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ABSTRACT 

INFORMATION FUSION SCHEMES FOR 
REAL TIME RISK ASSESSMENT IN 
ADAPTIVE CONTROL SYSTEMS 

by Martin Mladenovski 

 

Intelligent Flight Control System (IFCS) deploys a neural network for in-
flight aircraft failure accommodation. Verification and validation (V&V) of adaptive 
systems is a challenging research problem. Our approach to V&V relies on real-
time monitoring of neural network learning. Monitors detect learning anomalies and 
react to different failure conditions. We investigated data fusion techniques suitable 
for the analysis of neural network monitors. Monitor outputs are fused into a 
measure of confidence, indicating the belief in the correctness of failure 
accommodation mechanism provided by the neural network. We investigated two 
data fusion techniques, one based on Dempster-Shafer theory and the other 
based on fuzzy logic. Our techniques were applied to nine flight simulation 
datasets including those with failures. The monitor fusion algorithms provide 
unique, meaningful and novel technique for V&V of adaptive flight control systems. 
Being theoretically sound, the algorithms can be applied to a broad range of other 
data fusion applications. 
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I N T R O D U C T I O N  

The advance in technology and science resulted in creation of more 

complex systems. These systems have more sensors that provide information 

about the system itself or about the environment where the system is 

implemented. Observing sensors and making decisions is a difficult task. The 

human brain already has the ability to fuse information from different sensors 

(eyes, ears ...) and make decisions based on them. In automated intelligent 

systems decisions have to be made by the system, resulting in a need for data 

fusion. Another reason for data fusion is that observation of many sensors can 

bring confusion. Data needs to be fused into one sensor that will be simple to read 

and interpret the meaning of it. A significant effort has been put into the 

development of data fusion methods and algorithms. A number of them based on 

Bayesian theory [5], some of them based on Dempster-Shafer theory, [9], [10]. 

Also important methods of data fusion are the methods based on fuzzy logic [13] 

[14]. 

A complex system that we will concentrate in this work is the Intelligent 

Flight Control System (IFCS), [1], shown in Figure 1. The system consists of 

sensors from an aircraft, Real-time PID (parameter identification), baseline neural 

network, online DCS NN (Dynamic Cell Structure Neural Network) and a controller. 

Data collected from the sensors goes to the PID and the baseline NN. Using both 

of these components we have derivative estimations for the controller and the 

output from the PID is sent to the DCS network which is of our interest. This 

network, based on what it learned is making additional corrections to the PID 

output. Finally these corrected derivatives are sent to the controller of the aircraft. 

Given that the DCS network is an online network, we need to find a way to validate 

its outputs and its behavior, i.e., to come up with a real time risk assessment for 

this adaptive control system. To observe the online DCS network, four monitors 

were developed, [3]. These monitors react to different failures of the aircraft. 

However, to conclude whether the network’s output can recognize and 
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accommodate system failures or not, we need to use data fusion methods to fuse 

the data from the four monitors into a single measure of how confident we are in 

the correct accommodation provided by the DCS network. We will call this 

measure a confidence measure. 

 

 

Figure 1 Intelligent Flight Control System (IFCS) 

 

The current methods for verification and validation of neural network based 

adaptive systems provide weak results, as they are scientifically immature. To 

address this problem [15] and [16] propose a multi-layered approach which is very 

similar to the standard software verification and validation lifecycle and very difficult 

to perform. However, one of the proposed layers in this approach is dynamic 

monitoring. Our approach to verification and validation relies on real-time 

monitoring of the DCS neural network learning. As mentioned we will use data 

fusion techniques to integrate the information provided from the four monitors and 

achieve a simple yet meaningful insight into the real-time behavior of the DCS 

neural network. 
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In chapter 1, we will present the related work including description of a DCS 

NN with its monitors and two aspects of data fusion (Dempster-Shafer theory and 

Fuzzy Logic). Chapter 2 describes a method of data fusion based on the Murphy’s 

rule of combination from the Dempster-Shafer framework. A fuzzy logic data fusion 

method is presented in chapter 3. Case studies that include seven failure modes of 

the aircraft and two no-failure modes are presented in chapter 4. Conclusion and 

the comparison between the two proposed methods of data fusion are done in the 

last chapter. 
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CHAPTER 1: RELATED WORK 

 

Before we present data fusion techniques, first we have to explain the DCS 

network and the meaning of its monitors. 

 

 

1.1. DCS Neural Network 

 

DCS networks like any other neural networks consist of neurons and 

connections between the neurons. Each neuron represents a location in the output 

space. The goal of training this type of networks is to achieve a spatial 

representation of the data the network is trying to learn. This training is done using 

Kohonen rule and Hebbian rule, which adapt the neurons’ location and the 

connection weights between them [2], [3], and [4]. When the DCS network is 

“asked” to provide the output for certain input it finds the closest neuron (best 

matching unit) to the input, and gives the appropriate output. The online DCS 

network in IFCS is trained every timeframe. It grows up to a certain number of 

neurons and after that the neurons are adjusted to better represent the incoming 

data. In addition of getting the output from the DCS network every time frame, we 

can also get the values from the following four monitors [3]: 

 

1. BMU Error is the Euclidean distance between each data element of 

the presented input (training) data pattern and its closest neuron 

(node) of the neural network, known as the Best Matching Unit. 

2. SBU Error is the Euclidean distance between each data element of 

the presented input (training) data pattern and its second closest 

neuron (node) of the neural network, known as the Second Best 

Unit. 
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3. Neighborhood (NBR) error is the mean Euclidean distance 

between each data element of the presented input (training) data 

pattern and the set of neighborhood neurons (connected nodes) of 

the BMU of the neural network, known as the NBR-set. 

4. Non-Neighborhood (Non-NBR) Error is the mean Euclidean 

distance between each data element of the presented input (training) 

data pattern and the set of laterally connected, non-neighboring 

neurons of the BMU of the neural network, known as the Non- NBR-

set. 

 

These four monitors are providing information about how well the training 

data is represented by the DCS network. Certain monitors will react to some types 

of external data irregularities, other monitors to different types of irregularities. 

Therefore we need methods to fuse this information provided by the monitors into 

a single measure of confidence. 

 

 

1.2. Dempster-Shafer theory 

 

The first interest in the Dempster-Shafer theory was from the artificial 

intelligence community. Later, it found applications in software engineering, to 

interpret inconsistencies in software requirement specifications, and in pattern 

classification. 

Dempster-Shafer theory [6] is a general form of Bayesian theory. Like every 

probabilistic model, the Bayesian model has limitations. These limitations are due 

to the fact that people are not good probability estimators. The probabilistic 

functions are replaced with belief functions in the Dempster-Shafer theory. 

Expressing someone’s degree of belief is more suitable than estimating a 

probability. 
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Smets, [7], gives reasons for the need of a model to represent the belief 

process: 

“The need of a mathematical model to simulate the belief process 

can be justified by cognitive, normative or pragmatic arguments: 

 

1. Cognitive: It helps in obtaining a better understanding of the 

underlying psychological process. 

