
Graduate Theses, Dissertations, and Problem Reports 

2010 

High rank tensor and spherical harmonic models for diffusion MRI High rank tensor and spherical harmonic models for diffusion MRI 

processing processing 

Inas A. Yassine 
West Virginia University 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

Recommended Citation Recommended Citation 
Yassine, Inas A., "High rank tensor and spherical harmonic models for diffusion MRI processing" (2010). 
Graduate Theses, Dissertations, and Problem Reports. 3205. 
https://researchrepository.wvu.edu/etd/3205 

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F3205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/3205?utm_source=researchrepository.wvu.edu%2Fetd%2F3205&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


HIGH RANK TENSOR AND SPHERICAL HARMONIC MODELS
FOR DIFFUSION MRI PROCESSING

Inas A. Yassine

Dissertation submitted to the
College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy
in

Electrical Engineering

McGraw, Timothy , Ph.D., Chair
Ross, Arun , Ph.D.

Schmid, Natalia, Ph.D.
Mukdadi, Sam , Ph.D.

Adjeroh, Donald, Ph.D.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia University
2010



ABSTRACT

HIGH RANK TENSOR AND SPHERICAL HARMONIC MODELS

FOR DIFFUSION MRI PROCESSING

Inas A. Yassine

Diffusion tensor imaging (DTI) is a non-invasive quantitative method of char-

acterizing tissue micro-structure. Diffusion imaging attempts to characterize

the manner by which the water molecules within a particular location move

within a given amount of time. Measurement of the diffusion tensor (D) within

a voxel allows a macroscopic voxel-averaged description of fiber structure, ori-

entation and fully quantitative evaluation of the microstructural features of

healthy and diseased tissue.

The rank two tensor model is incapable of resolving multiple fiber orien-

tations within an individual voxel. This shortcoming of single tensor model

stems from the fact that the tensor possesses only a single orientational max-

imum. Several authors reported this non-mono-exponential behavior for the

diffusion-induced attenuation in brain tissue in water and N-Acetyl Aspar-

tate (NAA) signals, that is why the Multi-Tensor, Higher Rank Tensor and

Orientation Distribution Function (ODF) were introduced.

Using the higher rank tensor, we will propose a scheme for tensor field

interpolation which is inspired by subdivision surfaces in computer graphics.

The method applies to Cartesian tensors of all ranks and imposes smoothness



on the interpolated field by constraining the divergence and curl of the tensor

field. Results demonstrate that the subdivision scheme can better preserve

anisotropicity and interpolate rotations than some other interpolation meth-

ods. As one of the most important applications of DTI, fiber tractography

was implemented to study the shape geometry changes. Based on the diver-

gence and curl measurement, we will introduce new scalar measures that are

sensitive to behaviors such as fiber bending and fanning.

Based on the ODF analysis, a new anisotropy measure that has the ability

to describe multi-fiber heterogeneity while remaining rotationally invariant,

will be introduced, which is a problem with many other anisotropy measures

defined using the ODF. The performance of this novel measure is demonstrated

for data with varying Signal to Noise Ratio (SNR), and different material

characteristics.
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Chapter 1

Thesis Objective and

Contributions

1.1 Thesis Objective

The single tensor model is incapable of resolving multiple fiber orientations within

an individual voxel. This shortcoming of the tensor model stems from the fact that

the tensor possesses only a single orientational maximum, i.e., the major eigenvalue

of the diffusion tensor. At the millimeter-scale resolution typical of DTI, the vol-

ume of cerebral white matter containing such intravoxel orientational heterogeneity

(IVOH) may be considerable given the widespread divergence and convergence of fas-

cicles. The abundance of IVOH at the millimeter scale can be further appreciated

by considering the ubiquity of oblate (pancake-shaped) diffusion tensors in DTI, a

hypothesized indicator of IVOH. Several authors reported a non-mono-exponential

behavior for the diffusion-induced attenuation in brain tissue in water and N-acetyl

aspartate NAA signals. Their study was based on a 1-D diffusion experiment and

the results were fitted to bi- or tri-exponential functions. They indicated that high b

1



1.1 Thesis Objective 2

values reveal more complex behavior and therefore their fit depended on the value of

b used in the measurement. This gives us the motivation to use the high order tensor

and the orientation distribution in our analysis.

In order to avoid non-unique variations in measuring diffusivity parameters with

the positioning of the subject, a more general characterization of the diffusion process

was introduced based on diffusion tensors.

Since voxels in clinical DT images are often quite anisotropic and the voxel size is

in the mm scale although the brain fibers width are in the nm scale, a preliminary

resampling step with an adequate interpolation method or subdivision is therefore

important for such algorithms. Proper interpolation methods are also required to

generalize to the tensor case usual registration techniques used on scalar or vector

images.

We want to derive the methodology and apparatus for subdivision of higher rank

multi-axon fiber tracking based on high angular resolution diffusion-weighted acqui-

sitions. Given the characteristics of axonal membranes, the diffusion of water inside

each axon is preferred along the direction of the axon rather than across it, diver-

gence and curl properties of the fibers, a least square subdivision algorithm preserving

anisotropicity of the compartments, is used.

Further analysis of the orientation distribution function is also important as a

step for fiber tractography, which is the most known application of DTI imaging.

Through this analysis, a novel anisotropic measurement is derived based on the ODF

that solves the problem of the rotationally invariance that was the main problem

of all other anisotropy measurement based on the ODF. This measure preserves the

difference in anisotropy due to multi compartment behavior in voxels. Experimental

analysis were used to check the rotational invariance and effect of noisy signal on the

new measure estimation.
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1.2 Contributions

A new Subdivision Algorithm has been developed ,that can be extended to higher

rank tensor. Solution must be optimal in least-square sense and efficient in terms

of computational requirements. the new algorithm was compared to the the linearly

interpolated and the log Euclidian interpolated volumes, Anisotropy smoothness, Ten-

sor Frobenuis norm, and Tract shape geometry were calculated.

A new structural measurement, that was based on the divergence and curl, was

proposed. this measure has the advantage of being extended to tensor of any rank.

Finally, A new anisotropic measure that is based on the SH-ODF was proposed.

It has the advantage of being rotationally invariant and not being based on model

estimation. A Closed form for the new measurement was calculated using Mathe-

matica. the behavior of this measure under different conditions of SNR for different

standard brain tissue was estimated.



Chapter 2

Magnetic Resonance Imaging and

Diffusion Tensor MRI

2.1 Magnetic Resonance Imaging

Magnetic resonance (MR) is a phenomenon involving magnetic fields and radiofre-

quency (RF) electromagnetic waves. It was discovered in 1946 independently by

Bloch and co-workers at Stanford and by Purcell at Harvard. Since then magnetic

resonance imaging (MRI) has been a useful tool, especially for analytical chemistry

and biochemistry, thanks to the discovery of the chemical shift. MRI can produce im-

ages with excellent contrast between soft tissues and high spatial resolution in every

direction. MRI uses electromagnetic radiation to probe inside the human body. Fur-

thermore, the radiation has low energy and appears to be safe under normal operating

conditions [1].

This chapter is a quick review on the fundamentals of MRI.

4
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Figure 2.1 Nuclear magnetism. Nuclei with net spin (I) have a characteristic
magnetic moment (m) and an associated magnetic field, similar to a dipole,
such as a bar magnet.

2.1.1 Properties of Atomic Nuclei

At the core of atoms and accommodating most of the elemental mass is the nucleus,

consisting of neutrons and protons. Nuclei with an odd number of neutrons or protons

possess spin-angular momentum, have a magnetic moment, m, characterizing the

magnetic field surrounding the nucleus. The magnetic field attributed to a nucleus is

analogous to that from a bar magnet as shown in figure (2.1) [1].

2.1.2 Net Magnetization Vector

When exposed to a static magnetic field B0, the randomly oriented magnetic dipoles

tend to align with the magnetic field. The phases of an ensemble of magnetic moments

are random, as shown in Figure (2.2). Therefore the individual magnetic moments

make up the surface of a double cone, and their joint alignment creates the net

magnetization, M. The net magnetization is the vector sum of the individual magnetic

moments, as follows:

M =
N∑
i=1

Piµi (2.1)

where µi is the magnetic moment of the ith state and Pi is its population, which

follows Boltzman statistics.
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Figure 2.2 Nuclear magnetism. Nuclei with net spin (I) have a characteristic
magnetic moment (m) and an associated magnetic field, similar to a dipole,
such as a bar magnet.

The net magnetization experiences a torque from the magnetic field analogous

to a spinning top in the earth’s gravitational field. As a result, the magnetization

precesses around the axis of the magnetic field at a special frequency called the Larmor

frequency [1, 2].

ω0 = γB0 (2.2)

where γ is the gyromagnetic ratio characteristic of the nuclear isotope [2].

2.1.3 Radiofrequency Field

MR can be detected only if transverse magnetization (magnetization perpendicular

to B0) is created because this transverse magnetization is time dependent and thus,

according to Faraday’s law of induction; can induce a voltage in a receiver coil. The

longitudinal magnetization in thermal equilibrium is static and therefore does not

meet the criteria for magnetic induction. Transverse magnetization is created when

the Radio Frequency [RF] field of amplitude of B1, rotating synchronously with the

precessing spins, is applied as shown in Figure (2.3). If the B1 field rotates the net
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Figure 2.3 Tipping of longitudinal magnetization (a)into transverse mag-
netization by a magnetic field, B1, associated with an RF wave or pulse
(b).

magnetization by 90 degrees, all of the longitudinal magnetization is converted to

transverse magnetization [1, 3]. Once the RF pulse is removed, the magnetization

precesses about the static magnetic field at the Larmor frequency. The precessing

magnetization can be detected as a time-varying electrical voltage across the ends

of a coil of wire oriented as shown in Figure (2.4). The magnetization also decays

exponentially with time-constant T2. A simple model for this induced voltage can be

calculated using equation shown here:

V = kM0 exp2iπfiT exp−t/T2 (2.3)

where k is a constant and i =(−1)1/2 [1, 2]. The precessing transverse magnetization

is represented by a complex number, which is composed of two numbers-the real part

and the imaginary part. No special significance is attached to the terms real and

imaginary. The induced voltage has the characteristics of a damped cosine and hence

is also called free-induction decay (FID). The imaginary component of the transverse

magnetization has the same phase as the B1 RF field and the real component is 90

degrees out of phase, as shown in Figure (2.5). [1]
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Figure 2.4 Transverse magnetization and MR signals.

2.1.4 T1 Relaxation

RF stimulation causes nuclei to absorb energy, lifting them to the excited state. The

nuclei can return to the ground state only by dissipating their excess energy to their

surroundings, which is called the lattice. The process, which is aptly named spin-

lattice relaxation, describes the recovery of the longitudinal magnetization toward its

equilibrium value [1, 4].

2.1.5 T2 Relaxation

The transverse magnetization decays because its component magnetic moments get

out of phase as a result of their mutual interaction. Anything that changes the

magnetic field strength also changes the precessional frequency and causes a loss of

phase coherence (dephasing) and shrinking of the transverse magnetization. A process

called T2 relaxation denotes the loss of phase coherence caused by interactions between

neighboring magnetic moments [4]. Unlike T1 relaxation, no energy is transferred

from nuclei to the lattice in T2 relaxation. Nuclei in the excited and ground state
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Figure 2.5 the Relaxation of Mz and Mxy with time in the longitudinal and
transverse direction respectively.

may exchange energy with each other. The magnetic field strength influences T2

much less than T1, at least under the conditions encountered in MRI. Typically, T2

in biological tissue ranges from approximately 50 to 100 ms [1].

2.1.6 Rotating Frame of Reference

The motion of the net magnetization vector during the action of the B1 field is shown

in a coordinate system in which the x and y axes rotate synchronously with the

B1 field. Such a rotating frame of reference greatly simplifies the description of the

motion of the magnetization vector. In a static frame of reference, the tip of the

magnetization vector spirals from the z axis onto the xy plane [1, 3].

2.1.7 Spatial Characteristics of Magnetic Resonance Images

Almost every MR image arises from Fourier imaging, which is an efficient and ver-

satile technique for identifying the location of MR signals emanating from various

regions of the body. It can create 2D and 3D MR images with various sizes and

spatial characteristics. The images are calculated from digitized MR signals, which
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Figure 2.6 Magnetic field gradients in the x, y, and z directions within a
cylindrical magnet.

are usually echoes. The next section describes how spatial information is encoded

into these MR signals and then decoded during the calculation of an MR image in

the image reconstruction process. Most MR images are presented as 2D planes par-

titioned into a grid of picture elements (voxels). The intensity of a pixel represents

the strength of the MR signals emanating from the corresponding region [1].

2.1.8 Spatial Localization using Magnetic Field Gradient

Magnetic field gradients are activated briefly as pulses at carefully timed moments

during MRI. A magnetic field gradient is a magnetic field that increases in strength

along a particular direction. There are x, y, and z gradients, according to the direc-

tion along which the magnetic field changes strength as shown in Figure (2.6). The

strength of a gradient refers to the rate at which its magnetic field changes with dis-

tance. Regardless of the direction of a gradient, its magnetic field is always directed

along the z axis [1].

2.1.8.1 Slice Selection

Slice selection combines a magnetic field gradient and a specially shaped RF pulse to

restrict MR signals to a slice instead of the entire region influenced by the transmitter

coil. The gradient spreads out the Larmor frequency so that the frequencies contained
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Figure 2.7 Effect of gradient amplitude and bandwidth on slice thickness.

in the RF pulse affect only a slice. Certain characteristics of the RF pulse and gradient

affect the orientation, position, thickness, and actual shape of the slice [1].

The orientation of a slice depends on which of the three magnetic field gradients

is activated during the RF pulse. If a patient is positioned head first and supine

in a magnet, such as in Figure (2.6), an RF pulse in the presence of the z gradient

creates a transverse slice. Slices are located where the Larmor frequency matches

the frequency of the gradient pulse. The slice-selection gradient lowers the Larmor

frequency on one side of the center of the magnet and raises it on the other side.

Slice position is controlled by changing the frequency of the gradient pulse because

changing the amplitude of the slice-selection gradient would inadvertently alter the

thickness of the slice. Gradient pulses perturb magnetization within a band of Larmor

frequencies matching the frequencies contained within the RF pulse, which is called

its bandwidth . The bandwidth depends on the shape and duration of a gradient

pulse. Many shapes are possible for the gradient pulses used for selective excitation

in MRI. The most widely cited gradient pulse shape is the sinc function. Sinc-shaped

pulses excite an approximately rectangular distribution of spins, which is the ideal

slice shape [1].
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Figure 2.8 Common shape for envelope of slice-selective pulses in MRI which
excite an approximately rectangular distribution of spins.

2.1.8.2 Frequency Encoding

Frequency encoding resolves spatial information along one direction of an MR image

by keeping a magnetic field gradient on while each MR signal is being measured. The

magnetic field gradient is called the frequency-encoding gradient, read-out gradient,

or measurement gradient. The frequency-encoding gradient spreads the Larmor fre-

quency over a range wide enough to distinguish 128 or 256 different locations along

one direction. The Larmor frequency at the center of the FOV remains unchanged

by the frequency-encoding gradient. However, the gradient increases the Larmor fre-

quency on one side of the center and decreases it on the opposite side. As a result

the frequency-encoding gradient affects the frequency of MR signals from tissues at

different locations along the frequency-encoding direction. These signals are not de-

tected separately. The frequency and phase of these MR signals are the important

characteristics for identifying their location. That these signals also decay with time

is of secondary importance here [1].

The frequency of each signal is unique to the location. An inverse FT of these

complex k-space samples creates 13 pixels along the frequency-encoding direction of

an MR image, which is purely real in this case. Only the frequency and phase of

the signals are modeled here and not their decay or relative amplitude. By defini-

tion, lower-frequency signals take longer to complete each cycle, so more samples are
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acquired during each cycle [1].

2.1.8.3 Phase Encoding

Spatial information along one direction is encoded into the phase of MR signals by

phase encoding. Phase is encoded into MR signals by pulsing a magnetic field gradient

briefly (1 ms to 5 ms) before each echo is sampled. The phase-encoding direction

is perpendicular to the frequency-encoding direction. This is no different from the

effect of the frequency-encoding gradient. While the phase-encoding gradient is on,

the Larmor frequency becomes linearly proportional to the position along the phase-

encoding direction. The key is the phase shift that has accumulated by the time the

phase-encoding gradient pulse is turned off [5].

Phase shifts caused by the phase-encoding gradient depend on the location of

the magnetization and the amplitude and duration of the phase-encoding gradient

pulse. The phase-encoding gradient is pulsed to different amplitude before each MR

signal so that the different rows of k-space can be filled. Stronger phase-encoding

gradient pulses cause phase shifts. Doubling the amplitude doubles the phase shifts

everywhere. The amount by which the phase changes as the phase-encoding gradient

steps through its range of amplitudes is the key to identifying the location of structures

along the phase-encoding direction [1].

2.1.9 Two Dimensional Fourier transform Magnetic Reso-

nance

Fourier transformations (FT) decompose signals or curves into a distribution of cosine

waves and sine waves of different frequency. The Fourier transformation evaluates the

match between a curve and sinusoidal waves of a particular frequency [1, 6].
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The 2-DFT is used to sample the spatial frequency domain of the image on a

rectangular grid. The 2-DFT technique consists of a basic cycle that is repeated

many times, typically 256 or 512. This cycle consists of an RF slice selection excitation

pulse, a magnetic field pulse from the phase-encoding gradient, and then by a steady

application of an orthogonal gradient that is the frequency-encoding gradient, during

which time the MR signal is detected. After a suitable delay, the cycle is repeated.

From one acquisition to the next, only the strength of the phase-encoding gradient is

different in each cycle. The phase encoding gradient selects a single line in the spatial

frequency domain representation of the image. Then the frequency-encoding gradient

forms the MR signal along this line. By this way, the phase-encoding gradient shifts

the MR signal so that it samples a different line parallel to the others (i.e. when

the strength of the phase encoding gradient is changed in successive cycles, different

lines in the spatial frequency domain are measured). A family of lines in the spatial

frequency domain has been selected, and the frequency information along these lines

has been measured with the phase-encoding gradient used to sample the frequency

representation of the image in a rectangular coordinate system. This rectangular

sampling is then Fourier transformed to yield the MR image [3, 5].

2.1.10 Sequence Timing

Fourier imaging resolves spatial information by three distinct procedures, called se-

lective excitation, phase encoding, and frequency encoding as shown in Figure[2.7].

Afterward, magnetization components everywhere in the slice regain the same Larmor

frequency, but the phase depends on their position along the phase-encoding direc-

tion. Spatial information in the phase-encoding direction can be resolved if many

separate MR signals are collected. The amplitude of the phase-encoding gradient

for each signal is decreased systematically. Each of these signals is measured as an
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Figure 2.9 Pulse timing diagram for spin-echo pulse sequence in conven-
tional Fourier.

echo while the frequency-encoding gradient is active, which creates a distribution of

Larmor frequencies along the frequency-encoding direction. The first pulse of the

frequency-encoding gradient is necessary for an echo to form during the middle of the

second pulse [1].

2.1.10.1 Repetition Time

The time between repeated RF excitation pulses is called the repetition time (TR).

The TR can be chosen from a certain minimum value, depending on the imaging

technique and the MR system, to very long times. The time from the center of the

RF excitation pulse to the center of the echo is the echo time (TE). The amplitude of

the transverse magnetization at the echo peak depends on TE and T2 of the tissue.

In a spin echo this amplitude typically is proportional to e−TE/T2 . [1, 4] MR signals

are sampled at equally spaced intervals of time. Continuous MR signals can be

represented accurately by their samples if the interval between each sample is small

enough (Figure (2.8)) [1].

The pulse sequence illustrated in Figure (2.7) must be repeated hundreds of times
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Figure 2.10 Representing difference between sampling time and sampling
frequency.

to fill the k space for a 2D MR image, depending on the number of pixels and re-

dundant data for averaging or canceling various artifacts. Moreover, the sequence is

usually executed initially for several seconds to allow the longitudinal magnetization

to reach a steady state. The time for data acquisition is simply the product of TR

and the number of pulse-sequence repetitions [1].

2.1.11 K-space

Images can be decomposed into thousands of sine and cosine waves of different fre-

quency and phase. An array of numbers called k-space holds the weighting factor for

each of these waves. The coordinates of k-space are called spatial frequencies, and

their units are cycles per unit length. Each spatial frequency represents a sine or co-

sine wave across the entire image. The spatial frequencies kx and ky correspond to a

2D image with coordinates x and y [1,2]. Each data sample in k-space affects an entire

MR image. An MR image acquires a pattern of lines if the data sample is displaced

in either direction from the center of k-space. The distance of the data sample from

the center of k space determines the frequency of the repeated lines [1,2]. The center
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Figure 2.11 Influence of k-space regions on spatial properties.

Figure 2.12 Difference between repetition time and Sampling time.

of k-space encodes coarse features in an image. Regions farther from center encode

finer detail. Low and high spatial frequencies represent an object’s overall shape and

fine details, respectively. The transition from coarse structures to fine detail occurs

gradually from the center of k space to its edges. An MR image produced from only

low spatial frequencies is blurry. If k-space contains higher spatial frequencies, the

associated image has higher spatial resolution [1].

2.1.12 Image Reconstruction

K-space contains complex numbers, which have real and imaginary parts. Both parts

are passed to an inverse 2D DFT, as pictured in Figure2.13, and the output is a
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Figure 2.13 Reconstruction of 2D k space into 2D MR image.

matrix of complex numbers split into real and imaginary images. Usually, neither the

real nor imaginary images are displayed because the image intensity is distributed

indiscriminately between them. Instead the real and imaginary images are combined

into a modulus (or magnitude) image. The modulus is appropriate for most MR

images because pixels represent the magnitude of MR signals from that location [1].

2.1.13 Image Contrast

Adequate contrast among normal tissues is necessary for good anatomical definition.

This adequate contrast between normal and diseased tissues is essential for sensitivity

to disease [1].

The primary sources of tissue contrast in magnetic resonance imaging (MRI) are

threefold-hydrogen spin densities (N[H]), longitudinal recovery times (T1), and trans-

verse relaxation times (T2). Although hydrogen densities within soft tissues typically

vary by only a few percent, the hydrogen contributing to the measured MR signal

(referred to as the hydrogen spin density) tends to vary by a greater amount, up to
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30% among soft tissues. T1 and T2 relaxation times often vary even more widely,

sometimes varying among soft tissues by more than 100%. Other sources of tissue

contrast, such as flow, magnetic susceptibility inhomogeneities, and chemical shift

have less noise component on the image contrast [1, 3–5].

2.1.14 Pulse Sequence

A pulse sequence is defined as a series of RF pulses, gradients applications and in-

tervening time periods. by selecting the intervening time periods, image weighting is

controlled. Pulse sequences are required because without a mechanism of refocusing

spins, there is insufficient signal to produce an image. This is because dephasing

occurs almost immediately after the RF excitation pulse has been removed. Spins

lose their phase coherence in two ways:

• the increase of the intrinsic magnetic fields of adjacent nuclei.

