9 0.879 12.4 19.3 10.1 0.618 
std   0.008 0.006 0.084 0.002 0.001 0.004 
COV (%)   0.077 0.709 0.676 0.010 0.010 0.704 
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