
Graduate Theses, Dissertations, and Problem Reports

2008

Sensitivity analysis of reliability for structure-based software via Sensitivity analysis of reliability for structure-based software via

simulation simulation

Jun Xu
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Xu, Jun, "Sensitivity analysis of reliability for structure-based software via simulation" (2008). Graduate
Theses, Dissertations, and Problem Reports. 1993.
https://researchrepository.wvu.edu/etd/1993

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1993&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/1993?utm_source=researchrepository.wvu.edu%2Fetd%2F1993&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Sensitivity Analysis of Reliability for Structure-Based

Software via Simulation

Jun Xu

Thesis submitted to the

College of Engineering and Mineral Resources

at West Virginia University

in partial fulfillment of the requirements

for the degree of

Master of Science

in

Industrial Engineering

Feng Yang, Ph.D., Chair

Wafik H. Iskander, Ph.D.

Majid Jaraiedi, Ph.D.

Department of Industrial and Management Systems Engineering

Morgantown, West Virginia

2008

Keywords: Software Reliability, Sensitivity analysis, Discrete-Event

Simulation

Copyright 2008 Jun Xu

ABSTRACT

Sensitivity Analysis of Reliability for Structure-Based Software

via Simulation

Jun Xu

Computer simulation is an appealing approach for the reliability analysis of

structure-based software systems as it can accommodate complexities present in

realistic systems. When the system is complex, a screening experiment to quickly

identify important factors (components) can significantly improve efficiency of the

analysis. The challenge is to guarantee the correctness of the screening results with

stochastic simulation responses. Control Sequential Bifurcation (CSB) is a new

method for factors screening using simulation experiments, when only main effects

models are considered. By grouping factors, CSB can identify the importance of

factors while reducing the simulation effort. With appropriate hypothesis testing

procedures embedded, CSB procedure can simultaneously control the Type I error

probability and the power. The existing work has focused on normally distributed

output responses. This thesis extends the existing CSB procedure by embedding

Meeker’s conditional sequential test to deal with binary responses and guarantee the

desired error control for factor screening results. The effectiveness of the extended

factor screening procedure is demonstrated with the application on a software

system.

 iii

ACKNOWLEDGEMENTS

This research is supported by the NASA OSMA Software Assurance Research

Program (SARP) managed through the NASA IV&V Facility, Fairmont, West

Virginia.

I would like to thank my advisor, Dr. Feng Yang, for her great guidance, for giving

me the opportunity to work on this project. That could not have been written without

her encouragement and support.

I am also thankful to Dr. Wafik H. Iskander and Dr. Majid Jaraiedi for serving on my

committee, and for their insightful ideas and assistance in preparing this thesis.

 iv

TABEL OF CONTENTS

ABSTRACT...ii

ACKNOWLEDGEMENTS..iii

LIST OF TABLES..vi

LIST OF FIGURES...vii

LIST OF NOMENCLATURE..viii

CHAPTER 1: INTRODUCTION..1

1.1 Introduction of software reliability..1

1.2 Literature review..6

1.2.1 Software Reliability Modeling..8

1.2.2 Factor Screening...8

1.3 Problem statement..10

1.4 Overview of methodology ...11

1.5 Thesis organization ...14

CHAPTER 2 RESEARCH APPROACH..15

 2.1 Response models ...15

2.1.1 Main-effect model...15

2.1.2 Determination of the perturbation levels ..17

2.1.3 Thresholds of importance ...18

 2.2 Factor screening procedure …………………………………18

 2.2.1 CSB review …………………………………………..19

2.2.2 Hypothesis test for no-interaction models ..23

CHAPTER 3: EMPIRICAL EVALUATION...31

 3.1 Case 1 ..31

 3.2 Case 2 ..34

CHAPTER 4: CASE STUDY OF A SOFTWARE SYSTEM...................................36

 v

 4.1 Software architecture ...36

 4.2 Failure behavior ...38

 4.3 Simulating the software execution process ...40

 4.4 Application of CSB procedure ...42

CHAPTER 5: DISCUSSION AND CONCLUSION..44

REFERENCE...46

 vi

LIST OF TABLES

Table 2.1 Factor effects in a simple example illustrating CSB factor screening

procedure..22

Table 3.1 Factor effects in case 1...32

Table 3.2 Parameters for empirical evaluation experiment within CSB procedure

based on logistic regression model..33

Table 3.3 Table 3.3 P(DI) of factor i in case 2 out of 1000 replication…………35

Table 4.1 Intercomponent transition probabilities for the software example............38

Table 4.2 Nominal factor settings for the component reliabilities.............................40

Table 4.3 Parameters for case study with CSB procedure application......................43

Table 4.4 Times of component i classified as important in case study out of 1000

replication with implementation of CSB procedure..43

 vii

LIST OF FIGURES

Figure 1.1 Bathtub curve for hardware reliability (Pan 1999).....................................4

Figure 1.2 Revised bathtub curve for software reliability (RAC 1996).......................5

Figure 2.1 Structure of CSB procedure (Wan et. al, 2006, 2007)..............................20

Figure 2.2 Whole factor screening process of a simple example illustrating CSB

procedure..23

Figure 2.3 Meeker’s fully sequential test...29

Figure 3.1 Case 1 factor screening results...34

Figure 4.1 Software structure of an example application..37

 viii

LIST OF NOMENCLATURE

α Probability of type I error

γ The power of the test

λ Steady state failure rate

ζi Nominal level of factor i

p System success probability

K Number of factors in the system

xi Factor i

x Vector of all factors

Mi State in Markov chain

βi Unknown coefficient of factor i

β Vector of all factor unknown coefficients

Y Random output of system: 1 (success), 0 (failure)

P(x, β) System success probability of factor settings x and coefficients β

ci The cost per unit change of factor i (i = 1, 2, …, K)

c
*
 Maximum of ci (i = 1, 2, …, K)

t Odds ratio of ratios of two different systems

t0 The minimum odds ratio value that people could be willing to spend

c
*
 to obtain

t1 The odds ratio value in that people would not want to miss if it could

be achieved for only a cost of c
*

x(k) Factor level setting relative to factor k

yi(k) The i
th
 observation at factor level settings x(k)

n(k) The number of observations (success or failure) that has been taken

under factor setting x(k)

n Sample size of the observation pairs

n0 Upper limit for the number of observation pairs

s1 The number of successes in the n trials for system under factor setting

x(k1)

s2 The number of successes in the n trials for system under factor setting

x(k2)

a Parameter which equals to ln (γ/α)

b Parameter which equals to ln [(1-γ)/(1-α)]

v Parameter which equals to a + b

r Parameter which equals to s1+ s2

l Parameter which equals to max(0, r – n)

u Parameter which equals to min(n, r)

CL(r, n) The lower bound for test statistic when n < n0

CU(r, n) The upper bound for test statistic when n < n0

 ix

CL(r, n0) The lower bound for test statistic when n = n0

P(DI) Probability of being declared important

Pij Transition probability between component i and j

Rs Software reliability

Ri Software component reliability

S Software execution sample path

Y(x, S) Random output of software system with factor settings x and sample

path S: 1 (success), 0 (failure)

Y(x(k), S) Random output of software system with factor settings x and sample

path S: 1 (success), 0 (failure)

P(x, S) Success probability of software system with setting x and sample

path S

di The number of times that component i is visited by sample path S

 1

CHAPTER 1: INTRODUCTION

1.1 Introduction of Software Reliability

Computers and computer systems play a significant role in the modern society. It is

impossible to maintain this world running without the aid of computer systems

controlled by software. In particular, complex systems such as national defense net,

space shuttle launching, and oil refinery control, all heavily rely on computers and

software systems.

