
Graduate Theses, Dissertations, and Problem Reports 

2015 

Improved Periodicity Mining in Time Series Databases Improved Periodicity Mining in Time Series Databases 

Nithin Uppalapati 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

Recommended Citation Recommended Citation 
Uppalapati, Nithin, "Improved Periodicity Mining in Time Series Databases" (2015). Graduate Theses, 
Dissertations, and Problem Reports. 6850. 
https://researchrepository.wvu.edu/etd/6850 

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Research Repository @ WVU (West Virginia University)

https://core.ac.uk/display/230461802?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F6850&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/6850?utm_source=researchrepository.wvu.edu%2Fetd%2F6850&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


Improved Periodicity Mining in Time Series
Databases

Nithin Uppalapati

Thesis submitted to the

College of Engineering and Mineral Resources

at West Virginia University

in partial fulfillment of the requirements

for the degree of

Master of Science

in

Computer Science

Donald Adjeroh, Ph.D., Chair

Elaine Eschen, Ph.D.

Vinod Kulathumani, Ph.D.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia

2015

Keywords: time series, periodicity mining, suffix tree, compressed suffix tree,

approximate periodicity

© 2015 Nithin Uppalapati



Abstract

Improved Periodicity Mining in Time Series Databases

Nithin Uppalapati

Time series data represents information about real world phenomena and
periodicity mining explores the interesting periodic behavior that is inher-
ent in the data. Periodicity mining has numerous applications such as in
weather forecasting, stock market prediction and analysis, pattern recogni-
tion, etc. Recently, the suffix tree, a powerful data structure that efficiently
solves many strings related problems has been used to gather information
about repeated substrings in the text and then perform periodicity mining.
However, periodicity mining deals with large amounts of data which makes
it difficult to perform mining in main memory due to the space constraints of
the suffix tree. Thus, we first propose the use of the Compressed Suffix Tree
(CST) for space efficient periodicity mining in very large datasets. Given
the time-space trade-off that comes with any practical usage of the CST, we
provide a comprehensive empirical analysis on the practical usage of CSTs
and traditional suffix trees for periodicity mining.

Noise is an inherent part of practical time series data, and it is
important to mine periods in spite of the noise. This leads to the problem
of approximate periodicity mining. Existing algorithms have dealt with the
noise introduced between the occurrences of the periodic pattern, but not the
noise introduced in the structure of the pattern itself. We present a taxonomy
for approximate periodicity and then propose an algorithm that performs
periodicity mining in the presence of noise introduced simultaneously in both
the structure of the pattern and between the periodic occurrences of the
pattern.



Acknowledgements

I would like to thank my research advisor Dr. Donald Adjeroh, for the re-
lentless support and guidance he has given me throughout the entire period
of my work and through the various phases of my graduate studies. It has
been a great pleasure to work with him. I also thank my committee mem-
bers Dr. Elaine Eschen and Dr. Vinod Kulathumani for their suggestions and
corrections. I am thankful to the LCSEE department for providing me with
valuable resources and funding through the Graduate Teaching Assistantship.
I thank Professor Cindy Tanner for her role as a mentor and guide during
my college studies at WVU. I express my deepest gratitude to my parents
and my brother who have shown unconditional love and care throughout my
life. Am thankful to my friends who have given me the moral support and
helped me get through harder times.

iii



Contents

Acknowledgements iii

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 Motivation and Problem . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background and Related Work 5
2.1 String Pattern Matching . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Exact Pattern Matching . . . . . . . . . . . . . . . . . 6
2.1.2 Approximate Pattern Matching . . . . . . . . . . . . . 6

2.2 Repetitions and Periodicity in Strings . . . . . . . . . . . . . . 7
2.3 Periodicity Mining in Time Series Databases . . . . . . . . . . 8

2.3.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Periodicity Detection Methods . . . . . . . . . . . . . . 11

2.4 Suffix Trees and Suffix Arrays . . . . . . . . . . . . . . . . . . 13
2.4.1 Suffix Trees . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Suffix Arrays . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Compressed Suffix Trees and Compressed Suffix Arrays . . . . 17
2.5.1 Succinct Data Structures . . . . . . . . . . . . . . . . . 17
2.5.2 Compressed Suffix Arrays . . . . . . . . . . . . . . . . 18
2.5.3 Compressed Suffix Trees . . . . . . . . . . . . . . . . . 19

3 Periodicity Mining using CSTs 21
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

iv



3.2 Using CSTs for periodicity mining . . . . . . . . . . . . . . . . 22
3.3 Empirical Comparative Analysis: ST vs CST . . . . . . . . . . 25

3.3.1 Goals of the Empirical Analysis . . . . . . . . . . . . . 25
3.3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . 26
3.3.3 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.1 Fibonacci Words . . . . . . . . . . . . . . . . . . . . . 30
3.4.2 Real Data . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.3 Pseudo Real Data . . . . . . . . . . . . . . . . . . . . . 39
3.4.4 Synthetic Data . . . . . . . . . . . . . . . . . . . . . . 44
3.4.5 Summary of Results . . . . . . . . . . . . . . . . . . . 49

4 Approximate Periodicity Mining 53
4.1 A Taxonomy for Approximate Periodicity . . . . . . . . . . . . 53

4.1.1 Exact periodicity (κ = 0, γ = 0) . . . . . . . . . . . . . 54
4.1.2 The case of (κ 6= 0, γ = 0) . . . . . . . . . . . . . . . . 55
4.1.3 The case of (κ = 0, γ 6= 0) . . . . . . . . . . . . . . . . 57
4.1.4 The case of (κ 6= 0, γ 6= 0) . . . . . . . . . . . . . . . . 58

4.2 A Method for Approximate Periodicity Mining (κ 6= 0, γ 6= 0) . 59
4.2.1 STNR: Features of Existing Algorithm . . . . . . . . . 60
4.2.2 STNR-A: Periodicity Mining with Approximation . . . 62
4.2.3 Preliminary Experimental Results . . . . . . . . . . . . 67
4.2.4 Improved practical time for long patterns . . . . . . . . 73

5 Conclusions 76

Bibliography 78

Appendices 85
A STNR-A: Algorithm Description . . . . . . . . . . . . . 85
B Varying Period Value (p) . . . . . . . . . . . . . . . . . 88
C Varying Alphabet Size (|Σ|) . . . . . . . . . . . . . . . 92

v



List of Figures

2.1 Suffix tree structure for T=mississippi$. . . . . . . . . . . . 15

3.1 Suffix tree structure and BPS notation for sequence T=mississippi$.
23

3.2 LCP information for varying data sizes(n) using Fibonacci
words. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Size(MB) of suffix data structures with varying data sizes(n)
using Fibonacci words. . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Size per symbol(bytes) of suffix data structures with varying
data sizes(n) using Fibonacci words. . . . . . . . . . . . . . . 33

3.5 Time requirements(secs) for suffix data structures with vary-
ing data sizes(n) using Fibonacci words. . . . . . . . . . . . . 34

3.6 Time requirements per symbol(µsecs) for suffix data structures
with varying data sizes(n) using Fibonacci words. . . . . . . . 34

3.7 LCP information for pseudo real data set obtained from the
Pizza & Chili corpus [18]. . . . . . . . . . . . . . . . . . . . . 40

3.8 Size(MB) of suffix data structures using pseudo real data ob-
tained from the Pizza & Chili corpus [18]. . . . . . . . . . . . 42

3.9 Time requirements(secs) for suffix data structures using pseudo
real data obtained from the Pizza & Chili corpus [18]. . . . . . 42

3.10 LCP information for varying data sizes(n) using synthetic data. 44
3.11 Size(MB) of suffix data structures using synthetic data. . . . . 46
3.12 Size per symbol(bytes) of suffix data structures using synthetic

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.13 Time requirements(secs) for suffix data structures using syn-

thetic data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.14 Time requirements per symbol (µsecs) for suffix data struc-

tures using synthetic data. . . . . . . . . . . . . . . . . . . . . 48

vi



3.15 Summary of resource requirements(per symbol) for suffix data
structures using different data sets. . . . . . . . . . . . . . . . 51

4.1 Different forms of approximate periodicity handled by the
STNR algorithm. See also Table 4.1. . . . . . . . . . . . . . . 61

4.2 Comparison of STNR and STNR-A in the case of perfect pe-
riodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Comparison of STNR and STNR-A with RID=0.1 run# 1 . . 70
4.4 Comparison of STNR and STNR-A with RID=0.1 run# 2 . . 71
4.5 Comparison of STNR and STNR-A with RID=0.2 run# 1 . . 71
4.6 Comparison of STNR and STNR-A with RID=0.2 run# 2 . . 72
4.7 Comparison of STNR and STNR-A with RID=0.3 run# 1 . . 73

1 Size per symbol(bytes) of suffix data structures with varying
period value(p) using synthetic data . . . . . . . . . . . . . . . 89

2 Construction time per symbol(µsecs) for suffix data structures
with varying period(p) using synthetic data . . . . . . . . . . 90

3 Traversal time per symbol(µsecs) for suffix data structures
with varying period(p) using synthetic data . . . . . . . . . . 90

4 Size per symbol(bytes) of suffix data structures with varying
alphabet size(|Σ|) using synthetic data . . . . . . . . . . . . . 93

5 Construction time per symbol(µsecs) for suffix data structures
with varying alphabet size(|Σ|) using synthetic data . . . . . . 94

6 Traversal time per symbol(µsecs) for suffix data structures
with varying alphabet size(|Σ|) using synthetic data . . . . . . 94

vii



List of Tables

2.1 Information on SA and LCP for the sequence T=mississippi$. 16

3.1 Attributes of a node in the ANSI C Implementation of the
suffix tree [73]. . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 LCP, entropy and other attributes for Fibonacci words. . . . . 31
3.3 Correlation values for cst sada using Fibonacci words. . . . . 31
3.4 Correlation values for cst sct3 using Fibonacci words. . . . . 32
3.5 Correlation values for ST using Fibonacci words. . . . . . . . 32
3.6 Size(MB) of suffix data structures with varying data sizes(n)

using Fibonacci words. . . . . . . . . . . . . . . . . . . . . . . 35
3.7 Variation of construction time(secs) for suffix data structures

with varying data sizes(n) using Fibonacci words. . . . . . . . 35
3.8 Variation of traversal time(secs) for suffix data structures with

varying data sizes(n) using Fibonacci words. . . . . . . . . . . 36
3.9 LCP, entropy and other attributes for real data set obtained

from the Pizza & Chili corpus [18] . . . . . . . . . . . . . . . 36
3.10 Correlation values for cst sada using real data. . . . . . . . . 37
3.11 Correlation values for cst sct3 using real data. . . . . . . . . 37
3.12 Correlation values for ST using real data. . . . . . . . . . . . 37
3.13 Size(MB) of suffix data structures using real data set obtained

from the Pizza & Chili corpus [18] . . . . . . . . . . . . . . . 38
3.14 Construction time(secs) for suffix data structures using real

data set obtained from the Pizza & Chili corpus [18] . . . . . 38
3.15 Traversal time(secs) for suffix data structures using real data

set obtained from the Pizza & Chili Corpus [18] . . . . . . . . 39
3.16 LCP , entropy and other attributes for pseudo real data ob-

tained from the Pizza & Chili corpus [18]. . . . . . . . . . . . 40
3.17 Correlation values for cst sada using pseudo real data. . . . 40
3.18 Correlation values for cst sct3 using pseudo real data. . . . . 41

viii



3.19 Correlation values for ST using pseudo real data. . . . . . . . 41
3.20 Size(MB) of suffix data structures using pseudo real data set

obtained from the Pizza & Chili corpus [18]. . . . . . . . . . . 43
3.21 Construction time(secs) for suffix data structures using pseudo

real data set obtained from the Pizza & Chili corpus [18]. . . . 43
3.22 Traversal time(secs) for suffix data structures using pseudo

real data set obtained from the Pizza & Chili corpus [18]. . . . 43
3.23 LCP, entropy and other attributes for synthetic data. . . . . . 44
3.24 Correlation values for cst sada using synthetic data. . . . . . 45
3.25 Correlation values for cst sct3 using synthetic data. . . . . . 45
3.26 Correlation values for ST using synthetic data. . . . . . . . . 45
3.27 Size(MB) of suffix data structures with varying data sizes (n)

using synthetic data. . . . . . . . . . . . . . . . . . . . . . . . 48
3.28 Construction time(secs) of suffix data structures with varying

data sizes(n) using synthetic data. . . . . . . . . . . . . . . . . 49
3.29 Traversal time(secs)for suffix data structures with varying data

sizes(n) using synthetic data. . . . . . . . . . . . . . . . . . . . 49

4.1 Explanation of different forms of inexact periodicity shown in
Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Comparison of STNR and STNR-A for cases defined in Table 4.1. 68

1 LCP, entropy and other attributes for synthetic data with
varying period value(p) . . . . . . . . . . . . . . . . . . . . . . 88

2 Correlation values for cst sada using synthetic data with
varying period value(p) . . . . . . . . . . . . . . . . . . . . . . 88

3 Correlation values for cst sct3 using synthetic data with
varying period value(p) . . . . . . . . . . . . . . . . . . . . . . 88

4 Correlation values for ST using synthetic data with varying
period value(p) . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Size(MB) of suffix data structures with varying period value(p)
using synthetic data . . . . . . . . . . . . . . . . . . . . . . . 91

6 Construction time(secs) for suffix data structures with varying
period value(p) using synthetic data . . . . . . . . . . . . . . . 91

7 Traversal time(secs) for suffix data structures with varying
period value(p) using synthetic data. . . . . . . . . . . . . . . 91

8 LCP, entropy and other attributes for synthetic data with
varying alphabet size(|Σ|) . . . . . . . . . . . . . . . . . . . . 92

ix



9 Correlation values for cst sada using synthetic data with
varying alphabet size(|Σ|) . . . . . . . . . . . . . . . . . . . . 92

10 Correlation values for cst sct3 using synthetic data with
varying alphabet size(|Σ|) . . . . . . . . . . . . . . . . . . . . 92

11 Correlation values for ST using synthetic data with varying
alphabet size(|Σ|) . . . . . . . . . . . . . . . . . . . . . . . . . 93

12 Size(MB) of suffix data structures with varying alphabet size(|Σ|)
using synthetic data . . . . . . . . . . . . . . . . . . . . . . . 95

13 Construction time(secs) for suffix data structures with varying
alphabet size(|Σ|) using synthetic data . . . . . . . . . . . . . 95

14 Traversal time(secs) for suffix data structures with varying
alphabet size(|Σ|) using synthetic data. . . . . . . . . . . . . 95

x



Chapter 1

Introduction

1.1 Motivation and Problem

Time series data represents chronological events related to real world phe-
nomena and repeating cycles are an inherent part of the data. Given a time
series data, the problem of periodicity mining is to identify all the interest-
ing temporal regularities in the data. What is interesting is often defined by
the application, for instance, periodic patterns that are of certain length and
have occurred a certain number of times, or patterns that occur periodically
within some limited region of the time series data. This requires an under-
standing of the inherent nature of such cycles, for instance, the structure of
the repeating patterns, the noise and uncertainties in such patterns and in
the occurrence periods, making effective and efficient periodicity mining a
challenging problem. Periodicity mining has interesting applications in var-
ious domains, such as, weather prediction, forecasting stock market growth,
analyzing patterns of power consumption and many more.

Various approaches have been devised to mine periodicities of dif-
ferent kinds (e.g., symbol periodicity, segment periodicity and sequence or
partial periodicity) present in the data. Periodicity mining algorithms ei-
ther require the user to input the period of interest or mine all the periods
that are inherent to the data. Recent algorithms have focussed on the later

1



case, where the goal is to mine all the possible periods in the data. Promi-
nent work has been done by Indyk et al. [35], Elfeky et al. [22, 23] and
others [33,49,71,72]. The recent work by Rasheed et al. [57] utilized the ad-
vantages of the suffix tree, a powerful data structure that solves many string
related problems efficiently, to capture repetitions in the text. The suffix tree
is a data structure that represents all the suffixes of a given text in a com-
pact form and the path label of any given internal node (the concatenation of
characters on the path from the root to the given node) represents a unique
substring in the text. The list of all the leaf nodes in the subtree rooted
at any given internal node stored in an occurrence vector (V ), represents
the positions in the text of exact occurrences in the given substring. The
algorithm proposed by Rasheed et al. [57] called STNR (Suffix Tree based
Noise Resilient) algorithm makes multiple scans through the occurrence vec-
tor to check whether the current substring is periodic with any period value
in different subsections of the text. Algorithm STNR handles the noise in-
troduced between the occurrences of the periodic pattern by considering the
occurrences that drift away from the exact periodic positions by a certain
value to be part of the periodic occurrences.

Periodicity mining involves the processing of large amounts of data
and it is difficult to hold the suffix tree in main memory due to its space
constraints. Thus, rather than using suffix trees as in Rasheed et al. [57],
we propose the use of Compressed Suffix Trees (CST) for periodicity min-
ing. Even though compressed suffix trees were proposed as a space efficient
replacement to suffix tree [51, 60], the practical time for construction and
operations defined on the CST could be slower when applied to periodicity
mining. Thus, we provide a comprehensive empirical analysis of the practical
usage of CSTs and suffix trees for periodicity mining. We use the work by
Rasheed et al. [57] as the basis to generate occurrence vectors using CSTs
and suffix trees and provide a comparative analysis.

Noise is an inherent part of practical time series data. The time
series data is prone to errors from different sources, for instance, data ac-
quisition method, transient errors, inexact periodicity, etc [7]. It is impor-
tant to mine periods efficiently and effectively in spite of the presence of
noise which makes it an even more challenging problem. The existing algo-
rithms [23, 33, 57] have dealt with the noise introduced between the occur-
rences of the periodic pattern but not the noise introduced in the structure

2



of the pattern. In this work, we propose Algorithm STNR-A (Suffix Tree
based Noise Resilient algorithm with Approximation) to handle the simul-
taneous case of noise in both the structure of the pattern and between the
periodic occurrences. The algorithm employs approximate pattern matching
between the periodic pattern and substrings of text surrounding the expected
occurrence positions while scanning the occurrence vector. This results in
an improved confidence in the periodicity for a given pattern and produces
improved accurate mining. However, in the case of long patterns, the time
involved in checking the approximate versions of the pattern at missed ex-
pected occurrence positions would be very costly. To deal with this problem,
we propose the use of a two-phase hypothesis-generation and hypothesis-
verification approach using approximate q-gram filtering for practical time
improvement. For a given pattern, we generate hypothesis based on exact
q-gram matching to filter out regions of text which could be possible regions
for approximate occurrences of the pattern. The generated hypotheses are
then used in processing the occurrence vector for a given pattern to eliminate
certain checks for approximate occurrences.

1.2 Thesis Contributions

The contributions of the thesis are summarized as follows:

1. A comparative analysis on the use of compressed suffix trees and tra-
ditional suffix trees for periodicity mining.

2. A taxonomy for approximate periodicity.

3. A new algorithm for periodicity mining that handles noise introduced
simultaneously in both the structure of the periodic pattern and be-
tween the occurrences of the periodic pattern.

4. A two-phase hypothesis-generation and hypothesis-verification approach
for practical improvement in the time required for detecting the peri-
odicities involving long patterns.

3



1.3 Thesis Outline

In Chapter 2, we present some background and related work on periodicity
mining in time series databases and on suffix data structures. We also give
a brief introduction to approximate pattern matching. In Chapter 3, we
provide a comprehensive empirical analysis of the use of suffix trees and
compressed suffix trees for periodicity mining. In Chapter 4, we provide a
taxonomy for approximate periodicity and suggest a new algorithm for the
most difficult case of approximate periodicity. We also propose an approach
with practical time improvement in the case of long patterns. Finally, we
provide conclusions in Chapter 5.

4



Chapter 2

Background and Related Work

2.1 String Pattern Matching

A string T is an ordered sequence of characters T = t0t1.....tn−1 = T [0...n−1]
defined over a fixed alphabet Σ (of size σ = |Σ|). Let n = |T | denote the
length of the string and T [i] denote the character at the ith position in the
string. An empty string is denoted by ε (n = 0). If there exist two strings
u and v such that T = uxv, then x is called a factor (or substring) of the
string T ; x is the prefix of T , if u = ε and x is the suffix of T , if v = ε. The
string T [i...j] is a substring that starts at position i and ends at position j.
The string T [0...j] is a prefix of the string, which is a substring that starts
at position 0 and ends at position j. The string T [i...n− 1] is a suffix of the
string, which is a substring that starts at position i and continues till the end
position (n−1) of the text. There will be a total of n suffixes for a given string
denoted by si = T [i.....n−1](0 ≤ i ≤ n−1). In our study, we use $ (/∈ Σ) as a
sentinel character and it is considered to have the lexicographically smallest
value when compared with any other symbol in the text T .

The problem of pattern matching is to find all the occurrences of
a given pattern P , in the text T . There are two variations to this prob-
lem, namely, exact pattern matching and approximate or inexact pattern
matching.

5



2.1.1 Exact Pattern Matching

The problem of exact pattern matching is stated as follows: Given a text
T of length n and a pattern P of length m over alphabet Σ, find the start-
ing positions in text T , of all the exact occurrences of the given pattern
P . There are several efficient algorithms to solve this problem. The well-
known algorithms Boyer-Moore (BM) [15], Knuth-Morris-Pratt (KMP) [40],
Apostolico-Giancarlo [9] provide linear worst case time solutions i.e. linear
in the size of the text, where the pattern is preprocessed and the text is in-
put online to the algorithm. Other algorithms use interesting data structures
such as suffix trees, suffix arrays, and Burrows-Wheeler Transform (BWT) to
perform pattern matching, where the text is preprocessed and the patterns
of interest are input online. As an example, the text is preprocessed to build
the suffix tree in linear space and linear time with respect to the size of the
text, and the pattern can be searched in time proportional to the size of the
pattern rather than the size of the text [29]. This can be used to efficiently
solve the online dictionary search problem, where the text is available and
preprocessed and the patterns of interest are searched as they arrive. Other
algorithms preprocess both the text and the pattern. The well-known algo-
rithm Karp-Robin [39] transforms both the text and pattern into numerical
data called fingerprints using a hash function and then searches for the pat-
tern. The algorithm by Baeza-Yates and Gonnet [11] uses bit-wise operations
on binary strings for pattern matching. The books by Gusfield [29], Char-
ras and Lecroq [17], Smyth [63], and Adjeroh et al. [2] provide a detailed
discussion of several of these algorithms.

2.1.2 Approximate Pattern Matching

A string T ′ is said to be an approximate/inexact version of another string
T if one can be obtained from the other by performing few transformations
on individual characters of either of the strings. A transformation operation
can be an insertion, a deletion and a substitution/replacement. Insertions
and deletions change the length of the string but replacements do not. The
measure of similarity between any two strings is given by the number of such
transformations required. One such measure of similarity is the Hamming
distance which measures the number of positions at which corresponding

6



characters are different i.e., the number of substitutions required to trans-
form one string to another. Another distance metric called the edit distance
ED(T, T ′) is the number of edit operations (insertions, deletions, substitu-
tions) required to transform one string to another. We focus on the edit
distance for our study.

