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ABSTRACT 

 

Analyzing Mathematicians' Concept Images of Differentials 

  

Tim McCarty 

 

 The differential is a symbol that is common in first- and second-year calculus. It is perhaps 

expected that a common mathematical symbol would be interpreted universally. However, recent 

literature that addresses student interpretations of differentials, usually in the context of definite 

integration, suggests that this is not the case, and that many interpretations are possible. Reviews 

of textbooks showed that there was not a lot of discussion about differentials, and what 

interpretations there were depended upon the context in which the differentials were presented. 

This dissertation explores some of these issues. Since students may not have the experience 

necessary to build their own interpretations totally free of their instructors’ influences, I chose to 

interview experienced mathematicians for their differential interpretations. Most of the current 

literature involves the differential within the context of definite integrals; my work expands on this 

literature by exploring additional expressions that contain differentials. The goal was to build a 

dataset of multiple instructors’ interpretations of multiple differentials to see how uniform those 

interpretations were. 

 Initial interviews discussing five expressions which contained differentials, three contexts 

in which most of these expressions were used, and auxiliary questions that asked the meaning of 

“differential,” the differences between 𝑑𝑥 and Δ𝑥, and the interpretation of phrases used to 

describe infinitely small quantities were conducted with seven expert mathematicians from a large 

research university. By analyzing the responses given by these mathematicians, two lists of themes 

were created: one based on remarks that address the quality of the differential directly, and one 

based on remarks that address one’s feelings about differentials. In addition, for the responses that 

address differentials directly, a flowchart was created to guide each of these responses to its proper 

theme. After the creation of these lists, three more mathematicians were interviewed to ensure that 

the theme lists would still be valid outside of the interviews used to create them. 

 Not only was no overall formal concept image for the differential found, but many different 

and sometimes contrasting themes were found within each interview subject’s personal concept 

image. A framework for categorizing the multiple conceptualizations that were found for the 

differentials themselves was created, as well as a beginning list of ancillary themes that address 

possible thoughts about and uses of differentials. The dissertation concludes with a list of possible 

teaching implications that might arise from the existence of multiple differential 

conceptualizations, as well as some suggested future research that might expand upon this work. 
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1.  INTRODUCTION 

 The differential, symbolized by a 𝑑 and a second letter usually depending on context (some 

examples are 𝑑𝑥, 𝑑𝑡, and 𝑑𝐴)2 is a symbol that is found in various mathematical situations, 

including: 

 Expressions for integration, as in ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 and ∫ 𝑔(𝑥) 𝑑𝑥. 

 A possible notation for a derivative, as in the differential equation 
𝑑𝑃

𝑑𝑡
= 3𝑃 

 Relationships with other differentials, as in the evaluation of the integral ∫ 2𝑥 sin(𝑥2)
5

1
𝑑𝑥, 

which can be evaluated by letting 𝑢 = 𝑥2 and using the relationship 𝑑𝑢 = 2𝑥 𝑑𝑥. 

 The notations used in these situations are well-known and common, but that does not mean 

that the interpretations of the differentials in these notations will be universal. Specifically, one 

might ask the following questions about the differentials in the above examples and get different 

answers from different people: 

 How do you think about the “𝑑𝑥” in a definite integral? Is it some referent to a Riemann 

sum’s Δ𝑥, some sort of infinitesimal amount, or only an indicator of the variable of 

integration? Is the same true for the “𝑑𝑥” in an indefinite integral? 

 How do you think about the notation “
𝑑𝑃

𝑑𝑡
”? Is it merely a notation that means “the derivative 

of 𝑃 with respect to 𝑡,” or is it an actual ratio between two specific terms: “𝑑𝑃” and “𝑑𝑡”?  

 When performing integration by substitution, is the step “𝑑𝑢 = 2𝑥 𝑑𝑥” a representation of 

the local linearity of the curve 𝑢 = 𝑥2 in a very small neighborhood around 𝑥? Is it merely  

an algebraic manipulation of the idea that 
𝑑𝑢

𝑑𝑥
= 2𝑥? Is it both of these things? Neither? 

                                                             
2 Throughout this dissertation, I shall use the default notation “𝑑𝑥” when discussing a general differential or a 

differential without context. 
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 Historically, the notations ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
, 

𝑑𝑃

𝑑𝑡
,  and 𝑑𝑢 = 2𝑥 𝑑𝑥 were to represent, respectively, 

the sum of infinitely many infinitesimal quantities 𝑓(𝑥)𝑑𝑥, a ratio between two infinitesimal 

quantities 𝑑𝑃 and 𝑑𝑡, and an infinitesimal change in one quantity given an infinitesimal change in 

another (Ely & Boester, 2010; Keisler, 2012). However, these initial intents may have been 

muddled by the abandonment of the infinitesimal-based calculus of Leibniz that gave us these 

notations and the introduction and acceptance of a newer calculus that kept the same notations but 

was based around “epsilon-delta” and limits rather than infinitesimals. Given that there exist 

infinitesimal-based and limit-based treatments of calculus that use the same differential-containing 

notations, it is perhaps not surprising that various ways to interpret differentials have arisen, and 

it is possible that an individual might not have a simple, clear answer to the question “What is the 

meaning behind the symbol “𝑑𝑥”?  As David Tall writes: 

𝑑𝑦

𝑑𝑥
 proves to be almost indispensable in the calculus. Yet it causes serious 

conceptual problems. Is it a fraction, or a single indivisible symbol? What is the 

relationship between the 𝑑𝑥 in 
𝑑𝑦

𝑑𝑥
 and the 𝑑𝑥 in ∫ 𝑓(𝑥) 𝑑𝑥? Can the 𝑑𝑢 be cancelled 

in the equation 
𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑢

𝑑𝑢

𝑑𝑥
? Giving a modern meaning to these terms that allows a 

consistent meaningful interpretation for all contexts in the calculus is possible but 

not universally recognized. On the other hand, failing to give a satisfactory coherent 

meaning leads to cognitive conflict which is usually resolved by keeping the 

various meanings of the differential in separate compartments (
𝑑𝑦

𝑑𝑥
= lim

Δ𝑥→0

Δ𝑦

Δ𝑥
 in 

differentiation, and 𝑑𝑥 means “with respect to 𝑥” in integration). (Tall, 1993, p. 6) 
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 Some mathematicians might have compartmentalized their interpretation of the differential 

in a way similar to what Tall describes. It is also possible that some mathematicians might have 

found a consistent, meaningful interpretation of the differential no matter in what context the 

differential is presented. But even if this is so, there is no guarantee that one mathematician’s 

consistent, meaningful interpretation will be the same as his or her colleagues’ consistent, 

meaningful interpretations, just as there is no guarantee that all mathematicians who 

compartmentalize their interpretations of differentials will do so in the same way. This dissertation 

will analyze the “serious conceptual problems” suggested by Tall’s quote by exploring how 

mathematicians think about differentials that are presented to them in various contexts. Not only 

will how interview subjects conceptualize these various differentials be analyzed, but also how 

consistent and universal their particular conceptualizations are. 

 

Research Questions 

 Thus, this research will answer the following questions: 

1. How extensive are the concept images of differentials held by expert mathematicians? 

2. What levels of consistency, if any, exist in the concept images of the differential within 

each individual? 

3. What levels of consistency, if any, exist in the concept images of the differential among 

all mathematicians interviewed? 
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2.  LITERATURE REVIEW 

 I have found no research that specifically addresses expert conceptualizations of 

differentials. There are a few articles I will present that discuss expert conceptualizations, but none 

of which are based on research. There are research studies involving conceptualizations of 

differentials, but these studies primarily focus on student conceptualizations of definite integrals, 

with any discussion of differentials being secondary. In this section, I will briefly discuss the 

history of calculus notation as it pertains to differentials, review all the literature I have found and 

its relevance to my topic, and close with the differential conceptualizations I found in two surveys 

of mathematics textbooks. 

Infinitesimal-Based and Limit-Based Calculus: A Brief History 

 Gottfried Leibniz and Isaac Newton are said to have developed calculus by laying out 

unified theories of differentiation and integration, even though they differed in their interpretations 

of the mathematical constructs behind these theories. Newton had views that were more fluid than 

Leibniz’. For example, he defined the derivative of a function at various times using infinitesimals, 

limits, or velocities (Keisler, 2012), whereas Leibniz favored the use of infinitesimals, which were 

informally defined as numbers greater than zero but smaller than any real number (Ely, 2010; 

Henry, 2010). For Leibniz, these infinitesimals were thought of as “ideal” elements, like complex 

numbers, and just as complex numbers could be used to show otherwise inaccessible mathematical 

truths, infinitesimals could be used to show otherwise inaccessible ideas that mathematicians 

understood intuitively (Keisler, 2012). Leibniz’ notations were meant to suggest this infinitesimal-

based approach, with 
𝑑𝑦

𝑑𝑥
 suggesting a ratio of infinitesimal 𝑑𝑦 and 𝑑𝑥 and ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
 suggesting 

an infinite sum of products with finite factor 𝑓(𝑥) and infinitesimal amount 𝑑𝑥 (Ely & Boester, 

2010; Keisler, 2012). 



5 

 

 However, Leibniz and his followers did not generate a formal logical system surrounding 

these infinitesimals, which led to apparent inconsistencies within his infinitesimal-based approach 

to calculus. Examples of these inconsistencies include some ambiguity as to when infinitesimals 

should be considered numerical entities and when they should be disregarded as nonentities, and 

whether the Archimedean principle3, which applies to real numbers, also applies to infinitesimal 

numbers (Martínez-Torregrosa, López-Gay, & Gras-Martí, 2006; Robinson, 1966). The steps 

toward a more-recognizable modern Calculus began in 1821, with Cauchy’s definitions of 

integration and differentiation in terms of limits. Cauchy still used infinitely small quantities in his 

work, viewing them as a foundation for the theory of limits, but regarded them as variables whose 

limits approached zero instead of as static infinitesimals (Robinson, 1966). This view of 

infinitesimals eliminated many of the inconsistencies found in Leibniz’ work (Martínez-

Torregrosa, López-Gay, & Gras-Martí, 2006; Robinson, 1966), but it took a precise definition of 

the real number system, Cantor’s development of set theory, and Weierstrass’ introduction of the 

epsilon-delta condition before limits became the rigorous basis of standard analysis (Keisler, 

2012).  

 Keisler (2012) suggests that infinitesimals have greater intuitive appeal, but notes that the 

reason why the limit approach to Calculus was widely adopted was because it was the first 

logically-consistent system found. But just as limits did not come into their own without the aid of 

developments in real numbers and set theory, so too would it take other advancements in 

mathematical logic and language before infinitesimal-based calculus could be formalized and all 

of its logical inconsistencies eliminated. Specifically, Gödel’s Completeness Theorem and 

Skolem’s construction of the hyperreal integers were tools that enabled Abraham Robinson to 

                                                             
3 For any 0 < 𝑎 < 𝑏, there exists 𝑛 ∈ ℕ such that 𝑎𝑛 > 𝑏. 
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prove that infinitesimals were actually based in mathematical logic and develop infinitesimal-

based nonstandard analysis (Keisler, 2012; Vinsonhaler, 2016). After the publication of 

Robinson’s Non-standard Analysis in 1966, a small number of textbooks were written for the 

teaching of this infinitesimal-based calculus, including ones from Keisler (2012) and Henle and 

Kleinberg (2003). 

Some Conceptualizations of Differentials Found in the Literature 

 I have found little literature in which differentials are the main topic of discussion. Thus, 

most of the literature that I have found that addresses conceptualizations of differentials does so in 

order to achieve some specific purpose. Some of these purposes include analyzing differentials as 

a smaller part of definite integration and Leibniz derivative notations, discussing some differences 

between “mathematics” and “physics” conceptualizations of differentials, and proposing possible 

differential conceptualizations to the reader. To account for these different purposes, I will 

partition the discussions of the literature I have found into multiple sections. 

Differentials in Definite Integrals 

 In Physics Education Research (PER) literature, a common conception of the definite 

integral’s differential is that it represents a “small” amount of some element of the situation 

modeled by the integral (e.g. Hu & Rebello, 2013; Nguyen & Rebello, 2011; Sealey & Thompson, 

2016). This is particularly emphasized in Nguyen and Rebello (2011), who found that, while 

students could identify when integration was needed to solve a problem, they had difficulty 

interpreting the differential element of the integral as an infinitesimal amount, which Nguyen and 

Rebello found to be an important part of solving integral problems. They specifically noted the 

importance of viewing the dx as a small amount, rather than as a difference between two x-values. 

In contrast, Sealey and Thompson (2016) noted the importance of viewing the dx additionally as 
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the difference between two x-values, allowing for the dx to be either positive or negative, 

depending on the direction of integration. For example, in the integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 in which the 

lower limit of integration is greater than the upper limit, Sealey and Thompson claimed that 

viewing the dx as a negative quantity was helpful in conceptualizing the meaning of this 

“backward” integral.  

 The importance of viewing the differential as a small amount seems to extend into the 

notation and development of the definite integral. Sealey’s (2008; 2014) framework of the definite 

integral defined the Δ𝑥 as a small amount or change, but Von Korff and Rebello’s (2012) paper 

gave a definite integral framework similar to Sealey’s framework with the addition of another row 

of objects that contains the infinitesimal 𝑑𝑥 rather than Sealey’s Δ𝑥 (For example, the product 

Δ𝑥 = 𝑣 Δ𝑡 is replaced with the infinitesimal product 𝑑𝑥 = 𝑣 𝑑𝑡. See Figure 1.) By including these 

additional objects in their framework, they ascribed a meaning to the definite integral’s 𝑑𝑥: it is 

its own entity and important to the understanding of integration and not merely notation that is 

used once the limit process has been completed. 

 Artigue (1991) described two main categories of responses which were categorized as “two 

poles” between which other conceptualizations resided. At one end, students claimed that 

differentials merely served to signify the variable of integration, and at the other end, the 

differentials represented a small amount of some physical quantity. Examples of student responses 

that describe both ends are “To integrate [a function in terms of 𝑙], it is essential not to think about 

what 𝑑𝑙 represents, but to proceed mechanically, otherwise we are done for,” and “In fact, it does 

not matter at all, when integrating, 𝑑𝑙 becomes a variable of integration” (Artigue, Menigaux, and  

Viennot, 1990, p.264) for the first and “𝑑𝑙 is a small length” and “little bit of wire” (Artigue, 

Menigaux, and Viennot, 1990, p.264) for the second. Other responses that were noted as being 
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Figure 1: Von Korff and Rebello’s definite integration framework (Von Korff and Rebello, 2012, p.3) 

 

 

within these two ends include a differential as “an infinitely small element,” and 𝑑𝑧 = lim
Δ𝑧→0

Δ𝑧 

(Artigue, 1991). As will be seen later in this dissertation, Artigue’s example of a continuum of 

responses contained within two well-defined ends will serve as a model for my own differential 

conceptualization framework. 

 Additionally, Jones’ (2015) showed three common conceptualizations that some students 

have for the differential in a definite integral. Students were interviewed using a protocol that 

aimed to categorize and analyze students’ symbolic forms of the definite integral. Symbolic forms 

will be described in Chapter 7 of this dissertation, while how the differential in each form was 

conceptualized is described here. 

 One form was the function matching symbolic form, in which the integrand is interpreted 

as the derivative of an unknown function, with the differential stating the variable by which that 

function was differentiated (Jones, 2015). Thus, when seeing the integral ∫ 𝑥2 𝑑𝑥
2

0
, the task is to 

determine what function yields 𝑥2 when differentiated in terms of 𝑥. I would consider this form to 

be similar to the “variable indicator” forms mentioned in the other two sections. Another form was 

the perimeter and area symbolic form, in which every part of the definite integral symbol defines 
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the boundary of a particular shape (Jones, 2015). The differential specifically denotes one of the 

“sides” of that shape: in a first-quadrant shape, 𝑑𝑥 would denote that the bottom of the shape was 

the 𝑥-axis while 𝑑𝑦 would denote that the left side of the shape was the 𝑦-axis. This seems a 

variation on the “variable indicator” themes, as this theme points to variables in a geometric 

manner, rather than the more algorithmic manner of the other “variable indicator” themes. 

 The other symbolic form was the adding up pieces form, which, similar to a Riemann sum, 

is meant to emphasize the multiplicative-based summation of a definite integral. In this form, the 

differential represents an “infinitesimally small” amount of the domain of integration (Jones, 

2015). Unlike Oehrtman’s (2009) “collapsing metaphors,” in which slices of the area under a curve 

are viewed as collapsing to one-dimensional segments after a limit process, Jones noted that many 

of his students viewed their “infinitesimally thin” rectangles as still having two dimensions. Thus, 

this differential retains a “concreteness” that a collapsed differential might lack. 

Differentials in Leibniz Derivative Notation  

 Compared to the relatively robust literature I found that addressed the differentials in 

definite integration, there were fewer papers that addressed the differentials in Leibniz derivative 

notation. Unlike definite integrals, whose notation always includes a differential, derivative 

notation can be expressed with not only the differential-containing “
𝑑𝑦

𝑑𝑥
”, but also the common, 

differential-free 𝑓′(𝑥). Thus, discussions of derivatives might not as naturally lend themselves to 

discussion of differentials. 

 Zandieh’s (2000) derivative framework, which is used to analyze how students 

conceptualized the derivative, is a commonly referenced piece of mathematics education literature. 

Her framework consists of three layers of what she called process-object pairs, based on her 

understanding that each layer can both be viewed as a dynamic process as well as a static object. 
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To give the example relevant to this dissertation, calculating the numerator and denominator in the 

average rate of change is a process that can be represented by the object 
Δ𝑦

Δ𝑥
. The limiting process 

applied to this ratio is the process of analyzing multiple average rates of change as Δ𝑥 goes to zero, 

and is represented by both lim
Δ𝑥→0

Δ𝑦

Δ𝑥
 and the more compact 

𝑑𝑦

𝑑𝑥
. While students’ conceptualizations 

of the Δ𝑦 and Δ𝑥 are discussed in her paper, Zandieh does not discuss students’ conceptualizations 

of the individual dy and dx in the notation 
𝑑𝑦

𝑑𝑥
. This perhaps suggests that the idea that, in this 

framework, defining the individual 𝑑𝑦 and 𝑑𝑥 is not conducive to a proper understanding of 

derivative. When Roundy, Dray, Manogue, Wagner, and Weber (2015) extended Zandieh’s 

“physical” context to include examples whose dependent variable was not time, the example they 

gave described the instantaneous rate of change of the volume of a cylinder with respect to pressure 

with the notation 
𝑑𝑉

𝑑𝑝
, perhaps suggesting that the Leibniz differential-based notation is more 

suitable for physical representations. 

 I mention two other papers, one that directly addressed the differentials in Leibniz 

derivative notation, and the other from which a differential conceptualization can only be implied. 

First, in a paper that proposed an interpretation of 
𝑑𝑦

𝑑𝑥
, Thurston (1972) argued that 

𝑑𝑦

𝑑𝑥
 should be 

translated as 
𝑦′(𝜏)

𝑥′(𝜏)
, where the numerator and denominator of 

𝑑𝑦

𝑑𝑥
 each indicate a differentiated 

function of another variable. This translation suggests that, for Thurston, the “𝑑” in each 

differential suggests the act of differentiation. Second, Orton (1983) interviewed sixty high school 

and fifty college students majoring in mathematics education, asking them questions regarding 

rate of change, differentiation, and applications. Only one of the tasks in his paper regarded 

differentials directly: it asked the interview subjects to define 𝛿𝑥, 𝛿𝑦,
𝛿𝑦

𝛿𝑥
, 𝑑𝑥, 𝑑𝑦, and 

𝑑𝑦

𝑑𝑥
. When 
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describing the results, Orton noted many misunderstandings with the differential definitions, but 

said that “This was expected in the sense that the symbols are not really meaningful except when 

used together as 
𝑑𝑦

𝑑𝑥
 or when used in integration” (p.240). Since there exist conceptualizations that 

disagree with the idea that the individual differentials in 
𝑑𝑦

𝑑𝑥
 are “not really meaningful,” I would 

suggest that Orton personally adopted the conceptualization that these differentials are merely 

notation.  

Other Contexts 

 In this section, I will summarize conceptualizations I found that do not specifically address 

differentials in definite integral or derivative notations. Instead, the literature cited in this section 

categorized lists of conceptualizations, compared “physics” differentials with “mathematics” 

differentials, or discussed uncommon ways to utilize differentials in calculus. 

 Differences in “Mathematics” and “Physics” differentials. The first two works in this 

section listed conceptualizations found in physics research. The others provided their particular 

comparisons, some grand and some small, of how differentials are viewed in physics and 

mathematics, an idea that will also manifest in my research. 

 Hu and Rebello (2013) discussed student uses of differentials in physics problems by 

conducting group interviews with thirteen students taking a calculus-based physics course. From 

these interviews, Hu and Rebello identified four mathematical resources about differentials. The 

first and fourth of these resources match Artigue’s two “poles” described above: thinking of a 

differential as a “small amount,” also described as an “infinitesimal” amount, and thinking of the 

differential as merely an indicator of the variable of integration, with no physical meaning. The 

other resources are viewing the definite integral’s differential as points on a line, and viewing the 

“𝑑” in a differential as a cue to take a derivative. In addition to these differential 
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conceptualizations, Hu and Rebello also noted student conceptual metaphors that were used in the 

construction of integrals, each of which involved differentials. The objects metaphor relies on the 

idea of a differential as an object, the locations metaphor relies on viewing the differentials as a 

location in space, the machines metaphor relies on the concept of “𝑑” triggering differentiation, 

and the motion along a path metaphor relies on the second variable in the differential as the line 

upon which an imaginary traveler moves. In another paper, Martínez-Torregrosa, López-Gay, and 

Gras-Martí (2006) discussed the historical development of the differential in an attempt to provide 

a better conceptualization of the differential in modern physics courses. Thus, this paper discussed 

in turn each of the following: the informal infinitesimals of Leibniz, the differentials of Cauchy, 

which were viewed as variables who approach zero (and were thus a precursor to limits,) and the 

Fréchet differential (described below). 

 Many papers that I found described versions of what I will call a “mathematics versus 

physics” conceptualization divide. Some papers already mentioned in this section discussed such 

divides. Artigue’s aforementioned works (Artigue, Menigaux, and Viennot, 1990; Artigue, 1991) 

were based on interviews of both mathematics and physics students. In the physics students’ 

questionnaires, the responses consisted of the “two poles” described above. (Artigue, 1991), while 

in the mathematics students’ questionnaires, there were differences between how students defined 

and used differentials. When defining differentials, mathematics students tended to use a “linear 

approximation” definition, but when using differentials, students tended to view them as parts of 

algorithmic process that are manipulated automatically (Artigue & Viennot, 1987; Artigue, 1991). 

Similarly, Jones (2013) gave two interviews to his students, one “mathematics” interview and one 

“physics” interview, named for the curricula in which the particular interview items would be 

found. He analyzed his three symbolic forms in both mathematics and physics contexts, concluding 
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that, while all three conceptualizations can be useful in dealing with integrals presented without 

any context, viewing the differential as an indicator for either a variable or a border is not 

productive for integrals within a physical context (Jones, 2015). 

 One paper that addressed mathematics and physics differentials directly came from López-

Gay, Martínez Sáez, and Martínez Torregrosa (2015), in which they addressed the importance of 

differentials in physics classes. In doing so, they listed four conceptualizations used when teaching 

mathematics and four conceptualizations used when teaching physics. Two of the “mathematics” 

conceptualizations were already mentioned in this literature review: the differential given without 

any meaning, and the differential as a formally-defined nonstandard infinitesimal. The other two 

included the differential used in what I will call traditional linear approximation, in which Δ𝑦 ≈

𝑑𝑦 = 𝑓′(𝑥)𝑑𝑥 with 𝑑𝑥 = Δ𝑥, and the Fréchet differential, which is similar to the differential in 

traditional linear approximation, only having the additional characteristic that the difference 

(Δ𝑦 − 𝑑𝑦) must be infinitely small in relation to Δ𝑥. Two of the four “physics” conceptualizations 

were also mentioned earlier: versions of the “meaningless” differential, and the differential as 

traditional linear approximation. The other two involve the differential 𝑑𝑦 as infinitesimal 

increment equal to the infinitesimal Δ𝑦, and the differential 𝑑𝑦 as an infinitesimal approximation 

to Δ𝑦. In both of these, the word “infinitesimal” is described as intuitive and not well-defined. 

 Other works mentioned a divide, but without discussing the differential directly. Dunn and 

Barbanel (2000) discussed how mathematicians and physicists would disagree on the development 

of a definite integral: mathematicians viewing it as the limit of a Riemann sum, with physicists 

viewing it as the sum of infinitely-many products of 𝑓(𝑥) and an infinitesimal 𝑑𝑥. Thus, they 

imply that the “physics” differential has actual meaning in the integration symbol. Finally, Henry 
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(2010), in her introduction, stated that mathematicians view differentials as approximating 

functions (𝑑𝑦 = 𝑓′(𝑥)𝑑𝑥) while physicists view them as “small quantities.” 

 Notable conceptualizations in some textbooks. I have found one collection and two 

examples of textbooks in which the presentation of differentials and/or differential-based topics is 

atypical. First, there is a group of textbooks that teaches differentials as hyperreal infinitesimals as 

found in nonstandard analysis. To briefly explain: nonstandard analysis allows for the creation of 

a hyperreal number system, of which the standard real numbers are a subset. An infinitesimal, 𝜖, 

is defined as any hyperreal number with the condition – 𝑎 < 𝜖 < 𝑎 for every positive real number 

𝑎. In such a system, every hyperreal noninfinite number is infinitely close to only one real number, 

and that real number is defined as the standard part of that hyperreal. With the addition of the 

Transfer Principle, which states that the extension of any real-valued function to a hyperreal-

valued function has the same properties as the original function, operations and functions based in 

real numbers may be performed with hyperreals as well (Keisler, 2012). As mentioned above, 

Robinson’s Non-standard Analysis (1966) introduced and formalized infinitesimals, but there are 

more recent textbooks such as Keisler (2012), Henle and Kleinberg (2003), Hrbacek, Lessmann, 

and O’Donovan (2014), and Sloughter (2007) that teach a first-year calculus based on these 

infinitesimal differentials. 

 While some of these books use different terms for similar ideas, such as Sloughter (2007) 

using the term “shadow” instead of standard part, and Hrbacek, Lessmann, and O’Donovan (2014) 

substituting “ultrasmall” and “observable” for “infinitesimal” and “real”, each book adopts a 

conceptualization of the differential as a well-defined infinitesimal. With this conceptualization, 

the integral ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 is considered exactly as the notation presents it to be: an infinite sum of 

products of this formally-defined infinitesimal 𝑑𝑥 with real-valued 𝑓(𝑥). The derivative is the 
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standard part of the ratio of two formally-defined infinitesimal quantities, 
𝑑𝑦

𝑑𝑥
 and since the standard 

part of a product of two numbers is equal to the product of the standard part of two numbers, the 

Chain Rule 
𝑑𝑦

𝑑𝑡
=

𝑑𝑦

𝑑𝑥
∙

𝑑𝑥

𝑑𝑡
 can be thought of as literally the reducing or cancellation of fractions of 

infinitesimal quantities instead of a notational trick. Any other relationship between differentials, 

such as the example 𝑑𝑢 =
1

2√𝑡
 𝑑𝑡, represents a formally-defined infinitesimal change in 𝑡 as a 

factor of a formally-defined infinitesimal change in 𝑢 (Ely & Boester, 2010; Henle & Kleinberg, 

2003; Keisler, 2012). 

 Courant and John (1965) described differentials using the term physically infinitesimal, or 

finite, nonzero real values that are “smaller than the degree of accuracy required (Courant and 

John, 1965, p.184). This definition is motivated by their idea that in the natural world, one cannot 

measure an object precisely, since one can obtain only a degree of accuracy that is limited by the 

physical nature of the measuring instrument. Similarly, one could carry out any mathematical 

limiting process to a certain level of precision, but true exactness is nothing more than a 

“mathematical idealization” (p. 184). With this idea in mind, Courant and John defined physically 

infinitesimal quantities as finite nonzero, real values that are small enough for a specific task. Two 

examples they gave are “smaller than the fractional part of a wavelength” or “smaller than the 

distance between two electrons in an atom” (p. 184). Calculations carried out by using these types 

of values might not result in exact answers, but since exact answers are not possible in an imperfect 

physical world, these results are acceptable. Dray (2013) did not use the term “physically 

infinitesimal” in his paper, but described a physicist view of a differential as “being much smaller 

than the scale imposed by the physical situation, but not so small that quantum mechanics matters” 

(p.17), a similar notion to Courant and John’s “physically infinitesimal”. This type of infinitesimal 

alludes to Oehrtman’s (2009) “physical limitations” metaphor found in some students’ concepts 
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of limits. Oehrtman’s metaphor referenced an argument in which “there is a scale beyond which 

nothing can be observed, be measured, or perhaps even exist” (p. 418). While this metaphor can 

be troublesome for some, I believe that Courant and John’s idea of physically infinitesimal allows 

for a differential conceptualization that might adhere to the spirit of this metaphor yet still be 

accessible. One can conceptualize a differential as a value so small as to be undetectable by any 

current measuring instrument. It would then be both a finite, real number, but also “nonexistent” 

in a sense.4 

 Finally, Thompson (1910), wrote a textbook that is centered on the idea of differentials as 

one of the primitive ideas that defines the whole of first-year calculus. As he stated in the 

introduction to his book: 

The preliminary terror, which chokes off most fifth-form boys from even 

attempting to learn how to calculate, can be abolished once for all by simply stating 

what is the meaning – in common-sense terms – of the two principal symbols that 

are used in calculating. These dreadful symbols are: 

 (1) 𝑑, which merely means “a little bit of”. . . . 

 (2) ∫ which is merely a long S, and may be called. . . “the sum of.” 

(Thompson, 1910, p.1) 

He then defined differentiation and integration around the idea of the “indefinitely small” 

differentials. He did not give a formal definition for his “smallness”, and, indeed, used many 

synonyms to describe it: beginning the book by stating that, throughout all calculus, “𝑑” means “a 

                                                             
4 An example of this could be: given a definite integral ∫ 𝑓(𝑥) 𝑑𝑥

𝑏

𝑎
, one could think of the length of 𝑑𝑥 as 10−50. 

This is a finite value, but immeasurable with current instrumentation (for reference, the smallest unit of time ever 

measured is 10−21 seconds). This 𝑑𝑥 would thus have a value that is a real number, yet in the physical world, such a 
number is immeasurable, and in a sense, infinitesimal. 
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little bit of,” (Thompson, 1910, p. 1), later designating the 𝑑𝑥 in the construction of the derivative 

as “indefinitely small” (Thompson, 1910, p. 12), and describing the 𝑑𝑥 in the construction of an 

integral as “infinitesimally small” (Thompson, 1910, p. 186). Still, even if his 𝑑𝑥 cannot be 

quantified as explicitly as the other differentials in the books summarized in this section, the idea 

of the differential as the primary building block of first-year calculus is novel and worth 

mentioning. 

 Differentials as algorithmic tools. Dray and Manogue (2010), while not advocating for 

formal nonstandard analysis, nevertheless champion a differential-based calculus in which 

differentials are used simply as algorithmic tools. In this version of calculus, a solution process to 

calculus problems can begin with taking either differentials of functions or what they call 

differentials of equations. For example, given the equation 𝑎2 + 𝑏2 = 𝑐2, one could find the 

differential form of this equation 2𝑎 𝑑𝑎 + 2𝑏 𝑑𝑏 = 2𝑐 𝑑𝑐. This differential form has many uses: 

it could be used as a part of the solution to an optimization problem, or, if one divides by 𝑑𝑡, 

2𝑎
𝑑𝑎

𝑑𝑡
+ 2𝑏

𝑑𝑏

𝑑𝑡
= 2𝑐

𝑑𝑐

𝑑𝑡
, one gets an equation that could be used to help solve a related-rates 

problem. In cases like these, no thought is given to any quality of the differentials (Do they come 

from limits?  Do they have a size?), but the differentials are important algorithmic tools.  

Differential Conceptualizations in Randomly-Selected Textbooks 

 Before conducting my first, exploratory, study (Chapter 4), I wished to create a frame of 

reference by looking at how (or if) differentials were conceptualized in a selection of randomly-

selected textbooks. I conducted two such surveys, the first involving twelve books (Barnett & 

Ziegle, 1989; Breusch & Ogilvy, 1969; Ellis & Gulick, 1988; Fisher & Ziebur, 1965; Gleason, 

Hughes-Hallett, & McCallum, 2013; Hughes-Hallet, et. al., 2006; Larson & Edwards, 2014; 

Mizrahi & Sullivan, 1982; Rees & Sparks, 1969; Stein, 1967; Stewart, 1987; Stewart, 2015) 
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containing material found in traditional first- and second-semester calculus courses, and the second 

involving three books (Boyce & DiPrima, 2012; Stewart, 1987; Zill, 1997) containing information 

on basic ordinary differential equations. 

