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ABSTRACT 
 
 

Carbon Fiber Reinforced Latex Modified Concrete  
For 

 Bridge Deck Overlays 
 
 

Dony Cherian Oommen 
 

Latex modified concrete deck overlay systems are used nationwide. However, cracking, 
spalling and delamination have been observed both in the case of old and new bridge 
deck construction. Such problems have also been observed even before a newly 
constructed bridge deck has been opened to traffic. 
 
In this investigation, the effect of reinforcing Latex Modified Concrete (LMC) with 
carbon fibers is examined. The study focuses on formulation of the mix design and 
laboratory test methods to evaluate the potential of using Carbon Fiber Reinforced Latex 
Modified Concrete (CFLMC) for bridge deck overlays. A tension test method of concrete 
was perfected during the course of this research.  
 
At a low volume fraction of 0.15% (ratio of the volume of carbon fibers to the volume of 
concrete), CFLMC showed an average increase of 26% in strain to failure compared to 
LMC, in a direct tension test. Besides an average 17% increase in ultimate flexural 
strength, the stress strain curves also show an average increase of 43% in failure strain 
under flexure. Improvements in strain to failure or ductility have the potential to reduce 
cracking in overlays. Fracture tests predict the fracture toughness of CFLMC to have an 
average improvement of 27 %, compared to LMC.  
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CHAPTER ONE 
 

INTRODUCTION 

 
1.1 Bridge Deck Overlays 

 

Durability of hydraulic-cement concrete is defined as ability to resist weathering action, 

chemical attack, abrasion, or any other process of deterioration. Over the past 25 years, 

corrosion of reinforcement in concrete slabs has been a matter of serious concern 

regarding durability of reinforced concrete structures, especially bridge decks. Portland 

cement concrete is inherently alkaline & does not corrode the rebar. However, in the 

presence of adverse chemicals, the pH of concrete reduces, causing the rusting of steel. 

The corrosion products occupy a larger volume than the steel they replace, causing 

internal tensile stresses that can result in cracking, spalling and in extreme cases, 

delamination. 

 
 

Figure 1.1: Development of cracking, spalling and delamination [1] 
 

On bridge decks, prevention of corrosion of the reinforcing steel involves protecting the 

deck with overlays. An overlay is a layer of concrete or mortar, seldom thinner than 1 

inch, placed on a concrete slab to restore and improve the properties of the

underlying concrete. The overlay provides the necessary flooring, repair, waterproofing, 

Cracking 

Spalling 

Delamination 

Concrete 

Rebars
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and corrosion protection of concrete bridge decks. Concrete overlays on pavements or 

bridge decks can fulfill many design functions -  

• Protects the underlying concrete from weather elements. 

• Strengthen the structure against further deterioration due to fatigue cracking 

Structural overlays increase pavement thickness and reduce flexural stresses, 

thus increasing fatigue life. 

• Improve smoothness and restore ride quality. 

• Add skid resistance. 

 

Concrete deck overlay systems are used at different locations throughout the United 

States. Details about the overlay materials, overlay operations, finishing, curing etc., are 

described in the supplemental specifications for roads and bridges [2]. Normally a 6-8 

inch reinforced concrete deck is placed and then, a 2 inch overlay is applied on the 

reinforced concrete deck, which acts as a protective layer to the substrate. These 

overlays have shown to extend the life of the reinforced concrete deck, thus reducing the 

overall maintenance costs for the bridge structure. Overlay systems are used for new 

construction as well as repair of deteriorated bridge decks. 

 

Two types of specialized concrete overlay are commonly used 

1) Latex Modified Concrete: A portland cement concrete to which an approved styrene 

butadiene latex admixture has been added. 

2) Microsilica Concrete: A portland cement concrete to which an approved microsilica 

admixture has been added. 

 

Each overlay has its both advantages and limitations. Proper selection depends on many 

factors such as substrate concrete, local aggregate availability, construction practices, 

construction costs, etc. Styrene butadiene latex modified concrete (LMC) is widely used 

as a protection system for bridge deck overlays in US. It is estimated that over 8000 

bridges are protected with LMC [3].  
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Cracking, spalling and delamination have been observed both in the case of old and new 

bridge deck construction. Such problems have also been observed even before a newly 

constructed bridge deck has been opened to traffic. Cracks are caused due to stresses 

caused by  

1. Swelling and shrinkage stresses, mainly caused by water and water vapor 

phenomena 

2. Thermal stresses, caused by temperature changes 

3.   Mechanical stresses, caused by external mechanical forces. [4] 

 

Overlay failures have emphasized the need to develop newer materials to overcome 

common stresses faced by concrete bridge overlays. Today, materials are expected to 

provide many properties not previously available. The modern construction industry 

desires materials with higher early strength, elasticity, corrosion and chemical resistant, 

impermeability and crack resistant, without sacrificing costs, availability and 

workability.  

 

1.2 Need for Polymer Modification and Fiber Reinforcement 

 

Ordinary concrete has a few disadvantages such as low tensile and flexural strengths, 

large drying shrinkage and high permeability. It fails in a brittle manner under tensile 

and impact loads. These deficiencies generally result from the ease of initiation and 

propagation of microcracking, which usually initiate at the interface of the aggregate and 

the cement paste. Under external loading and environmental effects, these microcracks 

tend to interconnect and propagate, leading to brittle failure of concrete. Cement mortar 

and concrete also have disadvantages such as delayed hardening, large drying shrinkage 

and low chemical resistance. 

 

Polymer modification and fiber reinforcement can overcome some of the problems faced 

with conventional concrete.  
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1.2.1 Latex Modified Concrete (LMC) 

 

Latex is a commonly used polymer modifier for concrete. Latex-modified concrete 

(LMC) is a portland cement concrete in which an admixture of latex is used to replace a 

portion of the mixing water. Latexes are generally milky fluids that are white to off-

white in color. Latex is a colloid dispersion of styrene butadiene particles suspended in 

water. Polymer modified portland cement concretes and mortars exhibit improved 

strength properties, such as flexural strength, tensile strength, fracture toughness, 

impermeability and abrasion resistance over similar unmodified concretes and mortars. 

[5, 6, 7, 8, 9].  Due to the inherent properties of the latex, LMC maintains good 

workability at lower water-cement ratios, in comparison to ordinary concrete. Lower 

water-cement ratio results in lower shrinkage for LMC in comparison to ordinary 

concrete. Latex polymer film bridges microcracks and restricts propagation [3].  

 

       
 

Figure 1.2 (a): Portland 
Cement Concrete 

Figure 1.2 (b): Latex Modified 
Concrete 

 
Figure 1.2: Electron micrographs of LMC and PCC  (magnification=12,000x) [3] 

 
  

 

 

 

Latex film 
bridging 
microcrack
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1.2.2 Carbon Fiber Reinforced Concrete 

 

Fibers (glass, asbestos, steel, carbon, etc) are added to provide improved mechanical 

properties of inherently brittle materials like concrete.  However, asbestos fibers are 

carcinogenic. Concrete being alkaline is deleterious to glass fibers. Steel fibers tend to 

rust.  

 

Carbon fibers are inert, medically safe and as strong as steel. They are stable in the 

alkaline environment of concrete. They have the highest strength to density ratio among 

all fiber types. Earlier, the high cost of these fibers prevented their large-scale use in the 

construction industry. However the cost of carbon fibers have steadily declined over the 

years. Carbon fibers are very effective in arresting microcracks in cementitious materials 

[10]. Fiber reinforcement of concrete improves the tensile or flexural strength, impact 

strength and controls cracking and mode of failure by means of post-cracking ductility 

[11, 12]. 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 1.3: Carbon fibers shown to arrest microcracks [10] 
 

Polymer modification and fiber reinforcement can play complimentary roles to enhance 

the mechanical properties of concrete. Studies have also shown that polymers helps in 

fiber dispersion during mixing and also better bonding to fibers, thus improving the 

reinforcement properties of fibers. [13] 
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1.3 Problem Statement 

 
Latex modified concrete overlays experience cracking, spalling and delamination. Such 

problems have also been observed even before a newly constructed bridge deck has been 

opened to traffic. Water mixed with de-icing salts can seep through these cracks causing 

rebar corrosion that could be detrimental to the bridge life.  

 

1.4 Methodology 

 

The objective of this research is to evaluate the potential of adding carbon fibers to latex 

modified concrete. It focuses on formulation of the mix design, sample preparation, and 

a variety of mechanical test methods to achieve improvements in the properties of 

CFLMC for bridge deck applications. Success of such efforts will lead to more durable 

bridge decks, improved repair materials and repair methods, and huge economic savings. 

The following experimental tests were conducted for a comparative study of LMC & 

CFLMC. 

 

Table 1.1: Experimental tests for comparison of overlays 

  
   Tests 

 

Mechanical Test 

Slump  

Direct Tension 

4 point Loading 

3 point Loading  

Split tension 

 

 

 

Effect of CF% 

Slump 

4 point loading 

Fracture Test 

Interfacial bond strength 
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This study will also focus on developing a practical mixing procedure of CFLMC, and 

analysis of the mode of failure of the CFLMC material from SEM photographs.  

 

Such an in-depth study covering different mechanical properties should give a better 

understanding of the advantages and disadvantages of using CFLMC over LMC. 

 

1.5 Thesis Outline 

 

The methodology followed during this research is described in subsequent chapters and 

outlined as follows 

 

Chapter two includes a thorough literature review on the principles of polymer 

modification and fiber reinforcement of cement/concrete. It also includes test methods 

and test results from similar areas of research. This section helped to identify gaps in 

research areas and draw an outline for the approach to testing CFLMC overlays. 

 

Chapter three describes the sources of materials and descriptions of mix proportions and 

mixing methods of LMC and CFLMC. 

 

Chapter four gives a detailed description of each of the testing methods, ASTM and ACI 

testing guidelines, molds used for preparing specimens, specimen instrumentation, data 

acquisition systems and testing equipment.  A tensile testing method was developed 

through the course of this research. Some of the other test methods on CFLMC involved 

flexural loading, split tensile and fracture tests.  

 

Chapter five presents the results and detailed analysis of each test. The results show 

improved ductility properties of CFLMC over LMC. With a low volume fraction of 

carbon fibers, the CFLMC showed greater strain to failure in tension and flexural tests.  

 

Chapter six presents the conclusions and recommendations derived from this study.  
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CHAPTER TWO 
 

LITERATURE REVIEW 

 
2.1 Latex Modified Concrete 

 

The following paragraphs provide an insight into the different aspects of latex modified 

concrete (LMC) such as its history, types, chemical composition, principle of latex 

modification, and placement of LMC on bridge decks. 

 

2.1.1 Introduction 

 

Polymer modified concrete is prepared by mixing either a polymer or monomer in a 

dispersed, powdery, or liquid form with fresh concrete mixtures, and subsequent curing. 

In some cases, the monomer is polymerized insitu. The polymer particles are very small 

(0.05-5 μm in diameter) and are dispersed in water as shown in Figure 2.1 & 2.2. Several 

types of polymer modified concretes, i.e., latex-redispersible polymer powder, water-

soluble polymer, liquid resin and monomer-modified mortars and concretes are produced 

by using polymers and monomers. Latex modified concrete is by far the most widely 

used cement modifiers [14]. 

                            
Figure 2.1: SBR Latex (x 30,000) [14] 

 
 

Figure 2.2: EVA Latex (x 10,000) [14] 
 

  

  



                       

 9

2.1.2 History of Latexes 

 

In 1923, the patent for a latex-hydraulic cement system was issued to Cresson [5]. 

