
Graduate Theses, Dissertations, and Problem Reports

2005

Software tools for real-time simulation and control Software tools for real-time simulation and control

Raghu Sankarayogi
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Sankarayogi, Raghu, "Software tools for real-time simulation and control" (2005). Graduate Theses,
Dissertations, and Problem Reports. 1682.
https://researchrepository.wvu.edu/etd/1682

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1682&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/1682?utm_source=researchrepository.wvu.edu%2Fetd%2F1682&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Software Tools for Real-Time Simulation and Control

by

Raghu Sankarayogi

Thesis submitted to the
College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Master of Science
in

Electrical Engineering

Research Assistant Professor Karl Schoder, Ph.D.
Professor Powsiri Klinkhachorn, Ph.D.

Professor Ali Feliachi, Ph.D., Chair

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2005

Keywords: Real-Time Simulation, Hardware-In-the-Loop, Real-Time Linux, Matlab/Simulink

Copyright 2005 Raghu Sankarayogi

Abstract

Software Tools for Real-Time Simulation and Control

by

Raghu Sankarayogi
Master of Science in Electrical Engineering

West Virginia University

Professor Ali Feliachi, Ph.D., Chair

The objective of this thesis is to design and simulate a multi-agent based energy management system for a
shipboard power system in hard real-time environment. The automatic reconfiguration of shipboard power
systems is essential to improve survivability. Multi-agent technology is used in designing the reconfig-
urable energy management system using a self-stabilizing maximum flow algorithm. The agent based
energy management system is designed in a Matlab/Simulink environment. Reconfiguration is performed
for several situations including start-up, loss of an agent, limited available power, and distribution to pri-
ority ranked loads. The number of steps taken to reach the global solution and the time taken are very
promising. With the growing importance of timing accuracy in simulating control systems during design
and development, there is an increased need for these simulations to run in a real-time environment. This
research further focuses on software tools that support hard real-time environment to run real-time simu-
lations. A detailed survey has been conducted on freely available real-time operating systems and other
software tools to setup a desktop PC supporting real-time environment. Matlab/Simulink/RTW-RTAI was
selected as real-time computer aided control design software for demonstrating real-time simulation of
agent based energy management system. The timing accuracy of these simulations has been verified
successfully.

iii

Acknowledgments

This research was sponsored in part by a grant from US DEPSCoR and ONR (DOD/ONR N000

14-031-0660).

iv

Contents

Acknowledgments iii

List of Figures vi

List of Tables vii

1 Introduction 1
1.1 Overview and Motivation . 1
1.2 Problem . 2
1.3 Objective and Approach . 2
1.4 Thesis Outline . 3

2 Literature Review 4
2.1 Software Platforms . 4

2.1.1 Introduction to Real-Time . 4
2.1.2 Significance and Requirements . 5
2.1.3 Why Linux based RTOS? . 5
2.1.4 Available RTOS based on Linux . 6
2.1.5 RTLinux . 7
2.1.6 RTAI . 8
2.1.7 Ada 95 . 9
2.1.8 Real-Time Java . 12

2.2 CACSDS . 13
2.2.1 Matlab/Simulink/Real-Time Workshop . 14
2.2.2 Scilab/Scicos/RTAICodeGen . 15

2.3 Communication Networks . 17
2.3.1 Controller Area Network . 17
2.3.2 GPIB/IEEE 488 . 20
2.3.3 Modbus . 20
2.3.4 Conclusions . 21

3 Application: CACSDS/Controller Area Network Integration 22
3.1 Overview . 22
3.2 Hardware . 22

CONTENTS v

3.3 Integration with RT-CACSDS . 23

4 Application: HIL – Control Experiment 28
4.1 Introduction . 28
4.2 Buck Converter . 28
4.3 Design . 29
4.4 Control . 30
4.5 Results . 31
4.6 Conclusions . 31

5 Application: Agent based Automatic Reconfiguration 33
5.1 Introduction . 33
5.2 Shipboard Power System . 33
5.3 Multi-Agent System . 34
5.4 Maximum Flow Problem and Graph Theory . 35
5.5 Maximum Flow Algorithm - Guarded Statements . 36
5.6 Real-Time Simulation . 39
5.7 Real-Time Component . 39
5.8 Energy Management Case Studies . 42
5.9 Conclusions . 44

6 Conclusions 50
6.1 Summary . 50
6.2 Future Work . 52

References 53

Appendix 58

A Installation Guides 58
A.1 Mandrake 10 with 2.6.7-Adeos . 58
A.2 Scilab-3.1 + RTAI-3.1 + RTAICodeGen . 60
A.3 Comedi/Comedilib . 62
A.4 Matlab/Simulink + RTAI . 63

B Scripts 64
B.1 Calculating Number of Moves . 64
B.2 Calculating Agent Status Factor . 65
B.3 Matlab Initialization Script for Simulink Model . 69
B.4 S-functions Used in PCAN Simulink Blocks . 73

vi

List of Figures

2.1 RTAI architecture [53] . 9
2.2 RTAI overview [69] . 10
2.3 Message structure CAN 2.0A . 18
2.4 Message structure CAN 2.0B . 18

3.1 PCAN-USB device with 9-PIN connector [61] . 23
3.2 Flowchart showing PCAN block functionality . 25
3.3 Simulink block for receiving CAN messages . 26
3.4 Simulink block for CAN message transmission . 26
3.5 Schematic PCAN-eZdsp . 27

4.1 Schematic of buck converter . 29
4.2 Buck converter characteristics . 30
4.3 DC Voltage control scheme in Scicos . 31
4.4 Output voltage for different loading conditions . 32

5.1 SPS Simulink model . 34
5.2 Directed digraph . 35
5.3 Digraph with solution . 36
5.4 An agent as Simulink block . 38
5.5 RTAI-LAB GUI serving as Command and Control Center 40
5.6 Oscilloscope data for single time stamp, 1 ms . 41
5.7 Histogram showing the behavior of the task . 41
5.8 Histogram showing the behavior of the sampling time . 42
5.9 Total number of moves for various modes . 43
5.10 Agent Status Factor for 1 ms sampling rate . 43
5.11 Initial setup . 45
5.12 Change in demand . 46
5.13 Loss of edge . 47
5.14 Number of Moves for 1 ms sampling rate during random load change 48
5.15 Agent Status Factor for 1 ms sampling rate during random load change 48

vii

List of Tables

2.1 Comparison of RTLinuxFree and RTAI . 9
2.2 List of available Scicos blocks from RTAI-LIB . 16

5.1 Maximum, minimum and average moves for the ‘startup’ scenario 44
5.2 Maximum, minimum, and average moves for the ‘load change’ scenario 44
5.3 Values of the loads and priorities in various modes . 49

6.1 List of software tools . 52

1

Chapter 1

Introduction

1.1 Overview and Motivation

Desktop PC based simulation, which includes designing a mathematical model for a physical sys-

tem and executing it on a digital computer, has been the primary method for analyzing and studying the

behavior of dynamic systems. Software tools such as computer aided control system design software

(CACSDS) and programming tools are essential in the field of control systems design, modeling, and

simulation. Simulating events in a time frame in which they would naturally occur is known as real-time

simulation. The importance of timing accuracy of these simulations strongly depends on the application

but may be crucial in ensuring intended system performance.

The main objective of this research is to design an agent based reconfigurable energy management sys-

tem for shipboard power systems [33]. Real-time simulations should run both in software and Hardware-

In-the-Loop configuration by building reduced scale hardware prototype of the shipboard power system.

Software tools supporting real-time environments are required to achieve the above mentioned objective

and to analyze its real world performance.

Matlab/Simulink1 is one such tool that provides mathematical programming and graphical modeling

platform for designing and simulating systems. Real-Time Workshop2, a MATLAB/Simulink add-on for

automatic code generation, can be used for general Microsoft Windows [79] based real-time applications

with the help of Real-Time Windows Target [48]. This CACSDS provides its own real-time kernel, which

runs in Windows’ “Ring 0” as high-priority task [49], to ensure the best possible performance. Neverthe-

less, to achieve true real-time with guaranteed timing and low latencies with support for a more general
1MATLAB/Simulink is a registered trademark by The MathWorks, Inc. [47]
2Real-Time Workshop is a registered trademark by The MathWorks, Inc. [50]

CHAPTER 1. INTRODUCTION 2

environment, the appropriate step is to switch to a real-time operating systems (RTOS).

Hardware-In-the-Loop simulation requires the CACSDS to interface external hardware. DC-DC buck

converter [52], which is an integral part of the shipboard power system, is selected to test the HIL capa-

bility of the real-time CACSDS.

To implement agent based energy management system in hardware, a communication network such as

Controller Area Network (CAN) [14] is required for communication among agents. Hence, the real-time

CACSDS should support the interface with this communication infrastructure.

1.2 Problem

The gain in popularity of electric commercial ships resulted in the development of all electrical Naval

warships. The demand for reducing manning and costs while improving survivability lead to gradual

replacement of mechanical-hydraulic systems and combustion engines by electric solutions.

The control system for the shipboard power system should ensure the reliable operation in both normal

and emergency situations. The power systems of warships face extreme situations and several incidents

[82] have shown the necessity for dependable automation strategies for reconfiguration while coping with

emergency situations. The key problem faced by the shipboard power systems in an emergency situation

is supplying power to at least the loads of more significance. Hence, the desired energy management

system should address this problem and ensure the power flow to the loads according to their priorities.

Though the capability of the desired energy management system can be verified by running the sim-

ulations using general purpose tools, there is a need for understanding timing issues of these simulations.

To analyze real-world performance of the system, real-time simulation is essential.

1.3 Objective and Approach

The objective of this thesis is to design a multi-agent based energy management system with automatic

reconfiguration and demonstrate real-time simulation of the system with the available software tools.

The above mentioned problem, which can also be termed as power flow problem, was earlier dealt with

techniques like Newton-Raphson Algorithm and Linear Programming. These approaches are discussed in

detail in [11] and [12].

A different approach in solving the power flow problem for a decentralized energy management sys-

tem using spatially distributed agents is discussed in [33]. In this thesis, a similar approach is followed

CHAPTER 1. INTRODUCTION 3

in designing the energy management system but with modifications to solve the problem in a real-time

environment.

1.4 Thesis Outline

In Chapter 2 a detailed literature review is given on real-time operating systems, currently available

Linux variants with real-time support such as RTLinux and RTAI, programming tools that support real-

time programming such as Ada 95 and Real-Time Java, CACSDS used for modeling and simulation such

as MATLAB/Simulink and Scilab/Scicos, open source projects supplying free device drivers for data

acquisition cards such as Comedi, and communication networks such as the Controller Area Network

(CAN).

In Chapter 3 interface support of CACSDS integrated with RTOS such as MATLAB/Simulink/RTAI-

LAB and Scilab/Scicos/RTAICodeGen for communication devices (CAN) is explored.

In Chapter 4 a real-time experiment in form of a buck converter control using Scilab/Scicos/R-

TAICodeGen in real-time is presented.

In Chapter 5 real-time simulation of multi-agent based energy management system for shipboard

power systems is demonstrated as a real-time application.

In Chapter 6 conclusions are given with recommendations for future work.

4

Chapter 2

Literature Review

2.1 Software Platforms

2.1.1 Introduction to Real-Time

In general, the term “real-time” is used in reference to a system where timing needs to be predictable.

In the context of computing technology, a process is said to be running in real-time if it follows certain

timing constraints and completes the process within a specified time without failure. A real-time system

is comprised of processes that are associated with timing these constraints. A deadline is a good example

for a timing constraint real-time systems are expected to meet. Basically, real-time systems are classified

into two categories: hard real-time and soft real-time [25]. The main criterion behind this classification

is the degree of tolerance of missing those deadlines. In a hard real-time system, deadlines cannot be

missed. Whereas in the soft real-time systems, there is a certain degree of tolerance for missing deadlines.

The importance of the deadlines depends on the application of interest. For example [], if a video player

is considered, missing one or two frames once in a while is acceptable but there is a certain limit on the

number of missing frames and the frequency of missing. This type of system is called a soft real-time

system and deadlines can be missed but not too often. Hard real-time systems strictly follow the assigned

deadlines and the success depends on the task execution within deadlines. Control systems used in a

nuclear reactor or in a plane are good examples of hard real-time systems where missing a deadline could

prove fatal.

CHAPTER 2. LITERATURE REVIEW 5

2.1.2 Significance and Requirements

The above mentioned example explains the significance of deadlines in hard real-time systems. The

rapid increase in the cost of failure, re-engineering, and accuracy of hard real-time systems in various

fields including electrical power engineering shows the importance of hard real-time performance. In

order to achieve this kind of hard real-time performance, dedicated central processing units such as digital

signal processors are used to meet the deadlines within the scheduled time without failure.

A general purpose central processing unit (GPCPU), which is found in daily used desktop personal

computers, is in general not suitable for hard real-time applications as several uncertainty factors such

as virtual memory and memory management hamper deterministic latencies [45]. But the high end, well

programmed GPCPU with high speed computing features (number of floating point operations per second

in the millions) such as single instruction multiple data and symmetric multi processors can implement

fairly complex control systems [23]. RTOS should meet the basic requirements including predictability,

pre-emptability, support for multi-threaded scheduling, concept of priorities, and resource sharing mech-

anisms avoiding priority inversion. In selecting RTOS for real-time applications, latency values play an

important role. Latency is defined as the response time of a system to any external event such as hardware

interrupts or any application within the system [2]. So, the lower the latency the quicker the response of

the system to events. This feature is important in real-time systems. A real-time operating system, which

posses all these characteristics can be used to achieve hard real-time performance with latencies of only a

few micro seconds [23]. Today, there are many RTOS available on various platforms including Microsoft

Windows, Linux, Solaris, and SunOS. The RTOS based on Linux are gaining importance due to open

source code and licensing (GNU Public License) [18]. Researchers, developers, and programmers prefer

Linux as the open platform gives flexibility in evaluating and developing applications.

2.1.3 Why Linux based RTOS?

Before further exploring freely available and commercial implementations, a discussion on the real-

time capabilities of the standard Linux kernel is on order. Linux supports supports multi-threading and

several Portable Operating System Interface (POSIX, [36]) compliant libraries are available, e.g., the FSU

Pthread library [4]. POSIX defines how the operating system and programs interface with each other. The

POSIX 1003.13 standard defines a “Multi-User Real-Time System Profile” allowing real-time processes

to be executed in a predictable order by using a special scheduler and by locking the process itself into

the memory to avoid paging onto the harddisk. Here, the term “predictable” means the timing behavior is

always within an acceptable range. The standard Linux kernel uses system calls to provide the improved

CHAPTER 2. LITERATURE REVIEW 6

deterministic performance. The resulting performance can be described as soft real-time but not hard

real-time as there is no possibility of preempting kernel tasks [45]. Also, the nature of Linux’s scheduling

algorithm is more suitable for a general purpose operating system than to a real-time purpose and intended

to maximize the average throughput. The worst-case deviation from deadlines may prove to be very high

when the system is not idle.

2.1.4 Available RTOS based on Linux

Several implementations of both commercial and open-source distributions of Linux based real-time

operating systems are available. A list of commercial variants includes RTLinuxPro by FSMLabs [32],

uLinux by Lineo Solutions [41], LynxOS by LynuxWorks [44], QNX by QNX Software Systems [64],

and VXWorks by Wind River [84]. A more detailed list can be found in [46]. At the same time many

open source versions of real-time implementations of Linux are available [43]. Some of these open source

versions are discussed below:

1. ART Linux [42]: A real-time extension to Linux that was developed by Japanese engineer Youichi

Ishiwata at ETL (Electrotechnical Laboratory at Japan). Though it is inspired by RTLinux (RTLinux

will be discussed in detail later), it offers certain advantages such as compatibility of device drivers

at source level and binary level compatibility of the user programs. But, ART Linux has been tested

successfully only on the kernel versions 2.2.xx, which are outdated. Also, ART Linux has not been

formally submitted to GPL and, therefore, there is some uncertainty concerning license issues.

2. KURT-Linux [60]: KURT-Linux stands for Kansas University Real-Time Linux. The list of features

includes user defined schedulability and capability of executing the real-time processes independent

of non real-time processes. The main drawback is the support of only x86 platforms and older Linux

versions such as Kernel 2.4.xx.

3. QLinux [71]: QLinux is an implementation by the University of Massachusetts and IBM Research

and provides Quality of Service (QoS) that can only guarantee soft real-time performance. The

latest available release is based on Linux kernel 2.2.0.

4. RTLinux [29]: RTLinux is a small hard real-time operating system that runs Linux as a thread in

its idle moments. It was a result of a small research project at New Mexico Institute of Mining and

Technology led by Victor Yodaiken. RTLinux decouples the real-time and non-real-time parts of the

operating system and strictly separates corresponding applications to improve reliability, simplicity,

and speed. The latest version of RTLinux released by FSMLabs supports kernel 2.6.

CHAPTER 2. LITERATURE REVIEW 7

5. RTAI [20]: The Real-Time Application Interface was developed by members of the Department of

Aerospace and Engineering, Politecnico di Milano, Italy, and provides guaranteed hard real-time

scheduling and supports uni-processors and symmetric multi-processors. The working principle

behind RTAI is the Hardware Abstraction Layer (HAL). This layer is added to the standard Linux

kernel and is comprised of pointers to the interrupt vectors and the interrupt enable/disable func-

tions. RTAI has been successfully implemented on kernel 2.6.5.

When compared to other versions, RTLinux and RTAI stand out as the more versatile, compatible, and

reliable open source implementations of real-time Linux. A detailed description of RTLinux and RTAI

and a comparison is given below.

2.1.5 RTLinux

RTLinux (Real-Time Linux) [35, 29] is a small hard real-time kernel which assigns the lowest priority

to the standard Linux kernel. To achieve this, few lines of code patch the standard Linux kernel and

recompilation yields RTLinux. In the process of patching, the macros clearing and setting interrupts,

which are key in enabling and disabling interrupts, are replaced [65]. Thus, RTLinux takes control over

the interrupts. The actual working of RTLinux can be best understood by visualizing the RTLinux kernel

sitting in between the standard Linux kernel and the system hardware. This is actually done by loading

core RTLinux modules. RTLinux also replaces the standard Linux scheduler. The real-time kernel of

RTLinux is seen as actual hardware by the standard Linux kernel and thus intercepts all hardware interrupts

for achieving real-time performance.

In general, any attempt to modify an operating system in order to support both real-time and non

real-time aspects would complicate the operating system further and may result in a large, unreliable, and

inefficient operating system. To avoid this, RTLinux decouples the real-time and non real-time parts of

the operating system. Thus, minimum latency for response to an interrupt can be achieved irrespective

of the standard Linux kernel activities. RTLinux comes in two versions: RTLinuxFree [31] and RTLin-

uxPro [32]. The first one is an open source version and is licensed under GPL [30]. This community

supported free version of RTLinux has all basic features but some problems with licensing of modules.

RTLinuxPro, which comes with a commercial license, has professional support, rapid prototyping graph-

ics user interface, and a debugging environment pre-configured kernel. The user space real-time capability

is much improved when compared to its open source version. Further, RTLinuxPro supports various ad-

ditional features such as real-time networking, protected memory real-time, and controls kit software by

FSMLabs [28].

CHAPTER 2. LITERATURE REVIEW 8

2.1.6 RTAI

Another open-source implementation of real-time Linux is the Real Time Application Interface (RTAI,

[20]). The motivation for the development of RTAI came with the recognition of RTLinux’s deficien-

cies. The RTAI project began at the Dipartimento di Ingegneria Aerospaziale - Politecnico di Milano

in 1996/97. Initially, RTAI developers faced some problems with then available kernel version 2.0.xx.

The new idea was to have a Real-Time Linux implementation by having Real-Time Hardware Abstrac-

tion Layer (RTHAL) on which RTAI can be developed. The release of kernel 2.2.xx, which had a clear

interface to the hardware, solved most of the problems faced by RTAI developers. It resulted in further

developments to support systems with both single and multi processors. RTAI is a kernel patch applied to

the standard Linux kernel.

