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Abstract 

Characterization of ovine monocytes in response to Haemonchus contortus 

larvae in vitro and a novel role of IL-13 inducing larval paralysis 

Elizabeth Anne Shepherd 

 Haemonchus contortus is a hematophagous, gastrointestinal parasite affecting small 

ruminants. Parasitism by H. contortus is the greatest concern of sheep producers in the United 

States and accounts for billions of dollars in economic loss worldwide. However, different 

breeds of sheep display differences n natural resistance to H. contortus.  St. Croix hair sheep 

have a remarkable ability to clear H. contortus without the aid of anthelmintics and develop a 

robust T helper type 2 (Th2) immune response, preventing establishment of infective stage 3 

larvae (L3), when compared to susceptible Suffolk sheep.  However, the mechanism of 

development of immune response and differences between resistant and susceptible breeds is not 

fully understood.  In these studies, response of ovine monocytes, from resistant and susceptible 

breeds of sheep, to whole L3 were evaluated in vitro.  Monocytes were isolated from peripheral 

blood mononuclear cells and cultured with L3 over 6 to 15 hours to measure gene expression and 

effector function, by measuring larval ATP and motility.   Separation of peripheral blood 

mononuclear cells (PBMC) into monocytes and lymphocytes demonstrated a clear effector 

function of monocytes against L3.  Monocyte and macrophage activation state have been 

associated with helminth infection and play an important role in induction of Th2 type responses 

for overall host protection.  Inhibition of inducible nitric oxide synthase in Suffolk monocytes 

rescued susceptibility, whereas inhibition of alternative pathways reduced effector function in 

both breeds, and thus, monocytes required arginase-1 for full effector function.  Though St. 

Croix derived monocytes up-regulated genes associated with classical (M1) activation, early 

activation of alternative markers (M2) were present compared to Suffolk derived monocytes.  

Interleukin-13 (IL-13) is a cytokine critical to Th2 type immune response and promoting 

alternative activation of monocytes in context of helminth infection.  Inhibition of IL-13 in 

monocyte culture dampened effector function in St. Croix derived cells. However, larval 

morbidity was not IL-13 dependent.  Independent of cellular mechanisms, IL-13 was observed to 

cause larval paralysis, reducing larval speed and distance, identifying a previously unknown role 

of IL-13.  Overall, St. Croix displayed increased paralytic activity of from monocyte culture 

supernatant, in conjunction with heightened monocyte-mediate larval morbidity, and therefore 

may be reflective resistance to H. contortus infection and development of full host protective 

immunity. 
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1400W = (N-(3-[Aminomethyl]benzyl)acetamidine) = iNOS inhibitor 

APC = antigen presenting cell 

Arg1 = Arginase-1 

ATP = adenosine triphosphate 

BEC = (S-(2-boronoethyl)-I-cysteine hydrochloride) = Arg1 inhibitor 

CSF = colony stimulating factor 

DC = dendritic cell 
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IL- = interleukin 

iNOS = inducible nitric oxide synthase 

JAK = Janus Kinase 

KO = knockout 

L3 = infective third stage larvae 

LEV = levaminsole 

M1 = classically activated macrophages 

M2 = alternatively activated macrophage 
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NO = nitric oxide 

PBMC = peripheral blood mononuclear cells 

PCV = packed cell volume 

RAG = recombination activating gene 

RT = room temperature 

RT qPCR = real time quantitative polymerase chain reaction 

STAT = signal transducer and activator of transduction 

STC = St. Croix sheep 

SUF = Suffolk sheep 

Th1 = T helper type 1 

Th2 = T helper type 2 

TNF = tumor necrosis factor 

WT = wild type 
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Chapter 1: Literature Review 

Introduction 

 Gastrointestinal trichostrongylid parasites present a global animal health challenge, 

causing reduced growth rate, illness and even death in severely affected animals.  In the United 

States alone, producers report gastrointestinal parasitism as the most prevalent health concern 

among sheep operations (1).  Of these parasites, Haemonchus contortus is the most pathogenic 

species affecting commercial sheep and has become resistant to all drug classes due to the 

overuse of anthelmintics as a primary means of parasite control (2).  The rise of resistant worm 

populations now requires development of alternative control methods for livestock production of 

parasite-resistant sheep, such as St. Croix hair sheep. 

 Due to their slow growth rate, small carcass size and lack of wool, St. Croix hair sheep 

are not typically considered desirable commercial sheep.  However, these sheep have a well-

documented ability to clear H. contortus infections without the aid of anthelmintic drug 

treatment (3–6).  Therefore, St. Croix are considered parasite resistant sheep (5). Compared to 

parasite-susceptible breeds, St. Croix produce a rapid and greater cellular immune response, 

preventing establishment and development of adults (3).  Driven by T helper 2 (Th2) type 

immune response, interleukin (IL-) 4, IL-13 and IL-5 are increased, along with recruitment of 

innate cells such as eosinophils and mast cells in abomasal lymph nodes and mucosa (3,7).  T 

cells are also increased during infection, indicating strong adaptive immunity in control of H. 

contortus.  Increased cellular innate and adaptive responses suggest that differences between 

parasites resistant and susceptible breeds may hinge on their ability to recruit cells and produce 

the proper signals early during infection, recognizing H. contortus before establishment. 
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 Previous studies have demonstrated a role of peripheral blood mononuclear cells (PBMC) 

contributing to reduced larval motility, as measured by path-length, velocity and acceleration in 

vitro (8).   Larval death is commonly described as immobility, with outstretched bodies and non-

refractive internal structures (9).  However, a more precise measure of larval morbidity can be 

quantified using larval ATP.  Culture of H. contortus infective third stage larvae (L3) with 

PBMC revealed significantly reduced larval ATP, suggesting these cells contribute to and is also 

a valid measure of larval morbidity (10).  Therefore, experiments in this dissertation are aimed to 

characterize and further understand the mechanisms contributing to observed larval morbidity.  

To date, little is known about the role of ovine monocytes during H. contortus infection.  Thus, 

the elucidation of cellular responses in larval morbidity in parasite-resistant sheep is important 

for development of alternative strategies to manage haemonchosis. 

Haemonchus contortus 

 Haemochus contortus is a haematophagous nematode parasite, belonging to the order 

Strongylida and the Trichostrongyloidea superfamily.  While there are 12 species of 

Haemonchus, only three species spread globally – H. contortus, H. placei and H. similis – 

however, H. contortus is considered one of the most significant parasites of sheep and goats 

worldwide, causing anemia and severe complications in susceptible hosts. Production losses due 

to control of H. contortus account for billions of dollars in Australia (11) and in the United States 

(12).  Gastrointestinal trichostrongylid parasitic infections are reportedly the most prevalent 

concern for producers in the United States (2).  Though there are a number of GIT parasites 

affecting ruminants, trade of livestock has led to a cosmopolitan distribution of H. contortus 

(13), where its virulence, egg-laying capacity, widespread distribution and resistance to 
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anthelmintics have made it one of the most important parasites to address in small ruminants 

(14).  

Distribution and significance 

Geographic distribution of H. contortus depends largely on climate, requiring warm, 

moist conditions for free-living stages.  With continually high temperatures, tropical and 

subtropical climates around the world support development of H. contortus, including much of 

Africa, South-East Asia, Pacific Island countries, Central America and part of South America 

and the Caribbean (15).  Variation in rain fall within these regions drives seasonality of 

haemonchosis, whereas persistent year-round haemonchosis is observed in wet tropic regions, 

making it a significant constraint on production of small ruminants (16).  Ecological adaptation 

and biotic potential, however, have allowed H. contortus to spread over a wide range of 

environments beyond the tropics and into more temperate regions (17). 

Seasonally dry or cold conditions restrict free-living stages of H. contortus, as larval 

stages are susceptible to desiccation and freezing.  However, these regions experience increases 

in outbreaks during wet season and summer months.  These regions extend north and south of 

the tropics, including southern Africa, eastern Australia, United States, South America, southern 

Asia and Mediterranean zones (15). Though, a smaller risk, the range of H. contortus has been 

observed affecting small ruminants in regions with longer periods of cold and thus experience 

very brief haemonchosis.  Short summer months permit establishment of H. contortus in Canada, 

northern Europe, and Scandinavia, where increasing global temperatures contribute to these 

expanding presence of H. contortus (17,18). 

Of producers in the U.S., 62% reported intestinal nematodes as a major concern (1).  

Areas of greatest economic concern in the United States include much of the southeastern 
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regions and gulf coast, where climate is favorable to development of H. contortus.  Spreading 

from Alabama, Arkansas, Georgia, Florida, Kentucky, Louisiana, Mississippi, Maryland, North 

Carolina, South Carolina, Tennessee, Virginia and as far north as West Virginia, nematode 

infections have established large populations (12).   In these regions, 75% identified intestinal 

nematodes as a major problem effecting their sheep (1) and a significant economic concern. 

Establishment of H. contortus in a new geographic location is dependent on the 

development of L3, which is influenced by many factors including fauna, biota and climate.  Of 

these, climate is critical in driving persistence and the ability of H. contortus to spread to new 

geographic regions, favoring warm, moist environments. Eggs and L3 cannot withstand colder 

climates, such as northern latitudes, or overwinter.  In the same regard, eggs and L3 cannot 

withstand xeric regions with higher temperatures and less rainfall.  As such, H. contortus has 

developed mechanisms to survive periods unfavorable to development. To overcome extended 

dry or cold conditions, L4 undergo hypobiosis within the host, which arrests development until 

more suitable conditions permit development and reproduction (19).  These mechanisms permit 

widespread establishment and increased geographic range, especially as climate change broadens 

favorable environments.  These adaptations and increased geographic spread have made H. 

contortus more difficult to control and one of the biggest threats to small ruminant populations . 

Morphology and Lifecycle 

Adult worms live in the abomasum and have a small, specialized buccal lancet used to 

pierce abomasal mucosa, permitting blood feeding.  Their common name, the “barber-pole” 

worm, is due to the female worm’s appearance, as the female’s white ovaries are wrapped 

around their blood-filled intestines.  Adult female worms measure 18-30mm, where are male 

worms are much smaller, measuring 10-20mm in length (20). Male worms also possess an 
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asymmetric dorsal copulatory bursa.  Mature adult worms sexually reproduce and females 

release up to 10,000 eggs per day, which are shed with feces into environment.  Individual 

worms feed for up to 12 minutes, detaching and causing hemorrhage, which may last up to 7 

minutes (21).  Additionally, each worm can consume up to 0.05 ml of blood per feeding (22), 

where high worm burdens can cause up to 30 ml of blood loss per day (23), which can quickly 

result in severe blood loss, leading to anemia of the host.  

Free-living stages must withstand changes in temperature, moisture and other potential 

hazards.  A multilayered proteinaceous structure referred to as the cuticle or sheath, surrounds 

juvenile stages of H. contortus and functions to protect it from environmental threats.  Not only 

does it function to protect larvae, the cuticle serves as an exoskeleton, which helps generate force 

permitting larval locomotion (24).   This structure is important in both nematode survival as well 

as host evasion, as the molecular biochemistry of the cuticle varies between life stages and 

species. 

Cuticles are thin, flexible and composed largely of collagen-like proteins, with trace 

amounts of lipids and carbohydrates (25). Structurally, the cuticle consists of a medial layer and 

basal layer made-up of collagen.   Epicuticular and external cortical regions are made up of non-

collagen proteins.  Surface proteins are non-structural and exposed on the external surface of the 

cuticle.  Glycoproteins make up the majority of surface proteins (25) and may contribute to the 

composition of excretory-secretory products.  Furthermore, surface proteins contribute to the 

evasion of host responses, as they may shed antigen-antibody complexes.  While surface proteins 

shed are immunogenic, immune responses may be inhibited by release of antigen-antibody 

complexes that prevent host immunoglobulin, complement and immune cells from binding or 

recognizing the worm (25,26) and also encourage turnover of surface molecules (27).   
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Acting as an important interface between parasite and host, each life stage expresses a 

different and unique chemical signature.  Each stage - L3, L4 and adult worms - express different 

patterns of surface proteins, thus, when shed, act as a method of immune evasion.  Additionally, 

the cuticle surrounding L2 is retained during its molt into L3, but is shed once it is ingested by 

the host when transitioning to the L4 stage (25). Not only do surface proteins differ, but 

collagen-like proteins are associated with specific life stages and can vary between species as 

well (25).  Therefore, the cuticle is critical to survival of H. contortus, and may be involved in 

both immune recognition and evasion of the host immune response.  

The life cycle of H. contortus is direct, with no intermediate host.  Eggs are shed with 

host feces into the environment, contaminating pastures.   In the environment, eggs develop and 

molt twice before becoming infective L3.  This development occurs five to eight days after eggs 

are shed, under optimal conditions.  Sheep acquire an infection through ingestion of L3 while 

grazing on contaminated pasture.  Larvae travel via water movement up grass blades during 

morning and evening dew, transported to the tips of grass, ensuring ingestion by actively grazing 

sheep.  Once ingested, larvae molt and exsheathe within 48 hours as digesta passes through the 

rumen, forestomachs and arrives at the abomasum (28).  Larvae develop from L3 into L4, 

shedding their protective cuticle within seven days after establishment in the abomasum and 

develop L4 cuticle. Fourth stage larvae form a buccal lancet, which is used to pierce abomasal 

mucosa and permit blood feeding from the host.  Three days later, L4 undergo a final molt into 

fully mature adults. Patent infection occurs 14 to 21 days after initial ingestion, where mature 

adult worms mate, producing eggs that are subsequently shed in feces of the host.  

Epidemiology of haemonchosis depends on parasitic larvae reaching their infective stage, 

permitting proliferation and spread. While H. contortus possesses a protective cuticle and can 
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withstand a wide range of temperatures, larvae are still subject to desiccation and freezing.  Both 

temperature and adequate moisture are essential for survival.  While mechanisms triggering both 

hypobiosis and resuming maturation of arrested larvae remain unknown, transient peaks in eggs 

shed have been observed and documented corresponding with changes in climate. Unfavorable 

conditions during autumn and winter in the northern hemisphere, as well as hot, dry conditions 

between wet seasons at more arid latitudes, can trigger hypobiosis.  Hypobiosis refers to arrested 

larval development of L4 within the abomasum of the host.  Up to 35% of larvae recovered from 

the abomasum of sheep after 30 days of an experimental infection showed larvae arrested in L4 

stage (29).  Another study demonstrated that larvae recovered from sheep during winter months 

revealed two distinct populations of larvae, either early L4 or mature worms, despite having been 

infected for more than 21 days (30).   The accumulation of L4 over winter leads to a resultant 

increase in fecal egg count during spring months, referred to as “spring rise” or “post-partrurient 

rise” (31), as it peaks following lambing of ewes and corresponds to a new generation of lambs 

susceptible to infection.   In semi-arid regions of Africa, a study demonstrated a higher 

proportion of hypobiotic larvae recovered from sheep during dry months, compared to those 

recovered during wet months (32). The ability to establish in the host in an arrested state 

prevents excessive loss, where L3 left in the environment will likely die off.  Thus, it is 

suggested that hypobiosis is the primary means of over-wintering, or survival of H. contortus 

during winter conditions, and similarly survival through dry months in xeric regions.   

Pathophysiology of haemonchosis 

Pathophysiology of haemonchosis is due to blood-feeding activity of L4 and adults 

during infection, leading to anemia, edema, hypoproteinemia and intestinal disturbances.   