Natural rubber latexes were used in the patent for paving materials, with cement as the 

filler. The first patent with the present concept of the polymer latex-modified cement 

systems was published by Lefebure [15] the following year. Throughout the 1920s and 

1930s, LMC using natural rubbers were developed. Bond [8] was issued a patent in 1932 

for suggesting the use of synthetic rubber latexes for latex modified systems while 

Rodwell’s [9] patent (1933) first claimed to apply synthetic resin latexes to concrete 

systems. In the 1940’s, patents on latex modified systems with polychloroprene rubber 

(Neoprene) [16] latexes and polyacrylic ester latexes [7] were published. Over the years, 

latex modified systems have been used on bridge deck overlays, ship decks and parking 

garages, floorings, and as anticorrosives and adhesives. Interest was developed on the 

different types of natural and synthetic latexes in different parts of the world. In 1953, 

Geist et al [17] did a fundamental study on polyvinyl acetate modified mortar and 

provided valuable suggestions for later research and development of latex modified 

systems.  

 

Latex modified mortar was first used as a bridge deck overlay material in 1956 [18]. The 

first LMC overlay was placed in West Virginia in 1961 [19].  Since the inception of latex 

modified portland cement for bridge repair in 1957, thousands of projects have been 

completed using styrene-butadiene latex [2]. 
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2.1.3 Types of Polymer Latexes 

 

Table 2.1 is a listing of the types of latexes that have been used or are currently being 

used for cement systems. 

 
Table 2.1: Polymer latexes used in cement mixes [2] 

  
Materials that are underlined are the ones that are in general use today. Each type of 

polymer imparts different properties to the hydraulic cement mixture. This study will 

focus on styrene butadiene latex. 

Elastomeric

Thermoplastic

Thermosetting

Bituminous

Mixed latexes

Natural Rubber Latex

Synthetic Latexes

Styrene-Butadiene

Polychloroprene
(Neoprene

Acrylonitrite-
Butadiene

Polyacrylic Ester

Styrene-Acrylic

Vinyl Acetate Copolymers

Polyvinyl Acetate

Vinylidene Chloride Copolymers

Polyvinyl Propionate

Polypropylene

Epoxy Resin

Asphalt

Rubberized Asphalt

Coal-tar

Paraffin

Polymer Latexes for 
modification of hydraulic 

cement m ixes
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2.1.4 Typical Formulation of Styrene Butadiene Latex 

 
Latexes are produced by a process known as emulsion polymerization. The process 

involves mixing the monomer with water, a surfactant, and an initiator. The initiator 

generates a free radical that causes the monomer to polymerize by chain addition. Many 

other ingredients are used in the polymerization process and are incorporated for many 

reasons, such as controlling pH, particle size, and molecular weight. Styrene to butadiene 

ratio of the polymer, and molecular weights have considerable influence on the properties 

of the cement system. [2] 

 
Table 2.2: Chemical components of styrene butadiene latex [2] 

 
Styrene butadiene copolymer latex  (parts by weight) 

Styrene 64 
Butadiene 35 

A vinyl carboxylic acid 1 
Nonionic surfactant 7* 
Anionic surfactant 0.1** 

Ammonium persulfate 0.2 
Water 105 

*The nonionic surfactants may be nonyl phenols reacted with 20-40 molecules of 
ethylene oxide 
** The low levels of anionic surfactant are used to control rate of polymerization 

 

Surfactants are chemical compounds added during manufacture of the latex, which attach 

themselves to the surface of the latex particles. Thus, they affect the interactions of the 

particles themselves, as well as the interactions of the particles with portland cement. 

Surfactants acts as dispersants for the portland cement, thus lubricating the fresh 

cementitious mix and improving workability, i.e., addition of latex reduces the amount of 

water required for achieving the appropriate viscosity for placement of the mix. Hence 

LMC has a reduced water/cement ratio than conventional concrete. Latex helps also in 

better adhesion to the underlying concrete deck and improved flexural strength and 

abrasion resistance. Compounding ingredients are added to the latex for improved 

properties such as resistance to chemical or physical attach, e.g. bacterial protection and 

ultraviolet protection. 
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2.1.5 Principle of Latex Modification 

 
Latex modification of cement concrete is governed by cement hydration, followed by 

polymer film formation. In due course a co-matrix phase is formed as an end result of 

these processes. The co-matrix is formed according to a three step simplified model 

shown in figure 2.3.  

  
 

Figure 2.3: Simplified model of formation of polymer-cement co-matrix [2] 
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Figure 2.4: Simplified model of process of polymer film formation on cement 
hydrates [2] 

 
 

First Step: When polymer latexes are mixed with fresh cement mortar or concrete, the 

polymer particles are uniformly dispersed in the cement paste phase.  Cement gel is 

gradually formed by the cement hydration and the water phase is saturated with calcium 

hydroxide formed during hydration, whereas the polymer particles deposit partially on 

the surfaces of the cement-gel-unhydrated cement particles mixtures. (Figure 2.3). 

Formation of calcium hydroxide and ettringite in the contact zone between the cement 

hydrates and aggregates is attributed to the bond between them. 
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Second Step: As the cement particles hydrate, the latex particles are generally confined 

in the capillary pores. Hydration proceeds, capillary water reduces and the polymer 

particles flocculate to form a continuous close-packed layer of polymer particles on the 

surfaces of the cement-gel-unhydrated cement particle mixtures This polymer layer 

adheres to the mixtures and the silicate layer over the aggregate surfaces. Larger pores 

are filled with polymer particles (typically <100 nm) rather than smaller capillary pores 

(with typical diameter of about 1nm).  

 

Third step: As water is withdrawn due to cement hydration, the close-packed polymer 

particles on the cement hydrates coalesce into continuous films or membranes (Figure 

2.4). These membranes bind the cement hydrates together to form a monolithic network 

in which the polymer phase interpenetrates throughout the cement hydrate phase.  Such a 

structure acts as a matrix phase for latex-modified mortar and concrete, and the 

aggregates are bound by the matrix phase to the hardened mortar and concrete. 

 

From a microscopic point of view, latex modification helps in three ways: Firstly, latex 

particles reduce the rate and extend of moisture movement within the cement matrix by 

blocking passages and capillaries within the cement matrix. Secondly the latex polymer 

film bridges the cracks and restricts propagation (Figure 1.2). This results in increased 

tensile strength and fracture toughness, compared to ordinary concrete. Finally, latexes 

contain reactive groups which may react with the calcium and other metallic ions in the 

cement, and with the silicates in the aggregates, which improve the inter particle bond 

and the strength of the mixture. 
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2.1.6 Mix proportion of LMC 

 

According the ACI 548.4-93 [20], specifications for LMC mix proportions are given 

below. 

Table 2.3: Mix proportions of LMC [20] 
 

Cement content, minimum 658 lb/yd3 

Latex admixture, minimum 24.5 gal/yd3 

Water, maximum 18.9 gal/yd3 

Air content, maximum (ASTM C 231) 6.5 percent 

Slump, range 3-8 in. 

Overlay thickness, minimum 1 in. 

Coarse aggregate, maximum No. 8 

Fine aggregate, range by weight, of total 

aggregate 

55-70 percent 

Weight ratio, 

Cement:sand:coarse aggregate assumed 

saturated surface dry) 

1.0:2.8:1.7 

 

 

2.1.7 Placement of LMC on Bridge Decks  

 
A sequence of steps is followed at the work site for proper mixing, placing and curing of 

overlays as described below [2]. 

 
1. Surface preparation: The process involves using scarifiers, blasters (sand, water 

and shot), jack hammers and saws to remove the top surface of the deck and to clean the 

surface and achieve the required surface roughness on the bridge deck for the latex 

overlay to adhere well to the substrate. This is to be followed by thorough cleaning with 

vacuum, air or water. The prepared surface should then be thoroughly wetted for 1 hr 

before placement. However, all standing water should be removed prior to placing the 

LMC. 
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2. Mixing:  Most latex modified concrete used today is mixed in a mobile mixer. The 

equipment is designed for accurate proportioning of ingredients with continuous mixing 

at the rate of 8 to 60 yd3/hr. 

 

3. Placement: Usually a layer of grout (latex + cement + sand) is first applied with 

brooms. The LMC is later pumped or sprayed over the wetted area. Shovels and hoes are 

used to spread the newly placed concrete. 

 

4. Finishing: A self-propelled rotating cylinder machine equipped with devices that 

will automatically and continuously spread, consolidate, and finish the plastic concrete, is 

used. Metal trowels, spud vibrators and tine rakes are used to apply the specified final 

finish. 

 

5. Curing: Almost immediately after the surface is textured, wet burlap is applied, 

followed by white or clear polyethylene film. The intent is to keep the surface damp for 

48 hours. After the initial damp period, the film and burlap is removed and the bridge 

deck overlay is allowed to air-dry. It is during the air-curing period that LMC gains most 

of its strength. LMC has faster curing periods and thus, LMC bridge decks are normally 

opened to traffic after 2 weeks. 
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2.2 Carbon Fiber Reinforced Concrete 
 
 
The following paragraphs provide an insight into the different aspects of carbon fiber 

reinforced concrete such as its history, and principles of fiber reinforcement in the freshly 

mixed and hardened state. 

 

2.2.1 Introduction 

 

Fibers (glass, asbestos, steel, carbon, etc) are added to provide improved mechanical 

properties of inherently brittle materials like concrete. When subjected to tension, 

unreinforced brittle matrices initially deform elastically. The elastic response is followed 

by microcracking, localized macrocracking, and finally fracture. Introduction of fibers 

into concrete results in post elastic property changes that range from subtle to substantial, 

depending upon a number of factors, include matrix strength, fiber type, fiber modulus, 

fiber aspect ratio, fiber strength, fiber surface bonding characteristics, fiber content, fiber 

orientation, and aggregate size effects. [21] 

 

2.2.2 Historical Aspects 

 

Fibers have been used since ancient times to reinforce brittle materials. Straw was used to 

reinforce masonry mortar and plaster. Large-scale use of asbestos fibers in cement 

matrices was commercialized with the invention of the Hatschek process in 1898 [21]. 

These fibers were typically less than 5 mm in length and added in high percentages 

ranging from 6-21% depending on the type of application. A French patent in 1918 was 

based on uniformly mixing small longitudinal bodies (fibers) of iron, wood or other 

materials into concrete. [22]. The patent also suggested that fiber elements must be rough, 

or be roughened, to improve pullout resistance of fibers from concrete. However, due to 

the health hazards associated with asbestos, alternate fiber types were introduced 

throughout the 1960s and 1979s. Experimental trials and patents involved using steel 

reinforcements such as nails, wires, and chips to concrete. During the 1960s, studies were 

conducted to study the effect of steel fibers as reinforcement to concrete, in US [23]. 
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Since then, substantial research has been done on steel fiber reinforcement and led to 

large scale industrial applications 

 

Addition of glass fibers in concrete was attempted in the late 1950’s in USSR [24]. 

However, these glass fibers, such as borosilicate E-glass fibers were attacked and 

destroyed by the alkali nature of concrete. Synthetic fibers such as nylon and 

polypropylene were attempted for use in concrete reinforcement, but the initial attempts 

were not as successful as steel or glass fibers. 

 

Considerable research, development and applications in fiber reinforced concrete have 

taken place around the world. The ACI Committee 544 published a state-of-the-art report 

[21]. RILEM committee also published a report on fiber reinforced cement composites. 

[25].  Symposium proceedings such as SP-105 & SP-124 [26, 27] provide a good 

summary of developments on the field of FRC. In general, the enhanced properties of 

fiber reinforcement to composites include tensile strength, compressive strength, elastic 

modulus, crack resistance, crack control, durability, fatigue life, resistance to impact and 

abrasion, shrinkage, expansion, thermal characteristics, and fire resistance. 

 

Carbon fibers were developed primarily for their high strength and stiffness properties for 

the aerospace industries. During the early development of FRC, carbon fibers were 

expensive and thus had limited commercial development. However, during the recent 

years, the price of carbon fibers have steadily declined, leading to their commercial use 

gaining popularity especially in Japan and UK. Carbon fibers have high tensile strength 

and elastic modulus. Carbon fibers are inert, medically safe and as strong as steel. They 

are stable in the alkaline environment of concrete. They have the highest strength to 

density ratio among all fiber types. Polyacrylonitrile (PAN) based carbon fibers are 

manufactured by carbonizing polyacrylonitrile yarn at high temperatures while aligning 

the resultant graphite crystallites by a process called “hot-stretching”. They are 

manufactured as either HM (high modulus) fibers or HT (high tensile strength) fibers. 

