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ABSTRACT 
 

Brownian Motion in Cellular Receptors 

 

Ouri Maler 

 

  
 

In microbiology, chemical receptors on cellular membranes play a key role in a number of 

important reactions, defining when cells perform given roles and switch behaviors. These 

receptors are not static; their movements across the cellular membrane have been noted for their 

similarity to random Brownian motion. At the same time, some of these receptors only fire when 

clustered. We wish to establish a mathematical model for this phenomenon and check the 

model's validity by comparing its results to experimental data. 

 

In part 1, we will be taking a closer look at the phenomenon being studied. In part 2, we will 

examine the proposed mathematical model, involving a combination of Brownian motion and 

asymmetrical obstacles. In part 3, we will explain in greater detail the goals we are striving 

toward with this project. In part 4, we will present the programs and methods used to simulate 

the model and analyze the resulting data. In part 5, we will look at our results to date. Finally, in 

part 6, we will explain our preliminary conclusions and our outlook from here on out. 
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1. Background: The Biochemical Matter 

At their root, the mathematical questions studied in this paper originate from attempts to              

comprehend certain aspects of cellular biochemistry. Before we examine the math, let us look at               

the real-world issue behind it. 

1.1 Cells as chemical factories 
Processes in living cells can be characterized in terms of chemical processes involving             

complex molecular entities. Those processes, called "reactions", revolve around the conversion           

of types of molecules. Reactions can take the form of 1)Association, wherein two or more               

molecules of given types merge together to form a molecule of another type, 2)Dissociation,              

wherein one molecule breaks down into several smaller ones, 3)Conformation changes, wherein            

a molecule retains its component atoms, but changes the geometric configuration in which they              

are held together, potentially changing the molecule's properties in radical ways, and            

4)Translocation, wherein a molecule moves from one part of the cell to another (for instance, an                

RNA molecule leaving the cellular nucleus). 

If cells are to be viewed as chemical factories, then the set of reactions that regiment them are                  

traditionally modelled as Chemical Reaction Networks (CRN) [3]. Under the CRN model, we             

have 1)A number of ​species ​, each corresponding a type of molecule (where two identical              

molecules can be considered as different species if location or another factor causes them to               

behave differently), 2)A ​state​, which is the amount (or in most instances the density) of each                

species at a given time, and 3)A set of reactions, each one corresponding to a state change. For                  

instance, the following reaction: 

A + B → C  
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In this reaction, a molecule of species A and a molecule of species B merge together to form a                   

molecule of species C. This reaction affects the state by reducing the density of A and B while                  

raising the density of C. 

Under the CRN model, the cell is treated as an Ordinary Differential Equation system (ODE)               

[2][6]. The rate at which each reaction happens is equal to a constant multiplied by the densities                 

of the component species, and the density of each species changes at a rate proportional to the                 

rate of the reactions involving it. The resulting ODE tracks the rate of change of all species. 

The CRN model is very commonly used, including by the pharmaceutical industry. It is a               

handy vehicle for summarizing knowledge about the biochemistry of organisms, ranging from            

humans to the (relatively) simpler viruses. However, the attempt of the CRN model to              

understand the cell's working using ODEs runs into a number of problems: 

The first problem is the sheer, overwhelming complexity of the cell. Any given cell may               

contain, at a conservative estimate, thousands of different molecule species - there are, after all,               

around 20,000 protein-coding genes in the DNA present in each and every cellular nucleus in               

humans. An ODE with thousands of dimensions can be de facto impervious to attempts to               

resolve it through calculation. 

The second problem is that, as useful as the ODE model can be, it is also an                 

oversimplification. It does not address the spatial structure of the cell, when a molecule's              

behavior may be radically altered by its location. It does not account for the fact that the                 

molecules of a given species are not uniformly distributed within the cell, or even within the part                 

of the cell where they reside. Last but not least, while some molecule species are present in                 

massive numbers in the cell, others might only exist as a small handful of copies; if too few                  

molecules of a species exist, then the CRN approach of treating their behavior as a deterministic                

ODE breaks down; a stochastic, probabilistic approach becomes more appropriate. 

1.2 Cell Signaling 
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The cells that form the human body and other such multicellular organisms must, naturally,              

coordinate. Now, every cell with a nucleus contains within itself the entirety of the human DNA,                

which describes all possible cellular behavior - however, each given cell will only perform the               

behavior required by its position and the current needs of the organism as a whole. What the cell                  

does at any given moment is defined in no small part by its reactions to outside information                 

received via ​signaling​. 

In biochemical signaling, the "message" is often going to be a type of molecule that circulates                

between cells. Any given cell type may produce and receive many different signal types; once               

messenger molecules are received, ​cellular signal processing is needed to translate the received             

signals into a ​response​. This involves complex signaling pathways within the cells that are not,               

to date, completely understood. 

It should be noted here that many illnesses - diabetes, autoimmune diseases, certain cancers -               

are believed to result from errors in signaling. Type 2 diabetes, for instance, is a condition in                 

which cells fail to respond to the insulin (the signal) as they are supposed to [12]. 

