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ABSTRACT 
 

Sensitivity Analysis of Reliability for Structure-Based Software 

via Simulation 

 

Jun Xu 

 

Computer simulation is an appealing approach for the reliability analysis of 

structure-based software systems as it can accommodate complexities present in 

realistic systems. When the system is complex, a screening experiment to quickly 

identify important factors (components) can significantly improve efficiency of the 

analysis. The challenge is to guarantee the correctness of the screening results with 

stochastic simulation responses. Control Sequential Bifurcation (CSB) is a new 

method for factors screening using simulation experiments, when only main effects 

models are considered. By grouping factors, CSB can identify the importance of 

factors while reducing the simulation effort. With appropriate hypothesis testing 

procedures embedded, CSB procedure can simultaneously control the Type I error 

probability and the power. The existing work has focused on normally distributed 

output responses. This thesis extends the existing CSB procedure by embedding 

Meeker’s conditional sequential test to deal with binary responses and guarantee the 

desired error control for factor screening results. The effectiveness of the extended 

factor screening procedure is demonstrated with the application on a software 

system. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Introduction of Software Reliability 

Computers and computer systems play a significant role in the modern society. It is 

impossible to maintain this world running without the aid of computer systems 

controlled by software. In particular, complex systems such as national defense net, 

space shuttle launching, and oil refinery control, all heavily rely on computers and 

software systems.  

 

The complexity of computer systems has grown dramatically in the previous 

decades. Representative examples can be easily found in projects undertaken by 

NASA, telecommunication industry, nuclear power generation plants, and a variety 

of other industries. For instance, NASA Space Shuttle flies with approximately 

500,000 lines of software code on board and approximately 3.5 million lines of code 

in ground control and processing. The Windows XP (the 2001 version) personal 

computer operation system has more than 40 millions source lines of code, and 

Windows Server (the 2003 version) already has more than 50 millions source lines 

of code (Tanenbum, 2008). 

 

Since the modern society is built on computer systems, reliable systems are highly 
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required. However, due to the competition between nations or business peers, the 

demand for complex computer systems has increased faster than the ability to design, 

test, and maintain them whereas the probability of software failures increases in 

parallel with the increased software complexity (Lyu, 1995a). This could lead to 

operation inconvenience, economy damage, and even human loss (Lyu, 1995b). In 

the NASA Voyager project, the Uranus encounter was jeopardized because of late 

software deliveries and reduced reliability of the Deep Space Network. On January 

15, 1990, a fault in a switching system’s new released software caused massive 

disruption of a major carrier’s long-distance network, and led to enormous revenue 

losses to companies using this telecommunication company for business information 

transferring. The massive Therac-25 radiation therapy machine had enjoyed a 

perfect safety record until software errors in its sophisticated control systems 

malfunctioned and claimed several patients’ lives in 1985 and 1986 (Lee, 1992). 

More recently, in 1996, the European Space Agency's one billion dollars prototype -- 

Ariane 5 rocket was destroyed less than a minute after launch, due to a bug in the 

on-board guidance computer program (Wikipedia, Software bug). 

 

Clearly, software reliability can affect people’s everyday living. Achieving highly 

reliable software has become a most challenge task in software development. 
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Software reliability is defined as the probability of failure-free software operation 

for a specified period of time in a specified environment (ANSI 1991). It is a key 

indicator of software quality which includes various customer satisfaction factors 

such as functionality, usability, performance, maintainability, and documentation.  

 

Although everybody knows that software reliability is critical, and substantial effort 

has been devoted to reliability improvement in the software development cycle, it 

still remains a challenging task to achieve a high or desired reliability level. This is 

especially true with the more complex systems developed today. System developers 

tend to add complexity into software to accommodate the rapid growth of system 

size, the requirement of easier manipulation, and more frequent upgrading. For 

example, Windows 2000 operation system has more than 29 millions source lines of 

code. In 2001, Windows XP system was released with nearly 40 millions source 

lines of code. Now, the source code of new released Windows Vista system already 

grew to more than 50 millions lines (Wikipedia, Source lines of code).  

 

Software failures may be due to errors, ambiguities, oversights or misinterpretation 

of the specification that the software is supposed to satisfy, carelessness or 

incompetence in writing code, inadequate testing, incorrect or unexpected usage of 

the software, or other unforeseen problems (Keiller 1991). The mechanism of 
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software failures is markedly different from that of traditional hardware. Most of 

hardware faults are physical faults, which is visible and relatively easier to classify, 

detect, and correct. However, software faults are design faults, which relate to 

human beings and design process. A well known bathtub curve for hardware 

reliability is shown in Figure 1.1 (Pan 1999) which illustrates the evolution of failure 

rate for hardware systems/components. The failure rate of hardware experiences a 

decrease in the burn-in phase, a constant level in the useful-life phase, and an 

increase in the wear-out phase. In Figures 1.1 and 1.2, λ is the steady state failure 

rate. 

 

 

Figure 1.1: Bathtub curve for hardware reliability (Pan 1999) 

 

However, software reliability has different characteristics. A possible curve is shown 
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in Figure 1.2 if software reliability is projected on the same axes (RAC 1996). 

Comparing these two figures, it is easy to find that there are two major differences. 

First, in the last phase, software failure rate does not experience an increase as 

hardware does, which means software will never be worn out. Once a software is 

uploaded, its failure rate stays unchanged unless upgrade takes place. Second, 

software will typically be upgraded during its in-use period, and each upgrade will 

cause an increase in the failure rate, which will gradually stabilize to a new level via 

debugging.  

 

 

Figure 1.2: Revised bathtub curve for software reliability (RAC 1996) 
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1.2 Literature Review  

1.2.1 Software Reliability Modeling 

Software reliability research grows in compliance with the computer system 

development. Different software reliability assessment models have been developed 

to analyze and predict software reliability. Existing software reliability models can 

be divided into two groups, black box (functional) and white box (structural) models.  

 

Black-box models treat software as a monolithic whole, which models the system 

primarily in terms of its input and output characteristics. The term "black box" is 

used because these models consider only the software’s interaction with external 

environment without examining the specific execution process inside the “box”. The 

well-known reliability growth models fall into the category of black-box models 

(Lyu, 1995a). 