Evidence of infection is observable by packed cell volume (PCV) 10-12 days after ingestion of 

L3, as L4 begin blood feeding causing blood loss (33). Blood loss due to hematophagy leads to 
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anemia, characterized by reduced PCV and paleness of mucosal membranes.  Adult worms can 

deplete nearly one fifth of total circulating erythrocyte volume in a lamb daily, whereas adult 

sheep may lose up to one tenth of their erythrocyte volume (34).  Severity of pathology is worm-

burden dependent, meaning there is a strong correlation of worm-burden to amount of host blood 

loss (35).  Continued intake of larvae increases worm burden, thus hosts can quickly accumulate 

severe infections.  

In addition to anemia, pathology due to haemonchosis can lead to poor growth, body and 

wool conditions.  Larvae in the abomasum induce glandular hyperplasia and inflammatory cell 

infiltration (14). Increased pH in the abomasum reduces digestion of protein and increases 

mucosa permeability, resulting in reduced nutrient absorption (14). Edema, or hypoproteinemia, 

results as an accumulation of fluid in tissues in interstitial spaces and reduced levels of 

circulating proteins (36). Grazing sheep lower their heads, allowing fluid to pool in the neck, 

resulting in a condition referred to as “bottle-jaw.”  Excessive collection of fluid in extremities 

can ultimately lead to tissue damage (36).  In heavy infection, where the host cannot regenerate 

red blood cells enough to compensate for blood loss, hemorrhage can quickly lead to iron 

deficiency and inability to deliver oxygen to tissues, ultimately leading to death.  Alternatively, 

animals that are able to fight off infection can develop immunological memory, clearing an 

infection and reduce severity of subsequent infection.  Variation in susceptibility occurs both 

within and between breeds of sheep, leading to differences in resistance and tolerance. 

Parasite resistance 

 Parasite resistance refers to the host’s ability to resist establishment of a parasite and 

modifying reproductive capacity and egg production (37).  Resistance can be assessed by fecal 

egg count (FEC), measuring eggs per gram (epg) of feces.  However, FEC is limited, as it does 
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not always accurately measure host worm burden.  Exposure to pastures with different levels of 

parasitism can alter selection for FEC in sheep.  Fecal egg count must be measured multiple 

times over a grazing season and across generation to be used in genetic evaluation (38,39). 

Similarly, PCV is often associated with H. contortus infection in sheep, though heritability of 

PCV is lower than FEC, due to greater impact of environment (40). While PCV and FEC provide 

insight into the response and nature of infection, these measures fail to completely elucidate 

underlying mechanisms reflected by differences in numeric values.  

 Immunity varies between and within breeds of sheep, depending on factors such as 

antigenic stimulus, nutrition, size and age of an animal (41).  Relative maturity compares mean 

live weight when an animal has developed immunity, along with mature weight, to determine a 

sheep’s metabolic age rather than chronological age.  Thus, regardless of breed, susceptible 

animals will establish some resistance with maturity and continued antigenic exposure to H. 

contortus (4).  However, natural resistance occurs in some breeds of sheep (4,42) such as St. 

Croix hair sheep, of tropical origin.  With higher temperatures and wetter year round climate 

these tropical breeds have evolved mechanisms to mitigate infection with gastrointestinal 

nematodes.  Alternatively, breeds common in cooler climates that have been selected for more 

economically valuable traits, such as carcass and wool quality, display increased susceptibility to 

H. contortus.  Lack of selection pressure for resistance to gastrointestinal nematode parasitism or 

selection for economically important traits has perhaps resulted in higher susceptibility to 

parasitism.  

 Greater resistance to gastrointestinal nematodes has been observed in hair breeds of sheep 

such as Florida Native, Barbados Blackbelly and St. Croix, when compared to conventional wool 

breeds based on FEC data (4). Both Barbados Blackbelly and St. Croix have consistently higher 
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blood PCV and lower FEC after exposure to H. contortus when compared to Dorset or 

Rambouillet wool breeds (5,40).  Following both natural and artificial infection with H. 

contortus, St. Croix have been reported to have 99% fewer worms recovered from the abomasum 

when compared to Dorset lambs (40). Along with marked differences in worm burden, PCV and 

FEC, immunologic responses in hair sheep are more robust, preventing establishment of adult H. 

contortus (3).    Abomasal lymph nodes from infected hair sheep have higher weight, with a 

significant increase in the number of immune cells present than those of infected wool sheep 

(42). Following a priming infection, resistant sheep displayed increased expression of genes 

related to tissue repair and cell migration in abomasal tissue and local lymph nodes, with higher 

recruitment of granulocytes, macrophages and CD4+ T cells (43).  Furthermore, St. Croix hair 

sheep expressed high levels of markers of early inflammatory responses, whereas parasite-

susceptible sheep showed delayed response and expression of markers consistent with chronic 

inflammation (44).  Thus, with consistently higher PCV, lower FEC and quicker resolution of 

infection with H. contortus, St. Croix sheep are an ideal model for evaluating immune 

mechanisms of resistance.    

Immune response to Haemonchus contortus 

 Host protective responses are critical in expulsion and impairment of helminth infection.  

Immunity to H. contortus relies on both innate and adaptive immune responses to effectively 

clear the parasite.  Generally, helminth infections elicit Th2 type responses, producing key 

cytokines such as IL-4, IL-13, and IL-5, which influence downstream effector function, shape 

immunopathology and ultimately confer protection against disease (45).  Recognition and 

localized wound repair mechanisms drive an influx of peripheral and tissue immune cells. Group 

2 innate lymphoid cells (ILC2) and other innate cells such as eosinophils, neutrophils and mast 
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cells produce high levels of type-2 cytokines, driving an overall Th2 response (46).  

Macrophages respond to cytokine signaling and are key cells in polarization of T helper cells, 

bridging adaptive and innate responses. Additionally, cells migrating through local lymph tissue 

and exchanging antigen drive B cell class switching, with increased production of 

immunoglobulin (Ig)E and IgA (45).  In contrast to Th2 responses, T helper 1 (Th1) responses 

are associated with parasitic survival and increased host susceptibility (47), with increased 

production of cytokines such as tumor necrosis factor (TNF)β and interferon (IFN)γ, down-

regulating Th2 responses (48).  Breeds of sheep displaying higher levels of resistance to H. 

contortus express genes associated with Th2 responses in cells recovered from abomasal lymph 

nodes (49,50) and thus, immune mediated resistance suggests breeds of sheep that naturally 

expel H. contortus are reliant on a greater cellular immune response (3,39). 

Innate immunity and helminth interaction 

While it is not clear exactly which mechanisms first recognize helminths, resistant hosts 

demonstrate early recognition that ultimately leads to expulsion of larvae, preventing 

establishment and development into adult worms.  Once ingested, gastrointestinal parasites incite 

changes to mucosal tissue, which acts as both a mechanical barrier and first line of immune 

modulation.  Innate cells recognize invading pathogens through pathogen associated molecular 

patterns (PAMPs) produced by or located on the surface of the pathogen.  However, parasites 

express different surface molecules at different stages of their life cycle.  These relatively quick 

changes in expression between parasite life stage can make it difficult for the host to respond 

appropriately and aid in immune evasion by the parasite (7,14). 

Innate lymphoid cells (ILC) are of lymphoid lineage, but unlike T cells they lack a T cell 

receptor (TCR) and B cell receptor (BCR), thus foregoing thymic selection and are not antigen-
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specific.  Alarmins IL-25, IL-33, and thymic stromal lymphopoietin, produced by epithelial cells 

in the lumen, stimulate innate lymphoid cells (ILCs) (51–53), as well as production of IL-5 and 

IL-13 in gut-associated lymphoid tissue during helminth infection (52).   In the absence of IL-25 

and IL-33, ILC population expansion was significantly inhibited during Nippostrongylus 

brasiliensis infection in mice, and increased worm burden (51). Mice deficient in IL-25 also 

showed delayed cytokine production, when infected with N. brasiliensis and were also unable to 

expel worms (54).  Adoptive transfer of ILCs into IL-13 deficient mice restored cellular 

responses and worm expulsion (51), and administration of IL-25 restored ILC populations, 

leading to rapid parasite clearance (54).  Furthermore, an early accumulation of ILC have been 

observed before expansion of adaptive Th2 responses  (46) and thought to be a dominant source 

of polarizing cytokines (46,55).  Thus, ILCs are critical in development of protective immunity, 

which has recently been recognized as contributors to the clearance of gastrointestinal 

nematodes.   

Often associated with helminth infection, eosinophils infiltrate injured tissues to aid in 

tissue remodeling and debris clearing (56).  Accumulation of eosinophils around larvae has been 

associated with decreased larval establishment and direct damage, suggesting a targeted response 

by innate cells (57,58). Degranulation of eosinophils, which occurs in the presence of parasites, 

releases histamine, peroxidase, ribonuclease, deoxyribonuclease, lipase and plasminogen, aiding 

in expulsion (59). Together, recruited eosinophils and mucosal mast cell hyperplasia lead to 

increased mucus production by goblet cells in the intestinal lumen (60), which may physically 

impair larval motility and help flush larvae out of the gastrointestinal tract.   Eosinophils have 

also been found in greater densities in abomasal tissues of resistant lambs when compared with 
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susceptible lambs (61), occurring as early as three days and as late as 42 days after infection with 

H. contortus (62).   

Despite the ability of eosinophils to directly immobilize and kill infective H. contortus 

larval in vitro (58), eosinophils are not required for parasite expulsion (63).  Depletion of IL-5 

and inhibition of eosinophils had no effect on adult worm burden or expulsion during infection 

with Trichinella spiralis in mice (63).  Additionally, depletion of eosinophils did not alter 

development of Th2 responses in a mouse model of shistosomiasis (64). 

Neutrophils are rapid responders to infection, phagocytizing pathogens such as bacteria, 

viruses, and clearing the body of cellular debris resulting from pathogenic invasion. During 

helminth infection, neutrophils infiltrate tissues within 12 hours (65) and are one of the most 

abundant cell type during early infection of H. contortus (39).  Additionally, St. Croix 

sheepdisplay higher numbers of neutrophils in abomasal tissues compared to susceptible sheep 

(3).  Neutrophil accumulation and recruitment were inhibited when signaling through IL-4 

receptor α (IL-4rα) was blocked, which led to mice experiencing more severe pathology 

associated with N. brasiliensis infection in the absence of neutrophils (66).  However, it is 

unlikely that neutrophils directly mediate clearance of worms, but rather contribute to 

recruitment of effector cell populations.  Neutrophils activated during parasitic infection interact 

with macrophages, up-regulating anti-helminth macrophages and increase expression of adhesion 

molecules (9).  Depletion of neutrophils greatly impairs effector macrophage function, 

suggesting that neutrophils prime macrophages (9), shaping overall Th2 environment. 

 Activation of mast cells by type-2 cytokines or by binding of IgE to mast cell high 

affinity receptor for the Fc region (FcεR1) triggers degranulation, releasing nitric oxide (NO) and 
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histamine.  Mast cells also release cytokines IL-13 and IL-33, which increase permeability in gut 

epithelium during infection.  During H. contortus infection, mucosal mast cells increase (67), 

and repeated infection results in mast cell hyperplasia, inducing mucosal mastocytosis and 

inability of larvae to establish in the abomasal mucosa due to release of granule-specific sheep 

mast cell proteinase (68). Treatment with anti-IL-3 and anti-IL-4 monoclonal antibodies in mice 

decreased mastocytosis, however the reduction in mast cell hyperplasia did not impair worm 

expulsion (69).   

Adaptive immunity against helminthes 

Resistance to gastrointestinal nematodes relies on a network of host responses, including 

immune cell proliferation and production of antigen-specific antibodies.  Developing in the 

thymus, T cells are distinguished by their cell surface expression of a T cell receptor, each 

having distinct function.  T cells include two main subsets – CD4+ and CD8+.  Additionally, 

gamma delta (γδ) T cells represent a small subset of T cells in peripheral blood, expressing an 

invariant T cell receptor, but function in recognizing lipid antigens.  CD8+ T cells are typically 

involved in intracellular pathogen mediation through interaction with major histocompatibility 

complex (MHC)-I, however little evidence suggest CD8+ T cells contribute to clearance of 

gastrointestinal nematode infection.  CD4+ T helper cells differentiate into different phenotypes, 

including Th1 and Th2 cells, depending on the cytokine environment during antigen presentation 

(70) and function as aids in the amplification of immune response.  Development of Th2 cells 

primarily occurs through IL-4 and IL-13 cytokine signaling from innate cells, and induces IL-4rα 

signaling on both immune and non-immune cells.   

Infection with H. contortus resulted in increased CD4+ T cells expressing MHC-II in 

abomasal lymph nodes of sheep as early as day 3 after infection, increasing through day 5 (49).  



 15 

Lymph nodes were also heavier in infected animals, indicating increased antigen presentation in 

secondary lymphoid tissues (49).  Depletion of CD4+ T cells in resistant lambs had no effect on 

globule leukocyte or eosinophil counts, however, lambs were unable to eliminate H. contortus, 

abrogating host protective response (71).  Similarly, H. contortus worm burden was higher in 

lambs following CD4+ T cell depletion, compared to IgG antibody control treated lambs (72), 

demonstrating a requirement of adaptive responses.  Depletion of CD8+ T cells had no effect on 

FEC or worm burden in resistant lambs (71).  Similarly, loss of CD4+ T cell function inhibited 

M2 differentiation and arginase-1 (Arg1) function during infection with Heligomosomoides 

polygyrus in mice, ablating host protective immunity and parasite expulsion (73).  While γδ T 

cells were present during infection with H. contortus, cell numbers remained steady and did not 

increase (49), thus are not thought to be major contributors in resistance. Thus, loss of CD4+ T 

cell responses during infection led to an impaired development of Th2 immunity, resulting in 

increased susceptibility, emphasizing the importance of immune polarization.  

 Not only are CD4+ T cells critical in activating Th2 responses, these lymphocytes are 

also important activators of B cells, inducing antibody generation. Hallmark cytokine IL-4 

enables IgG class switching to IgE.  Release of IgE antibody amplifies immune responses during 

infection, triggering mast cell degranulation and recruiting effector cells to the site of infection 

(56).  When B cells are absent during helminth infection, T cell phenotypes have been shown to 

become altered, shifting from Th2 to Th1 cells (74).   

 Antibody production has been shown to be associated with defense against H. contortus 

infection.  Serum levels of IgA, IgE and IgG were elevated in parasite resistant sheep (7,75,76).  

Production of antibody was observed in both priming and challenge infection, but these data 
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demonstrated antibody isotype was parasite life stage dependent.  Larvae elicited an IgA 

response, whereas adult worms increased levels of IgG1 and IgG2 in resistant sheep (77).  

 Mouse models of helminth infection show differences in antibody contribution to parasite 

clearance.   B cell deficient mice infected with H. polygrus were unable to expel parasites after 

challenge infection (78).  Antibody was critical during the tissue-dwelling phase of H. polygrus 

infection, providing protection during secondary infection (66).  Conversely, mice depleted of B 

cells challenged with N. brasiliensis did not display impaired responses and were able to clear 

infection (78).  Differences in parasitic infection may be due to life-cycle and tissue niches of 

each parasite, where H. polygrus is strictly enteric and N. brasiliensis follows hepato-tracheal 

migration before establishment in the gut.  Nevertheless, these studies indicate B cells contribute 

to both parasite expulsion (78) and support development of full protective immunity in resistant 

sheep (42). 