The problem of approximate pattern matching is stated as follows:
Given a text T of length n and a pattern P of length m over alphabet
Σ, find all the approximate occurrences of a given pattern in the text i.e.,
occurrences of the pattern in the text allowing some errors. Typically, the
number of errors is bounded to be at most k. Here we take into consideration
various types of errors namely replacement, insertion and deletion errors with
a bound on the number of errors equal to k. Therefore the problem of inexact
matching reduces to that of k-approximate matching, that is finding all the
positions i in T, where ED(Si, P ) ≤ k, where Si is any substring of T,
starting at position i.

The simplest and most popular method to calculate the edit dis-
tance between two strings is based on dynamic programming with time com-
plexity of O(mn) [61]. Other methods are based on bitwise operations [53,68]
and longest common subsequence [42,43]. When k, the number of errors al-
lowed is known, the edit distance can be calculated using Ukkonen’s [64] ap-
proach of deterministic finite state automation in O(kn) time. Navarro [52]
provides a comprehensive survey on approximate pattern matching. More de-
tailed discussion on string matching (both exact and inexact pattern match-
ing) is provided in the books [2, 20, 29,63].

2.2 Repetitions and Periodicity in Strings

The study of repetitions in strings has gained a lot of importance over the
years in the field of string combinatorics with numerous applications in areas
such as data compression, pattern matching and computational biology. The
core of many data compression techniques lies in detecting the repetitions
in strings. The study of tandem repeats is important in the field of genome
analysis with applications such as disease diagnosis, genomic fingerprinting,
etc.

7



A repeat is an immediately repeated factor or substring in a given
string T . There are various types of repetitions that exist in a string such as
squares, cubes, and runs (also called maximal repetitions). If a string T is of
the form T = upev, where u and v are non-empty strings, then pe is called a
repetition in the string T , p is called the period, and e the exponent.

When e = 2, the repetition is called a square or a tandem repeat
and when e = 3, the repetition is called a called cube. For example, in string
T = aaabab, the substring abab = (ab)2 is a square, and aaa = (a)3 is a cube.
A tandem repeat is called a primitive tandem repeat if it does not contain
shorter repeats. The upper bound on the number of such primitive squares
or primitive tandem repeats that can exist in a given string of length n, is
O(n log n), and there exist several algorithms [10,19,47] that compute all the
primitive tandem repeats in time O(n log n).

If there exists a substring S = T [i...j] of string T , that has a period
p, such that (|p| ≤ |S|/2), and periodicity cannot be extended to the right
or to the left i.e., T [i− 1] 6= T [i+ p− 1] and T [j− p+ 1] 6= T [j+ 1], then the
substring representing the interval [i...j] is the called maximal period or run,

with an exponent e =
⌊
|S|
p

⌋
. To simply state, a run is a maximal occurrence

of a repetition with exponent value ≥ 2 [21].

According to Sim et al. [62], a string P is called a period of string
T , if T can be written as T = P iP ′, where i ≥ 1 and P ′ the prefix of P . And
the string T is said to be periodic if |P | ≤ |T/2|. T is said to be primitive if
there exist no periods in it i.e., when i = 1. And when i ≥ 2, then it said to
have a repetition P i.

2.3 Periodicity Mining in Time Series Databases

A time series is a sequence or collection of data gathered over a period of time,
generally recorded at uniformly spaced intervals, to analyze the behavior of
the object of interest. Time series data represents events related to real-world
phenomena such as stock market growth, transactions at a supermarket,
hydrological data, power consumption, network traffic, weather data, etc.

8



Repetitions are an inherent part of the data representing such phenomena.
For instance, the ocean tides hit the peaks twice daily, restaurants are busier
on certain days during the week. Such repeating patterns reflect the past,
present, and possibly future behavior of the phenomenon under observation,
and identifying them helps us to understand the nature of the phenomenon
and also forecast future events. There are various applications for analyzing
such time series, e.g., weather predictions, stock market predictions, pattern
recognition, etc. The problem of periodicity detection can be defined as the
process of finding the temporal pattern regularities within a time series. The
goal of analyzing such series is to detect how frequent, if any, a pattern is
repeated in the series [57].

A time series consists of large sequence of symbols or numbers col-
lected at regular intervals gathered over a period of time. Analyzing such a
large sequence can be a challenge unless the series is discretized [22, 23, 57].
The time series is discretized by considering an alphabet set (Σ) to rep-
resent distinct ranges of values and then mapping the values in the series
to the symbol that represents a particular range where the values fall in.
For example, consider the time series representing the number of daily vis-
itors to Eiffel tower. To discretize the series, we can consider different
possible ranges of visitors; 0 visitors: a, 1-500 visitors: b, 500-1000 visi-
tors: c, >1000 visitors: d. Based on this mapping, the time series T =
20, 250, 350, 659, 875, 1068, 1564, 450 can be discretized into T ′=abbccddb.
The discretized time series is then processed in two steps: 1) represent the
data in memory, and 2) analyze the data stored [69].

2.3.1 Terminology

Here we formally define the problem and also the terms used in periodicity
mining. These definitions are adapted from the papers [22,57]. A time series
represents a collection of data gathered at uniformly spaced intervals, given
by T = e0, e1, e2, e3.....en, where n = |T | represents the length of the time
series and ei represents the value recorded at time stamp i [22,57]. The time
series is then discretized using symbols from a predefined alphabet Σ. A peri-
odic pattern (P ) is represented using a 5-tuple: (P, p, stPos, endPos, conf),
where P is the periodic pattern, p the period value, stPos the position in

9



the text of the first occurrence of P , endPos the position in the text of the
last occurrence of P , and conf represents the degree of confidence on the
periodicity [57].

Perfect Periodicity: A time series T of length n is said to have perfect
periodicity with period p, if there exists a pattern P of length m, such that the
pattern always occurs in an exact manner from it’s first occurrence (stPos)
till the last occurrence (endPos), and the current occurrence is exactly p
positions away from its previous occurrence.

However, perfect periodicity is rarely possible in time series data
representing real-world phenomena which leads to imperfect periodicity. The
imperfection can be due to the noise introduced in the structure of the pattern
which causes certain occurrences to be missed and/or also due to the noise
introduced between the occurrences of the pattern which causes the current
occurrence to drift by a certain amount away from or towards it’s previous
occurrence. The later case of noise leads to some local perturbation in the
periodic nature of the time series. This is sometimes called an asynchronous
periodicity [33, 49, 71, 72]. The degree of perfectness is measured using a
parameter called confidence (conf).

Confidence: The confidence of a periodic pattern P is defined as the ratio
of its actual periodicity to its expected perfect periodicity [57] i.e., the actual
number of its periodic occurrences to the expected number of occurrences that
will make it perfectly periodic.

For example, consider T = abcde abcce abdef abeec, the pattern ab
is periodic with p = 5, with stPos = 0 and endPos = 15, and conf = 4

4
(per-

fect periodicity). As another example, consider T = abcde abcce addef abeec,
the pattern ab is periodic with p = 5, with stPos = 0 and endPos = 15, and
conf = 3

4
(imperfect periodicity).

There are three types of periodicity that exist, namely, symbol pe-
riodicity, sequence or partial periodicity and segment periodicity [22, 23, 30,
31,57].

Segment Periodicity [22]: A time series T of length n, is said to have
segment periodicity with period p, if it can be split into equal length seg-
ments, each of length p, that are almost similar. For example, in time series

10



T = bcbad bcbad bcbad bcbad, sequence P = bcbad is periodic with periodicity
of p = 5, starting from position stPos = 0 with perfect periodicity and with
conf =4

4
.

Symbol Periodicity [22]: A time series T of length n, is said to have
symbol periodicity with period p, if there exists atleast one symbol that
occurs almost every p time-stamps from its first occurrence position. For
example, in time series T = bac bdc bca bde, symbol P = b is periodic with
periodicity of p = 3, starting from position stPos = 0 and with conf =4

4
.

Sequence or Partial Periodicity : A time series T of length n, is said to
have sequence or partial periodicity with period p, if there exist a sequence of
symbols that occur almost every p positions from their first occurrence. For
example, in time series T = acbb acdb aced acdb, sequence ac ∗ ∗ is periodic
with a periodicity of p = 4, starting from position stPos = 0, and conf =4

4

where ∗ denotes a don’t care symbol. Also, another sequence ac∗b is periodic
with a periodicity of p = 4, starting from position stPos = 0 and conf =3

4
.

2.3.2 Periodicity Detection Methods

There are several algorithms for time series analysis and periodicity detection.
The algorithms can be divided into two categories, ones that require the user
to input the period of interest and search for patterns repeating with that
specific behavior, and the others that look for all possible periods in the series.
The algorithms can also be categorized based on the type of periodicity they
detect, and also whether they detect periods in the whole time series or only
in a subsection of the time series. The algorithms in [13,31,46,70] require the
user to input the period of interest, however, they do not fulfill the goal of
mining unexpected periods. The algorithm ParPer by Han et al. [30] detects
only partial periodic patterns in linear time provided the expected period
value is given. The time complexity increases to O(n2) to detect all possible
periods. The goal of recent periodicity mining algorithms is to detect all the
possible periods in the data. Indyk et al. [35] presented an O(n log2 n) time
algorithm to detect segment periodicity. This was later improved by Elfeky
et al. [22] to detect segment and symbol periodicity in O(n log n) time by
using convolution based technique (CONV). Noise is inherent in time series

11



data and the CONV algorithm fails to deal with insertion and deletion noise.
A second algorithm was developed by Elfeky et al. [23] referred to as WARP
(time warping for periodicity detection) which detects segment periodicity in
the presence of insertion and deletion noise with a time complexity of O(n2).
The algorithms CONV and WARP cannot detect patterns that are periodic
only in a subsection of time series. The algorithms E-MAP (Efficiently Min-
ing Asynchronous Periodic patterns) [49], OEOP (One Event One Pattern
mining) [72], LSI (Longest Subsequence Identification) [71], SMCA (Simple
Multiple Complex and Asynchronous periodic pattern miner) [33] efficiently
mine asynchronous periodic patterns where the expected periodic occurrences
are allowed to drift from their expected positions up to an allowable limit
due to the noise introduced between the occurrences of the periodic pattern.

The algorithm by Rasheed et al. [57] can be used to efficiently detect
the three types of periodicity, namely, segment, symbol and partial periodic-
ities. It can also detect periodicity starting from all positions in the whole or
in a subsection of time series data with the time complexity of O(n3). They
used suffix trees to efficiently capture repeating substrings of the time series
data, where the path label of the internal nodes of the suffix tree represents
the repeated substrings in the data. The starting positions of all the occur-
rences of a given substring are recorded in an occurrence vector V . This is
used as an input to the periodicity mining algorithm. The algorithm han-
dles insertion and deletion noise to efficiently mine asynchronous periodic
patterns.

In summary, the algorithm by Rasheed et al. [57] uses the suffix tree
which is a powerful data structure that solves many strings related problems.
However, the suffix tree cannot be used for large data sets because of its large
memory footprint. Their algorithm also fails to deal with the noise introduced
in the structure of the periodic pattern. Therefore, we first suggest the use of
CSTs for space-efficient periodicity mining. Then, we provide an empirical
analysis on the use of CSTs as a replacement to suffix trees for periodicity
mining and use various data sets that contain repetitive texts for analysis. We
also provide a solution that efficiently mines periodic patterns in the presence
of noise simultaneously both in the structure of the periodic pattern and also
between the occurrences of the periodic pattern.

12



2.4 Suffix Trees and Suffix Arrays

2.4.1 Suffix Trees

A suffix tree (ST) is a data structure that provides a compact representation
of all the suffixes in a given string. It can be used to perform important
operations on strings in an efficient manner and has a wide range of ap-
plications such as exact matching, search for a regular expression, longest
common substrings, lowest common ancestor, and many other as mentioned
in Dan Gusfield’s text [29]. According to Gusfield [29] a suffix tree con-
structed for a text of length n (including the sentinel character $) has the
following properties:

• Is a rooted directed tree with exactly n leaves numbered 0 to n− 1.

• Each internal node other than the root has at least two children.

• Each edge is labelled with a non-empty substring of T

• No two edges out of a node can have edge-labels beginning with the
same symbol.

• The concatenation of the edge labels on the path from the root to a
leaf − i represents the ith suffix T [i....n− 1].

The path label of a node is the concatenation of all the symbols
from the root to the given node. Since no two edges out of a given node
can have edge labels beginning with the same symbol, every internal node’s
path label represents a unique substring of the given text T . The key point
is that the internal nodes efficiently capture the repetitions in the text and
all the occurrence positions of a given substring (path label of the internal
node) in the text are given by the list of leaf node numbers in the subtree
rooted at that given internal node. The average depth of a suffix tree is log n
and the upper bound on the number of nodes in a suffix tree is 2n− 1 with
always n leaves each representing a different suffix of the text and at most
n−1 internal nodes. Figure 2.1 shows an example suffix tree for the sequence
T=mississippi$.

13



The naive approach to construct a suffix tree takes time propor-
tional to O(n2). Wiener [67] proposed the first linear time algorithm to
construct a suffix tree that was later improved with a simplified space effi-
cient construction method by McCreight [50]. A simpler algorithm for linear
time construction of the suffix tree was proposed by Esko Ukkonen [65] and
is widely used for its simple implementation details and space efficiency and
also for its online property. The use of suffix links and skip/count trick makes
it [65] a linear time algorithm for suffix tree construction. According to Ukko-
nen [65], if xα (where x is a single character) is the path label of an internal
node v and if there is an another internal node s(v) with path label α, then
the pointer from node v to s(v) is the called the suffix link for node v and
the pointer from v goes to the root if α is an empty string (ε). It is observed
that all the internal nodes have suffix links to other internal nodes and the
use of suffix links can solve certain string analysis problems more efficiently,
e.g., circular pattern matching [44] and circular pattern discovery [45].

The space required to store a suffix tree will include that of the
original text T , edge labels, node labels for both branching and leaf nodes, the
space to indicate the parent for each node and the suffix links [2]. It requires
n bytes for the text, 2n integer pointers for edge labels (edge labels are
represented by a pair of indices that specify the beginning and end positions
of a substring of the text), 2n integer pointers for node parents, 2n integer
pointers for node labels for both branching and leaf nodes and 2n integer
pointers for suffix links thus giving us a total of 33n bytes to store the suffix
tree, where a pointer is represented using an integer which is 4 bytes long
and 1 byte is used to represent each character of the text. The theoretical
space consumed by a suffix tree is O(n log n) bits as there are O(n) pointers
and (log n) bits is required to encode each pointer.

14



Figure 2.1: Suffix tree structure for T=mississippi$.

In Figure 2.1, the internal nodes are labelled in the order the nodes are
visited during a depth first search (dfs) traversal of the tree structure. The
leaf nodes are marked with the corresponding suffix numbers representing
the node’s path label.

2.4.2 Suffix Arrays

The suffix array for a given text T (of length n = |T |) is an array of indices
SA[0...(n − 1)] that represents the lexicographically sorted order of all the
suffixes of the text. That is, the starting position in the text of the lexi-
cographically smallest suffix is stored at SA[0] and starting position of the
lexicographically second smallest suffix is stored at SA[1] and so on, such
that SAT [0] < SAT [1] < ..... < SAT [n− 1], and SAT [i] represents the suffix
starting at index SA[i] in the text (0 ≤ i ≤ n− 1). Suffix arrays were intro-
duced as a space efficient replacement for suffix trees. A suffix array can be
generated in linear time by recording the leaf numbers through a depth-first
traversal of a suffix tree provided the edges at each internal node are lexico-
graphically ordered. However, due to the space consumption constraints of
suffix trees, new approaches to directly construct suffix arrays have been pro-

15



posed. Manber and Myers [48] introduced the first algorithm to construct
suffix arrays which occupies only O(n log n) bits of space with an average
time of O(n) and worst case time of O(n log n). Other linear time algorithms
include those proposed by Kärkkäinen and Sanders [38], Ko and Aluru [41],
Adjeroh and Nan [3]. The suffix arrays can be used to search for a pattern
P of length m = |P | in a text of length n in O(m log n) time as it requires
O(log n) comparisons to perform a binary search on a suffix array and in
each comparison P is compared with a suffix to determine the lexicographic
order which at most takes |P | comparisons [5]. Although the suffix arrays
were used as a replacement to suffix trees due to space constraints in storing
the suffix tree data structure, the actual space required by the suffix sorting
algorithms during the construction of suffix arrays is very large. Also, the
suffix arrays do not store information about suffix links which could solve
certain problems efficiently. A suffix tree can be constructed from a suffix
array with the help of an auxiliary array called the LCP (Longest Common
Prefix) array. And the search for a pattern can be reduced to O(m + log n)
with the help of this auxiliary LCP array.

The Longest Common Prefix (LCP ) array is an array data structure
which holds the length of the longest common prefix between the consecutive
suffixes for the set of all the lexicographically sorted suffixes of a string. In
a way it stores the LCP values of the suffixes represented by consecutive
elements of a suffix array i.e., LCP [0] = −1 and LCP [1] = length of the
longest common prefix between suffixes SA[0] and SA[1] and so on.

LCP =

{
−1 i ∈ {0, n}
|lcp(TSA[i−1], TSA[i])| otherwise

i SA[i] LCP [i] Ti
0 11 -1 $
1 10 0 i$
2 7 1 ippi$
3 4 1 issippi$
4 1 4 ississippi$
5 0 0 mississippi$
6 9 0 pi$
7 8 1 ppi$
8 6 0 sippi$
9 3 2 sissippi$

10 5 1 ssippi$
10 2 3 ssissippi$

Table 2.1: Information on SA and LCP for the sequence T=mississippi$.

16



2.5 Compressed Suffix Trees and Compressed

Suffix Arrays

2.5.1 Succinct Data Structures

Jacobson [36,37] was among the first to introduce the concept of succinct data
structures to represent a particular data structure in its compressed format
with the amount of space close to the information-theoretic lower bounds,
and yet the operations defined on it be performed efficiently, without the
need for decompression. It is observed that, some of the operations on these
succinct data structures can be performed with the same time complexities
as that of its uncompressed counterparts.

The suffix tree is efficient in solving many strings related problems
for applications such as genomic sequence analysis, data mining, bioinfor-
matics, information retrieval etc. The major drawback with the use of suffix
trees for such applications that require processing large data is their very
large space requirements and also the necessity to hold the data structure in
main memory [58]. For example, a space efficient suffix tree takes at least
40 Gigabytes of main memory for the human genome sequence of size 700
Megabytes [60]. It is stated that, in theory the suffix tree occupies O(n log n)
bits of space to store the data structure, but the constant involved in the O(.)
notation is significant in practice [25] and it depends on the implementation
methods used. As stated earlier, a typical implementation of suffix tree re-
quires the space of about 33 times the size of the text and at least 25 times
the size of the text without storing the suffix links (where a pointer is repre-
sented using an integer of size 4 bytes). The practical space requirements will
be even more for systems with 64-bit architecture [25]. One way to deal with
this problem is the use of succinct data structure called the Compressed
Suffix Tree (CST) and the goal is to reduce the space requirements from
O(n log n) bits to O(n log |Σ|) bits or even O(n) bits and perform operations
on the compressed format with similar time complexities as compared to its
uncompressed counterpart [2].

17



2.5.2 Compressed Suffix Arrays

Compressed suffix array (CSA) was proposed to replace the suffix array in
space, but surprisingly they provide more functionality than the uncom-
pressed suffix array [25, 58]. The size of a suffix array can be reduced from
(n log n) bits to O(n log |Σ|) + o(n log |Σ|), (where |Σ| represents the size
of the alphabet) with the proposal by Grossi and Vitter [28], but with an
increase in the access time from constant time to O(logε n), (where ε is
any constant such that 0 < ε ≤ 1). They also proposed the construction
of compressed suffix trees from compressed suffix arrays. CSA proposal by
Sadakane [59] is called a self indexing structure as it replaces the original text
i.e., it can provide fast access to the string without explicitly storing the text
string T [25]. The space required for Sadakane’s proposal [59, 60] of CSA is
O(n logH0 +n log log |Σ|), where H0 is the zero-th order entropy for the text
T . The access time is increased from constant time to O(logε n) [59, 60],
similar to the proposal by Grossi and Vitter [28]. Navarro and Mäkinen [54]
present a survey on various proposals for efficient construction of the com-
pressed suffix arrays.

There exists a one-to-one correspondence between the symbols of
text T of length n and the elements of suffix arrays which gives the moti-
vation for compression [2]. Grossi and Vitter [28] proposed the solution by
representing the suffix array as an abstract data type [2], with the help of two
operations defined for a text T of length n and suffix array SA as follows:

• compress(T,SA): this operation compresses the suffix array SA to gen-
erate compressed suffix array (CSA). The CSA thus generated is re-
tained along with the text T , while discarding the original suffix array.

• lookup(i): this operation returns the index position in the suffix array
of the lexicographically i-th smallest suffix in T .

The goal is to develop a compressed suffix array in reduced space
and yet provide operations comparable to those of the uncompressed coun-
terpart. The lookup(i) operation can be performed in constant time with a
compressed suffix array. It was shown by Grossi and Vitter [28] that the
operation lookup(i) can be performed in O(log log n) time with a CSA repre-
sented using 1

2
log log n+ 6n+O( n

log logn)
) bits of space. Similarly, for general

18



alphabet |Σ| > 2, the operation lookup(i) can be performed in O(log log|Σ| n)

time with a CSA represented using 1 + 1
2

log log|Σ| n + 5n + O( n
log logn)

) bits

of space [2].

2.5.3 Compressed Suffix Trees

Compressed Suffix Trees (CST) were proposed as a replacement to Suffix
Trees (ST) to represent them in compact space and have the defined opera-
tions still be performed efficiently. A compressed suffix tree consists of the
following three parts, each of which is represented in a compressed form.

1. A compressed suffix array(CSA): self-indexing structure which provides
lexicographical information. It is called a self indexing structure as it
can replace the text.

2. A compressed LCP Array: provides information about common sub-
strings in the text.

3. Navigation structure (NAV): a succinct data structure which represents
the tree topology and supports navigational operations efficiently.

Thus, the size of the CST is given by:

|CST| = |CSA|+ |LCP|+ |NAV|, where || represents the size.

Different combinations of these components lead to different vari-
ants which have been studied by different authors. Compressed suffix trees
were originally introduced by Munro et al. [51] which represents the suffix
tree in n log n + O(n) bits of space and allows the search for a pattern in
O(m) time. Sadakane [60] proposed a different version of CST that is linear
in size of the text and occupies nH0 +O(n log log |Σ|)+6n+o(n) bits of space
where the LCP parts takes 2n+o(n) bits and NAV part takes 4n+o(n) bits.
The NAV part of Sadakane’s CST is represented using a balanced paren-
thesis sequence (4n bits) with a support structure of sub-linear space o(n)
bits. The first practical implementation of CST was given by Välimäki et

19



al. [66] based on the proposal by Sadakane [60]. The CST proposal by Russo
et al. [58] occupies sub-linear space, but the runtime operations are slower
compared to the Sadakane’s [60] version of CST. The proposal by Fischer et
al. [24] occupies less space as compared to Sadakane’s version of CST. They
used a run length encoded version of Sadakane’s LCP and the NAV part
is dependent on the operations of LCP. The proposal by Fischer et al. is
implemented by Cȧnovas and Navarro [16] and the operations are orders of
magnitude slower in practice. Recently, Gog et al. provided a library of CST
implementations [25, 26] based on their theoritical proposals in [27, 55, 56],
with two efficient implementations of CST. The first is cst sada which is an
optimized implementation of Sadakane’s proposal [60] in which the nodes are
represented based on its position in the BPS (balanced parenthesis sequence)
and the navigational operations are faster. The second is cst sct3 based on
their proposal in [55] that requires 3n+ o(n) bits to represent the NAV. The
NAV part of cst sct3 does not depend on the LCP for its operations and
the navigational operations are slower as compared to the cst sada version
of CST.