RTAI architecture is similar to its counterpart RTLinux in running the standard Linux kernel as a

lowest priority process. RTAI also makes use of the loadable modules feature and is module oriented. The

hardware abstraction layer supports various core modules and helps in achieving desired on-demand real-

time capability. RTHAL modifies all the pointers of standard Linux kernel such that RTAI can take their

place whenever hard realtime is required. By doing this, RTAI ensures that all the hard real-time activities

have full authority over hardware and interrupts triggered by the Linux kernel and applications. But, at

the same time RTHAL makes sure that all the Linux interrupts, which are marked as pending during hard

real-time activities, are dispatched afterwards without failure [24].

RTAI’s architecture is shown in Fig. 2.1. The RTAI block consists of interrupt dispatcher and sched-

uler. When loaded, Linux scheduler is replaced by the RTAI scheduler and thus running Linux as a low

priority task. The interrupt dispatcher takes control of software interrupts allowing tasks to run in real-

time.

An overview of RTAI with RTHAL is shown in Fig. 2.2. RTHAL is a structure of function pointers,

which are related to interrupts. When RTAI modules are loaded, the function pointers in the RTHAL

structure are changed to point to the equivalent functions in the real-time kernel. Thus, RTAI intercepts

the interrupts. The Linux applications running in user space communicate with real-time applications,

which run in kernel space, by using first in–first out (FIFO) pipes for data buffering between the two

processes.

There are no major differences between RTLinux and RTAI as they both use the concept of RTHAL.

Table 2.1 gives a summary of RTLinuxFree and RTAI features [66].

CHAPTER 2. LITERATURE REVIEW 9

Scheduler
 Comm
/
IPC

Interrupt Dispatcher

Processor
 Peripherals

Comm
/
IPC
 Scheduler
HW
 Management

A1
 A2

T1
 T2

Applications

Linux

Hardware

RTAI

Tasks

Figure 2.1: RTAI architecture [53]

Table 2.1: Comparison of RTLinuxFree and RTAI

RTOS RTLinuxFree RTAI
License General Public

License and
Commercial

Lesser General
Public License

Supported
Architecture

i386, PPC,
ARM.

i386, MIPS,
PPC, ARM

Latency Less than 10 mi-
cro seconds

Less than 10 mi-
cro seconds

Stable Kernel Kernel 2.6 Kernel 2.6.11
API POSIX RTAI-Custom

API
Memory Shared Dynamic and

Shared

2.1.7 Ada 95

Ada is a general purpose object-oriented programming language designed to meet the needs of both

large and small scale programming [10]. It is used in applications ranging from real-time embedded to

CHAPTER 2. LITERATURE REVIEW 10

Real-Time

Application

RTAI

Module

RTAI

Module

Real-Time

Application

REAL-TIME HARDWARE ABSTRACTION LAYER

HARDWARE

Linux Application

 Linux

Kernel

Kernel

Module

Figure 2.2: RTAI overview [69]

large scale systems. Ada’s strengths lie in the support of concurrent programming, strong syntax checking,

high portability, high datatype compatibility, and flexible data structures.

Ada was developed during the 1970s [75] in an attempt to solve the “software crisis” faced by US

Department of Defense for military and mission critical systems. It was named after an English math-

ematician who is considered as the world’s first programmer, Ada Lovelace. It achieved its first ISO

standardization in 1987. Department of Defense sponsored the research for further refinement and im-

provement in performance of Ada. Later, Ada achieved both ISO and ANSI standardization in 1995,

which is also referred to as Ada 95 (see for example [1]).

Ada supports structured control statements, procedures and functions, and standard libraries. With

the help of packages and subprograms, Ada also supports programming in the large. Ada’s support for

concurrent programming is considered as one of the major strengths and root cause for development of

Ada [10]. An Ada task is a program that performs a sequence of actions. In a single task program, only

one task will run the entire program by running the sequence of actions one by one. In a multi-task

program, several tasks comprise the overall program and perform various sets of sequences of actions and

CHAPTER 2. LITERATURE REVIEW 11

these tasks could run at the same time. In the case of a single processor system, a multi-task program is

extended by running small parts of a task at a time and get back to an unfinished task where it was left

previously. This approach is called interleaved concurrency [19]. Whereas in the case of a multi-processor

system, tasks can be run by several processors and this phenomenon is called overlapped concurrency.

Synchronization among tasks is required for efficient concurrency. Ada 95 provides three mechanisms

that help in synchronization of and communication between tasks: Shared Variables, Protected Objects,

and Rendezvous [7].

Another major area of Ada applications is real-time programming. It involves producing real-time

applications in the form of loadable kernel modules. By loading these modules the application directly

runs in kernel space enjoying high priority and full pre-emption possibilities over interrupts of all levels.

As these applications run in kernel space, one has to make sure that the real-time program is flawless

otherwise the application can take down the entire system along with it. In most of the cases, C is used as

a primary language for developing real-time applications. But using C increases the vulnerability of the

produced real-time application to crash due to the use of pointers, which can result in memory reference

errors. Ada, which has stronger type and syntax checking, could be a better option for developing real-time

applications.

With the help of the Real-Time Annex [78], Ada tasking supports the concept of periodic tasks, event-

driven tasks, and unbounded priority inversions. The support for system level programming makes it a

much better tool for real-time programming as it can access the system hardware for developing time

critical code sequences and interrupt handlers.

A number of Ada compilers are available today. GNAT [27] compiler is considered as a standard

general purpose compiler for Ada as it is supported on various platforms. Though Ada itself can be used

for real-time programming applications, there is a definite need to have Ada integrated with a RTOS so

that it can deliver hard real-time performance. GNAT compiler for Ada has been modified and integrated

with RTLinuxFree and this modified version of the compiler is called RTLGNAT [67]. Using RTLGNAT,

programs written in Ada are compiled to produce RTLinux loadable kernel modules. Thus, the programs

can be run in kernel space with higher priority than any other running Linux application. The latest

RTLGNAT-1.0 is supported on kernel 2.4.22 with RTLinuxFree-3.2-pre3.

Ada is also used in systems level application programming [21]. These applications require access

to low level device drivers to control hardware. In general, device drivers for any hardware are written

in C/C++ due to its flexibility and popularity among programmers. Thus, an interface between Ada and

C/C++ to access low level device drivers is required. Ada uses Pragmas for interfacing with C/C++. A

CHAPTER 2. LITERATURE REVIEW 12

Pragma is a compiler directive used by Ada to follow the appropriate conventions for a function’s data

exchange. Pragma Import, Pragma Export, and Pragma Convention are the main Pragmas used by Ada.

Pragma Import is used to import functions and data types defined in foreign languages and is the key in

interfacing Ada with C/C++ based device drivers. Pragma Export is used to export the subprograms from

Ada to C. Pragma Convention denotes that Ada object should use the convention of the foreign language

to be interfaced. The Ada program with all the required Pragmas is compiled and linked with object files

(file to be interfaced) with the help of GNAT commands to produce an Ada executable with embedded C

program calls. The availability of the C interface resulted in usage of Ada in many embedded applications

[7].

When it comes to hard real-time, as discussed earlier, the only compiler available for this purpose

is RTLGNAT. The latest available version supports older versions of Linux such as kernel 2.4.xx. The

version of RTLinuxFree on which RTLGNAT is built has some license issues with FIFO modules. Hence,

some changes had to be made in the source files of RTLGNAT and additionally required files to get

it running on the latest stable version of RTLinuxfree (3.2-pre3). Further drawbacks of Ada concern

gradually decreasing community support and slowing development of the language itself.

2.1.8 Real-Time Java

Java is an object-oriented programming language and widely used in web applications [40]. Java has

a syntax similar to that of C++ with the exception of not using pointers. Java technology was introduced

in 1991 for developing software for a hand-held home entertainment device. Later with the rapid growth

in popularity of the World-Wide-Web, Sun Systems further developed Java and strengthened its position

as general purpose language, and many standard Java libraries are available today for use by program-

mers. Programs written in Java are not compiled into machine code as in the case of other programming

languages. Instead, the program is compiled into a byte code that can be interpreted by the Java Virtual

Machine (JVM). The JVM has been developed for all the architectures available today and hence Java

is termed as processor independent language. JVM takes care of memory management problems such as

memory leaks with the help of garbage collector that runs as a process and automatically frees the memory

whenever the created object reaches its lifetime.

Due to Java’s advantages and features, developers were interested in applying Java technology in

real-time applications. Nevertheless, when it comes to real-time, Java’s advantages turn into limitations.

First, Java Virtual Machine specifications leave a lot room for ambiguity in timing and thread priorities

[40]. The garbage collector, which is supposed to be Java’s strength, creates problems for real-time

CHAPTER 2. LITERATURE REVIEW 13

programming as the process of garbage collection, once started, cannot be interrupted by any process.

Other shortcomings of standard Java concern priority inversion, asynchronous event handling, absence of

a priority based scheduler, lack of support for interrupt handlers, and physical memory access. Research

concerning elimination of these issues is still in its early stages [57]. The National Institute for Standards

and Technology (NIST) developed a set of rules and standard requirements: “Requirements for Real-Time

Extensions for the Java Platform [59]” for a real-time Java, which state that the specification should not

restrict the use of Java to a particular environment, should not lose the compatibility with normal programs,

should follow the rule “Write Once Run Anywhere,” and be ready to implement advanced features in the

future. One RT-Java specifications developed based on these recommendations is the Java Specification

Request (JSR-1) by Sun and IBM1. Further development of JSR-1 resulted in the Real-Time Specification

for Java, RTSJ [5, 68].

Based on the standardized rules for RT-Java, various versions of RT-Java for embedded applications

were developed. JBED [54], PICO Java [77], and PERC [56] are some of the implementations that target

small embedded applications. Any implementation of RT-Java complying with RTSJ can be used for

real-time and embedded applications. A pre-emptive scheduler with at least 28 priorities is included to

introduce the concept of priorities for threads. Priority inheritance protocol is used to avoid the problem

of priority inversion. The usage of No Heap Real-Time (NHRT) threads, which cannot be interrupted by

the garbage collector, fixes the problem of inevitable delays caused by garbage collection. Further, the

concept of different memory areas is introduced in which the memory is divided into three areas: physical,

immortal, and scoped memory. Objects created in these areas cannot be traditionally garbage collected.

Several implementations of RT-Java comply with RTSJ: KVM (Kilo Virtual Machine) [76], J2ME

(Java Micro Edition) [70], and aJile (Single chip Java micro controller) [72] are some of the examples.

Complying totally with RTSJ allows implementations to achieve soft real-time performance but the

current available technology in RT-Java cannot be used for hard real-time tasks in mission-critical appli-

cations. Nevertheless, Java experts ensure that it has got the capability of supporting hard real-time and

distributed real-time systems – if not today, may be in the near future [40].

2.2 CACSDS

Computer Aided Control System Design Software (CACSDS) provides an environment for program-

ming, modeling, and simulating control systems and allows analyze performance. A CACSDS provides
1See https://rtsj.dev.java.net/ for more information

https://rtsj.dev.java.net/�

CHAPTER 2. LITERATURE REVIEW 14

a powerful and flexible programming environment and graphical user interface (GUI) to help the user in

building a system model.

Two of the CACSDS available today are Matlab/Simulink [47] and Scilab/Scicos [38]. Matlab/Simulink

is a commercial product and Scilab/Scicos is open-source. Both of theses CACSDS support real-time sim-

ulations. Matlab/Simulink through its add-on software Real-Time Workshop and Scilab/Scicos through

the open-source project RTAICodeGen as discussed in the following sections.

2.2.1 Matlab/Simulink/Real-Time Workshop

Matlab, which stands for Matrix Laboratory, is an easy-to-use and powerful tool for technical com-

puting. The core Matlab provides the Matlab language, mathematical function library, development envi-

ronment, graphics, and application program interface to programming languages such as C and Fortran.

Simulink is a software package integrated with Matlab and used for modeling, simulating, and analyz-

ing continuous, discrete, and hybrid systems. Simulink comes with a GUI that allows build new models

through a drag-and-drop feature of library blocks. Simulink also supports user defined blocks with its

system-functions (S-functions, [51]) written in Matlab, C/C++, Fortran, or Ada.

The Real-Time Workshop [50] provides a C code generator environment for rapid prototyping and

development. It generates source code from Simulink models to create real-time software applications,

and is applicable for any model irrespective of its time domain (continuous or discrete).

For real-time control and Hardware-In-the-Loop simulations, Matlab/Simulink combined with Real-

Time Windows Target [48] provide input-output blocks to connect external hardware. The generated code

can be run in real-time using Simulink’s external mode. With the help of Simulink GUI, a user can observe

signals during simulations.

As introduced earlier, the combination of Matlab/Simulink/Real-Time Windows Target provides real-

time extensions for Windows through a kernel that runs the compiled Simulink model in the operating

system’s “Ring 0” at highest priority [49] to achieve high performance. To take advantage of a general hard

real-time environment, the CACSDS should be used in combination with a RTOS, where the developed

application is run in kernel space with preemption capabilities and control over interrupts.

To integrate Matlab/Simulink with a RTOS such as RTAI, RTAI-LIB, which is part of RTAI [20, 8] and

a library consisting of S-functions written in C, is copied under the Matlab root directory. This library is

then compiled to generate building blocks based on RTAI. The created library provides Comedi interface

blocks [17] for connecting external hardware and scope blocks for monitoring signals using the provided

RTAI-LAB graphics user interface. A detailed installation guide is presented in Appendix A.4.

CHAPTER 2. LITERATURE REVIEW 15

After installing RTAI-LIB, the system to be simulated in real-time can be modeled using blocks avail-

able from Simulink. The code is generated in a directory designated directory in Matlab’s path and com-

piled and linked using RTAI makefiles to generate the executable file that runs in hard real-time [22].

Once the executable has been started, the RTAI-LAB GUI is used for monitoring the signals during the

simulations.

2.2.2 Scilab/Scicos/RTAICodeGen

Scilab is a scientific software package developed by the “Institut National De Recherche En Infor-

matique Et Et Automatique (INRIA)” at “Ecole Nationale Des Ponts Et Chaussees (ENPC)” since 1990.

Though not as advanced as Matlab, Scilab can match Matlab in large number of aspects [38]. This free

and open source software package comes with a “connected object simulator” known as Scicos, which is

similar to Simulink and is used for modeling and simulating dynamic systems. Scilab/Scicos is supported

on most platforms such as Windows and Linux. In this thesis, Linux version of Scilab/Scicos is used as

CACSDS.

Unlike Matlab/Simulink, which can be extended by Real-Time Workshop and Real-Time Windows

Target, INRIA does not provide such tool directly. Roberto Bucher, a researcher at the University of Ap-

plied Sciences at Southern Switzerland (SUPSI), has made a valuable contribution to RTAI by developing

a code generator that provides a real-time toolbox for both Scicos and Simulink called RTAI-LIB [8]. This

code generator integrates RTAI libraries with Scilab macros. RTAI-LIB has blocks that can be used for

signal generation, signal recording and display, and real-time data acquisition [9]. Table 2.2 shows a list

of available blocks and their purpose.

Once Scilab/Scicos is installed on a system, it can be integrated with RTAI and the required code gen-

eration files installed as Scilab macros. After this setup process, users get access to RTAI code generation

option in the Scicos GUI. Once the model of the considered system has been built, the executable real-time

module can be generated. This is done by running the RTAI code generator on the Scicos superblock that

contains the dynamic system model. Execution of the generated file starts the real-time tasks. Afterwards,

the RTAI-LAB is launched to connect to the tasks and display the signals through its digital instruments

such as scopes and meters. An installation guide is included in Appendix A.2.

As previously mentioned, connecting hardware to a PC instead of its software model and performing

the simulation is known as Hardware-In-the-Loop simulation. A simple HIL scenario consists of a PC

(with CACSDS installed on a real-time platform) connected to the actual hardware through a data acqui-

sition (DAQ) card. The DAQ card forms the means of communication between the control code generated

CHAPTER 2. LITERATURE REVIEW 16

Table 2.2: List of available Scicos blocks from RTAI-LIB

Name of Block Purpose
RTAI Sinus Sine wave generator
RTAI Step Step function

RTAI Square Square wave generator
RTAI Extdata Source block using input file

RTAI ComediDATAIn Comedi input block for reading analog input
RTAI ComediDIOIn Comedi input block for reading digital input

PCAN In PCAN input block for reading messages
RTAI Mbx Rcv Input block for interprocess communication using mailboxes

RTAI Scope Scope block for reading signals
RTAI Meter Digital representation of analog meter

RTAI Led Led display
RTAI Fifo Output block used for writing data to a fifo

RTAI ComediDATAout Comedi output block for sending analog output
RTAI ComediDIOIn Comedi output block for sending digital output

RTAI Mbx Rcv Output block for interprocess communication using mailboxes
PCAN Out PCAN output block for writing messages to CAN device

on the PC and the external hardware. It provides a two way path for input and output signals from the PC

and the hardware. In order to have this DAQ process functioning, system has to recognize the DAQ card

used. The device drivers provided by the manufacturers of the DAQ card are usually supporting Windows

only. The Linux based device drivers can be obtained by using Comedi drivers [17].

Comedi is a project started by David Schleef and others and aims at developing open source device

drivers, tools, and libraries for data acquisition. The device drivers developed support hardware from

several manufacturers of data acquisition boards [16]. The Comedi team has developed two packages

for the purpose of data acquisition: Comedi and Comedilib. Comedi is a collection of device drivers for

the various brands of DAQ boards, and provides the drivers in form of loadable Linux kernel modules.

Comedilib is a library that provides an interface to the Comedi drivers. This library has some useful

tools for the user such as calibration and demo programs. Once the Comedi package is installed, the

user can install the Comedilib package and test/calibrate the card using the calibration utility in order to

verify whether the device driver for the corresponding hardware is functional. By using some of the demo

programs that come with the Comedilib package, complete information of the corresponding DAQ device

can be obtained.

Comedi and Comedilib should be installed after installing RTAI and SCILAB. Once Comedi and

Comedilib are installed, RTAI has to be re-configured with the Comedi option enabled so that Comedi

CHAPTER 2. LITERATURE REVIEW 17

and Comedilib are integrated. The detailed procedure of installing Comedi and Comedilib is given in

Appendix A.3.

2.3 Communication Networks

2.3.1 Controller Area Network

Controller Area Network (CAN, [14]) is a serial bus communication network. The increase in interest

in distributed control systems in automobiles, cost of wiring, need of high availability, high speed, and

reliable data communication resulted in development of CAN. Initially, CAN was used only in the au-

tomobile industry. Later on CAN found its applications in various process industries and robotics. This

two-wire, half-duplex, high speed network system is known for its robustness, reliability, and connection

of up to 2032 devices (theoretically) supporting communication rates of up to 1 Mb/s.

CAN was first developed by the engineers at BOSCH [73], a German based company in 1986. It

began with the search for a network protocol that would meet the automotive industry’s requirements.

Uwe Kiencke started working on the development of a serial bus network in 1983. Later, he and other

engineers at BOSCH invented the “Automotive Serial Controller Area Network,” which was based on

a non-destructive arbitration mechanism and would grant bus access to the messages according to their

priorities.

The latest BOSCH CAN specification was published in 1991 and consists of two parts [6]: Standard

CAN (Version 2.0 Part A) defines an 11-bit message identifier and Extended CAN (Version 2.0 Part B)

defines a 29-bit identifier. Two different ISO standards for CAN exist [39], and the difference is in the

physical layer: ISO 11898 is meant for high speed applications of up to 1Mb/s and ISO 11519 has an

upper limit of 125kb/s.

A Finland based elevator company and some Swedish based textile industries were the first compa-

nies that used CAN bus for non-automotive purposes. Today, CANOpen [13] and DeviceNet [15] are

standardized application layers extensively used in the process industry for machine controls. The latest

development of CAN was the time triggered communication protocol (TTCAN) by CAN in Automation

(CIA) [14].

In 2000 CAN was also introduced as a communication platform by the National Marine Electronics

Association in the NMEA 2000 interface standard [55]. The standard is meant to fulfill the requirements

of a serial data communications network to inter-connect marine electronic equipment on vessels.

CAN is a multi-master network based on Carrier Sense Multiple Access/Collision Detection + Arbi-

CHAPTER 2. LITERATURE REVIEW 18

tration through Message Priority (CSMA/CD + AMP). Messages sent do not contain any address and are

not destined to any particular node. Instead, the message is sent to all the nodes and the corresponding

node, which is supposed to receive the message, identifies the message with the help of the information it

carries in the identifier bits. The identifier is sent at the beginning of every message and allows both defin-

ing different messages and different message priorities. As low bits are dominant, the lower the message

identifier the higher the message’s priority.

