
Graduate Theses, Dissertations, and Problem Reports

2010

The design of an evolutionary algorithm for artificial immune The design of an evolutionary algorithm for artificial immune

system based failure detector generation and optimization system based failure detector generation and optimization

Jennifer N. Davis
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Davis, Jennifer N., "The design of an evolutionary algorithm for artificial immune system based failure
detector generation and optimization" (2010). Graduate Theses, Dissertations, and Problem Reports.
2163.
https://researchrepository.wvu.edu/etd/2163

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F2163&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/2163?utm_source=researchrepository.wvu.edu%2Fetd%2F2163&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

The Design of an Evolutionary Algorithm for Artificial Immune System Based
Failure Detector Generation and Optimization

by

Jennifer N. Davis

Thesis submitted to the College of Engineering and Mineral Resources at
West Virginia University in partial fulfillment of the requirements for the

degree of

Master of Science

in

Mechanical Engineering

Approved by:

Dr. Larry E. Banta

Dr. Powsiri Klinkhachorn

Dr. Mario G. Perhinschi, Committee Chairperson

Department of Mechanical and Aerospace Engineering

Morgantown, West Virginia

2010

Keywords: Evolutionary Algorithm, Artificial Immune System, Failure
Detection and Identification

 The development of an evolutionary algorithm and accompanying software for the
generation and optimization of artificial immune system-based failure detectors is presented
in this thesis. These detectors use the Artificial Immune System-based negative selection
strategy. The utility is a part of an integrated set of methodologies for the detection,
identification, and evaluation of a wide variety of aircraft sub-system abnormal conditions.
The evolutionary algorithm and accompanying software discussed in this document is
concerned with the creation, optimization, and testing of failure detectors based on the
negative selection strategy. A preliminary phase consists of processing data from flight tests
for “self” definition including normalization, duplicate removal, and clustering. A first
phase of the evolutionary algorithm produces, through an iterative process, a set of detectors
that do not overlap with the “self” and achieve a prescribed level of coverage of the “non-
self.” A second phase consists of a classic evolutionary algorithm that attempts to optimize
the number of detectors, overlapping between detectors, and coverage of the “non-self”
while maintaining no overlapping with the “self.” For this second phase, the initial
population is composed of sets of detectors, called individuals, obtained in the first phase.
Specific genetic operators have been defined to accommodate different detector shapes,
such as hyper-rectangles, hyper-spheres, hyper-ellipsoids and hyper-rotational-ellipsoids.
The output of this evolutionary algorithm consists of an optimized set of detectors which is
intended for later use as a part of a detection, identification, and evaluation scheme for
aircraft sub-system failure.
 An interactive design environment has been developed in MATLAB that relies on an
advanced user-friendly graphical interface and on a substantial library of alternative
algorithms to allow maximum flexibility and effectiveness in the design of detector sets for
artificial immune system-based abnormal condition detection. This user interface is
designed for use with Windows and MATLAB 7.6.0, although measures have been taken to
maintain compatibility with MATLAB version 7.0.4 and higher, with limited interface
compatibility. This interface may also be used with UNIX versions of MATLAB, version
7.0.4 or higher.
 The results obtained show the feasibility of optimizing the various shapes in 2, 3, and
6 dimensions. Hyper-spheres are generally faster than the other three shapes, though they
do not necessarily exhibit the best detection results. Hyper-ellipsoids and hyper-rotational-
ellipsoids generally show somewhat better detection performance than hyper-spheres, but at
a higher calculation cost. Calculation time for optimization of hyper-rectangles seems to be
highly susceptible to dimensionality, taking increasingly long in higher dimensions. In
addition, hyper-rectangles tend to need a higher number of detectors to achieve adequate
coverage of the solution space, though they exhibit very little overlapping among detectors.
However, hyper-rectangles are consistently and considerably quicker to calculate detection
for than the other shapes, which may make them a promising candidate for online detection
schemes.

iii

Dedication

To my advisor, Mario Perhinschi, the best advisor a student could ask for, for having more faith in
me than I had in myself and more patience than any person has a right to.

To my committee, for all their input and expertise.

To my family, for their love and support, always and continuously.

And to my love, Brenton Wilburn, for being there through it all.

iv

Acknowledgements

 This research effort was sponsored by NASA Aviation Safety Program through a grant
within the Integrated Resilient Aircraft Control project and by the NASA West Virginia Space Grant
Consortium through a grant within the Research Seed Grant program.

v

Table of Contents
Abstract ... i
Dedication ... iii
Acknowledgements .. iv

Table of Contents ... v

List of Figures ... viii
List of Tables .. xiii
List of Symbols ... xiv

1 Introduction... 1

2 Literature Review .. 3

2.1 Reasons for Failure Detection, Identification, and Evaluation .. 3

2.2 Artificial Immune System for Fault Detection ... 3

2.3 Evolutionary Algorithm for Detection Rule Optimization .. 7

3 General Architecture of Evolutionary Algorithm for Failure Detector Generation and Optimization 10

3.1 Problem Definition ... 10

3.2 Definitions .. 10

3.3 Algorithm Architecture .. 11

3.4 Pertinent Mathematical Techniques ... 12

3.4.1 Distance calculations .. 12

3.4.2 Volume Estimation ... 12

3.4.3 Bisection Method .. 13

4 Description of Evolutionary Algorithm Modules ... 15

4.1 Preprocessing ... 15

4.1.1 Normalizing Data .. 15

4.1.2 Eliminating Duplicates ... 15

4.2 Clustering .. 15

4.2.1 Clustering Algorithms... 16

4.2.2 Clustering with Hyper-Spheres ... 16

4.2.3 Clustering with Hyper-Rectangles .. 16

4.3 Phase 1—Generation of Detectors .. 17

4.3.1 Detector Generation with Hyper-Spheres .. 17

4.3.2 Detector Generation with Hyper-Ellipsoids and Hyper-Rotational-Ellipsoids................. 19

4.3.3 Detector Generation with Hyper-Rectangles ... 19

4.4 Phase 2—Optimization of Detectors .. 20

4.4.1 Evolutionary Algorithm Layout .. 20

4.4.2 Representation of the Individual .. 21

4.4.3 Genetic Operators .. 22

4.4.4 Rating the Population ... 29

4.4.5 Selecting the New Population ... 30

5 Description of Interactive Utility: West Virginia University Immunity-Based Failure Detector
Optimization and Testing .. 32

5.1 Compatibility .. 32

5.2 Getting Started ... 32

vi

5.2.1 Accessing the Help Guide ... 32

5.2.2 Data Needs ... 32

5.3 Processing Data ... 32

5.4 Clustering Data .. 37

5.5 Generating Detectors and Performing Optimization .. 42

5.6 Failure Testing ... 51

5.7 Continuing Optimization and Other Features .. 52

5.7.1 Continuing Optimization ... 52

5.7.2 Options Menu and Parallel Computation ... 53

5.7.3 Displaying Results ... 54

5.7.4 Positive Selection Detector Generation .. 56

5.7.5 Negative Selection Detector Generation ... 56

5.7.6 Data Merging ... 57

6 Results Yielded Using the West Virginia University Immunity-Based Failure Detector Optimization and
Testing Utility .. 58

6.1 Explanation of Failure Detection and Identification Scheme .. 58

6.2 2-Dimensional Example ... 59

6.2.1 Spherical ... 59

6.2.2 Ellipsoidal ... 62

6.2.3 Rotational Ellipsoidal ... 65

6.2.4 Rectanglar ... 68

6.2.5 Shape Comparison .. 71

6.3 3-Dimensional Example with Detection Results ... 72

6.3.1 Clustering of the Self .. 72

6.3.2 Hyper-Spheres ... 74

6.3.3 Hyper-Ellipsoids .. 77

6.3.4 Hyper-Rotational Ellipsoids .. 80

6.3.5 Hyper-Rectangles .. 84

6.3.6 Comparison of Results Among Shapes ... 87

6.4 6-Dimensional Example with Detection Results ... 87

7 Conclusions and Recommendations ... 91

Bibliography ... 92

Appendices ... 97

A Additional Results Figures and Tables .. A-1

B IFDOT Utility User’s Guide ... B-1

Table of Contents ..B-1

Introduction ..B-2

Chapter 1—Selecting Identifiers ..B-5

Chapter 2—Data Processing ..B-6

2.1 Processing with Normalization Grace Percentage ...B-6

2.2 Processing with Normalization Limits Specified From a File ... B-10

2.3 Data Processing with Normalization Limits Specified Manually .. B-15

Chapter 3—Clustering Data .. B-20

3.1 Cluster for Self Definition .. B-20

vii

3.1.1 Clustering with Hyper-Spheres Using Number-Imposed Clustering Method (M1) B-20

3.1.2 Clustering with Hyper-Spheres Using Space-Optimized Clustering Method (M2) . B-25

3.1.3 Clustering with Hyper-Rectangles ... B-31

3.2 Generation of Positive Selection Detectors ... B-36

3.2.1 Positive Selection Hyper-Sphere Detector Generation Using Number-Imposed
Clustering Method (M1) ... B-36

3.2.2 Positive Selection Hyper-Sphere Detector Generation Using Space-Optimized
Clustering Method (M2) ... B-42

3.2.3 Positive Selection Hyper-Rectangle Detector Generation ... B-47

Chapter 4—Creating Negative Selection Detectors and Optimization with Genetic Algorithm B-52

4.1 Creating a Single Detector Set .. B-52

4.1.1 Creating Hyper-Sphere Detectors with NSA-RV ... B-52

4.1.2 Creating Hyper-Rectangle Detectors with NSA-RV .. B-57

4.1.3 Creating Hyper-Sphere Detectors with Enhanced NSA-RV .. B-62

4.2 Detector Optimization .. B-67

4.3 Continuing Optimization .. B-73

4.4 Displaying Results .. B-78

Chapter 5—Running Detection .. B-81

5.1 Negative Selection Detectors ... B-81

5.2 Positive Selection Detectors ... B-83

Chapter 6—Merging Data Files .. B-86

6.1 Merging Raw Data ... B-86

6.2 Merging Processed Data ... B-89

6.3 Merging Clustered Data .. B-92

6.4 Merging Positive Selection Detectors ... B-95

viii

List of Figures

Figure 2.1—Artificial Immune System-Based Abnormal Condition Detection 5

Figure 2.2—Block Diagram of an Evolutionary Algorithm .. 8

Figure 3.1—Illustration of a Typical Individual .. 11

Figure 3.2—Flowchart of Optimization Processes .. 11

Figure 4.1—Flowchart of Detector Generation Using NSA-RV ... 18

Figure 4.2—Flowchart of Detector Generation Using the Enhanced NSA-RV 19

Figure 4.3—Flowchart of Detector Generation for Hyper-Rectangles... 20

Figure 4.4—Flowchart of Evolutionary Algorithm .. 21

Figure 4.5—Flowchart of the Mutation Genetic Operator ... 22

Figure 4.6—Diagram of the Mutation Genetic Operator ... 23

Figure 4.7—Flowchart of Crossover Genetic Operator .. 25

Figure 4.8—Diagram of the Crossover Genetic Operator .. 25

Figure 4.9—Flowchart of the Gene Addition Genetic Operator ... 26

Figure 4.10—Diagram of the Gene Addition Genetic Operator ... 27

Figure 4.11—Flowchart of Detector Gene Removal Genetic Operator .. 29

Figure 4.12—Diagram of the Gene Removal Genetic Operator ... 29

Figure 4.13—Flowchart of the Roulette Wheel Selection Algorithm ... 31

Figure 5.1—Opening Screen of the IFDOT Utility ... 33

Figure 5.2—File Loading Panel ... 33

Figure 5.3—Data Processing Menu with Options .. 34

Figure 5.4—Processing Menu for Margin Normalization ... 35

Figure 5.5—Data Processing Using File-Specified Normalization Limits .. 36

Figure 5.6—Data Processing Using Manually Specified Normalization Limits 36

Figure 5.7—Clustering Method Menus .. 38

Figure 5.8—Number-Imposed Clustering Method .. 40

Figure 5.9—Hyper-Spheres Space-Limiting Clustering Method .. 40

Figure 5.10—Hyper-Rectangles Clustering Method ... 40

Figure 5.11—Detector Optimization Main Menu with Algorithm Options .. 43

Figure 5.12—NSA-R Detector Generation Method .. 44

Figure 5.13—Enhanced NSA-R Detector Generation Method ... 45

Figure 5.14—Performance Index Parameters ... 47

Figure 5.15—Crossover Parameters ... 47

Figure 5.16—Gene Addition Parameters ... 48

Figure 5.17—Gene Removal Parameters ... 48

Figure 5.18—Genetic Algorithm Parameters .. 49

Figure 5.19—Mutation Parameters for Hyper-Spheres and Hyper-Rectangles 50

Figure 5.20—Mutation Parameters for Hyper-Ellipsoids and Hyper-Rotational-Ellipsoids 50

Figure 5.21—Testing Menu with Results ... 52

Figure 5.22—Options Menu .. 53

Figure 5.23—Slave Calculation Menu... 54

Figure 5.24—Results Display for 2-Dimensional Data Trial .. 55

Figure 5.25—Results Display for Higher-Dimensional Data Trial .. 56

Figure 6.1—Definition of Flight Envelope Points ... 59

Figure 6.2—Best Individual in 2-D Hyper-Spheres Trial 1 ... 61

Figure 6.3—Performance Indices for 2-D Hyper-Spheres Trial 1 ... 61

ix

Figure 6.4—Best Individual in 2-D Hyper-Spheres Trial 2 ... 61

Figure 6.5—Performance Indices for 2-D Hyper-Spheres Trial 2 ... 61

Figure 6.6—Best Individual in 2-D Hyper-Spheres Trial 3 ... 62

Figure 6.7—Performance Indices for 2-D Hyper-Spheres Trial 3 ... 62

Figure 6.8—Best Individual in 2-D Hyper-Ellipsoids Trial 1 ... 64

Figure 6.9—Performance Indices for 2-D Hyper-Ellipsoids Trial 1 ... 64

Figure 6.10—Best Individual in 2-D Hyper-Ellipsoids Trial 2 ... 64

Figure 6.11—Performance Indices for 2-D Hyper-Ellipsoids Trial 2 ... 64

Figure 6.12—Best Individual in 2-D Hyper-Ellipsoids Trial 3 ... 65

Figure 6.13—Performance Indices for 2-D Hyper-Ellipsoids Trial 3 ... 65

Figure 6.14—Best Individual in 2-D Hyper-Rotational-Ellipsoids Trial 1 ... 67

Figure 6.15—Performance Indices for 2-D Hyper-Rotational-Ellipsoids Trial 1 67

Figure 6.16—Best Individual in 2-D Hyper-Rotational-Ellipsoids Trial 2 ... 67

Figure 6.17—Performance Indices for 2-D Hyper-Rotational-Ellipsoids Trial 2 67

Figure 6.18—Best Individual in 2-D Hyper-Rotational-Ellipsoids Trial 3 ... 68

Figure 6.19—Performance Indices for 2-D Hyper-Rotational-Ellipsoids Trial 3 68

Figure 6.20—Best Individual in 2-D Hyper-Rectangles Trial 1 .. 70

Figure 6.21—Performance Indices for 2-D Hyper-Rectangles Trial 1 .. 70

Figure 6.22—Best Individual in 2-D Hyper-Rectangles Trial 2 .. 70

Figure 6.23—Performance Indices for 2-D Hyper-Rectangles Trial 2 .. 70

Figure 6.24—Best Individual in 2-D Hyper-Rectangles Trial 3 .. 71

Figure 6.25—Performance Indices for 2-D Hyper-Rectangles Trial 3 .. 71

Figure 6.26—Performance Indices for 3-D Hyper-Spheres Trial 1 ... 76

Figure 6.27—Performance Indices for 3-D Hyper-Spheres Trial 2 ... 76

Figure 6.28—Performance Indices for 3-D Hyper-Spheres Trial 3 ... 77

Figure 6.29—Performance Indices for 3-D Hyper-Spheres Trial 4 ... 77

Figure 6.30—Performance Indices for 3-D Hyper-Ellipsoids Trial 1 ... 80

Figure 6.31—Performance Indices for 3-D Hyper-Ellipsoids Trial 2 ... 80

Figure 6.32—Performance Indices for 3-D Hyper-Ellipsoids Trial 3 ... 80

Figure 6.33—Performance Indices for 3-D Hyper-Rotational-Ellipsoids Trial 1 83

Figure 6.34—Performance Indices for 3-D Hyper-Rotational-Ellipsoids Trial 2 83

Figure 6.35—Performance Indices for 3-D Hyper-Rotational-Ellipsoids Trial 3 83

Figure 6.36—Performance Indices for 3-D Hyper-Rectangles Trial 1 .. 86

Figure 6.37—Performance Indices for 3-D Hyper-Rectangles Trial 2 .. 86

Figure 6.38—Performance Indices for 3-D Hyper-Rectangles Trial 3 .. 86

Figure 6.39—Performance Indices for 6-D Hyper-Spheres Trial .. 89

Figure 6.40—Performance Indices for 6-D Hyper-Ellipsoids Trial .. 89

Figure 6.41—Performance Indices for 6-D Hyper-Rotational-Ellipsoids Trial 90

Figure B.1—IFDOT Main Menu ..B-3

Figure B.2—Opening Options Menu ...B-3

Figure B.3—Options Menu ...B-4

Figure B.4—Opening Help File ..B-4

Figure B.5—Help File Menu ..B-4

Figure B.6—Opening Load Raw Data Menu ..B-6

Figure B.7—Load Raw Data Menu ..B-7

Figure B.8—Load Raw Data Browser ..B-7

Figure B.9—Opening Process Raw Data Menu ...B-8

Figure B.10—Data Processing Menu for Normalization with a Grace PercentageB-8

x

Figure B.11—Data Processing with Normalization Grace Percentage in ProgressB-9

Figure B.12—Saving Data Processed with Grace Percentage Normalization B-10

Figure B.13—Opening Load Raw Data Menu ... B-11

Figure B.14—Load Raw Data Menu ... B-11

Figure B.15—Load Raw Data Browser ... B-12

Figure B.16—Opening Process Raw Data Menu .. B-13

Figure B.17—Menu for Processing Data with Normalization Limits From a File B-13

Figure B.18—Data Processing Using Normalization Limits From a File in Progress B-14

Figure B.19—Save Dialog for Data Processing with Normalization Limits From a File B-14

Figure B.20—Opening Load Raw Data Menu ... B-15

Figure B.21—Load Raw Data Menu ... B-16

Figure B.22—Load Raw Data Browser ... B-16

Figure B.23—Opening Process Raw Data Menu .. B-17

Figure B.24—Menu for Processing Data with Normalization Limits Specified Manually B-18

Figure B.25—Data Processing Using Normalization Limits Specified Manually in Progress B-18

Figure B.26—Save Dialog for Data Processing with Normalization Limits Specified Manually ... B-19

Figure B.27—Opening Load Processed Data Menu ... B-21

Figure B.28—Load Processed Data Menu ... B-21

Figure B.29—Processed Data Browser Dialog .. B-22

Figure B.30—Clustering M1 Menu .. B-23

Figure B.31—Clustering Using M1 in Progress ... B-23

Figure B.32—Clustering M1 Save Dialog ... B-24

Figure B.33—Clustering M1 2-Dimensional Results .. B-24

Figure B.34—Clustering M1 Higher-Dimensional Results .. B-25

Figure B.35—Opening Load Processed Data Menu ... B-26

Figure B.36—Load Processed Data Menu ... B-26

Figure B.37—Processed Data Browser Dialog .. B-27

Figure B.38—Clustering M2 Menu .. B-28

Figure B.39—Clustering Using M2 in Progress ... B-29

Figure B.40—Clustering M2 Save Dialog ... B-29

Figure B.41—Clustering M2 2-Dimensional Results .. B-30

Figure B.42—Clustering M2 Higher-Dimensional Results .. B-30

Figure B.43—Opening Load Processed Data Menu ... B-31

Figure B.44—Load Processed Data Menu ... B-32

Figure B.45—Processed Data Browser Dialog .. B-32

Figure B.46—Clustering Hyper-Rectangles Menu ... B-33

Figure B.47—Clustering Hyper-Rectangles in Progress ... B-34

Figure B.48—Clustering Hyper-Rectangles Save Dialog .. B-34

Figure B.49—Clustering Hyper-Rectangles 2-Dimensional Results ... B-35

Figure B.50—Clustering Hyper-Rectangles Higher-Dimensional Results ... B-35

Figure B.51—Opening Load Processed Data Menu ... B-37

Figure B.52—Load Processed Data Menu ... B-37

Figure B.53—Processed Data Browser Dialog .. B-38

Figure B.54—Opening Positive Selection Detector Generation Menu ... B-39

Figure B.55— Positive Detector M1 Menu .. B-39

Figure B.56— Positive Detector Using M1 in Progress ... B-40

Figure B.57— Positive Detector M1 Save Dialog ... B-40

Figure B.58— Positive Detector M1 2-Dimensional Results .. B-41

xi

Figure B.59— Positive Detector M1 Higher-Dimensional Results .. B-41

Figure B.60—Opening Load Processed Data Menu ... B-42

Figure B.61—Load Processed Data Menu ... B-43

Figure B.62—Processed Data Browser Dialog .. B-43

Figure B.63— Positive Detector M2 Menu .. B-44

Figure B.64— Positive Detector Using M2 in Progress ... B-45

Figure B.65— Positive Detector M2 Save Dialog ... B-45

Figure B.66— Positive Detector M2 2-Dimensional Results .. B-46

Figure B.67— Positive Detector M2 Higher-Dimensional Results .. B-46

Figure B.68—Opening Load Processed Data Menu ... B-47

Figure B.69—Load Processed Data Menu ... B-48

Figure B.70—Processed Data Browser Dialog .. B-48

Figure B.71— Positive Detector Hyper-Rectangles Menu ... B-49

Figure B.72— Positive Detector Hyper-Rectangles in Progress ... B-50

Figure B.73— Positive Detector Hyper-Rectangles Save Dialog .. B-50

Figure B.74—Positive Detector Hyper-Rectangles 2-Dimensional Results B-51

Figure B.75—Positive Detector Hyper-Rectangles Higher-Dimensional Results B-51

Figure B.76—Opening Load Clusters Menu .. B-53

Figure B.77—Load Clusters Menu .. B-53

Figure B.78—Opening Create Detectors Menu .. B-54

Figure B.79—Create Sphere Detectors Menu For Using NSA-RV .. B-54

Figure B.80—Detector Creation in Progress ... B-55

Figure B.81—Detector Creation Save Dialog .. B-55

Figure B.82—Detector Creation Results Menu For 2-D Detectors ... B-56

Figure B.83—Detector Creation Results Menu For Higher Dimensional Detectors B-56

Figure B.84—Opening Load Clusters Menu .. B-58

Figure B.85—Load Clusters Menu .. B-58

Figure B.86—Opening Create Detectors Menu .. B-59

Figure B.87—Create Rectangle Detectors Menu ... B-59

Figure B.88—Detector Creation in Progress ... B-60

Figure B.89—Detector Creation Save Dialog .. B-60

Figure B.90—Detector Creation Results Menu For 2-D Detectors ... B-61

Figure B.91—Detector Creation Results Menu For Higher Dimensional Detectors B-61

Figure B.92—Opening Load Clusters Menu .. B-63

Figure B.93—Load Clusters Menu .. B-63

Figure B.94—Opening Create Detectors Menu .. B-64

Figure B.95—Create Sphere Detectors Menu For Using Enhanced NSA-RV B-64

Figure B.96—Detector Creation in Progress ... B-65

Figure B.97—Detector Creation Save Dialog .. B-65

Figure B.98—Detector Creation Results Menu For 2-D Detectors ... B-66

Figure B.99—Detector Creation Results Menu For Higher Dimensional Detectors B-66

Figure B.100—Opening Load Clusters Menu .. B-67

Figure B.101—Load Clusters Menu .. B-68

Figure B.102—Opening Detector Optimization Menu .. B-69

Figure B.103—Detector Optimization Menu .. B-69

Figure B.104—Genetic Algorithm in Progress .. B-71

Figure B.105—Genetic Algorithm Save Dialog ... B-72

Figure B.106—Optimization Results for 2 Identifiers .. B-72

xii

Figure B.107—Optimization Results for Greater Than 2 Identifiers ... B-73

Figure B.108—Opening Load Previous Trial Data Menu .. B-74

Figure B.109—Previous Trial Data Menu .. B-74

Figure B.110—Opening Continue Optimization Menu ... B-75

Figure B.111—Continue Optimization Menu .. B-75

Figure B.112— Continue Optimization in Progress ... B-76

Figure B.113—Genetic Algorithm Save Dialog ... B-76

Figure B.114—Optimization Results for 2 Identifiers .. B-77

Figure B.115—Optimization Results for Greater Than 2 Identifiers ... B-77

Figure B.116—Opening Load Previous Trial Data Menu .. B-78

Figure B.117—Load Previous Trial Data Menu .. B-79

Figure B.118—Opening Review Results Menu .. B-79

Figure B.119—Optimization Results for 2 Identifiers .. B-80

Figure B.120—Optimization Results for Greater Than 2 Identifiers ... B-80

Figure B.121—Opening Detection Menu ... B-82

Figure B.122—Detection Menu ... B-82

Figure B.123—Detection Results for Failure Data ... B-83

Figure B.124—Detection Results for Normal Data .. B-83

Figure B.125—Opening Detection Menu ... B-84

Figure B.126—Detection Menu ... B-84

Figure B.127—Detection Results for Failure Data ... B-85

Figure B.128—Detection Results for Normal Data .. B-85

Figure B.129—Incompatible Raw Files Error Message .. B-86

Figure B.130—Opening Merge Raw Data Menu... B-87

Figure B.131—Merge Raw Data Menu ... B-87

Figure B.132—Merge Raw Data Browse .. B-88

Figure B.133—Merge Raw Data Save Dialog .. B-88

Figure B.134—Opening Merge Processed Data Menu ... B-89

Figure B.135—Merge Processed Data Menu ... B-90

Figure B.136—Merge Processed Data Browse .. B-90

Figure B.137—Merge Processed Data In Progress ... B-91

Figure B.138—Merge Processed Data Save Dialog .. B-91

Figure B.139—Opening Merge Clustered Data Menu.. B-92

Figure B.140—Merge Clusters Menu .. B-93

Figure B.141—Merge Clusters Browse ... B-93

Figure B.142—Merge Clusters In Progress .. B-94

Figure B.143—Merge Clusters Save Dialog.. B-94

Figure B.144—Opening Merge Positive Detectors Menu ... B-95

Figure B.145—Merge Clusters Menu .. B-96

Figure B.146—Merge Clusters Browse ... B-96

Figure B.147—Merge Clusters in Progress ... B-97

Figure B.148—Merge Clusters Save Dialog.. B-97

xiii

List of Tables

Table 3.1—Monte Carlo Calculation Time Comparison, in Seconds .. 13

Table 3.2—Monte Carlo Calculation Coverage Comparison, in Percent of Solution Space 13

Table 3.3—Monte Carlo Calculation Overlapping Comparison, in Percent of Solution Space 13

Table 5.1—Number-Imposed Cluster Method Parameters .. 39

Table 5.2—Space-Limiting Clustering Method ... 41

Table 5.3—Rectangle Clustering Method .. 42

Table 5.4—NSA-R Detector Generation Parameters for Hyper-Spheres .. 44

Table 5.5—Generation of Rectangle Detectors Parameters ... 45

Table 5.6—Enhanced NSA-R Parameters for Hyper-Spheres ... 46

Table 5.7—Performance Index Parameters ... 47

Table 5.8—Gene Addition Parameters .. 48

Table 5.9—Mutation Parameters for Hyper-Spheres and Hyper-Rectangles ... 49

Table 5.10—Mutation Parameters for Hyper-Ellipsoids and Hyper-Rotational-Ellipsoids 50

Table 5.11—Detection Testing Parameters ... 51

Table 6.1—2-D Sphere Optimization Parameters .. 60

Table 6.2—2-D Hyper-Sphere Results ... 62

Table 6.3—2-D Ellipsoid Optimization Parameters .. 63

Table 6.4—2-D Hyper-Ellipsoid Results ... 65

Table 6.5—2-D Rotational Ellipsoid Optimization Parameters ... 66

Table 6.6—2-D Hyper-Rotational-Ellipsoid Results .. 68

Table 6.7—2-D Rectangle Optimization Parameters ... 69

Table 6.8—2-D Hyper-Rectangles Results .. 71

Table 6.9—3-D Cluster Comparison Results .. 72

Table 6.10—3-D Hyper-Spheres Optimization Parameters ... 74

Table 6.11—Performance Parameters for 3-D Hyper-Spheres .. 75

Table 6.12—3-D Hyper-Spheres Detection Results after Optimization .. 75

Table 6.13—3-D Hyper-Ellipsoids Optimization Parameters .. 78

Table 6.14—Performance Parameters for 3-D Hyper-Ellipsoids .. 78

Table 6.15—3D Hyper-Ellipsoids Detection Results after Optimization .. 79

Table 6.16—3-D Hyper-Rotational-Ellipsoids Optimization Parameters .. 81

Table 6.17—Performance Parameters for 3-D Hyper-Rotational-Ellipsoids ... 82

Table 6.18—3D Hyper-Rotational-Ellipsoids Detection Results after Optimization 82

Table 6.19—3-D Hyper-Rectangles Optimization Parameters .. 84

Table 6.20—Performance Parameters for 3-D Hyper-Rectangles ... 85

Table 6.21—3D Hyper-Rectangles Detection Results after Optimization ... 85

Table 6.22—6-D Trial Detection .. 88

Table 6.23—6-D Calculation Time Results ... 89

Table A.1—Full Clustering Comparison Results—500 Clusters, Phase I only A-1

Table A.2—Full Clustering Comparison Results—2000 Clusters, Phase I only A-3

Table A.3—Full Clustering Comparison Results—5000 Clusters, Phase I only A-5

Table A.4—2-D Shape Results ... A-7

Table A.5—2-D Calculation Time Results ... A-7

Table A.6—3-D Shape Results ... A-8

Table A.7—3-D Calculation Time Results ... A-8

Table A.8—3-D Detection Time Results .. A-8

Table A.9—3-D Average Detection Results for Shape Comparison ... A-9

xiv

List of Symbols

Symbol Definition
a = Semi-axis length vector
c = Center
D = Detector, genotypes
d = Semi-side length vector, applicable to hyper-
 rectangles
GB = Gigabytes (millions of bytes)
GHz = Gigahertz (millions of samples per second)
Hz = Hertz (samples per second)
L = Lower, or worse, limit
N = Population size
p = Probability of selection
PI = Performance Index value
q = Cumulative probability of selection
r = Radius
RAM = Random Access Memory
S = Self

S = Non-self
TF = Total Fitness
U = Upper, or better, limit
W = Performance Index weight
∑ = Universe; all possible solutions

 Subscripts
coverage = Coverage performance index criterion
E = Hyper-ellipsoids
e = Hyper-ellipsoids
i = Referring to a value for a particular individual
number = Number of detectors performance index
 criterion
overlap = Overlap performance index criterion
S = Hyper-spheres
s = Hyper-spheres
R = Hyper-rectangles
r = Hyper-rectangles
RE = Hyper-rotational-ellipsoids
re = Hyper-rotational-ellipsoids

 Acronyms
AIS = Artificial Immune System
BIS = Biological Immune System
DRC = Design Requirements and Constraints
DR = Detection Rate
EA = Evolutionary, or genetic, Algorithm
FA = False Alarm Rate
FDGO = Failure Detector Generation and Optimization

xv

FDIE = Failure Detection, Identification, and Evaluation
 GA = Genetic, or evolutionary, Algorithm
 GBM = Gradient Based Method
 HNIS = Hybrid Neural-Immune System
 IFCS = Intelligent Flight Control System
 IFDOT = Immunity-based Failure Detector Optimization
 and Testing
 LFDB = Large Fast Drifting Bias
 LSB = Large Step Bias
 NASA = National Aeronautics and Space Administration
 NSA-RV = Negative Selection Algorithm with Real
 representation and Variable radius
 sGA = Structured Genetic Algorithm
WVU = West Virginia University

Note: All variables are normalized.

 1

1 Introduction

In recent years, failure detection, identification, and evaluation (FDIE) of aerospace vehicles
and their sub-systems over the full flight envelope has become recognized as an imminent necessity
(1) (2) (3) (4) and has become a major objective of NASA’s Aviation Safety Program (5). Previous
attempts (6) (7) (8) (9) have been limited to detection in only certain areas of the flight envelope, or
of only a few types of failure. The research effort which encompasses the subject matter of this
thesis is intended for use with aircraft flight systems, and is capable of detecting the occurrence of a
failure at any point in the flight envelope and affecting any subsystem, identifying and compensating
for known failures, and reevaluating the safe operation flight envelope of the craft. Although the
research effort is focused upon aircraft applications, the material discussed in this thesis, namely the
optimization of immunity-based failure detectors, is intended to remain general. Thus the
optimization methodologies described in this thesis could be applied to non-aerospace systems as
well with little to no customization, though the focus will remain on applicability to aerospace
systems.

The FDIE problem requires adequate tools capable of handling the complexity and
potentially high dimensionality associated with it. A new artificial intelligence technique inspired by
the biological immune system (BIS), called Artificial Immune System (AIS), has been proposed for
use in detecting failure in aerospace systems (10) (11). The AIS-based fault detection paradigm
operates similarly to the BIS in that it uses the principle of self/non-self discrimination to
distinguish whether an entity belongs to a system or not. The AIS can potentially directly address
the issues associated with the design of a comprehensive and integrated set of methodologies for
FDIE.

A set of methodologies utilizing AIS-based failure detection, identification, and evaluation
for a wide variety of aircraft sensor, actuator, propulsion, and structural failures and damages (10) is
currently under development at West Virginia University (WVU) within NASA’s Aviation Safety
Program (12) (13). A critical issue for this detection scheme is generating adequate detectors (14), or
obtaining sufficient description of regions of the hyper-space as defined by the identifiers only
reached in the presence of adverse conditions.

To date, there is no deterministic method to generate detectors over the non-self region of
the hyper-space, and available algorithms rely on random location of detectors and search for
uncovered regions. In addition, the need to computationally optimize the detector set for on-line
detection and to ensure maximum coverage of the self and non-self regions without these
overlapping for good detection performance makes evolutionary or genetic algorithms (15) (16) a
promising solution for the generation of AIS detectors.

The genetic algorithm presented in this thesis is intended to produce and optimize detectors
for an AIS-based fault detection and identification scheme. These tools were implemented within
an interactive integrated design environment in MATLAB. The main objective of this thesis is to
present the development and operation of the Immunity-Based Failure Detector Optimization and
Testing (IFDOT) design environment, intended to create and optimize detectors for the purposes
mentioned above. In addition, this thesis is intended to present results comparing some of the
various design possibilities afforded by this design environment and analyze some important aspects
such as improved detection performance and detector computation time. Note that the range and
number of options prohibits full exploration of all of the design parameters of this program within
this thesis.

Section 2 presents previous research efforts related to FDIE and this algorithm, and defines
how this algorithm improves upon earlier approaches. Section 2.1 presents some support for the

 2

development of FDIE. The main aspects of the AIS paradigm and its applications in the field of
fault detection are presented in Section 2.2. Section 2.3 consists of a brief review of evolutionary or
genetic algorithms, including applications of EAs to optimization of fault detection schemes. The
general architecture of an integrated system of tools developed in MATLAB for the generation and
optimization of AIS-based detectors is discussed in Section 3. Details on the main components and
phases of the algorithm are presented in Section 4. The graphical user interface and the options
available for the AIS detector set design are presented in Section 5. In section 6, results
demonstrating the functionality and benefits of this approach are discussed. Finally, the conclusions
are summarized in Section 7 followed by a reference list.

 3

2 Literature Review

2.1 Reasons for Failure Detection, Identification, and Evaluation
 In order to increase the safety and survivability of aircraft, a method for detecting and
evaluating failures is required. It is not feasible to train pilots to recognize all potential failures, nor
is it always possible for a pilot to recognize that a failure has occurred without performing an action
which has been hampered by the failure. This could cause disastrous results if the pilot, unaware of
the situation, attempts a maneuver the aircraft is no longer capable of performing. For this reason, a
detection scheme implemented in the control scheme of the aircraft is needed.
 Several methods have previously been developed to detect and evaluate aircraft failures.
These include parameter identification algorithms (17), impedance estimation (6), state estimation
(18), Kalman Filtering (19), and neural networks (7) (20) (21) (22) (23). However, none of these
previous methods is capable of detecting failures, both known and unknown, over the entire flight
envelope and correctly evaluating and reacting to the various failures. Each of these research
attempts is limited to detecting specific failures or detecting failures over only a limited range of the
flight envelope.
 A new method has recently emerged which shows promise in detecting various types of
failures, both known and unknown, over the entire flight envelope. This method is an artificial
intelligence technique referred to as artificial immune system. This paradigm draws inspiration from
the robustness and adaptability of the biological immune system found in mammals. It has already
been applied to aircraft fault detection (11) (24), with promising results.

2.2 Artificial Immune System for Fault Detection
In recent years, the biological immune system has been the focus of great research interests

to mathematicians and engineers, due to its robustness and vast information processing abilities (25).
From this research, a branch of artificial intelligence dubbed the artificial immune system has
surfaced. This technology possesses great potential for solving complex problems related to
detection of abnormal conditions. This section will describe the functions of the BIS, address the
relationship between the BIS and the AIS paradigm, and give examples of applications involving
AIS for fault detection.

"The biological immune system is a complex adaptive system that has evolved in vertebrates
to protect them from invading pathogens" (26). The BIS has the ability to detect microbial and non-
microbial exogenous entities while not reacting to the body’s own cells. It is the body's first line of
defense against viruses, infections, and other intruders. The most important function of the
biological immune system is self/non-self discrimination (27) in which the immune system must be
able to identify and destroy potentially-harmful exogenous entities without harming the body.
Specialized antibodies called T-cells are the component of the system with the most important role
in this process. T-cells (11), which circulate throughout the body, are equipped with biological
identifiers, or specific molecular strings of organic compounds such as proteins or polysaccharides.
These cells are used to differentiate between self cells and non-self entities. When a T-cell comes in
contact with an entity which matches its identifiers, it bonds to that entity, marking it for
destruction.

T-cells are generated through a pseudo-random genetic rearrangement mechanism (25) in
the bone marrow. This ensures high variability of the new cells in terms of the biological identifiers.
T-cells then migrate to the thymus. The purpose of the thymus is to produce mature T-cells (28).
In the thymus, the immature T-cells undergo a process sometimes called "thymic education" (28), in
which T-cells whose identifiers match the self are destroyed or altered. Eventually, only those T-

 4

cells that are “different” from the body’s own signatures are allowed to mature and proliferate. This
process is referred to as negative selection. The surviving T-cells can now circulate throughout the
body to detect intruders and mark them for destruction.

The strength of the biological immune system lies in its complexity and adaptability. The
biological immune system is largely a distributed system (29), meaning that unlike other systems, it
does not focus around a single organ. This system, with no single point of failure, is highly robust,
dynamic, error-tolerant, self-monitoring, and adaptable (30). T-cells have the ability to work
independently, including destroying entities and reproducing new antibodies to fight infection.
Because the contribution of each T-cell is small, some mistakes may be made without catastrophic
effect to the body (30).

The mechanisms and processes of the biological immune system are the inspiration for the
AIS as a new artificial intelligence technique for fault detection (14) (15). Artificial Immune System
is the name for all efforts to develop computational models inspired by biological immune systems
(27). Three basic principles (31) from the biological immune system have been adopted and adapted
into the artificial intelligence technique known as the artificial immune system: immune network
theory, clonal selection principles, and negative-selection strategy.

Immune network theory encompasses a network of antibodies capable of reproducing.
Jerne (32) (33), who has greatly contributed in this area, defines a network in which initial antibodies
can create new antibodies, the new antibodies can create an additional generation, and so on. Such a
network is adaptive, dynamic, and self-aware, much in the same ways as the BIS.

Clonal selection principles are based on the biological immune system's ability to learn from
previous experiences (34), such that it can better detect antigens it has been exposed to, yet it can
also detect unknown antigens. This allows the algorithm to learn using known training data, but also
be effective against conditions that are yet unknown.

Negative selection, the key AIS principle of importance in this thesis, is a computational
process used to simulate biological self/non-self discrimination (27). Negative selection algorithms
work by generating a self from "normal" data, then using this self to randomly generate detectors for
the non-self (14). Any detectors that detect, or cover, the self region are discarded, leaving only
detectors that cover the non-self. Negative selection looks for activation of detectors in the non-self
to determine when abnormal conditions have occurred.

The artificial immune system paradigm has, in recent years, been applied to numerous
applications, such as data mining (35), pattern recognition (36) (37), computer security (38) (39) (40)
(41), fraud detection (42) and adaptive control (43). One significant area of interest is AIS for fault
detection. The negative selection algorithm (14) is one application of the AIS paradigm, which is

used to distinguish self, or normal operating conditions, from non‐self, or abnormal operating
conditions. Such an algorithm can be flexibly applied to fault detection, or detection of anomalous
conditions. Some examples of such applications include fault diagnosis in brushless machines (44),
robot control and fault tolerance (45) (46) (47) (48), hardware fault tolerance (49), and aircraft fault
detection using real-valued negative selection (11) (24).