2. Normative: It establishes rules of behavior that should be 

applied by everyone. 

3. Pragmatic: It provides a mathematical construct that can be 

implemented on computers, as in expert systems, in order to 

simulate a cognitive process where the concept of belief is 

relevant.” 

 

Shafer’s early work, [6], was on the transferable belief model and his later 

work was on upper and lower probability model. In our work we will focus on the 

transferable belief model. Belief functions in this model quantify the degrees of 

belief and they are an outcome of distinct sources of evidence. Dempter’s rule of 

combination is used to combine these functions. There is no relation between the 

Dempster-Shafer’s model and the probability model, as Smets argues in [7]: 

“We insist on the fact that: 

1. The transferable belief model is built without ever introducing 

explicitly or implicitly any concept of probability. 

2. Dempster’s rule of conditioning is one of the natural 

ingredients of the transferable belief model. It is not ad hoc. It 

is a center of the model. 

3. Dempster’s rule of combination will be derived from the 

transferable belief model” 
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To better explain this model we need to give details about the frame of 

discernment, assigning beliefs and the Dempster’s rule of combination. 

 

 

1.2.1. The Frame of Discernment 

 

Similar to other models of reasoning, the transferable belief model has a 

finite boolean algebra of propositions, Θ . Beliefs are built on this finite boolean 

algebra. Θ  is know as the frame of discernment and has other names like the 

universe of discourse, the domain of reference. All propositions included in the 

frame of discernment are considered as possible propositions. Propositions not 

included are stated as impossible propositions. The Bayesian theory assumed only 

these two sets of propositions, the set of known possible propositions (PP) and the 

set of known impossible propositions (IP). In view of the fact that this is a closed-

world assumption, some processes from reality could not be modeled well using 

this assumption. For that reason, the set of unknown propositions (UP) is taken 

into account, an open-world approach, [7]. These are the propositions that we are 

not sure if they will occur. As soon as we collect more evidence that support or do 

not support our propositions, we can rearrange them in the appropriate sets. For 

the simplicity and for applications in the IFCS system we will assume that the set 

of unknown propositions is an empty set. 

Shafer [6] suggests the following notations when we are interested in the 

true value of some quantity: 

 

• θ  to denote the quantity 

• the set of all possible values (elementary propositions) Θ  (as 

mentioned previously, the frame of discernment) 

• propositions of interest are in the form of “The true value of θ  is in 

T”, where T is a subset of Θ . 
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From the above, it can be concluded that the propositions of interest are in 

a one-to-one association with the subsets of Θ . In addition, the set of all 

propositions relates to the set of all subsets of Θ . As in [6] we will indicate the set 

of all subsets as Θ2 . To demonstrate how to construct Θ  and how to define θ , let 

us consider that we want to determine the location and the time period of the 

existence of Troy. All pairs of possible location and time period will form the set Θ . 

Our interest θ , as stated, will be “the location and the time period of the existence 

of Troy”. 

It is important to be aware that the meaning and the knowledge we place in 

Θ  depends on our current understanding of the reality. In addition our language 

and its constructs influence the correctness and meaningfulness of the 

propositions (possibilities) we put in the frame of discernment, Θ . 

In order to explain the logical concepts of negation, conjunction, disjunction 

and implication with graphical ideas we can do the translation to complementation, 

intersection, union and inclusion. Let A  and B  be subsets of Θ  and their 

matching propositions 'A  and 'B , then the following translations can be made: 

 

• BA =  if and only if “ 'A  is negation of 'B ” 

• BA�  corresponds to “conjunction of 'A  and 'B ” 

• BA�  corresponds to “disjunction of 'A  and 'B ” 

• BA ⊂  if and only if “ 'A  implies 'B ” 

 

A proposition that is known to be false is represented trough the empty set, 

∅  which is an element of Θ2 . Opposite to the empty set, the set Θ  corresponds to 

a proposition known to be true. 
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1.2.2. Assigning beliefs 

 

The next step after forming the frame of discernment is to assign beliefs to 

propositions. Some portion of the belief assigned to the proposition is assigned 

also to the propositions it implies. A part of the total belief assigned to a subset of 

Θ , A , may be assigned to one or more proper subsets of A  and the rest only to 

A . Shafer gives the following definition: 

 

Definition 1: If Θ  is a frame of discernment, then a function ]1,0[2: →Θm  

is called a basic probability assignment whenever: 

1. 0)( =∅m  

2. 1)( =�
Θ⊂A

Am . 

  

Here )(Am  represents the assigned belief just to A , called basic probability 

number. The assigned belief to the empty set is 0 and all assigned beliefs must 

sum up to 1. To acquire the total belief assigned to A  we have to add all basic 

probability numbers of all proper subsets of A , �
⊂

=
AB

BmABel )()( . 

 

Definition 2: A function ]1,0[2:)( →ΘABel  is called a belief function over Θ  

if it is given by �
⊂

=
AB

BmABel )()(  for some basic probability assignment 

]1,0[2: →Θm . 

 

 

1.2.3. Dempster’s Rule of Combination 

 

Up to now we were focused on how to assign beliefs from one source of 

evidence to each proposition (subset of Θ ). In a case of a several distinct sources 
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of evidence there is a need to combine their belief functions. Dempster’s rule of 

combination is just a computation of their orthogonal sum, which will be explained 

below. A very good way to explain the Dempster’s rule is if we introduce the basic 

probability numbers geometrically. 

Let 1m  be the basic probability assignment of a belief function 1Bel  over 

frame Θ . The focal elements (elements of interest) of 1Bel  are denoted as 

pAA ,...,1 . Similar, for the other source of evidence 2m  will be the basic probability 

assignment of a belief function 2Bel  and its focal elements qBB ,...,1 . Figure 2 and 

Figure 3 (both taken from [6]) show the geometrical representation on a line 

segment with length one of the basic probability numbers of 1m  and 2m  

respectively. 

 

 

Figure 2 Representation of 1m  with line segments 

 

 

Figure 3 Representation of 2m  with line segments 
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The probability masses ( )iAm1  and ( )jBm2  are exactly assigned to iA  and 

jB  correspondingly. Our interest is focused on the intersection ji BA � . This 

orthogonal combination of 1m  and 2m  is represented in Figure 4 (taken from [6]). 

 

 

Figure 4 Orthogonally combined line segments of 1m  and 2m  

 

From Figure 4 one can notice that the intersections of the bands ( )iAm1  and 

( )jBm2  is the measure ( ) ( )ji BmAm 21 ⋅ . This measure is exactly assigned to the 

intersection ji BA � . In a similar way we can specify the exact assigned measure 

for each intersection rectangle. Any subset Θ∈C  can cover up some rectangles 
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that are exactly assigned to it. Then, the total probability mass assigned to C  will 

be: 

 

( ) ( )�
=

⋅
CBA

ji
ji

ji

BmAm

�
,

21 . 