The complexity of computer systems has grown dramatically in the previous

decades. Representative examples can be easily found in projects undertaken by

NASA, telecommunication industry, nuclear power generation plants, and a variety

of other industries. For instance, NASA Space Shuttle flies with approximately

500,000 lines of software code on board and approximately 3.5 million lines of code

in ground control and processing. The Windows XP (the 2001 version) personal

computer operation system has more than 40 millions source lines of code, and

Windows Server (the 2003 version) already has more than 50 millions source lines

of code (Tanenbum, 2008).

Since the modern society is built on computer systems, reliable systems are highly

 2

required. However, due to the competition between nations or business peers, the

demand for complex computer systems has increased faster than the ability to design,

test, and maintain them whereas the probability of software failures increases in

parallel with the increased software complexity (Lyu, 1995a). This could lead to

operation inconvenience, economy damage, and even human loss (Lyu, 1995b). In

the NASA Voyager project, the Uranus encounter was jeopardized because of late

software deliveries and reduced reliability of the Deep Space Network. On January

15, 1990, a fault in a switching system’s new released software caused massive

disruption of a major carrier’s long-distance network, and led to enormous revenue

losses to companies using this telecommunication company for business information

transferring. The massive Therac-25 radiation therapy machine had enjoyed a

perfect safety record until software errors in its sophisticated control systems

malfunctioned and claimed several patients’ lives in 1985 and 1986 (Lee, 1992).

More recently, in 1996, the European Space Agency's one billion dollars prototype --

Ariane 5 rocket was destroyed less than a minute after launch, due to a bug in the

on-board guidance computer program (Wikipedia, Software bug).

Clearly, software reliability can affect people’s everyday living. Achieving highly

reliable software has become a most challenge task in software development.

 3

Software reliability is defined as the probability of failure-free software operation

for a specified period of time in a specified environment (ANSI 1991). It is a key

indicator of software quality which includes various customer satisfaction factors

such as functionality, usability, performance, maintainability, and documentation.

Although everybody knows that software reliability is critical, and substantial effort

has been devoted to reliability improvement in the software development cycle, it

still remains a challenging task to achieve a high or desired reliability level. This is

especially true with the more complex systems developed today. System developers

tend to add complexity into software to accommodate the rapid growth of system

size, the requirement of easier manipulation, and more frequent upgrading. For

example, Windows 2000 operation system has more than 29 millions source lines of

code. In 2001, Windows XP system was released with nearly 40 millions source

lines of code. Now, the source code of new released Windows Vista system already

grew to more than 50 millions lines (Wikipedia, Source lines of code).

Software failures may be due to errors, ambiguities, oversights or misinterpretation

of the specification that the software is supposed to satisfy, carelessness or

incompetence in writing code, inadequate testing, incorrect or unexpected usage of

the software, or other unforeseen problems (Keiller 1991). The mechanism of

 4

software failures is markedly different from that of traditional hardware. Most of

hardware faults are physical faults, which is visible and relatively easier to classify,

detect, and correct. However, software faults are design faults, which relate to

human beings and design process. A well known bathtub curve for hardware

reliability is shown in Figure 1.1 (Pan 1999) which illustrates the evolution of failure

rate for hardware systems/components. The failure rate of hardware experiences a

decrease in the burn-in phase, a constant level in the useful-life phase, and an

increase in the wear-out phase. In Figures 1.1 and 1.2, λ is the steady state failure

rate.

Figure 1.1: Bathtub curve for hardware reliability (Pan 1999)

However, software reliability has different characteristics. A possible curve is shown

 5

in Figure 1.2 if software reliability is projected on the same axes (RAC 1996).

Comparing these two figures, it is easy to find that there are two major differences.

First, in the last phase, software failure rate does not experience an increase as

hardware does, which means software will never be worn out. Once a software is

uploaded, its failure rate stays unchanged unless upgrade takes place. Second,

software will typically be upgraded during its in-use period, and each upgrade will

cause an increase in the failure rate, which will gradually stabilize to a new level via

debugging.

Figure 1.2: Revised bathtub curve for software reliability (RAC 1996)

 6

1.2 Literature Review

1.2.1 Software Reliability Modeling

Software reliability research grows in compliance with the computer system

development. Different software reliability assessment models have been developed

to analyze and predict software reliability. Existing software reliability models can

be divided into two groups, black box (functional) and white box (structural) models.

Black-box models treat software as a monolithic whole, which models the system

primarily in terms of its input and output characteristics. The term "black box" is

used because these models consider only the software’s interaction with external

environment without examining the specific execution process inside the “box”. The

well-known reliability growth models fall into the category of black-box models

(Lyu, 1995a).

With the ever increasing software complexity, using one function to characterize the

failure behavior of software systems becomes inappropriate and insufficient. Hence,

white-box, as opposed to black-box, models have been developed and implemented

in software reliability engineering (Cheung 1980, Krishnamurthy 1997, Gokhale

2004 and Grassi 2005). The white-box models treat the system as a composition of

software components with interactions among them, and investigate how these

 7

components could affect the overall system performance individually and

interactively. When a software is being executed, different components are called

following a certain sequence, and the software reliability depends on the successful

execution of components and control transfer between components. In the literature,

analytical models (such as discrete time Markov chain (DTMC), continuous time

Markov chain (CTMC), and semi-Markov process (SMP)) have been used to model

these structure-based software systems. Examples are Cheung (1980), Wang (2005),

and Goseva-Popstojanova (2004). These analytical models rely heavily on

simplifying the assumptions of software systems in order to be able to provide

analytical solutions. For instance, the Markov property requires that the conditional

distribution of any future state Mi+1 given the past states M0, M1, …, Mi-1 and the

present state Mi, is independent of the past states and depends only on the present

state. In the context of software execution, this means that the next component to be

executed depends only on the current component being executed. However, in real

situation, an execution may visit components based on several components that it

has visited. Also it is difficult for current analytical models to deal with a software

system with large state space. Recently, discrete event simulation has gained more

attention, and it offers an attractive alternative to analytical models since it is able to

accommodate important complexities that are present in realistic systems. For

instance, Gokhale (2005) proposed simulation-based procedures to assess the impact

 8

of fault detection and repair strategies on the system reliability; Gokhale et al. (2005)

developed dynamic simulation procedures to model the software behavior

throughout its development cycle. However, the current use of simulation for

software reliability analysis calls for more sophisticated design of experiments and

statistical methodologies to improve the computational efficiency of simulation and

to ensure the validity of the output analysis.

1.2.2 Factor Screening

Screening experiments are designed to investigate the controllable factors in an

experiment with a view toward eliminating the unimportant ones. According to the

sparsity of effects principle, in many cases only a few factors are responsible for

most of the response variation (Myers and Montgomery, 2002). Important factors

shall be identified correctly and efficiently in screening experiments especially when

dealing with complicated systems with large number of factors.

Many simulation procedures have been developed in factor screening experiments

by using economical number of design points and replications (Trocine and Malone,

2000, 2001; Morris, 2005). For example, the first stage of response surface

methodology is usually a factor screening. However, these procedures just

emphasize physical experiments without taking advantage of the highly sequential

 9

nature of the simulation experiments. Recent research has started to combine

screening experiments and a follow-up response exploration into one design to

screen out the important factors (Cheng and Wu, 2001).

Group-screening methods have been developed to deal with systems with large

number of factors. The fundamental idea is to identify factors as a group to save

experimental effort (Lewis and Dean, 2001). In group screening procedure,

subgroups should be further tested if a factor group is identified as important.