The basic concept of the AIS paradigm for fault detection is that an abnormal situation (i.e.
failure of one of the aircraft sub-systems) can be declared when a current configuration of
“identifiers” or “features” does not match with any configuration from a pre-determined set known
to correspond to normal situations. These “identifiers” can include various sensor outputs, states
estimates, statistical parameters, or any other information expected to be relevant to the behavior of
the system and able to capture the signature of abnormal situations. Extensive experimental data are
necessary to determine the “self” or the hyper-space of normal conditions. Adequate numerical
representations of the self/non-self must be used and the data processed such that they are

 5

manageable given the computational and storage limitations of the available hardware. The artificial
counterpart of the T-cells - the detectors - must then be generated and optimized. This process may
be repeated to generate several sets of detectors as part of a hierarchical scheme that allows failure
isolation and evaluation (50) (51). Finally, a detection logic must be designed for real time operation
with a high detection rate and low number of false alarms (52). The block diagram of the AIS
design process for fault detection is presented in Figure 2.1.

Figure 2.1—Artificial Immune System-Based Abnormal Condition Detection (53) (54)

Dasgupta and KrishnaKumar have pioneered the use of AIS for fault detection for

aerospace systems (10) (11). Certain issues about dimensionality and limitations raised by Stibor et.
al. (55) (56) for the use of negative selection algorithms were refuted by Ji and Dasgupta (57). A
discussion of previous applications of AIS for aircraft fault detection is needed to define the benefits
and differences of the methods contained in this thesis.

One application of AIS for aircraft fault detection by Gonzalez and Dasgupta (24) describes

the use of a real‐valued negative selection algorithm. It provides reasoning that detector sets are
smaller, identifying anomalies after detection is easier, and applying additional immune techniques is
simpler than in the case of using binary representation. Using this method, both normal and
abnormal conditions can be mapped onto the solution space. The solution space is reduced to a
unit hypercube by scaling all identifiers to values between zero and one. This method is an
inspiration for many of the methods utilized in this research effort, including data representation,
basic clustering, and basic detector generation. However, this application only utilizes one possible
detector shape and, as is the focus of this thesis, does not use an EA to optimize the non-self
detectors.

An additional technique used by the Gonzalez and Dasgupta (24) is anomaly detection using

self‐organizing maps. This type of neural network is used to organize the normal condition data,

similar to clustering, which is discussed in Section 4.2. This tends to use a pseudo‐fuzzy approach to
anomaly detection. If a data point is near enough to the self, it is considered normal. Otherwise, it is
abnormal.

An application of AIS for aircraft fault detection (11) involves a real‐valued negative
selection algorithm, utilizing hyper-sphere detector definition with variable radius. A self is defined

using test data obtained from a C‐17 man‐in‐the‐loop flight simulator, such that it encompasses the

Definition of

“Identifiers”

Data Acquisition

Definition of “Self”

(Data Processing and

“Representation”)

Generation of

“Detectors”

Integration of Sets of

Detectors within a Structured

Detection Logic

Abnormal Condition

Detection Scheme

“Detectors”

Repeat process as

necessary for

hierarchical failure

identification and

evaluation

 6

entire space occupied by normal operating conditions. The data is scaled to between values of 0 and

1, then clustered using the k‐means algorithm.
Detectors are then generated to fill the areas not covered by the self, with two goals:

maximize coverage of the non‐self while minimizing coverage of the self. This detector generation
algorithm is more complex than those seen previously. It not only generates detectors at random,
but incrementally moves invalid detectors away from the self until the detector becomes valid. In

order to assess the effectiveness of the detection scheme on the C‐17, identifiers of roll‐, pitch‐, and

yaw‐rate commands and measurements were used to identify 5 simulated faults. Once it is
determined that the scheme is capable of detecting a failure, the activated detectors corresponding to
a specific failure are noted, so that later the type of failure can be determined, not just that a failure
has occurred. When tail and wing damages are simulated, detection rates of 89% and 92% are
achieved, with few false alarms. Tests also showed that the number of false positives is inversely
proportional to the number of detectors used in the scheme.

The previous method is later expanded into a method called Multilevel Immune Learning
Detection (58), in which multiple levels of immunity-based detectors are implemented. The first
detection level is broad, to encompass a wide variety of potentially unknown faults. Another level of
detection is implemented with smaller detectors to detect known failures. Once the fault has been
declared and identified, an adaptive control scheme uses the fault data to compensate for the failure.
This scheme was tested on engine, tail, and wing failures using roll-, pitch-, and yaw-rate as
identifiers. Average results over 10 trials of each failure type showed detection between 91.8% and
97.8%, with false alarms less than 1.04%.

Common afflictions of AIS algorithms are high-dimensionality and lack of coverage of the
non-self areas. The success of the AIS-based FDIE scheme will depend on the ability of the
parameters selected as identifiers (e.g. aircraft states and pilot input) to capture the dynamic
signature of every targeted type of failure. When the number of failure classes that are targeted is
high, a large number of identifiers is necessary, thus increasing the dimensionality of the solution
space to hyper dimensions and exposing the entire process to specific issues (59) that can potentially
have a negative impact on the performance of the FDIE scheme. Calculation in these higher
dimensions is often complex, and involves non-conventional means. High dimensionality also
reduces the likelihood of generating detectors with high coverage of the solution space. Low
coverage leads to poor performance of the AIS in detecting abnormal conditions.

In order to combat high-dimensionality at its root, new methods for the reduction of
dimensionality are being developed (60) (61) (62). The purpose of these methods is to reduce the
dimensionality of a data set, while retaining the integrity of the identifiers. Many of these methods
are emerging, though most involve highly-complex non-linear conversions and are not fully
developed. If these reduction of dimensionality methods are to be applied to the problem discussed
in this thesis, they will be handled separately, prior to preprocessing with the utility discussed in this
document, and will therefore not be discussed further.

For adequate detection performance and reduced computational effort, disjunct complete
coverage of self/non-self and minimal overlapping between detectors must be accomplished with a
reduced number of detectors. Deterministic methods are not available to solve this generation and
optimization problem and current approaches rely on random initialization of candidate detectors
and subsequent censoring to achieve sets of optimization criteria (11). In this context, evolutionary
algorithms can potentially provide the tools necessary for optimizing detectors in a high-
dimensionality solution space.

 7

2.3 Evolutionary Algorithm for Detection Rule Optimization
Evolutionary, or genetic, algorithms (63) (64) (EAs) are a class of artificial intelligence

techniques which are based on the biological principles in Darwin’s theories regarding evolution of
species. These techniques are focused upon parameter optimization (65), and are applicable to a
wide variety of science, engineering, and economics problems. EAs use an iterative approach
directed to search the solution space for a global optimum, or the fittest individual in the population.

Several key components of Darwin’s theories help to shape the EA paradigm. Individuals
are capable of surviving to reproduce new offspring and continue their genetic line based on their
aptitude for adapting to the surrounding environment. Thus, better-fit individuals live longer and
produce more offspring. Individuals in an EA must behave in the same way.

Within an EA, an individual is a potential solution to a parameter optimization problem.
The population is composed of a number of individuals, all competing for offspring in the next
generation. This competition can be approached in varying ways. Individuals can have a lifespan of
one or many generations. This lifespan can be the same for each individual, or vary depending on
the fitness of the individual. An individual also produces offspring, or copies of itself, based on the
individual’s fitness. An individual may receive, one, many or no copies in the next population. This
mimics the extinction or proliferation of a genetic lineage. The EA’s population size may remain
fixed or vary from generation to generation.

Within the EA paradigm, individuals are also referred to as “chromosomes”. In order to
define the parameter optimization problem to be solved, a set of design requirements and
constraints (DRC) is formulated. The set of DRC acts as the environment within the EA paradigm.
Each DRC is assigned a performance function, and an individual is evaluated based on its
performance with respect to the DRC to determine its fitness, or performance index. The
performance index is used to determine the next generation. Several algorithms for deciding the
new population are available, including the two most common roulette-wheel selection and
tournament selection.

One of the strengths of the EA paradigm is the open-ended nature of the DRC. The DRC
may be expressed mathematically, logically (binary or fuzzy), or descriptively. In addition, the DRC
may have no relationship with each other. This allows EAs to easily solve many problems that
would be difficult or impossible to solve analytically.

An individual, or chromosome, does not necessary stay the same throughout the generations
of the EA. If this were the case, multiple generations would not be needed. Instead, chromosomes
undergo probabilistic alteration through the implementation of genetic operators, such as mutation
and crossover. These mimic the natural mutations that can occur occasionally within genes during
the reproduction of cells. Within the EA, these operations are intended to explore new areas of the
solution space.

In general, the EA begins with a randomly assigned initial population of solutions. These
guesses undergo alteration by the genetic operators. They are then assigned a fitness based on the
DRC, and a new population is generated based on this fitness. The next iteration starts with this new
population (new set of possible solutions). The process continues until there is no more significant
increase in the performance of the best solution or a pre-set maximum number of iterations is
reached. The block diagram of a typical EA is presented in Figure 2.2.

 8

Figure 2.2—Block Diagram of an Evolutionary Algorithm (53) (54)

Evolutionary algorithms are widely used for parameter optimization, due to their superiority in many
respects over the traditional gradient-based methods (GBMs). Evolutionary algorithms prove to be
global and robust over a wide variety of problems, with excellent potential for solving, highly
complex, nonlinear problems, including those with high-dimensionality. Several characteristics of
EAs set them apart from traditional GBMs, and often make them a better or the only choice.
Unlike GBMs, EAs can search the solution space in many directions at once, including in high-
dimensions. This is because the solutions are randomly altered using the genetic operators, and the
search is directed using the fitness rating of the individuals. The performance criteria used to
determine the fitness rating of the individuals are highly customizable. There are no constraints on
the formulation of these criteria. They may be analytical, logical, or descriptive. There is no need
for continuity, derivability, or bijectivity of the fitness functions. Properly designed EAs also avoid
local extrema by using an adequate balance between exploration of the solution space and
exploitation of good existing solutions. Finally, EAs are able to find better global solutions since
they are not dependent upon the problem they are intended to solve. Although domain-specific
information can be used to guide or steer the EA, it is not necessary, and a lack of this information
can potentially lead to the discovery of a good solution that would have otherwise been excluded by
more traditional methods.

In this thesis, new research is discussed in which an evolutionary algorithm is used to
optimize the detector sets for detecting various aircraft failures over a wide range of the flight
envelope for the design criteria specified above. Other research efforts similar to this approach have
been attempted. Some examples of these approaches will be discussed, noting their differences
from the material of this thesis.

One application of EA for optimization of AIS-based fault detectors comes from Amaral, et.
al. (66). In this research effort, negative selection strategy is applied to the detection of faults in
analog circuits. An evolutionary algorithm is used to optimize a small number of detectors, rather
than using a larger number of detectors to cover the solution space. No overlapping is allowed to

 9

occur with the self, though overlapping between detectors is permissible. Testing of this detection
scheme revealed almost perfect detection performance.

Gonzalez et. al. (67) used a genetic algorithm to optimize fuzzy detectors for computer
intrusion detection based on the artificial immune system paradigm. Unlike the research presented
in this thesis which compares the use of four different hyper-shapes as detectors, this attempt only
used rectangular detectors. In addition, the EA is maximizing the coverage of the non-self space
and minimizing the coverage of the self space. This is contrary to the methods presented in this
thesis in that this research tolerates no overlapping between detectors and the self space, since this
could introduce false alarms and decrease the reliability and effectiveness of the finalized detection
scheme. The research presented by Gonzalez et. al. also does not optimized the number of
detectors or overlapping between detectors.

Research presented by Shapiro et. al. (68) suggests that hyper-ellipsoid detectors produce
better detection performance than hyper-sphere detectors. This approach generates hyper-ellipsoids
for AIS-based detection and optimizes them using a genetic algorithm. Unlike the EA presented in
this thesis, an individual is a single ellipsoid rather than a full set of detectors. The hyper-ellipsoids
are optimized for coverage of the solution space using only mutation to alter the hyper-ellipsoids.
This method achieves good detection results using approximately half the number of detectors as
needed for spherical detectors.

Research presented by Gao et. al. (69) utilized the genetic algorithm to optimized detectors
for an AIS-based scheme. This research attempts to optimize coverage of the non-self while
allowing neither overlapping with the self nor overlapping among detectors. However, rather than
comparing multiple sets of detectors, the genetic algorithm compares individual detectors against
each other. Since no overlapping is allowed, the location of the center of the detector determines
the radius of the hyper-sphere detectors. Thus the performance index is assigned based solely on
the size of the radius of the detectors.

Another similar attempt to that presented in this thesis is presented by Balachandran et. al.
(70) (71). In this research effort, an EA is used to maximize the coverage of the non-self and
minimize the overlap with the self of an AIS scheme for pattern recognition. In the effort presented
by Balachandran et. al., multiple shapes are organized into a data representation called a Structured
Genetic Algorithm (sGA) (72). A structured genetic algorithm is a type of EA which allows an
individual detector to take different shapes throughout the evolution so that a single detector set
contains multiple shapes. Again, this EA does not optimize for the number of detectors in the set
or for overlapping between detectors. Like Gonzalez et. al., overlapping is also allowed to occur
with the self. In addition, Balachandran’s research uses three shapes: hyper-spheres, hyper-
rectangles, and hyper-ellipsoids. The research presented in this thesis introduces another shape: the
hyper-rotational-ellipsoid.

While each of these methods has some similarity to the research presented in this thesis, the
key difference between the methods discussed in this thesis and the applications discussed in the
previous paragraphs is that these methods are not optimized for coverage of the non-self, number
of detectors, or overlapping between detectors. In order to produce good results using the AIS
paradigm for fault detection, detectors must provide adequate coverage of the non-self without
overlap with the self However, the detection rules must also be capable of running in real-time,
when applied to the aircraft it is protecting. This requires the detector set to have a low number of
detectors. In addition, overlap between detectors is not beneficial and should also be minimized for
efficiency. These aspects require additional optimization of the detector sets, beyond generation.

 10

3 General Architecture of Evolutionary Algorithm for Failure Detector
Generation and Optimization

This section will cover the theory and techniques involved in the evolutionary algorithm for
failure detector generation and optimization (FDGO) algorithm. This includes preparation steps
such as normalization, clustering, and generation of the initial population (Phase I) for the
evolutionary algorithm, which are not technically part of the actual evolutionary algorithm, but are
necessary steps in order to perform the evolutionary algorithm, and which are included in the
interactive utility called West Virginia University Immunity-Based Failure Detector Generation,
Optimization, and Testing, referred to as IFDOT.

3.1 Problem Definition
Research is currently under investigation at WVU to produce a comprehensive and

integrated set of methodologies for aircraft FDIE. The AIS paradigm has shown promising
capabilities for producing such a solution. The AIS paradigm is to be used to detect failure over the
partial or full flight envelope for a given aircraft. These methodologies are general, although they are
applied to a particular system, the IFCS WVU research F15 aircraft model. In order for this scheme
to obtain good detection results, adequate coverage of the solution space is needed, which requires
flexible and extensive design tools for detector generation and optimization. Several design options
including multiple cluster generation and detector generation algorithms spanning four shape
options have been implemented. The self is defined using flight data collected from the flight
simulator under normal operating conditions using the IFCS WVU research F15 model. This data is
processed to produce the self clusters, which define the self region for the AIS. Detection rules, or
detectors, will be produced using one of several algorithms. These will then be optimized by the
FDGO, which itself allows a great deal of user design flexibility.

3.2 Definitions
Several key concepts will be used throughout this thesis with the following meanings. The

solution space Σ is the entire universe as defined by the identifiers considered within various phases of
the FDIE process including both normal and abnormal flight conditions. The dimension of the
solution space is equal to the number of identifiers. The self S is the sub-set of Σ corresponding to

normal flight conditions, while the non-self ��, corresponds to abnormal conditions. Ideally, the self
and the non-self are disjunct sets and completely cover the solution space:

 �̅ ∩ � = � ��	 �̅ ∪ � = Σ 1

For computational convenience, the self and non-self are typically represented as sets of
geometrical hyper-bodies referred to as clusters and detectors, respectively.

Within the EA, an individual is a potential solution to the failure detector generation and
optimization problem, which is a single set of detectors covering the non-self. Several such
individuals form the population. An example of a typical individual, as represented in 2 dimensions, is
presented in Figure 3.1 below, in order to illustrate the self definition, or clusters, and non-self
definition, or detectors.

 11

Figure 3.1—Illustration of a Typical Individual (53)

3.3 Algorithm Architecture
A large repository of self data is necessary to the creation of a complete and comprehensive

self. For increased computational and algorithmic effectiveness, the general structure of the EA for
FDGO includes three main modules as shown in Figure 3.2:

• Data Preprocessing (normalization, duplicate data removal, and clustering);

• Phase I (generation of initial population of solutions through an iterative algorithm);

• Phase II (optimization of the solution through a classic EA).

Figure 3.2—Flowchart of Optimization Processes (53) (54)

 The main purpose of the preprocessing is to reduce the memory and computation time
needed for the FDGO. The first phase of the EA consists of an iterative algorithm that creates an
initial set of detectors that do not overlap with the self and achieve a desired level of non-self
coverage. Phase I is repeated as many times as necessary to produce an initial population for the
classic genetic algorithm that represents Phase II. The solution is optimized to achieve minimum
un-covered areas in the non-self, minimum overlapping among detectors, and a minimum number
of detectors, while maintaining no overlapping between non-self detectors and self.

Non-Self,
Detectors

Self,
Clusters

Data Evolutionary
Algorithm

Data

 12

3.4 Pertinent Mathematical Techniques
Some important mathematical techniques are necessary to the calculations performed

throughout the FDGO algorithm. These will be discussed below in detail pertinent to the
understanding of the algorithms encompassed in this thesis.

3.4.1 Distance calculations

Two important distance calculations are needed throughout these algorithms. These are
Euclidean (73) distance and Mahalanobis (74) distance. Euclidean distance is used to calculate the
straight-line distance between two points, for example, the distance between the center of a detector
(non-self) and the center of a cluster (self) when determining whether a the detector may overlap the
self. Euclidean distance, in 2 dimensions, is defined using the equation below.

 � = �� + ����� 2

In the above equation D represents distance, and x and y are distances in each dimension. When
Euclidean distance is calculated in higher dimensions, the format is defined using the equation
below.

 � = ��� + ��� + ⋯ + ������ 3

In this equation, D represents distance, x is a distance in a dimension, and subscripts 1 to n indicate
which dimension, with n equal to the number of dimensions in the hyper-space. The Euclidean
distance is used in conjunction with hyper-sphere and hyper-rectangle detectors.
 Mahalanobis distance is a distance calculation applicable to hyper-ellipsoids and hyper-
rotational-ellipsoids. For the purposes of this research, Mahalanobis distance determines whether a
point in the solution space falls inside or outside of a hyper-ellipsoid or hyper-rotational-ellipsoid
detector. In calculating the Mahalanobis distance in this algorithm, the MATLAB function,
mahaldist, is used. This function intakes the location of a point, the center of the ellipsoid, and the A
matrix as the weighting function, defined below. It outputs a numerical value, which if less than 1,
indicates the point falls within the hyper-ellipsoid or hyper-rotational-ellipsoid detector.

 � = Λ�Λ� 4

 � = �1/��� ⋯ 0⋮ ⋱ ⋮0 ⋯ 1/���
! 5

where A is the weighting matrix for the Mahalanobis distance calculation, V is the length matrix of
the hyper-ellipsoid or hyper-rotation ellipsoid detector, and Λ is the orientation matrix of the
detector. The orientation matrix is discussed further in defining the representation of hyper-
ellipsoids and hyper-rotational-ellipsoids.

3.4.2 Volume Estimation

Due to the nature of using hyper-shapes, and that the hyper-shapes may overlap one
another, it is not possible to calculate overlapping among detectors and coverage of the non-self
region analytically. For this reason, the overlapping and coverage are estimated numerically using
Monte Carlo-type volume estimation techniques (75) (76) (77). The Monte Carlo Volume
Estimation algorithm generates points at random throughout the defined hyperspace, then tests the
number of points that fall within certain objects to approximate the volume relative to the hyper-

 13

space of an object. The number of points needed for a certain level of accuracy is given by the
relationships below.

 " = 1 − $
�%% 6

 & = �
'∗)∗*++� 7

In these equations, C represents the confidence interval, which is given as a value between 0 and
100, and err is the error permitted in the final solution. Increasing C to nearly 100 gives better
results, but the calculation takes significantly longer. This is also true of decreasing err close to 0.
Recommended values for these parameters as used in the algorithm are C=98 and err=0.01. These
may be adjusted as needed, however, these values were primarily chosen due to computational
loading and time constraints. As a comparison, the Table 3.1—Monte Carlo Calculation Time
Comparison below shows the time in seconds needed to calculate coverage and overlapping using
the Monte Carlo method implemented for this research for a single set of detectors. These are
intended for comparison only, as computational power greatly influences the time needed for this
calculation. The dashed combination was not completed. Due to its extremely extended calculation
time, this combination of parameters was deemed inadequate for use in this research. Table and
Table show the coverage and overlapping values calculated for each of these time trials, to show the
similarity accuracy of each.

Table 3.1—Monte Carlo Calculation Time Comparison, in Seconds

err\conf 98 99 99.5 99.9

0.01 54.89 111.36 216.85 1072.53
0.005 220.42 434.78 862.35 4283.18
0.001 5515.88 10979.65 21476.37 ---

Table 3.2—Monte Carlo Calculation Coverage Comparison, in Percent of Solution Space

err\conf 98 99 99.5 99.9

0.01 94.81 94.77 94.82 94.76
0.005 94.81 94.75 94.77 94.78
0.001 94.78 94.77 94.78 ---

Table 3.3—Monte Carlo Calculation Overlapping Comparison, in Percent of Solution Space

err\conf 98 99 99.5 99.9

0.01 72.99 73.17 73.09 73.13
0.005 73.16 73.15 73.10 73.14
0.001 73.12 73.12 73.14 ---

 14

3.4.3 Bisection Method

Bisection method is a numerical method for determining the root of an equation, f(x) , given
a bound [a,b], which contains only one root of the equation. Thus f(a)*f(b)<0. An approximation of
the root, c, is specified by:

 , = -./
� 8

For this point, the value of f(c) is calculated and the new interval containing the root is determined.
This process continues until the root is determined to a specified accuracy measured as the size of
the interval containing the root.

 15

4 Description of Evolutionary Algorithm Modules

This section will cover in detail each of the modules, or functions, present in the Interactive
Utility. This includes preprocessing and clustering, generation of detectors, all segments of the
evolutionary algorithm itself, and detection evaluation functions.

4.1 Preprocessing
Preprocessing of data takes place prior to the performance of the evolutionary algorithm.

These algorithms are carried out in an effort to reduce the computational load upon the system
performing the calculations. Self data sets can and should be quite large, in order to well-define the
self portion of the solution space. However, it is neither practical nor feasible to work with such a
large data set in its raw form. Normalization is carried out so that the solution space may be easily
defined as a unit hyper-cube. Removal of duplicates and clustering are performed to reduce the size
of the array that defines the self, helping the evolutionary algorithm to run more quickly.

4.1.1 Normalizing Data

Normalization is performed in order to make working with the potentially large number of
dimensions easier and more intuitive. Otherwise the dimensions would range to a different scale for
each of the identifiers. Not only would the ranges for each of the identifiers need to be kept track
of throughout the course of the genetic algorithm, but this would cause distortion of the detector
shapes, for instance a sphere with a constant radius, which is not preferable.

As a result of the normalization, each dimension (identifier measured values) is scaled to
values between 0 and 1. Therefore, the solution space becomes a unit hypercube. The
normalization factor for each dimension is determined as the span of the flight data plus a
percentage margin. Alternatively, desired maximum and minimum values can be specified in the
computation of the normalization factor. This approach is particularly useful when additional sets
of self data are to be combined with previously acquired/processed ones or failure sets are to be
used for detection testing, as the same normalization factors must be used.

4.1.2 Eliminating Duplicates

 Removing duplicate points reduces redundancy within the data and can substantially increase
the speed of the clustering algorithm. A threshold must be selected that defines the vicinity of any
data point within which all points are assumed to belong to the self. Any other data point that falls
in this vicinity is therefore considered a duplicate and is removed. It should be noted that if the
threshold is too large, non-self points may be included as self or necessary self points may be
removed, which could lead to detection errors. If the threshold is too small, then too much data
redundancy may be allowed, which can increase the computational requirements. Pertinent values
of this threshold can be obtained through analysis of the average distance between consecutive
measurement points at adequate sampling rates.

4.2 Clustering
 Once the duplicate points have been removed, additional reduction of the memory and
computational requirements can be achieved through clustering of the normalized flight data. An
optimized version of the k-means (78) clustering method is implemented within the WVU Immunity-
Based Failure Detector Optimization and Testing (IFDOT) tool. The clusters are eventually
represented as either hyper-spheres or hyper-rectangles. This allows flexibility in the generation of
detectors as hyper-spheres, hyper-ellipsoids, hyper-rotational-ellipsoids, or hyper-rectangles. The

 16

reduction of empty space is achieved through an iterative clustering algorithm (12) (13) (79) in which
the number of clusters is progressively increased until the desired level of empty space is reached.

4.2.1 Clustering Algorithms

Several clustering methods have been attempted prior to this AIS research. Initially
clustering was performed using a fixed, uniform radius for all clusters and detectors. However, it was
found that using clusters and detectors with variable radii allowed for more efficient coverage of the
self and non-self solution space (80). Therefore this research uses variable size clusters and
detectors.

Additional improvements to the clustering algorithm have been implemented (81) (82).
When the self is defined using clusters, some “empty space” will necessarily be included. Empty
space is defined as the portion of the solution space covered by a cluster that is not covered by a
data point and its point radius. Empty space within clusters approaches zero as the number of
clusters approaches the number of data points in the raw data set.

4.2.2 Clustering with Hyper-Spheres

Two clustering methods are integrated into the IFDOT utility for the purpose of producing
hyper-sphere clusters. Hyper-sphere clusters are compatible with hyper-sphere, hyper-ellipsoid, and
hyper-rotational ellipsoid detectors. The first method produces variable size clusters, without
attention to empty space. The stopping criterion for this algorithm relies only on the number of
clusters that have been generated.

Cluster centers are generated using the k-means method to find the correct number of
logical centers within the self data. This also associates the data points with the center nearest each
data point. Thus, the radius of the clusters is set using the distance from the self to the point for the
farthest point associated with a particular center. Note that for this clustering method, any two sets
of clusters generated using the same data set and the same number of clusters will be identical.

The other clustering method optimizes for empty space within the clusters. The improved
clustering algorithm produces clusters iteratively, using the same method as above, but increases the
number of clusters each iteration until the level of allowable empty space meets a specified
requirement.

4.2.3 Clustering with Hyper-Rectangles

Clustering with hyper-rectangles is similar to the simple method for clustering hyper-spheres.
Empty space is not taken into account when generating rectangle clusters. Centers are generated in
the same manner as the previous methods, using the k-means algorithm. Self data points are
associated in the same way. However, rather than assigning a constant radius, as is the case for
hyper-spheres, this algorithm assigns a semi-axis length for each dimension, based on the distance to
the farthest point in each dimension associated with each center. This produces hyper-rectangles.
These can be likened to hyper-ellipsoids, whereas hyper-cubes, with the same length in each
dimension, could be likened to hyper-spheres. Giving the hyper-rectangles independent lengths in
each dimension allows them more flexibility, thus allowing them potentially better approximation of
the self, or as detectors, more flexible coverage of the non-self.

 17

4.3 Phase 1—Generation of Detectors
 Within Phase I of the EA, an initial population of potential solutions – sets of detectors – is
generated. Currently, two methods for hyper-spherical detectors and one method for hyper-
rectangular detectors are implemented within the IFDOT tool. These are used to generate the initial
population for Phase II of the EA.

4.3.1 Detector Generation with Hyper-Spheres

 Two methods were implemented for generating hyper-spherical detectors. Hyper-sphere
detectors make up the initial population for the EA when using hyper-spheres, -ellipsoids, or –
rotational-ellipsoids, which will be discussed later. The first method implemented for hyper-
spherical detector generation is a negative selection algorithm with real representation and variable
detector size (29) (83) (84) (NSA-RV). The flowchart of this algorithm is presented in Figure 4.1.
Candidate detectors are first initialized by random generation of their centers. If the center does not
fall within the self or any previously generated and matured detectors, the algorithm assigns a radius
to it based on the nearest distance to the self. If this distance is greater than the minimum desirable
detector radius, the candidate detector is accepted. The following stopping criteria exist for this
algorithm:

• maximum allowed number of detectors is reached

• maximum number of consecutively generated candidate detectors overlapping other
detectors or self-clusters is reached (shows likelihood of adequate coverage of the non-self)

• maximum number of detectors with radii smaller than a threshold are attempted (indicates
that adequate coverage of small areas, such as between clusters, has been achieved).
These stopping criteria are specified by desired coverage of the self and of the non-self.

These are only approximate coverage estimates, and are not found using the Monte Carlo method.
These criteria can be calculated using the following equations.

 0 ≥ �
�2$3 9

In the above equation, t is the number of random centers that have fallen within another object and
Co is the desired coverage of the non-self. When too many points have fallen within another
detector or the self, this signifies that a desired coverage threshold has been reached.

 4 ≥ �
�25$6-7 10

In equation 10, T is the number of detectors that have been attempted with a radius smaller than the
desired threshold and SCmax is the desired coverage of the self, or more specifically, the small areas
between clusters.
 The second method for hyper-spherical detector generation is an enhanced NSA-RV, which
integrates NSA-RV with detector moving and cloning (81) (82). This method attempts to limit
overlapping among the detectors. Detectors are generated iteratively. The algorithm begins by
creating an initial number of detectors in the same manner as the first method. Overlapping is
calculated for each detector, using the equations below.

 8	� = ∑ :	, 	<�=>=< 11

 :	, 	<� = ?@A − 1B6
 12

 C = +D.+DE 2F
�+D 13

 18

In the above equations, d is the detector for which overlapping is being measured, d' is the detector
it is being compared with, m is the number of dimensions in the solution space (the number of
identifiers), rd is the radius of the detector, rd' is the radius of the compared detector, and D is the

center‐to‐center distance between the two detectors. Detectors are either matured or rejected based
on an overlapping threshold. Rejected detectors are moved so that they can improve their
overlapping. Detectors are moved using the following equation.

 H = H3@IJ*+/K 14

The factor calculated using the equation above, η, is added to the new detector center to move the
center. Based on the iteration number, iter, and the decay factor, τ, this factor will decrease over
time until the detector will finally be rejected if it is moved in a number of generations and is still not
acceptable.

New candidate detectors are created in the vicinity of mature detectors. This process is
referred to as “cloning”. The number of new clones is inserted based on the overlapping of the
detector being cloned. If the detector has some overlap, only one clone is generated at a random
angle from the original. If the original detector exhibits no overlap, four clones are created. The
first is placed at a random angle from the original, and the other three are generated at 90° intervals
from the random clone. New detectors are also inserted randomly, as in the initial process. The
algorithm stops when there are enough mature detectors, or the maximum number of iterations has
been performed. The flowchart of the enhanced NSA-RV is presented in Figure 4.2.

Figure 4.1—Flowchart of Detector Generation Using NSA-RV (53) (54)

 19

Figure 4.2—Flowchart of Detector Generation Using the Enhanced NSA-RV (53) (54)

4.3.2 Detector Generation with Hyper-Ellipsoids and Hyper-Rotational-Ellipsoids

Three shapes depend on hyper-sphere detector generation for their creation: hyper-spheres,
hyper-ellipsoids, and hyper-rotational-ellipsoids. For hyper-spheres, the process is simple.
However, hyper-spheres are a special case of hyper-ellipsoid in which all semi-axis lengths are equal.
This principle is used to convert hyper-spheres into hyper-ellipsoids or hyper-rotational-ellipsoids.

Hyper-ellipsoids are defined as having a location in each dimension, which defines the
center. In addition, the hyper-ellipsoid also has a semi-axis length for each dimension. This is
different from the hyper-sphere which has only one radius, which is used for all dimensions. In
order to convert the hyper-spheres into hyper-ellipsoids, the radius is duplicated for each dimension
needed. Since hyper-ellipsoids have the capability of being rotated, an orientation matrix for each
detector is also generated. The orientation matrix is a square matrix of equal dimension to that of
the solution space. The elements of this matrix contain the rotation of the ellipsoid in each plane.
When the detector is not rotated about any plane, the orientation matrix is the identity matrix of
appropriate dimension.

Hyper-rotational-ellipsoids, like hyper-ellipsoids, have a semi-axis length for each dimension.
However, similar to the hyper-sphere, the rotational ellipsoid only has one independent semi-axis
length; the rest are dependent, or the same as each other. This means that rather than having the
same radius for all dimensions, the rotational ellipsoid has the same radius for all dimensions but
one.

The hyper-rotational-ellipsoids are defined as having a location in each dimension, the
center. They have 3 additional parameters, besides the center. These are the independent semi-axis
length, the dependent semi-axis length, and the location of the independent dimension. All
dimensions aside from the one defined in the last parameter have a semi-axis length equal to the
dependent length, while the independent dimension has the length of the independent semi-axis
length. Hyper-rotational-ellipsoids have the capability of being rotated about the axes of the
solution space, in the same manner as the hyper-ellipsoids. Therefore, each hyper-rotational-
ellipsoid detector is also accompanied by an orientation matrix, defined in the same way as the
orientation matrix for hyper-ellipsoids.

4.3.3 Detector Generation with Hyper-Rectangles

The detector generation method implemented for hyper-rectangular detector generation is
similar to the NSA-RV with the following differences. Each hyper-rectangle detector contains a

 20

side-length corresponding to each identifier, which is measured from the center to the edge of the
detector in each dimension. This differs from hyper-sphere detectors, since these detectors measure
the same radius for all dimensions. For this reason, the distance for a dimension is set based on the
shortest distance to the self from the center in each dimension. Because of the varying dimensions,
the minimum distance in each dimension depends on the number of iterations the algorithm has
performed and on a decay parameter, τ, which is set by the user. The equation for the decay
parameter is:

 minimum distance in each dimension=Rss0*e
-iteration/τ 15

where Rss0 is the base minimum radius provided by the user. The stopping criterion for this
detector generation algorithm is reaching the expected coverage of the non-self portion of the
solution space. This is calculated using equation 10 above. A flowchart for this function is provided
below in Figure 4.3.

Figure 4.3—Flowchart of Detector Generation for Hyper-Rectangles (53) (54)

4.4 Phase 2—Optimization of Detectors

4.4.1 Evolutionary Algorithm Layout

 Phase II of the EA is a classic genetic algorithm that uses sets of detectors generated in
Phase I as individuals in the population. Each detector may be considered as a gene within the
chromosome. Several options are available for the detector representation as geometric hyper-
bodies. A three-criterion performance index which plays the roles of the environment is used to
assess the “fitness” of each individual. Four customized genetic operators, or variation operators,
have been defined. A new population is selected at each iteration based on the comparative fitness
of each individual using the roulette wheel selection method enhanced with elitist strategy (16) (64).
This evolutionary search for the optimum solution continues for the specified number of
generations. The flowchart of the EA is presented in Figure 4.4.

 21

Figure 4.4—Flowchart of Evolutionary Algorithm (53) (54)

4.4.2 Representation of the Individual

 Each individual is a set of detectors. Due to the specific nature of this application and the
identifiers considered, real value representation for all dimensions of the detectors was used.
Depending on the shape, the detectors are defined as follows. Hyper-spherical detectors

S
D are

defined as:

 �5 = ,L, ML� 16

where n

s
c ℜ∈ is the location of the center of the detector, ℜ∈

s
r is the radius of the detector, and n

is the dimension of the solution space. Hyper-rectangular detectors
R

D are defined as:

 �N = ,+ , 	+� 17

where n

r
c ℜ∈ is the location of the center of the detector, n

s
d ℜ∈ is the semi-side length of the

detector in each dimension, and n is the dimension of the solution space. Hyper-ellipsoidal
detectors are defined as:

 �O = ,*, �*� , Λ E 18

where n

e
c ℜ∈ is the location of the center of the ellipse, n

e
a ℜ∈ is the semi-axes vector for all

dimensions, n is the dimension of the solution space, and Λ E
 is a square matrix of dimension n

defining the orientation of the detector. Finally, rotational hyper-ellipsoidal detectors are defined as:

 �NO = ,+*, �+*�, Λ RE 19

where n

re
c ℜ∈

, is the location of the center of the detector, 2

re
a ℜ∈ , is the semi-axes vector, n is

the dimension of the solution space, and Λ RE is a square matrix of dimension n defining the orientation
of the detector. Note that, unlike hyper-ellipsoids, which may have different axes for each dimension,
only one preferential axis may differ from the others for hyper-rotational-ellipsoids.

 22

4.4.3 Genetic Operators

 Four distinct genetic operators - mutation, addition, removal, and crossover - are performed
on the population according to the genetic operation rates established by the designer. The
individuals that are subject to genetic alteration are selected randomly. In this section each of the
four genetic operators will be discussed in detail. Since although each of the four genetic operators
perform the same tasks, different hyper-shapes require that the genetic operators be carried out in
different ways. For this reason, for each of the operators, the purpose and overview will first be
discussed, and then the methods for each of the hyper-shapes will be described.

4.4.3.1 Mutation

The mutation genetic operator was designed with the purpose of producing small alterations
to the individuals, in an effort to focus the search in the vicinity of existing solutions. In general,
this operator may change the overlap and coverage values of an individual/set of detectors by
altering the location, radius, or orientation of a single detector/gene by a small increment. The
individual and the gene subject to mutation are selected randomly.
 For hyper-spheres and hyper-rectangles, there are two types of mutation: gene alteration and
gene relocation. Hyper-ellipsoids and hyper-rotational-ellipsoids also have a third type of mutation:
gene rotation. Gene alteration consists of randomly increasing or decreasing the radius of the
detector by a random amount within a range specified by the designer. In the event that the
detector has multiple defining lengths, the dimension to be altered is also selected at random. This
is the case for hyper-rectangles, hyper-ellipsoids, and hyper-rotational-ellipsoids. Hyper-rotational-
ellipsoids also undergo random reassignment of the independent dimension. Gene relocation
involves randomly selecting an axis of the detector and moving the center of the detector a random
amount up to a multiple of the radius, as specified by the user.
 For hyper-ellipsoids and hyper-rotational-ellipsoids, rotation of the detector, called gene
rotation, is capable by alteration of the orientation matrix. An axis is selected at random and the
detector is rotated an amount at random about that axis. A flowchart of the mutation genetic
operator is shown in Figure 4.5.

Figure 4.5—Flowchart of the Mutation Genetic Operator (53) (54)

Figure 4.6—Diagram of the Mutation Genetic Operator

4.4.3.1.1 Mutation with Hyper

 The mutation of the hyper
selections are made at random. An individual is selected
mutation type is chosen at random, based on the weights
the radius is multiplied by a value whose maximum is given b
added to or subtracted from the current radius, limited in such a way that the radius cannot become
zero. For gene relocation, the center location of the hyper
a single direction. The distance is determined by multiplying the radius by a value whose maximum
is specified by the user, and the result is added to or subtracted from the center location of the
appropriate dimension. This is limited in such a way that the center canno
cube of the solution space. Any alteration to a detector is checked for overlap with the self before it
is finalized and added to the detector set.
clusters, the mutation is not performed, ensuring that
maintained.

4.4.3.1.2 Mutation with Hyper

 Mutation with of hyper-rectangles is similar to mutation
there are multiple side lengths for which
with hyper-rectangles, when a side length is needed, either to be altered, or as a factor is moving the
center, the side length is chosen randomly.

Detectors Before Mutation

23

Diagram of the Mutation Genetic Operator (53)

Mutation with Hyper-Spheres

The mutation of the hyper-sphere detectors is the simplest case. Note that all values and
An individual is selected and within it a detector is selected.

mutation type is chosen at random, based on the weights provided by the user. For gene alteration,
the radius is multiplied by a value whose maximum is given by the user, and this result is either
added to or subtracted from the current radius, limited in such a way that the radius cannot become

For gene relocation, the center location of the hyper-sphere is moved in a random distance in
The distance is determined by multiplying the radius by a value whose maximum

is specified by the user, and the result is added to or subtracted from the center location of the
This is limited in such a way that the center cannot leave the unit
Any alteration to a detector is checked for overlap with the self before it

and added to the detector set. If the mutation causes the detector to overlap the self
ot performed, ensuring that - at all times - zero overlapping with the self is

Mutation with Hyper-Rectangles

rectangles is similar to mutation of hyper-spheres, except that now
for which to account. For both gene alteration and gene relocation

rectangles, when a side length is needed, either to be altered, or as a factor is moving the
center, the side length is chosen randomly.

Detectors Before Mutation Detectors After Alteration

(53)

Note that all values and
and within it a detector is selected. The

For gene alteration,
y the user, and this result is either

added to or subtracted from the current radius, limited in such a way that the radius cannot become
sphere is moved in a random distance in

The distance is determined by multiplying the radius by a value whose maximum
is specified by the user, and the result is added to or subtracted from the center location of the

t leave the unit-hyper
Any alteration to a detector is checked for overlap with the self before it

If the mutation causes the detector to overlap the self
zero overlapping with the self is

, except that now
For both gene alteration and gene relocation

rectangles, when a side length is needed, either to be altered, or as a factor is moving the

Detectors After Alteration

 24

4.4.3.1.3 Mutation with Hyper-Ellipsoids and Hyper-Rotational-Ellipsoids

Since the initial population as generated in Phase I only includes hyper-spherical detectors
with the capability of becoming hyper-ellipsoids, the mutation genetic operator is responsible for
creating the alterations to the detectors that result in hyper-ellipsoids and hyper-rotational-ellipsoids.
In this way it is ensured that the initial solution is good, and that modifications are used to improve
on the initial solution, which has the weakness of constant radius in all dimensions of a detector.
 Gene alteration and gene relocation are carried out in the same way as for the hyper-
rectangles, except that for hyper-rotational-ellipsoids the independent semi-axis length is reassigned
with the gene alteration operator. Gene rotation is also applicable to hyper-ellipsoids and hyper-
rotational-ellipsoids. Gene rotation is performed by selecting at random the orientation matrix of a
single detector within an individual, and multiplying two of its dimensions by the rotation matrix.
This rotates the detector in a single plane at a time for any mutation. The rotation matrix is defined
as the identity matrix of the same dimension as the number of identifiers defining the solution space.
The elements corresponding to the two axes selected at random are replaced by the rotation matrix
elements, which are given in equation 20 below.