 

The problem with the sum above is that it adds up also the mass of the 

possible intersections ji BA �  that are equal to the empty set ∅ . In that case the 

sum of these intersections will be greater than 0: 

 

( ) ( ) 0
,

21 >⋅�
∅=ji BA

ji
ji BmAm

�

. 

 

A solution to this problem, provided in [6], is to discard these rectangles and 

the remaining rectangles to be multiplied by the factor: 

 

( ) ( )
1

,
211

−

∅=
�
�
�

�

�

�
�
�

�

�

⋅− �
ji BA
ji

ji BmAm

�

 

 

This ensures that the total probability mass will again have measure one. 

The following theorem (proven in [6]) clarifies the Dempster’s rule of combination: 

 

Theorem 1: Suppose 1Bel  and 2Bel  are belief functions of the same frame 

Θ , with basic probability assignments 1m  and 2m  and focal elements 

pAA ,...,1  and qBB ,...,1 , respectively. 

Suppose: 
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( ) ( ) 1
,

21 <⋅�
∅=ji BA

ji
ji BmAm

�

. 

 

Then the function ]1,0[2: →Θm  defined by 0)( =∅m  and 

( ) ( )

( ) ( )�

�

∅=

=

⋅−

⋅

=

ji

ji

BA
ji

ji

CBA
ji

ji

BmAm

BmAm

Cm

�

�

,
21

,
21

1
)(  

 

for all non-empty Θ∈C  is a basic probability assignment. The core of the 

belief function given by m  is equal to the intersection of the cores of 1Bel  

and 2Bel . 

 

This belief function, called the orthogonal sum 1Bel  and 2Bel  and given by 

m , usually is denoted as 21 BelBel ⊕ . 

 

The rule of combination can be rewritten in the following way: 

 

( ) ( )

( ) ( )�

�

∅≠

∅≠
=

⋅

⋅

=

ji

ji

BA
ji

ji

C
CBA

ji
ji

BmAm

BmAm

Cm

�

�

,
21

,
21

)(  

 

 

1.2.4. Murphy’s Rule of Combination 

 

Murphy’s research [9] and [10], concerning combination of evidence in 

mobile autonomous robots, showed some problems in Dempster’s rule of 

combination. This rule has two assumptions that were not suitable for mobile 
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robots. The assumptions are that the sources of evidence are independent and 

that the order of combination is not important, [6] and [7]. To meet the 

requirements of the mobile robot system, Murphy came up with a different rule of 

combination based on the following assumptions: 

• The sources of evidence are not independent 

• The order of combination is important 

 

Every multiplicative term ( ) ( )ji BmAm 21 ⋅  in the Dempster’s rule was replaced 

with ( ) ( )( )ji BmAmf 21 ⋅ , where f  is an arbitrary nonnegative function of two 

variables: ( ) ( )( ) +∈⋅ RBmAmff ji 21: . Experimental research showed that the 

function ( ) ( )( ) ( ) ( )[ ] ]1,0[,2121 ∈⋅=⋅ nBmAmBmAmf n
jiji  gives good results. The 

choice of parameter n  makes this rule adaptive, [9]. When new evidence has 

more weight, then n  should be greater than 0.5 (optimistic). Opposite of that, 

when the new evidence has less weight the choice of n  should be less than 0.5 

(pessimistic). Values of n  around 0.5 are called neutral values, and mean that the 

revision of the belief is nor pessimistic nor optimistic. Another clarification on the 

choice of n  is through correlation. Low correlation values between the sources of 

evidence, result in higher values of n  closer to 1. For 1=n  Murphy’s rule becomes 

Dempster’s rule of combination meaning that the sources of evidence are 

completely independent. High correlation values between the sources of evidence 

lead to lower values of n  closer to 0. 

 

 

1.3. Fuzzy Inference System 

 

The fuzzy logic is widely used today in industry and science. Lofti Zadeh in 

1964 had the idea regarding fuzzy sets and later in 1965 he published an 

influential paper on fuzzy sets which was the birth of fuzzy logic technology. 
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Following this, there was a significant scientific progress followed by industrial 

progress. One of the creators of the first fuzzy logic controller was E. Mamdani, 

who worked with Assilian in 1974 to develop a controller for a steam generator. A 

big “fuzzy boom” was in Japan starting from 1987. 

There were two main goals that motivated fuzzy logic researchers. One 

goal was to use fuzzy logic on analysis and development of complex systems, thus 

overcoming problems of conventional mathematical tools. The other goal was to 

make use of human reasoning, concepts and knowledge that are not well defined. 

These two goals defined two requirements from fuzzy logic, [11]: 

 

• A requirement that allows fuzzy logic to work in quantitative and 

numeric domains 

• A requirement that enables fuzzy logic to have descriptive and 

qualitative form, because imprecise concepts are usually described 

qualitatively. 

 

The most extensively used fuzzy logic techniques based on fuzzy sets are 

the fuzzy “if-then” rules. Their application is in many fields like control systems, 

decision making, pattern recognition and other. Industrial applications are in 

robotics, process control, financial trading, medical imaging and many more. A 

fuzzy if-then rule is defined in [11]: 

 

Definition 3: A fuzzy if-then rule associates a condition described using 

linguistic variables and fuzzy sets to a conclusion. 

 

There are two types of fuzzy rules: 

 

1. fuzzy mapping rules: describe a functional mapping relationship 

between inputs and output using linguistic terms 
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2. fuzzy implication rules: describe a generalized logic implication 

relationship logic between two logic formulas involving linguistic 

variables and imprecise linguistic terms 

 

In this work we will be focused on the fuzzy rule-based models for function 

approximation, which are based on fuzzy mapping rules. Before we continue with 

specific fuzzy models we will quote some definitions from [11]: 

 

Definition 4: A fuzzy subspace is a region whose boundary allows a 

gradual transition from “inside the region” to “outside the region”. 

 

Definition 5: A fuzzy model is a model obtained by fusing multiple local 

models that are associated with fuzzy subspaces of the given input space. 

 

For function approximation there are three models combined in two groups, 

additive rule models and non-additive rule models. Additive rule models are the 

Takago-Sugeno-Kang (TSK) model and Kosko’s additive model (SAM). The 

Mamdani model belongs to the non-additive rule models. 

For all these models there are few steps that are taken: 

 

1. fuzzy partition 

2. mapping of fuzzy sub regions to local models 

3. fusion of multiple local models 

4. defuzzification 

 

The input space is partitioned into disjoint subspaces. Membership 

functions are used to achieve the partitioning. Classical partitioning does not have 

smooth transitions between subspaces. This is the main difference from fuzzy 

partitioning where the membership degree from one subspace smoothly increases 

while the membership degrees from other subspaces smoothly decrease. Using 
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this approach transitions from neighboring subspaces are smooth. In Figure 5 

there is an example of how an input variable temperature with triangular 

membership functions is partitioned into three subspaces: low, medium and high 

temperature. 

 

 

Figure 5: Membership function example 

 

The next step is to map the fuzzy subspaces into a local model. Fuzzy if-

then rules are used to accomplish this step. The rules are in the form of: 

 

“IF the input variables belong to some subspaces THEN the output is a 

local model from those variables. “ 

 

Local models can be a crisp constant (a number), a fuzzy constant (e.g. 

