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ABSTRACT

Investigation of Model Reduction Using Bayesian Calibration and
Dynamic Discrepancy

Ahmed Nirjhar Alam

Rapid and consistent increase in computational power availability has given rise
to more and more implementation of computational models to simulate complex pro-
cesses described by mathematical models. With this trend, reducing the computa-
tional cost of a model is of significant importance now. This work explores a technique
of reducing a model by quantifying the model discrepancy and subsequently uses the
reduced model for making predictions. The final predictions show satisfactory agree-
ment with the actual data or ‘truth’.

All models make simplifying assumptions. This deviates the model from the ac-
tual physical process. Also, many natural processes contain random factors that can
not be modeled efficiently. Together these two factors lead to disparity between the
model and the actual process. This difference is called model inadequacy or model
discrepancy. Significant amount of work has been done so far in quantifying model dis-
crepancy. These terms quantifying model discrepancy can be included in the model
equations as corrections. Various techniques for performing these corrections have
been developed in past literature.

Alternatively, the same method for quantifying model discrepancy can be used to
reduce a computationally intractable model. This would involve reducing the larger
high fidelity model to a simpler form. These reductions would therefore be the equiv-
alent to the simplifying assumptions discussed before. Of course this trimming of the
model would have to be done judiciously to ensure that the core behavior of the model
remains unchanged. Reducing the model in this manner will doubtlessly introduce
new sources of model discrepancy. The discrepancy introduced from this reduction
process can then be modeled using stochastic functions. In effect, this will simply
reduce the number of Ordinary Differential Equations(ODEs) describing the dynamic
system and substitute the information that was contained in them with inexpensive
basis functions modeling discrepancy. This will result in a significant decrease in
computational cost, which is the objective of this work.

To conduct this study, steam methane reformation(SMR) reaction, occurring in
Continuously Stirred Tank Reactor(CSTR), was used as an example case. A reduced
model of the Steam Methane Reformation Reaction was built using the reaction net-
work from the pioneering work of Xu and Froment. This model was then calibrated
to the experimental data found in the paper using the process of Bayesian Calibra-
tion with Markov Chain Monte Carlo (MCMC) sampling. The calibration produced
a reasonable posterior distribution of the physical parameters for the reaction, which



are of scientific interest, and will exhibit a similar distribution for reasonable cases
of extrapolation of process conditions. Although an initial calibration of the physi-
cal parameters only produced a reasonable distribution for some of the parameters,
the coverage obtained with model prediction in this initial phase was unsatisfactory.
This is to be expected, since the loss of details in the reduced order model would
doubtlessly affect model prediction. After calibrating the physical parameters, dis-
crepancy terms were added incrementally to the reduced model, each accounting for
specific interactions that the reduced model did not consider. After each addition,
the model was re-calibrated to the data and the model prediction coverage was ob-
served. The addition of the discrepancy terms achieved significant improvement of
the model predictions and enabled them to cover the data with a reasonable amount
of uncertainty. The final reduced model also displayed the capability to replicate
experimental data for interpolation cases. Subsequently, the final reduced model was
extended to industrial scale, represented by a plug flow reactor.
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1 Introduction

The increasing complexity of computer models used to simulate real world processes
means that model reduction is a desired attribute in most scientific endeavors. This
importance is further augmented with the recent popularity of learning algorithms
that require large numbers of model runs to acquire hidden intrinsic patterns to the
underlying process[1]. This work discusses a technique of model reduction that takes
into account the model discrepancy. Model discrepancy, in the context of this work,
refers to inadequacy of the model. It is the discrepancy between the actual physical
process and the model that is introduced due to the layers of details not taken into
account by the model, usually in the form of simplifying assumptions made about
the actual physical process. Also, most natural processes contain certain random
elements that cannot be modeled analytically. Together, these factors lead to certain
disagreement between the model results and the actual process data, even when the
model is at its most accurate. This is referred to as model discrepancy or model in-
adequacy. This work attempts to quantify this model discrepancy for a certain range
of input values and subsequently uses the discrepancy to satisfactorily make accurate
predictions with the reduced model.

1.1 Short Overview of Model Reduction Techniques and Model
Discrepancy Quantification

The use of model reduction techniques in both scientific and engineering endeavours
is quite wide-spread. In chemical kinetics, quasi steady-state assumption techniques
are frequently used for model reduction. These methods assume that certain in-
termediates in a reaction reach steady state conditions in a shorter period of time.
The assumption of steady state enables these intermediate species to be related by
a simple algebraic equation consisting of equilibrium constants rather than elaborate
and expensive differential equations, hence driving down the computational cost of
the model[2]. Another extensively applied method of model reduction is the lumped
species method[3]. This involves lumping of several species into a single pseudo-
species, hence reducing the number of states in the model. The species chosen for
this will depend on the dynamic features of the specific model in consideration. Sen-
sitivity analysis techniques involve identification of states and parameters that have
little contribution on the response of the system at a particular configuration[4].
These components are then eliminated or their impact is reduced to a skeletal form.
Time-scale analysis identifies the different scales over which species react. The fast
time-scale reactions and species are assumed to be at steady state and are solved using
their equilibrium constants. The slower reactions are taken into account in the form
of differential equations. Proper Orthogonal Decomposition(POD) aims to achieve a
reduced order model by projecting the high-fidelity model onto a reduced space ba-
sis[5]. If the basis is chosen appropriately, the relevant high fidelity system dynamics
can be captured with a greatly reduced number of states.The range of validity of the
reduced-order model is determined by the specifics of the reduction procedure.
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Unlike the methods discussed, the use of dynamic discrepancy for model reduction
involves quantification of the uncertainty associated with the reduced model. This is
often accompanied with the identification of the different sources of uncertainty. This
produces a predictive distribution for the reduced model instead of definite predic-
tions. This reporting of the uncertainty associated with a particular model prediction
makes this technique useful for scenarios where wrong or overconfident predictions
can be catastrophic. Also, the reduction of a model by dynamic discrepancy can also
be more generic than other conventional methods. It can be implemented without
detailed knowledge of the process involved. Simply identifying the dependencies in
the dynamic system may be enough in certain situations to reduce a model using
dynamic discrepancy, as will be demonstrated in this work.

Kennedy and O’Hagan introduced the idea of model discrepancy and how dis-
regarding it leads to biased and over-confident model predictions in their landmark
publication in 2001 [6]. Their work categorized the different sources of uncertainty
in computer models and subsequently demonstrated how explicitly modeling them
leads to better prediction and uncertainty quantification. A multivariate joint Gaus-
sian distribution was used to model the prior distribution of discrepancy, a concept
that was extended to this work. Brynjarsdottir and O’Hagan extended on their work
and investigated the predictive capabilities of the model for cases of extrapolation[7].
Their work found that in order to do reasonable extrapolations with a model con-
taining discrepancy, simply modeling the discrepancy was not enough. The prior
distribution chosen for the discrepancy function was also critical when it came to the
fidelity of the extrapolation predictions. It was also noted that an overly wide prior,
or a prior distribution positioned incorrectly, may also lead to model predictions that
break physical laws or hold no meaning. Their work also connected the problem of
model uncertainty quantification with discrepancy. Uncertainty quantification is a
major issue with the almost ubiquitous computer models used these days, since it
quantifies how accurate and reliable a given model is. However, when it comes to
quantifying uncertainty, many models only take into account the uncertainty asso-
ciated with the input variables used and propagate that to the model prediction.
However, this is clearly only a partial quantification of the uncertainty since it disre-
gards model inadequacy, which is also a major source of error.

Joseph and Melkote used quantification of model uncertainty and demonstrated
the various facets involved with it using a problem of predicting surface roughness in
a micro cutting process and another problem of optimization of a spot welding pro-
cess[8].They demonstrated that purely statistical models, that is models built from
observation data only without any understanding of the underlying physical process
incorporated into it, only perform well within conditions from which the observation
were obtained. Model predictions beyond this specific range of conditions have poor
accuracy. On the other hand physical models, that is models that were built solely
based on the intrinsic physical process without the augmentations of observation
data, do not always match satisfactorily with reality. A combination of both, termed
statistical-engineering models, combine the best of both models and mitigate their
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drawbacks, producing predictions with a higher fidelity compared to the other two
types of models. The engineering-statistical model was built sequentially, with statis-
tical adjustments made to the physical model at each step and the model inadequacy
evaluated. When model inadequacy is at an acceptable value, the adjustments are
stopped. This method of model building ensures that the physical model always play
a part in the final model, thereby ensuring that the model output’s basic structure
is preserved. This approach was used in this work with the process of adding the
discrepancy functions.

Sargsyan et al. presented a novel method for incorporating dynamic discrepancy
terms in the physical model[9]. The discrepancy terms, in their work, were embedded
in the values of the parameters instead of being added explicitly to equations for the
quantities of interest. This, they argued, served the following purposes.