 

With the ever increasing software complexity, using one function to characterize the 

failure behavior of software systems becomes inappropriate and insufficient. Hence, 

white-box, as opposed to black-box, models have been developed and implemented 

in software reliability engineering (Cheung 1980, Krishnamurthy 1997, Gokhale 

2004 and Grassi 2005). The white-box models treat the system as a composition of 

software components with interactions among them, and investigate how these 
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components could affect the overall system performance individually and 

interactively. When a software is being executed, different components are called 

following a certain sequence, and the software reliability depends on the successful 

execution of components and control transfer between components. In the literature, 

analytical models (such as discrete time Markov chain (DTMC), continuous time 

Markov chain (CTMC), and semi-Markov process (SMP)) have been used to model 

these structure-based software systems. Examples are Cheung (1980), Wang (2005), 

and Goseva-Popstojanova (2004). These analytical models rely heavily on 

simplifying the assumptions of software systems in order to be able to provide 

analytical solutions. For instance, the Markov property requires that the conditional 

distribution of any future state Mi+1 given the past states M0, M1, …, Mi-1 and the 

present state Mi, is independent of the past states and depends only on the present 

state. In the context of software execution, this means that the next component to be 

executed depends only on the current component being executed. However, in real 

situation, an execution may visit components based on several components that it 

has visited. Also it is difficult for current analytical models to deal with a software 

system with large state space. Recently, discrete event simulation has gained more 

attention, and it offers an attractive alternative to analytical models since it is able to 

accommodate important complexities that are present in realistic systems. For 

instance, Gokhale (2005) proposed simulation-based procedures to assess the impact 
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of fault detection and repair strategies on the system reliability; Gokhale et al. (2005) 

developed dynamic simulation procedures to model the software behavior 

throughout its development cycle. However, the current use of simulation for 

software reliability analysis calls for more sophisticated design of experiments and 

statistical methodologies to improve the computational efficiency of simulation and 

to ensure the validity of the output analysis. 

 

1.2.2 Factor Screening 

Screening experiments are designed to investigate the controllable factors in an 

experiment with a view toward eliminating the unimportant ones. According to the 

sparsity of effects principle, in many cases only a few factors are responsible for 

most of the response variation (Myers and Montgomery, 2002). Important factors 

shall be identified correctly and efficiently in screening experiments especially when 

dealing with complicated systems with large number of factors.  

 

Many simulation procedures have been developed in factor screening experiments 

by using economical number of design points and replications (Trocine and Malone, 

2000, 2001; Morris, 2005). For example, the first stage of response surface 

methodology is usually a factor screening. However, these procedures just 

emphasize physical experiments without taking advantage of the highly sequential 
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nature of the simulation experiments. Recent research has started to combine 

screening experiments and a follow-up response exploration into one design to 

screen out the important factors (Cheng and Wu, 2001).   

 

Group-screening methods have been developed to deal with systems with large 

number of factors. The fundamental idea is to identify factors as a group to save 

experimental effort (Lewis and Dean, 2001). In group screening procedure, 

subgroups should be further tested if a factor group is identified as important. 

Otherwise, all factors in that group will be classified as unimportant. In group 

screening experiments, all factors must have their effects in the same direction in 

order to avoid cancellation; and a main-effects model is typically assumed (Trocine 

and Malone, 2001; Dean and Lewis, 2005). 

 

The Sequential Bifurcation (SB) procedure is a combination of group screening and 

a sequential step-down procedure (Bettonvil and Kleijnen, 1997). A sequential 

design is one in which the design points are selected as the experiment results 

become available (Wan, 2006). SB is a series of steps. In each step, the group effect 

is tested for importance. As the experiment proceeds, the groups become smaller 

until all factors have been classified. This method was first developed for 

deterministic computer simulations. Later the method was extended to cover 
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stochastic simulations (Cheng, 1997; Kleijnen et al., 2006).  

Wan (2006) modified the SB procedure for stochastic simulations and called it 

Controlled Stochastic Bifurcation (CSB). CSB procedure is a two-stage testing 

procedure to control the probability of Type I error and the power of the test in each 

bifurcation step. In the two-stage testing procedure, the determination of the second-

stage sample size is based on a worst-case scenario. A fully sequential test was also 

implemented in CSB by Wan to give the same error control. In most cases, the 

sequential test is more efficient than the two-stage testing procedure (Wan, 2006). 

The CSB procedure is selected in this research for factor screening.     

 

1.3 Problem Statement 

This research intends to provide efficient simulation-based statistical procedures for 

the sensitivity analysis of software reliability systems.  

 

The software reliability is studied via a structure-based software reliability model as 

described already in white-box models. The application is executed in such a way 

that components are invoked sequentially and stay active for a specific duration of 

time performing the requested functions. Suppose that a terminating application is 

considered which consists of a finite number of components, the software reliability 

is defined as the probability of successful execution of the software application.  
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In this research, the system’s performance of interest is the software reliability, and 

the input factors considered include the reliability of each component in the system.   

The objective is to develop simulation-based factor screening procedures to classify 

the system components into two groups, important and unimportant, based on how 

sensitive the system reliability is to each component’s reliability.  

 

Assessing the importance of each software component will be very useful for 

creating a plan detailing which tasks should be performed to achieve a good system 

performance. For example, if it is determined that the reliability of a specific 

component has the most impact on the system reliability, then it is critical for the 

software testing-team to investigate the failure behavior of that component more 

thoroughly or to allocate more resources for this component for its reliability 

improvement. In addition, conducting sensitivity studies provides a way to assess the 

uncertainty in software reliability estimates. 

 

1.4 Overview of Methodology 

To achieve the objective of this research, first a simulation model will be built to 

represent the execution process of the software application. Once the model is built, 

simulation experiments will be performed to estimate the software reliability under 
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different settings of the investigated factors. The output response of a simulation run 

is represented by a binary random variable with two possible outcomes, success or 

failure of the software execution. However, the prevalent and “naive” method of 

assessing the impact of factors on software reliability by varying one factor at a time 

could be neither efficient nor effective, especially when people are interested in the 

effects of large number of factors potentially influencing the system’s performance.  

 

In this research, the Control Sequential Bifurcation (CSB) developed by Wan et. al 

(2006, 2007) will be adopted as the factor-screening framework, and Meeker’s 

sequential ratio test will be embedded in the CSB procedure to control the 

probability of misclassifying factors.  

 

CSB (Wan et. al, 2006) extends the basic Sequential Bifurcation (SB) procedure 

(Bettonvil and Kleijnen, 1997) to provide error control for random responses. 

Factors will be grouped and the aggregated group effects will be tested. If the group 

effect is classified as important, the group will be split into two smaller groups for 

further testing. If the group effect is classified as unimportant, all factors in the 

group will be classified as unimportant and no further testing will be needed. It is 

obvious that the effects of all factors must have the same direction so that no 

cancellation will happen. The CSB procedure, with its assumptions, will be 
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discussed in detail in Chapter 2. When only a small fraction of the factors are 

important, CSB can eliminate unimportant factors in groups and hence ends up 

requiring significantly less computational efforts than traditional methods. With the 

incorporation of a multi-stage hypothesis-testing approach into sequential 

bifurcation, CSB is the first screening strategy to simultaneously control the 

probability of type I error for each factor and the power for each bifurcation step 

under heterogeneous variance conditions. The CSB procedure will be used to screen 

factors for systems where only main factor effects are significant.  

 

There are several challenges in applying CSB procedure directly to the software 

reliability problems. Specifically, the hypothesis testing procedures developed for 

CSB procedure with the error controls (which determine the error control property 

of the CSB procedure) is for normal responses. However, the response of software 

reliability system is binary (success (1) vs. failure (0)). In this research, Meeker’s 

(1981) sequential ratio test will be adopted and embedded in the CSB framework to 

handle the situations where the output performance is binary.  