• the inhomogeneities of the external magnetic field, i.e. some small areas of the

field have a magnetic field strength of slightly more or less than the main field

strength.

these steps are repeated many times, depending on the desired image quality. A

wide variety of sequences are used in MR imaging based on the property that will be

measured to differentiate between tissues.

2.1.15 Image Noise

Image noise is the primary deterrent to the discrimination of tissues and the detec-

tion of low-contrast lesions in MRI. There are two main categories of image noise:

statistical and systematic [1].
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2.1.15.1 Statistical (or Random) Noise

This type of noise is the pixel-to-pixel variation in signal intensities, apparent even for

uniform tissues, caused by random signal fluctuations measured during signal sam-

pling. At magnetic field strengths used for imaging, most statistical image noise is the

result of eddy currents set up in the patient, producing spurious background signals

that add to or subtract from true signals caused by precessing tissue magnetization.

The results are random fluctuations in pixel intensities spread across the entire re-

constructed image. Statistical noise is reduced relative to signal by increasing the

voxel volume (slice thickness or in-plane pixel size), by increasing the number of ac-

quisitions per phase-encoding step, by decreasing the sensitive volume of the receiver

coil, or by decreasing the bandwidth, thereby narrowing the range of frequencies over

which noise can be recorded [1, 6].

2.1.15.2 Systematic Noise

Except for extremely low SNR situations, systematic noise is usually more pervasive

and confusing to image interpretation. Systematic noise consists of nonrandom signal

variations that arise from a number of possible sources, including patient motion, such

as respiration, vascular, and CSF pulsations; receiver-coil or gradient-coil motion;

aliasing; and data truncation (Gibbs) artifacts. Although sometimes useful to the

experienced radiologist, such systematic noise reveals itself as spurious signals in the

image that do not reflect but tend to mask true inherent tissue properties [1].

2.1.16 Safety and Bioeffects

Death and injuries have occurred from projectiles created by the magnetic field, al-

though compared to the millions of examinations administered. MRI makes use of
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powerful magnetic field which, though they have not been demonstrated to cause

direct biological damage, can interfere with metallic and electromechanical devices.

Additional(small) risks are presented by the radio frequency systems, components or

elements of the MRI system’s operation. The static magnetic field of MR scanner

may be extremely strong with the field strengths commonly in the range of 1.5-4.0

T (15,000-40,000 gauss). Such strong magnetic field risks for both patients and per-

sonnel. A potential danger arises from ferromagnetic objects that may turn into

dangerous missiles when brought near the magnet [4].

2.1.17 MRI Modalities

There are many MRI modalities capable of detecting a wide range of phenomena.

Functional MRI (FMRI) measure signal changes in the brain due to neural activity

changing. Diffusion Tensor MRI [DTMRI] measures the water molecule diffusion in

the biological tissues. Perfusion MRI [PMRI] generates pictures of the arteries in

order to evaluate them for stenosis, and spectroscopy, which is used to measure the

levels of different metabolites in body tissues. In this work, we will be discussing

Tensor Analysis and measurement that can be used in DTMRI images, which will be

introduced in the Chapter 2.

2.2 Diffusion Weighted and Diffusion Tensor MRI

The basic principles of diffusion MRI were introduced in the mid-1980s; [1]. NMR

imaging principles were used to encode molecular diffusion effects in the NMR signal

by using bipolar magnetic field gradient pulses. Molecular diffusion refers to the

random translational motion of molecules, also called Brownian motion, that results

from the thermal energy carried by these molecules. The success of diffusion MRI
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is deeply rooted in the powerful concept that during their random motion, diffusion

driven molecules probe tissue structure at a microscopic scale well beyond the usual

image resolution [7].

The observation of this displacement distribution may thus provide unique clues

to the structure and geometric organization of tissues [7, 8]. MRI is the only means

we have to observe diffusion in vivo noninvasively. Furthermore, MRI provides access

to both superficial and deep organs with high resolution and does not interfere with

the diffusion process itself. Diffusion is a three-dimensional intrinsic physical process

that is totally independent of the MR effect or the magnetic field. This is not the case

for most MRI-accessible parameters, such as T1 or T2 [7]. Hence, molecular mobility

in tissues may not be the same in all directions. This anisotropy may result from

a peculiar physical arrangement of the medium (such as in liquid crystals) or the

presence of obstacles that limit molecular movement in some directions. As diffusion

is encoded in the MRI signal by using magnetic field gradient pulses, only molecular

displacements that occur along the direction of the gradient are visible. The effect

of diffusion anisotropy can then easily be detected by observing variations in the

diffusion measurements when the direction of the gradient pulses is changed. This is

a unique, powerful feature not found with usual MRI parameters [7].

The measurement of self diffusivities of water and other solvents using the phe-

nomenon of nuclear magnetic resonance (NMR) was first reported fifty years ago [8,9].

Methodological improvements in these diffusion measurements [10] and subsequent

development of magnetic resonance imaging(MRI) together created the possibility

to measure the diffusion properties in tissues on a voxel-by-voxel basis. [8]. In this

chapter, historical background and theoretical concepts of diffusion-weighted imaging

(DWI) and diffusion tensor imaging (DTI) as well as data analysis issues are treated

with emphasis on DTI. We will review mathematical models underlying both DWI
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and DTI, and discuss quantitative parameters that are derived from the measured

diffusion tensor.

2.2.1 Diffusion Weighted Imaging (DWI)

In 1828 the Scottish Naturalist Robert Brown published a pamphlet entitled ’A Brief

account of microscopical observations ...’. In which, Brown recorded that pollen

grains of Clarkia pulchella suspended in water under a microscope exhibited a pecu-

liar ”rapid oscillatory motion” [11]. Brown initially believed that such motion was

particular to the male sexual cells of plants, but was later startled to observe that

pollen of plants suspended in alcohol for almost eleven months exhibited the same

erratic motion: a ”very unexpected fact of seeming vitality being retained by these

’molecules’ so long after the death of the plant.” Further studies with not only other

organic substances but chips of glass, granite, particles of smoke, and rocks ”of all

ages” revealed such motion to be a general property of small particles suspended in

solution. The erratic particle motion observed by Brown would remain unexplained

until the dawn of the kinetic theory of matter in the third quarter of the nineteenth

century. Pioneered by Maxwell, Boltzmann, and Claussius, the kinetic theory of

matter introduced the radical concept that the heat of a liquid or gas is mediated by

the constant random thermal motion of the molecules in the medium. The kinetic

theory would inspire Weiner to declare in 1863 that the particle motion observed

by Brown could not be due to convection currents in the fluid, but was rather due

to collisions between the particles and the surrounding molecules of the fluid. The

molecular kinetic explanation for Brownian motion was reiterated some years later

in 1877 by two Jesuit priests, Fathers Delsaulx and Carbonnelle, but it was not until

G.L. Gouy in 1888-9 showed that Brownian motion is more rapid for smaller particles

and never reaches equilibrium that the problem of Brownian motion assumed a place
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among the classical problems of physics. Albert Einstein, apparently unaware of any

of the previous observations of Brownian motion, was motivated to provide an exper-

imentally testable hypothesis for the kinetic-molecular theory of matter in 1905. He

showed how the random thermal motion of the molecules in a liquid or gas could be

imparted to larger particles. He predicted that the motion of these larger particles

could be observed under the microscope [12,13] and could therefore provide an exper-

imentally testable hypothesis for the kinetic theory. Einstein’s theory accounted for

the dependence of the effect on the temperature and viscosity of the solution, and the

size of the suspended particle, and thereby provided a set of experimentally testable

predictions for the kinetic theory of matter [14]. Einstein’s theoretical studies were

experimentally confirmed by Jean Babtiste Perrin [15] who measured the dependence

of Brownian motion on temperature and particle size. By demonstrating that col-

loidal particles obey Einstein’s formulation, Perrin was able to calculate Avogadro’s

number and obtain direct verification for the kinetic-molecular theory of gases, a find-

ing which earned him the Nobel Prize for physics in 1926. While Brownian motion is

a microscopic phenomenon it gives rise to a macroscopically observable phenomenon

known as diffusion. On a microscopic level, diffusion arises from the microscopic in-

termingling of the molecules as the result of Brownian motion. While we are familiar

with the diffusion of a substance in another host substance, the physics of diffusion

makes no essential distinction between the two. Hence, the theory of diffusion can be

applied to the diffusion of a substance in its own medium, for example the diffusion of

water in water. This phenomenon is referred to as self-diffusion or, with some abuse

of terminology, simply diffusion.

Shortly after the initial discovery of the NMR phenomenon by Bloch [16, 17] and

Purcell [18], Hahn published his seminal paper [19] on the NMR spin echo in which

he noted that the random thermal motion of the spins would reduce the amplitude
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of the observed spin echo signal in the presence of a magnetic field inhomogeneity.

Carr and Purcell [9] shortly after developed a set of equations for relating the echo

amplitude attenuation to discrete jumps of the spins.

Torrey first incorporated anisotropic translational diffusion in the Bloch (magneti-

zation transport) equations in 1956, which could lead to additional attenuation of the

NMR signal [17,18]. Analytical solutions to this equation followed for freely diffusing

species during a spin echo experiment [19] and, later, for diffusion in restricted ge-

ometries [9,17,20]. About a decade after its introduction, Stejskal and Tanner solved

the Bloch-Torrey equation for the case of free, anisotropic diffusion in the principal

frame of reference [10]

However, their formula is not generally usable to measure an effective diffusion

tensor using NMR or MRI methods for several reasons. First, this formula relates a

time-dependent diffusion tensor, to the NMR signal, so one must establish a relation-

ship between the time-dependent diffusion tensor and an effective diffusion tensor.

Second, in the pre-MRI era in which the formula was derived, it was always tacitly

assumed that a homogeneous anisotropic sample could be physically reoriented within

the magnet so that its principal axes could be aligned with the laboratory coordinate

system [21].

After the development of MRI, This assumption was no longer tenable. Materials

under study were often heterogeneous media whose ’fiber’ or principal axes were

generally not known a priori and could vary from place to place within the sample.

Thus, a general scheme had to be developed to measure the entire diffusion tensor

(both its diagonal and off-diagonal elements) in the laboratory frame of reference [21].

In Diffusion Imaging (DI), one measures a single scalar apparent diffusion constant

(ADC) in each voxel from a series of diffusion weighted images (DWIs). These are just

conventional MRIs whose contrast is sensitized or weighted by the local diffusivity in
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each voxel [8, 10,22].

The effect of diffusion on the MRI signal (most often a spin-echo signal) is an

attenuation, A, which depends on ADC in the voxel and on a scalar b- factor, which

characterizes the gradient pulses (timing, amplitude, shape) used in the MRI sequence

[8].

The b-factor can easily be calculated analytically for simple pulse sequences used

in spectroscopy. However, complicated imaging pulse sequences may contain localiza-

tion. B-factors can be evaluated either numerically or experimentally (by calibrating

the diffusion coefficient from a phantom material). Accurate determination of the

b-factor, taking into account all gradient pulses, is necessary for diffusion measure-

ments [23].

The Diffusion Weighted Imaging (DWI) is used to measure the translational mo-

bility of diffusing molecules along one direction which depends upon a medium’s

orientation. The diffusion is anisotropic in biological tissues such as brain white mat-

ter, skeletal muscle, kidney and cardiac muscle. The ADC depends on the choice of

laboratory coordinate system. But in other tissues, such as the gray matter and the

cerebrospinal fluid, the diffusion is isotropic; the ADC is independent of the orienta-

tion of the tissue relative to the laboratory frame of reference [7, 24, 25].

From these DWIs, we can estimate the ADC in each voxel using linear regression:

A =
S(b)

S(b = 0)
= exp−bADC (2.4)

where S(b) and S(b = 0) are the echo magnitudes of the diffusion weighted (after ap-

plication of b-diffusion application of b-diffusion gradient) and non-diffusion weighted

signals (without any applied diffusion gradient)respectively.[4]

ln(
S(b)

S(b = 0)
) = −bADC (2.5)

One complication is that imaging and diffusion gradients interact with one another,
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producing additional cross terms in the b factor that can lead to an incorrect estima-

tion of ADC [24].

2.2.1.1 Anisotropy in DWI

Diffusion isotropy describes the case in which the translational mobility of the dif-

fusing molecule is independent of the medium’s orientation. Homogeneous diffusion

refers to the case in which the translational mobility of the diffusing molecule is in-

dependent of the position within the medium. If a medium is both isotropic and

homogeneous, the mobility will be independent on neither the gradient direction nor

the medium orientation [7].

Several different scalar indices derived from diffusion weighted images (DWls) have

been used to characterize diffusion anisotropy [24]. Moseley et al [26] characterized

diffusion anisotropy in each voxel by the ratio of differences and sums of DWls with

diffusion-sensitizing gradients applied in two perpendicular directions. e.g. x and y:

DWIx −DWIy
DWIx +DWIy

(2.6)

Douek et al. [27] characterized by the ratio of two apparent diffusion constants

(ADCs), measured with diffusion-sensitizing gradient applied in two perpendicular

directions. e.g. x and y:

ADCx
ADCy

(2.7)

and displayed as a color image. In voxels containing one particular tissue (such as

white matter) this ratio was a maximum. Its value was assumed to be ADC⊥/ADC‖,

[25,27] the ratio of ADCs perpendicular to and parallel to the fiber tract direction. Re-

cently, van Gelderen et al. [28] proposed a scalar anisotropy index that is proportional

to the standard deviation of three ADCs measured in three mutually perpendicular



2.2 Diffusion Weighted and Diffusion Tensor MRI 28

directions: ADCx, ADCy, and ADCz, divided by their mean value (ADC) [24,29].

(ADCx − 〈ADC〉)2 + (ADCy − 〈ADC〉)2 + (ADCz − 〈ADC〉)2

〈ADC〉
(2.8)

where

〈ADC〉 =
ADCx + ADCy + ADCz

3
(2.9)

Unfortunately, none of these anisotropy measures is rotationally invariant. Anisotropy

measures based upon DWls are inherently nonobjective; that is, their contrast does

not correspond to a single meaningful physical or chemical variable or fundamen-

tal parameter, but to a complicated combination of them. This is usually true for

anisotropy measures that use the ADC, since they are estimated from DWls using

a model that may assume diffusion is isotropic. Even so, these anisotropy measures

suffer from a more serious failing, They inherently depend on [7]:

• The choice of the laboratory frame of reference (i.e., the x, y, z coordinate

system used to represent the directions of the static B0 field and the applied

magnetic field gradients in an MR experiment);

• The choice of the direction of the applied diffusion gradients used to acquire the

DWIs;

• The orientation and placement of the sample within the magnet; and

• The orientation and position of the macromolecular, cellular, and/or fibrous

structures within a voxel that produce the observed diffusion anisotropy.

Clearly, for an anisotropy index (or any other scalar measure of an intrinsic charac-

teristic or feature) to possess the properties of a quantitative histological stain (such

as an autoradiography,) it should be objective (i.e., its value in each voxel should be a

known monotonic function of a meaningful physical quantity) and it should be invari-

ant with respect to arbitrary rotations and translations. These intuitive criteria are
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used explicitly below to constrain the set of admissible scalar measures of structural

features (such as diffusion anisotropy, structural similarity, and fiber organization)

that we derive from the diffusion tensor [7].

These indices are so-called rotationally variant indices that depend on the direction

of the applied diffusion gradient direction and the tissue orientation within each voxel.

More recently other indices derived from DTI have been developed [7, 24, 30–32], we

will review some of these.

2.2.1.2 Applications of DWI

The practical use of DWI became clear when it was noted that water apparent dif-

fusion is significantly slower in regions of ischemia compared with normal regions of

cat and rat brain, with ADC decreasing by 30% to 60% after the onset of stroke [7].

These regional differences in ADC (apparent as hyper intensity in DW images) are

correlated with total or near-total perfusion deficits; the ADC does not decrease un-

til cerebral blood flow (CBF) drops below 15 to 20 ml/100 g/min. Drops in the

ADC are not readily observed in partially reduced flow states. This finding strongly

suggests that when collateral blood flow is sufficient to prevent the breakdown of

cellular metabolism, the ADC does not drop. The observation that the ADC is cou-

pled to metabolic processes is reinforced by recent reports of ADC decreases observed

in models of status epilepticus and spreading depression which can not be seen on

conventional T1-, or T2-weighted images [1, 7, 8, 33].

2.2.2 Diffusion Tensor Imaging

Since the DWI is inherently a one-dimensional technique, i.e. it can only meaningfully

measure molecular displacements along one direction, it can be enough to describe

the diffusivity of an isotropic material such as gray matter. In such tissues, where the
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measured apparent diffusivity is largely independent of the orientation of the tissue, it

is usually sufficient to characterize the diffusion characteristics with a single (scalar)

apparent diffusion coefficient (ADC). However, in anisotropic media, it is not enough

for full characterization of an anisotropic tissue such as the white matter which needs

a three dimensional description [7, 24]. The measured diffusivity is known to depend

upon the orientation of the tissue [8].

Diffusion tensor imaging (DTI) [25] was developed to describe diffusion in an

anisotropic medium [7], Scalar coeffecisnt are cannot describe the complex anisotropic

property diffusion behavior [34]. An effective diffusion tensor D can be estimated from

DWls using a more general relationship between the measured echo magnitude in each

voxel and the applied magnetic field gradient sequence [8, 34].

Furthermore, diffusion is truly a three-dimensional process. Hence, molecular

mobility in tissues may not be the same in all directions. This anisotropy may result

from a peculiar physical arrangement of the medium (such as in liquid crystals) or the

presence of obstacles that limit molecular movement in some directions. However, in

the presence of anisotropy, diffusion can no longer be characterized by a single scalar

coefficient, but requires a tensor, D, which fully describes molecular mobility along

each direction and correlation between these directions [8].

As diffusion is encoded in the MRI signal by using magnetic field gradient pulses,

only molecular displacements that occur along the direction of the gradient are visible.

The effect of diffusion anisotropy can then easily be detected by observing variations

in the diffusion measurements when the direction of the gradient pulses is changed [8].

2.2.2.1 Pulsed Gradient Echo Pulse Sequence

To determine the diffusion tensor fully, diffusion-weighted images must be collected

along several gradient directions, using diffusion-sensitized MRI pulse sequences such
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Figure 2.14 Timing diagram for ST SE DW pulse sequences and series of
DW images of the human brain.

as echo planar imaging (EPI) [8].

In single tensor estimation, the diffusion tensor is symmetric, measurements along

at least six directions are mandatory, along with an image acquired without diffusion

weighting (b =0). The diffusion is observable as a shortening on the spin-echo (SE).

This signal has prompted the development of numerous nuclear MR methods to mea-

sure the self-diffusion coefficient of liquids; the most commonly used method is the

pulsed magnetic field gradient SE technique of Stejskal and Tanner. The Stejskal-

Tanner (ST) method applies a pair of identical square gradient pulses of strength

G (expressed in Gauss per centimeter or in milliTesla per meter) to an SE pulse se-

quence, thus making the measurement quantitative and more sensitive to diffusion. A

major advantage in the pulsed gradient approach is that the stronger gradient pulses

overcome poor local magnetic field homogeneities, which are found particularly in

vivo tissues [8]. The ST SE sequence has advantages in that the time during which

the sequence is sensitive to diffusion (δ − ∆/3) can be accurately controlled. From
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Figure 2.15 Principles of Navigation in DWIs.

the observation time and the measured diffusion coefficient, restriction of diffusion

can be evaluated. Also, the direction of the applied diffusion-sensitizing gradient in

the ST pulse sequence can be chosen by using one of the x-, y-, or z-axis magnetic

field gradients, which allows assessment of the tissue diffusional anisotropy tensor

(differing diffusional rates along different directions). In addition, DW images can

be acquired with the anisotropic effect averaged out (by mapping the trace of the

tensor) or enhanced (by mapping the tensor deviation) [1, 22]. However, motion ar-

tifacts have severely limited the ability of this approach. To correct for interview

phase variations, a navigational motion-correction scheme uses an extra SE in the

sequence, in which the added navigator echo has no spatial phase encoding. Motion-

induced phase and magnitude variations in the second navigator echo are then used

to correct the phase errors occurring in the first imaging echo before two-dimensional

(2D) Fourier transformation (FT). One-directional (1D) navigated DW techniques

can significantly reduce the motion sensitivity present in conventional SE [1].

A typical set of gradient combinations that preserves uniform space sampling and



2.2 Diffusion Weighted and Diffusion Tensor MRI 33

Figure 2.16 Diffusion-encoding directions generated by the pulse sequence
are spherical tessellations of an icosahedron.

similar b-factor along each direction is as follows (coefficients for gradient pulses

along the (x, y, z) axes, normalized to a given amplitude, G). ( 1√
(2)
, 0, 1√

(2)
) :

(− 1√
(2)
, 0, 1√

(2)
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(2)
) : (0, 1√

(2)
,− 1√

(2)
) : ( 1√

(2)
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(2)
, 0) : (− 1√

(2)
, 1√

(2)
, 0)

This minimal set of images may be repeated for averaging, to increase the signal

to noise ratio (SNR). [8] Efforts are now being made to collect data along as many

directions in space as possible to avoid sampling direction biases. This uniform space

sampling paradigm is particularly interesting for fiber tracking applications and pro-

vides a gain in SNR [8,35]

High Angular Resolution Diffusion (HARD) encoding was achieved by generating

gradient directions equally spaced on a sphere by tessellations of an icosahedron [36,

37]. The icosahedron uniform space sampling is a widely used scheme for directional

sampling [34], as shown in Figure (2.16). This procedure produces directions that are

equally separated in angle on the surface of a sphere [38].



2.2 Diffusion Weighted and Diffusion Tensor MRI 34

2.2.2.2 Diffusion Tensor Reconstruction

The diffusion tensor is a mathematically elegant description of diffusion as a function

of direction [39] It is fully describes the molecular mobility along each direction (x,

y, z) and the correlation between these directions [34]. The measurement of D in

each voxel and the analysis and the display of information derived from it is called

Diffusion Tensor Imaging (DTI) [7, 40].

Diffusion anisotropy in white matter originates from its specific organization in

bundles of more or less myelinated axonal fibers running in parallel, although the

exact mechanism is still not completely understood: diffusion in the direction of the

fibers is faster than in the perpendicular directions. It quickly appeared that this

feature could be exploited to map out the orientation in space of the white matter

tracts in the brain using a color scale, assuming that the direction of the fastest

diffusion would indicate the overall orientation of the fibers [8, 27,41].

2.2.2.3 Diffusion Tensor Eigen System

The diffusion tensor D is a mathematical description of diffusion as a function of

the direction and for uncharged molecules such as water in the human body, D is

symmetric. [42]

D=


Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz


(2.10)

In DTI one uses a set of DWIs and their corresponding scalar b-factors to estimate

an ADC along a particular direction using linear regression [8, 34].
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ln(
S(b)

s(b = 0)
) = −

3∑
i=1

3∑
j=1

bijDij (2.11)

Another step is to determine the main direction of diffusivities in each voxel

and the diffusion values associated with these directions by diagonalization of the

diffusion tensor to provide eigen-vectors v1, v2, v3 and eigen-values λ1, λ2, λ3 which

correspond respectively to the main diffusion directions and associated diffusivities

. These eigen diffusivities represent the unidimensional diffusion coefficients in the

main eigen-vectors directions of diffusivities of the medium.