Cellular signals and receptors are a vast field. One particular family of such is of interest to us                  

here: The ​receptor-ligand ​. Ligand molecules act as the signal, binding to a specialized             

counterpart in the cell - the receptor. The receptors are confined to the cellular membrane,               

binding to ligands from the extracellular space. 

One example of ligand is the Vascular Endothelial Growth Factor (VEGF) [5][9] and its              

receptor (VEGFR), a protein that stimulates the growth of blood vessels. VEGF is of interest to                

cancer research: A cancerous tumor that grows wildly will starve itself of oxygen and nutrients               

unless it gets irrigated by blood circulation. As such, whether cancer cells generate sufficient              

amounts of VEGF can make the difference between a benign tumor and a malignant one. 

Ligand receptors, far from being static, "float" across the cellular membrane. One key aspect              

of their behavior is that they are also able to bond with each other when they get sufficiently                  

close; those aggregates of receptors are called oligomers. Notably, the binding between two             

receptors is significantly stronger in the presence of ligands. Just as importantly, it is only when                
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large oligomers form that their intracellular domains interact, cross-activate, and induce           

processes inside the cell, continuing the signaling machinery. 

What this means, then, is that the ligand-based signalling process is affected by the movement               

of the receptors on the cellular membrane - by anything that affects the likelihood and frequency                

of multiple receptors aggregating. We wish, then, to take a closer look at factors affecting               

receptor mobility on the cellular membrane - anything facilitating or limiting receptor-receptor            

binding. 

Single Particle Tracking (SPT) [8] is a technique that allows for the observation of individual               

receptors over time, and has provided large amounts of experimental data on their movement.              

While they generally seem to perform typical Brownian motion, their clustering patterns suggest             

deviations from that model, which are thought to be the result of obstacles to free movement.                

There are two types of obstacles that have been theorized: Actin filaments, which would act as                

linear barriers [1], and trapping regions (possibly composed of "lipid rafts") [4], which would be               

easy for receptors to enter but difficult to leave. 

Our goal here is to help understand how movement and clustering patterns emerge from              

barriers and trapping regions. Before that, however, we need to take a quick look at the                

mathematics behind Brownian motion. 
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2. Background: Mathematical Aspects of Brownian Motion 

2.1 Brownian Motion (BM) and Diffusion 

The position of a Brownian particle is a random variable. If we know for certain the position                 

at time , then the position at a later time is distributedr→0 = (x , )0 y0    t = 0    r x, ) →(t) = ( y     t > 0    

according to the ​probability density function ​ (PDF): 

 f (x, ; )y t = 1
4πDt exp −( 4Dt

(x−x ) +(y−y )0
2

0
2)    

where is the diffusion coefficient. Note that the above PDF is simply the product of twoD                 

normal distributions, one for each direction, with variance . Thus, the displacement in       σ Dt 2 = 2      

the X direction, , is distributed normally around zero, and the expectation of is   x  Δ = x − x0           xΔ 2   

equal to the variance . In other words, while the value of the X coordinate at any future    Dtσ2 = 2               

time is not known precisely, it will be distributed symmetrically around the initial valuet > 0              

following a normal distribution with variance proportional to the time . The samex 0            t    

considerations apply to the Y direction. 

Note that the PDF is ​normalized so that the total probability of finding the particle ​anywhere                

in the XY plane is always 1: 

(x, ; ) dx dy  ∫
∞

0
∫
∞

0
f y t = 1

4πDt ∫
∞

−∞
x dy e∫

∞

−∞
d

−(x +y )/4Dt 2 2

= · · · = 1  

More generally, we may think of the cumulative PDF for the position of any number of                

particles, as the sum of individual PDFs: 

(x, ; )  ρ (x, ; )y t = ∑
N

k=0
f j y t = 1

4πDt ∑
N

j=0
exp −( 4Dt

x−x + y−y( 0j)
2 ( 0j)

2)   
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where represent the initial coordinates of particle . In this case, the cumulative PDF(x , y ) j  j       j       

acts as a joint probability density; its integral over any finite area gives theρ(x, ; )   y t             W⊂R 2    

expected number of particles inside .W   

 A little further reasoning leads us to the following property: 

x dy   ρ (x, ; )y t = 1
4πD(t−t ) ′ ∫

∞

−∞
∫
∞

∞
exp −( 4D(t−t )′

(x−x ) +(y−y )′ 2 ′ 2) ρ (x , ; )′ y′ t′ d ′ ′  

If we know the cumulative density of a set of such particles at a given time, we can use the                    

above to compute the PDF at some future time as the convolution of the past density with the                  

displacement PDF.  

This formula also provides an important connection to the ​continuum picture​. The quantity             

is normalized to the total number of particles in the system:(x, ; )  ρ y t   

(x, ; ) dx dy∫
∞

−∞
∫
∞

∞
ρ y t = N     

As the number of particles increases, it is reasonable to interpret as the “number           (x, ; )  ρ y t     

density”, the physical density of particles expressed in units of particle count per unit area.               

