

Graduate Theses, Dissertations, and Problem Reports

2006

Curve number dependence on basic hydrologic variables governing runoff

Samuel J. Lamont West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation

Lamont, Samuel J., "Curve number dependence on basic hydrologic variables governing runoff" (2006). *Graduate Theses, Dissertations, and Problem Reports.* 2414. https://researchrepository.wvu.edu/etd/2414

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact researchrepository@mail.wvu.edu.

Curve Number Dependence on Basic Hydrologic Variables Governing Runoff

Samuel J. Lamont

Dissertation submitted to the College of Engineering and Mineral Resources at West Virginia University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Civil and Environmental Engineering

> Robert N. Eli, Ph.D., Chair Jerald J. Fletcher, Ph.D. Donald D. Gray, Ph.D. Lianshin Lin, Ph.D. Thomas A. Galya, Ph.D.

Department of Civil and Environmental Engineering

Morgantown, West Virginia 2006

Keywords: Curve Number, HSPF, Watershed Modeling, CHIA

ABSTRACT

Curve Number Dependence on Basic Hydrologic Variables Governing Runoff

Samuel J. Lamont

The suitability of applying the NRCS Curve Number (CN) to continuous runoff prediction is examined by studying the dependence of the CN on several hydrologic variables. The continuous watershed model Hydrologic Simulation Program-FORTRAN (HSPF) is employed as a theoretical watershed in two numerical procedures designed to investigate the influence of soil type, soil depth, storm depth, storm distribution, and initial abstraction ratio value (λ) on the CN. This study stems from a concurrent project involving the design of a computer modeling system to support the Cumulative Hydrologic Impact Assessments (CHIA) of over 230 watersheds throughout WV. A link between the CN and HSPF soil moisture parameters is proposed for continuous runoff simulation in surface mine affected watersheds in West Virginia. A soil physics model and numerical procedure have been developed to back calculate CN's at Antecedent Runoff Condition (ARC) II from synthetic rainfall input and simulated direct runoff. A second method of CN determination is also described to provide a reference to the calculated CN values. Each HSPF parameter set, determined through calibration and by the soil physics model, is treated as a unique hypothetical watershed. It was found that the calculated CN's are highly dependent on all of the computational variables, therefore the use of the CN in continuous modeling based on antecedent soil moisture or rainfall alone does not appear to be appropriate. Differences between $\lambda = 0.05$ and $\lambda = 0.2$ are seen predominantly in the lower storm depth calculations. It is suggested that a different symbol be used to distinguish classic CN's from continuous CN's.

Table of Contents

Table of Contentsiii
List of Figuresiv
List of Tables
Acknowledgmentsvii
Dedicationviii
1.0 Introduction
1.1 Objectives
1.2 Background
1.3 Curve Number Method Summary
1.4 HSPF Model Description
1.5 Baseline HSPF Calibration Summary9
1.6 Soil Physics Model
1.6.1 Relating HSPF Parameters to NRCS CN using a Soil Water Physics Model
1.6.2 Computation of Equivalent HSPF Parameters for NRCS Curve Numbers
2.0 Methodology
2.1 Curve Number Computation Using Cyclic Storm Input
2.2 Asymptotic Method Using Observed Storm Input
3.0 Results and Discussion
3.1 Cyclic Method
3.2 Asymptotic Method
3.3 Conclusions
4.0 Summary and Conclusions
5.0 References
Appendix A. HSPF Calibration, Verification, and Parameter Optimization Study1
Appendix B. Final Calibration User's Control Input File (UCI)
Appendix C. Cyclic and Asymptotic Methods User's Control Input File (UCI)54

List of Figures

Figure 1. Flow Schematic and Storage Components within the HSPF PERLND Module9
Figure 2. West Virginia CHIA Trend Stations and Calibration Watersheds
Figure 3. West Virginia CHIA Trend Stations and Verification Watersheds11
Figure 4. Soil Microstructure and Soil Water Variables (Soil Physics Model)12
Figure 5. Soil Moisture Content as a Function of Soil Depth (Soil Physics Model)13
Figure 6. INFILT as a Function of Green-Ampt Infiltration Capacity and Soil Hydraulic Conductivity20
Figure 7. Synthetic Storm Distributions, Hourly Time Increment, 1 mm Accumulated Depth22
Figure 8. Sample Cyclic HSPF Input (Type II Rainfall and PET) and Output (DRO)23
Figure 9. Sketch of Behavioral Trends
Figure 10. Location of Rainfall Gages Used in the Asymptotic Method
Figure 11. Storm Distribution Relative Frequency Histograms for each Gage27
Figure 12. Cyclic Method, CN vs. Storm Depth, Clay Loam, $\lambda = 0.2$, Uniform Storm Distribution
Figure 13. Cyclic Method, CN vs. Storm Depth, Clay Loam, $\lambda = 0.2$, Full Triangular Storm Distribution30
Figure 14. Cyclic Method, CN vs. Storm Depth, Clay Loam, $\lambda = 0.2$, Type II Storm Distribution
Figure 15. Cyclic Method, CN vs. Storm Depth, Clay Loam, λ = 0.2, WDM Triangular Storm Distribution 32
Figure 16. Cyclic Method, CN vs. Storm Depth, Silt Loam, λ = 0.2, Uniform Storm Distribution
Figure 17. Cyclic Method, CN vs. Storm Depth, Silt Loam, λ = 0.2, Full Triangular Storm Distribution 34
Figure 18. Cyclic Method, CN vs. Storm Depth, Silt Loam, $\lambda = 0.2$, Type II Storm Distribution
Figure 19. Cyclic Method, CN vs. Storm Depth, Silt Loam, λ = 0.2, WDM Triangular Storm Distribution .36
Figure 20. Cyclic Method, CN vs. Storm Depth, Clay Loam, λ = 0.05, Uniform Storm Distribution
Figure 21 . Cyclic Method, CN vs. Storm Depth, Clay Loam, λ = 0.05, Full Triangular Storm Distribution 38
Figure 22. Cyclic Method, CN vs. Storm Depth, Clay Loam, $\lambda = 0.05$, Type II Storm Distribution
Figure 23. Cyclic Method, CN vs. Storm Depth, Clay Loam, λ = 0.05, WDM Triangular Storm Distribution
Figure 24. Cyclic Method, CN vs. Storm Depth, Silt Loam, λ = 0.05, Uniform Storm Distribution
Figure 25. Cyclic Method, CN vs. Storm Depth, Silt Loam, λ = 0.05, Full Triangular Storm Distribution 42
Figure 26. Cyclic Method, CN vs. Storm Depth, Silt Loam, $\lambda = 0.05$, Type II Storm Distribution
Figure 27. Cyclic Method, CN vs. Storm Depth, Silt Loam, λ = 0.05, WDM Triangular Storm Distribution 44
Figure 28. Cyclic Method Mean Infiltration vs. Soil Depth, Clay Loam
Figure 29. Violent Curve Fit, Clay Loam, 20 cm, Terra Alta gage, λ = 0.05
Figure 30. Asymptotic Method, CN Fit Curves vs. Storm Depth, Clay Loam, λ = 0.2, Terra Alta
Figure 31. Asymptotic Method, CN Fit Curves vs. Storm Depth, Clay Loam, λ = 0.2, Beckley

Figure 32. Asymptotic Method, CN Fit Curves vs. Storm Depth, Clay Loam, $\lambda = 0.2$, Elkins	51
Figure 33. Asymptotic Method, CN Fit Curves vs. Storm Depth, Clay Loam, λ = 0.2, Dunlow	52
Figure 34. Asymptotic Method, CN Fit Curves vs. Storm Depth, Silt Loam, λ = 0.2, Terra Alta	53
Figure 35. Asymptotic Method, CN Fit Curves vs. Storm Depth, Silt Loam, $\lambda = 0.2$, Beckley	54
Figure 36. Asymptotic Method, CN Fit Curves vs. Storm Depth, Silt Loam λ = 0.2, Elkins	55
Figure 37. Asymptotic Method, CN Fit Curves vs. Storm Depth, Silt Loam, $\lambda = 0.2$, Dunlow	56
Figure 38. Asymptotic Method, CN Fit Curves vs. Storm Depth, Clay Loam, $\lambda = 0.05$, Terra Alta	57
Figure 39. Asymptotic Method, CN Fit Curves vs. Storm Depth, Clay Loam, $\lambda = 0.05$, Beckley	58
Figure 40. Asymptotic Method. CN Fit Curves vs. Storm Depth. Clav Loam. $\lambda = 0.05$. Elkins	59
Figure 41. Asymptotic Method, CN Fit Curves vs. Storm Depth. Clay Loam, $\lambda = 0.05$. Dunlow	60
Figure 42 Asymptotic Method CN Fit Curves vs. Storm Depth, Silt Loam $\lambda = 0.05$ Terra Alta	61
Figure 42. Asymptotic Method, CN Fit Curves vs. Storm Depth, Sitt Loam, $\chi = 0.05$, Fetra Ata	01 ()
Figure 43. Asymptotic Method, CN Fit Curves vs. Storm Depth, Sitt Loam, $\chi = 0.05$, Beckley	02
Figure 44. Asymptotic Method, CN Fit Curves vs. Storm Depth, Silt Loam, $\lambda = 0.05$, Elkins	63
Figure 45. Asymptotic Method, CN Fit Curves vs. Storm Depth, Silt Loam, $\lambda = 0.05$, Dunlow	64
Figure 46. Asymptotic Method, CN vs. Storm Depth, Terra Alta, 10 cm Soil Depth	68
Figure 47. Asymptotic Method, CN vs. Storm Depth, Terra Alta, 15 cm Soil Depth	69
Figure 48. Asymptotic Method, CN vs. Storm Depth, Terra Alta, 20 cm Soil Depth	70
Figure 49. Asymptotic Method, CN vs. Storm Depth, Terra Alta, 25 cm Soil Depth	71
Figure 50. Asymptotic Method, CN vs. Storm Depth, Terra Alta, 30 cm Soil Depth	72
Figure 51. Asymptotic Method, CN vs. Storm Depth, Terra Alta, 35 cm Soil Depth	73
Figure 52. Asymptotic Method, CN vs. Storm Depth, Terra Alta, 40 cm Soil Depth	74
Figure 53. Asymptotic Method, CN vs. Storm Depth, Terra Alta, 45 cm Soil Depth	75
Figure 54. Asymptotic Method, CN vs. Storm Depth, Terra Alta, 50 cm Soil Depth	76
Figure 55. Asymptotic Method, CN vs. Storm Depth, Terra Alta, 60 cm Soil Depth	77
Figure 56. Asymptotic Method, CN vs. Storm Depth, Terra Alta, 70 cm Soil Depth	78
Figure 57. Asymptotic Method, CN vs. Storm Depth, Terra Alta, 80 cm Soil Depth	79
Figure 58. Asymptotic Method, CN vs. Storm Depth, Terra Alta, 90 cm Soil Depth	80
Figure 59. Asymptotic Method, CN vs. Storm Depth, Terra Alta, 100 cm Soil Depth	81
Figure 60. Asymptotic Method, CN vs. Storm Depth, Terra Alta, 120 cm Soil Depth	82
Figure 61. Asymptotic Method, CN vs. Storm Depth, Terra Alta, 140 cm Soil Depth	83
Figure 62. Asymptotic Method, CN vs. Storm Depth, Terra Alta, 160 cm Soil Depth	84
Figure 63. Asymptotic Method, CN vs. Storm Depth, Terra Alta, 180 cm Soil Depth	85
Figure 64. Asymptotic Method, CN vs. Storm Depth, Terra Alta, 200 cm Soil Depth	86
Figure 65. Asymptotic Method Mean Infiltration vs. Soil Depth, Clay Loam	88
Figure 66. Antecedent LZS, Clay Loam, 200 cm Soil Depth, Terra Alta	89

List of Tables

Table 1. Soil Texture Class Hydraulic Properties	19
Table 2. INFILT versus Hydrologic Soil Group (BASINS Technical Note 6, U.S. EPA, 2001)	20
Table 3. CN Computational Variables	21
Table 4. Asymptotic Method Curve Fits, $\lambda = 0.2$ ('s' = standard, Eqn. 15; 'v' = violent, Eqn. 16)	65
Table 5. Asymptotic Method Curve Fits, $\lambda = 0.05$ ('s' = standard, Eqn. 15; 'v' = violent, Eqn. 16)	66
Table 6. Average CN_{∞} Values for Each Gage	87

Acknowledgments

First I would like to thank the West Virginia Department of Environmental Protection and the U.S. Office of Surface Mining for their roles in supporting this research. I would also like to thank Aqua Terra Consultants, Jim Sams of the USGS, Pittsburgh, PA and Kate Flynn of the USGS, Reston, VA for their technical guidance and expertise. I am also grateful to my former colleague Elena Hoeg for her collaboration and contributions to this research.

Secondly, I would like to thank my advisor, Dr. Robert N. Eli, for his generosity, optimism, humor, and friendship. I have learned much more than what is simply written on these pages thanks to his guidance and support. I would also like thank Dr. Jerald J. Fletcher for providing me with the opportunity to undertake this research and for including me as part of the NRAC team. I would like to thank the rest of my committee members, Dr. Thomas A. Galya, Dr. Donald D. Gray, and Dr. Lianshin Lin for their time and contributions. I must also thank Linda Cox whose knowledge and clarity makes it that much easier for all of us.

Finally, I would like to thank my family. My parents, Dave and Priscilla have given me infinite and unconditional love and support throughout every stage of my life, and have taught me more than they will ever know. My sisters, Sally, Susan, and Meg may not realize how much I still look up to them. And last but not least, my brother-in-law Peter has become a true mentor and brother to me over the years. Thank you all.

Dedication

To Mom and Dad

1.0 Introduction

The most common problem encountered in hydrologic modeling is the lack of descriptive watershed data availability necessary to select the appropriate values of the model's controlling parameters. The popularity of the NRCS (Natural Resource Conservation Service) Curve Number (CN) method is based on its simplicity and embodiment of much of a given watershed's hydrologic characteristics in a single parameter. Specifically, a single parameter value embodies the ability of the surface and subsurface of the watershed to retard and capture a portion of the precipitation input, thus separating the gross precipitation into that portion that remains in the watershed, and is ultimately lost to evapotranspiration and groundwater recharge, from that portion that passes through the watershed outlet as direct runoff. As dictated by assumptions inherent in the original development of the Curve Number method, the application of the method as a model of a given watershed's separation of precipitation into losses and direct runoff requires that a single storm event be selected (of 24 hours duration, or less). Therefore, the Curve Number method is commonly termed an "event-based model", as opposed to a "continuous model". A continuous model differs from the event-based model in its ability to produce a continuous record of outflow predictions over a longer period of time, which may include many separate precipitation events occurring sequentially.

Since its original development, the Curve Number method has been modified and adapted for application in many continuous models by making additional assumptions with respect to the applicability of the basic concept to a continuously variable precipitation input. The original concept did not explicitly include time as a variable, and only predicted the total storm runoff volume. Although the basic definition of the Curve Number has not been changed, the method is now often used in continuous models in a much different context than originally intended. The typical application assumes that the Curve Number is a random variable that is some continuous function of the moisture content of the soil, in addition to the soil characteristics and hydrologic condition (average ability to infiltrate). The separation of losses from runoff is then computed continuously over time as a function of the changing CN value. This type of extended application to continuous models has provoked many questions about the validity of the assumptions required, some of which have been discussed in the literature.

The cumulative hydrologic impact assessment (CHIA) of mining on watersheds is driven by regulatory requirements that require monitoring stream water discharges and water quality parameters, and also requires a scientifically acceptable method for the prediction of mining impacts on these parameters in the future. These requirements can be addressed by application of a suitable hydrologic and water quality model. The HSPF model (Hydrologic Simulation Program Fortran, Bicknell et al. 2001) has been selected to provide these predictive estimates of mining impacts on stream water quantity/quality in the state of West Virginia. Each mine site is unique, and by definition is characterized by dramatically altered hydrologic conditions due to the extensive land disturbances. Typical changes feature altered topography, removal of vegetation and native soil structures, and highly modified drainage features that typically include drainage and sedimentation ditches, and runoff and sedimentation control detention basins. The hydrologic design of these latter structures uses the Curve Number (CN) method as an acceptable hydrologic model for the design of runoff and sediment control structures. Therefore, the CN value is generally available for any current or planned mine site, and has some legal standing due to its inclusion in various state and federal permits that are required prior to development of a new mine site. It is not the purpose of this study to address the adequacy, or lack thereof, of the Curve Number method in the design of the drainage structures, but rather to address its suitability for use in HSPF in the context of conducting the CHIA analysis.

Since the HSPF model is a complex, nonlinear, continuous model, it has many parameters that must be determined through a suitably designed calibration study on those watersheds to which it is to be applied. The application of HSPF generally involves the subdivision of the total watershed area into sub-basins, each of which can be modeled independently with regard to its rainfall inputs and corresponding outflows. If a potential mine site is to be contained within the larger watershed, it is represented as one of the many subbasins, normally requiring that the corresponding HSPF parameters be determined through a suitable calibration procedure. The application of HSPF to hypothetical mine site sub-basin would seem to present insurmountable problems, given that calibration is not possible, and given the fact that there are no pre-existing data available to guide parameter selection. However, an intriguing possibility presents itself if one can accept that a validated Curve Number (CN) value is available. If the Curve Number can be related to those HSPF parameters that control the separation of losses from direct runoff, then perhaps the calibration requirement can be side-

stepped. This latter possibility can only be justified if the CN value is accepted as being correct, and that the method itself is accepted as appropriate for the given application. Additionally, those remaining parameters that control the other components of the watershed hydrology model must be selected via other means. In this study, it is assumed that the mine site CN value has already been validated, and that those parameters not directly related to the separation of precipitation into losses and direct runoff can be adapted from the general calibration for the whole watershed containing the mine site location(s).

The focus of this study is to investigate the possibility of use of a pre-existing mine site Curve Number (a single CN value) to select a set of surrogate HSPF parameters that govern the equivalent separation of precipitation input into losses and direct runoff. Since there is no direct method of relating a given CN value to the appropriate set of surrogate HSPF parameters, an inverse computational method is to be developed to back-calculate Curve Numbers from a set of HSPF parameters that have been derived from an intermediary soil physics model. The soil physics model serves as a sort of translator between the HSPF parameters and the Curve Number. However, this translation can not be perfect since it is not possible to equate multiple HSPF parameters to a single fixed value Curve Number. The central question to be investigated is whether or not the translation is adequate to permit the HSPF model to behave similarly to the CN method. The implications of the answer to this question reach beyond this application, to shed light on the adequacy of the use of the Curve Number in continuous hydrologic models, and further, to address a long lived controversy regarding the adequacy of the Curve Number method in general.

1.1 Objectives

As discussed above, the complexity of continuous watershed models, such as HSPF, requires the determination of a relatively large set of parameter values in order to fit the model to the hydrological characteristics of the watershed being modeled. The purpose of this research is to investigate the feasibility of using a predetermined NRCS Curve Number as guidance in the selection of those HSPF parameter values that are principal in governing the separation of precipitation into losses and direct runoff. Since multiple HSPF parameters must be related to a single CN value, it is apparent that HSPF cannot produce an exact reproduction of the separation of losses and direct runoff, under all possible hydrologic conditions, as would be produced by the

Curve Number method. This anticipated inability to produce an equivalent single valued Curve Number, across the range of variation of all input hydrologic variables, requires that a carefully designed investigation be completed to quantitatively measure the performance of HSPF in reproducing Curve Number behavior. In practice, this latter investigation will involve the completion of numerical experiments involving HSPF modeling runs that produce outputs from selected inputs, from which an equivalent CN value is calculated. Since a single valued relationship between CN values and HSPF parameters is not anticipated, there is a possibility that a limited number of functional relationships can be developed that allow the translation between the two to be practical. Before this investigation can proceed to measure this level of practicality, the procedures and algorithms that define the HSPF parameter subset, from which a corresponding CN value is computed, must be designed and developed. These research tasks will ultimately lead to several objectives being accomplished in this study:

- 1. Development of a translation methodology (using a suitable soil physics model) that establishes a relationship between a subset of HSPF parameters and soil characteristics that can be in turn related to CN values.
- 2. Completion of suitably designed numerical experiments to determine the relationship between a given subset of HSPF parameters and the Curve Number.
- Evaluation of the practicalities of adoption of the Curve Number as a model parameter simplification technique in HSPF, and by extension, to other complex continuous watershed models.
- Conclusions and recommendations regarding the overall applicability of the Curve Number method in HSPF applications to mined watersheds, and in watershed modeling in general.

1.2 Background

This research stems from an effort to build a computer modeling system for the prediction of the cumulative hydrologic impact assessment (CHIA) of surface coal mining on water quality and quantity in 235 Trend Station Watersheds (TSW's) in West Virginia. These TSW's were selected by the West Virginia Department of Environmental Protection (WVDEP) and are defined by water quality sampling points at their outlets. The project involves members of the Division of Resource Management and the Department of Civil and Environmental Engineering at West Virginia University, the U.S. Office of Surface Mining, and the WVDEP (Fletcher et al., 2004). The continuous watershed model HSPF was combined with the GIS-based Watershed Characterization and Modeling System (WCMS), which was developed by the Natural Resource Analysis Center (NRAC) at WVU (Strager, 2005). The CHIA modeling analysis consists of two scenarios, (1) the existing or baseline conditions and (2) the proposed surface mine site conditions.

To establish baseline conditions, a joint calibration procedure was followed using five watersheds throughout West Virginia. This resulted in one HSPF parameter set for the entire Trend Station region. Four separate watersheds were used to verify the parameter set. To model the proposed mine sites, a relationship between the Curve Number (CN) and several HSPF parameters was proposed based on a soil physics model, facilitating the use of CN's within HSPF. This relationship was developed due to the lack of runoff data needed for the calibration of HSPF to surface mine sites and because mine site CN's are available to the users of the CHIA modeling system. A numerical experiment was designed to back-calculate theoretical CN's as a function of three HSPF parameter values for a range of soil types, soil depths, storm depths, 24-hour synthetic storm distributions, and initial abstraction ratios. A second numerical experiment was designed based on the work of Hawkins (1993) to calculate CN's over the same range of watershed variables using historical precipitation records and HSPF-simulated direct runoff. In both numerical procedures, HSPF is treated as a theoretical watershed and is used to generate runoff from rainfall input.

1.3 Curve Number Method Summary

The Curve Number method for estimating direct runoff from storm rainfall was developed in 1954 by the USDA Soil Conservation Service (now known as the Natural Resources Conservation Service, NRCS). It is described in the NRCS National Engineering Handbook Section 4-Hydrology (NEH-4), Chapter 4, Storm Runoff Data (NRCS, 1993). Storm runoff depth is calculated by the expression

$$Q = \frac{(P - I_a)^2}{(P - I_a + S)} \quad \text{for } P > I_a \tag{1}$$
$$Q = 0 \quad \text{for } P \le I_a \tag{2}$$

where Q and P are storm runoff and rainfall depths, respectively (mm), I_a is the initial abstraction, and S is the potential maximum retention when $P = I_a$. The storage index S is then transformed to the more intuitive Curve Number by the equation

$$CN = 25.4 \left(\frac{1000}{10+S}\right)$$
 (3)

where S is in millimeters. The Curve Number, which is dimensionless, ranges between 0 and 100 and is an index of hydrologic soil group, soil condition, land cover, and antecedent conditions. Historically, the relationship between I_a and S was fixed at $I_a = 0.2S$ where the quantity I_a/S is defined as the initial abstraction ratio (λ) . Three initial watershed conditions were described by the Antecedent Moisture Condition (AMC) based on the previous five-day rainfall amount. AMC I applied to dry conditions, AMC III applied to wet conditions, and AMC II applied to the average moisture condition. It has since been recognized, however, that prior rainfall explains only part of the variation of the CN. Therefore the terminology has been changed to Antecedent Runoff Condition (ARC) (Woodward et al., 2002).

Because of its simplicity, predictability, and reliance on only one parameter, the Curve Number method has become well established in hydrologic practice with numerous applications throughout the world (Ponce and Hawkins, 1996). Typically the method is applied in one of three modes. The first and most common mode is as a frequency transform between rainfall and runoff, where a storm event of a given return period is used to predict the direct runoff corresponding to the same return period. A second mode of application is to determine infiltration rates over short time intervals for the development of flood hydrographs through use of unit hydrographs. The third mode of application is to determine direct runoff from individual storm events imbedded in a continuous time series record. This mode is used in continuous simulation models which attempt to account for the CN variability between storm events by tracking antecedent moisture conditions through measures of previous rainfall and/or soil moisture (Hjelmfelt, et al., 2001).

Many criticisms have arisen concerning the application of the CN method since its inception. Ponce and Hawkins (1996) list several disadvantages to the method including, (1) it provides little guidance on how to vary antecedent conditions, (2) it was developed with regional data mostly from the Midwest U.S., (3) it is best suited for agricultural sites, (4) there is no accounting for spatial variability, and (5) the initial abstraction ratio is traditionally fixed at 0.2. Equation 1 can be manipulated algebraically and differentiated, provided an equation for the infiltration rate, $\frac{dF}{dt}$ (Hjelmfelt, 1980).

$$\frac{dF}{dt} = \frac{S^2}{(P - I_a) + S^2} \frac{dP}{dt}$$
(4)

The use of the method in this form has been criticized because of the dependence of the infiltration rate on rainfall intensity.

The method's use in continuous models has also been criticized (Van Mullem, et al., 2002). Hjelmfelt et al. (2001) state that the application of the CN method in continuous models may be completely different from the classic CN application and that more research is needed in this area. Van Mullem (1992) examined four infiltrometer studies throughout the US and found no significant relationship between soil moisture and the CN. Woodward and Plummer (2000) state that the five-day antecedent rainfall depth is not the best measure of antecedent runoff conditions and therefore it is not included in the latest version of the NEH-4 manual (NRCS, 1993).

Despite such criticisms, many variations of the CN method have been applied to continuous models. Mishra and Singh (2004) review four continuous CN models (Williams and LaSeur (1976), Hawkins (1978), Pandit and Gopalakrishnan (1996), and Mishra et al. (1998)) and propose a new variation that includes computations for the soil moisture budget, evapotranspiration (ET), surface flow routing, and baseflow contributions. Other continuous CN models include GLEAMS (Leonard, 1987), EPIC (Williams, 1987), SWAT (Arnold, 1995),

QUALHYMO (Rowney, 1992) and AnnAGNPS (Bingner and Theurer, 2001). Typically these models calculate daily ARC II CN values by defining ARC I to be the soil wilting point and ARC III to be the soil field capacity. A review of many of these and other watershed models can be found in Bora and Bera (2003).

Finally, the value of the initial abstraction ratio (λ) has also been debated. Hawkins and others (2002) studied several hundred plots of rainfall-runoff data using event analysis and model fitting to determine λ . They found that using $\lambda = 0.05$ better fit the data and is more appropriate for runoff calculations. The effect of using $\lambda = 0.05$ appeared mainly at low storm depths or lower CN values.

1.4 HSPF Model Description

HSPF is a comprehensive, continuous model designed to simulate surface and subsurface water quantity and quality processes occurring in a watershed. Its origins can be traced to the Stanford Watershed Model which was developed in the 1970's. Today, HSPF is supported by the EPA (2000). It has over twenty parameters defined in its User's Control Input (UCI) file (Bicknell 2001), many of which must be determined through calibration. Surface and subsurface flow drains from pervious land use/cover categories, (PERLND's), which are assigned unique sets of model parameters, into the appropriate stream segments (RCHRES's). Figure 1 is a schematic of the PERLND module describing its various storages and parameters.

Figure 1. Flow Schematic and Storage Components within the HSPF PERLND Module

The minimum model inputs are precipitation and potential evapotranspiration (PET) time series while each of the computed storages and fluxes can be output in time series format. HSPF has been applied to a large number of watershed studies in a wide variety of locations. Forty-five studies using the model in the United States have been summarized in a user-friendly software package called HSPFParm (Donigian et al., 1999). Sams and Witt (1995) calibrated HSPF to two surface mined watersheds in Fayette County, PA, providing local relevance to this study.

1.5 Baseline HSPF Calibration Summary

The WVDEP Trend Station Watershed water quality sampling points rarely coincided with USGS stream gaging stations required for model calibration. This fact, along with the obvious impracticality of individually calibrating to 235 watersheds, led to the adoption of a joint-calibration strategy following the work of Donigian (2002) and Dinacola (1990, 2001). Five calibration watersheds scattered throughout the state were selected with the intent of finding one parameter set for all of the trend station watersheds (Figure 2). Five additional verification watersheds were used to test the validity of transferring the resulting parameters (Figure 3). The Big Sandy watershed was used for both calibration and verification by using different simulation

time periods. This resulted in one parameter set for each of the nine land use categories for the entire trend station region. The land use categories (Forest, Pasture/Grassland,

Urban/Developed, Existing Mine Land, Barren Land, Shrubland, Row Crop Agriculture, Surface Water, and Wetland) were based on 1993 GAP data (Strager and Yuill, 2002).

Figure 2. West Virginia CHIA Trend Stations and Calibration Watersheds.

Figure 3. West Virginia CHIA Trend Stations and Verification Watersheds

The joint-calibration procedure involved two approaches. The first used the USGS semiautomated software HSPEXP (1994) which provides statistical and graphical error measures as well as parameter adjustment advice. A second calibration study was conducted using the independent parameter optimization package, PEST (Doherty, 2002). The final parameter set was selected through comparison of seven performance evaluating indices including the Coefficient of Determination (r^2), the Coefficient of Efficiency (*E*), and the Root Mean Square Error (*RMSE*). The simulated mean error is less than 12% for calibration watersheds and less than 15 % for four of the verification watersheds. An unpublished technical report describing the calibration procedure in detail is included as Appendix A. Several agencies and individuals contributed to this report including the West Virginia Department of Environmental Protection, the U.S. Office of Surface Mining, Kate Flynn of the USGS, Reston, VA, Jim Sams of the USGS, Pittsburgh, PA, Dr. Robert Eli of the Department of Civil and Environmental Engineering at West Virginia University, and Elena Hoeg of the Natural Resource Analysis Center at WVU. The UCI file containing the final calibration parameter set is included as Appendix B.

1.6 Soil Physics Model

1.6.1 Relating HSPF Parameters to NRCS CN using a Soil Water Physics Model

An analytical link was established between HSPF soil moisture parameters and physical soil attributes by adopting a soil water physics model based on the Green-Ampt (Green and Ampt, 1911) and the Brooks-Corey (Brooks and Corey, 1964) equations. The soil model is described in terms of the soil pore size distribution index (λ_{ps}), soil porosity (η), soil water suction head (ψ), and soil moisture content (θ) shown in Figure 4.

Figure 4. Soil Microstructure and Soil Water Variables (Soil Physics Model)

Brooks and Corey (1964) developed an empirical relationship between soil water suction head ψ (cm of water) and effective saturation s_e , as a function of soil texture. The Brooks-Corey equation is

$$s_e = \left[\frac{\psi_b}{\psi}\right]^{\lambda_{ps}} \tag{4}$$

where ψ_b is the soil water suction head at which air first enters the soil (called the bubbling pressure) and λ_{ps} is pore size distribution index (a function of soil texture). The effective saturation is defined by

$$s_e = \frac{\theta - \theta_r}{\eta - \theta_r} \tag{5}$$

where θ is the moisture content of the soil (cm³/cm³), θ_r is the residual moisture content of the soil (equivalent to the wilting point), and η is the soil porosity (see Figure 5 below).

Figure 5. Soil Moisture Content as a Function of Soil Depth (Soil Physics Model)

Referring to Figure 5, the idealized soil water physics model assumes that the soil has homogeneous characteristics over the soil depth *D*. Neither the HSPF PERLND nor the CN method assumes that the soil has an explicit depth. In the soil water physics model, depth is required in order to compute soil water storage depth; and therefore, the soil depth is considered

to be the "equivalent soil depth" that produces the desired storage capacity of the soil. It should be noted that the maximum possible soil moisture content is equal to the porosity η . The actual maximum soil moisture content will be slightly less than the porosity since a small amount of trapped air will remain in the soil when is fully saturated. In the development that follows, the moisture content at saturation will be assumed to be equal to the porosity since the simplification introduces a negligible error. The effective moisture content, θ_e , is the amount of moisture that can be removed by gravity drainage and plant transpiration, assuming that the soil is initially saturated. The NRCS antecedent runoff condition (ARC I, ARC II, ARC III, or an intermediate value) is determined by initial moisture content, θ_i , present in the soil prior to a storm event. To simplify the model description, the moisture content is assumed to be constant over the soil depth at any given point in time.

Brakensiek, Engleman, and Rawls (1981) used the Brooks-Corey equation (4) to develop a method to determine parameters for the Green-Ampt infiltration equation (1911). The Green-Ampt equation is

$$f(t) = K \left[\frac{\psi \Delta \theta}{F(t)} + 1 \right]$$
(6)

where f(t) is the infiltration capacity at time t, K is the unsaturated hydraulic conductivity, ψ is the wetting front capillary pressure head, $\Delta\theta$ is the change in soil moisture content across the wetting front (Figure 5), and F(t) is the accumulated infiltration at time t. Rawls, Brakensiek, and Miller (1983) used this same method to analyze approximately 5000 soil horizons across the United States to determine average values of the Green-Ampt parameters for different soil texture classifications. Table 1 lists 11 soil texture classifications used in this latter study, ranging from Sand (coarse particles) to Clay (very fine particles). Combining equations 5 and 6, and solving for θ yields

$$\boldsymbol{\theta} = \boldsymbol{\theta}_r + (\boldsymbol{\eta} - \boldsymbol{\theta}_r) \left[\frac{\boldsymbol{\psi}_b}{\boldsymbol{\psi}} \right]^{\lambda_{ps}}$$
(7)

which relates soil moisture content θ to soil water suction head ψ for a particular soil texture classification (for constant values of η , θ_r , ψ_b , and λ_{ps}). Equation 7 permits computation of the initial moisture content of the soil, θ_i , for any desired antecedent runoff condition (ARC) prior to a given storm event.

1.6.2 Computation of Equivalent HSPF Parameters for NRCS Curve Numbers

Examination of the HSPF PERLND module algorithms identifies six of the 20 parameters that have principal influence on the infiltration and soil moisture storage processes and the shape of the direct runoff hydrograph:

UZSN = Upper zone nominal soil moisture storage (mm). LZSN = Lower zone nominal soil moisture storage (mm). INFILT = Index to the mean infiltration rate (mm/hr). INFEXP =Infiltration exponent parameter. INTFW = Interflow inflow parameter. IRC = Interflow recession parameter (1/day).

The first four parameters predominate in the control of the infiltration and soil moisture storage processes, and the last two parameters predominate in the control of the shape of the direct runoff hydrograph. The HSPF model has two soil water storage variables, the upper zone storage UZS (mm) and the lower zone storage LZS (mm) (see Figure 1). The corresponding nominal storage capacities, UZSN and LZSN (mm) are user adjustable model fitting parameters that are a function of "precipitation patterns and soil characteristics", according to BASINS Technical Note 6 (2000). The application of these nominal storage capacities in HSPF algorithms (Bicknell, et al, 2001) implies the following relationship between the nominal storages and the effective maximum storage capacities:

$$UZS_{max} = 3.0(UZSN)$$

$$LZS_{max} = 2.5(LZSN)$$
(8)

In view of the PERLND model component design, as shown in Figure 1, there is no defined soil depth and the combined values of *UZS* and *LZS* are the total of all storage in the subsurface between the soil surface and the ground water table (neglecting the short term interflow storage). The description of the function of the upper zone storage *UZS*, as stated in Hydrocomp (1969) (original source of the PERLND algorithm), is to provide for "depression storage and storage in highly permeable surface soils". It is further stated that "the upper zone storage prevents overland flow from a portion of the watershed depending on the value of the ratio *UZS/UZSN*, but since the nominal capacity *UZSN* is small, the upper zone retention percentage decreases rapidly with early increments of (rainfall) accretion". Inflow to the upper zone is governed by the storage ratio *UZS/UZSN* alone and is not considered to be part of the

infiltration process (Bicknell, et al, 2001). In view of these latter interpretations, the equivalent soil depth D is assumed to be defined by the maximum effective storage capacity of the lower zone storage, LZS_{max} :

$$D = \frac{LZS_{\max}}{\eta - \theta_r} \tag{9}$$

As already noted above, η is the soil porosity and θ_r is the residual moisture content. Combining equations 8 and 9 produces:

$$LZSN = \frac{(\eta - \theta_r)D}{2.5}$$
(10)

Donigian and Davis (1978) presented guidelines on the ratio of the nominal capacities of the two storages, *UZSN/LZSN*. They recommended that the nominal storage capacity of the upper zone *UZSN* be from 0.06 to 0.14 of that for the lower zone *LZSN*. Therefore, an average ratio of 0.10 was selected:

$$\frac{UZSN}{LZSN} = 0.1\tag{11}$$

Combining equations 10 and 11, and solving for UZSN, yields:

$$UZSN = \frac{(\eta - \theta_r)D}{25}$$
(12)

The antecedent soil water depth of the lower zone storage, LZS_i , corresponding to the NRCS type II antecedent runoff condition (ARC II) (SCS, 1986) can be computed for the effective soil depth *D* if the corresponding soil moisture content θ_i is known:

$$LZS_i = (\theta_i - \theta_r)D \tag{13}$$

Rawls and Brakensiek (1986) conducted studies comparing the runoff volume predictions of the Green-Ampt infiltration model to the CN model. They concluded that $\psi = 340$ cm was equivalent to the NRCS antecedent runoff condition II (ARC II). Using this value in equation 7 for each soil texture class results in the initial soil moisture content value θ_i , which in turn can be used to compute the antecedent soil water depth using equation 13. Table 1 lists values of θ_r , η , λ_{res} , ψ_b , and θ_i , for each soil texture class.