Antigen presenting cells 

 Antigen present cells (APC) bridge innate and adaptive branches of the immune system.  

Dendritic cells (DC), monocytes or macrophages, and B cells are considered APC, as they are 

sentinel cells sampling the environment for pathogens and maintaining tolerance to self-antigen.  

Processing and breaking down foreign antigens into peptides allows for generation of antigen-

specific responses and the development of immunologic memory.  Peptides are presented on 

MHC-II, where T cells can interact before undergoing a rigorous selection process.  Their ability 

to stimulate and promote activation of adaptive responses makes them vital effector cells in 

immunity. 
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Monocytes and macrophages 

Development of monocytes/macrophages  

Monocytes are a heterogeneous population of cells with potent, yet plastic roles in 

immunity.  These cells are critical in development of host protective responses, as well as 

maintaining tissue integrity and homeostasis.  While an innate cell, monocytes are specialized 

with complex functions, having phagocytic activity, antigen-presenting capacity and produce an 

array of cytokines.  Monocytes have been considered evolutionarily ancient and represent a 

dynamic system (79), both specialized within tissue microenvironments and found in peripheral 

circulation.  Rapidly changing their function in response to environmental signals, monocytes are 

flexible cells, mediating diverse protective and pathogenic functions.  These characteristics are 

important in influencing the development of adaptive immune responses and effecting overall 

host protective immunity.  

 In 1883 Elie Metchnikoff first described an accumulation of phagocytic cells after 

bacterial infection in frogs.  Due to their abundance, he suggested these cells served as the first 

line of defense against invading pathogens (80). Not only did these cells respond to infection,  

Metchnikoff indicated these cells were involved in elimination of dead or dying cells that were 

remnants of metamorphosis from tadpole to frog (80).  Observations of specialized phagocytic 

cells clearing apoptotic cells and responding to pathogens in the same host became one of the 

earliest descriptions of innate immunity, distinguishing self from non-self (80). Around the same 

time, in the early 1900s, Paul Ehrlich began classifying white blood cells into mononucleated 

leukocytes, describing some as large mononuclear cells with kidney shaped nuclei (81).  Ehrlich 

first called these cells “Uberganagszelle”, or transitional cells, but would later be renamed 

monocytes (81).  Together, Ehrlich’s and Metchnikoff’s work described cellular interaction with 
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pathogens and would become the foundation of innate immunity and remains so in modern 

immunology.  

Understanding of monocyte ontology has evolved throughout recent history.  

Mononuclear phagocytic cells were once regarded as a continuum of differentiation from 

monocyte to macrophage, where circulating monocytes replenished tissue-resident macrophages 

throughout adulthood.  Now monocytes are considered a heterogeneous population of cells, 

classified based on tissue location and origin.  Macrophages can be separated into two groups of 

cells: circulating monocytes, giving rise to macrophages, or tissue-resident macrophages, 

established during embryogenesis (82,83).  Transcriptional evidence, however, suggests that 

macrophages from different origins do not differ significantly (84).  Adoptive transfer of bone-

marrow derived and yolk sac-derived macrophages into macrophage-depleted mice demonstrated 

functional attributes could be acquired regardless of tissue origin, but these data do not include 

potential for epigenetic change due to cellular origin (84).  Despite advancements in 

characterization, monocyte development and identification remains complex, as phenotype and 

function often overlap. 

Peripheral circulating monocytes, or infiltrating macrophages, originate in bone marrow 

from a rapidly proliferating pool of hematological precursors of myeloid lineage, called 

monoblasts.  When matured, monocytes enter the blood circulation where they can be recruited 

into tissues.  Of circulating leukocytes, monocytes are the largest and are estimated to make up 

an estimated 5% in blood, constituting 2-10% of all leukocytes in the body (83,85). The spleen is 

a reservoir for peripheral monocytes, storing the majority of undifferentiated monocytes, to be 

released to regulate inflammation during injury or infection (86). Lymphoid tissues can also 

yield myeloid precursors cells during embryonic and adult hematopoiesis. Circulating monocytes 
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recruited to tissues can either remain steady state monocytes or differentiate into macrophages.  

However, monocytes can also develop within tissues during embryogenesis, seeded by 

hematopoietic progenitors from the fetal yolk sac (in mice and humans) and hematogenic 

endothelium (Wynn et al., 2013), representing a separate subset of cells called tissue-resident 

macrophages.  Interestingly, during early gestation, yolk sac progenitors are restricted, only 

giving rise to red blood cells and macrophages (88).  While transcription factors and surface-

marker expression differ between the two types of monocytes during embryonic development, 

cell surface-markers can vary with maturation, making precise identification difficult (88). 

Macrophage subsets can be delineated by monocyte function, as monocytes and 

monocyte-derived macrophages are key mediators of inflammation, whereas tissue-resident 

macrophages are critical in maintaining tissue homeostasis and resolving inflammation (83,89).  

Monocytes are found in all adult tissues and are highly organized.  In the liver these cells are 

Kupffer cells, microglial cells in brain tissue, alveolar macrophages in lungs, and splenic 

monocytes are found in red pulp (89). Originally it was thought that circulating monocytes 

replenished tissue-resident macrophages and remained a dogma in immunology as the 

Mononuclear Phagocyte System.  However, more recent studies have contributed to a greater 

understanding of monocyte and macrophage development in different tissues. 

 Establishment of tissue-resident macrophages persists into adulthood, independent of 

circulating monocytes.  Tissue-resident macrophages develop during embryogenesis and are 

maintained by a process of self-renewal (90,91).  Fate mapping was used to define monocytes 

and tissue-macrophages based on their site of localization in mice, which demonstrated tissue-

resident macrophages could generate independently of both monocyte and adult hematopoietic 

progenitors (91).  Ablation of tissue-resident macrophages in mice also indicated local 
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proliferation repopulated tissues, with little input from circulating progenitors (91).  Furthermore, 

proliferation and accumulation of tissue macrophages was observed when stimulated with IL-4 

and during Th2 driven infection (92).  Accumulating monocytes recruited from blood along with 

tissue-resident macrophages together are essential mediators in response to tissue damage and 

infection.  Alone, tissue-resident macrophages reveal a potential for wound repair and pathogen 

response mechanisms without recruitment of other pro-inflammatory cells (92). 

Hematopoiesis of monocytes is regulated by colony stimulating factors (CSF) (93,94).  

Macrophage lineage function and population numbers during inflammatory conditions are 

regulated by cytokines granulocyte-monocyte CSF and monocyte-CSF (93).  Bone marrow 

derived precursor cells stimulated with either GM-CSF or M-CSF, then treated with 

lipopolysaccharide (LPS), demonstrated different and competing responses, with potential 

suppressive capacity (93).  Monocytes stimulated with GM-CSF preferentially produced pro-

inflammatory cytokines TNFα, IL-6 and IL-23, and M-CSF stimulated monocytes produced IL-

10 and chemokine CCL2 (93,95).  Pro-inflammatory phenotypes are preferentially expressed by 

monocytes stimulated with GM-CSF, whereas anti-inflammatory phenotypes can be stimulated 

with M-CSF (94).  Despite the impact of CSF, hematopoiesis and lineage commitment is 

regulated by multiple factors, many of which are similar or with overlapping actions (96,97).   

Macrophages may further differentiate into a spectrum of phenotypes, where function 

depends on local signaling from the environment and can be distinguished based on surface 

expression of cell surface markers.  Bacterial infections promote classically activated 

macrophages (M1), producing antimicrobial molecules, pro-inflammatory cytokines and 

increased antigen presentation capacity.  During helminth infection, alternatively activated 

macrophages (M2) are activated through IL-4 signaling pathways, producing anti-inflammatory 
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cytokines and molecules associated with wound healing.  Mediation of alternative activation 

occurs through signal transducer and activation of transcription (STAT)-6 activation when IL-

4rα expressed on macrophage cell surfaces is stimulated by IL-13 and IL-4 (98).  STAT-6 is 

required by Th2 cells to maintain their activation status, and is also an essential regulator of class 

switching recombination in B cells from IgG to IgE (99).  Despite distinctive function between 

M1 and M2, macrophages display an overlap in surface marker expression between different 

subsets.  Nevertheless, owing to their dynamic and multidimensional role in immunity, 

macrophages are an essential component during development of full host protective response. 

Monocyte/Macrophage differentiation 

Macrophage differentiation has been used to describe phenotype and characteristics 

associated with specific infection status, from bacterial, viral and protozoa to helminthes and 

allergy.  Classically activated macrophages were first described following enhanced anti-

microbial activity observed towards bacteria in an antigen-dependent, but non-specific manner, 

during secondary infection with Listeria (100).  Later, M1 would be associated with Th1 

responses and production of IFN by activated immune cells (100).  Opposing Th1 

inflammation, M2 macrophages activated by IL-4 and IL-13 increased expression of major 

histocompatibility complex (MHC)-II, reducing production of pro-inflammatory cytokines (100).  

This phenotype was markedly different from macrophages activated by IFN, and became 

associated with Th2 responses (100). Further distinguishing activation states, downstream 

products and effector function of M1 and M2 macrophages were delineated, emphasizing a 

pivotal role of enzymes competing for the substrate L-arginine.  



 22 

Nitric oxide and classical macrophage activation 

L-arginine is converted to NO, which is regulated by enzyme nitric oxide synthase 

(iNOS).  Macrophages activated by inflammatory cytokines, such as IFNγ, TNFα and bacterial 

pathogens can release high levels of NO.  Conversely, Th2 type cytokines, such as IL-4 and 

TGFβ, suppress iNOS expression through their effects on TNFα (101).  Macrophages producing 

NO have functional roles in the immune system, which are involved in acute and chronic 

inflammation, as well as host defense mechanisms.  During innate responses, toxic NO can be 

released against pathogens, but also acts to regulate function of host immune response (102).  

Effector functions of NO can inhibit pathogen replication by preventing cell division (103) and 

NO-producing macrophages can restrict T cell expansion, inhibiting MHC-II expression (104). 

Reactive nitric oxide intermediates can also cross bacterial and fungal walls, reacting with 

specific pathogen targets (103).  Downstream responses are also influenced by NO production, 

such as IL-12 signaling in response to protozoa.  In the absence of NO, natural killer (NK) cells 

were unable to induce IFNγ and phosphorylation of STAT-4 was inhibited, failing to signal IL-

12 and induce cytotoxic function (101).  However, if unregulated, too much NO can become 

toxic to host cells and thus, immune responses are mediated by timing and amount of NO 

released during infection (101,104). 

The role of nitric oxide during helminth infection 

 With its antimicrobial toxicity, NO has been linked with mediation of malaria, 

toxoplasmosis, leishmaniasis, and trypanosomiasis. However, little is known about the role of 

NO during gastrointestinal helminth infection.  Because helminths typically induce type-2 

responses and produce anti-inflammatory cytokines that are suppressive of iNOS, NO during 

infection has been overlooked and its role remains unclear.  
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 Eggs released from schistosomes incite tissue inflammation in the liver, where NO 

produced by macrophages aids in regulation of tissue damage (101).  Despite heterogeneous 

macrophage phenotypes in the liver during schistosome infection, alternative activation was 

dominant, despite high iNOS and TNF expression (105), suggesting other pathways may be 

involved and NO may play a role in mediation of helminth infection.  Other helminth models 

demonstrate a role for type 1 inflammatory responses to clear nematode infection.  Infection with 

Taenia crassiceps, a tapeworm of canids, demonstrated a requirement for iNOS and NO.  In 

absence of Th2 responses, STAT-6 knockout (KO) mice infected with T. crassiceps maintained 

macrophage populations producing high levels of iNOS, which controlled tissue-invasive larval 

stages (106).  Mice with significantly lower levels of NO displayed higher parasite burdens 

(106).  Furthermore, during infection with Strongyloides stercoralis in mice, macrophages 

producing NO were found, along with increased iNOS expression (107).  These data are 

suggestive that NO is involved of mediation of helminth infection, however it also highlights that 

little is known about its exact role.  Furthermore, these studies highlight different tissue niches 

and host interaction than gastrointestinal nematodes, which either may not be relevant or may be 

disparate from the functionality of NO during H. contortus infection.  

Arginase and alternative macrophage activation 

 Arginase-1 (Arg-1) is an enzyme that competes with iNOS for the substrate L-arginine, 

serving a pivotal role in macrophage phenotype differentiation. Monocytes deficient in Arginase-

1 up-regulate iNOS, resulting in increased inflammation (108).  Just as the iNOS pathway 

inhibits Arg-1 driven activity, Arg-1 inhibits iNOS and Th1 cytokine driven pathways of 

inflammation.  Arginase-1 activity hydrolyzes L-arginine, which produces L-ornithine and urea 

(109).  L-ornithine is a precursor for polyamine synthesis, where polyamines are involved in cell 

growth and differentiation.  Another product of L-ornithine metabolism is L-proline, which 
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affects collagen production (109).  Helminthes can cause extensive tissue damage, resulting in 

released of proteolytic enzymes with the potential to damage surround cells (Kreider et al., 

2007).  Increased production of collagen, along with increased fibronectin and matrix 

metalloproteinase are associated with tissue repair mechanisms (111), which have been observed 

during helminth infection. These characteristics are associated with shifting inflammatory 

responses, as well as fibrosis and wound-repair mechanisms of M2 macrophages.   

Resistance to helminth infections has been linked to Arg-1, not only for its contribution 

to macrophage polarization and ability to limit immune responses through T cell activation, but it 

also has physiologic roles in clearance mechanisms.   Inhibition of arginase during infection with 

H. polygyrus resulted in increased adult worm burden (73).  Metabolites, L-ornithine and 

polyamines, can reduce larval motility and migration of H. polygyrus (112).  Similarly, inhibition 

of Arg-1 prevented larval trapping in the skin of mice infected with N. brasiliensis (113).   In the 

absence of IL-13 signaling, Arg-1 expression was inhibited in mice infected with H. polygyrus 

had impaired gut motility, smooth muscle function and mucus production, and were unable to 

polarize macrophages towards an M2 phenotype (114). Together, these data highlight critical 

contribution of both Arg-1 expression and alternative activation in development of protective 

immunity.  However, to date, little is known about macrophages or Arg-1 expression during H. 

contortus infection in sheep.  Potential differences may exist between resistant and susceptible 

breeds, though it remains to be explored. 

Alternatively activated macrophages are critical during helminth infection 

While little is known about ovine monocytes and macrophages, many studies have 

demonstrated a critical role of M2 macrophages promoting the development of Th2 type 

responses in the clearance of helminth parasites in murine models. Production of Th2 cytokines, 
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such as IL-4 and IL-13, trigger differentiation of M2 macrophages, which are distinguished by 

increased expression of Arg-1 and IL-4rα (73).  Signaling through IL-4rα and activation of M2 

down-regulate pro-inflammatory pathways, decreasing IL-17 and other Th1 type cytokines (66). 

Alternatively activated macrophages interact with innate cells, recruiting populations which 

maintain Th2 signaling, drive CD4+ T cell polarization and suppress Th1 inflammation (73).  