Figures 2.3 and 2.4 [58] show the CAN message structures for both protocol version 2.0A and 2.0B.

CAN uses message frames for data transfer. There are two message frame formats: data frame and remote

frame. Data frames are used to send information according to either CAN 2.0A (Standard messages with

11-bit identifier) and 2.0B (Extended messages with 29-bit identifier). In general, a standard message

frame of a CAN system consists of various fields as follows:

Bus Idle

SOF

Arbitration Field

11 bit Identifier

RTR

r1

r0

Control

DLC
 Data(0-
 8Bytes
)
 15 bits

Message Frame

Data Field
 CRC
 field
 ACK
 EOF
 Int
 Bus Idle

Delimiter
 Delimiter

Sb1

CAN
 2.0A
 Message Frame

Figure 2.3: Message structure CAN 2.0A

Bus Idle

SOF

Arbitration Field

11 bit Identifier

SRR

r1

r0

Control

DLC
 Data(0-
8Bytes
)
 15 bits

Message Frame

Data Field
 CRC
 field
 ACK
 EOF
 Int
 Bus Idle

Delimiter
 Delimiter

Sb1

CAN
 2.0B
 Message Frame

18 bit Identifier

SRR

r1

Figure 2.4: Message structure CAN 2.0B

CHAPTER 2. LITERATURE REVIEW 19

• SOF: Start of Frame indicates the beginning of a frame.

• Arbitration Field: Contains a messages identifier and the Remote Transmission Request (RTR) bit

which tells whether the message carries any data or itself is requesting some.

• Control: This field consists of a total of six bits with two reserved bits (r0 and r1) and 4 bits of data

length code (DLC) which gives the number of bytes in the data field that follows.

• Data Field: Data field contains 0-8 bytes.

• CRC: Contains a fifteen bit cyclic redundancy check for validating the received message and a

recessive delimiter bit.

• ACK: This field has 2-bits, first bit is the slot bit transmitted as recessive and the other one is

recessive delimiter bit.

• EOF: End of frame consisting of seven recessive bits

• INT: Intermission has 3 reserved bits.

Extended message frame format has almost similar message structure standard format except of the

extended format with 29-bit identifier and also has a Substitute Remote Request (SRR) in the arbitration

field, which makes sure that standard message gets the higher priority when both 2.0A and 2.0B identifier

messages are used at the same bus.

Remote frames are used to request data rather than sending. A message with the RTR bit set requests

data according to its identifier.

CAN protocol supports a high number of distinguished messages per system. It is possible to have

2048 different messages in the case of an 11-bit message identifier, and 512 million in the case of a

29-bit message identifier. CAN system supports event oriented message transmission system due to its

multi-master architecture.

CAN bus system is a highly reliable communication network due to its outstanding capabilities of

error detection and fault confinement. Network-wide data consistency is achieved with the use of error

frames which destroy the faulty message. Each CAN controller is provided with a counter which keeps

track of the number of errors and when a certain limit is reached the erroneous node is automatically

disconnected from the bus.

Errors occurring in a CAN bus are of two types: bit error and message error. A bit error occurs

whenever a transmitting node inserts more than five consecutive low or high bits or if there is a different

bit value returned when compared with the sent message. Message error could occur if there is any

checksum error, acknowledge error, or inconsistency in the format of a message.

CHAPTER 2. LITERATURE REVIEW 20

2.3.2 GPIB/IEEE 488

General Purpose Interface Bus (GPIB) [85] is one of the popular communication networks developed

by Hewlett Packard in 1965 and, hence, it is also referred to as Hewlett Packard Interface Bus (HPIB).

GPIB was mainly used for connecting different computers and programmable instruments within a short

distance. In 1987, GPIB was defined in IEEE standard 488 (1-1987 Standard Digital Interface for Pro-

grammable Instrumentation, [37]), since then it is also referred to as IEEE 488. The latest standard for

GPIB is IEEE 488.2.

To use GPIB, the GPIB adapter and the GPIB lead are essential. The bus system consists of 16 signal

lines and eight ground lines. The 16 signal lines are further divided into eight data lines, three hand-shake

lines, and five interface management lines. The GPIB standard allows up to 15 devices connected to one

bus. The maximum speed for data transfer supported is 200 KB/s. With the eight data lines, GPIB can be

classified as parallel networking bus. As the bus interface is function independent of instruments, almost

any instrument can be interfaced with it.

The 15 devices that can be connected to a single bus are categorized into controller, talker, and listener.

It is required that at an instant there is at least one controller and one talker or listener. Though there could

be many controllers, at any single time only one controller is active. The active controller performs the

bus control options for all the connected instruments thus acting like a master. Talker and listener transmit

and receive the data according to the instructions from the controller.

The data lines are used for transfer of addresses, control information, and data. ASCII or binary are

the general formats for data. The control of the data transfer is done by the hand-shake lines NRFD (Not

Ready for Data), NDAC (No Data Accepted), and DAV (Data Valid). Interface Management Lines are

used for managing the data transfer across the interface [81].

GPIB comes with some physical restrictions regarding the maximum distance between two devices

on a bus (4 meters). This restriction adds the requirement of extenders and expanders. GPIB is relatively

expensive and not meant for real-time communication.

2.3.3 Modbus

Modbus is a serial bus communication protocol developed by Modicon in 1978 [80] for exchanging

information between products on the factory floor. It then became a standard for communication between

programmable logic controllers. Modbus’s physical layer is based on a pair of shielded and twisted wires.

RS-232C compatible serial interface is used by the Modicon controllers on a standard Modbus. The

controllers, which are usually networked directly using modems, communicate using master-slave tech-

CHAPTER 2. LITERATURE REVIEW 21

nique. The master device initiates all the queries and the slave devices respond to these queries and supply

the requested data. In the case of Modbus, host processors and programming panels could be masters and

programmable logic controllers act as slaves.

ASCII and RTU (Remote Terminal Unit) are the two used transmission modes. In ASCII, two 8-bit

bytes are sent as 2 ASCII characters, whereas in RTU data is sent sent a two 4-bit hexadecimal characters.

Of the two types, RTU is more efficient and has a higher throughput. The maximum distance supported

on the network is 350 m.

Modbus protocol is simple in architecture. Enhancements for Modbus protocol are ModbusPlus and

Modbus/TCP by supporting peer-to-peer communication through encapsulation of information on the bus

into a networked structure. These enhancement protocols also support a maximum distance of 1500 m for

a bus with the help of repeaters.

Modbus protocol is widely used in Programmable Logic Control process systems but the master-slave

architecture does not allow it to be used for real-time purposes. For real-time data transfer, each and every

device should be able to initiate queries.

2.3.4 Conclusions

Comparing the above discussed bus communication networks, Controller Area Network proves to be

a desireable choice due to the following features:

• Support of high data transfer rate (1 Mb/s).

• Suitable architecture (multi-master) for real-time distributed applications.

• Reliable with strong error detection and fault confinement mechanisms.

22

Chapter 3

Application: CACSDS/Controller Area

Network Integration

3.1 Overview

The Controller Area Network as discussed earlier is a popular choice in real-time control and com-

munication applications. Besides advantages such as reliability and low cost, the support of high baudrate

of up to 1 Mb/s is one of the main reasons for its increasing significance in the real-time world.

A CAN device interface when integrated with RTOS enables the user to transmit and receive real-time

CAN messages. The real-time CAN messaging is useful especially in communication aspect of mission

critical applications. Further, if a CAN device interface is integrated with RT-CACSDS, it will help the

user to conduct real-time CAN messaging along with real-time Hardware-In-the-Loop simulations.

3.2 Hardware

Out of various CAN-PC interface devices available today, USB-CAN device from Peak-Systems [62]

was chosen as it is portable and, more importantly, Linux based device drivers were freely available for

integration with RTOS and CACSDS such as RTAI/RT-Linux and Scicos/Simulink.

The device is based on a Phillips SJA1000 CAN Controller with 16MHz clock frequency, 82C251

CAN transceiver, and has a 9-PIN connector. Figure 3.1 shows a picture of the PCAN-USB device and

connector.

CHAPTER 3. APPLICATION: CACSDS/CONTROLLER AREA NETWORK INTEGRATION 23

Figure 3.1: PCAN-USB device with 9-PIN connector [61]

3.3 Integration with RT-CACSDS

After installation of Linux based device drivers for this PCAN-USB as supplied by Peak-Systems,

loadable kernel module, library, and some scripts for testing the device are available. Connecting the

device to the PC triggers creation of a device file at /dev/pcan0. All these device driver files are written in

C and C++ and can be easily integrated to RTOS and CACSDS. RTAI-LIB developed by Roberto Bucher

[9] has a Scicos block interfacing PCAN-Dongle device for parallel port. These blocks are made of source

files written in C and call the basic CAN device library functions such as opening, reading, writing, and

status checking, respectively. Figure 3.2 shows a flowcharts explaining the sequence of functions called

during the operation of a CAN device.

To have the PCAN-USB device recognized by Scicos, the initialization function CAN Open() is re-

placed by Linux CAN Open(), which uses the actual device file /pcan/dev0 as one of the parameters. The

message structure of the CAN device has three main parts: message ID, message length, and the mes-

sage’s data bytes. The PCAN Scicos block did not have any parameter that allows the user to specify

custom baudrate. So, a parameter is added to select standard baudrate values such as 1000 kb/s, 500

kb/s, etc. These numbers are assigned the standard baudrate hexadecimal values in the source file of the

block. For sending CAN messages, a source block in Scicos under RTAI-LIB is required that takes in the

values supplied in a file or through Scicos GUI and sends them to PCAN-OUT block, which ultimately

CHAPTER 3. APPLICATION: CACSDS/CONTROLLER AREA NETWORK INTEGRATION 24

transmits the messages. But the Scicos scheme does not allow a user to send external messages in to CAN

bus. Hence, the messages to be sent are defined in the initialization file peak.c. A parameter is included

which takes in an integer value and selects the predefined message from the peak.c file. Thus, by using

PCAN-OUT block, one can send predefined custom CAN messages with custom baudrate in real-time.

The disadvantage is that the user has to recompile the library (RTAI-LIB) to send messages other than the

predefined ones.

RTAI-LIB for Simulink, which is part of the RTAI distribution, does not have any blocks interfacing

CAN devices. Hence, a C based S-function [51] of already existing Simulink S-functions is used as

a template and a S-function of PCAN device is created linking the basic library files from the device

drivers. In Simulink, to create such a block with access to devices, the source files including header files

and library files are to be copied into the Matlabroot/rtw/c/libsrc directory and the S-function compiled

under the Matlabroot/rtw/c/rtai/devices/ directory. Static library for the PCAN device is to be created

under /usr/lib/ directory to link the CAN block.

Simulink blocks are developed to interface the PCAN device to receive and transmit CAN messages.

The block shown in Fig. 3.3 is used for receiving CAN messages. The block has five output ports providing

CAN bus status, message identifier, message type, message length, and data. The Simulink block shown

in Fig. 3.4 has three input ports for message identifier, message length, and data. This block can be used

for transmitting messages to CAN bus. Both blocks have two parameters: baudrate and sampling time.

The C S-functions used in the input and output blocks are given in Appendix B.4.

Once the PCAN block is compiled and the executable is run, the messages are written to the actual

CAN device hardware. To check whether the PCAN block is transmitting the correct messages, a simple

circuitry involving a eZdsp 2812 [74] is used. Figure 3.5 shows the schematic connecting the PCAN-USB

device to eZdsp 2812 through a CAN bus and the CAN driver SN65HVD230DR. The eZdsp board is

connected to another PC running software for receiving and transmitting data.

CHAPTER 3. APPLICATION: CACSDS/CONTROLLER AREA NETWORK INTEGRATION 25

START

EXIT

Status =

Linux_Can_Open()

CAN_Read()/CAN_Write()

CAN_Close()

CAN_
Init
()

Status

Status

Status

Exit

True

False

True

True

False

False

Exit

Exit

Figure 3.2: Flowchart showing PCAN block functionality

CHAPTER 3. APPLICATION: CACSDS/CONTROLLER AREA NETWORK INTEGRATION 26

Message ID

Message Length

Data

Simulink
 Block

Receive

Status

Message Type

Figure 3.3: Simulink block for receiving CAN messages

Simulink
 Block

Send

Message ID

Message Length

Data

Figure 3.4: Simulink block for CAN message transmission

CHAPTER 3. APPLICATION: CACSDS/CONTROLLER AREA NETWORK INTEGRATION 27

Driver

eZdsp 2812

120
W
 120
W

10K
W
 SN65HVD230DR

CAN TX
 CAN RX

CAN BUS

Parallel Port

PCAN-USB 9-PIN Male

Figure 3.5: Schematic PCAN-eZdsp

28

Chapter 4

Application: HIL – Control Experiment

4.1 Introduction

This chapter tests RTAI’s capabilities of Hardware-In-the-Loop simulation and control. The output

voltage of a DC-DC Buck converter is controlled by the software part as implemented using RT-CACSDS

Scilab/Scicos/RTAICodeGen.

4.2 Buck Converter

The DC voltage obtained by rectifying the line voltage only is not regulated. To convert this unregu-

lated voltage to a regulated DC voltage, switching mode DC-DC converters are used. If the switch mode

DC-DC converter is designed to lower the voltage then it known as a step down Buck converter.

The DC-DC converters are in general used for DC-power supplies and DC motor applications. Since

the load in the application could change and the converter’s components are not ideal, control of the output

voltage of DC-DC converter is required. In a switch mode DC-DC converter, the value of output voltage

is adjusted by varying the on- and off-periods of the switch. In one of the methods to control the output

DC voltage, the duty ratio, which is defined as the ratio of on-period to off-period is varied. This method

is known as Pulse Width Modulation (PWM). In this method, the control signal that controls the state

of switch is generated by comparing a modulating control signal with a repetitive high-frequency carrier

waveform. The control signal is obtained by amplifying the error or the difference between the actual

output voltage and the desired voltage. When the amplified error signal, which varies slowly in time

relative to the switching frequency, is greater than the carrier waveform, the logical switch control signal

becomes high causing the switch to turn on [52]. Figure 4.1 shows the schematic of the implementation

CHAPTER 4. APPLICATION: HIL – CONTROL EXPERIMENT 29

where the control of the Buck converter is achieved through the control signal generated by the software

controls and interfaced via the data acquisition card.

D1

Analog Output

CH 0

O

In

V1

12Vrms

R3

10k

CH 0

0-6V

PWM

D5

Switch Control Signal

1

3

2

D4

Vf

D3

V2

NI-DAQ

Buffer

D2

C1

1000 uF, 16V

R3

10k
C3

330 uF

C2

1000 uF, 16V

25kHz

R2

3
0
 O

h
m

s
 -

 7
5
0
 O

h
m

s

L1

270 uH

1
 2

Analog Input

Figure 4.1: Schematic of buck converter

4.3 Design

An ideal DC-DC Buck converter has an ideal switch and constant input voltage. In practice, the

switch will cause a small voltage drop and input voltage changes need to be compensated. The static

characteristics of the converter are shown in Fig. 4.2. The presence of inductive components, which aid

in filtering and reducing ripple currents, require a reverse diode. During the on-period the diode becomes

reverse biased and the input provides energy to the load as well as inductor. During the off-period the

inductor current flows through the diode transferring some of the stored energy to the load. The problem

of fluctuating output voltage is reduced by using capacities at the input and output ports.

CHAPTER 4. APPLICATION: HIL – CONTROL EXPERIMENT 30

1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5
0

2

4

6

8

10

12

14

16

1200 οhm400 οhm
150 οhm

125 οhm

75 οhm

R
L
 = 30 οhm

Control voltage (V)

A
ve

ra
ge

 o
ut

pu
t v

ol
ta

ge
 (

V
)

Figure 4.2: Buck converter characteristics

4.4 Control

The DC-DC converter is controlled in real-time using a controller designed in Scilab/Scicos/RTAICode-

Gen (see Fig. 4.3). The AC-DC power supply using single-phase bridge rectifier produces unregulated DC

voltage. The Buck converter, which includes a MOSFET switch driven by Pulse Width Modulation con-

trolled switch, diode, and filter, produces a regulated DC voltage. A resistor bank serves as variable load.

The output voltage varies with the loading and line conditions. The measured output voltage signal is

sent to the software based controller through the input channel of DAQ card as a feedback signal.

The Scicos blocks RTAI-Step, RTAI-Scope, Comedidataread, and Comedidatawrite are from the

RTAI-LIB. A fixed reference signal is obtained from the RTAI-Step block. Comedi based blocks pro-

vide the interface to the DAQ card. A filter is used to reduce measurement noise. Usage of RTAI-Scope

blocks in the Scicos scheme enables the user to monitor input and output signals while the system is

running. The control signal from the discrete proportional-integral controller is sent to the PWM circuit

through comedidatawrite block.

The Scicos scheme is compiled under RTAICodeGen that generates the executable running in real-

time. A sampling time of 4 ms was chosen.

CHAPTER 4. APPLICATION: HIL – CONTROL EXPERIMENT 31

Comedi

DataIN

Rtai
_Scope

PID

0.813

z
-0.8187

+

In

Rtai
_Step

Rtai
_Scope

Feedback

S/H
 Saturation

2*
z
-1.9

z
-1

Comedi
 Data out

Rtai
_Scope

Control

1

1
Reference

DAQ
 Card Output
 Filter
 DAQ
 Card Input

PI Controller

Figure 4.3: DC Voltage control scheme in Scicos

4.5 Results

The HIL-arrangement was tested for different loading conditions. The three loading conditions used

represented a light load of 400 Ω, a medium load of 125 Ω, and heavy load of 30 Ω. The recorded traces

of the converter’s output voltage are shown in Fig. 4.4. In each case the output voltage recovers from both

loading and unloading the converter and returns to the chosen reference voltage of 12.8 V.

4.6 Conclusions

This experiment was chosen to proof the concept of HIL capability of RT-CACSDS. The setup allows

testing necessary components for achieving real-time control of hardware connected to a general purpose

modeling and control design tool. The Buck converter is an important component of the envisioned

all electric shipboard power system, and its incorporation into real-time modeling and simulation is an

important step toward improved design capabilities.

CHAPTER 4. APPLICATION: HIL – CONTROL EXPERIMENT 32

0 0.5 1 1.5 2 2.5 3 3.5 4
11.5

12

12.5

13

13.5

14

14.5

time (s)

ou
tp

ut
 v

ol
ta

ge
 (

V
)

R
L
 = 400 Ω

0 0.5 1 1.5 2 2.5 3 3.5 4
8

9

10

11

12

13

14

15

16

17

time (s)

ou
tp

ut
 v

ol
ta

ge
 (

V
)

R
L
 = 125 Ω

0 0.5 1 1.5 2 2.5 3 3.5 4
4

6

8

10

12

14

16

18

time (s)

ou
tp

ut
 v

ol
ta

ge
 (

V
)

R
L
 = 30 Ω

Figure 4.4: Output voltage for different loading conditions

33

Chapter 5

Application: Agent based Automatic

Reconfiguration

5.1 Introduction

In this chapter, an automatic reconfiguration scheme for an energy management system with multi-

agent technology is presented. Real-time simulation of the energy management system is demonstrated.

The system under consideration is based on the concept of “Automatic Reconfiguration for Energy Man-

agement Systems of Electrical Shipboard Power System” using multi-agent systems as documented in

[33].

5.2 Shipboard Power System

The system is a simplified version of the reduced scale integrated power system by the US Navy for

demonstrating control design, survivability strategies, and stability analysis techniques [63]. The overall

system is comprised of two parts: the Generation and Propulsion Testbed and DC Distribution Testbed

(DCDT). The generation part has two AC sources: Port AC system and Starboard AC system consisting of

turbine, exciter, AC generator, and propulsion motor. The two AC sources supply the propulsion systems

and feed other loads via the DC distribution system. For reliability and robustness, AC is converted to DC

for distribution of electric power. The DCDT has two DC buses: Port Bus and Starboard Bus. The loads

are grouped into zones with each zone being supplied by additional DC-DC converters [33].