2.2.2.4 Diffusion in an Isotropic Medium

Diffusion isotropy describes the case in which the translational mobility of the dif-

fusing molecule is independent of the medium’s orientation. Homogeneous diffusion

refers to the case in which the translational mobility of the diffusing molecule is

independent of the position within the medium. ((Dxx = Dyy = Dzz) [8, 32] or

(λ1 = λ2 = λ3))If a medium is both isotropic and homogeneous, then the transla-

tional displacement profile is given by: [7, 39, 42]

ρ(r|τd) =
1√

(4πDτd)
exp (− rT r

4πDτd
) =

1√
(4πDτd)

exp (−x
2 + y2 + z2

4Dτd
) (2.12)

2.2.2.5 Diffusion in an Anisotropic Medium

In biological tissues such as brain white matter, we can ascribe anisotropic diffusion

(observed in MR spectroscopy or imaging studies) to spatial variations of molecular

mobility (heterogeneity) at micron scales. This phenomenon appears to be caused

primarily by the spatial arrangement of macromolecular, membranous, and fibrous

constituents and their interfaces. In such tissues, diffusion anisotropy can be charac-
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terized within a macroscopic voxel by an effective diffusion tensor, D [32, 43]:

ρ(r|τd) =
1√

|D|(4πτd)
exp (

−rTDr
4τd

) (2.13)

Clearly, in an anisotropic medium, the six independent components of the symmet-

ric tensor are required to describe the three dimensional displacements of particles,

whereas in an isotropic medium, only one parameter, D, is sufficient. These addi-

tional parameters are required because in anisotropic media, displacements generally

appear to be correlated in both parallel and perpendicular directions, whereas in

isotropic media they do not. In fact, the elements of the diffusion tensor represent

the magnitude of the correlations between the translational displacements in parallel

and perpendicular directions. Specifically, the diagonal elements of D, Dxx, Dyy, and

Dzz represent the strength of correlations between molecular displacements along the

same directions (i.e., along x, y, and z. respectively), while its off-diagonal elements,

Dxy, Dxz, Dyz, represent strength of correlations in molecular displacements along

perpendicular directions (i.e., between x and y, x and z. and y and z. respectively).

In anisotropic media the diagonal elements of the diffusion tensor are generally un-

equal, whereas in isotropic media they are all equal. Moreover, in anisotropic media

the off-diagonal elements are generally non-zero and may be large (i.e., comparable

in magnitude to the diagonal elements), whereas in isotropic media they all equal

zero [43].

2.2.2.6 Quantitative Parameters Obtained by DT MRI

Quantitative parameters provided by diffusion-tensor MRI can be obtained and ex-

plained using a geometric approach. Intrinsic quantities can be used that characterize

different unique features, for example, describing the size, shape and orientation of

the root mean square (rms) displacement profiles within an imaging volume, which



2.2 Diffusion Weighted and Diffusion Tensor MRI 37

can be represented as diffusion ellipsoids. Scalar parameters, functionally related to

the diagonal and offdiagonal elements of tensor D(x, y, z), can also be displayed as an

image, revealing ways in which the tensor field varies from place to place within the

imaging volume. These quantities are rotationally invariant, i.e. independent of the

orientation of the tissue structures, the patient’s body within the MR magnet, the

applied diffusion sensitizing gradients, and the choice of the laboratory coordinate

system in which the components of the diffusion tensor [7, 8, 25].

Several invariant indices are thus made of combinations of the terms of the diago-

nalized diffusion tensor, i.e., the eigen-values λ1, λ2 and λ3. The most commonly used

invariant indices are the fractional anisotropy (FA), the relative anisotropy (RA), and

the volume ratio (VR) indices, defined respectively as [43]:

1. Fractional Anisotropy (FA): measures the fraction of the magnitude of D that

can be ascribed to anisotropic diffusion. It varies between 0 (isotropic diffusion)

and 1 (infinite anisotropy).

FA =

√
3[(λ1 − λ)2 + (λ2 − λ)2 + (λ3 − λ)2]√

2(λ2
1 + λ2

2 + λ2
3)

(2.14)

2. Relative Anisotropy (RA):is a normalized standard deviation also represents

the ratio of the anisotropic part of D to its isotropic part. It varies between 0

(isotropic diffusion) and
√

2 (infinite anisotropy).

RA =

√
[(λ1 − λ)2 + (λ2 − λ)2 + (λ2 − λ)2]

3λ
(2.15)

3. Volume Ratio (VR): represents the ratio of the ellipsoid volume to the volume

of a sphere of radius l. Its range is from 1 (isotropic diffusion) to 0(infinite

anisotropy), Since it is the opposite meaning of the FA and RA, some authors

prefer to use (1 -VR).

V R =
λ1λ2λ3

λ3
(2.16)
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Figure 2.17 Homogenous isotropic tissue diffusion profile.

where λ is the mean diffusivity:

λ =
λ1 + λ2 + λ3

3
(2.17)

2.2.2.7 Diffusion Profiles of Various Brain Tissues

There are three main categories into which the human brain tissue can be classified

to:

(a) Cerebro-spinal fluid (CSF): located around the brain and the ventricles. Its

diffusion profile is much like that of unconstrained diffusing water as it is a homoge-

neous isotropic tissue. Its principal eigen-diffusivities (eigenvalues) would be related

such that: λ1 = λ2 = λ3.

(b) Gray matter (GM): constituting the brain cortex with its nerved cell bodies

and nerve centers. The relation between its principal eigen-diffusivities is such that :

λ1 ≈ λ2 ≈ λ3.

(c) White matter (WM): compromising the main nerve fiber bundles in the brain.

Its principal eigen diffusivities would have the typical relation of: λ1 >> λ2 ≈ λ3.

Then, the corresponding ellipsoid would be of cigar-shape [23]. This shape is

predominantly observed in white matter fibers, especially in the corpus callosum and

in the pyramidal tract in monkeys and in humans.
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Figure 2.18 Homogenous isotropic tissue diffusion profile.

Figure 2.19 Anisotropic white matter diffusion profile.



Chapter 3

Multi- and Higher Rank Tensors

3.1 Introduction

Diffusion-tensor imaging (DTI) has long been touted as a means to chart the macro-

scopic connectivity network of the human brain that is, a means to piece together a cir-

cuit diagram of sorts for human neuroanatomy [8]. The microscopic neuronal/axonal

scale in the human brain is beyond the limited resolution of DTI, and moreover, the

sheer magnitude of a 1011 × 1011 adjacency matrix comprising in the order of 1015

nonzero elements is unmanageable. At the macroscopic scale, the basic unit of con-

nectivity are fiber bundles, each of which comprise in the order of 103 - 105 closely

packed axons following a common trajectory in the sub-cortex. Fiber bundles serve

as long-distance pathways between distinct regions located in the cortex. Connectiv-

ity at the macroscopic scale is approximated with a network (graph) model, where

distinct cortical regions play the role of nodes (vertices), while fiber bundles form the

interconnecting links (edges). [44]

In this chapter, we will introduce the meaning of multi tensors and higher rank

tensors.

40
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3.2 Multi Tensors

Several authors reported the non-mono-exponential behavior for the diffusion-induced

attenuation in brain tissue in water and NAA signals. Their studies were based on a

1-D diffusion experiment and the results were fitted to bi- or tri-exponential functions.

They indicated that high b values reveal more complicated behavior and therefore

their fit depended on the value of b used in the measurement.

In order to overcome the regular tensor model limitations, higher order tensors

[45] were introduced to represent more complicated diffusivity profiles which better

approximate the local diffusivity function. Generalized scalar quantities such as the

variance of diffusivity and the generalized anisotropy were derived as functions of

the higher order tensor coefficients [46]. However, in all these works the higher-

order tensors are estimated without imposing the positivity of the diffusivity function

approximation, which is significantly important since negative diffusivity values are

non physical.

Basser et al. [34] discussed the possibility of mixture modeling of diffusion. Even

though they indicated that this would present a more complete representation of the

process, they argued that there too many issues that need to be resolved before such

modeling can be performed in practice. In particular, their hypothetical discussion

indicated that such modeling would require a large amount of data to enable the

estimation of model parameters and involve the computation of too many parameters.

They suggested also that several problems had to be addressed in such experiments

that included optimization of diffusion gradient directions and model order selection.

They concluded that this area had many aspects that were yet to be investigated.

Hsu et al. [47] proposed a two-compartment model for the diffusion in fibers of

the myocardium. They reported two fast and slow components in their study while



3.2 Multi Tensors 42

assuming a slow-exchange process between the two. Inglis et al. [48] reported biex-

ponential diffusion tensor measurements. They hypothesized that these components

may represent the intra- and extra-cellular components in tissues. Clark et al. [49] re-

ported variations of the apparent diffusion coefficient with the value of diffusion time.

Their hypothesis was that such variations are important indicators of restricted flow,

which present a potentially large diagnostic value. In a later study by the same

group, Clark et al. [50] reported results of a two-tensor model for diffusion in the

human brain. They measured the parameters of a mixture model composed of two

weighted tensors. Their results indicated the presence of fast and slow diffusion com-

ponents, and that each can be modeled by a unique tensor. They indicated that the

use of high b-factor was essential to reveal the slow component of diffusion.

Spherical harmonics (SH) are used to solve a large variety of physical problems.

Frank [51]used SH in diffusion tensor for displaying the apparent diffusion in free

space.

He pointed out that the shape of the surface of the measured diffusion along mul-

tiple directions for a single voxel in high angular resolution diffusion measurements

can convey more information than the diffusion tensor. This idea leads to the identi-

fication of diffusion anisotropy by using the variations of Dapp from a sphere without

the necessity of invoking the diffusion tensor formalism. [5] The original model for

tensor representation become insufficient to describe the whole voxel fibers. Higher

order tensors are more relvant to describe more precisely the voxels’ fiber content.

A number of methods has been used to calculate multi tensors, assumed to have

2 compartments ,one isotropic and one anisotropic. this model requires low b-factor

and high b-factor images for estimation. Tuch et al. [52] assumes having 2 fibers

of known anisotropicity. and the target was to calculate the angle between them.

Kadah et al. [53] used the differentiation and the exhaustive search to calculate these
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tensors. The main disadvantage of such algorithms are the number of compartment

assumption, and the high mathematical and processing complexity of the algorithms.

3.3 Higher Order Tensors

To provide a formal basis for the modeling of highly structured diffusion, an exten-

sion to the Bloch- Torrey equation [20] was proposed to include a phenomenological

diffusion term with a high-rank Cartesian tensor, which yields a generalized Stejskal-

Tanner formula will be given by Equation [3.1]

ln(s) = ln(S0)− b
3∑

i1=1

3∑
i2=1

...
3∑

il=1

Di1i2...ilg(i1)g(i2)...g(il) (3.1)

D(g) =
3∑

i1=1

3∑
i2=1

...
3∑

il=1

Di1i2...ilg(i1)g(i2)...g(il) (3.2)

D(−g) = −D(g), (3.3)

This equation makes it possible to calculate all the components of the DT of general

rank by means of a simple multilinear regression. However, since negative diffusion

coefficients are nonphysical, the tensor rank is forced to be an even number.

A general rank-l Cartesian tensor has 3l components, which is a very large number

for higher ranks. For example, a rank-10 tensor will have 59049 components. However,

symmetries provide a very significant reduction in the number of distinct components.

This follows from the realization that Di1i2...il is a totally symmetric tensor. Total

symmetry is due to the fact that this tensor links the components of the same vector

to a scalar (D(g)).

Di1i2...il = D(i1i2...il) (3.4)

where (i1i2...il) stands for all permutations of the indices. This symmetry reduces the
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number of distinct elements to

Nl =
(l + 1)(l + 2)

2
(3.5)

which is only 66 for l = 10 case. To use Equation [3.1] to derive the distinct compo-

nents of the rank-l DT, the number of times a given element is repeated is in need

to be known. The multiplicity of that element will be denoted with the letter µ.

Knowing the multiplicity of every unique element, Equation [3.1] can be rewritten as:

ln(s) = ln(S0)− b
Nl∑
k=1

µkDk

l∏
p=1

gk(p) (3.6)

where Dk is the kth unique element of the tensor, and gk(p) is the component of

the gradient direction specified by the pth index of the kth unique element of the

generalized DT. The multiplicity of a component of a rank-l tensor is given by

µ =
l!

nx!ny!nz!
(3.7)

where nx, ny, and nz are respectively the number of the x, y, and z indices included

in the full sequence of subscripts defining the component of the tensor [45].

3.3.1 Generalized Anisotropy

Despite the inflation in the number of anisotropy indices already proposed, the frac-

tional and relative anisotropy indices are the ones most widely used. Since all these

measures are based on the eigenvalue calculation, they cannot be used for higher

rank tensors. This motivated Orazlan et al. [46] to define the normalized diffusivity

function:

DN(g) =
D(g)

gentr(D(g)
(3.8)

gentr(DN(g)2) =
1

3〈D〉2
Nl∑
k1=1

Nl∑
k2=1

µk1µk2Dk1Dk2γ
−1
k1k2

(3.9)
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where

γ−1
k1k2

=
1

2π

∫
Ω
du

l∏
p1=1

l∏
p2=1

Uk1(p1)Uk2(p2)

 (3.10)

where µk1 = l!/n1x!n1y!n1z! is the multiplicity of the kth1 unique element of the DT

Dk1 , and Uk1(p1) is the component of the unit vector specified by the pth1 index of

the kth1 unique element of the DT. Note that in the expression for µk1 , n1x, n1y, and

n1z are respectively the number of x, y and z indices in the full sequence of sub-

scripts defining the component of the tensor. The gamma values defined in Equation

(3.10)can be evaluated analytically, and the resulting expressions are listed in Table

(3.1) for tensors up to rank-4. In this table, N>, N0, and N< are respectively the

maximum, median, and minimum values of the array (n1x + n2x , n1y + n2y, n1z +

n2z). γ
−1
k1k2

values resulting from other possibilities of N>, N0, and N< are 0, and do

not contribute to the gentr(DN(u)2). The variance of the normalized diffusivites is a

Table 3.1 The Gamma Values That Are Needed for the Calculation of the
Gentr(DN(u)2) Values for Tensor Models up to Rank Six

Rank N> N0 N< γk1k2

l=0 0 0 0 1

l=2 4 0 0 5

2 2 0 15

l=4 8 0 0 9

6 2 0 63

4 4 0 105

4 2 2 315

measure of anisotropy, and is calculated by:

V = variance(DN(u)) = 〈DN(u)2 − 〈DN(u)〉2〉 =
1

3

(
gentr(DN(u)2)− 1

3

)
(3.11)
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It takes its minimum value of 0 in case of isotropic material, and 1 in case of

anisotropic. When a rank-l tensor model is used, this constant diffusivity profile is

achieved when all terms except l = 0 in its irreducible representation (Laplace series)

are zero. Independently of the choice of tensor rank, the minimum value for the

variance is zero, as expected. Under the condition that all diffusivities implied by a

rank-l tensor are nonnegative, the supremum value of the variance is achieved when

the tensor is given by a pure outer product of the same l vectors, i.e., when the

components of the tensor are given by:

Di1i2...il = Dg′i1g
′
i2
...g′il (3.12)

where g′ is the unit vector specifying the direction of greatest diffusion coefficient

where D is this maximal diffusivity. A real generalized DT may come arbitrarily

close to this, it can never reach this form, since it would imply zero diffusivities along

directions perpendicular to u′. Because the value of zero for diffusivities is nonphys-

ical, the variance associated with the tensor given in Equation (3.12) is referred as

the supremum, rather than the maximum value. After performing some algebra, it is

possible to show that this supremum value corresponding to a rank-l tensor is given

by:

sup variance(DN(u)) =
l2

9(2l + 1)
(3.13)

The supremum value depends on the rank of the tensor model selected and that there

is an intrinsic limit to the anisotropy that can be quantified with a lower-rank tensor

model. From which, the authors defined the generalized anisotropy:

GA = 1− 1

1 + (250V )ε(V )
(3.14)

where the exponent ε(V ) is defined as:

ε(V ) = 1 +
1

1 + 5000V
(3.15)
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The form of the expression for GA as given in Equation (3.14) is not arbitrary, and

takes into account the sensitivity of the calculated values to the variations in the

variance. Unlike the previously introduced indices, GA also has low contrast among

voxels with very low anisotropy values, such as those in free water. As a result, the

intensity differences in the GA values are concentrated in voxels within gray matter

and the transition from gray matter to white matter, while high intensity is retained in

the white matter. If one is interested in changing the contrast according to the values

in a different kind of data set, one can easily adjust the constants in the definition of

GA [46]. Still, GA is a model based anisotropy measure which is mainly based on the

Gaussian model assumption. A new measure will be introduced in chapter 6, which

is model free.



Chapter 4

Tensor Field Subdivision

Due to the microscopic scale of the nerve fiber, subdivision of tensors have been

introduced as a preprocessing step for DTI data analysis. Different algorithms for

interpolation will be first discussed, subdivision in graphics will be then introduced.

A novel scheme for tensor field subdivision which is inspired by subdivision surfaces

in computer graphics is proposed. The main advantages of this method are its ability

to be generalized to Cartesian tensors of all orders and the smoothness imposed on

the interpolated field by constraining the divergence and curl of the tensor field.

Applying the method involves only a sparse matrix-vector multiplication at each

iteration. Results are presented for order 1, 2 and 4 tensors.

4.1 Introduction

Voxels in clinical DT images are often quite anisotropic, i.e. not equal in length ,

width and height. Algorithms tracking white matter tracts can be biased by this

anisotropy, and it is therefore recommended to use isotropic voxels. A preliminary

resampling step with an adequate interpolation method is therefore important for

48
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such algorithms. Proper interpolation methods are also required to generalize to the

tensor case usual registration techniques used on scalar or vector images.

Several interpolation methodologies were previously used for tensor field inter-

polation, which is based on the tensor components, tensor invariants, eigenvectors

and eigenvalues, Riemannian framework. The algorithms are mainly based on mini-

mizing the invariance of shape or direction or anisotropy between neighbors. These

interpolations minimize the number of eigenvectors and eigenvalues computations by

restricting it to mesh vertices and makes an exact integration of the tensor lines

possible. The tensor field topology is qualitatively the same as for the component

wise-interpolation. Since the interpolation decouples the ’shape’ and ’direction’ in-

terpolation it is shape-preserving, which is especially important for tracing fibers in

diffusion MRI data.

4.1.1 Log Euclidian Interpolation

This method is based on the fact that a tensor D has a unique symmetric matrix

logarithm L = log(S). It verifies S = exp(L) where exp is the matrix exponential.

Conversely, each symmetric matrix is associated to a tensor by the exponential. L is

obtained from S by changing its eigenvalues into their natural logarithms, which can

be done easily in an orthonormal basis in which S (and L) is diagonal [54].

Since there is a one-to-one mapping between the tensor space and the vector

space of symmetric matrices, one can transfer to tensors the addition + and the

scalar multiplication · with the matrix exponential. The logarithmic multiplication

is commutative and coincides with matrix multiplication whenever the two tensors

S1 and S2 commute in the matrix sense. With
⊙

and
⊗

, the tensor space has,

by construction, a vector space structure, which is not the usual structure directly

inherited from square matrices.
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When one considers only the multiplication
⊙

on the tensor space, one has a

Lie group structure, i.e. a space which is both a smooth manifold and a group in

which algebraic operations are smooth mappings. Among Riemannian metrics in Lie

groups, the most convenient in practice, when they exist, are bi-invariant metrics, i.e.

distances that are invariant by multiplication and inversion. For the tensor Lie group,

bi-invariant metrics exist and are particularly simple, which is named as metrics Log-

Euclidean metrics [54]:

dist(S1, S2) = ‖ log(S1)− log(S2)‖. (4.1)

The log Euclidian algorithm preserves the anisotropy, solves the problem of swelling

effect appearing in linear interpolation and preserves the positive definiteness of the

tensor [54].

4.1.2 Geodesic Interpolation

The interpolation in Riemannian space will have the closed-form expression:

σ(t) = expσ1(tlogσ1(σ2)) + expσ2((1− t)logσ2(σ1)) (4.2)

With the standard matrix coefficient interpolation, the evolution of the trace is per-

fectly linear, and the principal eigenvalue regularly grows almost linearly, while the

smallest eigenvalue slightly grows toward a local maxima before lowering. The dis-

advantage of this algorithm is that the determinant (i.e., the volume) does not grow

regularly in between the two tensors, but goes through a maximum. Moreover, there

is a much smoother rotation of the eigenvectors than with the standard interpola-

tion [55,56]. The geodesic interpolation interpolates determinants exponentially (i.e.,

the exponents). Thus, it preserves the determinant. The mean of two tensors com-

puted by the standard method will in general be different from the mean computed
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Figure 4.1 Interpolation between 2D tensors of eigenvalues (5,1) horizon-
tally and (1,50) at 45 degrees. Left: Interpolation in the standard matrix
space (interpolation of the coefficients). Right: Geodesic interpolation in
Riemannian space

using the geodesic distance. When the two tensors are both isotropic but different

in size, the standard mean gives the arithmetic mean of the sizes and the geodesic

provides the geometric mean. When the two tensors are equal, both means are the

same. [57]

4.1.3 Tensor Spline Interpolation

Tensor spline interpolation involves the use of a robust tensor product B-spline fitting

method involving the minimization of the Riemannian distance between the tensor

spline function and the SPD tensor valued data. In order to evaluate a tensor spline,

a weighted intrinsic average of SPD tensors is computed [58].

The equation for a (k− 1)th degree B-spline with (n+1) control points (c0, c1, , cn)

and n+ k + 1 numbers called ”knots” (t−k+1, t−k+2, , tn+1) , is

S(t) =
n∑
i=0

NI,k(t)ci (4.3)

Where t0 ≤ t ≤ tn+1−(k−1) . Each control point is associated with a basis function
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Ni,k , where

Ni,1 =


0, ti ≤ t < ti+1;

1, otherwise
(4.4)

and

Ni,k(t) = Ni,k−1(t)
t− ti

ti+k−1 − ti
+Ni+1,k−1(t)

ti+k − t
ti+k − ti+1

(4.5)

Ni,k(t) functions are polynomials of degree k-1 . Cubic basis functions NI,4 can be

used for a third degree B-spline. Knots must be series of monotonically increasing

numbers. A more detailed discussion on B-splines can be found in [58,59].

In order to fit a tensor spline to the diffusion tensor data, the control tensors of

such a spline are approximated. A tensor spline minimizes the Riemannian distance

of the given tensors from the tensor spline curve:

E =
1

2N

N−1∑
i=0

dist(S(ti), pi)
2 (4.6)

In Equation [4.6], the Riemannian metric should be used for the distance calculation,

since the tensor space, is a curved manifold (convex cone), a set of control points

(c0, c1, ..., cN−1+k−2)that form the spline S(t) which minimizes the energy E. The

gradient of the square distance between S(ti) and Pi with respect to S(ti) equals

∇S(ti)dist(S(ti), pi)
2 = −2LogS(ti)(Pi) (4.7)

where LogS(ti)(Pi) is the Riemannian logarithmic map, which is a tangent vector at

S(ti) . Since the gradient of the energy is with respect to cj, the gradient can be

expressed in Equation [4.7] by using tangent vectors at point cj.