NORMAL), a linear model or a nonlinear model.  

Fusion of local models is done through interpolative reasoning. Depending 

on the quantity of belonging to a subspace for the situation of the rule, weight for 

each rule is decided. 

The last step is the defuzzification method, and the most used methods are: 

mean of maximum (MOM), center of area (centroid) or the height method. This 

step determines the final output value. The defuzzification method, mean of 
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maximum, from the output values that have the highest possibility degrees 

calculates the average. Centroid, unlike MOM, takes into consideration the entire 

possibility distribution. 

Fuzzy logic systems have been used as a data fusion technique, [13], [14], 

in different areas. Their application showed up good results. For that reason we 

consider this technique as a data fusion technique for the IFCS system. 
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CHAPTER 2: DATA FUSION BASED ON DEMPSTER-SHAFER ‘S THEORY 

 

This chapter presents a data fusion method based on the Dempster-Shafer 

theory. Murphy’s rule is used as a combination rule; since the four monitors, i.e. 

the sources of evidence are all dependent. The dependency comes from the fact 

that the monitors are based on the same DCS network.  

When the input data is processed by the DCS network, the four monitors 

will provide values. These values are immediately processed by the method 

explained in this chapter, which results in a real-time confidence measure. Prior to 

sending the data from the monitors to data fusion method, the data is normalized 

in an online manner to be between 0 and 1. For each monitor we keep the 

maximum value that appeared to the current time frame. Thus, every time step the 

values from these monitors are divided by the current maximum from the 

corresponding monitor. We justify this way of normalizing the data because when 

the DCS network starts learning the values of the monitors (the errors of the 

represented data) are usually very high. Over time these values decrease and if 

some fault happens in the network or the incoming data to the network changes 

rapidly the normalized values from some monitors will show a spike close to 1. 

In order to apply the Murphy’s rule on these four different sources of 

evidence we need to create the frame of discernment, Θ . Given that all these 

monitors suggest some belief about how distant is the represented data from the 

actual data, we can form two propositions: 

• E  - how distant is the represented data from the actual data, 

meaning how much we are not certain in the network’s outputs 

• C  - how confident we are in the network’s outputs and how much we 

can trust them. This is our confidence measure. 

 

Since these propositions represent opposite beliefs we can write that EC =  

and ∅=EC� . The normalized value from each monitor will be assigned as a 
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belief (basic probability number) to the proposition E  and represented with )(Em . 

Consequently, the assigned belief to proposition C  will be )(1)( EmCm −=  so that 

the total assigned belief to all propositions is 1. To exemplify how we combine the 

evidence from two monitors, first let 1m  and 2m  be their basic probability 

assignment functions. Then, from the following table, we can see their orthogonal 

combination: 

 

1m \ 2m  E  C  

E  )()( 21 EmEm ⋅  ∅  

C  ∅  )()( 21 CmCm ⋅  

Table 1 Orthogonal combination of beliefs from two monitors 

  

Based on the table above we can now write the combined belief function 

12m : 

 

( )
( ) ( )nn

n

CmCmEmEm

EmEm
Em

)()()()(

)()(
)(

2121

21
12 ⋅+⋅

⋅=  for the proposition E  and 

( )
( ) ( )nn

n

CmCmEmEm

CmCm
Cm

)()()()(

)()(
)(

2121

21
12 ⋅+⋅

⋅=  for the proposition C . 

 

As we can see for the combined belief function 12m , the combined belief for 

proposition C  is )(1)( 1212 EmCm −= . Thus, it is not important whether we combine 

only the beliefs for proposition E  with )(12 Em  and at the end calculate the belief 

for proposition C  using )(1)( 1212 EmCm −= ; or directly calculate )(12 Cm . Given that 

the normalized values of the monitors are the basic probability numbers for 

proposition E  we decided first to combine the beliefs of the proposition E  and 

then calculate the belief for proposition C . 
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Let us label the assigned beliefs from every monitor for proposition E  in the 

following way: 

)(),...,(),( 2211 EmaEmaEma kk === , 

where k  is the number of monitors and kmmm ,...,, 21  are the basic 

probability assignment functions for monitor #1, monitor #2, ..., monitor #k 

correspondingly. 

There are many orderings to combine k  beliefs. For example we can 

combine them in groups of two and then calculate the combined belief from each 

group. Another approach is to combine the beliefs from the first two monitors. 

Then, that result is combined with the belief from the third monitor and so on until 

we reach the last monitor. This way of ordering is illustrated in Figure 6: 

 

 

Figure 6 Way of combining beliefs from monitors 

 

When combining like this the last monitor combined always has the highest 

influence on the final result. As stated in [9] and shown in section 2.1, different 

order of monitors results in different combined beliefs. Our concern is finding the 

order that gives the minimum value of the combined belief as well as the order that 

gives the maximum value. These two values and their absolute difference carry 

useful information about the learning process of the DCS network. In order to get 

the minimum and the maximum the first approach is to generate all possible 

orderings and calculate the combined belief, thus having every monitor to have 

highest influence on the combined belief. The number of the possible orderings of 

the monitors is !k . Generating all these orderings is time consuming as k  
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increases. For that reason, we claim that if we sort the beliefs of the monitors in 

increasing order the combined belief will have the maximum value. When sorting 

them in decreasing order, the combined belief will have the minimum value. Now, 

the total time to compute the minimum and the maximum is ( ))log(kkO ⋅ . The proof 

that we can compute the minimum and the maximum value of the total combined 

belief in ( ))log(kkO ⋅  time is shown below in this chapter. 

One must notice that if some of the beliefs have a value of 0 then the 

combination with another belief will always be 0. Opposite to that, if some belief 

has a value 1, when combined with another nonzero belief the combination will be 

1. To avoid this, for beliefs equal to 0 we assign a number greater than but close to 

0 and for beliefs equal to 1 we assign a number smaller than but close to 1. So, all 

beliefs )(),...,(),( 2211 EmaEmaEma kk ===  will have values in the interval )1,0( . 

Another important detail is that the parameter n  is constant during the process of 

getting the minimum and the maximum. Our choice of n  is the neutral value (0.5), 

since we have no good understanding of the dependence between the monitors. 

This method showed good results (see case studies) when put into the 

IFCS system. Some case studies had a failure of the aircraft. This failure was 

induced at a certain time. The failure data that comes to the DCS network is 

different than the data it has already learned. Therefore, the structure of the DCS 

network changes and the monitors show change. The fused data based on the 

method described here is represented by two values: minimum and maximum. 

During the failure, these two values decrease and also their difference increases. 

For this reason the DCS network outputs can not be trusted while these values are 

low and their difference is large. During no-failure modes the minimum and the 

maximum confidence have higher values closer to 1 and their difference is very 

low, closer to 0. 