Furthermore, during helminth infection, M2 macrophages contribute to tissue repair, fibrosis and 

clearance of debris (115,116).  Proteolytic enzymes from tissue damage due to migrating 

helminthes triggers M2 activation, increasing production of fibronectin, collagen and matrix 

metalloproteinase (111).  Owing much to their plasticity in response to environmental stimuli, 

macrophages link innate and adaptive immunity and influence cellular responses.  Thus, 

macrophages are important players driving appropriate effector responses and overall clearance 

of helminth infection.  These data further highlight the complexity of macrophage involvement, 

spanning innate and adaptive responses.  M2 macrophage-derived cytokines and chemokines 

may function by inducing differentiation of naive T cells into Th2 cells, limiting expansion of 

type-1 responses, recruiting other immune cells to the site of infection and promoting Th2-

associated effector function (117).   

Recruitment of innate cells occurs through M2 macrophage secreted chemokine 

production, such as CCL11, CCL17, CCL22, and CCL24 (118).  Chemokines CCL17 and 

CCL22 produced by M2 macrophages are chemotactic factors for T cells.  Chemokine CCL24 is 

an eosinophil and neutrophil chemotactic protein, where eosinophils are commonly linked with 

helminth infection, promoting tissue remodeling and clearance of debris (56).  Studies using 

murine gastrointestinal nematode, N. brasiliensis, demonstrated macrophages collaborate with 

neutrophils, enhancing in vitro killing of helminth parasites (9).  Infection with S. stercoralis 
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induced M2 macrophages capable of killing larvae, both in vivo and in vitro when neutrophils 

were present (119), demonstrating collaborative mediation between cell types.  Similarly, during 

N. brasiliensis infection in mice, neutrophils primed macrophages, inciting rapid healing of 

nematode-induced damage and reduced larval ATP in vitro (9), directly mediating larval killing.   

While macrophages rely on CD4+ Th2 cells expressing IL-4 to promote Arg-1 expression 

(120), M2 macrophages also exert effects on CD4+ T cells, modulating or suppressing immune 

responses (121).  Multiple mechanisms serve to regulate T cell activation during infection such 

as cell-to-cell contact and enzyme metabolism. Helminth-induced macrophages display an up-

regulation of programmed death ligand 1 (PD-L)1 and PD-L2, which regulate T cell function and 

may have implications during infection (122,123).  Activation of T cells requires cell-to-cell 

communication, between antigen presenting cell (APC) expression of MHC-II and TCR.  

Engagement of PD-L1, expressed on activated macrophages during helminth infection, with PD-

1 on T cell surfaces can inhibit downstream and proliferative responses (122).  An additional 

mechanism of T cell inhibition by M2 macrophages is through metabolic starvation.  The 

requirement of arginase by M2 is depleted by increased expression of Arg-1, which limits 

availability to T cells, which also require arginine for proliferation (124,125).  Together, M2 

macrophages are essential in controlling Th2 phenotype and stabilizing the immune response.  It 

is thought that these control mechanisms serve to limit effector T cell toxicity against healthy 

tissues (126).  These data suggest maintenance of Th2 response requires alternative activation, 

but M2 macrophages also require input from Th2 cells.  While these ideas seem contradictory, 

taken in the context of the development of an early response progressing to an adaptive response, 

M2 macrophages may take on distinctive functions at each stage.    
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Macrophages are plastic cells and display a spectrum of phenotypes 

Numerous studies have provided evidence in support of macrophages switching 

phenotype, regardless of priming, and retaining functionality. Macrophages with an alternative 

phenotype taken from mice infected with Brugia malayi, altered gene expression when treated 

with LPS and IFNγ, also taking on bactericidal activity (127).  Another study demonstrated IL-4 

pretreatment of macrophages enhanced TNFα and IL-12 in response to LPS (128), which are 

cytokines not associated with M2 macrophages.  A co-infection model, using immune opposing 

H. polygyrus and Salmonella enterica, demonstrated macrophages adapt to changing stimulus 

and are uninhibited on a transcriptional level (129).  However, despite their plasticity, functional 

analysis indicated tissue origin – either blood-recruited or tissue resident – limited response 

(129).  

Conversely, some data demonstrate polarized macrophages become unresponsive or 

functionally altered after initial stimulation. Response to LPS by macrophages treated with IL-10 

were altered on a transcriptional level, revealed by microarray analysis, with suppression of 

genes normally induced by LPS (130).  Phagocytic uptake of Neisseria meningitidis by mouse 

macrophages treated with IL-4 or IL-13 was significantly reduced, suggesting functional 

impairment (131).  Interestingly, although phagocytosis was impaired, IL-4 treated macrophages 

increased secretion of pro-inflammatory cytokines during challenge infection (131), suggesting 

altered, but not completely impaired responses.  

Because macrophage effector functions are wide ranging, from homeostasis and 

regulating immunity to phagocytosis, macrophage activation can be considered a spectrum. 

Classification of M1 and M2, two opposites of polarization, have been useful while delineating 

macrophage function and associated pathologies.  However, macrophage activation is not 
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terminally differentiated and changing environmental stimuli evolve as infection progresses, 

which may heavily influence macrophage activation state.  Even within these classifications, M1 

and M2, macrophages may take on a spectrum of phenotypes.  For example, macrophages 

induced by LPS, immune complexes, apoptotic cells and IL-1Ra produce IL-10 and TGFβ, 

which are distinct from M1 macrophages, yet fall within M2 phenotypically though they do not 

elicit a Th2 response (118).  A large number of genes regulate macrophage phenotype and 

function; therefore, it is not unreasonable for patterns of expression to be transient given a 

changing environment. Discrepancies in experiments may be due to different lengths and amount 

of stimulus, as macrophage response is not static, rather macrophages differentiation depends 

upon sequence of stimulus and temporal activity of cytokine signal.  Flexibility of macrophages 

may be attributed to their long-lived nature, since they do not experience high turnover like many 

innate cells (127) and thus, benefits host immunity.  Furthermore, complete polarization or full 

activation, particularly during in vivo studies, rarely occurs in an entire macrophage population 

(92,129). 

Cytokine interleukin-13 is critical during helminth infection 

Concerted signaling of Th2 cytokines, such as IL-4 and IL-13, drives parasite expulsion.  

Of these cytokines, IL-13 signals through non-immune cells increasing mucus production and 

contraction of intestinal epithelium, resulting in clearance of infection (56).  Effector functions of 

IL-13 make it a unique cytokine, driving cell-mediated immunity (132) and promoting gut 

motility.  Diverse effector functions are mediated by IL-13, as it is involved in airway 

hyperresponsiveness, allergy, tissue eosinophilia, class switching to IgE Ab production, goblet 

cell hyperplasia, tissue remodeling and fibrosis (132).  Therefore, many hallmarks of Th2 

responses are shared with IL-13 effector function. 
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Cytokine IL-4 has long been recognized as the canonical Th2 marker during helminth 

infection; however more recent studies have begun to highlight a critical role of IL-13 in 

resistance to intestinal nematode infection.  Interleukin-13 shares many biologic functions with 

IL-4, including cell surface receptor IL-4rα.  In mice, IL-13 is positioned near IL-4 on 

chromosome 11 (133).  Amino acid homology, however, is low between IL-4 and IL-13, though 

tertiary structure is conserved (134).  Unlike IL-4, IL-13 stimulates MHC-II on monocytes and 

macrophages, down-regulates inflammatory cytokines IL-6 (135) and IFNγ, protecting mice 

from LPS-induced endotoxemia (136).  Despite similarities, IL-13 is non-redundant in the 

immune system and has a distinct, independent role in helminth infection. 

Cytokines IL-4 and IL-13 are the only proteins known to bind IL-4rα, such that sharing a 

receptor serves as an initial basis of their overlapping physiologic functions (137).  The IL-4rα 

complex contains IL-4Rα and γc (type 1 receptor) or IL-13Rα1 (type 2 receptor) chains, but 

formation is dependent on sequence of ligand binding, whether it be IL-4 or IL-13 (137).  

Conjugation with IL-4 forms type 1 receptor, responsible for T cell signaling, but both IL-4 and 

IL-13 can induce type 2 receptor formation (137), whereas IL-4 and IL-13 are seemingly in 

competition for IL-13Rα1 (138).  Cross-linking studies demonstrated that IL-4 binds more 

effectively for IL-13r than IL-13 and IL-4 can even neutralize some of the effects of IL-13 (138).  

Moreover, receptor structure have been shown to differ on different cell types (138), which may 

influence immune response and signaling pathways.  Type 1 complex is found on T cells, B cells 

and myeloid cells, whereas Type 2 complexes are found on myeloid cells and non-hematopoetic 

cell types (139). Ligation of IL-13 or IL-4 to its receptor induces phosphorylation of Janus 

tyrosine kinases (JAK) and recruiting STAT-6.  Activation of STAT-6 results in translocation to 

the nucleus, where it binds DNA, initiating transcription of downstream genes (140).     
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Alterations in receptor binding may account for differences in susceptible and resistant hosts 

during infection with helminths, though it has not yet been explored in the context of H. 

contortus. 

Mice given an infection of Trichuris muris were unable to clear infection in the absence 

of IL-13, when compared to their wild-type (WT) counterparts that were highly resistant (133).  

Here IL-13 KO mice were compared to IL-4 KO mice to determine relative contribution of each 

cytokine.  These data demonstrated that IL-13 KO mice were able to generate a Th2 response, 

but had impaired clearance mechanisms, whereas IL-4 KO mice were also susceptible to T. 

muris, but could not mount a full Th2 protective response, including an inability to generate IL-

13 (133).  Both IL-4 and IL-13 are necessary during infection with T. muris, however, these data 

suggest each have distinct roles. 

 Another study using IL-4rα KO mice, IL-4 KO and RAG KO revealed IL-13 regulates 

Th2 responses to N. brasiliensis infection. While IL-4 KO mice had higher worm burden and 

FEC, these mice were still able to mount a protective response and expel worms similar to 

control mice (141).  In comparison, IL-4rα KO mice were unable to recover fully, failing to 

expel worms (141).  Interestingly, this study also revealed that IL-4rα KO macrophages were 

functionally impaired, unable to respond to either IL-4 or IL-13, and resulted in failure to block 

NO production (141).  Because IL-4 and IL-13 share IL-4rα, these data next led to determine the 

contribution of IL-13 to worm expulsion.  Mice deficient in RAG developed chronic infection 

with N. brasiliensis, yet exogenous treatment with IL-13 alone was sufficient to elicit expulsion 

of N. brasiliensis in those mice (141).  Thus, in the absence of lymphocytes, non-lymphoid cells 

were activated by IL-13 to mediate parasitic infection.   
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IL-13 deficient mice have normal development of lymphoid organs and cell numbers, 

with the expression of immunoregulatory molecules associated with Th2 responses such as CD4, 

CD8 and B220, in the context of N. brasiliensis infection (142).  No differences were observed 

in levels of IL-4, IL-5 and IL-10 in IL-13 deficient mice during infection, suggesting intact Th2 

responses (142). Others have reported IL-13 KO mice were unable to clear infection with N. 

brasiliensis, despite development of Th2 response.  Absence of IL-13 did not alter IgE levels, 

however IgA increased in KO mice compared to WT (142). Furthermore, IL-13 KO mice failed 

to develop goblet cell hyperplasia (142).  Mucin secreting goblet cells in intestinal villi of KO 

mice were both fewer in number and reduced in size as compared to WT (142), impairing mucus 

secretion and gut contractility.  

Response to enteric parasite H. polygyrus demonstrated IL-13Rα1 is critical in host 

protection and clearance.  Here, mice deficient in IL-13Rα1 were used to examine the 

contribution of IL-13 during primary and secondary infection.  In the absence of IL-13Rα1, mice 

were unable to expel worms and had higher worm fecundity (114).  Despite up-regulation of Th2 

cytokines, IL-25 production was absent in intestines of deficient mice, which also had fewer 

goblet cells (114).  Furthermore, during secondary infection, IL-13Rα1 deficient mice 

experienced attenuated mucosal permeability and altered smooth muscle function (114).  

Differences between primary and secondary infection also indicated a necessity of IL-13 in the 

development of type 2 memory responses, which drive tissue responses to H. polygyrus larvae 

penetrating submucosa (114).  Lack of IL-13 signaling through IL-13Rα1 prevented polarization 

of M2 macrophages and inhibited STAT-6 signaling pathways essential during infection (114). 

The involvement of IL-4rα in non-bone-marrow derived cells, such as intestinal 

epithelium cells, goblet cells and smooth muscle cells rather than immune cells was 
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demonstrated using N. brasiliensis and Trichinella spiralis models in mice.  Mice only 

expressing IL-4rα on non-bone marrow-derived cells were able to clear N. brasiliensis, whereas 

T. spiralis required signaling on both (143).  While not a direct impact of IL-13, these data 

emphasize the role of non-immune cell signaling which occurs through IL-4 and IL-13, linking 

cytokine to physiologic outcome.  Th2 responses are critical in worm expulsion, generating both 

IL-4 and IL-13 needed to signal gastrointestinal cells.  Together, these data demonstrate that 

even in the absence of IL-4, a Th2 response can be mounted, initiating IL-13 signaling through 

IL-4rα sufficient to mediate worm expulsion.  

Limited data has been generated on the exact role of IL-13 during H. contortus infection 

in sheep, but numerous studies have shown resistant breeds of sheep highly express IL-13 

mRNA in abomasal lymph nodes, tissue and mucosa (7,50,144,145).  With the contribution of 

macrophages, IL-4rα and IL-13, it is reasonable to hypothesize that IL-13 contributes to 

resolution of H. contortus in resistant sheep like St. Croix, though mechanism and involvement 

remain unknown. 

Concluding remarks 

 Development of full host protective immunity and expulsion of H. contortus relies on 

orchestrated responses including cellular recruitment and signaling via Th2 cytokines. 

Circulating PBMC are a heterogeneous population of cells.  During infection, migration into 

tissues initiates differentiation of a spectrum of phenotypes, responding to signaling and eliciting 

an appropriate immune response.  Of these, monocytes are plastic cells, important directors of 

inflammation and regulation.  Classification of macrophages, however, has relied on 

categorization based on expression of cell-surface markers associated with mouse models, diving 

macrophages into two general types – M1 and M2 – with distinct physiologic roles.  Disparities 
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exist between markers for mouse and human monocytes, where the majority of human 

monocytes would be categorized as M1, while M1 and M2 phenotypes are equally represented in 

blood (146).  The role of macrophage differentiation in sheep models remains unclear.  Thus the 

aim of this research is to understand and characterize macrophages during development of 

natural resistance in St. Croix hair sheep during H. contortus infection.  Our central hypothesis is 

that ovine monocytes contribute to larval morbidity, previously associated with PBMC, and 

monocytes preferentially display markers associated with alternatively activated macrophages, 

which are essential in development of full protective host immunity.  

Clearance of H. contortus in susceptible hosts currently requires use of anthelmintics.  

Nicotinic agonists for deworming, such as levamisole, cause muscle contraction and spastic 

paralysis (147), resulting in increased passage rate from the abomasum.  With the emergence of 

drug-resistant H. contortus strains, a critical need exists to develop alternative control strategies.  

Since St. Croix sheep develop an early and strong Th2 response in response to H. contortus L3 

and the potent role of IL-13, we hypothesize that IL-13 produced by M2 may contribute to 

paralytic activity, directly inhibiting larvae in addition to its established role in gut contractility. 

Therefore, aims of the current study are (i) to identify which cell type contributes to 

observed morbidity elicited by PBMC, (ii) to characterize ovine monocyte phenotype associated 

with larval morbidity and (iii) to evaluate functional mechanisms contributing to increased 

morbidity and decreased larval motility induced by monocytes.  An additional aim is to 

understand the role and contribution of IL-13 signaling in alternative activation of monocytes. 