 For the first survey, I analyzed and compared how (or even if) differentials were described 

within the sections of the textbooks that introduced or defined definite integrals, indefinite 

integrals, differentials of functions, and integration by substitution. The results I found were fairly 

uniform: with some exceptions, all of the books seemed to utilize the same particular 

conceptualizations. Specifically5: 

 The only area in which the books showed a significant split in opinion was in whether the 

symbol “
𝑑𝑦

𝑑𝑥
” initially represented a fraction made up of two quantities. This notation is 

normally first mentioned after the definition of derivative is developed through the use of 

limits applied to a difference quotient. The symbol 
𝑑𝑦

𝑑𝑥
 is then noted merely as an alternative 

to the “prime” notation 𝑓′(𝑥) for derivatives, and, indeed, Stein (1967) noted that “at this 

point, we should no more interpret the symbol 
𝑑𝑦

𝑑𝑥
 as a quotient than the symbol 8 as two 

zeros. The only books that definitively said at first that 
𝑑𝑦

𝑑𝑥
 could be considered a quotient 

were Barnett and Ziegle (1989), Breusch and Ogilvy (1969), Fisher and Ziebur (1965), and 

Mizrahi and Sullivan (1982). However, after the introduction of the differential of a 

function, all of the books gave some variation of the idea that one could think of 
𝑑𝑦

𝑑𝑥
 as a 

quotient of particular values. 

                                                             
5 There was more than one order in which the textbooks presented these subjects. I choose to discuss them in the 

following order in order to align them with the dissertation’s interview protocol. 
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 All but one of the books stated that the 𝑑𝑥 in a definite integral was merely notation with 

its only purpose to indicate the variable of integration. Only Gleason et al. (2003) and 

Hughes-Hallet et al. (2006) mentioned that the 𝑑𝑥 in the definite integral comes from the 

Δ𝑥 found in a Riemann sum. Interestingly, Stewart (2015) stated that this particular Leibniz 

notation was chosen in order to denote which variable was involved in the limit process, 

which seems incorrect, as Leibniz notation preceded epsilon-delta limit notation by a 

couple of centuries. 

 Only Larson and Edwards (2014) described the 𝑑𝑥 in an indefinite integral as indicating 

the variable of integration. None of the other books discussed any role of the 𝑑𝑥 in an 

indefinite integral at all, stating versions of the idea that the indefinite integral symbol 

∫ 𝑓(𝑥)𝑑𝑥 was merely a representation for “antidifferentiation of 𝑓(𝑥).” 

 The nine earliest-published books (Barnett & Ziegle, 1989; Breusch & Ogilvy, 1969; Ellis 

& Gulick, 1988; Fisher & Ziebur, 1965; Hughes-Hallet, et. al., 2006; Mizrahi & Sullivan, 

1982; Rees & Sparks, 1969; Stein, 1967; Stewart, 1987) that mentioned the differential of 

a function introduced it in the context of linear approximation of nonlinear functions. They 

gave the formula 𝑑𝑦 = 𝑦′(𝑥)𝑑𝑥, with all but Fisher and Ziebur (1965) stipulating that 

the 𝑑𝑥 is equal to Δ𝑥, and can be any real number. Fisher and Ziebur (1965) instead stated 

that one can treat the relationship 𝑑𝑢 = 𝑢′(𝑥)𝑑𝑥 as if 𝑑𝑢 and 𝑑𝑥 were numbers, but that 

they were not going to formally interpret them as numbers. The three most-recent books 

(Gleason, Hughes-Hallett, & McCallum, 2013; Larson & Edwards, 2014; Stewart, 2015) 

introduced differentials of functions without the same differential notation, with Larson & 

Edwards and Stewart presenting the idea of linearization with the notation 𝑓(𝑥) − 𝑓(𝑎) ≈
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𝑓′(𝑎)(𝑥 − 𝑎) and introducing the previous notation afterward, while Gleason, et al. (2013) 

only used this newer notation.  

 Every book approached the evaluation of an integral that required substitution by the usual 

method of determining a proper 𝑢(𝑥) and using the relation 𝑑𝑢 = 𝑢′(𝑥)𝑑𝑥 to facilitate 

substitution. However, with two exceptions, there was no discussion as to the nature or 

roles of the differentials used throughout this process. The two books that were exceptions 

discussed the notation in more detail, specifically mentioning that we can think of these 

notations as differentials (Stewart, 2015) or that the re-written notation 𝑑𝑢 =
𝑑𝑢

𝑑𝑥
 𝑑𝑥 may 

look like cancellation but is not (Gleason, et al., 2013).  

  

 For the second survey, I compared and contrasted how (or if) differentials were described 

within the sections that introduced separable and exact differential equations. For the most part, 

differentials were not discussed at all and merely used as algorithmic tools in the various solution 

methods. The only exception was when Zill (1997) used the idea that a “𝑑” can be a cue for the 

act of differentiation (specifically when 𝑑(𝑥𝑦) = 𝑦𝑑𝑥 + 𝑥𝑑𝑦 was given as a part of a solution 

method)  

 Looking at these particular books, one can conclude that there seemed to be a vague, 

general agreement as to the nature of differentials in each contexts, but that this nature varied 

drastically from context to context. To describe them using similar terms as the descriptions in the 

literature review, the books seemed to proceed through the following conceptualizations: 

differentials as merely notation or differentials as “small” (derivative notation), the differential 

indicates a variable (definite integration), differentials are merely notation (indefinite integration), 

differentials are real numbers used for approximation (when defining “differential of a function” 
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and linear approximation), and the differential is an algorithmic tool (integration by substitution 

and solving ordinary differential equations.) 

Summary of the Literature Review 

 The list of conceptualizations that I give in this section is somewhat large for only one 

mathematical symbol. Indeed, I wonder if there are any other mathematical symbols that invite so 

many different interpretations. To add to the chaotic nature of the multiple conceptualizations of 

this symbol, nothing within the list of conceptualizations is meant to suggest that one can only 

hold one of these conceptualizations at a time. Dray and Manogue (2010) mention that they tell 

their students that differentials can be viewed as arbitrary changes in given quantities, a shorthand 

notation for limits, and hyperreal infinitesimals. Each of these are called “reasonable definitions” 

(p. 96), suggesting that there is nothing incorrect about holding multiple views of the 𝑑𝑥, as 

mentioned in the second half of Tall’s quote6. A theoretical perspective that allows for the 

possibility of accepting multiple conceptualizations will be addressed in the next section. 

  

                                                             
6 “Giving a modern meaning to these terms that allows a consistent meaningful interpretation for all contexts in the 

calculus is possible but not universally recognized. On the other hand, failing to give a satisfactory coherent 

meaning leads to cognitive conflict which is usually resolved by keeping the various meanings of the differential in 

separate compartments (
𝑑𝑦

𝑑𝑥
= lim

Δ𝑥→0

Δ𝑦

Δ𝑥
 in differentiation, and 𝑑𝑥 means “with respect to 𝑥” in integration).” (Tall, 

1993, p. 6) 
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3.  THEORETICAL PERSPECTIVE 

 The introductory section of this dissertation showed some of the mathematical contexts in 

which differentials appear and the literature review listed some conceptualizations one could have 

of these differentials in these contexts. However, nothing in the previous sections of this 

dissertation are meant to suggest that one must choose only one conceptualization for the 

differential. The quote from David Tall (1993) presented in this dissertation’s introduction suggests 

that it is possible that individuals might use different conceptualizations for the differential 

depending upon the context in which they are found. Because it is possible for individuals to have 

many and varied meanings for the differential, Tall and Vinner’s concept image (1981) is an 

appropriate theoretical perspective for this research. 

 Tall and Vinner (1981) define concept image as “the total cognitive structure that is 

associated with the concept, which includes all the mental pictures and associated properties and 

processes” (p.152). I believe that the words “total” and “all” in that quote are important. As 

mathematicians, we can draw upon many formal definitions, theorems, and examples while 

thinking about a mathematical topic, but our concept images do not have to be restricted to only 

these formal elements. Sometimes, mathematical concepts may be used informally at first, and the 

processes used by individuals to help them understand these initial informal uses might stay with 

the individual even after a formal treatment of these concepts are introduced. To give a personal 

example, my concept image of infinitesimals does contain formal definitions and theorems, but it 

also contains intuitive, non-formal mental images like Keisler’s (2012) idea that the solution to the 

differential equation 
𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦) can be thought of as “a moving point controlled by an 

infinitesimal driver,” who travels point by point, making sure his “steering wheel” is turned to the 

correct slope at every point (Figure 2). This presentation is quite informal, yet it is a mental picture  
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Figure 2: Keisler’s “infinitesimal driver” (Keisler, 2012, p.848). 

 

that still “appears” in my thoughts alongside formal solution methods and theorems when thinking 

about a first-order ordinary differential equation. It is possible that certain experts might have 

similar informal ideas in their overall concept images of differentials. 

 Thus, the range of ideas contained within one’s concept image of a topic can be extensive,  

and within this extensive range, there might be parts of a conflict image that seem to contradict 

other parts. These conflicting parts are called potential conflict factors, unless they are evoked at 

the same time, in which they create conflict and become cognitive conflict factors (Tall & Vinner, 

1981). A hypothetical example of a potential cognitive conflict factor involving differentials could 

come from an individual whose concept image of the symbol “
𝑑𝑦

𝑑𝑥
” includes the idea that it should 

not be thought of as a fraction (and thus the 𝑑𝑦 and 𝑑𝑥 cannot be separated), but whose concept 

image of separable differential equations includes the idea that one must separate the 𝑑𝑦 and 𝑑𝑥 

in the symbol 
𝑑𝑦

𝑑𝑥
 in order to solve the separable equation. It is possible that these conflicting ideas 

would remain as only a potential conflict factor until such time as this particular individual were 

presented with both statements simultaneously: “I notice that you separated the 𝑑𝑦 and 𝑑𝑥 when 
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solving this equation, but you said earlier that 
𝑑𝑦

𝑑𝑥
 did not represent a ratio.” Perhaps the individual 

in this example would have no problem accepting both statements; but if the simultaneous 

presentation of both statements created conflict, then he or she would have a cognitive conflict 

factor which would need to be resolved. 

 Tall’s quote from the introduction of this dissertation suggests that one might draw upon 

different parts of one’s concept image at different times. The part of the concept image which is 

in use at a particular time is called the evoked concept image (Tall & Vinner, 1981). To use the 

previous example, the aforementioned mathematician might have a robust concept image of the 

differential in which it is both a piece of the non-ratio notation “
𝑑𝑦

𝑑𝑥
,” and also an algebraic entity 

that can be manipulated when solving a differential equation. Each of these views can have images, 

definitions, informal ideas, examples, counterexamples, and other mathematical phenomena 

attached to them. When presented with an expression that includes “
𝑑𝑦

𝑑𝑥
”, the context of the 

presentation could cause one of these views, as well as some of the attached phenomena, to become 

prominent in this mathematician’s mind. The totality of what becomes prominent would be the 

evoked concept image for that particular differential. 

 Individuals may have a personal concept definition, or a collection of words used to 

describe a particular concept (Tall & Vinner, 1981). An individual’s personal concept image and 

personal concept definition are not meant to be static entities; indeed, as he or she learns more 

about the concept and thinks about it in greater detail, one would hope that he or she refines and/or 

expands his or her concept image and definition. At some point, perhaps one’s personal concept 

definition will approach what Tall and Vinner (1981) call the formal concept definition, which is 

the collection of words used to describe the concept that is accepted by the general mathematical 

community. 
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 On the surface, it may appear that there is no formal concept definition for the differential, 

since some of the conceptualizations listed in the Literature Review are not at all similar (the idea 

of a 𝑑𝑥 as a concrete, small amount or change versus the idea of 𝑑𝑥 as a variable indicator, for 

example.) However, the above literature mostly describes student conceptualizations of only one 

particular differential, while my dissertation involves interviewing experts about their 

conceptualizations of multiple differentials. Perhaps these experts, who have studied mathematics 

longer and in more detail than students, will have more finely-tuned responses that converge to a 

formal concept definition. If not, then perhaps strong personal concept definitions will emerge, or 

instances of cognitive conflict will occur.  
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4.  PREVIOUS WORK 

 Before beginning the work needed for this dissertation, I conducted two smaller-scale 

studies. The main goal of these studies was to provide forums in which I could both practice and 

improve my ability to conduct a productive interview as well as help test and refine possible 

interview questions to be used in my dissertation work. The results of these smaller-scale studies 

are explained in more detail in McCarty and Sealey (2017) and McCarty and Sealey (2018), and I 

review some of them below. 

Exploratory Study 

 The definitions of and explanations for differentials given in the textbooks I surveyed were 

not uniform and usually not detailed. This seemed to show that no formal concept definition of the 

𝑑𝑥 exists. The realization of this led me to wonder how uniform or detailed the concept images of 

various mathematicians might be. I designed an interview protocol to be given to experienced 

mathematics faculty in an attempt to understand their personal concept images. I wished to 

determine if these concept images would be more consistent and well-formed than the ideas 

presented in the textbooks. 

Methods 

 The entire interview protocol is given in Appendix A, but a summary of the mathematical 

contexts that were discussed is shown in Table 1. Four professors of mathematics from a large 

research university responded to emails requesting interviews. Participants Sonya, Johnny, and 

Jackson (pseudonyms) each had research and/or teaching experience in analysis and differential 

equations, while Kurtis’ research areas included combinatorics and graph theory. Because of the 

complexity of some of their answers and my wish to explore their answers further, Sonya and 

Johnny agreed to follow-up interviews. All of the interviews except Johnny’s were videotaped,  
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Table 1 

 

Exploratory Study’s Protocol Expressions 

Categories Symbols, Definitions, or Situations Containing 𝑑𝑥 

 

Integrals 

 
∫ 𝑓(𝑥) 𝑑𝑥  , ∫ 𝑓(𝑥)

𝑏

𝑎
𝑑𝑥  , and ∫ 𝑓(𝑥)

𝑎

𝑏
𝑑𝑥  

 
 

Definitions and Notation If 𝑦 = 𝑦(𝑥), the notation 
𝑑𝑦

𝑑𝑥
 and definition 𝑑𝑦 = 𝑦′(𝑥) 𝑑𝑥  

If 𝑥 = 𝑥(𝑡), the notation 
𝑑𝑥

𝑑𝑡
 and definition 𝑑𝑥 = 𝑥′(𝑡)𝑑𝑡 

 
 

Integration by Substitution ∫
cos √𝑥

2√𝑥

4

1
𝑑𝑥  versus ∫ cos 𝑥

2

1
𝑑𝑥  , 

after ∫
cos √𝑡

2√𝑡

4

1
𝑑𝑡 used the substitution 𝑑𝑥 =

1

2√𝑡
𝑑𝑡 

 
 

Two ODEs 1) The separable equation 
𝑑𝑦

𝑑𝑥
= 𝑔(𝑦)ℎ(𝑥), and the solution 

steps 
1

𝑔(𝑦)
𝑑𝑦 = ℎ(𝑥) 𝑑𝑥  and ∫

1

𝑔(𝑦)
𝑑𝑦 = ∫ ℎ(𝑥) 𝑑𝑥  

2) The exact equation (2𝑥𝑦 − 9𝑥2) 𝑑𝑥 + (𝑥2 + 2𝑦 + 1)𝑑𝑦 = 0 

 

Johnny’s exclusion per his request. 

 At this point in my research, I had not decided on a particular methods of data analysis, so 

analysis of the data I collected in this study was informal. The videotaped interviews were first 

fully transcribed, and each transcript was read all the way through in order to see if I could gauge 

the level of consistency (if any) throughout all of the subjects’ answers. I then devoted more 

attention to the portions of the interviews that addressed the four mathematical contexts containing 

differentials. Specifically, I looked for and noted words or phrases that seemed to indicate what 

“quality” the subject thought differentials held: for example, were differentials merely notation, 

encapsulated mathematical entities, or somewhere in between? I then used these “quality” words 

and phrases to refine my first, rough ideas of the subjects’ concept images that I obtained from the 

first read-through. Finally, I attempted to distill them into smaller, more focused ideas. Since 
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Johnny requested that his interviews not be videotaped, during his first interview, I endeavored to 

take careful notes of the “quality” of differentials and immediately upon the interview’s 

conclusion, wrote out my thoughts as to how I perceived his overall concept image. During his 

second interview, I asked follow-up questions to ensure that my notes and impressions were 

accurate. 

Data 

 Preliminary analysis indeed showed that while all four interview subjects were fairly 

consistent within their responses throughout the different contexts, their responses differed from 

each other’s in many ways, with no two subjects agreeing with one another throughout the entire 

protocol. Thus, a single, formal concept definition did not manifest. Summaries of the subjects’ 

responses for each of our four contexts and my interpretation of some of the subjects’ personal 

concept images follow: 

 The 𝒅𝒙 in definite and indefinite integration. Sonya and Jackson stated that the 𝑑𝑥 in a 

definite integral comes from a limiting process applied to the width represented by the bases of 

Riemann Sum rectangles. Johnny initially described the 𝑑𝑥 similarly, as arising from the limit of 

“cuts in the interval between 𝑎 and 𝑏 on the x-axis,” but later said it was only “a conventional 

symbol borrowed from differentiation.” Kurtis defined both the 𝑑𝑥 in definite and indefinite 

integrals as part of notations that, respectively, represented the limit of a Riemann sum and a family 

of functions. He later mentioned that the 𝑑𝑥 comes from the Δ𝑥 in a Riemann sum, but only as a 

matter of notation and not because 𝑑𝑥 is a concrete entity all to itself. All subjects generally 

claimed that they viewed the 𝑑𝑥 in an indefinite integral no differently than they viewed the 𝑑𝑥 in 

a definite integral, whether that 𝑑𝑥 was viewed as a mathematical entity or as merely notation. 
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 The 𝒅𝒙 in definitions and Leibniz notation. Kurtis said that 𝑑𝑦 = 𝑦′(𝑥)𝑑𝑥 if and only 

if 
𝑑𝑦

𝑑𝑥
= 𝑦′(𝑥), but did not feel that this meant that one could simply multiply or divide by 𝑑𝑥 to go 

from one form to the other. Johnny and Jackson had no caveats nor conditions; multiplying or 

dividing by 𝑑𝑥 to go from one form to the other was always acceptable to them. Sonya agreed that 

such multiplication or division was not possible if we view the symbol 
𝑑𝑦

𝑑𝑥
 as a derivative, and she 

was the only subject who seemed to imply that there was a structural difference to her in the two 

relationships 𝑑𝑦 = 𝑦′(𝑥)𝑑𝑥 and 
𝑑𝑦

𝑑𝑥
= 𝑦′(𝑥):  

Sonya: But because I see it a lot of times where with students, it’s not like 

that [indicates 
𝑑𝑢

𝑑𝑥
=

1

2√𝑥
] is a fraction and you just move around 

the 𝑑𝑥 and rewrite it like that [indicates 𝑑𝑢 =
𝑑𝑥

2√𝑥
]. 

Interviewer: That’s not what’s happening here? 

Sonya: No, that’s not the way I see it. That [indicates 
𝑑𝑢

𝑑𝑥
] is derivative of 

𝑢 with respect to 𝑥, and that [indicates 𝑑𝑢 =
𝑑𝑥

2√𝑥
] is more small 

changes of 𝑢 and 𝑥 – more like a differential thing. 

 The 𝒅𝒙 in integration by substitution. For reference, the initial integral was ∫
cos √𝑡

2√𝑡

4

1
𝑑𝑡, 

and during its evaluation, all subjects used the substitution 𝑥 = √𝑡 and 𝑑𝑥 =
1

2√𝑡
𝑑𝑡. All subjects 

except Sonya seemed to feel that no matter how one viewed the 𝑑𝑥 in “𝑑𝑥 =
1

2√𝑡
𝑑𝑡”, once the 

substitution into the initial integral was made, the 𝑑𝑥 in the new integral ∫ cos 𝑥 𝑑𝑥
2

1
 was only an 

“indicator” signifying the new variable of integration. Sonya, however, kept a view that the 𝑑𝑥 in 

“𝑑𝑥 =
1

2√𝑡
𝑑𝑡” retained some additional meaning. She believed that the 𝑑𝑥 and 𝑑𝑡 in the above 
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relationship were entities that resided on different levels; one could say that 𝑑𝑥 = 𝑥′(𝑡)𝑑𝑡 was on 

the level of 𝑡, but if 𝑡 were a function of 𝑠, so that 𝑑𝑡 = 𝑡′(𝑠)𝑑𝑠, then one would be at the level of 

𝑠. No matter what level, though, the differentials were entities and “they are all going to zero,” 

although some more quickly than others. This idea that these two versions of 𝑑𝑥 have different 

sizes was also expressed by Jackson. He mentioned that while the initial dummy variable (in 

∫
cos √𝑥

2√𝑥

4

1
𝑑𝑥) and the transformed dummy variable (in ∫ cos 𝑥

2

1
𝑑𝑥) had similar roles as 

infinitesimal widths, we could still think of them as different, since one was the limit as n goes to 

infinity of 
4−1

𝑛
 while the other was the limit as n goes to infinity of 

2−1

𝑛
: “Even though they’re both 

infinitesimal, they’re still not the same.” 

 The 𝒅𝒙 in separable and exact ODE’s. Johnny and Jackson, as before, had no problem 

with multiplying or dividing by 𝑑𝑥 in order to solve a differential equation. Sonya felt that even 

though it may appear that one could multiply by 𝑑𝑥 in order to separate variables in the separable 

equation, what is really happening instead is that one multiplies by Δ𝑥 and then passes through a 

limit to turn Δ𝑥 into 𝑑𝑥. Kurtis agreed with the idea that we are not really multiplying by 𝑑𝑥, but 

seemed to think that it was always fine to proceed as if that is what were really happening. Similar 

responses occurred during the explanations of the exact ODE. Sonya was still uncomfortable with 

the idea of “moving the 𝑑𝑥 around” but admitted that it is how solving differential equations is 

usually taught. Johnny and Jackson did not have this discomfort, and Kurtis declined to answer, 

stating that he was not as familiar with exact differential equations. 

Results 

 The amount of disagreement in preceding paragraphs shows that there was no overall 

concept definition for the differential within my four interview subjects. However, the interviews 

of Johnny, Kurtis, and Sonya were at least fairly consistent from start to finish, containing similar 



31 

 

views of differentials across multiple contexts. I will summarize their central themes in the 

remainder of this section. 

 Johnny repeatedly stated that differentials were “meaningful only in their relation to one 

another,” meaning that the number of differentials in a mathematical situation determined the 

character of the differentials. If a mathematical situation had two related differentials present, then 

those differentials were concrete entities that could be manipulated, while if only one differential 

were present, then that differential was merely notation. For example, in a separable differential 

equation 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥)𝑔(𝑦), one is allowed to multiply or divide by a 𝑑𝑥 since we have “a relation 

of differentials [𝑑𝑦 and 𝑑𝑥],” but in the definite integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
, the 𝑑𝑥 is merely a notation 

that indicates the variable of integration, since there is only one differential present in the 

expression.  

 Kurtis said at least one time per context that all of the manipulations done with differentials 

were merely products of a “perfectly good notation.” The efficacy of differential notation makes 

it easier for educators to introduce concepts like the Chain Rule or integration by substitution, but 

within such mechanizations, the actual differentials have no substance nor meaning. Thus, while 

it may appear that differentials might be multiplied, divided, and/or cancelled, Kurtis was adamant 

that these operations were not really what was happening, and that the differential notation was 

simply a shorthand for the more advanced mathematics required to understand these concepts: 

“Again, it’s good notation, so it’s [multiplying by 𝑑𝑥] not what’s really happening, but that’s what 

you can do and get the right solution. So one more bean for ‘this notation is good’.”  

 A central image of Sonya’s concept image was that the 𝑑𝑥 did not have any meaning on 

its own if it was a part of the symbol 
𝑑𝑦

𝑑𝑥
, which represented a derivative. She noted the convenience 



32 

 

of simply saying “multiplying by 𝑑𝑥” when given the notation 
𝑑𝑦

𝑑𝑥
 and that it was helpful for 

instruction, but that we should be more careful about telling our students “we can multiply by 𝑑𝑥” 

in these situations. Instead, one should understand that the idea of “multiplying by 𝑑𝑥” is a 

shorthand for “multiplying by a Δ𝑥 and then passing through a limit.” 

Pilot Study 

 The results of this exploratory study were encouraging. It is one thing to see many and 

varied conceptualizations in literature that addresses student interpretations; it is another thing to 

see many and varied conceptualizations espoused by expert mathematicians. Thus, I wished to 

continue research, and I felt that this first study could be extended in two ways. First, since 

physicists also use differentials in their work and since I used Physics Education Research in my 

literature review, I wanted to explore and compare the concept images of both mathematicians and 

physicists. Second, I wanted to ask experts how they would like their students to conceptualize 

these differentials. This idea arose from Kurtis often discussing how his students seem to view the 

ideas behind the notation. His remarks suggested to me that instructors could not only accept but 

also approve if their students held concept images that differed from their own, and I wished to 

explore this. I aimed to address these two ideas in a pilot study that was conducted during the next 

year.  

Methods 

 The protocol for this study is given in Appendix B and outlined in Table 2 below, but the 

two most notable changes from the exploratory study’s protocol are summarized here. First, the 

situations containing differentials were streamlined into what I believe to be better sections: 1) 

definite and indefinite integration, ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥  and ∫ 𝑓(𝑥) 𝑑𝑥, 2) the symbol 

𝑑𝑦

𝑑𝑥
, and 3) the 

relationship 𝑑𝑦 = 𝑦′(𝑥)𝑑𝑥. Each section began by showing and discussing the mathematical  
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Table 2 

 

Summary of the Pilot Study’s Protocol 

Categories Symbols, Contexts, and Questions about Students 

Integrals Symbols : ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 and ∫ 𝑓(𝑥) 𝑑𝑥 

 Context: An object is moving along a straight line at a nonconstant 

velocity (denoted by 𝑣) over a four-minute period. What is the 

meaning of the integral ∫ 𝑣 𝑑𝑡
4

0
? 

 

Leibniz Notation Symbol: 
𝑑𝑦

𝑑𝑥
 

 Context: Please solve the ODE 
𝑑𝑢

𝑑𝑡
=

2𝑡

cos 𝑢
 

 

Differential of a Function Symbol: 𝑑𝑦 = 𝑦′(𝑥)𝑑𝑥 

 
Context: Please evaluate ∫

cos √𝑡

2√𝑡

4

1
𝑑𝑡 

 

Student Contexts Subjects were asked whether they would approve of their students 

viewing the differentials from the four symbols above as 

1) Merely notation: the differentials have no individual meaning 

2) Concrete, well-defined, infinitesimal entities 

3) Somewhere between #1 and #2 

 

symbol and ended with a situation in which the symbol was used within some context. Second, 

questions were included to gauge both how the subject felt about conceptualizations of differentials 

that were different from his or her own, and the differences, if any, between the concept image that 

the instructor held and the concept image that he or she wished for his or her students to hold.  

 Two mathematicians and one physicist with teaching experience were interviewed, all of 

whom were currently teaching at the same large research university. Mathematicians Tanya and 

Li Mei had various levels of experience teaching first-, second-, and third-semester calculus. 

Physicist Darrius, who has an undergraduate degree in both mathematics and physics and a Masters 

and Ph.D. in physics, had taught plasma and calculus-based electricity and magnetism courses to 
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students of various levels. A second physicist was interviewed mostly to test if an interview could 

be conducted over Skype and recorded with OBS Studio. The interview was successful and thus, 

I determined that internet interviews were a viable option for my research. Because this second 

physicist was not asked to sign a consent form, her responses are not included in this paper. 

 As in the exploratory study, no formal method of data analysis was used. Interviews were 

videorecorded and then transcribed. Within these transcriptions, I first searched for answers that 

were unexpected or seemed unique in some way, then used these unique answers as mainstays 

upon which I attempted to build an interpretation of the subject’s overall concept image. I then 

compared and contrasted these interpretations, not only to find areas of agreement and 

disagreement, but also to see whether the subjects’ specific answers to certain questions suggested 

ways in which the current protocol might be improved. 

Data and Results 

 As with the exploratory study, each subject’s responses differed from one another in many 

places, confirming, again, that a single, formal concept definition for differentials did not exist. 

Summaries of the subjects’ responses follow. 

 The 𝒅𝒙 in definite and indefinite integration. It is within integration where I first noticed 

a split between the views of the mathematicians and physicist participating in my study. Tanya 

and Li Mei both initially stated that the role of the 𝑑𝑥 was to denote the variable of integration 

(both referenced multivariable calculus and noted the possibility that the integrand might contain 

more than one independent variable) and later stated that the 𝑑𝑥 in a definite integral was a 

representation of a Riemann sum rectangle and invoked the idea of limit. In contrast, Darrius 

initially stated that the 𝑑𝑥 in both the definite and indefinite integrals were infinitesimal segments 
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in 𝑥. He did mention the idea of taking a finite amount and shrinking it to zero, thus also implying 

a limit process, but his primary idea seemed to be 𝑑𝑥 as an infinitesimal amount. 

 Differentials in Leibniz derivative notation. While the integration section suggested a 

mathematician/physicist split between the individuals in this specific study, it was this section that 

showed this split was not absolute. Tanya initially said that 
𝑑𝑦

𝑑𝑥
 was merely notation and not a ratio 

of 𝑑𝑦 and 𝑑𝑥 and that the role of the 𝑑𝑦 and 𝑑𝑥 was to identify the dependent and independent 

variables. Li Mei and Darrius said that 
𝑑𝑦

𝑑𝑥
 could be thought of as both one notation or as a ratio 

between two entities, depending upon the context in which the symbol was presented. For example, 

thinking of 
𝑑𝑢

𝑑𝑡
 as a ratio was necessary when solving the differential equation 

𝑑𝑢

𝑑𝑡
=

2𝑡

cos 𝑢
, as one 

should “multiply by 𝑑𝑡” to facilitate the necessary separation of variables. Tanya also agreed that 

it was fine to say “multiplying by 𝑑𝑡” when separating variables, but seemed at first to view this 

separation as an algorithmic step, rather than as a validation that 
𝑑𝑢

𝑑𝑡
 was a ratio of two quantities. 

 Differentials in the relationship 𝒅𝒚 = 𝒚′(𝒙)𝒅𝒙. This question had the largest variety in 

answers. Upon seeing this relationship, Darrius wanted to bring the 𝑑𝑥 over to get 
𝑑𝑦

𝑑𝑥
= 𝑦′(𝑥), 

while saying that 𝑦′(𝑥) is equal to the ratio of how 𝑦 changes, given a small change in 𝑥. Li Mei 

primarily viewed the initial relationship as a means to approximate 𝑑𝑦 given a measurable 𝑑𝑥. 

Tanya said that she did not know how to interpret this relationship because she claimed to have 

never seen a relationship like this before. When asked to integrate ∫
cos √𝑡

2√𝑡

4

1
𝑑𝑡, which requires the 

substitutions 𝑢 = √𝑡 and 𝑑𝑢 =
1

2√𝑡
 𝑑𝑡, Tanya opined that the 𝑑𝑢 and 𝑑𝑡 were only symbols that 

were used to represent what the variable of differentiation was on both sides. Li Mei and Darrius 
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both said that 𝑑𝑢 =
1

2√𝑡
 𝑑𝑡 tells us exactly how the rate of change of 𝑢 differs from the rate of 

change in 𝑡. 

 Deltas and infinitesimals. Tanya seemed to go back and forth on her opinion whether 𝑑𝑥 

and Δ𝑥 had the same meaning. Early statements showed that, to her, 𝑑𝑥 is a variable indicator 

while Δ𝑥 is a small interval: “So the 𝑑𝑥 …this is here to determine that we are taking the integral 

respect to variable 𝑥” and “…by Riemann sum, we can say that, OK, we have a small interval 𝑎 

to 𝑏, which is an interval in 𝑥-axis … because of the Δ𝑥, a small portion of this interval.” However, 

later statements seemed to suggest that one can think of the integral’s 𝑑𝑥 as a Δ𝑥: “Now we can 

interpret this 𝑑𝑥 as Δ𝑥” and “so we have 𝑓(𝑥) times Δ𝑥 … if you go back to this notation 

[∫ 𝑓(𝑥) 𝑑𝑥
𝑏

𝑎
] we have 𝑓(𝑥) times 𝑑𝑥, this represents the same Δ𝑥.” Li Mei kept the two ideas 

distinct, stating that Δ𝑥 had a finite measure, and that 𝑑𝑥 represented making the Δ𝑥 smaller until 

it “almost disappears.” Thus, to her, 𝑑𝑥 was small and nonzero, but she said that she didn’t know 

and never really thought about if it had a measure like she believes Δ𝑥 does. Darrius never 

mentioned “Deltas” in any of his answers, and thus, they weren’t addressed until the end of the 

interview when we were discussing possible student conceptualizations, some of which included 

Deltas. When asked if he ever thought about Deltas, Darrius said that any time in the interview 

when he said that 𝑑𝑥 was “taking a finite distance and then letting that distance go to zero,” he 

considered that initial finite distance as Δ𝑥. This perhaps shows that, even though he never used 

the word “Delta” during his interview, he does conceptualize the 𝑑𝑥 as a small Δ𝑥. 