20



Chapter 3

Periodicity Mining using CSTs

3.1 Introduction

Compressed Suffix Trees (CST) were designed as a replacement for Suffix
Trees (ST) with the goal to represent them in a compact space, while per-
forming the operations on suffix trees efficiently. However, with any imple-
mentation of the CST there is a time-space trade-off which leads to a slow
down of the operations by some factor. The use of CST rather than ST is
the choice to be made depending upon several factors such as the size of
the text, application needs, and the operations that need to be performed.
Periodicity mining on time series databases deal with large amounts of data
which makes it difficult to perform mining in main memory due to the space
requirements of the suffix tree. Here, we provide an empirical analysis on
practical usage of CSTs for periodicity mining. We use the algorithm by
Rasheed et al. [57] as the basis, which use suffix trees for periodicity mining
in time series databases. Once a suffix tree is constructed for the text rep-
resenting the time series data, the tree is traversed to record the occurrence
vector at each internal node in a bottom-up manner. An occurrence vector
records the list of all the leaf nodes in the subtree rooted at any given node.
The key idea is that the repetitions of substrings in the text are captured
effectively by the internal nodes in the suffix tree and the positions of all the
exact occurrences of the substring represented by an internal node’s path la-

21



bel is given by the list of leaf nodes in the subtree rooted at the given internal
node. The periodicity algorithm then analyzes the occurrence vector of each
internal node to check if the substring representing the internal node’s path
label is periodic in the given text.

3.2 Using CSTs for periodicity mining

Compressed suffix trees can be used for periodicity mining involving huge
amounts of data. Once a compressed suffix tree is built on the text repre-
senting the practical time series data, it can be used to generate occurrence
vectors for each internal node of the suffix tree data structure. As mentioned
earlier, the repetitive substrings in the text are captured efficiently by the
internal nodes of the suffix tree data structure and we can efficiently gen-
erate the occurrence vectors by traversing the compressed suffix tree with
the use of operations given by the navigation structure (NAV) of the CST.
Sadakane’s [60] proposal for CST uses a balanced parenthesis sequence to
represent the tree topology of a suffix tree data structure and with the help
of a sub-linear support structure, it provides constant time navigational op-
erations that aid in an efficient traversal of the tree.

Balanced Parenthesis Sequence: The suffix tree data structure
can be represented using a nested string of balanced parentheses [2,51]. Fig-
ure 3.1, gives the parentheses sequence and the suffix tree structure for an
example string, T=mississippi$. Each node is represented as a pair of open
and closed parenthesis [2] and the node is represented by the position of the
open and closed parentheses in the string sequence. The balanced parenthe-
ses sequence (BPS) can be obtained by performing an inorder traversal on
the suffix tree starting from the root, where an open parenthesis is written
for an internal node the first time it is visited and then the subtree of the
node is visited and a closed parenthesis is written, after all the nodes in
the subtree are visited. A leaf node is represented by a pair of consecutive
open and closed parenthesis and the operation is leaf(v) can be answered
in constant time with use of query BPS[v + 1] = 0, where v represents any
node and the value 0 represents a closed parenthesis and 1 represents an open
parenthesis in the parentheses notation [25]. For a text of length n, the suffix
tree can have at most 2n− 1 nodes, with n leaves and at most n− 1 internal

22



nodes. Thus, it requires 4n bits to represent the tree topology using the BPS
notation.

Figure 3.1: Suffix tree structure and BPS notation for sequence
T=mississippi$.

The operations that aid in navigation of the tree are based on the
following two constant-time operations supported by the use of additional
supporting data structures that occupy o(n) bits of space:

• rank(i): returns the count of the number of 1’s in a prefix BPS[0.....i−1]
of the binary BPS sequence.

• select(i): returns the position of the i-th 1 in the binary BPS sequence.

The data structures to support these operations are computed in linear
time [51]. The following constant time operations use the rank(i) and se-
lect(i) operations to perform efficient navigation [25,26]:

• parent(v): returns the parent node of v and returns v, if v = root()

23



• sibling(v): returns the next sibling of v and returns root(), if v is the
right most child of parent(v)

• ith child(v, i): returns the i-th child of the node v for i ∈ [1....degree(v)]

• leftmost leaf in the subtree(v) : returns the left most leaf in the sub-
tree rooted at node v

Algorithm 1 below shows the pseudo code for traversal of a tree (ST
and CST) to generate occurrence vectors for each internal node.

Algorithm 1 Non-recurvise traversal algorithm to generate occurrence vec-
tors.

1: Initialize a vector occVec that holds the occurrence vectors for all the
internal nodes

2: Set index occV ec ← 0
3: Initialize the stack
4: push the root onto the stack
5: while the stack is not empty do
6: node(v) ← pop the element from the stack
7: if node(v) is already visited then
8: if node(v) is not a root node and not a leaf node then
9: node(v).endIndex← index occV ec

10: end if
11: else
12: if if node(v) is a leaf node then
13: add the suffix number of the leaf node to the vector occVec
14: increment index occV ec
15: else
16: mark the node(v) as visited
17: node(v).startIndex← index occV ec
18: push node(v) onto the stack
19: for each child node(c) of node(v) do
20: push node(c) onto the stack
21: end for
22: end if
23: end if
24: end while

24



The compressed suffix tree is traversed using a non-recursive post
order traversal method. A single vector occVec is used to store the occur-
rence vectors for all the internal nodes in the tree and for a given internal
node its occurrence vector is given by making pointers node.startIndex and
node.endIndex into the vector occVec. The traversal starts with the root
node and if the given node is not already visited, then: if it is a leaf node,
the suffix number of the leaf node is added to the vector occVec, and if it is
an internal node it is marked as visited and the current size of the occVec
is stored as the node.startIndex for the given node and the same is repeated
for all the nodes in its subtree. If the node is already visited, then all the
nodes in subtree are assumed to be traversed and if it is an internal node,
then the current size of the occVec is stored as the node.endIndex for the
given node. Algorithm 2 (page 28) shows, how the DFS iterator defined in
sdsl library [25] is used to generate the occurrence vectors using a CST.

3.3 Empirical Comparative Analysis: ST vs

CST

3.3.1 Goals of the Empirical Analysis

Our goals in the empirical analysis are as follows:

• Compare the practical size of the suffix data structures.

• Compare the time required to construct the suffix data structures.

• Compare the time required to generate occurrence vectors as described
by Rasheed et al. in [57] on which the periodicity algorithm is run.

• Study how various attributes of the sequence influence the performance
of a given suffix data structure (ST or CST).

25



3.3.2 Experimental Setup

Implementation Details

Suffix Tree: We have used an ANSI C implementation by Yona Shlomo and
Tsadok Dotan [73]. In this implementation, a node is represented using a C
struct with the following members:

Member Description
Size
(bytes)

children A pointer to linked list of child nodes 8

right sibling
A pointer to linked list of right siblings of
that node

8

left sibling
A pointer to linked list of left siblings of that
node

8

parent A pointer to that node’s parent 8

suffix link
A pointer to the node that represents the
largest suffix of the current node

8

path position Index of the start position of the node’s path 8
edge label start Start index of the incoming edge 8
edge label end End index of the incoming edge 8

node index
Unique identification for the node (Added to
help in traversal of the tree)

8

Total 72

Table 3.1: Attributes of a node in the ANSI C Implementation of the suffix
tree [73].

This implementation gives efficient construction of suffix trees for
the text of any size and any alphabet based on Ukkonen’s [65] method for
online construction of suffix trees in linear time and linear space. A non-
recursive post order traversal with explicit stack-based algorithm [4] shown
in Algorithm 1 (page 24) is used to generate occurrence vectors. The method
of construction of suffix tree and the method of generation of occurrence
vectors is similar to the methods used by Rasheed et al. [57].

Compressed Suffix Trees: We have used the C++ library sdsl (Succinct

26



Data Structure Library) by Simon Gog et al. [26] for compressed suffix trees.
We have used the following two variants of the CST implementations:

• cst sada: An implementation of Sadakane’s [60] proposal for CST
where a node is represented by its position in the BPS (Balanced
Parenthesis Sequence). The navigational operations are fast and are
implemented as BPS operations on DFS-BPS. The worst case space
complexity is |CSA| + |LCP | + 4n + o(n) bits, where it takes 2 bits
to represent each node using BPS and in the worst case there are 2n
nodes. The entropy compressed version of CSA occupies nHk + |Σ|k
bits of space and LCP occupies 2n+o(n) bits of space, where Hk is the
k-th order empirical entropy of the text T .

The k-th order entropy for text T : Hk = 1
n

∑
ω∈Σk |Tω|H0(Tω)

The zero-th order entropy for text T : H0 =
|Σ|−1∑
i=0

ni

n
log n

ni

where Tω is the concatenation of all the characters in T which follow
the occurrences of the substring ω in T [25], and ni is the number of
occurrences of character ci in T (where Σ = {c0, ...c|Σ−1|}).

• cst sct3: An implementation by Gog et al. [55] where nodes are rep-
resented as intervals. The construction is fast, but the operations are
slower. The worst case space complexity is |CSA|+ |LCP |+ 3n+ o(n)
bits. Again, the entropy compressed version of CSA occupies nHk+|Σ|k
bits of space and LCP occupies 2n+o(n) bits of space, where Hk is the
k-th order empirical entropy of the text T .

The occurrence vectors are generated using the DFS iterator given
in the library with slight modifications to store values for the occurrence
vectors. The iterator defined takes constant time for increments as it uses
constant time operations such as parent(v), sibling(v), ith child(v, i), and
leftmost leaf in the subtree(v) defined in Section 3.2. In addition to these
methods, we use the method sn(v) defined in the library, which returns
the suffix number of a given leaf node v. The method sn(v) queries the
underlying CSA structure to count the leaves to the left of the leaf node

27



v, with a time complexity of the order of access to suffix array element.
Algorithm 2 presents our pseudo code for generating occurrence vectors using
the dfs iterator defined in the sdsl library [25].

Algorithm 2 Algorithm to generate occurrence vectors using the dfs iterator
defined in the sdsl library for CSTs.

1: Initialize a vector occVec which holds the occurrence vectors for all the
internal nodes

2: Set index occV ec← 0
3: Initialize the iterator(it) on CST
4: for it.begin() till it.end() do
5: node(v)← it.node()
6: if if node(v) is a leaf node then
7: add the suffix number to the vector occVec
8: increment index occV ec
9: else

10: if node(v) is not a root node then
11: if node(v) is not already visited then
12: node(v).startIndex← index occV ec
13: else
14: node(v).endIndex← index occV ec
15: end if
16: end if
17: end if
18: end for

Simulation Environment

Tests for the analysis were run on a memory-optimized cloud instance picked
from Amazon Elastic Cloud Compute (EC2) platform with 30.5 GB of DDR3
DRAM to support memory-intensive computations and with 4 virtual CPUs
of type Intel Xeon E5-2670 v2 (Ivy Bridge, 64-bit) processor with 25 MB
cache running at 2.50 GHz. An 80 GB SSD storage was configured to hold
the programs, scripts, test input datasets and the generated outputs. Ubuntu
Server 14.04 LTS (HVM) was the operating system running on this system.
The g++ version 4.8.2 (Ubuntu 4.8.2-19 ubuntu1) was used for compilations.

28



cmake (2.8.12.2) was chosen to automate all the build tasks.

3.3.3 Data Sets

Different kinds of data both synthetic and real data containing repetitions
were used in the experiments.

• Fibonacci Words: These represent data generated artificially with
highly repetitive substrings. The Fibonacci sequence (also called Stur-
mian sequence) is given by the recurrence relation: F1 = 1, F2 =
0, Fn = Fn−1 + Fn−2 ∀ (n > 2), where “+” denotes the concatena-
tion of two words. Example sequences for Fn, n = 1, 2, ....7: 1, 0, 01,
010, 01001, 01001010, 0100101001001. Although the infinite Fibonacci
word is not periodic, it is considered to be extremely repetitive and is
often considered as the worst case for algorithms which detect repeti-
tions in a string [14, 34]. A Fibonacci word of length n has O(n log n)
repetitions [6].

• Real Data: The real data composed of highly repetitive texts from
different sources such as Wikipedia, DNA and documents (informa-
tion about CIA world leaders) obtained from the Pizza & Chili Cor-
pus [18] available at http://pizzachili.dcc.uchile.cl/repcorpus.html. The
files used are einstein.de.txt, Escherichia Coli, world leaders.

• Pseudo Real Data: These represent the data generated artificially
by adding repetitiveness to real data sets, which are also obtained from
the Pizza & Chili Corpus [18]. Each of these files are of size 100MB.

• Synthetic Data: The synthetic data has been generated in the same
manner as generated by Elfeky et al. in [22]. A partial periodic data
of size 100MB is generated with a set of parameters (dist=uniform,
p =32, |Σ|=10), with similar values as used in [57]. And chunks of
varying data sizes of the generated data file are used. Experiments
produce similar results for data with normal distribution.

We characterize the data sets using their average LCP, maximum
LCP values and their entropy (H0, and H1). Considered with the sequence

29



length (n), these values provide an idea of the difficulty in searching for
patterns (including periodicity). Larger values of LCP implies more difficulty.
See Table 3.2 for Fibonacci words, Table 3.9 for real data, Table 3.16 for
pseudo real data, and Table 3.23 for synthetic data.

3.4 Results

Results reported in this section are averages for 5 repetitions of the same
experiment. We study the impact of how various attributes of the sequence
influence the performance of a given suffix data structure using correlation
tables. See Tables 3.3, 3.4, 3.5 for Fibonacci words, Tables 3.10, 3.11, 3.12
for real data, Tables 3.17, 3.18, 3.19 for pseudo real data, and Tables 3.24,
3.25, 3.26 for synthetic data. The upper half of the tables give Pearson’s
correlation coefficient values and the lower half of the tables give Kendall
Tau rank coefficient values.

3.4.1 Fibonacci Words

Table 3.2 shows the LCP and entropy information for the data set with
Fibonacci words. As expected, the maximum LCP is relatively high, always
(n/2)) for each given n. The mean LCP is also relatively high, growing very
fast with increasing values of n. The per symbol value of max and mean
LCP is approximately equal for different data sizes, but does not show any
linear behavior with increasing data size. The H0 and H1 values are generally
constant at 0.959 and 0.593 respectively, independent of the sequence length
n. The (#numNodes/n) is 2 for Fibonacci words.

30



n (#symbols) #numNodes maxLCP meanLCP maxLCP/n meanLCP/n
10,000 20,000 5,819 2,566 0.582 0.257

100,000 199,999 53,632 25,131 0.536 0.251
1,000,000 1,999,997 514,227 250,202 0.514 0.250

10,000,000 19,999,997 5,702,885 2,549,580 0.570 0.255
20,000,000 39,999,913 10,772,535 5,029,840 0.539 0.251
30,000,000 59,999,994 15,069,648 7,500,160 0.502 0.250
40,000,000 79,999,999 24,157,815 10,432,200 0.604 0.261
50,000,000 99,999,999 25,842,183 12,514,200 0.517 0.250
60,000,000 120,000,000 35,842,183 15,568,900 0.597 0.259
70,000,000 140,000,000 39,088,167 17,738,800 0.558 0.253
80,000,000 160,000,000 40,911,831 20,010,400 0.511 0.250
90,000,000 179,999,997 50,911,831 22,888,300 0.566 0.254

100,000,000 199,999,997 60,911,831 26,190,700 0.609 0.262

Table 3.2: LCP, entropy and other attributes for Fibonacci words.

(a) meanLCP and maxLCP (b) meanLCP/n and maxLCP/n

Figure 3.2: LCP information for varying data sizes(n) using Fibonacci words.

cst sada
H0 H1 maxLCP meanLCP size cTime tTime # nodes

H0 1.000 0.895 -0.195 -0.239 -0.859 -0.863 0.481 -0.371
H1 0.809 1.000 0.030 -0.089 -0.679 -0.770 0.313 -0.420
maxLCP -0.218 0.036 1.000 0.959 0.193 0.241 -0.410 0.177
meanLCP -0.161 0.037 0.966 1.000 0.173 0.283 -0.416 0.276
size -0.723 -0.548 0.090 0.070 1.000 0.913 -0.519 0.323
cTime -0.715 -0.615 0.156 0.138 0.584 1.000 -0.572 0.487
tTime 0.591 0.470 -0.200 -0.184 -0.494 -0.511 1.000 -0.881
# nodes -0.676 -0.561 0.000 -0.024 0.442 0.460 -0.506 1.000

Table 3.3: Correlation values for cst sada using Fibonacci words.

31



cst sct3
H0 H1 maxLCP meanLCP size cTime tTime # nodes

H0 1.000 0.895 -0.195 -0.239 -0.891 -0.826 0.488 -0.371
H1 0.809 1.000 0.030 -0.089 -0.724 -0.744 0.337 -0.420
maxLCP -0.218 0.036 1.000 0.959 0.278 0.195 -0.408 0.177
meanLCP -0.161 0.037 0.966 1.000 0.285 0.216 -0.419 0.276
size -0.715 -0.615 0.156 0.138 1.000 0.956 -0.676 0.510
cTime -0.715 -0.615 0.156 0.138 1.000 1.000 -0.546 0.447
tTime 0.591 0.470 -0.200 -0.184 -0.511 -0.511 1.000 -0.896
# nodes -0.676 -0.561 0.000 -0.024 0.460 0.460 -0.506 1.000

Table 3.4: Correlation values for cst sct3 using Fibonacci words.

ST
H0 H1 maxLCP meanLCP size cTime tTime # nodes

H0 1.000 0.895 -0.195 -0.239 -0.302 -0.720 -0.922 -0.371
H1 0.809 1.000 0.030 -0.089 -0.364 -0.625 -0.910 -0.420
maxLCP -0.218 0.036 1.000 0.959 0.164 0.293 0.017 0.177
meanLCP -0.161 0.037 0.966 1.000 0.265 0.277 0.099 0.276
size -0.417 -0.566 0.149 0.154 1.000 0.444 0.320 0.997
cTime -0.684 -0.606 0.116 0.120 0.416 1.000 0.603 0.493
tTime -0.731 -0.629 0.068 0.047 0.356 0.453 1.000 0.379
# nodes -0.676 -0.561 0.000 -0.024 0.463 0.699 0.353 1.000

Table 3.5: Correlation values for ST using Fibonacci words.

Using the correlation values from Tables 3.3, 3.4, and 3.5 for
Fibonacci words, it can be observed that, the size of the suffix data structures
vary inversely w.r.t varying entropy values, more significantly in the case of
CSTs and less significantly in the case of ST. The construction time varies
inversely w.r.t to varying entropy values for all the suffix data structures.
The traversal time has a positive correlation w.r.t entropy values in the case
of compressed suffix trees and high negative correlation in the case of suffix
trees. The LCP values have a negative correlation w.r.t the traversal time in
the case of CSTs. The size and construction time for the data structures has
a positive correlation w.r.t the number of the nodes in the structure, whereas
the traversal time has a negative correlation in the case of CSTs and positive
correlation in the case of ST. In particular, for ST the size has an almost
perfect correlation (ρ=0.997) with the number of nodes(# nodes).

Figure 3.3 and Table 3.6 show that, in general, with increasing data

32



sizes, the size of the suffix data structures are linear with respect to n, the
data size. Table 3.6 illustrates that, on average, the space required by suffix
tree (ST) is approximately 111.21 times that for cst sada and approxi-
mately 30.61 times that for cst sct3. The per symbol values remain fairly
constant in the case of suffix tree with increasing data sizes, but increases
in the case of cst sct3, and in the case of cst sada it does not show any
reasonable behavior.

(a) ST (b) CST

Figure 3.3: Size(MB) of suffix data structures with varying data sizes(n)
using Fibonacci words.

(a) ST (b) CST

Figure 3.4: Size per symbol(bytes) of suffix data structures with varying data
sizes(n) using Fibonacci words.

Figure 3.5a and Table 3.7 show that, with increasing data sizes
the time required to construct the data structures are generally linear with

33



respect to n, the data size. Table 3.7 illustrates that, on average, the con-
struction time required for cst sada is around 4.18 times that for the suffix
tree (ST), and about 1.93 times that for cst sct3. The per symbol values
increase in the case of cst sada and cst sct3 with the linear increase in
data sizes. However, in the case of suffix tree it is fairly constant with slight
variation which does not show any reasonable behavior.

(a) Construction time (b) Traversal time

Figure 3.5: Time requirements(secs) for suffix data structures with varying
data sizes(n) using Fibonacci words.

(a) Construction time (b) Traversal time

Figure 3.6: Time requirements per symbol(µsecs) for suffix data structures
with varying data sizes(n) using Fibonacci words.

Figure 3.5b and Table 3.8 show the time required to traverse the
respective structures to generate the occurrence vectors. While the traversal
time varies linearly with respect to n for the suffix tree, it is not exactly

34



linear for cst sada and cst sct3. This behavior is observed due to the
time complexity involved in calculating the suffix number for a leaf node with
the use of operation sn(v) defined in the sdsl library. Table 3.8 illustrates
that, on average, the traversal time required for cst sada is around 4.07
times that for the suffix tree (ST), and about 1.31 times the traversal time
required for cst sct3. The per symbol values increase in the case of suffix
tree, and decrease in the case of compressed suffix trees. Higher average LCP
leads to shorter traversal time for CST, but not for ST. Higher LCP values
often imply more compressibility.

n(#symbols) sada(MB) sct3(MB) ST(MB) sada/n(bytes) sct3/n(bytes) ST/n(bytes) ST/sada ST/sct3 sct3/sada
10,000 0.01 0.03 1.38 1.216 2.934 138.286 113.73 47.13 2.41

100,000 0.14 0.33 13.83 1.357 3.305 138.282 101.91 41.84 2.44
1,000,000 1.23 3.65 138.28 1.225 3.648 138.283 112.85 37.90 2.98

10,000,000 12.32 41.98 1382.97 1.232 4.197 138.283 112.30 32.95 3.41
20,000,000 24.75 85.10 2765.65 1.238 4.255 138.282 111.73 32.50 3.44
30,000,000 37.02 128.13 4148.48 1.234 4.271 138.283 112.06 32.38 3.46
40,000,000 49.75 179.78 5531.31 1.244 4.495 138.283 111.19 30.77 3.61
50,000,000 62.14 228.47 6914.14 1.243 4.569 138.283 111.27 30.26 3.68
60,000,000 74.50 277.59 8296.97 1.242 4.627 138.283 111.36 29.89 3.73
70,000,000 87.64 327.24 9679.79 1.252 4.675 138.283 110.45 29.58 3.73
80,000,000 100.07 376.43 11062.62 1.251 4.705 138.283 110.55 29.39 3.76
90,000,000 112.53 425.61 12445.45 1.250 4.729 138.283 110.60 29.24 3.78

100,000,000 124.99 474.79 13828.28 1.250 4.748 138.283 110.64 29.12 3.80
Average 1.24 4.53 138.28 111.21 30.61 3.64
Ave Dev 0.006 0.178 0.002 0.529 1.232 0.128

Table 3.6: Size(MB) of suffix data structures with varying data sizes(n) using
Fibonacci words.

n(#symbols) sada(secs) sct3(secs) ST(secs) sada/n(µsecs) sct3/n(µsecs) ST/n(µsecs) sada/ST sct3/ST sada/sct3
10,000 0.030 0.024 0.002 3.019 2.392 0.249 12.14 9.62 1.26

100,000 0.088 0.044 0.026 0.880 0.437 0.260 3.39 1.68 2.01
1,000,000 0.753 0.305 0.278 0.753 0.305 0.278 2.71 1.10 2.47

10,000,000 9.95 4.85 2.78 0.995 0.485 0.278 3.58 1.74 2.05
20,000,000 20.91 10.56 5.56 1.046 0.528 0.278 3.76 1.90 1.98
30,000,000 32.89 16.82 8.37 1.096 0.561 0.279 3.93 2.01 1.96
40,000,000 45.74 23.21 11.18 1.143 0.580 0.280 4.09 2.08 1.97
50,000,000 58.94 30.16 13.96 1.179 0.603 0.279 4.22 2.16 1.95
60,000,000 71.94 37.08 16.96 1.199 0.618 0.283 4.24 2.19 1.94
70,000,000 86.49 46.61 19.78 1.236 0.666 0.283 4.37 2.36 1.86
80,000,000 99.74 53.39 22.60 1.247 0.667 0.282 4.41 2.36 1.87
90,000,000 114.48 63.11 25.33 1.272 0.701 0.281 4.52 2.49 1.81

100,000,000 131.97 70.87 28.10 1.320 0.709 0.281 4.70 2.52 1.86
Average 1.17 0.61 0.28 4.18 2.18 1.93
Ave Dev 0.082 0.060 0.002 0.274 0.203 0.060

Table 3.7: Variation of construction time(secs) for suffix data structures with
varying data sizes(n) using Fibonacci words.