Starting with an initial guess of the control tensors, they are updated by using

the gradient descent technique. The new values c′j of control tensors will be:

C ′j = Expcj(
1

N

N−1∑
i=0

Λcj(Pi, S(ti))Nj,k(ti)) (4.8)
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Tensor splines can be easily extended to higher dimensional tensor fields. For

example, consider the case of a 2-D (N ×M) tensor field. A (k − 1)th degree tensor

spline that fits to data requires control tensors and monotonically increasing (in both

the dimensions) knots [58]. The tensor spline approximation results in a field which

has the noise considerably smoothed out [58].

4.1.4 Geodesic-Loxodrome Subdivision

Loxodromes are paths of constant bearing, or paths maintaining a fixed angle with

north. let p(φ, θ) = (rcos(θ)sin(φ), rsin(θ)sin(φ),rcos(φ)) be a parametrization of

a radius-r globe in R3 with p(0, 0) at the north pole. Then n(x) = −dp/dφP−1(x)is

a tangent to the sphere, pointing north. Let n̂(x)=n(x)/|n(x)|. Then, a loxodrome

with unit speed and bearing cos−1(α) is traced by a path γ(t) on the globe for which:

|γ′(t)| = 1 and γ′(t) · n̂(γ(t)) = α for all t (4.9)

The path tangent γ′(t) is also tangent to the sphere, and its constant inner product

with n̂ implies that γ(t) moves northward (or southward) at a constant rate. Geodesic-

loxodromes similarly move along certain tensor shape parameters at a constant rate,

thereby monotonically interpolating tensor shape.

The geodesic-loxodrome is defined as γ(t) between A and B in Sym3 as the

shortest path satisfying:

γ(0) = A, γ(l) = B, |γ′(t)| = 1andγ′(t) : ∇̂ Ji(γ(t)) = αi for all t ε[0, l], iε1, 2, 3

(4.10)

where l and αi are constants that characterize the path. Geodesic-loxodromes

demonstrate the mapping of an intuitive distinction between shape and orientation

into a mathematical formulation of interpolation and distance measurement [60].
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The most important disadvantage of geodesic loxodromes is that it can only apply

to 1D interpolation of 2nd order tensors.

4.2 Divergence and Curl Minimizing Subdivision

The subdivision surfaces, in 3D computer graphics, are defined recursively. The

process starts with a given polygonal mesh. A refinement scheme is then applied to

this mesh. This process takes that mesh and subdivides it, creating new vertices and

new faces. The positions of the new vertices in the mesh are computed based on the

positions of nearby old vertices. In some refinement schemes, the positions of old

vertices might also be altered (possibly based on the positions of new vertices). This

process produces a denser mesh than the original one, containing more polygonal

faces. This resulting mesh can be passed through the same refinement scheme again

and so on. The limit surface obtained after an infinite number of iterations can be

shown to be a smooth surface in some cases - a bicubic B-spline for the scheme of

Catmull-Clark [61], and a biquadratic B-spline in the case of Doo-Sabin [62]. The

subdivision process is often analyzed as a linear equation pn+1 = Spn where p is

the set of vertices in the mesh and the superscripts denote iteration number. The

subdivision matrix S characterizes the subdivision process of generating new vertices

as linear combinations of the old vertices.

Weimer and Warren [63] extended the concept of subdivision to fluid flows. Start-

ing with a coarse vector field representing fluid velocity, their technique generated a

dense vector field corresponding to the solution of the Navier-Stokes equation. Sim-

ilarly, our method can be seen as the solution of a system of partial differential

equations.
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Figure 4.2 First three steps of CatmullClark subdivision of a cube with
subdivision surface below
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Figure 4.3 Diagram illustrating divergence

4.2.1 Divergence

In vector calculus, the divergence is an operator that measures the magnitude of a

vector field’s source or sink at a given point; the divergence of a vector field is a

(signed) scalar. More technically, the divergence represents the volume density of the

outward flux of a vector field from an infinitesimal volume around a given point.The

inward flux has positive divergence and the outwards flux is negative. The divergence

of fluids velocity measures the rate at which fluid is being piped into or out of the

region at any point so it is analogous to flux [64].

4.2.2 Curl

In fluid dynamics, vorticity is the curl of the fluid velocity. It can also be considered

as the circulation per unit area at a point in a fluid flow field. It is a vector quantity,

whose direction is along the axis of the fluid’s rotation. For a two-dimensional flow,

the vorticity vector is perpendicular to the plane.

For a fluid having locally a ”rigid rotation” around an axis (i.e., moving like a

rotating cylinder), vorticity is twice the angular velocity of a fluid element. An irro-

tational fluid has no vorticity. Somewhat counter-intuitively, an irrotational fluid can

have a non-zero angular velocity (e.g. a fluid rotating around an axis with its tangen-
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Figure 4.4 Diagram illustrating vorticity in a fluid

tial velocity inversely proportional to the distance to the axis has a zero vorticity).

In general, vorticity is an especially powerful concept in the case that the viscosity

is low (i.e. high Reynolds number). In such cases, even when the velocity field is

relatively complicated, the vorticity field can be well approximated as zero nearly

everywhere except in a small region in space. This is clearly true in the case of

2-D potential flow (i.e. 2-D zero viscosity flow), in which case the flowfield can be

identified with the complex plane, and questions about those sorts of flows can be

posed as questions in complex analysis which can often be solved (or approximated

very well) analytically [65].

4.2.3 Vector Field Subdivision

The subdivision scheme for vector field interpolation will be first formulated, which

will help explain the tensor field subdivision scheme in the next section of this chapter.

the proposed formulation is much simpler than that of Warren and Weimer [63]. Given

velocity vectors at the corners of a cube (or square in 2D), a velocity field, which is

simultaneously as incompressible and irrotational as possible, is constructed. This

can be seen as a physical constraint on the flow, or alternatively since we may wish to

interpolate vector fields other than fluid velocity fields, this can also be seen merely
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as a smoothness constraint since spurious sources/sinks and vortices can introduce

regions of rapidly changing vector direction and length.

The strength of sources or sinks in a fluid flow can be quantified by the divergence

of the velocity field, and the strength of vortices can be quantified by the curl.

div v =
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

, curl v =


∂vz
∂y
− ∂vy

∂z

∂vx
∂z
− ∂vz

∂x

∂vy
∂x
− ∂vx

∂y

 (4.11)

where v = [vx, vy, vz]
T is the vector field. These are usually denoted by the shorthand

∇· v and ∇× v respectively. We will approximate these operators discretely by using

finite differences

∆x =
1

2
(v(x+ 1, y, z)− v(x− 1, y, z)),

∆+
x = v(x+ 1, y, z)− v(x, y, z), (4.12)

∆−x = v(x, y, z)− v(x− 1, y, z)

which are the central, forward and backward differences respectively. The subdivision

operation takes as input a coarse grid of vectors (2× 2 in 2D, or 2× 2× 2 in 3D) we

will call v0 and produces a refined grid (3× 3 in 2D, or 3× 3× 3 in 3D) we will call

v1 as shown in Figure (4.5). The process will proceed iteratively and each step will

interpolate the results of the previous step. The system of equations which determine

vn+1 given vn specify 3 types of requirements:

1. Interpolation, the vectors at iteration n should be interpolated in step n + 1.

In the first step we have

vn(1, 1) = vn+1(1, 1),

vn(1, 3) = vn+1(1, 3), (4.13)

vn(3, 1) = vn+1(3, 1),
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Figure 4.5 Illustration of the subdivision process in 2D. The first subdivision
iteration replaces the 2×2 grid of vectors (v0) with a 3×3 grid of vectors (v1).
The vectors in the corners of the domain (white background) are interpolated.
The remaining 5 vectors are computed by minimizing the divergence and curl
of the field. The next subdivision step would interpolate all 9 vectors. The
process can be repeated to obtain vn, a grid of size 2n + 1× 2n + 1

vn(3, 3) = vn+1(3, 3)

where the array vn has been padded to be the same size as vn+1 so that indices

at corresponding corners are equal.

2. Divergence minimization, the divergence at each point in vn+1 is set to zero, and

written in terms of vn when a corner point is involved. If the central difference

equation involves a point outside the domain, forward or backward differences

are used instead. There will be one equation for each vector in vn+1. Each

equation will be of the form

0 = ∆xvx + ∆yvy + ∆zvz (4.14)

The superscript on v is n+ 1 for the new voxels being computed, and n for the

voxels being interpolated.

3. Curl minimization, the curl is handled analogously to the divergence. For the

2D example there is only one nonzero component of the curl for each vector. In
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Figure 4.6 Sparse A and B matrices.

the 3D case there will be 3 components per voxel of the form

0 = ∆yvz −∆zvy,

0 = ∆zvx −∆xvz, (4.15)

0 = ∆xvy −∆yvx

for a total of 81 equations in the first step.

By reshaping v into column vector the equations can be rearranged in the form

0 = Avn +Bvn+1 (4.16)

Both matrices A and B are sparse, as shown in figure (4.6), and contain only

elements with values (-1, −1
2
, 0, 1

2
, 1). Overall, in the 2D case we have to solve

for 18 vector components in vn+1 given 22 equations. In 3D we solve for 81 vector

components given 112 equations. The equations are solved in the least squares sense

by:

vn+1 = −B+Avn (4.17)
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Figure 4.7 Vector Field Subdivision of rotational vector. The field to be
interpolated (top left) is subdivided 3 times (results shown top to down and
left to right).

where the pseudoinverse B+ = (BTB)−1BT . This is a subdivision scheme in which the

subdivision matrix is S = −B+A. The result is a vector field where the magnitudes

of the divergence and curl are minimized while interpolating the coarse vector field.

The influence of the divergence and curl minimization can be separately controlled by

using a weighted least squares approach. We implement this by scaling the divergence

equations in Equation (4.16) by σdiv = 0.9 and the curl equations by σcurl = 0.1.

Results of vector field interpolation are shown in Figures (4.7, 4.8, 4.9, 4.10). Note

that even though curl and divergence are minimized in the least squares sense they

are not guaranteed to equal zero. The subdivision process can generate rotational

and nonsolenoidal flows.

4.2.4 Tensor Field Subdivision

The vector field interpolation results of the previous section will be extended to

tensor fields. The same constraints (interpolation, divergence minimization and curl
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Figure 4.8 Vector Field Subdivision of nonsolenoidal vector. The field to
be interpolated (top left) is subdivided 3 times (results shown top to down
and left to right).

Figure 4.9 Vector Field Subdivision of rotational vector. The field to be
interpolated (top left) is subdivided 3 times (results shown top to down and
left to right).
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Figure 4.10 Vector Field Subdivision of nonsolenoidal vector. The field to
be interpolated (top left) is subdivided 3 times (results shown top to down
and left to right).

minimization) were used by simply substituting the definitions of the divergence and

curl of tensors of arbitrary order.

4.2.4.1 Rank-2 Tensor Subdivision

The divergence of a rank-2 tensor field is a vector field of the same dimension. For a

symmetric tensor we have

div

 Dxx Dxy

Dxy Dyy

 =

 ∂Dxx

∂x
+ ∂Dxy

∂y

∂Dxy

∂x
+ ∂Dyy

∂y

 (4.18)

div


Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 =


∂Dxx

∂x
+ ∂Dxy

∂y
+ ∂Dxz

∂z

∂Dxy

∂x
+ ∂Dyy

∂y
+ ∂Dyz

∂z

∂Dxz

∂x
+ ∂Dyz

∂y
+ ∂Dzz

∂z

 . (4.19)

To perform interpolation we form an equation for each of the vector components in

Equation (4.18) or (4.19). For each such equation the corresponding row of matrices

A,B has the appropriate elements assigned.
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A good intuition can be gained about the nature of vector divergence by observing

that near sources the vector field has positive divergence and locally the vectors

appear to point away from the source. Conversely, near a sink the vector appear to

converge toward the sink. The meaning of tensor field divergence can be appreciated

by considering the diffusion equation when the concentration gradient is constant,

but not necessarily zero

∂C

∂t
= div(D∇C) = div(D) · ∇C. (4.20)

Then at steady state ∂C
∂t

= 0 is achieved for div(D) = 0. Under the given conditions,

this is equivalent to saying that the inhomogeneous tensor field D does not transform

any constant vector field into a vector field with nonzero divergence.

In general, the divergence of a tensor field of rank n is a tensor field of orderrank

(n−1) given in Einstein notation as ∂iDi. This notation indicates that for all possible

values of index i, the tensor components are differentiated with respect to that index

and summed over. Note that when the field consists of totally symmetric tensors the

divergence tensor is also totally symmetric.

The curl of a rank 2 tensor field is a vector in 2D and 3D,

curl

 Dxx Dxy

Dxy Dyy

 =


∂Dxy

∂x
− ∂Dxx

∂y

∂Dyy

∂x
− ∂Dxy

∂y

 (4.21)

curl


Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 =


∂Dxz

∂y
− ∂Dxy

∂z
∂Dyz

∂y
− ∂Dyy

∂z
∂Dzz

∂y
− ∂Dyz

∂z

∂Dxx

∂z
− ∂Dxz

∂x
∂Dxy

∂z
− ∂Dyz

∂x
∂Dxz

∂z
− ∂Dzz

∂x

∂Dxy

∂x
− ∂Dxx

∂y
∂Dyy

∂x
− ∂Dxy

∂y
∂Dyz

∂x
− ∂Dxz

∂y

 . (4.22)

The curl of a tensor field of rank n is a tensor field of rank (n+d−3) in d dimensions
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defined as εijk(∂jDk) where εijk is the Levi-Civita symbol (permutation tensor)

εijk =


+1 (i, j, k) is an even permutation of indices

−1 (i, j, k) is an odd permutation of indices

0 otherwise.

(4.23)

4.2.4.2 Rank-4 Tensor Subdivision

The divergence and curl can then be generalized for the rank 4 tensor , and even any

higher order tensor with increasing the number of equations. In case of 3D rank-4

tensor, the number of unknowns will be (15 x 19).we will be having 8 equations for

interpolation, 270 equations from divergence and 810 equations from curl, which can

be solved using least squares.

4.2.4.3 Bézier Curves and Splines

A Bézier curve is a parametric curve important in computer graphics and related

fields. Generalizations of Bézier curves to higher dimensions are called Bézier surfaces,

of which the Bézier triangle is a special case. In vector graphics, Bézier curves are an

important tool used to model smooth curves that can be scaled indefinitely. ”Paths,”

as they are commonly referred to in image manipulation programs [66]. The presented

spline will take the form of a tensor-valued Bézier curve. The Bernstein polynomials

[67] which form the basis of the Bézier curve of degree n are given by

Bn
i (t) =

 n

i

 ti(1− t)n−i (4.24)

where the binomial coefficients are given by n

i

 =


n!

i!(n−i)! if 0 ≤ i ≤ n

0 Otherwise
(4.25)
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A tensor-valued 3d volume can be defined in terms of the basis functions 4 as

D(u, v, w) =
n∑
i=0

n∑
j=0

n∑
k=0

D(i,j,k)Bn
i (u)Bn

j (v)Bn
k (w) (4.26)

where D(i,j,k) are the control tensors. The Bernstein form of the Bézier curve

permits the derivatives of a patch to be computed by simply computing the differences

of control points. For example, the derivative in the u-direction of the patch 6 is given

by

∂uD(u, v, w) =
n−1∑
i=0

n∑
j=0

n∑
k=0

(D(i+1,j,k) −D(i,j,k))Bn−1
i (u)Bn

j (v)Bn
k (w) (4.27)

Continuity across the boundary between adjacent patches C,D can be obtained by im-

posing the constraint C(n) = B(0). Smoothness across the boundary between adjacent

patches C, D can be obtained by imposing the constraint

Cn − Cn−1 = α(D(1) −D(0)) (4.28)

with α > 0 for C1 continuity and α = 1 for G1 continuity. Note that the derivative

operation reduces the degree of the patch by one in the direction being differentiated.

We can add and subtract patches by simply adding and subtracting control points

as long as the patches being operated on have the same degree in each direction.

In computing the divergence and curl of patches we will utilize the degree elevation

operation on patches to achieve this condition. for a degree n+1 curve with control

points E , the smoothness function can be calculated using the following function

E(i) =
i

n+ 1
D(i−1) + (1− i

n+ 1
)D(i) (4.29)

The differentiation and degree elevation operators for the rank 4 tensor valued spline

can be implemented as the matrix vector multiplication c = Dxd where the control

points have been reshaped into 15(n + 1)31column vectors c, d and Dx is a sparse

15(n+ 1)315(n+ 1)3 matrix. In an analogous fashion, we can define matrices Dy and
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Dz which can be used to compute the derivative of the spline in the y and z directions.

The rows of these matrices can then be used to create matrices which implement the

curl and divergence operators.

4.2.4.4 Minimization

The control points for the tensor-valued patch were computed by solving a system of

equations in the least squares sense. The system contains 4 types of equations:

• Interpolation, for interpolation within a cell, we impose a hard constraint that

the 8 tensors at the corners of the cell are known.

• Boundary conditions, the derivative across the boundary can be controlled to

match derivatives with neighboring voxels, or clamp the derivative at the bound-

ary of the dataset.

• Divergence minimization. The divergence of the spline can be expressed in

terms of the control vertices. Minimization of the divergence can be seen as a

physical constraint which favors conservation of mass.

• Curl minimization, the curl of the spline can also be expressed in terms of

the control vertices. These constraints impose additional smoothness on the

resulting tensor field.

The boundary, divergence and curl constraints have associated weights (σbc, σdiv, σcurl)

which permit controlling the influence of each type of constraint independently.

The input to the Algorithm will be the corners of the slice, if it is 2 D subdivision

or the 4 corners of the volume in case of the 3D volume subdivision as shown in Figures

(4.11, 4.12) respectively. The divergence and curl functions will be calculated for
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Figure 4.11 Input and Output voxels in case of 2D subdivision

Figure 4.12 Input and Output voxels in case of 3D subdivision
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Figure 4.13 Rank 2 tensor field interpolation. Linear interpolation (left),
Log-Euclidean interpolation (center), 2 subdivision steps (right).

Figure 4.14 Rank 2 tensor field interpolation. Linear interpolation (left),
Log-Euclidean interpolation (center), 2 subdivision steps (right).

each voxel, and using least square, the generated voxels can be calculated

Ado = BdNdN = (BTB)−1BTAdo (4.30)

Both matrices A and B are sparse. The equation is then solved for d in the least

squares sense using sparse Cholesky factorization.

4.2.5 Subdivision Results and Discussion

The results of rank 2 tensor field subdivision are shown in Figures (4.13, 4.14), along

with linear and log-Euclidean interpolation for comparison. Note that in the bottom

row of voxels in both examples (top and bottom of Figure (4.13, 4.14)) FA is better
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preserved for the subdivision scheme than in the linear and log-Euclidean interpo-

lation cases. The subdivision scheme results in a smooth rotation of the diffusion

tensor.

To measure the difference in estimation between the linear and the subdivision

algorithms, several (9 × 9)synthetic rank-2 tensor slices were generated, to form the

isotropic slice, a diagonal fiber with random direction, 2 diagonal crossing fibers with

random directions, 2 kissing fibers, bifurcating fibers, solenoid source with random

position, exponential decay, a bifurcating fiber as shown in figure. Odd index voxels,

forming a (4×4) slices, were used as input for both linearinterpolation and subdivision

algorithms. The average Frobenius norm error between the output tensor to the

corresponding tensor of the ground truth slice is calculated, to measure of the error

between the estimated tensor and the original one. The highest error occurred in

case of Solenoidal slice. Figures (4.15, 4.16, 4.17) are examples output of subdivision

and linear interpolation algorithms. the anisotropy is more preserved in case of the

subdivision than the interpolation. In case of the solenoidal slice in Figure [4.15], this

effect can be seen at the top and bottom row of the output slices. For the kissing

fibers in Figure [4.16],It can be seen in the left column and the bottom row.

These different synthetic data were randomly used for subdivision and interpola-

tion, the mean, minimum and maximum average Frobenius norm was in both cases

as shown in Table (4.1).

Results for rank 2 Bézier spline tensor interpolation of synthetic data are shown in

Figures (4.18, 4.19, 4.20, 4.21). The polynomial degree, n, was varied from 1 to 7. For

n = 1 the Bézier patch we compute reduces to linear interpolation. Results are also

compared with the subdivision approach in [68]. The background color indicates frac-

tional anisotropy (FA). Note the behavior in the bottom row of voxels in Figures (4.18,

4.22) as the degree of the interpolating curve increases the better that anisotropy is
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Figure 4.15 Solenoidal , Rank 2 tensor, Top: (Right) Ground truth slice,
(Left) Input slice, Bottom: (Right) Subdivision Output, (Left)Linear Inter-
polation Output.
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Figure 4.16 Exponential decay, Rank 2 tensor, Top: (Right) Ground truth
slice, (Left) Input slice, Bottom: (Right) Subdivision Output, (Left)Linear
Interpolation Output.
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Figure 4.17 kissing fibers , Rank 2 tensor, Top: (Right) Ground truth
slice, (Left) Input slice, Bottom: (Right) Subdivision Output, (Left)Linear
Interpolation Output.
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Figure 4.18 Bézier spline Interpolation, Rank 2 tensor results with Degree
n=1 (left) and n=2 (right).

Figure 4.19 Bézier spline Interpolation, Rank 2 tensor results with Degree
n=3 (left) and n=4 (right).
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Figure 4.20 Bézier spline Interpolation, Rank 2 tensor results with Degree
n=5 (left) and n=6 (right).

Figure 4.21 Bézier spline Interpolation, Rank 2 tensor results with Degree
n=7 (left) and Order 2 tensor subdivision results (right).
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Figure 4.22 Rank-4 tensor interpolation, Degree n=7 (left) and subdivision
(right). The background image is generalized anisotropy.
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Table 4.1 Slice average Frobenius Norm error for Subdivision and Linear
Interpolation

Error Subdivision Linear Interpolation

Max 23.19% 56.05%

Mean 10.00% 25,19%

Min 0.0000% 0.0000%

preserved during interpolation and the behavior of the subdivision solution is better

approximated. In particular, the linear interpolation result has difficulty interpolating

between the two tensors with perpendicular dominant orientations. The intermediate

result is isotropic. Results for rank 4 tensor interpolation of synthetic data are shown

in Figure (4.22). The background image represents generalized anisotropy (GA).

High angular resolution diffusion imaging can overcome some limitations or rank 2

diffusion tensor imaging. Models for the diffusivity function have been formulated in

terms of tensors of various ranks [45], rank 4 tensors in particular [58] and sequences

of tensors of increasing rank [69]. To demonstrate the generality of the subdivision

scheme, we present the results of subdivision applied to rank 4 tensor fields in Figure

(4.14), along with linear interpolation results.