Importantly, one can easily show (by direct computation) that as defined by the         (x, ; )  ρ y t     

convolution formula verifies the ​diffusion equation ​ in two dimensions:  

∂t
∂ρ = ∂ ρ2

∂x2 + ∂ ρ2

∂y2  

Thus, Brownian motion is equivalent to classical diffusion in the sense that the PDF of a set of                  

Brownian particles verifies the classical (Fickian) diffusion equation for the same diffusion            

coefficient. In other words, the ​localization density of a set of discrete, point-like Brownian              

particles behaves ​exactly as we imagine the continuum representing the density of a diffusing              
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substance. This is a remarkable (if very old) result, and is the basis for our simulation based                 

approach to the diffusion of biomolecules. 

2.2 Brownian Motion: displacements statistics 

The PDF for the next position of a Brownian particle is the mathematical basis of our                

simulation algorithm. It is also the starting point in the derivation of statistical measures that are                

commonly used to compare the movement patterns of particles to Brownian motion. These             

measures typically involve the ​displacements ​connecting two consecutive positions of the same            

particle.  

By contrast with classical (also called Fickian or “normal”) diffusion, consistent with            

Brownian motion, random movements that deviate from BM are called “anomalous”. As with all              

things “normal”, it turns out that true Brownian motion is quite uncommon in Nature, and most                

biologically relevant molecules perform one form or another of anomalous diffusion. Still, the             

Brownian motion approach is very useful in providing the basic context of the discussion and               

also as a reference to quantify the actual behaviors. 

Brownian Motion: Displacement Statistics 

In the following we focus on particles that move more or less randomly in two dimensions.                

The position vector at some specific time consists of the corresponding X and Y coordinates,       t0        

. The change in the position vector at some later time is the(t ) x(t ), (t ))r→ 0 = ( 0 y 0            tt1 = t0 + Δ    

displacement​,  

(Δt; ) (t ) (t ) Δx(Δt; ), y(Δt; ))  R
→

t0 = r→ 1 − r→ 0 = ( t0 Δ t0 · · ·  

Since we are dealing with stochastic behavior, we want to be able to collect large samples.                

This is why it is useful to look at the displacement over a fixed length of time (the above),                  tΔ   

and collect samples for the same , starting from many initial times , ​for the same particle​.      tΔ        t0      

Of course, when we are dealing with several particles (whose movement is not ​a priori ​known to                 

follow different dynamics), we may collect displacements from different particles / trajectories.  
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To simplify the notation, we drop the second argument (the initial time) and use to              (Δt)R
→

  

represent the displacement vector over ​some time interval of length , during the motion of          tΔ      

some particle from the group of interest. In this context, we will rewrite the PDF and also derive                  

(or state) probability density functions for the displacement vector and its magnitude. The joint              

PDF for the components of the displacement vector is the same as stated in the        x, ΔyΔ          

beginning of this section: 

(Δx, y)f XY Δ = 1
4πDΔt · e−(Δx +Δy )/(4DΔt) 2 2  

The corresponding expectation of  is zero, and that of the squares is .x, ΔyΔ  DΔtσ2 = 2  

The ​PDF for the ​scalar displacement can be obtained by changing to      R|  R = |
→

= √Δx y2 + Δ 2        

polar coordinates in the normalization integral (we drop the to simplify the notation):Δ  

(x, ) dx dy  dR ϕ  dR  e1 = ∫
∞

−∞
∫
∞

−∞
f XY y = ∫

∞

0
R ∫

2π

0
d 1

4πDΔt · e−R /(4DΔt) 2
= 1

2DΔt · ∫
∞

0
R −  R2

4DΔt  

In summary: 

(Δt)    f (R)  R ≡ R(Δt)|
|

→ |
|  →  R = 1

2DΔt · R · e−R /(4DΔt) 2
 

The ​PDF for the ​square displacement follows either from integrating over      x yR2 = Δ 2 + Δ 2       

the joint PDF for , or more easily, by changing variables in the normalization integral to    x, ΔyΔ              

S 2RdRS ≡ R2 → d =   

 dR  e S  e1 = 1
2DΔt · ∫

∞

0
R −  R2

4DΔt = 1
4DΔt · ∫

∞

0
d −S/(4DΔt)     

In summary: 

(Δt) (Δt) =     f (S)  S ≡ R 2 R(Δt)|
|

→ |
|
2

→  S = 1
4DΔt · e−S/(4DΔt)  
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Comparing Experimental Movement to Brownian Statistics  

Typically, we have access to experimentally derived ​trajectories ​, which are time-ordered lists            

of the positions (coordinates) of a particle at different moments in time. The positions are               

obtained from recordings (movies) that consists of images taken at fixed time intervals. Thus, in               

two spatial dimensions, we have an array or table of entries of the form where              t , , }{ k xk yk k=1···N  

the recording times are increasing ; more often than not, the recordings     t0 < t1 < . . . tk < tk+1 . . .         