 ��PQ 1 ��PQ 2��PQ 1��PQ 2 S cos α� sin α�−sin α� cos α�Z 20

The orientation matrix of the detector is multiplied by the rotation matrix defined above,

where α ∈ [0,αMAX] is the desired angle of rotation and αMAX is the maximum desired rotation
provided by the user. As before, each alteration is checked to ensure that the modifications have
not caused the detector to overlap with the self before the changes are finalized and added to the
detector set.

4.4.3.2 Crossover

 To apply the crossover genetic operator, two individuals are chosen at random. A random
number of detectors

CO
N - up to a maximum that is initially set by the user – is first established.

The crossover point
CO

P is randomly selected as an n-dimensional point in the non-self. Then,
CO

N

detectors closest to
CO

P from the two individuals are interchanged. The
CO

N detectors from both

individuals maintain the same location within the solution space after the crossover genetic operator
is applied. Therefore, non-overlapping with the self, following this genetic operator, is guaranteed.
This genetic operator is carried out identically for all hyper-shapes, with the exception that the
hyper-ellipsoids and hyper-rotational-ellipsoids must trade orientation matrices attached to the
detectors being swapped as well. Figure 4.7 contains a flowchart of this operator, and Figure 12
shows a diagram of the operator.

Figure 4.7—Flowchart of Crossover Genetic Operator

Figure 4.8—Diagram of the Crossover Genetic Operator

25

Flowchart of Crossover Genetic Operator (53) (54)

Diagram of the Crossover Genetic Operator (53)

Exchanged
detectors

(54)

(53)

 26

4.4.3.3 Gene Addition

 The gene addition genetic operator is aimed at increasing coverage without increasing
overlapping. As a result of this operator, new detectors are added to a particular individual, chosen
at random from the population. A number of new points are generated randomly in the solution
space. These are tested to determine which will be valid new detectors, and a number of them are
added to the detector set. Since new detectors are added at the same time, they are not permitted to
overlap existing detectors or the self, but new detectors may overlap each other. In practice
however, this happens rarely. Note that the maximum number of detectors specified in the detector
generation algorithm is absolute. Therefore, in order to be able to add new detectors, space must be
available in the detector array to store new detectors. The user also specifies the maximum number
of detectors to be added to a set at any given time, since adding more detectors may negatively affect
the performance index of the individual. A flowchart of this genetic operator is given below in
Figure 4.9.
 Three variations exist for this operator. The user specifies weights to determine the
likelihood of favoring larger detectors over smaller detector, and vice versa. Large detectors are
preferable for covering the solution space with fewer detectors. Smaller detectors are better at the
failure identification phase, where a smaller detector is less likely to be activated by more than one
type of failure. An additional variation is available by giving both of these weights as 0. If the
weights are 0, detectors will be added at random, without respect to the size of the new detectors.

Figure 4.9—Flowchart of the Gene Addition Genetic Operator (53) (54)

Figure 4.10—Diagram of the Gene Addition Genetic Operator

4.4.3.3.1 Addition of Hyper-Sphere

 Addition of hyper-spheres
defined by only one radius, it is a simple matter to generate a number of points within the solution
space, eliminate any and all that fall within existing entities
centers with respect to the closest object.
to their size and added to the detector set based on the number of available slots in the individual’s
detector array and the maximum number to be added as defined by the user.
on the weights specified by the user.
instance of the addition operator will favor either large or small, or

4.4.3.3.2 Addition of Hyper-Ellipsoids

 Addition of hyper-ellipsoids
spheres, in that the new detectors that are added will start as hyper
the hyper-ellipsoid and hyper-rotational
altered and becoming literal hyper
the new centers for this operator i
tell in hyper-space the distance to a hyper
point falls within one. Therefore, the radius is assigned using an application of the b
method, which is described above in Section 3.4.3. The accuracy required is specified by the user,
such that the radius of the new detector is correct to this accuracy. The radius is assigned in such a
way that overlapping is not permitted
 Once the values have been assigned, the new detectors are sorted according to size and
added to the detector set in the same manner as described for hyper
addition of detectors requires less calcula
algorithm.

27

Diagram of the Gene Addition Genetic Operator (53)

Spheres

spheres is the simplest case of gene addition. Since each detector is
defined by only one radius, it is a simple matter to generate a number of points within the solution
space, eliminate any and all that fall within existing entities, and assign a radius to each of the new
centers with respect to the closest object. These new candidate detectors are then sorted according
to their size and added to the detector set based on the number of available slots in the individual’s

ray and the maximum number to be added as defined by the user. Size is favored based
on the weights specified by the user. For a particular individual, all detectors added in a single
instance of the addition operator will favor either large or small, or add randomly.

Ellipsoids and Hyper-Rotational Ellipsoids

ellipsoids and hyper-rotational-ellipsoids is similar to adding hyper
, in that the new detectors that are added will start as hyper-spheres. Like other

rotational-ellipsoids individuals, new detectors will be capable of being
altered and becoming literal hyper-ellipsoids or hyper-rotational-ellipsoids. Assigning the radius to
the new centers for this operator is more difficult than for the hyper-spheres. It is not possible to

space the distance to a hyper-ellipsoid or hyper-rotational-ellipsoid, only whether a
Therefore, the radius is assigned using an application of the b

method, which is described above in Section 3.4.3. The accuracy required is specified by the user,
such that the radius of the new detector is correct to this accuracy. The radius is assigned in such a
way that overlapping is not permitted with the self or another detector.

Once the values have been assigned, the new detectors are sorted according to size and
added to the detector set in the same manner as described for hyper-spheres. Note that random
addition of detectors requires less calculation, and therefore significantly speeds up the FDGO

Added Detectors

(53)

Since each detector is
defined by only one radius, it is a simple matter to generate a number of points within the solution

, and assign a radius to each of the new
These new candidate detectors are then sorted according

to their size and added to the detector set based on the number of available slots in the individual’s
Size is favored based

For a particular individual, all detectors added in a single

Rotational Ellipsoids

is similar to adding hyper-
Like other detectors in

individuals, new detectors will be capable of being
Assigning the radius to

It is not possible to
ellipsoid, only whether a

Therefore, the radius is assigned using an application of the bisection
method, which is described above in Section 3.4.3. The accuracy required is specified by the user,
such that the radius of the new detector is correct to this accuracy. The radius is assigned in such a

Once the values have been assigned, the new detectors are sorted according to size and
Note that random

tion, and therefore significantly speeds up the FDGO

Added Detectors

 28

4.4.3.3.3 Addition of Hyper-Rectangles

 Addition of hyper-rectangles is the most complicated instance of the gene addition genetic
operator. This is partially due to the nature of hyper-rectangles, and partially due to the fact that the
hyper-rectangles are added with varying lengths in each dimension, unlike hyper-spheres, hyper-
ellipsoids and hyper-rotational-ellipsoids, which are added with the same length for all dimensions.
When determining whether an overlap has occurred for a hyper-rectangle, overlap can occur in all
dimensions but one. If all dimensions overlap, then the rectangle exhibits overlap, however if even
one dimension does not exhibit overlap, the hyper-rectangle is acceptable.
 In order to add hyper-rectangles, random centers are generated in the same way as for the
other cases. Once centers that fall within other objects have been eliminated, the side length for
each dimension must be set. The side length to each object is calculated. Ideally, the rectangle
should be assigned the largest possible side length in a dimension for which overlap does not occur.
Determining the side length for each dimension, therefore, depends on the values in all other
dimensions. For this reason, all possible combinations of the measured side lengths must be
evaluated, until the largest acceptable combination is found. This is assigned to the particular
candidate center. Since the side lengths for each dimension vary, the candidate hyper-rectangle
detectors are ranked according to area, rather than the measurement of a given dimension. Area is
found by multiplying together the side length of the rectangle in each dimension. The new detectors
are then added according to the same method as given above.

4.4.3.4 Gene Removal

 The gene removal genetic operator is intended to decrease overlapping within an individual.
This algorithm randomly chooses an individual, and then calculates the overlapping for each
detector within the individual. The detectors are ranked according to their percentage of overlap
with other detectors and the detectors with the greatest overlap are removed. The number of
detectors that may be removed from a single individual in a single instance of this genetic operator is
specified by the user, along with a threshold which determines the amount of overlapping a detector
must have before it will be removed. A flowchart of this simple genetic operator is shown in Figure
4.11, along with a diagram of the process in Figure 4.12. This genetic operator must be used with
caution. Removing detectors may significantly decrease the coverage of the non-self.
 This genetic operator is performed similarly for each of the different hyper-shapes. For
hyper-spheres, overlap is calculated using equations 11, 12, and 13 above. Since a simple metric
such as this does not exist for the other hyper-shapes, overlap among hyper-ellipsoids, hyper-
rotational-ellipsoids, and hyper-rectangles is calculated using the Monte Carlo method.

Figure 4.11—Flowchart of Detector Gene Removal Genetic Operator

Figure 4.12—Diagram of the Gene Removal Genetic Operator

4.4.4 Rating the Population

The “fitness” of the individuals is evaluated based on the following criteria:
a. number of detectors in the set
b. percentage of non-self that is covered by detectors
c. percentage of overlapping that occurs within the detector set

Better individuals ideally have a small number of detectors, no overlap, and cover the entire non
self. Each of these factors must be balanced according to their importance in order to produce the
optimized set of detectors, thus a weight factor, W, must be specified by the designer for each of the
three criteria. The evaluation function for each of these performance criteria
user-specified lower limit to a user
equations 21, 22, and 23.

Detector Removed

29

Flowchart of Detector Gene Removal Genetic Operator

Diagram of the Gene Removal Genetic Operator (53)

Rating the Population

The “fitness” of the individuals is evaluated based on the following criteria:
tors in the set
self that is covered by detectors

percentage of overlapping that occurs within the detector set
Better individuals ideally have a small number of detectors, no overlap, and cover the entire non

s must be balanced according to their importance in order to produce the
optimized set of detectors, thus a weight factor, W, must be specified by the designer for each of the
three criteria. The evaluation function for each of these performance criteria is linear, scaled from a

specified lower limit to a user-specified upper limit. These relationships are given below in

 (53) (54)

(53)

Better individuals ideally have a small number of detectors, no overlap, and cover the entire non-
s must be balanced according to their importance in order to produce the

optimized set of detectors, thus a weight factor, W, must be specified by the designer for each of the
is linear, scaled from a
s are given below in

 30

 PIcoveragei=
1

Ucoverage-Lcoverage
coveragei-

Lcoverage

Ucoverage-Lcoverage
 21

where PIcoveragei is the performance index of the individual i with respect to the coverage criterion,
coveragei is the coverage of the individual, Lcoverage is the lowest acceptable coverage, and Ucoverage is
the highest expected coverage.

 PIoverlappingi=
1

Uoverlapping-Loverlapping
overlapping

i
+

Uoverlapping

Uoverlapping-Loverlapping
+\ 22

where PIoverlappingi is the performance index of the individual i with respect to the overlap criterion,
overlappingi is the overlapping of the individual i, Loverlapping is the highest acceptable overlapping, and
Uoverlapping is the lowest expected overlapping.

 PInumberi=
1

Unumber-Lnumber
numberi −]number

Unumber-Lnumber
+1 23

where PInumberi is the performance index of the individual i with respect to the number of detectors
criterion, numberi is the number of detectors in the individual i, Lnumber is the highest acceptable
number of detectors, and Unumber is the lowest expected number of detectors.
 A small number of detectors implies reduced computational requirements. It will also
require larger size of the detectors, which is acceptable for general detection where only good
coverage of the non-self is necessary. However, for failure identification, smaller detectors may be
preferable as they provide better resolution and may be able to distinguish between failures within
the same category.
 High coverage is absolutely necessary to achieve high detection rates. Any areas of the non-
self that are not covered by detectors will be considered self and not trigger detection. Typically, in
order to obtain acceptable coverage, a large number of detectors is needed.
 Overlapping is not desirable. Although it can be argued that it is better to have overlapping
in an area than no coverage, overlapping produces redundancy and increases calculation time.

4.4.5 Selecting the New Population

Selection of the new population for the next generation is performed based on the
performance index of each individual, relative to the total performance of the population. The
roulette-wheel selection (64) is the method used in this application. Each individual in the
population has a performance index PIindividual computed as:

 PII�=I^I=_-`=Woverlap*PIoverlap+ Wnumber*PInumber+ Wcoverage*PIcoverage 24

The total performance index TF is the sum of all of the performance indices for all individuals in the
population:

 TF=∑ PIi
N
i=1 25

 The performance index of each individual is divided by the total performance index of the
current population to obtain the probability of selection for each individual pi:

 aI = bc_I�=I^I=_-`
�e 26

 The cumulative probability is calculated next for each of the individuals, as the sum of the
probabilities of all precedent individuals:

 fI = ∑ aggIh� 27

 31

 Since the population size is maintained constant throughout the algorithm, the population in
each generation can only contain the same number of individuals as in the initial population. Each
available spot in the new population is filled by generating a random number and selecting the
individual for which the random number is less than its cumulative probability but greater than the
cumulative probability of the preceding individual. Therefore, individuals with higher performance
indices will get larger cumulative probability intervals and more chances for multiple copies in the
new generation. The algorithm continues until the next generation is fully populated. A flowchart
of this process is presented in Figure 4.13.

Figure 4.13—Flowchart of the Roulette Wheel Selection Algorithm (53) (54)

 Elitist strategy is used after the new population has been generated to ensure that good
solutions are not lost before a better solution is reached. In order to perform elitist strategy, one
individual in the newly generated population is replaced at random with a copy of the best individual
from the previous generation.

 32

5 Description of Interactive Utility: West Virginia University Immunity-
Based Failure Detector Optimization and Testing

5.1 Compatibility
 This program was designed using MATLAB R2008a, and is intended to work with this
version or newer. Some features that have been built into the program, such as multi-threading, may
not be available when using previous versions of MATLAB, and could cause errors. This can be
avoided by using the compiled Windows version of the program. If compatibility with Linux is
desired, the MATLAB version of the program must be used in the Linux MATLAB environment.

5.2 Getting Started
 This program is intended to perform a genetic algorithm to optimize detectors for aircraft
failures. This description should instruct an unfamiliar user in the operation of this design tool for
its intended purposes. It will step through each section from preparing and clustering data, to
performing the genetic algorithm. It will describe all options in detail.

5.2.1 Accessing the Help Guide

 A complete help guide is provided within the program, which may be accessed from the
'Help' menu. Click on the 'Help' menu button at the top of the figure, and select 'Load Help File',
the only option. This will load an additional figure so that the user can simultaneously view the
Help File and the IFDOT Utility. Below in Figure 5.1 is the opening menu of the IFDOT Utility.

5.2.2 Data Needs

In order to begin, the user will need at least one data file containing flight test data under
normal conditions. Additional normal flight data and failure data will also be useful to this analysis.
The IFDOT tool may also be applied to non-aircraft systems requiring failure detection. This will
require collection of data regarding system values in order to define the self. Verification requires
the ability to simulate a failure and collect failure data.

5.3 Processing Data
Several options are available for processing data. Begin by clicking on the menu labeled

‘File’, selecting ‘Data Processing’ then selecting ‘Load Raw Data’. This will open the load file panel,
as shown below in Figure 5.2. Before proceeding to process data, a data file must be loaded here.

 33

Figure 5.1—Opening Screen of the IFDOT Utility

Figure 5.2—File Loading Panel

The raw data file should contain only the identifiers the user desires to use in the detector
set, with each identifier in a column, and the data saved to the variable name ‘sensors’. The most
recently loaded raw data file will automatically be loaded as the default choice. This occurs for all
data type. If no file has been loaded before or the data stored in the last known file path is invalid,
the display box will remain blank until a valid file is chosen. When a file is chosen that is invalid, an
error message will appear and continuing will be disabled until an appropriate file is loaded.

Once an appropriate file has been loaded, it will be possible to continue. Go to the ‘File’
menu, select ‘Data Processing’, and click ‘Process Raw Data’, which is now enabled. This will bring
up the menu shown below in Figure 5.3.

 34

Figure 5.3—Data Processing Menu with Options

There are two options for normalizing data. The default method uses a percentage margin
related to the values in the data. This means that there will be a margin the size of the percentage
chosen left around the “edges” of the normalized data. This is the most basic method of
normalization. The recommended percentage is 0.10 (10%). This method is shown below in Figure
5.4.

The second normalization method involves specifying the normalization limits for each
identifier in the data. This is used when two sets of raw data need to be combined, for instance, to
make a more complete self, or to prepare failure data for comparison with a detector set. In each of
these cases, in order to obtain valid results, the data will need to be normalized using the same limits.
The default method for this choice is to load a previously normalized set, and retrieve maximum and
minimum values from this file. This is shown below in Figure 5.5. Note that the file loaded should
contain the same dimensions as the file currently being normalized. If this is not the case, an error
message will be displayed and continuing will not be possible until a correct file is chosen, or a
different method is chosen.

 35

Figure 5.4—Processing Menu for Margin Normalization

The other possibility for normalizing data by specifying the normalization limits is to
manually specify the limits. This is shown in Figure 5.6. This is the trickiest method to use, being
that the normalization maximums and minimums must be specified including the grace percentage
used in a different normalization file if they are to be combined validly. These values can be found
by loading the desired normalized file separately in MATLAB and getting the values saved as
‘normmaximums’ and ‘normminimums’, then entering the values in the boxes. Otherwise, these
values should be the maximum and minimum values the program should consider for each
dimension.

Duplicates will be removed from the data during the process, in order to remove redundancy
and speed up future algorithm processes. This is performed automatically after normalizing. The
user will need to select a tolerance for this process. This tolerance is the maximum distance that
may separate two points, which will be declared identical. The recommended value for the duplicate
removal tolerance is 0.001 or smaller. Choosing a tolerance that is too large could lead to significant
loss of data, and poor detection results. Regardless of the normalization type chosen, duplicate
removal will be performed in the same manner.

Once all methods have been properly applied and all needed parameters appropriately
selected, click on the ‘Process Data’ button to perform the processing on the data. While the data is
processing, the program will be disabled. This process may take several minutes depending on the
data. When the process is complete, the user will be prompted to save the file. This data file will
now be ready for clustering.

 36

Figure 5.5—Data Processing Using File-Specified Normalization Limits

Figure 5.6—Data Processing Using Manually Specified Normalization Limits

 37

5.4 Clustering Data
 In order to begin clustering data, click on the ‘File’ menu, select ‘Data Clustering’, and click
‘Load Processed Data’. As before, an appropriate file must be selected before the program can
continue. This time the file must contain normalized data saved with the variable name ‘selfdata’.
This is the file type produced by the processing section of this program. Once an appropriate file
has been chosen, click the ‘File’ menu, select ‘Data Clustering’ and click on ‘Cluster Processed Data’.
 Several options are available for clustering data. Data can be clustered using 2 shapes, sphere
or rectangle. Spherical clusters are used for ellipsoid and rotational ellipsoid detectors as well as for
spherical detectors. Hyper-rectangles can only be used in conjunction with hyper-rectangular
detectors later. Hyper-spheres can be clustered using two different methods. Number-Imposed
Clustering is generally the quicker option; however it does not limit the empty space within the
clusters. Space-Optimized Clustering generally results in better clusters, but takes considerably
longer to compute. For clustering using hyper-rectangles, only one method is available, which is
nearly equivalent to the hyper-spheres Number-Imposed Clustering. Confidence percentage and
permitted error are used to calculate the coverage and overlapping present in the clustered sets. All
clustering methods will return the final number of clusters, their overlap and their coverage of the
total hyper-cube. These values are useful to the user when determining values for the genetic
algorithm.
 The parameters that must be entered for the Number-Imposed Clustering Method are listed
in Table 5.1 below, with an accompanying description of each of the parameters effects on the
clustering algorithm. A figure of the interface for clustering is shown in Figure 5.7 below, followed
by a figure of the Number-Imposed Clustering Menu in Figure 5.8.

 38

Figure 5.7—Clustering Method Menus

 39

Table 5.1—Number-Imposed Cluster Method Parameters

Parameter Description

Minimum Cluster Radius This is the distance around each self point that can be reasonably
assumed to belong to the self. One way of determining this for a
data set is to look at the average distance between a data point and
the next data point in the time history.

Maximum Number of
Clusters

This is the maximum desired number of clusters. This limit will
usually be met, making it effectively the desired number of clusters.
A larger desired number of clusters leaves less "empty space" or
space not covered by a data point (calculated using the radius
above), while a smaller number of clusters leaves more empty space
but likely incorporates parts of the self set for which explicit data
does not exist. This value must be balanced in order to produce a
self set that covers all possible normal condition occurrences, but
does not incorporate failure occurrences. A self set that does not
cover all normal occurrences will ultimately result in a detector set
that produces a high number of false alarms, while covering
abnormal conditions within the self will results in a detector set that
produces lower detection rates.

Confidence Percentage This value is used in the Monte Carlo volume estimation algorithm,
which estimates the coverage and overlapping among the clusters,
and later, among the detectors. This value is collected here only, and
reused throughout the evolutionary algorithm. This value
determines the confidence in the solution provided. The default
value is 98, but 99 is recommended and a value closer to 100 will
produce more reliable answer. Increasing this value also drastically
increases the computation time needed for the Monte Carlo
algorithm to run.

Permitted Error This value is used in the Monte Carlo volume estimation algorithm,
which estimates the coverage and overlapping among the clusters,
and later, among the detectors. This value is collected here only, and
reused throughout the evolutionary algorithm. This value
determines the approximate accuracy of the solution returned by the
Monte Carlo algorithm. The default for this value is 0.01, but 0.001
is recommended. Smaller values produce more accurate results,
however, a smaller number will drastically increase the computation
time of the Monte Carlo algorithm.

 40

Figure 5.8—Number-Imposed Clustering Method

 Clustering Method 2 is the more complicated and more time-consuming of the clustering
methods. This method also limits the empty space within the clusters, in addition to generating the
self clusters set. Several inputs are needed. These are described below in Table 5.2 in detail. The
menu for this method is shown in Figure 5.9.

Figure 5.9—Hyper-Spheres Space-Limiting Clustering Method

 Shown in Table 5.3 below are the parameters needed for the Rectangle Clustering Method,
including a detailed description. Figure 5.10 below shows the utility menu for this method.

Figure 5.10—Hyper-Rectangles Clustering Method

 Once these have been selected, click the ‘Cluster Data’ button to begin the clustering
process. When the clustering begins a progress bar will appear. Once the clustering is complete, the
user will be prompted to save the file.

 41

 If two files need to be merged, this can be done by clicking the ‘File’ menu, selecting ‘Data
Clustering’, and clicking on either ‘Merge Processed Data’ or ‘Merge Clustered Data’. This will open
two file loading panels. Select appropriate data files with the same number of dimensions, to
continue. Then click the ‘Merge Processed Data’ buttons or ‘Merge Processed Data’. When this
process is complete, the user will be prompted to save the new file.

Table 5.2—Space-Limiting Clustering Method

Parameter Description

Initial Number of Clusters This acts as a minimum desired number of clusters. The algorithm
will begin by generating this number of clusters, and determine
whether the desired empty percentage is met.

Cluster Increase Step In each iteration in which the empty percentage is not obtained, a
new set of clusters will be generated, with more clusters than the
previous set. This is the number of clusters by which to increase the
size of the set at each iteration.

Point Radius This is the distance around each self point that can be reasonably
assumed to belong to the self. One way of determining this for a
data set is to look at the average distance between a data point and
the next data point in the time history. This is used to determine the
occupied space within a cluster. This is compared to the total size of
the cluster to determine the empty percentage.

Empty Percentage This is the desired maximum percentage of empty space within each
detector. A value of 100 percent generates will not limit the empty
space within the clusters.

Confidence Percentage This value is used in the Monte Carlo volume estimation algorithm,
which estimates the coverage and overlapping among the clusters,
and later, among the detectors. This value is collected here only, and
reused throughout the evolutionary algorithm. This value
determines the confidence in the solution provided. The default
value is 98, but 99 is recommended and a value closer to 100 will
produce more reliable answer. Increasing this value also drastically
increases the computation time needed for the Monte Carlo
algorithm to run.

Permitted Error This value is used in the Monte Carlo volume estimation algorithm,
which estimates the coverage and overlapping among the clusters,
and later, among the detectors. This value is collected here only, and
reused throughout the evolutionary algorithm. This value
determines the approximate accuracy of the solution returned by the
Monte Carlo algorithm. The default for this value is 0.01, but 0.001
is recommended. Smaller values produce more accurate results,
however, a smaller number will drastically increase the computation
time of the Monte Carlo algorithm.

 42

Table 5.3—Rectangle Clustering Method

Parameter Description

Minimum Cluster
Dimension

This is the distance in each dimension from each self point that can
be reasonably assumed to belong to the self. One way of
determining this for a data set is to look at the average distance
between a data point and the next data point in the time history, in
each of the corresponding dimensions.

Maximum Number of
Clusters

This is the maximum desired number of clusters. This limit will
usually be met, making it effectively the desired number of clusters.
A larger desired number of clusters leaves less "empty space" or
space not covered by a data point (calculated using the radius
above), while a smaller number of clusters leaves more empty space
but likely incorporates parts of the self set for which explicit data
does not exist. This value must be balanced in order to produce a
self set that covers all possible normal condition occurrences, but
does not incorporate failure occurrences. A self set that does not
cover all normal occurrences will ultimately result in a detector set
that produces a high number of false alarms, while covering
abnormal conditions within the self will results in a detector set that
produces lower detection rates.

Confidence Percentage This value is used in the Monte Carlo volume estimation algorithm,
which estimates the coverage and overlapping among the clusters,
and later, among the detectors. This value is collected here only, and
reused throughout the evolutionary algorithm. This value
determines the confidence in the solution provided. The default
value is 98, but 99 is recommended and a value closer to 100 will
produce more reliable answer. Increasing this value also drastically
increases the computation time needed for the Monte Carlo
algorithm to run.

Permitted Error This value is used in the Monte Carlo volume estimation algorithm,
which estimates the coverage and overlapping among the clusters,
and later, among the detectors. This value is collected here only, and
reused throughout the evolutionary algorithm. This value
determines the approximate accuracy of the solution returned by the
Monte Carlo algorithm. The default for this value is 0.01, but 0.001
is recommended. Smaller values produce more accurate results,
however, a smaller number will drastically increase the computation
time of the Monte Carlo algorithm.

5.5 Generating Detectors and Performing Optimization
 This section is intended to cover performing the genetic algorithm optimization. This
segment of the program is equipped with a multi-threading feature, due to the computationally-
intense nature of this algorithm. The program makes use of the maximum number of cores
available by default. If multiple-cores are not available, the effects of this feature will be null. If
multiple cores are available and multithreading is not desired, this feature may be turn off by clicking

 43

on the Options menu, deselecting ‘Use Multithreading Where Applicable’, and clicking ‘Save’.
Parallel computation is also implemented for increasing the computation speed of the algorithm.
This is discussed in Section 5.7.2.
 To begin the genetic algorithm, first click on the ‘File’ menu, select ‘Detector Optimization’,
then select the ‘Negative Selection’ option, and click on ‘Load Clustered Data’. This will bring up
the load file panel as in previous tasks. Select an appropriate clustered data file to continue.
 Next, click on the ‘File’ menu, select ‘Detector Optimization’, then select over ‘Negative
Selection’ and click on ‘Perform Optimization’. This will load the menu shown below in Figure
5.11. This is the main menu for the genetic algorithm. Several parameters must be selected here in
order to perform the genetic algorithm. The genetic algorithm may be performed using several
different detector shapes. These are hyper-spheres, hyper-ellipsoids, hyper-rotational ellipsoids, and
hyper-rectangles. Note that the clustered data file will determine which of these parameters is
available. If the data was clustered using hyper-spherical clusters, hyper-spheres, hyper-ellipsoids,
and hyper-rotational-ellipsoids will be available. If the data was clustered using hyper-rectangle
clusters, only hyper-rectangles will be available. If the clusters were not created using this program,
it will be up to the user to select an appropriate shape. Selecting an incorrect shape will cause errors.
 If hyper-ellipsoid or hyper-rotational-ellipsoid detectors are chosen, the mutation parameters
will be different from above and will appear as shown above in the option on the lower right in
Figure 5.11. In addition, if Enhanced NSA-R with Variable Detectors is chosen, the detector
generation parameters will look as shown in Figure 5.11 on the lower left.

Figure 5.11—Detector Optimization Main Menu with Algorithm Options

 44

The parameters for each method will now be discussed, beginning with Phase I, detector generation.
Three methods exist for detector generation. Two different methods are capable of producing
spherical detectors. Another method is intended to produce rectangular detectors. The simple
method of generating hyper-spheres, called NSA-R with Variable Detectors, contains four input
parameters. These are discussed in Table 5.4 below. The menu for this method is shown in Figure
5.12.

Figure 5.12—NSA-R Detector Generation Method

Table 5.4—NSA-R Detector Generation Parameters for Hyper-Spheres

Parameter Description

Minimum Detector Radius Places a lower limit on the size of the detectors.
Maximum Number of
Detectors

Specifies the maximum desired number of detectors in an
individual. This also specifies the maximum number of detectors
that can be in any individual at any time throughout the algorithm.
This is used as a stopping criterion in the detector generation
algorithm.

Non-Self Coverage An approximate coverage determined based on the number of
centers attempted that have fallen within existing objects. This is
used as a stopping criterion in the detector generation algorithm.
This value should approach 1, although increasing this value can
significantly increase computing time.

Self-Coverage An approximate coverage determined based on the number of
attempted new detectors that had radii smaller than the desired
radius. This is used as a stopping criterion for the detector
generation algorithm. This value should approach 1, although
increasing this value can significantly increase computing time.

 The parameters for generating rectangular detectors are similar to the previous method for
generating hyper-spheres, with two exceptions. Where the hyper-spheres method requests a
minimum radius, the hyper-rectangles method requests a minimum semi-side length. This
dimension is the minimum distance from the center to the edge of a hyper-rectangular detector in

 45

any one dimension. Also, a decay parameter is needed for changing the size of the detectors while
they are being generated. These parameters are shown in Table 5.5.

Table 5.5—Generation of Rectangle Detectors Parameters

Parameter Description

Minimum Detector
Dimension

Places a lower limit on the size of the detectors. This dimension is
measured from the center to the edge of the detector in each
dimension.

Maximum Number of
Detectors

Specifies the maximum desired number of detectors in an
individual. This also specifies the maximum number of detectors
that can be in any individual at any time throughout the algorithm.
This is used as a stopping criterion in the detector generation
algorithm.

Non-Self Coverage An approximate coverage determined based on the number of
centers attempted that have fallen within existing objects. This is
used as a stopping criterion in the detector generation algorithm.

Tau An decay parameter used to determine the size of detectors as they
are generated. This value should increase for higher numbers of
detectors, from approximately 135 for 200 detectors to 150 for 500
detectors.

 Thirteen parameters are required for the second detector generation method for hyper-
spheres, called Enhanced NSA-R with Variable Radius. These are described in Table 5.6 below,
followed by Figure 5.13 of the menu for this method.

Figure 5.13—Enhanced NSA-R Detector Generation Method

 46

Table 5.6—Enhanced NSA-R Parameters for Hyper-Spheres

Parameter Description

Minimum Detector Radius Places a lower limit on the size of the detectors.
Initial Number of
Detectors

The initial number of detectors generated by the algorithm.

Maximum Number of
Detectors

A stopping criterion which specifies the largest number of detectors
that may be generated for an individual. This also specifies the
maximum number of detectors that can be in any individual at any
time throughout the algorithm.

Maximum Number of
Iterations

A stopping criterion used to determine the largest number of
iterations which may be performed in order to produce the desired
number of acceptable detectors.

Number of Random
Detectors Each Iteration

This specifies the number of new candidate centers that are
generated at random each iteration, with the purpose of generating
new acceptable detectors.

Number of Detectors to
Move Each Iteration

Each iteration, a number of unacceptable detectors are moved in an
attempt to make them acceptable.

Initial Adaptation Rate Specifies the maximum distance a detector may be moved.
Decay Parameters, Tau Specifies how many times and how far a detector may be moved

before it is rejected.
Threshold for Permitted
Overlapping

Specifies the amount of overlapping a detector may exhibit and be
acceptable.

Number of Points
Considered for Cloning

Number of acceptable detectors considered for creating clone
detectors.

Number of Points
Considered for Moving

The number of nearest points considered when moving a detector.

Initial Distance to Locate
New Clones

Clones are initially generated a specified distance from the original.

Cloning Decay Parameter Determines how many times and how far a clone may be moved
before it is rejected.

 Phase II requires a considerable number of parameters. For all shapes, the performance
index, crossover parameters, add/remove parameters, and GA parameters are the same. Only for
the mutation parameters does the detector shape change the necessary parameters.
 The performance index parameters consist of 9 values. These are described in Table 5.7
below, followed by Figure 5.14 of the menu for the performance index. For the performance index,
three weights must be entered to determine the weights of the three grading criteria. These should
be chosen with respect to each other. This means that if all three have the same weight, they will be
equally weighted. However, for instance, if coverage has a weight of 2 and number and overlap
have a weight of 1, the performance index will be composed 50% from the coverage rating, and
25% each from the number and overlap ratings.

 47

Table 5.7—Performance Index Parameters

Parameter Description

Weight for Overlapping This weight specifies the relative importance of overlapping with
respect to the other performance index criteria.

Weight for Coverage This weight specifies the relative importance of coverage with
respect to the other performance index criteria.

Weight for Number of
Detectors

This weight specifies the relative importance of number of detectors
with respect to the other performance index criteria.

Best Limit for Overlapping Expected most desirable value for overlapping, ideally should
approach zero.

Worst Limit for
Overlapping

Expected least desirable value for overlapping, ideally should
approach one.

Best Limit for Coverage Expected most desirable value for coverage, ideally should approach
one.

Worst Limit for Coverage Expected least desirable value for coverage, ideally should approach
zero.

Best Limit for Number of
Detectors

Expected most desirable value for number of detectors, ideally
should be small with respect to coverage achieved.

Worst Limit for Number of
Detectors

Expected least desirable value for number of detectors, ideally
should choose the largest number of detectors allowable in the
detector set.

Figure 5.14—Performance Index Parameters

 The crossover parameters consist of only 2 values. The crossover rate is the number of
individuals with respect to the size of the population that should undergo crossover in each
generation. The number of detectors to cross is the maximum number of detectors that can be
traded between two sets of detectors in a single crossover instance. An example of the menu for
crossover parameters is given in Figure 5.15 below.

Figure 5.15—Crossover Parameters

 The addition parameters consist of 6 values. These are described in Table 5.8 below,
followed by Figure 5.16 of the menu for this genetic operator.

 48

Table 5.8—Gene Addition Parameters

Parameter Description

Add Rate Probability of selection for an individual to undergo this genetic
operator in a specific generation.

Number of Random Points The number of random centers generated in effort of finding new
acceptable detectors.

Number of Centers to Add The maximum number of new detectors that may be added to an
individual during one instance of the genetic operator.

Weight Favoring Large
Detectors

Weighting factor used to determine probability of adding large
detectors rather than small detectors.

Weight Favoring Large
Detectors

Weighting factor used to determine probability of adding small
detectors rather than large detectors.

Desired Radius Accuracy Desired accuracy achieved by the bisection algorithm used to
determine the radius of newly added hyper-ellipsoids or hyper-
rotational-ellipsoids (only applies to hyper-ellipsoids and hyper-
rotational-ellipsoids). Smaller desired accuracy may result in
increased calculation time.

Selecting both of the weighting factors as 0 will cause the algorithm to choose new detectors
randomly, rather than according to the size. This significantly increases the calculation speed of the
algorithm, and should be used in most situations.

Figure 5.16—Gene Addition Parameters

 The remove parameters consist of 3 values. Remove rate refers to the probability that an
individual will undergo this operation in a single generation. Maximum number to remove is the
maximum number of detectors that can be removed from a single individual in a given generation.
Overlapping threshold is the percentage area of a detector which determines whether a detector
exhibits enough overlap that it should be removed. This eliminates the possibility of removing
desirable detectors and needlessly reducing coverage. Figure 5.17 shows the parameters menu for
this operator.

Figure 5.17—Gene Removal Parameters

 The genetic algorithm properties consist of 2 values. Population size is the number of
individuals that will make up the entire population. Number of generations is the number of
iterations the algorithm should perform before returning the results. Figure 5.18 shows this menu.

 49

Figure 5.18—Genetic Algorithm Parameters

 Mutation parameters, the trickiest, depend on the shape chosen. For hyper-spheres, the
mutation parameters will consist of 6 parameters. For hyper-ellipsoids, 8 values make up the
mutation parameters. The parameters for each of these options are given in Table 5.9 and Table
5.10 below, respectively. The menus accompanying these methods are included in Figure 5.19 and
Figure 5.20 below, respectively.

Gene relocation weight and gene alteration weight are weights that work the same as the
performance index weights, to determine the likelihood of a particular type of mutation occurring.
Gene relocation is the moving of the center of a detector. Gene alteration is the changing of a
detector’s radius. For the case of hyper-ellipsoids and hyper-rotational-ellipsoids, an additional
mutation type exists, called gene rotation. Gene rotation is the rotation of a detector about a certain
axis. For each of the mutation types, a constant is requested to determine the maximum amount of
alteration the detector can undergo at once. The gene relocation constant is the distance in
multiples of the detector radius the center can be moved in one direction at a time. The gene
alteration constant is the distance in multiples of the detector radius that the radius can be changed
by at one time. The gene rotation constant, which is only requested for hyper-ellipsoids or hyper-
rotational-ellipsoids, is the maximum number of degrees a detector can be rotated at one time.

Table 5.9—Mutation Parameters for Hyper-Spheres and Hyper-Rectangles

Parameter Description

Mutation Rate The probability of selection for a specific individual in a given
generation.

Chromosomal Mutation
Rate

The probability of selection for a specific detector within a selected
individual in a given generation.

Gene Relocation Weight A weighting factor used to determine the likelihood of performing
gene relocation.

Gene Alteration Weight A weighting factor used to determine the likelihood of performing
gene alteration.

Gene Relocation Constant A value used, with the radius of the detector, to determine the
maximum distance the center can be moved at one time.

Gene Alteration Constant A value used, with the radius of the detector, to determine the
maximum length the radius can be changed at one time.

 50

Figure 5.19—Mutation Parameters for Hyper-Spheres and Hyper-Rectangles

Table 5.10—Mutation Parameters for Hyper-Ellipsoids and Hyper-Rotational-Ellipsoids

Parameter Description

Mutation Rate The probability of selection for a specific individual in a given
generation.

Chromosomal Mutation
Rate

The probability of selection for a specific detector within a selected
individual in a given generation.

Gene Relocation Weight A weighting factor used to determine the likelihood of performing
gene relocation.

Gene Alteration Weight A weighting factor used to determine the likelihood of performing
gene alteration.

Gene Rotation Weight A weighting factor used to determine the likelihood of performing
gene rotation.

Gene Relocation Constant A value used, with the radius of the detector, to determine the
maximum distance the center can be moved at one time.

Gene Alteration Constant A value used, with the radius of the detector, to determine the
maximum length the radius can be changed at one time.

Gene Rotation Constant The largest number of degrees a detector can be rotated in a plane at
one time.

Figure 5.20—Mutation Parameters for Hyper-Ellipsoids and Hyper-Rotational-Ellipsoids

 Once all of these many parameters are chosen, click the ‘Perform GA’ button. This will
begin the genetic algorithm, and a progress bar will appear. Note that this may take a considerable
amount of time, depending on the number of generations, population size, and computational

 51

power utilized. When the algorithm is finished, the user will be prompted to save the results. Then
the Results display will appear. If the data is 2 dimensional, the optimal detector will also be plotted.

5.6 Failure Testing
 In order to perform detector testing, applicable failure data must be available. In order to be
consistent with the detector set, the data must be measured/simulated from the same aircraft,
contain the same identifiers as the detectors, and be normalized to the same limits as the cluster
data. The user must ensure that these requirements are met.
 To begin testing, click ‘File’ � ‘Detector Testing’ � ‘Run Detection’. This will bring up the
testing menu. This is shown below, with example results, in Figure 5.21. In the first browse box,
select the file containing the detectors that are to be tested. These should be saved to variable name
‘optdetector’. Beneath this, select the appropriate detector shape. In the second browse box, select
the file containing the data for comparison. This should be saved with the variable name ‘dataN’.
Below, select whether the data contains failures or not. Then, select the sampling rate, activation
window, time of failure, and size of point radius. The values of these parameters are discussed in
Table 5.11 below.

Table 5.11—Detection Testing Parameters

Parameter Description

Sampling Rate The collection rate of the data in Hz, typically 50Hz.
Sampling Window The number of contiguous samples that will be compared to

determine if a failure has occurred, typically 50 samples, or 1 sec at
50 Hz.

Time of Failure Time the failure was introduced during the data collection. This is
needed to distinguish between detection rate and false alarms.

Point Radius Determines the radius of a point, for comparison with the detectors.