The Simulink model of SPS is shown in Fig. 5.1. The blocks, AC (AC generator), gas turbine, and

power supply for initial startup represent the AC generation part of the SPS. The output of AC generator

CHAPTER 5. APPLICATION: AGENT BASED AUTOMATIC RECONFIGURATION 34

is connected to propulsion system and AC-DC supply system (DC PS). The DC power is then supplied

through DC buses to three load zones where each zone has two loads. All the components of the system

are modeled using first and second order transfer functions representing the relationship between active

power and voltage values.

Figure 5.1: SPS Simulink model

5.3 Multi-Agent System

The concept of software agents used in building distributed systems that co-operate to reach a common

goal was introduced in [83]. Similar philosophy is followed in implementing the multi-agent based control

framework and applied to build the energy management system.

An agent can be defined as a system that tries to reach its design objectives by taking autonomous

action in the environment it is placed in [83]. If a system has many such agents that interact with each

other to reach common objectives while simultaneously each agent pursues its individual objectives, the

system can be termed as multi-agent system [26].

The agents form a network of problem solvers and work together to solve problems that are beyond

their individual capabilities. The ability to reconfigure in a decentralized approach makes this a fault

tolerant scheme in building self-configuring energy management system.

CHAPTER 5. APPLICATION: AGENT BASED AUTOMATIC RECONFIGURATION 35

5.4 Maximum Flow Problem and Graph Theory

Graph theory provides an appropriate framework for implementing the above discussed concept of

distributed agents. The fundamental problem in graph theory is the maximum flow problem. Various

sequential and parallel algorithms have been developed [3] to solve this problem. The algorithm developed

in [34] is used to solve the power flow problem as it is simple, passive, and self-stabilizing.

Figure 5.2 shows a directed graph. Points s, i, j, k and t are nodes. The arc between the nodes i and j

is called edge(i, j) with a non-negative real-valued capacity cij and a real-valued flow fij . s is the source

node with only outgoing edges and t is the sink node with only incoming edges. Residue of an edge can be

defined as cij-fij=rij . Figure 5.3 shows the residual graph. The capacities of all the edges are 4. Directed

path from source node to sink node is called augmenting path. In the figure below the augment path is

s− i− j − t.

S

i

k

j
 T

2

2

1

1

S

i

k

j
 T

2

2

1

2
 2

3

1

3

3

1

3

Figure 5.2: Directed digraph

The maximum flow problem is to maximize the flow from the source to the sink node. This is solved

by increasing the flow on the augmenting path by the minimal residual value of the path. Figure 5.3 shows

the solution reached by following the above procedure. The minimal residual capacity of augmenting path

s− i− j − t is min(2, 2, 1) = 1. Therefore, increasing the flow by 1 yields the maximum flow solution.

CHAPTER 5. APPLICATION: AGENT BASED AUTOMATIC RECONFIGURATION 36

S

i

k

j
 T

3

3

1

1

S

i

k

j
 T

1
 1

1

3
 3

4

4

3

1

3

Figure 5.3: Digraph with solution

5.5 Maximum Flow Algorithm - Guarded Statements

A similar approach is followed in solving power flow problem as part of an energy management

system for shipboard power systems. The first step is to transfer the entire system model into a directed

graph (digraph) with each node representing a component. All AC generators are accommodated by links

to the source node and all the load nodes by links to the sink node. Each node acts as an agent with

common objective of ensuring power flow to all the loads according to their priorities.

Each agent runs an algorithm containing guards and corresponding actions changing the local vari-

ables associated with the agent to reach its design objective. In the case of the computational model for

the power systems’s digraph, the local variables changed are the flow fij according to the d-value of the

particular node to make the demand at that node zero and the d-value itself. The d-value of a node can be

defined as the believed shortest distance to the source node in the residual graph.

The following discusses the algorithm’s guarded statements as run by each agent. In a digraph, let

n be the number of nodes, i is the node under consideration, k is a predecessor node for i, and j is an

adjacent node. The demand of node i, demand(i), can be defined as outflow minus inflow. The d-value

is represented as d(i). The edge(k, i) is an incoming edge for the node i with incoming flow of fki and

a capacity of cki. All the nodes run the following rules except for the source node, which is idle. The

CHAPTER 5. APPLICATION: AGENT BASED AUTOMATIC RECONFIGURATION 37

d-value of the source node is permanently set to zero.

GS 1: If cki > fki and d(k) < n then d(i) = d(k) + 1 else d(i) = n.

Node i checks if the d-value of its predecessor nodes is less than n and if there is any possible direct

path to the source node. If the conditions are satisfied then d(i) is calculated as d(i) = d(k) + 1, where

d(k) is the d-value of the predecessor node. Otherwise d(i) is assigned the maximum value n stating that

there is no possible direct path form the source node available.

GS 2: If demand(i) < 0 then fki = fki −min(demand(i), fki)

If the demand at node i is less than zero then the inflow is greater than the outflow. The action to be

taken in order to make the demand zero is to decrease the incoming flow by the minimum of the demand

at node i and flow fki.

GS 3: If demand(i) > 0 and d(i) < n then fki= fki + min(demand(i), (cki − fki))

If demand at node i is greater than zero, i.e., outflow is greater than inflow, and the d-value is less than

n, the corrective action is taken on the incoming edge to make demand zero by increasing the flow fki by

minimum of demand(i) and the residual capacity of the edge k − i, cki-fki.

GS 4: If demand(i) > 0 and d(i) = n then fij = fij −min(demand(i), fij)

If the node’s d-value has reached n and the demand is positive then the outgoing flow is reduced on

the outgoing edges according to the priorities propagated from the load nodes.

GS 5: If there is a capacity violation then the flow on the corresponding edge is reduced by the amount

fij − cij .

GS 6: If a node is directly connected to a load node then it is called a special node.

For a node i, if demand(i) > 0 and d(i) = n and i is not special node and i connected to special node

j and flow on the edge(i, j) > 0 then: if sp nodepriority = 1 then fmin = find min(demand(i), flow

from special node to low priority load) and f(i, spl node) = f(i, spl node)−fmin; if node i = spl node,

then reduce flow towards low priority load;

If demand(i) = 0 and d(i) = n, and i <> specialnode, if i connected to special node and if

special node is connected to any unsupplied high priority loads then reduce supply to low priority loads

by minimum of demand(spl node) and flow to priority loads until the high priority load is supplied.

Furthermore, increase the flow to high priority load accordingly.

GS 7: Publish the status.

This guarded statement informs the shipboard power system about the convergence of the solution.

The algorithm is implemented in Simulink. Each statement in the algorithm is represented by if-else

and action subsystem blocks from the ports and subsystems blockset. The if-else and action blocks are

CHAPTER 5. APPLICATION: AGENT BASED AUTOMATIC RECONFIGURATION 38

transformed into a subsystem representing an agent. Figure 5.4 below shows the outline of an agent as

a Simulink block and its contents. Twenty two such blocks are used to represent the shipboard power

system agents including 8 load nodes (2-propulsion loads, 6-regular loads), 6-converter modules, two AC

generators, and two power supplies.

Agent as a

Simulink
 Block

if - else

condition block

if - else

condition block

if - else

condition block

Action subsystems

Guarded Statement # 1

Guarded Statement # 2

Guarded Statement # 7

Action subsystems

Action subsystems

Figure 5.4: An agent as Simulink block

Capacities, flows, and d-values are initialized with the help of a Matlab script as given in Appendix

B.3. All the agents are connected to their neighbors and exchange information. Each agent has a memory

block associated with it to store the latest information regarding the flow and d-values. The twenty two

node system is then run in Simulink. If the demands of all nodes are equal to zero and the load nodes are

supplied power flow according to their demands and priorities then the algorithm has converged.

Interfacing the agent based energy management system with the shipboard power system physical

model is taken care by the implementation layer. The implementation layer checks if the solution for the

power flow problem has converged. If the solution has converged, a value is passed on to the connected

loads of the shipboard power system. This value, which ranges from 0 to 1, is a ratio of the supplied flow

and load demand where zero denotes that the load is completely cut off and 1 denotes that the load is

CHAPTER 5. APPLICATION: AGENT BASED AUTOMATIC RECONFIGURATION 39

supplied in full.

5.6 Real-Time Simulation

The Simulink model of the agent-based energy management system and the physical model of ship-

board power system is simulated in real-time using Matlab/Simulink/RTW-RTAI. The entire system is run

with a sampling rate of 1 ms using fixed step discrete solver.

Appendix A.4 shows the procedure to integrate Matlab/Simulink with RTAI. When integrated with

Matlab, RTAI provides a Simulink library with scopes and log blocks. These blocks are used in the

Simulink model instead of regular Simulink scope blocks.

From the Real-Time Workshop menu of Simulink, ‘rtai.tlc’ is selected as target language compiler and

the code is generated by using “generate code only” option. With rtai-config added to the path variable,

this code is compiled by issuing a ‘make’ command to create an executable for the Simulink model.

RTAI modules are loaded before launching the executable. With usage of ‘-w’ option, the task waits

for the external initialization, which can be done using RTAI-LAB GUI.

Figure 5.5 shows a snapshot of RTAI-LAB GUI that allows the user to initiate the tasks, monitor the

signals, log the data, and change the parameters of the model on the fly during the simulation. Thus, the

GUI serves as a Command and Control Center as it further allows the user to change the parameters of the

model such as capacities of the edges and priorities of the loads.

5.7 Real-Time Component

The executable for the Simulink model is a result of compiling code with RTAI library files located

in Matlabhomedir/rtw/c/rtai and Matlabhomedir/rtw/lib/libsrc. The file rtmain.c, one of the main files is

compiled into an object file rtmain.o, which is directly linked with the final executable tasks [8].

• rt Main is the main task which initiates the other two tasks.

• rt HostInterface is the task responsible for inter-task communication.

• rt BaseRate is the task that actually runs in real-time. It is a Hard Real-Time Interrupt Service

Routine.

The function “WaitTimingEvent” is a part of the outer-most loop of the real-time code and waits

until the next sampling time is reached before calling the Simulink model. The model is said to run

in real-time if Simulink manages to complete all the computations and is ready for the next time stamp

CHAPTER 5. APPLICATION: AGENT BASED AUTOMATIC RECONFIGURATION 40

Figure 5.5: RTAI-LAB GUI serving as Command and Control Center

on a regular basis without failure. To profile the running model and check the behavior of the tasks at

every time stamp, Linux based command ‘outb’ is used for low level parallel port output. The syntax for

the command is outb(‘databyte’,‘portnumber’). The commands outb(0x00,0x378) and outb(0xFF,0x378)

were inserted into the main loop to signal computation and idling time. The output of the parallel port

is connected to an oscilloscope and the spikes at every time stamp during which the Simulink model is

executed can be recorded. The following gives the plots obtained from the logged data and describes

significant observation.

Figure 5.6 shows a plot for data logged during a single time stamp (1 ms). The x-axis represents the

duration of one period and each time stamp represents one micro second. Y-axis is the voltage of the

output of the parallel port. The pulse width gives the execution time for the model (40 µs).

Figure 5.7 shows the histogram representing the behavior of the execution time. The data was logged

over a period of 20 ms, during which various values of execution time occurred. X-axis denotes the

execution time in micro seconds and Y-axis represents the percentage of occurrence of these execution

times. The plot shows that Simulink computation time was around 28 µs for 50% of the time and for 20%

of the time the execution time increased up to 48 µs (this is when the Simulink model is in reconfiguration

process).

CHAPTER 5. APPLICATION: AGENT BASED AUTOMATIC RECONFIGURATION 41

0 1000 2000 3000 4000 5000 6000
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Number of samples at 0.1 micro second sampling rate

V
ol

ta
ge

1msec loadchange

Simulink is executing

Simulink waits for next time event

Execution time = 42 micro seconds

Figure 5.6: Oscilloscope data for single time stamp, 1 ms

25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

Pulse Width (us)

O
cc

ur
en

ce
 (

%
)

Figure 5.7: Histogram showing the behavior of the task

Further, to check the real-time capability of RTAI, the consistency of the desired sampling time is

checked. The data is logged at a sampling rate of 100 ns. It used to calculate the time between two

computation instances. This value should be close to the selected sample time of 1 ms. A histogram is

shown in Fig. 5.8 and gives the variation of the sample time for a period of 100 ms. It can be seen that the

CHAPTER 5. APPLICATION: AGENT BASED AUTOMATIC RECONFIGURATION 42

sample time was 0.9992 ms for more than 90% of the time. The reason for the value being less than 1 ms

is due to the inaccuracies caused by the available recording capabilities.

0.992 0.994 0.996 0.998 1 1.002 1.004 1.006 1.008 1.01
0

10

20

30

40

50

60

70

80

Pulse Width (ms)

O
cc

ur
en

ce
 (

%
)

Figure 5.8: Histogram showing the behavior of the sampling time

Therefore, from this histogram can be concluded that the energy management system is running in

real-time without missing deadlines, i.e, not violating the 1 ms sample time for computations, and consis-

tently follows the target rate with only minor jitter.

5.8 Energy Management Case Studies

Agent based energy management system is tested for various scenarios including startup scenario,

loss of edge, and load changes. In startup scenario, system starts with no power supplied to any load. Five

different modes were chosen: Full power, Travelling, Harbor, Cruising, and Fighting. Table 5.3 shows the

values of priorities and the percentage of loads chosen for these modes.

Data for flow values on all edges, demand values at all nodes, and d-values of all nodes was logged

using RTAI SCOPE blocks at 1 ms sampling rate. This raw data is then used to calculate total number of

moves by all agents for each scenario. Appendix B.1 shows the Matlab script used to calculate number of

moves. Figure 5.9 shows the total number of moves for sampling rates of 1 ms, which settles to a constant

value denoting that the solution for maximum flow problem has converged.

Figure 5.10 shows plots giving the status of all agents during the simulation for sampling rate of 1ms.

A parameter called agent status factor is defined as the ratio of the sum of status of all agents to the total

CHAPTER 5. APPLICATION: AGENT BASED AUTOMATIC RECONFIGURATION 43

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

Time Stamps with Sampling rate 1 msec

T
ot

al
 N

um
be

r
of

 M
ov

es

FullPower

Cruising

Travelling

Harbour

Fighting

Figure 5.9: Total number of moves for various modes

number of agents. This value, which ranges from 0 to 1, is calculated from the raw data, the Matlab script

is given in Appendix B.2, and plotted against the simulation time. The plot depicts that during the initial

stages of simulation 85% of the agents were actively negotiating and their number gradually decreases

with time and becomes zero after 10 time stamps denoting that the solution has converged. Table 5.1 gives

the maximum, average, and minimum number of moves observed for several test runs.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time Stamps with Sampling rate 1 msec

S
ta

tu
s

F
ac

to
r

fo
r

al
l a

ge
nt

s

FullPower

Cruising

Travelling

Harbour

Fighting

Figure 5.10: Agent Status Factor for 1 ms sampling rate

CHAPTER 5. APPLICATION: AGENT BASED AUTOMATIC RECONFIGURATION 44

Table 5.1: Maximum, minimum and average moves for the ‘startup’ scenario
Full-power Cruising Travelling Harbor Fighting

Max 88 72 77 73 75
Startup Avg 77 65 70 64 68

Min 68 59 61 59 62

A similar procedure is followed in the load change scenario. Load priorities were chosen arbitrarily

and the edge capacity of the load nodes to the target were changed randomly to ensure that the high priority

loads were supplied in full all the time.

The figures below show the digraph models for 22 node energy management system for various cases

of load changes. Figure 5.11 shows the initial setup. Figure 5.12 shows that when demand on node 15

is increased to maximum demand that can be supplied, as the priority of the node 15 is high (1) and its

adjacent load node is of low priority (0), the lower priority load is completely cut off and the high priority

load is supplied in full. Table 5.2 gives the maximum, average, and minimum number of moves made by

agents during the process of random load changes.

Table 5.2: Maximum, minimum, and average moves for the ‘load change’ scenario
Moves

Max 45
Loadchange Avg 23

Min 7

Figure 5.13 shows the loss of edge scenario. The capacity value of the edge connecting node 15 and

the sink is made zero. The adjacent low priority load node (which was cut off earlier to supply the high

priority load) is again supplied according to its demand.

Figures 5.14 and 5.15 show the number of moves made by the agents to reconfigure the system for

the above made changes and the status of the agents during the reconfiguration.

5.9 Conclusions

Multi-agent technology is implemented in building automatic reconfigurable energy management sys-

tem for a shipboard power system. Simulink was chosen as the tool for modeling the energy management

system. To check the reconfiguration capability of the energy management system, various case studies

were run using real-time capabilities of Linux-RTAI as a real-time operating system with a sampling rate

of 1 ms and real-time capability of the simulation was verified using an external monitoring device.

CHAPTER 5. APPLICATION: AGENT BASED AUTOMATIC RECONFIGURATION 45

S

AC1
 PS1

DC1

PL1

CM1
 CM2
 CM3

T

L1
(Hi)

L2
(Lo)

L3
(Hi)

L4
(Lo)5

L5
(Hi)

L6
(Lo)

AC2
 PS2

DC2

CM4
 CM5
 CM6

PL2

S : Source

AC : AC Generator

PS : Power Supply

DC : DC Bus

CM : Converter Module

PL
 : Pulse Load

Hi : High Priority (1)

Lo : Low Priority (0)

L
 : Load

T
 : Target - Sink Node

(580,490)

(580,490)

(180,90)

(180,90)

(400,400)

(400,400)

(180,0)

(180,90)

(400,400)
 (400,400)

(180,90)

(180,0)

(400,400)
 (400,400)

(60,30)
 (60,30)
 (60,30)

(60,30)
 (60,30)
 (60,30)

(60,0)

(60,30)

(60,0)

(60,30)

(60,30)

(60,0)

(60,0)

(60,30)

(60,30)

(60,0)

(60,0)

(60,30)

(30,30)

(30,30)

(30,30)

(30,30)

(30,30)

(30,30)

Capacity

Flow

0

1

1

2

2

3

3

4

4

22

22

4

4

4

4

5

5

5

5

5

22

d-value

Figure 5.11: Initial setup

CHAPTER 5. APPLICATION: AGENT BASED AUTOMATIC RECONFIGURATION 46

S

AC1
 PS1

DC1

PL1

CM1
 CM2
 CM3

T

L1
(Hi)

L2
(Lo
)

L3
(Hi)

L4
(Lo)5

L5
(Hi)

L6
(Lo
)

AC2
 PS2

DC2

CM4
 CM5
 CM6

PL2

S : Source

AC : AC Generator

PS : Power Supply

DC : DC Bus

CM : Converter Module

PL
 : Pulse Load

Hi : High Priority (1)

Lo : Low Priority (0)

L
 : Load

T
 : Target - Sink Node

(580,520)

(580,520)

(180,120)

(180,120)

(400,400)

(400,400)

(180,0)

(180,120)

(400,400)
 (400,400)

(180,120)

(180,0)

(400,400)
 (400,400)

(60,60)
 (60,30)
 (60,30)

(60,60)
 (60,30)
 (60,30)

(60,0)

(60,60)

(60,60)

(60,0)

(60,30)

(60,0)

(60,0)

(60,30)

(60,30)

(60,0)

(60,0)

(60,30)

(120,120)

(30,0)

(30,30)

(30,30)

(30,30)

(30,30)

Capacity

Flow

0

1

1

2

2

3

3

22

22

22

22

4

4

4

4

22

22

5

5

5

22

d-value

Figure 5.12: Change in demand

CHAPTER 5. APPLICATION: AGENT BASED AUTOMATIC RECONFIGURATION 47

S

AC1
 PS1

DC1

PL1

CM1
 CM2
 CM3

T

L1
(Hi)

L2
(Lo)

L3
(Hi)

L4
(Lo)5

L5
(Hi)

L6
(Lo)

AC2
 PS2

DC2

CM4
 CM5
 CM6

PL2

S : Source

AC : AC Generator

PS : Power Supply

DC : DC Bus

CM : Converter Module

PL
 : Pulse Load

Hi : High Priority (1)

Lo : Low Priority (0)

L
 : Load

T
 : Target - Sink Node

(580,490)

(580,460)

(180,90)

(180,60)

(400,400)

(400,400)

(180,0)