Carbon fibers can also be made from petroleum and coal pitch, which are less expensive 

than PAN based carbon fibers.  
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2.2.3 Principle of Fiber Modification 

 

The principles of fiber matrix interactions are separated studied, in the freshly mixed state 

and the hardened state. 

 

2.2.3.1 Fiber-Matrix Interactions in the Freshly Mixed State  

 

Fibers represent an addition of long slender needle like particles to a normal cement 

paste, mortar or concrete matrix. Some like steel are quite rigid, while glass and carbon 

fibers are flexible. The characteristics of the fiber-matrix combinations in the freshly 

mixed state depend on the type and form of the fibers, the nature and proportions of the 

matrix constituents, and the process used to incorporate the fibers into the matrix. 

Addition of fibers to paste, mortars or concrete reduces the fluidity of the mixture 

because of the needle-like shape and high specific area. Fibers that absorb water may 

cause further reduction in mixture fluidity. The greater the paste content, i.e. the volume 

fraction of the fluid phase within which the fibers can move and rotate, the greater the 

workability for any particular fiber content [28], or in other words, the greater the amount 

of paste needed in the mortar to produce a specified level of workability at the specified 

fiber content. In normally proportioned concretes the volume fraction of the fluid phase 

decreases with increases in the volume fraction and maximum size of the aggregate, so 

the volume of the space available for fibers decreases correspondingly.  

 

In his study, Bayasi [29] recommended that aggregates should not to be used with carbon 

fiber cement since they may disturb the fiber distribution and increase fiber spacing. In 

cement and mortars, fibers are separated by fine-grained material, which can move easily 

between them. However, in the case of concrete, the particle size is larger than the 

average fiber spacing if the fibers were uniformly distributed. This leads to bunching and 

greater interaction of fibers between the large aggregate particles and the effect becomes 

more pronounced as the volume and maximum size of the particles increases (Figure 

2.5). 
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Figure 2.5: Schematic of particle size vs. fiber distribution for 40 mm long fibers 

within a 40 mm square [11] 
 
 

2.2.3.2 Fiber Matrix Interactions in the Hardened State 

 
Fibers in the hardened cement matrix has three important effects [11] 

1) They tend to increase the stress at which the matrix starts to crack. This 

strengthening effect is more evident under modes of loading that induce tensile or 

flexural stresses 

2) Depending on the type and amount of fibers, they may improve the strain capacity 

or ductility of the inherently brittle cementitious matrix, thus increasing its energy 

absorption capability or toughness characterized in general by the area under the 

stress-strain or load-deformation curve. Improvements in ductility are usually 

significant even when improvements in strength are minimal. 

3) Fibers have the tendency to inhibit or modify crack development in terms of 

reducing crack width and average crack spacing.   

 

These above mentioned properties depend on the intrinsic fiber properties as well as on 

the shear bond between the fiber and the matrix. The resistance to interfacial shear and 

fiber pullout may involve adhesion, friction and mechanical interlock. When the 

interfacial shear resistance is high enough, the fiber breaks instead of pulling out of the 

matrix.    

 

The fiber must be stronger than the matrix to be effective in reinforcing concrete. The 

fibers are also required to withstand strains greater than the matrix cracking strains. 
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Carbon fibers satisfy these criteria and theoretically offer great reinforcing potential. 

However, realization of full reinforcing potential depends on whether composite failure 

occurs by fiber pullout or fiber breakage. This research aims to study the mode of failure 

to understand the effectiveness of carbon fibers for reinforcing carbon fibers. 

 

Research by Zheng and Chung, [30] have proved by using short pitch-based carbon fibers 

(0.5% by weight of cement, 0.28 vol.% of cement mortar), together with a water reducing 

agent and an accelerating admixture, the compressive, tensile and flexural strengths of the 

carbon fiber reinforced cement mortar were found to increase by about 18-31%, 113-164 

% and 89-112%, respectively, compared to the corresponding plain cement values. The 

ductility was also improved. The study used short carbon fibers (3mm and 5.1 mm), and 

continuous fibers. 

 
Figure 2.6: Dependence of strength of carbon fiber reinforced cement on fiber 

content  (% by weight of cement) [30] 
 
 

2.3 Concept of Fiber Reinforcement ‘and’ Polymer Modification of Concrete    

 

The following paragraphs describe few of the significant studies in fiber reinforced 

polymer modified cement by different researchers across the years, with relevance to the 

present study. Researches have experimented with different latexes, fiber types, volume 

Flexural Strength 

Tensile strength 
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fractions etc. to study the effect of the modifications on the properties of concrete. 

Advances such as fiber treatment and advanced test methods have also been mentioned, 

 

During the 1980s, researchers had investigated the effects of adding steel fibers to 

different latexes such as styrene butadiene rubber (SBR) [31] polyacrylic ester (PAE) 

[32], ethylene vinyl acetate (EVA) [31] and natural rubber [33], due to workability issue 

arising due to steel fibers. Reinforcement by steel fibers improved the physical properties 

of concrete but damaged the fresh mix workability. However, latex modification of 

concrete helped in the dispersions of fibers.  This was attributed to the effects of 

surfactants in the latex and helped reduce the effect of “balling” of steel fibers to some 

extent. . Thus polymer modification was expected to reduce the workability problems of 

steel fiber reinforced concrete. The graph clearly shows the major influence of polymers 

in increasing the slump of fiber reinforced concrete. 
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Figure 2.7: Effects of water-cement ratio, polymer-cement ratio, and steel fiber 

volume fracture on the slump of concrete (max. aggregate size = 0.79 in, Vf =0-
2%, (0.01x0.022 in), l/d=53, PAE latex) [32] 

 
 

Soroushian, Aouadi and Nagi (1991) [13] investigated the effects of latex modification 

on performance characteristics of carbon fiber reinforced mortars. Silica fume, 

superplasticizer and antifoaming agent were also included in the mix. The study 

incorporated 3% volume fraction of 1/16 in. (1.5 mm) pitch based carbon fibers. Latex 

modification was shown to increase the bonding of the cementitious matrix to carbon 
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fibers. Flexural toughness was also increased through latex modification, but the effect of 

latex addition on flexural strength was relatively small. Latex modifications caused 

reductions in compressive strengths of CFRC composites, as well as reductions in water 

absorption, drying shrinkage and specific gravity of CFRC. The freeze thaw durability 

and acid resistance of carbon fiber reinforced mortar were improved with latex addition. 

 

Yang and Chung (1992) [34] studied the effects of addition of different volume fractions 

of carbon fibers on the flexural and compressive strengths of latex-modified cement 

mortar at different curing ages of up to 28 days. An increase of 49% in the 7-day flexural 

strength and an increase of 33% in the 28-day flexural strength were obtained by adding 

0.37 vol. % of carbon fibers to latex modified mortar. Relative to plain mortar, the 

addition of latex and fibers (0.37 vol. %) caused the flexural strength to increase by 97%, 

65% and 54% at 7, 14 and 28 days of curing, respectively. The highest flexural strength 

(15.3 Mpa) was attained by mortar containing latex and fibers (2.2 vol. %) at 28 days of 

curing; it corresponds to a fractional strength increase of 84% relative to plain concrete at 

28 days. However, at this fiber content, the compressive strength was decreased by 24% 

relative to latex modified mortar without fibers. Cost also increased with increasing 

carbon fiber content. Considering the flexural strength, compressive strength and cost, the 

optimum formulation of LMC containing fibers is 0.37 vol. %. 
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Figure 2.8:  Load/deflection curve during flexural testing of (a) plain mortar; (b) 

mortar with latex; and (c) mortar with latex and 2.2 vol.% carbon fibers [34] 
 
 

In his dissertation, Tlili (1993) [35] studied the mechanism of joint action of steel fibers 

and latex polymers in concrete. Steel fibers with hooked ends 1.18 inch in length, were 

used for the experiment. He concluded that steel fibers and latex polymers interact 

favorably to produce concrete material with improved flexural strength and toughness, 

impact resistance, dimensional stability, freeze thaw durability and scaling resistance. 

Furthermore, the corrosion inhibiting effects of latex polymer modification were 

successfully demonstrated.  

 

Zayat and Bayasi [36] conducted an experimental investigation onto the effects of 

varying latex contents on the properties of latex-modified carbon fiber reinforced cement. 

Carbon fibers 1/8 inch (3 mm) were used at a volume fraction of 2%. Silica fume and 

naphthalene formaldehyde sulfonate superplasticizer was also used. Results showed that 

latex increases the flexural strength and impact resistance of carbon fiber reinforced 
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cement. Furthermore, lower latex contents increase tensile toughness with insignificant 

effects on tensile strength of carbon fiber cement.  

 

Chen and Chung (1996) [37] conducted a comparative study of mortar reinforced with 

carbon, polyethylene and steel fibers and their improvement by latex addition. All fibers 

were 5 mm in length and added at a volume fraction of 0.37%, 0.53% and 0.35% for 

compressive, tensile and flexural testing respectively. Carbon fibers, though having the 

lowest tensile modulus, strength and elongation at break among the fiber types, gave 

mortar of the highest tensile strength and lowest cost; polyethylene fibers, due to their 

high ductility, gave mortar of the highest flexural toughness; and steel fibers gave mortar 

of the highest flexural strength. The tensile, compressive, and flexural strengths and 

flexural toughness were all increased by latex addition for any fiber type. 

 

Fu, Lu & Chung (1996) [38] investigated methods to increase the bond strength between 

carbon fibers and cement matrix. The bond strength was enhanced with polymer 

admixtures in the cement mix. Latex gave larger effects than methycellulose. However, 

the greatest bond strength was attained by ozone treatment of the fibers. This was due to 

the resulting oxygen-containing functional groups on the fibers helping the wettability of 

the fibers by the cement. 

 

The following year in 1997, Chen, Fu and Chung [39], studied the effect of 

methylcellulose, silica fume and latex on the degree of dispersion of short carbon fibers 

in cement paste (with water-reducing agent in the amount varying from 0 to 3 % by 

weight of cement) . The nominal fiber length and monofilament diameter were 5 mm and 

10 μm, respectively. The degree of dispersion was measured by the ratio of the measured 

volume of electrical conductivity to the calculated value. The effectiveness of the fibers 

in enhancing the tensile/flexural properties attained by using methylcellulose and silica 

fume were higher than those attained by using methylcellulose alone or latex. 

Methycellulose was superior to latex in giving a high degree of fiber dispersion at fiber 

volume fractions < 1%, but latex resulted in superior tensile-flexural properties and lower 

content and size of air voids than methylcellulose. The flexural strength attained a 
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maximum at an intermediate latex-cement ratio of 0.15. In contrast, both flexural 

toughness and strength increased monotonically with increasing latex-cement ratio when 

fibers were absent.  

Figure 2.9: Dependence of tensile 
strength on fiber content of 

cement pastes [39] 
 

Figure 2.10: Dependence of flexural 
strength on fiber content of 

cement pastes [39]

 
In the same year, Zeng and Chung [40] studied the abrasion resistance of mortar by 

adding latex and carbon fibers. The carbon fibers used were 5 mm in length and added in 

the amount of 0.27% volume fraction. The abrasion resistance of mortar was found to be 

significantly improved by addition of latex (20% by weight of cement), and further 

improved by the further addition of short carbon fibers. 

 

Cao & Chung (2001) [42] used acrylic dispersion as an admixture for carbon fiber 

reinforced cement mortar. The improvements of the tensile properties (particularly 

strength and ductility) was more than those attained by using methylcellulose, styrene 

acrylic, or latex as admixtures. 
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The attainment of high degree of fiber dispersion is particularly critical when fiber 

volume fraction is low. It was important to ensure that the fibers were distributed evenly 

throughout the cement matrix. Chung (2005) [42] assessed the degree of fiber dispersion 

by electrical resistivity and concluded that dispersion was improved by the use of 

admixtures such as silica fume, acrylic particle dispersion, methylcellulose solution, and 

silane, and fiber surface treatment (such as ozone treatment). She also concluded that 

acrylic particle dispersion is more effective than latex particle dispersion. 