In these examples it is apparent that the subdivision scheme encourages rotation

in the peaks of the diffusivity profiles during interpolation. Note that these do not

necessarily correspond to fiber directions. In order to determine fiber directions, we

must compute the orientation distribution function from diffusivity. In the case of

linear interpolation, the peaks in diffusivity merely grow and shrink while maintaining

their orientation.

To verify the new subdivision algorithm, experimental results were obtained from

datasets collected from a normal human volunteer, on a 3T Siemens Tesla General
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Figure 4.23 Interpolation of real data taken from sample within the blue
box (top). Detail of the sample (bottom left), interpolated field (bottom
right)

Electric Medical Systems Horizon LX imaging system with a diffusion weighted spin

echo pulse sequence at bvalue= 1000s/mm2 for 25 directions and a single image was

acquired with b0 for 30 slices. The image field of view was 24 × 24 cm and the

image size was 256 × 256. The imaging parameters where imaging parameters were

: effective TR = 9000 ms, TE = 78 ms, NEX = 1. Rank 2 tensors were calculated

and then subdivision algorithm was then used. A sample of the results is shown in

Figure (4.23).
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4.3 Fiber Tracking and Shape Geometry

The ability to non-invasively image the architecture of white matter pathways would

greatly elucidate how neural signals in the human brain are coordinated and pro-

cessed as part of a distributed network. While functional magnetic resonance imaging,

positron emission tomography, and electromagnetic source imaging have shed consid-

erable light on the anatomic location of the specialized processing regions within gray

matter, there is currently no noninvasive imaging method capable of resolving the

white matter connections between these regions [70–73].

Connectivity studies in animal brains are possible in vivo through a variety of

invasive methods that cannot be used for humans [74]. Post mortem studies of fiber

bundles are possible for human brains, for instance by observing passive diffusion

using chemical dyes, but can take months to perform and are often affected by cross

fiber diffusion [74]. Post mortem methods have revealed that white matter in the

human brain is highly structured. However, using conventional MRI protocols, white

matter appears to be homogeneous. Only recently, by the introduction of DT-MRI,

in vivo studies of the human brain fiber tract anatomy have become possible. In

DT-MRI the diffusion of water molecules is measured in different directions. This

measure can be related to nerve fibers by the fact that water tends to diffuse only

along fibers, because tightly packed myelin membranes restricts diffusion perpendic-

ular to the axons. Myelin is not essential for anisotropic diffusion in fiber tracts, as

shown in studies of nonmyelinated garfish olfactory nerves and neonates brains, but is

widely assumed to be the main barrier for water diffusion [75]. The eigen vector cor-

responding to the largest eigenvalue of the diffusion tensor often give a good estimate

of the local fiber orientation inside a voxel, as can be seen in Figure (4.24) bottom.

A simple but effective method for fiber tracking is to simply follow the direction of
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Figure 4.24 Top: A brain dissection showing the structure of white matter
(from The Virtual Hospital, University of Iowa). Bottom: A coronal T2
slice combined with a plot of the eigenvector corresponding to the largest
eigenvalue.

Figure 4.25 Tracking multiple fiber paths, following the direction of maxi-
mum diffusion. Visualized using the 3-D Viewer.

maximum diffusion, can be seen in Figure (4.25).

Many applications for white matter tractography and more will appear in the

future as DT-MRI and fiber tracking becomes standard clinical procedures as [74]:

• Brain surgery may cause damage to important fiber bundles. Knowledge of

their extension could minimize functional damage to the patient.

• White matter can be visualized using fiber traces for a better understanding of

brain anatomy.
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• Connectivity between different parts of the brain can be inferred, which is useful

for functional and morphological research on the brain.

• Understanding of diffusion properties in many brain-related diseases, e.g., mul-

tiple Sclerosis [76, 77], Dyslexia [78], Alzheimers disease [79, 80], Schizophre-

nia [81,82], brain tumours [83,84], Periventricular Leukomalacia [85] as well as

spinal cord injury [86] should benefit from those developments.

Most of the algorithms used to infer bundles of fibres from DT imaging are based

on a discrete resolution of the integral curves of the vector field corresponding to the

reduction of the diffusion tensor to its largest eigenvector as Fiber Assignment by

Continuous Tracking Technique [74, 87–90] and Streamline Technique [39, 40, 89, 91–

93]. In Tensor Deflection (TEND),The tensor operator deflects the incoming vector

towards the major eigenvector direction, but limits the curvature of the fiber [94–98].

Fast Marching Technique (FMT) is basically based on the representation of the front

using scalar representation that allows control of front curvature and alignment to

chosen features [99,100]. Although the tensor model provides a good description of a

general diffusion profile, Friman al. [101] used the distribution of the fiber orientation

stochastically for fiber tracking estimation.

The objective of this analysis is to find how the interpolation and the subdivision

will affect the computed trajectory in comparison to fiber tracking without interpo-

lation

4.3.1 Fiber Assignment by Continuous Tracking Technique

(FACT)

The fiber tracking was initially introduced by Mori et al. [87] which was based on the

principle of water-diffusion anisotropy. For a region where axons are aligned, water
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is restricted in the direction perpendicular to the axons and diffuses preferentially

in a direction parallel to them. This situation can be represented mathematically

by a so-called diffusion ellipsoid, characterized by diffusion constants along its three

orthogonal directions and the (vector) direction of the longest axis [87], [102]. For

example, (anisotropic diffusion) suggests the existence of cylindrical structures pref-

erentially aligned along, whereas (isotropic diffusion) suggests sparse or unaligned

axons. The most intuitive way to perform this tracking is by connecting each voxel to

the adjacent one toward which the fiber direction is pointing [87]. However, when us-

ing this approach, the tracking often deviates from the true fiber orientation, because

the choice of direction is limited to only eight angle ranges (26 in the case of 3D).

This problem is avoided when tracking a continuous rather than a discrete vector

field. The tracking is initiated from the center of a voxel and proceeds according to

the vector direction. At the point where the track leaves the voxel and enters the

next, its direction is changed to that of the neighbor. Due to the presence of con-

tinuous intercepts, this tracking now connects the correct voxels and the actual fiber

can be assigned. The end point of the projection is judged based on the occurrence

of sudden transitions in the fiber orientation [87].

Even though the 3D vector field obtained from the DTI consists of discrete voxels,

the tracking is made in a continuous number field. Namely, a line is propagated from

the center of the initial voxel along the direction of the vector until the line exits to

the next voxel, as shown in figure (4.26). In this approach, the starting point in the

next voxel is the intercept of the previous voxel. Once the line is propagated, voxels

through which the line passes are connected to represent the fiber projection [102].

The tracking is terminated when it enters a region where the average of the inner

products with the vectors of the three closest voxels is smaller than 0.75. The tract

is also terminated if the fractional anisotropy is very low, so that it represents a gray
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Figure 4.26 FACT Tracking Example

matter [87,102].

In 2001, the same group [103] defined the minimum FA that describes how much

the tract is valid, so if the FA is in range 0.25-0.35, then the probability of tract

validity is very low, and the inner product threshold of higher than 0.75, identified

trajectories by the FACT technique are likely to be valid.

Although the 3D FACT provides an exciting opportunity to visualize association

pathways in vivo, its inherent limitations should also be realized. Specifically, fiber

orientation revealed by DTI reflects the average orientation of axonal fibers for each

pixel, and is susceptible to tissue heterogeneity. Within a pixel, numerous fibers may

be crossing, or there may be a small portion of fibers that have different orientations

from dominant fibers. Therefore, DTI fiber tracking is presently limited to visual-

ization of in vivo gross anatomy of white matter tracts connecting functional brain

regions [104,105].

4.3.2 Methods

Two synthetic slices were generated, The first synthetic volume of isotropic material

containing one third arc of a circle anisotropic fiber. The second volume is formed of

isotropic material containing a spiral shaped fiber. The synthetic data is downsam-

pled. Linear interpolation and subdivision is applied to the downsampled volume.
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Figure 4.27 Circular Tract for the downsampled , Linearly Interpolated and
the Subdivided volumes

FACT is then used for the noninterpolated downsampled volume, the linearly in-

terpolated and the subdivided volume. The 3 generated tract are compared with

the original tract. The mean and max radius error in case of the first synthetic is

calculated.

4.3.3 Results and Discussion

The tracts for the synthetic volumes are shown in Figures (4.27, 4.28). It is clear from

shown Table (4.27) that tracts for the interpolated and the subdivided are closer to

the ground truth than the downsampled tract and that of the subdivided volume is

the least deviated from the original tract.
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Figure 4.28 Spiral Tract for the downsampled , Linearly Interpolated and
the Subdivided volumes

Table 4.2 Radius Error for the Circular tract

Radius Error Mean Max

Without Interpolation 5.64% 7.26%

Linearly Interpolated 3.92% 5.03%

Subdivision 2.00% 2.32%



Chapter 5

New Measures Based on

Divergence and Curl

5.1 Introduction

In diffusion tensor MRI (DT-MRI) indices of anisotropy, as fractional anisotropy

(FA), relative anisotropy [7], volume ratio [25], have found success in clinical appli-

cations. They are useful because many neurological disorders are characterized by

changes in brain white matter anisotropy, for example stroke, trauma, and multiple

sclerosis. Recently higher rank tensors have been proposed as a model for diffusion

in the context of diffusion-weighted MRI [45]. Other measures of anisotropy based

on variance and entropy have been proposed [46].

New scalar measures based on differential quantities can be computed from ten-

sor fields of arbitrary rank. These studied quantities are generalizations of those

which have proven useful in vector field analysis - namely the divergence and curl.

The Helmholtz decomposition separates a flow field into divergence-free (solenoidal)

and curl-free (irrotational) components. These parts may be analyzed separately to

86
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robustly identify different types of critical points in the field . The Helmholtz decom-

position has recently proved to be useful in the topological analysis of vector fields.

Polthier and Preuss [106] used a discrete Helmholtz decomposition to robustly locate

singularities in vector fields. Li et al. [107] used the Helmholtz decomposition to seg-

ment 2D discrete vector fields. Tong et al. [108] described vector fields in a multiscale

framework by defining a vector field scale space in terms of the separate scale spaces

of the solenoidal and irrotational parts of the field. We apply a similar principal, and

decompose the high rank tensor field into multiple components, and visualize each

separately.

Local maxima of our scalar measures can be interpreted as topological features

since they serve to identify generalized sources, sinks and vortices of the field. Several

approaches to topological tensor field visualization have been described in previous

literature. Many consider the topology of the dominant eigenvector field [109,110] and

define degenerate points as locations where two or more eigenvalues are equal to each

other. Zheng et al. [111] described categories of feature points and numerically stable

methods for extracting them and then joining them to form feature lines. Approaches

specific to diffusion tensor MRI have considered the topology of scalar fields of tensor

invariants as defined by crease lines. Tricoche et al. [112] use this framework applied

to tensor mode (which is related to the skewness of eigenvalues), and Kindlmann et

al. [14] used fractional anisotropy (which is related to the variance of eigenvalues).

Another approach based on degenerate lines derived from probabilistic tractography

has been described by Schultz et al. [15]. The concerns expressed in their work is

the relying on eigenvectors or streamlines calculation as a preliminary step before the

measurement calculation. The Helmholtz decomposition [113] of a vector field, v, is

given by

v = ∇φ+∇× ψ + h (5.1)
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where ∇φ is the gradient of a scalar potential field φ, ∇ × ψ is the curl of a vector

stream field ψ and h is a harmonic vector field. Since ∇φ is irrotational, so it is

useful for identifying features such as local maxima and minima of divergence (foci

of sources and sinks) in v without interference from curl-based features. Likewise,

∇× ψ is solenoidal, and is useful for isolating centers of vortices in v. The harmonic

vector field, h, is both solenoidal and irrotational and typically is of small magnitude.

Using the previously defined operators, the Helmholtz decomposition can be ex-

tended to 2nd and 4th rank tensor fields as

Dij = ∂iφj + εimn(∂mψnj) +Hij,

Dijkl = ∂iφjkl + εimn(∂mψnjkl) +Hijkl (5.2)

Just as in the vector field case, the div(curlψ) = 0 and curl(gradφ) = 0. The

formulation can be made for tensors of any arbitrary rank.

5.2 Methods

the discretized operators will be represented as block matrices where the blocks cor-

respond to finite difference operators applied to a single tensor component. For 3D

fields the multidimensional difference matrices are given by

∆x = Ip×p ⊗ Im×m ⊗∆n×n,

∆y = Ip×p ⊗∆m×m ⊗ In×n,

∆z = ∆p×p ⊗ Im×m ⊗ In×n (5.3)

where In×n is an n×n identity matrix, ⊗ is the Kronecker product and ∆n×n is an n×n

finite difference matrix. Central differences is used for approximating derivatives, in
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which case ∆ is given by

∆ =
1

2



0 +1 0 · · · 0

−1 0 +1
. . .

...

0 −1 0
. . . 0

...
. . . . . . . . . +1

0 · · · 0 −1 0


. (5.4)

This definition of this matrix may be modified as needed to impose boundary condi-

tions on the tensor field.

The curl of the second rank tensor field can be approximated as ψij as Cψ, where

C =



0 0 0 −∆z 0 0 ∆y 0 0

0 0 0 0 −∆z 0 0 ∆y 0

0 0 0 0 0 −∆z 0 0 ∆y

∆z 0 0 0 0 0 −∆x 0 0

0 ∆z 0 0 0 0 0 −∆x 0

0 0 ∆z 0 0 0 0 0 −∆x

−∆y 0 0 ∆x 0 0 0 0 0

0 −∆y 0 0 ∆x 0 0 0 0

0 0 −∆y 0 0 ∆x 0 0 0



, ψ =



ψxx

ψxy

ψxz

ψyx

ψyy

ψyz

ψzx

ψzy

ψzz



.

(5.5)
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Similarly, the gradient of the first rank tensor field φi is given by Gφ where

G =



∆x 0 0

0 ∆x 0

0 0 ∆x

∆y 0 0

0 ∆y 0

0 0 ∆y

∆z 0 0

0 ∆z 0

0 0 ∆z



, φ =


φx

φy

φz

 (5.6)

The discretized operators for rank-4 tensors will contain 81 rows each.

To perform the generalized Helmholtz decomposition we solve the least squares

problem

min
ψ,φ
||D −Cψ −Gφ||2F (5.7)

where || · ||F denotes the Frobenius norm of the tensor ||Xik||F = Trace(XijXjk).

Using the fact that CTG = GTC = 0, numerical implementation is used by

alternately solving the normal equations

CTCψ = CTD, (5.8)

GTGφ = GTD

using a stabilized biconjugate gradients method until convergence is reached. Al-

though the matrices on the left-hand sides of Equation (5.8) are symmetric, they are

not positive-definite, so the standard conjugate gradients method cannot be used. The

derivatives of all tensor components are constrained to be zero across each boundary.

Since, the objective is not explicitly solving for H, the harmonic part of the field, but

instead let H = D −Gradφ− Curlψ.
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Figure 5.1 Vortices and sources used to construct the synthetic field.

5.3 Results

A synthetic rank-2 tensor field was generated from the sources and vortices shown in

Figure (5.1) by computing D = (D1 + D2 + D3 + D4)2. The tensor fields in Figures

(5.1,5.2) are visualized by plotting the radial surfaces r(x) = Dijxixj for unit vectors

x. The surface is colored blue when r is positive and red when r is negative. The

results of the generalized Helmholtz decomposition are shown in Figure (5.2).

Another synthetic tensor field was generated from sources and vortices similar

to those shown in Figure (5.1), but modeled as rank-4 tensors. The results of the
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Figure 5.2 Helmholtz decomposition results for rank-2 synthetic tensor
field.[top: right: Tensor, Left: Curl, Bottom: right:, left: Harmonic]
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generalized Helmholtz decomposition of this field are shown in Figure (5.3), the back-

ground of Figure (5.3 b, c) is the trace of the tensor. The tensor fields are visualized

by plotting the radial surfaces r(x) = Dijklxixjxkxl for unit vectors x. The surface

is colored blue when r is positive and red when r is negative. Several interesting

observations can be made from these results. The critical points in the original field

Figure (5.2a), are not clearly visible, but in the decomposed fields they are quite ev-

ident. In the decomposed fields there seems to be a correspondence between sources

of positive-definite tensors and vortices of negative-definite tensors. The harmonic

field, which is typically of small magnitude for vector field decompositions, can be

substantial in terms of the tensor trace, but it is extremely smooth - nearly constant

in all of our synthetic field experiments.

The decomposition was also applied to diffusion tensor MRI of the human brain

described in section 4.2.5. Rank 2 and 4 tensors were computed from the diffusion

weighted images by performing a least squares fit to the logarithm of the signal

attenuation.

Denoting the irrotational part of the field as Dφ = Gradφ and the solenoidal

part as Dψ = Curlψ, images of ||Div(Dφ)|| and ||Curl(Dψ)|| in Figures (5.6, 5.3)

are shown. Images of fractional anisotropy [24] are also presented for comparison.

The new scalar measures are based on differential operators applied to tensor fields

generated by a global optimization procedure, unlike FA which is simply computed

on a voxel-by-voxel basis. As such, these new measures are sensitive to the large

changes in diffusivity which occur at the cortical surface and the boundaries of the

ventricles. Away from these boundaries it is clear that the critical points do form

coherent linear and curved regions in the field, as predicted by previous work.

Compared to FA, new measures seem to be more discriminative, often revealing

thinned structures. This can be understood in relation to vector field topological
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Figure 5.3 Helmholtz decomposition results for rank-4 synthetic tensor
field.[top: right: Tensor, Left: Curl, Bottom: right:, left: Harmonic]

Figure 5.4 Axial slice of real data, rank 2. [left:Curl ψ, Right: Grad φ].
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Figure 5.5 A comparison of FA of white-matter structure for an axial slice .
ILF: interior longitudinal fasciculus, SFO: superior fronto-occipital fasciculus,
SCC: splenium of corpus callosum, RCB/LCB: right/left cingulum bundle,
ATR: Anterior thalamic radiation.
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Figure 5.6 A comparison of ||CurlDψ|| of white-matter structure for an axial
slice. ILF: interior longitudinal fasciculus, SFO: superior fronto-occipital
fasciculus, SCC: splenium of corpus callosum, RCB/LCB: right/left cingulum
bundle, ATR: Anterior thalamic radiation.
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Figure 5.7 A comparison of ||DivDψ|| of white-matter structure for an axial
slice. ILF: interior longitudinal fasciculus, SFO: superior fronto-occipital
fasciculus, SCC: splenium of corpus callosum, RCB/LCB: right/left cingulum
bundle, ATR: Anterior thalamic radiation.
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Figure 5.8 Scalar measures of the rank-4 tensor field for an axial slice of
real huma brain.[left: ‖Dψ‖, Right: ‖Dψ‖]

visualization technique which use divergence and curl to locate centers of features

such as vortices, sources and sinks. These form line structures in 3D flows, and we

see analogous behavior from the generalized measures in 3D tensor fields. In the

bottom image of Figure (5.6) the left and right cingulum bundles are visible as a

pair of bright horizontal regions. We note that the curl image seems to convey much

more structural information than the divergence image. This may be due to the

incompressibility of water resulting in smaller fluctuations in divergence.

Results for rank-4 tensors computed from the same diffusion weighted data as

above are presented in Figure (5.8). The displayed slice is the same as the second

column from the left in Figure (5.6).



Chapter 6

Orientation Distribution Function

and Anisotropy Measure

In order to visualize and analyze the diffusion function, Tuch [36] used the idea of

projecting the diffusion function on to the sphere, and the resulting function was

termed a spin displacement Orientation Distribution Function (ODF). The diffusion

function within each voxel was reconstructed by sampling the diffusion signal on a

Cartesian grid and then taking the Fourier transform on the grid.

The radial projection used to construct the ODF discards all of the radial infor-

mation contained in the diffusion function. Hence, the ODF does not contain the

radial information which was originally present in the Cartesian diffusion function,

but preserves the salient angular contrast. It would therefore dramatically boost

the acquisition efficiency, to measure the ODF directly and bypass the intermedi-

ate reconstruction of the diffusion function, much of which is ultimately discarded

by the radial projection. The above goal could be accomplished by a sampling/ re-

construction scheme which sampled the diffusion signal directly on the sphere and

reconstructed the ODF directly on the sphere.

99
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The ability to sample directly on the sphere would allow to spend the signal

acquisitions more efficiently on angular resolution. In contrast, the signal acquisitions

in conventional Cartesian Fourier reconstruction are invested in spatial resolution

which contributes relatively inefficiently to the desired end goal of angular resolution.

Moreover, spherical sampling provides a more natural framework for describing

angular resolution. Whereas the angular resolution of a spherical sampling scheme is

upper-bounded by the angular distance between the sampling points, it is not clear

how to define angular resolution in the context of Cartesian sampling. Additionally,

with spherical sampling the acquisition can be targeted to the spatial frequency band

where the angular contrast-to-noise is greater.

However, the reconstruction involved an elaborate model-fitting procedure which

was prone to model mis-specification. An independent sampling model and recon-

struction scheme termed Q-ball imaging is used that samples the diffusion signal

directly on the sphere, and reconstructs a function closely resembling the ODF ob-

tained from explicit radial projection.

Based on the classical diffusion ODF reconstructed from QBI and the very re-

cent regularized version of the diffusion ODF, a streamline approach with curvature

constraint following all maxima to deal with fibers crossing has been proposed by De-

scouteaux et al. [114, 115]. Behrens et al. [116] used the Markov Chain Monte Carlo

(MCMC) for Bayesian Fiber tracking, but it suffers from being very time consuming.

Jones et al. [117] used nine redundant sets of DWI volumes obtained to perform the

Bootstrap method.

In this chapter, different methods to calculate the tensor distribution function

and the anisotropy measure based on this distribution will be introduced, and finally

a novel anisotropy measure will be introduced. Some experimental results will be

shown to prove the validity of the measure, and then used at the end on a DTI Brain
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data set to compare with other measures.

6.1 Introduction

A single second order tensor model is incapable of resolving multiple fiber orientations

within an individual voxel. This shortcoming of the tensor model stems from the fact

that the tensor possesses only a single orientational maximum, i.e., the major eigen-

value of the diffusion tensor. At the millimeter-scale resolution typical of DTI, the

volume of cerebral white matter containing such intravoxel orientational heterogene-

ity (IVOH) may be considerable given the widespread divergence and convergence of

fascicles. The abundance of IVOH at the millimeter scale can be further appreciated

by considering the ubiquity of oblate (pancake-shaped) diffusion tensors in DTI, a

hypothesized indicator of IVOH.