are made at a fixed time interval, .ttk+1 = tk + Δ  

Displacements can be obtained from a given trajectory by selecting ordered pairs            

. It is useful to note that, given a trajectory obtained using ak, } , t{ j  k > tj          {t , }, t , } 0 r→0 . . . { N r→N     

fixed time step, we may extract sets of displacements corresponding to one or more time steps: 

t {1, }, 2, }, 3, }, N , }  Δ :  0 { 1 { 2 · · · { N − 1   

Δt {2, }, 3, }, 4, }, N , }  2 :  0 { 1 { 2 · · · { N − 2   

Δt {k, }, k , }, k , }, N , }  k :  0 { + 1 1 { + 2 2 · · · { N − k  

The following discussion refers to sets of displacements corresponding to the same ​time             

difference ​.  

The Brownian displacement and ​square displacement follow different distributions, as we           

have seen. Both can be used to analyze experimental data, by comparing a sample of               

displacement values (corresponding to the same time) to the analytical results. 

Importantly, the distribution of the SD starts from zero (at ), has a peak at () and a          r = 0         

Gaussian ‘tail’ as ; the square displacement is distributed exponentially. It is more   r → ∞     S = r2       

practical because of its simple functional form, and the fact that, plotted on a semi-logarithmic               

scale ( vs.  ) it is a straight line with slope .n(f (r ))  l s
2 r2 n(f (S)) − Dt  l s ′ = 4   

The most common measure is the ​mean square displacement ​(MSD). From the PDF, we have 
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= f (S)dS dS Dt< r2 > ∫
∞

0
S s = ∫

∞

0

1
4Dt · S · e−S/4Dt = 4  

Here one would compare the mean square displacement computed for different time values             

and the dependence should be linear. 

3. Goals of the project 

The purpose of our endeavour here is to gain a clearer understanding of how receptor               

movement and clustering patterns on the cellular membrane emerge from barriers and trapping             

regions. SPT already provides us with raw experimental information on the movement of tagged              

receptors, but does not provide a map of the underlying membrane landscape; it is our hope that                 

we may provide a framework through which the SPT data may be interpreted. 

With that goal in mind, we intend to simulate Brownian motion in the presence of various                

landscape configurations; those configurations are meant to simulate both actin filaments that            

block movement, and trapping domains that result in asymmetric blocking (that is, where             

moving in one direction is harder than in the opposite). Once the simulator works, we wish to                 

develop methods via which landscape features may be identified through analysis of observed             

movement; applying those methods to SPT data will hopefully tell us more about the cellular               

membrane and how ligand receptors on it behave.  
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4. Methods 

In this section, we will go over the software and mathematical tools that we have been using                 

in this project. Our software has two major functions: (1) simulation of trajectories under various               

scenarios (2) analysis of trajectory data.  

4.1 Brownian Motion Simulator 

Algorithm 

We use a first-principles approach [10], in that our motion simulation algorithm emulates             

Brownian motion using the exact expression for displacements. We follow a fixed number of              

particles, , and generate their positions at consecutive times using a fixed time step,  N p         , ,  t0 t1 · · ·       

.tΔ   

Each particle is represented by a two dimensional position vector, which evolves over time              

reflecting the movements of the particle. For instance, the position vector of the -th particle is             k    

. It is helpful to point out the distinction between integers used to identify(t) x (t), (t))r→(k) = ( (k) y(k)               

the discrete times (when the updates occur) and the labeling of the different particles. The time at                 

time step is j t.  tj = t0 + j · Δ   

The ​state of the (simulated) system at a given time consists of the XY coordinates of the          tj         

set of particles: N p   

 r (t )}   ;    r (t ) x (t ), (t ))  ;{→ (k)
j k=1···N  → (k)

j = ( (k)
j y(k)

j  , ,  k = 1 2 . . . N   

When there is no risk of confusion, one may use double indices: .(t )  x ,  )r→ (k)
j = ( j

(k) y j
(k)  

Each ​update consists of adding displacements to the positions of each particle. Each      x, yΔ Δ        

displacement value is a random number generated consistent with the PDF  
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(ξ)  f 1 = 1
t√4DΔ
· exp − ξ )/(4DΔt)( ( 2 )  

which is equivalent to using the joint PDF 

.(Δx, y)  f Δ = 1
4DΔt · exp −( 4DΔt

Δx +Δy2 2)  

At every update, the system time is advanced by the amount of one step; for each of the                   N

particles, the X and Y coordinates are changed by amounts , respectively (generated as          xΔ   yΔ   

described above): 

t;  (x , ) x x, y),  ∀k , ,t → t + Δ  (k) y(k)
 → ( (k) + Δ y(k) + Δ  = 1 2 . . . , N p  