The remaining parameters required to establish the HSPF and CN relationship for the design storm direct runoff volume are the infiltration parameter *INFILT* (mm/hr) and the

infiltration exponent parameter *INFEXP*. The HSPF infiltration capacity *IBAR* (mm/hr) is computed by (Bicknell, et al, 2001)

$$IBAR = \left[\frac{INFILT}{\left(\frac{LZS}{LZSN}\right)^{INFEXP}}\right]INFFAC$$
(14)

where *INFFAC* is the frozen ground adjustment factor (set to 1 for unfrozen ground) and *INFEXP* is set equal to 2, consistent with typical applications of HSPF (U.S. EPA, 2000), and as recommended by Hydrocomp (1969). The values of *INFILT* for each of the soil texture classes listed in Table 2 are consistent with those values of *INFILT* recommended by BASINS Technical Note 6 (U.S. EPA, 2000) for NRCS Hydrologic Soil Groups A, B, C, and D, as listed in Table 2. The soil texture classes in Table 1 were first classified by hydrologic soil group using the soils data published by Nearing, et al., (1996). They compared NRCS Curve Numbers and hydrologic soil group classification to Green-Ampt hydraulic conductivities for a large number of soils covering a complete range of soil texture classes in Table 1, according to soil texture class description and Green-Ampt hydraulic conductivity. After the appropriate hydrologic soil group

classifications were determined, values of *INFILT* from Table 2 were assigned to each soil texture class so that the values varied smoothly from Sand to Clay, and so that the boundaries between hydrologic soil group classifications reflected the limits on the range of *INFILT* values listed in Table 1. In practice, this was accomplished by plotting estimated values of *INFILT* values Green-Ampt infiltration capacity (at F(t) = 1 cm), and then adjusting the *INFILT* values by trial until a smooth curve fit was achieved (see Figure 6). The remaining less critical HSPF parameters were fixed at the values determined by the calibration process (Appendix A) and with guidance from Sams and Witt (1995) for the surface mine land cover condition. Therefore, each soil texture class (Table 1) represents a surface mine site land cover condition with a unique infiltration capacity.

Table 1. Soil	Texture C	lass Hydraul	lic Properties								
Soil	Total	Residual	Pore Size	Bubbling	Initial Soil	Green-Ampt	Wetting	Green	Green-Ampt	Hydro-	INFILT
Texture	Porosity	Moisture	Distribution	Pressure	Moisture	Soil Hydraulic	Front Cap.	I	Infiltration	logic	Estimate ²
Class	μ	Content	Index	ψ_b (cm)	Content	Conductivity	Pressure	Ampt	Capacity at	Soil	(cm/hr)
_		$ heta_r$	۲		θ_i at AMCII	K (cm/hr)	Head ψ	$\theta \nabla$	F(t) = 1 cm	Group ¹	
_							(cm)		f(t) (cm/hr)		
Sand	0.437	0.020	0.546	17.340	0.102	11.78	4.95	0.335	31.309	V	2.50
Loamy	0.437	0.036	0.449	9.078	0.117	2.99	6.13	0.320	8.850	V	1.45
Sand											
Sandy	0.453	0.041	0.378	16.777	0.173	1.09	11.01	0.280	4.450	V	1.00
Loam											
Silt Loam	0.501	0.015	0.207	43.337	0.332	0.65	16.68	0.169	2.479	В	0.65
Loam	0.463	0.029	0.246	23.196	0.253	0.34	8.89	0.210	0.974	В	0.27
Sandy Clay	0.398	0.068	0.345	25.868	0.204	0.15	21.85	0.194	0.786	С	0.24
Loam											
Silty Clay	0.471	0.039	0.164	36.855	0.339	0.10	27.30	0.132	0.460	С	0.19
Loam											
Clay Loam	0.464	0.155	0.259	27.249	0.316	0.10	20.88	0.148	0.410	С	0.18
Silty Clay	0.479	0.056	0.186	27.167	0.320	0.05	29.22	0.158	0.282	С	0.14
Sandy Clay	0.430	0.109	*	*	0.277^{3}	0.06	23.90	0.153	0.279	С	0.13
Clay	0.475	060.0	0.187	32.917	0.339	0.03	31.63	0.136	0.159	D	0.05
All values (lerived fr	om Braken	siek, Englem	an, and Rav	vls (1981) an	d Rawls, Brake	ensiek, and]	Miller (1983), unless	otherwis	e noted.
[1] Nearing	"Liu, Ri	sse, and Zhi	ang (1996). [2] Figure 5.	. [3] Estimate	ed using Rosett	ta (1999). [*] Unav	'ailable.		

esc	
un	
3),	ıble
λ S	uila
Ē	IVa
er	Jna
Ξ	
2	*
anc	<u>(</u>
<u>v</u>	66
le	5
SUS	ta
ake	set
n	Ĩ,
s.	50 L
M	Sin
Ka	n
g	ed
an	nat
<u> </u>	tin
98	Es
C	3
	· •
<u>v</u> Is	<u> </u>
awls	5. [
l Rawls	ure 5. [
and Rawls	igure 5. [
n, and Kawls] Figure 5. [
nan, and Kawls	[2] Figure 5. [
leman, and Rawls). [2] Figure 5. [
ngleman, and Kawls	96). [2] Figure 5. [
, Engleman, and Rawls	(1996). [2] Figure 5. [
ek, Engleman, and Rawls	ıg (1996). [2] Figure 5. [
nsiek, Engleman, and Rawls	nang (1996). [2] Figure 5. [
kensiek, Engleman, and Rawls	Zhang (1996). [2] Figure 5. [
trakensiek, Engleman, and Rawls	nd Zhang (1996). [2] Figure 5. [
a Brakensiek, Engleman, and Rawls	, and Zhang (1996). [2] Figure 5. [
om Brakensiek, Engleman, and Rawls	sse, and Zhang (1996). [2] Figure 5. [
I from Brakensiek, Engleman, and Rawls	Risse, and Zhang (1996). [2] Figure 5. [
ed from Brakensiek, Engleman, and Rawls	u, Risse, and Zhang (1996). [2] Figure 5. [
rived from Brakensiek, Engleman, and Rawls	Liu, Risse, and Zhang (1996). [2] Figure 5. [
derived from Brakensiek, Engleman, and Rawls	g, Liu, Risse, and Zhang (1996). [2] Figure 5. [
es derived from Brakensiek, Engleman, and Rawls	ring, Liu, Risse, and Zhang (1996). [2] Figure 5. [
alues derived from Brakensiek, Engleman, and Rawls	earing, Liu, Risse, and Zhang (1996). [2] Figure 5. [
l values derived from Brakensiek, Engleman, and Rawls	Nearing, Liu, Risse, and Zhang (1996). [2] Figure 5. [

SCS	INFILT	Runoff Potential
Hydrologic	Estimate	
Soil Group	(mm/hr)	
А	25.4 - 63.5	Low
В	6.35 - 25.4	Moderate
С	3.175 - 6.35	Moderate to High
D	0.635-3.175	High

Table 2. INFILT versus Hydrologic Soil Group (BASINS Technical Note 6, U.S. EPA, 2001)

Figure 6. INFILT as a Function of Green-Ampt Infiltration Capacity and Soil Hydraulic Conductivity

2.0 Methodology

2.1 Curve Number Computation Using Cyclic Storm Input

Curve Numbers were determined numerically through an iterative process using HSPF with synthetic rainfall and potential evapotranspiration input in hourly increments

for the range of variables shown in Table 3. The HSPF parameters (LZSN, UZSN, and INFILT) and the simulated soil moisture content corresponding to ARC II (LZS_i) were calculated for each equivalent soil depth using equations 10, 11, and 13 and Table 1. Therefore, each soil depth corresponds to a theoretical watershed with unique hydrologic characteristics. The remaining HSPF parameter values were determined through the joint calibration procedure and were fixed throughout this study (Appendix B). The input rainfall time series consisted of repetitive, regularly-spaced twenty-four hour storm events of constant distribution and depth (a cyclic storm input). Four synthetic storm distributions were used to examine their possible affect on the calculated Curve Numbers (Figure 7). It should be noted that the WDM (Watershed Data Management) Triangular distribution is used for the disaggregation of rainfall records in the EPA's software for managing meteorological time series data, WDMUtil (Hummel et al., 2001).

Soil Type	Soil Depth (cm)	Storm Depth (mm)	Storm Distribution	λ
Sand	10	10	NRCS Type II	0.2
Loamy Sand	15	20	Uniform	0.05
Sandy Loam	20	30	Full Triangular	
Silt Loam	25	40	WDM Triangular	
Loam	30	50		
Sandy Clay Loam	35	60		
Silty Clay Loam	40	70		
Clay Loam	45	90		
Silty Clay	50	110		
Sandy Clay	60	130		
Clay	70	150		
	80			
	90			
	100			
	120			
	140			
	160			
	180			
	200			

'	Fable 3. CN Com	putational Variables	

Figure 7. Synthetic Storm Distributions, Hourly Time Increment, 1 mm Accumulated Depth

The potential evapotranspiration (PET) time series consisted of a uniform rate maintained at a fixed value for all simulations consistent with a typical dry day rate (mm/hr) observed during the growing season (Figure 8). The PET was set to zero during the storm event. No diurnal fluctuation was used since the only purpose of the PET was to draw the soil moisture level down to the ARC II condition prior to the next cyclic storm event, and it was desirable not to introduce any unnecessary fluctuations into the simulation. Each simulation run was conducted over a sufficient number of storm cycles to ensure that cyclic equilibrium was reached in all of the HSPF PERLND output time series variables. Samples of the cyclic HSPF input and output are shown in Figure 8.

Figure 8. Sample Cyclic HSPF Input (Type II Rainfall and PET) and Output (DRO)

The time between storm events was varied by trial until the lower zone storage, LZS, matched the initial ARC II condition computed using equation 13. The CN was then computed using equations 1-3 with the known value of P (corresponding to a specific storm distribution) and the numerically determined value of Q (the sum of *SURO* and *IFWO* HSPF output components between storm events). A check was included to ensure the rainfall depth satisfied the condition of equation 1. This procedure was performed over the ranges of each variable listed in Table 3 for the Silt Loam and Clay Loam soil types. These soil types were selected because of their relatively high and low infiltration rates, respectively (Table 2). Additionally, the computation time required to include all eleven soil types was considered prohibitive for this study. Each soil texture class requires 836 individual HSPF simulations in order to complete all combinations of the variables listed in Table 3. This excludes the Asymptotic Method (presented later) as well as post-processing requirements.

2.2 Asymptotic Method Using Observed Storm Input

A second method of determining CN values from time series rainfall-runoff data was introduced to provide a reference to the values calculated in the synthetic cyclic storm procedure based on the soil physics model. This method follows Hawkins' (1993) asymptotic method of determining CN values from data for individual watersheds which has become widely recognized (VanMullem, et al., 2002; Hjelmfelt, 2001). It is based on the idea that the CN method is best suited to frequency transform applications. Each storm and its corresponding runoff events are extracted from a single time series record. These data pairs are then sorted individually by depth from high to low and are re-paired, ensuring that each rainfall-runoff pair are of equal return periods, even though they may not coincide in time. When the CN's are calculated from these ordered pairs and are plotted on the y-axis against storm depth on the x-axis, three trends often emerge. The first is known as complacent behavior where the CN decreases steadily with storm depth without approaching a constant value (Figure 9). CN's cannot safely be determined from data which exhibit this pattern because no constant value is approached. This trend has been found to indicate a partial source area situation (Hawkins, 1979; Pankey and Hawkins, 1981).

Figure 9. Sketch of Behavioral Trends

The second trend is referred to as standard behavior, where the CN values decrease with increasing storm depth and approach a constant value (Figure 9). Hawkins found this to be the most common scenario, and hypothesized that runoff generation may include a variety of processes such as overland flow and interflow. He found that equation 15 can be used to fit the Standard behavior CN-P data sets, where *k* is a fitting constant and CN_{∞} is the value that is approached as P increases. The value of CN_{∞} is used as the Curve Number identified with an individual watershed (Hawkins, 1993).

$$CN(P) = CN_{\infty} + (100 - CN_{\infty})\exp(-kP)$$
(15)

The third variation is known as violent behavior where the CN's rise suddenly with rainfall and then asymptotically approach a constant value. Violent behavior could indicate a threshold phenomenon at some critical rainfall depth. Hawkins also found that violent behavior was often accompanied by complacent behavior at lower rainfall depths. In this latter case, equation 16 (Hawkins, 1993) has been found to represent the CN-P data sets, ignoring any complacent behavior.

$$CN(P) = CN_{\infty}[1 - \exp(-kP)]$$
(16)

It should be noted that Figure 9 is only a sketch showing the characteristic curve shapes of the three behavior types. It does not necessarily indicate relative positioning.

Hawkins' asymptotic method of CN determination was adopted for this study using simulated direct runoff from HSPF and long (a minimum of 20 years) historical precipitation records as model input. The precipitation records were gathered from four National Climatic Data Center (NCDC) stations scattered throughout the coal mining region in WV (Figure 10).

Figure 10. Location of Rainfall Gages Used in the Asymptotic Method

PET was calculated from daily minimum and maximum temperature records at the same gages and latitude using the Hamon method in the EPA's WDMUtil software package (Hummel et al., 2001).

An algorithm was written that automatically selected the input rainfall and simulated hourly runoff events based on the following criteria. A storm event must fall within a twenty-four hour window with zero total rainfall during the previous and subsequent 24 hour periods. Additionally, the total storm depth must be greater than a designated minimum depth; in this case 13 mm (about 0.5 inches). The condition specified by equation 1 was also enforced here. The storm event search was limited to the beginning of May to the end of September to exclude snowfall. The corresponding simulated direct runoff for each event was accumulated between the first hour of the selected storm event to either the hour at which the runoff has receded to the same value that existed before the storm, or alternately to the hour immediately preceding the next storm event.

The number of storms selected for the Terra Alta, Elkins, Beckley, and Dunlow gages, using the above algorithm, was 163, 137, 133, and 45, respectively. The length of the selection period for the Terra Alta, Elkins, and Beckley gages was 25 years, while Dunlow was 20 years. The distributions of the selected storms at each gage were summarized using a relative frequency histogram. Each hourly accumulation within each storm was normalized using the total depth for that storm. These normalized hourly values were then averaged over the total number of storms and plotted on the same axes, providing a combined measure of storm distribution by relative depth that occurs in each hour of the storm for all selected storms at each gage, as shown in Figure 11. Since most of the selected storm events were of relatively short duration, the distributions in Figure 11 are heavily weighted in the first few hours of the 24 hour storm window.

Figure 11. Storm Distribution Relative Frequency Histograms for each Gage
3.0 Results and Discussion

3.1 Cyclic Method

Figures 12-27 are plots of the computed CN's vs. Storm Depth for Clay Loam and Silt Loam soils, using initial abstraction ratio (λ) values of 0.05 and 0.2 over the full range of soil and storm depths for each storm distribution (see Table 3). Figures 12-15 are plots of the Clay Loam soil with $\lambda = 0.2$. Figures 16-19 are plots of the Silt Loam soil with $\lambda = 0.2$. Figures 20-23 are plots of the Clay Loam soil with $\lambda = 0.05$, and Figures 24-27 are plots of the Silt Loam soil with $\lambda = 0.05$.

By examining Figures 12-27, it is apparent that the CN is a function of soil type, soil depth, storm depth, and storm distribution. In all cases, the Clay Loam soil results in higher CN values than the Silt Loam, due to the lower infiltration capacity of the Clay Loam as governed by the INFILT parameter (Table 2). For each soil type and storm distribution, CN values generally decrease with increasing soil depth. This can be explained by the increase in the upper and lower zone soil moisture storage parameters (UZSN and LZSN) with the increase in soil depth (Equations 10 and 12). For each soil depth, the CN's also vary with storm depth, typically describing violent behavior where the CN's increase abruptly and approach a constant value as storm depth increases. As Hawkins (1993) noted, the violent behavior is often preceded by complacent behavior at lower storm depths as shown in Figures 12-14, 18, 20-22, and 24-26. Additionally, the violent behavior is more prevalent at lesser soil depths and trends toward standard behavior as soil depth increases (Figures 12-14, 18, and 20-27).

The CN values are also dependent on the storm distributions. The curves of the CN's vs. storm depth for the Uniform and Full Triangular distributions describe a smoother shape than those from the Type II and WDM Triangular distributions. This may be explained by observing that the Type II and WDM Triangular distributions deliver the majority of the total storm depth in a period of time that is less than two hours (Figure 7). Conversely, the Uniform and Full Triangular distributions allocate rainfall more uniformly throughout the twenty-four hour period, resulting in lower hourly intensities.

The WDM Triangular distribution results in the highest overall CN values, as shown in Figures 15, 19, 23, and 27. This can be explained by the fact that the total twenty-four hour rainfall depth in this distribution falls within an eight hour period, therefore providing less opportunity for infiltration. To illustrate this effect, the HSPF infiltration component was accumulated from the beginning of the storm event to the beginning of the next storm event and averaged over the range of storm depths for each soil depth. The results for each storm distribution for the Clay Loam soil are shown in Figure 28. The WDM Triangular distribution results in the least amount of infiltration, therefore producing the highest CN values.

Figure 28. Cyclic Method Mean Infiltration vs. Soil Depth, Clay Loam

Finally, by comparing Figures 12-19 to Figures 20-27, it is apparent that the initial abstraction ratio (λ) value of 0.05 versus 0.2 reduces the CN's calculated at low storm depths. This makes sense physically; since the storm and runoff depths are the same for each soil depth, and less initial abstraction (corresponding to a lower λ value) results in a greater loss to the soil, producing a lower CN value. As the storm depth

increases, the initial abstraction becomes a smaller percentage of the rainfall and its effect on the CN diminishes.

The results of the Cyclic Method indicate that the storm distributions consisting of high intensity hourly events (Type II and WDM Triangular) produce more irregular variation of the CN with storm depth (for example, see Figures 12-15). The curves of the lesser soil depths tend to describe a violent behavior, trending toward standard behavior as soil depth increases (Figures 12-25). Finally, the WDM Triangular distribution resulted in the lowest infiltration depth and therefore the highest CN values (Figures 15, 19, 23, 27, and 28). These findings can be compared to those of the Asymptotic Method that follows.

3.2 Asymptotic Method

The Asymptotic Method was applied to the same range of soil types and soil depths as the Cyclic method. The CN's calculated from the ranked rainfall-runoff pairs were plotted against rainfall for each soil depth. The equation that resulted in the highest R-squared value (violent, equation 15, or standard, equation 16) was fit to the data by minimizing the least-squared error using a Matlab (Mathworks, Inc.) optimization function (Lagarias, 1998). Figure 29 is an example fit of the equation for violent behavior for Clay Loam at a 20 cm soil depth with a simulation using data from the Terra Alta gage.

Figure 29. Violent Curve Fit, Clay Loam, 20 cm, Terra Alta gage, $\lambda = 0.05$

In this case the abrupt rise in CN, characteristic of the so-called violent behavior is obvious and equation 17 fits the data reasonably well ($R^2 = 78.44\%$).

$$CN(P) = 88.60[1 - \exp(-2.58P)]$$
 (17)

This process was repeated for each soil depth and gaging station and the resulting curves were plotted on the same axes. Certain soil depths appeared to exhibit complacent behavior at low storm depths followed by violent behavior. In these instances the complacent behavior was ignored and only the violent points were used to fit Equation 16. Figures 30 to 45 show the results for the Clay Loam and Silt Loam soils with initial abstraction ratio values of 0.05 and 0.2. Figures 30-33 are plots of the Clay Loam soil with $\lambda = 0.2$. Figures 34-37 are plots of the Silt Loam soil with $\lambda = 0.2$. Figures 38-41 are plots of the Clay Loam soil with $\lambda = 0.05$, and Figures 42-45 are plots of the Silt Loam soil with $\lambda = 0.05$.

The fits with R^2 values less than 50% are shown as dotted lines. Tables 4 and 5 show the corresponding CN_{∞} values, fitting constants, and R^2 values for each curve fit.

The type of fit is indicated with the letters 's' or 'v' (Equations 15 or 16, respectively), and the entries with R^2 values less than 50% are shown in red.

	Terra Alta (163 storms)						Beckley (133 storms)					
	Clay Loam			Silt Loam		Clay Loam			Silt Loam			
Soil Depth (cm)	CN_{∞}	k	R^2	CN_{∞}	k	R^2	CN_{∞}	k	R^2	CN_{∞}	k	R^2
10	90.71	4.75	0.82	82.04	2.65	0.71v	90.63	5.24	0.71v	81.32	5.66	0.03v
15	90.17	4.82	0.82	81.13	2.66	0.57v	90.56	4.97	0.82v	80.52	5.14	0.05v
20	89.46	4.94	0.81 v	80.76	2.58	0.55v	90.09	4.92	0.87v	79.57	5.28	0.03v
25	89.02	5.02	0.80	80.44	2.57	0.57v	89.55	4.95	0.89v	78.49	6.35	0.00v
30	88.57	5.12	0.78v	80.26	2.52	0.61v	88.99	5.01	0.88v	77.73	44.86	0.00v
35	88.18	5.22	0.75	79.69	2.57	0.63v	88.45	5.09	0.84v	76.77	4.13	0.22s
40	87.86	5.32	0.72	79.01	2.68	0.58v	87.93	5.20	0.79v	76.18	3.69	0.31s
45	87.56	5.42	0.67	78.33	2.83	0.48v	87.43	5.33	0.75v	75.63	3.37	0.40s
50	87.30	5.52	0.63	76.06	3.29	0.63s	86.97	5.47	0.69v	75.11	3.12	0.49s
60	86.87	5.68	0.59v	75.40	2.94	0.74s	86.20	5.78	0.58v	74.10	2.72	0.66s
70	86.53	5.85	0.57 v	74.73	2.67	0.81s	85.51	6.19	0.43v	73.12	2.43	0.81s
80	86.22	6.07	0.56	74.08	2.45	0.87s	84.96	6.64	0.28v	72.22	2.21	0.89s
90	85.95	6.31	0.54v	73.38	2.26	0.90s	84.56	7.12	0.18v	71.33	2.03	0.92s
100	85.70	6.58	0.48	72.75	2.11	0.91s	84.25	7.64	0.10v	70.64	1.91	0.93s
120	85.26	7.30	0.31v	71.58	1.88	0.93s	83.86	8.83	0.03v	69.48	1.73	0.92s
140	84.91	8.29	0.13v	70.51	1.71	0.94s	83.65	10.59	0.01v	68.60	1.62	0.91s
160	84.66	9.65	0.04v	69.57	1.59	0.95s	82.96	4.65	0.04s	67.90	1.53	0.90s
180	84.09	4.81	0.05s	68.68	1.49	0.96s	82.35	3.60	0.13s	67.27	1.47	0.90s
200	83.57	3.68	0.18s	67.90	1.41	0.96s	81.77	3.05	0.24s	66.68	1.41	0.89s
	Elkins (137 storms)											
	Elkins (137 st	orms)				Dunlow	v (45 sto	orms)			
	Elkins (Clay Lo	137 st am	orms)	Silt Loa	im		Dunlov Clay Lo	v (45 sto pam	orms)	Silt Loa	am	
Soil Depth (cm)	Elkins (Clay Lo <i>CN</i> _∞	137 st am k	orms)	Silt Loa CN_{∞}	lm k	R^2	Dunlow Clay Loc CN_{∞}	v (45 sto pam k	rms) R^2	Silt Loa CN_{∞}	am k	R^2
Soil Depth (cm) 10	Elkins (Clay Lo <i>CN</i> _∞ 91.14	137 st am <i>k</i> 5.29	orms) <i>R</i> ² 0.58	Silt Loa <i>CN</i> _∞ 80.30	m k 12.65	<i>R</i> ² 0.00v	Dunlow Clay Lo <i>CN</i> _∞ 92.47	v (45 sto bam k 4.97	<i>R</i> ² 0.67 v	Silt Loa <i>CN</i> _∞ 85.15	am <i>k</i> 4.11	<i>R</i> ² 0.58 v
Soil Depth (cm) 10 15	Elkins (Clay Lo <i>CN</i> 91.14 90.23	137 st bam k 5.29 5.46	orms) <i>R</i> ² 0.58 0.61	Silt Loa CN _∞ 80.30 79.25	m <u>k</u> 12.65 12.70	<i>R</i> ² 0.00 v 0.00 v	Dunlow Clay Lo <i>CN</i> _∞ 92.47 92.18	v (45 sto pam k 4.97 4.86	<i>R</i> ² 0.67 v 0.79 v	Silt Loa CN _∞ 85.15 82.27	am <i>k</i> 4.11 5.24	<i>R</i> ² 0.58 v 0.50 v
Soil Depth (cm) 10 15 20	Elkins (Clay Lo <i>CN</i> 91.14 90.23 89.47	137 st am k 5.29 5.46 5.59	orms) R ² 0.58v 0.61v 0.60v	Silt Loa <i>CN</i> _∞ 80.30 79.25 78.49	<i>k</i> 12.65 12.70 14.66	<i>R</i> ² 0.00v 0.00v 0.00v	Dunlow Clay Lo <i>CN</i> 92.47 92.18 91.39	v (45 sto pam k 4.97 4.86 4.91	<i>R</i> ² 0.67 v 0.79 v 0.80 v	Silt Loa CN _w 85.15 82.27 80.56	am <u>k</u> <u>4.11</u> <u>5.24</u> <u>6.84</u>	<i>R</i> ² 0.58 v 0.50 v 0.06 v
Soil Depth (cm) 10 15 20 25	Elkins (Clay Lo <i>CN</i> 91.14 90.23 89.47 88.87	137 st bam <u>k</u> 5.29 5.46 5.59 5.65	orms) R ² 0.58 0.61 0.60 0.61	Silt Loa CN 7 80.30 7 7 7 7 7 7 7 7 7 7 7	k 12.65 12.70 14.66 20.27	<i>R</i> ² 0.00v 0.00v 0.00v 0.00v	Dunlow Clay Lo <i>CN</i> 92.47 92.18 91.39 90.77	v (45 sto pam k 4.97 4.86 4.91 4.99	<i>R</i> ² 0.67 v 0.79 v 0.80 v 0.83 v	Silt Loa CN _∞ 85.15 82.27 80.56 79.55	k 4.11 5.24 6.84 8.89	<i>R</i> ² 0.58 v 0.50 v 0.06v 0.00v
Soil Depth (cm) 10 15 20 25 30	Elkins (Clay Lo <i>CN</i> 91.14 90.23 89.47 88.87 88.45	137 st pam k 5.29 5.46 5.59 5.65 5.67	orms) <u>R</u> ² 0.58 0.61 0.60 0.61 0.62	Silt Loa CN _∞ 80.30 79.25 78.49 77.86 76.64	k 12.65 12.70 14.66 20.27 3.57	<i>R</i> ² 0.00v 0.00v 0.00v 0.00v 0.55 s	Dunlow Clay Lo CN _w 92.47 92.18 91.39 90.77 90.10	v (45 sto pam k 4.97 4.86 4.91 4.99 5.17	<i>R</i> ² 0.67 v 0.79 v 0.80 v 0.83 v 0.84 v	Silt Loa CN _w 85.15 82.27 80.56 79.55 78.97	am <i>k</i> 4.11 5.24 6.84 8.89 6.55	<i>R</i> ² 0.58v 0.50v 0.06v 0.00v 0.00v
Soil Depth (cm) 10 15 20 25 30 35	Elkins (Clay Lo <i>CN</i> 91.14 90.23 89.47 88.87 88.45 88.45	137 st am <u>k</u> 5.29 5.46 5.59 5.65 5.67 5.67	orms) R ² 0.58 0.61 0.60 0.61 0.62 0.61	Silt Loa CN_∞ (80.30) (79.25) (79.49) (77.86) (76.64) (75.92)	k 12.65 12.70 14.66 20.27 3.57 3.21	<i>R</i> ² 0.00 v 0.00 v 0.00 v 0.00 v 0.55 s 0.68 s	Dunlow Clay Lo CN _∞ 92.47 92.18 91.39 90.77 90.10 89.47	v (45 sto pam k 4.97 4.86 4.91 4.99 5.17 5.37	R ² 0.67 v 0.79 v 0.80 v 0.83 v 0.84 v 0.82 v	Silt Loa CN _∞ 85.15 82.27 80.56 79.55 78.97 78.44	am k 4.11 5.24 6.84 8.89 6.55 4.89	<i>R</i> ² 0.58 v 0.50 v 0.06 v 0.00 v 0.01 s 0.06 s
Soil Depth (cm) 10 15 20 25 30 35 40	Elkins (Clay Lo <i>CN</i> 91.14 90.23 89.47 88.87 88.45 88.45 88.12 87.86	137 st am <u>k</u> 5.29 5.46 5.59 5.65 5.67 5.67	R ² 0.58v 0.61v 0.61v 0.61v 0.61v 0.61v 0.61v	Silt Loa CN _∞ ' '	k 12.65 12.70 14.66 20.27 3.57 3.21 2.94	<i>R</i> ² 0.00 v 0.00 v 0.00 v 0.00 v 0.55 s 0.68 s 0.75 s	Dunlow Clay Lo <i>CN</i> 92.47 92.18 91.39 90.77 90.10 89.47 88.98	x (45 sto pam k 4.97 4.86 4.91 4.99 5.17 5.37 5.52	R ² 0.67 v 0.79 v 0.80 v 0.83 v 0.84 v 0.82 v 0.80 v	Silt Loa CN _∞ 85.15 82.27 80.56 79.55 78.97 78.44 77.92	am k 4.11 5.24 6.84 8.89 6.55 4.89 4.16	<i>R</i> ² 0.58 v 0.50 v 0.06 v 0.00 v 0.01 s 0.06 s 0.22 s
Soil Depth (cm) 10 15 20 25 30 35 40 45	Elkins (Clay Lo <i>CN</i> 91.14 90.23 89.47 88.87 88.45 88.45 88.45 88.12 87.86 87.86	137 st am <u>k</u> 5.29 5.46 5.59 5.65 5.67 5.67 5.67 5.67	R ² 0.58 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61	Silt Loa CN _∞ 80.30 79.25 78.49 77.86 77.86 76.64 75.92 75.27 74.69	k 12.65 12.70 14.66 20.27 3.57 3.21 2.94 2.74	R ² 0.00 v 0.00 v 0.00 v 0.00 v 0.00 v 0.55 s 0.68 s 0.75 s 0.78 s	Dunlow Clay Lo CN 92.47 92.18 91.39 90.77 90.10 89.47 88.98 88.57	v (45 sto pam k 4.97 4.86 4.91 4.99 5.17 5.37 5.52 5.64	R ² 0.67 v 0.79 v 0.80 v 0.83 v 0.84 v 0.82 v 0.80 v 0.79 v	Silt Loa CN _∞ 85.15 82.27 80.56 79.55 78.97 78.44 77.92 77.33	am k 4.11 5.24 6.84 8.89 6.55 4.89 4.16 3.58	<i>R</i> ² 0.58 v 0.06 v 0.00 v 0.01 s 0.06 s 0.22 s 0.39 s
Soil Depth (cm) 10 15 20 25 30 30 35 40 45 50	Elkins (Clay Lo CN _∞ 91.14 90.23 89.47 88.87 88.45 88.45 88.45 88.12 87.86 87.60 87.36	137 st pam <u>k</u> 5.29 5.46 5.59 5.65 5.67 5.67 5.67 5.67 5.69 5.73	R ² 0.58 v 0.61 v	Silt Loa CN 80.30 79.25 78.49 778.69 775.92 75.92 74.69 74.18	k 12.65 12.70 14.66 20.27 3.21 2.94 2.74 2.58	<i>R</i> ² 0.00 v 0.00 v 0.00 v 0.55 s 0.68 s 0.75 s 0.78 s 0.83 s	Dunlow Clay Lo CN _∞ 92.47 92.18 91.39 90.77 90.10 89.47 88.98 88.57 88.25	x (45 sto pam k 4.97 4.86 4.91 4.99 5.17 5.37 5.52 5.64 5.73	R ² 0.67 v 0.79 v 0.80 v 0.83 v 0.84 v 0.82 v 0.80 v 0.79 v	Silt Loa CN _∞ 85.15 82.27 80.56 79.55 78.97 78.44 77.92 77.33 76.96	am k 4.11 5.24 6.84 8.89 6.55 4.89 4.16 3.58 3.33 3.33	<i>R</i> ² 0.58 v 0.50 v 0.06 v 0.00 v 0.01 s 0.06 s 0.22 s 0.39 s 0.38 s
Soil Depth (cm) 10 15 20 25 30 35 40 45 50 60	Elkins (Clay Lo <i>CN</i> 91.14 90.23 89.47 88.87 88.45 88.45 88.45 88.45 88.45 87.86 87.86 87.60 87.36	137 st am 5.29 5.46 5.59 5.65 5.67 5.67 5.67 5.67 5.69 5.73 5.89	R ² 0.58 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.55	Silt Loa CN	k 12.65 12.70 14.66 20.27 3.21 2.94 2.74 2.58 2.34	R ² 0.00 v 0.00 v 0.00 v 0.00 v 0.00 v 0.68 s 0.75 s 0.78 s 0.83 s 0.88 s	Dunlow Clay Lo CN _∞ 92.47 92.18 91.39 90.77 90.10 89.47 88.98 88.57 88.25 87.81	x (45 sto pam k 4.97 4.86 4.91 4.99 5.17 5.37 5.52 5.64 5.73 5.81	R ² 0.67 0.79 0.80 0.83 0.84 0.84 0.82 0.80 0.79 0.79	Silt Loa <i>CN</i> 85.15 82.27 80.56 79.55 78.97 78.44 77.92 77.33 76.96 76.37	k 4.11 5.24 6.84 8.89 6.55 4.89 4.16 3.58 3.33 2.99	<i>R</i> ² 0.58 v 0.50 v 0.06 v 0.00 v 0.01 s 0.06 s 0.22 s 0.39 s 0.38 s 0.30 s
Soil Depth (cm) 10 15 20 25 30 35 40 40 45 50 60 70	Elkins (Clay Lo <i>CN</i> 91.14 90.23 89.47 88.87 88.45 88.45 88.45 88.45 88.45 87.86 87.86 87.86 87.36 86.87 86.42	137 st am <i>k</i> 5.29 5.46 5.59 5.65 5.67 5.67 5.67 5.67 5.67 5.67 5.69 5.73 5.89 6.11	R ² 0.58 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.53	Silt Loa CN _∞ 80.30 79.25 78.49 77.86 77.86 77.86 75.92 75.27 75.27 74.69 74.18 73.29 72.66	k 12.65 12.70 14.66 20.27 3.57 3.21 2.94 2.74 2.58 2.34 2.19	R ² 0.00 v 0.00 v 0.00 v 0.00 v 0.55 s 0.68 s 0.75 s 0.78 s 0.83 s 0.88 s 0.91 s	Dunlow Clay Lc CN_{∞} 92.47 92.18 91.39 90.77 90.10 89.47 88.98 88.57 88.25 87.81 87.50	v (45 sto pam k 4.97 4.86 4.91 4.99 5.17 5.37 5.52 5.64 5.73 5.81 5.83	R ² 0.67 v 0.79 v 0.80 v 0.83 v 0.84 v 0.82 v 0.80 v 0.79 v 0.82 v 0.79 v 0.79 v 0.70 v 0.70 v 0.70 v 0.70 v 0.70 v 0.76 v 0.82 v	Silt Loa CN _∞ 85.15 82.27 80.56 79.55 78.97 78.44 77.92 77.33 76.96 76.37 75.94	am k 4.11 5.24 6.84 8.89 6.55 4.89 4.16 3.58 3.33 2.99 2.78	R ² 0.58 v 0.50 v 0.06 v 0.00 v 0.01 s 0.22 s 0.39 s 0.30 s 0.26 s
Soil Depth (cm) 10 15 20 25 30 30 35 40 40 45 50 60 70 80	Elkins (Clay Lo CN _∞ 91.14 90.23 89.47 88.87 88.45 88.45 88.45 88.45 87.86 87.36 87.36 86.87 86.42 86.01	137 st am k 5.29 5.46 5.59 5.65 5.67 5.67 5.67 5.67 5.67 5.67 5.69 5.73 5.89 6.11 6.39	R ² 0.58 0.61 0.60 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.53 0.53	Silt Loa CN 80.30 79.25 78.49 777.86 76.64 75.92 75.77 74.69 73.29 72.66 72.20	k 12.65 12.70 14.66 20.27 3.21 2.94 2.74 2.58 2.34 2.19 2.08	R ² 0.00 v 0.00 v 0.00 v 0.00 v 0.55 s 0.68 s 0.75 s 0.78 s 0.88 s 0.91 s 0.93 s	Dunlow Clay Lo CN 92.47 92.18 91.39 90.77 90.10 89.47 88.98 88.57 88.25 87.81 87.50 87.21	v (45 sto pam k 4.97 4.86 4.91 4.99 5.17 5.37 5.52 5.64 5.73 5.81 5.83 5.83	R ² 0.67 0.79 0.80 0.83 0.83 0.84 0.82 0.80 0.79 0.79 0.78 0.78 0.76 0.82 0.82	Silt Loa <i>CN</i> 85.15 82.27 80.56 79.55 78.97 78.44 77.92 77.33 76.96 76.37 75.94 75.76	k 4.11 5.24 6.84 8.89 6.55 4.89 4.16 3.58 3.33 2.99 2.78 2.74	<i>R</i> ² 0.58 v 0.50 v 0.06 v 0.00 v 0.01 s 0.06 s 0.22 s 0.39 s 0.38 s 0.30 s 0.30 s 0.35 s
Soil Depth (cm) 10 15 20 25 30 35 40 40 45 50 60 70 80 90	Elkins (Clay Lo <i>CN</i> 91.14 90.23 89.47 88.87 88.45 88.45 88.45 88.45 88.45 88.45 88.45 88.45 88.45 88.45 88.45 88.45 88.45 86.42 86.01 85.67	137 st am k 5.29 5.46 5.59 5.65 5.67 5.67 5.67 5.67 5.67 5.69 5.73 5.89 6.11 6.39 6.71	R ² 0.58 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.59 0.59 0.53 0.48 0.39	Silt Loa CN _∞ 80.30 79.25 78.49 77.86 76.64 75.92 75.27 74.69 73.29 72.66 72.20 71.80	k 12.65 12.70 14.66 20.27 3.57 3.21 2.94 2.74 2.58 2.34 2.19 2.08 1.99	R ² 0.00 v 0.00 v 0.00 v 0.00 v 0.00 v 0.55 s 0.68 s 0.75 s 0.78 s 0.83 s 0.83 s 0.91 s 0.93 s	Dunlow Clay Lo <i>CN</i> 92.47 92.18 91.39 90.77 90.10 89.47 88.98 88.57 88.25 87.81 87.50 87.21 86.96	v (45 sto pam k 4.97 4.86 4.91 4.99 5.17 5.37 5.52 5.64 5.73 5.81 5.83 5.83 5.89 5.98	R ² 0.67 0.79 0.80 0.83 0.84 0.84 0.82 0.80 0.79 0.84 0.82 0.79 0.79 0.80 0.82 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.82 0.82 0.83 0.83	Silt Loa CN _∞ 85.15 82.27 80.56 79.55 78.97 78.44 77.92 77.33 76.96 76.37 75.94 75.76 75.76	k 4.11 5.24 6.84 8.89 6.55 4.89 4.16 3.58 3.33 2.99 2.78 2.74 2.64	<i>R</i> ² 0.58 v 0.50 v 0.00 v 0.01 s 0.06 s 0.22 s 0.39 s 0.39 s 0.30 s 0.30 s 0.35 s 0.50 s
Soil Depth (cm) 10 15 20 25 30 35 40 40 45 50 60 70 80 90 100	Elkins (Clay Lo CN _∞ 91.14 90.23 89.47 88.87 88.45 88.45 88.45 88.45 88.45 88.45 88.45 88.45 88.45 87.86 87.86 87.36 86.42 86.01 85.67 85.38	137 st am k 5.29 5.46 5.59 5.65 5.67 5.67 5.67 5.67 5.67 5.67 5.67	R ² 0.58 0.61 0.59 0.56 0.53 0.39 0.30	Silt Loa CN _∞ 80.30 79.25 78.49 77.86 76.64 75.92 75.27 75.27 74.69 74.18 73.29 72.66 72.20 71.80 71.44	k 12.65 12.70 14.66 20.27 3.57 3.21 2.94 2.74 2.58 2.34 2.19 2.08 1.99 1.91	R ² 0.00 v 0.00 v 0.00 v 0.00 v 0.55 s 0.68 s 0.75 s 0.78 s 0.78 s 0.83 s 0.91 s 0.93 s 0.93 s 0.92 s	Dunlow Clay Lo CN 92.47 92.18 91.39 90.77 90.10 89.47 88.98 88.57 88.25 87.81 87.50 87.21 86.96 86.75	v (45 sto pam k 4.97 4.86 4.91 4.99 5.17 5.37 5.52 5.64 5.73 5.83 5.81 5.83 5.89 5.98 6.10	R ² 0.67 v 0.79 v 0.80 v 0.83 v 0.84 v 0.82 v 0.80 v 0.79 v 0.82 v 0.80 v 0.79 v 0.80 v 0.82 v 0.80 v 0.79 v 0.78 v 0.76 v 0.82 v 0.83 v 0.83 v 0.83 v	Silt Loa <i>CN</i> 85.15 82.27 80.56 79.55 78.97 78.44 77.92 77.33 76.96 76.37 75.94 75.76 75.45 75.04	am k 4.11 5.24 6.84 8.89 6.55 4.89 4.16 3.58 3.33 2.99 2.78 2.74 2.64 2.51	R ² 0.58 v 0.50 v 0.06 v 0.01 s 0.06 s 0.22 s 0.39 s 0.30 s 0.26 s 0.35 s 0.50 s 0.50 s
Soil Depth (cm) 10 15 20 25 30 35 40 45 50 60 70 80 90 100 120	Elkins (Clay Lo CN _∞ 91.14 90.23 89.47 88.87 88.45 88.45 88.45 88.45 87.86 87.36 87.36 87.36 86.42 86.01 85.67 85.38 84.96	137 st am k 5.29 5.46 5.59 5.65 5.67 5.67 5.67 5.67 5.67 5.67 5.69 5.73 5.89 6.11 6.39 6.71 7.09 8.01	R ² 0.58 0.61 0.60 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.59 0.53 0.48 0.30 0.14	Silt Loa CN _∞ ' ' </td <td>k 12.65 12.70 14.66 20.27 3.21 2.94 2.74 2.58 2.34 2.19 2.08 1.99 1.91 1.80</td> <td>R² 0.00 v 0.68 s 0.75 s 0.83 s 0.91 s 0.91 s</td> <td>Dunlow Clay Lo CN 92.47 92.18 91.39 90.77 90.10 89.47 88.98 88.57 88.25 87.81 87.50 87.21 86.96 86.75 86.36</td> <td>v (45 sto pam k 4.97 4.86 4.91 4.99 5.17 5.37 5.52 5.64 5.73 5.81 5.83 5.89 5.98 6.10 6.42</td> <td>R² 0.67 0.79 0.80 0.83 0.83 0.84 0.82 0.79 0.80 0.82 0.80 0.79 0.80 0.82 0.80 0.78 0.78 0.78 0.78 0.78 0.78 0.83 0.83 0.83 0.83 0.83</td> <td>Silt Loa <i>CN</i> 85.15 82.27 80.56 79.55 78.97 78.44 77.92 77.33 76.96 76.37 75.94 75.76 75.45 75.04 74.09</td> <td>k 4.11 5.24 6.84 8.89 6.55 4.89 4.16 3.58 3.33 2.99 2.78 2.74 2.64 2.51 2.277</td> <td>R² 0.58 v 0.50 v 0.06 v 0.00 v 0.01 s 0.06 s 0.22 s 0.39 s 0.30 s 0.30 s 0.30 s 0.30 s 0.35 s 0.35 s 0.69 s 0.89 s</td>	k 12.65 12.70 14.66 20.27 3.21 2.94 2.74 2.58 2.34 2.19 2.08 1.99 1.91 1.80	R ² 0.00 v 0.68 s 0.75 s 0.83 s 0.91 s 0.91 s	Dunlow Clay Lo CN 92.47 92.18 91.39 90.77 90.10 89.47 88.98 88.57 88.25 87.81 87.50 87.21 86.96 86.75 86.36	v (45 sto pam k 4.97 4.86 4.91 4.99 5.17 5.37 5.52 5.64 5.73 5.81 5.83 5.89 5.98 6.10 6.42	R ² 0.67 0.79 0.80 0.83 0.83 0.84 0.82 0.79 0.80 0.82 0.80 0.79 0.80 0.82 0.80 0.78 0.78 0.78 0.78 0.78 0.78 0.83 0.83 0.83 0.83 0.83	Silt Loa <i>CN</i> 85.15 82.27 80.56 79.55 78.97 78.44 77.92 77.33 76.96 76.37 75.94 75.76 75.45 75.04 74.09	k 4.11 5.24 6.84 8.89 6.55 4.89 4.16 3.58 3.33 2.99 2.78 2.74 2.64 2.51 2.277	R ² 0.58 v 0.50 v 0.06 v 0.00 v 0.01 s 0.06 s 0.22 s 0.39 s 0.30 s 0.30 s 0.30 s 0.30 s 0.35 s 0.35 s 0.69 s 0.89 s
Soil Depth (cm) 10 15 20 25 30 35 40 40 45 50 60 70 80 90 100 120 140	Elkins (Clay Lo CN 91.14 90.23 89.47 88.87 88.45 88.45 88.45 88.45 87.86 87.86 87.86 87.36 86.87 86.42 86.01 85.67 85.38 84.96 84.71	137 st am k 5.29 5.46 5.59 5.65 5.67 5.67 5.67 5.67 5.67 5.67 5.69 5.73 5.89 6.11 6.39 6.71 7.09 8.01 9.23	R ² 0.58 0.61 0.60 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.59 0.59 0.53 0.48 0.30 0.14 0.04	Silt Loa CN	k 12.65 12.70 14.66 20.27 3.57 3.21 2.94 2.74 2.58 2.34 2.19 2.08 1.99 1.91 1.80 1.71	R ² 0.00 v 0.00 v 0.00 v 0.00 v 0.55 s 0.68 s 0.75 s 0.78 s 0.83 s 0.91 s 0.93 s 0.92 s 0.92 s	Dunlow Clay Lo CN_{∞} 92.47 92.18 91.39 90.77 90.10 89.47 88.98 88.57 88.25 87.81 87.50 87.21 86.96 86.75 86.36 86.36	v (45 sto pam k 4.97 4.86 4.91 4.99 5.17 5.37 5.52 5.64 5.73 5.81 5.83 5.89 5.98 6.10 6.42 6.75	R ² 0.67 0.79 0.80 0.83 0.84 0.84 0.82 0.80 0.82 0.80 0.82 0.80 0.79 0.82 0.80 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.71 0.83 0.71 0.53	Silt Loa <i>CN</i> 85.15 82.27 80.56 79.55 78.97 78.44 77.92 77.33 76.96 76.37 75.94 75.76 75.45 75.45 75.04 74.09 73.10	k 4.11 5.24 6.84 8.89 6.55 4.89 4.16 3.58 3.33 2.99 2.78 2.74 2.64 2.51 2.27 2.06	<i>R</i> ² 0.58 v 0.50 v 0.00 v 0.01 s 0.06 s 0.22 s 0.39 s 0.39 s 0.30 s 0.30 s 0.35 s 0.50 s 0.50 s 0.69 s 0.89 s 0.95 s
Soil Depth (cm) 10 15 20 25 30 40 45 50 60 70 80 90 100 120 140 160	Elkins (Clay Lo CN _∞ 91.14 90.23 89.47 88.87 88.45 88.45 88.45 88.45 87.86 87.86 87.86 87.86 87.36 86.87 86.42 86.01 85.67 85.38 84.96 84.71 84.21	137 st am k 5.29 5.46 5.59 5.65 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.69 6.11 6.39 6.71 7.09 8.01 9.23 5.42	R ² 0.58 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.59 0.56 0.53 0.30 0.30 0.048 0.04 0.04	Silt Loa CN	k 12.65 12.70 14.66 20.27 3.57 3.21 2.94 2.74 2.58 2.34 2.19 2.08 1.99 1.91 1.80 1.71 1.63	R ² 0.00 v 0.00 v 0.00 v 0.00 v 0.55 s 0.68 s 0.75 s 0.83 s 0.83 s 0.91 s 0.93 s 0.92 s 0.91 s 0.92 s 0.91 s	Dunlow Clay Lo CN 92.47 92.18 91.39 90.77 90.10 89.47 88.98 88.57 88.25 87.81 87.50 87.21 86.96 86.75 86.36 86.08 86.08	v (45 sto pam k 4.97 4.86 4.91 4.99 5.17 5.37 5.52 5.64 5.73 5.81 5.83 5.83 5.89 5.98 6.10 6.42 6.75 7.15	R ² 0.67 0.79 0.80 0.83 0.83 0.84 0.82 0.79 0.80 0.82 0.80 0.79 0.82 0.79 0.78 0.78 0.76 0.83 0.83 0.83 0.83 0.71 0.53 0.33	Silt Loa <i>CN</i> 85.15 82.27 80.56 79.55 78.97 78.44 77.92 77.33 76.96 76.37 75.94 75.76 75.76 75.04 75.04 74.09 73.10 72.48	k 4.11 5.24 6.84 8.89 6.55 4.89 4.16 3.58 3.33 2.99 2.78 2.74 2.64 2.51 2.27 2.06 1.96	R ² 0.58 v 0.50 v 0.06 v 0.01 s 0.06 s 0.22 s 0.39 s 0.30 s 0.30 s 0.30 s 0.30 s 0.35 s 0.50 s 0.69 s 0.95 s 0.95 s
Soil Depth (cm) 10 15 20 25 30 35 40 45 50 60 70 80 90 100 120 140 160 180	Likins (Clay Lo CN _∞ 91.14 90.23 89.47 88.87 88.45 88.45 88.45 88.45 88.45 88.45 88.45 88.45 88.45 88.45 88.45 87.60 87.36 86.87 86.42 86.01 85.38 84.96 84.71 84.21 83.62	137 st am k 5.29 5.46 5.59 5.65 5.67 5.67 5.67 5.67 5.67 5.69 6.71 6.39 6.71 7.09 8.01 9.23 5.42 3.83	R ² 0.58 0.61 0.59 0.53 0.53 0.30 0.30 0.30 0.04 0.01 0.10	Silt Loa CN _∞ 80.30 79.25 78.49 77.86 775.92 75.92 75.92 74.69 74.18 73.29 72.66 71.40 71.40 70.82 70.30 69.82 69.36	k 12.65 12.70 14.66 20.27 3.57 3.21 2.94 2.74 2.58 2.34 2.19 2.08 1.99 1.91 1.80 1.71 1.63 1.57	R ² 0.00 v 0.75 s 0.75 s 0.78 s 0.91 s 0.91 s 0.91 s 0.91 s	Dunlow Clay Lo CN 92.47 92.18 91.39 90.77 90.10 89.47 88.98 88.57 88.25 87.81 87.50 87.21 86.96 86.75 86.36 86.36 86.08 85.84 85.64	v (45 sto pam k 4.97 4.86 4.91 4.99 5.17 5.37 5.52 5.64 5.73 5.81 5.83 5.83 5.89 5.98 6.10 6.42 6.75 7.15 7.65	R ² 0.67 0.79 0.80 0.83 0.83 0.84 0.82 0.80 0.79 0.82 0.80 0.79 0.82 0.80 0.79 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.71 0.83 0.71 0.53 0.33 0.18	Silt Loa CN _∞ 85.15 82.27 80.56 79.55 78.97 78.44 77.92 77.33 76.96 76.37 75.94 75.76 75.45 75.04 74.09 73.10 72.48 71.90	am k 4.11 5.24 6.84 8.89 6.55 4.89 6.55 4.89 3.58 3.33 2.99 2.78 2.74 2.64 2.51 2.27 2.06 1.96	<i>R</i> ² 0.58 ∨ 0.50 ∨ 0.00 ∨ 0.01 s 0.06 s 0.22 s 0.39 s 0.39 s 0.30 s 0.30 s 0.30 s 0.30 s 0.35 s 0.50 s 0.69 s 0.89 s 0.95 s 0.95 s 0.97 s