Previously, we mentioned the claim: If the beliefs are sorted in increasing 

order, combining them as in Figure 6 will obtain the maximum value of the final 

combined belief; and if sorted in decreasing order then the minimum value will be 
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obtained. To prove this claim, we will use mathematical induction. Before we begin 

with the proof, for easier mathematical analysis we can rewrite Murphy’s rule of 

combination of two beliefs x  and y  in the following way: 

 

( )
( ) ( ) ( )

)1,0(),(

];1,0[);1,0(,,
11

),(

∈

=∈∈
−−+⋅

⋅=

yxm

constnnyx
yxyx

yx
yxm

nnn

n

 

 
 

From the partial derivations on x  and on y  one can conclude that ),( yxm  

is an increasing function: 

 

( )
( )( ) 0

)1()1(

)1()1(
2

1

>
⋅+−⋅−

⋅⋅−⋅−⋅=
∂
∂ −

nnn

nnn

yxyxx

yxyxn

x

m
 

 
( )

( )( ) 0
)1()1(

)1()1(
2

1

>
⋅+−⋅−

⋅⋅−⋅−⋅=
∂
∂ −

nnn

nnn

yxyxy

yxyxn

y

m
 

 

This fact will later be used in the proof. The way that we combine the beliefs 

kaaa ,...,, 21 , shown in Figure 6, formally can be expressed as: 

 

( ) kiaicombmicomb

acomb

i ,...,2,),1()(

)1( 1

=−=
=

. 

 
Final combined belief is the value of )(kcomb . 

 
It is easy for one to notice that ),(),( xymyxm =  since multiplication is a 

commutative operation. However, if there are more than two beliefs, different order 

of combining them gives different results. 
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Now we are ready to start the proof of our claim using mathematical 

induction. First we will prove the base case for three beliefs, and after that by 

induction we will prove that it holds for any number of beliefs. 

 

 

2.1. Base case 

 
Let there be three beliefs: 

 

321 aaa ≤≤  

 

Let 231312132213123 ,,,, EEEEE  and 321E  be the values of )3(comb  on all 

possible permutations (3! =6). The total number of different combined values 

reduces to 3 since ),(),( xymyxm = : 

 

( ) ( )
( ) ( )
( ) ( ) 321123132231

312213231132

213312321123

),,(),,(

),,(),,(

),,(),,(

EaaammaaammE

EaaammaaammE

EaaammaaammE

===
===
===

 

 

Before we continue to compare these values we need to express them in a 

more appropriate format. The next set of mathematical expressions leads us to the 

desired format. 

 

( )
( ) ( ) ( )nnn

n

aaaa

aa
aamE

2121

21
2112

11
),(

−−+⋅
⋅

==  

 

( )
( ) ( ) ( )nnn

n

aEaE

aE
E

312312

312
123

11 −−+⋅
⋅

=  
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After some simplifications, 123E  gets the following form: 

 

( ) ( ) ( )nnnnnn

nnn

aaaaaa

aaa
E

321321

321
123

111
2222

22

−−−+
=  

 

In a similar way we get the values for 132E  and 321E : 

 

( ) ( ) ( ) 2222

22

321321

321
132

111 nnnnnn

nnn

aaaaaa

aaa
E

−−−+
=  

 

( ) ( ) ( ) 2222

22

321321

321
321

111 nnnnnn

nnn

aaaaaa

aaa
E

−−−+
=  

 

For easier comparison, we can bring the formulas of 123E , 132E  and 321E  to 

a different form: 

 

nnnnnn
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P
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�

�
−��

�

�
��
�

�
−=��

�

�
��
�

�
−��

�

�
��
�

�
−��

�

�
��
�

�
−+= 1

1
1

1
1

1
,1

1
1

1
1

1
1

1

321
123

321123

2222
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1
1

1
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1
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1
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1
1
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2222
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1
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To prove that 321132123 EEE ≥≥ , it is enough to prove that 321132123 PPP ≤≤ . 

 

First we will prove that 132123 PP ≤ . Suppose that: 

1
132

123 ≤
P

P
  

 

holds. Then we have: 
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Since 32 aa ≤ , it follows that 132123 PP ≤  and that 132123 EE ≥ . 

 

The next part is to prove that 321132 PP ≤ . As in the previous case suppose 

that the inequality: 

1
321

132 ≤
P

P
 

 

holds. Then the inequality can be simplified as follows: 
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1
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Due to the assumption that 21 aa ≤ , it follows that 321132 PP ≤  and that 

321132 EE ≥ . 

 

This completes the proof for three beliefs: 

 

321132123 EEE ≥≥ , 

 

where the maximum is equal to 123E  (when the beliefs are sorted in 

increasing order) and the minimum is equal to 321E  (when the beliefs are sorted in 

decreasing order). 

 

For the induction step we will use one property that holds when combining 

beliefs in this way. 

 

Lemma 1: Let ba,  and c  be real numbers all of them )1,0(,, ∈cba  and we 

only know that cb ≤  and ]1,0[∈n  is a constant. Then let the function F  be 

defined as ( )zyxmmzyxF ),,(),,( = . In such a case the inequality 

),,(),,( bcaFcbaF ≥  holds. 

 

Proof of Lemma 1: 

 

Let ),,( cbaFEabc =  and ),,( bcaFEacb = . The final forms will be: 
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( ) ( ) ( )nnnnnn
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==  

 

After some simplifications, like in the base proof, these formulas can be 

simplified like: 
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To prove that acbabc EE ≥  it is sufficient to prove that acbabc PP ≤ . Suppose 

that the inequality: 

 

1≤
acb

abc

P

P
 

 

holds. In a similar way like previously we simplify the inequality: 
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Since cb ≤ , it follows that acbacb PP ≤  and that acbabc EE ≥ , 

),,(),,( bcaFcbaF ≥ . From this we can conclude that regardless of the value of the 

relation ),,(),,( bcaFcbaF ≥  holds. 

 

 

2.2. Induction Hypothesis 

 

Now, suppose that for k  beliefs )(kcomb  will give us the maximum if the 

beliefs are sorted in increasing order and will give us the minimum if the beliefs are 

sorted in decreasing order. We will show the proof only for the maximum, since the 

proof for the minimum is analogous. 

 

 

2.3. Induction proof for 1+k  

 

Let us prove that for sorted (in increasing order) 1+k  beliefs ( 121 ... +≤≤≤ kaaa ),  

)1( +kcomb  will give us the maximum. Below, in the Table 2, there are 1+k  

possible orderings. The possible orderings are generated when every belief is put 

as the last one, and the previous k  are sorted in increasing order, since we 

assume that for k  beliefs we can get the maximum when they are in increasing 

order.  
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order 
#( i ) 

sorted 1−k  beliefs 
( )1( −kcombi ) 

k th belief ( 1+k ) th belief 

0 
121 ,....,, −kaaa  ka  1+ka  

1 
kaaa ,....,, 32  1+ka  1a  

... ... ... ... 
i  

kii aaaa ,....,,,..., 111 +−  1+ka  ia  

... ... ... ... 
k  

121 ,....,, −kaaa  1+ka  ka  

Table 2: Possible orderings for 1+k  beliefs 
 

 

For each row k1,...,i =  in the table we have: 

( )iii akcombmkcomb ),()1( =+  and ( )1),1()( +−= kii akcombmkcomb . 