 

 

1.5 Thesis Organization 

The remainder of the thesis is organized as follows: In Chapter 2, the proposed 
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factor screening procedure is discussed in details; chapter 3 shows two empirical 

case studies used to evaluate the performance of the developed procedure; in 

Chapter 4, one software system, which has been studied in several articles in the 

literature, is used to evaluate the effectiveness of the developed factor screening 

procedures. 
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CHAPTER 2: RESEARCH APPROACH 

 

In this chapter, the proposed simulation-based factor screening method is presented.  

 

2.1 Response Model 

Suppose that there are K independent factors in the simulation experiment: x = (x1, 

x2, …, xK). The simulation output of interest Y is a binary random variable with 

distribution parameter p: Y = 1 with probability p and Y = 0 with probability 1 - p. In 

this research, it is assumed that the underlying input-output relationship can be 

approximated by models with main effects.  

 

2.1.1 Main-Effect Model  

It is assumed that the functional relationship between the probability p and the 

factors x can be approximated by a logistic regression model:  

)xβ...xβxβ(β
),p(1

),p(
KK2 ++++=

− 2110exp
βx

βx
                                                  (2.1) 

Where β = (β1, β2, …, βK) are the unknown coefficients; p(x, β) is the software 

reliability p with factors x and coefficients β. Hence the software reliability p 

depends on the factors x through the linear combination β0 + β1x1 + β2x2 + … + βKxK. 

No interaction effect among the factors is considered. Wan (2005) discussed two 

situations in which main-effects models are appropriate: when there is little prior 
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knowledge about the system and a gross level of screening is desired; or when the 

goal of screening is to identify which factors have important local effects. The latter 

application to identify factors with important local effects (i.e., sensitivity analysis), 

is the main focus in this study.  

 

The ratio p(x, β)/(1- p(x, β)) is a continuous and monotonically increasing function 

of the probability p. In this study, the ratio is the primary response of interest. 

Denote x as factor vector (x1, x2, …, xK), and xk as the vector (x1, x2, ..., xk +1, 

xk+1, …, xK). The effect on the ratio of increasing factor k by one unit is quantified as 

follows: 
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In (2.2), the odds ratio of two ratios obtained at two different factor settings is 

calculated.  

 

2.1.2 Determination of the Perturbation Levels 

The basic idea of evaluating the effect of changing one factor on the system 

performance is to introduce a small disturbance to its nominal level setting and 
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estimate the resulting change in the output performance. In order to compare the 

effects of all the factors, the amount of disturbance to be introduced for each factor 

needs to be determined properly. Wan et al. (2006) proposed a cost model which 

determines the perturbation levels for the factors based on the required cost of 

changing a factor to produce a change in the output performance. A brief review of 

the cost model is given below.  

 

Let ci be the cost per unit change of factor xi for i = 1, 2, ..., K, and c
*
 = max ci. Set ζi 

as the nominal level setting of factor xi. Then the disturbance introduced to each 

factor is represented as ∆ζi which is calculated as: 

 







=

      settingfactor  discrete             /*

settingfactor  continuous              /*

i

i

i

cc

cc

∆ζ  

∆ζi is the maximum change in factor xi that can be achieved without exceeding a cost 

c*. For instance, suppose that there are K = 3 factors. The setting of the first factor 

can be changed continuously, but the other two are discrete. If c1 = 300, c2 = 500, 

and c3 = 800, then c* = 800, ∆ζ1 = 8/3, ∆ζ2 = 1, and∆ζ3 = 1. 

 

2.1.3 Thresholds of Importance 

Based on the cost model introduced above, the thresholds of importance are defined 

for the factors being considered.   
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� t0: the minimum odds ratio value that people could be willing to spend c
*
 to 

obtain. 

� t1: the odds ratio value that people would not want to miss if it could be achieved 

for only a cost of c
*
. 

The integration of cost and thresholds of importance into the factor scaling provides 

a general way to determine the levels for each factor prior to running the simulation. 

The cost model provides a basis for fairly comparing the effects of factors in practice. 

However, if the experimenters already know the thresholds of importance as well as 

the factor levels, they do not need to use the cost model. Without loss of generality, 

it is assumed in response model (2.1) that the factor level settings of x are 

deterministic and coded as 0 (nominal level), 1 (nominal level + perturbation).  

 

2.2 Factor Screening Procedure  

The goal of screening is to identify the factors with important main effects assuming 

that the underlying input-output relationship can be approximated by a main-effect 

model. For each factor group which contains one or more factors, the importance of 

the group effect will be tested:  

H0: The group effect is not important 

H1: The group effect is important 

The objective of screening procedure is to classify the factors being considered into 
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two groups: those that are unimportant, which means exp(βk) ≤ t0, and those that are 

important, meaning that exp(βk) ≥ t1. For factors with main effects ≤ t0, the 

probability of declaring them important (Type I Error) is controlled to be ≤ α; and 

for factors with effects ≥ t1, the power for identifying them as important to be ≥ γ. 

Those factors whose effects fall between t0 and t1 are considered important and 

require reasonable, although not guaranteed, power to identify them.   

 

2.2.1 CSB Review 

Wan et al. (2006) proposed a factor-screening framework called Controlled 

Sequential Bifurcation (CSB), which is illustrated in Figure 2.1. Suppose that there 

are a total of K factors. CSB is a series of steps. In each step, the cumulative effect 

of a group of factors is tested for importance. Initially, all factors of interest are 

tested in a single group for the group’s effect. If the group’s effect is important, then 

the group is split into two subgroups. The effects of these two subgroups are then 

tested in subsequent steps and each subgroup is treated in the same way: either 

classified as unimportant or split into subgroups for further testing. This process 

continues until every individual factor has been classified as either important or 

unimportant. 
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Figure 2.1: Structure of CSB procedure (Wan et al. 2006, 2007) 

 

In the CSB group-screening procedure, if one group is identified as unimportant, 

then all factors in this group are declared unimportant; if one group is identified as 

important, then further screening will be performed to identify the importance of the 

subgroups or individual factors within this group. Note that the group screening 

described in Figure 2.1 is based on the assumption that the main effects of all factors 

have the same sign in order to avoid cancellation. In Wan et al. (2006), without loss 

of generality, it was assumed that the main effects of all factors were nonnegative; 

increasing any factor by one unit would lead to a nonnegative increase in the output 

performance. This assumption is likely to hold in many realistic situations including 

Initialization:    Create an empty LIFO queue for groups. Add the entire 

group {1,2,…,K} to the LIFO queue. 

 

While queue is not empty, do 
       Remove:   Remove a group from the queue. 

       Test: 
          Unimportant:  If the group is unimportant, then classify all factors 

in the group as unimportant. 

          Important (size = 1):  If the group is important and of size 1, then 

classify the factor as important. 

          Important (size > 1):   If the group is important and size is great 

than 1, then split it into two subgroups such that all 

factors in the first subgroup have smaller indices than 

those in the second group. Add each subgroup to the 

LIFO queue. 

        End Test 
 

End While  
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the software reliability systems, which are of particular interest to this research. 