 

2.4 Interfacial Stresses 
 
Another part of this experimental study is involved in study of interfacial strengths. These 

include 

1. Analyzing the mode of failure in CFLMC using SEM photographs. It involves the 

study of interfacial shearing between the fibers and cement matrix. 

2. Evaluating the tensile bond strength between the overlay and the substrate. 

3. Study of interfacial stresses between overlay and substrate in field conditions. 

 

2.4.1 Interfacial Shear between Fibers and Cement Matrix 
 
If adhesive interfacial shear bond does not exist between the fiber and the matrix, no 

stresses can develop in the fiber. Several possible local failures in FRC are possible.  

 
Figure 2.11: Schematic representation of a crack traveling through a composite [35] 
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Even a strongly bonded fiber may pull out from the matrix before breaking if its actual 

embedded length relative to the plane at which cracking develops is short enough 3. If the 

fiber is too long, it may hold the stress for a while before breaking  2. This usually occurs 

when the matrix cracks initially and sufficient stress is transferred to the fiber, to enable it 

to be ultimately fractured. If the Poisson’s ratio of the fiber is greater than the matrix, the 

fiber may actually reduce in cross section while being stressed, causing the fiber to 

debond from the sides of the matrix 1. The strain energy in the debonded length of the 

fiber is lost to the material and is dissipated as heat. Vice versa, when the Poisson’s ratio 

of the fiber is less than the matrix, greater frictional shear is set up between the fiber and 

matrix. 

 

Evaluation of SEM photographs will be able to determine mode of interactions between 

fiber and matrix, and the type of failure of the material.  

 

2.4.2 Interfacial Strength between Overlay and Substrate 

 

The interface may be considered as a two or three part system (substrate, overlay, plus 

possibly a bond zone), The question of how to measure this adhesive property has been a 

subject of numerous studies. Several tests are available to measure the bond strength. 

Each test has its advantages and disadvantages.  

 

A number of requirements have been proposed for bond test methods including being 

able to 

1) Simulate site conditions 

2) Expose the bonded region to environmental conditioning 

3) Induce stress states typical of service 

4) Evaluate in situ bond strength and 

5) Reproduce test results 

 

But no single test method can replicate all in-service bond stress states. Nevertheless, the 

method should involve a stress state fairly typical of service while being sensitive to 
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variation in the strength of bond. Usually, a combination of tests is usually done to 

effectively characterize the bond strength of the bridge deck overlay. Brief reviews of the 

tests that are of relevance to the proposed experiment are given below. 

 

2.4.2.1 Interfacial Bond Strength by Split Tension Test 

 

Ramey and Strickland  [43] conducted durability tests on 3˝ x 6˝ composite cylindrical 

specimens to study four different repair materials. They cast composite cylinders that 

were one-half Portland cement concrete and one-half repair material (Fig 2.12). The 

tensile strength of the bond was then determined using a test similar to ASTM 496 [44]. 

They also tested composite prism specimens under direct shear and impact. They 

concluded that the splitting cylinder gave the best results, since the coefficient of 

variation were the smallest for the splitting cylinder specimens.  

 

 

 

 

 

 

 

 

Figure 2.12:  Split tensile test to evaluate bond strength of composite cylinder 
 

The ASTM C 1245-93 [44] gives another method to test the relative bond between layers 

of hardened concrete in multiple-lift forms of construction. This test method was 

intended to test roller-compacted concrete. However, it could be applied for all types of 

layered concrete construction, which involved an upper layer of concrete or mortar 

bonded on an underlying layer of concrete or mortar. Figure 2.13 shows the schematic 

diagram of the test setup. The specimens could be drilled cores from the field or could be 

cast in the laboratory. The bond surface is normal to the longitudinal axis at 

Material 1 Material 2 

FRONT VIEW SIDE VIEW 

Load 

Load 
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approximately the mid-length of the specimen. A splitting tensile stress was produced at 

the bond surface by point loading across its diameter at that surface.  

 
Figure 2.13: ASTM C 1245-93 test to determine bond strength [44] 

 
 

Geissert et al [45] performed a splitting prism test method to evaluate concrete-to-

concrete bond strength. . Comparing the test results of 3 identical series of specimens cast 

at different times showed good repeatability of the splitting prism test.  

 
Figure 2.14: Splitting prism test [45] 
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2.5 Research Significance 
 

From previous published studies, gaps in research of polymer modification and fiber 

reinforcement is seen, as explained below. 

 

1. There has not been any research on the effect of carbon fiber reinforcement on the 

properties of latex modified concrete. An optimum volume fraction of fibers is 

needed to design the carbon fiber reinforced latex modified concrete mix. 

Addition of carbon fibers improves strength, but causes loss of workability. 

Bridge deck applications require high workability and it was necessary to 

determine the volume fraction of carbon fibers to accommodate the mix within 

specified specification for slump. A comprehensive set of mechanical tests 

(tension, flexure, fracture, etc.) is required to be conducted to help us better 

understand the properties of CFLMC under different conditions of stress. These 

results will help to weigh the advantages and disadvantages of CFLMC over 

LMC.  

 

2. Researchers such as Bayasi [29] did not recommend the use of aggregates in 

carbon fiber reinforced cement, since they could disturb fiber distribution in the 

matrix and increase fiber spacing. However latex has shown to improve 

dispersion. Thus further studies were needed to determine whether there was 

sufficient fiber distribution to cause significant improvement in mechanical 

properties in the latex modified concrete. Abrasion of fibers was also a reason for 

not incorporating aggregates to the cement fiber matrix. Hence this study would 

also investigate proper mix methods and mixing times to ensure that fibers are not 

degraded. 

 

This study aims to answer the above questions with a comprehensive experimental 

approach. In laboratory tests, all specimens were prepared and instrumented in sets of 3 

to reduce overdependence on single test results. Careful specimen preparation and testing 
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methods were developed after testing of several prototypes until accurate and repeatable 

results were achieved.  
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CHAPTER THREE 

MATERIALS AND MIX PROPORTIONS 

 

3.1 Introduction 

 

The chapter provides description of the materials, determination of mix proportions, and 

mix procedure, used for study of carbon fiber reinforced latex modified concrete. 

 

3.2 Determination of Mix Proportions 

 

Typical mix design for LMC is shown in Table 3.1. Carbon fibers tend to reduce 

workability. Increasing the polymer/cement or water/cement ratio could overcome 

workability issues, but it would introduce other problems such as lower compressive 

strength and increased shrinkage. Hence, this research involved improving on the same 

mix proportion without change in the polymer/cement or water/cement ratio.  

 
Table 3.1: Mix design of LMC [A.2] 

 
Material Gravimetric Nominal 

proportions per cubic yard 

Source 

Portland cement lbs. 658 Ordinary Type I cement 

#8 –SSD lbs 1229 Greer Limestone, WV 

Sand – SSD lbs 1713 Martin Marietta 

aggregates, OH 

 Latex admix gal. 24.5 BASF (Styrofan© 1186) 

Total water 201.63 Municipal water 

Water/Cement ratio* 0.3064  

 
 
. 
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3.3 Materials used for CFLMC 
 

The main ingredients of CFLMC are shown below 

                                         
Figure 3.1 a: Cement Figure 3.1 b: Carbon 

Fibers (0.5 in.) 
Figure 3.1 c: Coarse 

aggregate (#8)
            

                                             
Figure 3.1 d: Latex 
(Styrofan 1186©) 

Figure 3.1 e: Fine 
aggregate (sand) 

Figure 3.1 f: Water

 
Figure 3.1: Components of CFLMC 

 
1) Cement 
 
Commercially available Type I portland cement was used in this study. The cement 

conformed to ASTM C150 [44]. The reported bulk specific gravity of the portland 

cement is 3.15. 

 

2) Carbon Fibers 

 

For this study, chopped carbon fibers (SIGRAFIL C with GLY coating) from SGL 

carbon group were used. The material is based on carbonized polyacrylonitrile  (PAN) 

with a glycerin coating. Specifications for the fiber type are given in appendix A.3. 
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3) Coarse aggregate 

 

#8 sized coarse aggregate for the experiment was obtained from Greer aggregates, 

Morgantown, WV.  The aggregates conformed to ASTM C33 [44]. For preliminary 

calculations of water content in the aggregates, a sample of aggregates was soaked in 

water for 48 hours, and then oven dried to calculate the additional water in the aggregates 

beyond the SSD (Saturated Surface Dry) conditions. Before the actual mixing of 

concrete, the total quantity of aggregates required for the mix were soaked in water for 48 

hours. Suitable corrections to the water added were then made to keep the water/cement 

ratio at 0.3064. Specifications for the coarse aggregate are given in appendix A.4. 

 

4) Fine aggregate 

 

The fine aggregate (sand) was supplied by Martin Marietta aggregates from their Apple 

grove plant. For preliminary calculations of water content in the fine aggregates, a sample 

of the sand was oven dried to calculate the water in the aggregates above/below the SSD 

(Saturated Surface Dry) conditions. The sand turned out to be below the SSD condition. 

Before the actual mixing of concrete, suitable corrections to the water added were then 

made to keep the water/cement ratio at 0.3064. Specifications for the sand are given in 

appendix A.5. 

 

5) Latex admixture 

 

Latex from BASF, under the trade name Styrofan© 1186 was used for the study. Its 

properties are in specified in appendix A.6. 

 

6) Water 
 
Treated municipal (city supply) water source or other sources that comply with the 

physical and chemical requirements of ASTM C94 [44] could be used. 
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3.4 Mix Proportioning 
 
Conventional concrete mixing processes where the rotation of the mixer, shearing action 

of the blades, and contact with coarse aggregates subjects the fibers to considerable 

bending impact and abrasion. Fragile fibers are unsuitable for these processes because 

they sustain breakage causing loss of aspect ratio and loss of reinforcing effectiveness. 

Multifilament strands like glass that are not intended to separate tend to do so, and render 

the mixture unworkable because of increases surface area. Polypropylene fibers are 

intended to disperse during mixing into individual monofilaments. Insufficient mixing 

will fail to achieve the intended degree of separation. Optimal mixing time is necessary to 

achieve satisfactory workability without damage to fibers and consequent loss of 

reinforcement effectiveness. 

 

Sakai [26] suggested an optimal mixing time between 2 to 3 minutes in the mixer for 

carbon fiber reinforced cements for increased flexural strength.  

 

 
Figure 3.2: Relationship between composite strength and mixing time in a 

conventional mortar mixer for carbon-fiber reinforced cements [26] 
  

Trial mixes were conducted to determine the quantity of carbon fibers to be added.  A 

low fiber volume fraction is usually preferred, because the material cost increases, the 



 

 38

workability decreases, the air void content increases, and the compressive strength 

decreases, as the fiber content increases. For placement on bridge deck overlays, 

workability was the initial concern. Hence slump was measured on different trial mixes to 

determine the quantity of carbon fibers that would possibly improve mechanical 

properties of concrete, as well as fall well within the specifications of slump required by 

ACI 548.4r (3-8 in.). 
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Figure 3.3: Slump vs CF % (weight of cement) 

 

 
Based on initial pilot test results, (Figure 3.3), a minimum slump of 3 inches predicted a 

CF percentage of 0.89. On the safer limit, it was found feasible to add carbon fibers at 0.7 

% (by weight of cement). It represented a volume fraction of 0.15%. 
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3.5 Calculation of Volume Fraction of Carbon Fibers 
 

Expression of the carbon fiber percentage as volume fraction is required for theoretical 

treatment while expression in fiber weight is required for batching. 