First, additions of model inadequacy terms explicitly to the equations for output
variables is more likely to break various natural constraints associated with the phys-
ical process and its physical equations.An example in the context of this work could
be the expression for partial pressure change for methane in a Continuously Stirred
Tank Reactor (CSTR). The total pressure inside the tank is constant throughout the
process. Suppose the change in pressure with time is represented by the equation
below.

dPCH4

dt
= f(x, λ) + εm(x) (1)

where x is vector of input variables and λ is the vector of model parameters and
εm(x) is the discrepancy function correcting for model inadequacy. Suppose, initially,
methane occupies the whole tank. In that stage, if εm(x) is greater than f(x,λ),
dPCH4

dt
will be positive, leading methane to overflow the tank and break the physical

constraint Ptotal = constant. A bounded value for εm(x) may solve this issue, but
finding such bounds for all possible scenarios is difficult. Also, an overly restrictive
bound may prevent true values of εm(x) from being discovered during calibration.

Secondly, explicit addition of discrepancy terms to specific quantities of interest
may only correct the bias for those specific quantities and therefore will produce poor
results when we change the quantity of interest. y = f(x, λ) + ε(x) will not correct
bias properly for z = g(x), where y and z are two different quantities of interest.

Finally, the calibrated model y = f(x, λ) + ε(x) is not the actual physical model
but its alteration in a somewhat arbitrary fashion. It changes the core structure of
the physical model and its output pattern. Given that a lot of time and thoughts are
spent by experts on coming up with these models, obliterating the integral structure
of these models with addition of explicit statistical terms is unlikely to be acceptable.

In their work, Sargsyan et al. demonstrate that embedding the model inadequacy
internally in the expression for physical parameters alleviates these problems. It
essentially updates the assumptions made in the physical model.

The majority of the work on modeling uncertainty in the past few years has fo-
cused on procedures for quantifying observational error but similar methods for model
error/inadequacy has not evolved as much[7]. The work Sargsyan et al. contribute to
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the studies of model error/inadequacy by attempting to overcome the shortcomings
of explicit model correction. They embed the model error terms in the parameter
expressions and both existing model parameters and parameters that quantify model
error are inferred simultaneously during calibration.This approach leads to a model
error representation that is consistent with underlying physics and can also be used
as a device to attribute model error to certain specific parts of the model. This
eventually leads to better quantification of sources of uncertainty.

Mebane, Bhat et al. implemented a similarly intrusive form of model uncertainty
quantification with discrepancy terms incorporated in the differential equations de-
scribing the system, resulting in stochastic differential equations[10]. Modeling the
uncertainty in this manner enabled the up-scaling of uncertainty by propagation for
both model parameters and discrepancy parameters to the large scale system. Sim-
ilar methods of uncertainty quantification have been used in various past literatures
[11,12,13] and hence was relied upon to model discrepancy in this work.

Higdon et al. implemented a similar technique of quantifying model inadequacy
and other sources of uncertainty on a spot welding process and a charged particle
accelerator. He and Xiu, in one of their works with discrepancy, used both external
and internal model corrections. They also referred to one of the broad problems
of model correction with discrepancy, which is how it can lead to violation of the
physical model’s constraints. As a remedy, they came up with the framework PCMC,
which stands for physics constrained model correction. Their work incorporates the
physical constraints into the new statistically adjusted model and makes it one of the
model parameters. Internal and external corrections are described as follows in the
context of their work.
External model corrections were describes as follows in their work.

Mc = M(x; p(x)) + δm(x) (2)

where p(x) is an important model process, x is model input and Mc is corrected
model and δm(x) is the discrepancy term.

On the other hand, internal model correction involved the following adjustments

pc(x) = p(x) + δm(x) (3)

M = M(x; p(x)) (4)

The internal model correction in the above equations is a more intrusive method
that has the capacity to preserve the physical constraints of the model. It can also
change the overall output of the model, ensuring all possible quantities of interest(QoI)
are altered by taking into account model inadequacy. Oliver et al. propose and
explore a validation and predictive assessment process that supports extrapolative
predictions for models that has been corrected for known sources of error.[14] In
the classical approaches of model building, after calibration, the model prediction
is compared to a set of real data. If sufficient agreement is observed, the model is
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considered validated. However, validations of this kind are precarious because they
only ensure that the model is accurate for specific range of conditions and for a
specific QoI. They say little of the fidelity of the model for cases of extrapolation or
for different QoIs. Their work established a generalized framework for validation of
a model’s extrapolative predictions that can help alleviate this problem.

For this work, the steam methane reformation(SMR) reaction in a continuously
stirred tank reactor(CSTR) was used as an example case for exploration of the model
reduction technique. Initially, the reaction network of the process, from the work of
Xu and Froment [15], was examined. After consideration of the internal processes
involved with the catalyst states, a reduced reaction network was constructed. This
excluded the in-between catalyst states of the more elaborate model. Obviously, due
to this reduction, details of interactions between the various catalyst states were lost.
To account for this, discrepancy terms are introduced to the model.

The intrusive form of model discrepancy correction was used for this work. This
ensured that no physical constraints were broken and all possible QoIs were corrected
with discrepancy. The model discrepancy terms were incorporated to the physical
parameter values. This updated the parameters at each step as the model progressed
through the reactions, which is consistent with the physical model of the process.
The discrepancy terms themselves were constructed considering the varying order of
interactions that the reduced model did not consider. These interaction terms were
added incrementally till further additions failed to produce feasible improvements in
the model prediction.

1.2 Steam Methane Reformation Reaction

The purpose of choosing SMR as example case is due to its importance in the context
of today’s energy demands. Meeting the ever increasing demands for energy is one
of the most important scientific challenges of our time. So far, petroleum and other
fossil fuels have been used extensively to meet this demand. However, the increased
use of these fuels since the Industrial Revolution has lead to a drastic rise in the
overall presence of CO2 in the atmosphere[16]. The negative impact of this and other
greenhouse gas byproducts of fossil fuel burning on the environment, along with the
fact that we only have a finite source of fossil fuels, have created the need to develop
new energy technologies. Ideally, these technologies should use fuel sources other than
the remaining deposits of conventional fuels while limiting the repercussions of fuel
usage on the environment. One of the more promising of these new sources of energy
is the utilization of hydrogen gas as an energy source due to its higher heating values
and nearly emission free combustion[17].

Hydrogen gas already has applications across a variety of industries including
chemicals, refining industries food processing and pharmaceuticals, but employing
hydrogen as a fuel source is still a developing technology[18]. It is also being used
increasingly in the energy sector in fuel cells. These fuel cells produce a flow of free
electrons using inlet streams of hydrogen and oxygen in the presence of an anode and
cathode to produce a flow of free electrons during the formation of water. Fuel cells
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are increasing in popularity and also have practical applications in a wide array of
devices. Low temperature fuel cells have been proven effective in the development of
hybrid electric vehicles. Higher temperature fuel cells, such as solid oxide fuel cells
(SOFCs), are used generally for stationary power generation. Creating electric power
and heat from chemical energy, SOFCs have been shown to operate more efficiently
than current engines and turbines with a theoretical overall system efficiency of 70%.
SOFCs are also favored for producing less pollutants and noise than their counter-
parts[19]. The vast amounts of hydrogen that exists in nature gives the SOFC great
potential as a power source.

However, pure hydrogen, or even easily extract-able hydrogen, is rare in nature.
A well known method of hydrogen extraction is electrolysis. In electrolysis, water
is split into hydrogen and oxygen using electricity. However, due to the high cost
of electricity associated with electrolysis[20,21], this process is not extensively used.
Financially, it is more profitable to mass produce hydrogen from methane and other
hydrocarbons. Steam methane reformation (SMR) is widely used to produce hydrogen
this way due to its cost effectiveness [17,20]. SMR is also preferred over other refining
processes such as partial oxidation and auto reforming because of its high thermal
efficiency and higher ratio of H2 to CO2 concentrations[17,19,20]. Currently, over
75% of all industrial steam reforming uses natural gas as feed-stock[19]. This is
because of methane’s high hydrogen content and low initial cost as compared to
other sources such as coal[17]. Use of methane as hydrogen can also have an added
benefit when the methane is obtained from landfills and other waste sites. Methane
emission from landfills amount to about 16% of all man-made methane emissions[20].
Various methods already exist to extract the methane produced from these sites in
an efficient manner [21]. Utilizing this methane means emissions from these sites
that would have otherwise accumulated in the atmosphere and contributed to the
greenhouse effect can now be used to produce energy in an environmentally friendly
manner.

A significant use of steam methane reformation process is when it is used to carry
out methane reforming while configured inline with an SOFC to provide a constant
inflow hydrogen stream. Steam reforming, given its high thermal efficiency and high
operating temperature requirement, is ideal given that current SOFC technology op-
eration requires a high temperature (700oC − 1000oC) [23]. The high operating tem-
perature of the SOFC removes the need for additional heat input to the reformer.[24]
Sangtongkitcharoean compared the performance of SOFCs operating with both ex-
ternal and internal reforming showing that direct internal reforming was preferred for
its ability to operate at lower values of FH2O and FCH4 [25]. Wang, et. al. examined
the impact the operating parameters have on the local temperature and methane con-
version for internal reforming, and showed how the heat input from the SOFC boosts
performance of the reformer along the length of the reactor[23]. The potential bene-
fit of this inline configuration makes it an option worth exploring further. However,
implementing this configuration also necessitates the use of process optimization to
develop a more pure hydrogen stream from the reformer while minimizing the ad-
ditional thermal costs necessary to avoid carbon buildup within the SOFC. Since
any process optimization will require the examination of large number of scenarios
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with varying conditions in a short amount of time, this makes creation of an fast
computational model for the SMR process critical.