(180,60)

(400,400)
 (400,400)

(180,90)

(180,0)

(400,400)
 (400,400)

(60,30)
 (60,30)
 (60,30)

(60,30)
 (60,30)
 (60,30)

(60,0)

(60,0)

(60,0)

(60,30)

(60,30)

(60,0)

(60,0)

(60,30)

(60,30)

(60,0)

(60,0)

(60,30)

(0,0)

(30,30)

(30,30)

(30,30)

(30,30)

(30,30)

Capacity

Flow

0

1

1

2

2

3

3

4

4

22

22

4

4

4

4

5

5

5

5

5

22

d-value

Figure 5.13: Loss of edge

CHAPTER 5. APPLICATION: AGENT BASED AUTOMATIC RECONFIGURATION 48

0 1 2 3 4 5 6

x 10
4

0

5

10

15

20

25

30

35

40

45

Time Stamps with 1msec Sampling Rate

T
ot

al
 N

um
be

r
of

 M
ov

es

Total Number of Moves V Time Stamp

Figure 5.14: Number of Moves for 1 ms sampling rate during random load change

0 1 2 3 4 5 6

x 10
4

0

0.05

0.1

0.15

0.2

0.25

Time Stamps with 1msec Samplinr Rate

A
ge

nt
 S

ta
tu

s
F

ac
to

r

Figure 5.15: Agent Status Factor for 1 ms sampling rate during random load change

CHAPTER 5. APPLICATION: AGENT BASED AUTOMATIC RECONFIGURATION 49

Table 5.3: Values of the loads and priorities in various modes
Mode Load Priority Capacity in %

Full-power Star Propulsion Load High 100
Port bus Propulsion Load High 100

Zone1 Load1 High 100
Zone1 Load2 High 100
Zone2 Load1 High 100
Zone2 Load2 High 100
Zone3 Load1 High 100
Zone3 Load2 High 100

Cruising Star Propulsion Load High 40
Port bus Propulsion Load High 40

Zone1 Load1 High 40
Zone1 Load2 Low 40
Zone2 Load1 High 70
Zone2 Load2 Low 70
Zone3 Load1 High 70
Zone3 Load2 Low 70

Travelling Star Propulsion Load High 70
Port bus Propulsion Load High 70

Zone1 Load1 Low 70
Zone1 Load2 High 70
Zone2 Load1 Low 40
Zone2 Load2 High 40
Zone3 Load1 Low 70
Zone3 Load2 High 70

Harbor Star Propulsion Load Low 0
Port bus Propulsion Load Low 0

Zone1 Load1 High 30
Zone1 Load2 Low 30
Zone2 Load1 High 30
Zone2 Load2 Low 30
Zone3 Load1 Low 30
Zone1 Load2 High 30

Fighting Star Propulsion Load High 50
Port bus Propulsion Load High 50

Zone1 Load1 High 90
Zone1 Load2 High 90
Zone2 Load1 High 90
Zone2 Load2 High 90
Zone3 Load1 High 50
Zone3 Load2 High 50

50

Chapter 6

Conclusions

6.1 Summary

The objective of this thesis was to evaluate and develop real-time platforms for a multi-agent based

shipboard energy management system. The automatic reconfiguration of shipboard power systems is a

crucial step towards improving survivability. Multi-agent technology was applied to implement the recon-

figurable energy management scheme using a self-stabilizing maximum flow algorithm. The agent based

energy management system is designed in a Matlab/Simulink environment. Reconfiguration is performed

for several situations including start-up, loss of an agent, limited available power, and distribution to pri-

ority ranked loads. The number of steps taken to reach the global solution and the time taken are very

promising. The timing accuracy of these simulations has been verified successfully. A survey concerning

freely available real-time operating systems and software tools to setup a desktop PC supporting real-time

environment was conducted. Matlab/Simulink/RTW-RTAI was selected as real-time computer aided con-

trol design software for demonstrating real-time simulation of agent based energy management system,

HIL applications, and communication.

Table 6.1 gives a list of software tools available and their support of various aspects with respect to

real-time modeling and simulation. The following conclusions are drawn from this work:

1. Linux based RTOS is an ideal choice for a platform to work with hard real-time applications.

2. When compared to RT-Linux, RTAI stands out due to the following reasons:

(a) High stability

(b) Large community support

(c) Continuous development keeping pace with the latest stable kernel releases

CHAPTER 6. CONCLUSIONS 51

(d) Completely open source (unlike its counterpart RT-Linux in which case the advanced version

comes with a commercial license).

3. Another major advantage in choosing RTAI is that it could be easily integrated to the completely

open source Scilab/Scicos and the commercial Matlab/Simulink, which is currently the more pow-

erful and flexible CACSDS.

4. Though Scilab/Scicos, when integrated with RTAI, forms a powerful tool for modeling and simula-

tion of real-time control systems, it has its own limitations such as:

(a) Lack of support for modeling large-scale systems such as power systems that include complex

variables.

(b) As the entire model is compiled into an executable that runs in the kernel space, debugging of

the resulting application becomes very complex.

(c) Interfacing external software such as Ada 95 and C is not that flexible, though Scicos comes

with a building block supporting C interface, it is limited to simple and small applications.

(d) Scilab/Scicos lags behind its commercial counterpart Matlab/Simulink in terms of support and

documentation.

5. Matlab/Simulink when integrated with RTAI proves to be a better choice for CACSDS supporting

hard real-time when compared to Scilab/Scicos in terms of support for modeling large-scale systems

and complex variables.

6. Integration of external programming languages such as Ada 95 and C is simpler in the case of

Matlab/Simulink with the help of S-functions.

7. Integration of CAN device interface is more flexible in the case of Matlab/Simulink when compared

to Scilab/Scicos.

The applications presented demonstrate the platforms real-time capabilities with respect to modeling and

simulating, communications, and Hardware-in-the-Loop arrangements. These applications were chosen

to evaluate important aspects in modeling, simulating, and controlling of an ongoing ONR/DoE research

project that concerns multi-agent based reconfiguration of shipboard electric power systems. As this

thesis provides the proof-of-concept, further work concerning a small-scale hardware prototype can build

on these tools and benefit from early evaluation of hard real-time requirements.

CHAPTER 6. CONCLUSIONS 52

Table 6.1: List of software tools

Software Tools Matlab/
Simulink/
RTW on Win-
dows

Ada 95 on
RTLinux

Real-Time
Java

Scilab/Scicos
on RTAI

Matlab/
Simulink on
RTAI

Real-Time Sup-
port

Soft Hard Soft Hard Hard

Graphics Yes No No Yes Yes
Real-Time
Communication

Yes No No No Yes

Control Design Yes Yes No No Yes
C-Interface Yes Yes Yes No Yes
General Purpose
Code

Yes Yes Yes Yes Yes

Support Technical No Community Community Technical
and Commu-
nity

Math-FFT Yes No No No Yes
Multi-Tasking No Yes Yes No Yes
Documentation Yes No Yes No Yes

6.2 Future Work

The agent-based reconfiguration concept still lacks consideration of communication delays between

agents. Clearly, design of the energy management system would benefit from simulating these delays

and allow further adjustments in expected real-world performance. Also, support for networked control

simulations under RTAI could be added and verified with the help of already available third part add-on

libraries for Simulink.

Real-time simulation of multi-agent system in a distributed environment (on more than one computer)

would further explore the real-time capability of software tools such as RTAI-LAB.

Until now, the systems used for real-time simulation were discrete models. New release of RTAI-

Magma supports real-time simulation of continuous systems as well and will be one more important

addition to the software tools available.

53

References

[1] AdaPower. Ada Reference Manual. http://www.adapower.com/rm95/, 2005.

[2] Aeolian Inc. Introduction to Linux for Real-Time Control. available at:
http://aeolean.com/html/RealTimeLinux/RealTimeLinuxReport-2.0.0.pdf, 2002.

[3] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows - Theory, Algorithms and Applications.
Prentice Hall, 1993.

[4] T. Baker. FSU Pthreads. http://moss.csc.ncsu.edu/ mueller/pthreads/, 2005.

[5] G. Bollella, B. Brosgol, P. Dibble, S. Furr, J. Gosling, D. Hardin, and M. Turnbull. The real-time
specification for Java. Addison-Wesley, 2000.

[6] Robert Bosch GmbH. CAN Specification. available at:
http://www.algonet.se/ staffann/developer/can2spec.pdf, 1991.

[7] B. J. Brosgol. Ada and Java: real-time advantages. available at:
http://www.embedded.com/showArticle.jhtml?articleID=16100316, 2003.

[8] R. Bucher. Roberto Bucher’s homepage. http://a.die.supsi.ch/ bucher/, 2005.

[9] R. Bucher. Scilab Howto. available at: http://a.die.supsi.ch/ bucher/scilab-howto.pdf, 2005.

[10] A. Burns and A. Wellings. Concurrency in Ada. Cambridge University Press, 1998.

[11] K. L. Butler, N. D. R. Sarma, and V. R. Prasad. Network reconfiguration for service restoration
in shipboard power distribution systems. IEEE Transactions on Power Systems, 16(4):653–661,
November 2001.

[12] K. L. Butler-Purry and N. D. R. Sarma. Self-healing reconfiguration for restoration of naval ship-
board power systems. IEEE Transactions on Power Systems, 19(2):754–762, May 2004.

[13] CAN In Automation. CANopen. available at: http://www.can-cia.org/canopen/, 2005.

[14] CAN In Automation. Controller Area Network. available at: http://www.can-cia.org/can/, 2005.

[15] CAN In Automation. DeviceNet. http://www.can-cia.org/devicenet/, 2005.

[16] Comedi. Comedi Hardware Support List. http://www.comedi.org/hardware.html, 2005.

http://www.adapower.com/rm95/�
http://aeolean.com/html/RealTimeLinux/RealTimeLinuxReport-2.0.0.pdf�
http://moss.csc.ncsu.edu/~mueller/pthreads/�
http://www.algonet.se/~staffann/developer/can2spec.pdf�
http://www.embedded.com/ showArticle.jhtml?articleID=16100316�
http://a.die.supsi.ch/~bucher/�
http://a.die.supsi.ch/~bucher/scilab-howto.pdf�
http://www.can-cia.org/canopen/�
http://www.can-cia.org/can/�
http://www.can-cia.org/devicenet/�
http://www.comedi.org/hardware.html�

REFERENCES 54

[17] Comedi. Comedi homepage. Website, 2005.

[18] Ty Coon. GPL License. available at: http://www.gnu.org/copyleft/gpl.html, 1991.

[19] Department of Defense, Ada Joint Program Office. Ada 95 Quality and Style Guide: Guidelines for
Professional Programmers. http://www.adaic.com/docs/95style/html/sec 6/, 2005.

[20] Dipartimento di Ingegneria Aerospaziale Politecnico di Milano. RTAI Homepage.
http://www.rtai.org/, 2005.

[21] S. Doran. Interfacing low-level C device drivers with Ada 95. In Annual International Conference
on Ada. ACM Press, 1999.

[22] L. Dozio. RTAI readme. Website, 2005.

[23] L. Dozio and P. Mantegazza. Linux real time application interface RTAI in low cost high performance
motion control. In Motion Control. National Italian Association for Automation, 2003.

[24] L. Dozio and P. Mantegazza. Real-time distributed control systems using rtai. Sixth IEEE Interna-
tional Symposium on Object-Oriented Real-Time Distributed Computing (ISORC), May 2003.

[25] Gensen. D. E. Hard and soft real-time. Website, 2004.

[26] J. Ferber. An Introduction to Distributed Artificial Intelligence. Addison-Wesley, 1999.

[27] Free Software Foundation. Gnat compiler. Website, 1998.

[28] FSMLabs, Inc. Controls Kit Homepage. http://www.fsmlabs.com/controls-kit.html, 2005.

[29] FSMLabs, Inc. FSMLabs. http://www.fsmlabs.com/, 2005.

[30] FSMLabs, Inc. RTLinux GPL. available at: http://www.rtlinuxfree.com/, 2005.

[31] FSMLabs, Inc. RTLinuxFree Homepage. http://www.rtlinuxfree.com/, 2005.

[32] FSMLabs, Inc. RTLinuxPro Homepage. http://www.fsmlabs.com/rtlinuxpro.html, 2005.

[33] S. B. Ganesh, K. Schoder, H.-J. Lai, A. Al-Hinai, and A. Feliachi. Energy management system
with automatic reconfiguration for electric shipboard power system. Proc. of Reconfiguration and
Survivability Symposium (RSS) 2005, February 2005.

[34] S. Gosh, A. Gupta, and S. V. Pemmaraju. A self stabilizing algorithm for the maximum flow problem.
Distributed Computing, 10(4):167–180, 1997.

[35] E. R. Hilton and V. Yodaiken. Real-time applications with RTLinux. Linux Journal, 2001.

[36] IEEE and The Open Group. IEEE POSIX. http://posixcertified.ieee.org/, 2005.

[37] IEEE Standards Association. Home page. available at: http://standards.ieee.org/, 2005.

[38] Institut National de Recherche en Informatique et Automatique. Scilab Homepage.
http://www.scilab.org/, 2005.

http://www.gnu.org/copyleft/gpl.html�
http://www.adaic.com/docs/95style/html/sec_6/�
http://www.rtai.org/�
http://www.fsmlabs.com/controls-kit.html�
http://www.fsmlabs.com/�
http://www.rtlinuxfree.com/�
http://www.rtlinuxfree.com/�
http://www.fsmlabs.com/rtlinuxpro.html�
http://posixcertified.ieee.org/�
http://standards.ieee.org/�
http://www.scilab.org/�

REFERENCES 55

[39] ISO. International Organization for Standardization. http://www.iso.org/, 2005.

[40] M. Johnson. Real-Time Java. available at: http://www.abo.fi/∼mjohnson/studier/rtj.pdf, 2002.

[41] Inc. Lineo Solutions. Lineo Solutions Homepage. http://www.lineo.co.jp/eng/index.html, 2005.

[42] LinuxDevices. ART Linux. available at: http://www.linuxdevices.com/links/LK6839947367.html,
2000.

[43] LinuxDevices. The Real-time Linux Software Quick Reference Guide. available at
http://www.linuxdevices.com/articles/AT8073314981.html, 2003.

[44] Inc. LynuxWorks. LynuxWorks Homepage. http://www.lynuxworks.com/, 2005.

[45] P. Mantegazza, E. Bianchi, L. Dozio, S. Papacharalambous, S. Hughes, and D. Beal. RTAI: Real-
time application interface. Linux Journal, April 2000.

[46] P. N. Mathre. Real-Time Operating Systems. available at:
http://www.onesmartclick.com/rtos/rtos.html, 2004.

[47] Mathworks Inc. Mathworks homepage. Website, 2005.

[48] Mathworks Inc. Real-Time Windows Target. http://www.mathworks.com/products/rtwt/, 2005.

[49] Mathworks Inc. Real-Time Windows Target Documentation, Real-Time Kernel.
http://www.mathworks.com/access/helpdesk/help/toolbox/rtwin/ug/, 2005.

[50] Mathworks Inc. Real-Time Workshop. http://www.mathworks.com/products/rtw/, 2005.

[51] Mathworks Inc. S-Function.
http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/sfg/index.html, 2005.

[52] N. Mohan, T. M. Undeland, and W. P. Robbins. Power Electronics: Converters, Applications, and
Design. Johne Wyle, 1995.

[53] P. Mourot. RTAI Architecture.
http://www.aero.polimi.it/ rtai/documentation/articles/patric mourot-rtai internal presentation.html,
2003.

[54] A. Muir. JBed - a Java-based Real-Time Operating System. available at:
http://www.microjava.com/jvm/software/jit/jbed2?content id=695, 2001.

[55] National Marine Electronics Association. NMEA 2000 A Digital Interface for 21st Century Down-
load. available at: http://www.nmea.org/Standards/Publications/NMEA2000ADigitalInterface.pdf,
2002.

[56] K. Nilsen. PERC. http://mindprod.com/jgloss/perc.html, 1996.

[57] A. Nilsson. Compiling Java for Real-Time Systems.
http://curry.ludat.lth.se/cs/events/Entries/2004043011201083320417/lucasView html, 2004.

http://www.iso.org/�
http://www.abo.fi/~mjohnson/studier/rtj.pdf�
http://www.lineo.co.jp/eng/index.html�
http://www.linuxdevices.com/links/LK6839947367.html�
http://www.linuxdevices.com/articles/AT8073314981.html�
http://www.lynuxworks.com/�
http://www.onesmartclick.com/rtos/rtos.html�
http://www.mathworks.com/products/rtwt/�
http://www.mathworks.com/access/helpdesk/help/toolbox/rtwin/ug/�
http://www.mathworks.com/products/rtw/�
http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/sfg/index.html�
http://www.aero.polimi.it/~rtai/documentation/articles/patric_mourot-rtai_internal_presentation.html�
http://www.microjava.com/jvm/software/jit/jbed2?content_id=695�
http://www.nmea.org/Standards/Publications/NMEA2000ADigitalInterface.pdf�
http://mindprod.com/jgloss/perc.html�
http://curry.ludat.lth.se/cs/events/Entries/2004043011201083320417/lucasView_html�

REFERENCES 56

[58] S. Nilsson. CAN Introduction. http://www.algonet.se/ staffann/developer/CAN.htm, 2005.

[59] NIST. Requirements for Real-time Extensions for the Java Platform.
http://www.itl.nist.gov/div897/ctg/real-time/intro.html, 2004.

[60] University of Kansas. KURT Linux. http://www.ittc.ku.edu/kurt, 2005.

[61] Peak-System Technik GmbH. PCAN-USB Documentation. available at:
http://www.peak-system.com/pdfs/gb/PEAK-SysE.pdf, 2005.

[62] Peak-System technik GmbH. Peak-system homepage. Website, 2005.

[63] S. D. Pekarek, J. Tichenor, S. D. Sudhoff, J. D. Sauer, D. E. Delisle, and E. J. Zivi. Overview of naval
combat survivability program. Proceedings of 13th International Ship Control Systems Symposium,
2003.

[64] QNX Software, Inc. QNX. http://www.qnx.com/products/rtos/, 2005.

[65] R. U. Rehman. Open source real-time operating systems. Sys Admin Magazine, 2001.

[66] I. Ripoli. RTLinux versus RTAI. http://bernia.disca.upv.es/rtportal/comparative/rtl vs rtai.html,
2002.

[67] I. Ripoll. RTL Gnat. http://rtportal.upv.es/apps/rtl-gnat/, 2005.

[68] RTSJ. Real-Time Specification for Java. http://www.rtsj.org/, 2005.

[69] R. Schwebel. RTAI Overview.
http://www.elektroniknet.de/topics/embeddedsystems/fachthemen/artikel/02008c.htm, 2002.

[70] M. E. Sharon. Java Micro Edition. http://uberthings.com/mobile/, 2005.

[71] P. Shenoy. QLinux. http://lass.cs.umass.edu/software/qlinux/, 2002.

[72] M. I. Skitz. Automated JavaScript Imports Language Extension. http://ajile.sourceforge.net/, 2005.

[73] Soundlabs Group. CAN History. http://www.soundlabsgroup.com.au/canbus/can history.htm, 2005.

[74] Spectrum Digital. eZdsp Manual. available at: http://www.spectrumdigital.com, 2005.

[75] Stage Harbor Software. Ada 95 History. http://www.learnada.com/history.htm, 2005.

[76] Sun Microsystems. Kilo Virtual Machine: White Paper. available at:
http://java.sun.com/products/cldc/wp/, 2000.

[77] Sun Microsystems. PICO Java. http://www.sun.com/microelectronics/picoJava/, 2005.

[78] T. S. Taft and R. A. Duff. Ada 95 Reference Manual: Language and Standard Libraries, Interna-
tional Standard ISO/IEC 8652:1995(E). Springer-Verlag, 1997.