 52

Figure 5.21—Testing Menu with Results

5.7 Continuing Optimization and Other Features

5.7.1 Continuing Optimization

 Sometimes it is desirable to continue optimizing where the algorithm left off. Note that
continuing with different performance index values than used in the previous optimization will
result in inconsistencies if all generations (previous and continued) are plotted together.
 Beginning from a previous trial is similar to running an initial trial of the genetic algorithm,
except that the initial population is obtained from the previous trial rather than generated. Thus the
population size is fixed and the detector generation parameters are not needed. To run the genetic
algorithm continuing from a previous trial, click on the ‘File’ menu, select ‘Detector Optimization’,
then select ‘Negative Selection’, and click ‘Load Previous Trial Data’. This will cause the file loading
panel to appear. Once an appropriate file has been loaded, the user may continue by clicking ‘File’,
‘Detector Optimization’, ‘Negative Selection’, and ‘Continue Previous Optimization.’ This will bring
up a menu with all the necessary parameters. These are the same parameters as in the initial trial,
except the ones not needed listed above. The default for these parameters will be set to the
parameters used in the trial for which the data was loaded. Change these parameters as desired, and
click ‘Continue GA’ to run the trial. When the algorithm is complete, the results will be displayed as
before.

 53

5.7.2 Options Menu and Parallel Computation

This menu allows the user to set some options that are static to the program. These include
whether or not to use multi-threading capabilities when available, whether the files should be saved
in a format compatible with MATLAB Version 6, what Monte Carlo parameters are to be used in
the genetic algorithm, and whether or not the program is to be run such that parallel computation is
available.

To access this menu, click on the ‘Options’ menu, then choose ‘Select Options’. This loads
the window shown below in Figure 5.22. The default values that appear in this window are the most
recently used values for these parameters, as saved in the file ‘options.mat’. If this file does not
exist, the program chooses defaults to multi-threading on, and all other options off.

Figure 5.22—Options Menu

Each of these options serves a different purpose within the program. ‘Use Multithreading
Where Applicable’ allows the program to calculate some portions of the algorithm using up to 4
available threads on the same machine. This option has no effect if parallel computation is used.
‘Maintain Version 6 Compatibility’ allows the program to save all pertinent data files in a format that
is compatible with the older MATLAB Version 6. This is useful in the event that data collection or
fault detection is performed using an older version of MATLAB. ‘Override Monte Carlo
Parameters in Clusters file’ allows the using to specify Monte Carlo Volume Estimation Parameters
different from those contained in the clustered data file. Generally, the parameters used in the
clustered data file will also be accurate enough for the genetic algorithm; however, this option is
made available in the event that this is not the case.

The option ‘Use parallel computing to increase GA speed’ is intended to increase the
computation time of the genetic algorithm. If this method is selected, only one machine is needed
to calculate the genetic algorithm. However, additional computers may be used as ‘slave’ machines

 54

to calculate and return the work on an individual. To each this menu, choose File�Detector
Optimization�Negative Selection�Run GA as Slave. This loads the menu shown below in Figure
5.23.

Figure 5.23—Slave Calculation Menu

These slave machines work entirely independently from the main computer, and need only
to be able to remotely access the working directory of the main computer to perform calculations.
If access is denied, an error will appear. Otherwise, a message will appear that the machine is in use.
This message will disappear once the genetic algorithm completes.

The slave machines may be added or removed from the calculation pool at any time without
affecting the genetic algorithm in terms of any parameter except speed. Due to the nature of
multithreading, true multi-threading is not possible for parallel computation. However, if multiple
threads are available on a single machine, these may be manually started by using multiple instances
of the slave machine software on the same machine. Note that each instance of the software should
be opened using a different instance of MATLAB, and each instance of MATLAB should use a
different Current Directory, so as to avoid incorrect overwriting of files.

5.7.3 Displaying Results

 It may be useful to revisit data from an optimization. If this is desired, click on ‘File’�
‘Detector Optimization’ � ‘Negative Selection’ � ‘Load Previous Trial Data to Continue
Optimization’. This will bring up the load file menu. Load an optimization file. When an
appropriate file is loaded, the menu option ‘Review Results’ will become available. Click ‘File’�
‘Detector Optimization’ � ‘Negative Selection’ � ‘Review Results’ to load the results in the same
manner that they appear at the end of the trial. See Figure 5.24 below for an example of the results.
Note that this is a 2-D example. The results will appear somewhat differently in higher dimensions,
as in Figure 5.25.

 55

Figure 5.24—Results Display for 2-Dimensional Data Trial

 56

Figure 5.25—Results Display for Higher-Dimensional Data Trial

5.7.4 Positive Selection Detector Generation

 The positive selection algorithm functions in the same way as negative selection clustering,
as described in Section 5.4, except that the data array will be saved to the name ‘optdetector’, rather
than ‘selfdataclusters’ as for clustering. In order to create a positive selection detector set, click on
the ‘File’ menu, select ‘Detector Optimization’, ‘Positive Selection’, and ‘Load Processed Data’. Load
a data file, then go to the ‘Create Positive Selection Detectors’ and follow the instructions in the data
clustering section.

5.7.5 Negative Selection Detector Generation

 The user is capable of generating a set of detectors using the same detector generation
methods as are used to generate the initial population for the FDGO algorithm. This may be useful
for testing the detection performance of a set of identifiers for a particular type of failure, without
optimizing the set first. This "quick" detector generation can save time: there is no point in
optimizing a detector set only to discover that the identifiers are not adequate for a desired type of
failure.
 In order to generate such a set of detectors, click on the 'File' menu, select Detector
Optimization � Negative Selection � Load Clustered Data, and load a valid clustered self set.
Then select 'File' � 'Detector Optimization' � 'Negative Selection' � 'Create Detectors (Phase I

 57

only)'. This will allow the user to specify the parameters for and generate a detector set without
having to go through the optimization process. The user is also able to save the detector set, unlike
running a sample detector set when optimizing.

5.7.6 Data Merging

 It is useful to combine data files into single files, for instance, when new data is collected.
Merging functions are provided to accommodate these needs. Be aware that in all cases, the
program will determine whether the files are numerically compatible, but it is up to the user to
ensure that the files are fundamentally compatible.

5.7.6.1 Raw Data:

 If order to merge raw data, two data files containing raw data saved to the variable ‘sensors’,
with the same number of columns, must be available. Click ‘File’� ‘Data Processing’ � ‘Merge
Raw’ to bring up the merge raw data menu. This consists of two load file menu boxes. When the
appropriate files are loaded, the button marked ‘Merge Raw Data’ will be enabled. Note that the
button will not become active until two files containing appropriate, compatible data are loaded.
Clicking the ‘Merge Raw Data’ button will merge the two data files together, to be saved as a single
file.

5.7.6.2 Processed Data:

 Merging processed data is more involved than merging raw data, but no more difficult for
the user. Click ‘File’ � ‘Data Clustering’ � ‘Merge Processed Data’ to load the merge processed
data menu. Again, two files are requested before the ‘Merge Processed Data’ button will be enabled.
These files must contain processed data saved to the variable ‘selfdata’. These files need only be
compatible with respect to type and number of parameters. The files will undergo several processes.
The maximums and minimums for each file will be found, compared, and the overall max and min
values will be used to normalize the two sets compatibly, and eliminate new possible duplicates. The
results of this process are equivalent, though not identical, to merging two raw data files, then
normalizing the combined data. A different number of data points may result from this process
than from combining the raw files, due to multiple instances of duplicate removal.

5.7.6.3 Clustered Data:

 Merging clusters is useful if two compatible data sets are available. In this case, click ‘File’
� ‘Data Clustering’ � ‘Merge Clustered Data’. This will bring up the load clustered files menu.
Choose two files that have been clustered using the same shape and contain the same number of
parameters. When two compatible files are loaded, the ‘Merge Clusters’ button will become
activated. Click the button to merge the clusters, then save the resulting cluster set. Merging
clusters can be done for both sphere and rectangle clusters.

 58

6 Results Yielded Using the West Virginia University Immunity-Based
Failure Detector Optimization and Testing Utility

The IFDOT Utility has essentially been designed to allow the user to maximum amount of
flexibility and customizability in the design and generation of the self and non-self of an immunity-
based detector set. Due to the expansive nature and open-ended design of the IFDOT Utility, full
exploration of the design environment’s capabilities cannot be investigated here. Instead, the focus
of these results will be to first prove the functionality and validity of the optimization methods, then
illustrate the potential detection improvements possible by utilizing this optimization utility. Several
uses of this utility have already been made during the course of this research effort (12) (13) (50) (51)
(53) (54) (81) (82) (85) (86). Comparison of the four available detector shapes will be made, for 2-D,
3-D, and 6-D cases. The 2-D case is intended to compare the relative performance of each of the
shapes with respect to coverage, overlapping, and number of detectors. The 3-D case is intended to
compare the relative performance of each of the shapes with respect to failure detection and false
alarms. The 6-D case is primarily intended to illustrate the capability of the Utility to handle high-
dimensional situations, being that the use of many identifiers may be necessary to detect many types
of failures. Although calculation times will be included and discussed, these are only to be used as a
general comparison, not an exact comparison, since it was necessary to use several different
computers, of various speeds, to calculate the optimizations.

Three trials were performed for each of the four detector shapes, each with duration of 50
generations. Full results for all trials, with shapes compared side-by-side, are located in Appendix A.
Plots of the best solutions achieved in each of these trials as well as the best and average
performance index experienced throughout the trial is presented for each of these optimization
trials. Three trials of equal length were chosen for comparing each of the shapes. Since allowing the
algorithm to converge would take significantly more generations and convergence itself is somewhat
subjective, this was determined to be a more accurate approach for direct comparison of the shapes.
In addition, the optimization parameters for each of the shapes were kept as similar as possible, to
enhance direct comparison among the shapes. These parameters were intentionally kept generic, as
the purpose of these results is to compare each of the shapes, rather than explore the influence of
the optimization parameters on the performance of the algorithm.

It should be noted that although this utility was designed for the generation and optimization
of detectors for aircraft failure, and although the data results presented here utilize flight data
obtained from the WVU 6-degree-of-freedom simulator, this utility is not limited to aircraft
applications. The algorithms implemented in the IFDOT Utility utilize normalized data, and are
therefore independent of the identifiers contained in the data. This utility may be applied to any
system for which failure detection is desired, and for which time-histories of necessary identifiers are
measureable.

6.1 Explanation of Failure Detection and Identification Scheme
In order to create immunity-based detectors, normal condition data must be available for the

system. To completely and accurately define the self, time-history data is collected at a rate of 50 Hz
from the Motus 6-degree-of-freedom flight simulator, implementing the WVU IFCS F-15 research
aircraft model, for a wide variety of parameters. In order to define the self over a large range of the
flight envelope, 9 points are defined within the flight envelope at varying altitudes and Mach
numbers. An additional 4 points within this range are defined for the purpose of determining the
detection performance of a set of detectors. These points are shown in Figure 6.1 below.

 59

Figure 6.1—Definition of Flight Envelope Points (50)

 The normal condition time history defines the self for each of these points. In order to
define the self over a large range of the flight envelope, the time-histories for each of these points 1-
9 are combined, duplicate points are removed, and the data values are normalized from 0 to 1.
 The creation of a successful detector set begins with the choice of adequate parameters to
detect the various sensor, actuator, structural, and propulsion failures. A hierarchical multi-self
strategy (50) (51) has been proposed to increase detection rate, reduce false alarms, and reduce on-
line computational requirements. This method polls the detection result of several smaller-
dimensional detector sets, rather than using one high-dimensional set.
 In order to test the performance of a set of detectors, abnormal condition data containing
only one type of failure is collected at each of the points in the flight envelope at a rate of 50 Hz,
and compared against the detector set. A detector is activated when an abnormal data point falls
within one of the detectors in the set. A failure is declared when a detector is activated for a
continuous 50 samples, or 1 second, and the failure is declared continuously until a detector has not
been activated for the 50 previous samples.

6.2 2-Dimensional Example
The self for each of the 2-dimensional trials was defined by 100 clusters using data for roll-

rate and pitch-rate since these parameters are uncoupled and therefore form a characteristic ‘cross’
pattern. The same self clusters are used for hyper-spheres, hyper-ellipsoids, and hyper-rotational-
ellipsoids. For these shapes, 100 hyper-spheres were used to cluster the self data. Due to the
characteristic of the shape, the same self clusters could not be used for hyper-rectangles. For this
shape, the self data was clustered using 100 hyper-rectangles.

6.2.1 Hyper-Spheres

Three trials of 50 generation each were performed for 2-dimensional spherical detectors.
The optimization parameters used for these trials are given below in Table 6.1. The results of each of
these trials, including time to calculate are given in Table 6.2. The best individuals resulting from
each of these trials and the performance indices throughout these trials are given in Figure 6.2
through Figure 6.7 below. The coverage, overlapping, and number of detectors for the best

 60

individual from each trial as well as the time needed to calculate these trials is given in Table below.
Trials 1 and 3 were calculated using a 2.2GHz Intel Core 2 Duo and 4 GB of RAM with
multithreading on. Trial 2 was calculated using a 2.8GHz Intel Core 2 Duo and 6 GB of RAM with
multithreading off.

Table 6.1—2-D Sphere Optimization Parameters

Parameter Value

Minimum Detector Radius 0.005
Maximum Number of Detectors 500
Non-Self Coverage 0.9999
Self Coverage 0.9999
Population Size 20
Number of Generations 50
Mutation Rate 30%
Chromosomal Mutation Rate 5%
Gene Relocation Weight 1
Gene Alteration Weight 2
Gene Relocation Constant 1
Gene Alteration Constant 0.20
Crossover Rate 20%
Maximum Number of Detectors to Cross 5
Add Rate 30%
Random Points to Attempt 2000
Number of Centers to Add 20
Weight Favoring Large Detectors 0
Weight Favoring Smaller Detectors 0
Remove Rate 20%
Detectors to Remove 5
Remove Threshold 0.5
Performance Index Weight for Overlapping 1
Performance Index Weight for Coverage 1
Performance Index Weight for Number of Detectors 1
Overlapping Best Limit 0.1
Overlapping Worst Limit 0.9
Coverage Best Limit 1
Coverage Worst Limit 0.8
Number of Detectors Best Limit 100
Number of Detectors Worst Limit 500

Figure 6.2—Best Individual in 2
Spheres Trial 1

Figure 6.4—Best Individual in 2
Spheres Trial 2

61

t Individual in 2-D Hyper-

Figure 6.3—Performance Indices for 2
Hyper-Spheres Trial 1

Best Individual in 2-D Hyper-

Figure 6.5—Performance Indices for 2
Hyper-Spheres Trial 2

Generations

Generations

Indices for 2-D
Trial 1

Performance Indices for 2-D
Trial 2

Figure 6.6—Best Individual in 2
Spheres Trial 3

Table 6.2—2-D Hyper-Sphere Results

 Coverage %

Trial 1 97.62
Trial 2 97.76
Trial 3 96.58
Average 97.32

6.2.2 Hyper-Ellipsoids

Three trials of 50 generation each w
detectors. The optimization parameters used for these trials are given
of each of these trials, including time to calculate are given in
resulting from each of these trials and
Figure 6.8 through Figure 6.13 below.
occasionally the performance index of the best individual shows a decrease, contrary to the purpose
of elitist selection. This is not due to a fault in the elitist selection strategy. Rather, some of these
trials were completed in segments and reassembled. Each time
optimization in the utility, the population is re
algorithm. Being that this is a numerical method, it does not return exactly the same values each
time it is run. In these instances, when the trials were continued from where they left off, the best
individual, which is the same set of detectors, happened to get rated slightly lower than it had been
rated before. This never occurs within trials run consecutively.
can be observed that few of the detectors have been modified to for literal hyper
due to the fact that only the mutation genetic operator is capable of altering the detectors in this
way. If more variation of the detector shapes is desired, it may be necessary to use more aggressive

62

Best Individual in 2-D Hyper-

Figure 6.7—Performance Indices for 2
Hyper-Spheres Trial 3

Sphere Results

 Overlapping % Number Time

22.97 97 334.9
22.62 102 680.24
20.49 89 291.7
22.03 96 435.6

of 50 generation each were performed for 2-dimensional hyper
detectors. The optimization parameters used for these trials are given below in Table
of each of these trials, including time to calculate are given in Table 6.4. The best individuals
resulting from each of these trials and the performance indices throughout these trials are given in

below. It should be noted that in these performance index plots,
the performance index of the best individual shows a decrease, contrary to the purpose

of elitist selection. This is not due to a fault in the elitist selection strategy. Rather, some of these
trials were completed in segments and reassembled. Each time the trial is restarted, using continued
optimization in the utility, the population is re-rated using the Monte Carlo Volume Estimation
algorithm. Being that this is a numerical method, it does not return exactly the same values each

hese instances, when the trials were continued from where they left off, the best
individual, which is the same set of detectors, happened to get rated slightly lower than it had been
rated before. This never occurs within trials run consecutively. Note that in the best individuals, it
can be observed that few of the detectors have been modified to for literal hyper-ellipsoids. This is
due to the fact that only the mutation genetic operator is capable of altering the detectors in this

tion of the detector shapes is desired, it may be necessary to use more aggressive

Generations

Performance Indices for 2-D
Trial 3

Time (minutes)

334.92
680.24
291.78
435.68

dimensional hyper-ellipsoidal
Table 6.3. The results
The best individuals

the performance indices throughout these trials are given in
It should be noted that in these performance index plots,

the performance index of the best individual shows a decrease, contrary to the purpose
of elitist selection. This is not due to a fault in the elitist selection strategy. Rather, some of these

the trial is restarted, using continued
rated using the Monte Carlo Volume Estimation

algorithm. Being that this is a numerical method, it does not return exactly the same values each
hese instances, when the trials were continued from where they left off, the best

individual, which is the same set of detectors, happened to get rated slightly lower than it had been
that in the best individuals, it

ellipsoids. This is
due to the fact that only the mutation genetic operator is capable of altering the detectors in this

tion of the detector shapes is desired, it may be necessary to use more aggressive

 63

mutation parameters, or allow the algorithm to run for a larger number of generations. The
coverage, overlapping, and number of detectors for the best individual from each trial as well as the
time needed to calculate these trials is given in Table below. Trial 1 was calculated using a 2.13GHz
Intel Core 2 Duo and 6 GB of RAM with multithreading off. Trials 2 and 3 were calculated using a
2.2GHz Intel Core 2 Duo and 2 GB of RAM with multithreading on.

Table 6.3—2-D Ellipsoid Optimization Parameters

Parameter Value

Minimum Detector Radius 0.005
Maximum Number of Detectors 500
Non-Self Coverage 0.9999
Self Coverage 0.9999
Population Size 20
Number of Generations 50
Mutation Rate 30%
Chromosomal Mutation Rate 5%
Gene Relocation Weight 1
Gene Alteration Weight 2
Gene Rotation Weight 2
Gene Relocation Constant 1
Gene Alteration Constant 0.20
Gene Rotation Constant 10
Crossover Rate 20%
Maximum Number of Detectors to Cross 5
Add Rate 30%
Random Points to Attempt 2000
Number of Centers to Add 20
Weight Favoring Large Detectors 0
Weight Favoring Smaller Detectors 0
Accuracy 0.001
Remove Rate 20%
Detectors to Remove 5
Remove Threshold 0.5
Performance Index Weight for Overlapping 1
Performance Index Weight for Coverage 1
Performance Index Weight for Number of Detectors 1
Overlapping Best Limit 0.1
Overlapping Worst Limit 0.9
Coverage Best Limit 1
Coverage Worst Limit 0.8
Number of Detectors Best Limit 100
Number of Detectors Worst Limit 500

Figure 6.8—Best Individual in 2
Ellipsoids Trial 1

Figure 6.10—Best Individual in 2
Ellipsoids Trial 2

64

Individual in 2-D Hyper-
Ellipsoids Trial 1

Figure 6.9—Performance Indices for 2
Hyper-Ellipsoids Trial 1

Best Individual in 2-D Hyper-
Ellipsoids Trial 2

Figure 6.11—Performance Indices fo
Hyper-Ellipsoids Trial 2

Generations

Generations

Performance Indices for 2-D
Ellipsoids Trial 1

Performance Indices for 2-D
Ellipsoids Trial 2

Figure 6.12—Best Individual in 2
Ellipsoids Trial 3

Table 6.4—2-D Hyper-Ellipsoid Results

 Coverage %

Trial 1 96.77
Trial 2 97.30
Trial 3 97.29
Average 97.12

6.2.3 Hyper-Rotational-Ellipsoid

Three trials of 50 generation each were performed for 2
ellipsoidal detectors. Since this is a 2
hyper-ellipsoids, although they are represented somewhat differently.
used for these trials are given below in
calculate are given in Table 6.6.
performance indices throughout these trials are given in
should be noted that in these performance index plots, occasionally the performance index of the
best individual shows a decrease, contrary to the purpose of elitist selection. This is not due to a
fault in the elitist selection strategy. Rather, some of these trials were completed in segments and
reassembled. Each time the trial is restarted, using continued optimization in the utility, the
population is re-rated using the Monte Carlo Volume Estimation algorithm. Being t
numerical method, it does not return exactly the same values each time it is run. In these instances,
when the trials were continued from where they left off, the best individual, which is the same set of
detectors, happened to get rated sli
within trials run consecutively. Note that in the best individuals, it can be observed that few of the
detectors have been modified to for literal hyper

65

Best Individual in 2-D Hyper-
Ellipsoids Trial 3

Figure 6.13—Performance Indices for 2
Hyper-Ellipsoids Trial

Ellipsoid Results

 Overlapping % Number Time

12.17 102 25648
16.17 98 8291.5
18.32 103 8093.9
15.55 101 14011

Ellipsoids

of 50 generation each were performed for 2-dimensional
Since this is a 2-dimensional trial, these shapes are physically equivalent to

y are represented somewhat differently. The optimization parameters
used for these trials are given below in Table 6.5. The results of each of these trials, including time to

 The best individuals resulting from each of these trials and the
performance indices throughout these trials are given in Figure 6.14 through Figure
should be noted that in these performance index plots, occasionally the performance index of the
best individual shows a decrease, contrary to the purpose of elitist selection. This is not due to a

ection strategy. Rather, some of these trials were completed in segments and
reassembled. Each time the trial is restarted, using continued optimization in the utility, the

rated using the Monte Carlo Volume Estimation algorithm. Being t
numerical method, it does not return exactly the same values each time it is run. In these instances,
when the trials were continued from where they left off, the best individual, which is the same set of
detectors, happened to get rated slightly lower than it had been rated before. This never occurs

Note that in the best individuals, it can be observed that few of the
detectors have been modified to for literal hyper-ellipsoids. This is due to the fact tha

Generations

Performance Indices for 2-D
Ellipsoids Trial 3

Time (minutes)

25648
8291.5
8093.9
14011

dimensional hyper-rotational-
dimensional trial, these shapes are physically equivalent to

The optimization parameters
. The results of each of these trials, including time to

The best individuals resulting from each of these trials and the
Figure 6.19 below. It

should be noted that in these performance index plots, occasionally the performance index of the
best individual shows a decrease, contrary to the purpose of elitist selection. This is not due to a

ection strategy. Rather, some of these trials were completed in segments and
reassembled. Each time the trial is restarted, using continued optimization in the utility, the

rated using the Monte Carlo Volume Estimation algorithm. Being that this is a
numerical method, it does not return exactly the same values each time it is run. In these instances,
when the trials were continued from where they left off, the best individual, which is the same set of

ghtly lower than it had been rated before. This never occurs
Note that in the best individuals, it can be observed that few of the

ellipsoids. This is due to the fact that only the

 66

mutation genetic operator is capable of altering the detectors in this way. If more variation of the
detector shapes is desired, it may be necessary to use more aggressive mutation parameters, or allow
the algorithm to run for a larger number of generations. The coverage, overlapping, and number of
detectors for the best individual from each trial as well as the time needed to calculate these trials is
given in Table below. Trial 1 was calculated using a 2.2GHz Intel Core 2 Duo and 4 GB of RAM
with multithreading on. Trial 2 was calculated using a 2.8GHz Intel Core 2 Duo and 6 GB of RAM
with multithreading off. Trial 3 was calculated using a 2.2GHz Intel Core 2 Duo and 2 GB of RAM
with multithreading on.

Table 6.5—2-D Rotational Ellipsoid Optimization Parameters

Parameter Value

Minimum Detector Radius 0.005
Maximum Number of Detectors 500
Non-Self Coverage 0.9999
Self Coverage 0.9999
Population Size 20
Number of Generations 50
Mutation Rate 30%
Chromosomal Mutation Rate 5%
Gene Relocation Weight 1
Gene Alteration Weight 2
Gene Rotation Weight 2
Gene Relocation Constant 1
Gene Alteration Constant 0.20
Gene Rotation Constant 10
Crossover Rate 20%
Maximum Number of Detectors to Cross 5
Add Rate 30%
Random Points to Attempt 2000
Number of Centers to Add 20
Weight Favoring Large Detectors 0
Weight Favoring Smaller Detectors 0
Accuracy 0.001
Remove Rate 20%
Detectors to Remove 5
Remove Threshold 0.5
Performance Index Weight for Overlapping 1
Performance Index Weight for Coverage 1
Performance Index Weight for Number of Detectors 1
Overlapping Best Limit 0.1
Overlapping Worst Limit 0.9
Coverage Best Limit 1
Coverage Worst Limit 0.8
Number of Detectors Best Limit 100
Number of Detectors Worst Limit 500

Figure 6.14—Best Individual in 2
Rotational-Ellipsoids Trial 1

Figure 6.16—Best Individual in 2
Rotational-Ellipsoids Trial 2

67

Best Individual in 2-D Hyper-
Ellipsoids Trial 1

Figure 6.15—Performance Indices for 2
Hyper-Rotational-Ellipsoids Trial 1

Best Individual in 2-D Hyper-
Ellipsoids Trial 2

Figure 6.17—Performance Indices for 2
Hyper-Rotational-Ellipsoids Trial 2

Generations

Generations

Performance Indices for 2-D
Ellipsoids Trial 1

Performance Indices for 2-D
Ellipsoids Trial 2

Figure 6.18—Best Individual in 2
Rotational-Ellipsoids Trial 3

Table 6.6—2-D Hyper-Rotational

 Coverage %

Trial 1 96.05
Trial 2 95.05
Trial 3 97.56
Average 96.22

6.2.4 Hyper-Rectangles

Three trials of 50 generation each were performed for 2
detectors. The optimization parameters used for these trials are given below in
of each of these trials, including time to calculate are given in
resulting from each of these trials and the performance indices throughout these trials are
Figure 6.8 through Figure 6.13 below. The coverage, overlapping, and number of detectors for the
best individual from each trial as well as the time needed to ca
below. Trial 1 was calculated using a
multithreading off. Trials 2 and 3 were calculated using a
RAM with multithreading on.

68

Best Individual in 2-D Hyper-
Ellipsoids Trial 3

Figure 6.19—Performance Indices for 2
Hyper-Rotational-Ellipsoids Trial 3

nal-Ellipsoid Results

 Overlapping % Number Time (minutes)

13.62 108 15826
11.31 96 20944
18.44 97 8400.9
14.46 100 15057

of 50 generation each were performed for 2-dimensional
detectors. The optimization parameters used for these trials are given below in Table
of each of these trials, including time to calculate are given in Table 6.4. The best individuals
resulting from each of these trials and the performance indices throughout these trials are

below. The coverage, overlapping, and number of detectors for the
best individual from each trial as well as the time needed to calculate these trials is given in Table
below. Trial 1 was calculated using a 2.8GHz Intel Core 2 Duo and 4 GB of RAM with

. Trials 2 and 3 were calculated using a 2.2GHz Intel Core 2 Duo and 2

Generations

Performance Indices for 2-D
psoids Trial 3

Time (minutes)

15826
20944
8400.9
15057

dimensional hyper-rectangular
Table 6.3. The results
The best individuals

resulting from each of these trials and the performance indices throughout these trials are given in
below. The coverage, overlapping, and number of detectors for the

lculate these trials is given in Table
GHz Intel Core 2 Duo and 4 GB of RAM with

2.2GHz Intel Core 2 Duo and 2 GB of

 69

Table 6.7—2-D Rectangle Optimization Parameters

Parameter Value

Minimum Detector Radius 0.005
Maximum Number of Detectors 500
Non-Self Coverage 0.9999
Self Coverage 0.9999
Population Size 20
Number of Generations 50
Mutation Rate 30%
Chromosomal Mutation Rate 5%
Gene Relocation Weight 1
Gene Alteration Weight 2
Gene Relocation Constant 1
Gene Alteration Constant 0.20
Crossover Rate 20%
Maximum Number of Detectors to Cross 5
Add Rate 30%
Random Points to Attempt 2000
Number of Centers to Add 20
Weight Favoring Large Detectors 0
Weight Favoring Smaller Detectors 0
Remove Rate 20%
Detectors to Remove 5
Remove Threshold 0.5
Performance Index Weight for Overlapping 1
Performance Index Weight for Coverage 1
Performance Index Weight for Number of Detectors 1
Overlapping Best Limit 0.1
Overlapping Worst Limit 0.9
Coverage Best Limit 1
Coverage Worst Limit 0.8
Number of Detectors Best Limit 100
Number of Detectors Worst Limit 500

Figure 6.20—Best Individual in 2
Rectangles Trial 1

Figure 6.22—Best Individual in 2
Rectangles Trial 2

70

Best Individual in 2-D Hyper-
Rectangles Trial 1

Figure 6.21—Performance Indices for 2
Hyper-Rectangles Trial 1

Best Individual in 2-D Hyper-
Rectangles Trial 2

Figure 6.23—Performance Indices for 2
Hyper-Rectangles Trial 2

Generations

Generations

Performance Indices for 2-D
Rectangles Trial 1

Performance Indices for 2-D
Rectangles Trial 2

Figure 6.24—Best Individual in 2
Rectangles Trial 3

Table 6.8—2-D Hyper-Rectangles Results

 Coverage %

Trial 1 97.93
Trial 2 97.73
Trial 3 97.91
Average 97.86

6.2.5 Shape Comparison

For the 2-dimensional trials,
overlapping while maintaining higher average coverage than the other shapes. However, the cost is
that the hyper-rectangles required approximately 50% more detectors to achieve this performance
than the other shapes.

Hyper-spheres were also quick t
time of the 2-dimensional hyper-ellipsoids or
achieved the second best coverage, nearly that obtained by the
an average of 96 detectors. However, the
shape, approximately one-third higher than that for

In 2-dimensions, hyper-ellipsoids and
Average coverage, overlapping, and number of detectors for
lower than that for hyper-ellipsoids
achieved lower overlapping and sim
hyper-spheres, while taking significantly longer to calculate.

71

Individual in 2-D Hyper-
Rectangles Trial 3

Figure 6.25—Performance Indices for 2
Hyper-Rectangles Trial 3

Rectangles Results

 Overlapping % Number Time (minutes)

0 104 488.45
0 205 186.54
0 143 170.43
0 151 281.81

dimensional trials, hyper-rectangles are the quickest to calculate and obtain
overlapping while maintaining higher average coverage than the other shapes. However, the cost is

rectangles required approximately 50% more detectors to achieve this performance

were also quick to calculate, taking approximately one-third the calculation
ellipsoids or hyper-rotational-ellipsoids. In addition,

achieved the second best coverage, nearly that obtained by the hyper-rectangles, while only n
an average of 96 detectors. However, the hyper-spheres obtained the highest overlapping of any

third higher than that for hyper-ellipsoids or hyper-rotational
ellipsoids and hyper-rotational-ellipsoids are physically the same.

Average coverage, overlapping, and number of detectors for hyper-rotational-ellipsoids was slightly
ellipsoids, however, the results for each are very similar. These shapes

overlapping and similar number of detectors and coverage of the solution space of
, while taking significantly longer to calculate.

Generations

Performance Indices for 2-D
Rectangles Trial 3

Time (minutes)

488.45
186.54
170.43
281.81

rectangles are the quickest to calculate and obtained no
overlapping while maintaining higher average coverage than the other shapes. However, the cost is

rectangles required approximately 50% more detectors to achieve this performance

third the calculation
ellipsoids. In addition, hyper-spheres

rectangles, while only needing
obtained the highest overlapping of any

rotational-ellipsoids.
physically the same.
ellipsoids was slightly

, however, the results for each are very similar. These shapes
the solution space of

 72

6.3 3-Dimensional Example with Detection Results
Due to time limitations imposed by the calculation times of some of the shapes, and due to

the desire for consistency, these detector sets have undergone optimization for 50 generations, using
a population size of 20 individuals. These optimized sets have not converged to the global
optimized solution, thus potentially better results are possible. In addition, the detector sets used for
the clustering comparison found in section 6.3.1 were not individuals in the initial population of
these trials. For sphere, ellipsoid, and rotational ellipsoid detectors, the self is defined using hyper-
spheres to cluster the self data, consisting of roll-, pitch-, and yaw-rate neural network estimates. For
rectangle detectors, the same self data is clustered using hyper-rectangles.

6.3.1 Clustering of the Self

 The number of clusters used to define the self can have a significant impact upon the
performance of the detector sets generated from them. When clustering is performed, some area is
included in the self definition that has not been confirmed to be self. The number of clusters used
can be as few as 1 or as many as the number of data points used to define the self region. Using too
few clusters will include too much area of the solution space in the definition of the self, which
should actually belong to the non-self region, lowering the overall detection rate. Using too many
clusters with too little empty space, however, excludes some areas from the self definition which
should actually belong to the self. This induces a high number of false alarms. Each of these
situations is undesirable for producing an effective detector set.
 In order to determine the appropriate number of clusters to use, several trials were
performed and compared using 500, 2000, and 5000 clusters to define the self for this set of
identifiers over the full flight envelope. Since optimization was not desired, three detector sets were
generated using only Phase 1 detector generation for each of the varying sets of clusters. The
average results of these tests can be seen below in Table 6.9. For all detection results except for data
listed as nominal, the number if the table represents detection rate. For nominal data sets, the
number represents rate of false alarms. The full results have been included in Table A-1 through
Table A-3 in Appendix A.

Table 6.9—3-D Cluster Comparison Results

Failure Type Location Magnitude Envelope

500
Clusters

2000
Clusters

5000
Clusters

Average Average Average

Actuator

aileron

left

5 deg
123

99.6901 98.2217 99.8591

8 deg

97.3680 88.6537 99.8895

187 97.0270 99.0515 99.9581

right
165

94.9428 99.7752 78.5384

94.6657 99.7465 78.4237

123 93.9443 99.7909 93.3521

rudder

left

8 deg

145 85.8053 88.7225 89.6260

123 44.3588 55.6500 61.3476

right
167 46.3305 48.0334 55.0064

123 43.8885 49.7818 57.9506

stabilator left 2 deg 123 98.8065 90.1800 99.9134

 73

8 deg

99.7700 98.6483 99.9701

145 99.7114 98.1649 99.9666

right
189 91.5663 99.9672 96.1968

123 91.2982 99.6217 93.5932

Sensors

LFDB

r 3 deg
165 31.9329 32.2342 25.5986

123 85.5207 89.4497 90.6592

p

10 deg

167 2.8810 13.1274 21.0116

123 4.3998 8.4633 9.8990

q
187 0.6211 1.6506 3.7003

123 6.9244 13.5703 21.0387

LSB

r 3 deg
167 7.4095 9.4846 12.1730

123
77.8160 85.9596 84.4357

p

5 deg 2.9554 6.5922 7.4326

10 deg

145 5.2651 9.1546 12.6752

123 13.2313 18.5033 20.5612

q
189 13.0588 20.7536 28.9663

123 1.7156 4.5480 10.2534

Structural Wing
left

15% 167 92.6890 97.0155 99.6777

35% 123
96.2721 99.3355 99.3294

right 97.3429 97.6027 99.9047

Engine

Left

1% 167 2.8908 7.3410 8.8903

10%

123

36.2581 38.5549 42.9825

3.7761 7.7107 14.6056

Right

1% 15.8538 20.7849 23.4692

10% 1.6640 2.8995 4.3847

1% 187 10.9421 14.3553 24.4388

Nominal

1A 0.5853 0.2906 1.4199

1B 0.3030 0.5048 0.8395

1C 0.7211 1.0933 1.4191

1D_1 0.0541 0.0569 0.2008

1D_2 0.0000 0.0110 0.0531

4 0.0000 0.0000 0.0687

12 0.0000 0.0000 0.6612

 As seen in the table above, no clearly better solution is found using a higher number of
clusters to define the self. For this reason, 500 clusters are chosen to define the self to reduce
computational load of the optimization algorithm. For consistency, 500 clusters will also be used to
define the self using hyper-rectangles, and to define the self for the 6D cases.

 74

6.3.2 Hyper-Spheres

Hyper-spheres are the simplest shape to use in the detector optimization algorithm, since the radius
is constant for all dimensions. This in turn allows them to also be calculated the quickest. The
average calculation time of the 3D sphere trials was 2607.75 minutes, or about 44 hours. The
optimization parameters for these trials are given in Table 6.10. The calculation times, coverage,
overlapping, and number of detectors are shown in Table 6.11. These results were run using Intel
Pentium 4 processors at 2.4GHz, which support only single-thread applications. The detection
results of these four trials are located below in Table 6.12. For all detection results except for data
listed as nominal, the number if the table represents detection rate. For nominal data sets, the
number represents rate of false alarms. Figure 6.26 through Figure 6.29 show the performance
index of the population throughout each trial.

Table 6.10—3-D Hyper-Spheres Optimization Parameters

Parameter Value

Minimum Detector Radius 0.005
Maximum Number of Detectors 500
Non-Self Coverage 0.9999
Self Coverage 0.9999
Population Size 20
Number of Generations 50
Mutation Rate 30%
Chromosomal Mutation Rate 5%
Gene Relocation Weight 1
Gene Alteration Weight 2
Gene Rotation Weight 2
Gene Alteration Constant 0.20
Crossover Rate 20%
Maximum Number of Detectors to Cross 5
Add Rate 30%
Random Points to Attempt 2000
Number of Centers to Add 20
Weight Favoring Large Detectors 0
Weight Favoring Smaller Detectors 0
Accuracy 0.001
Remove Rate 20%
Detectors to Remove 5
Remove Threshold 0.5
Performance Index Weight for Overlapping 1
Performance Index Weight for Coverage 1
Performance Index Weight for Number of Detectors 1
Overlapping Best Limit 0.1
Overlapping Worst Limit 0.9
Coverage Best Limit 1
Coverage Worst Limit 0.8
Number of Detectors Best Limit 100
Number of Detectors Worst Limit 500

 75

Table 6.11—Performance Parameters for 3-D Hyper-Spheres

 Coverage % Overlapping % Number of
Detectors

Time
(minutes)

Trial 1 92.105 43.954 445 2715.6
Trial 2 91.848 40.301 476 2632.2
Trial 3 92.499 44.821 471 2518.3
Trial 4 92.786 48.155 435 2565.0
Average 92.310 44.308 457 2607.8

Table 6.12—3-D Hyper-Spheres Detection Results after Optimization

Failure Type Location Magnitude Envelope
Hyper-Spheres

Trial 1 Trial 2 Trial 3 Trial 4 Average

Actuator

aileron

left

5 deg
123

99.2949 99.9443 97.9425 99.1547 99.0841

8 deg

99.9294 99.7776 99.9508 96.6325 99.0726

187 99.3418 99.9554 98.9732 96.9804 98.8127

right
165

99.0266 99.0884 99.7727 95.6296 98.3793

98.4405 99.1531 99.8393 95.0912 98.1310

123 99.6611 98.5203 99.84 95.2662 98.3219

rudder

left

8 deg

145 86.048 85.8129 85.3886 85.0495 85.5748

123 43.0428 45.2908 49.9754 40.9999 44.8272

right
167 48.2743 49.3586 40.6949 47.4805 46.4521

123 38.3939 32.6606 44.9385 42.8311 39.7060

stabilator

left

2 deg
123

85.1851 97.2371 90.8451 97.6386 92.7265

8 deg

99.969 98.8492 99.969 99.9673 99.6886

145 99.9653 99.9672 99.9653 99.9634 99.9653

right
189 95.1128 99.9647 99.9647 99.9647 98.7517

123 94.875 93.841 99.2114 99.8642 96.9479

Sensors

LFDB

r 3 deg
165 28.7776 31.4133 31.5839 30.5924 30.5918

123 82.8107 82.9812 85.5003 84.5769 83.9673

p

10 deg

167 3.1761 2.6186 5.7173 1.1496 3.1654

123 5.4637 5.6127 4.055 5.5348 5.1666

q
187 0.31722 0.048803 0 0.20741 0.1434

123 4.0997 5.7533 5.6278 4.6176 5.0246

LSB

r 3 deg
167 6.5438 7.6643 7.5249 7.1066 7.2099

123
78.413 72.9417 75.5589 71.0334 74.4868

p

5 deg 4.547 4.0498 3.3215 2.1881 3.5266

10 deg

145 5.2783 5.146 4.6219 4.8098 4.9640

123 14.7675 14.2896 11.8674 12.4536 13.3445

q
189 8.4048 11.0526 12.6558 10.7433 10.7141

123 0.6049 1.0591 0.74951 0.71692 0.7826

 76

Structural Wing
left

15% 167 99.7521 99.6586 99.9771 99.9771 99.8412

35% 123
98.5251 98.5214 99.8882 99.8956 99.2076

right 99.7524 87.2759 99.919 94.5213 95.3672

Engine

Left

1% 167 9.3677 6.0338 10.1375 4.584 7.5308

10%

123

36.7297 36.5343 36.0772 35.7643 36.2764

5.0642 3.0959 6.5 6.0702 5.1826

Right

1% 18.9159 14.1244 17.3858 16.751 16.7943

10% 1.5002 1.5452 1.7615 1.7286 1.6339

1% 187 4.3127 10.7625 10.0828 6.6248 7.9457

Nominal

1A 0.033301 0.012109 0.069629 0.21494 0.0825

1B 0.38056 0.31185 0.4942 0.30392 0.3726

1C 0.73898 1.10148 0.92907 1.0496 0.9548

1D_1 0.005791 0 0 0 0.0014

1D_2 0 0 0 0 0.0000

4 0 0 0 0 0.0000

12 0 0 0 0 0.0000

Figure 6.26—Performance Indices for 3-D
Hyper-Spheres Trial 1

Figure 6.27—Performance Indices for 3-D
Hyper-Spheres Trial 2

Generations Generations

 77

Figure 6.28—Performance Indices for 3-D
Hyper-Spheres Trial 3

Figure 6.29—Performance Indices for 3-D
Hyper-Spheres Trial 4

6.3.3 Hyper-Ellipsoids

Hyper-ellipsoids are a more complicated and more time-consuming shape to use in the
detector optimization algorithm, since the semi-axis length may vary for each dimension. The
average calculation time of the 3D ellipsoid trials was 52938 minutes, or about 37 days. The
optimization parameters used for these trials are given in Table 6.13 The calculation times,
coverage, overlapping, and number of detectors are shown in Table 6.14. Trials 1 and 3 were run
using a 3.33GHz Intel Core i7 supporting 4 threads per trial. Trial 2 was calculated using a 2.0GHz
Intel Core 2 Duo supporting 2 threads. The detection results of these three trials are located below
in Table 6.15. For all detection results except for data listed as nominal, the number if the table
represents detection rate. For nominal data sets, the number represents rate of false alarms. Figure
6.30 through Figure 6.32 show the performance index of the population throughout each trial. It
should be noted that in these performance index plots, occasionally the performance index of the
best individual shows a decrease, contrary to the purpose of elitist selection. This is not due to a
fault in the elitist selection strategy. Rather, some of these trials were completed in segments and
reassembled. Each time the trial is restarted, using continued optimization in the utility, the
population is re-rated using the Monte Carlo Volume Estimation algorithm. Being that this is a
numerical method, it does not return exactly the same values each time it is run. In these instances,
when the trials were continued from where they left off, the best individual, which is the same set of
detectors, happened to get rated slightly lower than it had been rated before. This never occurs
within trials run consecutively.