Understanding the role of monocytes in addition to the role of IL-13 in this system highlights the 

importance of Th2 immunity, connecting immune cells and non-immune cells driving the 

physiologic response of parasite clearance. Further understanding these mechanisms will aid in 
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defining key differences between resistant and susceptible breeds, providing evidence and 

foundation for development of advanced anthelmintics and alternative treatments against 

haemonchosis.  
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Chapter 2: Common methodologies 

Animals and housing 

 Sheep were born and raised at the West Virginia University Animal and Science 

Farm (Morgantown, WV) and were housed in the Sheep Research Barn.  All animals 

were limit fed 16% CP corn-soybean concentrate with ad libitum grass hay and water. 

This study was approved by the West Virginia University Animal Care and Use 

Committee (ACUC 160800381.1). 

Experimental Design 

 Four weeks after weaning, ten St. Croix (STC) hair sheep and ten Suffolk (SUF) 

wool sheep were randomly assigned to one of two treatment groups: naïve or primed. 

Animals assigned to primed groups received a single oral dose of 10,000 Haemonchus 

contortus infective third stage (L3). Infection persisted for six weeks then animals were 

treated orally with levamisole (Agrilabs, St. Joseph, MO) (8 mg/kg) and allowed to rest 

for three weeks before blood collection.  Animals assigned to naïve treatment groups 

received no infection and remained unexposed to H. contortus. Fecal egg counts (FEC) 

were performed using a modified McMaster’s technique (34) on all lambs during the 

priming infection and after deworming until all animals had an FEC of 0 before blood 

collection. 

Sample collection 

Immune cell separation from whole blood 

 Whole blood samples were obtained via jugular venipuncture into 10mL 

vacutainer tubes treated ethylenediaminetetraacetic acid (EDTA) (Tyco, Mansfield, MA), 

preventing coagulation.  Samples were centrifuged at 1,000 x g for 20 minutes at room 



 54 

temperature (RT) and buffy coats were collected and pooled by treatment group into 

sterile 15 mL centrifuges tubes.  Buffy coats were re-suspended in 1 mL of sterile 

phosphate buffered saline (PBS) at pH of 7.4.  Red blood cells (RBC) were removed by 

lysis using ACK lysis buffer (Lonza, Walkersville, MD).  White blood cells were 

carefully layered over sterile lymphocyte separation media (LSM) (SPG 1.077 g / mL; 

Corning, Manassas, VA) and centrifuged at 400 x g for 20 minutes at RT.  Peripheral 

blood mononuclear cells (PBMC) were collected and counted using Bio-Rad TC-20 

automated cell counter (Hercules, CA) and then suspended in complete media containing 

RPMI-1640 with 2mM L-gluatmine (GE Healthcare Life Sciences, Logan, UT), 10% 

fetal bovine serum (FBS) (Corning, Corning, NY) and penicillin-streptomycin antibiotic 

(Sigma Aldrich, St. Louis MO, USA). Suspensions were diluted to a concentration of 1 x 

10
6
 cells/mL for use.  

 Monocytes were separated from PBMC using CD14
+
 autoMACs magnetic beads 

(Miltenyi Biotec, Gladbach, Germany). Confirmation of monocyte cell purity was 

performed by manual cell differential by loading a Cytospin chamber with 100 µL cell 

suspension and concentrated onto a microscope slide using Cytopsin 4 (Thermo 

Scientific) and then stained using CamCo Quik Stain (Cambridge Diagnostic Products, 

Fort Lauderdale, FL). 

Parasitological analysis 

Haemonchus contortus larval culture 

 Three castrated male Suffolk lambs were infected with H. contortus and used 

solely for purpose of larval culture.  Feces were collected and mixed with sterilized peat 
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moss and activated charcoal, then incubated for 7 days at 30°C.  Larvae were isolated 

using a Baermann apparatus and stored in PBS (pH 7.4) at 4°C until use. 

Larval ATP Analysis 

 Cell suspensions of 5 x 10
5
 (500 µL) were added to a 24-well plate (Greiner 

CellStar, Frickenhausen, Germany) with an additional 400 µL of complete media and 100 

L3 H. contortus larvae (100 µL), for a total volume of 1 mL per well, in triplicate per 

treatment group and placed in an incubator for 18 hours at 37°C with 5% CO2.  After 

which, media was replaced with Accumax
TM

 enzyme (Innovative Cell Technologies, San 

Diego, CA) to release cells from larvae and incubated for 1 hour at RT.  Larvae were then 

rinsed over 40 µm cell strainers (Greiner BioOne, Frickenhausen, Germany) to isolate 

larvae without cells.  Larvae were transferred to sterile micro-centrifuge tubes and an 

equal volume of CellTiter-Glo ATP reagent (Promega, Madison, WI) was added to each 

larval sample.  Larvae were homogenized using a BeadBug Microtube Homogenizer 

(Benchmark Scientific) and 100 µL of supernatant was plated into opaque walled flat-

bottom 96-well microplate (Greiner CellStar, Frieckenhausen, Germany).  Luminescence 

was measured using a luminometer (BioTek Instruments), with an integration time of 1 

second per well. 

 An ATP standard curve was created using serial dilutions from 1 µM – 0.001 µM 

of rATP (Promega, Madison, WI) and blank standard of 0 µM was included.  Standard 

values were plotted against luminescent values, and then fitted using a linear regression 

line. Experimental ATP concentrations were corrected by subtracting background 

luminescence using a blank standard and calculated using the standard curve performed 

for each replication.  Mean ATP was calculated per treatment group. 
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Larval motility analysis 

 Video of larvae was captured using Olympus Air wireless lens (Shinjuku, Tokyo, 

Japan) fixed to Motic AE2000 inverted microscope (Mars, PA).  Larval motility was 

assessed using WormLab
TM

 tracking software (MBF Bioscience, Williston, VT), 

measuring larval movement over 50 frames of video recording.  

RNA isolation and cDNA 

 Total RNA was isolated from CD14
+
 cells from each treatment group using 

illustra RNAspin Mini kit (GE Healthcare, Buckinghamshire, United Kingdom).  Briefly, 

cells were homogenized in 350 µL of cell lysis buffer with 3.5 µL β-mercaptoethanol.  

Lysate was filtered, and RNA bound a membrane before desalinization and digestion of 

DNA using DNase.  RNA was washed and dried on a silica membrane, then eluted into 

RNase-free water.  Samples were determined to have >1.8 OD 260:280 ratio, measured 

by NanoDrop 1000 Spectrophotometer (Thermo Scientific, Wilmington, Denmark).   

 Synthesis of cDNA was prepared using a High Capacity cDNA Reverse 

Transcription Kit (Thermo Fisher Scienfitic, Vilnius, LT).  Reactions were prepared 

using 10 µl of 2X RT master mix and 10 µl RNA sample, then placed in a T100 thermal 

cycler (Bio-Rad, Hercules, CA).  Reactions were completed by heating to 25°C for 10 

minutes, then to 37°C for 120 minutes, and 85°C for 5 minutes, then cooled to 4°C.  Final 

cDNA preparations were stored at -20°C. 

Gene expression assay 

 Samples were analyzed in quadruplicate using CFX96 system (Bio-Rad, 

Hercules, CA). Reactions contained 1 µL 20x TaqMan Gene Expression Assay (Applied 

Biosystems, Foster City, CA) (Table 1), 2 µL (100 ng) cDNA template, 10 µL 2X 

TaqMan Gene Expression Master Mix (Applied Biosystems, Foster City, CA), and 7 µL 
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RNase-free water for volume of 20 µL per reaction.  Conditions for qPCR were 

performed using the following thermal-cycling profile: 10 minute hold at 95°C, then 40 

cycles of 15 seconds at 95°C denaturation and 20 seconds at 60°C extension.  Relative 

fold changes in gene expression were calculated using ΔCt values [Ct (test) – Ct 

(reference)], and derived using 2
-ΔΔCt

 where the reference gene used for normalization 

was GAPDH.   

Table 1: Taqman Probes 

Gene Name Abbr Assay ID 

Glyceraldehyde3-phosphate GAPDH Bt03210913_g1 

Arginase 1 Arg1 Oa04891279_m1 

Inducible nitric oxide synthase iNOS Oa04876175_m1 

Interferon gamma IFNγ Oa04656649_m1 

Interleukin-4 IL-4 Oa04927178_s1 

Interleukin-10 IL-10 Oa04657337_m1 

Interleukin-12 IL-12 Oa04927178_s1 

Interleukin-13 IL-13 Oa03223101_m1 
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Chapter 3: Characterization of ovine monocyte activity when cultured 

with Haemonchus contortus larvae in vitro 

 

Abstract 

Peripheral blood mononuclear cells (PBMC) have been shown to impair 

Haemonchus contortus (Hc) motility and increase larval morbidity in vitro.  Separation of 

monocytes from lymphocytes demonstrated a clear role for monocytes increasing larval 

morbidity as measured by larval ATP concentration. Larval ATP after culture with 

St.Croix (STC)-derived monocytes was significantly lower (0.015 μM) than larvae 

cultured with Suffolk (SUF)-derived monocytes (0.067 μM) (P < 0.001), highlighting 

breed differences.  No differences were observed in larvae treated with SUF-derived 

lymphocytes (0.112 μM ATP) compared to untreated L3 (0.118 μM ATP).  Monocyte 

gene expression was characterized over 15 hours of culture.  Monocytes from SUF sheep 

generally had higher expression of M1 genes early, whereas STC-derived monocytes 

displayed markers of alternative activation throughout the 15 hr course.  To further 

determine ovine monocyte activation in response to Hc larvae, enzymes arginase-1 

(Arg1) and inducible nitric oxide synthase (iNOS) were inhibited using BEC (S-(2-

boronoethyl)-I-cysteine) and 1400W (N-(3-(aminomethyl)benzyl)acetamidine), 

respectively.  Effector function was determined to be Arg1-dependent, as both STC- and 

SUF-derived cells treated with BEC did not reduce larval ATP compared to control 

treated larvae (STC: 0.055 μM and 0.029 μM ATP) (SUF: 0.069 μM and 0.067 μM 

ATP). Larval ATP after culture with SUF-derived, 1400W-treated monocytes (0.037 μM) 

was significantly lower than larval ATP when cultured with control (0.059 μM) (P < 

0.001), restoring effector function.  Larval ATP of STC-derived 1400W treated cells 
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(0.046 μM) was significantly higher than larvae cultured with STC-derived monocytes 

alone (0.029 μM ATP) (P < 0.001), suggesting an undefined role of iNOS specific to 

STC. Collectively, these data indicate STC monocytes preferentially become 

alternatively activated when exposed to Hc larvae, which is essential for monocyte-

induced larval morbidity and development of full host protective response in vivo. 

Introduction 

Peripheral blood mononuclear cells are a heterogeneous population of cells 

comprised of lymphocytes and monocytes. Lymphocytes are important in generating 

immune responses against helminths, primarily by producing antibody IgE and IgA from 

B cells, along with induction of CD4
+
 Th2 cells (1,2). Depletion of CD4+ T lymphocytes 

in naturally parasite resistant Gulf Coast Native lambs ablated resistance to H. contortus 

(3), demonstrating the importance of adaptive immunity and a potent cellular response.  

Monocytes, which circulate in blood are recruited to tissues during infection and 

differentiate into macrophages in response to stimuli. Murine models of helminth 

infection have demonstrated a role of macrophages in mediation of parasite 

Nippostrongylus brasiliensis, where monocytes directly adhere to larvae, contributing to 

larval killing (4).  However, the contribution of monocytes during H. contortus infection 

in sheep has not yet been investigated. 

Helminths stimulate alternatively activated macrophages (M2) that can aid in the 

development of Th2 driven immunity.  Competition for substrate, L-arginine is critical in 

polarization of monocytes and is used to distinguish classically activated (M1) 

macrophages from M2.  Nitric oxide synthase 2 (iNOS) is important in cytotoxic and 

antimicrobial functions of M1 (5) and the develop of Type 1 immunity against bacteria 
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and viruses, whereas Arginase-1 (Arg1) activity increases with M2  (6).  Competition for 

the L-arginine substrate down-regulates other macrophage activation states, where M2 

activity suppresses M1 and vice versa (7).  Thus, enzyme levels can be indicative of 

macrophage activation state (8).  While this phenomenon is well described in murine 

models, there is controversy as to the role of these enzymes in macrophage differentiation 

in larger order mammals. 

 Alternatively activated macrophages have been documented to produce IL-13 in 

response to helminth infection.  In the context of H. contortus infection, a study found  

IL-13 levels were elevated in abomasal tissue by day 3 after infection (9).  Furthermore, 

it was also found that resistant sheep had increased circulating monocyte counts by day 5 

after infection with H. contortus (10).  Our previous data have indicated that PBMC can 

severely inhibit larval motility and increase larval morbidity.  Therefore, the objective of 

this study was to determine which cell subset of PBMC contributes to larval morbidity 

using ATP quantification and to characterize the functional role of ovine monocytes in 

response to H. contortus L3 in vitro, using RT qPCR and motility analysis.  These data 

suggest STC sheep preferentially develop alternatively activated monocytes in response 

to H. contortus infection, as compared to SUF, which may contribute to natural parasite 

resistance. 

Materials and Methods 

Transmission electron microscopy 

 Samples of 10,000 H. contortus L3 were cultured with 5 x 10
7
 PBMC in 24-well 

filtered plates (Nunc, Roskilde, Denmark) for 18 hours at 37°C with 5% CO2.  

Supernatant was replaced with fixative (3% glutaraldehyde in sodium cacodylate Buffer, 
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pH 7.4) and allowed to fix for 1 week at RT.  Samples were delivered to the WVU 

COREs imaging facility and larvae were embedded, polymerized and sectioned by 

facility staff.   

Enzyme inhibition assays 

 Arginase and iNOS activity were inhibited by adding 10 μg / mL BEC (S-(2-

boronoethyl)-I-cysteine hydrochloride) or 10 μg / mL 1400W (N-(3-

[Aminomethyl]benzyl)acetamidine) (Sigma-Aldrich, St. Louis, MO), respectively to 

5x10
5
 CD14+ cells from STC or SUF and cultured with H. contortus L3 for 9 hours at 

37°C and 5% CO2.   Arginase activity was measured using a QuantiChrom Arginase 

Assay Kit (BioAssay Systems, Hayward, CA) and NO was measured using Griess 

Reagent System (Promega Corporation, Madison, WI). 

Statistical analysis 

 Larval ATP and motility data were analyzed using SigmaPlot software (Systat 

Software).  The main effects of breed and cell type were compared by two-way ANOVA 

using the Holm-Sidak method for mean comparisons.  Gene expression data was 

analyzed by one-way ANOVA analysis, comparing gene by breed within each time point. 

Significance was accepted at P < 0.05.  

Results 

Effect of mononuclear cell subset on H. contortus motility and morbidity 

 Larvae cultured with STC-derived monocytes had significantly lower ATP 

concentration (0.015 μM) when compared to SUF-derived monocytes (0.067 μM ATP) 

(P < 0.001) (Figure 1a).  When L3 were cultured with lymphocytes, STC-derived cells 

reduced ATP (0.085 μM), whereas SUF-derived lymphocytes (0.112 μM ATP) had no 

effect on larval ATP reduction when compared to untreated L3 (0.118 μM ATP) (P < 
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0.001) (Figure 1a).  Overall, monocytes from both breeds (STC: 0.015 μM; SUF: 0.067 

μM) had a greater effect on larval ATP than lymphocytes from either breed (STC: 0.085 

μM; SUF: 0.122 μM), implicating monocytes as the major effector cell contributing to 

larval morbidity in this system. 