Apparently, improving the reliability of an individual component (a factor) will have 

a nonnegative effect on the reliability of the entire software system (output 

performance of interest).  

 

To illustrate the CSB procedure in Figure 2.1, a simple example is given as follows. 

Suppose that 10 factors are considered for a certain system with predetermined 

factor effects specified in Table 2.1. For instance, one unit improvement in factor 3 

will improve the whole system performance by 2 units; one unit improvement in 

factor 7 will improve the whole system performance by 30 units. In this illustrating 

example, the importance threshold is set as 8, which means that a factor will be 

considered as important if improving this factor by one unit will lead to 8 units of 

improvement in the system performance. Based on the predetermined factors effects 

given in Table 2.1, only factor 7 is important. In this case, the factor screening 

process is presented in Figure 2.2. Initially, all 10 factors are grouped together and 

the group effect is tested for importance. Because the cumulative effect of this 10-

factor group is 42, greater than the threshold 8, the group is declared important and 

split into two subgroups (factors 1-5 and factors 6-10) for further testing. For the 

subgroup with factors 1-5, the cumulative effect is 7, less than the threshold of 

importance, and hence this group along, with all the factors contained in it, is 
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declared unimportant. The subgroup with factors 6-10 has a cumulative effect of 35, 

greater than the threshold, and is thereby declared important and split into two 

subgroups for further screening. This process continues until all individual factors 

have been classified as important or unimportant. As a result, the only factor 

declared as important is factor 7.  

 

Table 2.1 Factor effects in a simple example illustrating CSB factor 

 screening procedure 

Factors  

Effects of improving 

the factor by one unit 

on the performance 

Factors  

Effects of 

improving the 

factor by one unit 

on the performance 

Factor 1 1 Factor 6 1 

Factor 2 1 Factor 7 30 

Factor 3 2 Factor 8 1 

Factor 4 2 Factor 9 2 

Factor 5 1 Factor 10 1 
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Figure 2.2 Whole factor screening process of a simple example illustrating CSB 

procedure 

 

As illustrated in Figure 2.1, CSB is a top-down framework for testing the importance 

of factor groups. Next, the details for the hypothesis tests are discussed. 

 

2.2.2 Hypothesis Test for Main-Effect Model 

As mentioned earlier, the hypothesis test for group importance embedded in the 

existing CSB procedure is for normal responses, whereas in the software reliability 

analysis, the outcome is binary, success or failure. The current CSB screening 

procedure is extended to handle binary outcomes. For the testing of group 

(β1, ..., β10): 42 

(β1, ..., β5): 7 



(β6, ..., β10): 35 

 

(β9, β10): 3 

 

(β6, ..., β8): 32 

 

(β6, β7): 31 

 

(β8): 1 

 

(β6): 1 

 

(β7): 30 
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importance, the fully sequential test proposed by Meeker (1981) has been embedded 

in the CSB, which ensures the desired error control. In the proposed method, the 

Meeker’s hypothesis test for binary outputs is performed based on sequential 

sampling via computer simulation. Specifics of the proposed method are given 

below.  

 

Suppose that the group containing factors xi (k1+1 ≤ i ≤ k2) is under consideration in 

a certain step of the CSB procedure. The cumulative effect of this factor group needs 

to be tested for importance. Define the factor setting x(k) as follows: 









+=

=

=

Kki

ki

k

 ..., 1,,0

       ...., 1,,1

)(x  

Hence, x(k) is the vector with the first k factors set at their high levels, and the rest 

set at their nominal levels. The cumulative effect of factors xi (k1+1 ≤ i ≤ k2) is 

evaluated based on the system performances, i.e., the odds ratios defined in Section 

2.1.1, at two different factor settings x(k1) and x(k2). Assuming the main-effect 

model (2.1), the ratio of the two odds ratios at x(k2) and x(k1) are given as:  
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The relative superior measure t is used to evaluate the improvement in the system 

performance by improving the factors xi (k1+1 ≤ i ≤ k2). If t =1, it means that 

improving factors in this group does not lead to any improvement in the system 

performance. If t >1, then the system has better performance under factor setting 

x(k2) than under factor setting x(k1). Following Meeker’s notation, the hypothesis 

test to determine whether this factor group is important is:  

00 : ttH ≤  vs. 11 : ttH ≥                                                                                          (2.4)  

Where t0 and t1 are the user-specified thresholds of importance defined in Section 

2.1.4 with 1 < t0 < t1. The factors group with 0

1

2

1

)exp( tβt
k

ki

i ≤= ∑
+=

 is considered as 

unimportant, and the factors group with 1

1

2

1

)exp( tβt
k

ki

i ≥= ∑
+=

is considered as critical. 

The probability of type I error, α, is the probability of rejecting H0 when t ≤ t0, and 

the power of the test γ(t) is the probability of accepting H1 at t, when t ≥ t1. 

 

Let yi(k1) (or yi(k2)) denote the binary random output of the system obtained from the 
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i
th
 (i = 1, 2, 3, …, n) simulation run under factor setting x(k1) (or x(k2)). In 

simulation experiments, the observations Mn={(y1(k1), y1(k2)), (y2(k1), y2(k2)), …, 

(yn(k1), yn(k2))} are obtained in pairs, and n is referred to as the size of the sample. 

The sequential method for testing the hypothesis (2.5) may be described as follows. 

Initially, a sample of a certain size is obtained via simulation. Based on the current 

sample Mn, three decisions will be made: (i) to accept H0, (iii) to reject H0, (iii) to 

continue the experiment by making an additional observation pair (yn+1(k1), yn+1(k2)) 

and set Mn = Mn+1. This process is continued until a decision of type (i) or (ii) is 

made, or the sample size reaches a pre-specified upper limit n0. 

 

The testing process is illustrated in Figure 2.2, which is adapted from Meeker (1981) 

to suit the CSB structure. For details of the sequential hypothesis test, please refer to 

Meeker (1981). Necessary notations are given below. 

� α: required probability of Type I Error 

� γ: required power of the test at t1 

� yi(k): the i
th
 observation at factor level settings k, yi(k) = 1 (success) or 0 (failure) 

� n(k1): the number of observations (success or failure) that have been taken under 

factor setting x(k1) 

� n(k2): the number of observations (success or failure) that have been taken under 

factor settings x(k2) 
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As already mentioned, the observations are obtained in pairs to compare the system 

performance with factor settings x(k1) and x(k2). However, a certain number of 

observations n(k1) (or n(k2)) may already have been obtained in the previous test 

processes. n(k1) and n(k2) are used to store all observations obtained so far at factor 

settings x(k1) and x(k2). 

� n: sample size of the observation pairs Mn={(y1(k1), y1(k2)), (y1(k1), y1(k2)), … 

(yn(k1), yn(k2))} used in the hypothesis test; initially, n may be min{n(k1), n(k2)} if 

n(k1) ≠ n(k2). 

� n0: upper limit for the number of observation pairs; the sequential test procedure 

will be terminated once the sample size reaches this upper limit. 