 

Also, )1( +kcombi  can be expressed using the F function: 

( )ikii aakcombFkcomb ,),1()1( 1+−=+ . 

 

For the order labeled #0, we have: 

( )100 ,),1()1( +−=+ kk aakcombFkcomb  and ( )kakcombmkcomb ),1()( 00 −= . 

 

By Lemma 1, 

( ) ( )11 ,),1(,),1()1( ++ −≤−=+ kiiikii aakcombFaakcombFkcomb , 

since 1+≤ ki aa  for all rows k1,...,i = . 

 

Using the assumption for k  beliefs,  

( ) ( )kii akcombmkcombakcombm ),1()(),1( 00 −=≤− .  

 

Due to the fact that ),( yxm  is increasing function for x  and y , the following 

holds: 
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( ) ( )( ) ( )( )1011 ,),1(,),1(,),1( +++ −≤−=− kkkiikii aakcombmmaakcombmmaakcombF

. 

 

( ) ( )( ) )1(,),1(,),1( 0101 +=−≤− ++ kcombaakcombmmaakcombF kkkii  

 

We showed that )1()1( 0 +≤+ kcombkcombi  for each k1,...,i = , which 

completes the proof. 
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CHAPTER 3: DATA FUSION BASED ON MAMDANI FUZZY RULE BASED 

MODEL   

 

Fuzzy rule based models are similar to human reasoning, for the reason 

that they use concepts and knowledge that are not well defined. Imprecise 

concepts are typically described qualitatively. The qualitative description is 

achieved through membership functions that partition the input and the output 

space. These aspects of fuzzy rule based models can be used for information 

fusion method that will fuse the information provided by the four monitors. The 

output of this method will be a single value (confidence measure), unlike the two 

values (minimum and maximum) provided by the method in chapter 2. 

The non-additive rule-based model, called Mamdani model, has some 

advantages that are in our interest than the additive rule-based models TSK and 

SAM. Mamdani’s model is in fact a very simple model and that is the reason of its 

broad applications. Inputs in this model can be crisp or fuzzy inputs, while the 

output is expressed through linguistic variables, which make the data fusion very 

close to human reasoning. Combination of all conclusions is done with the max 

operator.    

Crisp inputs are the requirement for the SAM model, which is one limitation 

compared to the Mamdani model. This model for defuzzification uses only the 

centroid method, while Mamdani can have any deffuzification method. The 

conclusions are combined with addition operator. 

Same as the SAM model, the TSK model requires crisp inputs. It is mostly 

used to model complex systems for accurate approximations. One reason for that 

is that the outputs in every rule are expressed as a linear combination of the 

inputs. The problem with this linear combination is determining the coefficients of 

every linear combination. Usually, this is done through some learning processes, 

like genetic algorithms, [13]. Due to the fact that our IFCS requires data fusion to 
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be done in real-time manner, adaptation of these coefficients over time might be a 

slow process.  

For all these reasons we select the Mamdani model as a very simple model 

that can be implemented in the IFCS and will make data fusion a fast process. 

As explained in section 1.1, there are four monitors of the DCS network. 

The fuzzy model that is built is fusing data from these monitors into a single 

confidence measure. 

When building this fuzzy system the first phase is to partition the input 

space and select the appropriate membership functions. Subsequent to that is 

creating the fuzzy rules followed by selecting the deffuzification method. 

 

 

3.1. Partitioning of the Input and Output Space and Creation of Fuzzy 

Rules 

 

The inputs to this system are the monitors from the DCS network. The 

ranges of these monitors vary over time, so we cannot determine what will be the 

maximum error that they will report. Therefore the online normalization method, 

explained in chapter 2, is used for making all these inputs to be in the range [0..1]. 

This normalization will make the partitioning of the input space much easier. 

Another important issue is into how many partitions the input space should 

be divided. The number of partitions has big impact of the number of rules. Let: 

 

• k  denote the number of monitors, 

• n  denote the number of input partitions, 

• kmmm ,...,, 21  denote monitor values, 

• nPPP ,...,, 21  denote input partitions 

• i
k

ii VVV ,...,, 21  denote the i th variation of the input partitions with k  

elements and 
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• sOOO ,...,, 21  denote the output partitions, where s is the number of 

partitions of the output. 

 

Every rule from the Mamdani model can be expressed in the following way: 

 

Rule #i: “IF 1m  in iV1  AND 2m  in iV2  AND ... km  in i
kV  THEN output is one 

partition from sOOO ,...,, 21 . 

 

For every variation of the input partitions we have to create a rule to be sure 

that all possible cases are included in the fuzzy system. This leads to a conclusion 

that the total number of rules is the number of variations of the input partitions with 

k  elements, which is kn . In our DCS network 4=k , so partitioning the input 

space into too many subspaces will result in many rules that will have to be 

processed every time when the data from the monitors need to be fused. For this 

system we have chosen the number of partitions to be 3=n . The total number of 

rules is 81, which is not a large number and the input space is partitioned into 

reasonable subspaces. If we select 4=n  or 5=n  the number of rules grows very 

fast to 256 and 625, respectively. Input space is partitioned into the following 

subspaces: 

 

• good – small errors, close to 0, 

• normal – errors around 0.5 and 

• bad – errors close to 1. 

 

The above subspaces make construction of the rules much easier and 

more similar to human reasoning. Besides partitioning the input space, also the 

output space has to be partitioned. The range of the output, confidence measure, 

is between 0 and 1. A similar approach as for the input space leads to subspaces 

of the output space:  
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• low  – confidence measure close to 0, 

• medium – confidence measure around 0.5 and 

• high – confidence measure close to 1. 

 

However, this partitioning is not sufficient to describe the outputs of all 81 

rules, since many rules will have same output partitioning. Therefore we propose 

partitioning of the confidence measure output into the following subspaces: very 

low, low, medium, high and very high.  

 

 

3.2. Choosing Membership Functions 

 

The next phase is choosing membership functions for the inputs and the 

output. Triangular functions are very simple to start with. Figure 7 and Figure 8 

show the triangular membership functions for the input space and the output 

space. 

 

 

Figure 7 Triangular membership functions for the input subspaces 
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Figure 8 Triangular membership functions for the output subspaces 

 

As one can notice, triangular functions have a peek which has the highest 

value, 1, only in one point and they have sharp edges at transitions. For these 

reasons the final transitions and changes in the output are not smooth (Figure 11).  