Tissues with regularly ordered microstructure such as skeletal muscle, spine, heart,

and cerebral white matter exhibit anisotropic (that is, directionally-dependent) wa-

ter diffusion due to the preferred orientation of the diffusion compartments in the

tissue. In order to avoid non-unique variations in measuring diffusivity parameters

with the positioning of the subject, a more general characterization of the diffusion

process was introduced based on diffusion tensors. The basic techniques in diffusion

tensor imaging attempt to characterize the 3-D diffusion phenomena in terms of a 3-D

Gaussian probability distribution [8]. Based on the eigen structure of the measured

diffusion tensor it is possible to infer the orientation of the diffusion compartments

within the voxel. Although the success of DTI for resolving the mean fiber orientation

in tissue, the tensor model is incapable of resolving multiple fiber orientations within

an individual voxel. However, such representation is sufficient in case of the so-called

cigar-shaped diffusion tensor representation.
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6.2 Literature Review

To overcome this limitation of diffusion tensor model, a number of advanced image

acquisition strategies and sophisticated mathematical models have been proposed.

With the multidirectional measurements from the high angular resolution diffusion

weighted imaging (HARDI) method [118]. However, one major difficulty with em-

ploying HARDI in studies involving orientation mapping has been that the peaks

of the diffusivity profile do not necessarily yield the orientations of the distinct fiber

populations. Orazlan et. al [45] have shown that the (SHT) approach could be seen as

a generalization of DTI since the coefficients of the Laplace series (obtained from the

SHT of the diffusivity profile) are related to the components of higher-order Cartesian

tensors. In this section, some of the ODF Algorithms will be discussed.

6.2.1 Diffusion Spectrum Imaging (DSI)

This methodology image a distribution of fiber orientations within each voxel as a 3D

probability density function (PDF) of proton diffusion with Q-space diffusion MRI

using Fourier Transform (FT) encoding and reconstruction. A disadvantage of this

algorithm is its insensitivity to asymmetric internal spin motion such as perfusion

and streaming or effective motion produced by asymmetric relaxation sinks, i.e. this

methodology will detect the spatially symmetric part of such motion, however more

complex transport effects are also possible [37]. Diffusion-weighted single-shot echo-

planar NMR images are acquired for several hundred values of the diffusion-encoding

spatial modulation q comprising points of an isotropic 3D grid contained within a

spherical volume of radius r. At each voxel, the signal data S(q) comprise a sampling

of the 3D Fourier transform of the probability density function of spin translation

P (∆r) =< P (y|y + ∆r, τ) > (6.1)
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where < P (y|y + ∆r, τ) > is the conditional displacement probability density from

location y to point y + ∆r at the given mixing time τ and the angle-bracket denotes

an average over the observed spins within a voxel. Then P (∆r) in each voxel is the

inverse 3DFT of the signal

P (∆r) = F [S(q)] (6.2)

Based on this representation, diffusion tensor MRI can be viewed as a second-order

approximation of a 3D displacement probability distribution that can be imaged in

full with Fourier methods [37].

6.2.2 Persistent Angular Structure(PAS)

The (radially) persistent angular structure (PAS) represents the relative mobility of

particles in each direction. PAS uses a method based on the principle of maximum

entropy. The information content of p is defined by [119]:

I(p) =
∫

Ω
p(x)ln(p(x))dx (6.3)

To extract useful information about the angular structure in a computationally effi-

cient way, the authors restricted attention to determining a probability density func-

tion of the form

p(x) = p̃(x̂)r−2δ(|x| − r) (6.4)

where δ is the standard one-dimensional δ distribution, r is a constant and x̂ is a

unit vector in the direction of x. it was just the projection of the angular structure

from all radii onto the sphere of radius r, and ignoring any information about the

radial structure in the data, which is often very limited. The final result is weakly

dependent on the choice of r. The PAS p̃ has a unit sphere domain as it represents only

orientational information. The relative entropy of the probability density function p
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with respect to the probability density function p0 is given by

I[p; p0] =
∫

Ω
p(x)ln(

p(x)

p0(x)
)dx (6.5)

The constraints on p from the data can be incorporated into the expression above

using the method of Lagrange multipliers to yield

I[p; p0] =
∫

(p̃(x̂)ln(p̃(x̂))− p̃(x̂)
N∑
i=1

(λjexp(iqj · rx̂))− p̃(x̂)µ)dx̂ (6.6)

where qj, 1 ≤ j ≤ N , are the non-zero wave numbers for the MRI measurements,

the λj are Lagrange multipliers for the constraints from the data and the Lagrange

multiplier µ controls the normalization of p̃ The expression was finally simplified to

p̃ = exp(λ0 +
N∑
j=1

λjcos(qj · rx̂)) (6.7)

PAS extracts the directional information from the DTI data, which may be small and

will often be restricted to a sphere in Fourier space. The advantage of this approach

is its statistic robustness and its correspondance to the physiological structure of the

human brain.

6.2.3 Diffusion Orientation Transform (DOT)

Orszlan et. al [120] used The Fourier transform to relate the signal attenuation to

the water displacement probability in spherical coordinates. They use the HARDI

data to estimate the probability of finding the particle at the point R0r away from

the origin involving the following steps:

• Compute the diffusivity D(u) along each direction u.

• Compute the radial integral Il(u), where Il(u)

Il(u) = 4π
∫ ∞

0
jl(2πqR0)exp(−4π2q2tD(u))dq (6.8)

where jl(2πqR0) is the lth order spherical Bessel function.
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• For each l, compute αllm, the lth order spherical harmonic transform of Il(u),which

will be described in section 6.4.1, using the equation (6.9):

αll′m′ =
∫
Yl′m′(u)Il(u)du (6.9)

whereYlm is the spherical Harmonic function 6.4.1

• Evaluate the three dimensional displacement probability function

p(R0r) =
∞∑
l=0

l∑
m=−l

plmYlm(r) (6.10)

where plm = (−i)lαllm

This technique provides a a robust and fast direct estimation of displacement proba-

bility surfaces within each voxel. DOT can easily construct high resolution probability

surfaces from the signal values. When the acquisition time or the available gradient

strength is limited, the monoexponentiality assumption can be employed. This results

in some broadening of the PDF whose angular structure is smoother.

6.2.4 Tensor Distribution Function

The algorithm’s objective is to calculate a probabilistic ensemble of tensors, as rep-

resented by a tensor distribution function (TDF) P ∗. To solve for an optimal TDF,

multiple diffusion-sensitized gradient directions qi and arrive at P ∗ using the least-

squares principle

P ∗ = argminp
∑
i

(Sobserved(qi)− Scalculated(qi))2 (6.11)

this is used to define the error vector E(qi) = Sobserved(qi) − Scalculated(qi) to be the

contribution to the total error with respect to qi. For P(D) to be a true TDF, two

constraints have to be enforced,



6.2 Literature Review 106

• The non-negativity constraint: P (D) ≥ 0 for every D , and this is enforced by

using the non-negativity property of the exponential function P (D) = exp(R(D))

• The probability density constraint:
∫
P (D)dD = 1

The gradient descent will be solve the minimization problem in the R space. Once

the optimal TDF is calculated, the displacement probability function p is simply:

p(x) =
∫
D∈R

P (D)((4πt)3det(D))
−1
2 exp(−X

TD−1x

4t
)dD (6.12)

The ODF can then be computed analytically using the following equation:

ODF (x̃) = C
∫ ∞
r=0

p(rx̃)dr = C
∫
D∈D

P (det(D)x̃TD−1x̃)
−1
2 dD (6.13)

where C is a normalization constant. The TDF approach can be considered a hybrid

methodology as it has theoretical similarities to other approaches. In TDF, a weight is

being assigned to any tensor whose anisotropic properties are consistent with human

physiology (i.e., in the solution space). By using the logarithmic transform along with

projected gradient descent, the TDF algorithm naturally yields positive weights for

all tensors in the solution space, without the need for extra constraints or numerical

procedures. but Still the-art analytic ODF reconstruction methods through spherical

harmonics are much faster and require fewer directions [121].

6.2.5 Q-Ball Imaging (QBI)

Q-Space imaging was introduced firstly by Tuch [122] as the Fourier transformation

of the diffusion signal to measure the diffusion function directly, without recourse to

a model of the diffusion process, but it was found that it only gives the diffusion PDF

exactly when there is no appreciable diffusion during the diffusing encoding period.

QSI employs the Fourier relation between the diffusion signal and the diffusion func-

tion. The QSI technique requires gradient sampling on a three-dimensional Cartesian
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lattice, which is time intensive and it requires large pulsed field gradients to satisfy

the Nyquist condition for diffusion in nerve tissue.

A completely model-free reconstruction scheme for HARDI QBI was then intro-

duced, where The reconstruction is based on a spherical tomographic inversion called

the Funk Radon transform (FRT) which is the extension of the original FRT to map

from three-dimensional Cartesian space to the sphere, which is defined as the FRT

evaluated at a particular radius r′. Given a three-dimensional function f(x), where

x is a three-dimensional vector [122].

It is substantially more efficient to reconstructing the ODF directly using spherical

sampling and reconstruction has a number of advantages:

• both the sampling and the reconstruction are both performed on the sphere so

the reconstruction is immune to Cartesian reconstruction bias

• With a spherical sampling scheme, there is also a natural framework for calcu-

lating the angular resolution, whereas it is not clear how to define the angular

resolution for a Cartesian scheme

• The acquisition can be targeted to specific spatial frequency bands of interest

by specifying the radius of the sampling shell

The authors related the ODF and the FRT using a PDF in cylindrical coordinates

as P (r, θ, z).

ψ(u) = Gq′ [E(q)] = 2πq′
∫
P (r, θ, z)J0(2πq′r)rdrdθdz (6.14)

where J0 is the zeroth-order Bessel function. This relationship states that the FRT

of the diffusion signal gives the radial projection of the PDF, except that instead of

the projection being along an infinitely thin line the projection is along a Bessel beam

with a width defined by the width of the zeroth-order Bessel function is concentrated
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at the origin. QBI reconstruction has a number of advantages including linearity in

the signal, model-independence, and the ability to resolve IVOH. In regions containing

intravoxel fiber curvature, QBI arguably provides a more accurate representation of

the number of fiber populations present [122].

Descouteaux et al. [123] were also Calculating the ODF by modeling the signal

with high order SH series using a Laplace Beltrami regularization method developed

for the ADC profile estimation, which lead to an elegant mathematical simplification

of the Funk Radon transform which approximates the ODF. The algorithm obtained

was fast for the extraction of a robust regularized model independent ODF approxi-

mation at each voxel of the raw HARDI data, which offers advantages. this Algorithm

will be explained in details in the methods section (6.4).

6.3 Anisotropy Measurements

The anisotropy measurement is yet an important parameter to be calculated from

the tensors, as FA, RA and VR for single tensor, GA for higher order tensors. So

corresponding anisotropy measures, calculated the form the ODF, will be introduced.

Frank et.al [38] proposed the idea of using spherical harmonic decomposition

(SHD) to characterize the 3-D apparent diffusion coefficient (ADC) profile measured

by HARD imaging. In general, the lower order (0th or 2nd) spherical harmonics (SH)

obtained by SHD represent the isotropic diffusion or single fiber diffusion patterns,

whereas the higher orders (4th or higher) represent non-Gaussian patterns associated

with intravoxel multiple fiber components. However, compared with DTI, a major

disadvantage of the SHD method is that the calculated SHs are actually rotation-

variant, i.e., the magnitude and the phase value of the decomposed SH (1st order or

higher) change with the rotation of the diffusion profile with respect to the coordi-
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nate system. In the same paper, the fractional multifiber index (FMI) is introduce

to measure the significance of a multiple-fiber channel is the fractional even order

greater than 0 in that channel.

FMI =

∑
L≥4

∑
M |AL,M |2∑

M |AL=2,M |2
,L even (6.15)

Chen et al. [124] calculated the isotropicity of a voxel using:

R0 =
|A0,0|∑

l=0,2,4

∑
m = −ll|Al,m|

(6.16)

GA =

∑
m = −2m=2|A2,m|∑

l=0,2,4

∑
m = −ll|Al,m|

(6.17)

Large values of R0 and GA correspond to isotropic and one-fiber diffusion, respec-

tively. For the rest of points, the number of local maxima of ADC, together with the

weights of the variances at the local maxima were used to classify voxels as isotropic,

one-fiber or two-fiber diffusion. This procedure is more precise, but there are many

measures involved and thus more thresholds needed to be set subjectively [124].

The same group introduced another anisotropy measure based on cumulative resid-

ual entropy (CRE). [125] CRE is a measure of uncertainty/information in a random

variable. Let X be a random variable in R, CRE of X is defined by

CRE(X) = −
∫
R+

P (X > λ)log(P (X > λ))dλ (6.18)

where R+ = X ∈ R|X ≥ 0. The authors used CRE(e−bd) rather than d to charac-

terize diffusion anisotropy, where d is recovered from HARD measurements. e−bd was

chosen for the following reasons:

• the convergence of the magnitude of e−bd is in the order of 10−1, which is larger

than that of ADC itself.

• e−bd is a smooth approximation of the data S
S0
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CRE(e−bd) = −
M∑
i=2

P (e−bd > λi)P (e−bd > λi)∆λi (6.19)

where λ1 < λ2 < ... < λM is range of e−bd at voxel ∆λi = λi − λi−1 is the absolute

difference between two adjacent e−bd. In most of the cases, the variation of e−bd is

the largest for one-fiber diffusion voxels, smaller for two-fiber diffusion and smallest

for isotropic voxels. This also explains why CRE is the largest for one-fiber, medium

for two-fiber and smallest for isotropic diffusion voxels [125].

R0 cannot detect multi-fiber diffusion as it measures the significance of the second

order components in SHS. Nonsignificant difference between R2 and FA is observed.

But CRE differs much from R2 and FA. Furthermore, the smallness of magnitude

of R2 or FA is unable to distinguish between isotropic and two-fiber diffusion, while

CRE does better job [125]. The main problem in all these measures is that they are

not rotationally invariant, although the CRE was the least variant between them.

6.4 Methods

In this section we will be introducing the ODF methodology developed by Descouteaux

et. al [123] to calculate ODF , which will be used in the data analysis . The authors’

solution is based on modeling the signal with high order SH series using a Laplace-

Beltrami regularization method developed for the ADC profile estimation. This leads

to an elegant mathematical simplification of the FunkRadon transform (FRT) which

which is used to approximate the ODF.

6.4.1 Spherical Harmonics

The spherical harmonics are the angular portion of a set of solutions to Laplace’s equa-

tion. Represented in a system of spherical coordinates, Laplace’s spherical harmonics
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are a specific set of spherical harmonics that forms an orthogonal system, first intro-

duced by Pierre Simon de Laplace. Spherical harmonics are important in many the-

oretical and practical applications, particularly in the computation of atomic orbital

electron configurations [126], representation of gravitational fields [127], geoids [128],

and the magnetic fields of planetary bodies and stars [129], and characterization of

the cosmic microwave background radiation [130]. In this section spherical harmonics

and the Legendre function will be described.

6.4.1.1 Legendre Function

The first class of orthogonal functions is named after Adrien-Marie Legendre [131].

In general represented by the symbol P l
m, the associated Legendre polynomials are

real-valued and defined over the range [-1,1]. An explicit definition is

Pm
l =

(−1)m

2ll!

√
(1− x2)m

∂l+m

∂xl+m
(x2 − 1)l (6.20)

Although it is rarely used for computational purposes, because the evaluation is

tricky and numerically unstable. The function takes two integer arguments l and m

which are constrained by l ε N0 and m ε [0; l], l is used as the band index to divide the

class into bands of functions resulting in a total of (l+ 1)l polynomials for a lth band

series. With respect to l, the associated Legendre polynomials obey the orthogonality

relationship.

However, for different m on the same band, the polynomials are orthogonal with

respect to a different constant and another weighting function. If neither m = m0 nor

l = l0 the polynomials are not orthogonal at all. When used in spherical harmonics,

this orthogonality needs to be established by another orthogonal polynomial.

The associated Legendre polynomials 6.1 can also be defined using a set of recur-

rence relations

Pm
m (x) = (−1)m(2m− 1)!(1− x2)m/2 (6.21)
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Figure 6.1 First Four bands l=0,...,3 of the associated Legendre Polynomials

Pm
m+1(x) = x(2m+ 1)Pm

m (x) (6.22)

(l −m)Pm
l (x) = x(2l − 1)Pm

l−1(x)− (l = m− 1)Pm
l−2(x) (6.23)

which will come in handy when implementing the function in a computer application,

especially since they are easier to compute and less susceptible to numerical errors

compared to other methods. To evaluate a given function value P l
m(x) primarily

equation 6.21 is used to generate the highest Pm
m possible. Thereafter for l = m the

correct value has been computed. Otherwise all that is left to do is to raise the band,

so equation 6.22 is used once to get to the next band, and then equation 6.23 can be

iterated (because it depends on l − 1 and l − 2 results the second rule needs to be

applied once) until the correct answer is found.

6.4.1.2 Spherical Harmonics (SH)

The associated Legendre polynomials can be used to express any piecewise continuous

function over the interval [−1, 1] either as an infinite series of polynomials, a finite

series of polynomials for a band-limited approximation or a finite series of polynomials



6.4 Methods 113

in case the function itself does not have frequencies higher than a certain threshold.

When looking at the definition of spherical coordinates (θ, φ):

s = (x, y, z) = (sin(θ)cos(φ), sin(θ)sin(φ), cos(θ)) (6.24)

where s are locations on the unit sphere.

Spherical Harmonics define an orthonormal basis over the sphere. The basis func-

tions are defined as

Y m
l (θ, φ) = Nm

l P
|m|
l (cos(θ)), lεN,−l ≤ m ≤ l (6.25)

Where Nm
l are the normalization constants. The normalization factor can then be

derived from ∫
S
Y m
l (ω) ¯Y m′

l′ sin(θ)dω = δmm′δll′ (6.26)

which concurrently proves the orthogonality of the spherical harmonics. The sin(θ)

weights the function values by the distance from the equator. This is due to the fact

that integrating spherical coordinates can be seen as integrating small patches on the

sphere. Solving Equation 6.26 by expanding Y m
l yields:

∫ 2π

0

∫ π

0
Y m
l (θ, φ) ¯Y m′

l (θ, φ)sin(θ)dθdφ,

=
∫ 2π

0

∫ 1

−1
Y m
l (θ, φ) ¯Y m′

l (θ, φ)d(cos(θ))dφ,

=
∫ 2π

0

∫ 1

−1
Nm
l N

m′

l′ P
m
l (cos(θ))Nm′

l′ (cos(θ))eimφ ¯eimφd(cos(θ))dφ,

= Nm
l N

m′

l′

∫ 1

−1
Pm
l (cos(θ))Nm′

l′ (cos(θ))d(cos(θ))
∫ 2π

0
eimφ ¯eimφdφ (6.27)

After solving this integral

Nm
l N

m′

l′
4π

2l + 1

(l +m)!

(l −m)!
δll′δmm′ = δll′δmm′ (6.28)

assuming that m = m′,it becomes obvious that
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Nm
l =

√√√√2l + 1

4π

(l −m)!

(l +m)!
(6.29)

Most applications of spherical harmonics require only real valued spherical functions,it

is convenient to define the real-valued spherical harmonics function as

Y m
l =



√
2R(Y m

l ) =
√

2Nm
l cos(mφ)Pm

l (cos(θ)) if m > 0

Y 0
l = N0

l P
0
l (cos(θ)) if m = 0

√
2I(Y m

l ) =
√

2N
|m|
l sin(|m|φ)P

|m|
l (cos(θ)) if m < 0

(6.30)

While the complex spherical harmonic basis includes a pair of sines, the separated

imaginary and real parts of the real spherical harmonics only have one sine, and thus

the normalization needs to be adjusted by a factor of
√

2 for those cases.

6.4.2 ODF Calculation

The SH basis is designed to be symmetric, real and orthonormal. Symmetry is ensured

in the ODF by choosing only even order SH and the ratios in front of each term also

ensure that the modified basis is real and orthonormal.

The signal at each of the N gradient directions i is approximated as

S(θi, φi) =
R∑
j=1

cjYj(θi, φi) (6.31)

where R = (l+1)(l+2)/2 is the number of terms in the modified SH basis Y of order

l. Letting S be the N × 1 vector representing the input signal for every encoding

gradient direction, C the R×1 vector of SH coefficients cj and B is the N×R matrix

constructed with the discrete modified SH basis

B =


Y1(θ1, φ1) Y2(θ1, φ1) · · · YR(θ1, φ1)

...
...

. . .
...

Y1(θN , φN) Y2(θN , φN) · · · YR(θN , φN)

 (6.32)
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The set of equations can be rewritten as an over-determined linear system S = BC,

by solving for the SH series coefficients cj, where cj =
∫

Ω S(θ, φ)Yi(θ, φ)dΩ.

At this point, a local regularization can be directly used into the fitting procedure.

This is to be able to use a high order estimation without overmodeling, the small

perturbations because of noise in the input diffusion MRI signal. Thus, a measure,

E, of the deviation from smoothness of a function f is defined on the unit sphere,

as E(f) =
∫
Ω(∆bf)2dΩ, where ∆b is the Laplace Beltrami operator. The Laplace

Beltrami operator is a natural measure of smoothness for functions defined on the unit

sphere. If the spherical function f is parameterized with SH, the Laplace Beltrami

operator is very simple to evaluate when acting on this parametrization as it satisfies

the relation ∆bY
m
l = −l(l + 1)Y − lm. This relation also holds for the modified SH

basis Y. Using the orthonormality of the modified SH basis, the above functional E

can be rewritten as:

E(f) =
∫

Ω
∆b(

∑
p

cpYp)∆b(
∑
q

cqYq)dΩ =
R∑
j=1

c2
j l

2
j (lj + 1)2 = CTLC (6.33)

where L is simply the R × R matrix with entries l2j (lj + 1)2 along the diagonal lj is

the order associated with the jth coefficient. Therefore, the quantity to be minimized

can be expressed in matrix form as:

M(C) = (S −BC)T (S −BC) + λCTLC (6.34)

where λ is the weight on the regularization term. The coefficient vector minimizing

this expression can then be determined just as in the standard least-squares fit (λ =

0). Then, the generalized expression for the desired SH series coefficient vector.

C = (BTB + λL)−1BTS (6.35)

From this SH coefficient vector, the signal on the q-ball can be recovered for any

(θ, φ)) using the equation (6.31).
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Intuitively, this approach penalizes an approximation function for having higher

order terms in its modified SH series, which eliminates most of the high order terms

due to noise while leaving those that are necessary to describe the underlying function.

However, obtaining this balance depends on choosing a good value for the parameter

λ.

6.4.3 Orientation Distribution Function Anisotropy Measure

[ODFA]

Kim [132] introduced an anisotropy parameter, to establish links between geometrical

features and mechanical performance of nonwoven fabrics and the point bonded (spot

bonded) nonwoven using ODF, which represents composite materials anisotropy of

fiber orientation distribution with respect to the preferred fiber orientation in order

to check the alignment of this preferred fiber to a referred direction.

< cos2(θ) >=

∫ π
0 cos

2(θ − θref )ψ(θ)dθ∫ π
0 ψ(θ)dθ

(6.36)

where θ : orientation angle, θref : angle at a referred direction, ψ(θ) : ODF frequency

at each orientation angle.

This parameter’s range varies between 0 and 1, 1 indicates perfect alignment

of the fibers parallel to the reference direction and 0 indicates perfect perpendicular

alignment. The advantage of this isotropicity measure that it is rotationally invariant.