Otherwise, all factors in that group will be classified as unimportant. In group

screening experiments, all factors must have their effects in the same direction in

order to avoid cancellation; and a main-effects model is typically assumed (Trocine

and Malone, 2001; Dean and Lewis, 2005).

The Sequential Bifurcation (SB) procedure is a combination of group screening and

a sequential step-down procedure (Bettonvil and Kleijnen, 1997). A sequential

design is one in which the design points are selected as the experiment results

become available (Wan, 2006). SB is a series of steps. In each step, the group effect

is tested for importance. As the experiment proceeds, the groups become smaller

until all factors have been classified. This method was first developed for

deterministic computer simulations. Later the method was extended to cover

 10

stochastic simulations (Cheng, 1997; Kleijnen et al., 2006).

Wan (2006) modified the SB procedure for stochastic simulations and called it

Controlled Stochastic Bifurcation (CSB). CSB procedure is a two-stage testing

procedure to control the probability of Type I error and the power of the test in each

bifurcation step. In the two-stage testing procedure, the determination of the second-

stage sample size is based on a worst-case scenario. A fully sequential test was also

implemented in CSB by Wan to give the same error control. In most cases, the

sequential test is more efficient than the two-stage testing procedure (Wan, 2006).

The CSB procedure is selected in this research for factor screening.

1.3 Problem Statement

This research intends to provide efficient simulation-based statistical procedures for

the sensitivity analysis of software reliability systems.

The software reliability is studied via a structure-based software reliability model as

described already in white-box models. The application is executed in such a way

that components are invoked sequentially and stay active for a specific duration of

time performing the requested functions. Suppose that a terminating application is

considered which consists of a finite number of components, the software reliability

is defined as the probability of successful execution of the software application.

 11

In this research, the system’s performance of interest is the software reliability, and

the input factors considered include the reliability of each component in the system.

The objective is to develop simulation-based factor screening procedures to classify

the system components into two groups, important and unimportant, based on how

sensitive the system reliability is to each component’s reliability.

Assessing the importance of each software component will be very useful for

creating a plan detailing which tasks should be performed to achieve a good system

performance. For example, if it is determined that the reliability of a specific

component has the most impact on the system reliability, then it is critical for the

software testing-team to investigate the failure behavior of that component more

thoroughly or to allocate more resources for this component for its reliability

improvement. In addition, conducting sensitivity studies provides a way to assess the

uncertainty in software reliability estimates.

1.4 Overview of Methodology

To achieve the objective of this research, first a simulation model will be built to

represent the execution process of the software application. Once the model is built,

simulation experiments will be performed to estimate the software reliability under

 12

different settings of the investigated factors. The output response of a simulation run

is represented by a binary random variable with two possible outcomes, success or

failure of the software execution. However, the prevalent and “naive” method of

assessing the impact of factors on software reliability by varying one factor at a time

could be neither efficient nor effective, especially when people are interested in the

effects of large number of factors potentially influencing the system’s performance.

In this research, the Control Sequential Bifurcation (CSB) developed by Wan et. al

(2006, 2007) will be adopted as the factor-screening framework, and Meeker’s

sequential ratio test will be embedded in the CSB procedure to control the

probability of misclassifying factors.

CSB (Wan et. al, 2006) extends the basic Sequential Bifurcation (SB) procedure

(Bettonvil and Kleijnen, 1997) to provide error control for random responses.

Factors will be grouped and the aggregated group effects will be tested. If the group

effect is classified as important, the group will be split into two smaller groups for

further testing. If the group effect is classified as unimportant, all factors in the

group will be classified as unimportant and no further testing will be needed. It is

obvious that the effects of all factors must have the same direction so that no

cancellation will happen. The CSB procedure, with its assumptions, will be

 13

discussed in detail in Chapter 2. When only a small fraction of the factors are

important, CSB can eliminate unimportant factors in groups and hence ends up

requiring significantly less computational efforts than traditional methods. With the

incorporation of a multi-stage hypothesis-testing approach into sequential

bifurcation, CSB is the first screening strategy to simultaneously control the

probability of type I error for each factor and the power for each bifurcation step

under heterogeneous variance conditions. The CSB procedure will be used to screen

factors for systems where only main factor effects are significant.

There are several challenges in applying CSB procedure directly to the software

reliability problems. Specifically, the hypothesis testing procedures developed for

CSB procedure with the error controls (which determine the error control property

of the CSB procedure) is for normal responses. However, the response of software

reliability system is binary (success (1) vs. failure (0)). In this research, Meeker’s

(1981) sequential ratio test will be adopted and embedded in the CSB framework to

handle the situations where the output performance is binary.

1.5 Thesis Organization

The remainder of the thesis is organized as follows: In Chapter 2, the proposed

 14

factor screening procedure is discussed in details; chapter 3 shows two empirical

case studies used to evaluate the performance of the developed procedure; in

Chapter 4, one software system, which has been studied in several articles in the

literature, is used to evaluate the effectiveness of the developed factor screening

procedures.

 15

CHAPTER 2: RESEARCH APPROACH

In this chapter, the proposed simulation-based factor screening method is presented.

2.1 Response Model

Suppose that there are K independent factors in the simulation experiment: x = (x1,

x2, …, xK). The simulation output of interest Y is a binary random variable with

distribution parameter p: Y = 1 with probability p and Y = 0 with probability 1 - p. In

this research, it is assumed that the underlying input-output relationship can be

approximated by models with main effects.

2.1.1 Main-Effect Model

It is assumed that the functional relationship between the probability p and the

factors x can be approximated by a logistic regression model:

)xβ...xβxβ(β
),p(1

),p(
KK2 ++++=

− 2110exp
βx

βx
 (2.1)

Where β = (β1, β2, …, βK) are the unknown coefficients; p(x, β) is the software

reliability p with factors x and coefficients β. Hence the software reliability p

depends on the factors x through the linear combination β0 + β1x1 + β2x2 + … + βKxK.

No interaction effect among the factors is considered. Wan (2005) discussed two

situations in which main-effects models are appropriate: when there is little prior

 16

knowledge about the system and a gross level of screening is desired; or when the

goal of screening is to identify which factors have important local effects. The latter

application to identify factors with important local effects (i.e., sensitivity analysis),

is the main focus in this study.

The ratio p(x, β)/(1- p(x, β)) is a continuous and monotonically increasing function

of the probability p. In this study, the ratio is the primary response of interest.

Denote x as factor vector (x1, x2, …, xK), and xk as the vector (x1, x2, ..., xk +1,

xk+1, …, xK). The effect on the ratio of increasing factor k by one unit is quantified as

follows:

)exp(

)exp(

))1(exp(

))(()(

))(()(

k2110

k2110

k

KKk2

KKk2

xβ...xβ...xβxββ

xβ...xβ...xβxββ

,p1/,p

,p1/,p

β=

++++++

+++++++
=

−

−

βxβx

βxβx kk

 (2.2)

In (2.2), the odds ratio of two ratios obtained at two different factor settings is

calculated.

2.1.2 Determination of the Perturbation Levels

The basic idea of evaluating the effect of changing one factor on the system

performance is to introduce a small disturbance to its nominal level setting and

 17

estimate the resulting change in the output performance. In order to compare the

effects of all the factors, the amount of disturbance to be introduced for each factor

needs to be determined properly. Wan et al. (2006) proposed a cost model which

determines the perturbation levels for the factors based on the required cost of

changing a factor to produce a change in the output performance. A brief review of

the cost model is given below.