In order to produce a hydrogen stream with the desired attributes for fuel cells,
modifications can be made either to the reactor system to improve conversion at
given operating conditions or optimizing the operating conditions impacting the ki-
netics of the reaction to achieve higher H2 production. Most of the time, focus is
made on modifying the reactor, primarily due to the ease of implementation since
there is still much to learn about kinetics. One promising method for achieving this
is inclusion of a palladium based or other hydrogen permeable membranes to separate
hydrogen from the resultant gas mixture[1, 26, 6, 7]. Investigations have shown that
the use of the membrane creates a greater conversion of methane and hence faster
production of hydrogen[1, 26]. But the extra cost of preparation of the membrane
makes this method’s implementation on an industrial scale unfeasible. Other simi-
lar methods to increase hydrogen production often include the addition of either an
oxygen secondary reformer or a pre-reformer into the overall reactor design. A sec-
ondary oxygen reformer combusts unused methane allowing for more feed gas to be
processed without a loss to product purity. However, this configuration does require
additional downstream treatments to handle the greater influx of CO2 produced. A
pre-reformer allows for a portion of the hydrocarbon to be reformed before entering
the main reactor, and is the product of the development of high activity catalysts[27].
These are able to achieve reforming at lower temperatures and have been shown to
be effective at increasing overall hydrogen production by Bavarsad[27, 19]. To be
effective though, this high activity catalyst requires a much higher nickel content and
special treatment to have higher surface area[27].

A key area of interest that is often ignored in the optimization of SMR is the
reaction kinetics. This is primarily due to the lack of knowledge regarding the reac-
tion kinetics. Studies into the kinetics of SMR date as far back as the 18th century.
However, the first thorough investigations were published as late as the 1950’s[28,
29]. Van Hook provides a comprehensive summary of the early investigations of SMR
(1933-1952) including some introductory research into the governing kinetics[30]. Ak-
ers and Camp provide one of the earliest comprehensive investigations into SMR[31].
Their work investigated the kinetics over a nickel catalyst for a range of tempera-
tures and pressures. Experimental testing along with a thermodynamic analysis of
a proposed network of gas phase reactions revealed that the reaction is first order
with respect to methane, and that carbon monoxide and carbon dioxide are primary
products with carbon dioxide being produced at a much faster pace. Additionally, it
was shown that the overall process is equilibrium limited so additional modifications
are required for increasing the yield of H2. These information were extensively used
in the creation of the reduced model for this work.

Ross and Steel explored the variability of the catalyst and its impact on the
reaction kinetics. Through systematic variations of the catalyst composition, data
was collected on the impact on the kinetics and stoichiometry under these slightly
altered conditions[32]. Munster and Grabke built up on this work, examining SMR
on various iron, nickel and iron-nickel alloy catalysts. A flow reactor operating under
standard conditions was used to develop a functional relation between the reaction
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rates and catalyst activity. Deactivation of the catalyst due to carbon deposits and
its impact on kinetics were also examined.[33].

However, to date, the work of Xu and Froment has proven to be the most thor-
ough study on steam reforming, and has become the basis for much of the modern
research on the subject[34]. The attention paid to the kinetics and their importance
in the reforming process is the main distinction separating this work from previous
work. Until this point, Xu and Froment believed that the role of kinetics in proposed
simulations is either neglected or very over simplified[28]. Starting with a set of eleven
possible reactions involving the main gas phase constituents, a thermodynamic analy-
sis was conducted to eliminate all those incapable of propagating the reactions leaving
the following three main gas phase reactions (GPR):

I) CH4 +H2O ⇀↽ CO + 3H2 ∆H = 206.1kJ/mol

II) H2O + CO ⇀↽ CO2 +H2 ∆H = 41.15kJ/mol

III) CH4 + 2H2O ⇀↽ CO2 + 4H2 ∆H = 165.0kJ/mol

Reaction schemes were then developed based on these GPR to more accurately de-
tail how the process advances from reactants to products in the presence of a catalyst.
Several guidelines based on literature findings were adhered to for the creation of the
differing schemes. These step by step guidelines govern the interaction of steam and
methane with the catalyst and the behavior of the interaction between the radicals:[15]

1. H2O reacts with surface atoms of the catalyst, producing adsorbed oxygen and
gaseous hydrogen.
2. Methane is adsorbed on surface atoms. The adsorbed methane either reacts with
the adsorbed oxygen or is dissociated to form chemisorbed radicals, such as CH3∗,
CH∗

2 , CH∗ and C∗.
3. The concentrations of the carbon-containing radicals CH∗

3 , CH∗
2 ,CH∗ and C∗

are much lower than the total concentration of the active sites.
4. The adsorbed oxygen and the carbon containing radicals react to form
CH2O

∗, CHO∗, CO∗, CO∗
2.

5. The hydrogen formed is directly desorbed into the gas phase and/or the gaseous
hydrogen is in equilibrium with H∗ or H∗

2 .
6. Each reaction scheme has one “rate determining” step relating to equations I, II,
and III with a rate potentially slower than all others, so that it controls the overall
reaction.

Following these guidelines a reaction scheme was proposed allowing for parallel
formation of CO and CO2 out of the adsorbed radical CHO as shown in Figure 1.
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Figure 1: Xu-Froment Proposed Reaction Scheme[15]

This scheme equates to the 13 reaction mechanism of elemental steps listed in
Equations A-M.[15]

H2O + L = O∗ +H2 (A)

CH4 + L = CH∗
4 (B)

CH∗
4 + L = CH∗

3 +H∗ (C)

CH∗
3 + L = CH∗

2 +H∗ (D)

CH∗
2 +O∗ = CH2O∗ + L (E)

CH2O∗ + L = CHO∗ +H∗ (F )

CHO∗ + L = CO∗ +H∗ (G)

CO∗ +O∗ = CO∗
2 + L (H)

CHO∗ +O∗ = CO∗
2 +H∗ (I)

CO∗ = CO + L (J)

CO∗
2 = CO2 + L (K)

2H∗ = H∗
2 + L (L)

H∗
2 = H2 + L (M)

This kinetic network has been one of the most extensively applied to simulate in-
dustrial reactors operating under standard conditions. This is due to the generality of
the framework which leads to greater reliability in results under varying conditions.
Also, it helped to resolve contradictions surrounding the reaction order with respect
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to steam[35]. This proposed kinetic network has also been validated with previous
works. The work of Ding and Alpay showed that this network is suitable for pre-
dicting transient response making it one of the few models capable for use in process
design[28]. This limit in the number of transient capable networks has slowed the
development of optimization algorithms,but advances in high performance comput-
ing has opened the door for the use of more powerful solving methods to address the
problem. Achieving process design and optimization through simulation would allow
for the production of predictions without the complications associated with physical
testing. Rajesh, et. al. demonstrated this with the usage of a genetic algorithm for
the multi-objective purposes of minimizing the methane in-flow for a given hydro-
gen output and maximizing the amount of carbon monoxide present in the synthetic
gas.[36] The creation of more computationally tractable SMR model will facilitate
faster and better optimizations. However simulating more intricate systems includ-
ing inline configurations or separation membranes would require taking into account
other physical processes such as fluid flow and heat transfer.This would make the
process computationally unfeasible. A reduced cheaper model of SMR kinetics that
also uses discrepancy terms to incorporate the effects of these physical process into
the model may provide a solution to this problem.

There are a number of problems with computationally simulating the SMR pro-
cess. Simulation grants the flexibility of application to a large number of reactor
designs operating at an infinite set of conditions, but variability of the kinetic mecha-
nism and intense computational needs has hindered its use for SMR[17, 29]. Both the
value of associated kinetic parameters as well as the overall structure of the kinetic
model are highly sensitive to the composition of the catalyst[32]. This makes it very
difficult to develop a generalized set of equations applicable to all catalyst types and
compositions through a simple change in variables[29]. Because of this, a variety of
mechanisms have been created to simulate SMR across a wide range of temperatures
(260−1000)oC and pressures (100 - 5000) KPa[30, 35]. Simplifying this kinetics issue
would greatly simplify the problem. Using statistical model building to capture the
effect of the catalyst on the structure of the kinetics model, using experimental data
as indicators, as demonstrated in this work, may be an option.

The other main drawback with the simulation of SMR is the high computational
demand required to produce an accurate, realistic simulation. Methane reformation
is the combination of a catalytic reactor, fluid dynamics, and heat transfer problem.
Incorporating all this into a single model creates a simulation requiring an execu-
tion time that is unfeasible. Using improved analytic methods, existing simulation
methods can be advanced to improve overall quality of results while maintaining or
improving the computational efficiency. Traditional modeling methods for catalytic
reactions are usually built using the Langmuir Hinshelwood kinetics. In this method,
the kinetics are based on establishing a rate determining step which dictates the pro-
gression of the overall reaction; however, application of this to SMR is not simple.
The rate determining step tends to change depending on the percentage of nickel in
the catalyst[33], as demonstrated by Munster’s work . Xu and Froment addressed this
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issue by selecting a rate determining step for each of the gas phase reactions and then
building the reaction rates. The accuracy of their model was displayed in recreating
the results of De Deken’s study examining the behavior of a industrial sized reformer
while taking into account diffusion limitations[37].