Table 4. Asymptotic Method Curve Fits, $\lambda = 0.2$ ('s' = standard, Eqn. 15; 'v' = violent, Eqn. 16)

	Terra Alta (163 storms)						Beckley (133 storms)					
	Clay Loam			Silt Loam		Clay Loam			Silt Loam			
Soil Depth (cm)	CN_{∞}	k	R^2	CN_{∞}	k	R^2	CN_{∞}	k	R^2	CN_{∞}	k	R^2
10	90.53	2.60	0.75v	79.26	1.38	0.85v	90.02	2.94	0.68 v	74.79	2.19	0.56v
15	89.73	2.58	0.77v	78.08	1.34	0.79v	90.77	2.69	0.78v	74.98	1.89	0.67 v
20	88.60	2.58	0.78v	78.18	1.26	0.79v	90.42	2.58	0.83v	74.69	1.72	0.68v
25	87.90	2.58	0.80v	77.83	1.24	0.78v	89.75	2.52	0.86v	73.24	1.67	0.63 v
30	87.17	2.57	0.82 v	78.05	1.19	0.80v	88.99	2.48	0.88v	71.84	1.66	0.59v
35	86.51	2.58	0.82v	77.27	1.18	0.83v	88.22	2.45	0.90v	69.88	1.70	0.55v
40	85.92	2.59	0.82 v	75.98	1.20	0.85v	87.37	2.44	0.90v	67.51	1.81	0.48v
45	85.37	2.61	0.82v	74.57	1.23	0.85v	86.46	2.45	0.91 v	65.30	1.94	0.42v
50	84.88	2.62	0.81 v	73.16	1.27	0.84v	85.55	2.46	0.90v	63.23	2.12	0.35v
60	84.07	2.64	0.82v	70.37	1.35	0.77v	83.85	2.52	0.90v	59.62	2.61	0.22v
70	83.32	2.68	0.83v	67.77	1.45	0.70 v	82.01	2.62	0.88v	56.97	3.32	0.12v
80	82.56	2.74	0.84v	65.50	1.56	0.68v	80.38	2.74	0.85v	55.22	4.54	0.03v
90	81.84	2.81	0.85v	63.25	1.70	0.61 v	79.09	2.86	0.82 v	54.24	46.87	0.00v
100	81.15	2.89	0.85v	61.45	1.85	0.52v	77.99	2.98	0.79v	54.04	48.30	0.00v
120	79.79	3.09	0.84 v	58.69	2.16	0.39v	76.40	3.21	0.75v	52.43	3.50	0.38s
140	78.60	3.32	0.81 v	56.58	2.57	0.24 v	75.24	3.45	0.71 v	51.40	2.95	0.50s
160	77.62	3.55	0.77v	54.68	4.89	0.23s	74.40	3.68	0.67 v	50.54	2.64	0.58s
180	76.80	3.80	0.72v	54.14	4.28	0.39s	73.78	3.91	0.64v	49.74	2.42	0.59s
200	76.13	4.06	0.66 v	53.69	3.90	0.48s	73.32	4.13	0.61 v	48.96	2.26	0.61s
	Elkins (137 storms)						Dunlow (45 storms)					
	Elkins (137 st	orms)	1			Dunlow	′ (45 st	orms)	1		
	Elkins (Clay Lo	137 st am	orms)	Silt Loa	m		Dunlow Clay Lo	/ (45 st am	orms)	Silt Loa	m	
Soil Depth (cm)	Elkins (Clay Lo CN_{∞}	137 st am <i>k</i>	orms)	Silt Loa CN_{∞}	m k	R^2	Dunlow Clay Lo CN_{∞}	/ (45 st am <i>k</i>	R ²	Silt Loa CN_{∞}	m k	R^2
Soil Depth (cm) 10	Elkins (Clay Lo CN_{∞} 90.33	137 st am <i>k</i> 3.08	orms) <u>R</u> ² 0.61 v	Silt Loa <i>CN</i> _∞ 69.63	m k 2.94	<i>R</i> ² 0.44 v	Dunlow Clay Lo <i>CN</i> _∞ 94.09	k (45 st am k 2.83	R ² 0.65 v	Silt Loa <i>CN</i> _∞ 87.60	m <i>k</i> 1.69	<i>R</i> ² 0.87 v
Soil Depth (cm) 10 15	Elkins (Clay Lo <i>CN</i> 90.33 88.88	137 st am k 3.08 3.07	orms) <u>R</u> ² 0.61 v 0.65 v	Silt Loa <i>CN</i> _∞ 69.63 68.33	m k 2.94 2.61	<i>R</i> ² 0.44 v 0.54 v	Dunlow Clay Lo <i>CN</i> _∞ 94.09 94.74	k 2.83 2.64	R ² 0.65 v 0.75 v	Silt Loa <i>CN</i> _∞ 87.60 79.88	m <u>k</u> 1.69 1.91	<i>R</i> ² 0.87 v 0.95 v
Soil Depth (cm) 10 15 20	Elkins (Clay Lo <i>CN</i> _∞ 90.33 88.88 87.65	137 st am k 3.08 3.07 3.04	orms) <u>R</u> ² 0.61 v 0.65 v 0.68 v	Silt Loa CN _∞ 69.63 68.33 67.18	k 2.94 2.61 2.46	<i>R</i> ² 0.44 v 0.54 v 0.64 v	Dunlow Clay Lo <i>CN</i> _∞ 94.09 94.74 93.92	k 2.83 2.64 2.56	<u>R²</u> 0.65 v 0.75 v 0.80 v	Silt Loa <i>CN</i> _∞ 87.60 79.88 74.92	m <u>k</u> 1.69 1.91 2.07	<i>R</i> ² 0.87 v 0.95 v 0.85 v
Soil Depth (cm) 10 15 20 25	Elkins (Clay Lo <i>CN</i> 90.33 88.88 87.65 86.78	137 st am k 3.08 3.07 3.04 2.98	R ² 0.61 v 0.65 v 0.68 v 0.72 v	Silt Loa CN _∞ 69.63 68.33 67.18 65.90	k 2.94 2.61 2.46 2.41	<i>R</i> ² 0.44 v 0.54 v 0.64 v 0.63 v	Dunlow Clay Lo CN _∞ 94.09 94.74 93.92 93.04	k 2.83 2.64 2.56 2.54	R ² 0.65 v 0.75 v 0.80 v 0.84 v	Silt Loa CN _∞ 87.60 79.88 74.92 73.00	m k 1.69 1.91 2.07 2.03	<i>R</i> ² 0.87 v 0.95 v 0.85 v 0.74 v
Soil Depth (cm) 10 15 20 25 30	Elkins (Clay Lo <i>CN</i> 90.33 88.88 87.65 86.78 86.22	137 st am k 3.08 3.07 3.04 2.98 2.92	R ² 0.61 v 0.65 v 0.68 v 0.72 v 0.75 v	Silt Loa <i>CN</i> 69.63 68.33 67.18 65.90 64.44	k 2.94 2.61 2.46 2.41 2.42	<i>R</i> ² 0.44 v 0.54 v 0.64 v 0.63 v 0.60 v	Dunlow Clay Lo CN _∞ 94.09 94.74 93.92 93.04 91.62	am am <u>k</u> 2.83 2.64 2.56 2.54 2.58	R ² 0.65 v 0.75 v 0.80 v 0.84 v 0.86 v	Silt Loa <i>CN</i> _∞ 87.60 79.88 74.92 73.00 70.96	m <u>k</u> 1.69 1.91 2.07 2.03 2.10	<i>R</i> ² 0.87 v 0.95 v 0.85 v 0.74 v 0.72 v
Soil Depth (cm) 10 15 20 25 30 35	Elkins (Clay Lo <i>CN</i> _∞ 90.33 88.88 87.65 86.78 86.22 85.79	137 st am k 3.08 3.07 3.04 2.98 2.86	R ² 0.61 v 0.65 v 0.68 v 0.72 v 0.75 v 0.77 v	Silt Loa <i>CN</i> 69.63 68.33 67.18 65.90 64.44 62.93	k 2.94 2.61 2.46 2.41 2.42 2.52	<i>R</i> ² 0.44 v 0.54 v 0.64 v 0.63 v 0.60 v 0.57 v	Dunlow Clay Lo CN _∞ 94.09 94.74 93.92 93.04 91.62 90.18	(45 st am 2.83 2.64 2.56 2.54 2.58 2.65	R ² 0.65 v 0.75 v 0.80 v 0.84 v 0.86 v 0.85 v	Silt Loa <i>CN</i> 87.60 79.88 74.92 73.00 70.96 68.32	m <u>k</u> 1.69 1.91 2.07 2.03 2.10 2.29	<i>R</i> ² 0.87 v 0.95 v 0.85 v 0.74 v 0.72 v 0.63 v
Soil Depth (cm) 10 15 20 25 30 35 40	Elkins (Clay Lo <i>CN</i> _∞ 90.33 88.88 87.65 86.78 86.22 85.79 85.45	137 st am k 3.08 3.07 3.04 2.98 2.92 2.86 2.81	orms) R ² 0.61 v 0.65 v 0.65 v 0.72 v 0.72 v 0.75 v 0.77 v 0.79 v	Silt Loa <i>CN</i> 69.63 68.33 67.18 65.90 64.44 62.93 61.54	k 2.94 2.61 2.46 2.41 2.42 2.52 2.65	<i>R</i> ² 0.44 v 0.54 v 0.64 v 0.63 v 0.60 v 0.57 v 0.51 v	Dunlow Clay Lo CN _∞ 94.09 94.74 93.92 93.04 91.62 90.18 89.08	r (45 st am k 2.83 2.64 2.56 2.54 2.58 2.65 2.68	R ² 0.65 v 0.75 v 0.80 v 0.84 v 0.86 v 0.85 v 0.86 v	Silt Loa <i>CN</i> 87.60 79.88 74.92 73.00 70.96 68.32 66.02	m k 1.69 1.91 2.07 2.03 2.10 2.29 2.51	<i>R</i> ² 0.87 v 0.95 v 0.85 v 0.74 v 0.72 v 0.63 v 0.62 v
Soil Depth (cm) 10 15 20 25 30 35 40 45	Elkins (Clay Lo <i>CN</i> 90.33 88.88 87.65 86.78 86.78 86.22 85.79 85.45 85.45	137 st am k 3.08 3.07 3.04 2.98 2.92 2.86 2.81 2.79	R ² 0.61 v 0.65 v 0.65 v 0.72 v 0.75 v 0.77 v 0.79 v 0.79 v	Silt Loa <i>CN</i> 69.63 68.33 67.18 65.90 64.44 62.93 61.54 60.30	m k 2.94 2.61 2.46 2.41 2.42 2.52 2.65 2.81	R ² 0.44 v 0.54 v 0.64 v 0.63 v 0.60 v 0.57 v 0.51 v 0.41 v	Dunlow Clay Lo CN _∞ 94.09 94.74 93.92 93.04 91.62 90.18 89.08 88.27	x (45 st am k 2.83 2.64 2.56 2.54 2.58 2.65 2.68 2.70	R ² 0.65 v 0.75 v 0.80 v 0.84 v 0.86 v 0.85 v 0.85 v 0.85 v 0.87 v	Silt Loa <i>CN</i> 87.60 79.88 74.92 73.00 70.96 68.32 66.02 63.93	m k 1.69 1.91 2.07 2.03 2.10 2.29 2.51 2.79	R ² 0.87 v 0.95 v 0.85 v 0.74 v 0.72 v 0.63 v 0.62 v 0.57 v
Soil Depth (cm) 10 15 20 25 30 30 35 40 40 45 50	Elkins (Clay Lo <i>CN</i> 90.33 88.88 87.65 86.78 86.22 85.79 85.45 85.07 84.66	137 st am k 3.08 3.07 3.04 2.98 2.92 2.86 2.81 2.79 2.77	R ² 0.61 v 0.65 v 0.68 v 0.72 v 0.75 v 0.77 v 0.79 v 0.79 v 0.80 v	Silt Loa <i>CN</i> 69.63 68.33 67.18 65.90 64.44 62.93 61.54 60.30 59.28	k 2.94 2.61 2.46 2.41 2.42 2.52 2.65 2.81 2.97	R ² 0.44 v 0.54 v 0.64 v 0.63 v 0.60 v 0.57 v 0.51 v 0.41 v 0.37 v	Dunlow Clay Lo CN _w 94.09 94.74 93.92 93.04 91.62 90.18 89.08 88.27 87.65	x (45 st am 2.83 2.64 2.56 2.54 2.58 2.65 2.68 2.70 2.70	R ² 0.65 v 0.75 v 0.80 v 0.84 v 0.84 v 0.85 v 0.85 v 0.86 v 0.87 v 0.88 v	Silt Loa <i>CN</i> 87.60 79.88 74.92 73.00 70.96 68.32 66.02 63.93 63.00	m k 1.69 1.91 2.07 2.03 2.10 2.29 2.51 2.79 2.94	R ² 0.87 v 0.95 v 0.74 v 0.72 v 0.63 v 0.62 v 0.57 v 0.51 v
Soil Depth (cm) 10 15 20 25 30 30 35 40 40 45 50 60	Elkins (Clay Lo CN _∞ 90.33 88.88 87.65 86.78 86.22 85.79 85.45 85.79 85.45 85.07 84.66 83.69	137 st am k 3.08 3.07 3.04 2.98 2.92 2.86 2.81 2.79 2.77 2.79	R ² 0.61 v 0.65 v 0.65 v 0.72 v 0.75 v 0.77 v 0.79 v 0.79 v 0.80 v 0.81 v	Silt Loa <i>CN</i> 69.63 68.33 67.18 65.90 64.44 62.93 61.54 60.30 59.28 57.56	k 2.94 2.61 2.46 2.41 2.42 2.52 2.65 2.81 2.97 3.45	R ² 0.44 v 0.54 v 0.64 v 0.63 v 0.60 v 0.57 v 0.51 v 0.37 v 0.37 v 0.25 v	Dunlow Clay Lo CN _∞ 94.09 94.74 93.92 93.04 91.62 90.18 89.08 88.27 87.65 86.94	r (45 st am k 2.83 2.64 2.56 2.54 2.55 2.65 2.65 2.68 2.70 2.70 2.68	R ² 0.65 v 0.75 v 0.80 v 0.84 v 0.86 v 0.85 v 0.86 v 0.87 v 0.88 v 0.88 v	Silt Loa <i>CN</i> 87.60 79.88 74.92 73.00 70.96 68.32 66.02 63.93 63.00 61.85	m k 1.69 1.91 2.07 2.03 2.10 2.29 2.51 2.79 2.94 3.15	R ² 0.87 v 0.95 v 0.74 v 0.72 v 0.63 v 0.62 v 0.57 v 0.51 v 0.36 v
Soil Depth (cm) 10 15 20 25 30 35 40 40 45 50 60 70	Elkins (Clay Lo CN _∞ 90.33 88.88 87.65 86.78 86.78 86.78 85.79 85.45 85.45 85.45 85.07 84.66 83.69 82.72	137 st am k 3.08 3.07 3.04 2.98 2.92 2.86 2.81 2.77 2.79 2.83	R ² 0.61 0.65 0.65 0.672 0.72 0.775 0.779 0.79 0.80 0.81 0.82	Silt Loa <i>CN</i> 69.63 68.33 67.18 65.90 64.44 62.93 61.54 60.30 59.28 57.56 56.48	k 2.94 2.61 2.46 2.41 2.42 2.52 2.65 2.81 2.97 3.45 4.08	R ² 0.44 v 0.54 v 0.64 v 0.63 v 0.60 v 0.57 v 0.51 v 0.41 v 0.37 v 0.14 v	Dunlow Clay Lo CN _w 94.09 94.74 93.92 93.04 91.62 90.18 89.08 88.27 87.65 86.94 86.55	x (45 st am k 2.83 2.64 2.56 2.54 2.58 2.65 2.68 2.70 2.70 2.68 2.63	R ² 0.65 v 0.75 v 0.80 v 0.84 v 0.86 v 0.85 v 0.85 v 0.87 v 0.88 v 0.88 v 0.89 v	Silt Loa CN _∞ 87.60 79.88 74.92 73.00 70.96 68.32 66.02 63.93 63.00 61.85 61.27	m k 1.69 1.91 2.07 2.03 2.10 2.29 2.51 2.79 2.94 3.15 3.27	R ² 0.87 v 0.95 v 0.85 v 0.74 v 0.72 v 0.63 v 0.62 v 0.57 v 0.51 v 0.36 v 0.27 v
Soil Depth (cm) 10 15 20 25 30 35 40 40 45 50 60 70 80	Elkins (Clay Lo <i>CN</i> 90.33 88.88 87.65 86.78 86.22 85.79 85.45 85.07 84.66 83.69 82.72 81.73	137 st am k 3.08 3.07 3.04 2.98 2.92 2.86 2.81 2.79 2.77 2.79 2.83 2.90	R ² 0.61 v 0.65 v 0.65 v 0.72 v 0.72 v 0.77 v 0.79 v 0.79 v 0.80 v 0.81 v 0.82 v 0.82 v	Silt Loa <i>CN</i> 69.63 68.33 67.18 65.90 64.44 62.93 61.54 60.30 59.28 57.56 56.48 55.88	k 2.94 2.61 2.46 2.41 2.42 2.52 2.65 2.81 2.97 3.45 4.08 4.92	R ² 0.44 v 0.54 v 0.64 v 0.63 v 0.60 v 0.57 v 0.51 v 0.41 v 0.37 v 0.25 v 0.14 v 0.37 v 0.25 v 0.14 v 0.05 v	Dunlow Clay Lo CN _w 94.09 94.74 93.92 93.04 91.62 90.18 89.08 88.27 87.65 86.94 86.55 86.94	r (45 st am 2.83 2.64 2.56 2.54 2.58 2.65 2.68 2.70 2.70 2.68 2.63 2.63	R ² 0.65 v 0.75 v 0.80 v 0.84 v 0.84 v 0.85 v 0.85 v 0.86 v 0.87 v 0.88 v 0.88 v 0.89 v 0.91 v	Silt Loa CN _∞ 87.60 79.88 74.92 73.00 70.96 68.32 66.02 63.93 63.00 61.85 61.27 60.89	m k 1.69 1.91 2.07 2.03 2.10 2.29 2.51 2.79 2.94 3.15 3.27 3.33	R ² 0.87 v 0.95 v 0.74 v 0.72 v 0.63 v 0.57 v 0.57 v 0.51 v 0.36 v 0.27 v 0.32 v
Soil Depth (cm) 10 15 20 25 30 35 40 45 50 60 70 80 90	Elkins (Clay Lo CN _∞ 90.33 88.88 87.65 86.78 86.22 85.79 85.45 85.79 85.45 85.07 84.66 83.69 82.72 81.73 80.79	137 st am k 3.08 3.07 3.04 2.98 2.92 2.86 2.81 2.79 2.79 2.79 2.83 2.90 2.98	orms) R ² 0.61 v 0.65 v 0.65 v 0.72 v 0.75 v 0.77 v 0.79 v 0.79 v 0.80 v 0.81 v 0.82 v 0.81 v	Silt Loa <i>CN</i> 69.63 68.33 67.18 65.90 64.44 62.93 61.54 60.30 59.28 57.56 56.48 55.88 55.88	k 2.94 2.61 2.46 2.41 2.52 2.65 2.81 2.97 3.45 4.08 4.92 5.90	R ² 0.44 v 0.54 v 0.64 v 0.63 v 0.60 v 0.57 v 0.51 v 0.37 v 0.25 v 0.14 v 0.05 v 0.14 v 0.05 v 0.02 v	Dunlow Clay Lo CN_{∞} 94.09 94.74 93.92 93.04 91.62 90.18 89.08 88.27 87.65 86.94 86.55 86.01 85.40	r (45 st am k 2.83 2.64 2.56 2.54 2.55 2.65 2.65 2.65 2.63 2.70 2.70 2.63 2.63 2.63 2.64	R ² 0.65 v 0.75 v 0.80 v 0.84 v 0.84 v 0.85 v 0.85 v 0.86 v 0.87 v 0.88 v 0.88 v 0.89 v 0.91 v 0.92 v	Silt Loa CN _∞ 87.60 79.88 74.92 73.00 70.96 68.32 66.02 63.93 63.00 61.85 61.27 60.89 60.31	m k 1.69 1.91 2.07 2.03 2.10 2.29 2.51 2.79 2.94 3.15 3.27 3.33 3.47	R ² 0.87 v 0.95 v 0.74 v 0.72 v 0.63 v 0.62 v 0.57 v 0.57 v 0.57 v 0.57 v 0.57 v 0.36 v 0.32 v 0.38 v
Soil Depth (cm) 10 15 20 25 30 35 40 40 45 50 60 70 80 90 100	Elkins (Clay Lo CN _∞ 90.33 88.88 87.65 86.78 86.78 86.78 85.79 85.45 85.79 85.45 85.07 84.66 83.69 82.72 81.73 80.79 79.92	137 st am k 3.08 3.07 3.04 2.98 2.92 2.86 2.81 2.77 2.79 2.83 2.90 2.98 3.09	R ² 0.61 0.65 0.65 0.65 0.72 0.77 0.77 0.79 0.79 0.80 0.82 0.82 0.81 0.81 0.80	Silt Loa <i>CN</i> 69.63 68.33 67.18 65.90 64.44 62.93 61.54 60.30 59.28 57.56 56.48 55.88 55.56 55.43	k 2.94 2.61 2.46 2.41 2.52 2.65 2.81 2.97 3.45 4.08 4.92 5.90 6.83	R ² 0.44 0.54 0.63 0.63 0.60 0.57 0.57 0.51 0.37 0.37 0.141v 0.37 0.141v 0.37 0.141v 0.37 0.141v 0.052v 0.051v 0.052v 0.01v	Dunlow Clay Lo CN _∞ 94.09 94.74 93.92 93.04 91.62 90.18 89.08 88.27 87.65 86.94 86.55 86.94 85.40 85.40	x (45 st am k 2.83 2.64 2.56 2.54 2.58 2.65 2.68 2.70 2.70 2.68 2.63 2.63 2.63 2.64 2.69	R ² 0.65 0.75 0.80 0.80 0.80 0.84 0.85 0.85 0.86 0.85 0.88 0.88 0.89 0.92 0.92	Silt Loa CN _∞ 87.60 79.88 74.92 73.00 70.96 68.32 66.02 63.93 63.00 61.85 61.27 60.89 60.31 59.57	m k 1.69 1.91 2.07 2.03 2.10 2.29 2.51 2.79 2.94 3.15 3.27 3.33 3.47 3.68	R ² 0.87 v 0.95 v 0.85 v 0.74 v 0.72 v 0.63 v 0.62 v 0.57 v 0.36 v 0.38 v 0.32 v 0.38 v 0.46 v
Soil Depth (cm) 10 15 20 25 30 35 40 40 45 50 60 70 80 90 100 120	Elkins (Clay Lo CN _∞ 90.33 88.88 87.65 86.78 86.22 85.79 85.45 85.79 85.45 85.07 84.66 83.69 82.72 81.73 80.79 79.92 78.46	137 st am k 3.08 3.07 3.04 2.98 2.92 2.86 2.81 2.79 2.83 2.90 2.93 3.09 3.32	orms) R ² 0.61 v 0.65 v 0.65 v 0.75 v 0.77 v 0.79 v 0.79 v 0.80 v 0.81 v 0.82 v 0.81 v 0.80 v 0.81 v	Silt Loa <i>CN</i> 69.63 68.33 67.18 65.90 64.44 62.93 61.54 60.30 59.28 57.56 56.48 55.88 55.56 55.43 55.37	k 2.94 2.61 2.46 2.41 2.42 2.52 2.65 2.81 2.97 3.45 4.08 4.92 5.90 6.83 9.65	R ² 0.44 0.54 0.64 0.63 0.60 0.57 0.51 0.37 0.41 0.37 0.41 0.37 0.14 0.05 0.14 0.05 0.02 0.01	Dunlow Clay Lo CN _∞ 94.09 94.74 93.92 93.04 91.62 90.18 89.08 88.27 87.65 86.94 86.55 86.94 86.55 86.01 85.40 84.73 83.30	r (45 st am 2.83 2.64 2.56 2.54 2.58 2.65 2.68 2.70 2.68 2.63 2.63 2.63 2.63 2.63 2.64 2.69 2.81	R ² 0.65 v 0.75 v 0.80 v 0.84 v 0.84 v 0.85 v 0.85 v 0.85 v 0.87 v 0.88 v 0.89 v 0.91 v 0.92 v 0.92 v 0.91 v	Silt Loa CN _∞ 87.60 79.88 74.92 73.00 70.96 68.32 66.02 63.93 63.00 61.85 61.27 60.89 60.31 59.57 58.04	m k 1.69 1.91 2.07 2.03 2.10 2.29 2.51 2.79 2.94 3.15 3.27 3.33 3.47 3.68 4.34	R ² 0.87 v 0.95 v 0.74 v 0.72 v 0.63 v 0.57 v 0.57 v 0.57 v 0.57 v 0.36 v 0.27 v 0.38 v 0.27 v 0.38 v 0.46 v 0.44 v
Soil Depth (cm) 10 15 20 25 30 35 40 45 50 60 70 80 90 100 120 140	Elkins (Clay Lo CN _∞ 90.33 88.88 87.65 86.78 86.22 85.79 85.45 85.79 85.45 85.79 84.66 83.69 82.72 81.73 80.79 79.92 78.46 77.33	137 st am k 3.08 3.07 3.04 2.98 2.92 2.86 2.81 2.79 2.83 2.90 2.83 3.09 3.32 3.58	orms) R ² 0.61 v 0.65 v 0.65 v 0.72 v 0.75 v 0.77 v 0.79 v 0.79 v 0.80 v 0.81 v 0.82 v 0.81 v 0.82 v 0.81 v 0.82 v 0.81 v 0.80 v 0.77 v 0.77 v 0.77 v	Silt Loa <i>CN</i> 69.63 68.33 67.18 65.90 64.44 62.93 61.54 60.30 59.28 57.56 56.48 55.88 55.88 55.56 55.43 55.37 55.41	k 2.94 2.61 2.46 2.41 2.52 2.65 2.81 2.97 3.45 4.08 4.92 5.90 6.83 9.65 8.50	R ² 0.44 v 0.54 v 0.64 v 0.63 v 0.57 v 0.57 v 0.51 v 0.37 v 0.25 v 0.14 v 0.05 v 0.14 v 0.05 v 0.14 v 0.05 v 0.14 v 0.05 v 0.01 s 0.00 s	Dunlow Clay Lo CN_{∞} 94.09 94.74 93.92 93.04 91.62 90.18 89.08 88.27 87.65 86.94 86.55 86.01 85.40 85.40 84.73 83.30 82.16	r (45 st am k 2.83 2.64 2.56 2.54 2.56 2.65 2.65 2.65 2.68 2.70 2.70 2.68 2.63 2.63 2.63 2.63 2.64 2.63 2.64 2.69 2.81 2.94	R ² 0.65 v 0.75 v 0.80 v 0.84 v 0.84 v 0.85 v 0.86 v 0.87 v 0.88 v 0.88 v 0.89 v 0.91 v 0.92 v 0.92 v 0.92 v 0.92 v	Silt Loa CN _∞ 87.60 79.88 74.92 73.00 70.96 68.32 66.02 63.93 63.00 61.85 61.27 60.89 60.31 59.57 58.04 56.71	m k 1.69 1.91 2.07 2.03 2.10 2.29 2.51 2.79 2.94 3.15 3.27 3.33 3.47 3.68 4.34 5.64	R ² 0.87 v 0.95 v 0.71 v 0.72 v 0.63 v 0.62 v 0.57 v 0.57 v 0.57 v 0.57 v 0.51 v 0.36 v 0.32 v 0.38 v 0.46 v 0.44 v 0.15 v
Soil Depth (cm) 10 15 20 25 30 35 40 40 45 50 60 70 80 90 100 120 140 160	Elkins (Clay Lo CN _∞ 90.33 88.88 87.65 86.78 86.78 85.79 85.45 85.79 85.45 85.79 85.45 85.79 85.45 85.79 85.45 85.77 84.66 83.69 82.72 81.73 80.79 79.92 78.46 77.33 76.48	137 st am k 3.08 3.07 3.04 2.98 2.92 2.86 2.81 2.77 2.79 2.83 2.90 2.93 3.09 3.32 3.58 3.84	R ² 0.61 0.65 0.65 0.672 0.72 0.775 0.779 0.799 0.801 0.82 0.82 0.82 0.81 0.82 0.81 0.80 0.777	Silt Loa <i>CN</i> 69.63 68.33 67.18 65.90 64.44 62.93 61.54 60.30 59.28 57.56 56.48 55.88 55.56 55.43 55.37 55.41 55.32	k 2.94 2.61 2.46 2.41 2.52 2.65 2.81 2.97 3.45 4.08 4.92 5.90 6.83 9.65 8.50 6.59	R ² 0.44 0.54 0.63 0.63 0.60 0.57 0.57 0.57 0.57 0.41 0.37 0.41 0.37 0.14 0.37 0.14 0.05 0.014 0.02 0.01 0.00 0.00 0.00 0.04	Dunlow Clay Lo CN _∞ 94.09 94.74 93.92 93.04 91.62 90.18 89.08 88.27 87.65 86.94 86.55 86.94 85.40 85.40 84.73 83.30 82.16 81.11	r (45 st am k 2.83 2.64 2.56 2.54 2.55 2.65 2.65 2.65 2.65 2.63 2.63 2.63 2.63 2.63 2.63 2.64 2.69 2.81 2.94 3.08	R ² 0.65 0.75 0.80 0.80 0.80 0.80 0.80 0.80 0.84 0.85 0.85 0.88 0.88 0.89 0.92 0.92 0.92 0.91 0.89 0.92 0.92 0.92 0.92 0.93 0.85	Silt Loa CN _∞ 87.60 79.88 74.92 73.00 70.96 68.32 66.02 63.93 63.00 61.85 61.27 60.89 60.31 59.57 58.04 56.71 55.97	m k 1.69 1.91 2.07 2.03 2.10 2.29 2.51 2.79 2.94 3.15 3.27 3.33 3.47 3.68 4.34 5.64 9.78	R ² 0.87 v 0.95 v 0.74 v 0.72 v 0.63 v 0.62 v 0.57 v 0.57 v 0.36 v 0.32 v 0.38 v 0.46 v 0.44 v 0.00 v
Soil Depth (cm) 10 15 20 25 30 40 45 50 60 70 80 90 100 120 140 160 180	Elkins (Clay Lo CN _∞ 90.33 88.88 87.65 86.78 86.78 86.78 85.45 85.79 85.45 85.45 85.07 84.66 83.69 82.72 81.73 80.79 79.92 78.46 77.33 76.48 75.91	137 st am k 3.08 3.07 3.04 2.98 2.92 2.86 2.81 2.79 2.83 2.90 2.93 3.04 3.90 3.32 3.58 3.84 4.10	orms) R ² 0.61 v 0.65 v 0.65 v 0.75 v 0.77 v 0.79 v 0.79 v 0.80 v 0.81 v 0.82 v 0.81 v 0.81 v 0.82 v 0.81 v 0.82 v 0.81 v 0.80 v 0.77	Silt Loa <i>CN</i> 69.63 68.33 67.18 65.90 64.44 62.93 61.54 60.30 59.28 57.56 56.48 55.88 55.56 55.43 55.37 55.41 55.32 55.20	k 2.94 2.61 2.46 2.41 2.42 2.52 2.65 2.81 2.97 3.45 4.08 4.92 5.90 6.83 9.65 8.50 6.59 5.75	R ² 0.44 0.54 0.64 0.63 0.60 0.61 0.57 0.51 0.37 0.41 0.37 0.25 0.14 0.05 0.025 0.01 0.02 0.01 0.00 0.04 0.00 0.00 0.00 0.00	Dunlow Clay Lo CN _∞ 94.09 94.74 93.92 93.04 91.62 90.18 89.08 88.27 87.65 86.94 86.55 86.94 86.55 86.94 86.55 86.94 85.40 84.73 83.30 82.16 81.11 80.13	r (45 st am 2.83 2.64 2.56 2.54 2.58 2.65 2.68 2.70 2.70 2.68 2.63 2.63 2.63 2.63 2.63 2.63 2.64 2.69 2.81 2.94 3.08 3.25	R ² 0.65 0.75 0.80 0.80 0.84 0.85 0.85 0.88 0.87 0.88 0.87 0.89 0.91 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.93 0.89	Silt Loa CN _∞ 87.60 79.88 74.92 73.00 70.96 68.32 66.02 63.93 63.00 61.85 61.27 60.89 60.31 59.57 58.04 55.97 55.45	m k 1.69 1.91 2.07 2.03 2.10 2.29 2.51 2.79 2.94 3.15 3.27 3.33 3.47 3.68 4.34 5.64 9.78 5.82	R ² 0.87 0.95 0.75 0.74 0.72 0.63 0.72 0.63 0.72 0.63 0.72 0.63 0.72 0.63 0.57 0.57 0.36 0.36 0.32 0.38 0.46 0.44 0.00 0.09