Let ci be the cost per unit change of factor xi for i = 1, 2, ..., K, and c
*
 = max ci. Set ζi

as the nominal level setting of factor xi. Then the disturbance introduced to each

factor is represented as ∆ζi which is calculated as:

=

 settingfactor discrete /*

settingfactor continuous /*

i

i

i

cc

cc

∆ζ

∆ζi is the maximum change in factor xi that can be achieved without exceeding a cost

c*. For instance, suppose that there are K = 3 factors. The setting of the first factor

can be changed continuously, but the other two are discrete. If c1 = 300, c2 = 500,

and c3 = 800, then c* = 800, ∆ζ1 = 8/3, ∆ζ2 = 1, and∆ζ3 = 1.

2.1.3 Thresholds of Importance

Based on the cost model introduced above, the thresholds of importance are defined

for the factors being considered.

 18

� t0: the minimum odds ratio value that people could be willing to spend c
*
 to

obtain.

� t1: the odds ratio value that people would not want to miss if it could be achieved

for only a cost of c
*
.

The integration of cost and thresholds of importance into the factor scaling provides

a general way to determine the levels for each factor prior to running the simulation.

The cost model provides a basis for fairly comparing the effects of factors in practice.

However, if the experimenters already know the thresholds of importance as well as

the factor levels, they do not need to use the cost model. Without loss of generality,

it is assumed in response model (2.1) that the factor level settings of x are

deterministic and coded as 0 (nominal level), 1 (nominal level + perturbation).

2.2 Factor Screening Procedure

The goal of screening is to identify the factors with important main effects assuming

that the underlying input-output relationship can be approximated by a main-effect

model. For each factor group which contains one or more factors, the importance of

the group effect will be tested:

H0: The group effect is not important

H1: The group effect is important

The objective of screening procedure is to classify the factors being considered into

 19

two groups: those that are unimportant, which means exp(βk) ≤ t0, and those that are

important, meaning that exp(βk) ≥ t1. For factors with main effects ≤ t0, the

probability of declaring them important (Type I Error) is controlled to be ≤ α; and

for factors with effects ≥ t1, the power for identifying them as important to be ≥ γ.

Those factors whose effects fall between t0 and t1 are considered important and

require reasonable, although not guaranteed, power to identify them.

2.2.1 CSB Review

Wan et al. (2006) proposed a factor-screening framework called Controlled

Sequential Bifurcation (CSB), which is illustrated in Figure 2.1. Suppose that there

are a total of K factors. CSB is a series of steps. In each step, the cumulative effect

of a group of factors is tested for importance. Initially, all factors of interest are

tested in a single group for the group’s effect. If the group’s effect is important, then

the group is split into two subgroups. The effects of these two subgroups are then

tested in subsequent steps and each subgroup is treated in the same way: either

classified as unimportant or split into subgroups for further testing. This process

continues until every individual factor has been classified as either important or

unimportant.

 20

Figure 2.1: Structure of CSB procedure (Wan et al. 2006, 2007)

In the CSB group-screening procedure, if one group is identified as unimportant,

then all factors in this group are declared unimportant; if one group is identified as

important, then further screening will be performed to identify the importance of the

subgroups or individual factors within this group. Note that the group screening

described in Figure 2.1 is based on the assumption that the main effects of all factors

have the same sign in order to avoid cancellation. In Wan et al. (2006), without loss

of generality, it was assumed that the main effects of all factors were nonnegative;

increasing any factor by one unit would lead to a nonnegative increase in the output

performance. This assumption is likely to hold in many realistic situations including

Initialization: Create an empty LIFO queue for groups. Add the entire

group {1,2,…,K} to the LIFO queue.

While queue is not empty, do
 Remove: Remove a group from the queue.

 Test:
 Unimportant: If the group is unimportant, then classify all factors

in the group as unimportant.

 Important (size = 1): If the group is important and of size 1, then

classify the factor as important.

 Important (size > 1): If the group is important and size is great

than 1, then split it into two subgroups such that all

factors in the first subgroup have smaller indices than

those in the second group. Add each subgroup to the

LIFO queue.

 End Test

End While

 21

the software reliability systems, which are of particular interest to this research.

Apparently, improving the reliability of an individual component (a factor) will have

a nonnegative effect on the reliability of the entire software system (output

performance of interest).

To illustrate the CSB procedure in Figure 2.1, a simple example is given as follows.

Suppose that 10 factors are considered for a certain system with predetermined

factor effects specified in Table 2.1. For instance, one unit improvement in factor 3

will improve the whole system performance by 2 units; one unit improvement in

factor 7 will improve the whole system performance by 30 units. In this illustrating

example, the importance threshold is set as 8, which means that a factor will be

considered as important if improving this factor by one unit will lead to 8 units of

improvement in the system performance. Based on the predetermined factors effects

given in Table 2.1, only factor 7 is important. In this case, the factor screening

process is presented in Figure 2.2. Initially, all 10 factors are grouped together and

the group effect is tested for importance. Because the cumulative effect of this 10-

factor group is 42, greater than the threshold 8, the group is declared important and

split into two subgroups (factors 1-5 and factors 6-10) for further testing. For the

subgroup with factors 1-5, the cumulative effect is 7, less than the threshold of

importance, and hence this group along, with all the factors contained in it, is

 22

declared unimportant. The subgroup with factors 6-10 has a cumulative effect of 35,

greater than the threshold, and is thereby declared important and split into two

subgroups for further screening. This process continues until all individual factors

have been classified as important or unimportant. As a result, the only factor

declared as important is factor 7.

Table 2.1 Factor effects in a simple example illustrating CSB factor

 screening procedure

Factors

Effects of improving

the factor by one unit

on the performance

Factors

Effects of

improving the

factor by one unit

on the performance

Factor 1 1 Factor 6 1

Factor 2 1 Factor 7 30

Factor 3 2 Factor 8 1

Factor 4 2 Factor 9 2

Factor 5 1 Factor 10 1

 23

Figure 2.2 Whole factor screening process of a simple example illustrating CSB

procedure

As illustrated in Figure 2.1, CSB is a top-down framework for testing the importance

of factor groups. Next, the details for the hypothesis tests are discussed.

2.2.2 Hypothesis Test for Main-Effect Model

As mentioned earlier, the hypothesis test for group importance embedded in the

existing CSB procedure is for normal responses, whereas in the software reliability

analysis, the outcome is binary, success or failure. The current CSB screening

procedure is extended to handle binary outcomes. For the testing of group

(β1, ..., β10): 42

(β1, ..., β5): 7

(β6, ..., β10): 35

(β9, β10): 3

(β6, ..., β8): 32

(β6, β7): 31

(β8): 1

(β6): 1

(β7): 30

 24

importance, the fully sequential test proposed by Meeker (1981) has been embedded

in the CSB, which ensures the desired error control. In the proposed method, the

Meeker’s hypothesis test for binary outputs is performed based on sequential

sampling via computer simulation. Specifics of the proposed method are given

below.