 To confirm these data, larvae were cultured with STC- or SUF-derived PBMC 

and fixed in a pellet to be processed for transmission electron microscopy (TEM).  

Images revealed cellular attachment to larval cuticle.  Activated macrophages were 

adhering to larvae, whereas lymphocytes were not.  Additionally, the larval cuticle was 

separated from the larval body at the site of cellular attachment (Figure 1b), supporting 

the conclusion that monocytes are directly contributing to larval morbidity.  

 Tracking data further supports the role of monocytes by significantly reducing 

straight-line distance, when compared to lymphocytes or untreated larvae.  Larvae 

exposed to STC-derived monocytes traveled 14 μm and L3 exposed to SUF-derived 

monocytes traveled 15 μm in distance, with no significant difference between the breeds 

(Figure 1c).  When larvae were cultured with STC- or SUF-derived lymphocytes, 

straight-line distance traveled was 27 μm and 23 μm, respectively (Figure 1c).  In 

comparison to untreated control larvae (39 μm), both monocytes and lymphocytes from 

either breed reduced straight-line distance. Monocytes, however, significantly reduced 

larval path-length in comparison to other treatments (STC: 13 μm; SUF: 15 μm) (P < 

0.05) 

Gene expression analysis of activated monocytes 

 To understand the activation status of monocytes exposed to L3 in vitro, qPCR 

was performed to determine patterns of M1 and M2 gene expression over a course of 6, 
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9, 12 and 15 hours of culture.  While genes associated with Th1 pro-inflammatory 

response, considered markers of M1, were up-regulated in both breeds, SUF-derived 

monocytes displayed significantly higher expression of IL-12 than STC monocytes, 

though no differences in iNOS or IFNγ were observed (Table 3.1), suggesting an early 

M1 phenotype in SUF.  Again, both breeds up-regulated genes associated with a Th2 

response, considered markers of M2 alternative activation.  Unexpectedly, SUF-derived 

monocytes stimulated with L3 up-regulated IL-13 when compared to STC (P < 0.001) 

(Table 3.1).  STC-derived monocytes significantly up-regulated IL-10 in response to L3, 

compared to SUF-derived monocytes (P < 0.05) (Table 3.1).  No significant differences 

were observed in monocyte expression of Arg1, IL-4 or IL-4rα at 6 hrs of culture with 

L3.  

At 9hr, IL-4 was not expressed by either SUF- or STC-derived monocytes.  

Interestingly, there were no significant differences in expression of IL-4 between breeds 

at 15 hours after culture of monocytes with L3 (Table 3.3).  However, SUF-derived 

monocytes had sustained up-regulation of NOS2 and IFNγ at 15 hours when compared to 

STC-derived monocytes (Table 3.3).  IL-4rα and IL-13 was down-regulated in SUF-

derived monocytes at 15 hrs (Table 3.3), suggesting a switch in signaling.  Notably, SUF-

derived monocytes significantly up-regulated IL-10 at 15 hours of culture (Table 3.3), 

which suggests a switch in phenotype much later than STC-derived monocytes occurring 

at 9 hours.  Together, these data suggest transient patterns in gene expression, with 

sustained inflammatory signaling in SUF-derived monocytes and alternative activation of 

STC-derived monocytes. 
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Effect of arginase and nitric oxide inhibition in monocytes during culture with H. 

contortus L3 

 Murine models indicate monocyte polarization is driven by the competition for L-

arginine by iNOS, associated with M1 phenotype, and Arg1 associated with M2 

phenotype.  Therefore, a competitive inhibitor of arginase (BEC) and a selective inhibitor 

of iNOS (1400W) were used to determine influence of activation status on larval 

morbidity and motility.    

When cultured with BEC-treated monocytes, larval ATP was significantly 

increased as compared to larvae treated with monoctyes alone. Of interest, when SUF-

derived monocytes were treated with BEC, all effector function was ablated and larval 

ATP (0.069 μM) was not significantly different than untreated (untrt) L3 (0.067 μM 

ATP) (Figure 2a).  The greatest impact on ATP was observed in STC-derived monocytes 

treated with BEC (0.055 μM ATP) compared to L3 treated with STC-derived monocytes 

alone (0.029 μM ATP) (P < 0.001), suggesting that inhibition of arginase ablates 

monocyte cell function against L3 (Figure 2a).  Tracking measurements further support 

these data, as inhibition of arginase activity increased larval speed.  Larvae cultured with 

BEC-treated monocytes from either breed moved at higher speeds, compared to 

monocytes alone (P < 0.05), with the greatest difference between larvae cultured with 

STC-derived monocytes and BEC-treated STC-derived monocytes (Figure 2b).  

However, distance traveled was not significantly different between breed or treatment 

(Figure 2c).   

Inhibiting iNOS activity in SUF-derived cells enhanced effector activity, reducing 

larval ATP to lower levels than larvae cultured with SUF-derived monocytes alone 

(Figure 3a).  Larval ATP after culture with 1400W-treated SUF-derived monocytes was 
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0.037 μM, which was significantly reduced from larvae treated with SUF-derived 

monocytes alone, with 0.059 μM ATP (P < 0.001) (Figure 3a).  However, when STC-

derived monocytes were treated with 1400W larval ATP increased to 0.046 μM ATP, 

which was significantly higher than larvae treated with STC-derived monocytes alone 

(0.029 μM ATP) (P < 0.001), which unexpectedly reveals a role of iNOS in larval 

morbidity (Figure 3b).  

Discussion 

Murine models of helminth infection have demonstrated cellular mechanisms of 

larval killing in vitro, with direct attachment (4,11). Prior to our current study, PBMC 

from both St. Croix and Suffolk effectively increased larval morbidity of L3 in vitro (12) 

and thus, the aim of these data were to determine whether lymphocytes (CD14-) or 

monocytes (CD14+) in a heterogeneous population of cells had a greater impact on larval 

morbidity.  When isolated, STC-derived monocytes had increased effector function 

against L3, compared to SUF-derived monocytes. These data indicate ovine monocytes 

induce larval killing.  Furthermore, while SUF-derived monocytes were able to induce 

larval morbidity compared to untreated control L3, differences between STC- and SUF-

derived monocytes indicate an impairment of SUF-derived monocytes, although 

mechanisms remain unclear.  

To determine if differences in breed effector function were also monocyte 

activation status dependent, Arg1 and iNOS were inhibited to prevent polarization 

towards M2 or M1 phenotype, respectively.  Inhibition of Arg1, preventing an M2 

phenotype, significantly reduced effector function of both STC- and SUF-derived 

monocytes as hypothesized.  However, differences in larval morbidity were greatest 
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between untreated and treated STC-derived monocytes, indicating STC-derived 

monocytes require Arg1 in mediation of L3 in vitro and preferentially become M2 in 

response to L3.  Inhibition of iNOS activity promoted SUF-derived monocyte effector 

function, rescuing susceptibility and reducing larval ATP comparable to STC-derived 

monocytes, again supporting Arg1 requirement.  Therefore, an overproduction of iNOS 

by SUF could prevent appropriate activation of monocytes during infection.   Increased 

expression of iNOS was associated with both STC- and SUF-derived monocytes by 9 to 

12 hours.  However, SUF remained higher, while STC iNOS gene expression decreased 

overtime. 

  Unexpectedly, STC-derived monocytes with impaired iNOS activity lost effector 

function.  In contrast to bacteria and protozoa, helminth parasites – adults, larval stages 

and their eggs – are large, intrusive, multicellular organisms, and therefore are not 

targeted with the same immune response.  Eggs released from schistosomes incite tissue 

inflammation in the liver, where NO produced by macrophages aids in regulation of 

tissue damage (13).  While macrophage phenotypes were heterogeneous in the liver 

during schistosome infection, alternative activation was dominant, despite high iNOS and 

TNFα (14), indicating both Th2 and Th1 mechanisms of clearance may be involved.  

While Arg1 activity is pivotal in activation status and macrophage polarization, 

some studies have suggested that parasite-induced arginase may be beneficial to the 

parasite itself, functionally inhibiting iNOS-dependent parasite killing mechanisms (15).   

L-ornithine produced downstream of L-arginine hydrolysis has been shown to support 

parasite growth (15), whereas iNOS gene expression early during infection induces 

vasodilation, promoting wound healing, before environmental factors drive arginase-
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dependent production of collagen and tissue repair (16).  Thus, data from this study 

support a role for increased iNOS in STC-derived cells early during infection, and may 

support a potential role for type 1 responses, such as iNOS, during H. contortus infection, 

though mechanisms remain unclear.   

 Gene expression was performed to characterize monocytes from STC and SUF 

sheep in response to L3.  Markers associated with murine monocytes were used to 

determine activation status, whereas ovine markers of activation have not fully been 

explored and thus, may account for differences in expression observed in other models of 

helminth infection.  In our current study, gene expression demonstrated a spectrum of 

genes activated in response to L3 over 6 to 15 hours of culture.  St. Croix derived 

monocytes shifted profiles by hour 9 of culture, whereas SUF-derived monocytes had 

increased expression of Th1- throughout all time points.  While differences were 

observed between breeds in both Th1 and Th2 associated genes, clear indicators of 

polarization towards alternative activation could not be detected. 

 Monocytes and macrophages are highly plastic cells, responding to wide ranges of 

stimuli.  One limitation of this study was the use of whole L3, compared to use of crude 

larval antigen.  In the current model, L3 actively excrete and secrete factors into cell 

culture media, which may influence gene expression.  Additionally, while L3 are washed 

following larval culture, bacteria from feces may remain in small amounts, influencing 

cell activity.  Furthermore, due to their plasticity, gene expression of activation markers 

may not be homogeneous across a single well of L3-treated cells and multiple 

mechanisms of larval mediation may be occurring simultaneously.   
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Polarization is influenced by many factors and shaped over time, as well as by 

tissue (17,18).  These factors may be extrinsic, intrinsic and environmental (17).  

Additionally, macrophage function is not limited to a given polarization state, as 

macrophage phenotype does not always indicate macrophage function or physiologic 

process (17).  While L-arginine metabolism is linked with polarization of M1 and M2 

macrophages, inhibition of arginase in mice did not alter numbers of M2, but did increase 

inflammation (19).  Mice with inhibited arginase activity displayed impaired or delayed 

wound healing, functional properties of monocytes remained intact (19).  Furthermore, 

macrophage activation and production of specific cytokines is graded across activation 

states.  Production of IL-10, for example, can be linked to many immune settings and 

thus, macrophage functional activity is largely dependent on how much signal is being 

produced rather than gene expression of one factor versus another (17,18). 

 Collectively, our current study demonstrated ovine monocytes contribute to 

increased larval morbidity compared to lymphocytes, requiring Arg1 activity to induce 

full effector function.  Breed differences in response to BEC, suggest alternative 

activation is preferential in STC- and not SUF-derived monocytes in response to H. 

contortus L3. These data also indicate an enhanced ability of STC-derived monocytes to 

increase larval morbidity and reduce larval motility.  Previously unknown roles of iNOS 

and Arg1 during H. contortus infection were also observed in STC-derived monocytes, 

suggesting mediation of L3 may not rely on highly polarized monocytes, rather on 

plasticity to accommodate changes in environment. However, markers of alternative 

activation in ovine monocytes remain unclear.   
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Figures 

 

Figure 1: Monocyte and lymphocyte interaction with larvae in vitro.   

(a) Monocytes (CD14
+
) and lymphocytes (CD14

-
) were isolated from PBMC derived 

from either St. Croix (STC) or Suffolk (SUF) sheep and cultured with L3 for 18 hours, 

and ATP was compared to untreated (Untrt) or heat treated (HT) control L3.  (b) Larvae 

were cultured with STC- or SUF- derived PBMC and imaged using transmission electron 

microscopy (TEM). (c) Straight-line distance of L3 was measured over 50 frames of 

video using WormLab
TM

 after 9 hours of culture with either STC- or SUF- derived 

CD14+ or CD14- cells. Error bars represent SEM.  Different letters indicate significant 

differences; P < 0.001.  
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Figure 2: Inhibition of Arginase activity in monocytes.  

CD14+ monocytes were isolated from PBMC derived from either St. Croix (STC) or 

Suffolk (SUF) sheep and cultured with 10 μg/mL BEC (S-(2-boronoethyl)-I-cysteine 

hydrochloride) for one hour, before adding L3 to culture.  (a) Larval ATP was measured 

after 9 hours of incubation, and compared to untreated (media) and BEC treated controls.  

(b) Larval speed and (c) straight-line distance were measured over 50 frames of video 

recorded after 9 hours culture with CD14+ cells from either STC or SUF.  Motility was 

analyzed using WormLab
TM 

software. Each treatment was performed in triplicate. Error 

bars represent SEM.  Different letters indicate significant differences; P < 0.001. 

 

 

(a) (b) 

(c) 
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Figure 3: Inhibition of iNOS activity in monocytes.  

CD14+ monocytes were isolated from PBMC derived from either St. Croix (STC) or 

Suffolk (SUF) sheep and cultured with 10 μg/mL 1400W (N-(3-

[Aminomethyl]benzyl)acetamidine) for one hour, before adding L3 to culture.  (a) Larval 

ATP was measured after 18 hours of incubation, and compared to untreated (media) and 

1400W treated controls.  (b) Larval speed increased when STC-derived cells were treated 

with 1400W, but was reduced in SUF-derived cells treated with 1400W. (c) Treatment 

with 1400W had no effect on straight-line distance traveled. Error bars represent SEM.  

Different letters indicate significant differences; P < 0.001. 