To improve this system the following smooth membership functions were 

selected: 

 

• “Z-shaped curve” – asymmetrical polynomial curve open to the left 

• “S-shaped curve” – asymmetrical polynomial curve open to the right 

• “Gaussian – curve” – simple Gaussian distribution curve 

 

 The input space partitions were assigned the following membership 

functions: good – “Z-shaped curve” membership function, normal – “Gaussian 

curve” membership function and bad – “S-shaped curve” membership function 

(see Figure 9). In a similar way membership functions for the output space were 

assigned: very-low with “Z-shaped curve” membership function; low, medium, 

and high with “Gaussian curve” membership function; and very-high (with “S-

shaped curve” membership function (see Figure 10). 
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Figure 9 Smooth membership functions for the input subspaces 

 

 

Figure 10 Smooth membership functions for the output subspaces 

 

Results that were achieved with these membership functions were better 

than those with triangular membership functions (see Figure 11). It is noticeable 

that the fused data with triangular membership functions is not smooth and also 

has consistently smaller values than the one with smooth membership functions. 

This happens even when the values from the monitors are closer to 0, when the 

confidence measure should be closer to 1. The same advantages of smooth 

membership functions over triangular membership functions appeared in all case 

studies. 
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Figure 11 Comparison between triangular and smooth membership functions 

 

 

3.3. Selecting Appropriate Deffuzification Method 

 

Following the choice of membership functions and creation of the rules, the 

next phase is to select the appropriate defuzzification method. The most popular 

deffuzification methods are mean of maximum (MOM) and center of area 

(Centroid). Like explained in section 1.3, MOM takes into account only those 

output values with higher possibility degrees. Sometimes this leads into very low 

sensitivity on failures in the DCS network when compared with data fusion method 

based on Murphy’s rule. In Figure 12 we can see that the MOM defuzzification 

method during failure time (after time frame 100) produces oscillations in the 

output that usually do not match up with the monitors and with output generated 
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from the Murphy’s rule based method. Best results were achieved with centroid 

defuzzification. These results followed the same pattern as the results achieved in 

the previous chapter.  

 

 

Figure 12 Comparison between centroid and MOM defuzzification 

 

This method, based on fuzzy logic, shows very good results (see case 

studies). The fused data from the four monitors is simple. It indicates how much we 

can trust the outputs from the DCS network. Based on this simple measure 

decisions can be based on some thresholds. These thresholds will depend on the 

system where this method will be applied. Since Mamdani fuzzy models are widely 

used, their software or hardware implementations are easy. The IFCS system 

requires the data fusion method to be fast so that it will not waste processor power. 

The method proposed in this chapter satisfies this condition. 
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However, in a case when a numeric confidence measure is not required 

and when a linguistic output is sufficient, the defuzzification method can be 

excluded. Instead of that, the output with the highest possibility will be selected. 

This linguistic output can be used as a “traffic” light that will indicate whether there 

is an unexpected behavior of the DCS network, or the DCS network receives 

unexpected inputs. For instance, the linguistic constants can be used to signal the 

following lights: 

 

• very high – green light (network outputs are highly trusted) 

• high – green and yellow light 

• medium – yellow light 

• low – yellow and red light 

• very low – red light (network outputs are not trusted) 
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CHAPTER 4: CASE STUDIES 

 

The online DCS neural network was trained with the data collected from the 

high fidelity NASA-WVU F-15 flight simulator. This simulator corresponds to the 

architecture and the functionality of the IFCS system. The data from the simulator 

is sampled with a frequency of 20Hz. We have nine experiments (see Table 3), 

where two of them represent no-failure modes of the aircraft and the other seven 

represent failure modes. For every experiment the data set consist of 800 data 

frames and all failures happen at the 600th data frame. The DCS network is trained 

between the 500th and the 700th data frame, since for the monitors to react on the 

failure there was no need to train it on all 600 data frames before the failure. One 

data frame at a time was passed to the DCS network. After training the network to 

that input, the four monitors provide data that is fused with the two described 

methods. Thus, the whole system was working in real-time, providing confidence 

measure for the DCS network at every moment. The time on the graphs is in the 

range [1-200], which corresponds for the time frames [500-700] from the data set. 

So, the failure is shown at the time frame 100. 

 

Mode Failed Surface Failure Description 

1 Locked left stabilator Locked at angle of 0 Deg 

2 Locked left stabilator Locked at angle of +3 Deg 

3 Locked left stabilator Locked at angle of -3 Deg 

4 Locked right aileron Locked at angle of +3 Deg 

5 Locked right aileron Locked at angle of -3 Deg 

6 Loss of left stabilator 50% missing surface 

7 Loss of right aileron 50% missing surface 

8 No-failure mode 1 none 

9 No-failure mode 2 none 

Table 3 Failure and no-failure modes 
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4.1. Mode 1 

 

The normalized monitor values in Figure 13 show spikes when the failure 

happens at a time frame 100. Monitors 1 and 4 show higher spikes than the other 

two monitors. Both, the minimum and the maximum confidence (Figure 14) from 

the method based on Murphy’s rule fell down, which indicates that there is a 

failure. Also their difference increases. From the fuzzy logic method (Figure 15) we 

can see that after time frame 100, there is a similar pattern in the confidence level. 

  

 

Figure 13 Normalized values from the monitors for Mode 1 
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Figure 14 Data fusion using Murphy’s rule for Mode 1 

 

 

Figure 15 Data fusion using fuzzy logic for Mode 1 
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4.2. Mode 2 

 

In this failure mode, the normalized monitors (Figure 16) show significant 

spikes when the failure happens. The highest spikes are from monitors 1 and 4, 

but also the spikes from the monitors 2 and 3 are significant. Figure 17 shows the 

results from the data fusion method based on Murphy’s rule, where the minimum 

and the maximum confidence have a very significant drop to lower values and their 

distance increases at the time of failure. Also from this figure we can see that there 

is a period 60 time frames until the network stabilizes again. From the fuzzy logic 

method (Figure 18) we can notice that the similar pattern is shown. At time frame 

100, there is a very low value for the confidence measure, and it is restored to a 

high confidence value after 60 time frames. 

 

 

Figure 16 Normalized values from the monitors for Mode 2 
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Figure 17 Data fusion using Murphy’s rule for Mode 2 

 

 

Figure 18 Data fusion using fuzzy logic for Mode 2 
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4.3. Mode 3 

 

Following a similar conclusion from the previous two failure modes, monitor 

1 has the highest value (Figure 19), followed by monitor 4. Monitors 2 and 3 do not 

show significant spikes. Murphy’s rule based data fusion method (Figure 20) at the 

failure time for both boundaries shows a drop to a confidence level around 0.7 with 

their difference around 0.2 meaning that the network’s outputs can not be trusted. 

A similar reaction of a drop to 0.7 confidence level is noticed from the fuzzy logic 

method (Figure 21). 

 

 

Figure 19 Normalized values from the monitors for Mode 3 
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Figure 20 Data fusion using Murphy’s rule for Mode 3 

 

 

Figure 21 Data fusion using fuzzy logic for Mode 3 
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4.4. Mode 4 

 

The need for different monitors can also be noticed in this failure mode, 

since the monitor 1 has a significantly higher value than the other 3 monitors upon 

the occurrence of the failure (Figure 22). This results in a drop of the minimum 

confidence value to around 0.7 and the maximum confidence value to around 0.9, 

which also affects their distance to rise to 0.2 (Figure 23). However the fuzzy logic 

method (Figure 24) shows only a little decrease of the confidence level. 