Suppose that the group containing factors xi (k1+1 ≤ i ≤ k2) is under consideration in

a certain step of the CSB procedure. The cumulative effect of this factor group needs

to be tested for importance. Define the factor setting x(k) as follows:

+=

=

=

Kki

ki

k

 ..., 1,,0

 , 1,,1

)(x

Hence, x(k) is the vector with the first k factors set at their high levels, and the rest

set at their nominal levels. The cumulative effect of factors xi (k1+1 ≤ i ≤ k2) is

evaluated based on the system performances, i.e., the odds ratios defined in Section

2.1.1, at two different factor settings x(k1) and x(k2). Assuming the main-effect

model (2.1), the ratio of the two odds ratios at x(k2) and x(k1) are given as:

 25

∑
+=

=

++++

++++++
=

−

−
=

2

1

1

21

1

210

210

11

22

)exp(

)...exp(

)......exp(

))),(()/(1),((

))),(()/(1),((

k

ki

i

k

kk

β

ββββ

βββββ

kpkp

kpkp
t

βxβx

βxβx

 (2.3)

The relative superior measure t is used to evaluate the improvement in the system

performance by improving the factors xi (k1+1 ≤ i ≤ k2). If t =1, it means that

improving factors in this group does not lead to any improvement in the system

performance. If t >1, then the system has better performance under factor setting

x(k2) than under factor setting x(k1). Following Meeker’s notation, the hypothesis

test to determine whether this factor group is important is:

00 : ttH ≤ vs. 11 : ttH ≥ (2.4)

Where t0 and t1 are the user-specified thresholds of importance defined in Section

2.1.4 with 1 < t0 < t1. The factors group with 0

1

2

1

)exp(tβt
k

ki

i ≤= ∑
+=

 is considered as

unimportant, and the factors group with 1

1

2

1

)exp(tβt
k

ki

i ≥= ∑
+=

is considered as critical.

The probability of type I error, α, is the probability of rejecting H0 when t ≤ t0, and

the power of the test γ(t) is the probability of accepting H1 at t, when t ≥ t1.

Let yi(k1) (or yi(k2)) denote the binary random output of the system obtained from the

 26

i
th
 (i = 1, 2, 3, …, n) simulation run under factor setting x(k1) (or x(k2)). In

simulation experiments, the observations Mn={(y1(k1), y1(k2)), (y2(k1), y2(k2)), …,

(yn(k1), yn(k2))} are obtained in pairs, and n is referred to as the size of the sample.

The sequential method for testing the hypothesis (2.5) may be described as follows.

Initially, a sample of a certain size is obtained via simulation. Based on the current

sample Mn, three decisions will be made: (i) to accept H0, (iii) to reject H0, (iii) to

continue the experiment by making an additional observation pair (yn+1(k1), yn+1(k2))

and set Mn = Mn+1. This process is continued until a decision of type (i) or (ii) is

made, or the sample size reaches a pre-specified upper limit n0.

The testing process is illustrated in Figure 2.2, which is adapted from Meeker (1981)

to suit the CSB structure. For details of the sequential hypothesis test, please refer to

Meeker (1981). Necessary notations are given below.

� α: required probability of Type I Error

� γ: required power of the test at t1

� yi(k): the i
th
 observation at factor level settings k, yi(k) = 1 (success) or 0 (failure)

� n(k1): the number of observations (success or failure) that have been taken under

factor setting x(k1)

� n(k2): the number of observations (success or failure) that have been taken under

factor settings x(k2)

 27

As already mentioned, the observations are obtained in pairs to compare the system

performance with factor settings x(k1) and x(k2). However, a certain number of

observations n(k1) (or n(k2)) may already have been obtained in the previous test

processes. n(k1) and n(k2) are used to store all observations obtained so far at factor

settings x(k1) and x(k2).

� n: sample size of the observation pairs Mn={(y1(k1), y1(k2)), (y1(k1), y1(k2)), …

(yn(k1), yn(k2))} used in the hypothesis test; initially, n may be min{n(k1), n(k2)} if

n(k1) ≠ n(k2).

� n0: upper limit for the number of observation pairs; the sequential test procedure

will be terminated once the sample size reaches this upper limit.

The conditional sequential test is truncated at observation n0. The truncation effect

was discussed in Meeker (1981). In this research, n0 is set at 10,000. Case studies in

Chapter 3 show good control of probability of Type I error and the power of the test

when the upper limit is set at 10,000.

� ∑ =
=

n
1 1i1)(

i
kys : the number of successes in the n trials for system under factor

setting x(k1).

� ∑ =
=

n
1 2i2)(k

i
ys : the number of successes in the n trials for system under factor

setting x(k2) .

� a = ln (γ/α)

� b = ln [(1-γ)/(1-α)]

 28

� r = s1 + s2: the total number of successes under both factor settings with s1 and s2

defined above.

Parameters a, b and r are used to calculate the lower bound CL(r, n) and upper bound

CU(r, n) as shown below.

� l = max (0, r - n)

� u = min (n, r)

Parameters l and u are used in calculation of function F(τ).

� F(τ) = F(r, n, τ) is a function of r, n , and τ; τ can only be equal to t0 or t1

−

= ∑

=

j
u

lj

τ
jr

n

j

n
τn,r,F ln)(

�)/ln(/)}()({),(0101 tttFtFbnrCL −+= , the lower bound for the test statistic

before the number of pair observations n meets the upper limit n0.

� 1)/ln(/)}()({),(0101 +−+= tttFtFanrCU , the upper bound for the test

statistic before the number of pair observations n meets the upper limit n0.

� 2/)(bav +=

�)/ln(/)}()({),(01010 tttFtFvnrCL −+= , the lower bound for the test statistic

when the number of pair observations n meets the upper limit n0; the upper bound

for test statistic is calculated as CL(r, n0) + 1 when the number of pair observations n

meets the upper limit n0.

 29

Figure 2.3: Meeker’s fully sequential test adapted for the CSB factor screening.

The sequential procedure in Figure 2.3 is used to test the importance of the factor

group containing factors xi (k1+1 ≤ i ≤ k2). Before testing the superiority between the

Test Initialization Set s1 = 0, s2 = 0, r = 0, finish = 0, n0 is a user-specified

parameter. n(k1) and n(k2) are given from the previous steps

of the CSB procedure (Figure 3.1)

If n(k1) = 0 or n(k2) = 0: n = 1

Else n = min(n(k1), n(k2))

While finish < 1 AND n < n0, do

 If n(k1) < n:

Take one observation yn(k1) under factor setting x(k1); n(k1) = n

 Endif

 ∑ =
=

n

i i kys
1 11)(

 If n(k2) < n:

Take one observation yn(k2) under factor setting x(k2); n(k2) = n

 Endif

 ∑ =
=

n

i i kys
1 22)(

 r = s1 + s2

 Unimportant: If s2 < CL(r, n), classify the group as unimportant,

finish = 1

 Important: ElseIf s2 > CU(r, n), then classify the group as important, finish =

1

 Endif

 n = n + 1;

End While

If n = n0

 Unimportant: If s2 ≤ CL(r, n0), classify the group as unimportant.

 Important: ElseIf s2 ≥ CL(r, n0) +1, then classify the group as important.

Endif

 30

two systems with factor settings x(k1) and x(k2), one of these two systems or even

both may already have been involved in the testing of other factor groups. Hence, in

the initialization of the procedure, the numbers of observations already obtained,

n(k1) ≥ 0 and n(k2) ≥ 0, are given. If n(k1) = 0 or n(k2) = 0, then the number of

observation pairs initially available is 0; the procedure will first obtain n=1

observation pair by running a simulation, and the sequential test will first be

performed based on a single pair of observations. Otherwise, if n(k1)>0 and n(k2)>0,

then n = min(n(k1), n(k2)) observation pairs are initially available, based on which

the sequential test will be initiated. Other parameters s1, s2, r, finish, and n0 are set as

shown in Figure 2.3. When n < n0, test decisions will be made by comparing s2 with

CL(r, n) and CU(r, n); once sample size n reaches the upper limit n0, test decision

will be made by comparing s2 with CL(r, n0) and CL(r, n0) + 1.

It is worth mentioning that the Wald sequential test procedure (Wald 1947) can also

be used to test the difference between the means of two binominal distributions.