35



n(#symbols) sada(secs) sct3(secs) ST(secs) sada/n(µsecs) sct3/n(µsecs) ST/n(µsecs) sada/ST sct3/ST sct3/sada
10,000 0.014 0.010 0.001 1.426 1.031 0.135 10.54 7.63 0.72

100,000 0.142 0.102 0.023 1.421 1.017 0.234 6.06 4.34 0.72
1,000,000 2.300 1.494 0.296 2.300 1.494 0.296 7.78 5.05 0.65

10,000,000 13.89 10.93 4.23 1.389 1.093 0.423 3.28 2.58 0.79
20,000,000 120.40 67.36 8.95 6.020 3.368 0.447 13.46 7.53 0.56
30,000,000 113.07 64.04 13.75 3.769 2.135 0.458 8.23 4.66 0.57
40,000,000 40.35 34.58 18.48 1.009 0.865 0.462 2.18 1.87 0.86
50,000,000 66.68 54.11 23.64 1.334 1.082 0.473 2.82 2.29 0.81
60,000,000 60.33 50.76 27.88 1.005 0.846 0.465 2.16 1.82 0.84
70,000,000 64.91 56.54 32.54 0.927 0.808 0.465 1.99 1.74 0.87
80,000,000 86.55 72.75 37.96 1.082 0.909 0.475 2.28 1.92 0.84
90,000,000 71.71 66.23 43.14 0.797 0.736 0.479 1.66 1.54 0.92

100,000,000 125.20 97.65 47.87 1.252 0.976 0.479 2.62 2.04 0.78
Average 1.86 1.28 0.46 4.07 2.80 0.78
Ave Dev 1.214 0.588 0.012 2.710 1.318 0.089

Table 3.8: Variation of traversal time(secs) for suffix data structures with
varying data sizes(n) using Fibonacci words.

3.4.2 Real Data

Table 3.9 shows the LCP and entropy information for the real data set ob-
tained from the Pizza & Chili corpus [18]. The files marked with ∗ are real
data sets obtained by taking only the first 100 MB of each file. As observed,
the meanLCP is highest for the file kernel∗ and lowest for the file influenza∗.

FileName |Σ| n(#symbols) #numNodes #numNodes/n maxLCP meanLCP maxLCP/n meanLCP/n H0 H1

Escherichia Coli 15 112,689,515 217,430,271 1.929 698,433 11,322 0.006198 0.000100 2.00 1.98
world leaders 89 46,968,181 89,618,348 1.908 695,051 8,837 0.014798 0.000188 3.47 1.95
einstein.de.txt 117 92,758,441 183,662,236 1.980 258,006 35,248 0.002781 0.000380 5.04 3.59
cere∗ 5 104,857,600 202,359,830 1.930 32,469 2,130 0.000310 0.000020 2.20 1.80
para∗ 5 104,857,600 201,676,800 1.923 42,013 1,300 0.000401 0.000012 2.13 1.87
Escherichia Coli∗ 15 104,857,600 201,964,284 1.926 698,433 11,870 0.006661 0.000113 2.00 1.98
influenza∗ 15 104,857,600 204,446,109 1.950 23,483 815 0.000224 0.000008 1.97 1.93
einstein.en∗ 139 104,857,600 205,375,456 1.959 1,738,784 49,722 0.016582 0.000474 4.86 3.64
kernel∗ 160 104,857,600 205,909,946 1.964 1,413,731 108,325 0.013482 0.001033 5.35 4.09
coreutils∗ 236 104,857,600 193,138,002 1.842 2,172,045 82,654 0.020714 0.000788 5.43 4.12

Table 3.9: LCP, entropy and other attributes for real data set obtained from
the Pizza & Chili corpus [18]

Note : For the file Escherichia Coli the alphabet size is 15. Although there
are four bases {A,C,G,T}, DNA sequences may have alphabets of size up
to 16 = 24 because some characters denote an unknown choice among the
four bases. The most common character used is N, which denotes a totally
unknown symbol [18].

36



cst sada
|Σ| H0 H1 maxLCP meanLCP size cTime tTime # nodes

|Σ| 1.000 0.966 0.972 0.954 0.908 -0.688 -0.942 -0.547 -0.418
H0 0.551 1.000 0.995 0.928 0.946 -0.682 -0.965 -0.601 -0.200
H1 0.951 0.524 1.000 0.938 0.959 -0.689 -0.948 -0.601 -0.205
maxLCP 0.651 0.619 0.714 1.000 0.847 -0.612 -0.862 -0.492 -0.365
meanLCP 0.651 0.714 0.619 0.714 1.000 -0.552 -0.932 -0.473 -0.146
size -0.451 -0.429 -0.333 -0.238 -0.143 1.000 0.564 0.963 -0.004
cTime -0.551 -1.000 -0.524 -0.619 -0.714 0.429 1.000 0.460 0.314
tTime -0.250 -0.238 -0.143 -0.048 -0.143 0.810 0.238 1.000 -0.264
# nodes 0.250 0.048 0.143 -0.143 0.143 -0.238 -0.048 -0.429 1.000

Table 3.10: Correlation values for cst sada using real data.

cst sct3
|Σ| H0 H1 maxLCP meanLCP size cTime tTime # nodes

|Σ| 1.000 0.966 0.972 0.954 0.908 0.858 -0.892 0.850 -0.418
H0 0.551 1.000 0.995 0.928 0.946 0.956 -0.911 0.824 -0.200
H1 0.951 0.524 1.000 0.938 0.959 0.944 -0.901 0.830 -0.205
maxLCP 0.651 0.619 0.714 1.000 0.847 0.853 -0.748 0.780 -0.365
meanLCP 0.651 0.714 0.619 0.714 1.000 0.892 -0.905 0.891 -0.146
size 0.551 0.524 0.429 0.333 0.619 1.000 -0.845 0.666 0.081
cTime -0.551 -0.714 -0.429 -0.333 -0.619 -0.810 1.000 -0.791 0.217
tTime 0.651 0.810 0.714 0.810 0.714 0.333 -0.524 1.000 -0.491
# nodes 0.250 0.048 0.143 -0.143 0.143 0.524 -0.333 -0.143 1.000

Table 3.11: Correlation values for cst sct3 using real data.

ST
|Σ| H0 H1 maxLCP meanLCP size cTime tTime # nodes

|Σ| 1.000 0.966 0.972 0.954 0.908 -0.421 -0.376 -0.772 -0.418
H0 0.551 1.000 0.995 0.928 0.946 -0.204 -0.450 -0.688 -0.200
H1 0.951 0.524 1.000 0.938 0.959 -0.209 -0.457 -0.688 -0.205
maxLCP 0.651 0.619 0.714 1.000 0.847 -0.368 -0.368 -0.705 -0.365
meanLCP 0.651 0.714 0.619 0.714 1.000 -0.150 -0.348 -0.497 -0.146
size 0.250 0.048 0.143 -0.143 0.143 1.000 -0.431 0.397 1.000
cTime -0.350 -0.143 -0.238 -0.143 -0.238 -0.524 1.000 0.599 -0.436
tTime -0.551 -0.429 -0.524 -0.429 -0.143 -0.048 0.524 1.000 0.393
# nodes 0.250 0.048 0.143 -0.143 0.143 1.000 -0.524 -0.048 1.000

Table 3.12: Correlation values for ST using real data.

The correlation tables are obtained using only the files marked with
a ’*’. Using the correlation values from Tables 3.10, 3.11, and 3.12 for real
data, it can be observed that |Σ|, H0, LCP values and number of nodes
have negative correlation w.r.t the size of cst sada and ST and positive
correlation w.r.t the size of cst sct3. The construction time of CSTs and

37



ST vary inversely w.r.t the entropy H0, alphabet size |Σ| and the LCP values.
The traversal time of cst sada and ST has a negative correlation w.r.t the
H0, |Σ| and LCP values and positive correlation for cst sct3. For this data
set, the size for ST is perfectly correlated with the number of nodes(ρ=1,
τ=1).

Table 3.13 illustrates that, the space required by ST is at least
99 times the space required by cst sada and at least 35 times the space
required by cst sct3. Also, the space required by cst sct3 is at least 1.85
times the space required by cst sada.

FileName |Σ| n(symbols) sada(MB) sct3(MB) ST(MB) sada/n(bytes) sct3/n(bytes) ST/n(bytes) ST/sada ST/sct3 sct3/sada
Escherichia Coli 15 112,689,515 150.24 283.55 15037.22 1.333 2.516 133.439 100.09 53.03 1.89
world leaders 89 46,968,181 57.71 141.80 6198.40 1.229 3.019 131.970 107.41 43.71 2.46
einstein.de.txt 117 92,758,441 115.53 360.95 12699.55 1.245 3.891 136.910 109.93 35.18 3.12
cere∗ 5 104,857,600 137.84 276.76 13994.95 1.315 2.639 133.466 101.53 50.57 2.01
para∗ 5 104,857,600 139.86 258.24 13948.05 1.334 2.463 133.019 99.73 54.01 1.85
Escherichia Coli∗ 15 104,857,600 140.18 261.98 13967.79 1.337 2.498 133.207 99.64 53.32 1.87
influenza∗ 15 104,857,600 131.10 267.62 14138.20 1.250 2.552 134.832 107.84 52.83 2.04
einstein.en∗ 139 104,857,600 129.81 409.34 14202.01 1.238 3.904 135.441 109.41 34.70 3.15
kernel∗ 160 104,857,600 132.97 412.03 14238.71 1.268 3.929 135.791 107.08 34.56 3.10
coreutils∗ 236 104,857,600 130.98 364.78 13361.73 1.249 3.479 127.427 102.01 36.63 2.78

Average 1.28 3.09 133.55 104.47 44.85 2.43
Ave Dev 0.040 0.569 1.755 3.867 7.898 0.497

Table 3.13: Size(MB) of suffix data structures using real data set obtained
from the Pizza & Chili corpus [18]

Table 3.14 illustrates that, the construction time required for cst sada
is at least 1.8 times the construction time required for ST. The construction
time required for cst sct3 is approximately equal to the time required for
ST for certain files and is less than 2 times for the other files. Also, the
construction time required for cst sada is at least twice the construction
time required for cst sct3.

FileName |Σ| n(symbols) sada(secs) sct3(secs) ST(secs) sada/n(µsecs) sct3/n(µsecs) ST/n(µsecs) sada/ST sct3/ST sada/sct3
Escherichia Coli 15 112,689,515 123.08 59.83 59.70 1.092 0.531 0.530 2.06 1.00 2.06
world leaders 89 46,968,181 43.41 17.24 15.63 0.924 0.367 0.333 2.78 1.10 2.52
einstein.de.txt 117 92,758,441 89.33 42.61 25.84 0.963 0.459 0.279 3.46 1.65 2.10
cere∗ 5 104,857,600 107.62 49.78 49.53 1.026 0.475 0.472 2.17 1.01 2.16
para∗ 5 104,857,600 109.60 52.19 60.94 1.045 0.498 0.581 1.80 0.86 2.10
Escherichia Coli∗ 15 104,857,600 111.60 53.39 54.22 1.064 0.509 0.517 2.06 0.98 2.09
influenza∗ 15 104,857,600 112.14 50.44 32.67 1.069 0.481 0.312 3.43 1.54 2.22
einstein.en∗ 139 104,857,600 102.92 48.21 28.54 0.982 0.460 0.272 3.61 1.69 2.13
kernel∗ 160 104,857,600 98.82 44.61 38.70 0.942 0.425 0.369 2.55 1.15 2.22
coreutils∗ 236 104,857,600 97.77 44.86 46.90 0.932 0.428 0.447 2.08 0.96 2.18

Average 1.00 0.46 0.41 2.60 1.19 2.18
Ave Dev 0.055 0.035 0.098 0.575 0.260 0.085

Table 3.14: Construction time(secs) for suffix data structures using real data
set obtained from the Pizza & Chili corpus [18]

38



Table 3.15 illustrates that, the traversal time required for cst sada
is at least 3.6 times the traversal time required for ST, however, the traversal
time for certain files Escherichia Coli, cere∗, para∗, and Escherichia Coli∗

is more than expected in the case of cst sada. This behavior is similar to
the case of Fibonacci words with small alphabet size. The traversal time
required for cst sct3 is at least 4.04 times the traversal time required for
ST. The time required for cst sada is more in comparison to cst sct3 for
the files with small alphabet size which is similar to the case of Fibonacci
words, and the opposite for the remaining files.

FileName |Σ| n(symbols) sada(secs) sct3(secs) ST(secs) sada/n(µsecs) sct3/n(µsecs) ST/n(µsecs) sada/ST sct3/ST sct3/sada
Escherichia Coli 15 112,689,515 620.12 346.95 47.92 5.503 3.079 0.425 12.94 7.24 0.56
world leaders 89 46,968,181 94.91 119.25 18.27 2.021 0.367 0.389 5.20 6.53 1.26
einstein.de.txt 117 92,758,441 134.96 266.21 37.07 1.455 2.870 0.400 3.64 7.18 1.97
cere∗ 5 104,857,600 445.72 266.70 42.12 4.251 2.543 0.402 10.58 6.33 0.60
para∗ 5 104,857,600 530.09 290.78 42.00 5.055 2.773 0.401 12.62 6.92 0.55
Escherichia Coli∗ 15 104,857,600 546.00 288.11 42.77 5.207 2.748 0.408 12.77 6.74 0.53
influenza∗ 15 104,857,600 222.81 162.63 40.25 2.125 1.551 0.384 5.54 4.04 0.73
einstein.en∗ 139 104,857,600 150.71 294.87 39.28 1.437 2.812 0.375 3.84 7.51 1.96
kernel∗ 160 104,857,600 275.74 489.84 41.27 2.630 4.671 0.394 6.68 11.87 1.78
coreutils∗ 236 104,857,600 318.48 525.87 38.41 3.037 5.015 0.366 8.29 13.69 1.65

Average 3.27 2.84 0.39 8.21 7.80 1.16
Ave Dev 1.386 0.853 0.013 3.231 1.990 0.565

Table 3.15: Traversal time(secs) for suffix data structures using real data set
obtained from the Pizza & Chili Corpus [18]

3.4.3 Pseudo Real Data

Table 3.16 and Figure 3.7 show the LCP and entropy information for the
pseudo real data set obtained from the Pizza & Chili corpus [18] for different
files, each of size n=100MB (104,857,600 symbols). The meanLCP is high
for XML data, and small for DNA, protein, english text files, and source files
(C/Java source code).

39



FileName |Σ| #numNodes #numNodes/n maxLCP meanLCP
maxLCP/n
(X10−6)

meanLCP/n
(X10−6)

H0 H1

dna.001.1 5 207,298,926 1.977 10,899 992.995 103.94 9.470 1.997 1.942
proteins.001.1 21 204,885,653 1.954 11,091 991.396 105.77 9.455 4.184 4.169

dblp.xml.00001.1 89 209,151,185 1.995 510,561 94981.5 4869.09 905.814 5.215 3.087
dblp.xml.00001.2 89 209,151,286 1.995 510,561 95781.4 4869.09 913.443 5.215 3.094
dblp.xml.0001.1 89 208,772,302 1.991 97,633 9844.75 931.10 93.887 5.215 3.089
dblp.xml.0001.2 89 208,986,630 1.993 97,633 9865.58 931.10 94.086 5.215 3.145

sources.001.2 98 208,329,606 1.987 16,529 992.218 157.63 9.463 5.500 4.099
english.001.2 106 208,331,277 1.987 11,222 987.289 107.02 9.416 4.587 3.820

Table 3.16: LCP , entropy and other attributes for pseudo real data obtained
from the Pizza & Chili corpus [18].

(a) meanLCP and maxLCP (b) meanLCP/n and maxLCP/n

Figure 3.7: LCP information for pseudo real data set obtained from the Pizza
& Chili corpus [18].

cst sada
|Σ| H0 H1 maxLCP meanLCP size cTime tTime # nodes

|Σ| 1.000 0.852 0.373 0.318 0.288 -0.093 -0.764 -0.378 0.768
H0 0.545 1.000 0.584 0.382 0.346 -0.412 -0.636 -0.600 0.506
H1 0.322 0.081 1.000 -0.217 -0.204 0.174 -0.237 0.152 -0.291
maxLCP 0.167 0.585 -0.297 1.000 0.997 -0.637 -0.188 -0.709 0.526
meanLCP -0.161 0.242 -0.357 0.667 1.000 -0.590 -0.169 -0.655 0.489
size 0.171 -0.256 0.340 -0.628 -0.718 1.000 -0.055 0.945 -0.239
cTime -0.564 -0.645 -0.286 -0.297 -0.214 -0.113 1.000 0.232 -0.681
tTime 0.081 -0.322 0.214 -0.741 -0.714 0.869 0.071 1.000 -0.525
# nodes 0.161 0.403 -0.357 0.815 0.714 -0.416 -0.357 -0.571 1.000

Table 3.17: Correlation values for cst sada using pseudo real data.

40



cst sct3
|Σ| H0 H1 maxLCP meanLCP size cTime tTime # nodes

|Σ| 1.000 0.852 0.373 0.318 0.288 0.615 -0.325 0.900 0.768
H0 0.545 1.000 0.584 0.382 0.346 0.731 -0.647 0.936 0.506
H1 0.322 0.081 1.000 -0.217 -0.204 -0.022 -0.286 0.692 -0.291
maxLCP 0.167 0.585 -0.296 1.000 0.997 0.856 -0.264 0.155 0.526
meanLCP -0.161 0.242 -0.357 0.667 1.000 0.818 -0.233 0.131 0.489
size 0.164 0.574 -0.327 0.981 0.618 1.000 -0.506 0.501 0.683
cTime -0.246 -0.656 -0.036 -0.302 -0.255 -0.333 1.000 -0.482 -0.222
tTime 0.806 0.564 0.429 0.222 -0.071 0.182 -0.109 1.000 0.475
# nodes 0.161 0.403 -0.357 0.815 0.714 0.764 -0.109 0.071 1.000

Table 3.18: Correlation values for cst sct3 using pseudo real data.

ST
|Σ| H0 H1 maxLCP meanLCP size cTime tTime # nodes

|Σ| 1.000 0.852 0.373 0.318 0.288 0.768 0.128 0.514 0.768
H0 0.545 1.000 0.584 0.382 0.346 0.506 -0.066 0.306 0.506
H1 0.322 0.081 1.000 -0.217 -0.204 -0.291 0.557 0.300 -0.291
maxLCP 0.167 0.585 -0.296 1.000 0.997 0.526 -0.624 0.024 0.526
meanLCP -0.161 0.242 -0.357 0.667 1.000 0.489 -0.582 0.033 0.489
size 0.161 0.403 -0.357 0.815 0.714 1.000 -0.263 0.323 1.000
cTime 0.246 -0.164 0.473 -0.566 -0.764 -0.473 1.000 0.417 -0.263
tTime 0.403 0.000 0.214 0.074 -0.143 0.143 0.400 1.000 0.323
# nodes 0.161 0.403 -0.357 0.815 0.714 1.000 -0.473 0.143 1.000

Table 3.19: Correlation values for ST using pseudo real data.

Using the correlation values from Tables 3.17, 3.18, and 3.19 for
pseudo real data, it can be observed that |Σ|, H0, LCP values and number
of nodes have negative correlation w.r.t the size of cst sada and positive
correlation w.r.t the size of cst sct3 and ST. The construction time of CSTs
vary inversely w.r.t the entropy H0 and alphabet size |Σ|. The construction
time of ST vary directly w.r.t the entropy H1 and vary inversely w.r.t the
LCP values. The traversal time of cst sada has a negative correlation w.r.t
the H0 and |Σ|. The traversal time of cst sct3 and ST has a high positive
correlation w.r.t the H0 and |Σ|. Also, the traversal time of cst sada has
a negative correlation w.r.t the number of nodes. For this data set, the size
for ST is perfectly correlated with the number of nodes(ρ=1, τ=1).

Table 3.16 explains Figure 3.8a depicting the size of the suffix tree
structure for different files which is proportional to the number of nodes in
the data structure built for the specific data file. Figure 3.8b shows that
the size of the cst sada does not vary with the nature of data, however,

41



it varies in the case of cst sct3. Table 3.20 illustrates that, on average,
the space required by suffix tree (ST) is approximately 109.32 times that for
cst sada and 40.68 times that for cst sct3.

(a) ST (b) CST

Figure 3.8: Size(MB) of suffix data structures using pseudo real data obtained
from the Pizza & Chili corpus [18].

Figure 3.9a and Table 3.21 show that, in general, the time required
to construct the data structures does not vary much for different files of
similar data size. Table 3.21 illustrates that, on average, the construction
time required for cst sada is around 3.39 times that for the suffix tree
(ST), and about 2.29 times that for cst sct3.

(a) Construction time (b) Traversal time

Figure 3.9: Time requirements(secs) for suffix data structures using pseudo
real data obtained from the Pizza & Chili corpus [18].

Figure 3.9b and Table 3.22 show that, for ST the time required to

42



traverse the data structure does not vary much for different files of same data
size. For cst sct3 it increased with increasing entropy, and for cst sada
it decreased with increasing entropy upto a point. Table 3.22 illustrates that
on average the traversal time required for cst sada is around 4.75 times
that for the suffix tree (ST), and about 0.575 times that for cst sct3. The
traversal time required for cst sada is more when compared to cst sct3
only in the case of DNA sequences (small alphabet size).