Simulation boundaries are necessary in order to have a finite simulation area and avoid the               

loss of particles. We use a rectangular simulation space defined by intervals in the X and Y                 

directions, (where ). We require that the coordinates of , ] Y , ][XA XB × [ A Y B   , YXA < XB  A < Y B        

all simulated particles satisfy  that isx , ) , ] Y , ]( (k) y(k) ∈ [XA XB × [ A Y B  

 .(t )  , Y (t ) , ∀j,XA ≤ x(k)
j ≤ XB  A ≤ y(k)

j ≤ Y B  k  

Assuming that the condition is satisfied at a given time , we ensure that it stays that way at          tj          

the next time step, by ​rejecting position updates that would take the particle out of the box (i.e.                  

violate the inequalities). During each update, after generating the new positions for each particle,              

we identify the particles whose “new” position would be outside the box; the positions of these                

particles are then re-set to the previous one.  

This approach is equivalent to ​reflective boundary conditions. ​It is slightly more imprecise             

than alternatives where the displacement vector is reflected by the boundary; the discrepancy             

vanishes in the limit . The geometry of the boundaries is such that all points inside or on    tΔ → 0               

the rectangular boundary have at least a ¼ chance of moving to an acceptable position.  

Obstacles are treated similarly to the system boundaries. They are represented by directed             

line segments , which partially block the movement of simulated particles. A proposed move  AB
→
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of a particle ​may be rejected if the line segment going from the original (“before”) to the newly                  

generated (“after”) position of a particle intersects the line segment representing the obstacle. We              

found it useful to make the obstacles block in only one direction, and have a (possibly) non zero                  

crossing probability. First, only moves (proposed displacement vectors) that cross from left to             

right are blocked. Second, even from among these, moves are accepted with a probability              

as follows: for each proposed move that would cross the obstacle, we generate apcross ≥ 0                

random number , and ​accept​ the move if and only if .0, ]  r ∈ [ 1  r ≤ pcross   

Implementation 

Using the Python programming language, we designed a program that simulates Brownian            

motion by making a number of objects perform a random movement at regular time intervals. 

The program is given a number of parameters. The first is the diffusion coefficient ​D ​,               

representing distance-per-time. Another one is the time length of the simulation. Another one is              

the number of time steps taken during the simulation (each time step has a length ​Δt equal to the                   

total length of the simulation divided by the total number of steps). One is the number of objects                  

(representing the receptors). 

The last parameter is a file describing the landscape in which the simulation takes place by                

listing obstacles. Each obstacle is treated as a segment in the landscape that has a given                

probability of nullifying movement that goes through it. Obstacles can be bilateral (meaning that              

they block movement regardless of direction) or one-way (meaning that they only stop             

movement going in one direction). Another program can be used to randomly generate landscape              

files; once given a number of obstacles to generate, it will assign them random sizes and                

positions in the landscape, making them bilateral or one-way as requested. 

During runtime, the simulator places each sample object in a random position within the              

landscape. After that, for each time step, each individual sample object is given a random               

direction and a distance (which is equal to a random number , multiplied by ​D and the           0, ]  r ∈ [ 1       
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length of the time step); if none of the obstacles in the landscape blocks its movement, then it tΔ                   

moves that distance in the selected direction. 

For every sample object, the program generates a trajectory file that lists its successive              

positions at each time step. It is those trajectory files that we will perform our analysis on. 

Figure 1​: Brownian trajectories generated by our simulator. The simulation box has ​reflective             
boundary conditions and ranges from -10 to 10 in both directions. The landscape in this instance                
includes two obstacles positioned in parallel to each other. 

4.2 Analysis Modules 

The goal of the project is to develop analysis protocols that can be used to extract useful                 

information from experimentally obtained trajectories. The trajectory files generated by the           

simulation module are proxies for the “real” data to be analyzed. Once we have generated the                

trajectory files, we can use several different programs to analyze them. 
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Traditional MSD estimation 

The first of these programs performs an analysis of mean square displacement ​. As discussed              

in part 2, under ideal Brownian motion, the mean square displacement (MSD) is 

= DΔt  < R2 > 4  

Here, represents the displacements (distance traveled by particles over a given time); is R            D  

the diffusion coefficient and  is the length of the time used to sample the displacements.tΔ   

Figure 2: ​Mean square displacement (MSD) over different time interval lengths. The            
simulation result (blue) is close to the theoretical dependence (red), but the discrepancy             
increases with time. 

An actual simulation naturally gives results that will not precisely match the mathematical             

theory, but serves as an approximation. Multiple simulations were run with a diffusion             

coefficient of and a varying set of obstacles, and otherwise similar conditions. The  .0D = 4             

simulation time step was . Displacements were collected for several numbers of    t .05 sΔ (sim) = 0         
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time steps. The resulting MSD is shown in Figure 2 (blue line / points) and it is reasonably close                   

to the theoretical dependence. As the time used to estimate the displacement increases, the              

simulation result falls behind. This most likely reflects the finite  size of the simulation box.  