 All subjects were asked to comment on the following statement7, which was included as a 

possible means to help gauge how the subjects conceptualized the “size” (if any) of the 𝑑𝑥: It is 

                                                             
7 This question was meant to reference Courant & John’s (1965, p.184) “physical infinitesimals” (Page 15 of this 

dissertation) 
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OK to conceptualize differentials such as the 𝑑𝑥 in ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 or 

𝑑𝑦

𝑑𝑥
 as nonzero, finite quantities, 

small enough to fall under any measurable scale. (For reference: Diameter of electron: less than 

10−16 cm / Smallest unit of time ever measured: 10−21 sec)” Tanya did not like this idea, since 

even numbers less than 10−21 were still finite, and, to her, finite numbers were “not enough” to 

represent the size of 𝑑𝑥. Li Mei and Darrius were fine with the general statement, but did not want 

to assign a specific number to 𝑑𝑥, since once that number was assigned, one could not go any 

smaller.  

 Instructor concept images versus the images they would accept from their students. 

A summary of how the subjects’ views compare with the views they would accept their students 

having is given in Table 3. Similar to how no experts agreed on every aspect of their concept 

image, the lists of conceptualizations that the experts would approve were also different. Table 3 

is only a rough representation of the subjects’ views for two reasons: it is difficult to distill long 

interview responses into only a checkmark or an “X,” and the questions about their students’ views 

were only a few questions given at the end of the interview. I believe that more intense and 

prominent questioning in future interviews would elicit more information.  

 Notable differences between the subjects’ conceptualizations and the conceptualizations 

they would accept from their students are summarized below:   

 ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥: Li Mei said that it was fine for her students to view this 𝑑𝑥 as an infinitesimal 

amount, even though she never stated that she personally viewed this 𝑑𝑥 in this way. To 

her, viewing this 𝑑𝑥 might be useful for student understanding: “… if they think of having 

lots and lots of values for 𝑓, and lots and lots of tiny values for 𝑑𝑥, and then that this 

[points at the integral sign] actually means summation – if  this helps them to understand 

the stuff, that’s good.” Darrius said that he would accept a student linking this 𝑑𝑥 to a  
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Table 3 

 
A Summary of Subject Views and Preferred Student Views of Differentials 

∫ 𝑓(𝑥)
𝑏

𝑎

𝑑𝑥  
𝑑𝑦

𝑑𝑥
 

 Tanya Li Mei Darrius   Tanya Li Mei Darrius 

 I S I S I S   I S I S I S 

1) Merely notation    X X 
 

1) Merely notation      X 

2) Δ𝑥 referent     X   2) Δ𝑥, Δ𝑦 referents X X X  X  

3) An infinitesimal X X X    
 

3) Infinitesimals X X  X   

   

∫ 𝑓(𝑥) 𝑑𝑥 
 

𝑑𝑦 = 𝑦′(𝑥)𝑑𝑥 

 TanyaLi MeiDarrius  Tanya Li Mei Darrius 

 I S I S I S   I S I S I S 

1) Merely notation     X  
 

1) Merely notation X   X  X 

2) Δ𝑥 referent    X X   2) Linearization  X     X 

3) An infinitesimal X X X X   
 

3) Infinitesimals X X X    

4) Same as the 𝑑𝑥 in 
the definite integral 

X  X X  X 
 

       

 

Notes:   1) “I” represents the subjects’ individual views and “S” represents the views that Tanya, Li 
                  Mei, and Darrius wish for their students 

 2) A checkmark was recorded in the “Individual” columns if I judged that the majority of  

                 the subject responses seemed to indicate this view, while an “X” indicated where I judged  

                 that the majority of the subjects’ responses rejected this view. 

 

 

 

Riemann sum’s Δ𝑥, but claimed that this idea would never be stated in the physics world 

or by a physics student. 

 
𝑑𝑦

𝑑𝑥
:  Tanya only wanted her students to think of this as a notation that stands for “the 

derivative of 𝑦 with respect to 𝑥.” Li Mei was fine with students holding this view, as well 

as the view that 
𝑑𝑦

𝑑𝑥
 arises from the limit of  

Δ𝑦

Δ𝑥
, even though she did not personally subscribe 

to that view during her interview. Similarly, Darrius accepted the “limit” view even though 

he did not state it in his interview. 
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 𝑑𝑦 = 𝑦′(𝑥)𝑑𝑥: Both Li Mei and Darrius felt that the two ideas of “in a small neighborhood 

around 𝑥, the tangent line is an approximation of the curve 𝑦(𝑥)” and “𝑑𝑦 is an 

infinitesimal that is proportional to an infinitesimal 𝑑𝑥” were both acceptable. They did 

not want their students to think that 𝑑𝑦 = 𝑦′(𝑥)𝑑𝑥 was only a notation that we used when 

needed, like in integration by substitution, as they felt that the 𝑑𝑦 and 𝑑𝑥 should have some 

meaning. Tanya, despite earlier claiming that she had not seen this notation before, 

nevertheless thought that the above “neighborhood” idea, as well as the idea that using 

𝑑𝑦 = 𝑦′(𝑥)𝑑𝑥 without meaning were both fine. 

Summary of the Previous Work 

 Both of these initial studies clearly showed that not only was there was no formal concept 

image of the differential, but also that there was significant variation in the experts’ personal 

concept images. While the second study’s inclusion of a physicist and preferred student views 

suggested that these were valid areas of exploration, I believe that these areas are best suited for 

future work. Thus, my dissertation focuses only on the variety and consistency of the views 

possessed by expert mathematicians. 
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5.  METHODS 

 My research questions were chosen to emphasize the focus on mathematicians’ views of 

the differential, and I repeat them here for reference: 

1. How extensive are the concept images of differentials held by expert mathematicians? 

2. What levels of consistency, if any, exist in the concept images of the differential within 

each individual? 

3. What levels of consistency, if any, exist in the concept images of the differential among 

all mathematicians interviewed? 

The remaining information in this section describes the methods of data collection and data 

analysis undertaken for this dissertation. 

Data Collection 

 There were two groups of interviews conducted. For the first group of interviews, I 

interviewed seven individuals who taught at the same large research university. For the second 

group of interviews, one (Xavier) was a mathematician who taught at the same university as the 

first seven interview subjects, while the other two were each from different universities. The 

pseudonyms I chose for each subject, as well as his or her educational background and relevant 

teaching experience, are listed in Table 4.  

Interview Subjects and Consent 

 Once I had decided that I wished the bulk of my first series of interviews to come from a 

particular university, an initial list of possible interview subjects was generated based on the 

potential subjects’ research areas. I wished to include subjects whose research falls in the broad 

category of “Applied Mathematics,” as I believed that mathematicians with this background would 

be the ones who would have thought about differentials the most and would thus provide the most 
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Table 4 

 

Interview Subjects’ Information 

Pseudonym Degrees and Education Courses Taught 

  

C
al

cu
lu

s 
1
 a

n
d
 2

 

C
al

cu
lu

s 
3

 

O
D

E
s 

O
th

er
s 

V
o
lu

n
te

er
ed

 b
y
 

th
e 

In
te

rv
ie

w
ee

 

André Theoretical and Nuclear Physics, 

Nuclear Theory and 

Bioinformatics 

   Graduate courses in 

Advanced Calculus and 

Numerical Methods 
 

Bryan Minor in Physics, Ph.D. in 

Applied Mathematics 

 

   Graduate courses in 

Calculus, Differential 

Equations, and Modeling 
 

Christopher Physics and Applied Mathematics     

Diane Mathematics and Computer 

Science, Ph.D in RUME 
 

    

Eugene Discrete Mathematics     

Francis Engineering Physics and Applied 

Mathematics, Ph.D in RUME 
 

   Vector Calculus 

Gustav Data Not Collected 
8     

Xavier Data Not Collected 
9    Graduate courses in 

Analysis 
 

Yanick Mathematics, Ph.D. in RUME     

Zaphod Data Not Collected 
9    Real Analysis 

 

interesting results. Once I had a list of applied mathematicians to contact, I added to this list a few 

other mathematicians from this university whose research areas could be described as “Pure 

Mathematics” or “RUME” (Research in Undergraduate Mathematics Education) for balance. 

Emails were sent to the faculty members on this list, and interviews were conducted with those 

                                                             
8 Gustav’s interview had to be completed in a smaller time window than the other interviews. The questions asking 

for this information were among the ones that had to be cut for time. 
9 Xavier and Zaphod listed the schools that they attended, but not their majors. I forgot to ask for clarification before 

the interview ended. 
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who responded (subjects André through Diane). After these initial interviews were completed, I 

wished to ensure a better balance between individuals from the three broad research areas named 

above, and thus created a second interview list to address imbalances, creating a list with primarily 

“Pure” mathematicians and RUME mathematicians. Emails were sent to the people on this second 

list, and interviews were conducted with those who responded (specifically, subjects Eugene 

through Gustav). 

 In order to verify the results gathered from the first round of interviews, three additional 

interviews were conducted. I began my search for interview subjects by sending emails to ten 

additional faculty of the same university, and only Xavier responded. Since no one else at this 

university expressed any interest in sitting for an interview, I decided to send requests for 

interviews to other universities. Initially, I prioritized convenience, and sent a total of fifteen emails 

to selected faculty at four schools located within an hour’s drive from where I live. Only Zaphod 

responded to my request, and only after a few weeks had passed.   

 In the time between Xavier’s and Zaphod’s responses, I chose the additional schools from 

which I would attempt to select other interview subjects by using Eric Hsu’s Spreadsheet of North 

American Doctoral Programs in Math Education (Hsu, 2013). My justification for using this list 

was my belief that schools with strong RUME ties might have faculty who would be more willing 

to participate in a mathematics education research interview. From this spreadsheet, I selected 

schools, went to their mathematics departments’ internet pages, and sent emails to all faculty who 

had RUME experience and/or seemed to teach first- and second-year calculus often. Yanick 

responded from the third school to which I sent these emails. As will be shown later, the results of 

these three interviews supported the framework shaped by the initial seven interviews. Thus, it 

was determined that no further interviews were required. 
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 Seven of the ten interviews were conducted in person and in the interview subjects’ offices. 

For these in-person interviews, I presented consent forms to the subjects at the beginning of the 

interview, and they were given an opportunity to ask questions before the interview began. A copy 

of this consent form can be found in Appendix C. I video-recorded each interview and collected 

any work (figures, expressions, or equations) created by the subjects during the interview. André, 

Yanick, and Zaphod were not able to be interviewed in person, so their interviews were given over 

computer via Skype and recorded using OBS Software. Before these Skype interviews began, 

consent forms were emailed to the interview subjects. These forms were signed and scanned copies 

of the signed forms were emailed to me before each of these interviews began. Only André created 

diagrams and expressions during his interview, and after his interview’s conclusion, he emailed 

scans of this work to me.  

Interview Protocol 

 The final version of the protocol that I used for my dissertation interviews is listed in 

Appendix D and summarized below. All questions in this protocol were meant to be asked, 

although some interviews did not contain all of these questions due to time constraints. All 

interviews contained follow-up questions that I asked whenever I needed to have the interview 

subjects either clarify remarks that I did not initially understand or expand on remarks that I found 

particularly interesting. Including these follow-up questions, this protocol resulted in interviews 

that averaged about forty-five minutes in length. 

 Introductory questions. There were two introductory questions in the protocol. The first 

asked the subject for his or her academic credentials and teaching history. I requested this 

information because I thought it possible that the degrees they earned and the classes they taught 

could be used as categories to help parse the data. The second introductory question (and the first 
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“real” question of the interview) was “What does the word ‘differential’ mean to you?” I believed 

that since this question asked about differentials without any context, the answers I received could 

serve as baselines with which to compare the interview subjects’ future answers, which would 

involve differentials presented within contexts.  

  The questions containing differentials. Most of the remaining questions were about the 

subjects’ conceptualizations of differentials found in various situations. I divided these various 

situations into two categories. The first category was a collection of the following mathematical 

expressions containing differentials, numbered here as they were numbered in the protocol:  

(1) the Leibniz derivative notation 
𝑑𝑦

𝑑𝑥
,   

(2) the generic definite integral ∫ 𝑓(𝑥) 𝑑𝑥
𝑏

𝑎
,  

(3) the generic indefinite integral ∫ 𝑔(𝑥) 𝑑𝑥,  

(4) the generic double integral ∫ ∫ 𝑓(𝑥, 𝑦)
3

2
𝑑𝑦 𝑑𝑥

1

0
, and  

(5) the expression 𝑑𝑦 = 2𝑥 𝑑𝑥.  

 For each of these, the subjects were shown the expression, asked how they viewed the 

entire expression, asked specifically how they viewed the differentials in the expression, and asked 

whether they thought the differentials in the expressions had a graphical representation and/or a 

size. As mentioned before, follow-up questions were asked as needed in order to get as complete 

a picture of the interview subjects’ concept images as possible. 

 The second category of expressions and contexts used some of the same differential-

containing expressions, but these expressions were placed within a specific context. As numbered 

in the protocol, these expressions and contexts were:  



45 

 

(6) the expression 
𝑑𝜏

𝑑𝑡
 which was contained within the separable ordinary differential 

equation 
𝑑𝜏

𝑑𝑡
= −𝑘𝜏,  

(7) the definite integral ∫ 700 − 3𝑥 𝑑𝑥
50

0
 which was given as part of a problem that asked 

for the amount of work involved lifting a weight up the side of a building, and  

(8) the expression 𝑑𝑢 =
1

2√𝑡
 𝑑𝑡, which was one of the substitutions needed to evaluate the 

integral ∫
cos √𝑡

2√𝑡

4

1
𝑑𝑡.  

 As before, the interview subjects were presented with these contexts and asked how they 

perceived the differentials in each of them, with follow-up questions asked as needed for 

elaboration. These specific contexts were chosen because they contained similar notations (Leibniz 

derivative notation, definite integrals, and “differential of a function” notation) to the expressions 

already discussed, and I wanted to see how similar the answers would be when the same notations 

were presented first without and then within a particular context. 

 All of these expressions were presented to all interview subjects, and for most of them, 

were asked in the order listed above. The only deviations were in Gustav’s and Zaphod’s 

interviews: when presented with expression (5) 𝑑𝑦 = 2𝑥 𝑑𝑥, both of them spoke so much of 

integration by substitution that I decided to present my “integration by substitution” expression 

(8), 𝑑𝑢 =
1

2√𝑡
 𝑑𝑡, immediately afterwards. Following these deviations, we proceeded to the 

separable ODE (6) and “Work” problem (7), in the proper order. 

 Two ancillary sets of questions. There were two other sets of questions that were not 

scripted to be asked at a particular time during the interview, but were asked whenever certain 

conditions were met. The first condition was the first mention of the word “Delta” by the interview 

subject. After this mention, and as soon as it seemed feasible, I asked a series of questions designed 
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to compare how the subject viewed a Δ𝑥 and a 𝑑𝑥. These particular questions usually occurred 

during the discussions of Leibniz derivative notation or definite integrals, as these were topics that 

seemed to lend themselves to natural discussions of “Deltas.” The only person to whom these 

questions were not presented was Eugene, partly because of time constraints, but partly because 

he never mentioned the word “Delta’ in his interview. 

 The second condition that resulted in a set of ancillary questions was the first time an 

interview subject used a particular phrase that seemed to define a degree of “smallness”. Examples 

of these include “infinitely small” and “infinitesimally small.” After an expression like this was 

used, and as soon as it seemed feasible, I asked a series of questions with the intention of clarifying 

and possibly quantifying their phrase. Was the phrase they used simply a figure of speech that was 

not meant to represent anything specific, or did they have an actual value in mind for this particular 

smallness? 

Data Analysis 

 Even though I already had a list of differential conceptualizations from my literature 

review, I did not want to use that list as a basis for this dissertation for two reasons: there was no 

guarantee that my list was compete and that list consisted mostly of student conceptualizations of 

differentials from definite integrals. I wanted to generate my own list strictly from the data that I 

had collected. 

Thematic Analysis 

 Data were analyzed using Braun and Clarke's (2006) thematic analysis. I chose this 

particular method in lieu of other grounded theory methods because Braun and Clarke’s thematic 

analysis is a very malleable method. At the time I was beginning my dissertation, I had already 

conducted two prior studies and reviewed literature that discussed differentials, and all of this work 
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made me aware of and familiar with a range of already-existing conceptualizations. Because I now 

possessed this awareness, I felt that using open coding from Strauss and Corbin’s (1997) grounded 

theory would not be possible. In Strauss and Corbin’s open coding, the themes and codes that 

emerge during the research are solely generated from the data and not the researcher’s 

preconceived notions. Braun and Clarke (2006), however, allow for choices in how one wishes to 

conduct one’s thematic analysis. One of these choices is between conducting an inductive analysis, 

which is meant to be purely data-driven, or a theoretical analysis, in which analysis is done with 

particular theories or ideas in mind. Since I had preconceived notions of possible differential 

conceptualizations from the literature, it seemed a proper choice to analyze my data using thematic 

analysis. 

 As mentioned before, I created my list of themes from the data obtained from the first seven 

interviews. Thus, all of the processes described in the following sections were processes applied 

to only the first seven interviews (André’s through Gustav’s).  The final three interviews were used 

to ensure that results from the first seven interviews also applied to new data. Below, I describe 

the steps that I took to get a list of initial themes and the modifications and rationalizations I made 

to arrive at the final list of themes. 

 Coding Data Points. To begin my analysis, transcriptions were made of each interview. 

These transcriptions contained not only the words spoken by the subject and myself, but also any 

diagrams or figures drawn by the subject, which were scanned and inserted into the transcriptions. 

After transcribing all of the interviews, I read these transcriptions a few times in order to become 

familiar with the data in a general way. 

 After transcribing, I went through each transcript and made a list of data points, which 

consisted of any word or phrase that addressed differentials in any way, or any word or phrase that 
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seemed interesting and worthy of study even if it did not address differentials. Because it was 

impossible to tell at this early stage what data might or might not be relevant, I erred on the side 

of caution and created data points for any text that contained even the smallest hint of relevance 

or interest. Thus, many data points were created: the average number of data points in each 

interview was 145, with the most coming from Bryan’s interview (167) and the least from Gustav’s 

(126). Two examples of data points taken from André’s interview are given in Figure 3.   

 The process I used to build these data points into themes was a process of refinement 

similar to the one given in Braun and Clarke (2006). The goal for each step was to begin with a 

relatively large number of the current type of data element and end with all of these initial data 

elements organized and arranged into a relatively smaller number of collections of similar 

elements. For my data, this step was conducted two times: first, my hundreds of data points were 

organized into dozens of categories, and then this collection of categories was condensed and 

organized into a smaller list of thirty-seven initial themes. 

 The initial categorization of my data points began after transcribing the first seven 

interviews. To give an example of this categorization, while the data points shown in Figure 3 

were taken from two different places in André’s interview, they described the similar idea that 

people might interpret differentials in various ways depending on the context in which the 

differentials were presented (“math versus physics” in the first excerpt and “practical versus 

historical” in the second). Further analysis of André’s interview found many other instances where 

he stated that differential interpretations can be context-dependent. I went through each of the first 

seven interviews and created categories by grouping data points that espoused similar ideas under  

one heading. The result of this work was seven lists of categories that distilled the hundreds of 

data points into a minimum of fourteen (André and Diane) and maximum of twenty-four (Bryan) 
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1) Very, very small change 

in 𝑥 

2) “Smaller than anything 

else 𝑥 might do” 

3) You can do algebra [with 
them] 

4) This is an “Engineering 

way” to teach calculus 

5) “Mathy way”: 𝜖-𝛿 

 

 

 
 

 

 
 

6) Math class: 𝑑𝑥 is notation 

7) Physics class: 𝑑𝑥 is a 

thing 

André: Yes, so they call them, you know, just infinitely small. So just, 

just imagine 𝑑𝑥 is a really, really small number, you know, very, very 

small change in 𝑥, which is smaller than anything, anything else 𝑥 
might do. And then we do these things – and then it’s always handy, 

you can, you know, you can do simplifications, you can do algebra, and 

that’s how they used to teach Calculus back – that was the “engineering 
way” of teaching Calculus. And then the “mathy way” was the epsilon-

delta. And in Romania, when I went to school, we learned epsilon-delta 

in high school. So we had Calculus in – starting from 11th grade. So we 
basically had Calc 1 in 11th grade, Calc 2 in 12th grade. And it was 

epsilon-delta Calc 2 and Calculus. Not bad, OK, but – things that 

actually you guys do in Real Analysis – and for that famous entrance 

exam,   
 

[28:27-29:10 is a story about how he blew off integration in high school 

and had to self-teach it before his exam] 
 

(29:11) TM: So your training was that the 𝑑𝑥 was an entity and not, as 

you described it, “the symbol is just notation?”   So in math class, in 

math class it was just notation and in physics class it was a thing. 
 

 

58) Same as in single 
integral 

59) Practical role: variable 

indicator 

60) Historical: comes from 

𝛥𝑥, 𝛥𝑦 in Riemann sum 

61) He prefers the practical 

interpretation 

(40:40) TM: Yes, that is clear. Then, what are the roles, to you, of the 

𝑑𝑦 and 𝑑𝑥 in this expression?   Same as in – well, again, same as in – 
in the previous, the single integral, it’s – the practical role is that it just 

tells you what you’re integrating with respect to. And, as an historical 

or kind of symbolic thing here, it represents that it comes from the Δ𝑥 

and the Δ𝑦 in a Riemann Sum.  Do you have a personal attachment to 
one of those two above the other?   Well, the first one makes sense. The 

first one is, is, is practical [laughs] and it carries information. The other 

one is more like a [tails off] 
Figure 3: Two examples of the selection of data points from André’s interview. The right column contains excerpts 

from André’s interview and the left column contains the data points I coded from these excerpts. 

  (“TM” is the author/interviewer) 
 

categories.  

 At the conclusion of this process, it became apparent to me that many interview subjects 

referenced the same or similar categories. Noting the similarities in many categories, I created a 

thematic map for my data points and categories by going through these seven lists and performing 

the following algorithm: if the current category on my list seemed related to one that I had already 

included in my thematic map, I wrote the current category close to the already-included category 

and drew lines or arrows to show the connection between the two. If the current category seemed 
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unrelated to all the categories that had already been placed in my thematic map, I thought of a title 

that might best describe this category, and wrote this title and the particular category in a new spot 

on my thematic map. The end result was a thematic map five pages long, with a list of thirty-seven 

initial themes. Figure 4 shows the portion of my thematic map that discusses this idea that a 

differential conceptualization might depend on the context in which it resides. 

 The end result of my thematic map was a list of thirty-seven initial themes shown in Figure 

5. As I analyzed this initial list of themes, I realized that there were two ways that this list could 

be shortened. First, some of the themes on this list were not relevant to the research questions. For 

example, Initial Theme #14 encompassed the collection of statements made by my interview 

subjects who mentioned that Δ𝑥 is a real number. This is a trivial statement with which I would 

expect all mathematicians would agree, and thus would provide no opportunity for conflict. It is 

also a statement that does not involve differentials, which are the focal point of this dissertation. 

 

 

Figure 4: An excerpt from my thematic map 
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1. Conceptualizations might 

depend on the context 

2. Teaching Considerations 

3. Students say “multiply by 

𝑑𝑡” 

4. There are multiple forms of 

expressions 

5. Uneasiness involving 

differentials 

6. 𝑑𝑥 ∈ ℝ 

7. Formal infinitesimals 

8. Linearity in the curve 

9. My guess: the subject is 

really describing NSA 

10. 𝑑𝑥 is “small” (or any other 

non-quantified word) 

11. Having a graphical 

representation 

 

12. Not having a graphical 

representation 

13. 𝑑 and Δ 

14. Δ𝑥 ∈ ℝ 

15. 𝑑𝑥 = Δ𝑥 

16. 𝑑𝑥 ≠ Δ𝑥 

17. A limit is involved 

18. Pseudo-limits 

19. 𝑑𝑥 is just notation 

20. 𝑑𝑥 can’t be quantified (it’s 

not a number – it’s a 

concept) 

21. Differentials are parts of 

algebra/arithmetic processes 

22. 𝑑𝑥 indicates something: 

23. (Differentiation) 

24. (Direction) 

25. (Variable) 

 

26. (Process) 

27. Splitting the double integral 

28. Doing algebra with 

differentials 

29. Doing “algebra” with 

differentials 

30. The different meanings of 

“differential” 

31. Approximation 

32. “I phrases” are imprecise 

33. Contexts: individual 𝑑𝑥 

versus 𝑑𝑥 in an expression 

34. Differentials are useful! 

35. 𝑑𝑥 represents something 

physical 

36. More than just notation 

37. Notation lament 

 

Figure 5: The initial list of themes (from the thematic map) 

 

Thus, this theme was discarded. Second, I combined themes that were very similar to one another. 

For example, Initial Themes #3, #21, #28, and #29 each involved some version of the idea that 

algebraic manipulations might or might not be able to be performed with differentials. These four 

initial themes were combined into one overall “Algebra with Differentials” theme.  

 Turning the list of initial themes into a smaller, final list of themes was a multi-step process 

of elimination, comparison, combination, and refinement. After discarding the irrelevant themes 

and combining the similar ones, I reviewed my code lists and theme map, comparing them to the 

updated theme list. If I found any codes or elements of my theme map that did not seem to be fully 

described in the updated theme list, I refined the theme list to include the missing information. I 

made nine such updates to my theme list before I felt that my list encompassed the entire data set. 

To test this, I read through all of the transcriptions one final time, making sure that all of the 

statements made by my interview subjects could be found in my theme list. The result of all of 

these machinations was the list of themes given in Figure 6.  
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 Tier 1: The “Sized” 

Themes 

6. 𝑑𝑥 ∈ ℝ 

7. Formal infinitesimals 

10. The 𝑑𝑥 is only described 

as “small” (or any other 

non-quantified word)  

 

Tier 1: The “Un-sized” Themes 

17. The 𝑑𝑥 arises from a limit 

20. The 𝑑𝑥 is part of an automatic 

process – a process that is done 

without explanation or thought 

(usually 𝑢-substitution or solving 

separable ODEs) 

25. The 𝑑𝑥 indicates a variable or a 

direction 

26. The 𝑑𝑥 indicates some other type of 

process 

 

Tier 2: The Others 

1. Conceptualizations 

might depend on the 

context 

5. Subject uneasiness with 

differentials 

28. Doing algebra with 

differentials  

29. Doing “algebra” with 

differentials 

34.  Differentials are useful! 

Figure 6: The first attempt at a final list of themes (main themes only; no sub-themes) 

 

 At first, this list of themes seemed to serve me well. I liked how they seemed to coalesce 

naturally into what I called two “tiers”: Tier 1, which included themes that described the 

differentials directly, and Tier 2, which included themes that described ideas surrounding one’s 

beliefs and uses of differentials. Within Tier 1, I liked what seemed to be a splitting of these themes 

into a group which appeared to endow the differentials with a size and a group that did not. At the 

time of its creation, this list seemed like it had clear, objectively-defined categories into which all 

interpretations of differentials, including ones that would be found in future interviews, would fall. 

In practice, this turned out not to be the case.  

 The Tier 2 themes worked well and presented no problems, but when presenting and 

discussing my results with my dissertation advisor, a previously-unseen problem with the “Tier 1” 

themes in this list emerged: the existence of overlapping categories. To give one example, Theme 

#10 said that the differential was a level of “small” that was unquantifiable, and Theme #17 said 

that the differential was the result of a limit process. It was certainly possible that these ideas could 

be intertwined: a mathematician could view a differential as a small unquantified amount (Theme 

#10) that resulted from taking the limit (Theme #17). I believed that, even with these overlaps that 

needed to be resolved, the idea that my themes could be partitioned into two tiers was still viable. 
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Thus, I left my final list of “Tier 2” themes alone and concentrated on fixing the overlaps in my 

list of “Tier 1” themes. Since the presence or absence of limits in the creation of a differential 

seemed important to one’s differential interpretation, I decided to make this presence or absence 

of limits the first criterion by which I would split these themes into new categories. I believed that 

this bifurcation would be helpful in accounting for some of the overlaps described in the previous 

paragraphs. For example, this criterion could create a difference between a “small” amount that 

was created via a limit and a “small” amount that was not. 

 The second new partitioning of the themes was motivated by the varying degrees of 

ambiguity that were attached to the idea of “smallness.” Not only did the interview subjects 

describe differences in the sizes of the measurable differentials (a real number versus a hyperreal 

infinitesimal number versus some unquantifiable idea of “small”), but there also appeared to be 

differences in the level of “numerical tangibility” certain differentials might possess. For example, 

one might suggest that a differential that is described as an actual, measurable quantity is imbued 

with an idea of “numerical tangibility,” a differential that exists as an object but without any 

numerical qualities is imbued with a lesser degree of “tangibility”, and a differential that exists 

merely a variable indicator might be more “ephemeral” than the other differentials would be. It 

seemed to me that one could create a continuum of differential descriptions, with “ephemeral and 

not a concrete object” on one side and “actual, measurable, well-defined value” on the other. 

 These ideas suggested to me that a flowchart would be the best way to present my refined 

final list of what used to be my “Tier 1” themes. With a flowchart, I could begin by splitting the 

themes into two separate directions, based on the presence or absence of a limit process in the 

differential’s description. Once this split has occurred, I could proceed through a series of decisions 

based on the continuum described above: start by determining if the differential is ephemeral and 
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without tangibility of any kind. If so, stop and assign an “ephemeral” theme to that differential. If 

not, then proceed through decisions that ask if the differential has more and more “tangibility,” 

either stopping if a certain level of tangibility is reached, or proceeding until the final step of  

“actual, measurable, well-defined value” is reached. Because this flowchart was the culmination 

of my analysis of my Tier 1 themes, I show it in Figure 7, but I save a more-detailed look at this 

flowchart and this final list of themes for the next chapter of this dissertation. 

 Data analysis for the second round of interviews. Since the second round of interviews 

was primarily conducted to test the efficacy of my theme lists, data analysis for these interviews 

was done by a more-abbreviated version of my previous thematic analysis. While I did identify 

and code data points in the transcriptions of these three interviews, I did not do so with the creation 

of the lists and thematic maps shown in Figures 2 through 4.  Instead, I noted the presence of data 

points in each interview, and analyzed them with my flowchart and theme lists in mind: could each 

description of a differential be easily categorized into a Tier 1 or Tier 2 theme, and if the former, 

would this description fit into my flowchart as it currently existed? 

 The concept images from each interview subject will be discussed in the next section of 

this dissertation. For now, it is sufficient to say that, while these last three interview subjects 

described subthemes that were not present during the first seven interviews, their themes were 

easily categorized into the flowchart and tiers I had already established. To me, this suggested two 

things. First, the overall idea of the flowchart was sound: a system in which differentials are 

categorized by whether they arose from a limit and their degree of “numerical tangibility” seems 

to be a system that can account for any differential conceptualization. Second, since individual 

concept images can vary wildly, it is highly probable that each space on the flowchart and the Tier 

2 list, can have many subthemes.  
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Figure 7: The flowchart containing all Tier 1 themes 

  

 My decision to end data collection after the last three interviews, and ten in total, was 

motivated by these two ideas. The last three interviews suggested that, no matter what 

conceptualizations might arise in future research, there would be a spot for them in my flowchart, 

as long as the person conducting this research will be willing to accept that there probably exist 

subthemes and Tier 2 themes hitherto undiscovered. Believing that it might be impossible to 



56 

 

explore every Tier 2 theme and flowchart subtheme and that no further interviews would give 

conceptualizations that would not fit in my flowchart, I suspended data collection and analysis. 

Visual Representations of Data 

 As mentioned in Chapter 5, when I found a data point, I wrote a brief description of it in 

the margin of the interview transcript. This was an acceptable way to list the data points initially, 

but resulted in over a hundred data points per interview spread out over multiple pages. I believed 

that it would be difficult to both analyze the themes from an entire interview and compare themes 

from different interviews if all I used for these analyses and comparisons were these notes. Thus, 

I created two types of visual representations of the themes I found in each interview. For me, seeing 

themes grouped by positions on a flowchart or differentiated by combinations of colors allowed 

me to make connections and see trends in an easier way than when I tried to make connections and 

see trends by only reading transcripts with notes and theme names scrawled in the margins.  

 The first visual media I created were specific flowcharts for each interview subject and for 

each item in my interview protocol. For the “interview subject” flowcharts (an example is André’s 

flowchart, shown in Figure 8), I placed numbers or letters keyed to each element of the interview 

protocol10 next to each theme that was used during the discussion of these elements. If more than 

one theme was used for an element, I used dashed numbers to indicate the multiple themes. For  

                                                             
10 For the flowcharts of each interview subject, I used the numbers (1) through (8) for each expression (these 
numbers were attached to each expression in the interview protocol – see pp. 162-166 in Appendix D), and the 

following letters: (D) for themes discussed during the initial question “What does the word ‘differential’ mean to 

you?”, (Δ) for themes presented during the discussion of 𝑑𝑥 versus Δ𝑥, and (P) for themes conveyed during 

discussion of their particular “small” phrase) 
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Figure 8: An example of an individual flowchart (André’s) 

 

example, one can see that André had two views of the differential in the “Work” problem, which 

was labelled as (7) in my interview protocol.  These two different views were indicated by the “7-

1” and “7-2” in different positions on his flowchart.  For the “items in my interview protocol” 

flowcharts, I placed the first letter of my interview subject along with similar dashed numbers to 

indicate multiple themes.  