The conditional sequential test is truncated at observation n0. The truncation effect 

was discussed in Meeker (1981). In this research, n0 is set at 10,000. Case studies in 

Chapter 3 show good control of probability of Type I error and the power of the test 

when the upper limit is set at 10,000.  

� ∑ =
=

n
1 1i1 )(

i
kys : the number of successes in the n trials for system under factor 

setting x(k1). 

� ∑ =
=

n
1 2i2 )(k

i
ys : the number of successes in the n trials for system under factor 

setting x(k2) . 

� a = ln (γ/α) 

� b = ln [(1-γ)/(1-α)] 
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� r = s1 + s2: the total number of successes under both factor settings with s1 and s2 

defined above. 

Parameters a, b and r are used to calculate the lower bound CL(r, n) and upper bound 

CU(r, n) as shown below. 

� l = max (0, r - n) 

� u = min (n, r) 

Parameters l and u are used in calculation of function F(τ). 

� F(τ) = F(r, n, τ) is a function of r, n , and τ; τ can only be equal to t0 or t1 
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�  )/ln(/)}()({),( 0101 tttFtFbnrCL −+= , the lower bound for the test statistic 

before the number of pair observations n meets the upper limit n0. 

�   1)/ln(/)}()({),( 0101 +−+= tttFtFanrCU , the upper bound for the test 

statistic before the number of pair observations n meets the upper limit n0. 

� 2/)( bav +=  

�  )/ln(/)}()({),( 01010 tttFtFvnrCL −+= , the lower bound for the test statistic 

when the number of pair observations n meets the upper limit n0; the upper bound 

for test statistic is calculated as CL(r, n0) + 1 when the number of pair observations n 

meets the upper limit n0. 
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Figure 2.3: Meeker’s fully sequential test adapted for the CSB factor screening. 

 

The sequential procedure in Figure 2.3 is used to test the importance of the factor 

group containing factors xi (k1+1 ≤ i ≤ k2). Before testing the superiority between the 

Test Initialization Set s1 = 0, s2 = 0, r = 0, finish = 0, n0 is a user-specified 

parameter. n(k1) and n(k2) are given from the previous steps 

of the CSB procedure (Figure 3.1)  

If n(k1) = 0 or n(k2) = 0:  n = 1 

Else n = min(n(k1), n(k2))  

While finish < 1 AND n < n0, do 

       If n(k1) < n:   

Take one observation yn(k1) under factor setting x(k1);  n(k1) = n 

       Endif 

       ∑ =
=

n

i i kys
1 11 )(   

       If n(k2) < n:  

Take one observation yn(k2) under factor setting x(k2);  n(k2) = n 

       Endif 

       ∑ =
=

n

i i kys
1 22 )(   

 r = s1 + s2 

       Unimportant:  If s2 < CL(r, n), classify the group as unimportant,  

finish = 1 

       Important:   ElseIf s2 > CU(r, n), then classify the group as important, finish = 

1 

       Endif 

         n = n + 1;  

End While  

If  n = n0 

       Unimportant:  If s2 ≤ CL(r, n0), classify the group as unimportant. 

       Important:    ElseIf s2 ≥ CL(r, n0) +1, then classify the group as important. 

Endif 
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two systems with factor settings x(k1) and x(k2), one of these two systems or even 

both may already have been involved in the testing of other factor groups. Hence, in 

the initialization of the procedure, the numbers of observations already obtained, 

n(k1) ≥ 0 and n(k2) ≥ 0, are given. If n(k1) = 0 or n(k2) = 0, then the number of 

observation pairs initially available is 0; the procedure will first obtain n=1 

observation pair by running a simulation, and the sequential test will first be 

performed based on a single pair of observations. Otherwise, if n(k1)>0 and n(k2)>0, 

then n = min(n(k1), n(k2)) observation pairs are initially available, based on which 

the sequential test will be initiated. Other parameters s1, s2, r, finish, and n0 are set as 

shown in Figure 2.3. When n < n0, test decisions will be made by comparing s2 with 

CL(r, n) and CU(r, n); once sample size n reaches the upper limit n0, test decision 

will be made by comparing s2 with CL(r, n0) and CL(r, n0) + 1. 

  

It is worth mentioning that the Wald sequential test procedure (Wald 1947) can also 

be used to test the difference between the means of two binominal distributions. 

However, Wald test only utilizes the untied observation pairs (i.e., (1, 0) and (0, 1) 

pairs) while disregarding the tied observation pairs. Hence, Wald’s test is not as 

efficient as Meeker’s test (Meeker 1981) which uses both tied and untied 

observation pairs in the hypothesis test.  
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CHAPTER 3: EMPIRICAL EVALUATION 

 

In this chapter, the performance of the factor screening procedures proposed in 

Chapter 2 is evaluated. Before applying the CSB procedure in a case study of a 

software system (Chapter 4), Monte Carlo simulation is used to generate data such 

that the size of the main effects can be fully controlled by setting the coefficients of 

the factors being considered. 

 

3.1 Case 1 

Consider the system with its input-output relationship specified as  

)...exp(
),(1

),(
101022110 xβxβxββ

p

p
++++=

− βx

βx
                                                   (3.1)  

which follows the main-effect model (2.1). The coefficients βi (i = 1, 2, …, 10) are 

given in Table 3.1.  

 

The factor screening procedure described in Section 2.2 (CSB procedure with 

embedded Meeker’s test) is applied to classify the 10 factors as important or not 

important. For an iteration in the CSB procedure where the importance of the factor 

group xi (k1+1 ≤ i ≤ k2) is being tested, a simulation sampling is carried out as 

follows to obtain the binary output observations for testing the hypothesis (2.4). 

Under factor setting x(k1), the probability p(x(k1), β) can be calculated from (3.1). A 
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random binary output, which is considered as an observation, can be generated from 

the Bernoulli distribution with a success probability of p(x(k1), β). Similarly, the 

output observations can be obtained via Monte Carlo simulation under factor setting 

x(k2). Based on the simulation sampling, the factor group being considered will be 

classified as important or not important using the sequential testing procedure given 

in Figure 2.3.  

 

Table 3.1: Factor effects in case 1 

Coefficients βi Value exp(βi) Value 

β1 0.01 exp(β1) 1.01 

β2 0.05 exp(β2) 1.05 

β3 0.1 exp(β3) 1.11 

β4 0.15 exp(β4) 1.16 

β5 0.2 exp(β5) 1.22 

β6 0.25 exp(β6) 1.28 

β7 0.3 exp(β7) 1.35 

β8 0.35 exp(β8) 1.42 

β9 0.4 exp(β9) 1.49 

Β10 0.45 exp(β10) 1.57 

 

In this experiment, the parameters for the CSB procedure are given in Table 3.2. 

With these user-specified parameters, the factors that are considered as not important 

are factors 1, 2, and 3 with exp(βi) < t0 for i = 1, 2, 3 (Table 3.1); the critical factors 

are factors 7, 8, 9, and 10 with exp(βi) > t1 for i = 7, 8, 9, 10 (Table 3.1). The CSB 

procedure is designed in such a way that the probability of misclassifying an 
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unimportant factor as important is less than 0.05, and the power of classifying a 

critical factor as important is greater than 0.95.  