Table 5. Asymptotic Method Curve Fits, $\lambda = 0.05$ ('s' = standard, Eqn. 15; 'v' = violent, Eqn. 16)

The results of the Asymptotic Method, included as Figures 30-45 and Tables 4-5, also indicate a dependence of the CN on soil type, soil depth, storm depth, and storm distribution. As in the Cyclic Method, the CN values are higher for the Clay Loam soil than the Silt Loam soil. The CN's also generally decrease with increasing soil depth. The majority of the curve fits are classified as violent, with the exception of the Silt Loam soil where $\lambda = 0.2$. The least accurate curve fits (R^2 values in red, see Tables 4-5) typically arise in the transition zones between violent and standard behavior.

The violent behavior tends to be most prevalent at lesser soil depths, transitioning toward standard or complacent behavior at greater soil depths. This trend was also seen in the Cyclic Method (Figures 12-27). Complacent behavior was often found to precede violent behavior at low storm depths. Following the work of Hawkins (1993), the complacent data points that plotted below a selected threshold rainfall depth were ignored in these cases. Figure 34 is an example (Terra Alta gage, Silt Loam, $\lambda =$ 0.2) where the complacent data points below a storm depth of 28 mm were ignored for the 10-45 cm soil depths. Figures 46-64 are the individual curve fits comprising Figure 34. It should be noted that in some cases a standard fit (Equation 15) resulted in a high R^2 value although the data may possibly be more accurately characterized as complacent. This occurred most often in the greater soil depths. An example is shown in Figure 64.

The scatter of the data points in Figures 46-64 demonstrates the considerable variation of the CN with storm depth, which can be compared to that of the Type II and WDM Triangular storm distributions of the Cyclic Method (Figures 18 and 19). This scatter appeared in the plots of the individual curve fits from all gages. It may be explained by noting that according to Figure 11, the storms recorded at the Terra Alta, Beckley, Elkins, and Dunlow gages consist of relatively high intensity hourly rainfall intervals comparable to the Type II and WDM Triangular storm distributions.

Table 6 lists the average CN_{∞} values over all soil depths for each gage and soil type. The Dunlow gage value is approximately 2 points higher for the Clay Loam and 3 points higher for the Silt Loam than the other 3 gages (except for the Silt Loam at Terra Alta with $\lambda = 0.05$).

	0.2	2	0.05			
	Clay Loam	Silt Loam	Clay Loam	Silt Loam		
Terra Alta	86.98	75.59	83.60	68.34		
Beckley	86.35	73.82	82.84	61.51		
Elkins	86.85	73.86	82.81	59.83		
Dunlow	88.30	76.77	87.27	64.87		

Table 6. Average CN_{∞} Values for Each Gage

This may be explained by noting that on average, according to Figure 11, a greater percentage of the rainfall at the Dunlow gage fell within a shorter time interval (the first five hours) for each storm compared to the other gages. This increased rainfall intensity resulted in slightly lower mean infiltration depths for each soil depth (Figure 65) compared to the other three gages. This effect is analogous to that produced by the WDM Triangular distribution in the Cyclic Method.

Figure 65. Asymptotic Method Mean Infiltration vs. Soil Depth, Clay Loam

In comparing Figures 45 and 65 it is apparent that in the Cyclic Method, the mean infiltration depth increases with soil depth while the opposite is true for each gage site in the Asymptotic Method. This can be explained by noting the difference between the antecedent lower zone storage (LZS_i) between the methods for each rainfall-runoff event. In the Cyclic Method, LZS_i was calculated using Equation 13 based on soil depth, residual moisture content, and the initial moisture content according to ARC II (Rawls and Brakensiek, 1986). In the Asymptotic Method, LZS_i was determined at the hour preceding each selected storm event. The calculated LZS_i (Cyclic) was consistently lower than the simulated LZS_i (Asymptotic), especially for the greater soil depth. An example comparison is shown in Figure 66 below for the 200 cm soil depth. According to Equation 14, an increase in the ratio of the lower zone storage value (LZS_i) to the lower zone nominal capacity parameter (LZSN), results in an increase in the infiltration capacity. Therefore, in the Cyclic Method, the infiltration capacity was substantially

greater than that in the Asymptotic method due to the relatively low value of initial soil moisture storage (LZS_i) predicted by the ARC II condition.

Figure 66. Antecedent LZS, Clay Loam, 200 cm Soil Depth, Terra Alta

Finally, in comparing Figures 30-37 to 38-45, it is evident that $\lambda = 0.05$ tends to decrease the CN at low storm depths, as demonstrated by the Cyclic Method. It should also be noted that the Dunlow gage has the shortest record length with the lowest maximum storm depth (47 mm). This was at least 20 mm less than the maximum depths at the other gages.

3.3 Conclusions

By comparing the results of each CN calculation procedure, it is apparent that the CN is dependent on all of the computational variables listed in Table 3. In the Cyclic and Asymptotic methods, the CN's decreased with increasing soil depth due to the increased soil moisture storage capacity. The Clay Loam soil resulted in higher CN's than the Silt Loam because of the lower value of the INFILT parameter governing the infiltration rate

in the Clay Loam. The CN's also vary with storm depth, typically approaching a constant value beyond some threshold depth.

Perhaps the most unanticipated result of this study is the apparent dependence of the CN on storm distribution. In the Cyclic Method, the distributions consisting of the high intensity hourly rainfall intervals (Type II and WDM Triangular) tended to result in greater variation of the CN with storm depth. This effect was also seen in the Asymptotic Method. Figures 7 and 11 demonstrate the similarity in the distributions of the selected storms from all gages to the Type II and WDM Triangular shapes. In each method, the twenty-four hour distribution that allocates the most of rainfall in the shortest time (Dunlow in the Asymptotic Method and WDM Triangular in the Cyclic Method) resulted in the highest CN values and the lowest mean infiltration depths.

These findings suggest that the variability of the CN in time cannot be explained by antecedent soil moisture or rainfall alone and therefore, the use of the CN method in continuous modeling does not appear to be appropriate. It is suggested that a distinction be made between the classic CN and continuous CN's presently in use by using a different symbol such as CN*.

4.0 Summary and Conclusions

The use of the CN as a simplification of several parameters in a comprehensive watershed model (HSPF) was investigated with respect to the analysis of the cumulative hydrologic impacts of surface coal mining in West Virginia. A soil physics model was developed to act as a method of translation between CN's and HSPF parameters based on soil hydraulic properties. Curve Numbers were calculated from theoretical HSPF watersheds (parameter sets) using two numerical methods. The first method is based on the soil physics model and uses cyclic storm input to calculate CN's as a function of soil moisture. The second method is based on Hawkins' Asymptotic method of CN determination (1993) where CN's are calculated from ordered rainfall-runoff pairs. Each method found the CN to be dependent on a number of computational watershed variables including soil type, soil depth, storm depth, and storm distribution. The effect of the initial abstraction ratio of 0.05 vs. 0.2 was found to reduce the bias of high CN values at low storm depths.

These findings suggest that the hydrologic information inherent to the CN method is insufficient for the CN to adequately represent multiple HSPF parameters. Because of its apparent dependence on several watershed variables which are naturally irregular in space and time, the CN method appears to be unsuitable for continuous rainfall-runoff predictions. Application of the CN method should be limited to single, event-based runoff estimation as described in the original development of the method. The development of a translation methodology between the CN and HSPF parameters based on soil physics was successful, however, the use of the CN method with HSPF to simulate the hydrologic impacts of mine sites is not recommended. The effects of longterm land use change in general are best quantified by gathering actual rainfall-runoff data. Accurate simulations of the effects of surface mining using HSPF (or other continuous models) in West Virginia will require several years of hydrologic and meteorological time series records from the mine sites themselves. These records would be extremely valuable for studying the cumulative hydrologic impacts of coal mining by providing the ability to calibrate continuous models to observed data.

91

5.0 References

Arnold, J.G., Williams, J.R., Srinivasan, R., and King, K.W., 1995. "SWAT: Soil Water Assessment Tool". Texas A&M University, Texas Agricultural Experiment Station, Blackland Research Center: 808 East Blackland Road, Temple, TX.

Bicknell, B.R., Imhoff, J.C., Kittle, J.L., Jobes, T.H., and Donigian, A.S., 2001. "Hydrological Simulation Program - Fortran", Version 12, U.S. Environmental Protection Agency, Athens, GA.

Binger, R.L., and Theurer, F.D., 2005. "AnnAGNPS Technical Processes: Documentation Version 3.2", USDA-ARS, National Sedimentation Laboratory, Oxford, MS.

Borah, D.K. and Bera, M., 2003. "Watershed-scale Hydrologic and Nonpoint-Source Pollution Models: Review of Mathematical Bases". Trans. ASAE 46(6): 1553-1566

Brakensiek, D.L., Engleman, R.L., and Rawls, W.J., 1981. "Variation within Texture Classes of Soil Water Parameters", Transactions of the ASAE, Vol. 24, No. 2, 335-339.

Brooks, R.H. and Corey, A.T., 1964. "Hydraulic Properties of Porous Media", Hydrology Paper No. 3, Colorado State University, Fort Collins, CO.

Dinicola, R.S., 2001. "Validation of a numerical modeling method for simulating rainfall-runoff relations for headwater basins in western King and Snohomish Counties, Washington," USGS Water-Supply Paper 2495.

Dinicola, R.S., 1990. "Characterization and Simulation of Rainfall-Runoff Relations for Headwater Basins in Western King and Snohomish Counties, Washington," U.S. Geological Survey Water Resources Investigations Report 89-4052, Tacoma, Washington.

Donigian, Jr., A.S., and Davis, H.H., Jr, 1978. "User Manual for Agricultural Runoff Management (ARM) Model", U.S. Environmental Protection Agency, Athens, GA, EPA-600/3-78-080.

Donigian, Jr., A.S., Imhoff., J.C., Kittle, Jr., J.L., 1999. "HSPFParm An Interactive Database of HSPF Model Parameters", Version 1.0 beta 5, U.S. Environmental Protection Agency, Washington, DC.

Donigian, A.S., Jr., 2002. "Watershed Model Calibration and Validation, the HSPF Experience." WEF 2002 Specialty Conference Proceedings, Nov. 13-16, Phoenix, AZ.

Doherty, J., 2002. "PEST Surface Water Utilities, Watermark Numerical Computing and Documentation," University of Idaho, September 2002. <u>http://www.sspa.com/pest</u>

Fletcher, J.J., Eli, R.N., Strager, M.P., Sun, Q., Churchill, J.B., Lamont, S.J., Galya, T., A., and Schaer, A.N., 2004. "The Watershed Characterization and Modeling System (WCMS): Support Tools for Large Watershed CHIA and NPDES Analyses", Proc., Advanced Integration of Geospatial Technologies in Mining and Reclamation, December 7-9, Atlanta, GA.

Green, W.H. and Ampt, G.A., 1911. "Studies on Soil Physics: 1. Flow of Air and Water Through Soils", Journal of Agricultural Sciences, 4:1-24.

Jacobs, J.M., Myers, D.A., and Whitfield, B.M., 2003. "Improved Rainfall/Runoff Estimates using Remotely Sensed Soil Moisture". J. of the American Water Resources Association (JAWRA) 39(2):313-324.

Hawkins, R.H., 1993. "Asymptotic Determination of Curve Numbers from Data", Journal of Irrigation and Drainage Engineering, Vol. 119, No. 2, p. 334-345.

Hawkins, R.H., Jiang, R., Woodward, D.E., and Hjelmfelt, A.T., 2002. "Runoff Curve Number Method: Examination of the Initial Abstraction Ratio", Proc., USDA-NRCS Hydraulic Engineering Workshop.

Hjelmfelt, A.T., Woodward, D.A., Conaway, G., Plummer, A., Quan, Q.D., and Van Mullen, J., 2001. "Curve Numbers, Recent Developments", Proc., 29th Congress of the Intr. Assoc. for Hydraulic Research, Beijing, China, (CD-ROM).

Hummel, P., Kittle, J., and Gray, M., 2001. "WDMUtil A Tool for Managing Watershed Modeling Time-Series Data", Version 2.0, U.S. Environmental Protection Agency, Washington, DC.

Hydrocomp International, Inc., 1969, Hydrocomp Simulation Programming Operations Manual, Second Edition, Palo Alto, California.

Lagarias, J.C., Reeds, J.A., Wright, M.H., and Wright, P., E., 1998. "Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions," SIAM Journal of Optimization, Vol. 9 Number 1, pp. 112-147.

Leonard, R.A., Knisel, W.G., and Still, D.A. 1987. "GLEAMS: Groundwater Loading Effects of Agricultural Management Systems". *Transactions of the ASAE* 30(5): 1403-1418.

Mathworks, Inc., Copyright 1984-2005. "The Language of Technical Computing", MATLAB Version 7.0.4.365(R14), Service Pack 2.

Nearing, M.A., Liu, B.Y., Risse, L.M., and Zhang, X., 1996, "Curve Numbers and Green-Ampt Effective Hydraulic Conductivities", Water Resources Bulletin, American Water Resources Association, Vol. 32, No. 1.

NRCS National Engineering Handbook Part 630 Hydrology, 1993. "Chapter 4: Storm rainfall data", NRCS USDA, Washington, D.C.

Ponce, V.M., and Hawkins, R.H., 1996. "Runoff Curve Number: Has It Reached Maturity?", Journal of Hydrologic Engineering, Vol. 1, No. 1, 11-19.

Rawls, W.J., Brakensiek, D.L., and Miller, N., 1983. "Green-Ampt Infiltration Parameters from Soils Data", Journal of Hydraulic Engineering, Vol. 109, No. 1, American Society of Civil Engineers.

Rawls, W.J., and Brakensiek, D.L., 1986. "Comparison between Green-Ampt and Curve Number Runoff Predictions", ASAE Paper No. 85-2505, Soil and Water Div., Vol. 29(6).

Rosetta 1999, Version 1.0, Author: Marcel G. Schaap. http://www.ussl.usda.gov/models/rosetta/rosetta.HTM

Rowney, A. C. and MacRae, C.R., 1992. "QUALHYMO User/Technical Reference Manual", Release 2.1 Continuous Hydrologic Simulation Framework.

Sams, J.I. and Witt, E.C., 1995, "Simulation of streamflow and sediment transport in two surface-coal-mined basins in Fayette County, Pennsylvania", USGS Water-Resources Investigations Report 92-4093.

Soil Conservation Service (SCS), 1986, "Urban Hydrology for Small Watersheds", Technical Release 55 (TR-55), 2nd edition, U.S. Department of Agriculture, Washington, D.C.

Strager, J.M. and Yuill, C.B., 2002. "The West Virginia Gap Analysis Project, Final Report," USGS GAP Analysis Program. <u>ftp://ftp.gap.uidaho.edu/products/west_virginia/report/wvgaprpt.pdf</u>

Strager, M.P., 2005. "Watershed Characterization and Modeling System Version 9.0 Technical Documentation". Prepared for West Virginia Department of Environmental Protection. Natural Resource Analysis Center, West Virginia University, Morgantown, WV.

U.S. Environmental Protection Agency, 2000, "EPA BASINS Technical Note 6", EPA-823-R00-012.

Users Manual for an Expert System (HSPEXP) for Calibration of the Hydrological Simulation Program – Fortran, 1994, U.S. Geological Survey Water-Resources Investigations Report 94-4168, Reston, Virginia.

Van Mullem, J.A., 1992. "Soil Moisture and Runoff-Another Look", ASCE Water Forum '92, Proceedings of the Irrigation and Drainage Session, Baltimore, MD.

Van Mullem, J.A., Woodward, D.E., Hawkins, R.H., and Hjelmfelt, A.T., 2002. "Runoff Curve Number Method: Beyond the Handbook", Proc., USDA-NRCS Hydraulic Engineering Workshop.

Williams, J.R., Dyke, P.T., and Jones, C.A., 1982. "EPIC: A Model for Assessing the Effects of Erosion on Soil Productivity", In Proc. Third Int. Conf. On State-of-the-Art Ecological Modeling, Int. Soc. For Ecological Modeling.

Woodward, D.E., Hawkins, R.H., Hjelmfelt, A.T., Van Mullem, J.A., and Quan, Q.D., 2002. "Curve Number Method: Origins, Application and Limitations", Proc., USDA-NRCS Hydraulic Engineering Workshop.

Woodward, D.E., and Plummer, A., 2000. "Antecendent Moisture Conditions NRCS View Point", Proc., ASCE-Watershed Management and Operations Management Conference, Fort Collings, CO, June 20-24th.

Appendix A. HSPF Calibration, Verification, and Parameter Optimization Study

This is an unpublished technical report prepared by, Dr. Robert N. Eli¹, Samuel J. Lamont¹, and Elena Hoeg². Funding for this research was provided by the West Virginia Department of Environmental Protection. Additional support was provided by the Office of Surface Mining, Jim Sams of the USGS, Pittsburgh, PA, and Kate Flynn of the USGS, Reston, Virginia.

¹Department of Civil and Environmental Engineering, West Virginia University, ²Natural Resource Analysis Center, West Virginia University.

Review of HSPF Background and Related Applications

HSPF was selected as the hydrologic model for CHIA of mine-impacted watersheds in the state of West Virginia because of its wide use and acceptance as a joint watershed and stream water quality model. It is a comprehensive, continuous watershed simulation model, designed to simulate all the water quantity and water quality processes that occur in a watershed (Bicknell, et al., 2001). This includes sediment transport and movement of contaminants overland and through the stream channel system. HSPF has its origins in the Stanford Watershed Model (SWM) developed by Crawford and Linsley (www. hydrocomp.com). This latter model was the first truly comprehensive land surface and subsurface hydrologic processes model that treated every component of the hydrologic cycle. It has been widely adopted in various forms and its hydrologic components have been included in related models, such as the Kentucky Watershed Model. Crawford and Linsley further developed the original SWM model and created HSP, the Hydrocomp Simulation Program, which included sediment transport and water quality simulation. Hydrocomp also developed the ARM (Agricultural Runoff Management Model) and the NPS (Nonpoint Source Pollutant Loading Model) for the EPA (U.S. Environmental Protection Agency) during the early 1970's. In 1976, EPA commissioned Hydrocomp, Inc. to develop a set of simulation modules in standard Fortran that would handle all the functions handled by HSP, plus those within two additional models, ARM and NPS. The intention was to produce a modeling system that was easy to maintain and modify. The result was HSPF, which can be applied to most watersheds using commonly available meteorologic and hydrologic data. HSPF has been applied to a variety of watershed studies, including the U.S.EPA Chesapeake Bay Program, Carson - Truckee River (California, Nevada), Minnesota River Assessment Project, Florida Water Management District, King Co. Washington Management Plan, and others (Donigian, 2003). Other work that relates specifically to various aspects of the calibration methodology used here includes Sams and Witt (1995), and Dinicola (2001). Sams and Witt (1995) utilized HSPF to model two surface-mined watersheds in Fayette County, Pa. The significance of this latter study is the location of these two watersheds, located within and just to the north of the Big Sandy calibration watershed which is one of the calibration watersheds. The Stony Fork Basin is a sub-basin of Big Sandy, and the Poplar Run Basin is located just 15 miles to the north of Big Sandy. The geology, soils,

topography, and land cover of these two watersheds are very similar to the characteristics of many of the trend station, calibration, and verification watersheds used in the CHIA project. Therefore, the fitting parameters as determined by Sams and Witt (1995), where adopted as a starting point in the calibration processes for the CHIA project. Additional studies of note are those by Al-Abed, et al., (2002), Lohani, et al., (2002), Martin, et al., (1990), Riberio (1996), and Srinivasan, et al., (1998).

Summary of HSPF Basic Capabilities and Characteristics

The HSPF model has the following general characteristics:

- It is a continuous simulation model (It can simulate streamflow for many years at hourly time increments).
- It can be applied to natural or developed watersheds (including those with surface and underground mine sites).
- Model components simulate both the land surface and subsurface hydrology and water quality processes.
- HSPF utility programs provide time series data management, statistical analysis tools, and graphic display of results.
- Both stream and lake hydraulics and water quality processes can be simulated.
- HSPF is the core watershed model in EPA BASINS and the U.S. Army Corps of Engineers WMS modeling system.
- Development and maintenance of HSPF related software is sponsored by EPA and USGS.

There are three application modules that make up the core of the HSPF hydrologic model (each also includes several sub-modules of importance):

- 1) PERLND (Simulate a Pervious Land segment)
 - a) ATEMP (Correct air temperature for elevation difference)
 - b) SNOW (Simulate the accumulation and melting of snow and ice)
 - c) PWATER (Simulate water budget for pervious land segments)
- 2) IMPLND (Perform computations on a segment of impervious land)
 - a) ATEMP (Same as in PERLND above)
 - b) SNOW (Same as in IMPLND above)
 - c) IWATER (Simulate water budget for impervious land segment)
- 3) RCHRES (Perform computations for a stream reach or mixed reservoir)
 - a) HYDR (Simulate hydraulic behavior)

b) ACIDpH (Simulate mine acid drainage in-stream chemistry)

Of the three application modules above, PERLND and RCHRES were used in the calibration phase of the CHIA project. The PERLND module simulates the watershed areas, with each land cover/land use classification category being described by its own unique set of PERLND parameters. The RCHRES module is applied to each stream reach, which is equivalent to a stream segment in the stream drainage network within a given watershed. Each stream reach has its own unique descriptive parameters, which are applied in the RCHRES module. The IMPLND module is for the purpose of simulating impervious areas, such as urban areas. This module was not used since no urban areas larger than a few percent of the total watershed area are encountered in the CHIA project.

CHIA Calibration and Verification Watersheds

Watershed Selection

The hydrologic component of the project involves the fitting of HSPF to each of the 235 Trend Station Watersheds identified by WVDEP. They have boundaries defined by stream water quality sampling points, or Trend Stations, located at the watershed outlets. These stream water sampling points generally do not coincide with USGS stream gaging locations that are required for the model calibration process. Therefore, model calibration must be conducted using watersheds that have a gaging station at their outlet, and are also representative of the hydrologic characteristics found in CHIA watersheds. An additional factor is the obvious impracticality of individual calibration of 235 watersheds, regardless of gaging data availability. The only practical approach to finding a set of model parameters for each of the 235 trend station watersheds is to calibrate the model to a selected few watersheds that contain representative characteristics of the whole population of watersheds. It is then assumed that watersheds with similar characteristics have similar model parameters representing those characteristics. It is therefore possible to calibrate a limited number of watersheds as long as their hydrologic characteristics are simulated as separable components in the hydrologic model. The suitability of the parameter sets determined during calibration is tested using a set of verification watersheds that are also representative of the CHIA watersheds. This calibration strategy follows that recommended by Donigian (2002), and successfully employed by Dinicola (1990, 2001). The Dinicola (2001) study involved 12 small watersheds in King and Snohomish Counties, in and near Seattle, Washington. The purpose of this latter study was to model the effects of urbanization on watershed response. Five of the watersheds were selected for use in calibration, characterized by various degrees of development. The calibration process proceeded with the intent to arrive at a consistent set of parameters across all 5 watersheds for each land use category. The study was successful in that it demonstrated that satisfactory model performance could be achieved by using common land use categories with single valued parameter sets. The approach used in the CHIA calibration study follows Dinicola's lead in maintaining a single valued set of model parameter values for each land use category.

The calibration and verification watersheds lie within the coal regions and either encompass or are adjacent to trend station watersheds. Figure 1 shows the locations of

the trend station watersheds within the state of West Virginia, including the five watersheds selected for calibration purposes. It will be noted that the Twelve Pole Creek, Clear Fork, Buffalo Creek, and Big Sandy watersheds contain trend station watersheds in whole or in part. Big Sandy lies partially in the state of Pennsylvania, and therefore only the West Virginia portion contains trend station watersheds. Tygart Valley at Elkins does not contain trend station watersheds, but lies adjacent to trend station watersheds on its western boundary. Figure 2 shows the location of five verification watersheds which are used to test the modeling parameters determined in the calibration process. These include Big Sandy (same as the calibration watershed, except using a different meteorological record), Tygart Valley at Belington, Tygart Valley at Daily, Piney Creek, and Panther Creek. It will be noted that the two Tygart Valley verification watersheds are a superset and subset of Tygart Valley at Elkins, respectively. These latter two verification watersheds are defined by different gaging locations along the same stream, and hence share a portion of the same watershed. The Big Sandy watershed is present in both the calibration and verification watershed groups to provide for error checking.

Figure 1 : West Virginia CHIA Trend Stations and Calibration Watersheds.

Figure 2 : West Virginia CHIA Trend Stations and Verification Watersheds

Watershed Characteristics

The calibration and verification watersheds, shown in Figures 1 and 2, required stream flow gaging data to support the HSPF model fitting process. Table 1 lists the watersheds along with the available USGS stream flow record and corresponding gage number.

	Watersheds	Stream Fl	ow Record	
	Calibration	From	То	Gage Number
1	Twelve Pole Creek	10/01/1964	09/30/2000	03206600
2	Buffalo Creek	06/03/1907	09/30/2000	03061500
3	Tygart River at Elkins	10/01/1944	09/30/2000	03050500
4	Clear Fork	06/28/1974	9/30/200	03202750
5	Big Sandy	05/07/1909	09/30/2000	03070500
	Verification			
1	Panther Creek	08/01/1946	09/30/1986	03213500
2	Tygart River at Belington	06/05/1907	09/30/2000	03051000
3	Tygart River at Dailey	04/20/1915	09/30/2000	03050000
4	Piney Creek	08/21/1951	09/30/1982	03185000
5	Big Sandy		see above	

 Table 1 : List of Calibration and Verification Watershed Available Gaging Records.

The land use/cover classifications are based on 1993 GAP data. The classifications used are:

- 1. Forest
 - a. Steep Slope
 - b. Moderate Slope
 - c. Mild Slope
- 2. Barren
- 3. Mined
- 4. Pasture/Grassland
- 5. Row Crop/Agriculture
- 6. Shrubland
- 7. Surface Water
- 8. Urban/Developed
- 9. Wetland

It should be noted that a total of 11 classifications result due to the forested slope subcategories, which are treated as separate classifications. Table 2 lists the total watershed area and distribution of areas in the forest slope classifications for each of the calibration watersheds, illustrating the predominance of the forest category.

	Total Area	Total Forested	%	% Mild	% Moderate	% Steep
Watershed	(acres)	Area (acres)	Forested	Forest	Forest	Forest
Twelve Pole						
Creek	23646	20402	86	10	16	74
Buffalo Creek	72257	57590	80	19	28	53
Tygart Valley at Elkins	172642	137950	80	16	22	62
Clear Fork	79862	71455	89	7	10	83
Big Sandy	123027	96713	79	61	29	10

 Table 2 : Slope Distribution for Calibration Watersheds

Each of the calibration watersheds has a mining history. Figure 3 shows the relative cumulative percentages of surface and underground mining in the calibration watersheds, as documented in annual mine permit application records. It should be noted that significant historical mining is not documented on these watersheds, but is known to be present. As an example, it is known that much of the Pittsburgh coal is mined out under Buffalo Creek watershed, yet it does not appear in the available mapping database. The only mined areas used in the calibration study are those classified as "mined" land in the 1993 GAP database. These latter areas are known not to be accurately classified; however, they were used since there was little to be gained by trying to include other sources of mined land data. Much of the historical mined land is reclaimed, or is overgrown with vegetation, and therefore is now classified as forest, shrubland, or pasture/grassland. Since the purpose of conducting a baseline calibration is to provide a reference condition, against which the effects of new mining can be compared, it serves no useful purpose to try to identify the historical mined areas in an effort to correct the GAP data. The difficulties in trying to treat historical mined areas as a unique classification is not warranted since the HSPF model is a lumped parameter model for which small differentiation in parameters over limited areas has no significant effect on the baseline model output (this behavior was adequately demonstrated during the calibration study to be discussed later). Therefore, the mined classification in the 1993 GAP is retained since it is an integral part of the data set, and its area must be conserved. Likewise, the surface water classification was modeled as a land surface category in order to conserve watershed drainage area. The surface water areas involved are very small and have no impact on the baseline calibration.

Mining Activity for Calibration Watersheds

Figure 3 : Calibration Watershed Mining History (from WVDEP Permit Records).

HSPF Meteorologic Data Input Requirements

Meteorologic data required to run HSPF for the calibration process included PET, TEMP, and PREC (potential evapotranspiration, average air temperature, and precipitation). The values for PET and TEMP are estimated from daily maximum and minimum air temperatures (TMAX and TMIN). These data are supplied by NCDC (National Climatic Data Center) and downloaded from the internet (or obtained from a secondary supplier). PET is estimated using a HSPF data utility program called WDMUtil (using the Hamon formula). HSPF uses an hourly time increment for precipitation data input. The precipitation data was supplied under contract by Zedx Inc., which is formatted into average hourly values for each of 5 km grid squares covering the state of West Virginia and portions of surrounding states for the period from 1948 through 2000 (see Figure 4). The daily streamflow data was downloaded from a USGS internet web site. Snow cover was simulated using the temperature-index method option within HSPF.

Figure 4 : Geo-located 5 km Grid Square Centers for the Zedx Hourly Precipitation Data.

HSPF Model Calibration and Verification Procedures

Application of EPA BASINS in the Calibration Process

The HSPF model is typically applied to a watershed using BASINS (USEPA, 1999) because of its built-in spatial data base and analysis tools that greatly simplify the input data preprocessing. BASINS automates much of what was formally a very tedious text editing process of building the HSPF user control input (uci) file, by taking the user through a much simpler Windows-based data entry process. The BASINS version of HSPF works reasonably well for general purpose water quality applications but does not have an acceptable acid mine drainage (AMD) water quality (chemistry) modeling capability. The BASINS user interface still requires considerable investment in user time to overcome a steep learning curve. It requires familiarity with four separate pieces of software to prepare the input data, edit the user control input (uci) file, then execute the model, and finally, analyze the results. These latter shortcomings has been addressed by expanding the capability of WCMS to include all of the HSPF modeling and data analysis tools in a single simplified user interface.

It was necessary to conduct the trend station watershed calibration study using BASINS to process the spatial data, and to generate the uci (user control input) files, since the corresponding WCMS tools were still under development during the initial phases of the CHIA project. In its default form, BASINS provides for automated watershed closure and subdivision using the 1:100,000 scale national DEM. Initially, corrected 1:24,000 DEM (30 m resolution) coverage for West Virginia was substituted to provide the resolution thought needed for the WVDEP-CHIA HSPF model. Additionally, the existing DLG of the stream networks within BASINS was upgraded to the 14 digit NHD (National Hydrologic Database standard). These modifications then matched the topographic and stream network data resolution to that of the standard 7.5 min. USGS quadrangle map, instead of the 1:100,000 scale map base. Ironically, limitations within the HSPF code ultimately dictated a return to a 1:100,000 scale, and a corresponding 8 digit NHD stream network resolution. As will be presented later, modeling accuracy was not significantly affected due to the lumped parameter characteristics of HSPF.

Watershed Segmentation for HSPF Model Calibration

Segmentation of each calibration watershed into sub-watersheds was based on selection of a sub-watershed size that yields a maximum of approximately 10 subwatersheds. This was a requirement for calibration only, since the calibration method used limits the number of sub-watersheds and their associated stream segments. Figure 5 shows the Twelve Pole Creek watershed segmented based on a 100 hectare subwatershed area threshold, yielding 59 sub-watersheds. This is approximately equivalent to the resolution initially planned for use in the WCMS-HSPF model implementation. This is compared to the segmentation of Twelve Pole Creek using a 600 hectare threshold area, as shown in Figure 6, which is representative of the approximate number of subwatersheds used for the 5 calibration watersheds. Experience of other investigators (personal communication, Kate Flynn, USGS, 2003), points out that the model calibration parameters are not significantly different for coarse segmentation as compared to a fine (high resolution) segmentation of the watershed, as long as the grouped option of assigning the PERLND properties is used (explained later). Independent testing of this thesis was confirmed by simulation comparisons. Figure 7 shows the output of a HSPF simulation for Twelve Pole Creek using 59 and 5 sub-watersheds, respectively, with all other parameters and inputs held constant. The only noticeable difference between the hydrographs is the slightly higher estimation of storm peaks by the 5 sub-watershed model, which is considered of minor significance for calibration purposes. The calibration and verification HSPF watershed models used the 600 hectare threshold criteria for segmentation in order to meet the requirements of the HSPEXP software used for the calibration process (Users Manual, HSPEXP, (1994)). Final segmentation of the trend station watersheds will be done at the 1:100,000 map scale and 8 digit NHD stream network resolutions. This level of detail corresponds to that necessary to sufficiently represent the watershed hydrology and to support the modeling of in-stream chemistry of mine acid drainage.