[79] M. Timmerman. Windows NT. available at: http://www.omimo.be/magazine/97q2/winntasrtos.htm,
2005.

http://www.algonet.se/~staffann/developer/CAN.htm�
http://www.itl.nist.gov/div897/ctg/real-time/intro.html�
http://www.ittc.ku.edu/kurt�
http://www.peak-system.com/pdfs/gb/PEAK-SysE.pdf�
http://www.qnx.com/products/rtos/�
http://bernia.disca.upv.es/rtportal/comparative/rtl_vs_rtai.html�
http://rtportal.upv.es/apps/rtl-gnat/�
http://www.rtsj.org/�
http://www.elektroniknet.de/topics/embeddedsystems/fachthemen/artikel/02008c.htm�
http://uberthings.com/mobile/�
http://lass.cs.umass.edu/software/qlinux/�
http://ajile.sourceforge.net/�
http://www.soundlabsgroup.com.au/canbus/can_history.htm�
http://www.spectrumdigital.com�
http://www.learnada.com/history.htm�
http://java.sun.com/products/cldc/wp/�
http://www.sun.com/microelectronics/picoJava/�
http://www.omimo.be/magazine/97q2/winntasrtos.htm�

REFERENCES 57

[80] TopWorx. Modbus History. available at: http://www.topworx.com/fnmb.html, 2005.

[81] TransEra. GPIB Information. available at: http://www.transera.com/htbasic/tutgpib.html, 2005.

[82] A. J. Tucker. Opportunities and challenges in ship systems and control at ONR. IEEE Conference
on Decision and Control, December 2001.

[83] G. Weiss. Multi Agent Systems - A Modern Approach to Distributed Artificial Intelligence. MIT
Press, 1999.

[84] Wind River. VxWorks. http://www.windriver.com/, 2005.

[85] P. Zsolt. GPIB Introduction. available at: http://www.hit.bme.hu/people/papay/edu/GPIB/tutor.htm,
2005.

http://www.topworx.com/fnmb.html�
http://www.transera.com/htbasic/tutgpib.html�
http://www.windriver.com/�
http://www.hit.bme.hu/people/papay/edu/GPIB/tutor.htm�

58

Appendix A

Installation Guides

A.1 Mandrake 10 with 2.6.7-Adeos

1. INSTALLING MDK 10
Select the following while installing Mandrake

• Standard security
• Use existing partitions or partition accordingly (suggested: one partition for the root directory

(“/”), one for /home, and a swap-partition)
• Select mount-points for partitions

Selecting your x-environment – the work hear was performed using KDE. Install the bootloader on
(First sector of drive (MBR)) and then, REBOOT.

2. Install all the utilities required for installing RTAI and Scilab, i.e., g77 fortran compiler, etc.
3. Configuring the kernel 2.6.7 downloaded from www.kernel.org

• #cd /usr/src
• #tar -jxvf linux2.6.7.tar.bz2
• #tar jxvf rtai3.1.tar.bz2 (http://www.aero.polimi.it/RTAI/rtai3.1.tar.bz2)
• #ln -s rtai3.1 rtai
• #cd linux
• #patch p1¡/usr/src/rtai/rtaicore/arch/i386/patches/hal72.6.7.patch.patch

In order to solve the supermount problem due to which one may not be able to access their cdroms
and zip-drives, a supermount patch should be applied to the kernel before compiling. FOR THIS
TO WORK, SUPERMOUNT OPTION SHOULD BE SELECTED WHILE CONFIGURING THE
NEW KERNEL IN THE FILE SYSTEMS SECTION.
Get the supermount patch for 2.6 kernel from the url http://umn.dl.sourceforge.net/sourceforge/supermount-
ng/supermount-2.0.4-2.6.2.patch.gz and apply the patch.

• #cp supermount2.0.42.6.6.patch /usr/src/linux/
• #cd /usr/src/linux
• #patch p1 ¡supermount2.0.42.6.6.patch

APPENDIX A. INSTALLATION GUIDES 59

After successful patching, edit the /etc/fstab file, for example the line corresponding to the cdrom
device should look like the following:
none /mnt/cdrom supermount dev=/dev/cdrom,fs=auto:iso9660,ro,,iocharset=iso88591 0 0
or you can try this line in the fstab file
/dev/hdc /mnt/cdrom auto umask=0,user,iocharset=iso88591,codepage=850,noauto,ro,exec 0 0
Configuring the Kernel

• #make menuconfig
Do not select

– “set version information on all module symbols” in loadable modules support
– APM BIOS support in General setup
– Kernel Hacking support.
– Under the Console drivers section, do not select the frame buffer option rivafb

Select

– Adeos support
– supermount support
– Reisfrs
– ext3 Journalising support
– /dev in file systems.
– under the “character devices”, select all the options under subsection “direct rendering

support”

Issue the following commands to compile the kernel:
• #make
• #make modules install
• #make install

Note: make bzImage step is not required for 2.6.7. The last step above copies the kernel image into
/boot directory and will make an entry in /etc/lilo.conf. Just check lilo by running /sbin/lilo at the
command line. 267adeos should appear. If not, make an entry in lilo.conf file manually. Following
are the lines to be added:
image=/boot/vmlinuz2.6.7adeos label=“rtai3.1” root=/dev/XYZ append=“video=rvafb:off devfs=mount
acpi=ht” readonly

4. After booting to the new kernel, RTAI should be installed. Following are the utilities required to
have RTAI/RTAI-LAB installed properly.
Get the file MesaLib5.0.2.tar.bz2 from web link http://sourceforge.net/project/showfiles.php?group id=3
Copy this file in to /usr/local/ directory and do the following:

• #tar zxvf MesaLib5.0.2.tar.gz
• #cd MesaLib5.0.2
• #./configure prefix=/usr/local enablestatic
• #make
• #make install

Get the cvs version efltk by doing the steps given below:

APPENDIX A. INSTALLATION GUIDES 60

• #cd /usr/local/
• #cvs d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/ede login press ENTER for pass-

word
• #cvs z3 d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/ede co efltk
• #cd efltk
• #./build.gcc prefix=/usr/local enablexdbe enableopengl enable threads
• #make install
• #/sbin/ldconfig

Make a symbolic link of /tmp/efltk under the directory /usr/local/ after installing efltk, make sure
that the file efltkconfig is there in both the directories /usr/local/bin and /usr/local/efltk/bin. If not,
just make a copy from /usr/local/efltk.
#cp /usr/local/lib/efltk* /usr/lib/

A.2 Scilab-3.1 + RTAI-3.1 + RTAICodeGen

Download the latest stable version of Scilab3.1 from www.scilab.org, follow the procedure given
below:

To have man pages working, utilities such as expat1.95.64mdk.i586.rpm, sablotron0.982mdk.i586.rpm
and libsablotron00.982mdk.i586.rpm should be installed. These files are available at
http://mirrors.usc.edu/pub/yumrepository/mandrake/9.2/i586/RPMS/ To have Scilab installed with 3D athena
widgets enabled, Xaw3d utility should be installed first. This utility comes with the distribution CD of
mandrake, just search for the Xaw3d in the install software utility.

1. Installing Scilab

• # ./configure
• # make all

IF unable to setup xaw3d – SIMPLY AVOID xaw3d
• # ./configure withoutxaw3d
• # make all

2. INSTALLING RTAI

• #make xconfig
– Select number of cpus as 1.
– Do not select SMP
– Do not select the option “Build RTAI doc (PDF/HTML)
– Do not select LTT
– Select rtailab

• #make
• #make install

3. Setting up the RTAICodGen for Scilab/Scicos.
Follow these steps to properly install all the Scilab/Scicos addons for RTAI-Lab:

• Become superuser

APPENDIX A. INSTALLATION GUIDES 61

• Go in the “macros” directory (/usr/src/rtai/rtailab/scilab/macros)
• modify in the file “Makefile” the line “SCILAB DIR = /usr/scilab3.0” to fit your SCILAB

installation.
• run “make install”
• # make user (do this again as a normal user) Before testing the code generated, add the rtai to

your PATH,
• #export PATH=$PATH:/usr/realtime/bin

To have the code generated properly, one must have glibcstaticdevel2.3.214mdk.i586 utility.
4. INSTALLING RTAILAB

To have the rtailab GUI works properly, for the graphic cards from NVIDIA company, one must in-
stall the latest NVIDIA drivers from their website, http://download.nvidia.com/XFree86/Linuxx86/
1.06106/NVIDIALinuxx861.06106pkg1.run.
Make sure that your kernel doesn’t have any frame buffering support, rivafb. Following are the steps
for installation of drivers.

• #vi /etc/inittab/
Change the run level from 5 to 3, save and exit. Get the file from the above nvidia web link
NVIDIALinuxx861.06106pkg1.run

• #reboot
On the console,

• #cd /usr/
• #sh NVIDIALinuxx861.06106pkg1.run
• #vi /etc/inittab/

Change run level from 3 to 5, save and exit.
• #vi /etc/lilo.conf

Add the video rivafb:off option in your lilo file it should look like this. image=/vmlinuz
label=“rtai” root=/dev/hda6 append=“video=rivafb:off”

• #lilo
• #vi /etc/X11/XF86Config4

This opens the config file for X, do the following:
– In the ‘Device’ section rename Driver “nv”(or Driver “vesa”) with Driver “nvidia” In the

Module section, make sure you have:
– Load “glx” You should also remove the following lines: Load “dri”

Load “GLcore”
– #reboot

You will be booted back to Xserver. Then, do the following in order to avoid any library clashes.
#cp /usr/lib/libGL.so.1.0.6106* /usr/lib/libGL.so.1.2*
WHILE RECONFIGURING RTAI FOR SOME REASON, IF ENCOUNTERED WITH THE ER-
ROR SAYING “libtool: link: cannot find the library ‘/usr/X11R6/lib/libGL.la” DO THE FOLLOW-
ING.
#ln -s /usr/lib/libGL.la /usr/X11R6/lib/libGL.la
Now, check the RTAILAB scope display.

APPENDIX A. INSTALLATION GUIDES 62

A.3 Comedi/Comedilib

Get the CVS version of Comedi and Comedilib into the /usr/local/ from CVS server. Following are
the commands to get it.

• #cvs d :pserver:anonymous@cvs.comedi.org:/var/cvs login
• #cvs d :pserver:anonymous@cvs.comedi.org:/var/cvs co comedi
• #cvs d :pserver:anonymous@cvs.comedi.org:/var/cvs co comedilib

One must have autoconf2.58 and automake1.7.8 libtools1.5,docbooksgml (Name:docbookdtd31sgmlVersion:
1.08mdkSize: 291 KB) utilities installed in their /usr directory. For the above utilities, use ./configure pre-
fix=/usr option. Before installing COMEDI, make a directory named rtai under / lib/modules/2.4.24adeos/
and copy all the modules into this directory from /usr/realtime/modules then do the following:

• #cd /usr/local/comedi
• #./autogen.sh
• #./configure
• #make
• #make install

Installing comedilib.
• #cd /usr/local/comedilib/
• #./autogen.sh
• #./configure
• #make
• #make install

Go back to the rtai directory
• #cd /usr/src/rtai
• #make xconfig

Select the comedi support and the serial support in the rtaiaddons section, save the configuration
and issue the following commands.

• #make
• #make install

Again copy all the modules in the /usr/realtime/modules/ into the /lib/modules/2.4.24adoes/ rtai/
directory. For loading all the modules required, one can use the following scripts:

cd / u s r / r e a l t i m e / modules insmod r t a i \ h a l .
insmod r t a i \ l x r t .
insmod r t a i \ sem .
insmod r t a i \ mbx .
insmod r t a i \ f i f o s .
insmod r t a i \ math .
insmod r t a i \ msg .
insmod r t a i \ n e t r p c .
lsmod

APPENDIX A. INSTALLATION GUIDES 63

After installing the comedi/comedilib, in order to calibrate your card, following are the modules to be
loaded along with the above specified rtai modules.

Run this as the shell script, it will load the devices, required comedi/comedilib modules, loads required
modules for configuring the card which is now being used, NI PCI 6040E. Furthermore, it prints the card
info followed by the calibration result.

cd / u s r / l o c a l / comedi /
make dev
cd / l i b / modules / 2 . 4 . 2 4 adeos / comedi /
insmod comedi . ko
insmod k c o m e d i l i b . ko s l e e p 1 s
insmod
r t a i \ comedi . ko
insmod mi t e . ko

cd / u s r / l o c a l / comedi / comedi / d r i v e r s / insmod comedi\ f c . ko insmod
8 255 . ko insmod n i \ p c i m i o .

comedi\ c o n f i g / dev / comedi0 n i \ p c i m i o
/ u s r / l o c a l / c o m e d i l i b / demo / . / i n f o
/ u s r / l o c a l / b i n / . / comedi\ c a l i b r a t e

A.4 Matlab/Simulink + RTAI

After installing the Linux version of Matlab 7.0, to integrate with RTAI following are the steps.

• Download the files “rtmain.c”,“rtai.tlc” and “rtai.tmf” from Roberto Buchers website
http://a.die.supsi.ch/ bucher/.

• Create a directory named rtai under /Matlabhomedir/rtw/c/
• Copy the downloaded files into the now created rtai directory.
• Copy the setup.m file into rtai directory from /usr/src/rtai/rtai-lab/matlab/
• #cp /usr/src/rtai/rtai-lab/matlab/setup.m /Matlabhomedir/rtw/c/rtai/

From the Matlab session run “setup”, with your current working directory as /Matlabhomedir/rtw/c/r-
tai/. For testing the integration of Matlab with RTAI, following are the steps. Create a *.mdl example
in Simulink (test.mdl supplied with RTAI distribution). Generate the code from the RTW menu using
generate code only option with selecting rtai.tlc as the target language compiler.

A directory test rtai is created in the working directory with all the required .c and .h files for rtai.
Compile the code from the directory “test rtai” by typing “make -f test.mk” at the console. Load the
required rtai modules, using the script “loadrtai” in the RTAI-Lab tree. Run the real time code “./test
[options]” (to see the list of options type “./test –usage”)

Run the RTAI-Lab (rtailab or xrtailab) to communicate with the real time code locally or remotely.

64

Appendix B

Scripts

B.1 Calculating Number of Moves

c l e a r a l l ; c l c ; i = 1 ; j = 0 ; md = 0 ; mf = 0 ; cd = 0 ; c f = 0 ;

f low = load (‘ load f l o w s ’) ; d v a l = l o a d (‘ d−v a l u e s ’) ;

k = z e r o s (4 0 0 , 3 7) ; z = z e r o s (4 0 0 , 2 3) ;
f o r j = 1 :399

f o r i = 2 :37
i f f low (j , i) ˜= f low (j +1 , i)

c f = c f +1;
end

k (j +1 , i) = c f ;
end

end f o r y = 1 :399
f o r x = 2 :23

i f d v a l (y , x) ˜= d v a l (y +1 , x)
cd = cd +1;

end
z (y +1 , x) = cd ;

end
end

mf = k (1 : 2 1 , 3 7) ; md = z (1 : 2 1 , 2 3) ;
f u l l m = mf + md ;
t = 0 : 5 0 : 1 0 0 0 ;
p l o t (t , f u l l m) ; save m o v e s f u l l p o w e r f u l l m ;

APPENDIX B. SCRIPTS 65

B.2 Calculating Agent Status Factor

c l e a r a l l ;
c l c ;
i = 1 ; j = 0 ; cd = 0 ; c f = 0 ;

a = load (‘ d−v a l u e s ’) ; s . d = a (: , 2 : end) ; s . d . s o u r c e = a (: , 2) ;
s . d . node1 = a (: , 3) ; s . d . node2 = a (: , 4) ; s . d . node3 = a (: , 5) ;
s . d . node4 = a (: , 6) ; s . d . node5 = a (: , 7) ; s . d . node6 = a (: , 8) ;
s . d . node7 = a (: , 9) ; s . d . node8 = a (: , 1 0) ; s . d . node9 = a (: , 1 1) ;
s . d . node10 = a (: , 1 2) ; s . d . node11 = a (: , 1 3) ; s . d . node12 = a (: , 1 4) ;
s . d . node13 = a (: , 1 5) ; s . d . node14 = a (: , 1 6) ; s . d . node15 = a (: , 1 7) ;
s . d . node16 = a (: , 1 8) ; s . d . node17 = a (: , 1 9) ; s . d . node18 = a (: , 2 0) ;
s . d . node19 = a (: , 2 1) ; s . d . node20 = a (: , 2 2) ; s . d . t a r g e t = a (: , 2 3) ;
b = load (‘ load f l o w s ’) ; s . f low = b (: , 2 : end) ; s . f low . f s 1 = b (: , 2) ;
s . f low . f s 2 = b (: , 3) ; s . f low . f13 = b (: , 4) ; s . f low . f110 = b (: , 5) ;
s . f low . f24 = b (: , 6) ; s . f low . f29 = b (: , 7) ; s . f low . f35 = b (: , 8) ;
s . f low . f36 = b (: , 9) ; s . f low . f45 = b (: , 1 0) ; s . f low . f46 = b (: , 1 1) ;
s . f low . f57 = b (: , 1 2) ; s . f low . f511 = b (: , 1 3) ;

s . f low . f513 = b (: , 1 4) ; s . f low . f68 = b (: , 1 5) ;
s . f low . f612 = b (: , 1 6) ; s . f low . f614 = b (: , 1 7) ;
s . f low . f715 = b (: , 1 8) ; s . f low . f716 = b (: , 1 9) ;
s . f low . f815 = b (: , 2 0) ; s . f low . f816 = b (: , 2 1) ;
s . f low . f1117 = b (: , 2 2) ; s . f low . f1118 = b (: , 2 3) ;
s . f low . f1217 = b (: , 2 4) ; s . f low . f1218 = b (: , 2 5) ;
s . f low . f1319 = b (: , 2 6) ; s . f low . f1320 = b (: , 2 7) ;
s . f low . f1419 = b (: , 2 8) ; s . f low . f1420 = b (: , 2 9) ;
s . f low . f 9 t = b (: , 3 0) ; s . f low . f 1 0 t = b (: , 3 1) ;
s . f low . f 1 5 t = b (: , 3 2) ; s . f low . f 1 6 t = b (: , 3 3) ;
s . f low . f 1 7 t = b (: , 3 4) ; s . f low . f 1 8 t = b (: , 3 5) ;
s . f low . f 1 9 t = b (: , 3 6) ; s . f low . f 2 0 t = b (: , 3 7) ;