 

 

(a) (b) 

(c) 
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Tables 

Table 3.1: Gene expression of monocytes at 6 hours of cultures with L3 

Gene STC SUF 
 

 
FC SEM FC SEM P value 

Th1-related genes 

IL-12 413.39 27.85 149.75 19.43 0.001 

NOS2 nd 

 

nd 

  IFNγ 2.93 0.34 9.12 2.57 ns 

      Th2-related genes 

IL-4rα 15.13 0.75 24.17 5.31 ns 

IL-4 20.24 1.32 34.47 0.70 ns 

Arg1 30.74 3.14 58.07 4.88 ns 

IL-10 339.20 14.67 270.41 11.01 0.020 

IL-13 35.10 2.38 141.02 6.47 <0.001 

Cells were cultured with L3 at 37°C and 5% CO2 for 6 hours then isolated from larvae to 

measure gene expression. Fold change (FC) was calculated using Δct relative to 

housekeeping gene GAPDH and ΔΔct relative to cells cultured media.   
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Table 3.2: Gene expression of monocytes at 9 hours of cultures with L3 

Gene STC SUF 
 

 
FC SEM FC SEM P value 

Th1-related genes 

IL-12 29.63 3.87 87.40 16.01 ns 

NOS2 782.39 60.81 1191.71 46.18 0.006 

IFNγ 69.60 11.64 546.92 67.17 0.002 

      Th2-related genes 

IL-4rα 65.04 3.16 105.42 43.32 0.861 

IL-4 nd 

 

nd 

  Arg1 53.81 2.48 164.71 3.01 <0.001 

IL-10 836.22 107.46 449.86 36.34 0.032 

IL-13 485.81 35.86 785.70 56.82 0.11 

Cells were cultured with L3 at 37°C and 5% CO2 for 9 hours then isolated from larvae to 

measure gene expression. Fold change (FC) was calculated using Δct relative to 

housekeeping gene GAPDH and ΔΔct relative to cells cultured media.   
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Table 3.3: Gene expression of monocytes at 12 hours of cultures with L3 

Gene STC SUF 
 

 
FC SEM FC SEM P value 

Th1-related genes 

IL-12 58.41 14.20 47.93 7.41 0.55 

NOS2 9449.88 407.47 6835.49 1028.28 0.08 

IFNγ 10.04 0.28 38.18 12.36 0.98 

      Th2-related genes 

IL-4rα 344.76 0.86 nd 

 

ns 

IL-4 160.17 18.11 174.96 4.21 0.47 

Arg1 17.60 3.65 16.11 2.27 0.82 

IL-10 1176.62 84.28 1427.26 146.15 0.21 

IL-13 161.08 44.55 154.66 25.16 0.91 

Cells were cultured with L3 at 37°C and 5% CO2 for 12 hours, then isolated from larvae 

to measure gene expression. Fold change (FC) was calculated using Δct relative to 

housekeeping gene GAPDH and ΔΔct relative to cells cultured media.   
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Table 3.4: Gene expression of monocytes at 15 hours culture with L3 

Gene STC SUF 
 

 
FC SEM FC SEM P value 

Th1-related genes 

IL-12 64.41 6.13 33.51 3.93 0.035 

NOS2 974.39 498.80 3931.81 102.53 0.004 

IFNγ 3.67 0.39 19.49 1.90 0.001 

      Th2-related genes 

IL-4rα 7.51 0.86 0.66 0.022 0.001 

IL-4 245.52 65.17 73.33 32.21 0.144 

Arg1 2.64 0.31 33.64 2.55 <0.001 

IL-10 552.58 37.33 1261.02 20.32 <0.001 

IL-13 47.18 6.22 0.04 0.01 0.002 

Cells were cultured with L3 at 37°C and 5% CO2 for 15 hours, then isolated from larvae 

to measure gene expression. Fold change (FC) was calculated using Δct relative to 

housekeeping gene GAPDH and ΔΔct relative to cells cultured media.   
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Chapter 4: A novel role for Interleukin-13 inducing paralysis in 

Haemonchus contortus larvae 

Abstract 

The cytokine interleukin-13 (IL-13) is common to Th2 responses and exerts 

effects through host immune and non-immune cells.  Typically, IL-13 induces gut 

contractility and mucus secretion after infection with helminth parasites to eliminate 

parasites from the digestive tract. A “weep and sweep” response could be enhanced by 

larval paralysis, therefore the objective of this study was to determine pleiotropic effects 

of IL-13 on H. contortus larvae directly. To test this hypothesis, L3 were treated with 

ovine recombinant (r)IL-13 (1 μg/ml) and motility was analyzed using Wormlab
TM

 

software. Treatment with rIL-13 reduced larval speed (27μm/s) and distance (7.5 μm) 

compared to untreated L3 (speed: 94 μm/s; distance: 27 μm) (P < 0.001).  To confirm 

paralysis L3 were treated with levamisole (LEV), a known paralytic chemotherapeutic, 

which was not significantly different from rIL-13 treatment (23 μm/s and 27 μm/s, 

respectively). Neither LEV nor rIL-13 had an effect on larval morbidity. Addition of rIL-

13 to isolated monocytes did not enhance effector activity. However, blocking IL-13 

reduced monocyte-driven larval morbidity (0.13 μM ATP) and larval motility was 

significantly increased (88 μm/s; 27 μm) compared to larvae treated with STC-monocytes 

alone (0.07 μM ATP; 34 μm/s; 8 μm) (P < 0.05), though not to levels of untreated control 

L3 (0.2 μM ATP; 130 μm/s; 30 μm). These data indicate that IL-13 has a dual capability 

by paralyzing L3 and aiding development of monocyte-driven larval morbidity.  
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Introduction 

Cytokines are a fundamental aspect of immune response (1) as they recruit 

immune cells, influence immune cell differentiation and signal non-immune cells. 

Signaling from and to non-immune cells can affect host physiologic responses necessary 

to eliminate some types of pathogenic infection (1,2). During helminth infection cytokine 

production induces increased mucus production by goblet cells, increased luminal flow 

and contractility of gut smooth muscle (2).  Collectively, these actions result in removal 

of parasites from the gastrointestinal tract and are known as the “weep and sweep” 

response. 

Concerted signaling of Th2 cytokines, such as IL-4, IL-5, and IL-13, promote IgE 

antibody production and drives parasite expulsion from the gastrointestinal tract.  Of 

these cytokines, IL-13 signals through non-immune cells increasing mucus production 

and contraction of intestinal epithelium, resulting in clearance of infection (2).  Effector 

functions of IL-13 make it a unique cytokine, driving cell-mediated immunity (3) and gut 

motility, as IL-13 directly interacts with enteric nerves (3).  Though IL-4 and IL-13 share 

a receptor and are functionally related, IL-13 has a non-redundant role in host immunity 

(3).  Previous studies have demonstrated a dominant and critical role of IL-13 in the 

control of N. brasiliensis infection using RAG knockout mice (RAG2
-/-

).  In the absence 

of lymphocytes, treatment with recombinant IL-13 stimulated parasite expulsion by 

directly activating non-lymphoid cells (4).  These data are supported by evidence of 

increased expression of IL-4rα (receptor for IL-13) by non-immune gastrointestinal cells, 

such as smooth muscle cells, goblet cells and intestinal epithelium, inducing physiologic 
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changes sufficient to clear N. brasiliensis in mice (5).  However, these effects have not 

been investigated during infection with H. contortus in sheep. 

 Clearance in susceptible hosts currently requires use of anthelmintics.  Nicotinic 

agonists used for deworming, such as levamisole, cause muscle contraction and spastic 

paralysis of larvae (6), resulting in increased passage rate from the abomasum.  With the 

emergence of drug-resistant H. contortus strains, a critical need exists to develop 

alternative control strategies.  Parasite-resistant STC sheep develop a strong Th2 response 

and display preferential alternative activation of macrophages in response to infective L3 

in vitro, a hypothesis was developed whereby IL-13 has larval paralytic activity.  The 

objectives of these experiments were to understand the direct effects of IL-13 on H. 

contortus L3 and how it may contribute to clearance of H. contortus in resistant sheep.  

Understanding natural mechanisms associated with resistance to H. contortus are 

essential to develop of advanced therapeutics.   

Materials and Methods 

Inhibition assays 

  To determine the effect of IL-13 on larval morbidity, IL-13 was inhibited in 

CD14
+
 and H. contortus L3 co-cultures using αIL-13 mAb (0.1 μg/mL). Cultures were 

incubated for 9 hr at 37°C.  Motility and ATP were measured as outlined in the common 

methodologies section of this manuscript. To further validate paralytic activity of IL-13, 

CD14
+
 cell culture supernatant was collected after stimulation with crude larval antigen 

(HcLA) for 18hr at 37°C.  Supernatant was then added to 100 H. contortus L3 and 

incubated at 37°C for 9 hr.  Larval motility was assessed after culture using Wormlab
TM
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Software, measuring speed and distance.  To determine if rIL-13 could rescue 

susceptibility, rIL-13 (1μg/mL) was added to CD14
+
 cells with L3 and incubated for 9 hr 

at 37°C.  Again, motility and ATP were measured. 

Interleukin-13 protein quantification  

 Culture supernatant was plated in pre-coated ovine-specific IL-13 ELISA 

(Genorise Scientific, Berwyn, PA) plates and protein quantification was performed 

according to manufacturer protocol.  Briefly, 100 μl of culture supernatant was plated in 

triplicate and incubated for 1 hr at room temperature (RT).  Liquid was aspirated from 

each well and washed before adding 100 μl biotinylated detection antibody to each well 

and incubated for 1 hr at RT.  Again, solution was aspirated from each well and washed 

twice before adding100 μl horseradish peroxidase (HRP) conjugate was added to each 

well, incubating for 20 min.  Following two washes, 100 μl of substrate reagent was 

added to each well, incubated for 20 min protected from light, before adding 50 μl stop 

solution to each well.  Optical density was read at 450nm and 540nm for wavelength 

correction.   Assay detection range of 7-500 pg/ml. 

Larval antigen preparation 

 Crude larval antigen was prepared by homogenization of one mL centrifuged 

pellet of H. contortus L3 on ice using a tissue homogenizer.  Lysate was centrifuged at 

15,000 x g at 4°C for 1 hour.  Supernatant was removed and filtered through a 0.22 μm 

filter to sterilize.  Protein was determined using micro-BCA assay (Pierce, Rockford, IL).  

Protease inhibitor cocktail (Sigma Aldrich, St. Louis, MO) was added at a rate of 1 μL 

cocktail per μg of protein. Sterile H. contortus crude larval antigen (HcLA) was aliquoted 

into 1.5 mL microcentrifuge tubes and stored at -80°C until use in experiments. 
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Fluorescent localization of interleukin-13 

 Interaction of IL-13 with L3 was analyzed using fluorescent imaging.  ReadiLink 

594/610 Ab labeling kit (Biorad Laboratories, Hercules, CA) was used to label rIL-13 

(Kingfisher Biotech, St. Paul, MN) according to manufacturer’s protocol.  Larvae were 

incubated with or without 1μg/mL labeled rIL-13 for 6 hr at 37°C.  Larvae were fixed to 

a slide by loading a Cytospin chamber with 100 µL L3 suspension and concentrated onto 

a microscope slide using Cytopsin 4 (Thermo Scientific) and mounted with DAPI 

Fluoromount-G (Southern Biotech, Birmingham, AB).  Images were obtained on Zeiss 

Axio Imager M1 (Oberkochen, Germany) fluorescent microscope, using Cy5 filter cube.  

Micrographs were taken with Axiocam Mrc5 microscope camera (Oberkochen, 

Germany) mounted on the Imager M1.  Composite images from fluorescence were 

overlaid using Zeiss software. 

Statistical analysis 

 Data were analyzed using SigmaPlot software (Systat Software).  Experiments in 

Figure 1 were analyzed with a one-way ANOVA for mean comparison. The Main effects 

of breed and treatment were compared in Figure 2 by two-way ANOVA using the Holm-

Sidak method for mean comparison. Significance was accepted at P < 0.05.  

Results 

Larval motility following treatment with recombinant interleukin-13 

 Larval motility was tracked following incubation with rIL-13 or levamisole 

(LEV), a known paralytic chemotherapeutic, and compared to motility of untreated 

control L3.  When treated with rIL-13 larval speed (28 μm/s) was not significantly 
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different from LEV treated larvae (23 μm/s), whereas both rIL-13 and LEV significantly 

reduced larval speed from untreated control (94 μm/s) (P < 0.001) (Figure 1a).  Straight-

line distance traveled by larvae was also significantly reduced when treated with rIL-13 

(7.5 μm) as compared to control (27 μm), but was higher than LEV-treated larvae (1.8 

μm) (P < 0.05) (Figure 1a).  Larval morbidity was unaffected by treatment with either 

rIL-13 (0.047 μM ATP) or LEV (0.043 μM ATP) compared to untreated control L3 (0.05 

μM), as measured by ATP concentration (Figure 1c). 

 To confirm the role of IL-13 inhibiting larval motility, L3 were treated with 

cytokines IL-4 and IFNγ to compare to rIL-13 treated larvae.  No differences were 

observed in speed or distance when L3 were treated with IFNγ or IL-4, compared to 

control untreated L3 (Figure 1a).  To confirm IL-13 is paralytic and not inducing larval 

morbidity, larval ATP was measured following each treatment and no differences were 

observed compared to untreated control L3 (Figure 1b).  Furthermore, these results were 

not concentration dependent, as no differences were observed between concentrations of 

rIL-13, IL-4 and IFNγ using 10-fold dilutions from 0.01 to 1 μg/ml (Figure 1c).  

Together, these data suggest that cytokine IL-13, specifically, may have a direct effect on 

L3, which is independent of cellular mechanisms and not due to cytokine “stickiness.” 

Role of IL-13 in monocyte-larval interaction 

 To understand the contribution of IL-13 from monocytes on L3 in culture, IL-13 

was blocked using a monoclonal antibody (mAb) anti-IL-13 (αIL-13).  Monocytes from 

both breeds were incubated with αIL-13 when L3 were added to culture and incubated for 

9 hr.  Larvae cultured with monocytes treated with αIL-13 (0.13 μM ATP) had 

significantly higher ATP than L3 cultured with STC-derived monocytes alone (0.07 μM 
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ATP), however αIL-13 treated monocytes were able to induced larval morbidity below 

untreated control L3 (0.21 μM ATP) (P < 0.001) (Figure 2a).  No differences were 

observed between SUF-derived monocytes (0.13 μM ATP) and SUF-derived monocytes 

treated with αIL-13 (0.12 μM ATP), however both groups were significantly lower than 

untreated control larvae (0.21 μM ATP) (P < 0.001) (Figure 2a). Blocking IL-13 

significantly increased larval speed (STC: 89 μm/s; SUF: 91 μm/s) compared to L3 

treated with monocytes in media from either breed (STC: 34 μm/s; SUF: 44 μm/s) (P < 

0.001) (Figure 2b), consistent with previous findings.  Effects on straight-line distance 

were similar, where αIL-13 of cells significantly increased motility (STC: 27 μm/s; SUF 

33 μm/s), compared to L3 cultured with monocytes in media alone (STC: 8 μm; SUF: 20 

μm) (P < 0.001) (Figure 2b). These data suggest a role of IL-13 in monocyte effector 

activity.  

 Due to the observed effects of αIL-13 it was hypothesized that additional IL-13 

could enhance effector function of SUF-derived monocytes.  To determine the effects of 

IL-13 on monocytes activity, rIL-13 was added to STC- and SUF-derived monocytes and 

incubated overnight before adding L3 to culture. Larval morbidity was not enhanced by 

addition of rIL-13 in monocyte cell culture from either breed, as ATP was not reduced to 

levels comparable to L3 cultured with STC- or SUF-derived monocytes in media alone 

(Figure 2a).  Furthermore, larval speed following addition of rIL-13 cytokine to STC- or 

SUF-derived monocytes was significantly higher (STC: 52 μm/s; SUF: 68 μm/s), as was 

straight-line distance (STC: 16 μm/s; SUF: 21 μm/s) when compared to L3 cultured with 

monocytes alone (STC: 34 μm/s, 8 μm; SUF: 44 μm/s, 20 μm) (P < 0.001) (Figure 2b), 

though motility was still decreased from untreated controls (130 μm/s; 30 μm) (P < 
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0.001) (Figure 2b). These data suggest that IL-13 does not heighten monocyte effector 

function against L3 in vitro. 

 To quantify IL-13 produced by monocytes, ovine-specific IL-13 ELISA was 

performed after culture of STC-and SUF-derived monocytes with or without L3 for 9 

hours. No differences were observed in IL-13 production between breeds (STC: 13 

pg/ml; SUF: 14 pg/ml) (Figure 2c).  Interestingly, both STC- and SUF-derived cells 

significantly reduced detectable IL-13 production with L3 in culture (STC: 6 pg/ml; SUF: 

7 pg/ml), and IL-13 was not significantly different between breeds.   

 To further understand monocyte dynamics in culture with L3, and to determine if 

monocytes are secreting factors to inhibit larval motility, monocytes from both breeds 

were stimulated with Haemonchus contortus crude larval antigen (HcLA) overnight.  