Density of the LMC mix = 144.74 lbs./ft3…………………………..……………..[A.2] 

CF weight per cubic yard = 0.7% by weight of cement 

    = 0.007 x 658 lbs. = 4.606 lbs 

CF % by weight of concrete =  (Weight of CF / weight of concrete) per cubic yard 

    = 0011786.0
2774.144

606.4
=

×
 

    ≈ 0.118 % by weight of concrete 

0.1178 %100×=
mm

ff

DV
DV

………………………………………………..(Equation 3.1) [12] 

∴ 100112
74.1441178.0

100
1178.0

×
×

=
×

×
=

f

m

m

f

D
D

V
V

 

 = 0.001522 

∴ Fiber Volume fraction 
m

f

V
V

 =0.15% 

Where  

Vf =Fiber Volume 

Vm=Matrix Volume 

Df =Fiber Density 

Dm=Matrix Density 

 

3.6 Laboratory Preparation of LMC 
 

1) Prior to starting the rotation of the mixer, add the coarse aggregate and latex  

2) Start the mixer, and let it run for ½ minute. 

3) The sand and cement were added and mixed for 1 additional minute 

4) The water was later added and mixed for 2 minutes 

5) Cover the top of the mixer to prevent evaporation during mixing. 
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6) To eliminate segregation, deposit machine mixed LMC in the clean, damp mixing 

pan and remix by shovel or trowel until it appears to be uniform  

 

 

 
 

Figure 3.4: Concrete mixing of LMC 
 

Measure the slump of the LMC batch after 5 minutes in accordance with ASTM C143 

[44] and ACI 548.3r [2]. 

 

3.7 Laboratory Preparation of CFLMC 

 

The technique of dispersion of carbon fibers within the concrete matrix is critical to the 

success of carbon fiber technology. The ‘wet mix’ and the ‘dry mix’ method of mixing 

carbon fibers with concrete were experimented. In the wet mix method, the fibers were 

initially mixed with latex and discharged into a concrete mixer. This method posed 

problems such as clumping of carbon fibers, or attaching of carbon fibers to the sides of 

the mixer itself.  

 

 In the dry mix method, carbon fibers were mixed with cement in a tabletop mixer fro 

about 5 minutes (Figure 3.5). This forceful mixing action caused the clumped micro 

fibers to separate and disperse. A SEM photograph (Figure 5.1) from the fractured 

surface of a cured sample, shows proper dispersion of carbon fibers within the concrete 

matrix.  
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Figure 3.5: Dry mixing of carbon 
fibers with cement 

 
Figure 3.6: Cement and Carbon 

Fibers 
 

 

The sequence of steps to manufacture CFLMC are given below 

 

1) Cement and carbon fibers were dry mixed well in a tabletop mixer for about 5 

minutes 

2) Prior to starting the rotation of the mixer, add the coarse aggregate and latex  

3) Start the mixer, and let it run for ½ minute. 

4) The sand and fiber cement were added and mixed for 1 additional minute 

5) The water was added and mixed for 2 minutes 

6) Cover the top of the mixer to prevent evaporation during mixing. 

7) To eliminate segregation, deposit machine mixed CFLMC in the clean, damp 

mixing pan and remix by shovel or trowel until it appears to be uniform  
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CHAPTER FOUR 
SPECIMEN PREPARATION AND TEST METHODS 

 

4.1 Introduction 
 
This chapter describes in detail, the theoretical background behind each test, test 

specimen dimensions, specimen preparation and data acquisition systems.  A brief 

outlook of each test method is given in Table 4.1. All specimens followed guidelines 

from relevant ASTM standards where applicable, and tested according to ASTM 

standards and ACI guidelines. 

 

Table 4.1: Description of tests on LMC and CFLMC 
 

Sr. No Test Standard 
Test Method 

Specimen 
dimensions 

No. of 
specimens 

Notes 

1 Slump ASTM C 143  1 Measured 5 
minutes 

after mixing
2 Direct 

Tension Test 
 Dog Bone Shaped 

specimen with CSA 
1″x1″ 

3 Loading 
rate = 

0.00025 
inch/sec 

3 Four point 
Loading 
(Flexure) 

ASTM C 78 
ASTM C 

1018 

4″x2″x16″ 
Span length = 12″ 

3 Loading 
rate = 

0.00025 
inch/sec 

4 Three point 
Loading 
(Flexure) 

ASTM C 293 4″x2″x16″ 
Span length = 12″ 

3 Loading 
rate = 

0.00025 
inch/sec 

5 Split 
Tension Test 

ASTM C 496 4″ x 8″ cylinder 3  

 

Based on encouraging results of the flexural tests, further experiments on the effect of 

increasing the carbon fiber percentage to LMC were experimented in flexure and 

fracture. A study was also conducted to study the effect of carbon fibers on the bond 

strength between the overlay and concrete substrate. These tests are shown in Table 4.2. 
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Table 4.2: Description of tests on LMC specimens with varying CF %. 

 
Test Carbon 

Fiber % 
Standard 

Test Method 
Specimen 

Dimensions 
No. of 

Specimens 
Notes 

0 3 
0.5 3 
1.0 3 

 
Four point 
Loading 
(Flexure) 1.5 

 
ASTM C78 

ASTM C1018 

 
1″x3″x12″ 

Span length = 9″ 

3 

Loading 
rate = 

0.00025 
inch/sec 

0 3 
0.5 3 
1.0 3 

 
Fracture test 

1.5 

 
RILEM test 

by Hillerborg 
et. al. 

 
3″x3″x12″ 

Span length = 9″ 

3 

Loading 
rate = 

0.00025 
inch/sec 

0 3 
0.5 3 
1.0 3 

 
Split 

Composite 
Cylinder test  

1.5 

 
 

ASTM C496 

 
4″ Diameter 8″ 
long composite 

cylinder 
3 

 

 

4.2 Description of Specimen Preparation and Tests Methods 
 
4.2.1 Slump 

 
Slump is the term used to describe the consistency, stiffness and workability of fresh 

concrete. The results of a slump test are stated in inches. The workability of concrete is 

affected by a number of factors: water content of the mix, mix proportions, aggregate 

properties, time, temperature, characteristics of the cement, and admixtures. The slump of 

fresh concrete properties was measured according to ASTM C 143 [44]. As per 

recommendations by the ACI 548.4 [20], the slump is measured 4-5 minutes after 

discharge from the mobile mixer. 

 

4.2.2 Direct Tension Testing  

 

Currently, there are no standard tests by ASTM that measure the stress on concrete in 

direct tension. After several prototype tests on concrete specimen size and preparation, 

loading arrangements, loading rates, gripping force etc, a successful and repeatable test 

method was developed in the laboratory Custom made molds were designed and 
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machined to make dog bone tensile concrete specimens. Care was taken to prepare near 

perfect specimens with minimal eccentricities during loading.  The molds were designed 

so as to be able to machine the top surface of the specimen for a smooth sawed surface. 

This was done to remove eccentricities during tensile loading. The special grip 

arrangement prevented preloading and eliminated any eccentricities during loading. 

 

4.2.2.1 Tensile Specimen Dimensions 

 

Specimen dimensions for the tensile test were specially designed taking into 

consideration the aggregate size, length of strain gages and width of the hydraulic test 

machine grips.  

 
Figure 4.1: Dimensions of tensile test specimen (all dimensions in inches). 

 

4.2.2.2  Preparation of Tensile Test Specimens 

 

Step 1: Mold Design  

Custom made molds were designed and machined to make dog bone tensile concrete 

specimens. The molds were designed so as to be able to machine the top surface of the 

specimen for a smooth sawed surface. This was done to remove eccentricities during 

tensile loading. The molds were made from high-density polyethylene (HDPE) materials 

and machined with a precision CNC machine. 

 

PLAN 
ELEVATION 
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Figure 4.2: Design of molds 
 
 
Step 2: Casting of molds 

The molds were coated with demolding oil and concrete was cast into the molds, 

smoothened with a hand trowel and vibrated to ensure proper compaction and to remove 

air bubbles within the fresh concrete mix. 

 

 
 

Figure 4.3: Concrete casting in molds 
 
Step 3: Curing of specimens. 

The concrete specimens were air cured for 24 hours within its mold to allow it to harden. 

Next the specimens were cured under water for 48 hours as per recommendations of ACI 

548.3r  [2], demolded, and finally air cured till the day of testing.  
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Step 4: Demolding of specimens 

Demolding was done on the third day of the concrete pour. The design of the mold 

permitted the top layer of the mold to detach, to expose 0.5″ concrete protrusion from the 

mold. 

 
 

Figure 4.4: Demolding upper layer of mold 
 
Next, the exposed surface of concrete was saw- cut with a rotary diamond tool to provide 

a smooth finish to the dog-bone shaped concrete specimens.  

 

   
 

Figure 4.5: Saw cutting top 0.5″ off specimen 
 

Finally, the 1″ thick dog-bone specimen could be demolded. 

 

Step 5: Sanding 

The concrete specimens were carefully sanded with a sanding machine and proper grades 

of sand paper, to ensure smooth and parallel surfaces. 

 

0.5″
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Figure 4.6: Sanding of specimens 

 

4.2.2.3  Instrumentation of Specimen and Specimen Fixtures for Testing 

 

During prototype testing, special grips were custom manufactured [A.12] to hold a 1" 

thick specimen within the gap openings of the MTS hydraulic test machine. However, the 

specimen tended to crack during gripping or at low tensile strengths. Due to slight 

imperfections in the concrete specimen, eccentric loads were induced during gripping. 

Hence, an arrangement had to be made to create joints at the two ends of the specimen to 

permit swiveling. This ensured the specimen is not preloaded or under eccentric load.  

 

A 2″ wire resistance strain gage [A.7] was attached to one face of the tension test 

specimen to measure strains. Four 0.25″ steel plates were attached to the grip area of the 

dog-bone specimen using Loctite 8500  [A.8] adhesive.  

 

 
Figure 4.7: Concrete dog-bone specimen 

 

Loctite Adhesive 0.25″ steel plate Strain Gage 

Hole 
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The steel plates have a hole drilled through, to allow a bolt to pass through. The bolt is 

attached to a ring fixture, which is bolted to the MTS machine (section 4.2.3.2). This 

unique arrangement allows for a slight swivel movement to adjust to any possible 

eccentricities in the specimen, or the test loading arrangements, to ensure direct tensile 

stresses within the specimen. 

 
 

Figure 4.8: Loading arrangement for dog-bone test specimens 
 
4.2.2.4 Specimen for Scanning Electron Microscope. 

 
After conducting a tensile test, a thin slice of the fractured surface of concrete was cut 

from a CFLMC specimen for viewing under the SEM. The specimen was then cleaned 

and coated with a thin film of gold for properties of conductivity while viewing under the 

SEM. 

 

Strain GageSteel plate Bolts 
Ring 
Fixtures Specimen
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Figure 4.9: Fractured Tensile 
Specimen 

Figure 4.10: Specimen for SEM 
viewing 

 

    
 

Figure 4.11: SEM Figure 4.12: Data acquisition system 
 
 

 
4.2.3 Four Point Loading Test 

 
The flexure test method measures the behavior of materials subjected to simple beam 

bending. The area of uniform stress in a four point loading test exists between the inner 

span loading points, where half the load is applied at each third of the span length. Many 

applications of overlay materials subject them to flexural stresses, in addition to direct 

stresses. Hence, an understanding of the mechanism of strengthening in flexure is more 

important than studies in direct stress situations. 
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FRONT VIEW   SIDE VIEW 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4.13: Specimen dimensions for four point loading method 
 
Stresses were calculated from the load using the formula 

 2bd
PLf = ………………………………………………….…………(Equation 4.1) [44] 

where 
f = stress, psi 
P = load applied, lbs 
L= span length, in., 
b = average width of specimen, in. 
d = average depth of specimen, in. 
 

4.2.3.1 Specimen Preparation   

  
ASTM C 78 [44] and ASTM C 1018 [44] were followed for specimen preparation with 

special considerations for overlay materials. The specimen dimensions were 4″x2″x16″ 

with a span length of 12″. Specimens were prepared in standard 4″x3″x16″ steel molds 

with a plexiglass (acrylic) cover to achieve smooth surface finish and required thickness 

for the concrete specimen. Specimens were coated with demolding oil before the pour. 