 I decided to use Excel spreadsheets for the second medium, and these sheets were created 

both for each interview subject and for each item on my interview protocol. Within each of the 

“interview subject” sheets (an example is André’s spreadsheet shown in Figure 9), I created 

columns headed by each item in my interview protocol and placed colored cells under these 

headings to show the existence of a particular theme. For the “items in my interview protocol”  
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Figure 9: Two examples of spreadsheets (Top: André’s, Bottom: The “Work” problem) 

 

sheets (an example is the “Work Problem” sheet, also shown in Figure 9), my column headings 

were the interview subjects and the columns were copied and pasted from the “interview subject” 

sheets (For example, to create the “
𝑑𝑦

𝑑𝑥
” sheet, I copied everyone’s “

𝑑𝑦

𝑑𝑥
” column onto one sheet, 

each person’s column under his or her name.) Note that these initial sheets were created using only 

the first seven interviews, as those were the interviews dedicated to generating the theme lists. 

  In every sheet, I chose red cells for all non-limit “N” themes and green cells for all limit 

“L” themes, shading all of these types of cells from lightest to darkest depending on their position 

in the “tangibility” continuum. For example, Theme N.1 represented viewing the differential as an 

automatic process and had the lightest shade of red, while Theme N.4 represented viewing the 

differential as an actual number and had the darkest. For all Tier 2 themes, I chose blue cells and 

"Differential"  "Small" Phrase dy/dx Def. Integral Indef. Integral d vs Delta

(U).b (C).a N.4a-3 (C).a N.1b (NONE)

N.E. Info N.4a-3 (U).b L.1d

(C).b N.4a-3 N.1b

N.4a-3 (C).b

(C).b N.4a-3

(A) (A)

N.4c (C).b

(C).a

 Double Integral dy = 2x dx ODE Work u- Sub

(C).a N.1a (A) N.1b N.1a

N.1b (P) N.4c (P)

L.1d (C).a (C).b

N.3

(P)

Andre Bryan Christopher Diane Eugene Francis Gustav Xavier Yanick Zaphod

N.1b N.4a-2 N.4c L.2 (U).b L.3 (C).b (C).b N.3 N.1b

N.4c N.4a-3 (C).d N.4c N.4a (A)

(C).b N.1b N.1b L.4c (U).a

N.3 (U).b
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shaded them from lightest to darkest in the order that I will present them in the “Results” section 

(Theme (C) had the lightest blue, and Themes (P) and (I) had the darkest.) I added yellow cells for 

instances in which a subject was not discussed or there was not enough information to make any 

determination11, and I added black cells to indicate when either an interview subject claimed that 

a differential had no meaning or the differential having no meaning could be inferred by his or her 

words.  

 I created one cell for each instance of the particular theme being used, and I defined one 

“instance” as discussing a particular theme without interruption. I chose this definition of 

“instance” to account for the different personalities and speaking patterns of my interview subjects. 

One interview subject might be taciturn, and give a one-sentence answer in which a particular 

theme is mentioned only once, while another interview subject might be more garrulous and give 

a multi-sentence paragraph in which the same theme is mentioned often. However, this difference 

in the amount of speech does not necessarily correlate with the strength of the theme in each 

subjects’ concept image. It is possible that the taciturn interview subject has a much stronger 

attachment to the theme than the garrulous interview subject, and if so, giving the garrulous 

interview subject more cells in his or her sheet might suggest an incorrect estimation of the 

strengths of each theme. If two consecutive cells contain the same theme, it is because the interview 

subject described the same theme in two ways that were different enough to warrant consecutive 

cells. 

                                                             
11 For example, the second question in the interview was “What does the word differential mean to you?” Most 
interview subjects replied with some version of the word “small,” but since the interview had just begun, there was 

not enough information at that time to interpret “small” within the framework of my flowchart. Was it a small 

object? Was it a pseudo-number? A real number? 

 

Consequently, a lot of the “Differential” spots on my Excel sheets received yellow cells. 
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 Horizontal dashed lines denote instances in which the discussion on the current topic was 

interrupted by the discussion of another topic. For example, in André’s interview, he interrupted 

his remarks on the definite integral to discuss the indefinite integral. The dashed line in André’s 

“Definite Integral” Excel sheet (Figure 8) shows this break. Additional dashed lines were used to 

denote when the subject discussed differentials in ways that deviated from the interview protocol. 

For example, some subjects discussed differentials in Chain Rule notation (
𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑡

𝑑𝑡

𝑑𝑥
), which 

was not a notation in my interview protocol. I used dashed lines to separate the themes found in 

these Chain Rule discussions from the themes found in the course of the interview protocol. 

 I believe that these flowcharts and spreadsheets provide nuance that the transcripts lack. 

For example, during discussion of the definite integral there were times in which André said that 

the 𝑑𝑥 in a definite integral was both limit-based and non-limit-based. However, when one looks 

at André’s spreadsheet, he or she sees that his “Definite Integral” column contains both the green 

and red cells that designate limit-based and non-limit-based themes, respectively, but it also 

contains a blue cell marked (C).a, which designates a “Context” theme, and specifically, a 

“historical context” theme. This suggests that André’s views of the definite integral’s differentials 

are not a simple contradiction, but rather a more nuanced view that limit-based and non-limit-

based conceptualizations each have a place in the historical development of integration and integral 

notation.  
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6.  DATA AND RESULTS 

 This section condenses and summarizes the responses that I obtained from my interviews 

which led to my theme lists and framework. For clarity to the readers, I will first describe each 

theme that resulted from the data analysis as well as the tools that I used to help me visualize the 

data in a more dynamic way. Then, I will present summaries of each interview subject’s responses 

and all responses for each mathematical expression used in the interview protocol, specifically 

drawing attention the presence or absence of each of the themes. Finally, I provide answers to the 

research questions. 

The Flowchart and the Final Tier 1 Themes 

 I begin this section by showing again the flowchart used for my Tier 1 themes (shown again 

in Figure 10). These Tier 1 themes are designated by a two-part labelling system. First, each of 

these theme’s labels begins with the letter “L” or “N”, depending on whether a Limit process was 

used in the creation of the differential, or a limit process was Not mentioned. Note that the 

interview subject did not necessarily have to use the word limit to be labeled as a “L” theme as 

long as a limit process was described. Next, a number was assigned that represented the theme’s 

position on my “numerical tangibility” continuum: I assigned a “1” if the differential did not seem 

to be a concrete object, “2” if it seemed to be a concrete object but without possessing any 

numerical qualities, “3” if the differential seemed to be an object with numerical qualities but was 

not described as an actual, quantifiable number (I will call such non-numerical objects “pseudo-

numbers” throughout this dissertation,) and “4” if the differential was a measurable, well-defined 

number. Some of these themes contain subthemes, which will be discussed below. 

Descriptions of Each Tier 1 Theme 

 Since my flowchart was based on an idea of “numerical tangibility,” I think it more natural  
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Figure 10: The flowchart containing all Tier 1 themes (Re-presented) 

 

to begin my list of theme descriptions and examples by starting with the actual, well-defined types 

of numbers with which mathematicians are familiar. Thus, I am going to begin my descriptions 

with the “4” themes and proceed through my continuum to the “1” themes. I will present these 

descriptions of the Tier 1 themes in pairs. For example, I will present Themes N.4 and L.4 together, 

N.3 and L.3 together, and so on, since the only difference between an “L” theme and an “N” theme 
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with the same number is the presence or absence of a limit process in its development. Unless 

stated otherwise, the reader can assume that the only difference in any two themes presented 

together is the presence or absence of a limit being used in the creation of a differential. 

 Themes N.4 and L.4: The differential is a quantifiable or formally-described number. 

In this theme, the idea that the differential has a measurable value was either directly or indirectly 

stated by the interview subject. This theme was used for differentials defined as real numbers or 

hyperreal infinitesimal numbers as found in nonstandard analysis, but this theme was also invoked 

if the interview subject convinced me that the differential has a size which can be defined, even if 

he or she did not explicitly state whether that size is real or infinitesimal. There are subthemes that 

explore both these different ideas and the many ways that differentials can be interpreted as real 

numbers. 

 Themes N.4a and L.4a: The differential’s value is a real number. In this theme, the 

value of the 𝑑𝑥 was stated to be a real number. Sometimes this statement was done indirectly, as 

when someone described the differentials in the “Linear Approximation” context (Δ𝑦 ≈ 𝑑𝑦 =

𝑓′(𝑥) 𝑑𝑥, where Δ𝑥 = 𝑑𝑥.) If someone used this context, then he or she was saying that both 𝑑𝑥 

and 𝑑𝑦 are real, because Δ𝑥 and 𝑓′(𝑥) are also real. Sometimes this statement was done directly, 

as in Bryan’s 𝑑𝑥 in the definite integral: “But I don’t think of it as infinitely small. It’s always – 

it’s always a finite number,” and later “Right, [the 𝑑𝑥] would be 10−4 or something.” Sometimes 

𝑑𝑥 was directly described as a real number, but with a definition similar to Courant and John’s 

(1965) “physically infinitesimal”. Examples of this were André’s “a difference in 𝑥 that is much 

smaller than any relevant scale in the problem,” and “[The differentials] are very small compared 

to – not so much to 𝑥, but more like … to the scales at which 𝑥 or 𝑦 varies significantly.”  
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 Themes N.4b and L.4b: The differential’s value is a (formally-defined) infinitesimal. 

The 𝑑𝑥 was described as a formally-defined infinitesimal number as found in nonstandard analysis. 

Again, this could have been stated indirectly or directly. Gustav mentioned Abraham Robinson by 

name, and, during discussion of what “small” phrases meant to him, said, “Well, I can give you 

the definition: that’s smaller than any 
1

n
 and greater than zero. That’s [a] kind of positive 

infinitesimal.” This was a fine definition for a hyperreal infinitesimal, but Gustav stopped short of 

actually describing any of the infinitesimals in his interview in this way. By contrast, Zaphod not 

only mentioned Robinson but specifically stated during his discussion of Leibniz derivative 

notation: “so if I’m thinking about differentials as objects with size, I think about them as 

infinitesimal elements, so I think about them as literal infinitesimals in the Abraham Robinsons 

sense.” 

 Note that this theme was not being used if the interview subject just happened to use the 

word “infinitesimal” as a vague, informal descriptor, such as in the phrase “infinitesimally small.” 

Instead, the assignment of this theme required some indication by the interview subject that he or 

she is familiar with some form of nonstandard analysis and the formal hyperreal infinitesimals that 

reside therein.  

 Themes N.4c and L.4c: The differential has a value of unspecified size, inferred to be 

real or infinitesimal. This subtheme was to be used when the subject assigned the 𝑑𝑥 qualities 

that gave it a well-defined size, but the particular type of well-defined size (real or infinitesimal) 

was not explicitly stated. To give an example, I will use Christopher’s phrase “the 𝑑𝑥 is small 

enough so that the linear approximation is very accurate.” Approximations can be “very accurate” 

if the value of the 𝑑𝑥 is a small enough real number. Approximations can also be “very accurate” 

if the value of the 𝑑𝑥 is a hyperreal infinitesimal (the approximation will be inaccurate by another 
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hyperreal infinitesimal.) Sometimes further questioning enabled me to determine that the subject 

was conceptualizing the dx as a real number or as a hyperreal infinitesimal, enabling me to assign 

subtheme N.4a or N.4b.  Other times, such as with Christopher’s phrase above, the data was not 

clear enough to make the distinction. I classified these instances as subtheme N.4c.   

 Themes N.3 and L.3: The differential is a “pseudo-number.” In this theme, interview 

subjects viewed a differential as a concrete object that possessed numerical qualities such as “size” 

or “width,” but these objects were presented more as abstract ideas rather than specific, measurable 

values. I called such objects “pseudo-numbers” and assigned them a “3” in my “numerical 

tangibility” continuum. A differential was categorized as a pseudo-number if it was described as a 

concrete object with numerical qualities but without a clear, direct statement that this differential 

was a real or infinitesimal number. A differential was also categorized as a pseudo-number if the 

interview subject hedged his or her description of a particular differential by saying that it is treated 

“like” it is a number or “as if” it were a number. 

 To give an example of a limit-based pseudo-number: Diane described most of her 

differentials in terms of limits, and, indeed, talked about the 𝑑𝜏 and 𝑑𝑡 in the separable ODE as 

limits of Δ𝜏 and Δ𝑡. But when discussing the solution of the ODE, she said, “The funnier part for 

me about these kind of problems is that we start treating them like an actual number and start doing 

algebra with them,” and summarized her views on this 𝑑𝑡 by saying, “It’s an infinitely small 

quantity; it’s not really a number, but we think about it that way.” This 𝑑𝑡 arose from a limit, but 

given that her often-used phrase “infinitely small” was never explicitly quantified by her during 

her interview, this 𝑑𝑡 could not be assigned Theme L.4. Instead, I assigned it Theme L.3 because 

it was treated “like an actual number” when it comes to multiplication, and thus, it is an object 

with numerical qualities. 
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 Themes N.2 and L.2: The differential is an object with no numerical qualities. In my 

data, it was possible that a differential might not be given any descriptors that would classify it as 

a number, such as “size” or “value,” but might still be considered to have some tangibility, and 

thus, still be a mathematical object. 

 I understand that there might be an issue of semantics with the word “object.” By the 

strictest of definitions, the definite integral ∫ 𝑥2 𝑑𝑥
10

1
 could be considered to contain up to eight 

objects: the integral symbol, the lower bound, the two digits that make up the upper bound, the 

two “pieces” of 𝑥2 and the two letters of 𝑑𝑥. However, I would submit that mathematicians would 

not consider the “10” and the “𝑥2” in this context to be made up of two pieces. I would also surmise 

that when a mathematician sees this 𝑥2, a part of his or her evoked concept image would be a 

picture of a parabola, or the graph of a parabola on the Cartesian plane, ensuring that 

mathematicians have no trouble viewing 𝑓(𝑥) = 𝑥2 or other functions as concrete, tangible, 

mathematical objects. 

 The assignment of the number “2” to a differential in my framework would be an 

understanding from the interview subject that the differential was afforded a similar level of 

tangibility. This tangibility could have been ascertained by the interview subject describing 

differentials as objects worthy of study, or by the interview subject describing differentials as 

having an equal worth to other mathematical objects in an expression. For example, signifying in 

some way that the 𝑑𝑥 in the definite integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 is an “equal partner” to 𝑓(𝑥) in this 

expression and not an afterthought. 

 To give an example of this: Diane described the differential in her definite integral as “the 

result of a limit process” and noted that “[The 𝑑𝑥 in the definite integral] sort of stands in for the 

Δ𝑥, but I don’t think that I’m taking infinitely many points, finding the functional value and 
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multiplying by an infinitely small number necessarily.”  Diane clearly discussed this 𝑑𝑥 as having 

a meaning and purpose, cementing it as an “object,” in the above sense. But in stating that it cannot 

be multiplied, she did not assign this object a numerical quality. Thus, this differential received a 

designation of Theme L.2 instead of Theme L.3.  

 Themes N.1 and L.1: The differential represents an ephemeral (not concrete) idea. 

Finally, a differential might have been considered as neither a sized quantity nor a non-numerical 

object. To continue the semantic discussion from the above section, a differential assigned a “1” 

in my framework is one that was not perceived to be equally tangible as more standard 

mathematical objects. In this dataset, I found two ways that this occurred: the differential was a 

part of some automatic process or the differential was an indicator of how to interpret an 

expression. The subthemes that explore these different ideas are listed below. 

 Themes N.1a and L.1a: The 𝒅𝒙 is merely a part of an automatic process. In this 

subtheme, the differential was merely a part of a process that was reflexively completed without 

any explanation or thought. For an example of this, Diane, when discussing how the substitution 

step 𝑑𝑢 =
1

2√𝑡
 𝑑𝑡 for the integral ∫

cos √𝑡

2√𝑡
 𝑑𝑡

4

1
 is sometimes taught, said:  

I don’t know how to explain it, it’s just that it bothers me when we write this kind 

of thing down without really explaining it to our students in Calc. 2, I guess. And 

maybe I’m the only one that doesn’t. Maybe the other people are really clear about 

why we’re saying 𝑑𝑢 and 𝑑𝑡 and just sticking them there. But I feel like when we 

teach the 𝑢-substitution in particular, we just write this [𝑢 = √𝑡] and write that 

[𝑑𝑢 =
1

2√𝑡
 𝑑𝑡], and we help them solve and plug stuff in, and we don’t spend 

enough time talking about what is 𝑑𝑢 and what is 𝑑𝑡. 
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While Diane was speaking of teaching in general, the fact that she ended the above quote with 

“and I’m just as guilty of that,” while André noted that he called the same substitution step “just a 

mnemonic” showed that this subtheme exists in my data set. As for its classification, the fact that 

no time was given to the discussion of any potential characteristics of the 𝑑𝑢 and 𝑑𝑡 while they 

were being used in this substitution step is what kept them as “ephemeral” (thus, Theme N/L.1) 

and not classified as “objects” (Theme N/L.2) in my continuum. These differentials cannot possess 

the same tangibility as other, better-analyzed differentials if they were only automatically written 

down and immediately discarded once a particular evaluation step was concluded. 

 Themes N.1b and L.1b: The 𝒅𝒙 serves merely as a means to indicate a particular 

variable upon which some process or characteristic is based. In this subtheme, the use of a 

“𝑑𝑥” in an expression means that “𝑥” is the relevant variable for whatever operation is suggested 

by the expression. This was a theme that was already mentioned in the literature review as a 

common student conceptualization of the differential in an integral, and in my data, this theme was 

predominant in my interview subjects’ indefinite integrals and present in their definite integrals. 

However, I believe that this subtheme was not limited to integration. When seeing the notation 

“
𝑑𝑦

𝑑𝑥
”, a few of my interview subjects specifically stated that 𝑦 was a function of 𝑥 based on the 

position of the 𝑦 and the 𝑥 in that notation. I would surmise that, in this expression, the differentials 

indicated the dependent and independent variables, and thus fall under this subtheme. 

 Regarding the semantics of the word “object” mentioned above, I would put these 

differentials in the “ephemeral” category (Theme N/L.1) and not in the “object category (Theme 

N/L.2) because, to me, these differentials seem more akin to verbal directions than tangible 

mathematical expressions. To put it another way, if one views the 𝑑𝑥 in a definite integral as only 

“mentioning the variable of integration,” then the 𝑓(𝑥) and 𝑑𝑥 are not equal partners, as they 
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would be if the 𝑓(𝑥)𝑑𝑥 was viewed as a multiplication of two factors. Instead, with this theme, 

the 𝑑𝑥 described how the more-important 𝑓(𝑥) will be integrated and thus takes on a secondary 

role. 

 Themes N.1c and L.1c: The 𝒅𝒙 indicates a particular direction of “travel.” This 

subtheme, found in only the double integral and definite integral, was similar to the previous 

subtheme in the sense that the differential only serves as an indicator, but in this case, an idea of 

movement and/or the word “direction” is specifically given. For example, graphical 

representations of the double integral ∫ ∫ 𝑓(𝑥, 𝑦) 𝑑𝑦 𝑑𝑥
𝑑

𝑐

𝑏

𝑎
 can contain the conceptual metaphors 

of the differentials 𝑑𝑦 and 𝑑𝑥 representing “moving in the 𝑦-direction between 𝑦 = 𝑐 and 𝑦 = 𝑑” 

then “moving in the 𝑥-direction between 𝑥 = 𝑎 and 𝑥 = 𝑏.” Again, if one viewed these 

differentials with this conceptualization, then he or she was using them to help describe the 

integration of the more-important 𝑓(𝑥, 𝑦), and thus, the differentials would not be considered as 

“objects” like they would be if viewed as reified limit processes or factors of the product 𝑓(𝑥, 𝑦) ∙

𝑑𝑦 ∙ 𝑑𝑥. 

 Theme L.1d: The 𝒅𝒙 indicates that a limit occurred. This was another rarely-used 

subtheme, and was found only in André’s interview. In this subtheme, the subject indicated that 

the notation containing the 𝑑𝑥 was created by using a limit process. To give examples, when André 

discussed the definite integral, he noted “𝑑𝑥 represents the fact that it was a sum, it was a Riemann 

sum,” and “it represents the fact that the integral is a limit of a sum like this.” Instead of 

representing a specific object, such as the Riemann sum’s Δ𝑥, which would warrant the assignation 

of Theme L.2, André’s differentials represented the fact that a limit existed. Thus, they served as 

indicators of a process, and, like the differentials that served as indicators of a variable, were 



70 

 

classified under Theme L.1. Since this subtheme is meant to indicate the existence of a limit 

process and is thus dependent on a limit, there is no corresponding subtheme N.1d. 

 A brief note about subthemes. Even though I did not find any during my research, I do 

not wish to suggest that no subthemes can exist for Themes N.3/L.3 and N.2/L.2. A lack of 

subthemes in this dissertation means only that when these themes appeared in my data, all instances 

of the same theme were described similarly enough to one another that I thought no subthemes 

were warranted for this particular data. Similarly, I do not wish to suggest that the subthemes I 

listed here are the only possible subthemes for Themes N.4/L.4 and N.1/L.1, only that the listed 

subthemes were the ones that appeared in my data. The vastness and uniqueness of individual 

concept images suggest that future research could contain new interpretations of these eight main 

themes, necessitating the introduction of additional subthemes. 

Descriptions and Examples of Each Tier 2 Theme and Subtheme 

 The themes that I have categorized as “Tier 2” themes are the themes that are not directly 

tied to one’s conceptual understanding of differentials but rather discuss ideas about differentials. 

Table 5 contains the eight final Tier 2 themes which emerged from the data. In this section, I 

provide summaries and examples of these themes and some subthemes. Since the first five were 

the most common and interesting, they will be discussed in greater detail than the others. 

Theme (C): The Meaning of the 𝒅𝒙 Depends on a Particular Context  

 The presence of this theme signifies that the interview subject believed that the meaning 

of the differential can change depending on the context in which the differential is found. Thus, 

there can be more than one way to interpret the same differential. I designated all of the contexts 

found in my dataset as subthemes and list them below. I do not claim that all of the contexts listed 

below are the only contexts which might exist; further research might unearth contexts which my 
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Table 5 

 

List of all Tier 2 themes 

Symbol Description 

(C) One’s conceptualizations of differentials can depend on the Context in which they 

are presented. 

(U) The interview subject might express Uncertainty when giving his or her views of 

differentials 

(A) The interview subject uses differentials in Algebraic operations just as if they 

were any number. 

(“A”) There is hesitancy when discussing algebraic differentials – I term this theme 

“Algebra” with differentials 

(A) The opposite of Theme (A): one cannot perform Algebraic operations with 

differentials 

(P-L) The differential resulted from the use of a Pseudo-Limit 

(P) The interview subject views differentials or differential notation as Practical. 

(I) The interview subject views differentials or differential notation as Impractical. 

 

interview subjects never considered.  

 Theme (C).a: The interview subject mentions that the interpretations of differentials 

have changed over the course of history. In this subtheme, the interview subject described the 

analyses of differentials as being dependent on a particular time in history. In my dataset, this 

theme was used by André and Gustav. Gustav prefaced some of his descriptions of differentials 

by noting the historical development of analysis from Leibniz through Cauchy to Robinson. 

Specifically, he called the differentials in the Leibniz notations of derivative and definite integral 

“historical leftovers,” but also “notations based on intuitions,” where these “intuitions” referenced 

Leibniz’ informal understanding of infinitesimals. André used terms like “traditional” and “old 

school” in some of his descriptions, and defined the differentials in the double integral as follows: 

“The practical role is that it just tells you what you’re integrating with respect to. And, as an 

historical or kind of symbolic thing here, it represents that it comes from the Δ𝑥 and the Δ𝑦 in a 

Riemann Sum,” showing that, for him, a “historical” context changes the differential’s meaning.  
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 Theme (C).b: Differentials might be viewed differently by mathematicians and other 

experts. This subtheme was used when the interview subject mentioned any idea that 

mathematicians and other experts view certain differentials in different ways. Note that while my 

literature review discussed physics education research, this theme would also hold for engineers 

or members of other “applied” fields. This theme was most prevalent in the “Work” problem, 

where multiple interview subjects (André, Eugene, Gustav, and Xavier) described the integral 

similarly: the integral was initially formed in a “physics” context, in which the 𝑑𝑥 represented a 

small amount of wire or distance. Once this integral was constructed and needed to be evaluated, 

one would switch one’s view to a “mathematical” context, in which the 𝑑𝑥 then indicated the 

variable of integration. 

 Outside of the “Work” problem, this theme again primarily appeared in André’s and 

Gustav’s interviews. Gustav noted that he would describe the differentials in the separable ODE 

in a certain way if he is thinking “mechanical or applications.” André described physicists as more 

willing to view differentials as real numbers than mathematicians, and discussed his own 

experiences of learning calculus as a student: there existed an “engineering way” in which 𝑑𝑥 was 

a value smaller than scale, but also a “mathy way” which was based on traditional, epsilon-delta 

limits. 

 Theme (C).c: There is an awareness of nonstandard analysis. This theme differs from 

Themes N.4b and L.4b in that with this theme, the interview subject does not personally subscribe 

to the view of differentials as nonstandard infinitesimals. Rather, the interview subject mentioned 

that he or she was aware that it is possible to view differentials as some type of formally-defined 

infinitesimal, and that doing so would give the differentials a different flavor. In my dataset, this 

theme was used by Eugene and Francis, who, respectively, said toward the beginnings of their 
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interviews “Although it is my understanding that, you know, in this theory of infinitesimals or 

whatnot that can be made precise, you can view it that way. I don’t have that background, that 

machinery,” and “I know a little bit about, with infinitesimals. I don’t know a lot, probably not 

enough to hurt me, but, you know, that you think about these in a different, nonstandard way.” 

 Theme (C).d: The interview subject mentions that the act of teaching can alter one’s 

views of differentials. This was the most common of “context” subthemes. Nearly every interview 

subject mentioned their teaching in some way during his or her interview, perhaps implying 

different “personal” and “instructor” aspects of one’s concept image. The alteration of differential 

conceptualizations that comes from teaching took several forms in my dataset. I will mention and 

give examples of three. 

 First, it is possible that one might teach conceptualizations that are markedly different from 

one’s personal ideas about differentials. This seems true with Bryan. As will be mentioned in his 

interview summary below, Bryan seemed to hold views that differentials were values that did not 

come from a limit. Nevertheless, when teaching, he presented limit-based differentials. The act of 

teaching caused him to use a conceptualization that fell outside his personal views. Second, 

sometimes instructors teach different conceptualizations to different types of students. Eugene 

gave two examples of this: he said that he would teach the 𝑑𝑥 in a definite integral as a small width 

if he were teaching undergraduates, but as an indicator of the variable of integration if he were 

teaching more advanced students, and he would accept “multiply by 𝑑𝑡” from younger students 

without protest, but would want to “push a little bit further” if an older student said the same thing. 

Finally, it is also possible that one holds a complex view of differentials but teaches a less-complex 

view to his or her students. An example of this comes from Gustav’s discussion of Leibniz 

notation. He understood that notation as a ratio of formal nonstandard infinitesimals, but “when I 
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actually teach calculus, I tell them that this is pure notation … The intuition this notation – again, 

come[s] from the fact that you can do this by using infinitesimals.” Thus, he may present his 

students with an intuitive understanding of Robinson’s infinitesimals, but will not present a formal 

definition of them. 

 Theme (C).e: The word “differential” may have multiple meanings. This theme 

represents any instances in which there was any uncertainty as to how the word “differential” is 

interpreted by the interview subject. Eugene, Francis, and Xavier initially defined the word 

“differential” using the aforementioned “Linear Approximation” idea (Δ𝑦 ≈ 𝑑𝑦 = 𝑓′(𝑥) 𝑑𝑥, 

where Δ𝑥 = 𝑑𝑥, but Δ𝑦 ≠ 𝑑𝑦), rather than the two-letter symbol of the form “𝑑_”. When this 

confusion happened, it was cleared up quickly, and once discussed, never affected the remainder 

of the interviews. 

 Theme (C).f: A single differential versus multiple differentials in one expression. This 

theme was rare, only used by Bryan and Eugene when discussing Leibniz derivative notation. Both 

of them mentioned that they could define a 𝑑𝑥 if it appeared individually, but since they did not 

view “
𝑑𝑦

𝑑𝑥
” as a ratio, the “𝑑𝑥” in this notation had no meaning to them. Thus, a “𝑑𝑥” may go from 

having meaning to not having meaning, depending on the notation used. 

 Theme (C).g: Differential conceptualizations depend on experience. This theme notes 

that one’s conceptualizations might vary depending on how much experience with differentials he 

or she might have. Xavier discussed this theme by saying that a layman would view the word 

“differential” as a general small difference whereas a mathematician knows and uses a very precise 

and formal definition. Yanick discussed this theme in regards to his personal growth as a 

mathematician, noting that, as a student, he viewed differentials as variable indicators, but after 

earning multiple degrees, his concept image of differentials has evolved. 
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Theme (U): There is Uncertainty Surrounding Differentials 

 This theme was in use whenever the interview subject expressed views that showed he or 

she was not fully confident in his or her opinions of differentials.  

 Theme (U).a: Acknowledgement of cognitive conflict. With this subtheme, the interview 

subject expressed awareness that he or she had said contradictory statements within the interview, 

and was not happy with the existence of personal cognitive conflict. This unhappiness might have 

been described directly by the interview subject, or might have been inferred by how strongly he 

or she seemed to want to resolve the cognitive conflict. An example of this is Francis viewing his 

“Linear Approximation” differentials (differentials of the form 𝑑𝑦 = 2𝑥 𝑑𝑥) as real numbers, 

when in all of his earlier discussions of differentials, he described them as unquantifiable: “but 

now I’m being cognizant of what I think about this, and what I originally said … That these [at the 

𝑑𝑦 and 𝑑𝑥] are not quantifiable. [Thinking] And I’d have to really think about rectifying this.” 

 Another example is Yanick’s awareness of his inconsistency of how confident he described 

algebra with differentials: 

So I’ve been contradicting myself all over the place. On one end I’m saying that I 

can multiply by 𝑑𝑥 like it’s nothing, and on the other end I’m putting divide in air 

quotes cause I’m really worried about dividing something that’s very small. 

 Theme (U).b: Some uncertainty in the interview subject’s responses. In this theme, the 

interview subject might have made statements that showed that he or she was not completely 

confident in the explanations that were given. The fact that this was a very common theme implies 

the sheer vastness of possible conceptualizations of differentials and perhaps speaks to the need 

for this dissertation. Some examples of this lack of confidence include the interview subject 

admitting that he or she was unsure if the answers being given were correct, an example of this 
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being Diane’s multiple uses of the word “fuzzy” to describe her understanding of her phrase 

“infinitely small.” Another example is the interview subject suggesting that the answer being given 

is but a smaller part of some “real” answer that is beyond the interview subject’s understanding, 

as in Eugene saying, “I don’t really have a formal understanding of 𝑑𝑥, although I understand that 

concept can be made precise if you make appropriate definitions and that kind of thing.” 

Algebra Themes: How Much Algebra can be Conducted with Differentials?  

 Throughout my interviews, there was disagreement among the interview subjects as to how 

“real” any algebra performed with differentials might be. I have designated three subthemes to 

cover the possible responses on a “real/not real” continuum.  

 Theme (A): Any algebraic step performed with a differential is as real as the same 

step performed with a real or formal infinitesimal number. In this theme, statements that 

describe algebraic manipulations with differentials are given just as confidently as statements 

regarding algebraic manipulations with real numbers. Note that this does not mean that one who 

used this theme must think of differentials as real numbers, only that he or she had no qualms about 

multiplying or dividing differentials. Examples of this theme include using the statement “multiply 

by 𝑑𝑡” as a step in the solution process for an ODE, describing the definite integral’s multiplication 

as “𝑓(𝑥) times 𝑑𝑥,” and describing Leibniz derivative notation as “𝑑𝑦 divided by 𝑑𝑥,” as long as 

these statements were given without any hesitation or qualifications.  

 Theme (“A”): We cannot perform algebra with differentials, but we can perform 

“algebra” with differentials. The quotation marks are meant to denote an algebra in which 

manipulations with differentials are performed as if the differentials were real numbers or formal 

infinitesimals, but the interview subject does so while directly stating that such manipulations are 

not as genuine as they would be with real numbers. In my data, examples of this theme included 
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the description by some interview subjects that the separation step in the ODE’s solution was “like” 

or “as if” we are multiplying by 𝑑𝑡, and the idea that, while one might teach such a separation as 

multiplication, one might also, to use Diane’s words, “feel funny about writing it that way.” 

 Theme (A): There is no algebra with differentials. In this theme, the interview subject 

believed that one cannot perform any algebra (or even “algebra”) with differentials. The presence 

of this theme would be noted by an unambiguous statement that algebra is simply not allowed. To 

use the converses of the above examples, someone using this theme would not accept “multiplying 

by 𝑑𝑡” as a viable solution method for the ODE, would state that a definite integral should not be 

considered as 𝑓(𝑥) times 𝑑𝑥, and would view Leibniz derivative notation as not a quotient of 𝑑𝑦 

divided by 𝑑𝑥.  