Square Displacement Statistics 

The second program used to analyze the trajectory data compares the ​distribution of the              

square displacements to the theoretical distribution it ought to have under ideal Brownian             

motion, creating two corresponding histograms and superposing them. This is similar to the             

mean square displacement analysis, but it is much more detailed since it looks at the entire                

distribution, not only its expectation (mean).  

As discussed previously, the expected distribution of ​square​ displacements ​is exponential:  

(R ) (− )f S
2 = 1

4DΔt exp R2

4DΔt  

The analysis program collects displacements from a set of trajectories and plots a histogram              

that is compared to the theoretical distribution. 

The histogram of actual square displacement is generated by recovering and ordering by             

magnitude the list of square displacements from the trajectory files, partitioning them into             

magnitude categories (for example, the group of square displacements between 0 and 0.3, the              

group between 0.3 and 0.6…), and then counting how many individual displacements fit into              

each category. 

The histogram of theoretical displacement uses the above distribution formula. It partitions            

square displacement by magnitude, then, for each category in the partition, integrating the above              

PDF to get the odds of any one movement falling into any interval  in the partition:S , ][ min Smax  

(S )  P min ≤ R2 ≤ Smax = exp ( 4DΔt
−Smin) − exp ( 4DΔt

−Smin)  

Once the program has thus calculated the probability of any square displacement falling             

under a given magnitude category of the partition, it multiplies that probability by the total               
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number of displacements in all the trajectory files. The result is then the number of               

displacements that should, under theoretical, ideal Brownian motion, fall under that category.            

The program then performs these calculations for the entire partition, generating the histogram of              

MSD for ideal Brownian motion. Once the two histograms have been generated, they are              

superimposed to make for easy visual comparison. 

Figure 3: ​Distribution of square displacements from our BM simulations (blue bars) compared             
to the expected distributions (yellow bars). The left panel is from a simulation with no obstacles,                
the right hand one has two linear obstacles; the X-axis represents square displacement in square               
microns, while the Y-axis represents the number of motions. The simulation is performed with 30               
samples, 200 time steps of 50 milliseconds each, and a diffusion coefficient of 4.  

Fitting Distribution Parameters with Kolmogorov-Smirnov Statistic.  

With the third data analysis program, we seek an actual method of quantifying the difference               

between the expected and actual distribution. For that purpose, we have chosen to employ the               

Kolmogorov-Smirnov (KS) [7][11] statistic, which is often used to test whether a given sample              

could come from a distribution or if two given samples could have come from the same                

distribution.  

Kolmogorov-Smirnov Statistic 

We want to compare a sample of values with a known theoretical distribution        X , , )  ( 1 X2 · · ·       

function . The idea is to compare the cumulative distribution function corresponding tof (x)             (x)g    

with a similar function constructed from the sample values.(x)  f   
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The ​cumulative distribution function (or CDF) is the probability that a number      (x)g       X

randomly selected according to the true distribution function is less than the value where        (x)  f     x   

the CDF is evaluated: 

 has PDF )(x) (X  | X  g ≡ P < x (x)  f  

The CDF is simply the integral of the PDF, from a value less than or equal to the smallest            m        

possible value of the random variable to the value of interest . This identity follows from the           x       

definition of the PDF (if is the set of all possible values of the random variable , the      Ω           X   

probability that is in a subset  is the integral of the PDF over ):X W ⊂ Ω W  

  ​with  s.t.  (x) (X ) (ξ)dξg = P < x = ∫
x

m
f m (X )  P ≤ m = 0  

The theoretical CDF is to be compared to the step function which is the fraction           ( x | {X } )h k     

of numbers in the sample that are less than :Xk x  

(x | {X }) (x )h k = 1
N ∑

N

k=1
H − Xk  

Here, denotes the size of the sample, and stands for the Heaviside function (defined   N        (ξ)  H       

as if and otherwise). A practical way to define is to sort the (ξ)   H = 1   ξ ≥ 0   (ξ)  H = 0        (x|{X })h k     

sample in increasing order: and identify the largest value of the index such     X1 ≤ X2 ≤ · · · XN         k  

that : Xk ≤ x  

(x|{X }) Nh k = max
X ≤xk

(k) /  

Given and as described, we want to characterize the discrepancy by a (x)g   (x|{X })h k            

measure . There are many ways to do this, as long as , if ({X }) M k            (X , , )  M 1 X2 · · · ≥ 0  M = 0   

and only if , and it increases as the discrepancy between the sample and the   (x) (x)  g ≡ h             

theoretical PDF gets worse.  
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The Kolmogorov-Smirnov (KS) statistic is defined as the ​largest absolute value of the             

difference ​between the CDF and the step function , encountered over the entire range    (x) g     (x)h       

of possible values of x  

K = max
x

g(x) (x|{X })|
| − h k

|
|  

The diagram in Figure 4 illustrates the idea of the KS statistic.  

 

Figure 4: ​Illustration of the Kolmogorov-Smirnov (KS) statistic. ​The maximum difference           
between the step function (blue) and the theoretical CDF (red) is the K-S statistic. 