This function is actually representing the convolution of the ODF function with the

cos2 function, It can be extended to any cos function of any even power, which

technically means more anisotropic convolution function.

This inspired us to explore its use in ODF DTI analysis, can be extended to be

calculated for the ODF function overall the surface of the sphere as the Isotropic
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Measure (IM):

IM =
1

π2

∫ π

0

∫ π

0

∫ π
0

∫ π
0 dot

2(v(θ, φ), v(θref , φref ))ψ(θ, φ))dθrefdφref∫ π
0

∫ π
0 ψ(θ, φ)dθdφ

dθdφ (6.37)

IM =
1

π2

π∑
0

π∑
0

∑π
0

∑π
0 dot

2(v(θ, φ), v(θref , φref ))ψ(θ, φ))∑π
0

∑π
0 ψ(θ, φ)

(6.38)

If the material is totally isotropic, the Anisotropy the ODF (ODFA) will be 1 and

decrease as the anisotropy increases. Since the most of the anisotropic measures are

getting larger as the anisotropy increases. and the IM is not a linear function as

the anisotropicity increases, we used the ODFA measure as a function of this IM as

follows:

ODFA = 1−
√
IM (6.39)

The new anisotropy measure performance was compared to the CRE and R0 to prove

the rotation invariance property as a function of the separation angle between 2

tensors. Mathematica was used to find a closed form of the ODFA, to decrease the

processing time. the new measure was also compared to other anisotropy measures

to demonstrate the linearity, rotation invariance and noise robustness.

6.4.4 Monte Carlo Simulation

Monte Carlo Simulations were performed to assess the effect of noise on the anisotropy

indices estimated from noisy attenuation signals through the calculation of the ap-

parent diffusion coefficient and spherical Harmonics coefficients. Diffusion tensors

whose eigen values are representative of human brain tissues anisotropy, white mat-

ter (WM), gray matter (GM) and cerebro-spinal fluid (CSF) were used. For simplicity

, the anisotropic tissues principal axes coincided with the laboratory frame of refer-

ence was assumed. Noise free Attenuation was calculated form these tensors using

Equation (2.11). Rician thermal noise in the MR measurement was simulated by
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generating complex random numbers whose real and imaginary parts were Gaussian

distributed with zero mean and standard deviation scales to the signal to noise ratio

(SNR) to represent the Rician noise distribution defined by [133,134]. The noise free

attenuation is added to the real component of the complex noise, and the magnitude

of the complex number to generate the noisy signal. The rank-2 tensor, and the SH

coefficients and their corresponding anisotropy measure FA and ODFA respectively

were calculated. The previous steps were repeated 1000 times, the mean and the

standard deviation of these anisotropy measurements were calculated to measure the

validity of these measurements.

6.5 Results and Discussion

Tensors with different anisotropcity were used to calculate the their corresponding

ODFA, FA and GA, to compare the relation between such measures. The attenuation

of a single tensor of different anisotropy values was used to calculate the corresponding

FA for rank-2 tensor, GA for rank-4 tensors IM and ODFA for the SH ODF coeffi-

cients. As shown in Figure [6.2], the IM is following a nonlinear function with respect

to the FA. The relation between the ODFA and the FA is near linear with almost the

same slope in most of the range except for very high isotropic materials. GA, and FA

function is nonlinear. the linearity of the ODFA can be considered as one of the ad-

vantages of the new measure. Some of the most popularly anisotropy measurements,

CRE, Variance and R2 which are not tensor based parameters, characterizing diffusion

anisotropy, were used for rotation invariance comparison. In Figure[6.3]. The total

attenuation, corresponding to two tensors with eigen values [8× 10−2, 10−2, 3× 10−2]

where eigen vector corresponding to the major eigen values, is used to calculate the

corresponding effective anisotropy. The synthetic data is constructed as follows: by



6.5 Results and Discussion 119

Figure 6.2 GA and ODFA values corresponding to FA

setting D1 and D2 with eigen values as defined previously. The first tensor D1 has

a fixed direction and the second tensor D2(ψ) , where ψ ∈ [0, π]. ODFA, CRE,

variance and R2 were calculated for each separation angle, and then each curve is

normalized to 1. The results proves the rotational Invariance of the new measure.

Since the processing time for one ODFA calculation knowing the corresponding SH

ODF coefficient takes 0.11 sec on a 2.1 Dual core Intel processor and 4.00 GB DRAM

machine because of the four nested summation functions. The processing time will

be taking hours when it is used to calculate the anisotropy of a 3D volume. We found

that it would be more convenient to find a closed form to decrease this processing

time to less than 0.1 m sec. Mathematica was used to generate a closed form for this

anisotropy measurement. the ODFA for SH of order 6 can be calculated using the

following equation:

(6.40)



6.5 Results and Discussion 120

Figure 6.3 Rotation variance of the closed form of the ODFA for different
Anisotropy values

and for order 8

IM =
3

8
× A0 × c(0, 0) + A1 × c(2, 2)) + A2 × c(4, 4) + A3 × c(6, 6) + A4 × c(8, 8)

B0 × c(0, 0) +B1 × c(2, 2)) +B2 × c(4, 4) +B3 × c(6, 6) +B4 × c(8, 8)

(6.41)

where A0 = 16384, A1 = 6144
√

5, A2 = 9472, A4 = 2160
√

13, A5 = 1645
√

17, B1 =

16384, B2 = 4096
√

5, B3 = 6912, B4 = 1600
√

13, B5 = 1225
√

17. This can be then

generalized to any SH order, so this ODFA formulation will be used for further analysis

to decrease the processing time. To check rotational invariance of the new formulation

for the ODFA. A single tensor with different anisotropy values and different directions

has been used, the corresponding ODFA is calculated, mean, minimum and maximum

value of the anisotropy were plotted in figure [6.4]. the calculated ODFA is near

rotationally invariant, the variance increases with the increase of the anisotropy. the

maximum rotation variance is, which can be neglected. this variance is due to the
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Figure 6.4 Rotation variance of the closed form of the ODFA for different
Anisotropy values

approximation of the four nested summation function and the spherical harmonics

function to the ODF coefficient.

Linearity and rotation invariance of the new ODFA closed form function are fur-

ther investigated as a function of change of anisotropy the different anisotropic tensor

is shown in figure [6.4].

Figure (6.5) is studying how will be the ODFA of white matter’s tensor, hav-

ing eigen values [0.3 × 10−2, 0.9 × 10−2, 1.7 × 10−2], changes with the orientation

changing from [0,π]. Monte Carlo simulation is used to study the behavior of the

anisotropy measure due to noise with different signal to noise ratio (SNR) for the 3

different brain tissues: White Matter (WM), Gray Matter (GM) and Cerebrospinal

fluid (CSF). the eigen values used to represent these three materials are [0.3 ×

10−2, 0.9 × 10−2, 1.7 × 10−2] for WM, [0.8 × 10−2, 0.9 × 10−2, 1.1 × 10−2] for GM

and [0.208 × 10−2, 0.216 × 10−2, 0.217 × 10−2] for CSF. The mean and variance of
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anisotropy for both the ODFA and the FA with different SNR of the 3 materials

are shown in Figures [6.5, 6.6,6.7] . As a general observation we can see that the

ODFA is stabilizing at lower SNR than that for the FA , and even the deviation of

the ODFA from the true value is less in case of the ODFA in case of low SNR, which

means that the ODFA is much more robust for the noise than the ODFA. At high

SNR, the anisotropy calculation is trivial, but otherwise, noise is affecting the atten-

uation, which is consequently affecting the estimation of the tensor and the spherical

harmonic coefficient,and consequently propagated through in the anisotropy derived

quantities [135]. The matrix perturbation theory analysis shows that if the pertur-

bation order ε in a matrix A, then an eigen value λ may be perturbed by an amount

ε/s(λ). Thus, if s(λ) is small, then λ is appropriately regarded as ill-conditioned. A

small s(λ) implies that A is near a matrix having a multiple eigen-value. In partic-

ular, if λ is distinct and s(λ) < 1, then there exists an E such that λ is repeated

eigenvalue of A+ E [136]

||E||2
||A||2

≤ s(λ)√
1− s(λ)2

(6.42)

In case of tensor estimation the noise perturbs all the indices calculation, which in its

turn perturbs the eigen values, making misclassification more likely. It overestimates

the highest eigenvalues, and underestimates the lower eigen values. This bias enhances

artificially the mean anisotropy and introduces a sorting bias. Negative eigenvalues

are detected for higher SNR preventing an interpretation of the tensor as a quantity

describing diffusion. That makes the estimation of the tensor is less robust. For

linear regression model, the diagonal elements are underestimated [137, 138]. Since

such perturbation doesn’t affect the SH ODF estimation, this leads to noise robustness

of the ODFA.

The FA, GA and ODFA were calculated for a single human brain HARDI MRI

data. The GA appears to be much more blurred or less contrast image which highlight
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Figure 6.5 Effect of noise on the FA and ODFA for White Matter tissue

Figure 6.6 Effect of noise on the FA and ODFA for Gray Matter tissue
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Figure 6.7 Effect of noise on the FA and ODFA for Cerebrospinal Fluid
tissue

in another way that there are some anisotropicity occurring, which is most apparent

in the ODFA measurement for the peripheral temporal lobes and the basal ganglia,

which correspond to have multi fibers in these regions.
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Figure 6.8 Anisotropy measurements for an axial human brain slice: Top
[FA (left), GA (right)], Bottom [ODFA]



Chapter 7

Conclusion and Future Work

7.1 Conclusions

A new scheme for tensor field interpolation which can be extended to tensors of any

arbitrary rank, has been presented. This scheme can be used for interpolation or even

approximation. It is physically-based on mass conservation and fiber smoothness

is guaranteed. The method is computationally efficient - It requires only a sparse

matrix-vector multiplication at each step, and the matrix can be precomputed since

it is independent of the data. Results show that the technique better preserves FA in

case of rank 2 and GA in case of higher rank tensors during interpolation in some cases

than linear and log-Euclidean interpolation. Results for FACT technique, used for

shape geometry analysis, showed that the tract of the subdivided model had the least

error than that the linearly interpolated tract and the downsampled tract. Frobenius

norm error comparison between the subdivided volumes and the linearly interpolated

volumes to the original volume showed error decrease to 10.00% for the subdivision

volume than 25.19% for the linearly interpolated volume.

Bezier Curve approximation can be used for subdivision in any arbitrary point

126
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without the need of going the whole subdivision process in case of the regular subdi-

vision. For higher degrees, such as n = 7 the results approximate those of the Bezier

subdivision approach.

The generalized Helmholtz decomposition was also used provide intuitive and

useful information about the structure of tensor fields. Based on this decomposition,

new scalar measures for DT-MRI can be formulated which convey topological infor-

mation. Specifically, local peaks in magnitude of divergence and curl correspond to

critical lines in the tensor field. The presented formulations are general with respect

to tensor rank and do not require eigenvalues to be computed. The decomposition

and the new scalar measures are easy to compute and can be used to provide useful

structural measurement. The new Scalar measures can be used to develop a more

complete topological characterization of high rank tensor fields, including more types

of critical points and sparse matrices. To explore the potential field φ and stream

field ψ to see if useful information can be extracted directly from them is a another

future problem to be investigated.

A novel rotationally invariant anisotropy measure has been used to calculate the

anisotropy from the SH-ODF coefficient ODF and Anisotropy measurement. The al-

gorithm is based on the convolution of cos2 function with the ODF. the new anisotropy

measure has the advantage of being rotationally invariant, the closed form of the

ODFA has been calculated and used to check linearity and robustness of the noise.

ODFA has an approximate linear relation with the FA. Experiments on the dataset

of human brain HARD MRI data showed the effectiveness and robustness of the

proposed model in the characterization of diffusion anisotropy. they have less er-

ror than the FA in case of low SNR. The results were able to retain more details

in multi-crossing fiber areas that appears totally isotropic in case FA measurement

as the peripheral temporal lobes and the basal ganglia. This new measure is very



7.2 Future Work 128

permissible that solved the problem of anisotropy measure that are based on model

assumption.

7.2 Future Work

As future work for the subdivision, the tensor basis functions underlying this subdivi-

sion scheme need to be investigated . Applications for the use of these splines include

tensor field regularization, tractography and model-based tensor field segmentation.

More complete topological characterization of high order tensor field. we can also

explore the potential field φ and the stream field ψ for more useful information.

We also need to study how will the ODFA measure constraint affect fiber tracking

constraints as one of the most important applications of DTI, specially in the multi-

crossing fiber.



Bibliography

[1] M. L. Wood and F. W. Wehrli, Principles of Magnetic Resonance Imaging (by

D.D. Stark, W.G. Bardley, Jr., Mosby CD Online-products, 1956).

[2] C. Westbrook, MRI at a Glance (Blackwell Science Ltd, 2002).

[3] M. A. Bernstein, K. F. King, and X. J. Zhou, Handbook of MRI Pulses (Elsevier

Academic Press, 2004).

[4] D. Weishaupt, V. D. Kchli, and B. Marincek, How Does MRI Work? An In-

troduction to the Physics and Function of Magnetic Resonance Imaging, 2 ed.

(Springer-Verlag Berlin Heidelberg, 2006).

[5] S. C. Bushong, Magnetic Resonance Imaging: Physical and Biological Principles

(Mosby-Year Book, Inc., 1996).

[6] G. Liney, MRI from A to Z: A Definitive Guide for Medical Professionals (Cam-

bridge University Press, 2005).

[7] P. J. Basser, “New Histological and Physiological Stains Derived from

Diffusion-Tensor MR Images,” Annals New York Acad. Sci. 820, 123–138

(1997).

129



BIBLIOGRAPHY 130

[8] D. L. Bihan, J. Mangin, C. Poupon, C. A. Clark, S. Pappata, N.Molko, and

H. Chabriat, “Diffusion Tensor Imaging: Concepts and Applications,” J. Mag.

Reson. Imaging 13, 534–546 (2001).

[9] H. Y. Carr and E. M. Purcell, “Effects of Diffusion on Free Precession in

Nuclear Magnetic Resonance Experiments,” phys. Rev. 94, 630–638 (1954).

[10] E. O. Stejskal and J. Tanner, “Spin Diffusion Measurements: Spin Echoes in

the Presence of Time-Dependent Field Gradient,” J. Chem. Phys. 42, 288–292

(1965).

[11] R. Brown, “A Brief Account of Microscopical Observations Made in the

Months of June, July, and August 1827 on the Particles Contained in the

Pollen of Plants; and on the General Existence of Active Molecules in Organic

and Inorganic Bodies.,” Philosoph. Mag. 4, 161 (1828).

[12] A. Einstein, “Uber die von der Molekularkinetischen Theorie der Warme

Geforderte Bewegung von in Ruhenden Fl,” ussigkeiten suspendierten Teilchen.

Ann. Physik. 4, 549–560 (1905), english translation in Ref. 41).

[13] A. Einstein, “Sue Theorie der Brownschen Bewengung,” Ann. Physik 19, 371–

381 (1906), english translation in Ref. 41).

[14] M. von Smoluchowski, “Zur Kinetischen Theorie der Brownschen

Molekularbewegung under Suspensionen,” Ann. Phys. 21, 756–780 (1906).

[15] J. Perrin, “Mouvement Brownien et Rtextmidacuteealittextmidacutee

Moltextmidacuteeculaire,” Annales de chimie et de physiq 18, 4–114 (1909).

[16] F. Bloch, “Nuclear Induction,” Phys. Rev. 70, 460–474 (1946).



BIBLIOGRAPHY 131

[17] F. Bloch, W. W. Hansen, and M. Packard, “Nuclear Induction,” Phys. Rev.

69, 127 (1946).

[18] E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance Absorption by

Nuclear Magnetic Moments in a Solid,” Phys. Rev. pp. 69–37 (1946).

[19] E. Hahn, “Spin Echoes,” Phys. Rev. 80, 580–594 (1950).

[20] H. Torrey, “Bloch Equations with Diffusion Terms,” Phys. Rev. 104, 563–565

(1956).

[21] D. Woessne, “NMR Spin-Echo Self-Diffusion Measurements on Fluids

Undergoing Restricted Diffusion,” J. Phys. Chem. 67, 1365–1366 (1963).

[22] D. le Bihan, “Diffusion NMR Imaging,” Magn. Reson. 7, 1–30 (1991).

[23] J. Matiello, P. J. Basser, and D. leBihan, “Analytical Expressions for the B-

Matrix in NMR Diffusion Imaging and Spectroscopy,” J. Magn. Reson. 108,

131–141 (1994).

[24] P. J. Basser and C. Pierpaout, “Microstructural and Physiological Features of

Tissues Elucidated by Quantitative Diffusion Tensor MRl,” J. Magn. Reson.

111, 209–219 (1996).

[25] C. Pierpoali, P. Jezzard, P. Basser, A. Barnett, and G. D. Chiro, “Diffusion

Tensor Imaging of the Human Brain,” Radiology 201, 637–648 (1996).

[26] M. E. Mosely, Y. Cohen, and J. kucharczyk, “Diffusion-Weighted MR Imaging

of Anisotropic Water Diffusion in Cat Central Nervous System,” Radiology

177, 439–446 (1990).



BIBLIOGRAPHY 132

[27] P. Douek, R. Turner, J. Perkar, N. J. Patronas, and D. LeBihan, “MR Color

Mapping of Myelin Fiber Orientation,” J. Comput. Assist. Tomogr. 15, 923–

929 (1991).

[28] P. V. Glederen, M. D. Vleeschouwe, and D. des Pres, “Water Diffusion and

Acute Stroke,” Magn. Reson. Med. 31, 154–163 (1994).

[29] C. H. Neuman, “Spin Echo of Spins Diffusing in a Bounded Medium,” J.

Chem. Phys. 60, 4508–4511 (1974).

[30] C. and P. J. Basser, “Toward a Quantitative Assessment of Diffusion

Anisotropy,” Magn. Reson. Med. 36, 893–906 (1996).

[31] A. M. Ulug and C. van Zijl, “Orientation-Independent Diffusion Imaging

Without Tensor Diagonalization: Anisotropy Definitions Based on Physical

Attributes of the Diffusion Ellipsoid,” J. Magn. Reson. Imag 9, 804– 813 (1999).

[32] C. Beaulieu, “The Basis of Anisotropic Water Diffusion in the Nervous

System- a Technical Review,” NMR in Biomed. 15, 435–455 (2002).

[33] C. Baratti, A. S. Barnett, and C. Pierpaoli, “Comparative MR Imaging Study

of Brain Maturation in Kittens with T1, T2, and the Trace of the Diffusion

Tensor,” Radiology 210, 133–142 (1999).

[34] P. J. Basser and D. K. Jones, “Diffusion-Tensor MRI: Theory, Experimental

Design and Data Analysis- a Technical Review,” NMR Biomed. 15, 456–467

(2002).

[35] M. E. Mortenson, Computer Graphics Handbook: Geometry and Mathematics

(Industrial Press Inc., 1990).



BIBLIOGRAPHY 133

[36] D. S. Tuch, R. M. Weisskoff, J. W. Belliveau, and V. J. Wedeen, “High Angular

Resolution Diffusion Imaging of the Human Brain,” Proceedings of the 7th

Annual Meeting of ISMRM p. 37 (1999).

[37] V. J. Wedeen, T. Reese, D. S. Tuch, M. R. Weigel, J. Dou, R. M. Weiskoff, and

D. Chesler, “Mapping Fiber Orientation Spectra in Cerebral White Matter

with Fourier Transform Diffusion MRI,” Proceedings of the 8th Annual Meet-

ing of ISMRM p. 82 (2000).

[38] L. Frank, “Characterization of Anisotropy in High Angular Resolution

Diffusion-Weighted MRI,” Mag. Reson. Med. 47 (2002).

[39] P. J. Basser, J. Matiello, and D. le Bihan, “MR Diffusion Tensor Spectroscopy

and Imaging,” J. biophys 66, 256–267 (1994).

[40] A. L. Alexander, K. M. Hassan, M. Lazar, J. S. Tsuruda, and D. L. Parker,

“Analysis of Partial Volume Effects in Diffusion-Tensor MRI,” Magn. Reson.

in Med. 45, 770–780 (2001).

[41] R. A. D. Graaf, K. P. J. Braun, and K. Nicolay, “Single Shot Diffusion Trace

NMR Spectoscopy,” Magn. Reson. in Med. 45, 741–748 (2001).

[42] P. J. Basser, J. Mattiello, and D. L. Bihan, “Estimation of the Effective Self-

Diffusion Tensor from the NMR Spin Echo,” J. Magn. Reson. Ser. 103, 247–

254 (1994).

[43] D. L. Bihan and P. van Zijl, “From the Diffusion Coefficient to the Diffusion

Tensor,” NMR Biomed. 15, 431–434 (2002).



BIBLIOGRAPHY 134

[44] A. Zalesky and A. Fornito, “A DTI-Derived Measure of Cortico-Cortical

Connectivity,” Medical Imaging, IEEE Transactions Accepted to be published

(2009).

[45] E. Ozarlan and T. H. Mareci, “Generalized Diffusion Tensor Imaging and

Analytical Relationships between Diffusion Tensor Imaging and High Angular

Resolution Diffusion Imaging,” Magn. Reson. Med. 50, 955–965 (2003).

[46] E. Ozarlan, B. C. Vemuri, and T. H. Mareci, “Generalized Scalar Measures for

Diffusion MRI using Trace, Variance, and Entropy,” Magn. Reson. Med. 53,

866–876 (2005).

[47] E. W. Hsu, D. L. Buckley, J. D. Bui, S. J. Blackband, and J. R. Forder, “Two-

Compartment Diffusion Tensor MRI of Isolated Perfused Hearts,” Magn. Re-

son. Med. 45, 1039–1045 (2001).

[48] B. A. Inglis, E. L. Bossart, D. L. Buckley, E. D. W. III, and T. H. Mareci,

“Visualization of Neural Tissue Water Compartments using Biexponential

Diffusion Tensor MRI,” Magn. Reson. Med. 45, 580–587 (2001).

[49] C. A. Clark, M. Hedehus, and M. E. Moseley, “Diffusion Time Dependence of

the Apparent Diffusion Tensor in Healthy Human Brain and White Matter

Disease,” Magn. Reson. Med. 45, 1126–1129 (2001).

[50] C. A. Clark, M. Hedehus, and M. Moseley, “In Vivo Mapping of the Fast and

Slow Diffusion Tensors in Human Brain,” Magn. Reson. Med. 45, 623–628

(2002).

[51] L. R. Frank, “Anisotropy in High Angular Resolution Diffusion-Weighted

MRI,” Magn. Reson. Med. 45, 935–939 (2001).



BIBLIOGRAPHY 135

[52] D. S. Tuch, T. G. Reese, M. R. Wiegell, N. Makris, J. W. Belliveau, and

V. J. Wedeen, “High Angular Resolution Diffusion Imaging Reveals Intravoxel

White Matter Fiber Heterogeneity,” Magn. Reson. Med. 48, 577–582 (2002).