 

The CSB procedure was applied on this case for 1000 times using different random 

streams, and each time the factor screening results were recorded. For each factor, 

the P(DI), the probability of being declared as important, is estimated from these 

1000 replications. For instance, if factor 5 is declared important 350 times out of 

1000 times, its P(DI) is 0.35. Figure 3.1 plots the P(DI) of the factors against their 

true effects exp(βi) for i = 1, 2, ..., 10. As can be seen from Figure 3.1, the P(DI) for 

unimportant factors with exp(βi) < t0 was well below alpha 0.05, and the P(DI) for 

critical factors with exp(βi) > t1 was well above gamma 0.95.     

     

Table 3.2: Parameters for empirical evaluation experiment within CSB procedure 

based on logistic regression model 

Parameter Value 

t0 1.15 

t1 1.30 

α 0.05 

γ 0.95 
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Figure 3.1: Case 1 factor screening results 

 

3.2 Case 2  

In this case, all the 10 coefficients βi (i = 1, …, 10) in model (3.1) are set at 0.1. CSB 

parameters are given in Table 3.2. Hence, all the 10 factors are unimportant with 

exp(βi) = 1.11 < t0 = 1.15. This case is designed to study the control of type I error 

for the factor screening procedure. Again, the CSB procedure was applied on this 

case for 1000 times, from which the P(DI) for each factor was estimated. From the 

results obtained in Table 3.3, the P(DI) for each of the 10 factors was below 5%, 

indicating that the type I error was well controlled as expected.  
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Table 3.3 P(DI) of factor i in case 2 out of 1000 replication 

Factor i exp(βi) P(DI) Factor i exp(βi) P(DI) 

1 1.11 0 6 1.11 0 

2 1.11 0 7 1.11 0 

3 1.11 0 8 1.11 0 

4 1.11 0 9 1.11 0.001 

5 1.11 0.001 10 1.11 0 
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CHAPTER 4: CASE STUDY FOR A SOFTWARE 

SYSTEM 

 

In this section, the effectiveness of the proposed simulation-based factor screening 

procedure is demonstrated through its application on a software reliability system. 

The software system reported by Cheung (1981) is used as an example, which has 

been used extensively in the literature to illustrate structure-based reliability 

assessment techniques (Gokhale and Trivedi 2002, Goseva-Popstojanova and 

Kamavaram 2003, and Lo et. al 2002).  

 

4.1 Software Architecture 

The structure of the application (Cheung 1981) is shown in Figure 5.1. The state-

based approach, which uses the control flow graph to represent software architecture, 

is used to build the architecture-based software reliability model (Cheung 1981). 

The states represent active components 1, 2, …, and 10. The arcs represent the 

intercomponent transitions, and the transition probability Pij represents the 

probability that component j is executed upon the completion of component i (i, j = 

1, 2, …, and 10 where i ≠ j). The non-zero transition probabilities between the 

components are given in Table 4.1. In practice, the parameters Pij are estimated from 

the user operational profiles reflecting the usage of different components when the 
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software application is being executed. According to Figure 4.1, the software system 

consists of 10 components, and the execution of the application always starts with 

component 1 and ends with component 10. Furthermore, it is assumed that the 

application spends 1 time unit at each component per visit. Hence, the software 

execution process illustrated in Figure 4.1 can be modeled as discrete time Markov 

chain (DTMC) with transition probability matrix P = (Pij ) 10*10. 

 

Figure 4.1: Software structure of an example application 
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Table 4.1: Intercomponent transition probabilities for the software example 

P1,2 = 0.60 

P2,3 = 0.70 

P3,5 = 1.00 

P4,5 = 0.40 

P5,7 = 0.40 

P6,3 = 0.30 

P7,2 = 0.50 

P8,4 = 0.25 

P9,8 = 0.10 

P1,3 = 0.20 

P2,5 = 0.30 

 

P4,6 = 0.60 

P5,8 = 0.60 

P6,7 = 0.30 

P7,9 = 0.50 

P8,10 = 0.75 

P9,10 = 0.90 

P1,4 = 0.20 

 

 

 

 

P6,8 = 0.10 

 

 

 

 

 

P6,9 = 0.30 

 

4.2 Failure Behavior 

The failure behavior of components is first considered, i.e., the reliability of each 

component. A component can fail during its execution period, which is assumed to 

be 1 unit of time. The reliability of a component is defined as the probability that the 

component performs its function correctly without a failure when being executed. 

Failures of different components occur independently from each other. The 

application process is considered a failure if any of the components called during the 

execution fails. Given that the model described in Figure 4.1 is a DTMC, the 

expression for system reliability as a function of transition probabilities and 
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component reliabilities can be analytically derived. In this case study, it is assumed 

that the transition probabilities are fixed known values, and try to evaluate the 

impact of component reliabilities upon the system reliability. Let Ri denote the 

reliability of component i (i = 1, 2, …, 10), and Rs the reliability of the software 

system. Table 4.2 shows the component nominal level reliabilities of this 10-

component software example. The functional relationship between Rs and {Ri, i = 1, 

2, …, 10},  

),...,,( 1021 RRRfRs =                                                                                              (4.1) 

can be derived based on the DTMC, and hence the simulation-based factor screening 

results can be compared with the analytical ones obtained from DTMC. 

 

It should be emphasized that the strength of the simulation-based method stems from 

its ability to analyze complicated and realistic software systems without having to 

use the simplifying assumptions required by analytical models (e.g, DTMC, CTMC). 

For the purpose of illustration and evaluation, the factor screening procedure is 

applied on this simple software application.   
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Table 4.2: Nominal factor settings for the component reliabilities 

Factors xi x1 x2 x3 x4 x5 

Reliability Ri 0.986 0.985 0.985 0.97 0.95 

Factors xi x6 x7 x8 x9 x10 

Reliability Ri 0.98 0.986 0.945 0.975 0.975 

 

4.3 Simulating the Software Execution Process 

The output of a simulation run of the software model is a Bernoulli random variable 

Y with success probability p = Rs. A sample path is defined as the sequence of 

components visited by an application execution. In other words, a sample path 

represents a calling sequence of the components when the software is being 

executed. Let S = {S1, S2, S3, …} denote the set of all the possible sample paths 

(which may be infinite if there are loops) , and define  

)],([)( SpEp S xx =                                                                                                  (4.2) 

Where p(x, S) represents the system reliability following sample path S, and ES 

denotes the expected system reliability with respect to S. Further, Y(x, S) denotes the 

random output at factor setting x for a given sample path S. Y(x, S) follows a 

Bernoulli distribution with parameter p(x, S). 