Larvae were then treated with supernatant from monocytes in media or monocytes treated 

with HcLA and incubuated for 9 hours before measuring larval motility.  Media from 

monocyte cell culture from either breed reduced larval speed (STC: 46 μm/s; SUF: 38 

μm/s) compared to untreated L3 (54 μm/s) (P < 0.05) (Figure 2d), however no 

differences were observed in straight-line distance compared to control L3 (Figure 2d).  

Larvae treated with supernatant from STC-derived monocytes cultured with HcLA had 

the greatest reduction in speed (28 μm/s) (P < 0 .05) compared to all other treatment 

groups (Figure 2d).  These data suggest monocytes produce factors capable of inhibiting 

larval motility, similar to that observed by IL-13 alone.  

 Because IL-13 production by monocytes was significantly reduced when L3 were 

in culture, yet monocytes secreted factors able to reduce larval motility, it was 
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hypothesized that L3 were interacting with IL-13 in such a way as to neutralize its 

detection with ELISAs. Therefore, larvae were treated with or without fluorescently 

labeled-rIL-13 overnight and imaged to determine if IL-13 localized on L3.   Imaging 

revealed IL-13 is present inside L3 (Figure 2e), suggesting IL-13 may be ingested by L3.  

These data support the mechanism of IL-13 acting as a paralytic, while IL-13 is reduced 

in cell culture medium with L3 present.   

Discussion   

 Parasites secrete inhibitory factors or cytokine-mimics to modulate host immune 

response (7).  However, little is known about whether cytokines can direct their effects 

against parasites, either in vivo or in vitro.  Due to the nature of IL-13 exerting effects on 

both immune and non-immune cells, we hypothesized that this critical Th2 cytokine may 

have an additional anti-parasitic role that can directly interact in an inhibitory manner 

with L3.  Culturing L3 with IL-13 in vitro demonstrated paralytic properties of IL-13 

against L3, reducing overall motility, but did not affect larval morbidity when L3 were 

cultured with IL-13 in the absence of cells. Additional cytokines such as IL-4, another 

key Th2 cytokine, and IFNγ, an opposing Th1 related cytokine, were used to eliminate 

the possibility that observed effects of IL-13 were due to cytokine stickiness and 

therefore, specific to IL-13. Furthermore, these data suggest a previously unknown 

interaction of IL-13 directly with L3 and thereby having multiple, complimentary roles in 

parasite resistance in the host.  

 Studies have demonstrated macrophage adherence to N. brasiliensis larvae in 

vitro, inducing larval killing, where blocking IL-13 reduced larvicidal activity of 

macrophages (8).  In our current study, blocking IL-13 in cell culture media with αIL-13 
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had the greatest effect on STC-derived monocytes, which impaired cell effector 

mechanisms against L3.  Though statistical difference was observed, αIL-13 had minor 

effects on SUF-derived monocyte effector function.   While blocking IL-13 had 

significant effects on cellular activity against L3, larval morbidity was not entirely 

dependent on IL-13, as αIL-13-treated monocytes were still capable of reducing larval 

morbidity compared to untreated control L3.  These data suggest that while IL-13 alone 

does not contribute to larval morbidity, its absence prevents full monocyte-driven 

morbidity and therefore, other monocyte-derived factors must be involved in larval 

morbidity.  Evidence using S. stericoralis in mice demonstrated a role of macrophages 

and neutrophils surrounding larvae in vitro, but larval killing relied on soluble factors (9). 

Similar to our study, these data support independent mediators play a role in parasite 

resistance.  Overall, these experiments support the importance of IL-13 in cell culture, 

where blocking IL-13 in both STC- and SUF-derived monocyte culture impaired cell-

mediated reduction in larval motility.  Again, these differences were strongest in larvae 

cultured with STC-derived monocytes, highlighting breed differences and heightened 

ability of STC to mediate L3.  

 Due to increased motility and a decrease in monocyte-driven morbidity when Il-

13 was blocked in cell culture, we hypothesized that IL-13 could rescue susceptibility in 

SUF-derived monocytes.  Surprisingly, however, supplementation of cell culture media 

with rIL-13 did not have a positive effect on larval morbidity or function to reduce larval 

motility as well as untreated monocytes from either breed.  Thus, no additive effects were 

observed with addition of exogenous IL-13 in this model.  In a mouse model, IL-4 knock 

out (IL-4
-/-

) mice were able to clear N. brasiliensis infection, whereas IL-13
-/-

 mice had 
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higher worm burdens and unable to clear infection (10).  When IL-13
-/-

 mice were given 

exogenous IL-13, worm burden was significantly reduced due to effects on goblet cell 

hyperplasia in the gut (10). Therefore, while administration with exogenous IL-13 did not 

enhance monocyte effector function in vitro, it is reasonable to hypothesize that 

exogenous IL-13 may have a greater capacity to rescue susceptibility in vivo, contributing 

to non-immune intestinal cells.  

 In our present study, we showed IL-13 had direct effects on H. contortus L3 in 

vitro, independent of cellular immunity.  IL-13 is a potent inducer of larval paralysis, 

similar to that of some current anthelmintics, which also act as paralytic agents and do 

not have larvicidal properties.  Paralysis prevents larval establishment and larvae are 

more susceptible to immune modulated clearance mechanisms induced in the local 

environment.  Our study also demonstrated monocyte contribution to larval morbidity, 

which was independent of IL-13 and greater in STC.  However, monocyte-derived IL-13, 

and not exogenous rIL-13, was necessary for full monocyte effector function in STC.  

These differences were emphasized in STC compared to SUF, where SUF monocytes 

were not affected by either blocking IL-13 or addition of IL-13 to cell culture media.   

Together, these data support a cellular-derived role of IL-13 in vitro and an 

independent, direct role of IL-13 against H. contortus L3.  Furthermore, these data 

suggest an enhanced ability of STC-derived monocytes to limit L3 motility and increased 

capacity to increase larval morbidity, compared to SUF, which may be reflective of 

mechanisms of STC natural resistant phenotype.  While, these data do not implicitly 

demonstrate monocyte-IL-13-larval interactions in either STC or SUF sheep in vivo, 

previous studies have shown STC increase IL-13 gene expression during H. contortus 
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infection (11) and increase circulating white blood cells (12).  Thus, it is not unreasonable 

to associate our observed differences in IL-13-monocyte action with differences in 

parasite resistance between STC and SUF.  Nevertheless, these data demonstrate a 

previously unknown effect of IL-13 and the potential exists for these data to be translated 

into development of future chemotherapeutic treatments or therapeutics in animals 

susceptible to H. contortus.  
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Figures 

 

Figure 1: Larval motility measured after cytokine treatment in vitro.   

Larvae were treated with 0.1 μg/ml ovine recombinant IL-13 (rIL-13), IL-4 or IFNγ 

(IFNg), or anthelmintic levamisole (LEV) and cultured in 24-well plates for 9 hrs at 37°C 

5% CO2.  Treatments were plated in triplicate. (a) Larval speed and straight-line distance 

was measured using WormLab
TM

 tracking software, over 50 frames of video per well. (b) 

Larval ATP was measured across each treatment group. Data represents the average of 
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three independent experiments.  (c) Larvae were treated with 0.1, 0.01 or 0.001μg/ml of 

rIL-13, IL-4 or IFNγ and cultured for 9 hours at 9 hrs at 37°C 5% CO2. Treatments were 

plated in triplicate. Videos were recorded and motility was measured as a function of 

speed and straight-line distance, using WormLab
TM

 software over 50 frames of video per 

well.  Error bars represent SEM.  Different letter indicate significant differences; P < 

0.001. * P < 0.05. 
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Figure 2: Role of IL-13 in monocyte-larval interaction.   

(a) Larvae were cultured with monocytes (CD14+) from St. Croix (STC) or Suffolk 

(SUF) sheep either in media or monocytes treated with 0.1 μg/ml anti-IL-13 monoclonal 

antibody (αIL-13) in 24-well plates for 9 hrs at 37°C 5% CO2 before measuring larval 

ATP. (b) Larvae were treated with monocytes cultured either with media, rIL-13 or αIL-

13 (0.1 μg/ml) for 9 hrs at 37°C 5% CO2. Untreated (Untrt) L3 were cultured in media 

and negative control L3 were culture in media supplemented with rIL-13 (0.1 μg/ml).  

Larval speed and straight-line distance was measured using WormLab
TM

 tracking 

software, over 50 frames of video per well. (c) Culture supernatant was collected from 

monocyte cell culture in media or treated with L3 and IL-13 quantification was 

performed using an ovine-specific ELISA. (d) Larvae were treated with supernatant from 

monocytes cultured with or without H. contortus crude larval antigen (HcLA) (20 μg/ml) 

(e) 
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and cultured for 9 hours before measuring motility using WormLab
TM

 tracking software, 

over 50 frames of video per well. (e) Untreated L3 and L3 treated with fluorescently 

labeled IL-13 were imaged at 20x in brightfield Cy5 (red) and DAPI (blue) then overlaid.  

All treatments were performed in triplicate. Error bars represent SEM.  Different letter 

indicate significant differences; P < 0.001. 
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Chapter 5: Discussion 

 Together, these studies aimed to characterize ovine monocytes in response to H. 

contortus L3 and to understand pleiotropic effects of cytokine IL-13, as both monocytes 

and IL-13 are critical in development of a protective Th2 type response associated with 

natural resistance observed in St. Croix sheep. Monocytes produce IL-13 and respond to 

IL-13, making it a potent modulator of monocyte function.  Therefore, positive feedback 

of IL-13 was hypothesized to be key in monocyte activation status. Despite the 

requirement of IL-13 in many models of helminth clearance, direct larvae-to-cytokine 

interaction has not previously been described or recorded. 

In mice, infection with nematodes H. polygyrus, T. spiralis or T. muris clearance 

require IL-4, whereas expulsion of N. brasiliensis is mediated by IL-13, and does not 

require IL-4 (1).  Both IL-4 and IL-13 increased gut hypercontractility in response to 

nerve stimulation in mice infected with H. polygyrus or N. brasiliensis, however, IL-13 

treatment had a greater effect on nerve response than IL-4 (2).  Additionally, IL-13, but 

not IL-4, increased contractility in response to acetylcholine, involving enteric nerves in 

N. brasiliensis infected mice (2).  Together, these data highlight functional differences in 

cytokine-mediated clearance and may be parasite specific.  However, the individual 

contribution of IL-4 and IL-13 have not been evaluated in the context of H. contortus in 

sheep.  Thus, the relative contribution of each cytokine specific to H. contortus clearance 

remains unclear. 

 Suffolk derived monocytes did not alter response to IL-13 inhibition and do not 

generate an inhibitory response to L3 as great as St. Croix sheep derived monocytes.  
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However, these data may not account for differences in vivo, such as signaling and 

cellular recruitment, either through the production of IL-13 or through receptor signaling 

pathways.  Previous research has demonstrated that St. Croix sheep have increased 

cellular influx to abomasal tissues during H. contortus infection (3,4) and increased IL-13 

expression by STC-derived PBMC (5).  Therefore, IL-13 signaling pathways may be 

dampened in Suffolk sheep and may contribute to reduced ability of Suffolk sheep to 

mount full host protective responses, either due to lower or delayed cellular recruitment 

to abomasal tissue.  

Despite many non-redundant functions, IL-4 and IL-13 share some biologic and 

structural homology, most notably sharing receptor IL-4rα (6).  Sharing a receptor also 

leads to competition between IL-13 and IL-4 to bind to IL-4rα, where IL-4 promotes T 

cell differentiation to Th2 cells and IL-13 promotes M2 activation and B cell class 

switching (7).  Increased IL-4rα expression on cell surfaces also increases sensitivity to 

IL-4 and IL-13, which influences M2 differentiation (8).  Specifically, changes in IL-10 

production are linked to IL-4rα cell surface expression (8).  For example, M1 

macrophages produce IL-10, but M2 macrophages produce more (9) and thus, influence 

sensitivity towards IL-13 polarization, which depends on timing and amount of cytokine 

in local tissues.  

Expression of IL-10 was significantly higher in STC-derived monocytes in the 

current study, and occurred earlier compared to SUF-derived monocytes.  Previous 

studies indicated STC-derived PBMC up-regulated IL-4rα in response to H. contortus L3, 

compared to SUF-derived PBMC (5), in accordance with data from the current study.  In 

murine models, T. spiralis required IL-4rα expression on non-bone marrow-derived cells 
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for parasite clearance, whereas mice infected with N. brasiliensis did not (10).  Therefore, 

expression of IL-4rα on immune and non-immune cells could also account for observed 

differences in IL-13 activity and response to helminth infection. However, the effects of 

IL-10 and IL-4rα expression on IL-13 signaling were beyond the scope of these 

experiments and have yet to be explored in context of H. contortus. Thus, differences 

between St. Croix and Suffolk IL-10 signaling, up-stream of IL-13, could account for 

differences in IL-4rα signaling through IL-13-mediated pathways of larval expulsion.   

 As spread of anthelmintic resistance increases globally, advanced therapeutics are 

necessary to mediate H. contortus in small ruminant production.  Data gathered in these 

studies indicate IL-13 is a potent inducer of larval paralysis similar to effects observed 

using levamisole, a known chemotherapeutic paralytic.  Levamisole is a nicotinic agonist, 

which disrupts the neuromuscular system by binding to nicotinic acetylcholine receptors 

necessary for neurotransmitters in H. contortus locomotion (11).  While immunologic 

mechanisms of IL-13 have been well-documented in context of helminth infection, 

mechanisms of IL-13 interaction with L3 are not yet understood.  

While IL-13 provides protection against helminth parasites through immune and 

non-immune mechanisms, triggering IL-13 is attributed to disease pathologies in atopic 

dermatitis, allergic rhinitis, and asthma (12,13). Activated mast cells and Th2 cells 

release IL-13, resulting in degranulation of accumulated eosinophils and lead to airway 

constriction in eosinophilic esophagitis, causing difficulty swallowing (14).  Similarly, 

IL-13 expression is increased in sputum of allergen challenged mice and in sputum from 

asthmatics causing restrictive airway hyper-responsiveness (12). In the context of asthma, 

neutralization of IL-13 with anti-IL-13 antibodies reduced pathologies in both mouse and 
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sheep models of airway hypersensitivity, similar to mice deficient in IL-13 (15,16).  

Thus, administration of IL-13 should be carefully considered and localized towards 

abomasal tissue, in sheep. 

Despite breed differences in monocyte-mediated responses and the capacity of 

monocytes to secrete factors inhibitory to larval motility, specific differences in signaling 

between St. Croix sheep and Suffolk sheep remain unclear.   Data from the current 

studies suggest Suffolk sheep monocytes are not completely impaired, as Suffolk sheep-

derived monocytes expressed genes associated with Th2 type responses and can generate 

a response to L3, though reduced, occurring later when compared to St. Croix sheep.  

Measuring gene expression over 6 to 12 hours of culture was aimed to determine 

differences in timing of gene expression, however these data failed to elucidate 

differences in key markers.  Nevertheless, previous studies have shown abomasal tissue 

from St. Croix sheep had greater expression of monocyte chemo-attractant protein-1 

(MCP1), Arg1 and IL-4 when compared to susceptible, wool lambs infected with H. 

contortus (17). Together, these data support a role for monocyte-mediated mechanisms of 

resistance. 
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