The proposed reduced order modeling methodology attempts to explore a new
method of model reduction while addressing the current issues associated with com-
putational simulation of SMR. The preliminary inaccurate reduced model is first
obtained by minimizing the reaction network in Equations I-XIII using Taken’s the-
orem. This minimizes the total number of necessary ODEs required to create a valid
simulation. These simplifications induce additional uncertainty driving the model fur-
ther from the reality. Stochastic discrepancy functions are then embedded in model
parameter expressions to correct for this bias. A joint normal prior distribution is
assumed for both physical parameters and discrepancy parameters, named β and θ
parameters respectively. Then, Bayesian calibration is used to calibrate the model to
data obtained from the work of Xu & Froment. The Bayesian calibration routine eval-
uates the likelihood of a given set of parameters given how closely the model matches
with the data. This likelihood is utilized by a Markov Chain Monte Carlo(MCMC)
routine to search the parameter space and eventually create a posterior distribution
of parameters. Using the posterior distribution, a number of model predictions are
made and the model is tested for interpolation. After validating the interpolation
capabilities of the final model, it is extended to industrial scale.
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2 Model Development

2.1 Model Reduction

Reducing the number of equations from the Xu and Froment reaction network requires
a systematic approach to determine which chemical species are essential. After this is
determined, the reactions involving the non-essential chemical species can be omitted.
This omission is carried using the principles described by Takens’s theorem. The
dynamic system reduction technique suggested by Takens’s theorem proposes that a
dynamic system can be reconstructed from the time series of a variable that is coupled
to all the states in the system. To illustrate an example, take the very simple reaction
network detailing the creation of species H from system reactants A and D:

A = B + C

C + D = E + F

B + F = G

E + G = H

The above reaction network can be reduced to a simpler form now using Taken’s
theorem. The principle of Taken’s theorem allows for the reduction of dynamic net-
works based on causal relationships without the loss of vital information. Creating
a reaction graph based on the network mechanism illustrates the dependencies of
the different species and allows for quicker identification of the desired causal rela-
tionships. Connections between the different species are made with lines between
nodes representing the listed chemical reactions. This provides a more clear way of
visualizing how the system progresses from start to finish, and is necessary when
determining the species required by the reduced model. The next figure, from the
thesis of Ford[38] shows this concept applied to the idealized system above.
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Figure 2: Idealized Full Reaction Network[38]

With the network graph in place, intermediate species can be quickly identified.
In this case, species B, C, E, F, and G are all intermediate states since they originated
from species introduced before them. Therefore, they can be removed without signifi-
cant change to the core structure of the system, since information about their impact
is contained in the time series of A, D and H. A minimal set of components contain-
ing the variability of the full network can now be determined through exploiting the
various causal relationships. For example, species A, B, and G are related given that
A reacts to create B which reacts a second time to create G. A is the only reactant to
the reaction producing B. This indicates that all the information regarding species B
is contained within the time series of species A, so a relation directly linking A to G
can be created combining the kinetics of two original reactions. This simplification
makes species B unnecessary to describe evolution of G in the system.

Reductions such as this are done systematically until all intermediate states are
removed leaving a streamlined network graph shown in figure below.

Figure 3: Reduced Reaction Network[38]
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Making network reductions in this manner should ideally maintain the full variabil-
ity associated with the original expanded model. In the simplified example illustrated
above, the information about the intermediate states is contained with in the time
series for species A, D, and H. This enables the dynamic system to be simplified in
the following manner.

Making simplifications in this manner leads to more information incorporated into
fewer variables. The addition of the discrepancy functions works to extract this con-
densed information by introducing additional variability to the reaction parameters.
This allows the reduced configuration to match the behavior of the higher fidelity
network despite the limited number of total variables.

This model reduction methodology was applied to the Xu and Froment network
to determine the minimum number of essential states to describe the Steam Methane
Reformation process and to produce the proposed reduced order model. A reaction
graph of the entire process including the catalyst states was created in a manner
similar to that of the idealized example. The 16 gas phase and adsorbed species are
all related into the mapping of the “flow” of the reaction from reactants to products.
The figure below, from the thesis of Ford[38], depicts this full network graph. Nitrogen
is not included despite being in the tank because it is inert in the working conditions
of the reactor and hence do not take part in any of the chemical reactions.

Figure 4: Xu and Froment Full Reaction Network[38]

Inspection of the reaction graph reveals several simplifications that can be clearly
made. For example, CH4 can be related to its adsorbed radicals CH4-L, CH3-L,
and CH2-L; gas phase products can be linked to their adsorbed counter- parts and
CH2O-L can be removed from the dynamic system by collapsing the in between node.
However, not all simplifications will be so apparent and may require careful investi-
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gation of the network’s structure. Fully simplifying the system leaves a streamlined
network dependent on only the gas phase species present in steam methane reforming
reaction network as shown in the next Figure. Hence, the presence of the catalyst
and its absorbed states are removed from the model of the dynamic system. But
their information is still contained within the time series of the gas species. This
reduces the number of ODEs representing the systems, making the model much more
inexpensive computationally.

Figure 5: Xu and Froment Reduced Reaction Network[38]

The remaining species form the basis around which the kinetics of the ROM are
formed. This new kinetic model will have to account for all the information lost
due to the removal of species as a result of the simplifications. This will be done
by incorporating dynamic discrepancy into the model. The discrepancy functions
will take as inputs the gas phase species. The time series of these gas phase species
contains the information about omitted states. This will enable discrepancy functions
to recreate the variability of the full model.

This particular method of model reduction can be applied to numerous dynamic
systems with intermediate states that are not the quantity of interest. This makes the
choice of this approach as a path towards making the reduced order model generic.
However, depending on the specific process and its dynamic model, alternative meth-
ods of reduction can also be applied. As Petzold and Zhu discussed in their work,
various techniques of reduction has been used over the years on chemical reaction
networks[26]. These involved applying steady-state approximation to the appropriate
radicals, the partial-equilibrium approximation to the fast reversible reactions and
ignoring the very slow and therefore unimportant reactions. Another approach in-
volved carrying out a sensitivity analysis. Defining as parameters the rate constants
of the chemical reactions, sensitivity analysis determines the change in the species
concentration for small perturbations of the rate constants. If a reaction is slow and
has minimal effect on the QoI(Quantity of Interest), it can be identified in this way.

Likewise, similar field-specific reduction techniques will exist for dynamic systems
in different fields. The method described by subsequent sections to model the dis-
crepancy and uncertainty arising from reduction of the model will apply to all these
different scenarios since the model discrepancy terms will be generic and solely based
on the model inadequacy introduced by model reduction. This will make this ap-
proach generally applicable.
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2.2 Model Kinetics

The reduction in state variables from 16 to 6 necessitates the development of a new
reaction network and kinetic system to better suit the nature of the minimal set of
states in the reduced order model. The lack of adsorbed radicals allows for the use
of the three gas-phase reactions (Equations I, II, and III) for this purpose, but ad-
ditional measures are required to account for the induced error associated with the
dynamic model reduction. In many ways, the structure of the reduced model mimics
that of the high fidelity model, especially in the general form of the mass balance
ODEs and the applied rate expressions. The model is described using a set of ODEs
describing the partial pressure of each constituent species. The total pressure of all
species inside the tank is constant. Hence, using the partial pressure in the ODEs
gives the option to validate the code as well as the mathematical model by checking
the sum of pressures of all the species inside the reactor. If the total pressure is above
or below the initial pressure, there is an error with the computation or the mathe-
matical model.The general form of the pressure balance equations after stoichiometry
was taken into account is as follows:

dPCH4

dt
= (Patm)−1(RT/V )(NCH4 − V r1 − V r3 −XCH4(NOUT )) (5)

dPH2O

dt
= (Patm)−1(RT/V )(NH2O − V r1 − V r2 − 2V r3 −XH2O(NOUT )) (6)

dPCO2

dt
= (Patm)−1(RT/V )(V r2 + V r3 −XCO2(NOUT )) (7)

dPH2

dt
= (Patm)−1(RT/V )(3V r1 + V r2 + 4V r3 −XH2(NOUT )) (8)

dPCO
dt

= (Patm)−1(RT/V )(V r1 − V r2 −XCO(NOUT )) (9)

where

Patm = atmospheric pressure in SI Units(Pa)

r1, r2, r3 = rates of gas phase reactions I,II and III respectively

XCH4 = partial pressure fraction of methane

V = volume of reactor(m3)

T = temperature (K)

R = Universal Molar Gas Constant(J.mol−1K−1)
NOUT = Total molar outflow in mol/s.