 

In light of the fact that the reliability of the system could differ markedly depending 

on the particular sample path S, in the sequential simulation, experiments are set up 
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in such a way that simulation replications at different factor level settings are 

performed at the same randomly selected sample paths. When comparing two factor 

level settings x(k1) and x(k2), random outputs Y(x(k1), Si) and Y(x(k2), Si) are taken 

sequentially with i increasing from 1 to n. If more than n runs are needed for the test, 

then a new sample path Sn+1 will be generated and stored, and observations Y(x(k1), 

Sn+1) and Y(x(k2), Sn+1) are collected. 

 

With the simulation strategy described above, the only dynamic simulation that 

needs to be carried out is the generation of a number of sample paths independently 

which will be used to produce the random outputs for the different factor settings. 

For a given sample path S, the output Y(x, S) can simply be generated using Monte 

Carlo Simulation as follows. Let di be the number of times that component i is 

visited by sample path S, then the reliability p(x, S) is given as 

∏
=

=
10

1

),(
i

d
xSxp ii                                                                                                      (4.3) 

Thus the output Y(x, S) can be generated by drawing a random variable from the 

Bernoulli distribution with parameter p(x, S). The computational savings from this 

approach allows for the generation of the large number of sample paths. 
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4.4 Application of the CSB Procedure  

The objective here is to classify the software components into two groups, important 

and unimportant, based on how sensitive the system reliability is to the reliability of 

each component. The factors considered are x = (x1, x2, …., x10) = (R1, R2, …, R10). 

For the consistency of notation, x is used to represent the factor setting vector.  

 

In this case study, nominal factor settings are given in Table 4.2, and the factor 

disturbance level of all factors is set as 0.013. The CSB procedure parameters for the 

experiment are given in Table 4.3. Based on the analytical results from the DTMC, 

the only component that quantifies as critical is component 5, components 1 and 10 

are considered as important, and the rest of the components are not important. 

Simulation-based factor screening results are evaluated against the true analytical 

results. Again, the CSB procedure with 1000 simulation replications was applied, 

and Table 4.4 summarizes the factor screening results from these 1000 replications. 

Component 5 was identified as important with a probability of about 95% (956 out 

of 1000), lower than the desired power of 99%. For the unimportant components 

(component 2, 3, 4, 6, 7, 8, and 9), the probability of misclassifying components 4, 6, 

7, and 9 were well below the desired level of 1%, and the probability of 

misclassifying components 2, 3, and 8 are close to 5%, above the desired level of 

1%. Failing to achieve the desired probability of type I error for some components 
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(component 2, 3, and 8) may be attributed to the inadequacy of the assumption that 

there is no interaction between the factors that the main-effect model represents the 

input-output relationship for this system. 

  

Table 4.3: Parameters for case study with CSB procedure application 

Parameter Value 

t0 1.07 

t1 1.085 

α 0.01 

γ 0.99 

 

Table 4.4: Times of component i classified as important in case study out of 1000 

replications with implementation of CSB procedure 

Component i Times Component i Times 

1 272 6 0 

2 38 7 0 

3 48 8 54 

4 0 9 0 

5 956 10 289 
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CHAPTER 5: DISCUSSION AND CONCLUSION 

 

In this research, the existing CSB factor screening procedure is extended to handle 

the cases where the system outputs are binary random variables rather than normal 

responses. The sequential tests developed by Meeker’s (1981) is selected and 

embedded in the proposed factor screening procedures. Empirical evaluations of the 

procedures are performed on models with known results and on a software 

application system. Through numeric experiments, it is demonstrated that the 

developed factor screening procedures are able to classify factors as important or 

unimportant with pre-specified error control.  

 

The limitations of the factor screening methods developed in this research are given 

as follows. (1) The efficiency of CSB procedure depends on the appropriateness of 

using the logistic regression model of the form (2.1) to approximate the underlying 

input-output relationship of the system being investigated. (2) CSB procedure is not 

universally good for all factor-screening problems: they are particularly efficient in 

dealing with systems with large number of factors, and a small number of factors 

being important.  

 

The results in Chapter 4 show that sometimes the main effect model may not be 

adequate to approximate the input-output relationships for real systems. Future 
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studies should focus on developing factor screening procedures that can handle 

situations where factor interactions are present. 

 

In practice, the software crash rarely happens for important systems, such as national 

defense net and space shuttle launching, since people pay much more effort in 

quality control in these systems. This makes the software crash a rare event and the 

study of factors that influence the crash probability more challenging. It is 

recommended to expand this effort in future research to screen important factors in 

systems that rarely fail. 

 

 

 

 



 46

REFERENCE 

 

Anderson T. W., 1960, A Modification of the Sequential Probability Ratio Test to 

Reduce the Sample Size, the Annals of Mathematical Statistics, Vol. 31, 165-197 

 

ANSI/IEEE, “Standard Glossary of Software Engineering Terminology”,      STD-

729-1991, ANSI/IEEE, 1991 

 

Armitage P., 1957, Restricted Sequential Procedures, Biometrika, Vol. 44, 9-26    

 

Bettonvil B., Kleijnen J. P. C., 1997, Searching for Important Factors in Simulation 

Models with Many Factors: Sequential Bifurcation, European Journal of Operational 

Research, Vol. 96, No. 1, 180-194  

 

Cheng, R. C. H., 1997, Searching for Important Factors: Sequential Bifurcation under 

Uncertainty, In Proceeding of 1997 Winter Simulation Conference, Piscataway, NJ, 

275-280 

 

Cheng, S., Wu, C. F. J., 2001, Factor Screening and Response Surface Exploration-

Rejoinder. Statistica Sinica, Vol. 11, 553-604  

 

Cheung R. C., A User-Oriented Software Reliability Model, 1980, IEEE Trans. 

Software Engineering, Vol. 6, No. 2, 118-125 

 

Dean, A. M., Lewis, S. M., ed., 2005, Screening, Spring-Verlag, New York 

 

Dickinson W., Leon D., and Podgurski A. 2001, Finding Failures by Cluster Analysis 

of Execution Profiles. In Proceedings of the 23rd International Conference on 

Software Engineering, ICSE 2001, 339-348 



 47

 

Everett W. W., 1999, Software Component Reliability Analysis, In Proceedings 1999 

IEEE Symposium on Application-Specific Systems and Software Engineering and 

Technology, ASSET 99, 22-31  

 

Gokhale S., and K. S. Trivedi. 2002. Reliability prediction and sensitivity analysis 

based on software architecture. In Proceedings of the 13
th
 International Symposium 

on Software Reliability Engineering, 64-78. 

 

Gokhale S. S., Wong W. E., Trivedi K. S., and Horgan J. R., 2004, An Analytical 

Approach to Architecture-Based Software Reliability Prediction, Performance 

Evaluation, Vol. 58, No. 4, 391-412 

 

Gokhale S., and Lyu M. R. 2005, A Simulation Approach to Structure-Based Software 

Reliability Analysis, IEEE Transaction on Software Engineering. Vol. 31, No. 8, 643-

656. 

 

Goseva-Popstojanova K., Mathur A. P., and Trivedi K. S., Comparison of 

Architecture-Based Software Reliability Models, 2001, In Proceedings of the 

International Symposium on Software Reliability Engineering, 22-31 

 

Goseva-Popstojanova K., and Kamavaram S. 2003, Assessing Uncertainty in 

Reliability of Component-Based Software Systems, In Proceedings of the 14
th
 

International Symposium on Software Reliability Engineering. 