Generations Generations

 78

Table 6.13—3-D Hyper-Ellipsoids Optimization Parameters

Parameter Value

Minimum Detector Radius 0.005
Maximum Number of Detectors 500
Non-Self Coverage 0.9999
Self Coverage 0.9999
Population Size 20
Number of Generations 50
Mutation Rate 30%
Chromosomal Mutation Rate 5%
Gene Relocation Weight 1
Gene Alteration Weight 2
Gene Rotation Weight 2
Gene Relocation Constant 1
Gene Alteration Constant 0.20
Gene Rotation Constant 10
Crossover Rate 20%
Maximum Number of Detectors to Cross 5
Add Rate 30%
Random Points to Attempt 2000
Number of Centers to Add 20
Weight Favoring Large Detectors 0
Weight Favoring Smaller Detectors 0
Accuracy 0.001
Remove Rate 20%
Detectors to Remove 5
Remove Threshold 0.5
Performance Index Weight for Overlapping 1
Performance Index Weight for Coverage 1
Performance Index Weight for Number of Detectors 1
Overlapping Best Limit 0.1
Overlapping Worst Limit 0.9
Coverage Best Limit 1
Coverage Worst Limit 0.8
Number of Detectors Best Limit 100
Number of Detectors Worst Limit 500

Table 6.14—Performance Parameters for 3-D Hyper-Ellipsoids

 Coverage % Overlapping % Number of
Detectors

Time
(minutes)

Trial 1 92.945 56.111 476 61534
Trial 2 93.47 52.52 461 76870
Trial 3 93.44 51.47 446 20411
Average 93.284 53.37 461 52938

 79

Table 6.15—3D Hyper-Ellipsoids Detection Results after Optimization

Failure Type Location Magnitude Envelope
Hyper-Ellipsoids

Trial 1 Trial 2 Trial 3 Average

Actuator

aileron

left

5 deg
123

99.9462 99.9443 99.7887 99.8931

8 deg

99.9551 99.9530 99.8076 99.9052

187 99.9575 99.9554 99.4795 99.7975

right
165

98.5201 99.8987 99.7702 99.3963

98.8196 99.8177 99.8153 99.4842

123 99.7622 99.8653 99.9537 99.8604

rudder

left

8 deg

145 86.3164 87.2379 85.7401 86.4315

123 47.8538 52.7156 47.6913 49.4202

right
167 41.6099 52.9917 48.7674 47.7897

123 39.1616 46.0749 40.6153 41.9506

stabilator

left

2 deg
123

99.8923 99.9085 98.9565 99.5858

8 deg

99.9690 99.9690 99.8226 99.9202

145 99.9653 99.9653 99.9653 99.9653

right
189 99.9628 86.7990 99.9052 95.5557

123 99.9652 90.6587 99.5648 96.7296

Sensors

LFDB

r 3 deg
165 31.0651 32.3310 31.6577 31.6846

123 82.0751 87.6956 86.2397 85.3368

p

10 deg

167 0.8240 2.2706 2.0021 1.6989

123 5.3282 6.5811 3.7316 5.2136

q
187 0.5124 0.3591 0.0000 0.2905

123 8.5329 8.4368 7.0774 8.0157

LSB

r 3 deg
167 6.4417 7.1937 6.8625 6.8326

123
73.0277 80.2227 81.1957 78.1487

p

5 deg 3.3249 4.1067 2.6619 3.3645

10 deg

145 5.8687 5.7760 5.9587 5.8678

123 12.8115 13.9375 11.2695 12.6728

q
189 16.8095 16.2050 13.5007 15.5051

123 3.0449 2.5703 1.6294 2.4149

Structural Wing
left

15% 167 99.9771 99.9771 99.9771 99.9771

35% 123
99.8662 99.4265 99.9011 99.7313

right 99.9801 99.9801 87.5021 95.8208

Engine

Left

1% 167 5.4482 4.9021 4.9130 5.0878

10%

123

35.6808 37.1147 35.0815 35.9590

4.8189 5.7944 3.8300 4.8144

Right

1% 16.4758 20.2448 15.6649 17.4618

10% 1.6525 2.2841 2.0158 1.9841

1% 187 3.6648 6.1724 10.5124 6.7832

 80

Nominal

1A 0.6206 0.0121 1.7559 0.7962

1B 0.4863 0.3832 0.0793 0.3163

1C 0.6613 0.7765 0.9773 0.8050

1D_1 0.0000 0.0405 0.0521 0.0309

1D_2 0.0000 0.0000 0.1564 0.0521

4 0.0000 0.0000 0.0000 0.0000

12 0.7055 0.0000 0.0000 0.2352

Figure 6.30—Performance Indices for 3-D
Hyper-Ellipsoids Trial 1

Figure 6.31—Performance Indices for 3-D
Hyper-Ellipsoids Trial 2

Figure 6.32—Performance Indices for 3-D Hyper-Ellipsoids Trial 3

6.3.4 Hyper-Rotational-Ellipsoids
Hyper-rotational-ellipsoids are more complicated than hyper-spheres and similar to hyper-ellipsoids, since the semi-axis
ellipsoids, since the semi-axis length may vary for 1 dimension. The optimization parameters for these trials are located in

these trials are located in Table 6.16. The average calculation time of the 3-D rotational ellipsoid trials was 23625

minutes, or about 16 days. The calculation times, coverage, overlapping, and number of detectors are shown in Table

Generations Generations

Generations

 81

6.17. These results were run using a 3.33 GHz Intel Core i7 with 12 GB of RAM, supporting 4 threads per trial. The

detection results of these three trials are located below in

Table 6.18. For all detection results except for data listed as nominal, the number if the table
represents detection rate. For nominal data sets, the number represents rate of false alarms. Figure
6.33 through Figure 6.35 show the performance index of the population throughout each trial.

Table 6.16—3-D Hyper-Rotational-Ellipsoids Optimization Parameters

Parameter Value

Minimum Detector Radius 0.005
Maximum Number of Detectors 500
Non-Self Coverage 0.9999
Self Coverage 0.9999
Population Size 20
Number of Generations 50
Mutation Rate 30%
Chromosomal Mutation Rate 5%
Gene Relocation Weight 1
Gene Alteration Weight 2
Gene Rotation Weight 2
Gene Relocation Constant 1
Gene Alteration Constant 0.20
Gene Rotation Constant 10
Crossover Rate 20%
Maximum Number of Detectors to Cross 5
Add Rate 30%
Random Points to Attempt 2000
Number of Centers to Add 20
Weight Favoring Large Detectors 0
Weight Favoring Smaller Detectors 0
Accuracy 0.001
Remove Rate 20%
Detectors to Remove 5
Remove Threshold 0.5
Performance Index Weight for Overlapping 1
Performance Index Weight for Coverage 1
Performance Index Weight for Number of Detectors 1
Overlapping Best Limit 0.1
Overlapping Worst Limit 0.9
Coverage Best Limit 1
Coverage Worst Limit 0.8
Number of Detectors Best Limit 100
Number of Detectors Worst Limit 500

 82

Table 6.17—Performance Parameters for 3-D Hyper-Rotational-Ellipsoids

 Coverage % Overlapping % Number of
Detectors

Time
(minutes)

Trial 1 93.32 58.24 471 24392
Trial 2 92.96 53.28 471 25294
Trial 3 92.22 50.42 440 21190
Average 92.84 53.98 461 23625

Table 6.18—3D Hyper-Rotational-Ellipsoids Detection Results after Optimization

Failure Type Location Magnitude Envelope
Hyper-Rotational-Ellipsoids

Trial 1 Trial 2 Trial 3 Average

Actuator

aileron

left

5 deg
123

99.9424 99.9039 99.9443 99.9302

8 deg

99.9530 99.9551 98.7578 99.5553

187 99.9554 99.5301 99.6112 99.6989

right
165

99.6467 99.5158 99.9333 99.6986

99.6641 99.4578 99.8728 99.6649

123 99.3749 99.9516 99.9516 99.7594

rudder

left

8 deg

145 87.4917 87.1131 86.7740 87.1263

123 46.7265 50.7630 46.1735 47.8877

right
167 44.3613 49.7326 45.7527 46.6155

123 40.0870 41.0258 40.8947 40.6692

stabilator

left

2 deg
123

99.9055 92.1350 98.9270 96.9892

8 deg

99.9707 99.9707 99.9707 99.9707

145 99.9672 99.9672 99.9672 99.9672

right
189 99.9666 85.8215 97.9169 94.5683

123 99.2480 81.7004 97.9284 92.9589

Sensors

LFDB

r 3 deg
165 32.4878 31.7269 31.0743 31.7630

123 86.6363 87.2550 86.6803 86.8572

p

10 deg

167 2.4151 1.9919 4.0062 2.8044

123 3.1763 5.6618 5.0150 4.6177

q
187 0.0000 0.3747 0.1760 0.1836

123 9.2509 6.7440 7.1932 7.7294

LSB

r 3 deg
167 6.6733 6.8127 7.5274 7.0045

123
83.1523 80.3611 79.8746 81.1293

p

5 deg 3.4605 3.9828 3.5191 3.6541

10 deg

145 5.8554 6.1890 5.4398 5.8281

123 11.7938 14.6398 13.0823 13.1720

q
189 15.8604 16.0018 13.2638 15.0420

123 3.0347 2.1956 2.5031 2.5778

 83

Structural Wing
left

15% 167 96.8248 99.9771 99.9771 98.9263

35% 123
88.0760 99.7050 99.6995 95.8268

right 99.9801 99.9801 99.9312 99.9638

Engine

Left

1% 167 3.2944 2.0968 3.7089 3.0334

10%

123

36.3769 35.8667 36.2669 36.1702

4.5831 9.1794 4.8626 6.2084

Right

1% 17.6966 18.8774 16.1798 17.5846

10% 1.5815 2.2062 1.3566 1.7148

1% 187 4.6947 4.9652 9.1711 6.2770

Nominal

1A 0.0696 0.0272 0.0000 0.0323

1B 0.3806 0.7532 0.3092 0.4810

1C 0.6533 0.4953 0.5917 0.5801

1D_1 0.0000 0.0782 0.0000 0.0261

1D_2 0.0082 0.0000 0.0000 0.0027

4 0.0000 0.0000 0.0000 0.0000

12 0.0000 0.0000 0.0000 0.0000

Figure 6.33—Performance Indices for 3-D
Hyper-Rotational-Ellipsoids Trial 1

Figure 6.34—Performance Indices for 3-D
Hyper-Rotational-Ellipsoids Trial 2

Generations Generations

Generations

 84

Figure 6.35—Performance Indices for 3-D Hyper-Rotational-Ellipsoids Trial 3

6.3.5 Hyper-Rectangles

Hyper-rectangles are the most time-consuming shape to calculate, since the semi-side length
may vary for all dimensions. The average calculation time of the 3D rectangle trials was 47413
minutes, or about 33 hours. The optimization parameters used for these trials are located in Table
6.19. The calculation times, coverage, overlapping, and number of detectors are shown in Table
6.20. These results were run using a 3.6GHz Intel i7 with 6 GB of RAM, supporting 4 threads per
trial. The results of these three trials are located below in Table 6.21. For all detection results
except for data listed as nominal, the number if the table represents detection rate. For nominal data
sets, the number represents rate of false alarms. Figure 6.36 through Figure 6.38 show the
performance index of the population throughout each trial.

Table 6.19—3-D Hyper-Rectangles Optimization Parameters

Parameter Value

Minimum Detector Radius 0.005
Maximum Number of Detectors 500
Non-Self Coverage 0.9999
Self Coverage 0.9999
Population Size 20
Number of Generations 50
Mutation Rate 30%
Chromosomal Mutation Rate 5%
Gene Relocation Weight 1
Gene Alteration Weight 2
Gene Rotation Weight 2
Gene Alteration Constant 0.20
Crossover Rate 20%
Maximum Number of Detectors to Cross 5
Add Rate 30%
Random Points to Attempt 2000
Number of Centers to Add 20
Weight Favoring Large Detectors 0
Weight Favoring Smaller Detectors 0
Accuracy 0.001
Remove Rate 20%
Detectors to Remove 5
Remove Threshold 0.5
Performance Index Weight for Overlapping 1
Performance Index Weight for Coverage 1
Performance Index Weight for Number of Detectors 1
Overlapping Best Limit 0.1
Overlapping Worst Limit 0.9
Coverage Best Limit 1
Coverage Worst Limit 0.8
Number of Detectors Best Limit 100

 85

Number of Detectors Worst Limit 500

Table 6.20—Performance Parameters for 3-D Hyper-Rectangles

 Coverage % Overlapping % Number of
Detectors

Time
(minutes)

Trial 1 74.69 0.0236 491 38906
Trial 2 73.421 0.3345 480 53525
Trial 3 74.80 0.0695 493 49807
Average 74.31 0.1425 488 47413

Table 6.21—3D Hyper-Rectangles Detection Results after Optimization

Failure Type Location Magnitude Envelope
Hyper-Rectangles

Trial 1 Trial 2 Trial 3 Average

Actuator

aileron

left

5 deg
123

16.7522 60.3058 55.2495 44.1025

8 deg

55.6789 93.0853 1.0883 49.9508

187 36.4562 88.1625 21.0057 48.5415

right
165

88.5911 74.6350 11.8981 58.3747

87.5360 71.8498 13.0374 57.4744

123 96.2386 62.8428 45.5429 68.2081

rudder

left

8 deg

145 53.8942 68.2664 62.0028 61.3878

123 29.8766 36.6517 33.2371 33.2551

right
167 43.8975 17.3589 28.0115 29.7560

123 29.4415 24.7800 36.6380 30.2865

stabilator

left

2 deg
123

69.4654 58.5896 37.0226 55.0259

8 deg

99.9655 36.7173 14.0933 50.2587

145 99.9614 76.2299 8.6379 61.6097

right
189 5.9055 84.4780 52.2280 47.5372

123 23.2418 68.5259 60.7827 50.8501

Sensors

LFDB

r 3 deg
165 3.6387 5.6679 18.4449 9.2505

123 55.0602 58.8341 71.2094 61.7012

p

10 deg

167 3.3124 26.8510 1.3327 10.4987

123 6.5574 6.8503 1.4053 4.9377

q
187 0.5333 0.1848 0.1900 0.3027

123 9.6040 6.5243 5.8573 7.3285

LSB

r 3 deg
167 4.1160 6.2799 6.4467 5.6142

123
48.8949 44.0653 51.3400 48.1001

p

5 deg 3.8438 5.1513 0.5860 3.1937

10 deg

145 4.8177 9.3920 3.0336 5.7478

123 11.9119 13.3222 6.5876 10.6072

q
189 15.0278 11.5793 10.5294 12.3788

123 4.2302 4.0429 1.4664 3.2465

 86

Structural Wing
left

15% 167 84.8580 60.1140 70.0250 71.6657

35% 123
86.3043 51.1057 76.0476 71.1525

right 61.2914 79.3688 51.4434 64.0345

Engine

Left

1% 167 1.8731 2.6188 3.8493 2.7804

10%

123

14.7602 26.1366 23.2005 21.3658

3.8281 5.4350 3.0427 4.1019

Right

1% 9.8760 7.8842 13.1226 10.2943

10% 0.8236 0.6818 2.4190 1.3081

1% 187 6.3770 13.7157 6.4998 8.8642

Nominal

1A 0.0000 0.0333 0.1423 0.0585

1B 0.0000 0.0529 0.4519 0.1683

1C 1.2182 0.5408 0.1205 0.6265

1D_1 0.1274 0.0319 0.9411 0.3668

1D_2 0.0000 0.0110 0.2168 0.0759

4 0.0000 0.0000 0.0000 0.0000

12 0.8307 0.0000 0.4294 0.4200

Figure 6.36—Performance Indices for 3-D
Hyper-Rectangles Trial 1

Figure 6.37—Performance Indices for 3-D
Hyper-Rectangles Trial 2

Generations Generations

Generations

 87

Figure 6.38—Performance Indices for 3-D Hyper-Rectangles Trial 3

6.3.6 Comparison of Results Among Shapes

All detector shapes exhibited similar or better detection performance to the Phase I
detectors, with the exception of hyper-rectangles. In some cases, the average detection rate
exhibited by a detector shape for a particular failure was lower than that of the Phase I sets.
However, only for hyper-rectangles was this difference significant. For the hyper-spheres, hyper-
ellipsoids, and hyper-rotational-ellipsoids, it is likely that detection decreased in some cases due to
the fact that the performance index weights were set such that improvement in coverage,
overlapping, or number of detectors was equal. Better coverage, and thus potentially better
detection, could likely be achieved using performance index weights that favor improvements in
coverage of the solution space.

Comparing the detection results of the hyper-spheres, hyper-ellipsoids, and hyper-rotational-
ellipsoids, it can be observed that hyper-ellipsoids tended to achieve the best detection performance
of these shapes, though this is not always the case. In some cases hyper-rotational-ellipsoids
achieved better detection than hyper-ellipsoids. Generally, hyper-spheres performed lower than the
hyper-ellipsoids or hyper-rotational-ellipsoids. However, hyper-spheres were the quickest to
calculate among all four shapes used in the GA. However, hyper-rectangles were the quickest for
calculating detection performance, taking about half the time of hyper-spheres.

The hyper-rectangles trials exhibited sporadic detection. The nature of the inconsistency of
the detection results indicates that poor coverage is the cause, rather than ineffectiveness of the
identifiers or the detector shape. As seen in the 2-D results section, hyper-rectangles required
significantly more detectors to achieve adequate coverage. Since these trials were limited to 500
detectors, hyper-rectangles could likely achieve better detection results if more detectors were
allowed in the set. This is supported by the slow performance index increase observed in hyper-
rectangle trials. This could mean that an adequate set of hyper-rectangle detectors may need a
higher number of detectors than an adequate set of hyper-spheres, hyper-ellipsoids, or hyper-
rotational-ellipsoids, which may cost more to run online in the detection scheme, though this would
require investigation.

6.4 6-Dimensional Example with Detection Results
The purpose of this trial is to illustrate the ability of this design environment to cope with

high-dimensionality, a key issue for the AIS. Due to computational time constraints, only one trial
per shape is presented. These results are presented in Table 6.22 below. For all detection results
except for data listed as nominal, the number if the table represents detection rate. For nominal data
sets, the number represents rate of false alarms. The identifiers used to define this self are the roll-,
pitch-, and yaw-rate neural network estimates and DQEE (52) for roll-, pitch-, and yaw-rate, which
are parameters derived from the sensor-based neural network roll-, pitch-, and yaw-rate estimates.

Numerical results for optimization of hyper-rectangles were not available due to the extremely
high calculation time of this shape in 6 dimensions. Due to this fact, multithreading of the addition
genetic operator for hyper-rectangles, the most computationally intense algorithm function in higher
dimensions, was implemented to help reduce the computational time of this shape. Prior to
implementation of this function, a single generation of 6-D hyper-rectangles took greater than 3
weeks to calculate. Unfortunately, actual calculation time is not known due to a power failure.
Regardless, without significant computational power and time available, this shape is not

 88

recommended for optimization in higher dimensions. Due to other characteristics of hyper-
rectangles, however, this shape may still be viable for use in failure detection online, possibly
without optimization of the detectors beforehand. The results presented in Table 6.22 for hyper-
rectangles are for a Phase I, non-optimized detector set. These are intended only to give a
performance basis for this shape in higher dimensions.

Table 6.22—6-D Trial Detection

Failure Type Location Magnitude Envelope
Hyper-
Spheres

Hyper-
Ellipsoids

Hyper-
Rotational-
Ellipsoids

Hyper-
Rectangles

Actuator

aileron

left

5 deg
123

25.2954 90.2484 45.0502 8.5355

8 deg

76.2284 52.5037 99.2944 72.3241

187 47.4695 76.1670 72.7971 3.8945

right
165

11.9154 4.3457 8.0070 1.5070

9.4866 10.1812 7.2028 0.7557

123 64.9755 86.3039 85.0349 1.2939

rudder

left

8 deg

145 25.0016 34.0575 32.6595 17.9378

123 18.978 44.5013 43.0640 4.7800

right
167 14.5393 32.3509 31.3266 6.4516

123 51.0922 49.2517 85.0891 36.8499

stabilator

left

2 deg
123

99.9449 26.2347 98.3600 1.3196

8 deg

99.6646 52.8048 97.0083 1.4014

145 86.5128 40.2070 32.9487 3.0605

right
189 84.1533 47.4845 46.4609 1.1733

123 79.0832 73.1339 79.1916 36.8137

Sensors

LFDB

r 3 deg
165 98.8314 99.4387 99.6628 89.3757

123 33.7748 35.4046 31.4411 14.3686

p

10 deg

167 75.1587 75.2925 76.2339 28.5559

123 24.7725 23.5856 23.5507 12.8351

q
187 48.4827 46.8860 47.8138 23.2527

123 74.4099 73.9841 75.8964 59.9626

LSB

r 3 deg
167 98.7732 98.8529 99.3688 78.0753

123
78.6295 78.4487 78.3985 22.9174

p

5 deg 57.0056 56.6932 56.1214 28.2262

10 deg

145 79.3356 79.5833 79.0512 20.4709

123 75.3036 76.9191 77.7623 43.6270

q
189 32.465 30.3917 30.9925 13.0634

123 21.42 14.8235 36.0490 0.3032

Structural Wing
left

15% 167 33.8115 27.7176 20.8945 1.6233

35% 123
0.11229 0.3124 0.0653 0.1266

right 76.5737 87.4287 78.6368 13.4057

Engine Left 1% 167 0.037286 3.0224 0.0548 0.0243

 89

10%

123

7.5394 32.3293 14.8190 1.9688

0.55719 3.6683 1.6469 0.3746

Right

1% 0.031075 0.2087 0.8302 0.2930

10% 0.070944 0.1021 0.2405 0.0986

1% 187 1.6642 3.2351 2.9850 1.7324

Nominal

1A 0.0000 0.0000 0.0000 0.0000

1B 0.0000 0.0000 0.0000 0.0000

1C 0.0000 0.0000 0.0000 0.0000

1D_1 0.0000 0.0000 0.0000 0.0000

1D_2 0.0000 0.0000 0.0000 0.0027

4 0.0000 0.0000 0.0000 0.0000

12 0.0000 0.0000 0.0000 0.0000

Table 6.23—6-D Calculation Time Results

 Calculation Time (minutes) Detection Time (seconds)

Hyper-Spheres 1370.8 7389
Hyper-Ellipsoids 23845 43171
Hyper-Rotational-Ellipsoids 24658 40752
Hyper-Rectangles --- 2129

Figure 6.39—Performance Indices for 6-D
Hyper-Spheres Trial

Figure 6.40—Performance Indices for 6-D
Hyper-Ellipsoids Trial

Generations Generations

 90

Figure 6.41—Performance Indices for 6-D Hyper-Rotational-Ellipsoids Trial

The detection performance for each of these shapes was sporadic and not adequate. The

detection was particularly poor for hyper-rectangles, similar to the 2-D and 3-D cases. This
indicates that more detectors are needed to achieve adequate coverage of the solution space in 6
dimensions, for each of the shapes. The calculation times for this trial illustrate the computational
requirements of each shape. As seen previously in the 2-D and 3-D cases, hyper-spheres took the
least time to calculate using the genetic algorithm, followed by hyper-ellipsoids and hyper-rotational-
ellipsoids, which had nearly equivalent calculation times of over 17 times that of hyper-spheres. The
performance indices for each of the shapes show steady increases in the performance index of the
best individual. This indicates that more generations of the genetic algorithm could help the
detector sets to achieve better detection performance without the allowance of more detectors.

Generations

 91

7 Conclusions and Recommendations

An evolutionary algorithm for the generation and optimization of immunity-based failure

detectors has been successfully designed, implemented, and demonstrated. Results obtained

through the use of this utility illustrate the strengths and weaknesses of each of the detector shapes

implemented.

Hyper-spheres performed well in all areas. Though this shape did not always provide the

best detection performance, it took significantly less time than the other shapes to optimize through

the use of the genetic algorithm, and took significantly less time to determine detection performance

than hyper-ellipsoids or hyper-rotational-ellipsoids.

Hyper-ellipsoids and hyper-rotational-ellipsoids tended to take equivalent calculation times,

both for optimization and detection. However, hyper-ellipsoids tended to perform better than

hyper-rotational-ellipsoids with respect to failure detection. Both shapes took significantly longer to

calculate than hyper-spheres, regardless of number of dimensions. These shapes do not seem to

suffer the same effects of high dimensionality that limits the use of hyper-rectangles.

Hyper-rectangle detectors take the longest to calculate in higher dimensions. Their

calculation time is also highly susceptible to the effects of dimensionality. In addition, hyper-

rectangles need a significantly higher number of detectors for adequate coverage of the solution

space. However, hyper-rectangles exhibit the lowest overlapping among the detector shapes. In

addition, detection results were the quickest to run for hyper-rectangles, meaning that this shape

would likely be a good choice for running online in a detection scheme.

Further exploration of the optimization parameters is needed to fully define the capabilities

and possible detection improvements available through the use of the IFDOT Utility. Comparison

of online calculation costs for optimized detector sets for each detector shape should be performed

to determine the feasibility of running each shape online, the number of detectors that may feasibly

be included in a detector set intended to run online for each shape, and the coverage of the solution

space that may be achieved utilizing the most detectors feasible for online calculation for each shape.

Integration of all four detector shapes into a structured genetic algorithm should be investigated, to

take advantage of the strengths given by each shape.

 92

Bibliography

1. Totah, J, KrishnaKumar, K and Viken, S. Stability, Maneuverability, and Safe Landing in the
Presence of Adverse Conditions. Integrated Resilient Aircraft Control Technical Plan, Aviation Safety
Program, Aeronautics Research Mission Directorate, NASA. [Online] 2007.
http://www.aeronautics.nasa.gov/nra_pdf/irac_tech_plan_c1.pdf.
2. Srivastava, A N, Mah, R W and Meyer, C. Automated detection, diagnosis, prognosis to enable
mitigation of adverse events during flight. Integrated Vehicle Health Management Technical Plan, Aviation
Safety Program, Aeronautics Research Mission Directorate, NASA. [Online] 2008.
http://www.aeronautics.nasa.gov/nra_pdf/ivhm_tech_plan_c1.pdf.
3. Young, S D and Quon, L. Integrated Intelligent Flight Deck. Integrated Intelligent Flight Deck
Technical Plan, Aviation Safety Program, Aeronautics Research Mission Directorate, NASA. [Online] 2007.
http://www.aeronautics.nasa.gov/nra_pdf/iifd_tech_plan_c1.pdf.
4. Young, R and Rohn, D. Aircraft Aging and Durability Project. Aircraft Aging and Durability Project
Technical Plan, Aviation Safety Program, Aeronautics Research Mission Directorate, NASA. [Online] 2007.
http://www.aeronautics.nasa.gov/nra_pdf/aad_tech_plan_c1.pdf.
5. NASA's Aviation Safety Program. White, J. Reno, Nevada : s.n., January 9-12, 2006. 44th Annual
AIAA Aerospace Sciences Meeting.
6. Fault Detection for the Aircraft Distribution Systems Using Impedance Estimation. Zhou, Qian, Sumner,
M and Thomas, D. York : s.n., April 2-4, 2008. 4th IET Conference on Power Electronics,
Machines and Drives, 2008. pp. 666-670.
7. A Diagnostic Approach for Electro-Mechanical Actuators in Aerospace Systems. Balaban, E, et al. Big Sky,
MT : IEEE, March 7-14, 2009. Aerospace Conference, 2009.
8. Application of Fault Detection and Isolation to a Boeing 747-100/200 Aircrafrt. Marcos, A, Ganguli, S
and Balas, G. Monterey, California : AIAA, August 2002. Proceedings of the AIAA Guidance,
Navigation and Control Conference. pp. Paper 02-4944.
9. Linear Parameter varying Control Synthesis for Actuator Failure, Based on Estimated Parameter. Shin, J Y,
Wu, N E and Belcastro, C. Monterey, California : AIAA, August 2002. Proceedings of the AIAA
Guidance, Navigation, and Control Conference. pp. Paper 02-4546.
10. Artificial Immune System Approaches for Aerospace Applications. KrishnaKumar, K. Reno, Nevada :
AIAA-2003-0457, 2003. Proceedings of the 41st Aerspace Sciences Meeting and Exhibit.
11. Negative Selection Algorithm for Aircraft Fault Detection. Dasgupta, D, et al. [ed.] G. Nicosia et al.
(Eds.). Catania, Sicily, Italy : s.n., September 13-16, 2004. Proceedings from the 3rd International
Conference on Artificial Immune Systems. pp. 1-13.
12. Integrated Framework for Aircraft Sub-System Failure Detection, Identification, and Evaluation Based on the
Artificial Immune System Paradigm. Perhinschi, M G, Moncayo, H and Davis, J. s.l. : submitted to
AIAA Journal of Aircraft, May 2009.
13. Evolutionary Algorithm for Artificial Immune System-Based Failure Detector Generation and Optimization.
Perhinschi, M G, Moncayo, H and Davis, J. Chicago, IL : AIAA, August 2009. Proceedings of
the AIAA Guidance, Navigation, and Control Conference.
14. Self-nonself discrimination in a computer. Forrest, S, et al. Los Alamitos, California : IEEE Compter
Society Press, 1994. Proceedings of the IEEE Symposium on Research in Security and Privacy. pp.
202-212.
15. Holland, J H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications
to Biology, Control, and Artificial Intelligence. Ann Arbor, Michigan : University of Michigan Press, 1975.
revised and republished in 1992.
16. Davis, L. Handbook of Genetic Algorithms. New York : Van Nostrand Reinhold, 1991. pp. 1-22.

 93

17. Active Aircraft Fault Detection and Isolation. Glavaski, S and Elgersma, M. 2001. Proceedings of
the IEEE Systems Readiness Technology Conference. pp. 692-705.
18. A New Approach to Robust Fault Detection and Identification. Saif, M and Guan, Y. July 1993. IEEE
Transactions on Aerospace and Electronic Systems. Vol. 29, Issue 3, pp. 685-695.
19. EKF Based Surface Fault Detection and Reconfiguration in Aircraft Control Systems. Caliskan, F and
Hajiyev, Ch. M. Chicago, IL : IEEE, 2000. Proceedings of the American Control Conference,
2000.Vol. 2, pp. 1220-1224.
20. Detection of Sensor Abrupt Faults in Aircraft Control Systems. Samara, P A, et al. s.l. : IEEE, 2003.
Proceedings of the 2003 IEEE Conference on Control Applications. Vol. 2, pp. 1366-1371.
21. Neural Network Based Fault Detection and Identification for Fighter Control Surface Failure. Zhengdao,
Zhang and Weihua, Zhang. June 17-19, 2009. Chinese Control and Decision Conference 2009.
22. Comparison of Fault Detection Techniques: Problem and Solution. Lou, S J, Budman, H and Duever,
T A. Anchorage, Alaska : s.n., 2002. Proceedings of the American Control Conference. pp. 4513-
4518.
23. A Fault Tolerant Flight Control System for Sensor and Actuator Failures Using Neural Networks.
Napolitano, M R, Younghawn, A and Seanor, B. No. 2, 2000, Aricraft Design, Vol. Vol. 3.
24. Gonzalez, F A and Dasgupta, D. Anomaly Detection Using Real-Valued Negative Selection.
Netherlands : Kluwer Academic Publishers, 2003.
25. Dasgupta, D. An Overview of Artificial Immune Systems and Their Application. Artificial
Immune Systems and Their Applications. s.l. : Springer-Verlag, 1999, pp. 3-18.
26. Dasgupta, D. Advances in Artificial Immune Systems. IEEE Computational Intelligence Magazine.
November 2006.
27. Revisiting Negative Selection Algorithms. Ji, Z and Dasgupta, D. No. 2, July 2007, Evolutionary
Computation Journal, Vol. 15.
28. Linnemeyer, P A. The Immune System--An Overview. The Seattle Treatment Project. [Online]
October 2008. [Cited: June 28, 2009.] http://www.thebody.com/content/art1788.html.
29. Ji, Z. Negative Selection Algorithms: From Thymus To V-Detector. Memphis, Tennessee : s.n., August,
2006.
30. Architecture for an Artificial Immune System. Hofmeyr, S A and Forrest, S. [ed.] 473. No. 4, Winter
2000, MIT Press Journals, Evolutionary Computation, Vol. 8, p. 443. Posted Online March 13,
2006. http://www.mitpressjournals.org/doi/abs/10.1162/106365600568257.
31. Artificial Immune System (AIS) Research in the Last Five Years. Ji, Z and Dasgupta, D. Canberra,
Australia : s.n., December 2003. Congress on Evolutionary Computation Conference (CEC).
32. The Immune System. Jerne, N K. 1, 1973, Scientific American, Vol. 229, pp. 52-60.
33. Towards a Network Theory of the Immune System. Jerne, N K. 1974, Ann. Immunol (Inst. Pasteur),
Vol. 125C, pp. 373-389.
34. Rowe, G W. The Theoretical Models of Biology. 1st. s.l. : Oxford University Press, 1994.
35. Data Mining Approaches for Intrusion Detection. Lee, W and Stolfo, S. Berkeley, CA : USENIX
Association, 1998. Proceedings of the 7th USENIX Security Symposium. pp. 79-94.
36. Learning Using an Artifiicial Immune System. Hunt, J E and Cooke, D E. s.l. : Journal of Network
and Computer Applications, 1996, Vol. 19, pp. 189-212.
37. Artificial Immune Systems: A Novel Paradigm to Pattern Recognition. De Castro, L and Timmis, J.
[ed.] J M Corchado, L Alonso and C Fyfe. University of Paisley, UK : SOCO-2002, 2002. Artificial
Neural Networks in Pattern Recognition. pp. 67-84.
38. An Immunity-Based Technique to Characterize Intrusions in Computer Networks. Dasgupta, D and
Gonzalez, F. s.l. : IEEE, June 2002. IEEE Transactions on Evolutionary Computation. Vol. 6, pp.
281-291.

 94

39. Immunity-Based Intrusion Detection System: A General Framwork. Dasgupta, D. October 1999.
Proceedings of the 22nd National Information Systems Security Conference (NISSC). pp. 147-160.
40. Anomaly Detection in Multidimensional Data Using Negative Selection Algorithm. Dasgupta, D and
Majumdar, N. s.l. : ACM, 2002. Proceedings of the Congress on Evolutionary Computation, 2002.
pp. 1039-1044.
41. Negative Selection and Niching by and Artificial Immune System for Network Intrusion Detection. Kim,
Jungwon and Bentley, Peter. 1999. In Late Breaking Papers at the 1999 Genetic and Evolutionary
Computation Conference. pp. 149-158.
42. Augmenting an Artificial Immune Network. Neal, M, Hunt, J and Timmis, J. s.l. : IEEE, 1998.
1998 IEEE International Conference on Systems, Man, and Cybernetics. Vol. 4, pp. 3821-3826.
43. Artificial Immune Systems in Industrial Applications. Dasgupta, D and Forrest, S. Honolulu, HI :
IEEE, 1999. Proceedings of the Second International Conference on Intelligent Processing and
Maufacturing of Materials. Vol. Vol. 1, pp. 257-267.
44. Study of Fault Diagnosis in Brushless Machines Based on Artificial Immune Algorithm. Tao, W, et al.
Montreal, Quebec, Canada : IEEE, 2006. IEEE Symposium on Industrial Electronics.
45. Robot Error Detection Using an Artificial Immune System. Canham, R, Jackson, A H and Tyrrell, A.
s.l. : IEEE, 2003. Proceedings from the IEEE Dod Conference on Evolvable Hardware, 2003.
46. ***. [Online] 2003. http://www.k-team.com.
47. Robot Fault Tolerance Using an Embryonic Array. Jackson, A, Canham, R and Tyrrell, A. s.l. :
IEEE, 2003. Proceedings of the 2003 NASA/DoD Conference on Evolvable Machines.
48. Research on Fault-Tolerant Controller for Mobile Robot Based on Artificial Immune Principle. Yang, B,
Fan, S and Shi, M. s.l. : IEEE, 2007. Third International Conference on Natural Computation.
49. A Novel Artificial-Immune-Based Approach for System-Level Fault Diagnosis. Elhadef, M, Das, S and
Nayak, A. s.l. : Proceedings of the First International Conference on Availability, Reliability, and
Security, 2006.
50. Artificial Immune System-Based Aircraft Failure Detection and Identification Using an Integrated Hierarchial
Multi-Self Strategy. Moncayo, H, Perhinschi, M G and Davis, J. s.l. : accepted for publication in
the AIAA Journal of Guidance, Control, and Dynamics, January 2010.
51. Immunity-Based Aircraft Failure Detection and Identification Using an Integrated Hierarchial Multi-Self
Strategy. Moncayo, H, Perhinschi, M G and Davis, J. Chicago, IL : AIAA, August 2009.
Proceedings of the AIAA Guidance, Navigation, and Control Conference.
52. Moncayo, Hever Y. Immunity-Based Detection, Identification, and Evaluation of Aircraft Sub-System
Failures. Morgantown, WV : West Virginia University, 2009.
53. Evolutionary Algorithm for Artificial Immune System-Based Failure Detector Generation and Optimization.
Davis, J, Perhinschi, M G and Moncayo, H. No. 2, s.l. : AIAA Journal of Guidance, Control, and
Dynamics, March-April 2010, Vol. 33, pp. 302-320.
54. Intergrated Framework for Aircraft Sub-System Failure Detection, Identification, and Evaluation Based on
Artificial Immune System Paradigm. Davis, J, Perhinschi, M G and Moncayo, H. Chicago, IL :
AIAA, August 2009. Proceedings of the AIAA Guidance, Navigation, and Control Conference.
55. Is Negative Selection Appropriate for Anomaly Detection? Stibor, T, et al. Washington, DC, USA :
ACM Press, 25-29 June 2005. Proceedings of the 2005 Conference on Genetic and Evolutionary
Computation. Vol. 1, pp. 321-328.
56. A Comparative Study of Real-Valued Negative Selection to Statistical Anomaly Detection Techniques. Stibor,
T, Timmis, J and Eckert, C. 2005. Proceedings of the International Conference on Artificial
Immune Systems. pp. 262-275.
57. Applicability Issues of the Real-Valued Negative Selection Algorithms. Ji, Z and Dasgupta, D. Seattle,
Washington : ACM, 2006. Proceedings of the 8th Annual Conference on Genetic and Evolutionary
Computation. pp. 111-118.