FileName |Σ| sada(MB) sct3(MB) ST(MB) sada/n(bytes) sct3/n(bytes) ST/n(bytes) ST/sada ST/sct3 sct3/sada
dna.001.1 5 132.23 276.74 14334.09 1.261 2.639 136.701 108.41 51.80 2.09
proteins.001.1 21 131.49 313.99 14168.38 1.254 2.994 135.120 107.75 45.12 2.39
dblp.xml.00001.1 89 131.08 434.25 14461.27 1.250 4.141 137.913 110.32 33.30 3.31
dblp.xml.00001.2 89 131.10 434.26 14461.28 1.250 4.141 137.914 110.31 33.30 3.31
dblp.xml.0001.1 89 131.11 388.22 14435.26 1.250 3.702 137.665 110.10 37.18 2.96
dblp.xml.0001.2 89 131.22 387.99 14449.97 1.251 3.700 137.806 110.12 37.24 2.96
sources.001.2 98 132.28 337.99 14404.86 1.262 3.223 137.375 108.90 42.62 2.56
english.001.2 106 132.60 320.79 14404.97 1.265 3.059 137.377 108.63 44.91 2.42

Average 1.26 3.45 137.23 109.32 40.68 2.75
Ave Dev 0.01 0.47 0.66 0.90 5.43 0.39

Table 3.20: Size(MB) of suffix data structures using pseudo real data set
obtained from the Pizza & Chili corpus [18].

FileName |Σ| sada(secs) sct3(secs) ST(secs) sada/n(µsecs) sct3/n(µsecs) ST/n(µsecs) sada/ST sct3/ST sada/sct3
dna.001.1 5 121.38 51.60 33.73 1.158 0.492 0.322 3.60 1.53 2.35
proteins.001.1 21 124.03 49.67 34.96 1.183 0.474 0.333 3.55 1.42 2.50
dblp.xml.00001.1 89 116.60 49.03 30.02 1.112 0.468 0.286 3.88 1.63 2.38
dblp.xml.00001.2 89 107.48 49.02 30.22 1.025 0.468 0.288 3.56 1.62 2.19
dblp.xml.0001.1 89 117.19 47.92 30.18 1.118 0.457 0.288 3.88 1.59 2.45
dblp.xml.0001.2 89 106.68 49.92 31.41 1.017 0.476 0.300 3.40 1.59 2.14
sources.001.2 98 104.70 47.44 40.75 0.998 0.452 0.389 2.57 1.16 2.21
english.001.2 106 111.97 52.28 41.54 1.068 0.499 0.396 2.70 1.26 2.14

Average 1.08 0.47 0.33 3.39 1.48 2.29
Ave Dev 0.06 0.01 0.04 0.38 0.15 0.12

Table 3.21: Construction time(secs) for suffix data structures using pseudo
real data set obtained from the Pizza & Chili corpus [18].

FileName |Σ| sada(secs) sct3(secs) ST(secs) sada/n(µsecs) sct3/n(µsecs) ST/n(µsecs) sada/ST sct3/ST sct3/sada
dna.001.1 5 253.04 180.88 41.93 2.413 1.725 0.400 6.04 4.31 0.71
proteins.001.1 21 225.44 303.25 42.17 2.150 2.892 0.402 5.35 7.19 1.35
dblp.xml.00001.1 89 170.04 359.12 41.53 1.622 3.425 0.396 4.09 8.65 2.11
dblp.xml.00001.2 89 167.05 354.23 45.81 1.593 3.378 0.437 3.65 7.73 2.12
dblp.xml.0001.1 89 171.51 353.75 41.23 1.636 3.374 0.393 4.16 8.58 2.06
dblp.xml.0001.2 89 173.44 383.19 45.23 1.654 3.654 0.431 3.83 8.47 2.21
sources.001.2 98 233.85 429.41 44.20 2.230 4.095 0.422 5.29 9.72 1.84
english.001.2 106 259.30 384.72 46.29 2.473 3.669 0.441 5.60 8.31 1.48

Average 1.97 3.28 0.42 4.75 7.87 1.74
Ave Dev 0.35 0.48 0.02 0.82 1.09 0.42

Table 3.22: Traversal time(secs) for suffix data structures using pseudo real
data set obtained from the Pizza & Chili corpus [18].

43



3.4.4 Synthetic Data

Table 3.23 shows the LCP values and entropy information for synthetic data.
Since the data is generated with a small period value of 32, the LCP values
are relatively low as compared to those of the Fibonacci words. However,
with an increase in data size n, there is a linear increase in the meanLCP
values. The meanLCP per symbol decreases with an increase in data size,
and this can contribute to slow growth of the meanLCP with increasing data
sizes (n). The values of maxLCP and maxLCP per symbol follow similar
trends. The entropy is generally constant, independent of the data size n.

n(#symbols) #numNodes #numNodes/n maxLCP meanLCP
maxLCP/n
(X 10−6)

meanLCP/n(X
10−6)

H0 H1

10,000,000 14182915 1.418 191 88.522 19.100 8.852 3.04627 1.92298
20,000,000 28515660 1.426 204 93.503 10.200 4.675 3.04627 1.92298
30,000,000 43187797 1.440 210 96.528 7.000 3.218 3.04624 1.92305
40,000,000 57684347 1.442 210 98.702 5.250 2.468 3.04623 1.92302
50,000,000 71919378 1.438 210 100.383 4.200 2.008 3.04622 1.92305
60,000,000 85934222 1.432 210 101.731 3.500 1.696 3.04619 1.92307
70,000,000 99846184 1.426 223 102.856 3.186 1.469 3.04620 1.92308
80,000,000 113729820 1.422 223 103.816 2.788 1.298 3.04619 1.92311
90,000,000 127641319 1.418 223 104.655 2.478 1.163 3.04620 1.92311

100,000,000 141624095 1.416 223 105.399 2.230 1.054 3.04620 1.9231

Table 3.23: LCP, entropy and other attributes for synthetic data.

(a) meanLCP and maxLCP (b) meanLCP/n and maxLCP/n

Figure 3.10: LCP information for varying data sizes(n) using synthetic data.

44



cst sada
H0 H1 maxLCP meanLCP size cTime tTime # nodes

H0 1.000 -0.930 0.867 0.864 -0.875 -0.924 -0.743 0.115
H1 -0.732 1.000 -0.835 -0.835 0.802 0.912 0.659 -0.261
maxLCP 0.707 -0.828 1.000 1.000 -0.965 -0.978 -0.697 -0.135
meanLCP 0.707 -0.828 1.000 1.000 -0.964 -0.978 -0.696 -0.131
size -0.561 0.500 -0.598 -0.598 1.000 0.957 0.777 0.214
cTime -0.691 0.814 -0.989 -0.989 0.628 1.000 0.707 -0.010
tTime -0.566 0.460 -0.511 -0.511 0.828 0.539 1.000 0.069
# nodes 0.141 -0.368 0.422 0.422 -0.022 -0.405 0.067 1.000

Table 3.24: Correlation values for cst sada using synthetic data.

cst sct3
H0 H1 maxLCP meanLCP size cTime tTime # nodes

H0 1.000 -0.930 0.867 0.864 0.572 -0.895 -0.660 0.115
H1 -0.732 1.000 -0.835 -0.835 -0.547 0.894 0.591 -0.261
maxLCP 0.707 -0.828 1.000 1.000 0.193 -0.988 -0.618 -0.135
meanLCP 0.707 -0.828 1.000 1.000 0.185 -0.988 -0.618 -0.131
size 0.425 -0.317 0.424 0.424 1.000 -0.275 -0.147 0.241
cTime -0.707 0.828 -1.000 -1.000 -0.424 1.000 0.614 -0.002
tTime -0.519 0.414 -0.467 -0.467 0.047 0.467 1.000 0.020
# nodes 0.141 -0.368 0.422 0.422 0.471 -0.422 0.111 1.000

Table 3.25: Correlation values for cst sct3 using synthetic data.

ST
H0 H1 maxLCP meanLCP size cTime tTime # nodes

H0 1.000 -0.930 0.867 0.864 0.114 -0.713 -0.920 0.115
H1 -0.732 1.000 -0.835 -0.835 -0.260 0.618 0.900 -0.261
maxLCP 0.707 -0.828 1.000 1.000 -0.135 -0.900 -0.973 -0.135
meanLCP 0.707 -0.828 1.000 1.000 -0.131 -0.897 -0.972 -0.131
size 0.141 -0.368 0.422 0.422 1.000 0.534 0.019 1.000
cTime -0.283 0.046 -0.067 -0.067 0.511 1.000 0.854 0.533
tTime -0.660 0.828 -0.911 -0.911 -0.333 0.156 1.000 0.019
# nodes 0.141 -0.368 0.422 0.422 1.000 0.511 -0.333 1.000

Table 3.26: Correlation values for ST using synthetic data.

Using the correlation values from Tables 3.24, 3.25, and 3.26 for
synthetic data, it can be observed that, w.r.t the number of nodes the size
of cst sada has zero correlation, the size of cst sct3 has a positive cor-
relation, and the size of ST has a perfect correlation of 1. Also, the size of

45



cst sada has high positive correlation w.r.t H1 and high negative correla-
tion w.r.t H0 and also high negative correlation w.r.t LCP values, whereas,
the size of cst sct3 has a positive correlation w.r.t H0 and a negative cor-
relation w.r.t H1. The construction time of the suffix structures have a high
negative correlation w.r.t the LCP values, high negative correlation w.r.t H0

and high positive correlation w.r.t H1. The construction time vary inversely
w.r.t number of nodes in the case of cst sada and cst sct3, but vary di-
rectly in the case of ST. The traversal time for the suffix data structures
have a negative correlation w.r.t H0, positive correlation w.r.t H1, negative
correlation w.r.t LCP values.

Figure 3.11 and Table 3.27 show that, in general, with increasing
data sizes the size of the suffix data structures are linear with respect to n, the
data size. Table 3.27 illustrates that, on average, the space required by suffix
tree (ST) is approximately 90.15 times that for cst sada and approximately
44.58 times that for cst sct3.

(a) ST (b) CST

Figure 3.11: Size(MB) of suffix data structures using synthetic data.

46



(a) ST (b) CST

Figure 3.12: Size per symbol(bytes) of suffix data structures using synthetic
data.

Figure 3.13a and Table 3.28 show that, in general, with increasing
data sizes the time required to construct the data structures are linear with
respect to n, the data size. The time per symbol increased linearly with
decreasing LCP values per symbol. Table 3.28 illustrates that, on average,
the construction time required for cst sada is around 2.22 times that for
suffix tree (ST) and about 2.01 times that for cst sct3.

(a) Construction time (b) Traversal time

Figure 3.13: Time requirements(secs) for suffix data structures using syn-
thetic data.

47



(a) Construction time (b) Traversal time

Figure 3.14: Time requirements per symbol (µsecs) for suffix data structures
using synthetic data.

Figure 3.13b and Table 3.29 show the time required for each data
structure to traverse the respective structure in order to construct the oc-
currence vectors. While the traversal time varies linearly with respect to n
for the suffix tree, it is not exactly linear for cst sada and cst sct3. This
behavior is observed due to the time complexity involved in calculating the
suffix number for the leaf nodes with the use of operation sn(v) defined in
the sdsl library. Table 3.29 illustrates that, on average, the traversal time
required for cst sada is around 8.01 times that for suffix tree (ST) and the
traversal time required for cst sct3 is around 10.37 times that for suffix
tree (ST).

n(#symbols) sada(MB) sct3(MB) ST(MB) sada/n(bytes) sct3/n(bytes) ST/n(bytes) ST/sada ST/sct3 sct3/sada
10,000,000 10.81 22.16 983.40 1.081 2.216 98.340 91.013 44.375 2.051
20,000,000 21.79 44.75 1977.09 1.089 2.237 98.854 90.750 44.185 2.054
30,000,000 32.89 66.69 2994.08 1.096 2.223 99.803 91.037 44.897 2.028
40,000,000 44.06 88.93 3999.02 1.102 2.223 99.975 90.754 44.969 2.018
50,000,000 55.11 110.94 4986.00 1.102 2.219 99.720 90.466 44.944 2.013
60,000,000 66.08 132.95 5957.86 1.101 2.216 99.298 90.159 44.813 2.012
70,000,000 77.32 155.46 6922.65 1.105 2.221 98.895 89.537 44.531 2.011
80,000,000 88.21 177.51 7885.50 1.103 2.219 98.569 89.399 44.422 2.012
90,000,000 99.10 199.56 8850.26 1.101 2.217 98.336 89.303 44.348 2.014

100,000,000 110.28 221.64 9819.92 1.103 2.216 98.199 89.045 44.306 2.010
Average 1.10 2.22 99.00 90.15 44.58 2.02
Ave Dev 0.006 0.004 0.560 0.660 0.262 0.013

Table 3.27: Size(MB) of suffix data structures with varying data sizes (n)
using synthetic data.

48



n(#symbols) sada(secs) sct3(secs) ST(secs) sada/n(µsecs) sct3/n(µsecs) ST/n(µsecs) sada/ST sct3/ST sada/sct3
10,000,000 8.26 3.64 4.26 0.826 0.364 0.426 1.937 0.855 2.266
20,000,000 18.38 9.01 8.90 0.919 0.450 0.445 2.066 1.012 2.041
30,000,000 29.52 14.63 13.86 0.984 0.488 0.462 2.130 1.056 2.018
40,000,000 40.36 20.29 18.75 1.009 0.507 0.469 2.153 1.082 1.989
50,000,000 52.57 26.13 23.56 1.051 0.523 0.471 2.231 1.109 2.012
60,000,000 63.08 31.70 28.04 1.051 0.528 0.467 2.249 1.130 1.990
70,000,000 75.03 37.86 32.51 1.072 0.541 0.464 2.308 1.164 1.982
80,000,000 86.21 43.97 36.89 1.078 0.550 0.461 2.337 1.192 1.960
90,000,000 98.30 50.59 41.64 1.092 0.562 0.463 2.360 1.215 1.943

100,000,000 109.75 56.64 45.92 1.097 0.566 0.459 2.390 1.233 1.938
Average 1.02 0.51 0.46 2.22 1.10 2.01
Ave Dev 0.067 0.044 0.009 0.116 0.083 0.057

Table 3.28: Construction time(secs) of suffix data structures with varying
data sizes(n) using synthetic data.

n(#symbols) sada(secs) sct3(secs) ST(secs) sada/n(µsecs) sct3/n(µsecs) ST/n(µsecs) sada/ST sct3/ST sct3/sada
10,000,000 16.76 19.15 2.64 1.676 1.915 0.264 6.360 7.267 1.143
20,000,000 38.97 48.84 5.71 1.948 2.442 0.285 6.825 8.554 1.253
30,000,000 64.39 76.22 9.00 2.146 2.541 0.300 7.154 8.468 1.184
40,000,000 104.42 143.97 12.24 2.610 3.599 0.306 8.528 11.759 1.379
50,000,000 132.16 166.36 15.86 2.643 3.327 0.317 8.335 10.492 1.259
60,000,000 149.42 181.53 19.06 2.490 3.025 0.318 7.838 9.522 1.215
70,000,000 209.15 276.31 22.40 2.988 3.947 0.320 9.337 12.335 1.321
80,000,000 285.62 433.38 25.49 3.570 5.417 0.319 11.204 17.000 1.517
90,000,000 199.05 241.13 29.57 2.212 2.679 0.329 6.732 8.155 1.211

100,000,000 250.58 326.30 32.20 2.506 3.263 0.322 7.782 10.134 1.302
Average 2.48 3.22 0.31 8.01 10.37 1.28
Ave Dev 0.387 0.695 0.015 1.073 2.022 0.081

Table 3.29: Traversal time(secs)for suffix data structures with varying data
sizes(n) using synthetic data.

3.4.5 Summary of Results

Figures 3.15a and 3.15b summarizes the per symbol average and worst case
resource requirements respectively, for different data structures using the
different test corpora.

• Tables 3.6, 3.13, 3.20, and 3.27 show that the space required by
ST is very large as compared to the space required by cst sada. On
average it is 111.21 times for Fibonacci words, 109.32 times for pseudo
real data and 90.15 times for synthetic data and at least 100 times
for real data. Also, the space required by ST is considerably large
as compared to the space required by cst sct3. On average it is
30.61 times for Fibonacci words, 40.68 times for pseudo real data and

49



44.58 times for synthetic data and at least 35.18 times for real data.
The space required by cst sct3 is more when compared to the space
required is by cst sada. On average, this is 3.64 times for Fibonacci
words, 2.75 times for pseudo real data and 2.02 times for synthetic data
and at least 1.89 times for real data.

• The construction time required for CSTs is more when compared to
the construction time required for ST. The ratio, however, is not in the
same order of magnitudes as with the case of the space requirements,
where suffix trees require more space compared to CSTs. Also the
construction time required for cst sada is more when compared to the
construction time required for cst sct3, which is due to more space
required by cst sct3 when compared to cst sada. Tables 3.7, 3.14,
3.21, and 3.28 show that the construction time required by cst sada
is more than the construction time required for suffix tree (ST). On
average, it is 4.18 times for Fibonacci words, 3.39 times for pseudo real
data, 2.22 times for synthetic data, and at least 2.06 times for real
data. Tables 3.7, 3.21, and 3.14 show that the construction time for
cst sct3 on average is 2.18 times to that required for suffix trees using
Fibonacci words, 1.48 times using pseudo real data and at most 1.65
times using real data. But Tables 3.14, 3.28 show that they have
similar time requirements using real data representing DNA sequences
and synthetic data. The construction time required by cst sada is
more when compared to the construction time required by cst sct3.
On average it is 1.93 times for Fibonacci words, 2.29 times for pseudo
real data and 2.01 times for synthetic data and at least 2.06 times for
real data.

• The traversal time required for compressed suffix trees is more when
compared to the traversal time required for suffix trees. The ratio,
however, is not in the same order of magnitudes as with the case of
the space requirements, where suffix trees require much more space
compared to compressed suffix trees. Tables 3.8, 3.15, 3.22, and 3.29
show that the traversal time required for cst sada is more than the
traversal time required for suffix tree (ST). On average, this is 4.07
times for Fibonacci words, 4.75 times for pseudo real data, 8.01 times
for synthetic data, and at least 3.64 times for real data. Also, the
traversal time required for cst sct3 is more than the traversal time

50



required for suffix tree (ST). On average it is 2.80 times for Fibonacci
words, 7.87 times for pseudo real data, 10.37 times for synthetic data,
and at least 6.53 times for real data. Also, the traversal time required
for cst sct3 is more when compared to the traversal time required for
cst sada, except for Fibonacci words and data sets involving DNA
sequences, where the alphabet size is very small. This is opposite to the
time requirements for construction of the data structures. On average
it is 1.74 times for pseudo real data, 1.28 times for synthetic data and at
least 1.26 times for real data. In the case of Fibonacci words, cst sada
takes on average 1.31 times the time required for cst sct3. And in
the case of real data representing DNA sequences it is 1.79 times.

• The observations on how the period length influence the performance of
the suffix data structures is provided in Appendix B (on Page 88) and
the observations on how the alphabet size influence the performance
of the suffix data structures is provided in Appendix C (on Page 92).
The results are obtained using synthetic data generated in the same
manner as generated by Elfeky et al. in [22]

(a) Average case (b) Worst case

Figure 3.15: Summary of resource requirements(per symbol) for suffix data
structures using different data sets.

Conclusions

The results show that, compressed suffix trees can replace the suffix trees for
space-efficient periodicity mining over large time series data that contain a lot

51



of repetitions. With the results obtained from the comprehensive empirical
analysis, the choice of using a particular variant of compressed suffix trees,
namely cst sada and cst sct3 depends on the application and type of
data sets that are used. For general data sets, cst sct3 is faster to construct
and cst sada is faster for generation of occurrence vectors. In the case of
Fibonacci words and DNA sequences with small alphabet size, cst sct3 is
faster in both construction and generation of occurrence vectors.

Figure 3.15 shows the overall resource requirements of the methods
on a space-time chart. Best overall result will be the lower-left corner, while
positions in the upper-right corner imply the worst performance. As the
charts show, there is no clear winner. CSTs using cst sct3 seems to provide
a middle ground with respect to both time and memory requirements.

52



Chapter 4

Approximate Periodicity
Mining

4.1 A Taxonomy for Approximate Periodic-

ity

Periodicity is a well-studied area and observation of periods in the data leads
to valuable discoveries about cyclic events. However, the practical data rep-
resenting cyclic events rarely exhibit exact periodicity. This leads to the
problem of approximate periodicity. The notion of approximate periodicity
varies significantly depending on the application, and various definitions have
been put forth by different authors. Thus below, we provide a taxonomy for
approximate periodicity using two parameters (κ, γ), where κ is the bound
on the number of errors allowed in the structure of the periodic pattern, and
γ is the bound on the number of errors allowed between the occurrences of
a periodic pattern. We begin our discussion with exact periodicity.

53



4.1.1 Exact periodicity (κ = 0, γ = 0)

For exact periodicity, the same primitive pattern repeats without error using
the same exact separation distance between the occurrences each time. We
characterize exact periodicity using the patterns κ = 0 and γ = 0. Follow-
ing [7, 8] a periodic string can be defined as follows: Let T be a string of
length n = |T |. T is called periodic if T = P ipref(P ), where i ∈ N and
i ≥ 2, P is a substring of T such that |P | ≤ n/2, P i is the concatenation
of P to itself i times and pref(P ) is a prefix of P . The smallest such sub-
string P is called the period of T . According to [22, 57] the string T is said
to have segment periodicity or full periodicity for a pattern P with perfect
periodicity.

For example, consider a text T = abcdefghij abcdefghij abcdefghij
abcdefghij abcdefghij. Here, T is said to have perfect segment periodicity
for the pattern/substring P = abcdefghij with period length p = |P | = 10.
The pattern P is periodic with occurrence positions given by its occur-
rence vector V = [0, 10, 20, 30, 40]. Here κ = 0 (the primitive pattern
P = abcdefghij reoccurs in an exact manner with no error), and γ = 0
(the reoccurring pattern is always separated by the same space, in this case,
empty space).

However, practical time series data rarely exhibit segment period-
icity. For example, if the time series data represents the daily activities
of a person and he daily exercises from 6:00-7:00 AM, gets ready for work
from 7:00-8:00 AM and eats his breakfast from 8:00-8:30 AM, drives to work
8:30-9:00 AM, has a meeting from 9:00-10:00 AM and his activities for the
rest of the day are unusual. This kind of periodicity is called partial peri-
odicity [22, 57]. The time series is only periodic from 6:00-10:00 AM each
day. Let T be a string with length n = |T |. T is called partial periodic if
T = (PY )ipref(P ), where i ∈ N and i ≥ 2, P and Y are substrings of T
such that |PY | ≤ n/2, P is fixed and Y is any string of fixed length q such
that Y ∈ Σq, where Σq represents all the strings of length q over the alphabet
Σ, and PY is the concatenation of P to Y . The smallest such substring P
is called the partial period of T .