 Note that it is possible for an interview subject to express multiple views on this continuum 

throughout his or her entire interview. Their “algebra” views might change depending upon the 

differential-containing expression and/or the context that they are discussing. 

Theme (P-L): The Existence of a “Pseudo-Limit”  

 This theme was used whenever the interview subject described a limit process that was 

incorrect or differed significantly from the traditional epsilon-delta limit. The particular example 

of this found in my data was mentioned as a conceptualization in Artigue (1991) and Orton (1983). 

Yanick used a definition for the differential 𝑑𝑥 as lim
Δ𝑥→0

Δ𝑥, and Francis used lim
𝑛→∞

𝑏−𝑎

𝑛
. If one 

assumes that any value of any differential must be nonzero, then defining differentials in these 

ways is a contradiction, as the most basic facts of limits and continuity dictate that lim
Δ𝑥→0

Δ𝑥 =

lim
𝑛→∞

𝑏−𝑎

𝑛
= 0. If this were true, then every definite integral would have to be equal to 0.  

 Note that simply stating one of these incorrect definitions is not enough to classify the 

relevant differential as coming from a pseudo-limit. When discussing graphical representations of 
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Leibniz’ derivative notation, Diane said “I would basically say “as we take [ lim
Δ𝑦→0

Δ𝑦 and lim
Δ𝑥→0

Δ𝑥], 

this limit approaches this 𝑑𝑦, or limit approaches this 𝑑𝑥. But it never gets there, ‘cause we’re not 

actually making it zero, right?” She both notes that these limits, if left unchecked, should reach 

zero, and also qualifies her statement with “basically,” implying that, to her, the differential’s 

definition is more than this limit. The assignment of this theme to a differential occurred when 

these definitions of a differential were presented despite, and without attention to, the inherent 

contradictions present in these definitions. 

Themes (P) and (I): Differential Notation is Practical (or Impractical) 

 Theme (P) was used at any point when the interview subject mentioned the utility of 

differentials. This was usually presented as the idea that differential notations make ideas or 

solution methods more intuitive. Examples of this include the usefulness of Chain Rule notation 

𝑑𝑦

𝑑𝑡
=

𝑑𝑦

𝑑𝑥

𝑑𝑥

𝑑𝑡
 and the utility of solving differential equations by separation. Conversely, Theme (I) 

was only used by Bryan, and was meant to convey that he believed what the differential notation 

is trying to represent is confusing or unclear. His specific example discussed Leibniz notation and 

how he viewed the 𝑑𝑥 in that notation as different from other 𝑑𝑥’s: “I think the world would have 

been fine if we would have called [the derivative] 𝑦′ and never said that Δ𝑥 becomes a 𝑑𝑥.”   

Summaries of Each Interview Subject 

 This section will summarize both the main findings of each interview as well as provide 

the beginnings of an analysis of the personal concept definition of differentials that seems to be 

held by each interview subject. I qualify that last sentence with the words “beginnings” and 

“seems” because I recognize that providing a complete concept image of an object as complicated 

as the differential might not be possible after one interview. Nevertheless, I do believe that the 
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information I obtained by using my detailed interview protocol allows for not only good 

approximations of personal concept images, but also overall trends and some interesting responses.  

André 

 André’s themes were almost entirely non-limit-based, as can be seen by the collection of 

small boxes in the top half of his flowchart and the prevalence of red over green in Figure 11. The 

only times he described limit-based conceptualizations were during his discussions of the definite 

and double integral, stating that the differential in an integral served as an indicator that a limit 

process occurred: “the 𝑑𝑥 represents the fact that it was a [Riemann] sum.” Also, the idea of limit-

based differentials in integration was almost always given with a discussion of the history of 

integration and notation. This is shown by the presence of Theme (C).a in the same column as 

most of his spreadsheet’s green cells. Specifically, he called limit-based interpretations the 

“historical” way to interpret the differentials in those expressions, while stating that the “practical” 

and preferred interpretation was of these differentials as variable indicators. Thus, I might suggest 

that his limit-based themes seemed to have been stated as to give an idea of completeness instead 

of being conceptualizations he actually believed and held. 

 Interview subjects having multiple conceptualizations was a common occurrence 

throughout the data, and André was an example of this. Specifically, he seemed to have a pretty 

even split between differentials as well-defined numbers and differentials as variable indicators, 

shown in his flowchart as a balance between themes on the right and left sides, respectively, and 

in his spreadsheet as a pretty even split between dark red cells and light red cells, respectively. 

When discussing his phrase “infinitesimally small” and Leibniz derivative notation at the 

beginning of his interview, he described differentials the following way “If they represent actual 

variations, actual quantities, then they’re very small compared to – not so much to 𝑥, but more 
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Figure 11: André’s flowchart and spreadsheet 

 

like, see [gestures at part of a figure he drew] to the scales at which 𝑥 or 𝑦 varies significantly,” 

which seems similar to Courant and John’s (1965) “physically infinitesimal.” This “physically 

infinitesimal” description was also used when discussing the differentials in the separable ODE 

and the “Work” problem. However, when discussing integration and ideas like differentials of 

"Differential"  "Small" Phrase dy/dx Def. Integral Indef. Integral d vs Delta

(U).b (C).a N.4a-3 (C).a N.1b L.3

N.E. Info N.4a-3 (U).b L.1d

(C).b N.4a-3 N.1b
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(C).b N.4a-3

(A) (A)

N.4c (C).b
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 Double Integral dy = 2x dx ODE Work u- Sub

(C).a N.1a (A) N.1b N.1a

N.1b (P) N.4c (P)

L.1d (C).a (C).b

N.3
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functions and integration by substitution, André’s differentials were variable indicators and parts 

of automatic processes: “it’s a necessary way to indicate what is the variable with respect to which 

you are, you are doing the integration or the antidifferentiation.” 

  Intermingled with André’s multiple conceptualizations was the idea that different contexts 

can affect how one might conceptualize differentials. This idea was briefly explored during my 

pilot study, which involved interviewing two mathematicians and a physicist, but André’s 

interview was notable for how often context was discussed, as shown by the amount of “(C)” 

themes in the spreadsheet in Figure 11. Not only did André mention some differences in how he 

felt mathematicians interpreted differentials versus physicists or engineers (Theme (C).b), but he 

also claimed different interpretations could exist based on the historical development of notation 

(Theme (C).a). Specific examples of these include  

So just, just imagine 𝑑𝑥 is a really, really, small number, you know, very, very 

small change in 𝑥, which is smaller than anything, anything else 𝑥 might do. And 

then we do these things … you can do simplifications, you can do algebra …that 

was the “engineering way” of teaching Calculus. And then the “mathy way” was 

the epsilon-delta … “the practical role is that it [the 𝑑𝑥 in a definite integral] just 

tells you what you’re integrating with respect to. And, as an historical or kind of 

symbolic thing here, it represents that it comes from the Δ𝑥 and the Δ𝑦 in a Riemann 

Sum.”  

Bryan 

 Bryan’s dominant view of differentials was one of differentials as real numbers, as can be 

seen by the concentration of themes in the top right of his flowchart and by the amount of dark red 

cells in his spreadsheet (Figure 12). I would guess that at least a part of this view came from his 
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non-academic work, which involves mathematical modeling. Many times during his interview, he 

mentioned hypothetical situations such as receiving values from a colleague with which he would 

need to calculate a derivative, or needing to approximate an integral within a certain level of 

tolerance.  

 

 
 

 
Figure 12: Bryan’s flowchart and spreadsheet 
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 Thus, for Bryan, the differentials in definite integrals, double integrals, and the expression 

𝑑𝑦 = 2𝑥 𝑑𝑥 were real numbers. In fact, when asked about phrases like “infinitely small,” he said 

not only that he did not like to use them because they were too difficult to make precise, but also 

“I don’t think of [the definite integral’s 𝑑𝑥] as infinitely small. It’s always … a finite number.” 

Sometimes he interpreted this number in the sense of Courant and John’s (1965) “physically 

infinitesimal” in which the differential should be smaller than the relevant scale of the physical 

situation: 

If we’re talking about astronomical stuff, you know, the change in 𝑥 being small 

could mean 100,000 miles, but when you’re talking about molecules, you know, 

the change in 𝑥 can not be 100,000 miles, it’s one Ångström. So “relative” is 

important, but for this idea that the change in 𝑥 will help you determine the change 

in 𝑦, the change in 𝑥 has to be relatively small 

Sometimes this real number was simply a value not dependent on a particular scale, but instead 

simply small enough to give him the level of approximation he needs:  

I should be able to come up with a way to come up with an approximation that’s 

better and better. You know, if somebody says “I want it to 10−6” I can do it, or if 

they want it 10−12 I can do it … the Δ𝑥 would be 10−4 or something. 

 There were three main instances in which Bryan did not use real-number-based 

conceptualizations for differentials. First, he did not have any conceptualization for the 𝑑𝑥 in the 

indefinite integral: “To me, [the indefinite integral’s notation] is a straightforward way of coming 

up with the antiderivative of 𝑔. And [the 𝑑𝑥] could almost mean nothing.” The idea that a 

differential has no meaning is represented by black “Theme #0” cells in the spreadsheets. Second, 

he viewed the solution of the separable ODE and the evaluation of the integration by substitution 
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expression as automatic processes. Consequently, the differentials in the ODE and “substitution” 

integral were merely parts of this automatic process and not necessarily real numbers. Finally, 

Bryan occasionally used “limit-based” themes, but he only did so when he was discussing his 

teaching, as shown by the inclusion of the “teaching context” Theme (C).d in the same columns 

as the only green cells in Figure 12. He mentioned the idea of secant lines approaching a tangent 

line when discussing Leibniz derivative notation and shrinking Δ𝑥 and Δ𝑦 when defining a double 

integral, but he prefaced both of those ideas with phrases like “If I were speaking to a student.” I 

would say that, while his personal concept image is mostly one of differentials as real numbers 

without limits, Bryan also has elements of a limit-based “teaching” concept image that he can use 

when needed. This is another, and different, example of context-based differentials than the ones 

found in André’s interview. 

Christopher 

 Compared to André and Bryan, Christopher used limit-based themes much more often, as 

his is the first flowchart to have a lot of themes on the bottom half and a spreadsheet containing a 

lot of green (Figure 13). Indeed, the differentials in his definite, indefinite, and double integrals 

would best be described as limit-based pseudo-numbers. I call them “pseudo-numbers” because 

he described and drew the width of the Riemann sum rectangles under a curve as “𝑑𝑥” and later 

said “𝑓(𝑥) times 𝑑𝑥” when describing the integral These imply that his 𝑑𝑥 can be multiplied and 

used to measure a width, which I would describe as “numerical characteristics.” However, unlike 

André’s and Bryan’s differentials that were specifically defined as real numbers, albeit smaller 

than a particular scale, Christopher did not quantify his integral’s differentials, and only described 

them by the more vague “Really small and getting smaller. As a limit.”  

 Other limit-based themes arose with the questions not directly addressing differentials in 
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Figure 13: Christopher’s flowchart and spreadsheet 

 

expressions. When discussing his initial phrase that differentials were “teensy-weensy” changes 

in a variable, he later clarified this definition with “Differentials kind of represent the limiting form 

of linear approximations.” When discussing the difference between Δ𝑥 and 𝑑𝑥, he stated “When 
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you write 𝑑𝑥, you’re in some sense taking a limit; there’s some sort of limit involved … Yeah, 

there’s some sort of limiting process involved when you use a ‘𝑑’.”  

 Differentials that were measurable quantities and not limit-based occurred during his 

discussion of the “context” problems. Even though he described the differentials in the definite 

integral as limit-based pseudo-numbers, when discussing the definite integral in the “Work” 

problem, he ascribed to its differential a definable length with no mention of limits: “So 𝑑𝑥 would 

be a small change in the position of the mass going up the side of the building,” and “I usually like 

to show them that the work is the same if you imagine lifting only the mass by itself, and then 

chopping up the cable into little bits, and raising each little bit by itself.” Also, when describing 

how he tells his students how to model a differential equation, Christopher stated “I usually tell 

my class ‘If you want to model a physical situation, get a differential equation out of it, you gotta 

ask “What happens over the next 𝑑𝑡?”’,” implying that the 𝑑𝑡 is a measurable value of time not 

described in terms of a limit. This seeming discrepancy between limit-based and non-limit-based 

themes might have come about from imprecise or incomplete questioning by me, but I think that 

instead, it is an example of a concept image that contains two aspects that are evoked at different 

times: a “theoretical” aspect that is evoked when discussing theory and generic expressions, and a 

“practical” aspect that is evoked when discussing expressions within a physical context. 

Diane 

 The summary for Diane’s interview is perhaps the most streamlined: she viewed almost 

every differential with a limit-based theme, as shown by the amount of themes in the lower half of 

her flowchart and the amount of green in Figure 14. In fact, there were two interview expressions, 

the separable ODE and the expression 𝑑𝑦 = 2𝑥 𝑑𝑥, for which she was the only interview subject 

to invoke limit-based themes for the differentials contained in those expressions. There were a few  
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Figure 14: Diane’s flowchart and spreadsheet 

 

other differentials that she could view as variable indicators, but for most of those differentials, 

she held a second view that they also could arise from limit-based themes. The differential in the 

indefinite integral was the only one that she described as purely a variable indicator without any 

limit basis. 

"Differential" dy/dx d vs Delta Def. Integral Indef. Integral  Double Integral

N.E. Info L.3 L.3 ( A ) N.1b L.2

("A") (U).b N.1c

(U).b L.2

L.3 L.2

( A )

dy = 2x dx  "Small" Phrase ODE Work u- Sub

(U).b L.3 ("A") L.2 N.1a

("A") L.3 L.3

L.3 (U).b ("A")

("A") (Chain Rule) (U).b

(U).b
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 Diane seemed to split her limit-based differentials into two groups, depending on her views 

of how similar they were to well-defined numbers. The first group was differentials as limit-based 

pseudo numbers (Theme L.3). For these differentials, Diane was willing to say, albeit 

uncomfortably, that one can tend to “treat them as actual quantities that we can divide by and move 

around.” For example, when solving an ODE, she said that it is acceptable to “multiply by 𝑑𝑡” in 

order to separate the variables as long as it is understood that the 𝑑𝑡 does not represent a real 

number: “I keep saying things like “It’s an infinitely small quantity; it’s not really a number, but 

we think about it that way.” The other group described differentials as reified limit processes 

(Theme L.2): the differential was an object that has equal status with any other symbol in an 

expression, but has no numerical qualities. For example, Diane described the differential in a 

definite integral as an object that conveys information about variable or direction, but also said “I 

don’t ever really think about it as being 𝑓(𝑥, 𝑦) times 𝑑𝑥 itself,” which would not qualify this 

differential as a pseudo-number. Thus, it would be too simple to define Diane’s concept image 

merely as consisting of “limit-based” differentials, since, for her, some of these differentials have 

numerical characteristics and some do not, creating nuance to her concept image, as shown by the 

two slightly-differing shades of green throughout her spreadsheet. 

 However, it is perhaps worth noting that Diane was the interview subject who was assigned 

the greatest number of “uncertainty” themes (Theme (U).b in her spreadsheet). Examples of this 

uncertainty included her inability to describe fully her term “infinitely small,” not being certain 

whether it was proper to multiply, divide, or cancel differentials, and stating that textbooks “come 

up with some funny, hand-wavy thing – way to explain what they’re doing there” when they are 

discussing differential-based ideas. Thus, part of her concept image is one in which differentials 

are somewhat nebulously-defined.  
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Eugene 

 The most striking thing about Eugene’s interview were his two views of similar terms. 

When discussing the phrase he uses for an idea of “smallness,” he gave different definitions for 

the terms “infinitesimally small” and “infinitesimal”, shown by the different colors in the “Phrase” 

column of his spreadsheet (Figure 15). He described “infinitesimally small” as “something that’s  

 

 
 

 
Figure 15: Eugene’s flowchart and spreadsheet 

"Differential" dy/dx Def. Integral Indef. Integral  Double Integral  "Small" Phrase
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N.E. Info N.1b N.3 L.2

(U).b (C).c (U).b

(C).c

dy = 2x dx ODE Work u- Sub d vs Delta

(U).b N.1b (U).b N.1a (NONE)

(P) N.1a (C).b

N.1a (C).d N.1b

(A) N.3

( A )



90 

 

 

sort of a picture of the limiting process at a very advanced stage,” while “infinitesimal” was defined 

“somehow after it’s all done and packaged in a [makes a “container” gesture], you know.” It seems 

to me that there was a difference between the terms “very advanced stage” and “done,” and that 

the choice of these words causes his definitions to be different. His “infinitesimal,” which was 

used when the limit process is done, seems to describe the reification of the limit process into an 

object, an idea perhaps reinforced by his “packaging” metaphor and “container” gesture. But if  

one interprets “advanced stage” as a limit that is still in the process of shrinking, then his 

“infinitesimally small” might represent a measurable quantity. 

 It might seem that, with all of this talk about shrinking, Eugene’s concept image tends 

towards limits in some form when discussing the theory of differentials. In practice, however, 

Eugene most often referred to differentials in simpler ways that did not involve limits, as shown 

by the placement of themes in his flowchart and lack of green in his spreadsheet. Common 

responses were differentials as variable indicators (Theme N.1b) in Leibniz derivative notation 

and integrals, or differentials as parts of automatic processes, such in integration by substitution:  

My first cut at [the integration by substitution] is that this is just an algebraic device 

which facilitates … what would formally be to re-write, to put the integrand in 

terms of the result of a differentiation of a composition of functions. So I see it as 

kind of a time-saving informality. 

Thus, the 𝑑𝑢 and 𝑑𝑡 in the substitution 𝑑𝑢 =
1

2√𝑡
 𝑑𝑡 are written without any thought given to their 

conceptualization. Other responses by Eugene painted some differentials as pseudo-numbers 

(Theme N.3). Like Christopher, he also wrote “𝑑𝑥” as the width of the Riemann sum rectangles 

for his definite integrals, implying that the differentials in definite and double integrals had a 

“measurable” quality, even if they were not thought of as an actual value. 



91 

 

Francis 

 Francis’ concept image began to take shape as one in which there were initially two main 

conceptualizations of differentials depending on the expression in which those differentials 

resided. This can be seen most easily in the first row of his spreadsheet (Figure 16), in which his 

“integral” columns contained green, limit-based themes, but all other columns contained red, non- 

limit-based themes. One of these main conceptualizations was that of a differential as a variable 

“integral” columns contained green, limit-based themes, but all other columns contained red, non- 

limit-based themes. One of these main conceptualizations was that of a differential as a variable 

“integral” columns contained green, limit-based themes, but all other columns contained red, non- 

limit-based themes. One of these main conceptualizations was that of a differential as a variable 

indicator. This could be inferred in that, while he said that the notation 
𝑑𝑦

𝑑𝑥
 was one symbol, he said 

“I assume 𝑦 is a function of 𝑥” when first viewing it, suggesting that this symbol identified the 

dependent and independent variables by their placement in that symbol. Thus, the purpose of the 

𝑑𝑦 and the 𝑑𝑥 were to indicate the dependence of the variables. Similarly, when seeing the 

indefinite integral symbol, Francis described it as “the antiderivative of 𝑔(𝑥) with respect to 𝑥,” 

suggesting that the 𝑑𝑥 indicated the variable of integration. The second main conceptualization 

was one of the differential as a limit-based pseudo-number (Theme L.3), found in his views of the 

definite and double integrals. This can be inferred because, while he described the word 

“differential” as “an infinitesimal change” and this change as more of a concept than something 

that can be quantified, he continually described the differentials in his definite and double integrals 

as “widths” that come from limits and can be multiplied, suggesting that even if differentials cannot 

be quantified, they at least have numerical characteristics. 

 Later in the interview, however, his complex image became more complex, as he became 
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Figure 16: Francis’ flowchart and spreadsheet 

 

the first interview subject to admit to having cognitive conflict over conflicting responses. This is 

shown in the spreadsheets by Theme (U).a. His cognitive conflict began when describing the 

differentials found in the expression 𝑑𝑦 = 2𝑥 𝑑𝑥. He described these differentials by what I called 
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the “Linear Approximation” idea in my literature review: Δ𝑦 ≈ 𝑑𝑦 = 𝑓′(𝑥) 𝑑𝑥, where Δ𝑥 = 𝑑𝑥, 

but Δ𝑦 ≠ 𝑑𝑦. Since Δ𝑥 is a real number in these expressions, 𝑑𝑥 would also be a real number, and 

so, by extension, would 𝑑𝑦. After describing what were, to him, the now-quantifiable differentials 

in the expression 𝑑𝑦 = 2𝑥 𝑑𝑥 and after I confirmed that these differentials were quantifiable, he 

noted, “but now I’m being cognizant of what I think about this, and what I originally said, no. That 

these [the 𝑑𝑦 and 𝑑𝑥] are not quantifiable. [Pause] And I’d have to really think about rectifying 

this.” A second instance of cognitive conflict occurred discussing the separable ODE 
𝑑𝜏

𝑑𝑡
= −𝑘𝑡 

when he considered both his previously-stated idea that 
𝑑𝑦

𝑑𝑥
 was one symbol and not a quotient with 

his idea that you can separate the 𝑑𝜏 and 𝑑𝑡 during the solution of the ODE. Although he later 

solved the same ODE by integration, thus showing that this separation was not mandatory, he did 

mention that he was aware of this discrepancy and that textbooks do not explain this discrepancy 

very well.  

Gustav 

 Gustav was the first interview subject, and the only interview subject within the first seven 

interviews, to discuss the idea of differentials being formal infinitesimals as defined in nonstandard 

analysis (Theme N.4b). He specifically mentioned Abraham Robinson multiple times, and when 

using the word “infinitesimal” to describe a differential, stated his definition of “infinitesimal” by 

saying: “Well, I can give you the definition: that’s smaller than any 
1

𝑛
 and greater than zero. That’s 

kind of [a] positive infinitesimal.” The existence of hyperreal infinitesimal values greater than zero 

yet smaller than any real number is central to nonstandard analysis. 

 Yet, I believe that it is noteworthy that his only uses of the idea of “formal, nonstandard 

infinitesimal” occurred during the discussion of the three more “theoretical” questions (What does 

the word “differential” mean to you? What is the difference between 𝑑𝑥 and Δ𝑥? What do you 
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mean by “infinitesimal”?). This might be an example of what I will call an “unpacking” of his 

concept image. When first presented with an idea, he defaulted to the immediate recall of specific, 

nonstandard-infinitesimal-based theoretical definitions that he had memorized and could recite, 

but when asked to think about the idea some more, he drew upon other elements of his concept  

 

 
 

 
Figure 17: Gustav’s flowchart and spreadsheet 
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image to broaden this initial recall. This can be seen in his spreadsheet, in which, after the last  

“theoretical” question, not only were there no more occurrences of Theme N.4b, but there was also 

in increase in theme diversity. A similar “unpacking” idea might explain why all other interview 

subjects answered the initial “differential” question with vague, poorly-defined notions of “small” 

that did not contain enough information to justify the assignment of a theme. The prominent 

characteristic of the generic differential might be “it is small,” and this characteristic is the one 

that might be the most easily recalled. Then, when given specific expressions and asked to qualify 

one’s thinking, interview subjects want to move beyond one simple characteristic and provide 

more details from their concept images. Still, it is notable that Gustav’s initial “small” response 

distinctly mentioned formal infinitesimals when no other initial responses to this point did.  

 Gustav went on many tangents during his interview, including his opinions on calculus 

instructors’ limited knowledge of differential-based calculus, historians’ comparisons of Leibniz 

and Newton with Robinson, and his views of what should be taught in first-year versus later-year 

calculus courses. When addressing the expressions from my protocol, Gustav used the word 

“limit” only once, and that mention of “limit” was used to discuss a view that, to him, is rarely 

used: 

There are several ways of doing it … when you take the integral as approximation 

…you split this into equal pieces – as a limit, you obtain the integral. However, 

most of the time, you don’t think about this when you are truly trying to solve this. 

You just know that this [at 𝑊 = ∫ 𝐹 𝑑𝑥
𝑏

𝑎
, a formula he earlier wrote and discussed] 

is a formula with 0, 50, and put it here [at the “Work” integral].  

Similar to André, most of Gustav’s themes were the non-limit-based themes of “variable indicator” 

or “automatic process” on one side, and “actual number” on the other, but unlike André, the 
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differences between these two ideas did not split as neatly along a “differentiation/integration” 

divide. Rather, there were “variable indicator” and “automatic process” themes in almost every 

expression. Like André’s interview, there was a lot of contextual discussion, including both 

historical contexts (shown by Theme (C).a) as well as physics contexts (Theme (C).b), suggesting 

that perhaps Gustav primarily uses differentials in simple ways like variable indicators or as parts 

of automatic processes, but he also understands and can accept historical or physical reasons why 

a differential might be perceived as a well-defined value, as long as those historical and physical 

reasons do not involve limits. 

Xavier 

 The last three interviews were conducted after the completion and analysis of the first 

seven. However, each of the last three interviews contained themes and ideas not found or not 

fully-explored in the first seven. For example, early in his interview, Xavier suggested the 

existence of a hitherto unused context: that of “layman versus professional” (Theme (C).g). 

Specifically, he noted that the word “differential” means the value 𝑓(𝑥 + Δ𝑥) − 𝑓(𝑥) “at a layman 

level”, whereas “mathematically” and “rigorously,” the word differential has the “very precise” 

definition of 𝑑𝑦 = 𝑓′(𝑥0)𝑑𝑥. It is noteworthy that he gave the precise definition of “differential” 

as 𝑑𝑦 = 𝑓′(𝑥0)𝑑𝑥, yet called the “𝑑𝑥” in that expression an independent variable, equal in status 

to the other independent variable:  

To begin with, we start with 𝑑𝑦 to be defined as 𝑓′(𝑥0) times 𝑑𝑥. And to be very 

accurate: 𝑓′(𝑥0) should be considered one variable, 𝑑𝑥 another variable – 

independent variable. So altogether we have two independent variables: 𝑥0 and 𝑑𝑥, 

and when you multiply them together, you get 𝑑 
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Thus, it appeared that the status of “differential” was not automatically conferred by the symbolic 

form 𝑑[ ], since “𝑑𝑥” is treated the same as the 𝑥0, while “𝑑𝑦” is afforded “differential” status. 

 In addition, the idea of “𝑑𝑥 is an independent variable” was not consistent throughout his 

 

 
 

 
Figure 18: Xavier’s flowchart and spreadsheet 
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N.1b N.4c (A) (C).b (C).e

L.4c (A) (C).e N.4a N.4c

L.4c N.4c L.4c (A)

N.4a (A)



98 

 

entire interview. When discussing Leibniz derivative notation, he did refer to the above definition 

𝑑𝑦 = 𝑓′(𝑥0)𝑑𝑥, stating that as long as 𝑑𝑥 did not equal zero, division of it in order to obtain 
𝑑𝑦

𝑑𝑥
=

𝑓′(𝑥0) was fine. But when discussing the 𝑑𝑥 in a definite integral, Xavier did not refer to that 

definition. He initially defined that 𝑑𝑥 as the difference of two partition points 𝑥𝑗 − 𝑥𝑗−1, and thus 

a real number, but after giving that definition, described the product 𝑓(𝑥𝑗
∗)(𝑥𝑗 − 𝑥𝑗−1) as 

infinitesimal. This seemed to blur the distinction between 𝑥𝑗 − 𝑥𝑗−1, being a “real number” or 

“infinitesimal,” until he gave his definition of “infinitesimal” as “the process in which you take a 

quantity to the limit zero. In this case, 𝑥𝑗 − 𝑥𝑗−1.” This recent addition of the idea of limit can be 

seen in his spreadsheet, where the first green-colored limit-based theme occurred at the end of his 

discussion of the definite integral, and then reoccurred sporadically throughout the rest of his 

interview whenever he discussed integration. 

 Thus, as had occurred with many of the other interview subjects, Xavier’s concept image 

seemed to have multiple strong themes, their “strength” shown in the flowchart by the multiple 

squares attached to them. For him, his initial definition of the word “differential” involved a 

formula that referred to 𝑑𝑦 and not 𝑑𝑥 and drove the ideas of Leibniz derivative notation and the 

substitutions used in integration by substitution. But the 𝑑𝑥’s found in integration were ones that 

were well-defined, measurable, infinitesimal differences that resulted from a limit.   

Yanick 

 Yanick’s concept image was one in which differentials are predominantly pseudo-numbers 

(Themes N.3 and L.3 on the flowchart and in his spreadsheet). I characterize most of his 

differentials as pseudo-numbers based on two recurring statements. On the one hand, he described 

the idea of “infinitely small change” as a “theoretical construct” that is “not necessarily physical.” 

On the other hand, he said many times that he has no issue with multiplying or dividing by a 𝑑𝑥 if 
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needed. Entities that can be treated as numbers without being quantifiable is how I define pseudo-

numbers in this dissertation. However, unlike the views of some earlier interview subjects, who 

almost always described their pseudo-numbers as arising from limit processes, Yanick’s  

 

 

 

Figure 19: Yanick’s flowchart and spreadsheet 
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pseudo-numbers were almost evenly split between pseudo-numbers that arose from limits and 

pseudo-numbers that did not. Like many of the interview subjects before him, Yanick 

conceptualized the differentials in definite and double integrals as limit-based, while many of his 

other differentials, including those in the “context problems,” were not-limit based.  

 There were three responses that seem worthy of mention. First, Yanick noted that he 

viewed some differentials as comparisons to changes rather than the changes themselves. When 

discussing Leibniz derivative notation, he said: 

But I also want to be careful here. It’s a comparison instead of a quotient to me. I’m 

comparing two quantities. Because you could easily as well, if 𝑓(𝑥) is an inverse 

function or 𝑦 is an inverse function, you could compare 𝑑𝑥 and 𝑑𝑦,  

and when discussing 𝑑𝑦 = 2𝑥 𝑑𝑥, he noted: 

So basically this is a comparison to small changes, right? … And then you gotta be 

VERY careful thinking about thinking about comparisons instead of thinking about 

divides or multiplies or what have you. Especially with chain rule or multivariable, 

and so forth. Yeah, in some sense that gives you intuition when I say “divides” (big 

air quotes). In another sense, we gotta be very clear about what comparisons are 

versus actual calculations. 

It appears that Yanick views these particular differentials as comparisons in order to rationalize 

the idea that dividing by differentials is not permitted even though it may appear permitted in 

certain contexts.  

 Second, Yanick also referenced the new “layman versus professional” context (Theme 

(C).g). However, unlike Xavier’s use of this context, where he seemed to compare a generic 

layman and generic professional, Yanick described this context as it pertained to his own 
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mathematical development: when he was an undergraduate student, his only view of differentials 

was that of a variable indicator, but as he matured in his mathematics studies, his views of 

differentials became more complex. Yanick said that he tries to teach his students that differentials 

are more than variable indicators, so that they do not have to go through the same conceptual 

metamorphosis that he did.  Finally, Yanick was the second interview subject to admit to 

cognitive conflict due to an internal contradiction (Theme (U).a in his spreadsheet. After initially 

saying that the 𝑑𝑦 and 𝑑𝑥 in a double integral have no graphical representation, he later stated 

“No, I’m contradicting myself but that’s alright. I do have certain times where I say if I zoomed in 

an infinite amount of times there would be a little change in 𝑥 and a little change in 𝑦,” implying 

a graphical representation. But after saying this, he remarked that “There’s two things swimming 

around here. One is trying to get students to buy into this stuff. And two is being true to what I feel 

like it means.” Those last two statements painted a picture of a mathematician who possesses a 

personal concept image that revolves around unquantifiable pseudo-numbers, yet who also 

possesses a “teaching” concept image that he uses in an effort to make differentials more 

understandable to his students. 

Zaphod 

 Zaphod’s interview contained some similar results to Gustav’s. I categorized no themes 

from Zaphod’s interview as limit-based, so there are no themes at the bottom of Zaphod’s 

flowchart and there are no green cells in Zaphod’s spreadsheet. Also, like Gustav, Zaphod also 

mentioned formal infinitesimals as defined in Robinson’s nonstandard analysis (1961). However, 

these interviews were only similar to one another for these particular characteristics at the surface 

level; many differences were found during further analysis. 
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 First, while Gustav mentioned nonstandard infinitesimals only during what I call the three 

“theoretical” questions and not during discussions of the actual differentials, Zaphod was the first 

interview subject to state that he thought of specific differentials as nonstandard infinitesimals: 

 

 
 

 
Figure 20: Zaphod’s flowchart and spreadsheet 
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Okay, so in part of my masters I studied nonstandard analysis, so if I’m thinking 

about differentials as objects with size, I think about them as infinitesimal elements. 

So I think about them as literal infinitesimals in the Abraham Robinson sense. 

 Second, while Gustav only used the word “limit” once during his interview, Zaphod used 

it ten times, but usually to describe how limits are not how he views differentials. When discussing 

Leibniz derivative notation, he initially said “Well, my immediate reaction is that it’s 

lim
ℎ→0

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
. So if someone’s asking me this question, I assume that it’s a definitional question 

and that’s what I would say,” and later said 

I usually think of them symbolically, but I would be thinking about the definition 

of a derivative as a limit without the limit part. So I’d be looking at the difference 

in the output of the function over small time changes on the top. And on the bottom 

would be the difference in the inputs. 