The above equations can be derived using some assumptions about the process, as
will be demonstrated now. The SMR reactions take place in a continuously stirred
tank reactor(CSTR). A typical CSTR is illustrated in the next figure[39].
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Figure 6: CSTR[39]

As can be seen in the figure, feed continuously enters the tank while the mixed
product continuously exits it. An agitator ceaselessly stirs the contents of the tank
during its operation. When modeling a process inside a CSTR, the following simpli-
fying assumptions can be made:

I ) Perfect or ideal mixing
II) Constant Homogeneous Density
III) Isothermal Conditions
IV) Steady-state Conditions After a Certain Amount of Time
V) Total Inflow Equals Total Outflow in mol/s

The last assumption equating total molar inflow to total molar outflow enables
the development of an overall mass balance equation in the tank. In its most generic
form, this assumption translates to the following equation.

[accumulation] = [in] - [out] + [generation] = 0

[generation] or the increase in number of moles inside the tank due to reactions
can be defined in terms of the rates of the gas phase reactions.

r1, r2, r3 = moles of CH4 consumed by GPRs I,II and III for unit volume and time
[generation] = (2V r1 + 2V r3)

where the coefficient “2” is the net difference in moles between reactants and
products for gas phase reactions I and III.
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The expression for accumulation inside the tank becomes

[accumulation] = inflow - outflow + (2V r1 + 2V r3) = 0

where 2V r1 and 2V r3 are net generation of moles for each mole of reactants used
up in the reactions I and III respectively. Since accumulation in the tank is zero, the
above relation produces the following expression for total outflow from tank.

outflow = inflow + (2V r1 + 2V r3)
outflow = NCH4 + NH2O + (2V r1 + 2V r3)

outflow = NOUT = NTOTAL + (2V r1 + 2V r3)

The feed to the reactor consists of methane and steam inflows only and can be
summed NTOTAL. So, using the total molar outflow, the outflow of each species can
be found by simply multiplying it with the value of the partial pressure fraction. For
instance for methane

dNCH4

dt
= [inflow + generation]− PCH4

PTotal
(NTOTAL + (2V r1 + 2V r3))

where

PCH4 = Methane pressure inside tank
PTotal = Total pressure inside tank

Modifying the above equation for rate of change of pressure gives

dPCH4

dt
= (Patm)−1(RT/V )(NCH4 − V r1 − V r3 − XCH4(NTOTAL + (2V r1 + 2V r3)))

In a similar way, the expressions for other species are derived. Eventually, we
obtain the set of equations in equations 5,6,7,8 and 9. Substituting the NOUT variable
with the relevant expression above, the model equations are established.

The next step would be to determine expressions for the rates of gas-phase reac-
tions(GPR). They are as follows

r1 = k1{PCH4.PH2O −
PCO.P

3
H2

κ1

} (10)

r2 = k2{PCO.PH2O −
PCO2.PH2

κ2

} (11)

r3 = k3{PCH4.P
2
H2O −

PCO2.P
4
H2

κ3

} (12)
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where

k1, k2, k3 = rate constants of reactions I,II and III
κ1, κ2, κ3 = equilibrium constants of reactions I,II and III

From the examination of past literature on the kinetics of SMR, GPR II can be
theoretically assumed to be infinitely fast compared to the other two gas-phase re-
actions. It can be assumed to be always in equilibrium. Hence, ideally, we would
not have to solve the system for PCO since the species involved in GPR II would be
related by the following relation at all times.

κ2 = (PCO2)(PH2)
(PCO)(PH2O)

PCO =
PCO2.PH2

κ2.PH2O

(13)

The value of PCO can be obtained by simply putting in the values of all the other
variables in this equation. However, solving the system in this manner proved to have
a disadvantage. Since a parametric calibration requires the initial assumption about
the parameters to have wide range, κ2 will often have values much smaller than one.
Since κ2 appears in the denominator of the expression for PCO, this will often lead to
values of PCO much larger than the total pressure inside the tank, resulting in solver
failure.

To counter this problem, instead of assuming GPR 2 to be infinitely fast and al-
ways at equilibrium, a very large value of k2 is assumed instead. This leads to the
addition of a state to the model but solves this particular problem involving cali-
bration and solver failure. If a reasonable bound can be known for κ2, PCO can be
removed from the system, reducing the number of states to 4 from 16.

Since the data used for calibration is for isothermal SMR occurring at different
constant temperatures, temperature dependent expressions were used for the physical
parameters k1, k2, k3, κ1, κ2 and κ3.

For rate constant, Arrhenius’s equation was used.

k = Ae−Ea/RT (14)

where
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A = Pre-exponential Factor
Ea = Activation Energy

T = Absolute Temperature
R = Universal Molar Gas Constant

The equilibrium constant κ, is defined by the following expression:

κ = (e∆S/R)(e−∆H/RT ) (15)

where

∆S = Change in Entropy

Essentially, the Reduced Order Model(ROM) is constructed from applying the
basic knowledge of chemical kinetics to the three gas phase reactions obtained after
reducing the reacting network. After its basic construction though, it is augmented
with the embedding of the discrepancy terms in the expressions for the physical pa-
rameters, i.e, the rate constants and the equilibrium constants.The incorporation of
the discrepancy terms take the following generic form.

k = ke(δk)

κ =κe(δκ)

In the above expressions, δ is the value of the discrepancy function corresponding
to that particular physical parameter. The two equations above update the parameter
values at each iteration of the solver. Hence, the values of the physical parameters
are updated with time as the system changes, introducing the lost variability of the
actual reaction mechanism. How the discrepancy terms are obtained and calculated
is described in the subsequent sections.

2.3 Model Solver

As discussed before, the mathematical model for the SMR process will consist of
a collection of Ordinary Differential Equations(ODEs). This is will be the case for
both the skeletal reduced model and the reduced model with discrepancy. In the
case of the model augmented with discrepancy, additional terms will be attached to
the expressions for the model parameters, which will update the parameters as the
system moves from one point to another.

A preliminary attempt to solve the ODE system for the particular configuration at
hand showed that the ODE system was stiff in nature. This was demonstrated when
the “ode45” function in MATLAB took excessively large amounts of time to solve the
system. Stiff ODE systems undergo very rapid changes in certain time regions but
behave quite normally in other regions. Hence, solving stiff ODEs efficiently requires
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a solver with adaptive step size. The MATLAB function “ode15s” proved to be very
efficient for this purpose. However, since each Bayesian Calibration of the model
will require a minimum of 50000 model runs and arriving at an optimum model may
require tens or even hundreds of calibrations, MATLAB, being a compiled language
and hence considerably slower, was not suitable for this purpose. Also, because
MATLAB was proprietary, recreating or building on this work in MATLAB will be
problematic without the appropriate license. Hence, C++ was used for running the
models for this work. The ODE systems of the model were solved using the C++
ODE solver ODEINT. A variety of solution methods were available from the ODEINT
library. For the stiff system describing the reduced model, the Rosenbrock method
was used for solution. The multi-step Rosenbrock method proved to be an efficient
solver for this work, solving each model run with a minimum relative accuracy of 10−3

in a fraction of a second.

2.4 Discrepancy Function

The dynamic discrepancy terms consist of two parts: a set of deterministic basis
functions and a vector of stochastic coefficients. The state variables of the model,
which, for the SMR model, are the the partial pressures, act as the inputs to the
basis functions. This is consistent with Takens’s Theorem, which states that the
time series of the coupled states contain information about the evolution of the state
space variables[40][41]. The state variables of the model, used as inputs to the basis
functions at different times, are essentially the time series of the coupled states. En-
capsulated in the variation of these state variables is the information regarding the
omitted species. Combined, these terms together quantify the uncertainty resulting
from the reduction of the model. This enables the reduced order model to match
the behavior of the high fidelity model. The generic form of the discrepancy term is
shown in the equation below.

δ =
∑

βa,iφi(xa) +
∑

βa,i,b,jφi(xa)φj(xb) + ... (16)

Here

δ = value of the discrepancy term
φi = basis function of order ’i’

xi = the ith component of input vector X
βa,i = the stochastic coefficient β corresponding to basis function φi with ath input

βa,i,b,j = β for basis functions φi and φj with ath and bth input

The discrepancy terms are built piece-wise for each physical parameter, examin-
ing which state variables influence a specific parameter. These state variables will
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act inputs to the discrepancy function corresponding to that particular physical pa-
rameter.Once these inputs are determined, the interactions of the state variables are
taken into account to create the discrepancy functions. Interactions can be of varying
orders. First order interactions, generally called ’main effects’, simply involve a single
state variable. Second order interactions or two-way interactions, involve two state
variables. This pattern is extended for interactions for higher order. This is demon-
strated now with the physical parameter κ1, the equilibrium constant of reaction I,
as example.