 95

58. Immunity-Based Aircraft Fault Detection System. Dagupta, D, et al. Chicago, IL : AIAA, September
20-24, 2004. Proceedings of the American Institute of Aeronautics and Astronautics Conference.
59. The Curse of Dimensionality in Data Mining and Time Series Prediction. Verleysen, M and François,
D. Berlin : © Springer-Verlag, 2005, IWANN 2005, LNCS 3512, pp. 758 – 770.
60. A Neural Network Approach for the Reduction of the Dimensionality of Slowly Time-Varying Electomagnetic
Inverse Problems. Morabito, F C and Coccorese, E. May 2006. IEEE Transaction on Magnetics.
Vols. Vol. 32, Issue 3, Part 1, pp. 1306-1309.
61. Dimensionality Reduction and Feature Extraction Applications in Identifying Computer Users. Bleha, S A
and Obaidat, M S. March-April 1991. IEEE Transactions on Systems, Man, and Cybernetics. Vol.
21, Issue 2, pp. 452-456.
62. Nonlinear Methods For Clustering and Dimensionality Reduction. Eghbalnia, H, Assadi, A and
Carew, J. s.l. : IJCNN '99, July 10-16, 1999. International Joint Conference on Neural Networks.
Vol. 2, pp. 1004-1009.
63. Goldberg, D E. Genetic Algorithms in Search, Optimization, and Machine Learning. Reading,
MA : Addison-Wesley, 1989, pp. 1-24.
64. Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs. Berlin,
Germany : Springer-Verlag, 1992, pp. 13-42.
65. Control System Optimization Using Genetic Algorithms. KrishnaKumar, K and Goldberg, D E.
Number 3, s.l. : Journal of Guidance, Control, and Dynamics, 1992.
66. An Immune Fault Detection System with Automatic Detector Generation by Genetic Algorithms. Amaral, J
L M, et al. Rio de Janeiro : s.n., October 20-24, 2007. Seventh International Conference on
Intelligent Systems Design and Applications. pp. 283-288.
67. An Evolutionary Approach to Generate Fuzzy Anomaly (Attack) Signatures. Gonzalez, F, et al. s.l. :
IEEE, June 18-20, 2003. IEEE Systems, Man, and Cybernetics Information Assurance Workshop,
2003. pp. 251-259.
68. An Evolutionary Algorithm to Generate Hyper-Ellipsoid Detectors for Negative Selection. Shapiro, J M,
Lamont, G B and Peterson, G L. s.l. : ACM Press, 2005. Proceedings of the 2005 Conference on
Evolutionary Computation. pp. 337-344.
69. Genetic Algorithms-based Detector Generation in Negative Selection Algorithm. Gao, X Z, Ovaska, S J
and Wang, X. Logan, UT : IEEE, 2006. IEEE Mountain Workshop on Adaptive and Learning
Systems. pp. 133-137.
70. A General Framework for Evolving Multi-Shaped Detectors in Negative Selection. Balachandran, S, et al.
Honolulu, HI : IEEE, 2007. IEEE Symposium on Foundations of Computational Intelligence. pp.
401-408.
71. Balachandran, Sankalp. Multi-Shaped Detector Generation Using Real-Valued Representation For
Anomaly Detection. Memphis, TN : University of Memphis, December 2005.
72. Dasgupta, D and McGregor, D R. sGA: A Structured Genetic Algorithm. 1992.
73. ***. Euclidean Distance. NIST. [Online]
http://www.itl.nist.gov/div897/sqg/dads/HTML/euclidndstnc.html.
74. ***. Mahalanobis Distance. AI ACCESS. [Online]
http://www.aiaccess.net/English/Glossaries/GlosMod/e_gm_mahalanobis.htm.
75. Estimating the Detector Coverage in a Negative Selection Algorithm. Ji, Z and Dasgupta, D.
Washington, DC : ACM, 2005. Proceedings of the 2005 Conference on Genetic and Evolutionary
Computation.
76. A Randomized Real-Valued Negative Selection Algorithm. Gonzalez, F, Dasgupta, D and Nino, L.
UK : ICARIS, 2003, 2003. Second International Conference on Artificial Immune System.

 96

77. ***. Introduction to Monte Carlo Methods. Computational Science Education Project. [Online] 1995.
http://www.ipp.mpg.de/~rfs/comas/Helsinki/helsinki04/CompScience/csep/csep1.phy.ornl.gov/
mc/mc.html.
78. Using the Triangle Inequality to Accelerate k-Means. Elkan, C. Washington, DC : IEEE, 2003.
Proceedings of the 12th International Conference on Machine Learning.
79. Integrated System for Immunity-Based Failure Detection, Identification, and Evaluation. Perhinschi, M G,
Moncayo, H and Davis, J. McLean, VA : NASA, November 2009. poster within the Integrated
Resilient Aircraft Control Project, NASA Aviation Safety Program, Technical Conference.
80. Augmented Negative Selection Algorithm with Variable-Coverage Detectors. Ji, Z and Dasgupta, D. s.l. :
CEC2004, June 19-23, 2004. Congress on Evolutionary Computation, 2004. Vol. Vol. 1, pp. 1081-
1088.
81. Artificial Immune System-Based Aircraft Failure Detection and Identfication Over Extended Flight Envelope.
Moncayo, H, Perhinschi, M G and Davis, J. s.l. : The Aeronautical Journal, December 2009.
82. Artificial Immune System-Based Aircraft Failure Evaluation over Extended Flight Envelope. Moncayo, H,
Perhinschi, M G and Davis, J. Toronto, Canada : AIAA, August 2010. accepted for publication in
the Proceedings of the AIAA Guidance, Navigation, and Control Conference.
83. V-Detector: An Efficient Negative Selection Algorithm with "Probably Adequate" Coverage. Ji, Z and
Dasgupta, D. No. 10, s.l. : Information Sciences, April 29, 2009, Vol. 179, pp. 1390-1406.
84. Real-Valued Negative Selection Algorithm with Variable-Sized Detectors. Ji, Z and Dasgupta, D. s.l. :
Springer-Verlag, 2004. Genetic and Evolutionary Computation Conference, 2004. . pp. 287-298.
85. Development of a Detection Scheme for Aircraft Engine Failures Based on the Artificial Immune System
Paradigm. Perhinschi, M G, et al. Toronto, Canada : AIAA, August 2010. accepted for publication
in the Proceedings of the AIAA Guidance, Navigation, and Control Conference.
86. In-Flight Actuator Failure Detection and Identification for a Reduced Size UAV Using Artificial Immune
System Approach. Sanchez, S P, et al. Chicago, IL : AIAA, August 2009. Proceedings of the AIAA
Guidance, Navigation, and Control Conference.

 97

Appendices

 A-1

A Additional Results Figures and Tables

Table A.1—Full Clustering Comparison Results—500 Clusters, Phase I only

Failure Type Location Magnitude Envelope
500 Clusters

Trial 1 Trial 2 Trial 3 Average

Actuator

aileron

left

5 deg
123

99.7234 99.9404 99.4064 99.6901

8 deg

99.9551 99.9508 92.198 97.3680

187 99.8684 99.9534 91.2591 97.0270

right
165

99.1477 85.7376 99.9432 94.9428

98.6564 85.4679 99.8728 94.6657

123 86.8972 96.4996 98.4361 93.9443

rudder

left

8 deg

145 86.125 86.023 85.2679 85.8053

123 42.6244 46.907 43.5449 44.3588

right
167 42.8396 47.6894 48.4624 46.3305

123 40.8363 47.3291 43.5 43.8885

stabilator

left

2 deg
123

98.2304 98.5832 99.6059 98.8065

8 deg

99.969 99.6451 99.696 99.7700

145 99.9653 99.4737 99.6953 99.7114

right
189 99.9657 99.9628 74.7705 91.5663

123 99.4917 99.7476 74.6553 91.2982

Sensors

LFDB

r 3 deg
165 31.7523 31.7269 32.3195 31.9329

123 85.5846 85.0769 85.9007 85.5207

p

10 deg

167 1.6257 2.8139 4.2035 2.8810

123 5.7193 5.2419 2.2383 4.3998

q
187 0.31199 1.1538 0.39739 0.6211

123 6.7773 8.476 5.5199 6.9244

LSB

r 3 deg
167 7.8212 6.9646 7.4427 7.4095

123
76.513 78.3794 78.5556 77.8160

p

5 deg 3.7618 2.9465 2.158 2.9554

10 deg

145 4.7251 5.8845 5.1857 5.2651

123 12.767 14.16 12.767 13.2313

q
189 13.331 15.0349 10.8104 13.0588

123 2.218 2.0469 0.88189 1.7156

Structura
l

Wing
left

15% 167 84.1295 99.9771 93.9604 92.6890

35% 123
90.9086 99.7911 98.1165 96.2721

right 99.974 99.9801 92.0746 97.3429

Engine

Left

1% 167 3.0202 3.279 2.3732 2.8908

10%

123

35.9919 36.9023 35.88 36.2581

3.4344 4.4461 3.4478 3.7761

Right
1% 14.2532 17.3503 15.9579 15.8538

10% 1.5106 1.983 1.4985 1.6640

 A-2

1% 187 8.364 10.5193 13.9431 10.9421

Nominal

1A 0.95059 0.80225 0.003027 0.5853

1B 0.31185 0.32506 0.27221 0.3030

1C 0.53549 1.2289 0.39894 0.7211

1D_1 0.16215 0 0 0.0541

1D_2 0 0 0 0.0000

4 0 0 0 0.0000

12 0 0 0 0.0000

 A-3

Table A.2—Full Clustering Comparison Results—2000 Clusters, Phase I only

Failure Type Location Magnitude Envelope
2000 Clusters

Trial 1 Trial 2 Trial 3 Average

Actuator

aileron

left

5 deg
123

94.7976 99.9443 99.9232 98.2217

8 deg

66.0530 99.9530 99.9551 88.6537

187 97.2416 99.9554 99.9575 99.0515

right
165

99.7579 99.6195 99.9481 99.7752

99.7673 99.5681 99.9040 99.7465

123 99.6359 99.7811 99.9558 99.7909

rudder

left

8 deg

145 89.1080 89.4762 87.5832 88.7225

123 56.6897 55.1802 55.0801 55.6500

right
167 53.0376 51.0738 39.9887 48.0334

123 51.9013 51.4984 45.9457 49.7818

stabilator

left

2 deg
123

84.6936 86.5016 99.3447 90.1800

8 deg

99.9707 96.0017 99.9724 98.6483

145 99.9672 94.5582 99.9692 98.1649

right
189 99.9684 99.9666 99.9666 99.9672

123 99.9704 99.0687 99.8259 99.6217

Sensors

LFDB

r 3 deg
165 32.3610 30.8968 33.4448 32.2342

123 90.7645 89.2052 88.3795 89.4497

p

10 deg

167 7.9737 16.7755 14.6331 13.1274

123 7.7629 8.1218 9.5051 8.4633

q
187 3.5608 0.4479 0.9429 1.6506

123 17.2326 10.0375 13.4408 13.5703

LSB

r 3 deg
167 9.6514 9.3103 9.4920 9.4846

123
85.0795 86.9962 85.8030 85.9596

p

5 deg 5.6419 5.9700 8.1648 6.5922

10 deg

145 8.7593 8.9261 9.7784 9.1546

123 16.2881 17.4741 21.7478 18.5033

q
189 21.8789 18.6814 21.7004 20.7536

123 5.5276 3.7231 4.3932 4.5480

Structural Wing
left

15% 167 98.6403 99.6586 92.7475 97.0155

35% 123
99.9121 99.1407 98.9538 99.3355

right 94.3654 98.4611 99.9817 97.6027

Engine

Left

1% 167 6.9528 8.7338 6.3365 7.3410

10%

123

38.1560 40.0508 37.4580 38.5549

8.1202 8.0879 6.9240 7.7107

Right

1% 22.2306 17.1713 22.9527 20.7849

10% 3.1942 2.9329 2.5713 2.8995

1% 187 10.6693 19.8450 12.5517 14.3553

Nominal 1A 0.1877 0.0848 0.5994 0.2906

 A-4

1B 0.3700 0.6052 0.5391 0.5048

1C 1.2745 1.1085 0.8970 1.0933

1D_1 0.1332 0.0290 0.0087 0.0569

1D_2 0.0165 0.0000 0.0165 0.0110

4 0.0000 0.0000 0.0000 0.0000

12 0.0000 0.0000 0.0000 0.0000

 A-5

Table A.3—Full Clustering Comparison Results—5000 Clusters, Phase I only

Failure Type Location Magnitude Envelope
5000 Clusters

Trial 1 Trial 2 Trial 3 Average

Actuator

aileron

left

5 deg
123

99.9520 99.9539 99.6715 99.8591

8 deg

99.9572 99.9594 99.7520 99.8895

187 99.9595 99.9615 99.9534 99.9581

right
165

99.6986 39.9437 95.9730 78.5384

98.4069 41.7394 95.1248 78.4237

123 99.6611 82.2497 98.1456 93.3521

rudder

left

8 deg

145 91.7291 88.3591 88.7897 89.6260

123 60.5326 61.4121 62.0980 61.3476

right
167 57.3915 53.8023 53.8253 55.0064

123 59.9567 57.1841 56.7109 57.9506

stabilator

left

2 deg
123

99.9233 99.9483 99.8686 99.9134

8 deg

99.9707 99.9707 99.9690 99.9701

145 99.9672 99.9672 99.9653 99.9666

right
189 99.9591 89.0270 99.6042 96.1968

123 95.7872 85.3475 99.6449 93.5932

Sensors

LFDB

r 3 deg
165 32.1189 13.1575 31.5194 25.5986

123 90.5979 90.4580 90.9216 90.6592

p

10 deg

167 15.4184 21.7034 25.9130 21.0116

123 9.8945 9.3206 10.4820 9.8990

q
187 1.2009 6.8114 3.0885 3.7003

123 15.4181 24.3375 23.3606 21.0387

LSB

r 3 deg
167 12.0767 12.0692 12.3730 12.1730

123
87.5435 84.4755 81.2880 84.4357

p

5 deg 8.4678 6.3333 7.4968 7.4326

10 deg

145 12.7617 12.3355 12.9285 12.6752

123 21.6743 19.6970 20.3123 20.5612

q
189 22.6602 31.1852 33.0535 28.9663

123 7.3179 12.3607 11.0817 10.2534

Structural Wing
left

15% 167 99.8207 99.4164 99.7959 99.6777

35% 123
99.9322 99.9139 98.1421 99.3294

right 99.9817 99.9801 99.7524 99.9047

Engine

Left

1% 167 9.1681 10.6639 6.8388 8.8903

10%

123

43.8063 42.4179 42.7233 42.9825

12.3457 12.7242 18.7468 14.6056

Right

1% 25.3278 22.8817 22.1981 23.4692

10% 5.4437 3.6372 4.0732 4.3847

1% 187 20.9658 26.4993 25.8514 24.4388

Nominal 1A 2.6763 1.1716 0.4117 1.4199

 A-6

1B 0.6448 0.8563 1.0175 0.8395

1C 1.6038 1.5476 1.1058 1.4191

1D_1 0.1824 0.1795 0.2403 0.2008

1D_2 0.0027 0.0467 0.1098 0.0531

4 0.0000 0.2061 0.0000 0.0687

12 1.0812 0.0051 0.8972 0.6612

 A-7

Table A.4—2-D Shape Results

 Coverage % Overlap % Number of Detectors

Hyper-Spheres Trial 1 97.62 22.97 97
Trial 2 97.76 22.62 102
Trial 3 96.58 20.49 89
Average 97.32 22.03 96

Hyper-
Ellipsoids

Trial 1 96.77 12.17 102
Trial 2 97.3 16.17 98
Trial 3 97.29 18.32 103
Average 97.12 15.55 101

Hyper-
Rotational-
Ellipsoids

Trial 1 96.05 13.62 108
Trial 2 95.05 11.31 96
Trial 3 97.56 18.44 97
Average 96.22 14.46 100

Hyper-
Rectangles

Trial 1 97.93 0 104
Trial 2 97.73 0 205
Trial 3 97.91 0 143
Average 97.86 0 151

Table A.5—2-D Calculation Time Results

Time (minutes)

 Trial 1 Trial 2 Trial 3 Average

Hyper-Spheres 334.9181 680.3432 291.7751 435.6788

Hyper-Ellipsoids 25648 8291.5 8093.9 14011.13

Hyper-Rotational-
Ellipsoids

15826 20944 8400.9 15056.97

Hyper-Rectangles 488.45 186.54 170.43 281.8067

 A-8

Table A.6—3-D Shape Results

 Coverage % Overlap % Number of Detectors

Hyper-Spheres Trial 1 92.105 43.954 445
Trial 2 91.848 40.301 476
Trial 3 92.499 44.821 471
Trial 4 92.786 48.155 435
Average 92.310 44.308 457

Hyper-
Ellipsoids

Trial 1 92.945 56.111 476
Trial 2 93.47 52.52 461
Trial 3 93.44 51.47 446
Average 93.284 53.37 461

Hyper-
Rotational-
Ellipsoids

Trial 1 93.32 58.24 471
Trial 2 92.96 53.28 471
Trial 3 92.22 50.42 440
Average 92.84 53.98 461

Hyper-
Rectangles

Trial 1 74.69 0.0236 491
Trial 2 73.421 0.3345 480
Trial 3 74.80 0.0695 493
Average 74.31 0.1425 488

Table A.7—3-D Calculation Time Results

Calculation Time (min)

 Trial 1 Trial 2 Trial 3 Trial 4 Average

Hyper-Spheres 2716 2632 2518 2565 2607.75

Hyper-Ellipsoids 61534 76870 20411 --- 52938.33

Hyper-Rotational-
Ellipsoids

24392 25294 21190 --- 23625.33

Hyper-Rectangles 38906 53525 49807 --- 47412.67

Table A.8—3-D Detection Time Results

Detection Time (seconds)

 Trial 1 Trial 2 Trial 3 Trial 4 Average

Hyper-Spheres 6556 7100 7007 6580 6887.667
Hyper-Ellipsoids 46895 41995 41667 --- 44281
Hyper-Rotational-

Ellipsoids 42178 42300 41700 --- 42059.33
Hyper-Rectangles 3530 3420 3446 --- 3465.333

 A-9

Table A.9—3-D Average Detection Results for Shape Comparison

Failure Type Location Magnitude Envelope
500

Clusters
Hyper-
Spheres

Hyper-
Ellipsoids

Hyper-
Rotational-
Ellipsoids

Hyper-
Rectangles

Average Average Average Average Average

Actuator

aileron

left

5 deg
123

99.6901 99.0841 99.8931 99.9302 44.1025

8 deg

97.3680 99.0726 99.9052 99.5553 49.9508

187 97.0270 98.8127 99.7975 99.6989 48.5415

right
165

94.9428 98.3793 99.3963 99.6986 58.3747

94.6657 98.1310 99.4842 99.6649 57.4744

123 93.9443 98.3219 99.8604 99.7594 68.2081

rudder

left

8 deg

145 85.8053 85.5748 86.4315 87.1263 61.3878

123 44.3588 44.8272 49.4202 47.8877 33.2551

right
167 46.3305 46.4521 47.7897 46.6155 29.7560

123 43.8885 39.7060 41.9506 40.6692 30.2865

stabilator

left

2 deg
123

98.8065 92.7265 99.5858 96.9892 55.0259

8 deg

99.7700 99.6886 99.9202 99.9707 50.2587

145 99.7114 99.9653 99.9653 99.9672 61.6097

right
189 91.5663 98.7517 95.5557 94.5683 47.5372

123 91.2982 96.9479 96.7296 92.9589 50.8501

Sensors

LFDB

r 3 deg
165 31.9329 30.5918 31.6846 31.7630 9.2505

123 85.5207 83.9673 85.3368 86.8572 61.7012

p

10 deg

167 2.8810 3.1654 1.6989 2.8044 10.4987

123 4.3998 5.1666 5.2136 4.6177 4.9377

q
187 0.6211 0.1434 0.2905 0.1836 0.3027

123 6.9244 5.0246 8.0157 7.7294 7.3285

LSB

r 3 deg
167 7.4095 7.2099 6.8326 7.0045 5.6142

123
77.8160 74.4868 78.1487 81.1293 48.1001

p

5 deg 2.9554 3.5266 3.3645 3.6541 3.1937

10 deg

145 5.2651 4.9640 5.8678 5.8281 5.7478

123 13.2313 13.3445 12.6728 13.1720 10.6072

q
189 13.0588 10.7141 15.5051 15.0420 12.3788

123 1.7156 0.7826 2.4149 2.5778 3.2465

Structural Wing
left

15% 167 92.6890 99.8412 99.9771 98.9263 71.6657

35% 123
96.2721 99.2076 99.7313 95.8268 71.1525

right 97.3429 95.3672 95.8208 99.9638 64.0345

Engine

Left

1% 167 2.8908 7.5308 5.0878 3.0334 2.7804

10%

123

36.2581 36.2764 35.9590 36.1702 21.3658

3.7761 5.1826 4.8144 6.2084 4.1019

Right

1% 15.8538 16.7943 17.4618 17.5846 10.2943

10% 1.6640 1.6339 1.9841 1.7148 1.3081

1% 187 10.9421 7.9457 6.7832 6.2770 8.8642

 A-10

Nominal

1A 0.5853 0.0825 0.7962 0.0323 0.0585

1B 0.3030 0.3726 0.3163 0.4810 0.1683

1C 0.7211 0.9548 0.8050 0.5801 0.6265

1D_1 0.0541 0.0014 0.0309 0.0261 0.3668

1D_2 0.0000 0.0000 0.0521 0.0027 0.0759

4 0.0000 0.0000 0.0000 0.0000 0.0000

12 0.0000 0.0000 0.2352 0.0000 0.4200

B-1

B IFDOT Utility User’s Guide

Table of Contents

Introduction ..B-2

Chapter 1—Selecting Identifiers ..B-5

Chapter 2—Data Processing ..B-6

2.1 Processing with Normalization Grace Percentage ...B-6

2.2 Processing with Normalization Limits Specified From a File ... B-10

2.3 Data Processing with Normalization Limits Specified Manually .. B-15

Chapter 3—Clustering Data .. B-20

3.1 Cluster for Self Definition .. B-20

3.1.1 Clustering with Hyper-Spheres Using Number-Imposed Clustering Method (M1) B-20

3.1.2 Clustering with Hyper-Spheres Using Space-Optimized Clustering Method (M2) . B-25

3.1.3 Clustering with Hyper-Rectangles ... B-31

3.2 Generation of Positive Selection Detectors ... B-36

3.2.1 Positive Selection Hyper-Sphere Detector Generation Using Number-Imposed
Clustering Method (M1) ... B-36

3.2.2 Positive Selection Hyper-Sphere Detector Generation Using Space-Optimized
Clustering Method (M2) ... B-42

3.2.3 Positive Selection Hyper-Rectangle Detector Generation ... B-47

Chapter 4—Creating Negative Selection Detectors and Optimization with Genetic Algorithm.................... B-52

4.1 Creating a Single Detector Set .. B-52

4.1.1 Creating Hyper-Sphere Detectors with NSA-RV ... B-52

4.1.2 Creating Hyper-Rectangle Detectors with NSA-RV .. B-57

4.1.3 Creating Hyper-Sphere Detectors with Enhanced NSA-RV .. B-62

4.2 Detector Optimization .. B-67

4.3 Continuing Optimization .. B-73

4.4 Displaying Results .. B-78

Chapter 5—Running Detection ... B-81

5.1 Negative Selection Detectors ... B-81

5.2 Positive Selection Detectors ... B-83

Chapter 6—Merging Data Files.. B-86

6.1 Merging Raw Data ... B-86

6.2 Merging Processed Data ... B-89

B-2

6.3 Merging Clustered Data .. B-92

6.4 Merging Positive Selection Detectors ... B-95

Introduction
This guide is intended to address the various capabilities of the West Virginia University

Immunity-Based Failure Detector Optimization and Testing (IFDOT) Utility. The guide is
organized according to the order in which data must be processed for use in a failure detection
control scheme. Several steps in this process contain a variety of options available to the User. Full
exploration of the parameters available throughout the program is not given here, however complete
explanation of each of the algorithms and the algorithms pertinent parameters is included. In
addition, a detailed walkthrough for each of the algorithms is included. A demonstration directory
has been included with the program, labeled ‘Demo’. Each of the walkthroughs will center around
these included files. Instructions are given throughout the walkthrough segments to allow the user to
follow along with the guide utilizing the demo files, however, different files may be used as desired.
In addition, extra demo files are included for additional practice with the IFDOT Utility.

The IFDOT Utility was designed using MATLAB version R2008a for Windows, and is
intended to work with this version of MATLAB. As MATLAB is a versatile and dynamic language,
compatibility cannot be guaranteed for past or future versions of MATLAB, although the program
has been utilized with MATLAB versions 2007 through 2009. Linux compatibility is possible for
comparable versions of MATLAB using UNIX-compatible MATLAB.

Before running the program, be sure to add the ‘Ver. 3.0-WVU Failure Detector GA’ and
‘GA Functions V3.0’ directories to path. To do this, open MATLAB, click ‘File’, and select ‘Set
Path’. This opens a dialog box within MATLAB. Select ‘Add to Path’ and navigate to the location
of each of these directories, then click ‘Save’ and close the dialog box. Set the MATLAB Current
Directory to the location in which you wish files to be saved. Changing the MATLAB Current
Directory after running the program can cause the program to behave unexpectedly, depending on
the files located in the new Current Directory, and is not recommended. To run the IFDOT Utility,
run ‘WVU_IBFDO_V3’ from the MATLAB command window, or open ‘WVU_IBFDO_V3.m’
and click ‘Run’. This loads the menu shown below in Figure B.1.

Upon running the IFDOT Utility for the first time in a particular Current Directory, it is
recommended to set the program options. To do this, click on the ‘Options’ menu, and click ‘Select
Options’. This is shown in Figure B.2. Several options are available in this menu, shown in Figure
B.3 below. These are discussed starting from the top and explained in more detail later as applicable.
‘Use Multithreading Where Applicable’ allows the program to open multiple processes to calculate
the genetic algorithm more quickly. ‘Maintain Version 6 Compatibility’ makes the program save
output files to a different version of ‘.mat’ file which can be opened through MATLAB version 6.
‘Override Monte Carlo Parameters in Clusters file’ tells the program to use different parameters for
Monte Carlo Volume Estimation in the genetic algorithm than those used in clustering. If this is
selected, the parameters entered in the edit boxes will be used instead. Finally, ‘Use parallel
computing to increase GA speed’ initiates a variation on genetic algorithm which allows multiple
computers to participate in calculating the genetic algorithm to increase speed. Note that
multithreading is not compatible with this variation and will simply not be used.

Figure

B-3

Figure B.1—IFDOT Main Menu

Figure B.2—Opening Options Menu

 This User’s Guide is available through the IFDOT Utility by clicking the ‘Help’ menu and
selecting ‘Load Help File’, as seen in
This is opened as a separate window so that the user can follow along with the guide using the
IFDOT Utility.

B-4

Figure B.3—Options Menu

This User’s Guide is available through the IFDOT Utility by clicking the ‘Help’ menu and
selecting ‘Load Help File’, as seen in Figure B.4. This loads the menu shown below in
This is opened as a separate window so that the user can follow along with the guide using the

Figure B.4—Opening Help File

Figure B.5—Help File Menu

This User’s Guide is available through the IFDOT Utility by clicking the ‘Help’ menu and
This loads the menu shown below in Figure B.5.

This is opened as a separate window so that the user can follow along with the guide using the

B-5

Chapter 1—Selecting Identifiers
 The single most important step during the creation of immunity-based detectors is the
selection of appropriate identifiers, capable of capturing the signature of various failures. This
depends both on the nature of the system and the nature of the failures to be detected. A higher
number of identifiers may be needed to determine the occurrence of a failiure, however, higher
dimensionality is accompanied by increasingly high computational cost to generate and optimize the
detectors, though the IFDOT Utility is compatible with an unlimited number of dimensions of the
solution space.
 Once the identifiers are chosen, data files are defined as a column of time history data for
each of the identifiers. These data files may contain either normal data from the system with no
failures present, or abnormal data collected from the system when a failure is present. Normal data
is used to define the self for generation of negative-selection detectors, or for defining positive-
selection detectors. Normal data files should be saved using the variable name ‘sensors’. Abnormal
data is used to determine the detection performance of a set of detectors for the particular failure
contained in the abnormal data. Abnormal data files should be saved using the variable name
‘dataN’.
 Full raw data files are supplied with the ‘Demo’ directory, however, these are not directly
used in the program. These files are truncated to 2-, 3-, and 6-dimensional data sets. The 2-
dimensional data contains the roll-rate and pitch-rate as identifiers, or columns 4 and 5 in the
original files. The 3-dimensional data set contains roll-, pitch-, and yaw-rate identifiers, or columns
4, 5, and 6 in the original files. The 6-dimensional data files contain velocity, angle of attack, sideslip
angle, roll-rate, pitch-rate, and yaw-rate as identifiers, or columns 1-6 in the full data files.

Chapter 2
 Processing a data file is done before clustering the data
the computer and to normalize the values of the identifiers to values between 0 and 1. Processing
data involves normalizing the time
and eliminating duplicate data points. Specifying the normalization limits may be done in three way
A grace percentage may be specified around the perimeter of the solution space, or the maximums
and minimums may be specified either manually or from another processed da

2.1 Processing with Normalization Grace Percentage
To process data, a raw data file containing only the desired identifiers is loaded into the

program. This is done by clicking on the ‘File’ menu, select ‘Data Processing’, then select ‘Load Raw
Data’, as shown below in Figure B
button, select the desired raw data file, and click open. This is shown in
with this guide, navigate to the ‘Demo’ directory, open the folder called ‘2
select the file labeled ‘selfdata1-2D.mat’.

Figure

Next, click on the ‘File’ menu, select ‘Data Processing’, then select ‘Process Raw Data’, as

shown in Figure B.9. This loads the menu shown below in
normalization method which uses a grace percentage to define the normalization limits of the data.
If this method is desired but the normalization menu is not visible, click on the radi
‘Use normalization grace percentage’.

B-6

Chapter 2—Data Processing
Processing a data file is done before clustering the data to reduce the computational load on

the computer and to normalize the values of the identifiers to values between 0 and 1. Processing
data involves normalizing the time-history data for each of the identifiers between values of 0 and 1,

uplicate data points. Specifying the normalization limits may be done in three way
A grace percentage may be specified around the perimeter of the solution space, or the maximums
and minimums may be specified either manually or from another processed data file.

Processing with Normalization Grace Percentage
To process data, a raw data file containing only the desired identifiers is loaded into the

program. This is done by clicking on the ‘File’ menu, select ‘Data Processing’, then select ‘Load Raw
B.6. This loads the menu shown in Figure B.7. Click on the Browse

button, select the desired raw data file, and click open. This is shown in Figure B.8. To follow along
with this guide, navigate to the ‘Demo’ directory, open the folder called ‘2-Truncated

2D.mat’.

Figure B.6—Opening Load Raw Data Menu

Next, click on the ‘File’ menu, select ‘Data Processing’, then select ‘Process Raw Data’, as
. This loads the menu shown below in Figure B.10. This menu defaults to the

normalization method which uses a grace percentage to define the normalization limits of the data.
If this method is desired but the normalization menu is not visible, click on the radi
‘Use normalization grace percentage’.

to reduce the computational load on
the computer and to normalize the values of the identifiers to values between 0 and 1. Processing

history data for each of the identifiers between values of 0 and 1,
uplicate data points. Specifying the normalization limits may be done in three ways.

A grace percentage may be specified around the perimeter of the solution space, or the maximums
ta file.

To process data, a raw data file containing only the desired identifiers is loaded into the
program. This is done by clicking on the ‘File’ menu, select ‘Data Processing’, then select ‘Load Raw

. Click on the Browse
. To follow along

Truncated Raw Data’, and

Next, click on the ‘File’ menu, select ‘Data Processing’, then select ‘Process Raw Data’, as
. This menu defaults to the

normalization method which uses a grace percentage to define the normalization limits of the data.
If this method is desired but the normalization menu is not visible, click on the radio button labeled

Figure

Figure

B-7

Figure B.7—Load Raw Data Menu

Figure B.8—Load Raw Data Browser

Figure

Figure B.10—Data Processing Menu for Normalization with a Grace Percentage

 Two parameters are necessary for processing data using a grace percentage.
percentage specifies the normalized amount of space to leave around the edges of the solution
space. The duplicate removal tolerance is used to specify the radius around a point in which if any
other point falls, it is considered to be the same p
values for these parameters are a grace percentage of 10 and a duplicate removal tolerance of 0.001.

B-8

Figure B.9—Opening Process Raw Data Menu

Data Processing Menu for Normalization with a Grace Percentage

Two parameters are necessary for processing data using a grace percentage.
percentage specifies the normalized amount of space to leave around the edges of the solution
space. The duplicate removal tolerance is used to specify the radius around a point in which if any
other point falls, it is considered to be the same point and is removed from the data set. The default
values for these parameters are a grace percentage of 10 and a duplicate removal tolerance of 0.001.

Data Processing Menu for Normalization with a Grace Percentage

Two parameters are necessary for processing data using a grace percentage. The grace
percentage specifies the normalized amount of space to leave around the edges of the solution
space. The duplicate removal tolerance is used to specify the radius around a point in which if any

oint and is removed from the data set. The default
values for these parameters are a grace percentage of 10 and a duplicate removal tolerance of 0.001.

Specify these parameters as desired, then click the ‘Process Data’ button. This loads a progress bar,
which is shown in Figure B.11. Data processing can take a considerable amount of time depending
upon the size of the duplicate removal tolerance; smaller tolerance will take longer to process. Be
patient. When data processing is complete, a save data dialog box will appear as shown in
B.12, beginning in the MATLAB
the desired file name for the processe
‘procdata1.mat’. The data file is now ready to be clustered, or to create positive

Figure B.11—Data Processing wit

B-9

Specify these parameters as desired, then click the ‘Process Data’ button. This loads a progress bar,
. Data processing can take a considerable amount of time depending

upon the size of the duplicate removal tolerance; smaller tolerance will take longer to process. Be
a processing is complete, a save data dialog box will appear as shown in

 Current Directory. Navigate to the desired save location, specify
the desired file name for the processed data file and click ‘Save’. The file name chosen for this file is
‘procdata1.mat’. The data file is now ready to be clustered, or to create positive-selection detectors.

Data Processing with Normalization Grace Percentage in Progress

Specify these parameters as desired, then click the ‘Process Data’ button. This loads a progress bar,
. Data processing can take a considerable amount of time depending

upon the size of the duplicate removal tolerance; smaller tolerance will take longer to process. Be
a processing is complete, a save data dialog box will appear as shown in Figure

Current Directory. Navigate to the desired save location, specify
d data file and click ‘Save’. The file name chosen for this file is

selection detectors.

h Normalization Grace Percentage in Progress

Figure B.12—Saving Data Processed with Grace Percentage Normalization

2.2 Processing with Normalization Limits Specified From a File
Processing raw data require

be specified. This can be done by loading the normalization limits from a processed data file. It
should be noted that the processed data file must contain the same number of dimensions, with the
same identifiers as the file currently being processed. This method is particularly useful if two sets of
processed data need to be integrated. In addition, abnormal data files must also be normalized to the
same limits as those defined for the self in ord

 To process data, a raw data file containing only the desired identifiers is loaded into
the program. This is done by clicking on the ‘File’ menu, select ‘Data Processing’, then select ‘Load
Raw Data’, as shown below in Figure
Browse button, select the desired raw data file, and click open. This is shown in
follow along with this guide, navigate to the ‘Demo’ directory, open the folder called ‘2
Raw Data’, and select the file labeled ‘selfdata2

B-10

Saving Data Processed with Grace Percentage Normalization

Processing with Normalization Limits Specified From a File
Processing raw data requires normalization maximum and minimum normalization limits to

be specified. This can be done by loading the normalization limits from a processed data file. It
should be noted that the processed data file must contain the same number of dimensions, with the
same identifiers as the file currently being processed. This method is particularly useful if two sets of
processed data need to be integrated. In addition, abnormal data files must also be normalized to the
same limits as those defined for the self in order for the detection results to be valid.

To process data, a raw data file containing only the desired identifiers is loaded into
the program. This is done by clicking on the ‘File’ menu, select ‘Data Processing’, then select ‘Load

Figure B.13. This loads the menu shown in Figure B
Browse button, select the desired raw data file, and click open. This is shown in
follow along with this guide, navigate to the ‘Demo’ directory, open the folder called ‘2
Raw Data’, and select the file labeled ‘selfdata2-2D.mat’.

Saving Data Processed with Grace Percentage Normalization

Processing with Normalization Limits Specified From a File
s normalization maximum and minimum normalization limits to

be specified. This can be done by loading the normalization limits from a processed data file. It
should be noted that the processed data file must contain the same number of dimensions, with the
same identifiers as the file currently being processed. This method is particularly useful if two sets of
processed data need to be integrated. In addition, abnormal data files must also be normalized to the

er for the detection results to be valid.
To process data, a raw data file containing only the desired identifiers is loaded into

the program. This is done by clicking on the ‘File’ menu, select ‘Data Processing’, then select ‘Load
B.14. Click on the

Browse button, select the desired raw data file, and click open. This is shown in Figure B.15. To
follow along with this guide, navigate to the ‘Demo’ directory, open the folder called ‘2-Truncated

Figure

Figure

B-11

Figure B.13—Opening Load Raw Data Menu

Figure B.14—Load Raw Data Menu

Figure

Next, click on the ‘File’ menu, select ‘Data Proce
shown in Figure B.16. This menu defaults to the normalization method which uses a grace
percentage to define the normalization limits of the data. Open the normalization
file menu by clicking on the radio button labeled ‘Normalize to specific maximum and minimum
values’ and selecting the radio button labeled ‘Load maximums and minimums from processed data
file’. This will cause the menu shown in

The normalization method for data processing with limits from file requires two parameters.
These are the location of the processed data file from which to draw normalization limits and the
duplicate removal tolerance. The duplicate removal tolerance is used to specify the radius around a
point in which if any other point falls, it is considered to be the same point and is removed from the
data set. The default duplicate removal tolerance is 0.001.
radio buttons to select a compatible processed data file from which to specify the normalization
maximum and minimum limits. Then specify the duplicate removal tolerance, and click on the
‘Process Data’ button. This will load a progress bar, as shown in
this guide, click on the Browse button beneath the radio buttons and navigate to the ‘Demo’
directory. Click on the folder labeled ‘3
Leave the duplicate removal tolerance as 0.001, the default.

When the data processing has completed a save data dialog box will appear as shown in
Figure B.19, beginning in the MATLAB
specify the desired file name for the processed data file and click ‘Save’. The file name chosen for
this file is ‘procdata2.mat’. The data file is now ready to be clustere
detectors.

B-12

Figure B.15—Load Raw Data Browser

Next, click on the ‘File’ menu, select ‘Data Processing’, then select ‘Process Raw Data’, as
. This menu defaults to the normalization method which uses a grace

percentage to define the normalization limits of the data. Open the normalization
file menu by clicking on the radio button labeled ‘Normalize to specific maximum and minimum
values’ and selecting the radio button labeled ‘Load maximums and minimums from processed data
file’. This will cause the menu shown in Figure B.17 to appear.

The normalization method for data processing with limits from file requires two parameters.
These are the location of the processed data file from which to draw normalization limits and the

e removal tolerance. The duplicate removal tolerance is used to specify the radius around a
point in which if any other point falls, it is considered to be the same point and is removed from the
data set. The default duplicate removal tolerance is 0.001. Click on the ‘Browse’ button beneath the
radio buttons to select a compatible processed data file from which to specify the normalization
maximum and minimum limits. Then specify the duplicate removal tolerance, and click on the

s will load a progress bar, as shown in Figure B.18. To follow along with
this guide, click on the Browse button beneath the radio buttons and navigate to the ‘Demo’
directory. Click on the folder labeled ‘3-Processed Data’ and select the file called ‘procdata1.mat’.
Leave the duplicate removal tolerance as 0.001, the default.

When the data processing has completed a save data dialog box will appear as shown in
MATLAB Current Directory. Navigate to the desired save location,

specify the desired file name for the processed data file and click ‘Save’. The file name chosen for
this file is ‘procdata2.mat’. The data file is now ready to be clustered, or to create positive

ssing’, then select ‘Process Raw Data’, as
. This menu defaults to the normalization method which uses a grace

percentage to define the normalization limits of the data. Open the normalization with limits from
file menu by clicking on the radio button labeled ‘Normalize to specific maximum and minimum
values’ and selecting the radio button labeled ‘Load maximums and minimums from processed data

The normalization method for data processing with limits from file requires two parameters.
These are the location of the processed data file from which to draw normalization limits and the

e removal tolerance. The duplicate removal tolerance is used to specify the radius around a
point in which if any other point falls, it is considered to be the same point and is removed from the

Click on the ‘Browse’ button beneath the
radio buttons to select a compatible processed data file from which to specify the normalization
maximum and minimum limits. Then specify the duplicate removal tolerance, and click on the

. To follow along with
this guide, click on the Browse button beneath the radio buttons and navigate to the ‘Demo’

ssed Data’ and select the file called ‘procdata1.mat’.

When the data processing has completed a save data dialog box will appear as shown in
Current Directory. Navigate to the desired save location,

specify the desired file name for the processed data file and click ‘Save’. The file name chosen for
d, or to create positive-selection

Figure B

Figure B.17—Menu for Processing Data with Normalization Limits Fro

B-13

B.16—Opening Process Raw Data Menu

Menu for Processing Data with Normalization Limits From a File

m a File

Figure B.18—Data Processing Using Normalization Limits From a File in Progress

Figure B.19—Save Dialog for Data Processing with Normalization Limit

B-14

Data Processing Using Normalization Limits From a File in Progress

Save Dialog for Data Processing with Normalization Limits From a File

Data Processing Using Normalization Limits From a File in Progress

s From a File

2.3 Data Processing with Normalization Limits Specified Manually
Processing raw data requires normalization maximum and minimum normalization limits to

be specified. This can be done manually entering the normalization maximums and minimums i
edit boxes provided. It should be noted that the number of edit boxes that appear is based on the
number of dimensions in the raw data file that is loaded. If this number does not appear to be
correct, check the raw data file that was loaded. Due to
processing method only applies to raw data files with 18 or fewer dimensions. If more dimensions
than this are required, the second data processing method, in which normalization limits are taken
from a file, must be used. This method of normalization is particularly useful if two sets of
processed data need to be later integrated. In addition, abnormal data files must also be normalized
to the same limits as those defined for the self in order for the detecti

To process data, a raw data file containing only the desired identifiers is loaded into the
program. This is done by clicking on the ‘File’ menu, select ‘Data Processing’, then select ‘Load Raw
Data’, as shown below, in Figure
Browse button, select the desired raw data file, and click open. This is shown in
follow along with this guide, navigate to the ‘Demo’ directory, open the folder called ‘2
Raw Data’, and select the file labeled ‘selfdata3

Figure

B-15

Data Processing with Normalization Limits Specified Manually
Processing raw data requires normalization maximum and minimum normalization limits to

be specified. This can be done manually entering the normalization maximums and minimums i
edit boxes provided. It should be noted that the number of edit boxes that appear is based on the
number of dimensions in the raw data file that is loaded. If this number does not appear to be
correct, check the raw data file that was loaded. Due to the need for these edit boxes, however, this
processing method only applies to raw data files with 18 or fewer dimensions. If more dimensions
than this are required, the second data processing method, in which normalization limits are taken

must be used. This method of normalization is particularly useful if two sets of
processed data need to be later integrated. In addition, abnormal data files must also be normalized
to the same limits as those defined for the self in order for the detection results to be valid.