However, Wald test only utilizes the untied observation pairs (i.e., (1, 0) and (0, 1)

pairs) while disregarding the tied observation pairs. Hence, Wald’s test is not as

efficient as Meeker’s test (Meeker 1981) which uses both tied and untied

observation pairs in the hypothesis test.

 31

CHAPTER 3: EMPIRICAL EVALUATION

In this chapter, the performance of the factor screening procedures proposed in

Chapter 2 is evaluated. Before applying the CSB procedure in a case study of a

software system (Chapter 4), Monte Carlo simulation is used to generate data such

that the size of the main effects can be fully controlled by setting the coefficients of

the factors being considered.

3.1 Case 1

Consider the system with its input-output relationship specified as

)...exp(
),(1

),(
101022110 xβxβxββ

p

p
++++=

− βx

βx
 (3.1)

which follows the main-effect model (2.1). The coefficients βi (i = 1, 2, …, 10) are

given in Table 3.1.

The factor screening procedure described in Section 2.2 (CSB procedure with

embedded Meeker’s test) is applied to classify the 10 factors as important or not

important. For an iteration in the CSB procedure where the importance of the factor

group xi (k1+1 ≤ i ≤ k2) is being tested, a simulation sampling is carried out as

follows to obtain the binary output observations for testing the hypothesis (2.4).

Under factor setting x(k1), the probability p(x(k1), β) can be calculated from (3.1). A

 32

random binary output, which is considered as an observation, can be generated from

the Bernoulli distribution with a success probability of p(x(k1), β). Similarly, the

output observations can be obtained via Monte Carlo simulation under factor setting

x(k2). Based on the simulation sampling, the factor group being considered will be

classified as important or not important using the sequential testing procedure given

in Figure 2.3.

Table 3.1: Factor effects in case 1

Coefficients βi Value exp(βi) Value

β1 0.01 exp(β1) 1.01

β2 0.05 exp(β2) 1.05

β3 0.1 exp(β3) 1.11

β4 0.15 exp(β4) 1.16

β5 0.2 exp(β5) 1.22

β6 0.25 exp(β6) 1.28

β7 0.3 exp(β7) 1.35

β8 0.35 exp(β8) 1.42

β9 0.4 exp(β9) 1.49

Β10 0.45 exp(β10) 1.57

In this experiment, the parameters for the CSB procedure are given in Table 3.2.

With these user-specified parameters, the factors that are considered as not important

are factors 1, 2, and 3 with exp(βi) < t0 for i = 1, 2, 3 (Table 3.1); the critical factors

are factors 7, 8, 9, and 10 with exp(βi) > t1 for i = 7, 8, 9, 10 (Table 3.1). The CSB

procedure is designed in such a way that the probability of misclassifying an

 33

unimportant factor as important is less than 0.05, and the power of classifying a

critical factor as important is greater than 0.95.

The CSB procedure was applied on this case for 1000 times using different random

streams, and each time the factor screening results were recorded. For each factor,

the P(DI), the probability of being declared as important, is estimated from these

1000 replications. For instance, if factor 5 is declared important 350 times out of

1000 times, its P(DI) is 0.35. Figure 3.1 plots the P(DI) of the factors against their

true effects exp(βi) for i = 1, 2, ..., 10. As can be seen from Figure 3.1, the P(DI) for

unimportant factors with exp(βi) < t0 was well below alpha 0.05, and the P(DI) for

critical factors with exp(βi) > t1 was well above gamma 0.95.

Table 3.2: Parameters for empirical evaluation experiment within CSB procedure

based on logistic regression model

Parameter Value

t0 1.15

t1 1.30

α 0.05

γ 0.95

 34

Figure 3.1: Case 1 factor screening results

3.2 Case 2

In this case, all the 10 coefficients βi (i = 1, …, 10) in model (3.1) are set at 0.1. CSB

parameters are given in Table 3.2. Hence, all the 10 factors are unimportant with

exp(βi) = 1.11 < t0 = 1.15. This case is designed to study the control of type I error

for the factor screening procedure. Again, the CSB procedure was applied on this

case for 1000 times, from which the P(DI) for each factor was estimated. From the

results obtained in Table 3.3, the P(DI) for each of the 10 factors was below 5%,

indicating that the type I error was well controlled as expected.

1 1.1 1.2 1.3 1.4 1.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(DI)

exp(βi)

ІІІІ ІІ ІІІ

Regions:

І: Unimportant

ІІ: Important

ІІІ: Critical

1.6

 35

Table 3.3 P(DI) of factor i in case 2 out of 1000 replication

Factor i exp(βi) P(DI) Factor i exp(βi) P(DI)

1 1.11 0 6 1.11 0

2 1.11 0 7 1.11 0

3 1.11 0 8 1.11 0

4 1.11 0 9 1.11 0.001

5 1.11 0.001 10 1.11 0

 36

CHAPTER 4: CASE STUDY FOR A SOFTWARE

SYSTEM

In this section, the effectiveness of the proposed simulation-based factor screening

procedure is demonstrated through its application on a software reliability system.

The software system reported by Cheung (1981) is used as an example, which has

been used extensively in the literature to illustrate structure-based reliability

assessment techniques (Gokhale and Trivedi 2002, Goseva-Popstojanova and

Kamavaram 2003, and Lo et. al 2002).

4.1 Software Architecture

The structure of the application (Cheung 1981) is shown in Figure 5.1. The state-

based approach, which uses the control flow graph to represent software architecture,

is used to build the architecture-based software reliability model (Cheung 1981).

The states represent active components 1, 2, …, and 10. The arcs represent the

intercomponent transitions, and the transition probability Pij represents the

probability that component j is executed upon the completion of component i (i, j =

1, 2, …, and 10 where i ≠ j). The non-zero transition probabilities between the

components are given in Table 4.1. In practice, the parameters Pij are estimated from

the user operational profiles reflecting the usage of different components when the

 37

software application is being executed. According to Figure 4.1, the software system

consists of 10 components, and the execution of the application always starts with

component 1 and ends with component 10. Furthermore, it is assumed that the

application spends 1 time unit at each component per visit. Hence, the software

execution process illustrated in Figure 4.1 can be modeled as discrete time Markov

chain (DTMC) with transition probability matrix P = (Pij) 10*10.

Figure 4.1: Software structure of an example application

1

2 3 4

7

5
6

8 9

10

P13

P12 P14

P23

P72

P79

P57

P25
P35

P45

P46

P68

P63

P58

P67 P69

P98

P9,10 P8,10

P84

 38

Table 4.1: Intercomponent transition probabilities for the software example

P1,2 = 0.60

P2,3 = 0.70

P3,5 = 1.00

P4,5 = 0.40

P5,7 = 0.40

P6,3 = 0.30

P7,2 = 0.50

P8,4 = 0.25

P9,8 = 0.10

P1,3 = 0.20

P2,5 = 0.30

P4,6 = 0.60

P5,8 = 0.60

P6,7 = 0.30

P7,9 = 0.50

P8,10 = 0.75

P9,10 = 0.90

P1,4 = 0.20

P6,8 = 0.10

P6,9 = 0.30

4.2 Failure Behavior

The failure behavior of components is first considered, i.e., the reliability of each

component. A component can fail during its execution period, which is assumed to

be 1 unit of time. The reliability of a component is defined as the probability that the

component performs its function correctly without a failure when being executed.

