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ABSTRACT 

 

Three Essays on Investigating Province-Level  

Carbon Dioxide Emissions in China 

Xueting Zhao 

 

The three essays in this dissertation study the influential factors of energy-related carbon 

dioxide emission intensity, whether the province-level carbon dioxide emission intensity is 

convergence, and how spatial panel data models forecast compare with those from non-spatial 

panel data models for province-level carbon dioxide emissions in China. 

The first essay entitled “Spatial Analysis of China Province-Level CO2 Emission Intensity” 

offers a unique contribution to the literature by investigating the influential factors of energy-

related carbon dioxide emission intensity among a panel of 30 provinces in China covering the 

period 1990-2010. This study uses novel spatial panel data models to analyze those factors that 

influence energy-related emission intensity, which are characterized by spatial dependence. It is 

found that emission intensities are negatively related to per-capita, province-level GDP and 

population density. This relationship implies that promoting local economic development and 

population concentration may help to reduce CO2 emission intensity. In addition, emission 

intensities are positively affected by energy consumption structure and transportation structure. 

These empirical evidences indicate that Chinese government should encourage the development 

of less carbon-intensive energy resources and further fuel efficiency standards in its transportation 

sector. Finally, energy prices have no significant effect on emission intensities. This finding may 

suggest that the Chinese government should further deregulate energy prices to reduce artificial 

price distortions. 

The second essay entitled “Province-Level Convergence of China CO2 Emission Intensity” 

further explores the convergence of province-level CO2 emission intensity among a panel of 30 

provinces in China over the period 1990-2010. This study use a novel, spatial dynamic panel data 

model to evaluate an empirically testable hypothesis of convergence among provinces. Based on 



 

 

the estimation results, I find evidence that CO2 emission intensities are converging across 

provinces in China. Moreover, the rate of convergence is higher with the dynamic panel data model 

(conditional convergence) than with a cross-sectional regression model (absolute convergence). 

This result suggests that the individual effects that are ignored in cross-sectional regressions 

potentially create omitted variable bias and the panel data framework arguably offers a more 

precise (efficiency) rate of convergence. Finally, it is found that province-level CO2 emission 

intensities are spatially correlated, and the rate of convergence, when controlling for spatial 

autocorrelation, is higher than with the non-spatial models. This result indicates that technological 

spillovers, embodied in both the unobserved individual effects and the spatial autocorrelation 

coefficient, have a direct effect on the rate of convergence of carbon intensity among provinces. 

The third essay entitled “Forecasting Province-Level CO2 Emissions in China” examines 

the performance of spatial panel data models by comparing forecasts of province-level CO2 

emissions against empirical reality using dynamic, spatial panel data models with and without 

fixed effects. From a policy standpoint, understanding how to predict emissions is important for 

designing climate change mitigation policies. From a statistical standpoint, it is important to test 

spatial econometrics models to see if they are a valid strategy to describe the underlying data. The 

results of this essay suggest that the best model of forecasting province-level CO2 emissions is the 

spatio-temporal panel data model with controlling the fixed effects. The findings demonstrate the 

importance of considering not only spatial and temporal dependence, but also the heterogeneous 

characteristics within each province. 
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CHAPTER 1: INTRODUCTION 

There is a strong consensus that climate change poses one of the most serious challenges 

to future economic and social development throughout the world. In recent years, with an 

increasing frequency of disastrous weather, the impacts of climate change and greenhouse gases 

(GHG) have received more attention, and these issues have become more serious and far-reaching 

than previously thought. There is a growing conviction that the main reason for undesirable 

changes in the global climate is the increasing accumulation of GHG in the atmosphere. The Fifth 

Assessment Report published by the Intergovernmental Panel on Climate Change (IPCC) in 2013 

notes that global GHG emissions contributed a global mean surface warming likely to be in the 

range of 0.5°C to 1.3°C over the period 1951 to 2010. The report further stresses that carbon 

dioxide (CO2) is the most important anthropogenic GHG, and that the global atmospheric 

concentration of CO2 now substantially exceed the highest concentrations recorded in ice cores 

during the past 800,000 years (IPCC,2013). 

Humanity’s coordinated policy response to this problem is the United Nations’ climate 

negotiation process. In June 1992, the United Nations Framework Convention on Climate Change 

(UNFCCC) was signed at the United Nations Conference on Environment and Development 

(UNCED) in Rio de Janeiro by more than 150 countries to promote international cooperation for 

achieving GHG reductions. It provided a political framework in which climate change themes can 

be addressed. 

The most important milestone of the negotiation process so far is the “Kyoto Protocol” 

which was signed in 1997. The purpose of the Kyoto Protocol was to restrict GHG emissions in 

developed countries. Under the Protocol, Annex I countries (37 industrialized countries and the 
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European community) committed themselves to cutting their aggregate anthropogenic CO2 

equivalent emissions by at least 5% below 1990 levels by 2008 to 2012. According to the Protocol, 

undeveloped nations are not required to reduce their emissions whatsoever. China, as one of the 

developing countries, is not Annex I country and therefore is not obligated to reduce emissions. 