To me, this implies that he only mentions limits when he perceives that he needs to give a 

commonly-used definition; when he is left to his own devices, then differentials are formal 

infinitesimals. This implication can also be seen by the amount of “teaching” (C).d themes in his 

spreadsheet, as teaching would be a situation in which he might feel he needs to evoke a different 

part of his concept image. 

 However, not all of Zaphod’s differentials were formal infinitesimals. For the solvable 

ODE, “Work” problem, and indefinite integral, Zaphod was comfortable viewing differentials as 

variable indicators (Theme N.1b). In the separable ODE, Zaphod was the only interview subject 

to mention the idea of a differential operator, describing the left-hand side of the separable ODE 

as the operator 
𝑑

𝑑𝑡
 applied to 𝜏, instead of the ratio 

𝑑𝜏

𝑑𝑡
. Despite the idea of “differential operator” 

not occurring during my first round of interviews, I believe that it still fits within my framework 



104 

 

as an example of “variable indicator”. While this interpretation loses the differential “𝑑𝜏,” Zaphod 

still stated that the role of the “𝑑𝑡” in the operator 
𝑑

𝑑𝑡
 was to indicate the variable of differentiation.  

Summaries of Each Expression 

 This section will briefly discuss both the main findings from each expression used in the 

interview protocol, and comparisons of the expressions that contained similar notations. I will 

address these themes in a different order than the order used in the interview protocol in order to 

group expressions that contain similar notations together: Leibniz derivative notation 
𝑑𝑦

𝑑𝑥
 with the 

separable ODE that contains 
𝑑𝜏

𝑑𝑡
, the generic definite integral presented without context with the 

“Work” problem that contains a definite integral, and the expression 𝑑𝑦 = 2𝑥 𝑑𝑥 with the 

“integration by substitution” problem, which contains the substitution 𝑑𝑢 =
1

2√𝑡
 𝑑𝑡.  

The Initial “Differential” Question 

 My intent in asking the initial question “What does the word ‘differential’ mean to you?” 

was to receive answers that could be used as a baseline with which to compare the later answers 

given to questions about specific differentials. In practice, however, such comparisons were rare, 

because most interview subjects gave basic, non-detailed answers to this initial question.  Seven 

of the ten interview subjects gave responses that contained some simple variation on “it is small,” 

which, by itself, is not enough to assign it a particular theme. , as the word “small” could be used 

to describe many themes on my list. Not only are there small real numbers and hyperreal 

infinitesimal numbers (Themes N.4a and N.4b, respectively), but “small” could also be a numerical 

quality found in a pseudo-number (Theme N.3 or L.3).  

 I would surmise that most of these initial, poorly-defined “small” ideas were merely 

placeholders that were later unpacked into more-complex ideas. While individuals might have rich  
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Figure 21: Flowchart and spreadsheet for the “Differential” question 

 

and complex concept images for differentials, I believe that these images are rarely explored to 

their fullest in the everyday lives of most mathematicians. Thus, most of the interview subjects’ 

initial responses consisted of merely a quick, surface-level idea of “small.” As the interview 

progressed, the interview subjects got opportunities to not only think more deeply about 

differentials than usual, but also to attempt to vocalize and articulate their thoughts, after which 

more complex personal concept images emerged. These initial incomplete explanations are 

characterized by yellow “Not Enough Information” cells in the spreadsheets. 

Andre Bryan Christopher Diane Eugene Francis Gustav Xavier Yanick Zaphod

(U).b N.E. Info N.E. Info N.E. Info N.E. Info N.E. Info N.4b N.4c N.E. Info  (C) 

N.E. Info (C).e (C).e (C).d (C).g N.E. Info

N.E. Info N.E. Info N.4b (C).e

(U).b N.E. Info N.4a-1

(C).c
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  Gustav and Xavier were the only interview subjects to provide enough additional detail so 

that their answers could be assigned to a specific theme. Gustav’s initial remark was that 

differentials were “infinitely small,” but he also mentioned Leibniz and Robinson, suggesting that 

his idea of “infinitely small” aligns with nonstandard analysis’ formal infinitesimal values. Xavier 

gave his definition of a differential as the value 𝑓′(𝑥0)𝑑𝑥, and while he did not explicitly say that 

the 𝑑𝑥 in this definition was a real or hyperreal infinitesimal number, we can infer that it is at least 

some well-defined number, excusing it from the “pseudo-number” idea and placing it within the 

“well-defined value” part of my theme list. Finally, Zaphod’s response to this question did not 

include any idea of “small.” Rather, he stated that the word “differential” causes him to think only 

of the specific symbol 𝑑𝑥 or 𝑑𝑦, with the context of the particular expression determining what he 

would think next. 

The Interview Subjects’ “Small” Phrase 

 The questions about the interview subjects’ particular phrase used to describe “smallness” 

were asked at different points in each interview, depending on when “smallness” was first 

mentioned. This mostly occurred during discussion of Leibniz derivative notation (for Christopher, 

Diane, Francis, Gustav, and Yanick), but it also occurred before Leibniz derivative notation 

(André), during discussion of definite integrals (Brian and Xavier) and the discussion of double 

integrals (Eugene). The distribution of themes in the flowchart and collection of colors in the 

spreadsheet suggest that one precise meaning of a phrase like “infinitesimally small” would be 

impossible to find, as my interview subjects’ views varied widely. 

 Six of the interview subjects (Christopher, Diane, Eugene, Francis, Xavier, and Yanick) 

were not able to formally quantify the phrases they used. It is interesting to me that five of these 

six were the only ones to describe their phrases in terms of limits. Christopher and Xavier described 
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Figure 22: Flowchart and spreadsheet for the “Phrase” question 

 

their phrases as the process of a limit, with Christopher using the active tense “limiting” to describe 

his “very, very small” as “a limiting relationship among very, very small quantities,” and Xavier 

describing “infinitesimal” as “a process in which you take a quantity to the limit zero.” In contrast, 

Diane, Eugene, and Yanick described their phrases as the result of a limit process. Diane 

specifically saying that “infinitely small” was “the result of a limiting process,” Eugene describing 

 

Andre Bryan Christopher Diane Eugene Francis Gustav Xavier Yanick Zaphod
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 “infinitesimal” as “somehow after [a limiting process is] all done and packaged,” and Yanick 

describing “infinitely small” as “physical changes getting smaller and smaller” with 𝑑𝑥 being “the 

smallest change,” implying a finished limit. Francis did not mention limits when discussing 

“infinitesimally small,” stating that it “is really just a concept … can we quantify it? No.” 

 The remaining interview subjects, however, were able to define their phrases more exactly. 

André and Bryan described their phrases as representing real numbers in manners akin to Courant 

and John (1965). André defined “infinitesimally small” specifically as “smaller than … any 

relevant quantity in the problem,” while Bryan used phrases like “small enough” and “relatively 

small,” saying that these phrases “are always real numbers.” Gustav and Zaphod mentioned 

hyperreal infinitesimal numbers as found in nonstandard analysis. Gustav said the aforementioned 

quote “Well, I can give you the definition: that’s smaller than any 
1

𝑛
 and greater than zero. That’s 

kind of positive infinitesimal” during his discussion of the term “infinitesimal,” and while Zaphod 

did not ever specifically discuss any particular “small” phrase during his interview, he repeatedly 

stated during his interview that his personal use of the word “infinitesimal” was meant to convey 

Robinson’s nonstandard hyperreal infinitesimals. 

 I find it interesting that Bryan and Christopher each stated that they, respectively, “try not 

to” or “usually don’t” use such phrases because they can’t be, respectively, “made precise” or are 

“too vague.” While Bryan does subscribe to Courant and John’s (1965) “physically infinitesimal,” 

he notes that the idea of “small” can vary from problem to problem: “If we’re talking about 

astronomical stuff, you know, the change in 𝑥 being small could mean 100,000 miles, but when 

you’re talking about molecules, you know, the change in 𝑥 can not be 100,000 miles, it’s one 

Ångström.”  
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Differences between 𝒅𝒙 and 𝜟𝒙 

 Like the “small” phrase, the difference between 𝑑𝑥 and Δ𝑥 was addressed at different times 

throughout the interviews, as shown in Table 6 below. To explain the last two rows: Eugene and 

Zaphod did not mention Δ𝑥 at any time during their interview, and while I had time to ask Zaphod 

about Δ𝑥 at the end of his interview, time constraints prohibited me from asking Eugene.  

 Overall, there seems to be no correlation between in which expression the idea of Δ𝑥 was 

first mentioned and how the 𝑑𝑥 in those expressions was interpreted. Most of the responses 

(André’s, Christopher’s, Diane’s, Francis’, Yanick’s, and Zaphod’s) were variations of the idea 

that an initial Δ𝑥 represented a finite quantity that could be measured, while the creation of a 𝑑𝑥 

involved some sort of limit applied to the Δ𝑥. Some explanations of the limits applied to the Δ𝑥 

seemed confusing and even erroneous to me. For example, André described the 𝑑𝑥 as “what’s left 

of Δ𝑥 after it goes to zero” and Diane said that the 𝑑𝑥 is “kind of the end result” of Δ𝑥 going to 

zero. These explanations seem to imply that, even though a limit process has gone to zero, there 

is still something remaining, which seems to contradict that Δ𝑥 has really proceeded to zero. 

Similarly, Diane, Francis, and Yanick each mentioned the idea that the 𝑑𝑥 was the result of 

lim
Δ𝑥→0

Δ𝑥. This also seems contradictory, as by the laws of limits, this result should be equal to zero 

Table 6 

 

The Expressions in which Δ𝑥 was First Mentioned 

Expression Interview Subjects 
𝑑𝑦

𝑑𝑥
 

 

Bryan, Christopher, Diane, Gustav, Yanick 
 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

 

 

André, Francis, Xavier 
 

Discussed at the end of the interview 
 

Zaphod 

Never discussed 
 

Eugene 
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and not have a nonzero result (although, to match what she said above, Diane did qualify her 

version of this with a “sort of.”) Other descriptions were less confusing, if not detailed. Christopher 

said that “there’s some sort of limit involved” when one writes a 𝑑𝑥, which is what differentiates 

a Δ𝑥 and a 𝑑𝑥. Francis and Yanick both described the 𝑑𝑥 as a theoretical concept, which 

differentiates it from a quantifiable Δ𝑥. 

 The other responses did not mention limits. Gustav, as he did before, described 𝑑𝑥 in the 

style of nonstandard analysis: greater than zero yet smaller than any 
1

𝑛
, 𝑛 ∈ ℕ, and thus different 

from the real-valued Δ𝑥. Bryan and Xavier at times held notions that there were no differences 

 

 
 

  
Figure 23: Flowchart and spreadsheet for the “Delta” question 

Andre Bryan Christopher Diane Eugene Francis Gustav Xavier Yanick Zaphod

L.3 (C).f L.3 L.3 (NONE) L.3 (C).a N.4a (U).b (NONE)

(NONE) (U).b N.4b (C).g

(C).d
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between 𝑑𝑥 and Δ𝑥. Xavier initially described the 𝑑𝑥 in a definite integral as the difference 𝑥𝑗 −

𝑥𝑗−1, a definition I would have expected for a Δ𝑥. Bryan directly said at one point that there was 

no difference between a 𝑑𝑥 and a Δ𝑥, and illustrated this idea that these two notations were 

interchangeable when describing a definite integral as “𝑓 multiplied by a little Δ𝑥 or 𝑑𝑥.” The fact 

that Bryan had no specific definition dedicated to a 𝑑𝑥, instead viewing the terms “𝑑𝑥” and “Δ𝑥” 

as interchangeable, is what prompted the yellow “None” in this spreadsheet. 

Leibniz Derivative Notation 
𝒅𝒚

𝒅𝒙
 

 This expression was the first expression discussed during each interview, and there were 

multiple interpretations given for it, which can be seen by the summary given in Table 7 and the 

amount and variation of colors found in Figure 24. Each interpretation is more fully-explored 

below. 

 The first interpretation that I mention is the interpretation that this symbol is not 

constructed as a ratio of two separate entities 𝑑𝑦 and 𝑑𝑥, but is instead thought of as one symbol. 

Hans Freudenthal once stated that there was no meaning to these particular 𝑑𝑦 and 𝑑𝑥:  

 

Table 7 

 

Summary of Interview Subjects’ Views of the Differentials in 
𝑑𝑦

𝑑𝑥
 

View Interview Subject(s) 

Only a Variable Indicator 
 

Bryan, Eugene, Francis 

Real, but “Physically Infinitesimal,” Numbers 
 

André 

Formal, Hyperreal Infinitesimal Numbers 
 

Gustav, Zaphod 

Some Measurable Value, but the Specific Type is Unclear 
 

Christopher, Xavier 

Pseudo-Numbers Arising from a Limit Process 
 

Diane 

Pseudo-Numbers Not Arising from a Limit Process 
 

Yanick 
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If 𝑑𝑦 and 𝑑𝑥 occur only in the combination 
𝑑𝑦

𝑑𝑥
, or under the integral sign after the 

integrand, the question as to what 𝑑𝑥 and 𝑑𝑦 mean individually is as meaningful as 

to ask what the ‘‘l’’, ‘‘o’’, ‘‘g’’ in ‘‘log’’ mean (Freudenthal, 1973, p. 550). 

It was my initial belief that any interview subjects who viewed this expression as one symbol 

would also find the individual 𝑑𝑦 and 𝑑𝑥 meaningless. However, all of my interview subjects who 

held the “one-symbol” view, Bryan, Eugene, and Francis, stated some variation of the idea that 

this expression showed that 𝑦 was the dependent variable that relied on the independent variable 

𝑥. An example of this is Eugene’s statement that “this symbol usually occurs in the context where 

𝑦 is a function of 𝑥” Thus, I would suggest that, even if one does not view this expression as a 

ratio but still discusses the dependence of the variables, then the individual 𝑑𝑦 and 𝑑𝑥 are at least 

serving as variable indicators (Theme N.1b). 

 The most common view of the individual 𝑑𝑦 and 𝑑𝑥 however, was that of some measurable 

value, as shown by the number of themes in the upper-right of the flowchart and number of dark 

red themes in the spreadsheet. Some of these measurable values were explicitly defined. André 

described the value of these differentials as akin to Courant and John’s (1965) “physically 

infinitesimal” values and thus real numbers: 

They’re very small compared to – not so much to 𝑥, but more like to the scales at 

which 𝑥 or 𝑦 varies significantly. So this could be, you know, this here [points to a 

spot on the 𝑥-axis in one of his drawings] could be 52,000,000, and this [points at 

a second 𝑥-value] could be 52,000,000.1 

Gustav and Zaphod described the value of these differentials as formal, nonstandard, 

hyperreal infinitesimals, with Gustav stating “I understand, knowing what I know from the history,  
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Figure 24: Flowchart and spreadsheet for 
𝑑𝑦

𝑑𝑥
 

 

that [
𝑑𝑦

𝑑𝑥
] can be considered a ratio of infinitesimals,” and Zaphod stating “if I’m thinking about 

differentials as objects with size, I think about them as infinitesimal elements. So I think about 

them as literal infinitesimals in the Abraham Robinsons sense.”  

 Christopher and Xavier described these values in ways that imply that they are well-defined 

and measurable, but, unlike the three aforementioned interview subjects, they did not provide 

enough context clues to ascertain whether these values were real or hyperreal. Specifically, 

Christopher described the 𝑑𝑦 and 𝑑𝑥 as being legs of a right triangle, with the hypotenuse being a 
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small portion of the function’s curve magnified enough so that it appears linear. However, while 

the value right triangle legs can be assumed to be real numbers, Keisler (2012) uses similarly-

constructed right triangles but with infinitesimal-valued legs. Thus, without further explanation 

that I did not obtain during his interview, Christopher’s differentials must remain measurable but  

not well-defined. Similarly, Xavier’s description of 𝑑𝑦 as being equal to 𝑓′(𝑥0)𝑑𝑥 is also not 

specific enough, as the multiplication in Xavier’s definition can also be done with hyperreal 

infinitesimals as well as real numbers. The other interpretation was of these differentials as pseudo-

numbers. Diane and Yanick both used the phrase “infinitely small” and while both admitted that 

this phrase was imprecise, Diane invoked the idea of this “infinitely small” coming from a limit 

process applied to a measurable Δ𝑦 and Δ𝑥, where Yanick did not. 

 The only other striking feature of the themes found in this expression was the larger-than-

normal percentage of Tier 2 themes relative to all of the other expressions, as noted by the number 

of blue cells in Figure 24. There were discussions about viewing differential expressions in a 

variety of contexts: historical views of calculus, physical and physics-based contexts, how 

nonstandard analysis can impact one’s views, the various meanings of the word “differential,” and 

how expressions containing two differentials might be viewed differently than expressions 

containing one differential. Subjects also discussed the efficacy of thinking (or not thinking) of 

this symbol as a ratio, and the uncertainty that they might have about the interpretations of 

differential-based expressions. While it is possible that Leibniz derivative notation is an expression 

that naturally lends itself to these kinds of thoughts, a simpler reason for the high percentage of 

Tier 2 themes might be the position of this expression at the beginning of the interviews. Perhaps 

toward the beginning of interviews, the interview subjects might have been more inclined to 

discuss their views in greater detail because of their initial interest and excitement. As the interview 



115 

 

continued, perhaps interest and excitement waned, and less-complete (and thus less-context-based) 

opinions resulted. 

The Separable ODE 
𝒅𝝉

𝒅𝒕
= −𝒌𝝉 

 The first expression 
𝑑𝑦

𝑑𝑥
 was presented to the interview subjects without any explanation of 

what might be represented by the 𝑥 and 𝑦. In contrast, this ODE contained the notation 
𝑑𝜏

𝑑𝑡
, in which 

𝜏 and 𝑡 represented the physical quantities of temperature and time, respectively. Since temperature 

and time are measured with well-defined values, I initially assumed that the differentials in 
𝑑𝜏

𝑑𝑡
 

would be categorized by more “tangible” themes than the differentials in 
𝑑𝑦

𝑑𝑥
. Specifically, 

compared to the flowchart and spreadsheet for Leibniz derivative notation, I expected more themes 

on the right side of this expression’s flowchart and more darker red themes in this expression’s 

spreadsheet. However, this assumed shift toward “more tangibility” did not happen for most of the 

interview subjects, as many of them viewed the differentials in the initial 
𝑑𝑦

𝑑𝑥
 and the later 

𝑑𝜏

𝑑𝑡
 in 

similar ways. The assigning of similar themes to these two sets of differentials was not necessarily 

dependent on how one viewed the initial 𝑑𝑦 and 𝑑𝑥. It occurred for some of those who viewed the 

𝑑𝑦 and 𝑑𝑥 as some measurable amounts (Christopher and Xavier), for those who viewed them as 

some sort of pseudo-numbers (Diane and Yanick), and for one of those who viewed them as 

variable indicators (Eugene).  

 The other five interview subjects either showed a little evidence for my “tangibility” 

hypothesis, or showed evidence that contradicted it. The hypothesis was somewhat met for Bryan 

and Francis, who at first viewed the 
𝑑𝑦

𝑑𝑥
 as one ratio and not a quotient, but yet advocated the idea 

that one could “multiply by 𝑑𝑡” in order to solve the ODE. This action was not enthusiastically 

endorsed by either Bryan or Francis. Bryan said, “if I had to actually write a textbook or something,  
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Figure 25: Flowchart and spreadsheet for the separable ODE 

 

I’d have to think about it a little bit more about just saying ‘multiply by 𝑑𝑡’ and then the 𝑑𝑡’s 

cancel”, and Francis claimed, “I do have a discrepancy … I’m not completely satisfied with this, 

that type of notation”. This action assumes that 
𝑑𝜏

𝑑𝑡
 at the very least acts like a quotient, thus 

endowing the individual 𝑑𝜏 and 𝑑𝑡 with a tangibility that their 𝑑𝑦 and 𝑑𝑥 do not have. On the other 

hand, Gustav’s and Zaphod’s remarks about the differentials in the ODE seemed to move in the 

opposite direction of my hypothesis. While their 𝑑𝑦 and 𝑑𝑥 were described as hyperreal 

Andre Bryan Christopher Diane Eugene Francis Gustav Xavier Yanick Zaphod

(A) N.1b N.4c ("A") N.1b (U).a N.1b (A) N.3 (C).d

(P) N.1a (A) L.3 N.1a N.1b ("A") (C).e ("A")

(C).a (C).d (U).b (C).d N.1b (C).b N.4c N.1b

N.3 N.4a-3 ("A") (C).d N.1a (A) N.1b

(P) N.1a (U).b (I) (A)

("A") L.3 ( A ) ( A )

N.3

(U).b



117 

 

infinitesimals, they spoke of the action of solving the ODE by “multiplying by 𝑑𝑡” as an automatic 

process, thus ignoring the 𝑑𝜏’s and 𝑑𝑡’s infinitesimal nature and turning them into only notational 

pieces of that automatic process. Similarly, André seemed to revert from describing the initial 𝑑𝑦 

and 𝑑𝑥 as real values to describing the 𝑑𝜏 and 𝑑𝑡 as less concrete pseudo-numbers. 

 Aside from the differences in how the interview subjects viewed the differentials in the 

ODE, another set of differences was how they viewed the idea of “multiplying both sides by 𝑑𝑡” 

as a part of the solution method. The spreadsheet for the ODE (Figure 25) contains all three of the 

“Algebra” themes (A), (“A”), and (A), showing that there was a wide range of opinions on how to 

think about the idea of “multiplying by 𝑑𝑡.” Only Francis stated that this was not acceptable, saying 

that one should solve 
𝑑𝜏

𝑑𝑡
= −𝑘𝜏 by integration (∫

1

𝜏

𝑑𝜏

𝑑𝑡
 𝑑𝑡 = ∫ −𝑘 𝑑𝑡), as this removes the need 

for separating the initial 𝑑𝑡 from the initial 𝑑𝜏. Several interview subjects (Bryan, Diane, Eugene, 

and Gustav) mentioned that this separation was acceptable but heavily qualified this separation 

with phrases that spoke to their uncertainty that this was a valid mathematical operation, such as 

“be careful what it means” (Bryan) or “I would spend more time thinking about it” (Diane). André, 

Christopher, Xavier, and Yanick seemed to feel that such multiplication required no qualifiers. 

This is perhaps summarized by Christopher’s description of differential equation modeling as 

“What happens over the next 𝑑𝑡?”, implying that, since this 𝑑𝑡 is measurable, multiplying by it is 

perfectly valid. 

 On top of all of these conceptualizations for the differentials in the ODE, there were 

statements made by some interview subjects that were not differential-based at all. Upon being 

asked to solve the ODE, Bryan and Christopher stated that they would not teach nor expect their 

students to solve it by separation, preferring instead that they simply recognize it as an equation 

modeling exponential decay. This view might render any discussion of the differentials 
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meaningless, outside of viewing them as variable indicators to denote the dependent and 

independent variables. Zaphod said that he interpreted the ODE as 
𝑑

𝑑𝑡
(𝜏) = −𝑘𝑡, with “

𝑑

𝑑𝑡
” as a 

differentiation operator. Again, this view eliminates 𝑑𝜏 as its own entity, and regulates 𝑑𝑡 as a 

representative of the variable of differentiation. 

The Generic Definite Integral ∫ 𝒇(𝒙) 𝒅𝒙
𝒃

𝒂
 

 This expression was the second expression discussed in each interview and was presented 

immediately after Leibniz derivative notation. Because a good portion of the literature I cited in 

my literature review showed that there were many student conceptualizations of the differential 

found in a definite integral, it was not surprising to me that not only were there many expert 

conceptualizations of this differential, but several experts had multiple views of this differential as 

well. I summarize all such conceptualizations in Table 8. 

 Some of the differentials in the definite integral were described as limit-based, indicated 

by the green cells in the spreadsheet. André viewed this differential as an indicator that a limit 

process happened: “𝑑𝑥 represents the fact that it was a Riemann sum.” Diane viewed this 

differential as a reification of the limit process: “I think about it more just as, again, the result of a 

limiting process.” To me, there is a nuanced distinction here: both interview subjects are stating 

that a limit was applied to a sum that contained Δ𝑥, but Diane’s 𝑑𝑥 is the transformation of the Δ𝑥 

into a different, tangible object, whereas André’s 𝑑𝑥 is merely a symbol that states “this limit took 

place.” There were more “numerical” differentials in definite integrals as well, which were already 

mentioned in the individual summaries: Christopher and Francis viewed them as limit-based 

pseudo-numbers: values that can’t be quantified but can still be multiplied or used to define width, 

and one of the ways Xavier viewed them was as limit-based quantities that can be quantified. 

Similar variation happened within the non-limit-based themes. A common interpretation for the 
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Table 8 

 

Summary of Interview Subjects’ Views of the Differentials in  ∫ 𝑓(𝑥) 𝑑𝑥
𝑏

𝑎
 

View Interview Subject 
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Indicator of a Limit Process 
 

          

Reified Limit Process 
 

          

Pseudo-Number Arising from a Limit 

Process 
 

          

Variable Indicator 
 

          

Direction Indicator 
 

          

Pseudo-Number Not Arising from a 

Limit Process 
 

          

Real Number 
 

          

Formal, Hyperreal Infinitesimal 

Number 

          

 

 

definite integral’s differential was an indicator for the variable of integration. One of Eugene’s 

views was of this differential as a pseudo-number, but a pseudo-number that did not come from a 

limit. Finally, Bryan and Zaphod viewed these as well-defined values: Bryan as “physically 

infinitesimal” real numbers and Zaphod as nonstandard analysis formal infinitesimals. 

 Some names in Table 8 had two checkmarks because the definite integral’s differential 

was one in which some interview subjects’ views changed depending upon the context. The 

definite integral’s spreadsheet shows that Eugene and Zaphod expressed Theme (C).d, that 

differential views could change when teaching, while André expressed Theme (C).a, that 

differential views can change depending on one’s view of the history of the notation. This explains 

how these three interview subjects could state multiple views for the definite integral’s differential:  
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Figure 26: Flowchart and spreadsheet for ∫ 𝑓(𝑥) 𝑑𝑥
𝑏

𝑎
 

 

Eugene and Zaphod teach different views depending on the level of their students, while André 

can hold two different views depending on whether he is considering “historical” or “practical” 

viewpoints. 

 

Andre Bryan Christopher Diane Eugene Francis Gustav Xavier Yanick Zaphod

(C).a (A) (A) ( A ) (C).d L.3 (C).a N.4a (A) N.4b

L.1d N.4a-2 L.3 N.1c N.1b ("A") (C).c (A) L.3 (C).d

N.1b N.4a-3 L.2 N.3 (P-L) N.1b N.4a L.3 N.1b

N.4a-2 L.2 (U).b L.3 (C).a (A) (U).b

( A ) ("A") (C).c L.4c (C).d

(A)

N.4b
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The “Work” Problem Containing the Integral ∫ 𝟕𝟎𝟎 − 𝟑𝒙 𝒅𝒙
𝟓𝟎

𝟎
 

 Unlike the shift from Leibniz notation to the 
𝑑𝜏

𝑑𝑡
 in the separable ODE, there was a general 

change in views from the generic definite integral to the specific definite integral in the “Work” 

problem. Overall, there was some movement away from limit-based themes and toward non-limit-

based ones, and some movement away from more “ephemeral” differentials towards more 

“tangible” ones. These shifts can be seen in the greater concentration of themes to the right of this 

flowchart greater prevalence of darker shades of red in this spreadsheet as compared to the definite  

integral’s flowchart and spreadsheet.  However, these shifts were not absolute and did not occur 

in everyone’s responses.  

 André and Christopher were interview subjects who moved from primarily limit-based 

responses for their generic definite integral to non-limit-based responses in the specific one. 

Specifically, André’s descriptions went from the definite integral’s differential as “the 𝑑𝑥 

represents that [the Riemann sum is] that sum when Δ𝑥 goes to zero” to the specific definite 

integral’s differential as “I would have to consider the 𝑑𝑥 represents the displacement.” 

Christopher’s definitions showed a similar progression, from the definite integral’s differential’s 

size as “really small and getting smaller … as a limit” to the specific definite integral’s differential 

described as “a small movement up the side of the building.” Gustav similarly shifted his view of 

the generic definite integral’s differential from the indicator of the variable of integration to, in his 

words, “I would remember this [𝑑𝑥] as a displacement.” 

 However, not everyone’s views of the differentials in these two integrals shifted, and while 

some interview subjects’ views shifted, that shift was not necessarily to a more “physical” 

differential. Both Diane and Francis viewed the differentials in each integral as limit-based objects 

and pseudo-numbers, respectively, while Eugene viewed both integral’s differentials as variable 
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Figure 27: Flowchart and spreadsheet for the “Work” problem 

 

indicators or pseudo-numbers, depending on the level of the students he would be teaching. The 

fact that the specific definite integral described a physical condition did not change their views. 

As an example of a different shift, Zaphod stated that the generic definite integral’s differential 

was a formal hyperreal infinitesimal while the differential in the specific definite integral was 

primarily a variable indicator. However, this analysis may simply have resulted from incomplete 

questioning and exploration of his ideas, as he also mentioned the idea that the generic definite 

integral’s differential could be thought of as a variable indicator.   

Andre Bryan Christopher Diane Eugene Francis Gustav Xavier Yanick Zaphod

N.1b N.4a-2 N.4c L.2 (U).b L.3 (C).b (C).b N.3 N.1b

N.4c N.4a-3 (C).d N.4c N.4a (A)

(C).b N.1b N.1b L.4c (U).a

N.3 (U).b
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 There was enough of this movement to suggest that, in this case, providing a physical 

context in which the integral can reside has an effect on the conceptualizations of the differential 

in that integral. In fact, André, Eugene, Gustav, and Xavier each mentioned some version of an 

idea that physicists and mathematicians might view this integral differently, utilizing by Theme 

(C).b. To give one example, André described this idea in terms of “realms”: a “physics” realm in 

which the integral is created and the 𝑑𝑥 has a physical quality, and a “mathematics” realm in which 

the integral is evaluated and the 𝑑𝑥 merely indicates the variable of integration. This implies that 

any concept definition for the integral might contain different elements that are evoked or repressed 

depending on whether the integral is presented within a physical context.  

The Indefinite Integral ∫ 𝒈(𝒙) 𝒅𝒙 

 This expression was presented at the same time as the definite integral, although most 

interview subjects discussed each integral separately. Of all of the differential-containing 

expressions in the interview protocol, the indefinite integral is the expression that contained the 

most uniform responses, which can be seen by the relatively simple flowchart and spreadsheet for 

this expression. Six out of the ten interview subjects (André, Diane, Eugene, Francis, Gustav, and 

Zaphod) stated that the purpose of the differential in a definite integral was to indicate the variable 

of integration, and nothing more. In general, interview subjects spent noticeably less time 

discussing this expression than discussing the definite and double integrals. This lesser amount of 

time and simpler theme distribution, however, might be attributed to the nature of this expression: 

Diane and Eugene both commented that, in a sense, the 𝑑𝑥 in an indefinite integral is less important 

to a first-year calculus student since he or she has not yet experienced multiple integrals. As Diane 

said: 
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It doesn’t come into play so much in Calc. 1, because they generally have only one 

variable showing up, but when you have more variables or you have a variable 

that’s a constant or something, then it’s important to have that notation there. But 

in my mind, for the indefinite integral, it’s literally just notation for the general 

antiderivative. 𝑑𝑥 is mostly there to tell me what variable the change is – in the 

direction of 

 There were exceptions to this characterization of “variable indicator.” Yanick 

thought for a while about how the indefinite integral’s 𝑑𝑥 might be conceptualized and  

 

 
 

 
Figure 28: Flowchart and spreadsheet for ∫ 𝑔(𝑥) 𝑑𝑥 

Andre Bryan Christopher Diane Eugene Francis Gustav Xavier Yanick Zaphod

N.1b 0 ??? (A) N.1b N.1b N.1b N.1b 0 ??? (U).b N.1b

L.3 (A) ( A )

N.E. Info
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eventually stated that he needed to think more about it before committing to an answer. Bryan and 

Xavier made statements that suggested the entire expression (3) was a notation for “the 

antiderivative of 𝑔” and thus, the 𝑑𝑥, as a part of this notation, had no meaning by itself. Perhaps 

further questioning of these two might have elicited responses that contained a phrase like “in 

terms of 𝑥” that could have shown a “variable indicator” theme, but on the other hand, Bryan stated 

“it could almost mean nothing,” where further questioning confirmed that “it” referred to the 

indefinite integral’s 𝑑𝑥. Thus, I feel that “no meaning” is a viable option for this differential. 

 Finally, Christopher seemed to suggest an interpretation for the indefinite integral that 

matches Thompson’s (1961) interpretation: the expression 𝑑𝑦 = 𝑔(𝑥)𝑑𝑥 contains a 𝑑𝑥, which 

measures a small horizontal displacement and is multiplied by 𝑔(𝑥) to form 𝑑𝑦, a small vertical 

displacement. Thus, 𝑦 = ∫ 𝑑𝑦 = ∫ 𝑔(𝑥)𝑑𝑥 is the sum of all of these small vertical displacements, 

expressed as a function: “And you can sort of interpret it as a – it’s an antiderivative in the sense 

that if you do take 𝑔(𝑥) times 𝑑𝑥 and add it up, you’ll get the increment in an antiderivative.” 