To process data, a raw data file containing only the desired identifiers is loaded into the
program. This is done by clicking on the ‘File’ menu, select ‘Data Processing’, then select ‘Load Raw

Figure B.20. This loads the menu shown in Figure B
Browse button, select the desired raw data file, and click open. This is shown in
follow along with this guide, navigate to the ‘Demo’ directory, open the folder called ‘2
Raw Data’, and select the file labeled ‘selfdata3-2D.mat’.

Figure B.20—Opening Load Raw Data Menu

Data Processing with Normalization Limits Specified Manually
Processing raw data requires normalization maximum and minimum normalization limits to

be specified. This can be done manually entering the normalization maximums and minimums in the
edit boxes provided. It should be noted that the number of edit boxes that appear is based on the
number of dimensions in the raw data file that is loaded. If this number does not appear to be

the need for these edit boxes, however, this
processing method only applies to raw data files with 18 or fewer dimensions. If more dimensions
than this are required, the second data processing method, in which normalization limits are taken

must be used. This method of normalization is particularly useful if two sets of
processed data need to be later integrated. In addition, abnormal data files must also be normalized

on results to be valid.
To process data, a raw data file containing only the desired identifiers is loaded into the

program. This is done by clicking on the ‘File’ menu, select ‘Data Processing’, then select ‘Load Raw
B.21. Click on the

Browse button, select the desired raw data file, and click open. This is shown in Figure B.22. To
follow along with this guide, navigate to the ‘Demo’ directory, open the folder called ‘2-Truncated

Figure

Figure

B-16

Figure B.21—Load Raw Data Menu

Figure B.22—Load Raw Data Browser

Next, click on the ‘File’ menu, select ‘Data Processing’, then selec
shown in Figure B.23. This menu defaults to the normalization method which uses a grace
percentage to define the normalization limits of the data. Open the normalization with limits
specified manually menu by clicking on the radio button labeled ‘Normalize to specific maximum
and minimum values’ and selecting the radio button labeled ‘Enter maximums and minimums
manually’. This will cause the menu shown in

The normalization method for data processing with limits specified manually requires two
parameters for each dimension in the data, in addition to the duplicate removal tolerance. These are
the maximum value and minimum va
duplicate removal tolerance is used to specify the radius around a point in which if any other point
falls, it is considered to be the same point and is removed from the data set. The default dup
removal tolerance is 0.001. Enter the desired maximum and minimum values into the edit boxes
provided. Then specify the duplicate removal tolerance, and click on the ‘Process Data’ button.
This will load a progress bar, as shown in
as the minimum for column 1, 0.8603 as the maximum for column 1,
column 2, 0.1915 as the maximum for column 2, and 0.001 (the default) as the
tolerance.

When the data processing has completed a save data dialog box will appear as shown in
Figure B.26, beginning in the MATLAB
specify the desired file name for the processed data file and click ‘Save’. The file name chosen for
this file is ‘procdata3.mat’. The data file is now ready to be clustered, or to create positive
detectors.

Figure B

B-17

Next, click on the ‘File’ menu, select ‘Data Processing’, then select ‘Process Raw Data’, as
. This menu defaults to the normalization method which uses a grace

percentage to define the normalization limits of the data. Open the normalization with limits
fied manually menu by clicking on the radio button labeled ‘Normalize to specific maximum

and minimum values’ and selecting the radio button labeled ‘Enter maximums and minimums
manually’. This will cause the menu shown in Figure B.24 to appear.

The normalization method for data processing with limits specified manually requires two
parameters for each dimension in the data, in addition to the duplicate removal tolerance. These are
the maximum value and minimum value to which each column of data should be normalized. The
duplicate removal tolerance is used to specify the radius around a point in which if any other point
falls, it is considered to be the same point and is removed from the data set. The default dup
removal tolerance is 0.001. Enter the desired maximum and minimum values into the edit boxes
provided. Then specify the duplicate removal tolerance, and click on the ‘Process Data’ button.
This will load a progress bar, as shown in Figure B.25. To follow along with this guide enter
as the minimum for column 1, 0.8603 as the maximum for column 1, -0.2190 as the minimum for
column 2, 0.1915 as the maximum for column 2, and 0.001 (the default) as the duplicate removal

When the data processing has completed a save data dialog box will appear as shown in
MATLAB Current Directory. Navigate to the desired save location,

cify the desired file name for the processed data file and click ‘Save’. The file name chosen for
this file is ‘procdata3.mat’. The data file is now ready to be clustered, or to create positive

B.23—Opening Process Raw Data Menu

t ‘Process Raw Data’, as
. This menu defaults to the normalization method which uses a grace

percentage to define the normalization limits of the data. Open the normalization with limits
fied manually menu by clicking on the radio button labeled ‘Normalize to specific maximum

and minimum values’ and selecting the radio button labeled ‘Enter maximums and minimums

The normalization method for data processing with limits specified manually requires two
parameters for each dimension in the data, in addition to the duplicate removal tolerance. These are

lue to which each column of data should be normalized. The
duplicate removal tolerance is used to specify the radius around a point in which if any other point
falls, it is considered to be the same point and is removed from the data set. The default duplicate
removal tolerance is 0.001. Enter the desired maximum and minimum values into the edit boxes
provided. Then specify the duplicate removal tolerance, and click on the ‘Process Data’ button.

. To follow along with this guide enter -0.8356
0.2190 as the minimum for

duplicate removal

When the data processing has completed a save data dialog box will appear as shown in
Current Directory. Navigate to the desired save location,

cify the desired file name for the processed data file and click ‘Save’. The file name chosen for
this file is ‘procdata3.mat’. The data file is now ready to be clustered, or to create positive-selection

Figure B.24—Menu for Processing Data with Normalization Limits Specified Manually

Figure B.25—Data Processing Using Normalization Limits Specified Manually in Progress

B-18

Menu for Processing Data with Normalization Limits Specified Manually

ocessing Using Normalization Limits Specified Manually in Progress

Menu for Processing Data with Normalization Limits Specified Manually

ocessing Using Normalization Limits Specified Manually in Progress

Figure B.26—Save Dialog for Data Processing with Normalization Limits Specified Manually

B-19

Save Dialog for Data Processing with Normalization Limits Specified Manually

Save Dialog for Data Processing with Normalization Limits Specified Manually

B-20

Chapter 3—Clustering Data

3.1 Cluster for Self Definition
 Data clustering is performed on processed data to reduce the computational load imparted
by the self, and to reduce the number of points ultimately needed to fully define the self. Processed
data is composed of a large number of normalized time-history data points. However, this data is
inherently discrete. Thus the points contained within the normal processed data do not completely
define the self. In other words, there could still be points that belong to the self that are not
included in the processed data set. Clustering is used as an approximation, as a way to include all
points in the self that could possibly belong to the self. This is considered an approximation
because the self is being defined from an incomplete set. Therefore, depending on the parameters
used to generate the clusters, areas of the flight envelope that should belong to the self may be
included in the non-self, or areas of the non-self could be included in the self. For this reason,
clustering is a very important process in the production of effective failure detectors. Even with
perfect coverage of the areas not covered by the clusters, if the clusters themselves are poorly
constructed, (i.e. contain too much empty space or not enough empty space) the detectors will not
give good fault detection results.

Clusters are defined as either hyper-spheres, containing a center and radius, or hyper-
rectangles, containing a center and the distances from the center to the edge in each dimension.
Hyper-sphere clusters are used in the generation of hyper-sphere detectors, and in the genetic
algorithm for hyper-sphere, hyper-ellipsoid, and hyper-rotational ellipsoid detectors. Hyper-
rectangles are used only in the generation and optimization of hyper-rectangle detectors.

3.1.1 Clustering with Hyper-Spheres Using Number-Imposed Clustering Method
(M1)

 Clustering method M1, which uses variable-sized clusters, uses an enhanced k-means
algorithm to determine the location of cluster centers within the solution space, based on the
locations of the processed data points. Each point in the processed data set is then assigned to the
nearest cluster center. The radius of the cluster is then determined as the distance to the furthest
point assigned to the center. This results in a cluster that contains empty space, or area that is not
covered by processed data points. This algorithm is not concerned with reducing the amount of
empty space in clusters, so the number of clusters in the set must be chosen carefully. Lower
number of clusters results in more empty space, increasing the chances that points belonging to
abnormal conditions are included in the self and potentially decreasing detection rate. Higher
number of clusters reduces the empty space within the clusters, increasing the chances that normal
points are excluded from the definition of the self and potentially producing a high number of false
alarms.
 In order to begin clustering, click on the ‘File’ menu, select ‘Data Clustering’, then ‘Load
Processed Data’, as shown in Figure B.27. This will load the menu seen in Figure B.28. Click on the
browse button to load a processed data file into the program for clustering, as in Figure B.29. To
follow along with this guide, navigate to the ‘Demo’ directory, click on the folder labeled ‘3-
Processed Data’, and select the file labeled ‘2Dprocdata1.mat’.

Figure B.

Figure

B-21

.27—Opening Load Processed Data Menu

Figure B.28—Load Processed Data Menu

Figure

 Once the processed data file has been
Clustering’ and then ‘Cluster Processed Data’. This will load the menu seen in
menu defaults to the M1 clustering method. If the correct menu is
spheres’ radio button, then the ‘Number
menu includes four parameters. These are the minimum cluster radius, desired number of clusters,
confidence percentage, and permitted
radius which may be assigned to a cluster. The desired number of clusters is the number of centers
that will be generated by the k-means algorithm. The confidence percentage and permitted err
the Monte Carlo volume estimation parameters used to determine the accuracy desired when
calculating the cover of the solution space and amount of overlapping present in the clustered set.
Select these parameters and click the ‘Cluster Data’ button
0.002 as the minimum cluster radius, 100 as the desired number of clusters, 98 as the confidence
percentage, and 0.01 as the permitted error and click the ‘Cluster Data’ button. This will load the
menu seen in Figure B.31.
 Once the clustering has completed, a save dialog will open, as shown in
Navigate to the desired save location, enter the desired name for the cluste
‘Save’. The file name chosen for this clustered data file is ‘2Dclust1_M1.mat’. Then the clustering
results will be displayed. If the data being clustered is 2
along with the self parameters, as in
shown in Figure B.34.

B-22

Figure B.29—Processed Data Browser Dialog

Once the processed data file has been selected, click on the ‘File’ menu, select ‘Data
Clustering’ and then ‘Cluster Processed Data’. This will load the menu seen in Figure
menu defaults to the M1 clustering method. If the correct menu is not shown, select the ‘

’ radio button, then the ‘Number-Imposed Clustering Method (M1)’ radio button. This
includes four parameters. These are the minimum cluster radius, desired number of clusters,

confidence percentage, and permitted error. The minimum cluster radius is the smallest acceptable
radius which may be assigned to a cluster. The desired number of clusters is the number of centers

means algorithm. The confidence percentage and permitted err
the Monte Carlo volume estimation parameters used to determine the accuracy desired when
calculating the cover of the solution space and amount of overlapping present in the clustered set.
Select these parameters and click the ‘Cluster Data’ button. To follow along with this guide, enter
0.002 as the minimum cluster radius, 100 as the desired number of clusters, 98 as the confidence
percentage, and 0.01 as the permitted error and click the ‘Cluster Data’ button. This will load the

Once the clustering has completed, a save dialog will open, as shown in
Navigate to the desired save location, enter the desired name for the clustered data file and click
‘Save’. The file name chosen for this clustered data file is ‘2Dclust1_M1.mat’. Then the clustering
results will be displayed. If the data being clustered is 2-dimensional, the clusters will be plotted

ers, as in Figure B.33. Otherwise only the self parameters will appear, as

selected, click on the ‘File’ menu, select ‘Data
Figure B.30. This

not shown, select the ‘Hyper-
Imposed Clustering Method (M1)’ radio button. This

includes four parameters. These are the minimum cluster radius, desired number of clusters,
error. The minimum cluster radius is the smallest acceptable

radius which may be assigned to a cluster. The desired number of clusters is the number of centers
means algorithm. The confidence percentage and permitted error are

the Monte Carlo volume estimation parameters used to determine the accuracy desired when
calculating the cover of the solution space and amount of overlapping present in the clustered set.

. To follow along with this guide, enter
0.002 as the minimum cluster radius, 100 as the desired number of clusters, 98 as the confidence
percentage, and 0.01 as the permitted error and click the ‘Cluster Data’ button. This will load the

Once the clustering has completed, a save dialog will open, as shown in Figure B.32.
red data file and click

‘Save’. The file name chosen for this clustered data file is ‘2Dclust1_M1.mat’. Then the clustering
dimensional, the clusters will be plotted

. Otherwise only the self parameters will appear, as

Figure

Figure

B-23

Figure B.30—Clustering M1 Menu

Figure B.31—Clustering Using M1 in Progress

Figure

Figure B.

B-24

Figure B.32—Clustering M1 Save Dialog

.33—Clustering M1 2-Dimensional Results

B-25

Figure B.34—Clustering M1 Higher-Dimensional Results

3.1.2 Clustering with Hyper-Spheres Using Space-Optimized Clustering Method
(M2)

Clustering method M2, which uses variable-sized clusters, uses an enhanced k-means
algorithm to determine the location of cluster centers within the solution space, based on the
locations of the processed data points. Each point in the processed data set is then assigned to the
nearest cluster center. The radius of the cluster is then determined as the distance to the furthest
point assigned to the center. This results in a cluster that contains empty space, or area that is not
covered by processed data points. Lower number of clusters results in more empty space, increasing
the chances that points belonging to abnormal conditions are included in the self and potentially
decreasing detection rate. Higher number of clusters reduces the empty space within the clusters,
increasing the chances that normal points are excluded from the definition of the self and potentially
producing a high number of false alarms. This algorithm attempts to reduce the empty space within
the clusters to a specified threshold by iteratively increasing the desired number of clusters and then
recalculating the set.

In order to begin clustering, click on the ‘File’ menu, select ‘Data Clustering’, then ‘Load
Processed Data’, as shown in Figure B.35. This will load the menu seen in Figure B.36. Click on the
browse button to load a processed data file into the program for clustering, as in Figure B.37. To

follow along with this guide, navigate to t
Processed Data’, and select the file labeled ‘2Dprocdata1.mat’.

Figure B.

Figure

B-26

follow along with this guide, navigate to the ‘Demo’ directory, click on the folder labeled ‘3
Processed Data’, and select the file labeled ‘2Dprocdata1.mat’.

.35—Opening Load Processed Data Menu

Figure B.36—Load Processed Data Menu

he ‘Demo’ directory, click on the folder labeled ‘3-

Figure

 Once the processed data file has been selected, click on the ‘File’ menu, select ‘Data
Clustering’ and then ‘Cluster Processed Data’. This will load the menu seen in
menu defaults to the M1 clustering method. To load the clustering method M2 menu, select the
‘Hyper-spheres’ radio button, then the ‘Space
This menu includes six parameters. These are the initial number of clusters, additional clusters per
iteration, point radius, acceptable empty percentage, confidence percentage, and permitted error.
The initial number of clusters is the minimum number of desired clusters in the self. The additional
number of clusters per iteration is how many centers more centers to generate using the k
algorithm with each iteration. The point radius is the radius around e
points that can be confidently considered part of the normal data set. The acceptable empty
percentage is the amount of empty space that may exist within the clusters for the cluster set to be
finalized. The confidence percentag
parameters used to determine the accuracy desired when calculating the cover of the solution space
and amount of overlapping present in the clustered set. Select these parameters and click the
‘Cluster Data’ button. To follow along with this guide, enter 100 as the initial number of clusters, 50
as the additional clusters per iteration, 0.002 as the point radius, 100 as the acceptable empty
percentage, 98 as the confidence percentage, and 0.01 as
Data’ button. This will load the menu seen in
 Once the clustering has completed, a save dialog will open, as shown in
Navigate to the desired save location, enter the desired name for the clustered data file and click

B-27

Figure B.37—Processed Data Browser Dialog

Once the processed data file has been selected, click on the ‘File’ menu, select ‘Data
ocessed Data’. This will load the menu seen in Figure

menu defaults to the M1 clustering method. To load the clustering method M2 menu, select the
’ radio button, then the ‘Space-Optimized Clustering Method (M2)’ radio button.

This menu includes six parameters. These are the initial number of clusters, additional clusters per
iteration, point radius, acceptable empty percentage, confidence percentage, and permitted error.

umber of clusters is the minimum number of desired clusters in the self. The additional
number of clusters per iteration is how many centers more centers to generate using the k
algorithm with each iteration. The point radius is the radius around each of the processed data
points that can be confidently considered part of the normal data set. The acceptable empty
percentage is the amount of empty space that may exist within the clusters for the cluster set to be
finalized. The confidence percentage and permitted error are the Monte Carlo volume estimation
parameters used to determine the accuracy desired when calculating the cover of the solution space
and amount of overlapping present in the clustered set. Select these parameters and click the
luster Data’ button. To follow along with this guide, enter 100 as the initial number of clusters, 50

as the additional clusters per iteration, 0.002 as the point radius, 100 as the acceptable empty
percentage, 98 as the confidence percentage, and 0.01 as the permitted error and click the ‘Cluster
Data’ button. This will load the menu seen in Figure B.39.

Once the clustering has completed, a save dialog will open, as shown in
Navigate to the desired save location, enter the desired name for the clustered data file and click

Once the processed data file has been selected, click on the ‘File’ menu, select ‘Data
Figure B.38. This

menu defaults to the M1 clustering method. To load the clustering method M2 menu, select the
ed Clustering Method (M2)’ radio button.

This menu includes six parameters. These are the initial number of clusters, additional clusters per
iteration, point radius, acceptable empty percentage, confidence percentage, and permitted error.

umber of clusters is the minimum number of desired clusters in the self. The additional
number of clusters per iteration is how many centers more centers to generate using the k-means

ach of the processed data
points that can be confidently considered part of the normal data set. The acceptable empty
percentage is the amount of empty space that may exist within the clusters for the cluster set to be

e and permitted error are the Monte Carlo volume estimation
parameters used to determine the accuracy desired when calculating the cover of the solution space
and amount of overlapping present in the clustered set. Select these parameters and click the
luster Data’ button. To follow along with this guide, enter 100 as the initial number of clusters, 50

as the additional clusters per iteration, 0.002 as the point radius, 100 as the acceptable empty
the permitted error and click the ‘Cluster

Once the clustering has completed, a save dialog will open, as shown in Figure B.40.
Navigate to the desired save location, enter the desired name for the clustered data file and click

B-28

‘Save’. The file name chosen for this clustered data file is ‘2Dclust1_M2.mat’. Then the clustering
results will be displayed. If the data being clustered is 2-dimensional, the clusters will be plotted
along with the self parameters, as in Figure B.41. Otherwise only the self parameters will appear, as
shown in Figure B.42.

Figure B.38—Clustering M2 Menu

Figure

Figure

B-29

Figure B.39—Clustering Using M2 in Progress

Figure B.40—Clustering M2 Save Dialog

B-30

Figure B.41—Clustering M2 2-Dimensional Results

Figure B.42—Clustering M2 Higher-Dimensional Results

3.1.3 Clustering with Hyper

Clustering using hyper-rectangles, which uses variable
means algorithm to determine the location of cluster centers within the solution space, based on the
locations of the processed data points. Each point i
nearest cluster center. The distance from the center to the edge of the cluster is then determined as
the distance to the furthest point assigned to the center in each dimension. This results in a cluster
that contains empty space, or area that is not covered by processed data points. This algorithm is
not concerned with reducing the amount of empty space in clusters, so the number of clusters in the
set must be chosen carefully. Lower number of clusters
chances that points belonging to abnormal conditions are included in the self and potentially
decreasing detection rate. Higher number of clusters reduces the empty space within the clusters,
increasing the chances that normal points are excluded from the definition of the self and potentially
producing a high number of false alarms.
 In order to begin clustering, click on the ‘File’ menu, select ‘Data Clustering’, then ‘Load
Processed Data’, as shown in Figure
browse button to load a processed data file into the program for clustering, as in
follow along with this guide, navigate to the ‘Demo’ directory, click on the folder labeled ‘3
Processed Data’, and select the file labeled ‘2Dprocdata1.mat’.

Figure B.

B-31

Clustering with Hyper-Rectangles

rectangles, which uses variable-sized clusters, uses an enhanced k
means algorithm to determine the location of cluster centers within the solution space, based on the
locations of the processed data points. Each point in the processed data set is then assigned to the
nearest cluster center. The distance from the center to the edge of the cluster is then determined as
the distance to the furthest point assigned to the center in each dimension. This results in a cluster
that contains empty space, or area that is not covered by processed data points. This algorithm is
not concerned with reducing the amount of empty space in clusters, so the number of clusters in the
set must be chosen carefully. Lower number of clusters results in more empty space, increasing the
chances that points belonging to abnormal conditions are included in the self and potentially
decreasing detection rate. Higher number of clusters reduces the empty space within the clusters,

ces that normal points are excluded from the definition of the self and potentially
producing a high number of false alarms.

In order to begin clustering, click on the ‘File’ menu, select ‘Data Clustering’, then ‘Load
Figure B.43. This will load the menu seen in Figure B

browse button to load a processed data file into the program for clustering, as in
follow along with this guide, navigate to the ‘Demo’ directory, click on the folder labeled ‘3
Processed Data’, and select the file labeled ‘2Dprocdata1.mat’.

.43—Opening Load Processed Data Menu

sized clusters, uses an enhanced k-
means algorithm to determine the location of cluster centers within the solution space, based on the

n the processed data set is then assigned to the
nearest cluster center. The distance from the center to the edge of the cluster is then determined as
the distance to the furthest point assigned to the center in each dimension. This results in a cluster
that contains empty space, or area that is not covered by processed data points. This algorithm is
not concerned with reducing the amount of empty space in clusters, so the number of clusters in the

results in more empty space, increasing the
chances that points belonging to abnormal conditions are included in the self and potentially
decreasing detection rate. Higher number of clusters reduces the empty space within the clusters,

ces that normal points are excluded from the definition of the self and potentially

In order to begin clustering, click on the ‘File’ menu, select ‘Data Clustering’, then ‘Load
B.44. Click on the

browse button to load a processed data file into the program for clustering, as in Figure B.45. To
follow along with this guide, navigate to the ‘Demo’ directory, click on the folder labeled ‘3-

Figure

Figure

B-32

Figure B.44—Load Processed Data Menu

Figure B.45—Processed Data Browser Dialog

B-33

 Once the processed data file has been selected, click on the ‘File’ menu, select ‘Data
Clustering’ and then ‘Cluster Processed Data’. This will load the menu seen in Figure B.46. This
menu defaults to the M1 clustering method. To load the rectangle clustering menu select the
‘Rectangles’ radio button. This menu includes four parameters. These are the minimum cluster
dimension, desired number of clusters, confidence percentage, and permitted error. The minimum
cluster dimension is the smallest acceptable distance from the center to the edge in any dimension
which may be assigned to a cluster. The desired number of clusters is the number of centers that
will be generated by the k-means algorithm. The confidence percentage and permitted error are the
Monte Carlo volume estimation parameters used to determine the accuracy desired when calculating
the cover of the solution space and amount of overlapping present in the clustered set. Select these
parameters and click the ‘Cluster Data’ button. To follow along with this guide, enter 0.002 as the
minimum cluster dimension, 100 as the desired number of clusters, 98 as the confidence percentage,
and 0.01 as the permitted error and click the ‘Cluster Data’ button. This will load the menu seen in
Figure B.47.
 Once the clustering has completed, a save dialog will open, as shown in Figure B.48.
Navigate to the desired save location, enter the desired name for the clustered data file and click
‘Save’. The file name chosen for this clustered data file is ‘2Dclust1_Rect.mat’. Then the clustering
results will be displayed. If the data being clustered is 2-dimensional, the clusters will be plotted
along with the self parameters, as in Figure B.49. Otherwise only the self parameters will appear, as
shown in Figure B.50.

Figure B.46—Clustering Hyper-Rectangles Menu

Figure B.47

Figure B.48

B-34

47—Clustering Hyper-Rectangles in Progress

48—Clustering Hyper-Rectangles Save Dialog

B-35

Figure B.49—Clustering Hyper-Rectangles 2-Dimensional Results

Figure B.50—Clustering Hyper-Rectangles Higher-Dimensional Results

B-36

3.2 Generation of Positive Selection Detectors
Positive selection detectors are generated in the same manner as clusters, since positive

selection detectors are generated to cover the self, rather than the non-self. For this reason,
‘clustering’ is still used to describe the creation of positive selection detectors. Data clustering is
performed on processed data to reduce the computational load imparted by the self, and to reduce
the number of points ultimately needed to fully define the self. Processed data is composed of a
large number of normalized time-history data points. However, this data is inherently discrete. Thus
the points contained within the normal processed data do not completely define the self. In other
words, there could still be points that belong to the self that are not included in the processed data
set. Clustering is used as an approximation, as a way to include all points in the self that could
possibly belong to the self. This is considered an approximation because the self is being defined
from an incomplete set. Therefore, depending on the parameters used to generate the positive
selection detectors, areas of the flight envelope that should belong to the self may be included in the
non-self, or areas of the non-self could be included in the self. For this reason, care must be taken
to produce effective failure detectors. Positive selection detectors are defined as either hyper-
spheres, containing a center and radius, or hyper-rectangles, containing a center and the distances
from the center to the edge in each dimension.

3.2.1 Positive Selection Hyper-Sphere Detector Generation Using Number-
Imposed Clustering Method (M1)

 Clustering method M1, which uses variable-sized clusters, uses an enhanced k-means
algorithm to determine the location of cluster centers within the solution space, based on the
locations of the processed data points. Each point in the processed data set is then assigned to the
nearest cluster center. The radius of the cluster is then determined as the distance to the furthest
point assigned to the center. This results in a cluster that contains empty space, or area that is not
covered by processed data points. This algorithm is not concerned with reducing the amount of
empty space in clusters, so the number of clusters in the set must be chosen carefully. Lower
number of clusters results in more empty space, increasing the chances that points belonging to
abnormal conditions are included in the self and potentially decreasing detection rate. Higher
number of clusters reduces the empty space within the clusters, increasing the chances that normal
points are excluded from the definition of the self and potentially producing a high number of false
alarms.
 In order to begin clustering, click on the ‘File’ menu, select ‘Detector Optimization’, then
‘Positive Selection’, then ‘Load Processed Data’ as shown in Figure B.51. This will load the menu
seen in Figure B.52. Click on the browse button to load a processed data file into the program for
clustering, as in Figure B.53. To follow along with this guide, navigate to the ‘Demo’ directory, click
on the folder labeled ‘3-Processed Data’, and select the file labeled ‘2Dprocdata1.mat’.

B-37

Figure B.51—Opening Load Processed Data Menu

Figure B.52—Load Processed Data Menu

Figure

 Once the processed data file has been s
Optimization’, then ‘Positive Selection’, then ‘Create Positive Selection Detectors’, as in
This menu defaults to the M1 clustering method, seen in
shown, select the ‘Hyper-spheres
(M1)’ radio button. This menu includes four parameters. These are the minimum cl
desired number of clusters, confidence percentage, and permitted error. The minimum cluster
radius is the smallest acceptable radius which may be assigned to a cluster. The desired number of
clusters is the number of centers that will be ge
percentage and permitted error are the Monte Carlo volume estimation parameters used to
determine the accuracy desired when calculating the cover of the solution space and amount of
overlapping present in the clustered set. Select these parameters and click the ‘Cluster Data’ button.
To follow along with this guide, enter 0.002 as the minimum cluster radius, 100 as the desired
number of clusters, 98 as the confidence percentage, and 0.01 as the permitted e
‘Cluster Data’ button. This will load the menu seen in
 Once the clustering has completed, a save dialog will open, as shown in
Navigate to the desired save location, enter the desired name for the clustered data file and click
‘Save’. The file name chosen for this clustered data file is ‘2Dclust1_M1.mat’. Then the clustering
results will be displayed. If the data being cluste
along with the self parameters, as in
shown in Figure B.59.

B-38

Figure B.53—Processed Data Browser Dialog

Once the processed data file has been selected, click on the ‘File’ menu, select ‘
Optimization’, then ‘Positive Selection’, then ‘Create Positive Selection Detectors’, as in
This menu defaults to the M1 clustering method, seen in Figure B.55. If the correct menu is not

spheres’ radio button, then the ‘Number-Imposed Clustering Method
(M1)’ radio button. This menu includes four parameters. These are the minimum cl
desired number of clusters, confidence percentage, and permitted error. The minimum cluster
radius is the smallest acceptable radius which may be assigned to a cluster. The desired number of
clusters is the number of centers that will be generated by the k-means algorithm. The confidence
percentage and permitted error are the Monte Carlo volume estimation parameters used to
determine the accuracy desired when calculating the cover of the solution space and amount of

he clustered set. Select these parameters and click the ‘Cluster Data’ button.
To follow along with this guide, enter 0.002 as the minimum cluster radius, 100 as the desired
number of clusters, 98 as the confidence percentage, and 0.01 as the permitted error and click the
‘Cluster Data’ button. This will load the menu seen in Figure B.56.

Once the clustering has completed, a save dialog will open, as shown in
Navigate to the desired save location, enter the desired name for the clustered data file and click
‘Save’. The file name chosen for this clustered data file is ‘2Dclust1_M1.mat’. Then the clustering
results will be displayed. If the data being clustered is 2-dimensional, the clusters will be plotted
along with the self parameters, as in Figure B.58. Otherwise only the self parameters will appear, as

elected, click on the ‘File’ menu, select ‘Detector
Optimization’, then ‘Positive Selection’, then ‘Create Positive Selection Detectors’, as in Figure B.54.

. If the correct menu is not
Imposed Clustering Method

(M1)’ radio button. This menu includes four parameters. These are the minimum cluster radius,
desired number of clusters, confidence percentage, and permitted error. The minimum cluster
radius is the smallest acceptable radius which may be assigned to a cluster. The desired number of

means algorithm. The confidence
percentage and permitted error are the Monte Carlo volume estimation parameters used to
determine the accuracy desired when calculating the cover of the solution space and amount of

he clustered set. Select these parameters and click the ‘Cluster Data’ button.
To follow along with this guide, enter 0.002 as the minimum cluster radius, 100 as the desired

rror and click the

Once the clustering has completed, a save dialog will open, as shown in Figure B.57.
Navigate to the desired save location, enter the desired name for the clustered data file and click
‘Save’. The file name chosen for this clustered data file is ‘2Dclust1_M1.mat’. Then the clustering

dimensional, the clusters will be plotted
. Otherwise only the self parameters will appear, as

B-39

Figure B.54—Opening Positive Selection Detector Generation Menu

Figure B.55— Positive Detector M1 Menu

Figure B.56

Figure B

B-40

56— Positive Detector Using M1 in Progress

B.57— Positive Detector M1 Save Dialog

B-41

Figure B.58— Positive Detector M1 2-Dimensional Results

Figure B.59— Positive Detector M1 Higher-Dimensional Results

3.2.2 Positive Selection Hyper
Clustering Method (M2)

Clustering method M2, which uses variable
algorithm to determine the location of cluster centers within the solution space, based on the
locations of the processed data points. Each point in the processed data set is then assigned to the
nearest cluster center. The radius of the cluster is then determined as the distance to the furthest
point assigned to the center. This results in a cluster that contains empty space, or area that is not
covered by processed data points. Lower number of clusters results i
the chances that points belonging to abnormal conditions are included in the self and potentially
decreasing detection rate. Higher number of clusters reduces the empty space within the clusters,
increasing the chances that normal points are excluded from the definition of the self and potentially
producing a high number of false alarms. This algorithm attempts to reduce the empty space within
the clusters to a specified threshold by iteratively increasing the desired number
recalculating the set.

In order to begin clustering, click on the ‘File’ menu, select ‘Data Clustering’, then ‘Load
Processed Data’, as shown in Figure
browse button to load a processed data file into the program for clustering, as in
follow along with this guide, navigate to the
Processed Data’, and select the file labeled ‘2Dprocdata1.mat’.

Figure B.

B-42

Positive Selection Hyper-Sphere Detector Generation Using Space

Clustering method M2, which uses variable-sized clusters, uses an enhanced k
algorithm to determine the location of cluster centers within the solution space, based on the
locations of the processed data points. Each point in the processed data set is then assigned to the

nter. The radius of the cluster is then determined as the distance to the furthest
point assigned to the center. This results in a cluster that contains empty space, or area that is not
covered by processed data points. Lower number of clusters results in more empty space, increasing
the chances that points belonging to abnormal conditions are included in the self and potentially
decreasing detection rate. Higher number of clusters reduces the empty space within the clusters,

normal points are excluded from the definition of the self and potentially
producing a high number of false alarms. This algorithm attempts to reduce the empty space within
the clusters to a specified threshold by iteratively increasing the desired number of clusters and then

In order to begin clustering, click on the ‘File’ menu, select ‘Data Clustering’, then ‘Load
Figure B.60. This will load the menu seen in Figure B

browse button to load a processed data file into the program for clustering, as in
follow along with this guide, navigate to the ‘Demo’ directory, click on the folder labeled ‘3
Processed Data’, and select the file labeled ‘2Dprocdata1.mat’.

.60—Opening Load Processed Data Menu

Using Space-Optimized

sized clusters, uses an enhanced k-means
algorithm to determine the location of cluster centers within the solution space, based on the
locations of the processed data points. Each point in the processed data set is then assigned to the

nter. The radius of the cluster is then determined as the distance to the furthest
point assigned to the center. This results in a cluster that contains empty space, or area that is not

n more empty space, increasing
the chances that points belonging to abnormal conditions are included in the self and potentially
decreasing detection rate. Higher number of clusters reduces the empty space within the clusters,

normal points are excluded from the definition of the self and potentially
producing a high number of false alarms. This algorithm attempts to reduce the empty space within

of clusters and then

In order to begin clustering, click on the ‘File’ menu, select ‘Data Clustering’, then ‘Load
B.61. Click on the

browse button to load a processed data file into the program for clustering, as in Figure B.62. To
‘Demo’ directory, click on the folder labeled ‘3-

Figure

Figure

B-43

Figure B.61—Load Processed Data Menu

Figure B.62—Processed Data Browser Dialog

B-44

 Once the processed data file has been selected, click on the ‘File’ menu, select ‘Data
Clustering’ and then ‘Cluster Processed Data’. This will load the menu seen in Figure B.63. This
menu defaults to the M1 clustering method. To load the clustering method M2 menu, select the
‘Hyper-spheres’ radio button, then the ‘Space-Optimized Clustering Method (M2)’ radio button.
This menu includes six parameters. These are the initial number of clusters, additional clusters per
iteration, point radius, acceptable empty percentage, confidence percentage, and permitted error.
The initial number of clusters is the minimum number of desired clusters in the self. The additional
number of clusters per iteration is how many centers more centers to generate using the k-means
algorithm with each iteration. The point radius is the radius around each of the processed data
points that can be confidently considered part of the normal data set. The acceptable empty
percentage is the amount of empty space that may exist within the clusters for the cluster set to be
finalized. The confidence percentage and permitted error are the Monte Carlo volume estimation
parameters used to determine the accuracy desired when calculating the cover of the solution space
and amount of overlapping present in the clustered set. Select these parameters and click the
‘Cluster Data’ button. To follow along with this guide, enter 100 as the initial number of clusters, 50
as the additional clusters per iteration, 0.002 as the point radius, 100 as the acceptable empty
percentage, 98 as the confidence percentage, and 0.01 as the permitted error and click the ‘Cluster
Data’ button. This will load the menu seen in Figure B.64.
 Once the clustering has completed, a save dialog will open, as shown in Figure B.65. Navigate
to the desired save location, enter the desired name for the clustered data file and click ‘Save’. The
file name chosen for this clustered data file is ‘2Dclust1_M2.mat’. Then the clustering results will be
displayed. If the data being clustered is 2-dimensional, the clusters will be plotted along with the self
parameters, as in Figure B.66. Otherwise only the self parameters will appear, as shown in Figure B.67.

Figure B.63— Positive Detector M2 Menu

Figure B.64

Figure B

B-45

64— Positive Detector Using M2 in Progress

B.65— Positive Detector M2 Save Dialog

B-46

Figure B.66— Positive Detector M2 2-Dimensional Results

Figure B.67— Positive Detector M2 Higher-Dimensional Results

3.2.3 Positive Selection Hyper

Clustering using hyper-rectangles, which uses variable
means algorithm to determine the location of cluster centers within the solution space, based on the
locations of the processed data points. Each point in the processed data se
nearest cluster center. The distance from the center to the edge of the cluster is then determined as
the distance to the furthest point assigned to the center in each dimension. This results in a cluster
that contains empty space, or area that is not covered by processed data points. This algorithm is
not concerned with reducing the amount of empty space in clusters, so the number of clusters in the
set must be chosen carefully. Lower number of clusters results in more empty s
chances that points belonging to abnormal conditions are included in the self and potentially
decreasing detection rate. Higher number of clusters reduces the empty space within the clusters,
increasing the chances that normal points
producing a high number of false alarms.
 In order to begin clustering, click on the ‘File’ menu, select ‘Data Clustering’, then ‘Load
Processed Data’, as shown in Figure
browse button to load a processed data file into the program for clustering, as in
follow along with this guide, navig
Processed Data’, and select the file labeled ‘2Dprocdata1.mat’.

Figure B.

B-47

Positive Selection Hyper-Rectangle Detector Generation

rectangles, which uses variable-sized clusters, uses an enhanced k
means algorithm to determine the location of cluster centers within the solution space, based on the
locations of the processed data points. Each point in the processed data set is then assigned to the
nearest cluster center. The distance from the center to the edge of the cluster is then determined as
the distance to the furthest point assigned to the center in each dimension. This results in a cluster

ce, or area that is not covered by processed data points. This algorithm is
not concerned with reducing the amount of empty space in clusters, so the number of clusters in the
set must be chosen carefully. Lower number of clusters results in more empty space, increasing the
chances that points belonging to abnormal conditions are included in the self and potentially
decreasing detection rate. Higher number of clusters reduces the empty space within the clusters,
increasing the chances that normal points are excluded from the definition of the self and potentially
producing a high number of false alarms.

In order to begin clustering, click on the ‘File’ menu, select ‘Data Clustering’, then ‘Load
Figure B.68. This will load the menu seen in Figure B

browse button to load a processed data file into the program for clustering, as in
follow along with this guide, navigate to the ‘Demo’ directory, click on the folder labeled ‘3
Processed Data’, and select the file labeled ‘2Dprocdata1.mat’.

.68—Opening Load Processed Data Menu

sized clusters, uses an enhanced k-
means algorithm to determine the location of cluster centers within the solution space, based on the

t is then assigned to the
nearest cluster center. The distance from the center to the edge of the cluster is then determined as
the distance to the furthest point assigned to the center in each dimension. This results in a cluster

ce, or area that is not covered by processed data points. This algorithm is
not concerned with reducing the amount of empty space in clusters, so the number of clusters in the

pace, increasing the
chances that points belonging to abnormal conditions are included in the self and potentially
decreasing detection rate. Higher number of clusters reduces the empty space within the clusters,

are excluded from the definition of the self and potentially

In order to begin clustering, click on the ‘File’ menu, select ‘Data Clustering’, then ‘Load
B.69. Click on the

browse button to load a processed data file into the program for clustering, as in Figure B.70. To
ate to the ‘Demo’ directory, click on the folder labeled ‘3-

Figure

Figure

B-48

Figure B.69—Load Processed Data Menu

Figure B.70—Processed Data Browser Dialog

B-49

 Once the processed data file has been selected, click on the ‘File’ menu, select ‘Data
Clustering’ and then ‘Cluster Processed Data’. This will load the menu seen in Figure B.71. This
menu defaults to the M1 clustering method. To load the rectangle clustering menu select the
‘Rectangles’ radio button. This menu includes four parameters. These are the minimum cluster
dimension, desired number of clusters, confidence percentage, and permitted error. The minimum
cluster dimension is the smallest acceptable distance from the center to the edge in any dimension
which may be assigned to a cluster. The desired number of clusters is the number of centers that
will be generated by the k-means algorithm. The confidence percentage and permitted error are the
Monte Carlo volume estimation parameters used to determine the accuracy desired when calculating
the cover of the solution space and amount of overlapping present in the clustered set. Select these
parameters and click the ‘Cluster Data’ button. To follow along with this guide, enter 0.002 as the
minimum cluster dimension, 100 as the desired number of clusters, 98 as the confidence percentage,
and 0.01 as the permitted error and click the ‘Cluster Data’ button. This will load the menu seen in
Figure B.72.
 Once the clustering has completed, a save dialog will open, as shown in Figure B.73.
Navigate to the desired save location, enter the desired name for the clustered data file and click
‘Save’. The file name chosen for this clustered data file is ‘2Dclust1_Rect.mat’. Then the clustering
results will be displayed. If the data being clustered is 2-dimensional, the clusters will be plotted
along with the self parameters, as in Figure B.74. Otherwise only the self parameters will appear, as
shown in Figure B.75.