Using the K-S Statistic for Parameter Estimation 

The Kolmogorov-Smirnov statistic is more often than not used to evaluate the likelihood that              

a sample comes from a known distribution, or whether two samples come from the same               

distribution. We are not concerned with that here, at least not primarily. We ​know that our                

displacements are generated consistently with Brownian motion, with a value of the diffusion             

constant that we set. The K-S statistic may serve as a consistency check. However, as we                
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simulate Brownian motion in a rectangular “box”, and later, in the presence of a complex               

landscape of linear obstacles, we also ​know that our displacement distributions will deviate from              

Brownian motion.  

Our goal is to investigate ​how the movement of particles deviates from ideal in the presence                

of a barrier landscape, and we plan to characterize it with various empirically derived              

distribution functions that we hope reflect the underlying landscape. The K-S statistic is a single               

positive number that characterizes the match between such a proposed analytical function and             

experimentally obtained samples; we plan to use it to estimate the “best-fit” parameters by              

minimising the K-S statistic. As a proof of principle, we did this to derive an “effective”                

diffusion coefficient. Our fitting program minimizes the K-S statistic corresponding to a set             

(sample) of displacements and the analytical form of the CDF for Brownian motion; it returns               

the value of the diffusion coefficient that corresponds to the best fit (i.e. minimal K-S      D           

statistic). As a consistency check, we show the results of this fit for two sets of Brownian motion                  

simulations (in the simulation box), performed with diffusion coefficient   − 0, 0] − 0, 0]  [ 1 1 × [ 1 1        

, without and with obstacles:.0 μm /s  D0 = 4 2  

 
Figure 5: ​Diffusion coefficient from Brownian motion simulations estimated by minimizing the           

K-S statistic. ​Simulations in a box with reflective boundary conditions, with no     0 0 μm2 × 2 2        
additional obstacles (left) and with obstacles (right). The simulation diffusion coefficient was            

and the simulation step length was in both simulations. The sampling.0 μm /s  D0 = 4 2        t .05 sΔ = 0       
time is a multiple of  with the step number  as indicated.t  τ = l · Δ l   
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5. Results 

In this section, we are going to look at the results yielded by our simulator and the analysis                  

programs to date. 

5.1 Standard Analysis of Simulation Results 

MSD for different obstacle configurations 

Multiple simulations were run with a diffusion coefficient of , varying          .0 μm /s  D = 4 2   

obstacles, and otherwise similar conditions (using 30 samples and 200 time steps of length              

s); the resulting MSDs were as shown in Figure 6.t .05Δ = 0   

 

Figure 6: ​Diffusion coefficients estimated for different obstacle sets by KS minimization. See             
text for details.  
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In other words, without obstacles, the MSD is almost exactly what the theory says it should be 

under ideal Brownian motion. As the number of obstacles goes up, MSD goes down, since more 

and more movements get blocked (thus giving a displacement of zero). This is all to be expected; 

this test is largely intended to confirm that the program is working as intended. 

Distribution of Square Displacements for Different Obstacle Configurations 

The second analysis program, comparing histograms of actual and expected displacements,           

was tested on the trajectories of 30 samples, using 200 time steps of 50 milliseconds each, with a                  

diffusion coefficient of 4. This was done successively with landscapes containing no obstacles,             

then 2, then 6, then 10 obstacles. The results can be seen in Figure 7: 

  

  

Figure 7: ​Distribution of square displacements. Runs were performed under identical           
conditions with a varying number of obstacles (clockwise from top left: 0,2,10,6). Blue bars              
represent histograms of displacements collected from the simulations; yellow bars are the            
theoretical expectation for ideal Brownian motion. See text for more details. 
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As may be seen from these histograms, the more obstacles are added, the more the actual square                 

displacement distribution differs from the theoretical one: long displacements become          

increasingly rare, null displacements rise in number. This matches our natural expectations: the             

longer a displacement is, the greater the chance it will run into an obstacle and be set to zero. 

5.2 Kolmogorov-Smirnov Fitting of Square Displacement Distributions 

The Kolmogorov-Smirnov analysis program, similarly, was run with 30 samples, 200 time            

steps of 50 milliseconds each, a diffusion coefficient of 4, and successive landscapes with 0, 2, 6,                 

and finally 10 obstacles. The KS statistic was calculated for square displacements over 1, 2, 3                

and 4 steps, as seen in Figure 8. 

  

  

Figure 8: ​Effective diffusion coefficients for the runs shown in the previous figure. Runs were 
performed under identical conditions with a varying number of obstacles (clockwise from top 
left: 0,2,10,6). See text for more details. 
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As hoped, when there are no obstacles, the program estimates a diffusion coefficient close to               

its actual value. As more obstacles are added and the MSD goes down, however, the program's                

estimated diffusion coefficient becomes smaller and smaller. 

5.3 Exploration of Localization Density with Random Obstacles 

At this stage, we generate landscape configurations that interest us and look at the induced               

density patterns. The localization density is an indication of possible accumulation or depletion             

of receptors from an area of the simulation space.  