During the pour, a vibrating rod was inserted to ensure there was no air bubbles within 

the concrete. 

2˝ 

2˝

16˝ 

12˝ 

4˝ 4˝ 

2˝

4˝ 4˝
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Figure 4.14 (a): Steel 

Mold 
Figure 4.14 (b): 
Plexiglass cover 

Figure 4.14 (c): Mold 
for flexure specimen 

      

                                             
 
Figure 4.14 (d): Use of 

vibrating rod 
Figure 4.14 (e): 

Concrete in mold 
Figure 4.14 (f): Cured 

flexure specimen
                  

Figure 4.14: Preparation of flexure specimens. 
 
Once cured, the specimen was instrumented with a 2" wire resistance strain gage [A.7] on 

the tension side of the specimen during loading. An LVDT [A.9] was attached to the 

compression side of the specimen to determine the mid-point deflection of the specimen. 

 

 
 

Figure 4.15: Instrumented specimen for four point loading specimen. 

Metal Strip to 
measure 

Displacement

Strain gage
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Based on the favorable results from the flexural tests, additional LMC and CFLMC 

specimens (CF% of 0.5, 1.0 & 1.5) with dimensions 1″x 3″x 12″ (Span length = 9″) were 

prepared and tested on the 28th day of curing, in a four point loading test. 

 
4.2.3.2 Test Setup for Four Point Loading 

 
For the four point loading test, an MTS -810 hydraulic material [A.10] test system is 

used. The machine is controlled via the 458.10 Microconsole and the 418.91 

Microprofiler. Programming the Microprofiler can control the rate of loading and 

displacement. Vishay System 5000 data acquisition [A.11] was used to collect the data 

from the strain gages as well as load and displacement from the MTS hydraulic machine. 

Data from the Vishay instrument is downloaded to a laptop using the data acquisition 

card and strainsmart software. Strainsmart is a ready-to-use, Windows based software 

system for acquiring, reducing, presenting, and storing measurement data from strain 

gages, strain-gage-based transducers, thermocouples, temperature sensors, LVDT's, 

potentiometers, piezoelectric sensors, and other commonly used transducers. The 

acquired data was analyzed and plotted in Matlab. 

 

      
 
Figure 4.16: MTS 810 Hydraulic test   

machine      

 
 Figure 4.17: Data acquisition system

 

Microprofiler

Microconsole

Vishay  
System  
5000

Crosshead 

Grips  

Grip 
Controls 

Fixtures

Force 
transducer 
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Figure 4.18: Four point loading   Figure 4.19: Three point loading 
     
  
4.2.4 Three Point Loading 

 
In a three point loading test, the area of uniform stress is quite small and concentrated 

under the center load. This test was conducted in addition to the third point loading to 

reinforce the results and conclusions obtained from the previous test. The specimens for 

center point loading had the same dimensions as those for the four point loading. 

Stresses, modulus of rupture and strains were measured during testing.  

Stresses during loading are calculated from the load using the formula 

22
3
bd
PLf = ……………………………………………………………..(Equation 4.2) [44] 

where, 

f = stress, psi 
P = maximum applied load, lbs 
L= span length, in., 
b = average width of specimen, in. 
d = average depth of specimen, in. 

 

 

 

 

 

LVDT 

Specimen 

Specimen
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   FRONT VIEW   SIDE VIEW 

 
 

 

 

 

 

Figure 4.20: Specimen dimensions for three point loading method 
 

4.2.5 Split Tension Test 

 

Split tensile strength is a measure of a material's ability to resist a diametric compressive 

force. The compressive loads induce an essentially uniform tensile stress on the 

diametrical plane. The cylindrical material specimen is placed with its axis placed 

horizontally between the platens of a test machine.  A relatively low and uniform rate of 

force is applied on the test specimen until splitting or rupture occurs. Specimens for split 

tension testing were prepared according to recommendations from ASTM C496 [44]. 

Concrete cylinder 4″ in diameter and 8″ long were prepared by pouring freshly mixed 

concrete in standard plastic molds  

 

                                
Figure 4.21: Plastic molds for split 

tension test 
[www.globalgilson.com] 

Figure 4.22: Stress in a split tension 
test
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Based on the load at which the cylinder split, the tensile strength σ of the concrete is 

computed.  

The equation is:  

σ =2P/(πdL)…………………………………………..……………(Equation 4.3) [44]  

where P is the load at which the cylinder failed 

d is the diameter of the cylinder 

and L is the length of the cylinder 

A Forney testing machine with a capacity of 350,000 lbs was used. The rate of loading is 

controlled manually. The testing machine has a sensitivity of 100 lbs. Wood strips are 

placed between the cylinder and platen for a more uniform load distribution 

 

        
 

Figure 4.23: Forney compression 
testing machine 

 
Figure 4.24: Analog readout of test

 

     

Loading base 

Force transducer 

Load Display

Split tensile 
specimen Wood Strips 
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Figure 4.25: Split tensile testing 
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4.2.6 Additional tests: Flexure 

 

Based on the favorable results from the previous flexural tests (Section 4.2.3). LMC and 

CFLMC at 0.5%, 1.0% and 1.5% were tested. Three samples of each mix were tested. All 

specimens were tested after 3 days of moist curing and 25 days of air curing. 

 
4.2.7 Fracture Test 

 
Fracture mechanics is the field of solid mechanics that deals with the behavior of cracked 

bodies subjected to stresses and strains. When a brittle body breaks, its total surface area 

increases. F.C. Roesler [46] explains that there is energy associated with the new surface. 

This additional surface energy must be balanced by the work of external forces or by 

decrease of some form of energy in the system, for instance by a decrease of strain 

energy. Non linear fracture mechanics models have been developed to understand the 

nature of quasi-brittle materials such as concrete. The RILEM technical committee 50-

FMC of Concrete-Test Methods proposed a draft recommendation to measure the 

fracture energy GF using a three-point bend beam in 1985 [47]. This method was based 

on the fictitious crack model by Hillerborg et al. [48]. The beam size depends on the 

maximum of size of aggregates and RILEM suggested standard sizes of beams. The 

notch depth is equal to half the beam depth, and the notch width at the tip should be less 

than 10 mm.  

 
 

Figure 4.26:  3 point bend beam according to RILEM [47] 
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Figure 4.27: Load-displacement curve for evaluation of the fracture energy GF [47] 
 
The total area under the load displacement curve (P-δ curve) may be divided into three 

parts, W0 (area under applied load), W1 and W2 (areas due to beam self weight) and  

W1=PW δ0.  It has been demonstrated by Petersson  [49] and Swartz and Yap [50] that 

the value of W2 is approximately equal to W1.  

 

The total fracture energy Wt is  

00 2 δwt PWW += ………………………………………………………..…..(Equation 4.4) 

The fracture energy per unit projected area is calculated by 

tab
PW

tab
W

G wt
F )(

2
)( 0

00

0 −
+

=
−

=
δ

……………………………………………....(Equation 4.5) 

 

Due to material quantity constraints and requirements of being a ‘comparative’ study, 

smaller beam samples than those recommended by RILEM committee were used. It was 

ensured that all beam samples were subjected to the exact sample preparation conditions, 

curing and testing. Beam weights were not taken into consideration in calculation. Hence 

the simplified calculation of fracture toughness (GF) or the critical strain energy release 

rate is calculated as 

tab
W

GF )( 0

0

−
= ……………………………………………………………(Equation 4.6) 

W0= Wt = Total fracture energy 
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Beam samples 3″x3″x12″ (span length 9″) were used for the test. The notch length was 

1.5″.  The notch was sawn under wet conditions 1 day before the test. The test is 

performed with a constant rate deformation, which allows the maximum load to be 

reached in about 20 minutes after the start of the test. The critical or maximum load (Pcr), 

total fracture energy (W0) and the critical SERR or toughness(GF) were obtained from the 

graphs. 

 
 

Figure 4.28:  Three point loading for determination of fracture energy 
 
4.2.8 Split Composite Cylinder Test  

 
The tensile strength of the bond between the concrete substrate and overlay material 

could be determined using a specially cast composite cylinder. For this unique test, 

portland cement concrete cylinders 3″x 6″ cylinders after over 60 days of curing, were 

sawn into half, polished with a grinding wheel and placed back into its original plastic 

mold. Overlay material was poured over the remaining half to form a complete 3″x 6″ 

cylinder. This composite specimen was tested under conditions similar to the split tensile 

test. 

 

 

 

 

 

 
Figure 4.29: Splitting tensile test of composite cylindrical specimen 

Notch Test 
sample 

Concrete LMC/ 
CFLMC 

FRONT VIEW SIDE VIEW 
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Figure 4.30: One ½ sawed concrete 
cylinder 

 
Figure 4.31:  Grinding of face for 

smooth finish x 
 

          
 
Figure 4.32:  Composite cylinder Figure 4.33: First crack formation at 

interface 
 
The ends of the composite cylinder were coated with ‘Plaster of Paris’ (POP) to detect 

the load at first crack.  This value of load should not be confused with the ultimate load at 

which the cylinder cracks. The load at first crack gives a more accurate value for the 

bond strength. 

 

 

Overlay Substrate
First crack 

P.O.P coating 
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CHAPTER FIVE 
RESULTS AND ANALYSIS 

 

5.1 Introduction 
 
A detailed look into the results and discussion of each experiment is included in this 

chapter.  

 

5.2 Mixing Procedure 
 
The dry mix procedure (Section 3.7) was adopted to prepare carbon fiber reinforced latex 

modified concrete. The mixing procedure was controlled to ensure that there was uniform 

distribution of fibers within the cement matrix. A few fibers were selected randomly from 

the mix and measured to determine whether the fibers were abraded during mixing. All 

fibers maintained the original length of 0.5 in. and hence there was no change in the 

aspect ratio (length/diameter) of the fibers. This proved that mixing in the ordinary 

concrete mixer did not prove to be detrimental to the fibers. Scanning electron 

microscope (SEM) photographs from fractured specimens after testing showed that 

carbon fibers were dispersed quite evenly within the cement matrix.  

 

 
 

Figure 5.1: SEM photograph showing uniform fiber dispersion in concrete 
 

Carbon Fibers 
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5.2 Slump 
 
Slump is a measure of field workability of concrete. Carbon fibers reduces the fresh mix 

workability of concrete while latex polymer dispersions improves the fresh mix 

workability. The improvements in workability due to latex modification are attributed to 

surface-active agents in polymer dispersions [2]. The mix design of LMC is usually 

formulated to accommodate the loss of slump (2-3 inches approx) due to addition of 

fibers. Overlay applications on bridge decks require high slump concrete. In this study, 

the slump of LMC (8″) and the slump of CFLMC (5″) fall within the specifications 

required by ACI 548.4 [20], which is 3″ to 8″. No admixtures were used in this 

experiment to improve workability. 

 

                     
 

Figure 5.2: Slump of LMC (8˝) 
 
Figure 5.3:  Slump of CFLMC (5˝)
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5.3 Interfacial Shear Strength 
  

In this experiment, SEM photographs were based on examination of one sample. 

Fractured surface from a tensile specimen was studied. Fragments of latex-modified 

cement are observed to cover nearly half of the fiber surface. The carbon fibers also did 

not show any fracture (indicated by cement adhesion on the end surface of the fiber) 

(Figure 5.5). It indicates that the fibers have high strength to resist breakage. Failure was 

due to a combination of shear in the cement matrix in the vicinity of the fibers, and 

interfacial shear between the fiber and matrix. Latex helped to improve adhesion between 

the carbon fiber and the matrix. This adhesion helped to transfer loads from microcracks 

to the carbon fibers, thus improving ductility of the material. 

  

  
 

Figure 5.4 (a): Adhesion of matrix 
with fibers 

Figure 5.4 (b): Magnification of 
carbon fiber

 
 

Figure 5.4: SEM photographs of carbon fibers in cement matrix 
 
 

Since there is no fiber fracture and judging from the shear failure in the matrix, it is 

possible to assume the parallel iso strain model [A.1] for the CFLMC composite. 