For example, consider a text T=abcdegdiay abcdeyiqas abcdeopuiu
abcdehqeoe abcdelscdf . Here, T is said to have perfect partial periodic-

54



ity for the pattern/substring P = abcde with p = |PY | = 10 6= (m =
|P | = 5) and Y is any string of fixed length 5 (|Y | = p − |P |). The pat-
tern P is periodic with occurrence positions given by its occurrence vector
V = [0, 10, 20, 30, 40]. Again κ = 0 (the primitive pattern P = abcde reoc-
curs in an exact manner with no error), and γ = 0 (the reoccurring pattern
is always separated by the same space, in this case, 5 each time).

If the string/text T is not periodic, then, it is said to be aperi-
odic. A string may lose its perfect periodicity due to the errors introduced
between the copies of the pattern and/or in the structure of the pattern.
Below, we classify the different types of approximate periodicity using the
two parameters (κ, γ).

4.1.2 The case of (κ 6= 0, γ = 0)

The approximation is in terms of the structure of the periodic pattern but
not in terms of the occurrence positions. Here, the inexactness could be
due to some noise (replacement, insertion and deletion errors) introduced
in the structure of the pattern which in turn disturbs the perfect periodic
nature. The bound on the number of such errors allowed gives us the case of
(κ 6= 0, γ = 0) where κ is the maximum number of such errors allowed in a
particular copy of the periodic pattern.

Following [62], approximate periodicity can be defined as follows:
Given two strings T and P and a distance function δ, if there exists a partition
of T into disjoint blocks of substrings, i.e., T = P1P2P3....Px (Pi 6= ε, where
ε is an empty string) such that δ(P, Pi) ≤ k for 1 ≤ i ≤ x and δ(P ′, Px) ≤ k,
where P ′ is some prefix of P , we say that P is a k-approximate period of
T (or P is an approximate period of T with distance k). This is the case
of full segment periodicity where errors are allowed only in the structure of
the pattern. Also, the strings Pi can be separated by a fixed length string
Y , where Y is any string of fixed length q such that Y ∈ Σq. This leads to
the case of partial periodicity where errors are allowed in the structure of
the pattern. The variable k corresponds to the parameter κ. Sim et al. [62]
discussed three problems related to the case of (κ 6= 0, γ = 0). The problem
of finding the minimum k for given strings T (of length n) and P (of length

55



m) and a distance function δ such that P is a k-approximate period of T
can be solved in O(mn2) time when δ is a weighted edit distance function, in
O(mn) time when δ is a unit cost edit distance function, and in O(n) time
when δ is the Hamming distance. The second problem of finding a substring
P of T such that P is an approximate period of T with the minimum distance,
given T and a distance function δ can be solved in O(n4) time under weighted
edit distance and in O(n3) time under relative Hamming distance. The third
problem of finding a string P that is an approximate period of T with the
minimum distance, given a string T and a relative distance function δ where
P can be any string not necessarily a substring of T was shown to be NP-
complete [62].

As an example of approximate segment periodicity, consider text
T= abcdefghij abcdefghij abcddfgi ij abcdefghij abedefghij. Here, some
occurrences of the pattern P = abcdefghij have errors introduced in the
structure, where the occurrence vector for the pattern with exact matching
is V = [0, 10, 30] and the occurrence vector for the pattern with approximate
matching (with κ = 2, γ = 0) is V = [0, 10, 20, 30, 40]. But notice that in
each case, the separation between the primitive patterns is always zero, thus
γ = 0 since there in no variation in the spacing.

As an example of approximate partial periodicity, consider text
T= abcdegdffg abcdeyiqas abddemsmsx abcdehqeoe abddhrscdf . Here,
some occurrences of the pattern P = abcde have errors introduced in the
structure, where the occurrence vector for the pattern with exact matching
is V = [0, 10, 30] and the occurrence vector for the pattern with approximate
matching (with κ = 2, γ = 0) is V = [0, 10, 20, 30, 40]. But notice that in
each case, the separation between the primitive patterns is always 5, thus
γ = 0 since there in no variation in the spacing.

The algorithm by Elfeky et al. [22] uses convolution based tech-
nique (CONV) to detect segment and symbol periodicity in O(n log n) time,
and detects periods in the presence of replacement noise introduced in the
structure of the pattern. As an improvement to CONV technique, Elfeky et
al. [23] proposed a different algorithm WARP to also handle insertion and
deletion noise introduced in the structure of the pattern. It requires time in
O(n2), but it can only detect segment periodicity.

56



4.1.3 The case of (κ = 0, γ 6= 0)

The approximation is in terms of the occurrence positions of a periodic pat-
tern. Here, the insertion and deletion noise introduced between the pattern
occurrences perturb the perfect periodic nature as opposed to the previous
case where the approximation is in terms of the structure of the periodic
pattern due to the noise introduced in the structure of the pattern. In this
case, substitution errors might be introduced between the occurrences of the
pattern but it has no effect on the occurrence positions of the periodic pat-
tern. The periodic pattern is allowed to drift away from its expected periodic
positions up to a certain limit given by the parameter γ leading to the case
of (κ = 0, γ 6= 0).

To accommodate this type of variability, approximate periodicity
can also be defined as follows: Let T be a string of length n = |T |. T
is called periodic if T = (PY )ipref(P ) where i ∈ N, i ≥ 2, P and Y are
substrings of T such that |PY | ≤ n/2, P is fixed and Y is a substring of T of
length q, where the value of q can vary upto a certain limit (i.e., q±γ, γ ≥ 0),
and Y is any string such that Y ∈ Σq. The smallest such substring P is called
the partial period of T .

For example, consider a text T= abcdegdikl abcdeyiqas abcdeyiaso
abcdeheoe abcderscdf abcdegttyur abcderewqa. Here, errors are intro-
duced between the occurrences of the pattern, thus giving us the occurrence
vector V = [0, 10, 20, 30, 39, 49, 60], where the distance between adjacent
primitive patterns deviate from the perfect period length of 10, i.e., 39-30=9,
60-49=11, etc. Notice that there are no errors introduced in the structure of
the pattern itself, but the spacing between the occurrences varies from the
exact period value of 10 due to errors introduced between the occurrences.

This kind of periodicity is also described as asynchronous period-
icity in [32, 33, 49, 71, 72], where some perturbation is allowed between the
repetitions of the pattern. The papers proposed solutions to mine periodic
patterns in such cases. Rasheed et al. [57] developed an algorithm called
STNR (Suffix Tree based Noise Resilient algorithm) which mines periodic
patterns in the presence of noise where periodic occurrences are allowed to
drift (shifted ahead or back) within an allowable limit (tt) which is similar to
our parameter γ. The worst case time complexity for the STNR algorithm

57



is in O(n3).

4.1.4 The case of (κ 6= 0, γ 6= 0)

The approximation is in terms of both the occurrence positions and the
structure of a periodic pattern. Here, errors or noise are allowed to occur
simultaneously in both the primitive repeating pattern and in the separation
distance between occurrences. That is, both κ and γ could be non-zero.

The cases with (κ 6= 0, γ = 0) and (κ = 0, γ 6= 0) can be combined to
define another form of approximate periodicity as follows: Given two strings
T and P and a distance function δ, T is called periodic if T = (PaY )ipref(P ),
where i ∈ N, i ≥ 2, such that |PaY | ≤ n/2 and Pa is an approximate version
of P (Pa 6= ε, where ε is an empty string) such that δ(P, Pa) ≤ κ, and Y is a
substring of T of length q, where the value of q can vary upto a certain limit γ
(i.e., q± γ, γ ≥ 0). The smallest such substring P is called the approximate
period of T .

For example, consider a text T= abcdegdaog abcdeyiqas abddeyuiqr
abcdeheoe abcerscdf abcdegttyur abcderewqa. Here, errors are intro-
duced between the occurrences of the pattern and also in the structure of
the pattern, thus giving us the occurrence vector V = [0, 10, 30, 48, 59]. No-
tice that certain occurrences are missed, but they can be detected by using
approximate matching with errors allowed in the structure of the pattern.
This will detect occurrences at positions 20 and 39 giving us the occurrence
vector V = [0, 10, 20, 30, 39, 48, 59]. Still, distances between certain occur-
rence positions deviate from the perfect period value of 10. For instance, we
have differences of 39-30=9, 48-39=9, 59-48=11, etc., which can be consid-
ered as approximation between the occurrence positions of the pattern.

While previous methods on approximate periodicity have considered
the cases with (κ = 0, γ 6= 0) [23,62], and (κ 6= 0, γ = 0) [32,33,49,57,71,72],
there is no published work that directly addresses the case of simultaneous
errors in both the primitive pattern and their separation space (case of κ 6=
0, γ 6= 0).

58



4.2 A Method for Approximate Periodicity

Mining (κ 6= 0, γ 6= 0)

Time series data represents events related to real-world phenomena such as
stock market growth, transactions at a supermarket, hydrological data, power
consumption, network traffic, weather data, etc. Repetitions are an inherent
part of the data representing such phenomena. The goal of periodicity mining
is to mine periods out of the time series data to provide us with valuable
information about the repeating cycles that help us to understand the nature
of the phenomena and also forecast future events. The time series data is
prone to errors from different sources, e.g. data acquisition method, transient
errors, or the errors can be an inherent part of the data itself because of which
the periodic nature of the data represented by the string may be inexact [7].
However, it is important to mine the periods efficiently and effectively in
spite of the presence of noise. This leads us to the problem of approximate
periodicity mining.

The goal of periodicity mining is to find temporal regularities in the
time series data. The frequency of periodicity for a particular periodic pat-
tern is measured using a metric called confidence. The confidence is defined
as the ratio of the actual frequency of the pattern to the expected frequency
within the whole or subsection of the time series. The presence of noise has a
negative impact on this metric. A pattern P is said to be perfectly periodic
with period p from the position of its first occurrence position (stPos), if it
exactly occurs at positions stPos + i ∗ p (i ∈ N, i ≥ 0) in the text until its
last occurrence [57]. Presence of noise in the data disturbs the perfectness,
leading to imperfect periodicity. Noise can be due to replacement, insertion
or deletion errors. The goal is to improve the confidence of periodicity de-
tection by considering approximation simultaneously both in the occurrence
positions and the structure of the periodic pattern itself. In [57], Rasheed et
al. proposed STNR (Suffix Tree based Noise Resilient) algorithm for peri-
odicity mining, which handles the case of (κ = 0, γ 6= 0). In this section we
present STNR-A (Suffix Tree based Noise Resilient algorithm with Approxi-
mation), an improvement of STNR to handle the case of (κ 6= 0, γ 6= 0). Our
method uses the CST to generate the occurrence vectors, and then analyzes
the occurrences vectors to support inexact periodicities with (κ 6= 0, γ 6= 0).

59



4.2.1 STNR: Features of Existing Algorithm

STNR handles noise (insertion, deletion and replacement errors) introduced
between the occurrences of the periodic pattern, but not the noise introduced
in the structure of the pattern. The algorithm uses suffix tree to capture re-
peated substrings in the text. For each such string represented by an internal
node’s path label an occurrence vector (V ) is generated. An occurrence vec-
tor gives the list of the starting positions in the text T , of all the exact
occurrences of a given pattern P . Thus, the positions of patterns in which
errors were introduced are not recorded. The periodicity mining algorithm
then processes the occurrence vector to check if the pattern corresponding
to the given occurrence vector is periodic. The algorithm considers each
element (V [j]) of the occurrence vector as a potential start (stPos) of the
periodic nature and the difference (p = V [j+1]−V [j]) between the adjacent
elements as a potential period value, where (0 ≤ j ≤ ηV ). It then scans
the occurrence vector and increases the frequency count if the occurrence
vector values are periodic w.r.t to stPos and period value p [57]. The worst
case time complexity of the algorithm is O(n3), with at most n− 1 patterns,
with an occurrence vector of size at most n generated for each such pattern
and O(n2) time to process each occurrence vector, where n is the size of the
time series data T . The current framework handles asynchronous periodicity
(κ = 0, γ 6= 0) which is due to insertion and deletion noise between the occur-
rences of the pattern. Thus, the occurrences are allowed to drift from their
expected positions up to an allowable limit (denoted by (tt) in [57]). The
threshold (tt) of the drift is a pre-defined parameter for the STNR algorithm
which is similar to the parameter γ defined in our taxonomy.

For example, consider a pattern P that is perfectly periodic with
period value p = 50 within a subsection of time series with stPos = 0 and
endPos = 500. SNTR only handles the cases of κ = 0, γ 6= 0. Figure 4.1
and Table 4.1 show the various cases of approximate periodicity handled by
the STNR algorithm.

60



Figure 4.1: Different forms of approximate periodicity handled by the STNR
algorithm. See also Table 4.1.

Table 4.1: Explanation of different forms of inexact periodicity shown in
Figure 4.1.

Case (a): V=[0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500], ηV =11
Perfect Periodic-
ity

Confidence=
11/11= 1.0

No noise

Case (b): V = [0, 50, 150, 200, 300, 350, 400, 500], ηV =8
Imperfect
Periodicity
(γ = 0)

Confidence
= 8/11 =
0.73

Handles replacement noise by ignoring cer-
tain positions of expected occurrences (100,
250, 450). No insertion or deletion noise.

Case (c): V= [0, 50, 100, 152, 200, 250, 297, 348, 399, 450, 500], ηV =11

Imperfect Peri-
odicity (γ = 3)

Confidence=
11/11= 1.0

Noise between the occurrences of the pat-
tern in the form of insertion and deletion
errors. [Actual occurrence/Expected occur-
rence: 152/150, 200/202, 297/300, 348/347,
399/398, 450/449]

Case (d): V=[0, 50, 152, 200, 297, 348, 399, 500], ηV =8

Imperfect Peri-
odicity (γ = 3)

Confidence
= 8/11 =
0.73

Handles insertion and deletion noise between
the occurrences of the pattern with the use
of γ. [Actual occurrence/Expected occur-
rence: 152/150 , 200/202 , 297/300, 348/347,
399/398, 500/599]. Handles replacement
noise by ignoring certain positions of ex-
pected occurrences (250,449)

61



4.2.2 STNR-A: Periodicity Mining with Approxima-
tion

We propose an algorithm that simultaneously handles insertion, deletion and
replacement noise introduced both between the occurrences of the pattern
and in the structure of the pattern i.e., the case of (κ 6= 0, γ 6= 0). The
algorithm employs approximate pattern matching to check for the occurrence
of an approximate version of the pattern at expected positions of occurrence,
for every scan of the occurrence vector. The result is more accurate with
improved confidence in the periodicity detection for a given pattern.

Approach

Given a text T of length n representing the practical time series data, a
suffix tree or a compressed suffix tree is built and then the tree structure is
traversed to record the occurrence vectors for all the internal nodes in the
tree. The occurrence vector for a given internal node contains the list of all
the leaf nodes in the subtree rooted at that particular internal node, which
represents the starting positions of all the exact occurrences of the substring
(representing the path label of the internal node) in the text.

A distance-based algorithm is used to process the occurrence vectors
one at a time, to check if the pattern corresponding to the occurrence vector is
periodic. The algorithm considers each element V [j] of the occurrence vector
as a potential start position (stPos) of periodicity, where (0 ≤ j ≤ ηV ),
and ηV the size of the current occurrence vector. It assumes the difference
p = V [j + 1] − V [j] as the potential period and then makes a linear scan
through the occurrence vector to check for periodicity with period length p.
It checks the elements of the occurrence vector to see if the elements are
periodic with respect to the position stPos and period length p.

Consider the running example as described earlier, with occurrence
vector V = [0, 50, 150, 200, 300, 350, 400, 500]. During the first scan of the
occurrence vector, the algorithm considers stPos = V [0] = 0 as the start of
the periodicity and assumes p = V [1] − V [0] = 50 as the potential period
and scans the occurrence vector to check for periodicity. We observe that

62



the expected occurrences 100, 250, 450 might not be recorded due to some
errors introduced at copies of the pattern, resulting in periodicity with low
confidence. During the next scan, stPos = V [1] = 50 is considered as the
potential start of periodicity and p = V [2] − V [1] = 100 as the potential
period value, and scans the vector to look for periodicitygmg with p = 100.

Our idea is to use approximate pattern matching for missed ex-
pected occurrences to improve the confidence. Given a missed expected
occurrence position (x), we use approximate pattern matching to find po-
sitions of approximate occurrences of pattern P with edit distance ≤ κ in
the substring of text T

′
= T [x−γ....x+m+γ+κ] , where κ is the bound on

the number of errors allowed in a particular occurrence of the pattern and
γ is the bound on the allowable drift from its expected occurrence position.
The left range of the substring T

′
is chosen as (x − γ) since the occurrence

position of the pattern can drift to the left of its expected position due to
deletion noise (γ number of symbols deleted) introduced in the text between
the position (x) and its previous occurrence. The right range of the substring
T

′
is chosen as (x+γ+κ) to handle the worst cases. The occurrence position

of the pattern can drift to the right of its expected position due to insertion
noise (γ number of symbols inserted) introduced in the text between the po-
sition (x) and its previous occurrence. Also, there can be errors introduced
in the structure of the pattern (maximum of κ number of errors, insertion in
the worst case). Any standard approximate matching algorithm can be used
to identify the position in the substring T

′
of an approximate occurrence of

pattern P with least edit distance. The use of standard dynamic program-
ming will result in O(m2) time to check for each such possible position x.
Alternately, the method by Landau and Vishkin [42] can be used to perform
the check in O(κm) worst-case time for each expected occurrence position x.

63



Algorithm 3 STNR (κ = 0, γ 6= 0).

1: for each occurrence vector V of size ηV for pattern P do
2: for j ← 0 to ηV − 2 do
3: p←record potential period starting at position j
4: set count of periodic occurrences to 0
5: for i← j to ηV do
6: calculate the difference between the current occurrence V [i]

and last possible periodic occurrence currStPos
7: calculate the number of periodic jumps from last possible

periodic occurrence currStPos to current occurrence V [i]
8: if drift of current occurrence from expected occurrence is

within allowable limits (γ) then
9: update last possible periodic occurrence (currStPos)←

current occurrence V [i]
10: increment count
11: end if
12: end for
13: calculate confidence for the current periodic section
14: if confidence ≥ threshold then
15: add p to period list
16: end if
17: end for
18: end for

The STNR algorithm (Algorithm 3 on page 64), when making a scan
through the occurrence vector for a given period p, does not check for possible
occurrences that could be missed due to the errors in the structure of the
pattern at expected occurrences. Thus, when the number of periodic jumps
(line 7) from the last possible periodic occurrence currStPos to current
occurrence position is greater than 1, it is important to check for possible
occurrences of approximate versions of pattern P at expected positions of
occurrences.

The algorithm STNR [57] is modified to accommodate the case of
errors introduced in the structure of the pattern. Algorithm 4 (page 65)
shows our proposed method STNR-A. Essentially, this modifies the STNR
algorithm by inserting procedures to handle the approximate periodicity with

64



(κ 6= 0, γ 6= 0), between Lines 7 and 8 of Algorithm 3. The new codes are
added between Lines 8 and 24 in Algorithm 4. When the number of periodic
jumps from the last possible periodic occurrence (currStPos) to current oc-
currence (V [i]) is greater than 1, then a call to check for an approximate
occurrence of pattern P around a possible region of expected occurrence
is made. The check returns a boolean flag found set to true if such an
occurrence is found and also returns the position value. The last possible oc-
currence (currStPos) is updated with the value returned and also the count
of periodic occurrences is increased. If there exists no such occurrence then
it returns false, and in this case the skipCount is incremented. The variable
skipCount keeps track of the number of consecutive missed occurrences and
when the value exceeds maxSkipCount, which is the limit on the number of
consecutive missed occurrences, and thus indicates the end of the current pe-
riodic section. This helps us in identifying periodic sections that occur only
in a subsection of the time series data. After the if statement of the check to
“#jumps > 1”, the loop counter is decremented, as still the current occur-
rence position V [i] is not considered to be part of the current periodic series.
The Appendix A (on Page 85) contains a program listing implementing the
Algorithm 4.

Algorithm 4 STNR-A (κ 6= 0, γ 6= 0).

1: for each occurrence vector V of size ηV for pattern P do
2: for j ← 0 to ηV − 2 do
3: p←record potential period starting at position j
4: set count of periodic occurrences to 0
5: for i← j to ηV do
6: calculate the difference between the current occurrence V [i]

and last possible periodic occurrence currStPos
7: calculate the number of periodic jumps from last possible

periodic occurrence currStPos to current occurrence V [i]

65



8: if # such jumps > 1 then
9: check for an approximate occurrence of P around allowable

limits (γ) from the expected occurrence (currStPos+p)
and get its position if its found

10: if found =true then
11: increment count
12: update last possible occurrence (currStPos) with the

position found
13: set skipCount← 0
14: else
15: update last possible occurrence (currStPos) to current

expected occurrence (currStPos+ p)
16: increment skipCount
17: if skipCount > allowable limit on number of skips

(maxSkipCount) then
18: mark the end of current periodic section
19: exit the current loop
20: end if
21: end if
22: decrement loop counter /* as current occurrence V [i] is not

yet considered part of periodic occurrences */
23: continue
24: end if
25: if drift of current occurrence from expected occurrence is

within allowable limits (γ) then
26: update last possible periodic occurrence (currStPos)←

current occurrence V [i]
27: increment count
28: end if
29: end for
30: calculate confidence for the current periodic section
31: if confidence ≥ threshold then
32: add p to period list
33: end if
34: end for
35: end for

66



Algorithm Analysis

A suffix tree contains at most 2n− 1 nodes and always n leaves. Thus, there
will be a maximum of n− 1 internal nodes and an occurrence vector for each
internal node. Let ηV (≤ n), be the maximum size of any given occurrence
vector. The algorithm considers every element V [j] of the occurrence vector
as a potential start of periodicity and p = V [j + 1] − V [j] as the potential
period, where 0 ≤ j ≤ ηV , and ηV = |V |. For a given value of j, the algorithm
scans the occurrence vector to check if there exists a periodic pattern with
current period p. The time required to make one such scan is O(ηV ) and the
time required to process an occurrence vector of size at most ηV , is O(η2

V ),
without approximation.

Let us estimate the time required to perform periodicity mining with
approximation. Let ηm be the number of possbile missed occurrences that
are possible for a given pattern P and an occurrence vector V . The algorithm
makes ηm number of checks for approximate matches while processing the
occurrence vector. However, the value of ηm depends on the nature of data
which is prone to errors. The maximum time required to make such checks
could be O(κn) which is the time taken to record all the κ-approximate
matches for a given pattern in the text T . Thus, the time required to process
an occurrence vector with approximation, for a given pattern P is O(η2

V +κn).
The time taken to process all the occurrence vectors (at most n) is O(n ∗
(η2
V + κn)) ≤ O(n3), where n is the size of the text T , ηV is the maximum

size of any occurrence vector and κ is the bound on the number of errors
allowed in the structure of the pattern.

4.2.3 Preliminary Experimental Results

In this section, we present the comparison of periodicity results generated by
algorithms STNR [57] and STNR-A. We generate synthetic data the way it
has been done in [22,57].

Experiment 1: Using synthetic data with periodic nature as described in
Table 4.1 from Section 4.2.1, below are the results obtained.