Failures of different components occur independently from each other. The

application process is considered a failure if any of the components called during the

execution fails. Given that the model described in Figure 4.1 is a DTMC, the

expression for system reliability as a function of transition probabilities and

 39

component reliabilities can be analytically derived. In this case study, it is assumed

that the transition probabilities are fixed known values, and try to evaluate the

impact of component reliabilities upon the system reliability. Let Ri denote the

reliability of component i (i = 1, 2, …, 10), and Rs the reliability of the software

system. Table 4.2 shows the component nominal level reliabilities of this 10-

component software example. The functional relationship between Rs and {Ri, i = 1,

2, …, 10},

),...,,(1021 RRRfRs = (4.1)

can be derived based on the DTMC, and hence the simulation-based factor screening

results can be compared with the analytical ones obtained from DTMC.

It should be emphasized that the strength of the simulation-based method stems from

its ability to analyze complicated and realistic software systems without having to

use the simplifying assumptions required by analytical models (e.g, DTMC, CTMC).

For the purpose of illustration and evaluation, the factor screening procedure is

applied on this simple software application.

 40

Table 4.2: Nominal factor settings for the component reliabilities

Factors xi x1 x2 x3 x4 x5

Reliability Ri 0.986 0.985 0.985 0.97 0.95

Factors xi x6 x7 x8 x9 x10

Reliability Ri 0.98 0.986 0.945 0.975 0.975

4.3 Simulating the Software Execution Process

The output of a simulation run of the software model is a Bernoulli random variable

Y with success probability p = Rs. A sample path is defined as the sequence of

components visited by an application execution. In other words, a sample path

represents a calling sequence of the components when the software is being

executed. Let S = {S1, S2, S3, …} denote the set of all the possible sample paths

(which may be infinite if there are loops) , and define

)],([)(SpEp S xx = (4.2)

Where p(x, S) represents the system reliability following sample path S, and ES

denotes the expected system reliability with respect to S. Further, Y(x, S) denotes the

random output at factor setting x for a given sample path S. Y(x, S) follows a

Bernoulli distribution with parameter p(x, S).

In light of the fact that the reliability of the system could differ markedly depending

on the particular sample path S, in the sequential simulation, experiments are set up

 41

in such a way that simulation replications at different factor level settings are

performed at the same randomly selected sample paths. When comparing two factor

level settings x(k1) and x(k2), random outputs Y(x(k1), Si) and Y(x(k2), Si) are taken

sequentially with i increasing from 1 to n. If more than n runs are needed for the test,

then a new sample path Sn+1 will be generated and stored, and observations Y(x(k1),

Sn+1) and Y(x(k2), Sn+1) are collected.

With the simulation strategy described above, the only dynamic simulation that

needs to be carried out is the generation of a number of sample paths independently

which will be used to produce the random outputs for the different factor settings.

For a given sample path S, the output Y(x, S) can simply be generated using Monte

Carlo Simulation as follows. Let di be the number of times that component i is

visited by sample path S, then the reliability p(x, S) is given as

∏
=

=
10

1

),(
i

d
xSxp ii (4.3)

Thus the output Y(x, S) can be generated by drawing a random variable from the

Bernoulli distribution with parameter p(x, S). The computational savings from this

approach allows for the generation of the large number of sample paths.

 42

4.4 Application of the CSB Procedure

The objective here is to classify the software components into two groups, important

and unimportant, based on how sensitive the system reliability is to the reliability of

each component. The factors considered are x = (x1, x2, …., x10) = (R1, R2, …, R10).

For the consistency of notation, x is used to represent the factor setting vector.

In this case study, nominal factor settings are given in Table 4.2, and the factor

disturbance level of all factors is set as 0.013. The CSB procedure parameters for the

experiment are given in Table 4.3. Based on the analytical results from the DTMC,

the only component that quantifies as critical is component 5, components 1 and 10

are considered as important, and the rest of the components are not important.

Simulation-based factor screening results are evaluated against the true analytical

results. Again, the CSB procedure with 1000 simulation replications was applied,

and Table 4.4 summarizes the factor screening results from these 1000 replications.

Component 5 was identified as important with a probability of about 95% (956 out

of 1000), lower than the desired power of 99%. For the unimportant components

(component 2, 3, 4, 6, 7, 8, and 9), the probability of misclassifying components 4, 6,

7, and 9 were well below the desired level of 1%, and the probability of

misclassifying components 2, 3, and 8 are close to 5%, above the desired level of

1%. Failing to achieve the desired probability of type I error for some components

 43

(component 2, 3, and 8) may be attributed to the inadequacy of the assumption that

there is no interaction between the factors that the main-effect model represents the

input-output relationship for this system.

Table 4.3: Parameters for case study with CSB procedure application

Parameter Value

t0 1.07

t1 1.085

α 0.01

γ 0.99

Table 4.4: Times of component i classified as important in case study out of 1000

replications with implementation of CSB procedure

Component i Times Component i Times

1 272 6 0

2 38 7 0

3 48 8 54

4 0 9 0

5 956 10 289

 44

CHAPTER 5: DISCUSSION AND CONCLUSION

In this research, the existing CSB factor screening procedure is extended to handle

the cases where the system outputs are binary random variables rather than normal

responses. The sequential tests developed by Meeker’s (1981) is selected and

embedded in the proposed factor screening procedures. Empirical evaluations of the

procedures are performed on models with known results and on a software

application system. Through numeric experiments, it is demonstrated that the

developed factor screening procedures are able to classify factors as important or

unimportant with pre-specified error control.

The limitations of the factor screening methods developed in this research are given

as follows. (1) The efficiency of CSB procedure depends on the appropriateness of

using the logistic regression model of the form (2.1) to approximate the underlying

input-output relationship of the system being investigated. (2) CSB procedure is not

universally good for all factor-screening problems: they are particularly efficient in

dealing with systems with large number of factors, and a small number of factors

being important.

The results in Chapter 4 show that sometimes the main effect model may not be

adequate to approximate the input-output relationships for real systems. Future

 45

studies should focus on developing factor screening procedures that can handle

situations where factor interactions are present.

In practice, the software crash rarely happens for important systems, such as national

defense net and space shuttle launching, since people pay much more effort in

quality control in these systems. This makes the software crash a rare event and the

study of factors that influence the crash probability more challenging. It is

recommended to expand this effort in future research to screen important factors in

systems that rarely fail.

 46

REFERENCE

Anderson T. W., 1960, A Modification of the Sequential Probability Ratio Test to

Reduce the Sample Size, the Annals of Mathematical Statistics, Vol. 31, 165-197

ANSI/IEEE, “Standard Glossary of Software Engineering Terminology”, STD-

729-1991, ANSI/IEEE, 1991

Armitage P., 1957, Restricted Sequential Procedures, Biometrika, Vol. 44, 9-26

Bettonvil B., Kleijnen J. P. C., 1997, Searching for Important Factors in Simulation

Models with Many Factors: Sequential Bifurcation, European Journal of Operational

Research, Vol. 96, No. 1, 180-194

Cheng, R. C. H., 1997, Searching for Important Factors: Sequential Bifurcation under

Uncertainty, In Proceeding of 1997 Winter Simulation Conference, Piscataway, NJ,

275-280

Cheng, S., Wu, C. F. J., 2001, Factor Screening and Response Surface Exploration-

Rejoinder. Statistica Sinica, Vol. 11, 553-604

Cheung R. C., A User-Oriented Software Reliability Model, 1980, IEEE Trans.

Software Engineering, Vol. 6, No. 2, 118-125

Dean, A. M., Lewis, S. M., ed., 2005, Screening, Spring-Verlag, New York

Dickinson W., Leon D., and Podgurski A. 2001, Finding Failures by Cluster Analysis

of Execution Profiles. In Proceedings of the 23rd International Conference on

Software Engineering, ICSE 2001, 339-348

 47

Everett W. W., 1999, Software Component Reliability Analysis, In Proceedings 1999

IEEE Symposium on Application-Specific Systems and Software Engineering and

Technology, ASSET 99, 22-31

Gokhale S., and K. S. Trivedi. 2002. Reliability prediction and sensitivity analysis

based on software architecture. In Proceedings of the 13
th
 International Symposium

on Software Reliability Engineering, 64-78.