Figure 5 : Twelve Pole Creek Watershed with a 100 ha Threshold Area (59 Sub-Watersheds)

Figure 6 : Twelve Pole Creek watershed with a 600 ha threshold area (5 sub-watersheds)

Figure 7 : A Comparison of Hydrographs for the Simulation of Twelve Pole Creek

PERLND Grouping Within the HSPF-CHIA Model

Within the HSPF-CHIA model, the grouping approach to modeling each PERLND (one for each land use/cover classification) was selected since it accumulates all areas of like land use/cover classification within the watershed into a single PERLND. This effectively reduces model complexity and the number of parameters that must be calibrated. Figure 8 illustrates the principle behind the distribution of PERLND outflows based on the percent area of its land use/cover classification contained within each subwatershed. Each sub-watershed has a single stream segment (RCHRES) to which its outflow is assigned. Each PERLND outflow to a particular stream segment is based on the fraction of its land use/cover classification area contained in the contributing subwatershed.

Group option for PERLND definition

Implementation of Land Use/Cover Classifications in PERLND Grouping

Figure 9 illustrates how the 11 different land use/cover classifications selected for the HSPF-CHIA model are implemented. Since the Forest classification is by far the most prevalent on each trend station watershed, it is subdivided into three slope categories, steep, moderate, and mild. The remaining 8 categories are not subdivided by slope, since their portion of the watershed area is typically a small percentage. Preliminary calibration experience seemed to point out a need to provide slope differentiation in the most prevailing classification, since it was logical to assume that there are significant hydrologic response differences between steep and milder slopes for the forest classification. The forest data slope categories were computed using the underlying DEM, and then incorporated into the land use/cover classification GIS layer, which is based on the 1993 GAP data (Strager and Yuill, 2002). Each grid cell is classified according to one of the 11 assigned land use/cover classifications. Within each sub-watershed the area associated with each classification is assigned to its corresponding PERLND, and a record is maintained of which stream segment receives the outflow from that area (see Figure 8).

Segmentation Based on NHD Stream Drainage Network Representation in WCMS.

Figure 9 : Illustration of Assignment of Land Use/Cover Classification in PERLND Grouping.

Manual Calibration and Verification Using HSPEXP

In order to begin the HSPF-CHIA calibration, initial values of selected calibration parameters needed to be assigned. These initial values were based on a review of parameters from other calibration studies within the Mid-Atlantic region, as determined from the HSPFParm, (1999) database (a database maintained by EPA as part of the BASINS software package), and values from similar studies (Sams, et al., (1995)), including EPA BASINS Technical Note 6, (2000). Personal communications with Kate Flynn of the USGS, Reston, in 2003 resulted in a calibration procedure that uses a single HSPF uci that is designed to combine all of the calibration watersheds into a single HSPF model run. Following a combined HSPF model run, the current calibration parameters could then be checked for suitability using a utility program called HSPEXP (USGS Report 94-4168, (1994)). This approach resulted in the creation of a single uci for Twelve Pole Creek, Buffalo Creek, Tygart Valley at Elkins, Clear Fork, and Big Sandy (Figure 1). Some simplifications were required since HSPEXP has a limit on the number of PERLND's and RCHRES's it can handle at one time, which is the reason for the 600 hectare threshold watershed subdivision used for calibration (Figure 6). Successful HSPF calibration runs were made using the combined uci within the HSPEXP software. A second combined uci was created for the 5 verification watersheds: Panther Creek, Piney Creek, Tygart Valley at Belington, Tygart Valley at Daily, and Big Sandy (Figure 2).

Table 3 shows the manual calibration results for the calibration watersheds, while Table 4 shows the corresponding results for the verification watersheds. The performance of the model is evaluated in HSPEXP by a number of statistics that are included in both tables. The statistics are based on average annual values, and show that, in most cases, the total runoff depths in each of the categories are in good agreement. The data available for calibration is considered the bare minimum for HSPF applications; therefore, it was impossible to meet the standard error criteria limits in all cases. However, since the application of HSPF for CHIA is a comparative analysis between the baseline hydrology and water quality, to that following additional mining, absolute accuracy is less important than comparative accuracy. The calibration errors are considered acceptable for the needs of CHIA, when used in the comparative analysis mode.

To provide additional calibration confidence, a detailed model performance analysis and parameter optimization study was conducted using independent optimization software (see following section).

I WOIC C THOIL HIGHE CUIN	l'action state	seres, simai	tion i errout	111112000 11		
	TWELVE	POLE CREEK	BUFFA	LO CREEK	TYGART VALL	EY AT ELKINS
	Simulated	Observed	Simulated	Observed	Simulated	Observed
Total runoff, in inches	107.3	102.9	123.9	121.21	179.4.	167.544
Total of highest 10% flows, in inches	58.25	57.3	66.7	63.11	89.22	78.442
Total of lowest 50% flows, in inches	6.91	5.39	9.58	10.33	17.98	18.503
	Simulated	Potential	Simulated	Potential	Simulated	Potential
Evapotranspiration, in inches	123.7	131.8	148.5	153.7	140.1	142.2
	Simulated	Observed	Simulated	Observed	Simulated	Observed
Baseflow recession rate	0.92	0.91	0.91	0.92	0.9	0.91
Summer flow volume, in inches	8.39	6.68	10.4	13.13	23.97	22.74
Winter flow volume, in inches	50.67	49.33	46.14	46.6	54.1	53.89
	Current	Criteria	Current	Criteria	Current	Criteria
Error in total volume	4.3	10	2.2	10	7.1	10
Error in low flow recession	-0.01	0.01	0.01	0.01	0.01	0.01
Error in 50% lowest flows	28.3	10	-7.2	10	-2.8	10
Error in 10% highest flows	1.7	15	5.7	15	13.7	15
Seasonal volume error	19.7	10	19.8	15	5	10

	CLEAR F	FORK	BIG S	ANDY
	Simulated	Observed	Simulated	Observed
Total runoff, in inches	113.9	109.298	179	173.25
Total of highest 10% flows, in inches	58.27	54.427	86.62	76.686
Total of lowest 50% flows, in inches	8.75	9.451	19.37	21.924
	Simulated	Potential	Simulated	Potential
Evapotranspiration, in inches	149.7	154.6	118.7	120
	Simulated	Observed	Simulated	Observed
Baseflow recession rate	0.91	0.93	0.92	0.92
Summer flow volume, in inches	6.76	6.904	20.55	19.729
Winter flow volume, in inches	43.56	44.658	51.44	63.8
	Current	Criteria	Current	Criteria
Error in total volume	4.2	10	3.7	10
Error in low flow recession	0.02	0.01	0	0.01
Error in 50% lowest flows	-7.4	10	-11.6	10
Error in 10% highest flows	7.1	15	13	15
Seasonal volume error	0.4	10	23.6	10

Indie IVIIdei Ver	meanon sta	institution, similar	action 1 critou	11111/1011	01112011	
	TYGART VALLE	Y BELINGTON	PINEY C	REEK	PANTHER CRE	EK
	Simulated	Observed	Simulated	Observed	Simulated	Observed
Total runoff, in inches	149.9	162.593	114.7	90.047	102.4	102.117
Total of highest 10% flows, in inches	66.42	66.21	56.48	35.638	56.51	54.585
Total of lowest 50% flows, in inches	14.48	20.134	10.53	12.745	7.05	8.586
	Simulated	Potential	Simulated	Potential	Simulated	Potential
Evapotranspiration, in inches	113.3	114.5	104.1	108.6	134.8	137.5
-	Simulated	Observed	Simulated	Observed	Simulated	Observed
Baseflow recession rate	0.87	0.91	0.88	0.92	0.9	0.9
Summer flow volume, in inches	15.18	21.151	10.01	11.037	5.36	8.489
Winter flow volume, in inches	60.87	63.773	43.04	33.556	39.84	40.357
	Current	Criteria	Current	Criteria	Current	Criteria
Error in total volume	-7.8	10	27.4	10	0.3	10
Error in low flow recession	0.04	0.01	0.04	0.01	0	0.01
Error in 50% lowest flows	-28.1	10	-17.4	10	-17.9	10
Error in 10% highest flows	0.3	15	58.5	15	3.5	15
Seasonal volume error	23.6	10	37.6	10	35.6	10

 Table 4 : HSPF Model Verification Statistics, Simulation Period: 1/1/1976-12/31/1981.

,				
	BIG SA	ANDY	TYGART VA	LEY DAILEY
	Simulated	Observed	Simulated	Observed
Total runoff, in inches	147.6	163.32	158.9	157.525
Total of highest 10% flows, in inches	79.67	66.886	72.69	66.621
Total of lowest 50% flows, in inches	11.12	19.971	14.4	18.782
	Simulated	Potential	Simulated	Potential
Evapotranspiration, in inches	92.51	93.3	109.6	110.3
	Simulated	Observed	Simulated	Observed
Baseflow recession rate	0.9	0.91	0.88	0.9
Summer flow volume, in inches	15.31	21.403	15.85	20.686
Winter flow volume, in inches	55.42	62.554	63.75	63.183
	Current	Criteria	Current	Criteria
Error in total volume	-9.6	10	0.9	10
Error in low flow recession	0.01	0.01	0.02	0.01
Error in 50% lowest flows	-44.3	10	-23.3	10
Error in 10% highest flows	19.1	15	9.1	15
Seasonal volume error	17.1	10	24.3	10

HSPF-CHIA Calibration Performance Evaluation and Optimization Study

Performance Evaluation Procedures

There are a number of publications dealing with the evaluation of watershed model performance. Although no uniform criteria have been established, the general view is that it is advisable to report several criteria in order to more objectively quantify the performance of a given hydrological model. Following criteria were used to determine an optimum set of HSPF parameters and to estimate the predictive ability of the model.

The first two, the Deviation of Runoff Volumes, D_V , and the Coefficient of Efficiency (known also as the Nash-Sutcliffe coefficient), E, are suggested by the ASCE Task Committee on Definition of Criteria for Evaluation of Watershed Models (ASCE, 1993):

Deviation of Runoff Volume, D_V (Martinec and Rango, 1989)

$$D_V = \frac{V - V_S}{V} \tag{1}$$

where: V – the total observed runoff volume for the simulation period V_S – the total simulated runoff volume for the simulation period.

It should be noted that for a perfect model, D_V equals zero. A hydrological model is considered very good if $D_V < 0.1$, good if $0.1 < D_V < 0.15$ and fair if $0.15 < D_V < 0.25$.

Coefficient of Efficiency, *E* (Nash and Sutcliffe, 1970)

$$E = 1.0 - \frac{\sum_{i=1}^{N} (O_i - S_i)^2}{\sum_{i=1}^{N} (O_i - \overline{O})^2}$$
(2)

where: O_i – the observed daily discharge

 S_i – the model simulated daily discharge

 \bar{O} – the average observed discharge

N- the number of discharges values.

The Coefficient of Efficiency is the ratio of the Mean Square Error (MSE) to the variance in the observed data subtracted from unity and it ranges from unity (ideal model) to minus infinity (poor model). When E = 0 the square differences between the model simulation and the observation is equal to the variability in the observed data, which means that the observed mean, \bar{O} , is as good a predictor as the model.

Legates and McCabe (1999) suggested using several other criteria that would give a better representation of the efficacy of model simulations and recommended a wide range of statistics to be reported including the observed and simulated means and standard deviations.

Modified Coefficient of Efficiency, E1 (Legates and McCabe, 1999)

$$E1 = 1.0 - \frac{\sum_{i=1}^{N} |O_i - S_i|}{\sum_{i=1}^{N} |O_i - \overline{O}|}$$
(3)

The Modified Coefficient of Efficiency has a meaning similar to the Coefficient of Efficiency but it is considered preferable because it reduces the effect of squaring in statistics by giving errors and differences their appropriate weight.

In a similar way, the Index of Agreement (Willmott, 1981), another descriptive relative error measure that reflects agreement between simulated and observed values, was proposed in adjusted form, namely the Modified Index of Agreement, d1, in order to eliminate squared values of errors.

Modified Index of Agreement, d1 (Legates and McCabe, 1999)

$$d1 = 1.0 - \frac{\sum_{i=1}^{N} |O_i - S_i|}{\sum_{i=1}^{N} \left(|S_i - \overline{O}| + |O_i - \overline{O}| \right)}$$
(4)

The Modified Index of Agreement varies from 0.0 for a full disagreement of simulated and observed values to 1.0 for a perfect model.

The use of two non-negative statistics is also recommended in order to arrive at a more comprehensive model evaluation (Willmott, 1984 and Legates, 1999). These absolute error measures (the error in the units of variable) are the Mean Absolute Error (MAE) and the Square-root of the Mean Square Error (RMSE).

Mean Absolute Error, MAE (Willmott, 1984)

$$MAE = N^{-1} \left[\sum_{i=1}^{N} \left| O_i - S_i \right| \right]$$
(5)

Compared to *RMSE*, the *MAE* is less sensitive to extreme values. Generally, *RMSE* is bigger than *MAE* and, thus, the relative degree of difference between them represents the extent of the variance of absolute errors.

Square-root of the Mean Square error, RMSE (Willmott, 1984)

$$RMSE = \left[N^{-1} \sum_{i=1}^{N} (O_i - S_i)^2 \right]^{0.5}$$
(6)

The advantage of RMSE is that it provides valuable information about sources of error. Willmott (1981) recommended portioning *RMSE* into "systematic" (*RMSE_s*) and "unsystematic" (*RMSE_u*) error components in order to determine the nature of error. The relationship is expressed in the following equation (Willmott, 1984):

$$RMSE^{2} = RMSE_{s}^{2} + RMSE_{u}^{2}$$
⁽⁷⁾

 $RMSE_s$ is actually the bias or deviation of the linear regression line slope on an observed versus simulated plot from a 45 deg. line and, therefore, it indicates the ability of a model to replicate variations in observed data. $RMSE_u$ is a component responsible for random variations.

"Systematic" portion of the RMSE, RMSE, (Willmott, 1984)

$$RMSE_{s} = \left[N^{-1} \sum_{i=1}^{N} (\overline{S}_{i} - O_{i})^{2} \right]^{0.5}$$
 (8)

and

"Unsystematic" portion of the *RMSE*, *RMSE*, (Willmott, 1984)

$$RMSE_{u} = \left[N^{-1} \sum_{i=1}^{N} (S_{i} - \overline{S}_{i})^{2} \right]^{0.5}$$
(9)
where: $\overline{S}_{i} = a + bO_{i}$

a and *b* are parameters of a linear regression between observed and simulated values. For a good model performance, $RMSE_s$ should be low and $RMSE_u$ should approach RMSE, which itself should be low.

Another widely used statistic is the Coefficient of Determination, R^2 . Although it has been argued by Willmott (1984) and Legates (1999) that the Coefficient of Determination has a lack of sensitivity to additive and proportional differences between observed and model simulated values, and is sensitive to outliers (extreme values), it remains a quite popular and commonly reported criterion.

Coefficient of Determination, R^2 (Legates and McCabe, 1999)

$$R^{2} = \left\{ \frac{\sum_{i=1}^{N} \left(O_{i} - \overline{O} \left(S_{i} - \overline{S} \right) \right)}{\left[\sum_{i=1}^{N} \left(O_{i} - \overline{O} \right)^{2} \right]^{0.5} \left[\sum_{i=1}^{N} \left(S_{i} - \overline{S} \right)^{2} \right]^{0.5}} \right\}$$
(10)

The Coefficient of Determination ranges from 0.0 (poor model) to 1.0 (perfect model). It expresses the proportion of the total variance in the observed data that can be explained by the model.

Described criteria in combination with provided standard deviations and means and data-display graphics should be sufficient to evaluate the performance of a hydrological model (Donigian, 2002).

Optimization of the HSPF Parameters using PEST Software

As explained above, starting values of HSPF parameters for the manual calibration procedure were determined based on other studies, calibration watershed characteristics, and suggested parameter ranges in BASINS Technical Note #6. Each of eleven (11) PERLNDs was assigned an individual set of parameters. The model was then manually calibrated using the HSPEXP program. The resulting parameter sets were assumed to be the calibrated values and served as the starting point for the optimization study.

The final adjustment of parameters and calibration was preformed using the PEST optimization software program (Doherty, 2002). The PEST program adjusts specified HSPF parameters until the differences between gaged flows and the model's simulated flows are minimized according to specified multiobjective criteria.

A sensitivity study was first done to see if separation of the FOREST land-use category into three different PERLNDs according to surface slopes results in significant improvement in the performance of the model. HSPF parameters that could be influenced by surface slopes, as they are described in the BASINS Technical Note #6, were LZSN, INFILT, UZSN, INTFW, AGWRC, and IRC (note: parameter definitions are given in Bicknell, et al, 2001). PEST optimization was done twice for each of the specified parameters. In the first run one of the above parameters was set to be the same value for

all three forest PERLNDs. A second run specified that a parameter for each Forest PERLND would have independent value and not necessarily the same as those of other two. The statistical data, which are summarized in Table 5, show that slope differentiation yields no significant improvement in the performance of the model. That raises the question of the usefulness of categorizing the Forest land-use/cover by surface slope. If this differentiation were ignored, then there would be essentially a single landuse/cover classification on many of the trend station watersheds, leaving little flexibility in applying the model. Since leaving the differentiation in the model does not effect the calibration one way or another, it was decided to retain the three slope categories to allow potential future flexibility in application of the HSPF-CHIA model.

TWELVEPOLE CREEK	E	E1	Dv	d1	R ²	RMSE,cfs	MAE,cfs
Initial parameters	0.42	0.38	0.17	0.70	0.71	86	33
LZSN	0.42	0.38	0.19	0.70	0.71	87	33
LZSN (three FOREST categories)	0.42	0.38	0.18	0.70	0.71	86	32
AGWRC	0.44	0.40	0.16	0.70	0.71	85	32
AGWRC (three FOREST categories)	0.44	0.40	0.16	0.70	0.71	85	32
IRC	0.45	0.38	0.16	0.69	0.70	89	33
IRC (three FORES categories)	0.45	0.38	0.16	0.69	0.70	84	33
INTFW	0.45	0.39	0.17	0.70	0.71	84	32
INTFW (three FOREST categories)	0.45	0.39	0.17	0.70	0.71	84	32
UZNS seasonal	0.51	0.42	0.14	0.71	0.73	79	31
UZNS seasonal (three FOREST cat.)	0.51	0.42	0.14	0.71	0.73	79	31
INFILT	0.52	0.41	0.15	0.69	0.73	78	31
INFILT (three FOREST categories)	0.52	0.42	0.15	0.69	0.73	78	31
BUFFALO CREEK	E	E1	D _v	d1	R ²	RMSE,cfs	MAE,cfs
Initial parameters	0.49	0.47	0.02	0.74	0.75	233	92
LZSN	0.49	0.47	0.04	0.74	0.75	238	93
LZSN (three FOREST categories)	0.49	0.47	0.02	0.74	0.75	232	92
AGWRC	0.44	0.40	0.16	0.70	0.71	235	92
AGWRC (three FOREST categories)	0.44	0.40	0.16	0.70	0.71	233	92
IRC	0.51	0.46	0.02	0.72	0.74	228	93
IRC (three FORES categories)	0.51	0.46	0.02	0.72	0.74	228	93
INTFW	0.53	0.47	0.02	0.74	0.76	224	92
INTFW (three FOREST categories)	0.53	0.47	0.02	0.74	0.76	224	92
UZSN seasonal	0.53	0.47	0.00	0.73	0.75	225	92
UZSN seasonal (three FOREST cat.)	0.53	0.47	0.00	0.73	0.75	225	92
INFILT	0.58	0.47	0.01	0.72	0.76	211	91
INFILT (three FOREST categories)	0.58	0.47	0.01	0.72	0.76	211	91
TYGART VALLEY (Elk)	Е	E1	D _v	d1	R ²	RMSE,cfs	MAE,cfs
Initial parameters	0.19	0.34	0.09	0.68	0.64	819	334
LZSN	0.19	0.34	0.10	0.68	0.64	830	336
LZSN (three FOREST categories)	0.20	0.34	0.09	0.68	0.65	815	332
AGWRC	0.21	0.35	0.09	0.68	0.65	810	325
AGWRC (three FOREST categories)	0.21	0.35	0.09	0.68	0.65	810	326
IRC	0.23	0.35	0.09	0.67	0.63	799	328

 Table 5 : Selected Error Statistics Comparing a Single Forest Slope Land-use/cover Category with

 Subdivision Based on Slope.

IRC (three FOREST categories)	0.23	0.35	0.09	0.67	0.63	799	328
UZSN seasonal	0.26	0.37	0.08	0.69	0.66	784	315
UZSN seasonal (three FOREST cat.)	0.26	0.37	0.08	0.69	0.66	784	315
INTFW	0.31	0.38	0.09	0.69	0.68	754	314
INTFW (three FOREST categories)	0.31	0.38	0.09	0.69	0.68	761	316
INFLT	0.57	0.45	0.08	0.71	0.76	599	278
INFILT (three FOREST categories)	0.56	0.45	0.08	0.71	0.76	602	278
CLEAR FORK	Е	E1	D _v	d1	R ²	RMSE,cfs	MAE,cfs
Initial parameters	0.46	0.42	0.07	0.72	0.74	215	97
LZSN	0.46	0.42	0.07	0.72	0.74	216	97
LZSN (three FOREST categories)	0.47	0.42	0.07	0.72	0.74	214	96
AGWRC	0.47	0.44	0.07	0.72	0.74	213	92
AGWRC (three FOREST categories)	0.47	0.44	0.07	0.72	0.74	213	92
INTFW	0.49	0.43	0.07	0.72	0.75	209	94
INTFW (three FOREST categories)	0.49	0.43	0.07	0.72	0.75	206	96
IRC	0.51	0.43	0.07	0.71	0.74	205	93
IRC (three FORES categories)	0.51	0.43	0.07	0.71	0.74	205	93
UZSN seasonal	0.49	0.46	0.05	0.73	0.74	208	90
UZSN seasonal (three FOREST cat.)	0.49	0.46	0.05	0.73	0.74	208	90
INFILT	0.59	0.47	0.06	0.72	0.77	189	88
INFILT (three FOREST categories)	0.59	0.47	0.06	0.72	0.77	189	88
BIG SANDY	Е	E1	D _v	d1	R ²	RMSE,cfs	MAE,cfs
Initial parameters	0.38	0.37	0.00	0.69	0.71	505	230
LZSN	0.38	0.37	0.00	0.69	0.71	512	233
LZSN (three FOREST categories)	0.38	0.37	0.00	0.69	0.71	505	230
AGWRC	0.40	0.38	0.01	0.70	0.71	500	225
AGWRC (three FOREST categories)	0.40	0.38	0.00	0.70	0.71	500	225
IRC	0.43	0.41	0.00	0.70	0.70	487	214
IRC (three FOREST categories)	0.43	0.41	0.00	0.70	0.70	491	218
UZSN seasonal	0.38	0.39	0.01	0.70	0.70	507	220
UZSN seasonal (three FOREST categories)	0.38	0.39	0.01	0.70	0.70	507	220
INTFW	0.48	0.41	0.00	0.71	0.74	462	213
INTFW (three FOREST categories)	0.48	0.41	0.00	0.71	0.74	468	216
INFILT	0.57	0.48	0.01	0.73	0.76	422	189
INFILT (three FOREST categories)	0.58	0.48	0.01	0.72	0.76	417	188

In the following calibration and sensitivity study all three PERLNDs of the Forest land-use/cover classification were relegated to the same set of parameters, thus reducing the number of calibrated sets of parameters from eleven (11) to nine (9).

A second sensitivity study was performed on each of the parameters in the set of the Forest PERLND segments. During every PEST optimization and simulation run one of these parameters was calibrated independently (the rest of parameters in a set were fixed at initially calibrated values) and statistics of the model performance were calculated. Analysis of the statistics allowed the determination of a group of parameters that were the most influential with respect to the performance of the model. The improvement in value of the Coefficient of Determination, *E*, and the Modified Coefficient of Determination, *E*1, for optimized parameters INFILT, UZSN, INTFW, and

IRC was more dramatic than for the other parameters. Table 6 shows the statistics for each parameter, as it alone is optimized.

TWELVEPOLE CREEK	Е	E1	Dv	d1	R ²	RMSE (cfs)	MAE (cfs)
Initial parameters	0.42	0.38	0.17	0.70	0.71	85.91	32.63
LZSN	0.41	0.37	0.19	0.70	0.71	87.10	33.16
AGWETP	0.42	0.38	0.16	0.70	0.71	85.96	32.64
LZETP	0.42	0.38	0.17	0.70	0.71	85.91	32.63
DEEPFR	0.43	0.39	0.10	0.70	0.71	85.44	31.97
BASETP	0.43	0.38	0.17	0.70	0.71	85.62	32.48
AGWRC	0.44	0.40	0.16	0.70	0.71	84.87	31.65
IRC	0.45	0.38	0.16	0.69	0.70	83.99	32.67
INTFW	0.45	0.39	0.17	0.70	0.71	83.80	32.03
UZNS seasonal	0.51	0.42	0.14	0.71	0.73	78.90	30.72
INFILT	0.52	0.41	0.15	0.69	0.73	78.14	30.74
BUFFALO CREEK	Е	E1	Dv	d1	R^2	RMSE (cfs)	MAE (cfs)
Initial parameters	0.49	0.47	0.02	0.74	0.75	233.41	92.12
LZSN	0.47	0.46	0.04	0.74	0.75	237.51	92.96
AGWETP	0.49	0.47	0.02	0.74	0.75	233.61	92.22
LZETP	0.49	0.47	0.02	0.74	0.75	233.41	92.12
DEEPFR	0.49	0.46	0.05	0.74	0.75	232.77	92.50
BASETP	0.49	0.47	0.02	0.74	0.75	232.31	91.55
AGWRC	0.50	0.48	0.01	0.74	0.75	230.61	89.35
IRC	0.51	0.46	0.02	0.72	0.74	227.84	92.87
INTFW	0.53	0.47	0.02	0.74	0.76	223.82	91.54
UZSN seasonal	0.53	0.47	0.00	0.73	0.75	224.51	91.81
INFILT	0.58	0.47	0.01	0.72	0.76	211.15	91.02
	F	⊑1	П	d1	P^2	PMSE (cfs)	MAE (cfs)
Initial parameters	0.19	0.34	0.09	0.68	0.64	819.49	333.74
LZSN	0.17	0.33	0.10	0.68	0.64	829.87	335.68
AGWETP	0.19	0.34	0.09	0.68	0.64	819.90	333.86
LZETP	0.19	0.34	0.09	0.68	0.64	819.49	333.74
DEEPFR	0.20	0.34	0.03	0.68	0.64	817.63	334.43
BASETP	0.20	0.34	0.09	0.68	0.65	814.80	331.79
AGWRC	0.21	0.35	0.09	0.68	0.65	809.71	325.25
IRC	0.23	0.35	0.09	0.67	0.63	798.99	328.13
UZSN seasonal	0.26	0.37	0.08	0.69	0.66	784.24	315.50
INTFW	0.31	0.38	0.09	0.69	0.68	754.30	313.57
INFLT	0.57	0.45	0.08	0.71	0.76	598.78	278.10
CLEAR FORK	F	F1	D,	d1	R^2	RMSE (cfs)	MAF (cfs)
Initial parameters	0.46	0.42	0.07	0.72	0.74	215.47	96.65
LZSN	0.45	0.41	0.07	0.72	0.74	225.16	96.94
AGWETP	0.46	0.41	0.07	0.72	0.74	215.65	96.84
LZETP	0.46	0.42	0.07	0.72	0.74	215.47	96.65
DEEPFR	0.46	0.42	0.01	0.72	0.74	214.58	96.54
BASETP	0.47	0.42	0.07	0.72	0.74	214.22	95.75

Table 6 : Summary of Individual Parameter Optimization Statistics

	0.47	0.44	0.07	0.70	0.74	010.00	02.47
AGWRC	0.47	0.44	0.07	0.72	0.74	212.82	92.47
INTFW	0.49	0.43	0.07	0.72	0.75	208.71	94.27
UZSN seasonal	0.49	0.46	0.05	0.73	0.74	208.27	89.96
IRC	0.51	0.43	0.07	0.71	0.74	205.35	93.43
INFILT	0.59	0.47	0.06	0.72	0.77	188.56	87.52
BIG SANDY	E	E1	Dv	d1	R ²	RMSE (cfs)	MAE (cfs)
Initial parameters	0.38	0.37	0.00	0.69	0.71	505.24	229.67
LZSN	0.37	0.36	0.01	0.69	0.71	512.18	232.80
AGWETP	0.38	0.37	0.00	0.69	0.71	505.50	229.84
LZETP	0.38	0.37	0.00	0.69	0.71	505.24	229.67
DEEPFR	0.38	0.35	0.06	0.69	0.70	506.13	234.78
BASETP	0.38	0.37	0.00	0.69	0.71	503.27	228.01
UZSN seasonal	0.38	0.39	0.01	0.70	0.70	506.67	219.97
AGWRC	0.40	0.38	0.00	0.70	0.71	499.81	225.36
IRC	0.43	0.41	0.00	0.70	0.70	486.69	213.69
INTEW	0.48	0.41	0.00	0.71	0.74	461.64	212.58
INFILTR	0.57	0.48	0.01	0.73	0.76	422.38	189.14

In a next step of the calibration and sensitivity analysis, the PEST program was setup to optimize all eleven parameters for each of nine (9) PERLNDs in the same run (the Forest Land categories were constrained to use an identical parameter set). The final optimized parameter values are presented in Table 7 and the statistical data from this run are shown in Table 9 as run # 1. Although the deviations of runoff volume, D_{y} , predominately show a good model performance, values of Coefficient of Efficiency, E, are not very high for the calibration watersheds and somewhat lower for the verification watersheds.

	PERLND	PARAMETERS										
#	SEGMENT	LZSN (in)	INFILT (in/hr)	KVARY (1/in)	AGWCR (1/day)	DEEPFR	BASETP	AGWETP	UZSN (in)	INTFW	IRC (1/day)	LZETP
1	Forest Land Steep	4.99	0.012	0.001	0.938	0.21	0.02	0.0099	0.499	3.5	0.27	0.599
2	Forest Land Moderate	4.99	0.012	0.001	0.938	0.21	0.02	0.0099	0.499	3.5	0.27	0.599
3	Forest Land Mild	4.99	0.012	0.001	0.938	0.21	0.02	0.0099	0.499	3.5	0.27	0.599
4	Pasture/ Grassland	4.99	0.020	0.0010	0.938	0.21	0.02	0.0099	0.704	3.5	0.27	0.462
5	Urban/ Developed	4.86	0.004	0.0090	0.933	0.21	0.02	0.0099	0.868	4.2	0.28	0.205
6	Mined Land	6.93	0.020	0.0020	0.934	0.21	0.02	0.0099	0.502	3.5	0.26	0.209
7	Barren Land	5.71	0.014	0.0190	0.971	0.21	0.02	0.0099	0.271	5.0	0.30	0.453
8	Surface Water	4.33	0.037	0.0010	0.912	0.21	0.02	0.0099	0.974	2.1	0.24	0.115
9	Row Crop Agricult.	4.97	0.020	0.0060	0.938	0.21	0.02	0.0099	0.500	3.7	0.26	0.319
10	Wetland	6.99	0.007	0.0060	0.953	0.21	0.02	0.0099	0.967	3.8	0.26	0.501

 Table 7 : PEST Optimized Parameters Values for 11 PERLND Segments.

The final PEST calibration was done using the parameters INFILT, UZSN, INTFW, and IRC as variables, while holding the remaining parameters fixed at their original values within the Forest land-use/cover PERLND. These parameters are those identified earlier to be the most influential in the sensitivity study. Forest is the major land-use/cover for all the calibration watersheds, and therefore, its parameters will be the most influential. Table 8 list the values of the optimized parameters and compares them to values obtained by other investigators in unrelated calibration studies.

The analyzed statistics, which are summarized in Table 9 as a run # 2, show a good model performance with the Coefficient of Efficiency, E, the possible range of which is from minus unity (poor model) to 1.0 (perfect model), at 0.57 for the entire simulation period of six years for 5 calibration watersheds. This is in a range of values reported by similar investigations. The deviation of total runoff volume for four of the watersheds is less then 15% which is rated as good performance.

Parameter	Units	Optimized	Moore et al.	Chew et al.	Laroche et al.	Srinivasan et al.	Engelmann	Doherty et al.
		value	1988	1991	1996	1999	1999	2003
LZSN	in	3	4.9	5	14	5.12-5.9	3.82	2-2.58
INFILT	in/hr	0.0634	0.004-0.0196	0.063-0.14	0.23	0.039-0.39	0.0394	0.028-0.071
UZSN	in	0.96 ^S	0.197	0.016-0.043	0.756	0.31-0.75	0.7	1.55-2
KVARY	in-1	3			0.06		0.61	
AGWRC	day ⁻¹	0.983	0.98		0.99	0.8-0.9	0.99	0.942-0.988
INFEXP		2			0		2	
INTFW		2.62	1		9.83	0.8-3.0	0.5	1-1.31
INFILD		2*			1.99		1	
IRC	day ⁻¹	0.5	0.1		0			0.499-0.533
LZETP		0.5 ^S	0.3-0.55		0-0.8	0.1-0.8	0.42	0.5
DEEPFR		0.2					0.1	0.1(fixed)
BASETP		0.05					0.02	0.157-0.182
AGWETP		0.01*					0	0.02-0.027
* Fixed init	aulev lei							

 Table 8 : Comparison of the Final Set of Parameters for the Forest PERLND categories with those reported by other studies.

--- Not mentioned in reference

^s Monthly variable value (table below)

	Jan	Feb	Mar	April	May	June	July	Aug	Sept	Oct	Nov	Dec
UZSN	1.66	1.54	1.28	0.92	0.56	0.33	0.26	0.38	0.66	1.01	1.36	1.59
LZETP	0.056	0.006	0.089	0.28	0.53	0.78	0.95	0.99	0.9	0.73	0.47	0.23

The verification study used the five watersheds shown in Figure 2. The precipitation data were taken from the five year period between 1971 and 1975. The HSPF runs were performed using two sets of parameters that were the results of optimization runs #1 and #2, described above. A summary of statistics for the verification watersheds is included in Table 9.

Conclusions of the HSPF Model Performance Evaluation

Two sets of HSPF parameters were developed by means of PEST optimization runs. An additional set was obtained by a manual calibration by using the HSPEXP. These sets are defined and presented in Table 9:

Run # 1 – All parameters for nine (9) PERLND segments were optimized jointly using PEST.

Run # 2 – Optimization was done for the most sensitive parameters and only for Forest land-use/cover with all slope categories treated as equivalent.

Run # **3** – All parameters for eleven (11) PERLNDs were manually calibrated with the guidance of the HSPFEXP program.

A comparison of the statistics of the HSPF model performances for three runs above includes the means and standard deviations of the predicted and actual discharges during the period of the calibration. Run #1 has an average error of less then 10 % for all calibration watersheds and three of the verification watersheds. For Run #2, the simulated mean is less than 12% for calibration watersheds and less than 15 % for four of the verification watersheds. Statistics for Run # 3 indicate less then 13 % average error for the calibration watersheds and less then 13% for four of the verification watersheds. For all three runs, verification watersheds Piney and Big Sandy (1971-1975) show the highest average error, 13-22%. Comparison of observed and predicted standard deviations demonstrates that all three runs do not give a good description of observed flow variance, with an especially poor performance noted on Tygart (Elkins) and Big Sandy calibration watersheds, and Tygart (Belington), Tygart (Dailey) and Big Sandy verification watersheds.

Deviations of total runoff volume (D_{ν}) over the entire simulation period for every run gives an uneven picture, with the model performance varying from very good to just fair, depending on the watershed. For example, for the Big Sandy watershed all three runs indicate a good model performance with D_{ν} less than 10 percent for the simulation period, but for the verification period for the same watershed, the performance can be classified only as fair. Generally, averaging performances of all watersheds involved (calibration and verification), run # 3 produced the smallest runoff deviations and run # 2 the largest.

For years, correlation-based statistics such as the Coefficient of Determination, R^2 , which describes the degree of collinearity between model predictions and observations, were the most popular measurements of demonstrating the accuracy of a hydrologic model. Although it was pointed out by some investigations (Willmott, 1981; Willmott, 1984; Willmott et al., 1985; Legates and McCabe, 1999) that these kinds of measurements have limitations and may mislead a model evaluation, these statistics remain widely used and reported. Donigian (2002), based on his many years of experience working with the HSPF, derived a chart (see Figure 10) that evaluates model performance by ranges of values of the Coefficient of Determination. According to this table, run # 2 outperformed the other two runs. By Donigian's standards, run # 2 demonstrated good performance for calibration watersheds and very good performance for verification watersheds.

Slight differences in the Modified Index of Agreement, in run # 2, that produced slightly higher values as compared to the other runs are of minimal use in determining best performance. However, both the Coefficient of Efficiency, *E*, and the Modified

Coefficient of Efficiency, E1, which are suggested as the most appropriate relative error available (Legates, 1999) show better (higher) values for run # 2. Also, E and E1 of run # 2 are more consistent for all considered watersheds. Runs # 1 and #3 produce negative E for the verification Piney Creek watershed, which indicates that the observed mean is a better predictor than the model.

At first glance the magnitudes of absolute error statistics *MAE* and *RMSE* are lower for run # 2. However, further segmentation of RMSE into systematic and unsystematic sources of error presents a different picture with runs #1 and #3 having a smaller systematic and higher unsystematic error values than run # 2, and therefore, they have a higher potential accuracy.

The conclusion, with regard to selection of the best parameter set, of the three sets compared above, remains to be determined at the time of this report. Overall, runs #2 and #3 have positive features, with run #2 yielding the best statistical results. Currently, the run #2 parameter set is being used in the WCMS-HSPF model.