Figure B.71— Positive Detector Hyper-Rectangles Menu

Figure B.72—

Figure B.73— Positive Detector

B-50

 Positive Detector Hyper-Rectangles in Progress

Positive Detector Hyper-Rectangles Save Dialog

B-51

Figure B.74—Positive Detector Hyper-Rectangles 2-Dimensional Results

Figure B.75—Positive Detector Hyper-Rectangles Higher-Dimensional Results

B-52

Chapter 4—Creating Negative Selection Detectors and Optimization with
Genetic Algorithm

Creating negative selection detectors requires a properly defined, processed, and clustered
data set. Several methods and shapes are available for producing detectors within the categories of
producing and optimizing detectors. These methods will be discussed in this chapter of the guide.

4.1 Creating a Single Detector Set
 At times it is useful to generate only a single detector set, without optimization. This is
useful for determining if the detector generation parameters being used are effective and if the
identifiers contained in the data are capable of detecting the desired failures before optimization is
performed. It is also possible to perform this task prior to optimization with the genetic algorithm,
since the following algorithms are used to create the initial population for the genetic algorithm.
When the evolutionary algorithm menu is loaded, a button labeled ‘Check Detector Parameters’ will
appear in place of the ‘Create Detectors’ button in the menus below. In addition, for the check
detectors functionality, the detector set will not be saved as it is used as an example only, and is not a
part of the initial population of the genetic algorithm.

4.1.1 Creating Hyper-Sphere Detectors with NSA-RV

 This method of generating hyper-sphere detectors generates centers at random within the
solution space. If the center does not fall within another detector or within the self, the center is
assigned a radius equal to the distance from the center to the nearest edge of the self. If this center
is greater than a specified minimum threshold, the detector is accepted. This continues until too
many random centers have been rejected for falling within the self, too many centers have been
rejected for falling within existing detectors, or the specified number of detectors has been reached.
 To create a set of detectors, begin by clicking on the ‘File’ menu, selecting ‘Detector
Optimization’, then ‘Negative Selection’, then ‘Load Clustered Data’, as in Figure B.76. Click on the
browse button and load a data file containing hyper-sphere clusters (See section 4.1.2 for hyper-
rectangle clusters), as in Figure B.77. To follow along with this guide, select the file labeled
‘2Dclust1_M1.mat’ within the ‘4-Clustered Data’ folder in the ‘Demo’ directory. Click on the ‘File’
menu, select ‘Negative Selection’, then ‘Create Detectors (Phase I only)’, as seen in Figure B.78.
This will load the menu seen in Figure B.79. This menu contains four parameters which must be
chosen in order to perform detector generation. These are the minimum detector radius, maximum
number of detectors, non-self coverage, and self coverage. The minimum detector radius is the
smallest radius a center can be assigned and be accepted as a mature detector. The default for this
value is 0.008. The maximum number of detectors is the largest desired number of detectors the set
is permitted to contain. The default for this value is 100. The non-self coverage is a stopping
criteria based on the number of random centers that have fallen within other detectors. This
demonstrates coverage of the large non-self regions. This parameter should be nearly 1. The
default for this value is 0.9999. The self coverage is a stopping criteria based on the number of
random centers that have fallen within self clusters. This demonstrates coverage of the non-self
regions near the self. This parameter should be nearly 1. The default for this value is 0.9999. To
follow along with this guide, leave these parameters as the default values. Click on the ‘Create
Detectors’ button. This will load a message box signifying the algorithm is running, as shown in
Figure B.80. When the algorithm completes, a save dialog will appear, as in Figure B.81. Navigate to
the desired save location, specify a name for the file, and click save. This detectors file is named
‘2Ddet1_spheres_M1.mat’. This will load the detector results menu shown in Figure B.82. If the

B-53

detectors contain greater than 2 dimensions, the results menu will appear as in Figure B.83. The
detectors are now ready for implementation in the control scheme.

Figure B.76—Opening Load Clusters Menu

Figure B.77—Load Clusters Menu

B-54

Figure B.78—Opening Create Detectors Menu

Figure B.79—Create Sphere Detectors Menu For Using NSA-RV

B-55

Figure B.80—Detector Creation in Progress

Figure B.81—Detector Creation Save Dialog

B-56

Figure B.82—Detector Creation Results Menu For 2-D Detectors

Figure B.83—Detector Creation Results Menu For Higher Dimensional Detectors

B-57

4.1.2 Creating Hyper-Rectangle Detectors with NSA-RV

This method of generating hyper-rectangle detectors generates centers at random within the
solution space. If the center does not fall within another detector or within the self, the center is
assigned a radius equal to the distance from the center to the nearest edge of the self. If this center
is greater than a specified minimum threshold, the detector is accepted. This minimum detector
radius decreases as the number of iterations of the detector generation algorithm increases. This
continues until too many random centers have been rejected for falling within other detectors, or the
specified number of detectors has been reached.
 To create a set of detectors, begin by clicking on the ‘File’ menu, selecting ‘Detector
Optimization’, then ‘Negative Selection’, then ‘Load Clustered Data’, as in Figure B.84. Click on the
browse button and load a data file containing hyper-sphere clusters (See section 4.1.2 for hyper-
rectangle clusters), as in Figure B.85. To follow along with this guide, select the file labeled
‘2Dclust1_Rect.mat’ within the ‘4-Clustered Data’ folder in the ‘Demo’ directory. Click on the ‘File’
menu, select ‘Negative Selection’, then ‘Create Detectors (Phase I only)’, as seen in Figure B.86.
This will load the menu seen in Figure B.87. This menu contains four parameters which must be
chosen in order to perform detector generation. These are the minimum detector dimension,
maximum number of detectors, non-self coverage, and decay parameter. The minimum detector
dimension is the smallest semi-side length a center can be assigned and be accepted as a mature
detector. The default for this value is 0.002. The maximum number of detectors is the largest
desired number of detectors the set is permitted to contain. The default for this value is 100. The
non-self coverage is a stopping criteria based on the number of random centers that have fallen
within other detectors. This demonstrates coverage of the large non-self regions. This parameter
should be nearly 1. The default for this value is 0.9999. The decay parameter defines the rate at
which the minimum detector dimension decreases and should increase as the desired number of
detectors increases. The default value for this parameter is 140. To follow along with this guide,
leave these parameters as the default values. Click on the ‘Create Detectors’ button. This will load a
message box signifying the algorithm is running, as shown in Figure B.88. When the algorithm
completes, a save dialog will appear, as in Figure B.89. Navigate to the desired save location, specify
a name for the file, and click save. This detectors file is named ‘2Ddet1_rectangles.mat’. This will
load the detector results menu shown in Figure B.90. If the detectors contain greater than 2
dimensions, the results menu will appear as in Figure B.91. The detectors are now ready for
implementation in the control scheme.

B-58

Figure B.84—Opening Load Clusters Menu

Figure B.85—Load Clusters Menu

B-59

Figure B.86—Opening Create Detectors Menu

Figure B.87—Create Rectangle Detectors Menu

B-60

Figure B.88—Detector Creation in Progress

Figure B.89—Detector Creation Save Dialog

B-61

Figure B.90—Detector Creation Results Menu For 2-D Detectors

Figure B.91—Detector Creation Results Menu For Higher Dimensional Detectors

B-62

4.1.3 Creating Hyper-Sphere Detectors with Enhanced NSA-RV

 This method of generating hyper-sphere detectors generates centers at random within the
solution space. If the center does not fall within another detector or within the self, the center is
assigned a radius equal to the distance from the center to the nearest edge of the self. If this center
is greater than a specified minimum threshold, the detector is accepted. If the center is not
acceptable, it is moved until it is acceptable or has been moved too many times and is rejected. If a
detector is accepted as mature, a number of clones of the detector are created based on the
overlapping present in the detector. This continues until the specified number of detectors has been
reached.
 To create a set of detectors, begin by clicking on the ‘File’ menu, selecting ‘Detector
Optimization’, then ‘Negative Selection’, then ‘Load Clustered Data’, as in Figure B.92. Click on the
browse button and load a data file containing hyper-sphere clusters (See section 4.1.2 for hyper-
rectangle clusters), as in Figure B.93. To follow along with this guide, select the file labeled
‘2Dclust1_M1.mat’ within the ‘4-Clustered Data’ folder in the ‘Demo’ directory. Click on the ‘File’
menu, select ‘Negative Selection’, then ‘Create Detectors (Phase I only)’, as seen in Figure B.94.
This will load the menu seen in Figure B.78. To load the Enhanced NSA-RV menu, click on the
radio button labeled ‘Enhanced NSA-RV with Variable Radius’. This loads the menu seen in Figure
B.95 The minimum detector radius is the smallest radius a center can be assigned and be accepted as
a mature detector. The default for this value is 0.008. The initial number of detectors is the number
of intial random centers to generate. The default value for this parameter is 20. The maximum
number of detectors is the largest desired number of detectors the set is permitted to contain. The
default for this value is 100. The maximum number of iterations is the most iterations the algorithm
can take to attempt to create the required number of detectors. The default value for this parameter
is 100. The number of random detectors at each iteration is the number of new random centers to
attempt in each iteration. The default value for this parameter is 1500. The number of detectors to
move each iteration is the number of rejected centers that will be moved in an attempt to make
them acceptable. The default value for this parameter is 10. The initial adaptation rate is the initial
distance to attempt to move rejected centers. The default value for this parameter is 0.55. The
decay parameter determines how this distance will decrease with increased iterations. The default
value for this parameter is 15. The threshold for permitted overlapping is the allowable overlapping
percentage for a detector to be acceptable. The default value for this parameter is 1.0, or complete
overlapping. The number of point to consider for cloning is the number of nearest points used to
determine where clones are located. The default value for this parameter is 2. The number of
points to consider for moving is the number of nearest points used to determine which direction to
move. The default value for this parameter is 2. The initial distance to located new clones is the
distance from the detector its clones will be generated. The default value for this parameter is 1.
These clones are moved if necessary to make them acceptable. The cloning decay parameter
determines the decreased distance from the original detector clones will be located, as iterations
increase. The default value for this parameter is 10. To follow along with this guide, leave these
parameters as the default values. Click on the ‘Create Detectors’ button. This will load a message
box signifying the algorithm is running, as shown in Figure B.96. When the algorithm completes, a
save dialog will appear, as in Figure B.97. Navigate to the desired save location, specify a name for
the file, and click save. This detectors file is named ‘2Ddet1_spheres_M1.mat’. This will load the
detector results menu shown in Figure B.98. If the detectors contain greater than 2 dimensions, the
results menu will appear as in Figure B.99. The detectors are now ready for implementation in the
control scheme.

B-63

Figure B.92—Opening Load Clusters Menu

Figure B.93—Load Clusters Menu

B-64

Figure B.94—Opening Create Detectors Menu

Figure B.95—Create Sphere Detectors Menu For Using Enhanced NSA-RV

B-65

Figure B.96—Detector Creation in Progress

Figure B.97—Detector Creation Save Dialog

B-66

Figure B.98—Detector Creation Results Menu For 2-D Detectors

Figure B.99—Detector Creation Results Menu For Higher Dimensional Detectors

B-67

4.2 Detector Optimization
 Detector optimization utilizes an evolutionary algorithm to optimize a set of detectors based
on the coverage of the solution space, overlapping among detectors, and number of detector in a
set. This can be an extremely time-consuming process, depending upon the shape used and the
various parameters given. Time expectancy cannot be placed on this step, since the process is highly
variable, and processing speed depends highly on the parameters used in the algorithm.

To optimize detectors using hyper-spheres, click on the ‘File’ menu, then select ‘Detector
Optimization’, then ‘Negative Selection’ and ‘Load Clustered Data’, as seen in Figure B.100. This
loads the menu seen in Figure B.101. Click on the ‘Browse’ and select the desired clusters file. The
file chosen for this walkthrough is ‘2Dclust1_M1.mat’. The most important choice the user makes
in the optimization phase is the choice of detector shape. If hyper-rectangle detectors are desired, a
clusters file containing hyper-rectangle clusters must be chosen; otherwise, hyper-sphere clusters are
needed.

Figure B.100—Opening Load Clusters Menu

B-68

Figure B.101—Load Clusters Menu

 With the properly clustered data file chosen, click on the ‘File’ menu, select ‘Detector
Optimization’, then ‘Negative Selection’, then ‘Perform Optimization’, as in Figure B.102. This loads
the menu seen in Figure B.103. The shape choices available will depend upon the shape of the
clusters in the files chosen. If the clusters are composed of hyper-spheres, the radio button labeled
‘Rectangles’ will be disabled. If the clusters are composed of hyper-rectangles, only the radio button
labeled ‘Rectangles’ will be enabled. Choose the shape desired. For this walkthrough, the shape
chosen will be hyper-spheres. As options vary per shape, these will be discussed as they occur. For
simplicity, all parameters will be left as the default value for this walkthrough.

B-69

Figure B.102—Opening Detector Optimization Menu

Figure B.103—Detector Optimization Menu

Based on the shape chosen, the detector generation options will vary. The section 4.1
discusses these options in detail, so they will not be covered here. Since the clusters are hyper-
spheres, the NSA-RV detector generation method will be utilized.

The genetic algorithm parameters determine the number of individuals in the population,
and the number of generations to perform. A higher number of individuals is desired for higher
individual variability and better exploration of the solution space. The number of generations is the
stopping criteria for the algorithm.

B-70

The plot and save parameters are only valid for 2-D detector sets. These options will allow
the user the choice to plot each individual at each generation and whether and where to
automatically save and close these figures.

The mutation parameters vary based upon the detector shape chosen. For hyper-spheres
and hyper-rectangles, 6 parameters are needed. The mutation rate refers to the percentage of
individuals that will undergo mutation in each generation. The chromosomal mutation rate refers to
the percentage of detectors within each chosen individual that will be altered in each instance of the
mutation operator. Gene relocation weight and gene alteration weight are weights that work the
same as the performance index weights, to determine the likelihood of a particular type of mutation
occurring. Gene relocation is the moving of the center of a detector. Gene alteration is the
changing of a detector’s radius. The gene relocation constant is the distance in multiples of the
detector radius the center can be moved in one direction at a time. The gene alteration constant is
the distance in multiples of the detector radius that the radius can be changed by at one time.

For the case of hyper-ellipsoids and hyper-rotational-ellipsoids, an additional mutation type
exists, called gene rotation. This means that 8 parameters are needed. The mutation rate refers to
the percentage of individuals that will undergo mutation in each generation. The chromosomal
mutation rate refers to the percentage of detectors within each chosen individual that will be altered
in each instance of the mutation operator. Gene relocation weight and gene alteration weight are
weights that work the same as the performance index weights, to determine the likelihood of a
particular type of mutation occurring. Gene relocation is the moving of the center of a detector.
Gene alteration is the changing of a detector’s radius. Gene rotation is the rotation of a detector
about a certain axis. The gene relocation constant is the distance in multiples of the detector radius
the center can be moved in one direction at a time. The gene alteration constant is the distance in
multiples of the detector radius that the radius can be changed by at one time. The gene rotation
constant is the maximum number of degrees a detector can be rotated at one time.
 The crossover parameters consist of only 2 inputs. These are the crossover rate, or the
probability an individual will undergo crossover, and number of detectors to cross, or the maximum
number of detectors that can be traded between two individuals.
 The detector addition parameters contain 5 parameters for hyper-spheres and hyper-
rectangles. The add rate is the probability an individual will undergo addition of detectors in a
generation. The number of random centers is the number of random centers that will be generated
in an attempt to create detectors in previously uncovered areas. The number of detectors to add is
the maximum number of detectors that can be added to an individual in one generation. As many
detectors as possible will be added, up to this amount. The favor larger detector and favor smaller
detector weights determine this probability that the algorithm will favor adding larger or smaller
detectors for an individual. If both of these parameters are given as 0, the algorithm adds detectors
randomly, paying no attention to the size of the detector. Using this option significantly increases
the speed of calculation of the algorithm. An additional parameter is needed when hyper-ellipsoids
or hyper-rotational-ellipsoids are used. This is the accuracy for calculating the radius of the new
detectors. The radius assigned to the new detectors will be within this amount of touching the
nearest object without overlapping.
 The remove parameters contain 3 inputs. These are the remove rate, or the probability that
an individual will undergo detector removal within a generation, the number of detectors to remove,
and the removal threshold, which is the amount of overlapping a detector may have which is
considered too low to remove.
 The performance index parameters consist of 9 values. For the performance index, three
weights must be entered to determine the weights of the three grading criteria. These should be
chosen with respect to each other. This means that is all three have the same weight, they will be

B-71

equally weighted. However, for instance, if coverage has a weight of 2 and number and overlap have
a weight of 1, the performance index will be composed 50% from the coverage rating, and 25% each
from the number and overlap ratings. For each of these three criteria, grading limits must be set. A
best value and worst value must be specified for each criterion.
 After appropriately assigning all of these parameters based on the detector shape chosen,
click the ‘Perform GA’ button. This loads a progress bar, as seen in Figure B.104. When the
algorithm completes, a save dialog will be displayed, as in Figure B.105. Navigate to the desired
save location, specify the file name for the optimization file and click save. The filename chosen for
this optimization was ‘2Dopt1_spheres.mat’. The results of the trial will be displayed as in Figure
B.106 below for 2 identifiers and as in Figure B.107 for more than 2 identifiers. The detectors are
now ready for implementation into the control scheme.

Figure B.104—Genetic Algorithm in Progress

B-72

Figure B.105—Genetic Algorithm Save Dialog

Figure B.106—Optimization Results for 2 Identifiers

B-73

Figure B.107—Optimization Results for Greater Than 2 Identifiers

4.3 Continuing Optimization
 At times it may be useful to run optimization for a particular detector set for more
generations, to potentially arrive at a better solution. In order to do this, the user must have
completed an initial trial using this utility. The results menu will be displayed differently depending
upon whether the detectors contain 2 or more identifiers. The 2D trial used in the segment is
labeled ‘2Dopt1_spheres.mat’. The 3-D trial used for this segment is labeled ‘3Dspheres1.mat’.
 To continue optimizing a file, click on the ‘File’ menu, select ‘Detector Optimization’, then
‘Negative Selection’, then ‘Load Previous Trial Data to Continue Optimization’ as in Figure B.108.
This loads the menu seen in Figure B.109. Click on the browse button and navigate to the desired
trial data. Then click on the ‘File’ menu, select ‘Detector Optimization’, then ‘Negative Selection’,
then ‘Continue Previous Optimization’, as in Figure B.110. This loads the menu seen in Figure
B.111. The optimization parameters default to the values used in the trial loaded, with the exception
of any optimization parameters which may not be altered. These parameters include the detector
generation parameter, shape choice, and number of individuals in the population. These are not
alterable, as they are set by the preceding trial, or are no longer needed. Change any parameters as
desired and click the ‘Continue GA’ button. This will load the progress bar as seen in Figure B.112.
When the trial completes, a save dialog will appear, as in Figure B.113. Navigate to the desired save
location, enter the name for the trial, and click save. The save name for this file is
‘2Dopt1_spheres_continued.mat’. The results of the trial will be displayed as in Figure B.114 below
for 2 identifiers and as in Figure B.115 for more than 2 identifiers. These detectors are ready for
integration into the control scheme.

B-74

Figure B.108—Opening Load Previous Trial Data Menu

Figure B.109—Previous Trial Data Menu

B-75

Figure B.110—Opening Continue Optimization Menu

Figure B.111—Continue Optimization Menu

B-76

Figure B.112— Continue Optimization in Progress

Figure B.113—Genetic Algorithm Save Dialog

B-77

Figure B.114—Optimization Results for 2 Identifiers

Figure B.115—Optimization Results for Greater Than 2 Identifiers

B-78

4.4 Displaying Results
At times it may be useful to display the optimization results contained within a file. The

results menu will be displayed differently depending upon whether the detectors contain 2 or more
identifiers. The 2D trial used in the segment is labeled ‘2Dopt1_spheres.mat’. The 3-D trial used
for this segment is labeled ‘3Dspheres1.mat’.
 To display optimization results, click on the ‘File’ menu, select ‘Detector Optimization’, then
‘Negative Selection’, then ‘Load Previous Trial Data to Continue Optimization’, as in Figure B.116.
This loads the menu seen in Figure B.117. Click on the browse button and navigate to the desired
trial data. Then click on the ‘File’ menu, select ‘Detector Optimization’, then ‘Negative Selection’,
then ‘Review Results’., as in Figure B.118. This loads the menu seen in Figure B.119 if the detectors
contain 2 identifiers, or the menu seen in Figure B.120 if the detectors contain more than 2
identifiers.

Figure B.116—Opening Load Previous Trial Data Menu

B-79

Figure B.117—Load Previous Trial Data Menu

Figure B.118—Opening Review Results Menu

B-80

Figure B.119—Optimization Results for 2 Identifiers

Figure B.120—Optimization Results for Greater Than 2 Identifiers

B-81

Chapter 5—Running Detection

5.1 Negative Selection Detectors
 Checking detection is the finishing step for the creation of a detector set. Before
implementation in an actual control scheme, it is important to know the detection performance of a
detector set for the various failures it may need to detect. Detector sets may be saved using the
variable name ‘antibodies’ or ‘optdetector’ depending on the method used to generate them. Both
are acceptable for the detection testing section. Flight data files must be saved with the variable
name ‘dataN’. Detection testing may be performed for any of the detector shapes producible
through the use of this utility.

An example of each detector shape has been included in the ‘Demo’ directory in the folder
labeled ‘7-Detection Data’. In addition, one failure file and one normal file have been added, which
are compatible with detector sets. The default program values are valid for these data. Sample rate
is 50Hz, activation window is 50 samples, time of failure occurrence is 40 seconds, and size of the
point radius is 0.008.
 To perform detection, begin by clicking on the ‘File’ menu, select ‘Detector Testing’, then
‘Run Detection’, as in Figure B.121. This will load the file seen in Figure B.122. Begin by loading
the file containing the detectors into the menu using the topmost ‘Browse’ button. Beneath this
button in the same panel are radio buttons for choosing the shape of the detector contained in the
file, and the type of detectors. The shape will be chosen automatically if the detectors were
generated using this utility. If this is not the case, it is the responsibility of the user to select the
correct detector shape. The use must also input the detector type. The default is negative selection
detectors, which may be selected using the radio buttons if necessary. In the middle panel is
contained another ‘Browse’’ button. Click this and select the data file the detectors are being tested
against. This file may contain either normal or abnormal data. The user must correctly report this
using the radio buttons included in the panel in order to avoid detection errors. The bottom panel
contains a number of parameters the user is responsible for, in order for the detection results to be
valid. These are the sampling rate at which the data was collected; the activation window desired,
usually 1 second of data at the current sampling rate; the time in seconds the failure occurred, 0 if
the data is normal; and the size of the point radius, used for determining the volume of a data point.,
usually chosen by the distance between consecutive normal data points. With these parameters
chosen, click the ‘Perform Detection’ button. A message box will load to signify that the detection
is running. When the detection is complete the results will be displayed as in Figure B.123. If the
data contained in the detection file is normal data, the detection results will appear as in Figure
B.124. Note that the detection rate will be displayed as “NaN”, meaning not a number, since there
is no definition of detection if there exists no failure.

B-82

Figure B.121—Opening Detection Menu

Figure B.122—Detection Menu

B-83

Figure B.123—Detection Results for Failure Data

Figure B.124—Detection Results for Normal Data

5.2 Positive Selection Detectors
Checking detection is the finishing step for the creation of a detector set. Before

implementation in an actual control scheme, it is important to know the detection performance of a
detector set for the various failures it may need to detect. Note that positive selection detectors are
only capable of determining than a failure has occurred, not identifying the type of failure. This is
why negative selection is favored. Detector sets may be saved using the variable name ‘antibodies’
or ‘optdetector’ depending on the method used to generate them. Both are acceptable for the
detection testing section. Flight data files must be saved with the variable name ‘dataN’. Detection
testing may be performed for any of the detector shapes producible through the use of this utility.

An example of positive selection hyper-spheres has been included in the ‘Demo’ directory in
the folder labeled ‘7-Detection Data’. In addition, one failure file and one normal file have been
added, which are compatible with this detector set. The default program values are valid for these
data. Sample rate is 50Hz, activation window is 50 samples, time of failure occurrence is 40 seconds,
and size of the point radius is 0.008.
 To perform detection, begin by clicking on the ‘File’ menu, select ‘Detector Testing’, then
‘Run Detection’, as in Figure B.125. This will load the file seen in Figure B.126. Begin by loading
the file containing the detectors into the menu using the topmost ‘Browse’ button. Beneath this
button in the same panel are radio buttons for choosing the shape of the detector contained in the
file, and the type of detectors. The shape will be chosen automatically if the detectors were
generated using this utility. If this is not the case, it is the responsibility of the user to select the
correct detector shape. The use must also input the detector type. The default is negative selection
detectors, which may be selected using the radio buttons if necessary. For positive selection

B-84

detectors, be sure to select the radio labeled ‘Positive Selection Detection’. In the middle panel is
contained another ‘Browse’’ button. Click this and select the data file the detectors are being tested
against. This file may contain either normal or abnormal data. The user must correctly report this
using the radio buttons included in the panel in order to avoid detection errors. The bottom panel
contains a number of parameters the user is responsible for, in order for the detection results to be
valid. These are the sampling rate at which the data was collected; the activation window desired,
usually 1 second of data at the current sampling rate; the time in seconds the failure occurred, 0 if
the data is normal; and the size of the point radius, used for determining the volume of a data point.,
usually chosen by the distance between consecutive normal data points. With these parameters
chosen, click the ‘Perform Detection’ button. A message box will load to signify that the detection
is running. When the detection is complete the results will be displayed as in Figure B.127. If the
data contained in the detection file is normal data, the detection results will appear as in Figure
B.128.

Figure B.125—Opening Detection Menu

Figure B.126—Detection Menu

B-85

Figure B.127—Detection Results for Failure Data

Figure B.128—Detection Results for Normal Data

Chapter 6
Many instances may occur when it beco

data can occur at many times throughout the detector creation process. These methods have been
included for added user convenience, and are not necessary to the detector creation process.

6.1 Merging Raw Data
 Merging raw data files is useful for generating a self to cover many areas of the flight
envelope from data files that may each cover only a few. In order to merge raw data files, each of
the files must contain the same number of columns of data. B
check that each file contains the correct number of columns of data. It is the responsibility of the
user to ensure that these columns of data contain the same identifiers, all of the same identifiers, and
in the same order. This method is not recommended for processed data, but if this method is used
with processed data, the data must also have been normalized using the same limits for each file.
The variable name for processed data must also be changed from ‘selfdata’
back to ‘selfdata’ before clustering, making this much less convenient than using the method for
merging processed data.
 This function is simple. Two data files exist, which are assumed compatible for this guide.
Note that if the two files chosen do not have the same number of columns of data, an error message
will be received, as in Figure B.129
merge two raw data files with incompatible dimensions. The data array in each file must also have
the variable name ‘sensors’. Once the two files have been chosen, the data from each is loaded, and
the two data arrays are concatenated by adding the data
points in the first file. This new, larger array is then saved to the variable name ‘sensors’. This file is
then ready for processing.

Figure B.129

 To merge raw data, click on the ‘File’ menu, select ‘Data Processing’, then select ‘Merge Raw
Data’, as in Figure B.130 below. This loads the menu shown in
file loading panels with two ‘Browse’ buttons. Click on each of these ‘Browse’ buttons and navigate
to the desired files. This is shown in
‘selfdata1-2D.mat’ and ‘selfdata2-
‘Demo’ directory. Click on the ‘Merge Raw Data’ button. This process is very up quick, thus there
is no need for a progress bar. When the function,
B.133. Navigate to the desired save directory, name the file, and click save. The save name used for
this file is ‘selfdata12-2D.mat’.

B-86

Chapter 6—Merging Data Files
Many instances may occur when it becomes useful to merge data files into one. Merging

data can occur at many times throughout the detector creation process. These methods have been
included for added user convenience, and are not necessary to the detector creation process.

Merging raw data files is useful for generating a self to cover many areas of the flight

envelope from data files that may each cover only a few. In order to merge raw data files, each of
the files must contain the same number of columns of data. Be aware that the program can only
check that each file contains the correct number of columns of data. It is the responsibility of the
user to ensure that these columns of data contain the same identifiers, all of the same identifiers, and

er. This method is not recommended for processed data, but if this method is used
with processed data, the data must also have been normalized using the same limits for each file.
The variable name for processed data must also be changed from ‘selfdata’ to ‘sensors’ and then
back to ‘selfdata’ before clustering, making this much less convenient than using the method for

This function is simple. Two data files exist, which are assumed compatible for this guide.
two files chosen do not have the same number of columns of data, an error message

129 below. In no case will the program allow the user to attempt to
incompatible dimensions. The data array in each file must also have

the variable name ‘sensors’. Once the two files have been chosen, the data from each is loaded, and
the two data arrays are concatenated by adding the data points in the second file belo
points in the first file. This new, larger array is then saved to the variable name ‘sensors’. This file is

129—Incompatible Raw Files Error Message

To merge raw data, click on the ‘File’ menu, select ‘Data Processing’, then select ‘Merge Raw
below. This loads the menu shown in Figure B.131 below. It contains two

file loading panels with two ‘Browse’ buttons. Click on each of these ‘Browse’ buttons and navigate
to the desired files. This is shown in Figure B.132. The files chosen for this walkthroug

-2D.mat’, within the folder labeled ‘2-Truncated Raw Data’ in the
‘Demo’ directory. Click on the ‘Merge Raw Data’ button. This process is very up quick, thus there
is no need for a progress bar. When the function, finished, a save dialog will appear, as in

. Navigate to the desired save directory, name the file, and click save. The save name used for

mes useful to merge data files into one. Merging
data can occur at many times throughout the detector creation process. These methods have been
included for added user convenience, and are not necessary to the detector creation process.

Merging raw data files is useful for generating a self to cover many areas of the flight
envelope from data files that may each cover only a few. In order to merge raw data files, each of

e aware that the program can only
check that each file contains the correct number of columns of data. It is the responsibility of the
user to ensure that these columns of data contain the same identifiers, all of the same identifiers, and

er. This method is not recommended for processed data, but if this method is used
with processed data, the data must also have been normalized using the same limits for each file.

to ‘sensors’ and then
back to ‘selfdata’ before clustering, making this much less convenient than using the method for

This function is simple. Two data files exist, which are assumed compatible for this guide.
two files chosen do not have the same number of columns of data, an error message

below. In no case will the program allow the user to attempt to
incompatible dimensions. The data array in each file must also have

the variable name ‘sensors’. Once the two files have been chosen, the data from each is loaded, and
points in the second file below the data

points in the first file. This new, larger array is then saved to the variable name ‘sensors’. This file is

To merge raw data, click on the ‘File’ menu, select ‘Data Processing’, then select ‘Merge Raw
elow. It contains two

file loading panels with two ‘Browse’ buttons. Click on each of these ‘Browse’ buttons and navigate
. The files chosen for this walkthrough are

Truncated Raw Data’ in the
‘Demo’ directory. Click on the ‘Merge Raw Data’ button. This process is very up quick, thus there

finished, a save dialog will appear, as in Figure
. Navigate to the desired save directory, name the file, and click save. The save name used for

B-87

Figure B.130—Opening Merge Raw Data Menu

Figure B.131—Merge Raw Data Menu

Figure

Figure

B-88

Figure B.132—Merge Raw Data Browse

Figure B.133—Merge Raw Data Save Dialog

6.2 Merging Processed Data
 Merging processed data files is useful for generating a self to cover many areas of the flight
envelope from data files that may each cover only a few. In order
each of the files must contain the same number of columns of data. Be aware that the program can
only check that each file contains the correct number of columns of data. It is the responsibility of
the user to ensure that these columns of data contain the same identifiers, all of the same identifiers,
and in the same order. For this method, the processed data files do not necessarily need to be
normalized to the same limits.
 This function loads both the data arrays and
case will the program allow the user to attempt to merge two processed data files with incompatible
dimensions. The variables should be ‘normmaximums’, ‘normminimums’, and ‘selfdata’. These will
already be correct if the processing was performed using the IFDOT Utility. For each of the data
files, the normalized data is converted back to its original values using the normalization limits
stored with the file. The restored raw data is then concatenated by
second data array at the end of the first data array. The normalization limits of the two files are then
compared and new limits are chosen. Minimums are compared and the smaller minimum from each
column in the two files is chosen as the new ‘normminimums’. Maximums are compared and the
larger maximum from each column is chosen as the new ‘normmaximums’. These new limits are
then used to renormalize the data and any duplicate points are removed from the merged set. Thi
data is saved to ‘selfdata’, and is then ready for clustering.
 To merge processed data, click on the ‘File’ menu, select ‘Data Clustering’, then select
‘Merge Processed Data’, as in Figure
below. It contains two file loading panels with two ‘Browse’ buttons. Click on each of these
‘Browse’ buttons and navigate to the desired files. This is shown in
for this walkthrough are ‘2Dprocdata1.mat’ and ‘2Dprocdata2.mat’, within the folder labeled ‘3
Processed Raw Data’ in the ‘Demo’ directory. Click on the ‘Merge Processed Data’ button
process will open a progress bar as
appear, as in Figure B.138. Navigate to the desired save directory, name the
save name used for this file is ‘procdata12

Figure B.134

B-89

Merging Processed Data
Merging processed data files is useful for generating a self to cover many areas of the flight

envelope from data files that may each cover only a few. In order to merge processed data files,
each of the files must contain the same number of columns of data. Be aware that the program can
only check that each file contains the correct number of columns of data. It is the responsibility of

these columns of data contain the same identifiers, all of the same identifiers,
and in the same order. For this method, the processed data files do not necessarily need to be

This function loads both the data arrays and normalization limits from each data file. In no
case will the program allow the user to attempt to merge two processed data files with incompatible
dimensions. The variables should be ‘normmaximums’, ‘normminimums’, and ‘selfdata’. These will

e correct if the processing was performed using the IFDOT Utility. For each of the data
files, the normalized data is converted back to its original values using the normalization limits
stored with the file. The restored raw data is then concatenated by placing the data points from the
second data array at the end of the first data array. The normalization limits of the two files are then
compared and new limits are chosen. Minimums are compared and the smaller minimum from each

is chosen as the new ‘normminimums’. Maximums are compared and the
larger maximum from each column is chosen as the new ‘normmaximums’. These new limits are
then used to renormalize the data and any duplicate points are removed from the merged set. Thi
data is saved to ‘selfdata’, and is then ready for clustering.

To merge processed data, click on the ‘File’ menu, select ‘Data Clustering’, then select
Figure B.134 below. This loads the menu shown in

below. It contains two file loading panels with two ‘Browse’ buttons. Click on each of these
‘Browse’ buttons and navigate to the desired files. This is shown in Figure B.136. The files chosen
for this walkthrough are ‘2Dprocdata1.mat’ and ‘2Dprocdata2.mat’, within the folder labeled ‘3
Processed Raw Data’ in the ‘Demo’ directory. Click on the ‘Merge Processed Data’ button

will open a progress bar as in Figure B.137. When the function, finished, a save dialog will
. Navigate to the desired save directory, name the file, and click save. The

save name used for this file is ‘procdata12-2D.mat’.

134—Opening Merge Processed Data Menu

Merging processed data files is useful for generating a self to cover many areas of the flight
to merge processed data files,

each of the files must contain the same number of columns of data. Be aware that the program can
only check that each file contains the correct number of columns of data. It is the responsibility of

these columns of data contain the same identifiers, all of the same identifiers,
and in the same order. For this method, the processed data files do not necessarily need to be

normalization limits from each data file. In no
case will the program allow the user to attempt to merge two processed data files with incompatible
dimensions. The variables should be ‘normmaximums’, ‘normminimums’, and ‘selfdata’. These will

e correct if the processing was performed using the IFDOT Utility. For each of the data
files, the normalized data is converted back to its original values using the normalization limits

placing the data points from the
second data array at the end of the first data array. The normalization limits of the two files are then
compared and new limits are chosen. Minimums are compared and the smaller minimum from each

is chosen as the new ‘normminimums’. Maximums are compared and the
larger maximum from each column is chosen as the new ‘normmaximums’. These new limits are
then used to renormalize the data and any duplicate points are removed from the merged set. This

To merge processed data, click on the ‘File’ menu, select ‘Data Clustering’, then select
ds the menu shown in Figure B.135

below. It contains two file loading panels with two ‘Browse’ buttons. Click on each of these
. The files chosen

for this walkthrough are ‘2Dprocdata1.mat’ and ‘2Dprocdata2.mat’, within the folder labeled ‘3-
Processed Raw Data’ in the ‘Demo’ directory. Click on the ‘Merge Processed Data’ button. This

. When the function, finished, a save dialog will
file, and click save. The

Figure

Figure

B-90

Figure B.135—Merge Processed Data Menu

Figure B.136—Merge Processed Data Browse

Figure B

Figure B

B-91

B.137—Merge Processed Data In Progress

B.138—Merge Processed Data Save Dialog

B-92

6.3 Merging Clustered Data
Merging clusters is useful for creating a self definition for the full flight envelop made from

several sets of clusters which were created independently and cover different areas of the flight
envelop. As with other merging functions in this program, it is the responsibility of the user to
ensure that the data contained in the clustered set are compatible with each other. In the case of
clusters, each clustered set needs to have been clustered from normal condition data that was
normalized to the same limits, even if the normal condition data was taken over varying parts of the
flight envelope.

The program cannot ensure that the clusters encompass the appropriate data; however, the
program will reject any attempt to merge clusters that do not contain the same number of
dimensions, or are not composed of the same shape. For instance, a set of hyper-sphere clusters
cannot be merged with a set of hyper-rectangle clusters, even if they contain the same number of
identifiers.

This function not only merges the two sets of clusters, but eliminates any redundant clusters
from the new set. To merge clustered data, click on the ‘File’ menu, select ‘Data Clustering’, then
select ‘Merge Clustered Data’, as in Figure B.139 below. This loads the menu shown in Figure B.140
below. It contains two file loading panels with two ‘Browse’ buttons. Click on each of these
‘Browse’ buttons and navigate to the desired files. This is shown in Figure B.141. The files chosen
for this walkthrough are ‘2Dclust1_M1.mat’ and ‘2Dclust2_M2.mat’, within the folder labeled ‘3-
Clustered Data’ in the ‘Demo’ directory. Click on the ‘Merge Clustered Data’ button. This process
will open a progress bar as in Figure B.142. When the function, finished, a save dialog will appear, as
in Figure B.143. Navigate to the desired save directory, name the file, and click save. The save name
used for this file is ‘2Dclust12.mat’.

Figure B.139—Opening Merge Clustered Data Menu

B-93

Figure B.140—Merge Clusters Menu

Figure B.141—Merge Clusters Browse

B-94

Figure B.142—Merge Clusters In Progress

Figure B.143—Merge Clusters Save Dialog

B-95

6.4 Merging Positive Selection Detectors
Merging positive detectors is useful for creating a self definition for the full flight envelop

made from several sets of positive selection detectors which were created independently and cover
different areas of the flight envelop. As with other merging functions in this program, it is the
responsibility of the user to ensure that the data contained in the detector sets are compatible with
each other. In the case of positive selection detectors, each detector set needs to have been
clustered from normal condition data that was normalized to the same limits, even if the normal
condition data was taken over varying parts of the flight envelope.

The program cannot ensure that the positive detectors encompass the appropriate data;
however, the program will reject any attempt to merge positive detectors that do not contain the
same number of dimensions, or are not composed of the same shape. For instance, a set of hyper-
sphere detectors cannot be merged with a set of hyper-rectangle detectors, even if they contain the
same number of identifiers.

This function not only merges the two sets of positive selection detectors, but eliminates any
redundant detectors from the new set. To merge positive detectors, click on the ‘File’ menu, select
‘Data Clustering’, then select ‘Merge Clustered Data’, as in Figure B.144 below. This loads the menu
shown in Figure B.145 below. It contains two file loading panels with two ‘Browse’ buttons. Click
on each of these ‘Browse’ buttons and navigate to the desired files. This is shown in Figure B.146.
The files chosen for this walkthrough are ‘2Dpos1_M1.mat’ and ‘2Dpos2_M2.mat’, within the
folder labeled ‘3-Clustered Data’ in the ‘Demo’ directory. Click on the ‘Merge Clustered Data’
button. This process will open a progress bar as in Figure B.147. When the function, finished, a
save dialog will appear, as in Figure B.148. Navigate to the desired save directory, name the file, and
click save. The save name used for this file is ‘pos12-2D.mat’.

Figure B.144—Opening Merge Positive Detectors Menu

B-96

Figure B.145—Merge Clusters Menu

Figure B.146—Merge Clusters Browse

B-97

Figure B.147—Merge Clusters in Progress

Figure B.148—Merge Clusters Save Dialog

	The design of an evolutionary algorithm for artificial immune system based failure detector generation and optimization
	Recommended Citation

	The Design of an Evolutionary Algorithm for Artificial Immune System Based Failure Detector Generation and Optimization

	Text3: Jennifer N. Davis
	Text2: The Design of an Evolutionary Algorithm for Artificial Immune System Based Failure Detector Generation and Optimization
	Text1: Abstract
		2010-08-09T12:25:43-0400
	John H. Hagen