I) CH4 + H2O ⇀↽ CO + 3H2 ∆H = 206.1kJ/mol

Since CH4,H2O,CO and H2 are the participants of reaction I, the partial pressures
of these species, which are state variables of the model, will act as inputs to the
discrepancy function for κ1. Since κ1 is also temperature dependent, 1

T
will be fifth

input. If all main effects are taken into account, the discrepancy function will have
the following form:

δ =
∑
a,i

(βa,i)φi(xa) =
∑
i

(β1,i)φi(x1) +
∑
i

(β2,i)φi(x2) + ....+
∑
i

(β5,i)φi(x5) (17)

where

Symbol Variable

x1 PCH4

x2 PH2O

x3 PCO
x4 PH2

x5 (1/T )

Table 1: Discrepancy Function Inputs for κ1

Hence, equation 17 above translates to

δ =
∑
a,i

(βa,i)φi(xa) =
∑
i

(βCH4,i)φi(PCH4)+
∑
i

(βH2O,i)φi(PH2O)+...+
∑
i

(β1/T,i)φi(1/T )

(18)

where xa with a = 1,2,3,4 and 5 will correspond to PCH4 , PH2O, PCO, PH2 and 1
T

.
The subscripts used with β indicate which term they correspond to in the discrepancy
function. For instance (βCH4,2) will correspond to a main effect with basis function
of order 1 and PCH4 as input. Hence, its term will be (βCH4,2)φ2(PCH4). In equation

22



18, the terms
∑

i(βCH4,i)φi(PCH4), . .
∑

i(β1/T,i)φi(1/T ) correspond to all the main-
effects terms for CH4, ..1/T respectively. These terms can be further expanded in
terms of the order of basis functions used as shown.∑

i

(βCH4,i)φi(PCH4) = (βCH4,1)φ1(PCH4) + (βCH4,2)φ2(PCH4) + ... (19)

where φ1 and φ2 correspond to basis functions of order 1 and 2 respectively. In
this manner, basis functions of varying order can be incorporated into the discrepancy
function. As the order of the basis functions increases, its impact on the discrepancy
function and hence the model output decreases. This is discussed later.

If second order interactions or two-way interactions are considered, the following
term is added to the expression for discrepancy.∑

(βa,i,b,j)φi(xa)φj(xb) (20)

where a = 1-5, b = 1-5 and a 6= b. In the above expression i and j correspond
to the order of the basis functions. The subscripts a and b for xa and xb refer to
the inputs used. As with the main effects, the subscripts used with the β parameter
value indicate which term it corresponds to by indicting the order of basis functions
used and inputs used for the term. There will be 6 two-way interactions for κ1, for
all possible two combinations of the state variables. In a similar say, higher order
interactions can also be incorporated into the discrepancy terms. Combining higher
order discrepancy terms will augment the accuracy of the final model at the cost
of computational complexity. However, after adding a certain number of terms, the
gain in accuracy of the model will start to decrease compared to the increase in
complexity of the model. That is why discrepancy terms are added incrementally.
After each addition, the accuracy of the model is observed and the corresponding
gain in computational complexity is examined.

In addition to the order of interactions included, the other factor influencing the
shape of the discrepancy functions is the order of basis functions included. The order
of a particular basis function is indicated by its subscript(φi is a basis function of
the ith order). The basis functions are oscillatory in nature. The order of the basis
function determines the frequency of its oscillations and its amplitude. Lower order
basis functions will have higher amplitudes and lower frequencies whereas higher order
basis functions will be vice versa. Basis functions of different orders are demonstrated
in the figure below.

Basis functions of varying orders can be incorporated to the discrepancy function
as shown in equation 28. When adding discrepancy to the model, the lower order
basis function terms are added first, since these will have the most broad effect on the
model output. After examining the effect of these basis functions on model output,
higher order basis function terms may or may not be added. Since the higher order
discrepancy terms will have lower amplitude and higher frequency, embedding these
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Figure 7: Basis Functions of Different Orders[42]

in the expression for discrepancy will enable the calibration process to fine-tune the
model. They will also increase the number of mathematical operations needed for the
discrepancy function, increasing the computation cost of the model.

As mentioned before, addition of discrepancy terms make the model more accu-
rate at the cost of computational complexity. Since the primary goal of this work
is to create a computationally inexpensive model, increased computational time of
the model will only be acceptable upto a certain extent. Determining the optimum
balance between model accuracy and computational complexity is a matter of trial
and error. Bayesian Information Criterion(BIC) is used as the index to reflect the
balance of computational complexity and model accuracy.

BIC = k(ln(n))− 2(ln(L)) (21)

where

k = no of parameters
n = no of data points used for calibration

L = Maximum likelihood value for the model

As more discrepancy terms are added to the model, the number of beta values
increases, increasing the number of parameters of the model. Addition of discrepancy
terms make the model more accurate, leading to higher likelihood(L) values. These
two processes impact the BIC value in two directions, with higher accuracy driving
the BIC value lower and more complexity of the model driving it higher. Hence, the
model that produces the minimum BIC values is considered to be the most efficient
model.
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2.5 Bayesian Calibration

The final step in creating an accurate ROM is model calibration which essentially gives
an estimation of the the parameter values in the model. This involves running the
model for different parameter sets and comparing the results with the experimental
data to decide which parameter values provide the best match with data. Widely
used methods of calibration for mathematical models include Least Squared Error
and Maximum Likelihood Estimation.

In this work, Bayesian calibration is used to calibrate the ROM to experimental
data. Bayesian methods provide a distribution for the parameter values and model
predictions instead of definite ’correct’ values. This prevents over-confident use of the
model. Also, using Bayesian calibration enables repeated estimation of the parameter
distribution when new data or information is obtained. The methodology of Bayesian
calibration is derived from Baye’s Theorem, which states

P (A|B) =
P (B|A)P (A)

P (B)

Essentially, the theorem states that the probability of an event A given event B,
P(A|B), is equal to probability of B given A, P(B|A), multiplied by probability of
A, P(A), and then divided by probability of B, P(B). This information is simply
extended to the case of mathematical models for Bayesican calibration. Event A is
defined as an arbitrary parameter set θ (usually a vector) and event B is the given
experimental data set Z. Therefore, the conditional probability P(A|B) or from here
on P(θ|Z), is defined as the probability of a particular parameter set being true ,
given that the specific data set Z is observed. In any multidimensional parameter
space, this conditional probability has an unknown distribution and is referred to as
the Posterior distribution (π). Obtaining a posterior distribution is the goal of the
Bayesian calibration. Furthermore, the conditional probability P(Z|θ) is the proba-
bility that the experimental data set Z is observed given that the parameter set θ
is true for the model. This term is also known as the Likelihood (L). Next, P(θ),
which is the simply the probability of any parameter set being observed from the
entire parameter space, is referred to as the Prior probability and it represents belief
of a certain parameter set being true prior to any information from data being taken
into account. This prior is considered to be uniform if no prior information is known
about the parameters, since all values of the parameters within the bounds are equally
likely before calibration. Finally, the term P(Z) can be expressed using the Law of
Total Probability for a continuous random vector and it is computed as the following
integral:

P (Z) =

∫
θ

P (Z|θ)P (θ)dθ (23)

The above integral, also known as the marginal likelihood, is often very difficult
to evaluate analytically, especially if there are many parameters (high-dimensional
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integration). However, the probability is only dependent on the observed data Z and
is the same for every possible parameter set θ if a uniform prior is used. Thus, Bayes’
theorem (refer eqn here) can be used to obtain the Posterior distribution, with the
integral being only a normalizing factor or constant, thereby giving a proportional
relation as follows:

P (θ|Z) ∝ P (Z|θ)P (θ) (24)

The above generic form can now be extended to this work. Expressing the Posterior
distribution function as Π, the Likelihood function as L, the prior distribution function
as Ω, the discrepancy parameters as β and including the observational error variance
(ψ) as an additional unknown parameter for the calibration, we get the following
useful expression:

Π(θ, β, ψ|Z) ∝ L(Z|θ, β, ψ)Ω(θ, β, ψ) (25)

The likelihood, L(Z|θ, β, ψ) is the probability of observing the data-set Z for
the given set of parameters. Π(θ, β, ψ|Z) is the posterior distribution function and
Ω(θ, β, ψ) is the prior distribution function. As it can be seen, the posterior distribu-
tion is dependent on the prior distribution. This is what enables Bayesian calibration
to take into account prior beliefs about the parameters. θ, β and ψ will have uniform
distributions if nothing is known beforehand about the parameter distribution, since
all values of the parameters will be equally likely then. However, if prior knowl-
edge is available, the prior distribution will affect the value of Ω(θ, β, ψ) enabling the
posterior distribution to vary accordingly as well.

In the case of this work, the prior for discrepancy parameters β was a multivariate
normal distribution. θ parameters were modeled as having normal distribution priors
with lower and upper bounds. This is because they are physical parameters and will
have values within a given reasonable range obtained by previous experiments. The
following bounds were used for θ parameters.
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Parameter Upper Limit Lower Limit SDEV

∆H1(J/kg) 200000 -100000 100
∆H2 200000 -100000 100
∆H3 200000 -100000 100

∆S1(J/K) 200 -200 19
∆S2 200 -200 19

∆S3 200 -200 19

Table 2: Parameter Bounds

Parameter Upper Limit(10x) Lower Limit(10x) SDEV(10x)

A1 3.954 0 2.279

A3 3.954 0 2.279

Table 3: Parameter Bounds With Log-scale Sampling

The above bounds were found using approximation from literature depicting sim-
ilar processes occurring in similar conditions. The bounds for β parameters were
found using trial and error, since these are parameters for the statistical portion of
the model and hence has no definite limit. Large values of β parameters were avoided
since the exponent(e) of the discrepancy function value is used to update the param-
eters ( ∆S1 =∆S1. exp(δ)). Large values of β will lead to unrealistically large values
of the parameters or even over-flow of program variables. The pre-exponential factors
A1 and A3 for the rate constants were explored using log-scale during calibration.