		Table 9.	Summar	y of Calib	ration Ru	ın Statisti	ics for Cal	ibration <i>i</i>	and Veri	fication '	Watersh	eds		
		Mean	Mean	Standard	Standard	Coef. of	Modified	Deviation	Modif.	Coeff. of	Root m.	Systematic	Unsystematic	Mean
		Observed	Simulated	Deviation	Deviation	Efficiency	Coeff. of	of Runoff	index	Deter-	sq. err.	RMSE,	RMSE,	abs
		Ō, cfs	Ŝ, cfs	of O, cfs	of S, cfs		Efficiency	Volume	of agr.	mination	cfs	cfs	cfs	cfs
				S ₀	S _s	ш	E1	Ď	d1	R²	RMSE	RMSEs	RMSEu	MAE
Calibration	w/sheds	٢	2	с	4	5	9	7	8	6	10	11	12	13
Twelvepole	run #1	49.23	54.58	113.24	120.69	0.34	0.33	0.11	0.69	0.69	92.03	30.05	86.96	35.20
Twelvepole	run #2	49.23	48.95	113.24	72.85	0.57	0.48	0.01	0.72	0.76	74.56	57.72	47.17	27.30
Twelvepole	run #3	49.23	55.46	113.24	110.82	0.40	0.37	0.13	0.69	0.69	87.86	36.84	79.75	32.94
Buffalo	run #1	173.61	167.40	326.12	363.89	0.42	0.42	0.04	0.72	0.75	248.24	54.80	242.06	100.82
Buffalo	run #2	173.61	152.90	326.12	228.81	0.55	0.48	0.12	0.72	0.75	218.26	156.51	152.05	90.50
Buffalo	run #3	173.61	171.90	326.12	349.45	0.39	0.44	0.00	0.72	0.73	249.98	67.67	240.61	95.83
Tygart(E)	run #1	553.09	542.94	911.35	755.43	0.61	0.50	0.02	0.74	0.78	566.86	318.88	468.49	249.91
Tygart(E)	run #2	553.09	537.81	911.35	756.02	09.0	0.50	0.03	0.74	0.78	576.45	324.54	476.23	250.69
Tygart(E)	run #3	553.09	594.59	911.35	1078.79	00.0	0.27	0.08	0.65	09.0	905.76	266.76	865.37	364.00
Clear Fork	run #1	169.61	171.68	292.94	333.91	0.30	0.32	0.01	0.68	0.70	245.70	59.22	238.40	112.64
Clear Fork	run #2	169.61	153.29	292.94	223.53	0.58	0.54	0.10	0.75	0.76	189.48	123.07	144.02	76.36
Clear Fork	run #3	169.36	174.55	292.29	298.47	0.43	0.39	0.03	0.71	0.72	220.75	73.70	206.78	99.87
Big Sandy	run #1	427.52	408.82	643.19	727.43	0.29	0.28	0.04	0.67	0.69	541.94	139.51	523.55	261.71
Big Sandy	run #2	427.52	381.16	643.19	509.35	0.55	0.49	0.11	0.74	0.75	432.39	267.56	339.53	184.24
Big Sandy	run #3	427.52	424.05	643.19	705.09	0.28	0.32	0.00	0.68	0.68	541.53	163.73	517.82	243.57
Verification	w/sheds	٢	2	3	4	5	9	7	8	6	10	11	12	13
Tygart(B)	run #1	1041.93	938.15	1380.20	1486.69	0.35	0.31	0.10	0.67	0.70	1115.79	352.03	1058.45	596.28
Tygart(B)	run #2	1041.93	896.07	1380.20	1071.42	0.67	0.54	0.14	0.75	0.83	790.26	513.71	600.17	399.84
Tygart(B)	run #3	1041.93	970.26	1380.20	1459.52	0.28	0.32	0.07	0.67	0.66	1173.43	421.31	1094.79	584.71
Piney	run #1	74.86	86.91	100.44	153.74	-0.11	0.11	0.16	0.63	0.73	106.03	52.22	104.60	17.10
Piney	run #2	74.86	84.78	100.44	112.73	0.55	0.38	0.13	0.71	0.81	67.64	13.56	66.25	36.24
Piney	run #3	74.86	91.29	100.44	154.27	-0.22	0.14	0.22	0.64	0.71	110.80	18.49	109.21	50.54
Panther	run #1	49.95	46.77	97.27	108.30	0.61	0.46	0.06	0.75	0.83	60.54	7.81	60.02	27.03
Panther	run #2	49.95	43.51	97.27	71.01	0.67	0.56	0.13	0.77	0.83	55.82	39.04	39.87	21.92
Panther	run #3	49.95	47.58	97.27	96.51	0.68	0.53	0.05	0.77	0.84	54.81	16.33	52.30	23.41
Big Sandy	run #1	515.41	437.50	726.86	907.71	0.14	0.24	0.15	0.66	0.68	675.93	132.14	662.69	323.16
Big Sandy	run #2	515.41	414.60	726.86	667.51	0.45	0.40	0.20	0.71	0.71	539.30	269.52	466.96	252.77
Big Sandy	run #3	515.41	449.56	726.86	890.30	0.09	0.25	0.13	0.66	0.65	694.92	161.40	675.71	315.96
Tygart(D)	run #1	459.87	450.27	660.61	726.87	0.40	0.32	0.02	0.68	0.73	513.59	130.32	496.63	266.34
Tygart(D)	run #2	459.87	429.56	660.61	508.65	0.70	0.55	0.07	0.76	0.84	363.68	235.81	276.75	176.55
Tygart(D)	run #3	459.87	463.60	660.61	714.87	0.33	0.33	0.01	0.68	0.70	538.80	163.23	513.31	260.96

le 9. Summary of Calibration Run Statistics for Calibration and Verification Watershed	S	veter
le 9. Summary of Calibration Run Statistics for Calibration and Verification Waters	hed	ú
le 9. Summary of Calibration Run Statistics for Calibration and Verification Wa Mean Standard Standard Coef of Modified Deviation Modif Coeff of Roy	ters	t n
e 9. Summary of Calibration Run Statistics for Calibration and Verification	Wa	č a
le 9. Summary of Calibration Run Statistics for Calibration and Verificat Mean Standard Standard Coef of Modified Deviation Modif Coef	ion	f
e 9. Summary of Calibration Run Statistics for Calibration and Verif	iicat	Coef
e 9. Summary of Calibration Run Statistics for Calibration and V Mean I Standard I Standard Coef of Modified Deviation Modi	7eril	
e 9. Summary of Calibration Run Statistics for Calibration and Mean Standard Standard Cone of Modified Deviation	v pu	Modi
e 9. Summary of Calibration Run Statistics for Calibratio	n ai	2
e 9. Summary of Calibration Run Statistics for Calibr Mean Standard Standard Coef of Modified De	atio	viatio
e 9. Summary of Calibration Run Statistics for Ca Mean Istandard Standard Coef of Modified	libr	۵ ۲
e 9. Summary of Calibration Run Statistics for Mean Standard Standard Cool of Modifi	·Ca	P d
e 9. Summary of Calibration Run Statistics	for	Andif
le 9. Summary of Calibration Run Statis	stics	-
le 9. Summary of Calibration Run S	tatis	f Of
le 9. Summary of Calibration Ru	IN S	d C
e 9. Summary of Calibration	l Ru	L,
le 9. Summary of Calibra	tion	epue:
le 9. Summary of Cali	ibra	Ŭ
e 9. Summary of Stan	Cali	dard
e 9. Summary	of	Stan
le 9. Sumn	lary	
le 9. Su	umn	5
le 9	S.	M
	le 9	

Criteria							
R	← 0.75	0.80	0.85		0.90		0.95
<mark>.</mark> ~	→ 0.6		0.7 —		0.8		0.9
Daily Flows	Poor	Fair		Good		Very Good	
Monthly Flows	Poor		Fair		Good		Very Good

Figure 10 : R and R2 Value Ranges for Model Performance (Donigian, A., 2002)

References

Al-Abed, N.A., and H.R. Whiteley, 2002, "Calibration of the Hydrologic Simulation Program Fortran (HSPF) Model Using Automatic Calibration and Geographical Information Systems," *Hydrologic Processes*, Vol. 16, 3169-3188.

American Society of Civil Engineers, 1993, "Criteria for Evaluation of Watershed Models," ASCE Task Committee on Definition of Criteria for Evaluation of Watershed Models. *J. Irrigation and Drainage*, 119(3):429-442.

Bicknell, B.R., Imhoff, J., C., Kittle, J., L., Jr., Jobes, T., H., Donigian, A., S., Jr., 2001, Hydrological Simulation Program - Fortran, HSPF Version 12 User's Manual, U.S. EPA, Athens, Georgia, March 2001.

Dinicola, R.S., 2001, "Validation of a numerical modeling method for simulating rainfall-runoff relations for headwater basins in western King and Snohomish Counties, Washington," USGS Water-Supply Paper 2495.

Dinicola, R.S., 1990, "Characterization and Simulation of Rainfall-Runoff Relations for Headwater Basins in Western King and Snohomish Counties, Washington," U.S. Geological Survey Water Resources Investigations Report 89-4052, Tacoma, Washington.

Doherty, J., 2002, "PEST Surface Water Utilities, Watermark Numerical Computing and Documentation," University of Idaho, September 2002. <u>http://www.sspa.com/pest</u>

Donigian, A.S., Jr., 2003, NRAC - HSPF Training Workshop, Aqua Terra Consultants, Morgantown, WV, March 4-6.

Donigian, A.S., Jr., 2002, "Watershed Model Calibration and Validation, the HSPF Experience." *WEF 2002 Specialty Conference Proceedings*, Nov. 13-16, Phoenix, AZ.

EPA BASINS Technical Note 6, 2000, U.S. Environmental Protection Agency, EPA-823-R00-012, July, 2000.

HSPFParm: An Interactive Database of HSPF Model Parameters, Version 1.0. EPA-823-R-99-004, April, 1999, U.S. EPA, Washington, D.C.

Legates, D.R., and G.J. McCabe, 1999, "Evaluating the Use of "Goodness of Fit" Measures in Hydrologic and Hydroclimatic Model Validation," *Water Resource Research*, 35:233-241.

Lohani, V., D.F. Kibler, and J. Chanat, 2002, "Constructing a Problem Solving Environmental Tool for Hydrologic Assessment of Land Use Change," *Journal of the American Water Resources Association*, Vol. 38, No. 2, April, p. 439 – 452. Martin, J.D., R.F. Duwelius, and C.G. Crawford, 1990, "Effects of Surface Coal Mining and Reclamation on the Geohydrology of Six Small Watersheds in West-Central Indiana," U.S.G.S. Water Supply Paper 2368, Chapter B.

Martinec, J and A. Rango, 1989, "Merits of Statistical Criteria for the Performance of Hydrological Models," *Water Resources Bulletin*, 25(2):421-431.

Nash, J.E., and J.V. Sutcliffe, 1970, "River flow forecasting through conceptual models: Part I- A discussion of principles," *J.Hydrology*, 10, 282-290.

Ribeiro, C.T., 1996, "Impact of Land Use on Water Resources: Integrating HSPF and a raster-vector GIS," *HydroGIS 96: Application of Geographic Information Systems in Hydrology and Water Resources Management*, Proceedings of the Vienna Conference, April 1996, IAHS Publ. no. 235.

Sams, J.I. and Witt, E.C., 1995, "Simulation of streamflow and sediment transport in two surface-coal-mined basins in Fayette County, Pennsylvania", USGS Water-Resources Investigations Report 92-4093.

Srinivasan, M.S., J.M. Hamlett, R.L. Day, J.I. Sams, and G.W. Petersen, 1998, "Hydrologic Modeling of Two Glaciated Watersheds in Northeast Pennsylvania," *Journal of the American Water Resources Association*, Vol. 34, No. 4, p. 963 – 978.

Strager, Jacquelyn M. and Charles B. Yuill, 2002, "The West Virginia Gap Analysis Project, Final Report," USGS GAP Analysis Program. <u>ftp://ftp.gap.uidaho.edu/products/west_virginia/report/wvgaprpt.pdf</u>

Users Manual for an Expert System (HSPEXP) for Calibration of the Hydrological Simulation Program – Fortran, 1994, U.S. Geological Survey Water-Resources Investigations Report 94-4168, Reston, Virginia.

Willmott, C. J., 1981, "On the Validation of Models," Physical Geography, 2:184-194

Willmott, C.J., 1984, "On the Evaluation of the Model Performance in Physical Geography," *Spatial Statistics and Models*, Gaile, G.L. and C.J. Willmott (eds), D. Reidel, Dordrecht, 443-460.

Willmott, C.J., S.G. Ackleson, R.E. Davis, J.J. Feddema, K.M. Klink, D.R. Legates, J. O'Donnell, and C.M.Rowe, 1985, "Statistics for The Evaluation and Comparison of Models," *J.Geophys. Res.*, 90:8995-9005.

Appendix B. Final Calibration User's Control Input File (UCI)

RUN

RCHRES

11

```
GLOBAL
 UCI Created by WinHSPF for Combined
           1985/01/02 01:00 END
                                   1990/12/31 23:00
 START
 RUN INTERP OUTPT LEVELS 1 2
 RESUME
          0 RUN
                                             UNITS
                                                       1
                    1
END GLOBAL
FILES
<FILE> <UN#>***<----FILE NAME------
>
MESSU
         24 Combined.ech
         91 Combined.out
25 Combined.wdm
WDM
END FILES
OPN SEQUENCE
                    INDELT 01:00
 INGRP
+++
            TWELVE POLE
     PERLND 101
     PERLND
              111
     PERLND
              121
     PERLND
              201
              301
     PERLND
     PERLND
              401
     PERLND
              601
               701
     PERLND
     PERLND
               801
     RCHRES
                 3
     RCHRES
                 2
     RCHRES
                1
* * *
       BUFFALO
     PERLND
              102
     PERLND
              112
     PERLND
              122
     PERLND
              202
     PERLND
              302
              402
     PERLND
              602
     PERLND
               702
     PERLND
               802
     PERLND
     PERLND
               902
     RCHRES
               5
     RCHRES
                 б
     RCHRES
                 4
                 7
     RCHRES
     RCHRES
                 8
+++
      TYGART AT ELKINS
     PERLND 103
     PERLND
              113
     PERLND
              123
     PERLND
             203
              303
     PERLND
     PERLND
              403
              603
     PERLND
               703
     PERLND
     PERLND
               803
     PERLND
               903
```

	RCHRE	ES	13											
	RCHRE	ES	14											
	RCHRE	ES	15											
	RCHRE	ES	12											
	RCHRE	ES	10											
	RCHRE	IS	9											
* * *		CI	EAR F	'ORK										
	DERIN	JD OT	104	0141										
	DEDI	JD	114											
	PERLI		104											
	PERLI		204											
	PERLY		204											
	PERLI	1D	304											
	PERLN	JD	404											
	PERLN	JD	604											
	PERLN	JD	704											
	PERLN	JD	804											
	PERLN	JD	904											
	RCHRE	ES	16											
	RCHRE	S	17											
	RCHRE	25	18											
	DCUDI	10	10											
	DOUDI	20	20											
* * *	RCHRE		20											
~ ~ ~		BI	G SAN	IDY										
	PERLI	1D	205											
	PERLN	1D	805											
	PERLN	JD	305											
	PERLN	JD	905											
	PERLN	JD	705											
	PERLN	JD	405											
	PERLN	JD	125											
	PERLN	JD	115											
	DEDI	JD	105											
			605											
	PERLI		005											
	RCHRE	S	22											
	RCHRE	S	21											
	RCHRE	ES	23											
	RCHRE	ES	25											
	RCHRE	ES	24											
	RCHRE	ES	26											
	RCHRE	ES	27											
	COPY		1											
	COPY		2											
	COPY		3											
	CODV		4											
	CODV													
T.	COPI	תחי	5											
		JRP	-											
END O	PN SEÇ	QUENC.	E											
PERLN	D													
ACT:	IVITY													
*** <]	PLS >				Active	Sect	ions							* * *
*** x	- x	ATMP	SNOW	PWAT	SED	PST	PWG	PQAL	MSTL	PEST	NITR	PHOS	TRAC	* * *
101	905	1	1	1	0	0	0	0	0	0	0	0	0	
END	ACTI	/ITY												
ודקק	NT-TNF	rΟ												
*** ~		0				Dri	nt f	lagg						
	гцол					LT1	L.	Lays						тти
FIK					a==	D <i>c</i> -		D 0		D D C C		DUICE		
*** X	- x	A.I.Wb	SNOW	PMA.L	SED	P.S.I.	PWG	PQAL	MS.I.P	PEST	NTIK	PHOS	TRAC	-
101		6	4	6	6	6	6	6	6	6	6	6	6	1
12														
102														
TOZ	905	б	6	б	б	б	6	6	6	6	6	6	6	1

END PRINT-INFO

GEN-INFO	•.			
*** Name	Unit	-systems	Printer	BinaryOut
*** <pls></pls>		t-series	Engl Metr	Engl Metr
*** X - X		in out		
*** TWELVE P	POLE CREEK			
101 105Forest Land Steep		1 1	91 0	0 0
111 115Forest Land Moderate		1 1	91 0	0 0
121 125Forest Land Mild		1 1	91 0	0 0
201 205Pasture/Grassland		1 1	91 0	0 0
301 305Urban/Developed		1 1	91 0	0 0
401 405Mined Land		1 1	91 0	0 0
601 605Barren Land		1 1	91 0	0 0
701 705Surface Water		1 1	91 0	0 0
801 805Row Crop Agricult.		1 1	91 0	0 0
902 905Wetland		1 1	91 0	0 0
END GEN-INFO				
ATEMP-DAT				
*** < DI.S > FI.DAT AIRTEMD				
**x - x (ft) (deg F)				
END AIEMP-DAI				
CNOW ET ACC				
101 005 1 0				
END SNOW-FLAGS				
CNOW DADWI				
SNOW-PARMI		CNOLIGE	COLUMN	
AAA < PLS> LAT MELEV	SHADE	SNOWCF	COVIND	KMELT
TBASE			<i>,</i> , , ,	
*** x - x degrees (it)			(in)	(1n/d.F)
(F)				
101 125 38.5 1672.	0.8	1.2	1.	0.12
32.		1 0	-	0.10
201 905 38.5 1672.	0.2	1.2	1.	0.12
32.				
END SNOW-PARM1				
SNOW-PARM2				
*** <pls> RDCSN TSNOW</pls>	SNOEVP	CCFACT	MWATER	MGMELT
*** x - x (deg F)				(in/day)
101 905 0.15 32.	0.1	1.	0.03	0.01
END SNOW-PARM2				
PWAT-PARM1				
*** <pls> Flag</pls>	js			
*** x - x CSNO RTOP UZFG VCS V	UZ VNN V	IFW VIRC	VLE IFFC	HWT IRRG
101 905 1 1 1 1	0 0	0 0	1 1	0 0
END PWAT-PARM1				
PWAT-PARM2				
*** < PLS> FOREST LZSN	INFILT	LSUR	SLSUR	KVARY
AGWRC				
*** x - x (in)	(in/hr)	(ft)		(1/in)
(1/day)				
101 105 0.07 6.	0.012	100.	0.38	0.
0.9				
111 115 0.07 6.	0.012	200.	0.2	0.
0.91				

121	125	0.07	б.	0.012	300.	0.09	0.
0.93							
201	205	0.	5.	0.01	200.	0.16	0.
0.89	205	0	-	0 005		0.14	0
301	305	0.	5.	0.005	200.	0.14	0.
0.89	40E	0	0	0 02	200	0 22	0
0 80	405	0.	٥.	0.03	200.	0.33	0.
601	605	0	5	0 015	200	0 23	0
0.89	005	0.	5.	0.015	200.	0.25	0.
701	705	0.	5.	0.001	200.	0.11	0.
0.89							
801	805	0.	5.	0.015	200.	0.1	0.
0.89							
902	905	0.	2.	0.1	200.	0.09	0.
0.89							
END	PWAT-	PARM2					
		- 0					
PWAT	r-par™	13				55555	
	PLS>	PEIMAX	PEIMIN	INFEXP	TNF.TPD	DEEPFR	BASETP
AGWETE	-	(dog E)	(dog F)				
101	- <u>x</u> 111	(deg F)	(ueg F)	2	2	0	0 02
0 01	T T T	59.		۷.	۷.	0.	0.02
121		39.	33.	2.	2.	0.	0.02
0.01							
201	905	39.	33.	2.	2.	0.	0.02
0.01							
END	PWAT-	PARM3					
PWAT	ſ-PARM	14					
*** <i< td=""><td>PLS ></td><td>CEPSC</td><td>UZSN</td><td>NSUR</td><td>INTFW</td><td>IRC</td><td>LZETP</td></i<>	PLS >	CEPSC	UZSN	NSUR	INTFW	IRC	LZETP
*** X	- X	(in)	(in)	0.05	2	(1/day)	0 60
101	105 115	0.14	0.7	0.35	3.	0.5	0.68
101	125	0.14	0.9	0.35	2.5	0.5	0.68
201	205	0.14	1.1	0.55	2. 1 5	0.5	0.00
301	305	0.05	0.5	0.7	1	0.5	0.40
401	405	0.01	0.8	0.15	2.5	0.5	0.2
601	605	0.01	0.5	0.2	1.5	0.5	0.38
701	705	0.01	1.	0.01	1.	0.5	0.1
801	805	0.05	0.5	0.15	1.5	0.5	0.46
902	905	0.1	1.	0.5	1.	0.5	0.7
END	PWAT-	PARM4					
PWAT	r-stai	'El					
*** <	PLS>	PWATER st	tate varial	oles (in)			
*** X	- x	CEPS	SURS	UZS	IFWS	LZS	AGWS
GWVS	0.05	0 01	0 01	0 7	0 01	r	1
101	905	0.01	0.01	0.7	0.01	5.	⊥.
U. END	ידי אזגרו	ር ጥ እ ጥ ፱ 1					
END	PWAI-	SIAILI					
MON-	- INTEE	CEP					
*** <f< td=""><td>PLS ></td><td>Intercept</td><td>tion stora</td><td>e capacity</td><td>z at start</td><td>of each mo</td><td>onth (in)</td></f<>	PLS >	Intercept	tion stora	e capacity	z at start	of each mo	onth (in)
*** x	- x	JAN FEB	MAR APR	MAY JUN	JUL AUG	SEP OCT	NOV DEC
101	125	0.03 0.04	0.05 0.06	0.1 0.23	0.75 0.8	0.8 0.75	0.2 0.06
201	205	0.06 0.06	0.060.075	0.095 0.1	0.11 0.11	0.110.075	0.070.065
301	605	0.01 0.01	0.01 0.01	0.01 0.01	0.01 0.01	0.01 0.01	0.01 0.01
701	705	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.
801	805	0.03 0.03	0.03 0.03	0.01 0.05	0.12 0.14	0.14 0.01	0.05 0.04
902	905	0.03 0.03	0.03 0.03	0.04 0.05	0.06 0.06	0.06 0.05	0.04 0.03
END	MON-I	NTERCEP					

MON-LZETPARM *** <PLS > Lower zone evapotransp parm at start of each month *** x - x JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

 101
 125
 0.2
 0.25
 0.3
 0.4
 0.6
 0.7
 0.8
 0.8
 0.7
 0.45
 0.3
 0.2

 201
 205
 0.15
 0.15
 0.2
 0.25
 0.4
 0.5
 0.6
 0.6
 0.5
 0.25
 0.15
 0.15

 301
 705
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 END MON-LZETPARM END PERLND RCHRES ACTIVITY *** RCHRES Active sections *** x - x HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG 1 27 1 0 0 0 0 0 0 0 0 0 END ACTIVITY PRINT-INFO *** RCHRES Printout level flags *** x - x HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR 1 27 5 6 6 6 6 6 6 6 6 6 1 9 END PRINT-INFO GEN-INFO * * * Name Nexits Unit Systems Printer *** RCHRES t-series Engl Metr LKFG *** x - x in out 1 27 1 1 1 0 0 0 0 0 END GEN-INFO HYDR-PARM1 *** Flags for HYDR section ***RC HRES VC A1 A2 A3 ODFVFG for each *** ODGTFG for each FUNCT for each *** x - x FG FG FG FG possible exit *** possible exit possible exit 27 0 1 1 1 4 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 END HYDR-PARM1 HYDR-PARM2 *** RCHRES FTBW FTBU LEN DELTH STCOR KS DB50 (ft) (ft) *** x - x (miles) (in) 0.5 105.3.2154.3.259.3.2 8.39 0. 1. 1 0.01 2 6.93 1.37 0. 2. 0.01 0. 3. 0.5 0.01 3 * * * BUFFALO CREEK 0.5 0.5 0.5 0.5

 89.
 3.2

 108.
 3.2

 36.
 3.2

 72.
 3.2

 56.
 3.2

 5.37 0.01 0.01 0.01 4 0. 4. 5. 6. 7. Ο. 4.73 5 6 Ο. 0.89 0.01 7 Ο. 8.8 0. 7. 0. 8. 2.94 0.01 8 0.5 TYGART AT ELKINS TYGART AT ELKINS0.9.4.2562.3.20.50.010.10.5.3462.3.20.50.010.11.2.1982.3.20.50.010.12.12.22102.3.20.50.010.13.3.21112.3.20.50.010.14.2.88102.3.20.50.010.15.20.63617.3.20.50.01 9 10 11 12 13 14 15

* * *	CLEAR FO	DRK					
16	0. 16.	0.8	56.	3.2	0.5	0.01	
17	0. 17.	6.85	315.	3.2	0.5	0.01	
18	0 18	2 4 9	115	3 2	0 5	0 01	
10	0. 10.	10 22	E20	2.2	0.5	0.01	
19	0. 19.	10.23	550.	3.2	0.5	0.01	
20	0. 20.	11.3	144.	3.2	0.5	0.01	
* * *	BIG SANI	YC					
21	0. 21.	6.27	430.	3.2	0.5	0.01	
22	0 22	6 95	85	3 2	0 5	0 01	
22	0. 22.		110	2.2	0.5	0.01	
23	0. 23.	7.03	112.	3.2	0.5	0.01	
24	0. 24.	9.48	400.	3.2	0.5	0.01	
25	0. 25.	2.41	167.	3.2	0.5	0.01	
26	0. 26.	0.84	36.	3.2	0.5	0.01	
27	0 27	1 25	121	32	05	0 01	
	0. 27.	1.25		5.2	0.5	0.01	
END HIDR-P	ARMZ						
HYDR-INIT							
* * *	Initial c	onditions	for HYDR s	section			
***RC HRES	VOT.	CAT Initi	al value	of COLIND	initial	value of	
	VOL	CHI INICI	ai vaiac	OI COLIND	INTCIAL	Value of	
OUIDGI	_	_					_
*** x - x	ac-ft	for e	ach possik	ole exit	for each po	ossible exit,ft3	3
1 27	0.01	4.2	4.5 4.5	4.5 4.2	2.1 1	2 0.5 1.2	
1.8							
END HYDR-T	NTT						
END RCHRES							
FTABLES							
ת זמגיית	2						
FIABLE	3						
rows cols				* * *			
8 4							
depth	area	volume	outflowl	* * *			
-	26 75	0	0				
0.10	20.75	4 70	2 20				
0.18	27.04	4.72	3.39				
1.76	29.7	49.57	156.57				
2.2	34.12	62.78	226.99				
2.74	91.68	112.59	293.98				
3 20	93 52	163 42	539 09				
	22.24	103.42					
56.54	2/2.34	9903.	23/3/6.95				
109.78	451.16	29163.131	017580.19				
END FTABLE	3						
FTARLE	2						
	2			* * *			
LOWS COIR							
8 4							
depth	area	volume	outflowl	* * *			
0.	2.36	0.	0.				
0 1	2 4	0 25	0 9				
1 05	2.1	0.25	41 22				
1.05	2.71	2.66	41.33				
1.31	3.23	3.38	59.96				
1.64	8.43	6.12	79.				
1.97	8.65	8.92	145.43				
22 70	29 75	620 02	72022 72				
		1000 67	2022.13				
05.62	50.85	TA05.0/	324306.72				
END FTABLE	2						
FTABLE	1						
rows cole				* * *			
0 4		7					
depth							
- T	area	vorume	OULLIOWI	~ ~ ~			
0.	area 61.02	0.	0.				

2.64 3.3 4.13 4.96 85.09 165.23 END FTABLE	66.39 74.45 203.87 207.23 533.04 858.84 1	168.41 437.37 212.73 633.94 379.77 812.22 549.59 1485.91 30210.79 604843.81 85981.12492556.25	
FTABLE rows cols	5	* * *	
8 4 depth 0. 1.59 1.98 2.48 2.98 51.09 99.2 END FTABLE	area 2.93 2.96 3.27 3.78 10.11 10.33 31.04 51.76 5	volume outflow1 *** 0. 0. 0.47 3.3 4.92 152.46 6.24 221.06 11.2 287.17 16.27 526.95 1011.4 237053.84 3003.21026153.75	
FTABLE rows cols	6	***	
8 4 depth 0. 0.41 4.13 5.17 6.46 7.75 133.01 258.28 END FTABLE	area 42.54 42.83 45.48 49.9 139.03 140.87 319.39 497.91 6	volume outflow1 *** 0. 0. 17.64 48.84 181.87 2256.04 229.24 3269.72 407.59 4149.57 588.32 7576.08 29415.452869977.25 80605.34 11338560.	
FTABLE	4	***	
8 4 depth 0. 2.38 2.97 3.72 4.46 76.57 148.69 END FTABLE	area 29.25 29.52 31.98 36.07 98.32 100.02 265.45 430.88 4	volume outflow1 *** 0. 0. 6.99 9.13 72.83 421.17 92.05 610.49 164.51 784.19 238.23 1435.42 13415.94 595538.19 38523.172479231.25	
FTABLE rows cols	7	* * *	
<pre>8 4 depth 0. 0.28 2.75 3.44 4.3 5.16 88.61 172.06 END FTABLE</pre>	area 41.61 41.97 45.19 50.57 138.72 140.96 358.32 575.67 7	volume outflowl *** 0. 0. 11.5 12.38 119.48 571.5 150.89 828.34 269.27 1060.28 389.57 1939.33 21221.36 783841.31 60190.883217712.75	

FTABLE 8 rows cols * * * 8 4 area volume outflow1 *** depth 0. 115.93 0. 0. 116.75 45.22 0.39 26.38 26.38 1218.51 466.73 3.89 124.22 1766.01 2243.88 4.86 136.65 588.45 6.07 379.91 1046.79 1511.42 4097.78 385.09 7.29 887.77 76500.761566379.25 125.12 242.95 1390.45 210720.06 6223554. END FTABLE 8 FTABLE 11 * * * rows cols 8 4 depth area volume outflow1 *** 122.09 0. 0. 122.81 68.23 99.69 0. 0.56 129.3700.374607.33140.11881.746677.47394.21564.238429.71398.712254.5615373.69 5.57 6.97 8.71 10.45 835.76 106507.48 5592222. 179.35 348.25 1272.82 284580.31 21502960. END FTABLE 11 FTABLE 13 rows cols * * * 8 4 area volume outflow1 *** depth 0. 245.58 0. 0. 247.1 0.51 126.09 64.26 2969.25 5.12 260.75 1295.82 1631.91 2896.78 4175 4303.36 6.4 283.5 5440.34 9924.75 8. 795.53 9.6 805.01 4176.82 1724.57 200411.5 3649837. 164.75 319.9 2644.13 539318.13 14140778. END FTABLE 13 FTABLE 14 * * * rows cols 8 4 depth area volume outflow1 *** 15.32 0. 0. 0. 0.22 15.47 3.32 8.29 16.83 2.16 34.7 382.43 554.36 19.09 2.7 43.88 51.82 52.76 3.37 78.51 713.88 113.78 1307.44 4.05 144.19 6556.01 552488.75 69.47 235.61 18979.622321737.25 134.89 END FTABLE 14 FTABLE 15 rows cols * * * 8 4 area volume outflow1 *** depth 0. 0. Ο. 320.65 0.43 322.82 139.27 71.14

4.33 342.31 1434.85 3286.43 5.41 374.79 1808.21 4763.04 6.761045.873213.86039.488.121059.44637.711024.61 8.12 2372.15 229766.924148549.75 139.33 270.54 3684.89 627142.81 16319877. END FTABLE 15 FTABLE 12 * * * rows cols 8 4 area volume outflow1 *** depth 16.950.0.17.123.668.11 0. 0.21 18.62 38.22 374.45 2.15 2.69 21.13 48.34 542.8 3.36 57.33 86.49 699.07 4.03 58.38 125.35 1280.34 69.17159.737229.28541442.69134.32261.0820935.612276182. END FTABLE 12 FTABLE 10 rows cols * * * 8 4 area volume outflow1 *** depth 11.45 0. 0. 2.46 8.24 0. 11.56 0.21 12.58 25.64 380.13 2.13 14.28 32.43 551.04 2.67 38.74 58.03 709.8 3.33
 4.
 39.45
 84.1
 1300.05

 68.7
 108.16
 4858.9
 550525.19

 133.39
 176.88
 14079.432315942.75
 END FTABLE 10 FTABLE 9 rows cols * * * 8 4 area volume outflow1 *** 104.84 0. 0. depth 0. 104.84 0. 0.59 105.44 61.56 131.01 5.86 110.87 631.48 6055.06 119.91 794.87 8775.7 7.32 337.88 1409.65 11069.75 9.15 10.98 341.64 2031.32 20185.21 707.2 95107.84 7296876. 188.46 365.95 1072.76 253065.2 27934868. end ftable 9 FTABLE 16 rows cols * * * 8 4 area 2.38 2.41 volume outflow1 *** depth 0. 3.45 0. 0.25 Ο. 0.15 0.35 3.73159.194.73230.848.5300.52 1.48 2.66 3.1 1.85 3.⊥ 8.25 2.31 8.5 12.36 551.72 2.78 8.43 47.65 25.9 782.51 252006.27 92.52 43.38 2336.75 1098215. END FTABLE 16
FTABLE	17			
rows cols				* * *
8 4 depth 0. 2.22 2.78 3.47 4.17 71.55 138.93 END FTABLE	area 38.15 38.52 41.85 47.39 128.77 131.08 355.02 578.95 17	volume 0. 8.52 88.91 112.42 201.07 291.32 16667.86 48133.372	outflowl 0. 10.4 479.96 695.73 895.23 1639.29 688793.06 2886226.75	***
FTABLE	18			* * *
rows cols				* * *
depth 0. 0.26 2.64 3.3 4.12 4.95 84.94 164.92 END FTABLE	area 18.03 18.19 19.62 22.01 60.26 61.26 157.65 254.05 18	volume 0. 4.78 49.69 62.76 112.05 162.15 8917.23 25382.83	outflowl 0. 18.1 835.35 1210.8 1551.38 2838.2 1155685.88 4763437.	***
FTABLE	19			
rows cols 8 4				* * *
depth 0. 0.31 3.12 3.89 4.87 5.84 100.28 194.71 END FTABLE	area 170.84 172.22 184.61 205.26 565.87 574.48 1409.06 2243.64 19	volume 0. 53.44 553.68 698.8 1245.51 1800.61 95457.15 267926.5	outflowl 0. 24.64 1137.87 1649.2 2105.1 3848.08 1523058.5 6178898.5	***
FTABLE rows cols	20			* * *
8 4 depth 0. 4.3 5.38 6.72 8.07 138.45 268.84 END FTABLE	area 173.92 175.1 185.7 203.38 567.42 574.78 1289.16 2003.54 20	volume 0. 75.06 773.43 974.71 1732.47 2500.13 124015.96 338677.	outflow1 0. 45.59 2106.04 3052.3 3870.72 7065.88 2661241.5 10474989.	***
FTABLE	22			* * *
rows Cols 8 4				~ * *
depth	area	volume	outflow1	* * *
U. 0.23	37.2⊥ 37.56	U. 8.66	U. 14.5	

40.7390.26669.2546.01114.1970.09 2.32 46.01114.1970.09125.27203.981246.95127.47295.462282.83 2.9 3.62 4.34 341.0116742.31951819.56554.5448182.423972628.25 74.56 144.77 END FTABLE 22 FTABLE 21 * * * rows cols 8 4 area volume outflow1 *** 62.88 0. 0. depth 0. 0. 19.23 14.76 0. 0.3 63.4 19.23 68.01 199.3 681.38 3.05 3.81 75.71 251.56 987.57 4.76 208.53 448.48 1261.2 5.71 211.73 648.44 2305.7 98.02522.7234545.57916033.31190.32833.797148.513724290.75 END FTABLE 21 FTABLE 23 rows cols * * * 8 4 area volume outflow1 *** 100.44 0. 0. 101.14 41.31 43.5 depth 0. 0.41 107.42 426.02 2009.29 4.1 5.12 117.9 537. 2912.09 328.38 954.84 3696.28 6.4 7.69 332.75 1378.27 6748.72 756.11 69024.21 2559600. 131.94 256.19 1179.48 189273.97 10119986. END FTABLE 23 FTABLE 25 rows cols * * * 8 4 area volume outflow1 *** depth 15.15 0. 0. 7.24 116.1 0. 0.48 15.24 4.77 16.12 74.52 5364.22 5.96 93.87 7774.4 17.58 7.45 49.2 166.72 9840.63 8.94 49.81 240.47 17956.77 108.7111694.26666999.5167.6231659.6825997188. 153.44 297.95 END FTABLE 25 FTABLE 24 rows cols * * * 8 4 volume outflow1 *** area depth 0. 11.48 12.76 0. 2.76 Ο. 0.22 12.88 14.01 28.78 2.15 529.96
 14.01
 28.78
 529.96

 15.9
 36.4
 768.22

 43.14
 65.13
 989.37

 43.93
 94.38
 1812.01
 2.69 3.36 4.03 120.18 5442.84 766210.81 69.21 134.4 196.43 15761.533220936.75 END FTABLE 24

FTABLE 26 rows cols * * * 8 4 area volume outflow1 *** depth 83.47 0. 0. 0.
 84.16
 25.08