 

Cement matrix 
adhesion on end 
surface of 
microfiber

Cement 
matrix 
adhesion 
on sides 
of carbon 
fibers 
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5.4 Direct Tension Testing 

 

The individual results of the direct tension tests are shown in figure 5.5, where the lighter 

colored stress strain curves represent experimental results of individual tests, and the 

bolder curves represent the polynomial curve fit. The polynomial curve fit and the spread 

of data (shown using error bars) are plotted in figure 5.6. Conclusions are based on test 

results from 3 samples of each material type. CFLMC showed an average 26% increase 

in strain to failure over LMC, but does not show significant improvement in strength. 

Ductility denotes the property of CFLMC to accommodate greater strains without 

cracking. Tensile toughness, or the amount of energy required to cause fracture, is given 

by the area under the stress strain function. CFLMC showed an average increase of 45% 

in toughness.  
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Figure 5.5: Tensile stress strain graph (experimental test results) 
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Figure 5.6: Tensile stress strain graph (Polynomial fit results) 
 

Table 5.1: Results of direct tension tests 

Sample  Load at 
Failure 

(lbs) 

Ultimate 
Stress 
(psi) 

Ultimate 
Strain 
(με) 

Toughness 
(psi) 

Average 
ultimate 

stress 
(psi) 

Average 
ultimate 

strain (με) 

Average 
Toughness 

(psi) 

LMC 
Spec 1 
Spec 2 
Spec 3 

 
829 
847 
828 

 
829 
847 
828 

 
233 
298 
262 

 
0.093156 
0.140090 
0.111757  

 
 

834.6 

 
 

264.3 

 
 

0.115001 

CFLMC  
   Spec1 

Spec 2 
Spec 3 

 
852 
825 
845 

 
852 
825 
845 

 
310 
322 
365 

 
0.150443  
0.192590  
0.156949  

 
 

841 

 
 

332.3 

 
 

0.166661  

 
 

Figure 5.7 derived from the linear portion of figure 5.6 show the initial modulus of 

elasticity of LMC & CFLMC to be similar. The modulus of elasticity of a concrete is 

largely controlled by the volume and the modulus of aggregates. [12]. Small additions of 

fibers would not be expected to greatly alter the modulus of elasticity of the composite.  
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Figure 5.7: Plot of tensile modulus of elasticity (experimental test results) 
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Figure 5.8: Plot of tensile modulus of elasticity (polynomial fit results) 
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Dispersion in the results could be due to variablility in concrete specimens and 

eccentricities during loading. The additional loading capacity depends on the fiber 

diameter and volume fraction. Carbon fibers, being microfibers added at a very low 

volume fraction of 0.15% is not expected to increase the direct tensile strength of the 

material. The CFLMC matrix will fail at its normal failure stress of the LMC matrix. 

However, fiber reinforcement increases the strain to failure of the material. 

Improvements in ductility are more pronounced towards the failure region of the matrix, 

when the effect of the micro-fibers comes into action. 

 

5.4.1 Theoretical Prediction of Tensile Elastic Modulus  

 

From the parallel-isostrain model for fiber reinforced materials……………..[A.1] 

mmffcc VEVEVE += '
…………………………………………..(Equation 5.1) 

where 

η×= ff VV '  

E = Elastic Modulus  

V= Volume fraction 

η = Efficiency factor for 3D random fibers  [12] 

Suffixes 

f = fiber; m = matrix; c = composite 

Substituting values 

Vf = 0.0015, Ef = 33 x 106 psi, Em = 3.78 x 106 psi, Vm=(1- Vf), Vc= Vf + Vm,, η=1/5 

Ec= 3.79 x 106 psi 

Theoretical equations prove that the low volume fraction of the carbon fibers do not 

cause a significant change in tensile modulus of elasticity.  

 

5.4.2 Theoretical Prediction of Tensile Strength  

 

From equations derived by Hannat D.J. for fiber reinforced concrete, [12] 
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)1(1 ' −+
=

MV f

c
m

σ
σ ……………………………………………………..(Equation 5.2) 

Where 

η×= ff VV '  

σ = Failure Stress 

Μ = Ratio of Modulus of elasticity = Ef/Em 

V = Volume 

η = Efficiency factor for randomness of 3D fibers 

 

Suffixes 

f = fiber; m = matrix; c = composite 

Substituting 

Vf = 0.0015, Ef = 33 x 106 psi, Em = 3.78 x 106 psi, η = 1/5 

0023.1
1

1078.3
1033

5
0015.01 6

6
cc

m
σσσ =

⎟⎟
⎠

⎞
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⎝
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−
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=  

 

The tensile strength of the LMC overlay is not influenced significantly by addition of 

carbon fibers at 0.15% volume fraction. 
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5.5 Four Point Loading 
 

Three samples of a particular mix were tested under four point loading (ASTM C 78 [44] 

and ASTM C 1018 [44]). Experimental curves of load versus displacement for individual 

tests are shown in Figure 5.10. The load displacement curve shows an increase in the 

ultimate flexural strength for CFLMC specimens. Flexural toughness is determined in 

terms of area under the load deflection curve for fiber reinforced concrete. From figure 

5.9, CFLMC shows an average 25.4 % increase in toughness over LMC. Due to the small 

percentage of fibers and the aspect ratio (length/diameter) of carbon fibers, CFLMC does 

not sustain loads in the post-crack region of the load deflection graphs. 
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Figure 5.9: Load Vs Displacement graph for four point loading 
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Figure 5.10: Stress Strain curve for four point loading (experimental test results) 
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Figure 5.11: Stress Strain curve for four point loading (polynomial fit results) 
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Figure 5.10 is a plot of the individual experimental stress strain curves for LMC & 

CFLMC in a 4 point loading test. Figure 5.11 is a plot showing the polynomial fit and the 

dispersion of data for the two types of materials. The low percentage of fibers is effective 

enough to increase the average flexural strength and failure strain by 17% and 43% 

respectively. These improvements show that carbon fibers are very effective at 

preventing cracking at larger deformations of the material.  

 

Table 5.2: Test results for four point loading 

 
Sample  Load at 

Failure 
(lbs) 

Modulus of 
rupture 

(psi) 

Ultimate 
Strain 
(με) 

Toughness 
(lbs.in) 

Average 
Modulus 

of 
rupture 

(psi) 

Average 
ultimate 

strain 
(με) 

Average 
Toughness 

(lbs. in) 

LMC  
Spec. 1 
Spec. 2 
Spec. 3 

 
925 
850 
936 

 
694 
638 
702 

 
225 
206 
251 

 
8.34  
8.34  
6.66  

 
 

678 
 

 
 

227 

 
 

7.78  

CFLMC  
Spec. 1 
Spec.  2 
Spec.  3 

 
1066 
1092 
1004 

 
800 
819 
753 

 
323 
295 
353 

 
9.86  

10.98  
8.46  

 
 

791 

 
 

324 

 
 

9.76  

 
The upper limit for validity of the conventional beam theory is reached at the onset of 

cracking. Previous research [52] on flexural testing of fiber reinforced concrete have 

shown that there is slight upward shift of the neutral axis during loading. Greater strains 

are recorded in the tension zone of the beam in flexure, compared to the compression 

zone. This enlarges the tension zone of the specimen whereby the specimen is able to 

sustain greater tensile strains. Hence CFLMC shows greater ductility properties than 

LMC. At the same time, the compression zone of the specimen is also utilized during 

loading. This explains how a flexural specimen has greater ultimate strengths than a 

specimen of the same material in direct tension. 
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Figure 5.12: Change in strain distribution and shift of neutral axis for carbon fiber-

reinforced cement in flexure [51] 
 
5.6 Three Point Loading 
 
Results of testing flexure samples under three point loading helped to reinforce 

conclusions obtained for the four point loading. Three samples of each mixture i.e. LMC 

and CFLMC were testing in three point loading under same conditions of loading rate as 

the four point loading test. Stress strain curves for three point loading showed similar 

trends to the four point loading.  

0 50 100 150 200 250 300 350 400
0

200

400

600

800

1000

Strain (με)

S
tre

ss
 (p

si
)

LMC
CFLMC
LMC Polynomial fit
CFLMC Polynomial fit

LMC Spec 3 

LMC Spec 1 

LMC Spec 2 

CFLMC Spec 1 

CFLMC Spec 2 

CFLMC Spec 3 

 
 

Figure 5.13: Stress Strain curve for three point loading (experimental test results) 
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Figure 5.14: Stress Strain curve for three point loading (polynomial fit results) 

 
Results showed an average 27.5 % increase in modulus of rupture (ultimate flexural 

strength) and 33.6 % increase in strain to failure. 

 

Table 5.3: Test results for three point load test. 

 
Sample 

No. 
Load at 
Failure 

(lbs) 

Modulus 
of 

rupture 
(psi) 

Ultimate 
Strain 
(με) 

Average 
modulus of 

rupture 
(psi) 

Average 
ultimate 

strain 
(με) 

LMC 
Spec. 1 
Spec. 2 
Spec. 3 

 
627 
552 
555 

 
704 
621 
624 

 
257 
266 
227 

 
 

650 
 

 
 

250 

CFLMC 
Spec. 1 
Spec. 2 
Spec. 3 

 
733 
726 
765 

 
818 
810 
860 

 
286 
344 
371 

 
 

829 

 
 

334 
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5.7 Split Tensile Tests 
 

Results from the split tensile tests show that there was no significant change (about 7% 

increase only) of tensile strengths between LMC & CFLMC. This trend was similar to 

the results obtained from direct tension testing. 

 
Table 5.4: Test results for split tensile test 

 
Sample No. Load at 

Failure 
(lbs) 

Ultimate 
Tensile 

Strength (psi) 

Average 
Tensile 
Strength  (psi) 

LMC 
 
 

25800 
28000 
24300 

513 
557 
484 

 
518 

CFLMC 
 
 

28500 
30000 
25200 

567 
597 
502 

 
555 
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5.8 Further Experiments 

 

Based on the improved performance of CFLMC in flexure, it was decided to further 

investigate the properties of CFLMC at different volume fractions of carbon fibers. 

Increased carbon fiber percentage would cause reduction in workability and would cause 

difficulty in placement of the overlay on bridge decks. Workability issues due to increase 

fiber content can be overcome with use of suitable admixtures. These samples were tested 

after 28 days of curing. The different tests performed are 

 

1. Four point loading (flexure) 

2. Fracture Tests 

3. Bond strength tests. 

 

5.8.1  Four Point Loading Tests (Flexure) 

 
Figure 5.15 represents the experimental stress strain curve for individual tests while 

figure 5.16 is a plot of the polynomial fit, along with the dispersion of data. The stress 

strain plots show a 20% average increase in modulus of rupture (MOR), and an 18% 

average increase in strain to failure by addition of carbon fibers by 0.5 % (by weight of 

cement) to LMC. Further increase of CF% does not cause great improvements in flexural 

properties of LMC. The limit on increase of mechanical properties of CFLMC is due to 

the increase in air content due to workability issues of CFLMC.  Thus, it is justified in 

using 0.7% carbon fibers to LMC in previous tests.  
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Figure 5.15: Stress vs. Strain plot for LMC & CFLMC specimens in four point 
loading (experimental test results) 
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Figure 5.16:  Stress vs. Strain plot for LMC & CFLMC specimens in four point 
loading (polynomial fit results)



 

 77

 
Table 5.5: Test results for four point loading test for CF% in LMC 

 

Sample  Load at 
Failure 

(lbs) 

Modulus of 
rupture MOR 

(psi) 

Ultimate 
Strain 
(με) 

Average 
MOR 
(psi) 

Average 
ultimate 

strain (με) 
LMC 501 

469 
471 

1502 
1407 
1413 

408 
382 
400 

 
1440.6 

 
396.6 

CFLMC 
0.5 %  

587 
570 
573 

1762 
1710 
1719 

461 
477 
471 

 
1730.3 

 
469.6 

CFLMC 
1.0 % 

596 
594 
554 

1789 
1782 
1662 

468 
469 
450 

 
1744.3 

 
462.3 

CFLMC 
1.5 % 

616 
593 
571 

1848 
1779 
1714 

503 
439 
479 

 
1780.3 

 
473.6 

 
 