[53] Y. Kadah, S. Ma, S. LaConte, I. Yassine, and X. Hu, “Robust Multi-component

Modeling of Diffusion Tensor Magnetic Resonance Imaging Data,” Proc. SPIE

Medical Imaging (2005).

[54] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache, “Fast and Simple Calculus

on Tensors in the Log-Euclidean Framework,” Procc. MICCAI: New York:

Springer 6, 259–267 (2005), lecture Notes in Computer Science.

[55] X. Pennec, P. Fillard, and N. N. Ayache, “ARiemannian Framework for Tensor

Computing,” Inter. Jour. Comp. Vision 66, 41–66 (2006).

[56] P. Fletcher and S. Joshi, “Riemannian Geometry for the Statistical Analysis

of Diffusion Tensor Data,” Sig. Process. 87, 250–262 (2007).

[57] p. Batchelor, M. Moakher, D. Atkinson, F. Calamante, and A. Connelly, “A

Rigorous Framework for Diffusion Tensor Calculus,” Magn. Reson. Med. 53,

221–225 (2005).

[58] B. A. Barmpoutis, B. Jian, and T. M. Shepherd, “Symmetric Positive 4th

Order Tensors and their Estimation from Diffusion Weighted MRI,” Proc. of

IPMI07: Info. Proc. Med Imag. pp. 308–319 (2007).

[59] C. deBoor, “On Calculating with B-Splines,” J. Approx. Theory 6, 50–62

(1972).



BIBLIOGRAPHY 136

[60] G. Kindlmann, S. Jos, M. Niethammer, S. Haker, and C. Westin, “Geodesic-

Loxodromes for Diffusion Tensor Interpolation and Difference Measurement

Export,” Proc. of MICCAI pp. 1–9 (2007).

[61] E. Catmull and J. Clark, “Recursively generated B-Spline Surfaces on

Arbitrary Topological Surfaces,” Computer-Aided Design 10, 350–355

(November 1978).

[62] D. Doo and M. Sabin, “Behavior of Recursive Subdivision Surfaces near

Extraordinary Points,” Comp. Aided Design 10, 356–360 (1978).

[63] H. Weimer and J. Warren, “Subdivision Schemes for Fluid Flow,” Proc. 26th

Ann. Conf. Comp. Graph. inter. Tech. pp. 111–120 (1999).

[64] T. M. Korn and G. Arthur, in Mathematical Handbook for Scientists and Engi-

neers: Definitions, Theorems, and Formulas for Reference and Review (Dover

Publications, 1999), p. 157160.

[65] G. K. Batchelor, in Introduction to Fluid Dynamics (Cambridge University

Press, 2000), pp. 266–273.

[66] R. C. Beach, An Introduction to Curves and Surfaces of Computer-Aided Design

(Van Nostrand Reinhold, 1991).

[67] G. Farin, Curves and Surfaces for Computer Aided Geometric Design: a Prac-

tical Guide (Academic Press Professional Inc. San Diego, CA, USA, 1993).

[68] I. Yassine and T. McGraw, “A Subdivision Approach to Tensor Field

Interpolation,” Workshop On Computational Diffusion MRI, MICCAI pp. 117–

124 (2008).



BIBLIOGRAPHY 137

[69] C. Liu, R. Bamme, B. Acar, and M. Moseley, “Characterizing Non-Gaussian

Diffusion by using Generalized Diffusion Tensors,” Magn. Reson. Med. 51,

924–937 (2004).

[70] F. Crick and E. Jones, “Ackwardness of Human Neuroanatomy,” B. Nature

361, 109–110 (1993).

[71] L. Heimer and M. Robards, “Neuroanatomical Tract-Tracing Methods,”

Plenum, New York (1981).

[72] L. Heimer and L. Zaborszky, “Neuroanatomical Tract-Tracing Methods,”

Plenum, New York (1989).

[73] M. Mesulam, “Tracing Neural Connections with Horseradish Peroxidase,” Wi-

ley, Great Britain (1982).

[74] T. Conturo, N. Lori, T. Cul, E. Akbudak, A. Snyder, J. Shimony, R. McKinstry,

H. Burton, and M. Raichle, “Tracking Neuronal Fiber Pathways in the Living

Human Brain,” Proc. Nat. Aca. Sc. USA 96, 10422–10427 (1999).

[75] C. Westin, S. Maier, B. Khidir, P. Everett, F. Jolesz, and R. Kikinis, “Image

Processing for Diffusion Tensor Magnetic Resonance Imaging,” MICCAI pp.

441–452 (1999).

[76] J. Maldjian and R. Grossman, “Future Applications of DWI in MS,” J. Neurol.

Sci. 186, S55S57 (2001).

[77] M. Filippi, M. Cercignani, M. Inglese, M. Horsfield, and G. Comi, “Diffusion

Tensor Magnetic Resonance Imaging in Multiple Sclerosis,” Neurology 56,

304–311 (2001).



BIBLIOGRAPHY 138

[78] T. Klingberg, M. Hedehus, E. Temple, T. Salz, J. Gabrieli, M. Moseley, and R.

Poldrack, “Microstructure of Temporo-Parietal White matter as a Basis for

Readi,” Neuron 25, 493–500 (2000).

[79] S. Rose, F. Chen, J. Chalk, F. Zelaya, W. Strugnell, M. B. ans J.Semple,

and D. Doddrell, “Loss of Connectivity in Alzheimers Disease: an Evaluation

of White Matter Tract Integrity with Colour Coded MR Diffusion Tensor

Imaging,” J. Neurol. Neurosurg. Psychiatry 69, 528–530 (2000).

[80] M. Bozzali, A. Falini, M. Franceschi, M. Cercignani, M. Zuffi, C. Scotti, G.

Comi, and M. Filippi, “White Matter Damage in Alzheimers Disease Assessed

in Vivo using Diffusion Tensor Magnetic Resonance,” J. Neurol. Neurosurg.

Psychiatry 72, 742–746 (2002).

[81] K. Lim, M. Hedehus, M. Moseley, A. de Crespigny, E. Sullivan, and A. Pfeffer-

baum, “Compromised White Matter Tract Integrity in Schizophrenia Inferred

from Diffusion Tensor Imaging,” Arch. Gen. Psychiatry 56, 367–374 (1999).

[82] J. Foong, M. Maier, C. Clark, G. Barker, D. Miller, and M. Ron,

“Neuropathological Abnormalities of the Corpus Callosum in Schizophrenia: a

Diffusion Tensor Imaging Study,” J. Neurol. Neurosurg. Psychiatry 68, 242–

244 (2000).

[83] A. Field, A. Alexander, K. Hasan, K. Arfanakis, B. Witwer, R. Moftakhar,

P. D. V. Haughton, and H. R. et al., “Diffusion-Tensor MR Imaging Patterns

in White matter Tracts Altered by Neoplasm,” Workshop on Diffusion MRI:

Biophysical Issues. ISMRM pp. 137–140 (2002).



BIBLIOGRAPHY 139

[84] S. Mori, K. Frederiksen, P. van Zijl, B. Stieltjes, M. Kraut, S. M., and M.

Pomper, “Brain White Matter Anatomy of Tumor Patients Evaluated with

Diffusion Tensor Imaging,” Ann. Neurol. 3, 377p-380 (51).

[85] A. Hoon, W. Lawrie, E. Melhem, E. Reinhardt, P. V. Zijl, M. Solaiyappan, H.

Jiang, M. Johnston, and S. Mori, “Diffusion Tensor Imaging of Periventricular

Leukomalacia Shows Affected Sensory Cortex White Matter Pathways,” Neu-

rology 59, 752–756 (2002).

[86] H. Mamata, C. Westin, K. Zou, and U. Girolami, “Combined Mapping of

Functional Domains and Axonal Connectivity in Cat Visual Cortex using

FMRI and DTI,” ISMRM pp. 121–124 (2002).

[87] S. Mori, B. Crain, V. Chacko, and P. van Zijl, “Three-Dimensional Tracking

of Axonal Projections in the Brain by Magnetic Resonance Imaging,” Ann.

Neurol. 45, 265–269 (1999).

[88] D. Jones, A. Simmons, S. Williams, and M. Horsfield, “Non-Invasive

Assessment of Axonal Fiber Connectivity in the Human Brain via Diffusion

Tensor MRI,” Magn. Reson. Med. 42, 37–41 (1999).

[89] P. Basser, S. Pajevic, C. Pierpaoli, J. Duda, and A. Aldroubi, “In Vivo Fiber

Tractography using DT-MRI Data,” Magn. Reson. Med. 4, 625–632 (44).

[90] C. Tench, P. Morgan, M. Wilson, and L. Blumhardt, “White Matter Mapping

using Diffusion Tensor MRI,” Magn. Reson. Med. 47, 967–972 (2002).

[91] C. Pierpaoli, A. Barnett, S. Pajevic, R. Chen, L. Penix, A. Virta, and P. Basser,

“Regularization of Diffusion-Based Direction Maps for the Tracking of Brain

White Matter Fascicles,” Neuroimage 12 (2000).



BIBLIOGRAPHY 140

[92] C. Pierpaoli, A. Barnett, S. Pajevic, R. Chen, L. Penix, A. Virta, and P. Basser,

“Water Diffusion Changes in Wallerian Degeneration and their Dependence

on White Matter Architecture,” Neuroimage 13, 1174–1185 (2001).

[93] M. R. Wiegell, H. B. Larsson, and V. J. Wedeen, “Fiber Crossing in Human

Brain Depicted with Diffusion Tensor MR Imaging,” Radiology 217 (2000).

[94] M. Lazar, D. Weinstein, K. Hasan, and A. Alexander, “Bootstrap Analysis of

DT-MRI Tractography Techniques: Streamlines and Tensorlines,” Proc. Intl.

Soc. Mag. Reson. Med. 9, 1527 (2001).

[95] M. Lazar, D. Weinstein, K. Hasan, and A. Alexander, “Axon Tractography

with Tensorlines,” Proc. Intl. Soc. Mag. Reson. Med 8, 483 (2000).

[96] M. Lazar et al., “White Matter Tractography using Diffusion Tensor

Deflection,” Human Brain Mapping pp. 306–321 (18).

[97] M. Lazar and A. Alexander, “White Matter Tractography Error Analysis in a

Brain Diffusion Tensor Field,” Proc. Intl. Soc. Mag. Reson. Med. 10 (2002).

[98] M. Lazar and A. Alexander, “Error Analysis of White Matter Tracking

Algorithms (Streamlines and Tensorlines) for DT-MR,” Proc. Intl. Soc. Mag.

Reson. Med. 9, 506 (2001).

[99] J. Sethian, “Level Set Methods and Fast Marching Methods,” Cambridge

University Press (1999).

[100] G. Parker, “Tracing Fibre Tracts using Fast Marching,” Proc. Intl. Soc. Mag.

Reson. Med. 8, 85 (2000).

[101] O. Friman, G. Farneback, and C. Westin, “A Bayesian Approcah for Stochastic

White Matter Tractography,” Trans. Med. Imag. 25, 965–978 (2006).



BIBLIOGRAPHY 141

[102] R. Xue, P. van Zijl, B. Crain, M. Solaiyappan, and S. Mori, “In Vivo Three-

Dimensional Reconstruction of Rat Brain Axonal Projections by Diffusion

Tensor Imaging,” Mag. Reson. Med. 43, 1123–1127 (1999).

[103] B. Stieltjes, W. Kaufmann, P. van Zij, K. Fredericksen, G. Pearlson, M. So-

laiyappan, and S. Mori, “Diffusion Tensor Imaging and Axonal Tracking in

the Human Brainstem,” NeuroImage 14, 723–735 (2001).

[104] S. Mori et al., “Imaging Cortical Association Tracts in the Human Brain using

Diffusion-Tensor Based Axonal Tracking,” Mag. Reson. Med. 47, 215–223

(2002).

[105] H. Jianga, P. van Zijl, J. Kimc, G. Pearlsonc, and S. Mori, “DtiStudio:

Resource Program for Diffusion Tensor Computation and Fiber Bundle

Tracking,” Comp. Meth. Prog. Biomed. 81, 106–116 (2006).

[106] K. Polthier and E. Preuss, “Identifying Vector Fields Singularities using a

Discrete Hodge Decomposition,” Visual. Math. 3, 113–134 (2003).

[107] H. Li, W. Chen, and I. Shen, “Segmentation of Discrete Vector Fields,” IEEE

Trans. Visual. Comp. Graph. 8, 289–300 (2006).

[108] Y. Tong, S. Lombeyda, A. Hirani, and M. Desbrun, “Discrete Multiscale Vector

Field Decomposition,” ACM Trans. Graph. 22, 445–452 (2003).

[109] T. Delmarcelle and L. Hesselink, “The Topology of Symmetric, Second-Order

Tensor Fields,” Proc. Conf. Visual. (1994).

[110] L. Hesselink, Y. Levy, and Y. Lavin, “The Topology of Symmetric, Second-

Order 3D Tensor Fields,” IEEE Trans. Visual. Comp. Graph. pp. 1–11 (1997).



BIBLIOGRAPHY 142

[111] X. Zheng, B. Parlett, and A. Pang, “Topological Lines in 3D Tensor Fields

and Discriminant Hessian Factorization,” IEEE Trans. Visual. Comp. Graph.

pp. 395–407 (2005).

[112] X. Tricoche, G. Kindlmann, and C. Westin, “Invariant Crease Lines for

Topological and Structural Analysis of Tensor Fields,” IEEE Trans. Visual.

Comp. Graph. pp. 1627–1634 (2008).

[113] G. Arfken and H. Weber, “Mathematical Methods for Physics,” Academic Press

(2005).

[114] M. Descoteaux, R. Deriche, and C. Lenglet, “Diffusion Tensor Sharpening

Improves White Matter Tractography,” SPIE Medical Imaging (2007).

[115] M. Descoteaux, R. Deriche, T. Knosche, and A. Anwander, “Deterministic

and Probabilistic Tractography Based on Complex Fiber Orientation

Distributions,” IEEE Trans. Med. Imag. 28, 269–286 (2009).

[116] M. W. T. Behrens, M. Jenkinsen-Berg, R. Nunes, S. clare, P. Mathews, J.

Brady, and S. Smith, “Characterization and Propagation of Uncertainity in

Diffusion-Weigthed MR Imaging,” Mag. Reson. Med. 50, 1077–1088 (2003).

[117] D. Jones and C. Pierpaoli, “Confidence in Diffusion Tensor Magnetic

Resonance Imaging using a Bootstrap Approach,” Mag. Reson. Med. 5, 1143–

1149 (2005).

[118] B. Jian and B. Vemuri, “A Unified Computational Framework for

Deconvolution to Reconstruct Multiple Fibers From Diffusion Weighted

MRI,” IEEE Trans. Med. Imag. 11, 1464–1471 (2006).



BIBLIOGRAPHY 143

[119] K. Jansons and A. D, “Persistent Angular Structure: New Insights from

Diffusion Magnetic Resonance Imaging Data,” Inv. Prob. 19, 1031–1046

(2003).

[120] E. Ozarslan, T. Shepher, B. Vemuri, S. Blackband, and T. Mareci, “Resolution

of Complex Tissue Microarchitecture using the Diffusion Orientation

Transform (DOT),” Neuroimage 31, 1086–1103 (2006).

[121] A. Leow, S. Zhu, L. Zhan, K. McMahon, G. de Zubicaray, M. Meredith, M.

Wright, A. Toga, and P. Thompson, “The Tensor Distribution Function,” Mag.

Resosn. Med. 61, 205–214 (2009).

[122] D. S. Tuch, “Q-Ball Imaging,” Mag. Reson. Imag. 53, 1358–1372 (2004).

[123] M. Descoteaux, E. Angelino, S. Fitzgibbons, and R. Deriche, “Regularized,

Fast, and Robust Analytical Q-Ball Imaging,” Mag. Reson. Med. 58, 497–510

(2007).

[124] Y. Chen, W. Guo, Q. Zeng, X. Yan, F. Huang, H. Zhang, G. He, B. C. Ve-

muri, , and Y. Liu, “Estimation, Smoothing, and Characterization of Apparent

Diffusion Coefficient Profiles from High Angular Resolution DWI,” IEEE

Conf. Comp. Vis. Patt. Recog. pp. 588–593 (2004).

[125] Y. Chen, W. Guo1, Q. Zeng, X. Yan, M. Rao, and Y. Liu, “Apparent Diffusion

Coefficient Approximation and Diffusion Anisotropy Characterization in

DWI,” PMI 2005 p. 246257 (2005).

[126] E. Scerri, “The Electronic Configration Model, Quantum Mechanics and

Reduction,” Brit. jour. Phil. Sci. 42, 309–325 (1991).



BIBLIOGRAPHY 144

[127] R. Geroch, in General Relativity from A to B (the University of Chicago Press,

1981), Chap. 5, pp. 181–186.

[128] P. Vancek and Z. Martinec, “Compilation of a Precise Regional Geoid,”

Manuscripta Geodaetica 19, 119–128 (1994).

[129] P. Zarka, R. Treumann, B. Ryabov, and V. Ryabov, “Magnetically-Driven

Planetary Radio Emissions and Application to Extrasolar Planets,” Astrophys.

Space Sci. pp. 277–293 (2001).

[130] S. Hanany et al., “MAXIMA-1:A Measurement of the Cosmic Microwave

Background Anisotropy on Angular Scales of 10′−5,” Astrophysic. Jour. 545

(2000).

[131] M. Abramowitz and A. Stegun, in Handbook of Mathematical Functions with

Formulas, Graphs, and Mathematical Tables (New York: Dover, 1965), Chap. 8,

p. 3202.

[132] H. S. Kim, “Relationship between Fiber Orientation Distribution Function

and Mechanical Anisotropy of Thermally Point-Bonded Nonwovens,” Fibers

and Polymers 5, 177–181 (2004).

[133] P. Basser and S. Pajevic, “Statistical Artifacts in DT-MRI Data Caused by

Background Noise,” Magnetic Resonance in Medicine 44, 41–50 (2000).

[134] H. Gudbjartsson and S. Patz, “The Rician Distribution of Noisy MRI Data,”

Magnetic Resonance in Medecine 34, 910–914 (1995).

[135] L. Chang, C. Koay, C. Pierpaoli, and P. Basser, “Variance of Estimated DTI-

Derived Parameters via First Order Perturbation Methods,” Magnetic Reso-

nance in Medecine 57, 141–149 (2007).



BIBLIOGRAPHY 145

[136] G. Golub and C. V. Loan, in Matrix Computation (the Johns hopkins university

Press, 1996), Chap. 7, pp. 320–340.

[137] K. Hahn, S. Prigarin, S. Heim, and K. Hasan, “Random Noise in Diffsion

Tensor Imaging, its Destructive Impact and Some Corrections,” Mathematics

and visulaization II, 107–119 (2006).

[138] A. Anderson, “Theoretical Analysis of the Effects of Noise on Diffsion Tensor

Imaging,” Magnetic Resonance in Medecine 46, 1174–1188 (2001).


	High rank tensor and spherical harmonic models for diffusion MRI processing
	Recommended Citation

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	1 Thesis Objective and Contributions
	1.1 Thesis Objective
	1.2 Contributions

	2 Magnetic Resonance Imaging and Diffusion Tensor MRI
	2.1 Magnetic Resonance Imaging
	2.1.1 Properties of Atomic Nuclei
	2.1.2 Net Magnetization Vector
	2.1.3 Radiofrequency Field
	2.1.4 T1 Relaxation
	2.1.5 T2 Relaxation
	2.1.6 Rotating Frame of Reference
	2.1.7 Spatial Characteristics of Magnetic Resonance Images
	2.1.8 Spatial Localization using Magnetic Field Gradient
	2.1.8.1 Slice Selection
	2.1.8.2 Frequency Encoding
	2.1.8.3 Phase Encoding

	2.1.9 Two Dimensional Fourier transform Magnetic Resonance
	2.1.10 Sequence Timing
	2.1.10.1 Repetition Time

	2.1.11 K-space
	2.1.12 Image Reconstruction
	2.1.13 Image Contrast
	2.1.14 Pulse Sequence
	2.1.15 Image Noise
	2.1.15.1 Statistical (or Random) Noise
	2.1.15.2 Systematic Noise

	2.1.16 Safety and Bioeffects
	2.1.17 MRI Modalities

	2.2 Diffusion Weighted and Diffusion Tensor MRI
	2.2.1 Diffusion Weighted Imaging (DWI)
	2.2.1.1 Anisotropy in DWI
	2.2.1.2 Applications of DWI

	2.2.2 Diffusion Tensor Imaging
	2.2.2.1 Pulsed Gradient Echo Pulse Sequence
	2.2.2.2 Diffusion Tensor Reconstruction
	2.2.2.3 Diffusion Tensor Eigen System
	2.2.2.4 Diffusion in an Isotropic Medium
	2.2.2.5 Diffusion in an Anisotropic Medium
	2.2.2.6 Quantitative Parameters Obtained by DT MRI
	2.2.2.7 Diffusion Profiles of Various Brain Tissues



	3 Multi- and Higher Rank Tensors
	3.1 Introduction
	3.2 Multi Tensors
	3.3 Higher Order Tensors
	3.3.1 Generalized Anisotropy


	4 Tensor Field Subdivision
	4.1 Introduction
	4.1.1 Log Euclidian Interpolation
	4.1.2 Geodesic Interpolation
	4.1.3 Tensor Spline Interpolation
	4.1.4 Geodesic-Loxodrome Subdivision

	4.2 Divergence and Curl Minimizing Subdivision
	4.2.1 Divergence
	4.2.2 Curl
	4.2.3 Vector Field Subdivision
	4.2.4 Tensor Field Subdivision
	4.2.4.1 Rank-2 Tensor Subdivision
	4.2.4.2 Rank-4 Tensor Subdivision
	4.2.4.3 Bézier Curves and Splines
	4.2.4.4 Minimization

	4.2.5 Subdivision Results and Discussion

	4.3 Fiber Tracking and Shape Geometry
	4.3.1 Fiber Assignment by Continuous Tracking Technique (FACT)
	4.3.2 Methods
	4.3.3 Results and Discussion


	5 New Measures Based on Divergence and Curl
	5.1 Introduction
	5.2 Methods
	5.3 Results

	6 Orientation Distribution Function and Anisotropy Measure
	6.1 Introduction
	6.2 Literature Review
	6.2.1 Diffusion Spectrum Imaging (DSI)
	6.2.2 Persistent Angular Structure(PAS)
	6.2.3 Diffusion Orientation Transform (DOT)
	6.2.4 Tensor Distribution Function
	6.2.5 Q-Ball Imaging (QBI)

	6.3 Anisotropy Measurements
	6.4 Methods
	6.4.1 Spherical Harmonics
	6.4.1.1 Legendre Function
	6.4.1.2 Spherical Harmonics (SH)

	6.4.2 ODF Calculation
	6.4.3 Orientation Distribution Function Anisotropy Measure [ODFA]
	6.4.4 Monte Carlo Simulation

	6.5 Results and Discussion

	7 Conclusion and Future Work
	7.1 Conclusions
	7.2 Future Work

	Bibliography
	Index

	Text1: iv
		2010-12-09T13:25:59-0500
	John H. Hagen