 90.35
 260.06

 100.66
 328.29

 277.05
 585.36

 281.35
 846.44
 0.3 25.91 25.91 1196.13 2.99 1733.66 3.74 4.68 2214.88 4049.52 5.61 698.1 45267.191613566.88 96.32 187.02 1114.86 127489.54 6571224. END FTABLE 26 FTABLE 27 rows cols * * * 8 4 area volume outflow1 *** depth 25.140.0.25.2912.89218.24 Ο. 25.29 12.89 0.51 132.52 10084.57 5.11 26.69 29.02166.8914615.6381.44296.2518477.582.41427.1633708.39176.5920500.12398078. 6.39 7.99 9.59 164.59 319.6 270.77 55171.63 48039260. END FTABLE 27 END FTABLES COPY TIMESERIES Copy-opn*** *** x - x NPT NMN 1 5 0 7 END TIMESERIES END COPY EXT SOURCES <-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> x <Name> x tem strg<-factor->strg <Name> x x <Name> x x *** *** Met Seg TWELVEPO WDM 91 PREC ENGLZERO SAME PERLND 101 EXTNL PREC WDM 103 ATEM ENGL SAME PERLND 101 EXTNL GATMP _ ENGL WDM 106 PEVT SAME PERLND 101 EXTNL PETINP *** Met Seg TWELVEPO SAME PERLND 111 EXTNL PREC SAME PERLND 111 EXTNL GATMP WDM 91 PREC ENGLZERO SAME PERLND 111 103 ATEM WDM ENGL WDM 106 PEVT ENGL SAME PERLND 111 EXTNL PETINP EXTNL PREC *** Met Seg TWELVEPO ENGLZERO WDM 91 PREC SAME PERLND 121 WDM 103 ATEM ENGL SAME PERLND 121 EXTNL GATMP ENGL 106 PEVT EXTNL PETINP WDM SAME PERLND 121 *** Met Seg TWELVEPO SAME PERLND 201 EXTNL PREC SAME PERLND 201 EXTNL GATMP WDM 91 PREC ENGLZERO SAME PERLND 201 MDM 103 ATEM ENGL WDM 106 PEVT ENGL SAME PERLND 201 EXTNL PETINP *** Met Seg TWELVEPO SAME PERLND 301 EXTNL PREC SAME PERLND 301 EXTNL GATMP SAME PERLND 301 EXTNL PETINP WDM 91 PREC ENGLZERO WDM 103 ATEM ENGL WDM 106 PEVT ENGL *** Met Seg TWELVEPO

91 PREC	ENGLZERO	SAME	PERLND	401	EXTNL	PREC
103 ATEM	ENGL	SAME	PERLND	401	EXTNL	GATMP
106 PEVT	ENGL	SAME	PERLND	401	EXTNL	PETINP
Met Sea TWEIN			I DRUND	101		
Met beg IWELV		0.1 MT		C 0 1		DDDQ
91 PREC	ENGLZERO	SAME	PERLND	601	EXTNL	PREC
103 ATEM	ENGL	SAME	PERLND	601	EXTNL	GATMP
106 PEVT	ENGL	SAME	PERLND	601	EXTNL	PETINP
Met Seg TWELV	'EPO					
91 PREC	ENGLZERO	SAME	PERLND	701	EXTNL	PREC
103 ATEM	ENGL.	SAME	PERLND	701	EXTNI.	GATMP
	FNCI	SILIE		701	EVTNI	DETIND
Mot Cor EWELY		SANE	FERDIND	101		FEITWF
Met Seg IWELV	EPO					
91 PREC	ENGLZERO	SAME	PERLND	801	EXTNL	PREC
103 ATEM	ENGL	SAME	PERLND	801	EXTNL	GATMP
106 PEVT	ENGL	SAME	PERLND	801	EXTNL	PETINP
Met Seq BUFF						
211 PREC	ENGLZERO	SAME	PERLND	102	EXTNI.	PREC
202 7750	FNCI	SILIE		102	EVTNI	CATMD
205 AIEM	ENGL	CAME	PERLIND	102	EXIND	GAIME
206 PEVT	ENGL	SAME	PERLND	TUZ	EXTINL	DELTND
Met Seg BUFF						
211 PREC	ENGLZERO	SAME	PERLND	112	EXTNL	PREC
203 ATEM	ENGL	SAME	PERLND	112	EXTNL	GATMP
206 PEVT	ENGL	SAME	PERLND	112	EXTNL	PETINP
Mot Sog BIFF	21.02	01111				
211 DEC	ENCI VEDO	CAME		1 2 2		סשממ
ZII PREC	ENGLZERO	SAME	PERLIND	122	EAINL	PREC
203 ATEM	ENGL	SAME	PERLND	122	EXTNL	GA:IMP
206 PEVT	ENGL	SAME	PERLND	122	EXTNL	PETINP
Met Seg BUFF						
211 PREC	ENGLZERO	SAME	PERLND	202	EXTNL	PREC
203 ATEM	ENGL	SAME	PERLND	202	EXTNL	GATMP
206 DEVT	FNGL	SAME	DEBTWD	202	EXTNI.	DELLIND
Mot Cog DUFE	ENGL	DANE	FERDIND	202		EBITIME
Met Sey BUFF		63.VE	DEDIME	200		5556
ZII PREC	ENGLZERO	SAME	PERLND	302	EXTNL	PREC
203 ATEM	ENGL	SAME	PERLND	302	EXTNL	GATMP
206 PEVT	ENGL	SAME	PERLND	302	EXTNL	PETINP
Met Seq BUFF						
211 PREC	ENGLZERO	SAME	PERLND	402	EXTNL	PREC
202 ATTEM	FNCI	SAME		102	EVTNI	CATMD
	ENGL	CAME	PERLIND	402		GAIME
ZUO PEVI	ENGL	SAME	PERLIND	402	EVINT	PEIINP
Met Seg BUFF						
211 PREC	ENGLZERO	SAME	PERLND	602	EXTNL	PREC
203 ATEM	ENGL	SAME	PERLND	602	EXTNL	GATMP
206 PEVT	ENGL	SAME	PERLND	602	EXTNL	PETINP
Met Sea BUFF						
211 DRFC	FNCL 7FPO	SAME		702	FYTNI.	DRFC
	ENCL	CAME	DEDIND	702	EVENT	
203 AIEM	ENGL	SAME	PERLIND	702	EAINL	GAIMP
206 PEVT	ENGL	SAME	PERLND	702	EXTNL	belitub
Met Seg BUFF					EXTNL	
Met Seg BUFF 211 PREC	ENGLZERO	SAME	PERLND	802	E VIINT	PREC
Met Seg BUFF 211 PREC 203 ATEM	ENGLZERO ENGL	SAME SAME	PERLND PERLND	802 802	LAINL	PREC GATMP
Met Seg BUFF 211 PREC 203 ATEM 206 PEVT	ENGLZERO ENGL ENGL	SAME SAME SAME	PERLND PERLND	802 802 802	EAINL EXTNI.	PREC GATMP PETINP
Met Seg BUFF 211 PREC 203 ATEM 206 PEVT	ENGLZERO ENGL ENGL	SAME SAME SAME	PERLND PERLND PERLND	802 802 802	EXTNL	PREC GATMP PETINP
Met Seg BUFF 211 PREC 203 ATEM 206 PEVT Met Seg BUFF	ENGLZERO ENGL ENGL	SAME SAME SAME	PERLND PERLND PERLND	802 802 802	EXINL	PREC GATMP PETINP
Met Seg BUFF 211 PREC 203 ATEM 206 PEVT Met Seg BUFF 211 PREC	ENGLZERO ENGL ENGL ENGLZERO	SAME SAME SAME SAME	PERLND PERLND PERLND PERLND	802 802 802 902	EXTNL	PREC GATMP PETINP PREC
Met Seg BUFF 211 PREC 203 ATEM 206 PEVT Met Seg BUFF 211 PREC 203 ATEM	ENGLZERO ENGL ENGL ENGLZERO ENGL	SAME SAME SAME SAME SAME	PERLND PERLND PERLND PERLND PERLND	802 802 802 902 902	EXINL EXTNL EXTNL EXTNL	PREC GATMP PETINP PREC GATMP
Met Seg BUFF 211 PREC 203 ATEM 206 PEVT Met Seg BUFF 211 PREC 203 ATEM 206 PEVT	ENGLZERO ENGL ENGLZERO ENGL ENGL	SAME SAME SAME SAME SAME SAME	PERLND PERLND PERLND PERLND PERLND PERLND	802 802 802 902 902 902	EXINL EXTNL EXTNL EXTNL EXTNL	PREC GATMP PETINP PREC GATMP PETINP
Met Seg BUFF 211 PREC 203 ATEM 206 PEVT Met Seg BUFF 211 PREC 203 ATEM 206 PEVT Met Seg TV FI	ENGLZERO ENGL ENGLZERO ENGL ENGL KIN	SAME SAME SAME SAME SAME SAME	PERLND PERLND PERLND PERLND PERLND PERLND	802 802 802 902 902 902	EXTNL EXTNL EXTNL EXTNL EXTNL	PREC GATMP PETINP PREC GATMP PETINP
Met Seg BUFF 211 PREC 203 ATEM 206 PEVT Met Seg BUFF 211 PREC 203 ATEM 206 PEVT Met Seg TV EL 311 PREC	ENGLZERO ENGL ENGLZERO ENGL ENGL KIN ENGLZERO	SAME SAME SAME SAME SAME SAME	PERLND PERLND PERLND PERLND PERLND PERLND	802 802 802 902 902 902	EXTNL EXTNL EXTNL EXTNL EXTNL	PREC GATMP PETINP PREC GATMP PETINP PREC
Met Seg BUFF 211 PREC 203 ATEM 206 PEVT Met Seg BUFF 211 PREC 203 ATEM 206 PEVT Met Seg TV EI 311 PREC 303 ATEM	ENGLZERO ENGL ENGLZERO ENGL ENGL KIN ENGLZERO ENGL	SAME SAME SAME SAME SAME SAME	PERLND PERLND PERLND PERLND PERLND PERLND PERLND	 802 802 802 902 902 902 103 103 	EXTNL EXTNL EXTNL EXTNL EXTNL EXTNL	PREC GATMP PETINP PREC GATMP PREC GATMD
Met Seg BUFF 211 PREC 203 ATEM 206 PEVT Met Seg BUFF 211 PREC 203 ATEM 206 PEVT Met Seg TV EI 311 PREC 303 ATEM	ENGLZERO ENGL ENGLZERO ENGL ENGL KIN ENGLZERO ENGL	SAME SAME SAME SAME SAME SAME SAME	PERLND PERLND PERLND PERLND PERLND PERLND PERLND	 802 802 802 902 902 902 103 103 103 	EXTNL EXTNL EXTNL EXTNL EXTNL EXTNL	PREC GATMP PETINP PREC GATMP PREC GATMP
Met Seg BUFF 211 PREC 203 ATEM 206 PEVT Met Seg BUFF 211 PREC 203 ATEM 206 PEVT Met Seg TV EI 311 PREC 303 ATEM 306 PEVT	ENGLZERO ENGL ENGLZERO ENGL ENGL KIN ENGLZERO ENGL ENGL	SAME SAME SAME SAME SAME SAME SAME SAME	PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	802 802 902 902 902 103 103	EXTNL EXTNL EXTNL EXTNL EXTNL EXTNL EXTNL	PREC GATMP PETINP PREC GATMP PETINP PREC GATMP PETINP
Met Seg BUFF 211 PREC 203 ATEM 206 PEVT Met Seg BUFF 211 PREC 203 ATEM 206 PEVT Met Seg TV EI 303 ATEM 306 PEVT Met Seg TV EI	ENGLZERO ENGL ENGLZERO ENGL ENGL KIN ENGLZERO ENGL ENGL KIN	SAME SAME SAME SAME SAME SAME SAME SAME	PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	802 802 902 902 902 103 103	EXTNL EXTNL EXTNL EXTNL EXTNL EXTNL EXTNL	PREC GATMP PETINP PREC GATMP PETINP PREC GATMP PETINP
Met Seg BUFF 211 PREC 203 ATEM 206 PEVT Met Seg BUFF 211 PREC 203 ATEM 206 PEVT Met Seg TV EI 311 PREC 303 ATEM 306 PEVT Met Seg TV EI 311 PREC	ENGLZERO ENGL ENGLZERO ENGL ENGL KIN ENGLZERO ENGL KIN ENGLZERO	SAME SAME SAME SAME SAME SAME SAME SAME	PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	802 802 902 902 902 103 103 103 113	EXTNL EXTNL EXTNL EXTNL EXTNL EXTNL EXTNL EXTNL	PREC GATMP PETINP PREC GATMP PETINP PETINP PREC
Met Seg BUFF 211 PREC 203 ATEM 206 PEVT Met Seg BUFF 211 PREC 203 ATEM 206 PEVT Met Seg TV EI 311 PREC 303 ATEM 306 PEVT Met Seg TV EI 311 PREC 303 ATEM	ENGLZERO ENGL ENGLZERO ENGL ENGL KIN ENGLZERO ENGL KIN ENGLZERO ENGL	SAME SAME SAME SAME SAME SAME SAME SAME	PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	802 802 902 902 902 103 103 103 113	EXTNL EXTNL EXTNL EXTNL EXTNL EXTNL EXTNL EXTNL EXTNL EXTNL	PREC GATMP PETINP PREC GATMP PETINP PETINP PREC GATMP
	91 PREC 103 ATEM 106 PEVT Met Seg TWELV 91 PREC 103 ATEM 106 PEVT Met Seg TWELV 91 PREC 103 ATEM 106 PEVT Met Seg BUFF 211 PREC 203 ATEM 206 PEVT	91 PREC ENGLZERO 103 ATEM ENGL 106 PEVT ENGL Met Seg TWELVEPU 91 PREC ENGLZERO 103 ATEM ENGL 106 PEVT ENGL Met Seg TWELVEPU 91 PREC ENGLZERO 103 ATEM ENGL 106 PEVT ENGL Met Seg TWELVEPU 91 PREC ENGLZERO 103 ATEM ENGL 106 PEVT ENGL Met Seg BUFF 211 PREC ENGLZERO 203 ATEM ENGL 206 PEVT ENGL	91 PREC ENGLZERO SAME 103 ATEM ENGL SAME 106 PEVT ENGL SAME Met Seg TWELVEPO 91 PREC ENGLZERO SAME 103 ATEM ENGL SAME 106 PEVT ENGL SAME 211 PREC ENGLZERO SAME 203 ATEM ENGL SAME 206 PEVT ENGL SAME 206 PEVT ENGL SAME 206 PEVT ENGL SAME 207 ATEM ENGL SAME 208 PEVF ENGL SAME 209 PEVF ENGL SAME 200 PEVT ENGL SAME 200 PEVT ENGL SAME 201 PREC ENGLZERO SAME 203 ATEM ENGL SAME 206 PEVT ENGL SAME 206 PEVT ENGL SAME 207 ATEM ENGL SAME 208 PEVF ENGL SAME 208 PEVF ENGL SAME 209 PEVF ENGL SAME 201 PREC ENGLZERO SAME 203 ATEM ENGL SAME 204 PEVT ENGL SAME 205 PEVT ENGL SAME 206 PEVT ENGL SAME 206 PEVT ENGL SAME 207 ATEM ENGL SAME 208 PEVF ENGL SAME 208 PEVF ENGL SAME 207 ATEM ENGL SAME 208 PEVF ENGL SAME 207 ATEM ENGL SAME 208 PEVF ENGL SAME 208 PEVF ENGL SAME 209 ATEM ENGL SAME 200 PEVT ENGL SAME 201 PREC ENGLZERO SAME 203 ATEM ENGL SAME 206 PEVT ENGL SAME 207 ATEM ENGL SAME 208 PEVT ENGL SAME 208 PEVT ENGL SAME 209 PEVT ENGL SAME 200 PEVT ENGL SAME 200 PEVT ENGL SAME 200 PEVT ENGL SAME 201 PREC ENGLZERO SAME 203 ATEM ENGL SAME 204 PEVT ENGL SAME 205 PEVT ENGL SAME 206 PEVT ENGL SAME 206 PEVT ENGL SAME 206 PEVT ENGL SAME 207 ATEM ENGL SAME 208 PEVT ENGL SAME 209 PEVT ENGL SAME 200 PEVT ENGL SAME 200 PEVT ENGL SAME 200 PEVT ENGL SAME 200 PEVT ENGL SAME 201 PREC ENGLZERO SAME 203 ATEM ENGL SAME 204 PEVT ENGL SAME 205 PEVT ENGL SAME 206 PEVT ENGL SAME 206 PEVT ENGL SAME 206 PEVT ENGL SAME 207 ATEM ENGL SAME 208 PEVT ENGL SAME 209 PEVT ENGL SAME 200 PEVT ENGL SAME	91 PREC ENGLZERO SAME PERLND 103 ATEM ENGL SAME PERLND 106 PEVT ENGL SAME PERLND Met Seg TWELVEPO 91 PREC ENGLZERO SAME PERLND 106 PEVT ENGL SAME PERLND 106 PEVT ENGL SAME PERLND 106 PEVT ENGL SAME PERLND 106 PEVT ENGL SAME PERLND 107 ATEM ENGL SAME PERLND 108 ATEM ENGL SAME PERLND 108 ATEM ENGL SAME PERLND 109 PEVT ENGL SAME PERLND 100 PEVT ENGL SAME PERLND 103 ATEM ENGL SAME PERLND 104 Seg TWELVEPO 91 PREC ENGLZERO SAME PERLND 105 ATEM ENGL SAME PERLND 106 PEVT ENGL SAME PERLND 106 PEVT ENGL SAME PERLND 201 ATEM ENGL SAME PERLND 202 ATEM ENGL SAME PERLND 203 ATEM ENGL SAME PERLND 204 PEVT ENGL SAME PERLND 204 PEVT ENGL SAME PERLND 205 PEVT ENGL SAME PERLND 206 PEVT ENGL SAME PERLND 206 PEVT ENGL SAME PERLND 207 ATEM ENGL SAME PERLND 208 ATEM ENGL SAME PERLND 209 ATEM ENGL SAME PERLND 200 PEVT ENGL SAME PERLND 201 ATEM ENGL SAME PERLND 202 ATEM ENGL SAME PERLND 203 ATEM ENGL SAME PERLND 204 PEVT ENGL SAME PERLND 205 PEVT ENGL SAME PERLND 205 PEVT ENGL SAME PERLND 206 PEVT ENGL SAME PERLND 206 PEVT ENGL SAME PERLND 207 ATEM ENGL SAME PERLND 208 ATEM ENGL SAME PERLND 208 ATEM ENGL SAME PERLND 209 PEVT ENGL SAME PERLND 200 PEVT ENGL SAME PERLND 201 ATEM ENGL SAME PERLND 202 ATEM ENGL SAME PERLND 203 ATEM ENGL SAME PERLND 204 PEVT ENGL SAME PERLND 205 PEVT ENGL SAME PERLND 205 PEVT ENGL SAME PERLND 206 PEVT ENGL SAME PERLND 206 PEVT ENGL SAME PERLND 207 ATEM ENGL SAME PERLND 208 ATEM ENGL SAME PERLND 208 ATEM ENGL SAME PERLND 209 PEVT ENGL SAME PERLND 200 ATEM ENGL SAME PERLND 200 PEVT ENGL SAME PERLND 201 ATEM ENGL SAME PERLND 202 ATEM ENGL SAME PERLND 203 ATEM ENGL SAME PERLND 204 PEVT ENGL SAME PERLND 205 PEVT ENGL SAME PERLND 205 PEVT ENGL SAME PERLND 206	91 PREC ENGLZERO SAME PERLND 401 103 ATEM ENGL SAME PERLND 401 Met Seg TWELVEPO 91 PREC ENGLZERO SAME PERLND 601 103 ATEM ENGL SAME PERLND 601 106 PEVT ENGL SAME PERLND 701 103 ATEM ENGL SAME PERLND 701 103 ATEM ENGL SAME PERLND 701 106 PEVT ENGL SAME PERLND 701 106 PEVT ENGL SAME PERLND 701 106 PEVT ENGL SAME PERLND 701 Met Seg TWELVEPO 91 PREC ENGLZERO SAME PERLND 801 106 PEVT ENGL SAME PERLND 801 106 PEVT ENGL SAME PERLND 801 106 PEVT ENGL SAME PERLND 102 203 ATEM ENGL SAME PERLND 102 204 PEVT ENGL SAME PERLND 102 205 PEVT ENGL SAME PERLND 102 206 PEVT ENGL SAME PERLND 112 206 PEVT ENGL SAME PERLND 122 203 ATEM ENGL SAME PERLND 122 204 PEVT ENGL SAME PERLND 122 205 PEVT ENGL SAME PERLND 122 206 PEVT ENGL SAME PERLND 202 206 PEVT ENGL SAME PERLND 202 206 PEVT ENGL SAME PERLND 302 206 PEVT ENGL SAME PERLND 402 203 ATEM ENGL SAME PERLND 402 204 PEVT ENGL SAME PERLND 402 205 PEVT ENGL SAME PERLND 402 206 PEVT ENGL SAM	91 PREC ENGLZERO SAME PERLND 401 EXTNL 103 ATEM ENGL SAME PERLND 401 EXTNL 106 PEVT ENGL SAME PERLND 601 EXTNL 103 ATEM ENGL SAME PERLND 601 EXTNL 104 PEVT ENGL SAME PERLND 601 EXTNL 105 PEVT ENGL SAME PERLND 701 EXTNL 106 PEVT ENGL SAME PERLND 701 EXTNL 107 PREC ENGLZERO SAME PERLND 701 EXTNL 108 PEVT ENGL SAME PERLND 701 EXTNL 109 PEVT ENGL SAME PERLND 701 EXTNL 106 PEVT ENGL SAME PERLND 701 EXTNL 107 PEVT ENGL SAME PERLND 701 EXTNL 108 PEVT ENGL SAME PERLND 701 EXTNL 109 PEVT ENGL SAME PERLND 701 EXTNL 100 PEVT ENGL SAME PERLND 801 EXTNL 101 PREC ENGLZERO SAME PERLND 801 EXTNL 102 PEVT ENGL SAME PERLND 801 EXTNL 103 ATEM ENGL SAME PERLND 801 EXTNL 104 PEVT ENGL SAME PERLND 801 EXTNL 105 PEVT ENGL SAME PERLND 801 EXTNL 206 PEVT ENGL SAME PERLND 102 EXTNL 207 ATEM ENGL SAME PERLND 102 EXTNL 208 ATEM ENGL SAME PERLND 102 EXTNL 209 PEVT ENGL SAME PERLND 102 EXTNL 201 PREC ENGLZERO SAME PERLND 102 EXTNL 202 ATEM ENGL SAME PERLND 112 EXTNL 203 ATEM ENGL SAME PERLND 112 EXTNL 204 PEVT ENGL SAME PERLND 112 EXTNL 205 PEVT ENGL SAME PERLND 112 EXTNL 206 PEVT ENGL SAME PERLND 112 EXTNL 206 PEVT ENGL SAME PERLND 122 EXTNL 207 ATEM ENGL SAME PERLND 122 EXTNL 208 ATEM ENGL SAME PERLND 122 EXTNL 209 ATEM ENGL SAME PERLND 122 EXTNL 200 PEVT ENGL SAME PERLND 122 EXTNL 201 ATEM ENGL SAME PERLND 122 EXTNL 202 ATEM ENGL SAME PERLND 122 EXTNL 203 ATEM ENGL SAME PERLND 202 EXTNL 204 PEVT ENGL SAME PERLND 202 EXTNL 205 ATEM ENGL SAME PERLND 302 EXTNL 206 PEVT ENGL SAME PERLND 302 EXTNL 206 PEVT ENGL SAME PERLND 302 EXTNL 207 ATEM ENGL SAME PERLND 402 EXTNL 208 ATEM ENGL SAME PERLND 402 EXTNL 209 ATEM ENGL SAME PERLND 402 EXTNL 200 PEVT ENGL SAME PERLND 402 EXTNL 201 ATEM ENGL SAME PERLND 402 EXTNL 203 ATEM ENGL SAME PERLND 402 EXTNL 204 PEVT ENGL SAME PERLND 402 EXTNL 205 ATEM ENGL SAME PERLND 402 EXTNL 206 PEVT ENGL SAME PERLND 402 EXT

* * *	Met Seg TV ELK.	LN					
WDM	311 PREC	ENGLZERO	SAME	PERLND	123	EXTNL	PREC
WDM	303 ATEM	ENGL	SAME	PERLND	123	EXTNL	GATMP
WDM	306 PEVT	ENGL	SAME	PERLND	123	EXTNL	PETINP
* * *	Met Seg TV ELKI	IN					
WDM	311 PREC	ENGLZERO	SAME	PERLND	203	EXTNL	PREC
WDM	303 ATEM	ENGL	SAME	PERLND	203	EXTNL	GATMP
WDM	306 PEVT	ENGL	SAME	PERLND	203	EXTNL	PETINP
* * *	Met Seg TV ELKI	IN					
WDM	311 PREC	ENGLZERO	SAME	PERLND	303	EXTNL	PREC
WDM	303 ATEM	ENGL	SAME	PERLND	303	EXTNL	GATMP
WDM	306 PEVT	ENGL	SAME	PERLND	303	EXTNL	PETINP
* * *	Met Seg TV ELKI	IN					
WDM	311 PREC	ENGLZERO	SAME	PERLND	403	EXTNL	PREC
WDM	303 ATEM	ENGL	SAME	PERLND	403	EXTNL	GATMP
WDM	306 PEVT	ENGL	SAME	PERLND	403	EXTNL	PETINP
* * *	Met Seg TV ELKI	IN					
WDM	311 PREC	ENGLZERO	SAME	PERLND	603	EXTNL	PREC
WDM	303 ATEM	ENGL	SAME	PERLND	603	EXTNL	GATMP
WDM	306 PEVT	ENGL	SAME	PERLND	603	EXTNL	PETINP
* * *	Met Seg TV ELKI	IN					
WDM	311 PREC	ENGLZERO	SAME	PERLND	703	EXTNL	PREC
WDM	303 ATEM	ENGL	SAME	PERLND	703	EXTNL	GATMP
WDM	306 PEVT	ENGL	SAME	PERLND	703	EXTNL	PETINP
* * *	Met Seq TV ELKI	IN					
WDM	311 PREC	ENGLZERO	SAME	PERLND	803	EXTNL	PREC
WDM	303 ATEM	ENGL	SAME	PERLND	803	EXTNL	GATMP
WDM	306 PEVT	ENGL	SAME	PERLND	803	EXTNL	PETINP
* * *	Met Seg TV ELKI	IN					
WDM	311 PREC	ENGLZERO	SAME	PERLND	903	EXTNL	PREC
WDM	303 ATEM	ENGL	SAME	PERLND	903	EXTNL	GATMP
WDM	306 PEVT	ENGL	SAME	PERLND	903	EXTNL	PETINP
* * *	Met Seg CLEAR H	ŦO					
WDM	411 PREC	ENGLZERO	SAME	PERLND	104	EXTNL	PREC
WDM	403 ATEM	ENGL	SAME	PERLND	104	EXTNL	GATMP
WDM	406 PEVT	ENGL	SAME	PERLND	104	EXTNL	PETINP
***	Met Seg CLEAR H	TO					
WDM	411 PREC	ENGLZERO	SAME	PERLND	114	EXTNL	PREC
WDM	403 ATEM	ENGL	SAME	PERLND	114	EXTNL	GATMP
WDM	406 PEVT	ENGL	SAME	PERLND	114	EXTNL	PETINP
***	Met Seg CLEAR H	70					
MUM	411 PREC	ENGLZERO	SAME	PERLND	124	EXTNL	PREC
WDM	403 ATEM	ENGL	SAME	PERLIND	124	EXTNL	GATMP
WDM	406 PEVT	ENGL	SAME	PERLND	124	EXTNL	PETTNP
***	Met Seg CLEAR H	70					
พบพ	411 PREC	ENGLZERO	SAME	PERLND	204	EXTNI.	PREC
WDM	403 ATEM	ENGL	SAME	PERLND	204	EXTNL	GATMP
WDM	406 DEVT	FNCI.	SAME	DEBTWD	204	FYTNI.	DELIND
***	Met Sea CLEAR R		DAM	FEREND	204		E DI LINE
MUM	A11 DRFC	FNGL7FRO	SAME	DEBTWD	304	FYTNI.	DRFC
WDM	403 ATEM	ENGLIZERO	SAME	DEBUND	304	EXTNL FYTNI.	CATMD
	406 DEVT	ENCI	CAME		304	EXTNE	DETTND
₩DM	Mot Sog CIEND I	ENGT	SAME	PERLIND	304	EVIND	PEIINP
MUDM	A11 DEFC	FNCI 7FDO	CAME	מא זסיוס	404	EVTNI	
		ENGLIZERO	CAME		404	EXIND	
WDM	405 AIEM	ENGL	SAME	PERLIND	404	EAINL	GAIMP
***	406 PEVI	ENGL	SAME	PERLIND	404	LAINL	PEIINP
	Met Seg CLEAR I		CAME		604		סחתת
	411 PREC	ENGLZERO	SAME	PERLIND	004	LAINL	PKEC
WDM	403 ATEM	ENGL	SAME	PERLND	0U4 604	EXTNL	GATMP
₩DM WDM	400 PEVT	гист	SAME	чғктир	004	57.1NT	Ъ₽ЛТИЪ
	Met Seg CLEAR H				704		ספתת
WDM	411 PREC	ENGLZERO	SAME	PERLND	704	EXTNL	PREC
WDW	4U3 A'I'EM	ENGL	SAME	PERLND	/04	EX1NL	GA'I'MP

WDM	406 PEVT	ENGL	SAME	PERLND	704		EXTNL	PETINP
* * *	Met Seg CLEA	AR FO						
WDM	411 PREC	ENGLZERO	SAME	PERLND	804		EXTNL	PREC
WDM	403 ATEM	ENGL	SAME	PERLND	804		EXTNL	GATMP
WDM	406 PEVT	ENGL	SAME	PERLND	804		EXTNL	PETINP
* * *	Met Seg CLEA	AR FO						
WDM	411 PREC	ENGLZERO	SAME	PERLND	904		EXTNL	PREC
WDM	403 ATEM	ENGL	SAME	PERLND	904		EXTNL	GATMP
WDM	406 PEVT	ENGL	SAME	PERLND	904		EXTNL	PETINP
* * *	Met Seq BIG	SAND, PI:GATMP=0	.83,PI:PETIN	JP=0.83				
WDM	511 PREC	ENGLZERO	SAME	PERLND	105		EXTNL	PREC
WDM	503 ATEM	ENGL	0.83SAME	PERLND	105		EXTNL	GATMP
WDM	506 PEVT	ENGL	0.83SAME	PERLND	105		EXTNL	PETINP
***	Met Seg BTG	SAND.PI:GATMP=0	.83.PT:PETTN	JP=0.83				
พบพ	511 PREC	ENGLZERO	SAME	PERLND	115		EXTNL	PREC
WDM	503 ATEM	ENGL	0 83.SAME	PERLND	115		EXTNI.	GATMP
WDM	506 PEVT	ENGL	0 83SAME	PERLND	115		EXTNI.	DETIND
***	Met Sea BIG	SAND DI:CATMD-0	83 DT:DFTT	1D-0 83	115			
MUDM	511 DRFC	FNGL7FRO	SAME	DEBIWD	125		FYTNI.	DREC
WDM	503 ATEM	ENGLZERO FNGL	0 83GAME	DEBUND	125		EXTNL FYTNI.	CATMD
WDM		ENCL	0 83C7ME	מאננאנו	125		EVTNT	
***	Mat Sag BIG	SAND DI:CATMD-0			TZJ		ЦИЦИЦ	FUITUE
MCM	E11 DEFC	FNCI 7EDO	CAME		205		EVTINIT	ספממ
	511 PREC	ENGLZERU	0 02CAME		205		EAINL	CATMD
	505 AIEM	ENGL	0.03SAME		205		EAINL	GAIMP
₩DM	SUO PEVI				205		EVINT	PEIINP
MCM	E11 DEC	SAND, PI·GAIMP-0	.05,PI·PEIII		205		EVTINIT	ספמ
	511 PREC	ENGLZERU	O O O CAME	PERLIND	305		EAINL	CATIND
	505 AIEM	ENGL	0.03SAME	PERLIND	205		EAINL	GAIMP
***	Mot Sog BTC				202		ЦИЦИЦ	FUITUE
MCM	E11 DEC	SAND, PI·GAIMP-0	.05,PI·PEIII		105		EVTINIT	ספמ
	511 PREC	ENGLZERU	0 02CAME		405		EAINL	CATMD
	505 AIEM	ENGL	0.03SAME		405		EAINL	GAIMP
₩DM	Mot Coc DTC				405		EVINT	PEIINP
	E11 DEC	SAND, PI·GAIMP=0	.05,PI·PEIII		COF			סשממ
WDM WDM	511 PREC	ENGLZERU	O O O CAME	PERLIND	605 605		EAINL	CATIND
	505 AIEM	ENGL	0.03SAME	PERLIND	605 605		EAINL	GAIMP
₩DM	Mot Coc DTC				005		EVINT	PEIINP
M	E11 DEC	SAND, PI.GAIMP=0	.05,PI·PEIII		705		EVTINIT	ספמ
	511 PREC	ENGLZERU	O O O CAME	PERLIND	705		EAINL	CATIND
	505 AIEM	ENGL	0.03SAME	PERLIND	705		EAINL	GAIMP
***	Mot Sog BTC				105		ЦИЦИЦ	FUITUE
MUDM	511 DEC	FNCI 7EDO	.05,FI.FEIII CAME	חוא זסידת	805		EVTINIT	DDFC
	502 ATTEM	ENGLIZERO	0 02CAME		00J		EXTND	CATMD
	505 AIEM	ENGL	0.03SAME	PERLIND	005 005		EAINL	GAIMP
₩DM	Mot Sog PTC				805		EVINT	PEIINP
MCM	E11 DEC	SAND, PI·GAIMP-0	.05,PI·PEIII		0.05		EVTINIT	ספמ
	DII PREC	ENGLZERU	JAME 0 0202ME	PERLIND	905			CAE
WDM	503 AIEM	ENGL	0.83SAME	PERLIND	905		LAINL	GAIMP
₩DM	Mot Cog TWE		U.OSSAME	PERLIND	905		EVINT	PEIINP
	Met Seg IWEI	LVEPO	CAME		1	S		סשממ
WDM	91 PREC	ENGLZERO	SAME	RCHRES	1	3	LAINL	PREC
***	103 AIEM	ЕИСЬ	SAME	RCHRES	T	3	LAINL	GAIMP
	Met Seg BUF		CAME	סמנוספמ	4	0		סחממ
WDM	ZII PREC	ENGLZERO	SAME	RCHRES	4	8	LAINL	PREC
WDM	203 ATEM	ENGL	SAME	RCHRES	4	8	EXINL	GATMP
	Met Seg TV H		~~~~~	DOUDTO	~	1 -	T. 37 (1) 3 7 7	DDDC
WDM	311 PREC	ENGLZERO	SAME	RCHRES	9	15	EX.LNT	PREC
MDM	3U3 ATEM	ENGL	SAME	RCHRES	9	12	EX.I,NT	GA:I'MP
* * *	Met Seg CLEA	AK FO	~~~~	David		~~		DDDC
WDM	411 PREC	ENGLZERO	SAME	RCHRES	16	20	EX'I'NL	PREC
WDM	403 ATEM	ENGL	SAME	RCHRES	16	20	EXTNL	GATMP
* * *	Met Seg BIG	SAND, PI:GATMP=0	.83,PI:PETIN	NP=0.83	<u> </u>	c =		
WDM	511 PREC	ENGLZERO	SAME	RCHRES	21	27	EXTNL	PREC

WDM	503 ATEM	ENGL	0.83SAME	RCHRES	21	27 E	EXTNL	GATMP	
END EXT	SOURCES								
SCHEMAT	TIC			7			بلد باد باد		
<-volun	ne->	<ar< td=""><td>rea></td><td><-Volum</td><td>e-></td><td><ml‡< td=""><td>‡> *** ***</td><td></td><td><sb></sb></td></ml‡<></td></ar<>	rea>	<-Volum	e->	<ml‡< td=""><td>‡> *** ***</td><td></td><td><sb></sb></td></ml‡<>	‡> *** ***		<sb></sb>
<name></name>	X		COT->	<name></name>	х		~ ~ ~ ~		хх
רוא זמיזמ	201	IMETAR DOLF (REEK	DCUDEC	2		2		
	501 601			DCUDEC	2		2		
	401		330	DCUDEC	2		2		
PERLIND	121		203	RCHRES	2		2		
PERLIND	111		324	RCHRES	2		2		
PERLND	101		1492	RCHRES	2		2		
PERLND	201		18	RCHRES	2		2		
PERLND	201		87	RCHRES	2		2		
PERLND	801		2	RCHRES	2		2		
PERLND	301		17	RCHRES	2		2		
PERLND	601		20	RCHRES	2		2		
PERLIND	401		170	RCHRES	2		2		
PERLND	121		755	RCHRES	2		2		
PERLND	111		1133	RCHRES	2		2		
PERLND	101		6305	RCHRES	2		2		
PERLIND	201		6	RCHRES	1		2		
PERLND	201		371	RCHRES	1		2		
PERLND	301		14	RCHRES	1		2		
PERLND	601		46	RCHRES	1		2		
PERLND	701		7	RCHRES	1		2		
PERLND	401		2154	RCHRES	1		2		
PERLND	121		1080	RCHRES	1		2		
PERLND	111		1829	RCHRES	1		2		
PERLND	101		7281	RCHRES	1		2		
RCHRES	3			RCHRES	1		3		
RCHRES	2			RCHRES	1		3		
* * *		BUFFALO CREEK	2						
PERLND	202		470	RCHRES	5		2		
PERLND	202		1529	RCHRES	5		2		
PERLND	302		117	RCHRES	5		2		
PERLND	602		40	RCHRES	5		2		
PERLND	902		25	RCHRES	5		2		
PERLND	702		50	RCHRES	5		2		
PERLND	402		2	RCHRES	5		2		
PERLND	122		2382	RCHRES	5		2		
PERLND	112		3884	RCHRES	5		2		
PERLND	102		9668	RCHRES	5		2		
PERLND	202		219	RCHRES	б		2		
PERLND	202		1752	RCHRES	6		2		
PERLND	302		38	RCHRES	6		2		
PERLND	602		3	RCHRES	6		2		
PERLND	902		15	RCHRES	6		2		
PERLND	702		3	RCHRES	6		2		
PERLND	122		1262	RCHRES	6		2		
PERLND	112		1678	RCHRES	6		2		
PERLND	102		1635	RCHRES	б		2		
PERLND	202		380	RCHRES	4		2		
PERLND	202		2679	RCHRES	4		2		
PERLND	302		229	RCHRES	4		2		
PERLND	602		9	RCHRES	4		2		
PERLND	902		23	RCHRES	4		2		
PERLND	702		111	RCHRES	4		2		
PERLND	402		659	RCHRES	4		2		
PERLND	122		3869	RCHRES	4		2		
PERLND	112		6121	RCHRES	4		2		
PERLND	102		12089	RCHRES	4		2		