67



Case a: V=[0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500], ηV = 11
STNR p=50 stPos=0 endPos=500 conf=1.0 count=11
STNR-A p=50 stPos=0 endPos=500 conf=1.0 count=11

Case b: V=[0, 50, 150, 200, 300, 350, 400, 500], ηV = 8
STNR p=50 stPos=0 endPos=500 conf=0.73 count=8
STNR-A p=50 stPos=0 endPos=500 conf=1.0 count=11
Case c: V=[0, 50, 100, 152, 200, 250, 297, 348, 399, 450, 500], ηV = 11
STNR p=50 stPos=0 endPos=500 conf=1.0 count=11
STNR-A p=50 stPos=0 endPos=500 conf=1.0 count=11

Case d: V=[0, 50, 152, 200, 297, 348, 399, 500], ηV = 8
STNR p=50 stPos=0 endPos=500 conf=0.73 count=8
STNR-A p=50 stPos=0 endPos=500 conf=1.0 count=11

Table 4.2: Comparison of STNR and STNR-A for cases defined in Table 4.1.

Observations: (κ = 2, γ = 3))

• Case a (κ = 0, γ = 0)): In the case of perfect periodicity, both
algorithms produced the same result.

• Case b (κ 6= 0, γ = 0)): The case of imperfect periodicity, where
there are certain occurrences missed (100,250,450) due to errors in the
pattern. The STNR-A has better confidence as compared to SNTR due
to approximate matching employed in the case of missed occurrences.
For the given example, there exists approximate occurrences of the
pattern at all the missed occurrence positions.

• Case c (κ = 0, γ 6= 0)): In the case of imperfect periodicity where
errors are between occurrences of periodic pattern, the algorithms pro-
duced the same result.

• Case d (κ 6= 0, γ 6= 0)): The case of imperfect periodicity where
there are certain occurrences missed (100,250,449) due to errors in
the pattern and also drift of occurrences (152:drift=+2, 200:drift=-2,
297:drift=-3, 348:drift=+1, 399:drift=+1, 500:drift=+1) due to errors
between the occurrences of the pattern. The STNR-A has better con-
fidence as compared to SNTR due to approximate matching employed

68



in the case of missed occurrences. For the given example, there exists
approximate occurrences of the pattern at all the missed occurrence
positions.

Experiment 2: We generated synthetic data for a pattern P = abcde with
p = 20 and |Σ| = 10, with perfect periodic nature. And then introduce vari-
ous degrees of noise and compare the results from both algorithms.

Values of Parameters: κ = 3, γ = 3, maxSkipCount = 3, conf threshold =
0.5, dmax = p ∗maxSkipCount

The results are given in the format: P, p, (N)[stPos, endPos, conf, count],
where P is the periodic pattern, p the period length, (N) the number of peri-
odic subsections detected, [stPos, endPos, conf, count] represents the start-
ing position, end position, confidence and count of periodic occurrences for
the given pattern P with period p. Multiple sets of these values indicate
the pattern is found with the same period in multiple subsections of the text
whose start and end values are specified by stPos and endPos. RID noise
refers to replacement, insertion, and deletion noise ratio, and run#i repre-
sents the i-th run of the experiment.

P : abcde, p : 20
STNR: (1) [0, 9980, 1, 500]

STNR-A: (1) [0, 9980, 1, 500]

Figure 4.2: Comparison of STNR and STNR-A in the case of perfect peri-
odicity

Perfect Periodicity, RID noise=0.0 : n = 10, 000, p = 20, |Σ| =

69



10. The results of both STNR and STNR-A as shown in Figure 4.2 are the
same, in the case of perfect periodicity.

P : abcde, p : 20
STNR: (18) [95, 500, 0.65, 13], [561, 1242, 0.8, 28], [1324, 2154, 0.63,

27], [2256, 2638, 0.75, 15], [2987, 3007, 1, 2], [3107, 3662, 0.86, 25],
[4033, 4093, 0.75, 3], [4312, 4668, 0.74, 14], [4874, 5116, 0.85, 11], [5274,
5494, 0.83, 10], [5868, 5990, 0.86, 6], [6068, 6130, 0.75, 3], [6324, 7188,

0.81, 35], [7224, 7304, 1, 5], [7651, 7728, 0.6, 3], [7790, 7810, 1, 2], [7871,
9373, 0.75, 57], [9434, 9980, 0.81, 22]

STNR-A: (1) [95, 9980, 1, 495]

Figure 4.3: Comparison of STNR and STNR-A with RID=0.1 run# 1

RID noise=0.1, run#1 : n = 10, 000, p = 20, |Σ| = 10. As
shown in Figure 4.3, it is observed that STNR outputs multiple periodic
sections for the same pattern and same period value, while STNR-A outputs
a single subsection.

RID noise=0.1, run#2 : n = 10, 000, p = 20, |Σ| = 10. As
shown in Figure 4.4, it is observed that STNR outputs multiple periodic
sections for the same pattern and same period value, while STNR-A outputs
a single subsection.

70



P : abcde, p : 20
STNR: (15) [184, 488, 0.8, 12], [708, 728, 1, 2], [828, 1208, 0.7, 14],
[1412, 1849, 0.96, 22], [2008, 2600, 0.59, 17], [2721, 3062, 0.72, 13],

[3124, 3429, 0.87, 13], [3587, 4066, 0.76, 19], [4149, 4291, 0.75, 6], [4607,
5537, 0.56, 27], [5652, 5948, 0.75, 12], [6052, 6647, 0.68, 21], [6747, 7887,

0.74, 43], [7969, 9200, 0.7, 44], [9296, 9980, 0.83, 29]

STNR-A: (1) [184, 9980, 0.994, 488]

Figure 4.4: Comparison of STNR and STNR-A with RID=0.1 run# 2

P : abcde, p : 20
STNR: (20) [208, 228, 1, 2], [661, 717, 1, 4], [1142, 1206, 1, 4], [1530,

1568, 1, 3], [2350, 2887, 0.71, 20], [3065, 3085, 1, 2], [3445, 3521, 0.8, 4],
[3971, 4049, 0.8, 4], [4350, 4430, 0.8, 4], [4954, 5036, 0.8, 4], [5071, 5110,
1, 3], [5254, 5274, 1, 2], [5838, 5935, 1, 6], [6048, 6068, 1, 2], [8210, 8250,
1, 3], [8627, 8647, 1, 2], [8763, 8881, 0.71, 5], [9022, 9158, 0.88, 7], [9319,

9521, 0.82, 9], [9640, 9879, 0.62, 8]

STNR-A: (2) [208, 268, 1, 4], [661, 9940, 0.993, 462]

Figure 4.5: Comparison of STNR and STNR-A with RID=0.2 run# 1

71



RID noise=0.2, run#1 : n = 10, 000, p = 20, |Σ| = 10. As
shown in Figure 4.5, it is observed that STNR outputs multiple periodic
sections for the same pattern and same period value, while STNR-A outputs
only two subsections.

RID noise=0.2, run#2 : n = 10, 000, p = 20, |Σ| = 10. As
shown in Figure 4.6, it is observed that STNR outputs multiple periodic
sections for the same pattern and same period value, while STNR-A outputs
only two subsections.

P : abcde, p : 20
STNR: (26) [102, 200, 0.67, 4], [783, 843, 1, 4], [1306, 1326, 1, 2], [1919,
1939, 1, 2], [2491, 2531, 1, 3], [3071, 3295, 0.82, 9], [3376, 3496, 0.71, 5],
[3652, 3672, 1, 2], [4057, 4117, 0.75, 3], [4604, 4624, 1, 2], [4807, 4846, 1,
3], [5119, 5139, 1, 2], [5543, 5606, 1, 4], [5864, 5884, 1, 2], [6283, 6324, 1,
3], [6440, 6460, 1, 2], [6844, 6883, 1, 3], [7066, 7126, 1, 4], [7225, 7327,

0.8, 4], [7586, 7826, 0.69, 9], [8267, 8344, 0.8, 4], [8597, 8657, 1, 4], [9101,
9517, 0.68, 15], [9618, 9638, 1, 2], [9699, 9819, 0.86, 6], [9880, 9960, 1, 5]

STNR-A: (2) [102, 4373, 0.903, 195], [4604, 9960, 0.98, 264]

Figure 4.6: Comparison of STNR and STNR-A with RID=0.2 run# 2

RID noise=0.3, run#1 : n = 10, 000, p = 20, |Σ| = 10. As
shown in Figure 4.7, it is observed that STNR outputs multiple periodic
sections for the same pattern and same period value, while STNR-A outputs
a single subsection.

72



P : abcde, p : 20
STNR: (10) [1367, 1447, 0.6, 3], [4226, 4265, 1, 3], [4929, 4992, 1, 4],

[6018, 6059, 1, 3], [6121, 6141, 1, 2], [7745, 7844, 0.83, 5], [8025, 8045, 1,
2], [9242, 9341, 0.83, 5], [9757, 9777, 1, 2], [9839, 9980, 0.75, 6]

STNR-A: (1) [1367, 9980, 0.931, 405]

Figure 4.7: Comparison of STNR and STNR-A with RID=0.3 run# 1

It is observed that with the increasing noise, the STNR produces
more number of subsections with decreased confidence, which is due to the
noise introduced in the structure of the pattern, whereas, the STNR-A de-
tects those occurrences where the errors are in the structure of the pattern
and thus reporting less number of subsections and with improved confidence.
It is clearly observed that STNR-A outperforms the algorithm STNR for
efficient and effective mining of periods in the presence of noise in both the
structure of the periodic pattern and also between the occurrences of the
periodic pattern.

4.2.4 Improved practical time for long patterns

The time involved in the checks for an occurrence of an approximate version
of the periodic pattern at expected positions will be costly if the size of the
pattern is large. The goal is to reduce the overall time involved in approxi-
mate matching for periodicity detection in the case of long patterns by using a
two-phase hypothesis-generation and hypothesis-verification approach using

73



approximate q-gram filtering.

Hypothesis Generation Phase: Also called the filtering phase,
is used to identify regions of text which could be potential matches. First,
either the text or pattern is partitioned into consecutive regions of a given
predefined length called q-grams. Efficient exact matching algorithms will
be employed to detect length-q intervals of T which could potentially be in
approximate occurrences with P , called the surviving intervals. The goal is
to eliminate, as many as possible, the other regions of T , called the non-
surviving intervals, which definitely cannot contain approximate occurrences
of P . The end result of this phase is a vector I which contains the starting
positions in T of exact occurrences of any q-length region of P .

Hypothesis verification Phase: In this phase, for each hypoth-
esis generated i.e., for each i ∈ I, some approximate matching method is
employed explicitly between a sufficiently large substring of T around posi-
tion i and the pattern P to check if there is an approximate occurrence of P
in a sufficiently large interval around i.

The different methods based on this approach can vary depending
on their choice of the string to partition, exact matching algorithms to be
employed in the hypothesis generation phase, the choice of value for q and the
choice of the definition of the region. The time cost for the verification phase
is generally high, and the overall performance of the algorithm depends on
the efficiency of the hypothesis generation phase, in terms of the time needed
for the generation phase and also on the number of hypotheses generated [1].
The key point is that there needs to be a balance between the hypothesis
generation and hypothesis verification phases, as the reduction in the time
consumed in one phase causes an increase in the time consumed in the other
phase [29].

Following Baeza-Yates et al. [12], the pattern P in partitioned into
consecutive (non-overlapping) regions called q-grams each of length q, where
q =

⌊
m
κ+1

⌋
such that there will be (κ + 1) regions each of full-length q and

the last region can be of length less than q. The basis is the fact that even
if the κ-errors are distributed in each of the separate κ regions, there will be
a (κ+ 1)th region which does not contain any errors and will exactly match
with one q-length region of T

′
, a substring of T.

74



Using the suffix tree of T , we can perform hypothesis generation
by searching in text T, for all the exact occurrences of each of the (κ+1)
substrings of P , each of length q. The time taken during the search phase to
find the exact occurrence positions of all the q-grams will be proportional to

O((κ+ 1) ∗ q ∗ log(Σ) + ηh) ' O(m ∗ log(Σ) + ηh)

where ηh = |I| is the number of the exact occurrences of all of
the q-grams. The list of the exact occurrences of all of the q-grams will be
maintained in the vector I in sorted order.

During the scan of the occurrence vectors, in the case of long pat-
terns instead of employing approximate matching for every possible missed
expected occurrence position (x), we first check to see if there exists a possi-
ble approximate match around the position x. To check for an approximate
occurrence of the pattern at given expected positions (x), we make a linear
pass through the vector I. For example, let x be a particular expected oc-
currence position, we apply approximate pattern matching only if x exists in
any subsection T [i−m−κ...i+m+κ], where (i ∈ I) and κ is the bound on
the number of errors allowed in the structure of the pattern. Given I, this
check can be performed in constant time for each position x in T or O(n)
time for all the checks for each pattern. The worst case time involved in pro-
cessing an occurrence vector for a given pattern will still remain O(η2

V +κn),
however, the practical time will be reduced as some approximate matching
checks can be eliminated with the use of hypothesis generation and hypoth-
esis verification steps.

75



Chapter 5

Conclusions

Periodicity mining has gained a lot of importance due to its varied applica-
tions such as in weather forecasting, stock market prediction and analysis,
analysing patterns of power consumption, etc. However, there are challenges
involved in mining meaningful periods out of the practical time series data.
Processing large amounts of data and handling noise which is an inherent part
of the data, make efficient and effective mining a challenging problem. In this
work, we propose the use of compressed suffix trees for efficient periodicity
mining to handle large amounts of data. Though suffix trees can efficiently
capture repeated substrings in the text, its high practical space requirements
make it difficult to perform periodicity mining in main memory, especially
for large data. With a comprehensive empirical analysis on the practical us-
age of the suffix data structures for periodicity mining, we conclude that the
compressed suffix trees can replace suffix trees for space-efficient periodicity
mining.

It is important to mine periods in spite of the noise present in the
practical time series data, as it gives accurate information about the tempo-
ral regularities in the time series data. The noise can occur simultaneously
both between the occurrences of a periodic pattern and in the structure of
the pattern itself which leads us to the problem of approximate periodicity.
We provide a taxonomy for approximate periodicity using our two defined
parameters κ and γ, where κ is the bound on the number of errors allowed
in the structure of the periodic pattern and γ is the bound on the number

76



of errors allowed between the periodic occurrences of the pattern. We pro-
pose an improved algorithm for approximate periodicity mining. Our new
algorithm STNR-A runs in time O(η2

V +κn) and handles the extreme case of
(κ 6= 0, γ 6= 0), where ηV is the maximum size of the occurrence vector and n
the length of the time series data. The results from preliminary experiments
using synthetic data, show that the algorithm can detect periods accurately
with improved confidence, which otherwise could go unidentified due to the
noise in the data.

77



Bibliography

[1] D. Adjeroh, A. Mukherjee, T. Bell, M. Powell, and Nan Zhang. Pattern
matching in BWT-transformed text. In Data Compression Conference,
2002. Proceedings. DCC 2002, pages 445–, 2002.

[2] Donald Adjeroh, Timothy Bell, and Amar Mukherjee. The Burrows-
Wheeler Transform:: Data Compression, Suffix Arrays, and Pattern
Matching. Springer Science & Business Media, 2008.

[3] Donald Adjeroh and Fei Nan. Suffix-Sorting via Shannon-Fano-Elias
Codes. Algorithms, 3(2):145–167, 2010.

[4] Akram Al-Rawi, Azzedine Lansari, and Faouzi Bouslama. A new non-
recursive algorithm for binary search tree traversal. In Electronics, Cir-
cuits and Systems, 2003. ICECS 2003. Proceedings of the 2003 10th
IEEE International Conference on, volume 2, pages 770–773. IEEE,
2003.

[5] Srinivas Aluru. Suffix trees and suffix arrays. Handbook of Data Struc-
tures and Applications, 2004.

[6] Amihood Amir, Alberto Apostolico, Gad M Landau, Avivit Levy, Moshe
Lewenstein, and Ely Porat. Range lcp. Journal of Computer and System
Sciences, 80(7):1245–1253, 2014.

[7] Amihood Amir, Estrella Eisenberg, and Avivit Levy. Approximate pe-
riodicity. In Algorithms and Computation, pages 25–36. Springer, 2010.

[8] Amihood Amir and Avivit Levy. Approximate period detection and
correction. In String Processing and Information Retrieval, pages 1–15.
Springer, 2012.

78



[9] Alberto Apostolico and Raffaele Giancarlo. The boyer-moore-galil string
searching strategies revisited. SIAM Journal on Computing, 15(1):98–
105, 1986.

[10] Alberto Apostolico and Franco P. Preparata. Optimal off-line detection
of repetitions in a string. Theoretical Computer Science, 22(3):297–315,
1983.

[11] Ricardo Baeza-Yates and Gaston H Gonnet. A new approach to text
searching. Communications of the ACM, 35(10):74–82, 1992.

[12] Ricardo A Baeza-Yates and Chris H Perleberg. Fast and practical ap-
proximate string matching. In Combinatorial Pattern Matching, pages
185–192. Springer, 1992.

[13] Christos Berberidis, Walid G Aref, Mikhail Atallah, Ioannis Vlahavas,
Ahmed K Elmagarmid, et al. Multiple and partial periodicity mining in
time series databases. In ECAI, volume 2, pages 370–374, 2002.

[14] Jean Berstel. Fibonacci words—a survey. In The book of L, pages 13–27.
Springer, 1986.

[15] Robert S Boyer and J Strother Moore. A fast string searching algorithm.
Communications of the ACM, 20(10):762–772, 1977.

[16] Rodrigo Cánovas and Gonzalo Navarro. Practical compressed suffix
trees. In Experimental Algorithms, pages 94–105. Springer, 2010.

[17] Christian Charras and Thierry Lecroq. Handbook of exact string match-
ing algorithms. Citeseer, 2004.

[18] Pizza&Chili Corpus and Compressed Indexes. their testbeds, 2005.

[19] Max Crochemore. An optimal algorithm for computing the repetitions
in a word. Information Processing Letters, 12(5):244–250, 1981.

[20] Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algo-
rithms on strings. Cambridge University Press, 2007.

[21] Maxime Crochemore and Lucian Ilie. Maximal repetitions in strings.
Journal of Computer and System Sciences, 74(5):796–807, 2008.

79



[22] Mohamed G Elfeky, Walid G Aref, and Ahmed K Elmagarmid. Periodic-
ity detection in time series databases. Knowledge and Data Engineering,
IEEE Transactions on, 17(7):875–887, 2005.

[23] Mohamed G Elfeky, Walid G Aref, and Ahmed K Elmagarmid. Warp:
Time warping for periodicity detection. In Data Mining, Fifth IEEE
International Conference on, pages 8–pp. IEEE, 2005.

[24] Johannes Fischer, Veli Mäkinen, and Gonzalo Navarro. Faster entropy-
bounded compressed suffix trees. Theoretical Computer Science,
410(51):5354–5364, 2009.

[25] Simon Gog. Compressed suffix trees: Design, construction, and applica-
tions. PhD thesis, PhD thesis, Univ. of Ulm, Germany, 2011.

[26] Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From the-
ory to practice: Plug and play with succinct data structures. In 13th In-
ternational Symposium on Experimental Algorithms, (SEA 2014), pages
326–337, 2014.

[27] Simon Gog and Johannes Fischer. Advantages of shared data structures
for sequences of balanced parentheses. In Data Compression Conference
(DCC), 2010, pages 406–415. IEEE, 2010.

[28] Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and
suffix trees with applications to text indexing and string matching.
SIAM Journal on Computing, 35(2):378–407, 2005.

[29] Dan Gusfield. Algorithms on strings, trees and sequences: computer
science and computational biology. Cambridge university press, 1997.

[30] Jiawei Han, Guozhu Dong, and Yiwen Yin. Efficient mining of partial
periodic patterns in time series database. In Data Engineering, 1999.
Proceedings., 15th International Conference on, pages 106–115. IEEE,
1999.

[31] Jiawei Han, Wan Gong, and Yiwen Yin. Mining segment-wise periodic
patterns in time-related databases. In KDD, pages 214–218, 1998.

[32] Kuo-Yu Huang and Chia-Hui Chang. Mining periodic patterns in se-
quence data. In Data Warehousing and Knowledge Discovery, pages
401–410. Springer, 2004.

80



[33] Kuo-Yu Huang and Chia Hui Chang. Smca: a general model for mining
asynchronous periodic patterns in temporal databases. Knowledge and
Data Engineering, IEEE Transactions on, 17(6):774–785, 2005.

[34] Costas S Iliopoulos, Dennis Moore, and William F Smyth. A charac-
terization of the squares in a fibonacci string. Theoretical Computer
Science, 172(1):281–291, 1997.

[35] Piotr Indyk, Nick Koudas, and S Muthukrishnan. Identifying represen-
tative trends in massive time series data sets using sketches. In VLDB,
pages 363–372, 2000.

[36] Guy Jacobson. Space-efficient static trees and graphs. In Foundations of
Computer Science, 1989., 30th Annual Symposium on, pages 549–554.
IEEE, 1989.

[37] Guy Joseph Jacobson. Succinct Static Data Structures. PhD thesis,
Pittsburgh, PA, USA, 1988. AAI8918056.

[38] Juha Kärkkäinen and Peter Sanders. Simple linear work suffix array
construction. In Automata, Languages and Programming, pages 943–
955. Springer, 2003.

[39] Richard M Karp and Michael O Rabin. Efficient randomized pattern-
matching algorithms. IBM Journal of Research and Development,
31(2):249–260, 1987.

[40] Donald E Knuth, James H Morris, Jr, and Vaughan R Pratt. Fast
pattern matching in strings. SIAM journal on computing, 6(2):323–350,
1977.

[41] Pang Ko and Srinivas Aluru. Space efficient linear time construction
of suffix arrays. In Combinatorial Pattern Matching, pages 200–210.
Springer, 2003.

[42] Gad M Landau and Uzi Vishkin. Introducing efficient parallelism into
approximate string matching and a new serial algorithm. In Proceedings
of the eighteenth annual ACM symposium on Theory of computing, pages
220–230. ACM, 1986.

81



[43] Gad M Landau and Uzi Vishkin. Fast string matching with k differences.
Journal of Computer and System Sciences, 37(1):63–78, 1988.

[44] Jie Lin and Don Adjeroh. All-against-all circular pattern matching. The
Computer Journal, 55(7):897–906, 2012.

[45] Jie Lin, Yue Jiang, and Don Adjeroh. Circular pattern discovery. The
Computer Journal, 2014.

[46] Sheng Ma and Joseph L Hellerstein. Mining partially periodic event
patterns with unknown periods. In Data Engineering, 2001. Proceedings.
17th International Conference on, pages 205–214. IEEE, 2001.

[47] Michael G Main and Richard J Lorentz. An o (n log n) algorithm for
finding all repetitions in a string. Journal of Algorithms, 5(3):422–432,
1984.

[48] Udi Manber and Gene Myers. Suffix arrays: a new method for on-line
string searches. siam Journal on Computing, 22(5):935–948, 1993.

[49] Fahad Maqbool, Shariq Bashir, and A Rauf Baig. E-map: Efficiently
mining asynchronous periodic patterns. International Journal of Com-
puter Science and Network Security, 6(8A):174–179, 2006.

[50] Edward M McCreight. A space-economical suffix tree construction al-
gorithm. Journal of the ACM (JACM), 23(2):262–272, 1976.

[51] J Ian Munro, Venkatesh Raman, and S Srinivasa Rao. Space efficient
suffix trees. Journal of Algorithms, 39(2):205–222, 2001.

[52] Gonzalo Navarro. A guided tour to approximate string matching. ACM
computing surveys (CSUR), 33(1):31–88, 2001.