However, it is fair to say that viewing this assessment as a definitive assessment may have 

happened because of imprecise questioning. Recognizing his description as similar to Thompson’s, 

I immediately asked questions about possible graphical interpretations of the indefinite integral, 

as Thompson peppered his interpretation with graphical representations. As a result, I may not 

have given Christopher an adequate attempt to revisit the indefinite integral, in case he had any 

additional interpretations.  

The Double Integral ∫ ∫ 𝒇(𝒙, 𝒚) 𝒅𝒚 𝒅𝒙
𝟑

𝟐

𝟏

𝟎
 

 This expression was presented immediately after the definite and indefinite integrals and 

the differentials in this expression are fairly easily described: the breakdown of themes for the 

differentials in the double integral are almost exactly the same as the breakdown of themes for the 
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definite integral. I would hypothesize that the reason for this is because a double integral can be 

viewed as the combination of two definite integrals, and thus it is understandable that the 

collections of themes for the double integral and definite integral are near-identical. Indeed, during 

the discussions of double integrals, many interview subjects (André, Bryan. Francis, Xavier, 

Yanick, and Zaphod) stated variations of Yanick’s idea that “And so you’re doing the same [with 

the double integral] as you’re doing with the definite integral up above.” This similarity can also  

 

 

 

 

Figure 29: Flowchart and spreadsheet for ∫ ∫ 𝑓(𝑥, 𝑦) 𝑑𝑦 𝑑𝑥
3

2

1

0
 

Andre Bryan Christopher Diane Eugene Francis Gustav Xavier Yanick Zaphod

(C).a (A) (A) L.2 N.1b (C).d N.1c N.1b (A) (A)

N.1b N.4a-2 L.3 N.3 L.3 N.4a-2 L.4c L.3 (C).d

L.1d N.4a-3 ("A") (C).a L.4c (U).a (A)

(C).d (C).d N.4a (C).d N.4b

L.2 (A)

(C).d
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be seen by noting the resemblances between the double integral’s and the definite integral’s 

flowcharts and spreadsheets. 

 The only differences found between those two collections are minimal. Comparing the 

themes from the double integrals to the themes from the definite integrals, Xavier gained a 

“variable indicator” theme while Zaphod lost one. Gustav gained a theme of the double integral’s 

differentials possibly being real numbers used for approximation, and Bryan gained a theme of the 

double integral’s differentials as limit-based. However, each of these may not be actual differences 

between one’s views of definite and double integrals but rather superficial differences that resulted 

from either incomplete questioning or whether the interview subject remembered to discuss every 

aspect of differentials for every expression. To use Bryan as an example: when discussing Leibniz 

derivative notation, he stated that he adopted a limit-based approach for that notation when he was 

teaching. When discussing the double integral, the topic of teaching came up again, and he made 

a similar statement that he uses limit-based themes for teaching. For whatever reason, he did not 

bring up teaching when discussing the definite integral. Perhaps it is possible that if he had done 

so, he might have also claimed a limit-based approach for those differentials that he did not claim 

during his interview.  

The Expression 𝒅𝒚 = 𝟐𝒙 𝒅𝒙 

 During some of my interviews, there were small amounts of uncertainty with this 

expression, usually a vocabulary issue regarding the word “differential.” In my personal 

experience, expression (5) was called the “differential of a function” and the word “differential” 

was reserved for an individual 𝑑𝑦 or 𝑑𝑥. However, some interview subjects defined the word 

“differential” as expression (5). When asked the very first question of the interview “What does 

the word ‘differential’ mean to you?” these interview subjects responded by discussing this 
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expression, which was noted in my spreadsheet by Theme (C).e. Since my definitions shaped how 

I designed my interview protocol, such discussion of expression (5) occurred much earlier than I 

had planned, and thus, some responses for this expression were pulled from the very beginnings 

of some interviews. 

 Two interview subjects had limit-based views of the differentials in this expression. Diane 

   

 
 

 
Figure 30: Flowchart and spreadsheet for 𝑑𝑦 = 2𝑥 𝑑𝑥 

Andre Bryan Christopher Diane Eugene Francis Gustav Xavier Yanick Zaphod

N.1a (C).e N.4c (U).b (U).b (U).a (C).e N.4c N.3 N.1b

N.4a-3 ("A") (P) N.4a-1 (A) (A) ("A") N.4b

(C).e L.3 N.1a N.4c ("A") ("A")

N.4a-1 (A)

N.4a-3 ( A )

(C).f

(I)
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was the only interview subject to state that the differentials in this expression came from a limit 

process applied to Deltas, and Yanick viewed these differentials as limit-based pseudo-numbers. 

Among the other interview subjects who gave non-limit-based themes, however, there was a 

definite split in their views. On one end, perhaps owing to a “differential of a function” ideas, six 

interview subjects (Bryan, Christopher, Francis, Gustav, Xavier, and Zaphod) viewed these 

differentials as some type of well-defined number, usually in the “Linear Approximation” context 

described earlier: Δ𝑦 ≈ 𝑑𝑦 = 𝑓′(𝑥) 𝑑𝑥, where Δ𝑥 = 𝑑𝑥, but Δ𝑦 ≠ 𝑑𝑦. On the other end, André, 

Eugene, and Zaphod viewed these differentials as part of an automatic process that occurs without 

any justification. In other words, if given the expression 𝑦 = 𝑥2, one can just go ahead and write 

the expression 𝑑𝑦 = 2𝑥 𝑑𝑥 without thinking about why this can be done. Zaphod is listed in both 

groups since he began discussion of this statement with “This expression I could see appearing in 

a few different contexts,” and included both remarks about automatic process and small amount. 

This split can be seen in the spreadsheet (Figure 30), via the mixture of darker and lighter shades 

of red.  

The Integration by Substitution  

 I have already noted the shifts in the general tone of the differentials that happened both 

from Leibniz derivative notation 
𝑑𝑦

𝑑𝑥
 to the ODE containing the expression 

𝑑𝜏

𝑑𝑡
 and from the generic 

definite integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 to the “Work” problem’s definite integral ∫ 700 − 3𝑥 𝑑𝑥

50

0
. In some 

interview subjects, I found shifts in the general tone of the differentials from the earlier, generic 

𝑑𝑦 = 2𝑥 𝑑𝑥 to the specific 𝑑𝑢 =
1

2√𝑡
 𝑑𝑡 used as a step in an integration by substitution. The 

interview subjects not listed below (André, Eugene, Xavier, Yanick, and Zaphod) had no such 

shifts, viewing the differentials in these two expressions similarly. 
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 This primary shift was in a direction away from “actual values” (Theme N.4) and toward 

the differentials having no meaning outside of being a part of a mindless process described as “If 

𝑢 = √𝑡, then one can just automatically write 𝑑𝑢 =
1

2√𝑡
 𝑑𝑡” (represented by Theme N.1a). This 

shift was adopted by Bryan, Christopher, and Gustav. For example, Bryan stated that the 𝑑𝑥 in 

𝑑𝑦 = 2𝑥 𝑑𝑥 was “a relatively small number,” but that, when using 𝑑𝑢 =
1

2√𝑡
 𝑑𝑡 as a substitution 

 

 

 

Figure 31: Flowchart and spreadsheet for the integration by substitution 

Andre Bryan Christopher Diane Eugene Francis Gustav Xavier Yanick Zaphod

N.1a N.1a L.4c N.1a N.1a (C).e N.1a (C).e N.3 N.4b

(P) ("A") L.3 N.3 N.3 N.4c

N.1a ("A") ("A") (A)

N.3 (U).b

(P)
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said, “To me, it’s just mechanical,” and “When I do it, I don’t think about [the size of the 

differentials] at all.” Diane had a similar shift, calling the substitution step “almost like a trick, or 

a notational thing that we can use to help us figure [the original integral] out,” but her shift was 

not as pronounced as the others’, since she never viewed the differentials in 𝑑𝑦 = 2𝑥 𝑑𝑥 as real 

numbers, but instead as limit-based pseudo-numbers. 

 A second shift by Christopher, Francis, and Gustav was from the earlier differentials as 

real numbers to the “substitution” differentials as pseudo-numbers. To use Francis as an example, 

it was stated in his section above that the differentials in 𝑑𝑦 = 2𝑥 𝑑𝑥 were the only differentials 

he viewed as real numbers. When describing the differentials in the substitution step, he noted that 

they had a relationship, confirming that they at least have some numerical qualities, but repeatedly 

called them “infinitesimal,” which he later confirmed was a word that he used as a synonym for 

“unquantifiable.” Both of these shifts can be seen by comparing this spreadsheet (Figure 31) and 

the previous one, and noting that the majority of themes in this spreadsheet are lighter-colored than 

the corresponding themes in the previous spreadsheet.   

Answering the Research Questions 

 In this section, I will provide my answers to my three research questions.  It is probably 

true that a quick glance at the summaries, flowcharts, and spreadsheets given in the previous 

section can give the reader the most basic answers to these questions, but I should like to expand 

on that material. 

1. How extensive are the concept images of differentials held by expert mathematicians? 

 The two multiple-theme lists I have created from the results of my interviews show the 

vastness of the concept images held by my interview subjects in two different ways. The first is 

the breadth of the flowchart I created for the Tier 1 themes. As it currently exists, I have found 
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eight main themes, and the total number of times each of the main themes was used by my 

interview subjects is shown in Figure 32. Even if one were to only look at the most common of 

these main themes and not any subthemes, one would still see that concept images can be very 

extensive, as the three most common themes describe differentials as the completely differing 

well-defined values, ephemeral ideas such as variable indicator or automatic process, and limit-

based pseudo number. 

 Some of these eight themes are partitioned into enough subthemes so that any differential 

that is analyzed using my flowchart can end up in one out of a total of seventeen destinations. 

While some of these destinations were not reached by the descriptions given by my interview  

 

 
Figure 32: Total number of Tier 1 themes 
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subjects (Examples being Themes N.2, L.1a, and L.4b), this does not mean that future interview 

subjects will never describe differentials that reach these destinations. It is also possible that future 

interview subjects might describe new subthemes that were not found in my dataset. The existence 

of at least seventeen possible destinations reinforces how extensive concept images of differentials 

can be. 

 The second is the prevalence of what I have been calling my “Tier 2” themes, and the total 

number of times each Tier 2 theme was used is shown in Figure 33. Before beginning this 

dissertation, I assumed that I would find a lot of descriptions of the differentials themselves; I did 

not expect, however, the amount of discussion about ideas that surround the differentials. Table 9 

lists the totals of each type of theme for the entire data set and shows that throughout all of the 

interviews, there were eleven more occurrences of Tier 2 themes than the total occurrences of both 

types of Tier 1 themes. This suggests that the interview subjects had more to say about their ideas 

surrounding the differentials than about the characteristics of the differentials themselves. In other  

 

 
Figure 33: Total number of Tier 2 themes 
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Table 9 

 

Total occurrences of all types of themes 

Tier 1: 

Non-limit-

based 

Tier 1: 

Limit-

based 

Tier 2: 

(C)ontext 

Tier 2: 

(U)ncertainty 

Tier 2: All 

Algebra 

Themes 

Other 

Tier 2 

Themes 

No Tier: 

“None” or 

“Not Enough 

Information” 

109 38 63 25 59 10 20 

 

words, within their concept images, ideas such as “context,” “uncertainty,” and “algebra” were 

just as important as their ideas of “the differential is an object/a pseudo-number/a real or 

infinitesimal number.” Of course, it is possible that the interview questions skewed the results and 

inflated the importance of these ideas in these particular interview subjects. Nevertheless, the 

existence of these three “surrounding” ideas is not in question, and they can expand concept images 

beyond a list of simple statements that categorize differentials, giving individuals’ concept images 

greater depth and nuance. 

 To conclude with a look at my specific results, anyone looking at this research will find 

that four of my interview subjects (André, Christopher, Eugene, and Gustav) used a total of six 

different Tier 1 themes during their interviews. This total could be considered extensive by itself, 

but it does not take into account any of the various Tier 2 themes of context, uncertainty, and 

algebra that might be attached to these Tier 1 themes, expanding and giving depth to the overall 

interpretation.  

2. What levels of consistency, if any, exist in the concept images of the differential within each 

individual?  

 I would like to begin my answers of this and the next research question by showing some 

results from only one theme. Table 10 shows the responses of some interview subjects when 

discussing algebraic operations in Leibniz derivative notation, the separable ODE, and the  
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Table 10 

 

Some examples of the Algebra themes 

Expression Theme (A) Theme (“A”) Theme (A) 
𝑑𝑦

𝑑𝑥
 

The 𝑑𝑦 and 𝑑𝑥 are 

individual entities and 

this symbol represents 

a quotient of the two. 

 

Used by: André, 

Christopher (at first), 

Gustav, Xavier, 

Zaphod 

 

The 𝑑𝑦 and 𝑑𝑥 are “sort of” 

entities, and/or one can proceed 

“as if” this symbol were a 

quotient, but it might not really 

be one. 

 

Used by: Christopher (later), 

Diane, Yanick 

The 𝑑𝑦 and 𝑑𝑥 are 

not individual 

entities and we 

cannot think of this 

symbol as a 

quotient 

 

Used by: Bryan, 

Eugene, Francis 

𝑑𝜏

𝑑𝑡
= −𝑘𝜏 

To solve this equation, 

we can simply multiply 

by 𝑑𝑡, no questions 

asked. 

 

Used by: André, 

Christopher, Xavier, 

Yanick, Zaphod 

 

One may act as if he or she is 

multiplying by 𝑑𝑡, but it is 

unclear whether this is an 

accurate description of what’s 

really happening. 

 

Used by: Bryan, Diane, Gustav 

Under no 

circumstances may 

we “multiply by 𝑑𝑡” 

 

Used by: Francis 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

 
In this symbol, the 

𝑓(𝑥) and the 𝑑𝑥 are 

being multiplied. 

 

Used by: Bryan, 

Christopher, Xavier 

It is hinted, but not specifically 

stated, that the 𝑓(𝑥) and 𝑑𝑥 are 

being multiplied, or one views 

this symbol as if they were being 

multiplied. 

 

Used by: Francis (stated twice), 

Yanick 

It is distinctly said 

that the 𝑓(𝑥) and 

𝑑𝑥 are not being 

multiplied  

 

Used by: Diane 

(stated twice) 

 

 

definite integral. When I initially described this theme, I noted that it might be possible that 

interview subjects could express multiple “algebra” views throughout his or her entire interview. 

An example of this can be found in the table: reading from bottom to top, Bryan believes that 

𝑓(𝑥)𝑑𝑥 is truly a multiplication, solving the ODE is only sort of, but not really, multiplying by 𝑑𝑡, 

and the symbol 
𝑑𝑦

𝑑𝑥
 is not a quotient. In these examples, the differential proceeds along a path that 

begins as “full-fledged participant in algebraic activities” and ends at “not even a mathematical 

object.” 
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 This one example serves as a microcosm for the views of each interview subject. True, no 

interview subject’s concept image was completely chaotic, bouncing wildly from 

conceptualization to conceptualization every time he or she saw a new expression. But at the other 

end, no interview subject’s concept image was completely consistent throughout his or her 

interview. To give specifics, the number of Tier 1 themes utilized by my interview subjects ranged 

from two (Yanick and Zaphod) to six (André, Christopher, Eugene, and Gustav,) showing that not 

only did no interview subject stay consistent throughout his or her entire interview, but also that 

there were varying levels of this inconsistency.  

 Even the interview subjects who had the same level of consistency in their concept image 

by this measurement still invoked different ideas. Of the two interview subjects that only utilized 

two Tier 1 themes, Yanick viewed his differentials as either limit-based or non-limit-based pseudo-

numbers while Zaphod viewed his as formal hyperreal infinitesimals and variable indicators. The 

four interview subjects who utilized six Tier 1 themes did not all choose the same ones: Christopher 

used the most limit-based themes, André and Gustav viewed a lot of their differentials as well-

defined values, and Eugene tended toward pseudo-numbers and variable indicators. 

3. What levels of consistency, if any, exist in the concept images of the differential among all 

mathematicians interviewed?  

 There is less consistency in how all of the interview subjects view each expression’s 

differentials. Tables in earlier sections of this dissertation have already shown the large collections 

of conceptualizations for Leibniz derivative notation and definite integrals that were used by my 

interview subjects. Table 10 shows additional inconsistency in how the group viewed the legality 

of algebraic operations with differentials. Indeed, each expression has interview subjects who 
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champion the completely opposite views of Themes (A) and (A), and these completely opposite 

views are not necessarily championed by the same people from expression to expression.  

 To use the same metric used in the discussion of the previous question, the number of Tier 

1 themes used by each interview expression ranged from two (the indefinite integral) to nine 

(definite and double integrals.) Since no expression was found to have only one view, I can only 

conclude that there is even less consistency among the views of all interview subjects than there 

is within the concept images of individual interview subjects. I can point to small islands of 

consistency, such as André and Bryan describing differentials akin to Courant and John’s (1965) 

“physically infinitesimal” values, the three RUME faculty (Diane, Francis, and Yanick) having a 

greater reliance on limit-based themes than the other interview subjects, and Gustav and Zaphod 

making similar statements about Abraham Robinson’s nonstandard analysis and hyperreal 

infinitesimal numbers.  

 I believe that I could expect to find instances of consistency if I interviewed a tailored 

group chosen for their specific interests. For example, a group of ten physicists might show 

consistency among their concept images, as might a group of ten differential geometers. However, 

using this research as a guide, I would now not expect either group to have complete agreement 

among their members, nor would I expect the two groups’ views to be consistent with each other’s. 

Regarding this dissertation, with its ten interview subjects with varied interests and backgrounds, 

it is clear that there is no meaningful consistency among all of their views. 

Summary of the Data and Results 

 The amount of differing and sometimes contradictory responses found in each interview  

and among the discussions of each expression should put an end to the idea that there is one single, 

formal concept of the differential among all mathematicians. However, this lack of a formal 
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concept definition does not mean that these interviews were fruitless, as they at least generated an 

initial list of categorizing themes. While the themes I have found can be used to describe each 

mention of differentials in my data, I would say that a fuller analysis of differential concept images 

requires more than just providing a list of themes. In the final section of this dissertation, I will 

attempt to discuss the teaching and learning implications that I believe are raised by some of these 

themes and based on some of the responses from my interview subjects.  
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7.  DISCUSSION 

 This dissertation not only presented a framework that can be used to conceptualize 

differentials, but also listed several themes that address ancillary considerations, such as the 

uncertainty that surrounds differentials or the validity of algebraic operations performed with 

differentials. Many of these differential conceptualizations and ancillary considerations have 

possible teaching implications that I shall discuss. Additionally in this chapter, I note limitations 

of this research and make recommendations for future studies  

Limitations of this Dissertation 

 The first limitation I note is the absence of inter-rater reliability. During the long process 

of conducting the research and creating this dissertation, I had opportunities to present examples 

of my categories of differential conceptualizations to my advisor and other students authorized by 

my school’s Institutional Review Board. While these other researchers gave me feedback and 

advice on the efficacy of these categories, no other researcher ever took any significant portion of 

interview data and attempted to categorize the differentials themselves. While some of the 

categories I have created are relatively easy to spot (examples include differentials as real or formal 

infinitesimals and differentials as variable indicators) some decisions (Does this differential truly 

result from a limit process? Which level of algebra is being performed with this differential? Is 

there enough “concreteness” to call this differential an object instead of an ephemeral idea?) were 

more difficult to make, and perhaps have the potential to be interpreted differently by other 

researchers. 

 Thus, it should not be assumed that all of my responses would be confirmed by other 

researchers, and I believe that my next research project should include co-researchers who have 

been briefed on my categorizations. Before undertaking any future research, I would present 
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excerpts from existing transcripts and ask these co-researchers to independently categorize the 

differential views found within them. If enough discrepancies were found between my 

categorizations and theirs, I would lead a discussion to determine whether the discrepancies 

resulted from different understandings of my categorizations or perhaps even flaws in my 

framework. In either case, appropriate corrections, such as enriching my descriptions of themes or 

re-examining the accuracy of my framework, would be taken to ensure that all future research has 

inter-rater reliability. 

 Another limitation to this dissertation is the relatively small sample size. The framework 

and initial list of Tier 2 themes was generated by the data provided by seven interviews. On one 

hand, I am aware that a collection of seven interviews is generally not an extensive collection, and 

normally I would hesitate to make many sweeping generalizations from what might be viewed as 

a relatively small dataset. On the other hand, nothing in the second series of interviews contradicted 

the main themes in the flowchart I created, and I cannot foresee any future differential 

conceptualization that would not fit in my flowchart in some fashion.  

 While this leads me to believe that my flowchart is valid as it pertains to the main themes, 

the sheer amount of different Tier 1 subthemes and Tier 2 themes seems to suggest that I have but 

scratched the surface of the many subtleties that experts might have in their differential concept 

images. It would appear that future research with a greater number of subjects can explore not only 

how many additional Tier 2 themes and flowchart subthemes can be found but also how much 

nuance can be attached to each theme in my flowchart and whether more spaces might need to be 

added to accommodate a larger number of subthemes. 

 However, some subthemes in the flowchart might speak to an ignorance of nuance during 

my questioning. To give an example, in my data, Theme 3 is differential as pseudo-number and 
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Theme 4 has subthemes of real number, formal infinitesimal, and “one of those two but can’t be 

determined.” I now believe that last subtheme arose because my inexperience with the protocol 

blinded me to the fact that this subtheme is unnecessary with proper follow-up questions. If the 

interview subject describes a differential as a value but does not define it well, follow-up questions 

asking him or her to quantify it can be asked until the interview subject defines it as a real number, 

formal infinitesimal, or “not really a measurable value,” which would make that differential a 

pseudo-number. The fact that “can’t be determined” was an option in this dissertation shows that 

there were several instances in which I did not ask enough clarifying follow-up questions, which 

I shall endeavor to do in future research. 

 There is another reason that I might need to ask more clarifying, follow-up questions in 

future research. The first type of uncertainty discussed in my theme list was the existence and 

awareness of cognitive conflict. While two of my interview subjects, Francis and Yanick, noticed 

some conflict between some of their responses, Diane, Eugene, and Francis each mentioned a wish 

or hope that he or she was being consistent throughout all answers. These wishes perhaps point to 

the existence of an inherent drive for mathematicians to find clear, direct, and non-conflicting 

explanations for mathematical ideas. I submit that it is possible for this drive to shape interview 

subjects’ responses toward greater consistency, especially when discussing a topic that has the 

potential to elicit many differing viewpoints, such as differentials. It is possible that I did not pay 

enough respect to this drive, and shall remember to do so in future research. 

 The last limitation I wish to note regards both the placement and wording of some of the 

expressions in my interview protocol. My interview protocol expressions labelled (6) was the 

“Law of Cooling” separable ODE 
𝑑𝜏

𝑑𝑡
= −𝑘𝜏, and (7) was the definite integral ∫ 700 − 3𝑥 𝑑𝑥

50

0
 

which represented the amount of work done in lifting a 400-pound weight halfway up the side of 
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a building using a wire that weighed 3 pounds per foot. These were included to serve as 

companions to the expressions (1) 
𝑑𝑦

𝑑𝑥
 and (2) ∫ 𝑓(𝑥) 𝑑𝑥

𝑏

𝑎
. I initially thought that as the interview 

subjects’ proceeded from the earlier, context-free expressions to the later context-dependent 

expressions, their conceptualizations of the differentials involved might markedly change toward 

more “tangible,” non-limit-based conceptualizations and away from limit-based and “not-as-

tangible” conceptualizations.  

 However, this did not happen to the extent that I expected. While there was a slight version 

of this expected shift in the conceptualizations of the differentials from expressions (2) to (7), the 

opposite shift away from “tangible” differentials occurred between expressions (1) and (6). I 

theorize that a possible reason for this is the fact that the first thing I asked the interview subjects 

to do upon presenting the ODE was to solve it. Perhaps being asked to immediately solve the ODE 

caused the subjects to focus toward the elements of their concept images best suited for 

mathematical manipulations, such as differentials as automatic processes, and away from the 

elements of their concept images that endowed the differentials with a value. I believe that the idea 

of exploring how differential conceptualizations might vary if given a physical context is a good 

idea to explore in future research, but if I conduct this research, I will need to decide if there is a 

better and less-influencing way to introduce the ODE than immediately asking for a solution. 

Implications for Instruction 

 The fact that expert mathematicians who are currently teaching at universities do not agree 

on a concept image for differentials can definitely have an effect on instruction. At the most basic 

level, it is not difficult to imagine a student taking both semesters of first-year calculus from 

professors who champion completely different views about differentials. If this hypothetical 

student is told in the first semester that differentials are limit-based pseudo-numbers that can be 
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algebraically manipulated, and then told in the second semester that differentials are merely 

notation that may not be manipulated, then he or she is certainly not getting a consistent education, 

particularly if these calculus classes are followed by physics classes in which differentials are 

presented as non-limit-based physical entities. 

 If expert mathematicians can experience cognitive conflict with different elements of their 

concept image, then it stands to reason that students can experience it as well. My personal belief, 

which would theoretically eliminate much, if not all, such cognitive conflict, is that all differentials 

should be taught with the same conceptualization. Perhaps the idea of “one symbol; one meaning” 

for differentials is not appropriate and too strict to be used as an absolute in mathematics, but I 

would think that the current idea of “one symbol; a large collection of meanings, some of which 

are contradictory” is not any better. 

 My preference would be to teach differentials as non-limit-based informal hyperreal 

infinitesimals. Note that I do not propose introducing infinitesimals to students with a formal 

approach straight out of Robinson (1966), since such an approach would be beyond the 

understanding of the typical undergraduate student.12 Instead, I would advocate a more informal 

approach such as the approaches used by Keisler (2012), Henle and Kleinberg (2003), Hrbacek, 

Lessmann, and O’Donovan (2014), or Sloughter (2007), in which the arguments and evidence for 

the existence of infinitesimals are presented more informally. I suggest this approach because I 

believe that presenting differentials this way is the most logical and internally-consistent approach. 

It might eliminate, or at least lessen, the uncertainty that was common in my data, it avoids any 

                                                             
12 I liken this to the way that many current textbooks address real numbers. They do not present students with a 

formal approach that mentions advanced ideas such as “Real numbers come from equivalence classes of convergent 

Cauchy series of rational numbers,” but rather just assume that students have some informal and intuitive 

understanding of real numbers that does not need to be explored. 
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confusion between limits and differentials, and it is beneficial for the transition between 

mathematics and other courses.  

 In my data, there were more instances of general uncertainty beyond obvious cognitive 

conflict. André and Eugene said that they did not have formal understandings or definitions for the 

term “differential” and the 𝑑𝑥, respectively, while Bryan, Christopher, and Francis expressed that 

they were not comfortable with or did not like using phrases like “infinitely small” or 

“infinitesimally small” because such phrases were, as Bryan stated “hard to make it precise or 

practical in any way.” It is certainly possible that such uncertainty can find its way into one’s 

teaching. In her interview, Diane spoke of “hand-wavy” explanations given by books and remarked 

that, as an instructor, she is aware that some differential-based explanations are not developed 

well: “I feel like when we teach the 𝑢-substitution in particular, we just write this [𝑢 = √𝑡] and 

write that [𝑑𝑢 =
1

2√𝑡
 𝑑𝑡], and we help them solve and plug stuff in, and we don’t spend enough 

time talking about what is 𝑑𝑢 and what is 𝑑𝑡.” If one were to adopt an infinitesimal-based calculus, 

then these particular instances of uncertainty could be addressed: all of the questions about the 

above definitions, phrases, and differentials can be answered by the central idea that differentials 

are infinitesimal values, with “infinitesimal” now formally defined. 

  Regarding limits and differentials: notations such as 
𝑑𝑦

𝑑𝑥
 and ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
 are used by both 

infinitesimal-based and limit-based calculus, even though the derivative and integral notations 

were created with Leibniz’ infinitesimals in mind (Ely & Boester, 2010; Keisler, 2012). These 

notations communicated the complex ideas of differentiation and integration via relationships 

between infinitesimals, even though, in Leibniz’ time, these infinitesimals were not formally-

defined. The development of the epsilon-delta mechanism did formalize these notations, but at the 

cost of removing them from their infinitesimal-based origins and placing them into a limit-based 
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understanding. I believe that this removal and placement is a potential source of the multiple 

conceptualizations of differentials.  

 To use the definite integral notation ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 as an example, if one has adopted a 

nonstandard view of the notation, then the 𝑑𝑥 will be a formally-defined infinitesimal amount. But 

if one adopts standard analysis, then their view of the differential will be shaped by how they view 

limits. To me, the idea of limits applied to infinitesimal-based notation is like a prism scattering 

one beam of light into many different colors: how does one choose to reconcile one’s idea of 

“limit” with notational bits that initially represented infinitesimals? Does one try to relate the 𝑑𝑥 

directly to the Riemann sum’s Δ𝑥 in any way? If so, is the 𝑑𝑥 a transformed Δ𝑥? Is the 𝑑𝑥 only a 

stage in the limiting process of taking Δ𝑥 to zero? Either way, does the 𝑑𝑥 have a quantifiable 

size? If one chooses not to relate the 𝑑𝑥 and Δ𝑥, does the 𝑑𝑥 in the integral only serve as an 

indicator that a limit was taken? Does it serve to reference the variable of integration? Or is it 

possible that one views the 𝑑𝑥 as having no meaning at all?  

 Each of these implications suggests to me that, as much as possible, limit-based teaching 

of differentials simply creates more problems than it solves, perhaps reinforcing my idea that 

teaching all differentials as informal hyperreal infinitesimals is preferable. Using infinitesimal-

based calculus to teach concepts whose notation is built around infinitesimals should not be viewed 

as a radical idea, particularly when the alternative is using limits in notations not built for them.  

 Finally, my literature review contains many papers in which it is presumed that physicists 

generally view differentials as infinitesimal amounts (e.g. Artigue, 1991; Jones, 2013; López-Gay, 

Martínez Sáez, and Martínez Torregrosa, 2015). My Tier 2 Theme (C).b, the awareness of different 

interpretations depending upon the field of study, shows that some of my experts are aware that 

the physical sciences adopt a “differentials as infinitesimals” view. If one were to teach calculus 
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with my suggested infinitesimal-based approach, then his or her students might find a transition to 

physics-based calculus easier. 

 However, I realize that this could be an option difficult to implement for some instructors. 

Not only is nonstandard analysis not widely accepted nor even well-known, but limits are 

ubiquitous throughout the current methods of calculus instruction, and I believe that it might be 

difficult for some to consider replacing limit-based calculus with infinitesimal-based calculus. If 

this is the case, I offer some possible justifications for trying such an approach and some 

suggestions for those who do not wish to do so. 

 First, within my Tier 1 themes, there were almost three times more non-limit themes than 

limit-based ones. I do acknowledge that it is possible that more-detailed questioning and/or further 

explorations of the interview subjects’ concept images might have provided evidence that limits 

are considered more often than my research implies. However, I believe that the relatively small 

number of limit themes in the majority of differential conceptualizations is telling. If future 

research supports my data, then no matter how common limits are in calculus, the idea that 

differentials do not come from limits is at least common. Those who may not want to teach an 

infinitesimal-based course might at least consider teaching differentials as entities that exist 

without limit processes. 

 Another reason I suggest an infinitesimal-based calculus is because I feel that some 

statements and actions taken by some of my other interview subjects could be said to bear at least 

some resemblance to the presentation of nonstandard infinitesimals. Christopher described his 𝑑𝑦 

and 𝑑𝑥 in Leibniz derivative notation by a process of zooming into a curve using a graphing utility 

until the section of curve in the viewing window appeared linear. His 𝑑𝑦 and 𝑑𝑥 were described 

as the vertical and horizontal components of this seemingly-linear bit. The result of this process 
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mirrors Keisler’s (2012) use of an “infinitesimal microscope” to focus on a section of a curve to 

such a degree that it appears linear, and assign 𝑑𝑦 and 𝑑𝑥 to the vertical and horizontal components 

of this linear bit. André and Diane described certain differentials as “the 𝑑𝑥 is what’s left of Δ𝑥 

after it goes to zero” and “then this point starts to kind of approach that point [tracing this in Figure 

D3], and when that point is exactly on top of this point, then the Δ𝑦, we’re going to think about as 

𝑑𝑦, Δ𝑥 we’re going to think about as 𝑑𝑥,” respectively. Both of these descriptions seem to include 

the contradictory ideas that the measurable amount of the quantity in question is zero but there is 

still some presence of that quantity remaining. Keisler’s (2012) and other nonstandard analysis 

works could be said to address that seeming contradiction by use of infinitesimals and the standard 

part function. A formal infinitesimal, 𝜖 still has a presence in the hyperreal numbers, yet the 

standard, or real, part of 𝜖 is zero. 

 I do not claim that Christopher, André, and Diane are actually using nonstandard analysis 

in their explanations, but I see similarities in their responses to nonstandard analysis. Thus, I would 

suggest that calculus instructors could easily consider a nonstandard, infinitesimal-based approach 

to calculus, because they already hold informal views that align very well to nonstandard views. 