There are many indications, including SPT observations, that receptors tend to accumulate - to              

cluster - in relatively small areas; we know it is this clustering that allows ligand receptors to                 

form oligomers and coss-activate. It is plausible that clustering is, at least in part, induced by a                 

network of actin filaments running along the cellular membrane: Filaments will impede the             

movement of receptors, but it is not clear how this "corral" structure can lead to clustering. 

An alternative explanation is "attractive domains" - areas that attract receptors through some             

mechanism. ​One of the major objectives of this project is to help elucidate the origin of clusters.                 

To that end, we run simulations in various landscape models. Corrals are simulated by              

partitioning the surface with bilateral obstacles. Attractive domains, on the other hand, are             

simulated using one-way barriers, creating areas that let receptors in more easily than out. 

Once those simulations have been performed, we need to compare them with experimental             

data. This involves looking for trajectories similar to what we generate, finding ways to measure               

"confinement", and, eventually, identifying movement patterns that reflect features of the           

underlying landscape. 

Symmetric (bilateral) vs. biased (one sided) blocking 

We first wish to compare biased and symmetric blocking. For that purpose, we use a               

landscape with only two large, parallel barriers. The barriers are asymmetric; they hinder             
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movement leaving the space between them, but not movements heading into it. The trajectories,              

Fig. 9 (left), are shown in yellow; they are concentrated on the space between the barriers. 

Figure 9: ​Trajectories and localization density in a landscape with two parallel, biased             
obstacles that hinder movement leaving the space between them. 
 

Next, we try an identical simulation, but with bilateral barriers, as seen in Figure 10. 

Figure 10: ​ ​Trajectories and localization density with two parallel, bilateral obstacles. 
This time, there is no discernible density effect. 

 

25 



 

Random barrier landscapes: results of simulations 

For this part, we have run simulations to observe the clustering patterns. The blue lines               

indicate barriers (which are randomly generated). The density plot indicates some correlation            

between barriers and local density. 

Figure 11: ​Trajectories and localization density in a random landscape with bilateral obstacles.             
The left panel shows the trajectories; the right panel is a density plot obtained by performing a                 
two dimensional histogram of all points in all trajectories. There are indications that the high               
and low density regions follow the corral boundaries.  

When looking at the effective diffusion coefficient (estimated by minimizing the K-S statistic),             

we find that the effective values we obtain are smaller than the one used for the simulations (                 

). We performed this analysis for the simulations presented in Figure 11, using several.0 μm/s  4 2               

different values for the time over which the displacements occur. In Figure 12 we plot the                

estimated diffusion coefficient against the expected MSD that corresponds to the sampling time,             

. After an initial increase that is possibly an artefact of the sampling method, the plot σ = √4D τ0                 

in Figure 12 indicates that the effective diffusion coefficient decreases as the sampling time (and               

the equivalent expected jump size) increase. This is to be expected, and the decrease in mobility                

should be stronger as the expected jump size becomes comparable to the typical distance              

between barriers. These preliminary results are promising but inconclusive. 
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Figure 12: ​Effective diffusion coefficients estimated using different sampling times. Results           
shown are for the runs shown in the previous figure, that used a random landscape with                
bilateral blocking. The estimated values are plotted against the expected mean square            
displacement to compare to the size of the obstacles. See text for more details.√4Dτ  
 
Finally, we performed the same localization analysis with a version of the same landscape as               
in Figure 11, but with biased (one sided) blocking. The corresponding trajectories are shown in               
Figure 13. They are dramatically changed in that they tend to concentrate in small areas and                
avoid other altogether. This is also seen in the density plots, that indicate two small regions                
with very high density.  

27 



 

Figure 13: ​Trajectories and localization density in the same random landscape, but with             
obstacles that block in only one direction. The left panel shows the trajectories; the right panel is                 
a density plot obtained by performing a two dimensional histogram of all points in all               
trajectories. The effect of the bias is such that the density is very high in two small areas, while                   
others are devoid of particles.  

  

28 



 

6. Preliminary Conclusions and Outlook 

Having run the above tests, we will in this section discuss the preliminary conclusions that               

may be taken from our data, and consider what work needs to be done in the future. 

We have confirmed that, while the mean square displacement approximates its expected value             

in the absence of obstacles, it decreases as obstacles are added. We have obtained a tentative                

method of quantifying the behavioral changes that obstacles induce in the model. Preliminary             

comparisons of model behavior have indicated that clustering patterns are facilitated by biased             

barriers, they are unaffected by bilateral obstacles. This lends further credence to the hypothesis              

that cells regulate ligand receptor clustering via lipid raft trapping zones rather than actin corrals. 

From here, future research needs to compare the simulated results to experimental            

observations. SPT gives us ample data on the trajectories of receptors; by fine-tuning the              

Brownian motion simulator to yield trajectories with similar properties, we may better            

understand the model under which receptor motion behaves. 
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