%node 1
s t a t u s = z e r o s (4 0 0 , 2 1) ; i 1 = 0 ;

f o r i 1 = 1 :399
i f s . d . node1 (i 1) ˜= s . d . node1 (i 1 +1) | s . f low . f s 1 (i 1) ˜=

s . f low . f s 1 (i 1 +1) & s . d . node1 (i 1)<22 | s . f low . f13 (i 1) ˜=
s . f low . f13 (i 1 +1) & s . d . node1 (i 1)== 22 | s . f low . f110 (i 1) ˜=
s . f low . f110 (i 1 +1) & s . d . node1 (i 1)==22
s t a t u s (i1 , 1) = 1 ;

e l s e s t a t u s (i1 , 1) = 0 ;
end

APPENDIX B. SCRIPTS 66

i f s . d . node2 (i 1) ˜= s . d . node2 (i 1 +1) | s . f low . f s 2 (i 1) ˜=
s . f low . f s 2 (i 1 +1) & s . d . node2 (i 1)<22 | s . f low . f24 (i 1) ˜=
s . f low . f24 (i 1 +1) & s . d . node2 (i 1)==22 | s . f low . f29 (i 1) ˜=
s . f low . f29 (i 1 +1) & s . d . node2 (i 1)==22
s t a t u s (i1 , 2) = 1 ;

e l s e s t a t u s (i1 , 2) = 0 ;
end
i f s . d . node3 (i 1) ˜= s . d . node3 (i 1 +1) | s . f low . f13 (i 1) ˜=

s . f low . f13 (i 1 +1) & s . d . node3 (i 1)<22 | s . f low . f35 (i 1) ˜=
s . f low . f35 (i 1 +1) & s . d . node3 (i 1)==22 | s . f low . f36 (i 1) ˜=
s . f low . f36 (i 1 +1) & s . d . node3 (i 1)==22
s t a t u s (i1 , 3) = 1 ;

e l s e s t a t u s (i1 , 3) = 0 ;
end
i f s . d . node4 (i 1) ˜= s . d . node4 (i 1 +1) | s . f low . f24 (i 1) ˜=

s . f low . f24 (i 1 +1) & s . d . node4 (i 1)<22 | s . f low . f45 (i 1) ˜=
s . f low . f45 (i 1 +1) & s . d . node4 (i 1)==22 | s . f low . f46 (i 1) ˜=
s . f low . f46 (i 1 +1) & s . d . node4 (i 1)==22
s t a t u s (i1 , 4) = 1 ;

e l s e s t a t u s (i1 , 4) = 0 ;
end
i f s . d . node5 (i 1) ˜= s . d . node5 (i 1 +1) | s . f low . f35 (i 1) ˜=

s . f low . f35 (i 1 +1) & s . d . node5 (i 1)<22 | s . f low . f45 (i 1) ˜=
s . f low . f45 (i 1 +1) & s . d . node5 (i 1)<22 | s . f low . f57 (i 1) ˜=
s . f low . f57 (i 1 +1) & s . d . node5 (i 1)==22 | s . f low . f511 (i 1) ˜=
s . f low . f511 (i 1 +1) & s . d . node5 (i 1)==22 | s . f low . f513 (i 1) ˜=
s . f low . f513 (i 1 +1) & s . d . node5 (i 1)==22
s t a t u s (i1 , 5) = 1 ;

e l s e s t a t u s (i1 , 5) = 0 ;
end
i f s . d . node6 (i 1) ˜= s . d . node6 (i 1 +1) | s . f low . f36 (i 1) ˜=

s . f low . f36 (i 1 +1) & s . d . node6 (i 1)<22 | s . f low . f46 (i 1) ˜=
s . f low . f46 (i 1 +1) & s . d . node6 (i 1)<22 | s . f low . f68 (i 1) ˜=
s . f low . f68 (i 1 +1) & s . d . node6 (i 1)==22 | s . f low . f612 (i 1) ˜=
s . f low . f612 (i 1 +1) & s . d . node6 (i 1)==22 | s . f low . f614 (i 1) ˜=
s . f low . f614 (i 1 +1) & s . d . node6 (i 1)==22
s t a t u s (i1 , 6) = 1 ;

e l s e s t a t u s (i1 , 6) = 0 ;
end
i f s . d . node7 (i 1) ˜= s . d . node7 (i 1 +1) | s . f low . f57 (i 1) ˜=

s . f low . f57 (i 1 +1) & s . d . node7 (i 1)<22 | s . f low . f715 (i 1) ˜=
s . f low . f715 (i 1 +1) & s . d . node7 (i 1)==22 | s . f low . f716 (i 1) ˜=
s . f low . f716 (i 1 +1) & s . d . node7 (i 1)==22
s t a t u s (i1 , 7) = 1 ;

APPENDIX B. SCRIPTS 67

e l s e s t a t u s (i1 , 7) = 0 ;
end
i f s . d . node8 (i 1) ˜= s . d . node8 (i 1 +1) | s . f low . f68 (i 1) ˜=

s . f low . f68 (i 1 +1) & s . d . node8 (i 1)<22 | s . f low . f815 (i 1) ˜=
s . f low . f815 (i 1 +1) & s . d . node8 (i 1)==22 | s . f low . f816 (i 1) ˜=
s . f low . f816 (i 1 +1) & s . d . node8 (i 1)==22
s t a t u s (i1 , 8) = 1 ;

e l s e s t a t u s (i1 , 8) = 0 ;
end
i f s . d . node11 (i 1) ˜= s . d . node11 (i 1 +1) | s . f low . f511 (i 1) ˜=

s . f low . f511 (i 1 +1) & s . d . node11 (i 1)<22 | s . f low . f1117 (i 1) ˜=
s . f low . f1117 (i 1 +1) & s . d . node11 (i 1)==22 | s . f low . f1118 (i 1) ˜=
s . f low . f1118 (i 1 +1) & s . d . node11 (i 1)==22
s t a t u s (i1 , 1 1) = 1 ;

e l s e s t a t u s (i1 , 1 1) = 0 ;
end
i f s . d . node12 (i 1) ˜= s . d . node12 (i 1 +1) | s . f low . f612 (i 1) ˜=

s . f low . f612 (i 1 +1) & s . d . node12 (i 1)<22 | s . f low . f1217 (i 1) ˜=
s . f low . f1217 (i 1 +1) & s . d . node12 (i 1)==22 | s . f low . f1218 (i 1) ˜=
s . f low . f1218 (i 1 +1) & s . d . node12 (i 1)==22
s t a t u s (i1 , 1 2) = 1 ;

e l s e s t a t u s (i1 , 1 2) = 0 ;
end
i f s . d . node13 (i 1) ˜= s . d . node13 (i 1 +1) | s . f low . f513 (i 1) ˜=

s . f low . f513 (i 1 +1) & s . d . node13 (i 1)<22 | s . f low . f1319 (i 1) ˜=
s . f low . f1319 (i 1 +1) & s . d . node13 (i 1)==22 | s . f low . f1320 (i 1) ˜=
s . f low . f1320 (i 1 +1) & s . d . node13 (i 1)==22
s t a t u s (i1 , 1 3) = 1 ;

e l s e s t a t u s (i1 , 1 3) = 0 ;
end
i f s . d . node14 (i 1) ˜= s . d . node14 (i 1 +1) | s . f low . f614 (i 1) ˜=

s . f low . f614 (i 1 +1) & s . d . node14 (i 1)<22 | s . f low . f1419 (i 1) ˜=
s . f low . f1419 (i 1 +1) & s . d . node14 (i 1)==22 | s . f low . f1420 (i 1) ˜=
s . f low . f1420 (i 1 +1) & s . d . node14 (i 1)==22
s t a t u s (i1 , 1 4) = 1 ;

e l s e s t a t u s (i1 , 1 4) = 0 ;
end
i f s . d . node9 (i 1) ˜= s . d . node9 (i 1 +1) | s . f low . f29 (i 1) ˜=

s . f low . f29 (i 1 +1) & s . d . node9 (i 1)<22 | s . f low . f 9 t (i 1) ˜=
s . f low . f 9 t (i 1 +1) & s . d . node9 (i 1)==22
s t a t u s (i1 , 9) = 1 ;

e l s e s t a t u s (i1 , 9) = 0 ;
end
i f s . d . node10 (i 1) ˜= s . d . node10 (i 1 +1) | s . f low . f110 (i 1) ˜=

APPENDIX B. SCRIPTS 68

s . f low . f110 (i 1 +1) & s . d . node10 (i 1)<22 | s . f low . f 1 0 t (i 1) ˜=
s . f low . f 1 0 t (i 1 +1) & s . d . node10 (i 1)==22
s t a t u s (i1 , 1 0) = 1 ;

e l s e s t a t u s (i1 , 1 0) = 0 ;
end
i f s . d . node15 (i 1) ˜= s . d . node15 (i 1 +1) | s . f low . f715 (i 1) ˜=

s . f low . f715 (i 1 +1) & s . d . node15 (i 1)<22 | s . f low . f815 (i 1) ˜=
s . f low . f815 (i 1 +1) & s . d . node15 (i 1)<22 | s . f low . f 1 5 t (i 1) ˜=
s . f low . f 1 5 t (i 1 +1) & s . d . node15 (i 1)==22
s t a t u s (i1 , 1 5) = 1 ;

e l s e s t a t u s (i1 , 1 5) = 0 ;
end
i f s . d . node16 (i 1) ˜= s . d . node16 (i 1 +1) | s . f low . f716 (i 1) ˜=

s . f low . f716 (i 1 +1) & s . d . node16 (i 1)<22 | s . f low . f816 (i 1) ˜=
s . f low . f816 (i 1 +1) & s . d . node16 (i 1)<22 | s . f low . f 1 6 t (i 1) ˜=
s . f low . f 1 6 t (i 1 +1) & s . d . node16 (i 1)==22
s t a t u s (i1 , 1 6) = 1 ;

e l s e s t a t u s (i1 , 1 6) = 0 ;
end
i f s . d . node17 (i 1) ˜= s . d . node17 (i 1 +1) | s . f low . f1117 (i 1) ˜=

s . f low . f1117 (i 1 +1) & s . d . node17 (i 1)<22 | s . f low . f1217 (i 1) ˜=
s . f low . f1217 (i 1 +1) & s . d . node17 (i 1)<22 | s . f low . f 1 7 t (i 1) ˜=
s . f low . f 1 7 t (i 1 +1) & s . d . node17 (i 1)==22
s t a t u s (i1 , 1 7) = 1 ;

e l s e s t a t u s (i1 , 1 7) = 0 ;
end
i f s . d . node18 (i 1) ˜= s . d . node18 (i 1 +1) | s . f low . f1118 (i 1) ˜=

s . f low . f1118 (i 1 +1) & s . d . node18 (i 1)<22 | s . f low . f1218 (i 1) ˜=
s . f low . f1218 (i 1 +1) & s . d . node18 (i 1)<22 | s . f low . f 1 8 t (i 1) ˜=
s . f low . f 1 8 t (i 1 +1) & s . d . node18 (i 1)==22
s t a t u s (i1 , 1 8) = 1 ;

e l s e s t a t u s (i1 , 1 8) = 0 ;
end
i f s . d . node19 (i 1) ˜= s . d . node19 (i 1 +1) | s . f low . f1319 (i 1) ˜=

s . f low . f1319 (i 1 +1) & s . d . node19 (i 1)<22 | s . f low . f1419 (i 1) ˜=
s . f low . f1419 (i 1 +1) & s . d . node19 (i 1)<22 | s . f low . f 1 9 t (i 1) ˜=
s . f low . f 1 9 t (i 1 +1) & s . d . node19 (i 1)==22
s t a t u s (i1 , 1 9) = 1 ;

e l s e s t a t u s (i1 , 1 9) = 0 ;
end
i f s . d . node20 (i 1) ˜= s . d . node20 (i 1 +1) | s . f low . f1320 (i 1) ˜=

s . f low . f1320 (i 1 +1) & s . d . node20 (i 1)<22 | s . f low . f1420 (i 1) ˜=
s . f low . f1420 (i 1 +1) & s . d . node20 (i 1)<22 | s . f low . f 2 0 t (i 1) ˜=
s . f low . f 2 0 t (i 1 +1) & s . d . node20 (i 1)==22

APPENDIX B. SCRIPTS 69

s t a t u s (i1 , 2 0) = 1 ;
e l s e s t a t u s (i1 , 2 0) = 0 ;
end
i f s . d . t a r g e t (i 1) ˜= s . d . t a r g e t (i 1 +1) | s . f low . f 9 t (i 1) ˜=

s . f low . f 9 t (i 1 +1) & s . d . t a r g e t (i 1)<22 | s . f low . f 1 5 t (i 1) ˜=
s . f low . f 1 5 t (i 1 +1) & s . d . t a r g e t (i 1)<22 | s . f low . f 1 6 t (i 1) ˜=
s . f low . f 1 6 t (i 1 +1) & s . d . t a r g e t (i 1)<22 | s . f low . f 1 7 t (i 1) ˜=
s . f low . f 1 7 t (i 1 +1) & s . d . t a r g e t (i 1)<22 | s . f low . f 1 8 t (i 1) ˜=
s . f low . f 1 8 t (i 1 +1) & s . d . t a r g e t (i 1)<22 | s . f low . f 1 9 t (i 1) ˜=
s . f low . f 1 9 t (i 1 +1) & s . d . t a r g e t (i 1)<22 | s . f low . f 2 0 t (i 1) ˜=
s . f low . f 2 0 t (i 1 +1) & s . d . t a r g e t (i 1)<22 | s . f low . f 1 0 t (i 1) ˜=
s . f low . f 1 0 t (i 1 +1) & s . d . t a r g e t (i 1)<22
s t a t u s (i1 , 2 1) = 1 ;

e l s e s t a t u s (i1 , 2 1) = 0 ;
end

end
s t a t u s a = sum (s t a t u s ’) ;
s t a t = s t a t u s a ’ ;
f a c t o r f u l l = 1 /21 ∗ s t a t (1 : 2 1 , 1) ;
t = 0 : 5 0 : 1 0 0 0 ;
p l o t (t , f a c t o r f u l l) ;
save f a c t o r f u l l p o w e r f a c t o r f u l l ;

B.3 Matlab Initialization Script for Simulink Model

% I n i t i a l i z i n g f l o w s , c a p a c i t i e s and d−v a l u e s
c l e a r ; c l c ; f l = 0 ;

%C a p a c i t i e s
cs1 = 580 ; % c a p a c i t y o f t h e edge from s o u r c e t o node1
cs2 = 580 ; % c a p a c i t y o f t h e edge from s o u r c e t o node2
c13 = 180 ; % c a p a c i t y o f t h e edge from node1 t o node3
c110 = 400 ; % c a p a c i t y o f t h e edge from node1 t o node10
c24 = 180 ; % c a p a c i t y o f t h e edge from node1 t o node4
c29 = 400 ; % c a p a c i t y o f t h e edge from node3 t o node9
c35 = 180 ; % c a p a c i t y o f t h e edge from node3 t o node5
c36 = 180 ; % c a p a c i t y o f t h e edge from node3 t o node6
c45 = 180 ; % c a p a c i t y o f t h e edge from node4 t o node5
c46 = 180 ; % c a p a c i t y o f t h e edge from node4 t o node6
c57 = 6 0 ; % c a p a c i t y o f t h e edge from node5 t o node7
c511 = 6 0 ; % c a p a c i t y o f t h e edge from node5 t o node11
c513 = 6 0 ; % c a p a c i t y o f t h e edge from node5 t o node13
c68 = 6 0 ; % c a p a c i t y o f t h e edge from node6 t o node8
c612 = 6 0 ; % c a p a c i t y o f t h e edge from node6 t o node12

APPENDIX B. SCRIPTS 70

c614 = 6 0 ; % c a p a c i t y o f t h e edge from node6 t o node14
c715 = 6 0 ; % c a p a c i t y o f t h e edge from node7 t o node15
c716 = 6 0 ; % c a p a c i t y o f t h e edge from node7 t o node16
c815 = 6 0 ; % c a p a c i t y o f t h e edge from node8 t o node15
c816 = 6 0 ; % c a p a c i t y o f t h e edge from node8 t o node16
c1117 = 6 0 ; % c a p a c i t y o f t h e edge from node11 t o node17
c1118 = 6 0 ; % c a p a c i t y o f t h e edge from node11 t o node18
c1217 = 6 0 ; % c a p a c i t y o f t h e edge from node12 t o node17
c1218 = 6 0 ; % c a p a c i t y o f t h e edge from node12 t o node18
c1319 = 6 0 ; % c a p a c i t y o f t h e edge from node13 t o node19
c1320 = 6 0 ; % c a p a c i t y o f t h e edge from node13 t o node20
c1419 = 6 0 ; % c a p a c i t y o f t h e edge from node14 t o node19
c1420 = 6 0 ; % c a p a c i t y o f t h e edge from node14 t o node20
c 9 t = 400 ; % c a p a c i t y o f t h e edge from node9 t o t a r g e t
c 1 0 t = 400 ; % c a p a c i t y o f t h e edge from node10 t o t a r g e t
c 1 5 t = 3 0 ; % c a p a c i t y o f t h e edge from node15 t o t a r g e t
c 1 6 t = 3 0 ; % c a p a c i t y o f t h e edge from node16 t o t a r g e t
c 1 7 t = 3 0 ; % c a p a c i t y o f t h e edge from node17 t o t a r g e t
c 1 8 t = 3 0 ; % c a p a c i t y o f t h e edge from node18 t o t a r g e t
c 1 9 t = 3 0 ; % c a p a c i t y o f t h e edge from node19 t o t a r g e t
c 2 0 t = 3 0 ; % c a p a c i t y o f t h e edge from node20 t o t a r g e t
c t t = 100000; % c a p a c i t y o f t h e o u t g o i n g edge o f t h e t a r g e t

%Flows
f s 1 = f l ∗40 ; % f l o w o f t h e edge from s o u r f e t o node1
f s 2 = f l ∗40 ; % f l o w o f t h e edge from s o u r f e t o node2
f13 = f l ∗10 ; % f l o w o f t h e edge from node1 t o node3
f110 = f l ∗10 ; % f l o w o f t h e edge from node1 t o node10
f24 = f l ∗10 ; % f l o w o f t h e edge from node1 t o node4
f29 = f l ∗10 ; % f l o w o f t h e edge from node3 t o node9
f35 = f l ∗10 ; % f l o w o f t h e edge from node3 t o node5
f36 = f l ∗10 ; % f l o w o f t h e edge from node3 t o node6
f45 = f l ∗10 ; % f l o w o f t h e edge from node4 t o node5
f46 = f l ∗10 ; % f l o w o f t h e edge from node4 t o node6
f57 = f l ∗10 ; % f l o w o f t h e edge from node5 t o node7
f511 = f l ∗10 ; % f l o w o f t h e edge from node5 t o node11
f513 = f l ∗10 ; % f l o w o f t h e edge from node5 t o node13
f68 = f l ∗10 ; % f l o w o f t h e edge from node6 t o node8
f612 = f l ∗10 ; % f l o w o f t h e edge from node6 t o node12
f614 = f l ∗10 ; % f l o w o f t h e edge from node6 t o node14
f715 = f l ∗10 ; % f l o w o f t h e edge from node7 t o node15
f716 = f l ∗10 ; % f l o w o f t h e edge from node7 t o node16
f815 = f l ∗10 ; % f l o w o f t h e edge from node8 t o node15
f816 = f l ∗10 ; % f l o w o f t h e edge from node8 t o node16

APPENDIX B. SCRIPTS 71

f1117 = f l ∗10 ; % f l o w o f t h e edge from node11 t o node17
f1118 = f l ∗10 ; % f l o w o f t h e edge from node11 t o node18
f1217 = f l ∗10 ; % f l o w o f t h e edge from node12 t o node17
f1218 = f l ∗10 ; % f l o w o f t h e edge from node12 t o node18
f1319 = f l ∗10 ; % f l o w o f t h e edge from node13 t o node19
f1320 = f l ∗10 ; % f l o w o f t h e edge from node13 t o node20
f1419 = f l ∗10 ; % f l o w o f t h e edge from node14 t o node19
f1420 = f l ∗10 ; % f l o w o f t h e edge from node14 t o node20
f 9 t = f l ∗10 ; % f l o w o f t h e edge from node9 t o t a r g e t
f 1 0 t = f l ∗10 ; % f l o w o f t h e edge from node10 t o t a r g e t
f 1 5 t = f l ∗10 ; % f l o w o f t h e edge from node15 t o t a r g e t
f 1 6 t = f l ∗10 ; % f l o w o f t h e edge from node16 t o t a r g e t
f 1 7 t = f l ∗10 ; % f l o w o f t h e edge from node17 t o t a r g e t
f 1 8 t = f l ∗10 ; % f l o w o f t h e edge from node18 t o t a r g e t
f 1 9 t = f l ∗10 ; % f l o w o f t h e edge from node19 t o t a r g e t
f 2 0 t = f l ∗10 ; % f l o w o f t h e edge from node20 t o t a r g e t

%D−v a l u e s
ds = 0 ; % d−v a l u e o f s o u r c e
d1 = 0 ; % d−v a l u e o f node1
d2 = 0 ; % d−v a l u e o f node2
d3 = 0 ; % d−v a l u e o f node3
d4 = 0 ; % d−v a l u e o f node4
d5 = 0 ; % d−v a l u e o f node5
d6 = 0 ; % d−v a l u e o f node6
d7 = 0 ; % d−v a l u e o f node7
d8 = 0 ; % d−v a l u e o f node8
d9 = 0 ; % d−v a l u e o f node9
d10 = 0 ; % d−v a l u e o f node10
d11 = 0 ; % d−v a l u e o f node11
d12 = 0 ; % d−v a l u e o f node12
d13 = 0 ; % d−v a l u e o f node13
d14 = 0 ; % d−v a l u e o f node14
d15 = 0 ; % d−v a l u e o f node15
d16 = 0 ; % d−v a l u e o f node16
d17 = 0 ; % d−v a l u e o f node17
d18 = 0 ; % d−v a l u e o f node18
d19 = 0 ; % d−v a l u e o f node19
d20 = 0 ; % d−v a l u e o f node20
d t = 0 ; % d−v a l u e o f t a r g e t

%P r i o r i t i e s
p9 = 1 ; p10 = 1 ; p15 = 1 ; p16 = 0 ; p17 = 1 ; p18 = 0 ; p19 = 1 ; p20
= 0 ; p7 = max (p15 , p16) ; p8 = max (p15 , p16) ; p11 = max (p17 , p18) ; p12

APPENDIX B. SCRIPTS 72

= max (p17 , p18) ; p13 = max (p19 , p20) ; p14 = max (p19 , p20) ;

%N − number o f nodes
n = 2 2 ;

% lab−model p a r a m e t e r s
% r e p r e s e n t s a s i m p l i f i e d ESPS by g e n e r i c t r a n s f e r f u n c t i o n b l o c k s

% d i s c r e t e s i m u l a t i o n t i m e s t e p
dT = 1e−3;

% gas t u r b i n e
g t d . en e r g y = gas . t e ∗ [1 ; 1] ; % a v a i l a b l e e n er gy
g t d . dene rgy = [−1;−1]; g t d . pi . kp = [2 ; 1] ; g t d . pi . k i = [1 ; 1] ;
g t d . pi . l i m i t = [1 . 0 2 ; , 1 . 0 2] ; g t d . p t 2 . kp = [. 9 8 ; . 9 8] ; g t d . p t 2 . d =
[0 . 9 ; 0 . 9] ; g t d . p t 2 . w0 = [4 ; 4] ; f o r i i =1 : l e n g t h (g t d . pi . kp) ,

g t d . p t 2 . num{ i i } = [g t d . p t 2 . kp (i i)] ;
g t d . p t 2 . den{ i i } = [1 / g t d . p t 2 . w0(i i) ˆ 2 . .