 

Goseva-Popstojanova K., Hamill M., and Perugupalli R., Large Empirical Case Study 

of Architecture-based Software Reliability, 2005, In Proceedings International 

Symposium on Software Reliability Engineering, 43-53 

 

Goseva-Popstojanova K., and Kamavaram S., Software Reliability Estimation under 



 48

Uncertainty: Generalization of the Method of Moments, 2004, In Proceedings of 

IEEE International Symposium on High Assurance Systems Engineering, Vol. 8, 209-

218 

 

Goseva-Popstojanova K., Hamill M., and Wang X., Adequacy, Accuracy, Scalability, 

and Uncertainty of Architecture-based Software Reliability: Lessons Learned from 

Large Empirical Case Studies, 2006, In Proceedings - International Symposium on 

Software Reliability Engineering, 197-203 

 

Grassi V., Architecture-Based Reliability Prediction for Service-Oriented Computing, 

Springer-Verlag Berlin/ Heidelberg, 2005, Vol.3549, 279-299 

 

Hartmann M., 1991, An Improvement on Paulson’s Procedure for Selecting The 

Population with The Largest Mean from k Normal Populations with A Common 

Unknown Variance, Sequential Analysis, Vol. 10, 1-16 

 

Hoang Pham., Software Reliability, Springer, Singapore, 2000 

 

Huang R., Lyu M. R., and Kanoun K., Simulation Techniques for Component-Based 

Software Reliability Modeling with Project Application, 2001, In Proceedings of the 

International Symposium on Information Systems and Engineering, 283-289 

 

Kamavaram S., and Goseva-Popstojanova K., Sensitivity of Software Usage to 

Changes in the Operational Profile 2004, In Proceedings. 28th Annual NASA 

Goddard Software Engineering Workshop, 157-64 

 

Keiller, Peter A., Miller, Douglas R., “On the Use and the Performance of Software 

Reliability Growth Models”, Software Reliability and Safety, Elsevier, 1991, 95-117 

 

Khoshgoftaar, T.M., and Munson, J.C., “A Measure of Software System Complexity 



 49

and Its Relationship to Faults,” Proceeding of the 1992 International Simulation 

Technology Conference, Houston, TX, Nov. 1992, 267-272 

 

Kleijnen, J. P. C., Bettonvil, B., Person F., 2006, Finding The Important Factors in 

Large Discrete-event Simulation: Sequential Bifurcation and Its Applications. Dean, 

A., Lewis, S., ed., Screening: Methods for Experimentation in Industry, Drug 

Discovery, and Genetics, Spring-Verlag, New York  

 

Krishnamurthy S., and Mathur A. P., On the Estimation of Reliability of a Software 

System Using Reliability of its Components, 1997, In Proceedings of the 

International Symposium on Software Reliability Engineering, ISSRE, 146-155 

 

Lee, L., The Day the Phones Stopped: How People Get Hurt When Computers Go 

Wrong, Donald I. Fine, Inc., New York, 1992. 

 

Lo J., S. Kuo, M. R. Lyu, and C. Huang. 2002. Optimal resource allocation and 

reliability analysis for component-based software applications. In Proceeding of the 

26
th
 Annual International Computer Software and Application Conference, 7-12 

 

Lewis, S. M., Dean, A. M., 2001, Detection of Interactions on Large Numbers of 

Factors, Journal of the Royal Statistical Society: Series B, Vol. 63, 633-672  

 

Lyu, M. R., 1995a, Handbook of Software Reliability Engineering, New York: 

McGraw-Hill 

 

Lyu, M. R., 1995b, Software Reliability:  To Use or Not To Use?  A Panel Discussion, 

http://www.stsc.hill.af.mil/crosstalk/1995/02/reliable.asp 

 

Meeker, W. Q. Jr., 1981, A conditional Sequential Test for the Equality of Two 

Binomial Proportions, Applied Statistics, Vol. 30, No. 2, 109-115 



 50

 

Morris, M. D., 2006, An overview of group factor screening, Dean, A., Lewis, S., ed., 

Screening: Methods for Experimentation in Industry, Drug Discovery, and Genetics, 

Spring-Verlag, New York 

 

Myers, R. H., Montgomery, D. C., 2002, Response Surface Methodology: Process 

and Product Optimization Using Designed Experiments, John Wiley and Sons, New 

York 

 

Pan, J., Software Reliability:  Dependable Embedded Systems, Carnegie Mellon 

University, 18-849b, 1999. 

 

Paul R., editor. Software Reliability Handbook. Centre for Software Reliability, City 

University, London, U.K. 1990  

 

Reliability Analysis Center, Introduction to Software Reliability: A state of the art 

Review. Reliability Analysis Center (RAC), 1996 

 

Tanenbaum A., 2008, Modern Operation System, 3rd edition, Prentice Hall 

 

Trocine, L., Malone, L. C., 2000, Finding Important Independent Variables Through 

Screening Designs: A comparison of methods, In Proceeding of 2000 Winter 

Simulation Conference, Piscataway, NJ, 749-753 

 

Trocine, L., Malone, L. C., 2001, An Overview of Newer, Advanced Screening 

Methods for The Initial Phase in An Experiment Design, In Proceeding of 2001 

Winter Simulation Conference, Piscataway, NJ, 169-178 

 

Wald A., 1947, Sequential Analysis, Dover Publications, Inc., Mineloa, N.Y. 2004 

 



 51

Wang W., Pan D., and Chen M., 2005, Architecture-Based Software Reliability Model, 

The Journal of Systems and Software. Vol. 79, No. 1, 132-146.  

 

Wan H., Ankenman B. E., and Nelson B. L., Controlled Sequential Bifurcation: A 

New Factor-Screening Method for Discrete-Event Simulation, 2006, Operation 

Research, Vol. 54, No. 4, 743-755 

 

Wan H., Ankenman B. E., and Nelson B. L., 2007, Extended Control Sequential 

Bifurcation for Simulation Factor Screening in the Presence of Interactions. Working 

paper, School of Industrial Engineering, Purdue University 

 

Wikipedia, Windows 7, 2008, http://en.wikipedia.org/wiki/Windows_7 

 

Wikipedia, Software bug, 2008, http://en.wikipedia.org/wiki/Software_failure 

 

Wikipedia, Source lines of code, 2008, 

http://en.wikipedia.org/wiki/Source_lines_of_code 

 

Xu, J, Yang, F, Wan, H, Controlled Sequential Bifurcation for Software Reliability 

Study, 2007 Winter Simulation Conference, Washington, DC, Dec. 2007, 281-288 

 

 

 

 

 

 

 

 

 

 

 


	Sensitivity analysis of reliability for structure-based software via simulation
	Recommended Citation

	Sensitivity Analysis of Reliability for Structure-Based Software via Simulation

		2008-09-16T10:48:26-0400
	John H. Hagen
	I am approving this document.