 Finally, even if one does not wish to adopt an infinitesimal-based calculus, at the very least 

I believe that steps should be taken to avoid or at least minimize uncertainty and cognitive conflict 

when teaching differentials. Of course, conflict could be avoided by teaching only one 

conceptualization for differentials, but if an instructor wants to use different conceptualizations at 

different times, he or she should include caution when introducing the new uses for differentials, 

making sure that all explanations for any new uses do not contradict previous explanations. An 

example of this is how many of my interview subjects defined the “Work” problem: the integral 

is built using a differential that represents a small amount of wire, and then the integral is evaluated 
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using the Fundamental Theorem of Calculus, at which time the differential is used to indicate the 

variable of integration. Explanations like this, in which the reasons for different conceptualizations 

are specifically indicated, should serve to minimize any potential cognitive conflict among 

students who come into contact with multiple conceptualizations. I would also suggest that some 

classroom discussion of the historical development of differential notation might be similarly 

beneficial, as multiple differential conceptualizations might be better accepted by students who are 

aware that the differential-containing Leibniz notations can be defined and accepted both with and 

without the use of limits. 

Possible Future Research 

 Regardless of which of these specific teaching implications I will choose to investigate 

further, the first step in such an investigation must be to conduct this research with a much larger 

sample size. It has been suggested to me that some type of internet-based survey might be 

beneficial, as I would probably be able to attract a greater number of busy, time-strapped interview 

subjects by offering of a fifteen-minute internet survey as opposed to a forty-five minute more 

formal interview. An internet-based study would also give me the opportunity to at least partially 

randomize the order of the expressions I would present, allowing me to ensure that interview 

subjects’ responses are not necessarily influenced by the order in which the questions were 

presented.  

 Regarding the teaching implications that interest me the most, I should like to focus initially 

on the divide between mathematics differentials and physics differentials and the efficacy of 

nonstandard-analysis-based calculus instruction. I think that both of these ideas could be combined 

by proposing, exploring, and/or experimenting with a first-year calculus course with an 

infinitesimal-based curriculum. In this hypothetical curriculum, differentials would be viewed as 
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separate, individual entities that exist without limits; this would be a definition more in-line with 

both the “physics” conceptualization and the intended meaning of those notations. 

 Other possible studies can be postulated from the teaching implications I have listed. A 

study could be conducted that explores the differences in the views of the legality of performing 

algebraic operations with differentials. Another study could attempt to measure how deeply the 

ideas of limit processes affects one’s view of differentials, and whether those ideas are helpful or 

harmful. In all of these potential studies, attention could be focused on the uncertainty of the 

interview subjects’ responses, or, alternatively, a study could be conducted with the sole purpose 

of gauging the level of uncertainty about differentials that is admitted by the interview subjects.  

 A final idea I would like to explore in future research is how individuals interpret the 

symbolic forms of the expressions containing differentials. Since differentials rarely exist in a 

vacuum but usually exist as a part of a larger expression, it could be argued that one’s 

conceptualization of a particular differential might have some relation to one’s conceptualization 

of the expression in which the differential resides. When exploring the question of what it truly 

meant for students to understand physics equations, Sherin (2001) described what he called the 

symbolic forms of equations. These symbolic forms contain both the physical layout of the symbols 

used in a particular equation (the symbol template) and the meaning behind the particular form 

chosen for the equation (the conceptual schema.) I argue that while these symbolic forms were 

initially created as a method to delve into student understanding of the meaning of physics 

equations, I believe that a similar symbolic awareness of how one views differential-containing 

expressions might be helpful in exploring differential conceptualizations. 

 I already mentioned Jones’ (2013) study in which, after students discussed and used the 

definite integral in a variety of situations, the student responses were analyzed so as to try to 
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determine the conceptual schemas behind their answers. He identified three symbolic forms of the 

definite integral expression, each using the symbol template ∫ [ ]
[ ]

[ ]
𝑑[ ], but containing different 

conceptual schema. First, in the “adding up pieces” symbolic form, where one divides the region 

indicated by the definite integral into rectangles and adds the resulting areas of all such rectangles, 

the 𝑑𝑥 represents the width of each rectangle. Second, in the “perimeter and area” symbolic form, 

where the region indicated by the definite integral is simply viewed as a geometric area, the 𝑑𝑥 

represents that the 𝑥-axis is a border of the region. Third, in the “function matching” symbolic 

form, where the integrand is viewed as the derivative of an unknown function, the 𝑑𝑥 indicates 

that the integrand had been differentiated with respect to 𝑥. 

 In this research, I identified two instances in which interview subjects described symbolic 

forms that were not found in any other responses. First, Diane was the only interview subject who, 

at times, discussed the differential as two separate and meaningful letters, discussing the “𝑑” of 

the differential as follows:  

… if I want to refer to that quantity and I think of this Δ𝑦 as being an infinitely 

small change with respect to 𝑦, then I would write it with a 𝑑 instead of a Δ, and I 

actually say that that’s because the Δ is a capital “D”, and then the 𝑑 is kind of like 

the lowercase, so that’s why we switch over to that when we’re talking about the 

infinitely small quantity. 

 When the idea in the above quote is combined with the idea that the second letter of the 

differential indicates the variable of integration, I would suggest that she assigned to certain 

differentials the symbolic form [][] instead of [], the initial 𝑑 suggesting that the quantity being 

discussed needs to be understood as an “infinitely small” quantity, and the terminal letter 

suggesting a particular variable. Her “pseudo-number” differentials, which were not related to a 
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particular direction, would be assigned the symbolic form [], as they would be thought of as one 

unit. This is not to say that no other interview subjects entertains similar variation in his symbolic 

forms, but other than Christopher mentioning that a “𝑑” represented the existence of a limit, no 

other interview subject addressed the “𝑑” in the differential separately. 

 Second, Zaphod’s idea that the left-hand side of the ODE represents an operator 
𝑑

𝑑𝑡
 applied 

to 𝜏 instead of the combination 
𝑑𝜏

𝑑𝑡
 suggests a different symbolic form. Based on the previous 

interviews, I would have expected one of two symbolic forms for the left-hand side of the ODE 

𝑑𝜏

𝑑𝑡
= 𝑓(𝜏)𝑔(𝑡). If one believes that one can multiply by 𝑑𝑡, I would expect the symbolic form 

[ ]

[ ]
, 

which shows the independence of the 𝑑𝜏 and the 𝑑𝑡.  If, however, one does not believe that 

multiplying by 𝑑𝑡 is acceptable, I would expect the form [ ], which would show the idea that 
𝑑𝜏

𝑑𝑡
 is 

not a quotient. However, Zaphod seems to be using a different symbolic form, 
𝑑

𝑑[ ]
, in which the 

only replaceable consonant on the left-hand side is the one that determines the variable of 

integration. 

 I can foresee instances in which different interpretations of differentials can lead to the 

same expression being considered with other symbolic forms. To give some example, two possible 

symbolic forms of Leibniz derivative notation are 
[ ]

[ ]
 or simply [ ], where the first is meant to 

indicate that the expression consists of a 𝑑𝑦 separated from a 𝑑𝑥, while the second is meant to 

indicate that the entire symbol should not be read as two separate entities but instead as one 

notation. Similarly, one’s symbolic form for the separable ODE 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥)𝑔(𝑦) could influence 

the choice of solution method. If one views the equation with the symbolic form 
[ ]

[ ]
= [ ][ ], then 

one could think it acceptable to “multiply both sides by 𝑑𝑥”, since the 𝑑𝑥 seems to be a separate 
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entity. However, if one uses the form [ ] = [ ][ ], then such multiplication might not be allowed in 

his or her conceptual schema. Finally, the symbol for indefinite integration could either be 

interpreted with the symbolic form ∫[ ] [ ], in which the 𝑑𝑥 would seem to be considered equally 

valid as the integrand, or the more basic form ∫[ ], in which the integrand and 𝑑𝑥 are merged, and 

thus the 𝑑𝑥 would have no individual meaning. 

 Diane’s and Zaphod’s examples were noted here because those were the only instances in 

my data in which symbolic forms were used that were noticeably different from the other interview 

subjects’ symbolic forms. This does not mean, however, that the more-common symbolic forms 

and how these forms relate to their individual’s concept image are not worthy of analysis. Such 

analysis was beyond the scope of this dissertation, and is also a candidate for future work.  

Final Thought 

 Regardless of what, if any, future research I might choose to explore, I would submit that 

this dissertation has provided me with a renewed appreciation for differentials. Christopher closed 

his interview by saying:  

[Differentials are] very useful, ‘cause they have a lot of content. There’s a lot of, 

sort of conceptual content in there, and if you shy away from them, you’re robbing 

the students of sort of conceptual content where they can think about things. These 

things actually mean something, rather than being things that are so abstruse that 

they can only be handled with a course in advanced calculus. I think a lot of that – 

all that developed just from physical reasoning and – although the mathematics by 

itself is not rigorous, you can make it rigorous, and the reasoning is valid. So I don’t 

see any reason to avoid talking about them 
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 I would agree with Christopher that differentials are meaningful and can be presented as 

being more than obscure entities only understood with advanced mathematics. As I proceed with 

my teaching career, I shall aim to use them when teaching lower-level calculus, while being aware 

of the many possible interpretations of them that were discovered during this research.  
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APPENDIX A: Interview Protocol for the Exploratory Study 

 

Introduction (to be read to the subject): I am interviewing experts to ask them about their 

perspectives in various calculus topics.  I am more concerned with how you think about the 

topics than how you would teach the topics, although I do understand that how you teach a topic 

and how you view a topic might be related. Please answer the following questions with as much 

detail as you can. 

 

 

1. Consider the following symbols (each of which contains the symbol 𝑑𝑥): 

 

(1) ∫ 𝑓(𝑥) 𝑑𝑥  (2) ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥  (3) ∫ 𝑓(𝑥)

𝑎

𝑏
𝑑𝑥 

 

a. What is the role of 𝑑𝑥 in each expression? (What does it mean?) 

b. Is there a graphical meaning for 𝑑𝑥? 

c. How does ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 compare to ∫ 𝑓(𝑥)𝑑𝑥

𝑎

𝑏
? How do you know? 

d. Can you justify the last answer in terms of area under a curve? 

 

 

2. Consider the following symbols, (each of which contains the symbol 𝑑𝑥): 

 

(4) If 𝑦 = 𝑦(𝑥), the symbol 
𝑑𝑦

𝑑𝑥
 

(5) If 𝑦 = 𝑦(𝑥), 𝑑𝑦 = 𝑦′(𝑥)𝑑𝑥 

(6) If 𝑥 = 𝑥(𝑡), the symbol 
𝑑𝑥

𝑑𝑡
 

(7) If 𝑥 = 𝑥(𝑡), 𝑑𝑥 = 𝑥′(𝑡)𝑑𝑡 

 

a. What is the role of 𝑑𝑥 in each expression? (What does it mean?) 

 

 

3. Consider two things: 

 

(8)  The integral:  ∫
cos √𝑥

2√𝑥

4

1
𝑑𝑥 

(9)  The beginning steps in the integral’s evaluation: 

Given ∫
cos √𝑡

2√𝑡

4

1
𝑑𝑡, 

Let 𝑥 = √𝑡 

𝑑𝑥 =
1

2√𝑡
 𝑑𝑡 

𝑡 = 1 and 4 mean that 𝑥 = 1 and 2, respectively 

The integral becomes ∫ cos 𝑥
2

1
𝑑𝑥 

 

a. What are the roles of the 𝑑𝑥 symbols in both (8) and (9)? 

 



159 

 

 

4. Consider the following two ODEs: 

 

 Separable ODEs can be described as equations that are of the form (10), and a common 

solution method is to begin by putting the equation into form (11) and then integrating, as 

shown here: 

(10)  
𝑑𝑦

𝑑𝑥
= 𝑔(𝑦)ℎ(𝑥) 

(11) 𝑝(𝑦)𝑑𝑦 = ℎ(𝑥)𝑑𝑥, where 𝑝(𝑦) =
1

𝑔(𝑦)
 

(12) ∫ 𝑝(𝑦) 𝑑𝑦 = ∫ ℎ(𝑥) 𝑑𝑥 

 

 The equation (13) (2𝑥𝑦 − 9𝑥2)𝑑𝑥 + (𝑥2 + 2𝑦 + 1)𝑑𝑦 = 0  

is an Exact ODE, verified by showing that 
𝜕

𝜕𝑦
(2𝑥𝑦 − 9𝑥2) =

𝜕

𝜕𝑥
(𝑥2 + 2𝑦 + 1) = 2𝑥 

with an implicit solution of (14) 𝑥2𝑦 − 3𝑥3 + 𝑦2 + 𝑦 = 𝐶. 

 

a. The manipulation from (10) to (11) might be construed as “multiplying both sides by 

𝑑𝑥.” Is “multiplying by 𝑑𝑥” what is really happening here? If so, then do you claim 

that algebraic manipulation with this 𝑑𝑥 is possible? If not, then what is really 

happening here? 

b. What is the role of 𝑑𝑥 in the separable ODE? Does this role change from (10) through 

(12)? 

c. What is the role of 𝑑𝑦 in the separable ODE? Does this role change from (10) through 

(12)? 

d. What are the roles of 𝑑𝑥 and 𝑑𝑦 in the exact ODE?  

e. Can 𝑑𝑥 and 𝑑𝑦 have a numerical role? If so, can they be negative? 

f. Is it mathematically legal to rewrite the original ODE into the form 
𝑑𝑦

𝑑𝑥
=

9𝑥2−2𝑥𝑦

𝑥2+2𝑦+1
? If 

so, what are the roles of 𝑑𝑦 and 𝑑𝑥 now? 
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APPENDIX B: Interview Protocol for the Pilot Study 

 

Introduction 
 

To be read at the beginning of the interview: I am interviewing experts to attempt to gain an 

understanding of how they view various calculus topics. I would like to get as full of an 

understanding as possible, so please answer the following questions with as much detail as you 

can. 

 

Once we’re settled in: Tell me about your credentials. What are your degrees? Major and minor 

areas of study? Teaching experience? 

 

Part 1A – Integrals 

 

(1) ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 and (2) ∫ 𝑓(𝑥) 𝑑𝑥 

 

 What do these expressions mean to you?  

 Can you tell me what you believe is the role of each piece in these expressions? Ask  

 If they still haven’t really described the 𝑑𝑥: Can you tell me (again) what you believe is 

the role the 𝑑𝑥 in these expressions?  

 Can there be a graphical meaning to these expressions? (Then just the 𝑑𝑥, if needed) 

 If needed: [Ask about the “size” of the 𝑑𝑥] 

 Comment on the similarities/differences between (2) and (1) 

 

(3) An object is moving along a straight line at a nonconstant velocity (denoted by 𝑣) over a 

four-minute period. 

 

 What is the meaning of the integral ∫ 𝑣 𝑑𝑡
4

0
?  

 Can you tell me again what you believe is the role of each piece in this expression?  

 Specifically, what is the role of the 𝑑𝑡 in this expression?  

 [“Graphical” and/or “Size” questions, as appropriate] 

 Do you think about the units to help understand the problem? What would the units of 𝑣 

and 𝑑𝑡 be? Which entity “has” the units: the 𝑑𝑡 or the 𝑡? 

 

Part 1B – Derivatives 

 

(4) 
𝑑𝑦

𝑑𝑥
 

 

 What does this expression mean to you?   

 If that first question wasn’t answered clearly: Some people view the symbol as a ratio 

between two terms: “𝑑𝑦” and “𝑑𝑥” – others view the symbol as one notation, in which the 

“𝑑𝑦” and “𝑑𝑥” are not individual terms. What do you believe? 

 Can you tell me (again) what you believe are the roles (if any) of the 𝑑𝑦 and 𝑑𝑥 in these 

expressions?  

 [“Graphical” and/or “Size” questions, as appropriate] 
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 Can you go back and remind me – the earlier differentials were ______. Do you think about 

the 𝑑𝑦 and 𝑑𝑥 in these cases the same or different? 

 

(5)  Please solve the ODE 
𝑑𝑢

𝑑𝑡
=

2𝑡

cos 𝑢
 

 

 [Basically, what manipulation are they doing to get it in the form ∫ cos 𝑢 𝑑𝑢 = ∫ 2𝑡 𝑑𝑡? 

Specifically, does 𝑑𝑡 have a “quality” that allows it to be multiplied?] 

 What are the roles of 𝑑𝑡 and 𝑑𝑢 in this ODE?  

 Are they as before? [Compare with the 𝑑𝑥 and 𝑑𝑦 in (4)] 

 Do the roles change at all during the solution? [Compare with the 𝑑𝑥 in (2)]  

 Can you go back and remind me – the earlier differentials were ______. Do you think about 

the 𝑑𝑡 and 𝑑𝑢 in these cases the same or different? 

 

Part 1C – Differential of a Function 

 

(6) 𝑑𝑦 = 𝑦′(𝑥)𝑑𝑥 

 

 What does this expression mean to you?  

 Can you tell me what you believe is the role of each piece in these expressions?  

 Can you tell me (again) what you believe are the roles of the 𝑑𝑦 and 𝑑𝑥 in this expression?  

 [“Graphical” and/or “Size” questions, as appropriate] 

 To link this with differentiation (4): Is (6) equivalent to 
𝑑𝑦

𝑑𝑥
= 𝑦′(𝑥)? Specifically, does 𝑑𝑥 

have a “quality” that allows it to be divided?  

 Can you go back and remind me – the earlier differentials were ______. Do you think about 

the 𝑑𝑦 and 𝑑𝑥 in these cases the same or different? 

 

[Ask the subject to evaluate (7) ∫
cos √𝑡

2√𝑡

4

1
𝑑𝑡] 

 

 How do you conceptualize the 𝑑𝑡 and 𝑑𝑢 in (7)?  

 Is there any change in the 𝑑𝑢 between 𝑑𝑢 =
1

2√𝑡
 𝑑𝑡 and ∫ cos 𝑢 𝑑𝑢

2

1
? What about in the 

quality of the differentials ∫
cos √𝑡

2√𝑡

4

1
𝑑𝑡  and ∫ cos 𝑢 𝑑𝑢

2

1
 ? Compare with (1) and (6)  

 Do any answers change if asked to evaluate ∫
cos √𝑡

2√𝑡
 𝑑𝑡 (indefinite integral) instead?  

 Can you go back and remind me – the earlier differentials were ______. Do you think about 

the 𝑑𝑡 and 𝑑𝑢 in these cases the same or different? 

 

Part 1D – Deltas and Infinitesimals 

 

 To you, what is the difference (if any) between a Δ𝑥 and a 𝑑𝑥?  

 Does this difference between 𝑑𝑥 and Δ𝑥 extend to all versions of 𝑑𝑥 and Δ𝑥?  



162 

 

 Show the subject (8)13 and say Lopez-Gay, et al., accepted two different ways to begin 

the solution – Can you comment on the validity of each solution method? Be clear on 

what they like and what they don’t. Then: Is there a particular solution method that 

conforms to your views of the characterization of the Δ𝑉 and 𝑑𝑉?  

 A lot of times you hear the phrases “infinitely small” or “infinitesimal amount”. Do you 

use phrases like those? When? 

 What do you mean by “[whatever phrase they used]”? 

 How many “infinitely small”s does it take to go from 0 to 1? Depending on their answer: 

Are we outside the Real Numbers? Are you OK with that? 

 Comment on the following idea: “It is OK to conceptualize differentials such as the 𝑑𝑥 in 

∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 or 

𝑑𝑦

𝑑𝑥
 as nonzero, finite quantities, small enough to fall under any measurable 

scale.” (For reference: Diameter of electron: less than 10−16 cm / Smallest unit of time 

ever measured: 10−21 sec) 

 

Part 2 – All Versions and Preferences for Students  

 

For each of these perspectives, would you be OK with your students viewing the 𝑑𝑥 this way? 

Which of these perspectives do you think are useful for students and which of them do you think 

are limiting/incorrect?  

 

(1) ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 

 

a) The entire integral symbol is some sort of specialized antidifferentiation cue – the 𝑑𝑥 is 

merely notation that denotes the variable of integration. 

b) The entire integral symbol is the limit of a Riemann Sum and the 𝑑𝑥 is some sort of 

referent to the Δ𝑥 – the 𝑑𝑥 is the “limit” of the Δ𝑥 in a Riemann Sum or the Δ𝑥 that has 

been passed through the limit. 

c) The entire integral symbol is the (infinite) sum of an infinite number of products between 

the real, finite 𝑓(𝑥) and an infinitesimal 𝑑𝑥 – the 𝑑𝑥 is an infinitesimal amount 

 

(2)  ∫ 𝑓(𝑥) 𝑑𝑥 

 

a) The entire integral symbol is some sort of general antidifferentiation cue – the 𝑑𝑥 is 

merely notation that denotes the variable of integration 

b) The entire integral symbol some sort of limit of an “infinite” Riemann Sum and the 𝑑𝑥 is 

some sort of referent to the Δ𝑥 – the 𝑑𝑥 is the “limit” of the Δ𝑥 in a Riemann Sum or the 

Δ𝑥 that has been passed through the limit. 

c) The entire integral symbol is the (infinite) sum of the displacement given by an infinite 

amount of products between the real, finite 𝑓(𝑥) and an infinitesimal 𝑑𝑥 – the 𝑑𝑥 is an 

infinitesimal amount of horizontal displacement 

d) The entire integral symbol is or some version of a definite integral of the form ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑥0
, 

and thus the 𝑑𝑥 is however the subject perceived the 𝑑𝑥 in the definite integral. 

  

                                                             
13 (8) is the problem from López-Gay, Martínez Sáez, & Martínez Torregrosa (2015), p 611. 
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(4) 
𝑑𝑦

𝑑𝑥
 

 

a) The symbol is only a notation for “the derivative of 𝑦 with respect to 𝑥,” – the 𝑑𝑦 and 𝑑𝑥 

are not two separate entities. 

b) The symbol represents the limit of a difference quotient, specifically lim
Δ𝑥→0

Δ𝑦

Δ𝑥
 – the 𝑑𝑦 and 

𝑑𝑥 are referents to the Δ𝑦 and Δ𝑥 or the Δ𝑦 and Δ𝑥 that have been passed through the 

limit. 

c) The symbol represents the ratio (or the standard part of the ratio) between an infinitesimal 

𝑑𝑦 and an infinitesimal 𝑑𝑥 – both are infinitesimal amounts. 

 

(6) 𝑑𝑦 = 𝑦′(𝑥)𝑑𝑥 

 

a) This is only a notation we use when we need it – the individual differentials have no 

meaning. 

b) This notation represents the idea that, in a small neighborhood around 𝑥, the tangent line 

is an approximation of the curve 𝑦(𝑥) – the 𝑑𝑥 is the same as a Δ𝑥, and the 𝑑𝑦 is an 

approximation to Δ𝑦. 

c) This notation represents that 𝑑𝑦 is an infinitesimal that is proportional to an infinitesimal 

𝑑𝑥 – both 𝑑𝑦 and 𝑑𝑥 are well-defined infinitesimals. 
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APPENDIX C: Consent Form for the Dissertation Study 

 

 
Research Informed Consent  

Only Minimal Risk  
    

  

Differentials Study  
Principal Investigator   Dr. Vicki Sealey  
Department    Mathematics  
Protocol Number    1710807177  
Study Title    How Mathematicians and Physicists Conceptualize Differentials  
Co-Investigator   Tim McCarty   
Sponsor (if any)    N/A  
  

Contact Persons  
If you have any questions, concerns, or complaints about this research, you should contact Dr. Vicki Sealey at (304) 293-5329.  
For information regarding your rights as a research subject, to discuss problems, concerns, or suggestions related to the research, 
to obtain information or offer input about the research, contact the Office of Research Integrity & Compliance at (304) 293-7073.  
 

Introduction  

You, ______________________, have been asked to participate in this research study, which has been explained to you by 
________________________. This study is being conducted by Tim McCarty, under the supervision of Dr. Vicki Sealey, in the 
Department of Mathematics at West Virginia University.   
 

Purpose(s) of the Study  
How experts conceptualize differentials in various contexts is being analyzed in this study.  
 

Description of Procedures  
This study involves video recording of interviews with participants, where we will discuss differentials as found in varied contexts. 
Interviews are expected to last approximately 45 minutes.  You will be asked to think out loud and share the ways in which you 
think about the topics.  You are welcome to use pen and paper, if you wish.  Excerpts of written work may be published, and it is 
possible that your handwriting could be recognized.    
 

Alternatives  
You do not have to participate in this study.  
 

Benefits  

You may not receive any direct benefit from this study. The knowledge gained from this study may eventually benefit others in 
the teaching and learning of concepts involving differentials.  
 

Discomforts  
There are no known or expected risks from participating in this study.  

Financial Considerations  
There are no fees or payment for participating in this study.   
  

Confidentiality  
Any information about you that is obtained as a result of your participation in this research will be kept as confidential as legally 
possible.  Video recordings will be kept locked up and/or stored on a password protected, secure service.  Data will be kept for 
a minimum of 3 years and will be destroyed as soon as the research is finished.   

P a g e | 1  

 
                                                                                                                                                       Subject’s Initials_________________  

   Date_________________  
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Research Informed Consent  
Only Minimal Risk  

    
 
 
In any publications that result from this research, your name will not be published, but it is possible that your handwriting could 
be recognized.  
 

Voluntary Participation  
Participation in this study is voluntary.  You are free to withdraw your consent to participate in this study at any time.  Refusal to 
participate or withdrawal will involve no penalty to you. In the event new information becomes available that may affect your 
willingness to participate in this study, this information will be given to you so that you can make an informed decision about 
whether or not to continue your participation.  
You have been given the opportunity to ask questions about the research, and you have received answers concerning areas you 
did not understand.  By signing below, you acknowledge that you willingly consent to participate in this research.  
 

Signatures  
Signature of Subject  
______________________________________________________________________________  
Printed Name                                                                                Date                           Time  
______________________________________________________________________________  
  
The participant has had the opportunity to have questions addressed.  The participant willingly agrees to be in the 
study.  
  
Signature of Investigator or Co-Investigator  
______________________________________________________________________________  
Printed Name                                                                                Date                           Time              
______________________________________________________________________________  
 

P a g e | 2  
                                                                                                                                                                                                                                                            Subject’s Initials_________________  

   Date_________________ 
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APPENDIX D: Interview Protocol for the Dissertation Study 

 

Introduction 

 

1. Read the following: I am interviewing experts to attempt to gain an understanding of how 

they view various calculus topics. I would like to get as full of an understanding as 

possible, so please answer the following questions with as much detail as you can. 

 

2. Tell me about your credentials. Specifically, what are your degrees? What were your 

major and minor areas of study? What is your teaching experience? 

 

3. What does the word “differential” mean to you? 

 

Expressions without Context: Sheet #1 (Derivative Notation) 

 

Show the subject a sheet of paper with the following expression on it: 

 

(1) 
𝒅𝒚

𝒅𝒙
 

 

1. Can you give me a 30’’ answer of what this expression means to you? Then: If you could 

give me a more in-depth answer to this question: How do you conceptualize the 𝑑𝑦 and 𝑑𝑥 

in this expression?  

 

2. Do you think about a graphical representation for the 𝑑𝑦 and 𝑑𝑥 in (1)? 

 

3. How would you characterize/define the size, if any, of the 𝑑𝑦 and 𝑑𝑥 in (1)? 

 

Expressions without Context: Sheet #2 (One-Dimensional Integrals) 

 

Show the subject a sheet of paper with the following expressions on it: 

 

(2) ∫ 𝒇(𝒙)
𝒃

𝒂

𝒅𝒙 (3) ∫ 𝒈(𝒙) 𝒅𝒙 

 

1. Can you give me a 30’’ answer of what these expressions mean to you? Then: If you could 

give me a more in-depth answer to this question: How do you conceptualize the 𝑑𝑥 in each 

expression?  

 

2. Do you think about a graphical representation for the 𝑑𝑥 in (2)? What about the 𝑑𝑥 in 

(3)? 

 

3. How would you characterize/define the size, if any, of the 𝑑𝑥 in (2)? In (3)? 
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Expressions without Context: Sheet #3 (Two-Dimensional Integral) 

 

Show the subject a sheet of paper with the following expression on it: 

 

(4) ∫ ∫ 𝒇(𝒙, 𝒚)
𝟑

𝟐

𝒅𝒚 𝒅𝒙
𝟏

𝟎

 

 

1. Can you give me a 30’’ answer of what this expression means to you? Then: If you could 

give me a more in-depth answer to this question: How do you conceptualize the 𝑑𝑦 and 𝑑𝑥 

in this expression?  

 

2. Do you think about a graphical representation for the 𝑑𝑦 and 𝑑𝑥 in (4)? 

 

3. How would you characterize/define the size, if any, of the 𝑑𝑦 and 𝑑𝑥 in (4)? 

 

Expressions without Context: Sheet #4 (Relationship Between Differentials) 

 

Show the subject a sheet of paper with the following expression on it: 

 

(5) 𝒅𝒚 = 𝟐𝒙 𝒅𝒙 

 

1. Can you give me a 30’’ answer of what this expression means to you? Then: If you could 

give me a more in-depth answer to this question: How do you conceptualize the 𝑑𝑦 and 𝑑𝑥 

in this expression? 

 

2. Do you think about a graphical representation for the 𝑑𝑦 and 𝑑𝑥 in (5)? 

 

3. How would you characterize/define the size, if any, of the 𝑑𝑦 and 𝑑𝑥 in (5)? 
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Expressions within a Context: Sheet #1 (Derivative Notation) 

 

Show the subject a sheet of paper with the following on it: 

 

To model the temperature of a 20-degree cup of water that is placed in a zero-degree 

environment, we can use the following: 

 

(6) 
𝒅𝝉

𝒅𝒕
= −𝒌𝝉, 𝝉(𝟎) = 𝟐𝟎 

  

 

1. This is a separable differential equation. Could you please show me how you would solve 

it and explain how you conceptualize the differentials in each step? 

 

2. How do you conceptualize the 𝑑𝜏 and 𝑑𝑡 in (6)?  

 

Expressions within a Context: Sheet #2 (Integral Notation) 

 

Show the subject a sheet of paper with the following on it: 

 

A cable weighing three pounds per foot is dangled from the roof of a 100-foot tall building 

and attached to a 400-pound weight resting on the ground. The amount of work required 

to lift the weight halfway up the building can be found by 

 

(7) ∫ 𝟕𝟎𝟎 − 𝟑𝒙 𝒅𝒙
𝟓𝟎

𝟎

 

  

 

1. Read the text to them and say: How do you conceptualize the “𝑑𝑥” in (7)? 
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Expressions within a Context: Sheet #3 (Relationships Between Differentials) 

 

Show the subject a sheet of paper with the following on it: 

 

Evaluate the integral ∫
𝐜𝐨𝐬 √𝒕

𝟐√𝒕

𝟒

𝟏

𝒅𝒕 
 

Solution: 𝑰 = ∫
𝐜𝐨𝐬 √𝒕

𝟐√𝒕

𝟒

𝟏

𝒅𝒕 

 

  Let 𝒖 = √𝒕  

  
Then 𝒅𝒖 =

𝟏

𝟐√𝒕
 𝒅𝒕 

 
𝑰 = ∫ 𝐜𝐨𝐬 𝒖  𝒅𝒖

𝟐

𝟏

   

 𝑰 = 𝐬𝐢𝐧 𝟐 − 𝐬𝐢𝐧 𝟏   

 

1. Given the integral ∫
cos √𝑡

2√𝑡

4

1
𝑑𝑡, the following steps show a possible evaluation method. Do 

you agree with this evaluation method? Is this the method you would use to evaluate this 

integral? If not, would you show me the method you would use to evaluate this integral? 

 

2. Write an “(8)” next to the step 𝑑𝑢 =
1

2√𝑡
 𝑑𝑡 and ask: How do you conceptualize the 𝑑𝑢 

and 𝑑𝑡 in (8)? 

 

3. Do you think about a graphical representation for the 𝑑𝑢 and 𝑑𝑡 in (8)? 

 

4. How would you characterize/define the size, if any, of the 𝑑𝑢 and 𝑑𝑡 in (8)? 
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Deltas and Infinitesimals 
 

NOTE: There is no particular time when the following questions will be asked. The first set will 

be asked the first time the subject mentions the idea of “Delta” and the second set will be asked 

the first time the subject mentions a descriptive phrase like “a small amount,” “infinitely small,” 

or “infinitesimally small.” If, for some reason, the subject never mentions Deltas of descriptive 

phrases like those, these questions will be asked after the previous sheet is completed. 

 

After they have mentioned a Δ𝑥 

 

1. To you, what is the difference (if any) between a Δ𝑥 and a 𝑑𝑥?  

 

2. Do you think about a graphical representation for the Δ𝑥? 

 

3. How would you characterize/define the size, if any, of the Δ𝑥? 

 

After a descriptive, “small” phrase is used  

 

1. What do you mean by “[whatever phrase they used]”? 

 

2. If no such “infinitely/infinitesimally” phrase has been used, I will ask: A lot of times you 

hear the phrases “infinitely small” or “infinitesimal amount”. Do you use phrases like 

those? When? 

 

3. Do you think about a graphical representation for [their phrase]? 

 

4. How would you characterize/define the size, if any, of [their phrase]? 
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