It is difficult to obtain an analytic expression for posterior distribution from the
relation described in equation 25. As a result, Markov Chain Monte Carlo (MCMC)
sampling is used to sample points from the posterior distribution and create an ap-
proximate distribution.

A Markov Chain or Markov Process is a stochastic model describing a sequence
of possible events in which the probability of each event depends only on the state
obtained in the previous event. A process satisfies the Markov property if one can
make predictions for the future of the process based solely on its present state just as
well as one could knowing the process’s full history.

On the other hand, very generally speaking, Monte–Carlo is the practice of esti-
mating the properties of a distribution by examining random samples from the dis-
tribution. The two analysis techniques are combined to form Markov Chain Monte
Carlo (MCMC) method of sampling distributions.

MCMC is a computer–driven sampling method. It allows one to characterize a
distribution without knowing all of the distribution’s mathematical properties by
randomly sampling values out of the distribution. A particular advantage of using
MCMC is that it can be used to draw samples from distributions even when all that is
known about the distribution is how to calculate the density for different samples. For
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example, instead of finding the mean of a normal distribution by directly calculating
it from the distribution’s equations, a Monte–Carlo approach would be to draw a large
number of random samples from a normal distribution, and calculate the sample mean
of those. Calculating the mean of a large sample of numbers can be much easier than
calculating the mean directly from the normal distribution’s equations especially in
cases where random samples are easy to draw but the distribution’s equations are
hard to work with in other ways. The Markov chain property of MCMC is the idea
that the random samples are generated by a special sequential process. Each random
sample is used as a starting point to generate the next random sample (hence the
chain). A special property of the chain is that, while each new sample depends on
the one before it, new samples do not depend on any samples before the previous one
(hence the “Markov” property).

For the purpose of this work, the MCMC routine initially draws samples from the
prior distribution. The likelihood corresponding to the specific parameter set is then
determined. The value of the likelihood of the current parameters set is compared
to the the likelihood value of the immediate previous sample of parameter set. This
comparison is used to determine the probability the proposed sample is accepted and
included in the posterior distribution. Based on this probability, the draw is either
accepted and becomes the next base point for the random walk of the MCMC, or
the draw is rejected and a new draw is taken. Hence, any subsequent draw from the
sample will only depend on the draw immediately before it, giving the process its
’Markov Property’. As the number of MCMC steps taken increases, the random walk
through parameter space eventually starts to show a pattern. This finally converges
on a confined region, defined the posterior distribution, and finalizes the ROM. The
parameter values in this posterior region are used to make model predictions.
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2.6 Calibration Data

The data for calibration is obtained from the publication of Xu and Froment[15].
Below is a plot used for data collection from their work.

Figure 8: Example Calibration Data[15]

All the points on the plot represent the steady-state of the system for different
configurations. On the x-axis are values of methane inflow given in the form of space
time, where

W = mass of catalyst in grams = 0.4g
FO
CH4

= methane inflow in mole/hr

Using the value of W , x-values of the plots are then converted to methane inflow
values in mol/s.

On the y-axis is the conversion fraction of methane, whose formula is:

YCH4 =
CH4 Consumed

CH4 Inflow
=
CH4 Inflow - CH4 Outflow

CH4 Inflow
(26)

CH4 inflow is the constant feed value of methane for a particular configuration.
CH4 outflow is calculated using the expression for total outflow and the pressure

29



fraction for methane.

CH4 Outflow =
PCH4

PTotal
(NTOTAL + (2V r1 + 3V r3)) (27)

The system is isothermal and the different plots correspond to different tempera-
tures of the system at different configurations. Points from these plots are extracted
using the MATLAB library GRABIT[43]. Grabbing the points in this automated
manner ensure that data points read from plot are accurate up to a single pixel.
Calibration is carried out using data for temperatures at 848K, 823K and 773K. The
data corresponding to the temperature at 798K is left out to test the interpolation
capabilities of the model.

2.6.1 CSTR Assumption

The equipment used in literature is a tank reactor with inflow and outflow gases
continuously entering and exiting. Keeping the dimension of the reactor intact, the
reactor is assumed to be a Continously Stirred Tank Reactor(CSTR) for the purposes
of this work.
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3 Calibration and Results

As mentioned earlier, the discrepancy terms are added incrementally to the reduced
model. Initially a calibration of the reduced order model with no discrepancy and
only the physical parameters is carried out. This gives an initial posterior distribution
of the parameters. The most likely values of the parameters from this distribution are
chosen as the starting point for the next calibration. This enables the calibration rou-
tine to avoid repeated burn-ins. Burn-ins are regions of the parameter space that is
traversed by the MCMC routine while it searches for the true parameter space. Start-
ing subsequent calibrations from the best region of previous calibration ensures that
the MCMC routine is closer to the desired distribution and hence makes convergence
of the calibration faster. After the initial calibration , discrepancy terms are added
to the model. The new model is subsequently calibrated to find the new posterior
distribution of parameters. After each calibration, the model prediction is compared
to the data and the Bayesian Information Criterion(BIC) value corresponding to the
best model from the calibration is determined. This process is carried out iteratively
till a minimum BIC value model is found. This is the most optimized model, with
the highest accuracy for the lowest possible computational complexity.

During the course of the calibration, one of the problems faced initially was solver
error or solver failure. Relatively large bounds are used for all parameters initially,
since there is little information known about them. As a result, during the course of
calibration, some combinations of parameter values lead to a system of ODEs that
the solver fails to solve. This may be because the ODEINT solver fails to converge
and actually diverges, leading to contracting time steps which eventually exceeds the
maximum number of iterations. Another possible reason could have been a overly
low error tolerance, leading to very small time steps and hence massive number of
iterations. To preclude this source of error, relative error tolerance levels were kept at
the optimum value of 10−3. The experimental data obtained from plots in literature
could be roughly considered to be accurate up to the second decimal place(10−2) so
this tolerance is more than enough for calibration purposes.

Tweaking the error tolerance reduced solver failure considerably but did not com-
pletely omit it. So, to ensure the calibration routine avoids regions of the parameter
space where solver failure is likely, a high error value is returned by the model when-
ever the solver fails. This keeps the Bayesian calibration routine reasonably away
from solver failure regions.
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3.1 Calibration Plots

The final optimized model is derived using a step-by-step process, with calibration,
model evaluation and discrepancy addition at each step. The general methodology is
described by the following flowchart.

Figure 9: Methodology

Initially, after addition of each new discrepancy term, the BIC value would de-
crease. However, after a certain number of terms, there would be a point where BIC
starts increasing again. This turning point can be be considered the minimum BIC
value since the plot of BIC against number of discrepancy terms added will have a
convex shape in general.

The posterior distribution of parameters obtained from calibration are visualized
using scatter plots. The extent to which the model agrees with the experimental data
is observed by model prediction plots. The evolution of the posterior distribution of
parameters during calibration is observed using parameters estimation plots.

At first the reduced model without any discrepancy is calibrated to data. This
results in the following group of scatter plots.
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Figure 10: Scatter Plot - Physical Parameters

The scatter plots consist of a collection of plots which have a parameter on the x
axis and another on y axis. Together, these plots give an idea about the distribution
of all the parameters in the multi-dimensional parameter space. In the figure above
the plots along the diagonal are parameter values vs probability density plots. Plots
on lower and upper half triangle plots are scatter plots. The upper half triangle plots
contain color-based representations of the parameter distribution. A higher density
of points mean the region will be more yellow and a lower density means the region
will be more blue.

As it can be seen from the figure, certain parameters show a more definite poste-
rior distribution than others. This is due to the limited amount of calibration data
available. As mentioned earlier, the steady-state total conversion of methane and
carbon dioxide was the only data available from literature. This left out three other
species which would take part in the proposed reduced reaction network. Hence, all
parameters will not have a sizable impact on the cost function for the calibration,
since only two of the five model outputs are considered. The parameters that do have
an impact, such as ∆H1 and ∆H3 do show a strong dense distribution, as can be seen
from from the scatter plots and color coded distributions.

The entire distribution of physical parameters can be described using a group
of scatter plots. This distribution holds significance because the values of physical
parameters will remain in this range for similar operating conditions. The distribution
of physical parameters is illustrated in the next figure.
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The trajectory of the MCMC routine when traversing this 8-dimensional parameter
space is observed using parameter estimation plots as illustrated next.

Figure 12: Parameter Estimation Plots without Discrepancy I

The purpose of the parameter estimation plots is to observe any patterns of in-
terest that arise from the calibration process. As far as physical parameters and
results are concerned, parameter estimation plots hold little significance. However,
it helps with the identification of errors or other issues with the calibration process
by enabling one to observe the movement of the MCMC routine during calibration.
For instance, if, due to a bug in the code, one of the parameters is not explored
thoroughly during calibration, parameter estimation plots will identify the said pa-
rameter. It can also assist in sensitivity analysis. Parameters that do not affect the
Quantity of Interest(QoI) appreciably will show very little movement in the plots.
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Figure 13: Parameter Estimation Plots without Discrepancy II

Following the parameter estimation plots, model predictions are made with the
calibrated model without discrepancy, as illustrated in the next figure.
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Figure 14: Model Prediction without Discrepancy

In the given figure, patches of thin colored lines are used to represent the model
results. This is consistent with the process of Bayesian Calibration, because Bayesian
Calibration is supposed to produce a set of most probable models rather than a single
supposedly perfect model. The variation in results of the final models produced by
calibration after convergence indicate the uncertainty associated with the given model.
Hence, a thick patch, corresponding to a final set of models with significantly varying
results, means there is high degree of uncertainty.