[53] Gonzalo Navarro. Nr-grep: a fast and flexible pattern-matching tool.
Software: Practice and Experience, 31(13):1265–1312, 2001.

[54] Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes. ACM
Computing Surveys (CSUR), 39(1):2, 2007.

[55] Enno Ohlebusch, Johannes Fischer, and Simon Gog. Cst++. In String
Processing and Information Retrieval, pages 322–333. Springer, 2010.

82



[56] Enno Ohlebusch and Simon Gog. A compressed enhanced suffix array
supporting fast string matching. In String Processing and Information
Retrieval, pages 51–62. Springer, 2009.

[57] Faraz Rasheed, Mohammed Alshalalfa, and Reda Alhajj. Efficient pe-
riodicity mining in time series databases using suffix trees. Knowledge
and Data Engineering, IEEE Transactions on, 23(1):79–94, 2011.

[58] Lúıs MS Russo, Gonzalo Navarro, and Arlindo L Oliveira. Fully-
compressed suffix trees. In LATIN 2008: Theoretical Informatics, pages
362–373. Springer, 2008.

[59] Kunihiko Sadakane. New text indexing functionalities of the compressed
suffix arrays. Journal of Algorithms, 48(2):294–313, 2003.

[60] Kunihiko Sadakane. Compressed suffix trees with full functionality. The-
ory of Computing Systems, 41(4):589–607, 2007.

[61] Peter H Sellers. The theory and computation of evolutionary distances:
pattern recognition. Journal of algorithms, 1(4):359–373, 1980.

[62] Jeong Seop Sim, Kunsoo Park, Costas S Iliopoulos, and William F
Smyth. Approximate periods of strings. In Combinatorial Pattern
Matching, pages 123–133. Springer, 1999.

[63] Bill Smyth. Computing patterns in strings. 2003.

[64] Esko Ukkonen. Finding approximate patterns in strings. Journal of
algorithms, 6(1):132–137, 1985.

[65] Esko Ukkonen. On-line construction of suffix trees. Algorithmica,
14(3):249–260, 1995.

[66] Niko Välimäki, Veli Mäkinen, Wolfgang Gerlach, and Kashyap Dixit.
Engineering a compressed suffix tree implementation. Journal of Exper-
imental Algorithmics (JEA), 14:2, 2009.

[67] Peter Weiner. Linear pattern matching algorithms. In Switching and
Automata Theory, 1973. SWAT’08. IEEE Conference Record of 14th
Annual Symposium on, pages 1–11. IEEE, 1973.

83



[68] Sun Wu and Udi Manber. Agrep–a fast approximate pattern-matching
tool. Usenix Winter 1992, pages 153–162, 1992.

[69] Kostas F Xylogiannopoulos, Panagiotis Karampelas, and Reda Alhajj.
Periodicity data mining in time series using suffix arrays. In Intelligent
Systems (IS), 2012 6th IEEE International Conference, pages 172–181.
IEEE, 2012.

[70] Jiong Yang, Wei Wang, and Philip S Yu. Infominer+: mining partial
periodic patterns with gap penalties. In Data Mining, 2002. ICDM
2003. Proceedings. 2002 IEEE International Conference on, pages 725–
728. IEEE, 2002.

[71] Jiong Yang, Wei Wang, and Philip S. Yu. Mining asynchronous periodic
patterns in time series data. Knowledge and Data Engineering, IEEE
Transactions on, 15(3):613–628, 2003.

[72] Jieh-Shan Yeh and Szu-Chen Lin. A new data structure for asyn-
chronous periodic pattern mining. In Proceedings of the 3rd Interna-
tional Conference on Ubiquitous Information Management and Com-
munication, pages 426–431. ACM, 2009.

[73] Shlomo Yona and Dotan Tsadok. Ansi c implementation of a suffix tree,
2003.

84



Appendices

A STNR-A: Algorithm Description

In the algorithm below, the variable p represents the current potential period,
the variable stPos holds the starting position in T of the current periodic
series corresponding to the period p, and the variable endPos represents the
last position of the occurrence of the pattern P in the text T . The variable
currStPos is a moving reference which holds the value of the last possible
periodic occurrence position and the variable preOccur holds the value of the
last valid periodic occurrence. The variable count is incremented for every
periodic position found. The variable sumPer holds the summation of the
period differences observed during the scan of an occurrence vector that helps
in calculating the mean period length for the current periodic series. The
variable skipCount keeps track of the number of consecutive missed periodic
occurrences.

The variable A represents the distance between the current occur-
rence position V [i] and the current reference starting position (currStPos) [57],
variable B represents the number of periodic jumps between the current oc-
currence position V [i] and the current reference position (currStPos). The
value of B greater than 1 indicates possible missed occurrences due to er-
rors introduced in the structure of the pattern. Thus when (B > 1), there
is a need to check for an approximate version of the pattern around ex-
pected position of occurrence (currStPos+p) i.e., p positions away from cur-
rent reference starting position currStPos, by making a call to the method
kApproxCheck(currStPos + p, γ, κ). The method call returns two values
a boolean flag and a position value aPos. The flag is set to true, if an
approximate occurrence of pattern P is found in possible region around
currStPos + p and aPos is set to the starting position in text T of such
approximate occurrence found with least possible edit distance ≤ κ. The
flag is set to false otherwise. Thus, if the flag is set to true, the count of
periodic occurrences is incremented by 1 and the current reference position
(currStPos) and last valid occurrence (preOccur) are updated with the value
(aPos) returned by the method call. If the flag is false, then the current
reference position is updated to currStPos + p, to prevent the check for an

85



approximate occurrence at this position again in the cases of B ≥ 2 and also
the skipCount is incremented to account for missed occurrence positions. In
the case of B > 1 the variable i is decremented to allow the current vector
element V [i] to be considered during the periodic checks to compensate for
the increment of variable i in the increment part of the for loop. For B ≯ 1,
there exists no possible missed occurrences, and the variable C represents
the drift of current vector element V [i] value from the expected occurrence
position. If the value of variable C falls within the value γ it is considered to
be part of the current periodic series and the variable count is incremented.

In practical time series data the periods exits in either the whole
time series data or only in a subsection of the data. To handle the later case,
we define a parameter maxSkipCount which is the number of allowed consec-
utive missed occurrences that determines the end of a given periodic section.
For example, consider an occurrence vector V = [0, 50, 100, 350, 400, 450, 500]
and maxSkipCount = 3, here there exists positions 150, 200, 250, 300, which
are missed occurrence positions. The missed occurrences could be due to
the noise introduced in the pattern. While making a scan through the oc-
currence vector with potential period p = 50, the algorithm checks for ap-
proximate occurrences of the pattern at these positions. In case, the checks
for approximate occurrences return false for all these positions, then the
(skipCount = 4) > maxSkipCount, and thus the algorithm marks the end
of one periodic section (lines 24:27) with stPos = 0 and endPos = 100.

86



Algorithm 1 STNR-A

1: for each occurrence vector (V ) of size ηV for pattern P do
2: for j ← 0 to ηV − 2 do
3: p← V [j + 1]− V [j];
4: stPos← V [j];
5: endPos← V [ηV − 1];
6: currStPos← stPos; preOccur ← −5;
7: count← 0; sumPer ← 0; skipCount← 0;
8: for i← j to ηV do
9: A← V [i]− currStPos;

10: B ← Round(A/p);
11: if (B > 1) and ((currStPos+ p) < (n− p)) then
12: flag ← false;
13: < flag, aPos >← kApproxCheck(currStPos+p, γ, κ);
14: if flag=true then
15: sumPer ← sumPer + aPos− currStPos;
16: currStPos← aPos;
17: preOccur ← aPos;
18: incrementcount(p);
19: skipCount← 0;
20: else
21: currStPos← currStPos+ p;
22: skipCount++;
23: if (skipCount > maxSkipCount) then
24: endPos← currStPos− skipCount ∗ p;
25: break(exit current for loop);
26: end if
27: end if
28: i−−;
29: continue;
30: end if
31: skipCount← 0;
32: C ← A− (p ∗B);
33: if ((−γ ≤ C ≤ γ) AND

(Round((preOccur − currSTPos)/p) 6= B)) then
34: currStPos← V [i];
35: preOccur ← V [i];
36: incrementcount(p);
37: sumPer ← sumPer + (p+ C);
38: end if
39: end for
40: meanP ← sumPer−p

count(p)−1

41: conf(p)← count(p)
PerfectP eriodicity(p,stPos,X)

42: if conf(p) ≥ threshold then
43: add p to the period list;
44: end if
45: end for
46: end for



B Varying Period Value (p)

Table 1 shows the LCP values and entropy information for synthetic data
with varying period value(p). The LCP values remain constant for varying
period value, provided the alphabet size(|Σ|=10) and data size(n = 1 MB)
remain constant. The H0 and H1 entropy values increase with increasing
period value.

p #numNodes #numNodes/n maxLCP meanLCP maxLCP/n (X 10−3) meanLCP/n(X 10−3) H0 H1

10 2,097,146 1.999994 1,048,566 524,278 999.990 499.990 2.612 0.670
20 2,097,141 1.999989 1,048,556 524,268 999.981 499.981 2.998 1.184
30 2,097,134 1.999983 1,048,546 524,258 999.971 499.971 3.108 1.572
40 2,097,127 1.999976 1,048,536 524,248 999.962 499.962 3.124 1.871
50 2,097,121 1.999971 1,048,526 524,238 999.952 499.952 3.198 2.040
60 2,097,115 1.999965 1,048,516 524,228 999.943 499.943 3.225 2.177
70 2,097,109 1.999959 1,048,506 524,218 999.933 499.933 3.227 2.281
80 2,097,103 1.999953 1,048,496 524,208 999.924 499.924 3.208 2.452
90 2,097,096 1.999947 1,048,486 524,198 999.914 499.914 3.236 2.527

100 2,097,093 1.999944 1,048,476 524,188 999.905 499.905 3.236 2.543

Table 1: LCP, entropy and other attributes for synthetic data with varying
period value(p)

cst sada
H0 H1 maxLCP meanLCP size cTime tTime # nodes

p 0.771 0.945 -1.000 -1.000 0.953 -0.903 0.161 -0.999
p 0.899 1.000 -1.000 -1.000 0.867 -1.000 0.200 -1.000

Table 2: Correlation values for cst sada using synthetic data with varying
period value(p)

cst sct3
H0 H1 maxLCP meanLCP size cTime tTime # nodes

p 0.771 0.945 -1.000 -1.000 0.826 0.922 -0.603 -0.999
p 0.899 1.000 -1.000 -1.000 0.733 0.828 -0.556 -1.000

Table 3: Correlation values for cst sct3 using synthetic data with varying
period value(p)

88



ST
H0 H1 maxLCP meanLCP size cTime tTime # nodes

p 0.771 0.945 -1.000 -1.000 -0.999 -0.713 -0.123 -0.999
p 0.899 1.000 -1.000 -1.000 -1.000 -0.764 0.000 -1.000

Table 4: Correlation values for ST using synthetic data with varying period
value(p)

Tables 2, 3, and 4 represent the correlation values for synthetic
data with varying period. The first row of the correlation tables represent
the Pearson’s coefficient and second row represents the Kendall Tau. It can
be observed that, period value has a positive correlation w.r.t to the size of
CSTs and negative correlation w.r.t to the size of the ST. The period value
has positive correlation w.r.t the construction time in the case of cst sct3
and negative correlation in the case of cst sada and ST. The period value
has positive correlation w.r.t the traversal time in the case of cst sada and
negative correlation in the case of cst sct3 and ST.

Figure 1 and Table 5 show that, in general, with increasing period
value the size of suffix tree and cst sada remain constant, whereas the size
of cst sct3 increases slightly.

(a) ST (b) CST

Figure 1: Size per symbol(bytes) of suffix data structures with varying period
value(p) using synthetic data

Figure 2 and Table 6 show that, in general, with increasing period
value the time required to construct decreases in the case of cst sada and

89



slightly increases in the case of cst sct3. In the case of ST the construction
time decreases rapidly with increasing period value.

Figure 3 and Table 7 show that, in general, with varying period
value, there is no reasonable trend in the traversal time required for CSTs
and ST.

(a) CSTs (b) ST

Figure 2: Construction time per symbol(µsecs) for suffix data structures with
varying period(p) using synthetic data

(a) CSTs (b) ST

Figure 3: Traversal time per symbol(µsecs) for suffix data structures with
varying period(p) using synthetic data

90



p sada(MB) sct3(MB) ST(MB) sada/n(bytes) sct3/n(bytes) ST/n(bytes) ST/sada ST/sct3 sct3/sada
10 1.267 4.144 145.000 1.267 4.144 145.000 114.459 34.986 3.272
20 1.267 4.182 144.999 1.267 4.182 144.999 114.465 34.675 3.301
30 1.267 4.197 144.999 1.267 4.197 144.999 114.427 34.544 3.312
40 1.267 4.199 144.998 1.267 4.199 144.998 114.418 34.535 3.313
50 1.268 4.208 144.998 1.268 4.208 144.998 114.389 34.454 3.320
60 1.267 4.220 144.998 1.267 4.220 144.998 114.407 34.362 3.330
70 1.268 4.218 144.997 1.268 4.218 144.997 114.384 34.380 3.327
80 1.268 4.214 144.997 1.268 4.214 144.997 114.329 34.409 3.323
90 1.268 4.220 144.996 1.268 4.220 144.996 114.338 34.360 3.328

100 1.269 4.216 144.996 1.269 4.216 144.996 114.281 34.391 3.323

Table 5: Size(MB) of suffix data structures with varying period value(p)
using synthetic data

p sada(secs) sct3(secs) ST(secs) sada/n(µsecs) sct3/n(µsecs) ST/n(µsecs) sada/ST sct3/ST sada/sct3
10 6.189 0.255 897.600 5.902 0.243 856.018 0.007 0.000 24.288
20 5.209 0.257 349.920 4.968 0.245 333.710 0.015 0.001 20.286
30 4.779 0.255 99.609 4.558 0.243 94.994 0.048 0.003 18.741
40 4.506 0.257 50.367 4.297 0.245 48.034 0.089 0.005 17.514
50 4.354 0.262 10.291 4.153 0.249 9.814 0.423 0.025 16.646
60 4.213 0.262 8.614 4.017 0.250 8.215 0.489 0.030 16.066
70 4.094 0.263 0.349 3.904 0.251 0.332 11.747 0.755 15.557
80 3.980 0.266 0.348 3.796 0.254 0.332 11.440 0.764 14.971
90 3.897 0.264 0.351 3.716 0.252 0.335 11.092 0.751 14.770

100 3.805 0.264 5.346 3.629 0.252 5.099 0.712 0.049 14.389

Table 6: Construction time(secs) for suffix data structures with varying pe-
riod value(p) using synthetic data

p sada(secs) sct3(secs) ST(secs) sada/n(µsecs) sct3/n(µsecs) ST/n(µsecs) sada/ST sct3/ST sct3/sada
10 1.699 6.697 0.332 1.620 6.387 0.196 5.111 20.149 3.942
20 2.248 6.802 0.373 2.144 6.487 0.166 6.028 18.243 3.026
30 1.689 5.341 0.355 1.611 5.094 0.210 4.758 15.049 3.163
40 2.360 6.382 0.355 2.251 6.087 0.151 6.643 17.967 2.705
50 1.756 4.992 0.352 1.675 4.761 0.200 4.994 14.192 2.842
60 1.752 4.958 0.350 1.671 4.728 0.200 5.011 14.176 2.829
70 1.987 5.006 0.349 1.895 4.774 0.176 5.696 14.349 2.519
80 2.819 6.791 0.354 2.689 6.476 0.126 7.964 19.183 2.409
90 1.953 4.805 0.356 1.862 4.582 0.182 5.484 13.495 2.461

100 1.784 4.558 0.360 1.701 4.347 0.202 4.949 12.647 2.555

Table 7: Traversal time(secs) for suffix data structures with varying period
value(p) using synthetic data.

91



C Varying Alphabet Size (|Σ|)

Table 8 shows the LCP values and entropy information for synthetic data
with varying alphabet size(|Σ|). The LCP values remain constant for vary-
ing alphabet size, provided the period value(p = 32) and data size(n = 10
MB) remain constant. The H0 and H1 entropy values does not show any rea-
sonable behavior with varying alphabet size, but they follow similar trends.

|Σ| #numNodes #numNodes/n maxLCP meanLCP maxLCP/n meanLCP/n H0 H1

4 20,971,137 1.999963 10484760 5240000 0.999905 0.499725 1.999 1.993
8 20,970,979 1.999948 10484760 5240000 0.999905 0.499725 2.995 2.964

16 20,970,865 1.999938 10484760 5240000 0.999905 0.499725 3.988 3.816
32 20,970,820 1.999933 10484760 5240000 0.999905 0.499725 4.977 4.187
64 20,970,859 1.999937 10484760 5240000 0.999905 0.499725 3.468 2.904

128 20,970,777 1.999929 10484760 5240000 0.999905 0.499725 5.660 3.362
256 20,970,894 1.999940 10484760 5240000 0.999905 0.499725 4.536 2.901
512 20,970,863 1.999937 10484760 5240000 0.999905 0.499725 2.647 2.037

Table 8: LCP, entropy and other attributes for synthetic data with varying
alphabet size(|Σ|)

cst sada
H0 H1 maxLCP meanLCP size cTime tTime # nodes

|Σ| -0.092 -0.473 - - 0.307 -0.945 0.152 -0.296
|Σ| 0.286 -0.143 - - 0.571 -0.909 0.357 -0.473

Table 9: Correlation values for cst sada using synthetic data with varying
alphabet size(|Σ|)

cst sct3
H0 H1 maxLCP meanLCP size cTime tTime # nodes

|Σ| -0.092 -0.473 - - -0.089 -0.908 -0.075 -0.296
|Σ| 0.286 -0.143 - - 0.286 -0.416 0.286 -0.473

Table 10: Correlation values for cst sct3 using synthetic data with varying
alphabet size(|Σ|)

92



ST
H0 H1 maxLCP meanLCP size cTime tTime # nodes

|Σ| -0.092 -0.473 - - -0.286 0.954 -0.942 -0.296
|Σ| 0.286 -0.143 - - -0.416 0.929 -0.643 -0.473

Table 11: Correlation values for ST using synthetic data with varying alpha-
bet size(|Σ|)

Tables 9, 10, and 11 represent the correlation values for synthetic
data with varying alphabet. The first row of the correlation tables represent
the Pearson’s coefficient and second row represents the Kendall Tau. There
is no variation in the LCP values for different alphabet size and hence there
is no correlation between the alphabet size and the correlation values. It can
be observed that, the alphabet size has no affect on the size of cst sct3,
positive correlation w.r.t the size of cst sada and negative correlation w.r.t
the size of ST. The alphabet size has a negative correlation w.r.t the con-
struction time of CSTs and positive correlation w.r.t the construction time
of ST. The alphabet size has a positive correlation w.r.t the traversal time of
cst sada, negative correlation w.r.t the traversal time of ST and no affect
on the traversal time of cst sct3.

Figure 4 and Table 12 show that, in general, with increasing alpha-
bet size the size of suffix tree decreases, but does not have any reasonable
affect on the size of CSTs.

(a) ST (b) CST

Figure 4: Size per symbol(bytes) of suffix data structures with varying al-
phabet size(|Σ|) using synthetic data

93



Figure 5 and Table 13 show that, in general, with increasing al-
phabet size the time required to construct the CSTs remain fairly constant,
whereas in the case of ST it increases rapidly for larger alphabet sizes.

Figure 6 and Table 14 show that, in general, with varying alphabet
size, the time required to traverse the ST and cst sada remains constant.
For the case of cst sct3 the traversal time does not vary in linear w.r.t the
varying alphabet size.

(a) CSTs (b) ST

Figure 5: Construction time per symbol(µsecs) for suffix data structures with
varying alphabet size(|Σ|) using synthetic data

(a) CSTs (b) ST

Figure 6: Traversal time per symbol(µsecs) for suffix data structures with
varying alphabet size(|Σ|) using synthetic data

94



|Σ| sada(MB) sct3(MB) ST(MB) sada/n(bytes) sct3/n(bytes) ST/n(bytes) ST/sada ST/sct3 sct3/sada
4 12.8830 46.176 1449.974 12.8830 46.176 1449.974 112.549 31.401 3.584
8 12.8834 47.798 1449.963 12.8834 47.798 1449.963 112.545 30.335 3.710

16 12.8838 49.535 1449.955 12.8838 49.535 1449.955 112.541 29.271 3.845
32 12.8843 51.334 1449.952 12.8843 51.334 1449.952 112.537 28.245 3.984
64 12.8835 48.499 1449.955 12.8835 48.499 1449.955 112.544 29.896 3.764

128 12.8851 52.574 1449.949 12.8851 52.574 1449.949 112.529 27.579 4.080
256 12.8850 50.484 1449.957 12.8850 50.484 1449.957 112.531 28.721 3.918
512 12.8839 47.248 1449.955 12.8839 47.248 1449.955 112.540 30.688 3.667

Table 12: Size(MB) of suffix data structures with varying alphabet size(|Σ|)
using synthetic data

|Σ| sada(secs) sct3(secs) ST(secs) sada/n(µsecs) sct3/n(µsecs) ST/n(µsecs) sada/ST sct3/ST sada/sct3
4 38.598 3.000 3.392 3.681 0.286 0.323 11.380 0.884 12.866
8 38.587 3.017 3.613 3.680 0.288 0.345 10.679 0.835 12.790

16 38.567 3.029 3.857 3.678 0.289 0.368 10.000 0.785 12.734
32 38.560 3.025 4.275 3.677 0.288 0.408 9.020 0.708 12.747
64 38.476 2.913 3.936 3.669 0.278 0.375 9.776 0.740 13.206

128 38.533 3.023 104.943 3.675 0.288 10.008 0.367 0.029 12.746
256 38.473 2.938 2052.440 3.669 0.280 195.736 0.019 0.001 13.097
512 38.280 2.701 8693.600 3.651 0.258 829.086 0.004 0.0003 14.175

Table 13: Construction time(secs) for suffix data structures with varying
alphabet size(|Σ|) using synthetic data

|Σ| sada(secs) sct3(secs) ST(secs) sada/n(µsecs) sct3/n(µsecs) ST/n(µsecs) sada/ST sct3/ST sct3/sada
4 19.392 44.401 3.363 1.849 4.234 0.321 5.766 13.203 2.290
8 19.584 49.494 3.355 1.868 4.720 0.320 5.837 14.752 2.527

16 19.097 54.258 3.343 1.821 5.174 0.319 5.712 16.229 2.841
32 19.523 61.992 3.266 1.862 5.912 0.311 5.978 18.984 3.175
64 19.739 52.432 3.373 1.882 5.000 0.322 5.851 15.542 2.656

128 19.674 67.191 3.292 1.876 6.408 0.314 5.976 20.409 3.415
256 19.835 59.295 3.067 1.892 5.655 0.293 6.467 19.332 2.989
512 19.416 47.671 2.967 1.852 4.546 0.283 6.545 16.069 2.455

Table 14: Traversal time(secs) for suffix data structures with varying alpha-
bet size(|Σ|) using synthetic data.

95


	Improved Periodicity Mining in Time Series Databases
	Recommended Citation

	tmp.1568233084.pdf.H5L_w