Gokhale S. S., Wong W. E., Trivedi K. S., and Horgan J. R., 2004, An Analytical

Approach to Architecture-Based Software Reliability Prediction, Performance

Evaluation, Vol. 58, No. 4, 391-412

Gokhale S., and Lyu M. R. 2005, A Simulation Approach to Structure-Based Software

Reliability Analysis, IEEE Transaction on Software Engineering. Vol. 31, No. 8, 643-

656.

Goseva-Popstojanova K., Mathur A. P., and Trivedi K. S., Comparison of

Architecture-Based Software Reliability Models, 2001, In Proceedings of the

International Symposium on Software Reliability Engineering, 22-31

Goseva-Popstojanova K., and Kamavaram S. 2003, Assessing Uncertainty in

Reliability of Component-Based Software Systems, In Proceedings of the 14
th

International Symposium on Software Reliability Engineering.

Goseva-Popstojanova K., Hamill M., and Perugupalli R., Large Empirical Case Study

of Architecture-based Software Reliability, 2005, In Proceedings International

Symposium on Software Reliability Engineering, 43-53

Goseva-Popstojanova K., and Kamavaram S., Software Reliability Estimation under

 48

Uncertainty: Generalization of the Method of Moments, 2004, In Proceedings of

IEEE International Symposium on High Assurance Systems Engineering, Vol. 8, 209-

218

Goseva-Popstojanova K., Hamill M., and Wang X., Adequacy, Accuracy, Scalability,

and Uncertainty of Architecture-based Software Reliability: Lessons Learned from

Large Empirical Case Studies, 2006, In Proceedings - International Symposium on

Software Reliability Engineering, 197-203

Grassi V., Architecture-Based Reliability Prediction for Service-Oriented Computing,

Springer-Verlag Berlin/ Heidelberg, 2005, Vol.3549, 279-299

Hartmann M., 1991, An Improvement on Paulson’s Procedure for Selecting The

Population with The Largest Mean from k Normal Populations with A Common

Unknown Variance, Sequential Analysis, Vol. 10, 1-16

Hoang Pham., Software Reliability, Springer, Singapore, 2000

Huang R., Lyu M. R., and Kanoun K., Simulation Techniques for Component-Based

Software Reliability Modeling with Project Application, 2001, In Proceedings of the

International Symposium on Information Systems and Engineering, 283-289

Kamavaram S., and Goseva-Popstojanova K., Sensitivity of Software Usage to

Changes in the Operational Profile 2004, In Proceedings. 28th Annual NASA

Goddard Software Engineering Workshop, 157-64

Keiller, Peter A., Miller, Douglas R., “On the Use and the Performance of Software

Reliability Growth Models”, Software Reliability and Safety, Elsevier, 1991, 95-117

Khoshgoftaar, T.M., and Munson, J.C., “A Measure of Software System Complexity

 49

and Its Relationship to Faults,” Proceeding of the 1992 International Simulation

Technology Conference, Houston, TX, Nov. 1992, 267-272

Kleijnen, J. P. C., Bettonvil, B., Person F., 2006, Finding The Important Factors in

Large Discrete-event Simulation: Sequential Bifurcation and Its Applications. Dean,

A., Lewis, S., ed., Screening: Methods for Experimentation in Industry, Drug

Discovery, and Genetics, Spring-Verlag, New York

Krishnamurthy S., and Mathur A. P., On the Estimation of Reliability of a Software

System Using Reliability of its Components, 1997, In Proceedings of the

International Symposium on Software Reliability Engineering, ISSRE, 146-155

Lee, L., The Day the Phones Stopped: How People Get Hurt When Computers Go

Wrong, Donald I. Fine, Inc., New York, 1992.

Lo J., S. Kuo, M. R. Lyu, and C. Huang. 2002. Optimal resource allocation and

reliability analysis for component-based software applications. In Proceeding of the

26
th
 Annual International Computer Software and Application Conference, 7-12

Lewis, S. M., Dean, A. M., 2001, Detection of Interactions on Large Numbers of

Factors, Journal of the Royal Statistical Society: Series B, Vol. 63, 633-672

Lyu, M. R., 1995a, Handbook of Software Reliability Engineering, New York:

McGraw-Hill

Lyu, M. R., 1995b, Software Reliability: To Use or Not To Use? A Panel Discussion,

http://www.stsc.hill.af.mil/crosstalk/1995/02/reliable.asp

Meeker, W. Q. Jr., 1981, A conditional Sequential Test for the Equality of Two

Binomial Proportions, Applied Statistics, Vol. 30, No. 2, 109-115

 50

Morris, M. D., 2006, An overview of group factor screening, Dean, A., Lewis, S., ed.,

Screening: Methods for Experimentation in Industry, Drug Discovery, and Genetics,

Spring-Verlag, New York

Myers, R. H., Montgomery, D. C., 2002, Response Surface Methodology: Process

and Product Optimization Using Designed Experiments, John Wiley and Sons, New

York

Pan, J., Software Reliability: Dependable Embedded Systems, Carnegie Mellon

University, 18-849b, 1999.

Paul R., editor. Software Reliability Handbook. Centre for Software Reliability, City

University, London, U.K. 1990

Reliability Analysis Center, Introduction to Software Reliability: A state of the art

Review. Reliability Analysis Center (RAC), 1996

Tanenbaum A., 2008, Modern Operation System, 3rd edition, Prentice Hall

Trocine, L., Malone, L. C., 2000, Finding Important Independent Variables Through

Screening Designs: A comparison of methods, In Proceeding of 2000 Winter

Simulation Conference, Piscataway, NJ, 749-753

Trocine, L., Malone, L. C., 2001, An Overview of Newer, Advanced Screening

Methods for The Initial Phase in An Experiment Design, In Proceeding of 2001

Winter Simulation Conference, Piscataway, NJ, 169-178

Wald A., 1947, Sequential Analysis, Dover Publications, Inc., Mineloa, N.Y. 2004

 51

Wang W., Pan D., and Chen M., 2005, Architecture-Based Software Reliability Model,

The Journal of Systems and Software. Vol. 79, No. 1, 132-146.

Wan H., Ankenman B. E., and Nelson B. L., Controlled Sequential Bifurcation: A

New Factor-Screening Method for Discrete-Event Simulation, 2006, Operation

Research, Vol. 54, No. 4, 743-755

Wan H., Ankenman B. E., and Nelson B. L., 2007, Extended Control Sequential

Bifurcation for Simulation Factor Screening in the Presence of Interactions. Working

paper, School of Industrial Engineering, Purdue University

Wikipedia, Windows 7, 2008, http://en.wikipedia.org/wiki/Windows_7

Wikipedia, Software bug, 2008, http://en.wikipedia.org/wiki/Software_failure

Wikipedia, Source lines of code, 2008,

http://en.wikipedia.org/wiki/Source_lines_of_code

Xu, J, Yang, F, Wan, H, Controlled Sequential Bifurcation for Software Reliability

Study, 2007 Winter Simulation Conference, Washington, DC, Dec. 2007, 281-288

	Sensitivity analysis of reliability for structure-based software via simulation
	Recommended Citation

	Sensitivity Analysis of Reliability for Structure-Based Software via Simulation

		2008-09-16T10:48:26-0400
	John H. Hagen
	I am approving this document.