2∗ g t d . p t 2 . d (i i) / g t d . p t 2 . w0(i i) 1] ;
[numd , dend] = c t f 2 d t f (g t d . p t 2 . num{ i i } , g t d . p t 2 . den{ i i } , dT) ;
g t d . p t 2 . numd{ i i , : } = {numd } ;
g t d . p t 2 . dend{ i i , : } = {dend } ;

end

% e x c i t e r
exc . pi . kp = [4 ; 1] ; exc . pi . k i = [2 ; 1] ; exc . pi . l i m i t = [1 . 0 2 ; , 1 . 0 2] ;
exc . p t 1 . kp = [1 ; 1] ; exc . p t 1 . t 1 = [. 1 ; . 1] ; exc . p . l e v e l = [. 1 ; . 1] ;
exc . ps = [. 0 5 ; . 0 5] ;

% g e n e r a t o r
g .H = [1 ; 1] ; g . p t 1 . kp = [2 ; 2] ; g . p t 1 . t 1 = [. 2 ; . 2] ; g . vdroop =
[0 . 1 ; 0 . 1] ;

% p r o p u l s i o n
pr . p = [. 5 5 ; . 5 5] ; p r . t 1 = [. 1 ; . 1] ; p r . vT1 = [. 0 1 ; . 0 1] ; p r . vmin =
[. 8 ; . 8] ;

% l o a d s
% t y p e 1
l t . a . vmin1 = [. 7] ; l t . a . vmin2 = [. 7] ; l t . a . p = [. 1] ; l t . a . t 1 =
[. 1] ; l t . a . vT1 1 = [. 0 1] ; l t . a . vT1 2 = [. 0 1] ;

APPENDIX B. SCRIPTS 73

B.4 S-functions Used in PCAN Simulink Blocks

/∗ S−f u n c t i o n f o r PCAN IN b l o c k . ∗ /

/∗ COPYRIGHT (C) November 2005 APERC , WVU
(k a r l . schoder@mail . wvu . edu)
∗ /
d e f i n e S FUNCTION NAME s f u n p c a n i n 2
d e f i n e S FUNCTION LEVEL 2

i f d e f MATLAB MEX FILE
i n c l u d e ”mex . h ” /∗ needed f o r d e c l a r a t i o n o f mexErrMsgTxt ∗ /
e n d i f

i f n d e f MATLAB MEX FILE
i n c l u d e <s t d i o . h>
i n c l u d e < s t d l i b . h>
i n c l u d e < l i b p c a n . h>
i n c l u d e < f c n t l . h> / / O RDWR # e n d i f
i n c l u d e ” s i m s t r u c . h ”

d e f i n e NUMBER OF ARGS (3)
d e f i n e CAN ID ARG ssGetSFcnParam (S , 0)
d e f i n e BAUDRATE ARG ssGetSFcnParam (S , 1)
d e f i n e SAMP TIME ARG ssGetSFcnParam (S , 2)
d e f i n e NO I WORKS (1)
d e f i n e CAN ID I IND (0)

s t a t i c vo id ∗h = NULL;
s t a t i c i n t h c n t = 0 ;
i n t CANMsg[1 2] = {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ;

s t a t i c vo id m d l I n i t i a l i z e S i z e s (S i m S t r u c t ∗S) {
ssSetNumSFcnParams (S , NUMBER OF ARGS) ;
i f (ssGetNumSFcnParams (S) != ssGetSFcnParamsCount (S)) {

re turn ; /∗ Parameter mismatch w i l l be r e p o r t e d by S i m u l i n k ∗ /
}
s s S e tN um Ou tp u t Po r t s (S , 5) ;
s s S e t O u t p u t P o r t W i d t h (S , 0 , 1) ; /∗ s t a t u s ∗ /
s s S e t O u t p u t P o r t W i d t h (S , 1 , 1) ; /∗ ID ∗ /
s s S e t O u t p u t P o r t W i d t h (S , 2 , 1) ; /∗ t y p e ∗ /
s s S e t O u t p u t P o r t W i d t h (S , 3 , 1) ; /∗ l e n g t h ∗ /
s s S e t O u t p u t P o r t W i d t h (S , 4 , 8) ; /∗ da ta ∗ /

APPENDIX B. SCRIPTS 74

s s S e t N u m C o n t S t a t e s (S , 0) ;
s s S e t N u m D i s c S t a t e s (S , 0) ;
ssSetNumSampleTimes (S , 1) ;
ssSetNumIWork (S , NO I WORKS) ;

}

s t a t i c vo id m d l I n i t i a l i z e S a m p l e T i m e s (S i m S t r u c t ∗S) {
ssSe tSampleTime (S , 0 , mxGetPr (SAMP TIME ARG) [0]) ;
s s S e t O f f s e t T i m e (S , 0 , 0 . 0) ;

}

d e f i n e MDL START
s t a t i c vo id m d l S t a r t (S i m S t r u c t ∗S) {
i f n d e f MATLAB MEX FILE

i n t T c a n i d = mxGetPr (CAN ID ARG) [0] ;
i n t T b a u d r a t e = mxGetPr (BAUDRATE ARG) [0] ;
s sSe t IWorkVa lue (S , CAN ID I IND , c a n i d) ;

u 1 6 wBTR0BTR1 ;
i n t nExtended = CAN INIT TYPE ST ;

s wi t c h (b a u d r a t e)
{

case 10 :
{

wBTR0BTR1 = CAN BAUD 10K ;
break ;

}
case 20 :

{
wBTR0BTR1 = CAN BAUD 20K ;
break ;

}
case 50 :

{
wBTR0BTR1 = CAN BAUD 50K ;
break ;

}
case 100 :

{
wBTR0BTR1 = CAN BAUD 100K ;
break ;

}

APPENDIX B. SCRIPTS 75

case 125 :
{

wBTR0BTR1 = CAN BAUD 125K ;
break ;

}
case 250 :

{
wBTR0BTR1 = CAN BAUD 250K ;
break ;

}
case 500 :

{
wBTR0BTR1 = CAN BAUD 500K ;
break ;

}
case 1000 :

{
wBTR0BTR1 = CAN BAUD 1M;
break ;

}
d e f a u l t :

{
wBTR0BTR1 = CAN BAUD 100K ;

}
}

i f (h==NULL){

i n t e rno =0;
h = LINUX CAN Open (” / dev / pcan0 ” , O RDWR) ;
i f (h){

CAN Status (h) ;
i f (wBTR0BTR1){

e rno = CAN Ini t (h , wBTR0BTR1 , nExtended) ;
i f (e rno)
{

p e r r o r (” r e q u e s t : CAN Ini t () ”) ;
e x i t (1) ;

}
}

}
e l s e
{

e rno = n G e t L a s t E r r o r () ;

APPENDIX B. SCRIPTS 76

p e r r o r (” r e q u e s t : CAN Open () ”) ;
e x i t (1) ;

}
}
h c n t ++;

e n d i f
}

s t a t i c vo id mdlOutpu t s (S i m S t r u c t ∗S , i n t T t i d) {
i f n d e f MATLAB MEX FILE

r e a l T ∗ s t a t u s = s s G e t O u t p u t P o r t R e a l S i g n a l (S , 0) ; /∗ s t a t u s ∗ /
r e a l T ∗msgid = s s G e t O u t p u t P o r t R e a l S i g n a l (S , 1) ; /∗ ID ∗ /
r e a l T ∗msgtype = s s G e t O u t p u t P o r t R e a l S i g n a l (S , 2) ; /∗ t y p e ∗ /
r e a l T ∗msglen = s s G e t O u t p u t P o r t R e a l S i g n a l (S , 3) ; /∗ l e n g t h ∗ /
r e a l T ∗msgdata = s s G e t O u t p u t P o r t R e a l S i g n a l (S , 4) ; /∗ da ta ∗ /

TPCANMsg MyMsg ;
i n t e r r n o = 0 ;
i n t i ;

i f (e r r n o = CAN Read (h , &MyMsg)) {
p e r r o r (” r e q u e s t : CAN Read () ”) ;
e x i t (1) ;

}
e l s e {

CANMsg[1] = MyMsg . ID ;
CANMsg[2] = MyMsg .MSGTYPE;
CANMsg[3] = MyMsg . LEN;
f o r (i =0 ; i<MyMsg . LEN; i ++){

CANMsg[4+ i] = MyMsg .DATA[i] ;
}
f o r (i =MyMsg . LEN; i <8; i ++){

CANMsg[4+ i] = 0 ;
}
f o r (i =0 ; i <8; i ++){

msgdata [i] = CANMsg[4+ i] ;
}
}
CANMsg[0] = CAN Status (h) ;

s t a t u s [0] = CANMsg [0] ;
msgid [0] = CANMsg [1] ;
msgtype [0] = CANMsg [2] ;

APPENDIX B. SCRIPTS 77

msglen [0] = CANMsg [3] ;
e n d i f
}

s t a t i c vo id mdlTermina te (S i m S t r u c t ∗S)
{
i f n d e f MATLAB MEX FILE

h c n t −−;
i f (h c n t ==0) CAN Close (h) ;

e n d i f
}

i f d e f MATLAB MEX FILE /∗ MEX− f i l e ? ∗ /
i n c l u d e ” s i m u l i n k . c ” /∗ MEX− f i l e i n t e r f a c e mechanism ∗ /
e l s e
i n c l u d e ” c g s f u n . h ” /∗ Code g e n e r a t i o n r e g i s t r a t i o n f u n c t i o n ∗ /
e n d i f

/∗ S−f u n c t i o n f o r PCAN OUT b l o c k . ∗ /

/∗ COPYRIGHT (C) November 2005 APERC , WVU
(k a r l . schoder@mail . wvu . edu)
∗ /

d e f i n e S FUNCTION NAME s f u n p c a n o u t 2 # d e f i n e S FUNCTION LEVEL 2

i f d e f MATLAB MEX FILE # i n c l u d e ”mex . h ” /∗ needed f o r
d e c l a r a t i o n o f mexErrMsgTxt ∗ / # e n d i f

i f n d e f MATLAB MEX FILE
i n c l u d e <s t d i o . h>
i n c l u d e < s t d l i b . h>
i n c l u d e < l i b p c a n . h>
i n c l u d e < f c n t l . h> / / O RDWR
i n c l u d e <s y s / i o c t l . h>
e n d i f

i n c l u d e ” s i m s t r u c . h ”

d e f i n e NUMBER OF ARGS (3)
d e f i n e CAN ID ARG ssGetSFcnParam (S , 0)
d e f i n e BAUDRATE ARG ssGetSFcnParam (S , 1)
d e f i n e SAMPLETIME ARG ssGetSFcnParam (S , 2)

APPENDIX B. SCRIPTS 78

d e f i n e NO I WORKS (1)
d e f i n e CAN ID I IND (0)
d e f i n e BYTE u 8

s t a t i c i n t h c n t = 0 ;
s t a t i c vo id ∗h = NULL;

s t a t i c vo id m d l I n i t i a l i z e S i z e s (S i m S t r u c t ∗S) {
ssSetNumSFcnParams (S , NUMBER OF ARGS) ;
i f (ssGetNumSFcnParams (S) != ssGetSFcnParamsCount (S)) {

re turn ; /∗ Parameter mismatch w i l l be r e p o r t e d by S i m u l i n k ∗ /
}
i f (! s s S e t N u m I n p u t P o r t s (S , 3)) re turn ;
s s S e t I n p u t P o r t W i d t h (S , 0 , 1) ;
s s S e t I n p u t P o r t W i d t h (S , 1 , 1) ;
s s S e t I n p u t P o r t W i d t h (S , 2 , 8) ;
s s S e t I n p u t P o r t D i r e c t F e e d T h r o u g h (S , 0 , 1) ;
s s S e t I n p u t P o r t D i r e c t F e e d T h r o u g h (S , 1 , 1) ;
s s S e t I n p u t P o r t D i r e c t F e e d T h r o u g h (S , 2 , 1) ;

i f (! s sS e tN um Ou tp u t P o r t s (S , 0)) re turn ;

s s S e t N u m C o n t S t a t e s (S , 0) ;
s s S e t N u m D i s c S t a t e s (S , 0) ;
ssSetNumSampleTimes (S , 1) ;
ssSetNumIWork (S , NO I WORKS) ;

}

s t a t i c vo id m d l I n i t i a l i z e S a m p l e T i m e s (S i m S t r u c t ∗S) {
r e a l T s a m p l e t i m e = mxGetPr (SAMPLETIME ARG) [0] ;
s sSe tSampleTime (S , 0 , s a m p l e t i m e) ;
s s S e t O f f s e t T i m e (S , 0 , 0 . 0) ;

}

d e f i n e MDL START
s t a t i c vo id m d l S t a r t (S i m S t r u c t ∗S) {
i f n d e f MATLAB MEX FILE

i n t T c a n i d = mxGetPr (CAN ID ARG) [0] ;
i n t T b a u d r a t e = mxGetPr (BAUDRATE ARG) [0] ;
s sSe t IWorkVa lue (S , CAN ID I IND , c a n i d) ;

APPENDIX B. SCRIPTS 79

i n t nType ;
u 1 6 wBTR0BTR1 ;

i n t nExtended = CAN INIT TYPE ST ;

nType = HW USB;

s wi t c h (b a u d r a t e)
{

case 10 :
{

wBTR0BTR1 = CAN BAUD 10K ;
break ;

}
case 20 :

{
wBTR0BTR1 = CAN BAUD 20K ;
break ;

}
case 50 :

{
wBTR0BTR1 = CAN BAUD 50K ;
break ;

}
case 100 :

{
wBTR0BTR1 = CAN BAUD 100K ;
break ;

}
case 125 :

{
wBTR0BTR1 = CAN BAUD 125K ;
break ;

}
case 250 :

{
wBTR0BTR1 = CAN BAUD 250K ;
break ;

}
case 500 :

{
wBTR0BTR1 = CAN BAUD 500K ;
break ;

}
case 1000 :

APPENDIX B. SCRIPTS 80

{
wBTR0BTR1 = CAN BAUD 1M;
break ;

}
d e f a u l t :

{
wBTR0BTR1 = CAN BAUD 100K ;

}
}

i f (h==NULL){

i n t e rno =0;
h = LINUX CAN Open (” / dev / pcan0 ” , O RDWR) ;
i f (h){

CAN Status (h) ;
i f (wBTR0BTR1){

e rno = CAN Ini t (h , wBTR0BTR1 , nExtended) ;
i f (e rno)
{

p e r r o r (” r e q u e s t : CAN Ini t () ”) ;
e x i t (1) ;

}
}

}
e l s e
{

e rno = n G e t L a s t E r r o r () ;
p e r r o r (” r e q u e s t : CAN Open () ”) ;
e x i t (1) ;

}
h c n t ++;
}

e n d i f
}

s t a t i c vo id mdlOutpu t s (S i m S t r u c t ∗S , i n t T t i d) {
i f n d e f MATLAB MEX FILE

I n p u t R e a l P t r s T y p e MSGid = s s G e t I n p u t P o r t R e a l S i g n a l P t r s (S , 0) ;
I n p u t R e a l P t r s T y p e MSGlen = s s G e t I n p u t P o r t R e a l S i g n a l P t r s (S , 1) ;
I n p u t R e a l P t r s T y p e MSGdata = s s G e t I n p u t P o r t R e a l S i g n a l P t r s (S , 2) ;
i n t T i d = ssGet IWorkValue (S , CAN ID I IND) ;
double u ;

APPENDIX B. SCRIPTS 81

i n t T i i ;
i n t T e rno = 0 ;
TPCANMsg myMsg ;
myMsg . ID = (long i n t) ∗MSGid [0] ;
myMsg .MSGTYPE = MSGTYPE STANDARD;
myMsg . LEN = ∗MSGlen [0] ;
f o r (i i =0 ; i i <myMsg . LEN; i i ++){

myMsg .DATA[i i] = ∗MSGdata [i i] ;
}

i n t T b a u d r a t e = mxGetPr (BAUDRATE ARG) [0] ;
s sSe t IWorkVa lue (S , CAN ID I IND , c a n i d) ;

i n t nType ;
u 1 6 wBTR0BTR1 ;

i n t nExtended = CAN INIT TYPE ST ;

nType = HW USB;

s wi t c h (b a u d r a t e)
{

case 10 :
{

wBTR0BTR1 = CAN BAUD 10K ;
break ;

}
case 20 :

{
wBTR0BTR1 = CAN BAUD 20K ;
break ;

}
case 50 :

{
wBTR0BTR1 = CAN BAUD 50K ;
break ;

}
case 100 :

{
wBTR0BTR1 = CAN BAUD 100K ;
break ;

}
case 125 :

{
wBTR0BTR1 = CAN BAUD 125K ;

APPENDIX B. SCRIPTS 82

break ;
}
case 250 :

{
wBTR0BTR1 = CAN BAUD 250K ;
break ;

}
case 500 :

{
wBTR0BTR1 = CAN BAUD 500K ;
break ;

}
case 1000 :

{
wBTR0BTR1 = CAN BAUD 1M;
break ;

}
d e f a u l t :

{
wBTR0BTR1 = CAN BAUD 100K ;

}
}

i f (h==NULL){

i n t e rno =0;
h = LINUX CAN Open (” / dev / pcan0 ” , O RDWR) ;
i f (h){

CAN Status (h) ;
i f (wBTR0BTR1){

e rno = CAN Ini t (h , wBTR0BTR1 , nExtended) ;
i f (e rno)
{

p e r r o r (” r e q u e s t : CAN Ini t () ”) ;
e x i t (1) ;

}
}

}
e l s e
{

e rno = n G e t L a s t E r r o r () ;
p e r r o r (” r e q u e s t : CAN Open () ”) ;
e x i t (1) ;

}

APPENDIX B. SCRIPTS 83

}

i f ((e rno = CAN Write (h , &myMsg)))
{

p e r r o r (” r e q u e s t : CAN Write () ”) ;
e x i t (1) ;

}
re turn ; / / e rno ;

e n d i f
}

s t a t i c vo id mdlTermina te (S i m S t r u c t ∗S) {
i f n d e f MATLAB MEX FILE

i n t T i d = ssGet IWorkValue (S , CAN ID I IND) ;

h c n t −−;
i f (h c n t ==0) CAN Close (h) ;

e n d i f
}

i f d e f MATLAB MEX FILE /∗ MEX− f i l e ? ∗ /
i n c l u d e ” s i m u l i n k . c ” /∗ MEX− f i l e i n t e r f a c e mechanism ∗ /
e l s e # i n c l u d e ” c g s f u n . h ” /∗ Code g e n e r a t i o n r e g i s t r a t i o n f u n c t i o n ∗ /
e n d i f

	Software tools for real-time simulation and control
	Recommended Citation

	Software Tools for Real-Time Simulation and Control

		2005-12-14T16:51:14-0500
	John H. Hagen
	I am approving this document