The red patches correspond to the data used for calibration and the blue patches
refer to data used to test the interpolation capabilities of the model. The experimental
data in paper consisted of steady-state conversion fractions at temperatures T =
848K, 823K, 798K and 773K. Only the data for T = 848K, 823K and 773K were
used for calibration. The data corresponding to T = 798K were left out to test the
interpolation capabilities of the presented methodology. As it can be seen, relatively
large patches are observed for all the plots in general, implying a high degree of
uncertainty. Also, there is no coverage for data corresponding to T = 798K and T =
773K. In general, this is not a very good model. This is of course expected, since a
lot of reductions were made to the original reaction network. Discrepancy, which is
supposed to act as a low-computation-cost substitute for the omitted elements, has
not been introduced yet.

After this initial calibration without discrepancy, discrepancy terms are added
incrementally, to find the optimum model. In the initial set of calibrations, the main
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effects are included one by one. At first a single main effects with a β parameter is
added with the form of the discrepancy function being the following.

δ = (β1,1)φ1(x1)

Only basis functions of order one(φ1) are used for this discrepancy function, mean-
ing that it will have some broad effects on the model output. This produces the model
prediction illustrated in the next figure.

Figure 15: Model Prediction With Single Beta Discrepancy Function

Introducing this sparse discrepancy function does not visibly improve the coverage
of the experimental data in general. The data corresponding to T = 773K still remains
mostly uncovered. Interestingly, a better coverage is observed for the interpolation
test data than for calibration data corresponding to T = 773K. A possible reason for
this could be that T = 798K is closer to the first two calibration data sets T = 848K
and 823K. Trying to cover the experimental data set for T = 773K simply moved
the model away from covering T = 848K and 823K, which would increase the cost
function of the calibration and cause it to relapse back to the previous region.

The major flaw in the plot above is the fact that the patches/bands are still very
wide, representing a large amount of uncertainty regarding the model. So, clearly
more parameters will need to be added to improve the model.

Finally, all main effects are included in the discrepancy function, as demonstrated
in equations 17.
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Each main effect has basis functions of order 1 and 2.∑
i

(βCH4,i)φi(PCH4) = (βCH4,1)φ1(PCH4) + (βCH4,2)φ2(PCH4) (28)

This produces a definite distribution for the β parameters.

Figure 16: Distribution of Sample Beta Parameters for Main Effects

The following parameter estimation plots for the β parameters and model predic-
tion plots are observed for this particular calibration.
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Figure 17: Beta Parameters Estimation Plots for Main Effects Calibration

Figure 18: Prediction for Model With All Main Effects Incorporated

As it can be seen from the model prediction above, some regions of experimental
data are not covered by this model. However, much thinner bands are observed,
meaning significant reduction in the amount of uncertainty in the model.
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More discrepancy terms can be added to the model either by increasing the order
of basis functions or by introducing higher order interactions. There is no definite
advantage in choosing one over the other, which makes the addition of discrepancy
somewhat of a trial and error process. An examination of the high fidelity model to
find out which specific interaction the discrepancy terms are representing may enable
one to make a more educated decision. However, that was beyond the scope of this
work.

Adding more terms to the discrepancy function in this manner will yield better
and better coverage of the experimental data with thinner and thinner bands. How-
ever, as discussed before, this will also continue to increase the computational cost
of the model. Clearly, a balance needs to be reached between model prediction accu-
racy/certainty and the computational cost of the model. To know when this balance
is reached, there needs to be an index that indicates the level of optimization of the
model(i.e how streamlined the model is when both accuracy and computation cost
are considered). As stated before, Bayesian Information Criterion, from equation 21,
is used for this purpose in this work.

BIC = k(ln(n))− 2(ln(L))

Here k, the total number of parameters, takes into account the computational cost
of the model and L, the maximum likelihood, considers the accuracy of the model.
The total number of data points used for calibration,n, is constant for all models in
this work. Hence, increase in number of parameters, k, will increase BIC whereas
increase in accuracy and therefore likelihood, L, will decrease BIC. Hence, BIC will
represent the balance of these two factors. The model with the minimum value of
BIC can be considered the optimum model.

To find the optimum model in this manner, a (BIC vs Model No) plot is con-
structed. Each point on this plot refers to a model with a certain structure of the
discrepancy function and its corresponding BIC value. As the model number in-
creases, the number of parameters increases.

Figure 19: BIC for Different Models

The optimum model from the above chart corresponds to a reduced order model
with six β parameter values. Its discrepancy function takes the following form.
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δ =
5∑
i=1

βi,1φ1(xi) + (β1,1,5,1)φ1(x1)φ1(x5) (29)

Notice that only first order basis functions are required for the above model. It
takes into account all main effects represented by the following term.

5∑
i=1

βi,1φ1(xi) (30)

The second term incorporates only a single two-way interaction, corresponding to
methane pressure and the inverse temperature.

(β1,1,5,1)φ1(x1)φ1(x5)

The optimized model produces the following model prediction.

Figure 20: Optimized Model Prediction

The optimized model predictions show an acceptable amount of uncertainty with
thin bands. A satisfactory coverage of experimental data is also observed. It also
passes the test for interpolation, showing good coverage of the interpolation data. A
slightly larger band is observed for interpolation data and the data corresponding to
T = 773K. A possible reason for this small difference could be that there were more
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data points in the calibration data for higher temperatures (T = 848K and 823K)
than for T = 773K.

3.2 Plug Flow Reactor(PFR)

So far the model in this work has only been concerned with lab-scale CSTR. Extending
this model for process design will involve extrapolation to a much larger scale. A
plug flow reactor model(PFR) is used for this purpose. The PFR is a model used
to describe chemical reactions in continuous, flowing systems of cylindrical geometry.
The PFR model is used to predict the behavior of chemical reactors of such design,
so that key reactor variables, such as the dimensions of the reactor, can be estimated.

Figure 21: Plug Flow Reactor[44]

Fluid going through a PFR may be modeled as flowing through the reactor as a
series of infinitely thin coherent “plugs”, each with a uniform composition, traveling
in the axial direction of the reactor, with each plug having a different composition
from the ones before and after it. The key assumption is that as a plug flows through
a PFR, the fluid is perfectly mixed in the radial direction but not in the axial direction
(forwards or backwards). Each plug of differential volume is considered as a separate
entity, effectively an infinitesimally small continuous stirred tank reactor(CSTR),
limiting to infinitely small volume. The CSTRs can be assumed to be at steady-
state. This means that the steady-state outflow of a CSTR is the inflow of the CSTR
next to it and so on. Applying this methodology to the optimum model obtained
with calibration, an industrial scale simulation of the transient response of the model
is conducted. This produces the following sets of predictions.
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(a) CH4 (b) H2O

(c) CO2 (d) H2

(e) CO

Figure 22: PFR Output With Optimum Model

As seen from figure, a band of predictions is obtained from the set of converged
optimum models. As is the case with individual CSTRs, the thickness of the bands
represents the uncertainty associated with the predictions. From the figure for CH4,
H2O and H2, it can be seen that the bands get thicker the more the observations
move along the length of the reactor. This is expected, since extrapolating the opti-
mum model further and further along the length of the reactor will lead to increased
uncertainty about the predictions.

Industrial scale data, generated from pending work, will be used to validate these
predictions in subsequent work.
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3.3 Discussions and Future Work

Overall, the reduced model obtained in this work show good agreement with the
experimental data present in literature. It also shows satisfactory interpolation capa-
bilities, producing output matching experimental data for conditions not present in
the calibration data. In short, this work proves the validity of the framework to create
reduced models using dynamic discrepancy. Further work can also be conducted from
the thread of this work.

From the perspective of the SMR process and process modeling, one of the limita-
tions is that only the steady-state response of the model has been used for validation
in this work. This is due to the lack of suitable experimental data pertaining to tran-
sient conditions in literature. Therefore, further work can involve obtaining/creating
data for transient state responses(possibly from creating a high-fidelity model to gen-
erate data for varying conditions) and building/validating the reduced model from
the obtained data. It would also include obtaining/creating suitable industrial scale
data to validate the PFR predictions.

Finally from the viewpoint of the model reduction and dynamic discrepancy, a
lot of manual effort had to be employed to arrive at the final optimum discrepancy
function using a series of calibrations. This can be automated with a routine that
builds the discrepancy terms by itself after each calibration, eventually building a
complete reduced model from only available data and the reduced reaction network.
It may even be feasible to automate the process of model reduction by creating an
algorithm that can identify the relevant dependencies and omit the correct species.
If both these objectives are achieved, then the entire process described in this work
will be purely data driven model building, requiring very little human supervision.
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