PERLND	202	50	70	RCHRES	7	2
PERLND	202	364	10	RCHRES	7	2
PERLND	302	8)2	RCHRES	7	2
PERLND	602		79	RCHRES	7	2
PERLND	902		14	RCHRES	7	2
PERLND	702		18	RCHRES	7	2
DEBIND	402	-	20	RCHRES	, 7	2
	102	27	25	DCUDEC	7	2
	110	27.	20	DCUDEC	7	2
PERLIND	102	50		RCHRES	7	2
PERLIND	TOZ	60.	50	RCHRES		2
RCHRES	5			RCHRES	/	3
RCHRES	4			RCHRES	/	3
PERLND	202		54	RCHRES	8	2
PERLND	202	8'	72	RCHRES	8	2
PERLND	302	1)2	RCHRES	8	2
PERLND	602		2	RCHRES	8	2
PERLND	702			RCHRES	8	2
PERLND	402	:	26	RCHRES	8	2
PERLND	122	7	52	RCHRES	8	2
PERLND	112	91	39	RCHRES	8	2
PERLND	102	8	92	RCHRES	8	2
RCHRES	6			RCHRES	8	3
RCHRES	7			RCHRES	8	3
***	,	TV ELK		Кенкцр	0	5
DERIND	203		27	RCHRES	11	2
DEBTWD	203	27	19	RCHRES	11	2
	203	27	עד 1	DCUDEC	11	2
PERLIND	202		5T 10	RCHRES	11	2
PERLIND	303	4.	LU 70	RCHRES	11	2
PERLIND	603	L	/9	RCHRES	11	2
PERLND	903		44	RCHRES	11	2
PERLND	703		34	RCHRES	ΤT	2
PERLND	403	3)1	RCHRES	11	2
PERLND	123	140	52	RCHRES	11	2
PERLND	113	212	25	RCHRES	11	2
PERLND	103	643	37	RCHRES	11	2
PERLND	203		13	RCHRES	13	2
PERLND	203	19-	14	RCHRES	13	2
PERLND	103		3	RCHRES	13	2
PERLND	303		52	RCHRES	13	2
PERLND	603		33	RCHRES	13	2
PERLND	903		31	RCHRES	13	2
PERLND	703		30	RCHRES	13	2
PERLND	123	16	36	RCHRES	13	2
DEBIND	113	26	20	RCHRES	13	2
	103	20.	10	DCUDEC	12	2
PERLIND	202 103	//.	LU 51	RCHRES	11	2
PERLIND	203))) _	RCHRES	14	2
PERLND	203	11	9 <u>7</u>	RCHRES	14	2
PERLND	103		30	RCHRES	14	2
PERLND	303	1	59	RCHRES	14	2
PERLND	603		4	RCHRES	14	2
PERLND	903	·	12	RCHRES	14	2
PERLND	703		L2	RCHRES	14	2
PERLND	123	31	38	RCHRES	14	2
PERLND	113	34	57	RCHRES	14	2
PERLND	103	643	32	RCHRES	14	2
PERLND	203	10	93	RCHRES	15	2
PERLND	203	96	59	RCHRES	15	2
PERLND	103	1:	26	RCHRES	15	2
PERLND	303	3.	13	RCHRES	15	2
PERLIND	603		74	RCHRES	15	2
DEBTWD	903	3.	28	BCHBEG	15	2
	702		20	вспрес	15	2
סאם אם	103	5	72		15 15	2
עאנדעיני א	TUD		5	NCULED	тo	4

PERLND	123		10516	RCHRES	15	2
PERLND	113		13916	RCHRES	15	2
PERLND	103		44497	RCHRES	15	2
PERLND	203		225	RCHRES	12	2
PERLND	203		7159	RCHRES	12	2
PERLND	103		66	RCHRES	12	2
	303		232	DCUDEC	12	2
PERLIND	505		150	DOUDEC	10	2
PERLIND	003		109	RCHRES	10	2
PERLIND	903		231	RCHRES	10	2
PERLND	103		337	RCHRES	12	2
PERLND	123		3282	RCHRES	12	2
PERLND	113		4162	RCHRES	12	2
PERLND	103		12140	RCHRES	12	2
RCHRES	14			RCHRES	12	3
RCHRES	15			RCHRES	12	3
PERLND	203		77	RCHRES	10	2
PERLND	203		3130	RCHRES	10	2
PERLND	103		54	RCHRES	10	2
PERLND	303		371	RCHRES	10	2
DEBTWD	603		97	RCHRES	10	2
PERLIND	005		، ر 270	DOUDEC	10	2
PERLIND	903		370	RCHRES	10	2
PERLIND	103		169	RCHRES	10	2
PERLND	123		1596	RCHRES	10	2
PERLND	113		1939	RCHRES	10	2
PERLND	103		7240	RCHRES	10	2
RCHRES	13			RCHRES	10	3
RCHRES	12			RCHRES	10	3
PERLND	203		53	RCHRES	9	2
PERLND	203		1396	RCHRES	9	2
PERLND	103		5	RCHRES	9	2
PERLND	303		1103	RCHRES	9	2
PERLND	603		80	RCHRES	9	2
DEBUND	903		127	RCHRES	á	2
מאםאם ד	703		102	DCUDEC	á	2
PERLIND	103		126	RCHRES	9	2
PERLIND	403		130	RCHRES	9	2
PERLND	123		/24	RCHRES	9	2
PERLND	113		/ _ /	RCHRES	9	2
PERLND	103		1750	RCHRES	9	2
RCHRES	11			RCHRES	9	3
RCHRES	10			RCHRES	9	3
* * *		CLEAR FORK				
PERLND	204		199	RCHRES	16	2
PERLND	204		25	RCHRES	16	2
PERLND	804		7	RCHRES	16	2
PERLND	304		46	RCHRES	16	2
PERLND	604		40	RCHRES	16	2
PERLND	704		3	RCHRES	16	2
מאםאם ד	101		136	DCUDEC	16	2
PERLIND	104		170	RCHRES	16	2
PERLIND	114		170	RCHRES	10	2
PERLND	114		279	RCHRES	10	2
PERLND	104		4642	RCHRES	16	2
PERLND	204		109	RCHRES	17	2
PERLND	204		57	RCHRES	17	2
PERLND	804		22	RCHRES	17	2
PERLND	304		12	RCHRES	17	2
PERLND	604		47	RCHRES	17	2
PERLND	904		3	RCHRES	17	2
PERLND	704		218	RCHRES	17	2
PERLND	404		543	RCHRES	17	2
PERLIND	124		664	RCHRES	17	2
ם שום אם	111		1100	DUDDEC	/ 1 7	2
<u>סוא</u> דםםם מאודעים ב	104		エエ 20 1 つ ⊑ つ ⊑	NCUVED	エ / 1 ワ	⊿ 2
PERLIND	104 204		14343 75	RUHKES	1 /	2
PERLND	∠04		35	RCHRES	ТS	2

PERLND	204	30	RCHRES	5 18	2
PERLND	304	40	RCHRES	5 18	2
PERLND	604	12	RCHRES	5 18	2
PERLND	704	46	RCHRES	5 18	2
PERLND	404	673	RCHRES	5 18	2
PERLND	124	111	RCHRES	5 18	2
PERLND	114	133	RCHRES	5 18	2
PERLND	104	1576	RCHRES	5 18	2
RCHRES	16		RCHRES	5 18	3
RCHRES	17		RCHRES	5 18	3
PERLND	204	381	RCHRES	5 19	2
PERLND	204	574	RCHRES	5 19	2
PERLND	804	16	RCHRES	5 19	2
PERLND	304	559	RCHRES	5 19	2
PERLND	604	158	RCHRES	5 19	2
PERLND	904	7	RCHRES	5 19	2
PERLND	704	14	RCHRES	5 19	2
PERLND	404	1349	RCHRES	5 19	2
PERLND	124	2516	RCHRES	3 19	2
PERLND	114	4201	RCHRES	3 19	2
DEBUND	104	25874	RCHREG	z 19	2
PERLIND	204	423	RCHRE	z 20	2
ם אם אם	201	767	DCUDEC	20	2
	201	/0/	DCUDEC	z 20	2
PERLIND	504 604	430	DCUDE	5 <u>2</u> 0	2
PERLIND	004	107	DCUDE	5 <u>2</u> 0	2
PERLIND	704	210	DCUDEO	5 <u>2</u> 0	2
PERLIND	104	240	DOUDE	5 <u>2</u> 0	2
PERLIND	104	12/1	RCHRE:	5 <u>2</u> 0	2
PERLIND	111	1541	DOUDE	5 <u>2</u> 0	2
PERLIND	104	14722	RCHRE	5 20	2
PERLIND	104	14/32	RCHRES	5 20	2
DCUDFC	10		DOUDEO	2 20	2
RCHRES	18 19		RCHRES	5 20 5 20	3
RCHRES RCHRES	18 19	BIC CANDY	RCHRES RCHRES	5 20 5 20	3
RCHRES RCHRES ***	18 19	BIG SANDY	RCHRES	5 20 5 20	3 3
RCHRES RCHRES *** PERLND	18 19 205	BIG SANDY 2394 560	RCHRES RCHRES RCHRES	5 20 5 20 5 22	3 3 2 2
RCHRES RCHRES *** PERLND PERLND	18 19 205 805 305	BIG SANDY 2394 560 28	RCHRES RCHRES RCHRES RCHRES	5 20 5 20 5 22 5 22 5 22	3 3 2 2 2
RCHRES RCHRES *** PERLND PERLND PERLND	18 19 205 805 305	BIG SANDY 2394 560 28	RCHRES RCHRES RCHRES RCHRES RCHRES	5 20 5 20 5 22 5 22 5 22 5 22	3 3 2 2 2 2
RCHRES RCHRES *** PERLND PERLND PERLND PERLND	18 19 205 805 305 605	BIG SANDY 2394 560 28 16	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	5 20 5 20 5 22 5 22 5 22 5 22 5 22	3 3 2 2 2 2 2 2
RCHRES RCHRES *** PERLND PERLND PERLND PERLND PERLND	18 19 205 805 305 605 905 705	BIG SANDY 2394 560 28 16 8	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	5 20 5 20 5 22 5 22 5 22 5 22 5 22 5 22	3 3 2 2 2 2 2 2 2
RCHRES RCHRES *** PERLND PERLND PERLND PERLND PERLND PERLND	18 19 205 805 305 605 905 705	BIG SANDY 2394 560 28 16 8 10 22	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	5 20 5 20 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22	3 3 2 2 2 2 2 2 2 2 2 2
RCHRES RCHRES *** PERLND PERLND PERLND PERLND PERLND PERLND PERLND	18 19 205 805 305 605 905 705 405	BIG SANDY 2394 560 28 16 8 10 23	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	5 20 5 20 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22	3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2
RCHRES RCHRES *** PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	18 19 205 805 305 605 905 705 405 125	BIG SANDY 2394 560 28 16 8 10 23 15780 10285	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	5 20 5 20 5 22	3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
RCHRES RCHRES *** PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	18 19 205 805 305 605 905 705 405 125 115	BIG SANDY 2394 560 28 16 8 10 23 15780 10285 4568	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	5 20 5 20 5 22 5 22 5 22 5 22 5 22 5 22	3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
RCHRES RCHRES *** PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	18 19 205 805 305 605 905 705 405 125 115	BIG SANDY 2394 560 28 16 8 10 23 15780 10285 4568 2320	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	5 20 5 20 5 20 5 22 5	3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
RCHRES RCHRES *** PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	18 19 205 805 305 605 905 705 405 125 115 105 205	BIG SANDY 2394 560 28 16 8 10 23 15780 10285 4568 2339	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	5 20 5 20 5 22 5 21	3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
RCHRES RCHRES *** PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	18 19 205 805 305 605 905 705 405 125 115 205 805	BIG SANDY 2394 560 28 16 8 10 23 15780 10285 4568 2339 590	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	5 20 5 20 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 21	3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
RCHRES RCHRES *** PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	18 19 205 805 305 605 905 705 405 125 105 205 805 305	BIG SANDY 2394 560 28 16 8 10 23 15780 10285 4568 2339 590 12	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	5 20 5 20 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 21 5 21	3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
RCHRES RCHRES *** PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	18 19 205 805 305 605 905 705 405 125 105 205 805 305 605	BIG SANDY 2394 560 28 16 8 10 23 15780 10285 4568 2339 590 12	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	5 20 5 20 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 21 5 21 5 21	3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
RCHRES RCHRES *** PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	18 19 205 805 305 605 905 705 405 125 105 205 805 305 605 905	BIG SANDY 2394 560 28 16 8 10 23 15780 10285 4568 2339 590 12 415	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	5 20 5 20 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 21 5 21 5 21	3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
RCHRES RCHRES *** PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	18 19 205 805 305 605 905 705 405 125 105 205 805 305 605 905 705	BIG SANDY 2394 560 28 16 8 10 23 15780 10285 4568 2339 590 12 415 235	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	5 20 5 20 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21	3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
RCHRES RCHRES *** PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	18 19 205 805 305 605 905 705 405 125 105 205 805 305 605 905 705 405	BIG SANDY 2394 560 28 16 8 10 23 15780 10285 4568 2339 590 12 415 235 18	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	5 20 5 20 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21	3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
RCHRES RCHRES *** PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	18 19 205 805 305 605 905 705 405 125 105 205 805 305 605 905 705 405	BIG SANDY 2394 560 28 16 8 10 23 15780 10285 4568 2339 590 12 415 235 18 10497	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	5 20 5 20 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21	3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
RCHRES RCHRES *** PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	18 19 205 805 305 605 905 705 405 125 105 205 805 305 605 905 705 405 125	BIG SANDY 2394 560 28 16 8 10 23 15780 10285 4568 2339 590 12 415 235 18 10497 2399	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	5 20 5 20 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 21	3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
RCHRES RCHRES *** PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	18 19 205 805 305 605 905 705 405 125 105 205 805 305 605 905 705 405 125 115	BIG SANDY 2394 560 28 16 8 10 23 15780 10285 4568 2339 590 12 415 235 18 10497 2399 470	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	5 20 5 20 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 21	3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
RCHRES RCHRES *** PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	18 19 205 805 305 605 905 125 105 205 805 305 605 905 705 405 125 115 105 205 805 305 605 905 705 405 125 115 105 205 805 905 705 405 905 705 805 905 905 705 805 905 705 805 905 705 805 905 705 805 905 705 805 905 705 805 905 705 805 905 705 805 905 705 805 905 705 805 905 705 805 905 705 805 805 805 805 805 805 805 8	BIG SANDY 2394 560 28 16 8 10 23 15780 10285 4568 2339 590 12 415 235 18 10497 2399 470 3710	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	5 20 5 20 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 21 5	3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
RCHRES RCHRES *** PERLND	18 19 205 805 305 605 905 705 405 125 105 205 805 305 605 905 705 405 125 105 205 805 205 805 905 705 405 205 805 905 705 405 205 805 905 705 805 905 805 805 805 805 805 805 805 8	BIG SANDY 2394 560 28 16 8 10 23 15780 10285 4568 2339 590 12 415 235 18 10497 2399 470 3710 2013	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	5 20 5 20 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 23 5 23	3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
RCHRES RCHRES *** PERLND	18 19 205 805 305 905 705 405 125 105 205 805 305 605 905 705 405 125 105 205 805 305 605 905 705 405 205 805 305 905 705 405 205 805 305 905 705 405 205 805 905 705 405 205 805 905 705 805 805 905 805 905 805 805 805 805 805 805 805 8	BIG SANDY 2394 560 28 16 8 10 23 15780 10285 4568 2339 590 12 415 235 18 10497 2399 470 3710 2013 66	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	5 20 5 20 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 23 5 23 5 23 5 23	3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
RCHRES RCHRES *** PERLND	18 19 205 805 305 905 705 405 125 105 205 805 305 905 705 405 125 105 205 805 305 905 705 405 305 905 705 405 305 905 705 405 305 905 705 405 305 905 705 405 305 905 705 405 305 905 705 405 305 905 705 405 305 905 705 405 305 905 705 405 305 905 705 405 305 905 705 405 305 905 705 405 305 905 705 405 305 905 705 405 305 905 705 405 905 705 405 905 705 405 905 705 405 905 705 405 905 705 405 905 705 405 905 705 405 905 705 405 905 705 405 125 105 905 705 405 125 105 205 905 705 405 125 105 205 805 905 705 405 105 205 805 905 705 405 105 205 805 905 705 705 705 705 705 705 705 7	BIG SANDY 2394 560 28 16 8 10 23 15780 10285 4568 2339 590 12 415 235 18 10497 2399 470 3710 2013 66	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	5 20 5 20 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 23 5 23 5 23 5 23 5 23 5 23	3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
RCHRES RCHRES *** PERLND	18 19 205 805 305 905 705 405 125 105 205 805 305 905 705 405 125 105 205 805 305 905 705 405 305 905 705 405 125 105 205 805 905 705 405 125 105 805 905 705 405 125 105 805 905 705 405 125 105 805 905 705 405 125 105 805 905 705 405 125 105 805 905 705 405 125 105 805 905 705 405 125 105 805 905 705 405 125 105 805 905 705 405 125 105 125 105 205 705 405 125 105 205 705 405 125 105 205 705 405 125 105 205 705 405 125 105 205 705 405 125 105 205 705 405 125 105 205 705 125 105 205 805 705 105 205 805 705 105 205 805 705 105 205 805 705 105 805 705 805 705 805 705 805 705 805 705 805 705 805 705 805 705 805 705 705 805 705 705 705 705 705 705 705 7	BIG SANDY 2394 560 28 16 8 10 23 15780 10285 4568 2339 590 12 415 235 18 10497 2399 470 3710 2013 66 83 154	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	5 20 5 20 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 23 5 23 5 23 5 23 5 23 5 23 5 23 5 23	3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
RCHRES RCHRES *** PERLND	18 19 205 805 305 905 705 405 125 105 205 805 305 905 705 405 125 105 205 805 305 905 705 405 125 105 205 905 705 405 125 105 205 905 705 405 125 105 205 905 705 405 125 105 205 905 705 405 125 105 205 905 705 405 125 105 905 705 405 125 105 905 705 405 125 105 905 705 405 125 105 905 705 405 125 105 905 705 405 125 105 205 705 405 125 105 205 705 405 125 105 205 705 405 125 105 205 705 405 125 105 205 705 405 125 105 205 705 405 125 105 205 705 405 125 105 205 805 305 905 705 405 105 205 805 305 905 705 105 205 805 305 905 705 105 105 205 805 305 905 705 105 105 105 105 105 105 105 1	BIG SANDY 2394 560 28 16 8 10 23 15780 10285 4568 2339 590 12 415 235 18 10497 2399 470 3710 2013 66 83 154	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	5 20 5 20 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 23 5 23 5 23 5 23 5 23 5 23 5 23 5 23 5 23 5 23 5 23 5 23	3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
RCHRES RCHRES RCHRES *** PERLND	18 19 205 805 305 905 705 405 125 105 205 805 305 905 705 405 125 105 205 805 905 705 405 125 105 205 805 905 705 405 125 105 205 805 905 705 405 125 105 205 805 905 705 405 125 105 205 805 905 705 405 125 105 205 805 905 705 405 125 105 205 805 905 705 405 125 105 205 705 405 125 105 205 705 405 125 105 205 705 405 125 105 205 705 405 125 105 205 705 405 125 105 205 705 405 125 105 205 705 405 125 105 205 805 705 405 125 105 205 805 205 705 405 125 105 205 805 305 905 705 125 105 205 805 305 905 705 125 105 205 805 305 905 705 125 105 105 105 105 105 105 105 10	BIG SANDY 2394 560 28 16 8 10 23 15780 10285 4568 2339 590 12 415 235 18 10497 2399 470 3710 2013 66 83 154 58 9286	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	5 20 5 20 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 23 5 23 5 23 5 23 5 23 5 23 5 23 5 23 5 23 5 23 5 23 5 23 5 23 5 23 5	3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
RCHRES RCHRES RCHRES *** PERLND	18 19 205 805 305 905 705 405 125 105 205 805 305 905 705 405 125 105 205 805 905 705 405 125 105 205 805 905 705 405 125 105 205 805 905 705 405 125 105 205 805 905 705 405 125 105 205 805 905 705 405 125 105 205 805 905 705 405 125 105 205 805 905 705 405 125 105 205 705 405 125 105 205 705 405 125 105 205 125 105 205 105 125 105 105 125 105 205 105 105 105 105 105 105 105 1	BIG SANDY 2394 560 28 16 8 10 23 15780 10285 4568 2339 590 12 415 235 18 10497 2399 470 3710 2013 66 83 154 58 9286 4138	RCHRES RCHRES	5 20 5 20 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 23 5 23 5 23 5 23 5 23 5 23 5 23 5 23 5 23 5 23 5 23 5 23 5 23 5 23 5 23 5	3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

RCHRES	22		RCHRES	23	3
RCHRES	21		RCHRES	23	3
PERLND	205	671	RCHRES	25	2
PERLND	805	389	RCHRES	25	2
PERLND	305	17	RCHRES	25	2
PERLND	905	29	RCHRES	25	2
PERLND	705	96	RCHRES	25	2
PERLND	405	17	RCHRES	25	2
PERLND	125	5641	RCHRES	25	2
PERLND	115	4874	RCHRES	25	2
	105	2270	DCUDEC	25	2
	205	6729	DCUDEC	20	2
PERLIND	205	0728	RCHRES	24	2
PERLND	805	3399	RCHRES	24	2
PERLND	305	90	RCHRES	24	2
PERLND	905	231	RCHRES	24	2
PERLND	705	33	RCHRES	24	2
PERLND	405	186	RCHRES	24	2
PERLND	125	15322	RCHRES	24	2
PERLND	115	5163	RCHRES	24	2
PERLND	105	1080	RCHRES	24	2
PERLND	705	19	RCHRES	26	2
PERLND	125	55	RCHRES	26	2
PERLND	115	53	RCHRES	26	2
PERLND	105	105	RCHRES	26	2
RCHRES	23	100	RCHRES	26	3
RCHRES	24		RCHRES	26	3
	205	925	DCUDEC	20	2
PERLIND	205	533	DOIDEC	27	2
PERLIND	205 205	240	RCHRES	27	2
PERLIND	305	3	RCHRES	27	2
PERLND	905	16	RCHRES	27	2
PERLND	/05	36	RCHRES	27	2
PERLND	405	38	RCHRES	27	2
PERLND	125	2030	RCHRES	27	2
PERLND	115	1454	RCHRES	27	2
PERLND	105	525	RCHRES	27	2
RCHRES	25		RCHRES	27	3
RCHRES	26		RCHRES	27	3
PERLND	201	24	COPY	1	90
PERLND	201	458	COPY	1	90
PERLND	301	32	COPY	1	90
PERLND	601	67	COPY	1	90
PERLND	701	7	COPY	1	90
PERLND	401	2654	COPY	1	90
DEBIND	121	2038	COPY	1	90
DEBUND	111	3286	COPY	1	90
	101	15078	CODV	1	90
DEBLND	001	20070	CODY	1	20
PERLIND	202	1620	COPI	1 2	90
PERLIND	202	10470	COPI	2	90
PERLND	202	10472	COPY	2	90
PERLND	302	1288	COPY	2	90
PERLND	602	133	COPY	2	90
PERLND	702	183	COPY	2	90
PERLND	402	884	COPY	2	90
PERLND	122	10990	COPY	2	90
PERLND	112	16280	COPY	2	90
PERLND	102	30320	COPY	2	90
PERLND	902	77	COPY	2	90
PERLND	203	1559	COPY	3	90
PERLND	203	26839	COPY	3	90
PERLND	103	86640	COPY	3	90
PERLIND	303	2650	COPY	3	90
PERLIND	603	£050 626	COPY	2	90
PERLIND	902	11.21	COPY	2	90
		1101	0011	5	20

PERLND	703						1306	COPY	3	9	90			
PERLND	403						510	COPY	3	9	90			
PERLND	123						22354	COPY	3	9	90			
PERLND	113						28956	COPY	3	9	90			
PERLND	803						21	COPY	3	9	90			
PERLND	204						1147	COPY	4	9	90			
PERLND	204						1453	COPY	4	9	90			
PERLND	304						1087	COPY	4	9	90			
PERLND	604						424	COPY	4	9	90			
PERLND	904						57	COPY	4	9	90			
PERLND	704						529	COPY	4	9	90			
PERLND	404						3665	COPY	4	9	90			
PERLND	124						4802	COPY	4	9	90			
PERLND	114						7304	COPY	4	9	90			
PERLND	104						59349	COPY	4	9	90			
PERLND	804						45	COPY	4	9	90			
PERLND	205						16777	COPY	5	9	90			
PERLND	805						7600	COPY	5	ç	90			
PERLND	305						216	COPY	5	ç	90			
PERLND	905						782	COPY	5	ç	90			
PERLND	705						583	COPY	5	ç	90			
PERLND	405						340	COPY	5	9	90			
PERLND	125						58611	COPY	5	ç	90			
PERLND	115						28366	COPY	5	ç	90			
PERLND	105						9736	COPY	5	ç	90			
PERLND	605						17	COPY	5	ç	90			
END SCH	EMA	TIC												
		-												
EXT TAR	GETS	3												
<-Volum	e->	<-Grp>	<-Membe	er.	->-	<	-Mult>Tran	<-Volu	ume->	<memb< td=""><td>oer></td><td>Tsvs</td><td>Aqar</td><td>Amd</td></memb<>	oer>	Tsvs	Aqar	Amd
* * *		- 1										1	55	
<name></name>	x		<name></name>	x	x	<-f	actor->strg	<name></name>	> x	<name< td=""><td>e>af</td><td>tem</td><td>strq</td><td></td></name<>	e>af	tem	strq	
stra***							Jerre J				-		J	
RCHRES	1	HYDR	RO	1	1		AVER	WDM	175	FLOW	1	ENGL	AGGR	REPL
RCHRES	1	ROFLOW	ROVOL	1	1	5.	0749e-4	WDM	1001	SIMO	1	ENGL	AGGR	REPL
RCHRES	8	HYDR	RO	1	1		AVER	WDM	275	FLOW	1	ENGL	AGGR	REPL
RCHRES	8	ROFLOW	ROVOL	1	1	1.	6607e-4	WDM	2001	SIMO	1	ENGL	AGGR	REPL
RCHRES	9	HYDR	RO	1	1		AVER	WDM	375	FLOW	1	ENGL	AGGR	REPL.
RCHRES	9	ROFLOW	ROVOL	1	1	6.	9508e-5	WDM	3001	SIMO	1	ENGL	AGGR	REPL
RCHRES	20	HYDR	RO	1	1		AVER	WDM	475	FLOW	1	ENGL	AGGR	REPL
RCHRES	20	ROFLOW	ROVOL	1	1	1.	5026e-4	WDM	4001	STMO	1	ENGL	AGGR	REPL
RCHRES	27	HYDR	RO	1	1		AVER	WDM	575	FLOW	1	ENGL	AGGR	REPL
RCHRES	27	ROFLOW	ROVOL	1	1	9	75396-5	WDM	5001	STMO	1	ENGL.	AGGR	REPL
COPY	1		MEAN	1	1	4	229E-05	WDM	1002	SIIRO	1	ENGL.	110010	REDI.
COPY	1		MEAN	2	1	4	229E-05	WDM	1002	TEMO	1	ENGL.	ACCR	REDI.
COPY	1		MEAN	3	1	4	229E-05	WDM	1004	AGWO	1	ENGL.	AGGR	REPT.
COPY	1		MEAN	4	1	1. 4	229E-05	WDM	1005	PETY	1	ENGL	ACCP	REDT.
COPY	1		MEAN	5	1	Δ.	2298-05	WDM	1006	SPLU	1	ENCI	ACCP	REDI
COPY	1		MFAN	5	⊥ 1	- <u>-</u> . 4	22255 05 229F-05AVFD	WDM	1007	U79V	1	ENGI	ACCP	PFDT
COLT	1	JOILOI	אדשיניניי	0	-	т.	LIVI UJAVER	1,171,1	T00/	JUDA	1		VOOI(나파트니

7 1 4.229E-05AVER WDM 1008 LZSX 1 OUTPUT MEAN 1 ENGL AGGR REPL 2 OUTPUT MEAN 1 1 1.3839e-5 WDM 2002 SURO 1 ENGL AGGR REPL 2003 IFWO 2 1 1.3839e-5 WDM 2 OUTPUT MEAN 1 ENGL AGGR REPL 2 OUTPUT MEAN 3 1 1.3839e-5 WDM 2004 AGWO 1 ENGL AGGR REPL 2 OUTPUT MEAN 4 1 1.3839e-5 WDM 2005 PETX 1 ENGL AGGR REPL 2 OUTPUT MEAN 5 1 1.3839e-5 WDM 2006 SAET 1 ENGL AGGR REPL 2007 UZSX 2 OUTPUT MEAN 6 1 1.3839e-5AVER WDM 1 ENGL AGGR REPL 7 1 1.3839e-5AVER WDM 2008 LZSX 2 OUTPUT MEAN 1 ENGL AGGR REPL 3 OUTPUT MEAN 1 1 5.7923e-6 WDM 3002 SURO 1 ENGL AGGR REPL 2 1 5.7923e-6 3 OUTPUT MEAN WDM 3003 IFWO 1 ENGL AGGR REPL 3 OUTPUT MEAN 3 1 5.7923e-6 WDM 3004 AGWO 1 ENGL AGGR REPL 3 OUTPUT MEAN 4 1 5.7923e-6 WDM 3005 PETX 1 ENGL AGGR REPL

5 1 5.7923e-6

6 1 5.7923e-6AVER WDM

COPY

3 OUTPUT MEAN

3 OUTPUT MEAN

1 ENGL AGGR REPL

1 ENGL AGGR REPL

WDM

3006 SAET

3007 UZSX

COPY 3	OUTPUT	mean 7	1 5.7923e-6AVER	WDM 3008 LZSX	(1 EN	IGL AGGR	REPL
COPY 4	OUTPUT	MEAN 1	1 1.2522e-5	WDM 4002 SURC) 1 EN	IGL AGGR	REPL
COPY 4	OUTPUT	MEAN 2	1 1.2522e-5	WDM 4003 IFWC) 1 EN	JGL AGGR	REPL
COPY 4	OUTPUT	MEAN 3	1 1.2522e-5	WDM 4004 AGWC) 1 EN	IGL AGGR	REPL
COPY 4	OUTPUT	mean 4	1 1.2522e-5	WDM 4005 PETX	K 1 EN	IGL AGGR	REPL
COPY 4	OUTPUT	MEAN 5	1 1.2522e-5	WDM 4006 SAET	7 1 EN	IGL AGGR	REPL
COPY 4	OUTPUT	MEAN 6	1 1.2522e-5AVER	WDM 4007 UZSX	C 1 EN	IGL AGGR	REPL
COPY 4	OUTPUT	MEAN 7	1 1.2522e-5AVER	WDM 4008 L7SX	- – –- (1 EN	JGL AGGR	REPL
COPY 5	OUTPUT	MEAN 1	1 8.1282e-6	WDM 5002 SURC) 1 EN	IGL AGGR	REPL
COPY 5	OUTPUT	MEAN 2	1 8.1282e-6	WDM 5003 TFWC) 1 EN	JGL AGGR	REPL
COPY 5	OUTPUT	MEAN 3	1 8 1282e-6	WDM 5004 AGWC) 1 EN	JGL AGGR	REPL
COPY 5	OUTPUT	MEAN 4	1 8 1282e-6	WDM 5005 PETS		JGI. AGGR	REDI.
CODV 5	OUTDUT		1 8 12826-6	WDM 5006 9787	ים ביים אים ריי	ICI ACCP	
COPY 5	OUTPUT	MEAN 5		WDM 5000 SAEI	ינים ב איס 1 דיו	IGL AGGR	
COPI 5	OUTPUT	MEAN 0	1 0.1202e = OAVER		х <u>ты</u> х 1 лл	IGL AGGR	REPL
COPI 3	DOTPOT	MEAN /	I 0.1202E-DAVER	WDM 2000 L252		IGL AGGR	REPL
END EXI IA	RGEIS						
MASS-LINK							
MASS-LIN	IK	2					
<-Volume->	<-Grp>	<-Member	-> <mult></mult>	<-Target vols>	<-Grp>	<-Member	r->
<name></name>		<name> x</name>	x<-factor->	<name></name>		<name> 2</name>	хх
PERLND	PWATER	PERO	0.0833333	RCHRES	INFLOW	IVOL	
END MASS	-LINK	2					
MACC TTN		2					
MASS-LIN	IL Crn>	s < Mombor	Mult >	< Target Wolds	< Crn>	< Mombo	r .
<-voiume->	<-Grb>	<-Melliber	=><==Muit==>	<-larget VOIS/	<-Grb>	<-Melliber	L - /
<name></name>		<name> x</name>	x<-factor->	<name></name>		<name> 2</name>	хх
RCHRES	ROFLOW			RCHRES	TNFLOW		
END MASS	-T.TNK	3			1111 1011		
		5					
MASS-LTN	IK	90					
<-Volume->	<-Grb>	<-Member	> <m11]+></m11]+>	<-Target vols>	<-Grn>	<-Member	r->
***	(GIP)	(Melliber	indic i	· Targee Vorb/	(OIP		
		<names td="" v<=""><td>xc-factor-></td><td><name></name></td><td></td><td>-Names -</td><td>~ ~</td></names>	xc-factor->	<name></name>		-Names -	~ ~
<name></name>							~ ~
	סשתעמס	CLIDO		CODY	TNIDIIT	MEAN	1
PERLIND	PWAIER	SURU		COPI	INPUI	MEAN .	1 ว
PERLND	PWAIER	1FWO		COPY	INPUI	MEAN 2	2
PERLND	PWATER	AGWO		СОРҮ	TNP0.1.	MEAN .	3
PERLND	PWATER	PET		COPY	INPUT	MEAN 4	4
PERLND	PWATER	TAET		COPY	INPUT	MEAN S	Ь
PERLND	PWATER	UZS		COPY	INPUT	MEAN (5
PERLND	PWATER	LZS		COPY	INPUT	MEAN	7
END MASS	-LINK	90					
END MASS-L	INK						

END RUN

Appendix C. Cyclic and Asymptotic Methods User's Control Input File (UCI)

RUN

```
GLOBAL
 UCI Created by WinHSPF for Mine_UCI
        1975/01/01 01:00 END
                                1995/12/30 23:00
 START
 RUN INTERP OUTPT LEVELS 1 0
 RESUME 0 RUN 1
                                         UNITS
                                                 2
END GLOBAL
FILES
<FILE> <UN#>***<----FILE NAME----->
       24 Mine_Site__emp_mm.ech
MESSU
         26 MineSite.wdm
30 D:\Matlab_Functions\samsfunctions\Output_emp.txt
WDM
END FILES
OPN SEQUENCE
                   INDELT 01:00
   TNGRP
   PERLND
            101
            1
    PLTGEN
   END INGRP
END OPN SEQUENCE
PERLND
ACTIVITY
*** <PLS >
                   Active Sections
                                                           * * *
*** x - x ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***
 101 0 0 1
                      0 0 0 0 0 0 0 0
 END ACTIVITY
 PRINT-INFO
*** < PLS>
                           Print-flags
                                                           PIVL PYR
*** x - x ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC
       6 6 6 6 6 6 6 6 6 6 1 12
 101
 END PRINT-INFO
GEN-INFO
* * *
             Name
                                Unit-systems Printer BinaryOut
*** <PLS >
                                   t-series Engl Metr Engl Metr
*** x - x
                                   in out
 101 Mine
                                            0
                                               0
                                                    0 0
                                    2 2
 END GEN-INFO
 PWAT-PARM1
*** <PLS >
                        Flags
*** x - x CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE IFFC HWT IRRG
101 0 1 1 0 0 0 0 0 0 1 0 0
 END PWAT-PARM1
 PWAT-PARM2
                                     LSUR SLSUR KVARY
*** < PLS>
           FOREST
                    LZSN
                           INFILT
                                                             AGWRC
*** x - x
101 0.10
                           (mm/hr)
                     ( mm )
                                      (m)
                                                     (1/mm)
                                                             (1/day)
                                     15.24
                                             0.15
                           1.80
                                                     0.
                    12.36
                                                              0.90
 END PWAT-PARM2
 PWAT-PARM3
*** < PLS> PETMAX
                                   INFILD
                   PETMIN
                            INFEXP
                                           DEEPFR
                                                    BASETP
                                                              AGWETP
*** x - x
          (deg C)
                   (deg C)
 101
                              2.
                                     2.
                                               0.
                                                     0.02
                                                               0.01
          3.89
                  0.56
 END PWAT-PARM3
 PWAT-PARM4
*** <PLS >
           CEPSC
                     UZSN
                             NSUR
                                    INTFW
                                               IRC
                                                      LZETP
*** x - x (mm)
101 0.00
                     ( mm )
                                            (1/day)
                     1.24
                             0.15
                                     2.00
                                              0.5
                                                      0.20
 END PWAT-PARM4
```

PWAT-STATE1 *** < PLS> PWATER state variables (mm) *** x - x CEPS SURS UZS IFWS LZS AGWS 101 0. 12.94 1.27 0.279 12.95 25.4 GWVS 25.4 0.000 END PWAT-STATE1 END PERLND PLTGEN PLOTINFO Plot-opn *** # - # FILE NPT NMN LABL PYR PIVL TYPE *** 1 30 0 16 0 END PLOTINFO SCALING Plot-opn *** IVLIN YMAX THRESH *** # - # YMIN 1 500. 48. END SCALING END PLTGEN EXT SOURCES <-Volume-> <Member> SsysSqap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name>xx</th METRZERO END EXT SOURCES SCHEMATIC <-Volume-> <ML#> *** <-Volume-> <--Area--> <sb> <-factor-> 1 <Name> x *** PLTGEN 1 91 <Name> x хх PERLND 101 END SCHEMATIC MASS-LINK MASS-LINK 91 <-Target vols> <-Grp> <-Member-> *** <-Volume-> <-Grp> <-Member-><--Mult--> <Name> <Name> _____
PPDIND PWATER SURO 1
_____ 1 <Name> x x<-factor-> <Name> <Name> x x * * * INPUT MEAN 3 PLTGEN PERLND PWATER IFWO PLTGEN INPUT MEAN 4 1 1 PERLND PWATER UZS PLTGEN INPUT MEAN 5 PWATER LZS INPUT MEAN PERLND PLTGEN 6 1 PWATER AGWO PERLND PLTGEN INPUT MEAN 7 PWATER INFIL INPUT MEAN PLTGEN PERLND 1 8 PERLND PWATER PERC 1 PLTGEN INPUT MEAN 9 1 INPUT MEAN 10 PWATER TAET PERLND PLTGEN PWATER LZI 1 INPUT MEAN 11 PERLND PLTGEN 1 INPUT MEAN 12 INPUT MEAN 13 PERLND PWATER UZI PLTGEN PWATER IFWI PERLND 1 PLTGEN 1 INPUT MEAN 14 PWATER SURI PERLND PLTGEN PERLNDPWATERLZETPERLNDPWATERSURS INPUT MEAN 15 1 1 PLTGEN INPUT MEAN 16 1 PLTGEN END MASS-LINK 91

END MASS-LINK

END RUN