 

 

Figure 22 Normalized values from the monitors for Mode 4 
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Figure 23 Data fusion using Murphy’s rule for Mode 4 

 

 

Figure 24 Data fusion using fuzzy logic for Mode 4 
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4.5. Mode 5 

 

The reaction of the monitors (Figure 25) to this failure is not significant. 

Monitors 1 and 4 have a bit higher values than in monitors 2 and 3. When the data 

is fused using Murphy’s rule based method (Figure 26), it shows a drop of the 

minimum and the maximum confidence to 0.8 and 0.9 respectively. It quickly 

recovers to higher values meaning that the output from the network can be ignored 

for a short period of time (10 time frames). Similar result is achieved using the 

fuzzy logic method (Figure 27). 

 

 

Figure 25 Normalized values from the monitors for Mode 5 
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Figure 26 Data fusion using Murphy’s rule for Mode 5 

 

 

Figure 27 Data fusion using fuzzy logic for Mode 5 
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4.6. Mode 6 

 

This surface failure produces very high spikes on monitors 1 and 4 and 

significant spikes on monitors 2 and 3 (Figure 28). Murphy’s rule based method 

(Figure 29) shows a remarkable drop down of the confidence bounds bellow 0.4, 

resulting in their difference to get as high as 0.4. A significant decrease of the 

confidence is also produced by the fuzzy logic method (Figure 30). Both methods 

indicate that the network’s output can not be trusted for a long period of time, 

approximately 60 data frames. 

 

 

Figure 28 Normalized values from the monitors for Mode 6 
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Figure 29 Data fusion using Murphy’s rule for Mode 6 

 

 

Figure 30 Data fusion using fuzzy logic for Mode 6 
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4.7. Mode 7 

 

The response from the monitors (Figure 31) on this failure is up to a 

maximum level of 0.2. Both methods (Figure 32 and Figure 33) show a small 

decrease of the confidence for a short period of time after what the high 

confidence level is restored. 

 

 

Figure 31 Normalized values from the monitors for Mode 7 
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Figure 32 Data fusion using Murphy’s rule for Mode 7 

 

 

Figure 33 Data fusion using fuzzy logic for Mode 7 
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4.8. Mode 8 

 

In the first no-failure mode all monitors (Figure 34) have very low values 

indicating that nothing bad is happening. Also the fused data (Figure 35 and Figure 

36) from both methods shows a high confidence in the network’s outputs meaning 

there are no failures. The distance between the minimum and maximum 

confidence is very small. 

 

 

Figure 34 Normalized values from the monitors for Mode 8 
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Figure 35 Data fusion using Murphy’s rule for Mode 8 

 

 

Figure 36 Data fusion using fuzzy logic for Mode 8 
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4.9. Mode 9 

 

A very similar behavior like in mode 8 can be noticed in this no-failure 

mode. The monitors (Figure 37) show no problems with the DCS network, as well 

as the confidence level obtained by the two data fusion methods (Figure 38 and 

Figure 39). 

 

 

Figure 37 Normalized values from the monitors for Mode 9 
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Figure 38 Data fusion using Murphy’s rule for Mode 9 

 

 

Figure 39 Data fusion using fuzzy logic for Mode 9 
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CONCLUSION 

 

The importance of data fusion and its applications is enormous. Mostly it is 

used in complex systems that have many sensors. To be able to make 

conclusions or decisions based on the sensors the data needs to be fused. Such 

fused data is easier to understand. Data fusion is important in automated complex 

system, where the system has to make decisions on its own based from the data 

that comes from the sensors. The Intelligent Flight Control System used in our 

case study is an adaptive control system. 

One of its important components is the online DCS neural network. Current 

software verification and validation methods applicable to adaptive systems are not 

yet scientifically mature ([15], [16]). The main contribution of our research is the 

development of two data fusion methods. These real time data fusion methods 

produce a confidence measure for the convergence trends of a DCS neural 

network. They use the data from four monitors, which tell how well the input data is 

represented by the network. The techniques elaborated in this thesis result in 

methods for verification and validation of a neural network based adaptive system 

that surpass the state-of-the-art methods. 

The first method of data fusion is based on the Dempster-Shafer theory. It 

uses the Murphy’s rule of evidence combination. Its inputs are the normalized 

monitor values and the output has two confidence values: the minimum and the 

maximum. To obtain these values we proved that if the monitor values are sorted 

in increasing order, we can obtain the maximum. If sorted in decreasing order, we 

obtain the minimum. Both values, as shown in the case studies, are good 

indicators of the rate of adaptation that follows the introduction of failure data into 

the DCS neural network. When the system is in a no-failure mode, confidence 

indicators stay at high values close to 1, meaning that the network reliably 

represents the values of actual flight parameters. In failure modes they decrease to 

a certain level. Furthermore, their difference provides useful information. For no-

failure modes this difference is close to 0 and when a failure happens it increases. 



 

  61 

Based on the minimum confidence, the maximum confidence and their difference 

an observer can decide when the output of the DCS network can/cannot be 

trusted. 

Mamdani rule based fuzzy model was used as another data fusion method. 

The inputs to this method are normalized (in online fashion) monitor values and the 

output is a single confidence value. The input space was partitioned into three 

partitions: good, normal and bad; while the output space was partitioned into: very 

low, low, medium, high and very high. As seen from the case studies in no-failure 

modes the output value of this method is closer to 1 meaning that the DCS 

network can be trusted. When failure happens the confidence value drops down to 

a certain level, meaning that the network can not be trusted for that period of time. 

An important fact is that both of these methods are very fast and can be 

easily implemented in the IFCS, providing a real time assessment. Murphy’s rule 

based method provides more information about the state of the DCS network, than 

the single confidence measure provided by fuzzy logic method. However if the 

deffuzification method is removed and only linguistic output values are used, the 

fuzzy logic method can provide output as simple traffic light with green light 

meaning network can be trusted and red light meaning network cannot be trusted. 

Besides applying these two methods on the IFCS system, we can apply them in 

other systems where information fusion is needed. 

An area of future work is to tune up the parameter n  of the Murphy’s rule. 

The fine tuning of this parameter depends on many factors. Conducting many 

experiments (failure and no-failure modes of the aircraft) to determine the 

correlation between the monitors of the DCS neural network can be the first step of 

adjusting this parameter. The second step could be grouping the monitors into 

independent groups of monitors that are highly correlated between them. Based 

on these correlation numbers, for each group appropriate value of n  can be 

selected. Combining the information provided by the monitors can be done at two 

levels. First level will be calculating the combined value of each group of monitors. 

The values of each group can be combined at the second level with 5.0=n , since 
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the groups are independent. Adding more monitors to the DCS neural network can 

increase the number of groups or the number of monitors in the groups, thus 

leading to better selected values of n . 

Another area of future work is adjusting or choosing new membership 

functions for the fuzzy logic based model, which will provide better results. The 

output space can be divided into more partitions resulting in more precise output 

values. Fuzzy rules can be altered if many experiments will show that some 

monitors are significant or insignificant. 
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