5.8.2 Fracture Test 

 
Fracture toughness is measured from the area under the graph for an experimental curve 

in a load displacement plot. The averaged load deflection curves (figure 5.18) from the 

fracture tests show increase in fracture energy with increasing carbon fiber percentages in 

LMC. CFLMC at 1% and 1.5 % showed huge improvements in fracture toughness (78.8 

% & 123 % respectively). It seems practical to design a mix in between 0.5% and 1%, 

since workability was also issue to be considered. A quadratic fit of the fracture 

toughness for various carbon fiber percentages, was plotted in figure 5.19. It predicts the 

fracture toughness of CFLMC at 0.7% to be 1.35 lb/in, which is an average improvement 

of 27%, compared to LMC. Thus it is viable to design a mix at 0.7% for considerable 

improvement mechanical properties of LMC.  
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Figure 5.17: Load vs. Displacement in fracture test (experimental test results) 
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Figure 5.18: Load vs. Displacement in fracture test (average test results) 
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Figure 5.19: Fracture toughness vs. CF % (by weight of cement) 

 

Table 5.6: Test results for fracture test 

 
Test 

Sample 
Pcr 

(lbs) 
W0 

(lb in) 
GF 

(lb/in) 
Avg 
Pcr 

(lbs) 

Avg 
Wt 

(lb/in) 

Average 
GF 

(lb/in) 
567 4.6223 1.027178
577 5.1961 1.154689

CF – 
0% 

499 4.5842 1.018711

 
547.66

 
4.8 

 
1.066 

517 4.698 1.044 
535 4.3580 0.968444

CF – 
0.5% 

576 5.8133 1.291844

 
542.66

 
4.956 

 
1.101 

542 6.9042 1.534267
565 9.2732 2.060711

CF – 
1% 

609 9.6446 2.143244

 
572 

 
8.607 

 
1.912 

697 9.6617 2.147044
714 11.3641 2.525356

CF – 
1.5% 

641 11.1038 2.467511

 
684 

 
10.709

 
2.379 
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5.8.3 Split Tensile Test on Composite Cylinders 

 
The split tensile results show a decrease in bond strength of CFLMC to the concrete 

substrate, compared to LMC.  

 

Table 5.7: Test results of split tensile test for bond strength 

  
Sample Load 

(lbs) 
Tensile 

Strength
(psi) 

Average  
Tensile 

strength (psi) 
9600 191.08 
12100 240.84 

LMC 

10200 203.0255

 

  211.6507 

10100 201.035 
9100 181.1306

CF 0.5% 

11300 224.9204

 

202.362 

8300 165.207 
8900 177.149 

CF 1.0% 

10500 208.9968

 

183.78 

9100 181.1306
8700 173.1688

CF 1.5 % 

10100 201.035 

 

185.11 

 

Greater the carbon fiber percentage, the lower the workability of the mix and lower the 

ability of the mix to wet and adhere to the substrate. Hence higher percentages of carbon 

fibers in the mix may cause a loss of bond strength between the substrate and overlay. 

 

 Hence it is concluded that CFLMC with high percentages of carbon fibers may show 

improved mechanical properties but the gains does not substantiate its usage in field 

applications. Hence these experiments further justify a percentage of 0.7% as ideal for 

practical field purposes of CFLMC. 
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CHAPTER SIX 
CONCLUSIONS 

 

6.1 Introduction 
 
This experimental study investigated CFLMC from the viewpoint of mixing and 

mechanical properties for bridge deck overlay applications. The following conclusions 

were derived from this research. 

 
6.2 Practicability of CF in Concrete 
 
In this study, dry mixing of carbon fibers with cement enabled uniform dispersion of the 

carbon micro-fibers in concrete based on microscopic examination of a fractured surface 

of a random specimen.. A volume fraction of 0.15% carbon fibers showed improvement 

in mechanical properties of LMC.  

 

6.3 Complimentary roles of LMC and Carbon Fibers in Concrete. 
 

This study showed that there is a mutual benefit due to interactions between latex and 

carbon fibers. Styrene butadiene latex helped in improved adhesion of the cement matrix 

with the carbon fibers. Failure was mainly due to a combination of shearing of the matrix 

in the vicinity of the fiber, and interfacial shear between the fiber and matrix. This was 

observed from SEM photographs from a single random sample. Latex also helped in fiber 

dispersion. Improved adhesion and dispersion enabled carbon fibers to be a more 

effective reinforcing material for concrete.  

 

6.4 Effect of Carbon Fibers on the Mechanical Properties of LMC 
 

A comparison of LMC and CFLMC at 0.7% (by weight of concrete) has brought out the 

following results. All conclusions are based on average of testing 3 samples of each type 

of material. 
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6.4.1 Improvements due to Carbon Fibers 

 
1. In direct tension, CFLMC showed a 26% average increase in strain to failure 

(ductility) compared to LMC. It also showed a corresponding average increase of 

45 % in toughness. Improvements in ductility have the potential to reduce 

cracking in overlays. 

2. Besides a 17% increase in ultimate flexural strength, the stress strain curves show 

increase in strain to failure or ductility (43% average). 

3. Fracture tests predict the fracture toughness of CFLMC at 0.15% volume fraction 

to have an average improvement of 27 %, compared to LMC. 

 

6.4.2 Neutral Effects of Carbon Fibers 

 
1. There is no significant change in the tensile modulus of elasticity or tensile 

strength of LMC by addition of carbon fibers. 

 

6.4.3 Disadvantages of CFLMC 

 

1. Reduction in slump and workability is expected in the manufacture of CFLMC. 

The mix design of LMC is usually formulated to accommodate the loss of slump 

(2-3 inches approx) due to addition of fibers. 

2. Decrease in bond strength with increasing the carbon fiber percentage in LMC. It 

is necessary to keep carbon fiber percentages at low levels in overlay applications. 

However, improved surface texturing, grout methods, and use of water reducing 

admixtures can overcome this problem. 

 

6.5 Tensile Testing of Concrete.  
 

A method of tensile testing of concrete was developed during the course of this research. 

Specimens were dog-bone shaped and special attention was taken for specimen 

preparation and specimen gripping.  
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6.6 Future Recommendations 
 

Additional research into CFLMC can be investigated to enhance its properties. These 

include 

1. Effects of admixtures to overcome the disadvantages of CFLMC. These may 

include water reducing admixtures for improved workability. 

2. Effect of increased fiber lengths on the properties of LMC in tension and flexure 

3. Improved overlaying practices to ensure better bonding between overlay and 

substrate to reduce delamination. 
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APPENDIX 
 

A.1 - PARALLEL ISO-STRAIN MODEL 
 
The following theory is given in most textbooks on composites [12]. The simplified 

theory is based on the following assumptions 

1) The fibers are aligned in the direction of stress 

2) There are equal strains in the fiber and matrix before cracking 

3) The Poisson’s ratio in fiber and matrix = 0 

Load is shared by fiber and matrix 
 

mf FFF += ………………………………………(1) 
Equilibrium 

mmff AAA σσσ += ………………………………..(2) 
Compatibility 

mf εεε == ………………………………………..(3) 
Constitutive Relationship 

εσ E= …………………………………………….(4) 
 
Substituting (4) in (2) 

mmmfff AEAEAE εεε += …………………………(5) 
From (3), Eqn. (5) yields 

mmff AEAEEA +=  
 
Substituting A by V 

mmff VEVEEV +=  
 
where  
E = Modulus of Elasticity 
V = Volume  
A = Cross sectional Area 
σ = Stress 
ε = Strain 
F = Load 
 
Suffix 
f = Fiber 
m = Matrix 
 

Initial 
Shape

Deformed 
Shape 

MatrixFiber 

ε 

Figure A.1: Fiber 
Matrix Model 
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A.2  LATEX MODIFIED CONCRETE MIX PROPORTIONS 
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A.3 - CARBON FIBER SPECIFICATIONS 

 
http://www.sglcarbon.com/sgl_t/fibers/pdf/sigrafil_c_e.pdf 

http://www.sglcarbon.com/sgl_t/fibers/pdf/sigrafil_c_e.pdf
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A.4  - SPECIFICATION FOR COARSE AGGREGATE -1 
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A.4  - SPECIFICATION FOR COARSE AGGREGATE -11 
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A.5 - SPECIFICATION FOR SAND 
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A.6 - SPECIFICATION FOR LATEX 
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A.7 - WIRE RESISTANCE STRAIN GAGE - N2A-06-20CBW-120 

 
 
 
 

http://www.vishay.com/docs/11291/20cbw.pdf 
 

http://www.vishay.com/docs/11291/20cbw.pdf
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A.8 - LOCTITE SPEEDBONDER H8000 ADHESIVE 

 
 

http://tds.loctite.com/tds5/pdf.asp?tid=1&pid=SPDAH8000&lang=EN&PDF 

 
 

http://tds.loctite.com/tds5/pdf.asp?tid=1&pid=SPDAH8000&lang=EN&PDF
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A.9 - LVDT - LINEAR VARIABLE DISPLACEMENT TRANSDUCERS 
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A.10 - SYSTEM 5000 MODEL 5100 SCANNER 
 
Description  
 
The Model 5100 Scanner is sized for standard 19-in (483-mm) instrumentation racks. 
Cabinets are available for various system configurations for bench-top or field use. 
 

 
 

Model 5100 Scanner Front Panel  
 
Sensor connections are quickly made to the cards at the rear of each scanner in System 
5000. Strain gage cards include built-in bridge completion for quarter and half bridges, 
and a constant voltage power supply for 0, 0.5, 1, 2, 5, and 10 V dc bridge excitation. 
 

 
 

Model 5100 Scanner Rear Panel  
 
Since each Model 5100 Scanner can function independently, your System 5000 
components can be easily configured for each test requirement. A 100-channel system, 
for example, can be used as five independent 20-channel systems simply by purchasing 
additional software/interface hardware installations. 
 
Specifications  
 
Inputs:  
Accepts up to four cards (five channels per card and up to 20 channels per scanner).  
   
A/D CONVERTER:  
16-bit (15-bit plus sign) successive approximation converter. Usable resolution is 
typically 15 bits. 40 s total conversion time per reading.  
   
SCAN RATE:  
1 ms per scan. Fifty complete scans per second typical usage. Concurrent scanning for all 
scanners.  
   
Input channels in each single scanner are scanned sequentially at 0.04-ms intervals and 
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stored in random access memory within a 1-ms window.  
   
OPERATIONAL ENVIRONMENT:  
Temperature :-10° to +50°C.  
Humidity : Up to 90% RH, non-condensing.  
   
Size  
3.5 H x 19 W x 16 D in ( 89 x 483 x 381 mm )  
   
Weight  
16 lb (7.25 kg )  
   
Power  
115 or 230 V ac user-selectable; ±10% of setting; 50/60 Hz; 140W max.  
 
 
 
  

http://www.vishay.com/brands/measurements_group/guide/inst/5000/5100.htm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

http://www.vishay.com/brands/measurements_group/guide/inst/5000/5100.htm
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A.11 - MTS 810 HYDRAULIC TESTING MACHINE 
 

 
 
 

 
 

http://www.mts.com/stellent/groups/public/documents/library/dev_002083.pdf 

http://www.mts.com/stellent/groups/public/documents/library/dev_002083.pdf
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A.12 – GRIPS FOR MTS 810 HYDRAULIC TEST MACHINE - 1 
 
Griffin Testing Products 
P.O Box 146 
Seneca, SC 29679 
Tel: 1800-793-4743 
www.Griffgrips.com 

 

www.Griffgrips.com
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A. 12 - GRIPS FOR MTS 810 HYDRAULIC TEST MACHINE - 11 
 

Regional Office 
 

Griffin Testing Products, In 
501 Bank Street 
Derry, PA 15627 

 
 
 

 
 

 Grips for MTS 810 
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