Despite some attractive design elements, the Kyoto Protocol alone is unlikely to have a significant 

impact on global GHG emissions. 

With the “Copenhagen Accord Submission”, which reached in 2009, countries 

representing over 80% of global emissions have submitted emissions reduction targets. As the 

largest developing country and the largest CO2 producer2 , China is switching roles from an 

undeniable victim to an increasingly dominant contributor with its rapidly increasing emissions. 

As such China faces pressure to take a more proactive position in negotiations in order to not to 

lose credibility in the international community. In the agreement, China set the goal to reduce its 

carbon intensity3 by 40-45% of 2005 levels by 2020. China also promised to increase the share of 

non-fossil fuels in primary energy consumption to around 15% by 2020. 

The Cancun agreements reached on December 11 at the 2010 United Nations Climate 

Change Conference, represent key steps in plans to reduce GHG emissions and to help developing 

nations protect themselves from climate impacts and build sustainable futures. China and the U.S., 

the world’s two largest emitters of GHG emissions, played key roles in the Cancun agreement. 

One of the main objectives of the agreement is to encourage the participation of all countries, not 

only the developed countries, but also the developing counties, in reducing these emissions, in 

                                                           
2 According to a recent report released by the Netherlands Environmental Assessment Agency, China surpassed the 

US to become the largest aggregate emitter of CO2 emissions in 2006. 

This report can be accessed online at: 

http://www.pbl.nl/en/dossiers/Climatechange/moreinfo/Chinanowno1inCO2emissionsUSAinsecondposition 

3 Carbon intensity is defined as the units of CO2 emissions per unit Gross Domestic Product (CO2 emissions divided 

by GDP). 
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accordance with each country’s different responsibilities and capabilities. In a mutually 

accountable way, these agreements formed the basis for the largest collective effort the world has 

ever seen to reduce emissions with national plans captured formally at an international level. 

 

1.1 Problem Statement  

In the common sense, the geographic distribution of CO2 emissions does not affect the 

global climate impact. That is, no matter where emissions original, climate change is a global issue. 

However, the distribution of the sources of emissions is important for policy formulation at the 

international, national, and ultimately, at the local level. It does also affects the political economy 

of negotiating multilateral agreements (Aldy, 2006). Combating global climate change will require 

multilateral, international agreements, which will require long negotiation process, and will be 

very hard to achieve. But the fight against local climate change causes can easily start at home. 

That is, mitigation policies will likely come at the expense of economic growth among regions. 

So, understanding the distribution of carbon dioxide emissions (CO2) through time and space can 

support the development of appropriate regulatory frameworks to mitigate harmful anthropogenic 

GHG emissions.  

With the support of the worldwide organizations, a number of developed countries have 

committed to reduce domestic CO2 emissions. More and more developing countries have begun 

to be involved in this worldwide movement, including China. As the No.1 CO2 producer in the 

world, China’s participation is very important. If China were to formulate a national climate 

change policy or agree to ratify an international agreement, such as the Cancun Agreement, then 

it must begin to look inward to determine the major sources and distribution of emissions in 

addition to determining how to reduce these emissions. Within this look inward, policy makers 
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may be interested in determining how the distribution of province-level emission intensity is 

changing over time. According to Herrerias (2012), convergence in energy intensity could imply 

that technological differences across regions diminish over time. That is, do interregional 

differences in technology tend to disappear or increase over time? If the differences diminish over 

time, it implies the economy has the ability to make the environment cleaner, then policymakers 

may be less worried about the mitigation scheme. If, on the other hand, the differences tend to 

perpetuate over time, it implies a lack of diffusion of energy-related technologies, thus making it 

difficult to reach the mitigation targets. In this case, policymakers may want to encourage 

knowledge diffusion by providing technological policies. 

In neoclassical growth theory, economies are assumed to be independent; however, 

technological advances, labor and capital, and environmental policies in one economy might be 

transmitted to other economies. Ignoring spatial autocorrelation may lead to unreliable statistical 

inference if the spatial effect is present but omitted. The motivation for the idea of spatial spillovers 

is related to the concept of economic distance, which suggests that the closer two regions are to 

one another in geographic distance, the more likely that their economy’s will be inter dependent 

(Conley and Ligon, 2002). In the case of mitigation policy, spatial spillovers indicate that policies 

adopted in one region will affect policies in neighboring regions, which implies that regions may 

strategically interact to balance mitigation and economic policy goals. A line of research within 

the urban economics and regional science literature explores this type of strategic interaction 

among jurisdictions by explicitly modeling how one jurisdiction’s policies affect neighboring 

policies and vice versa (see (Brueckner, 2003) for a review). 

Despite advances in spatial econometric models, they have come under criticism for 

problems associated with identification and for a lack of appeal to theoretical foundations 
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(Partridge et al., 2012). The problem of identification is similar to Manski’s (1993) “reflection 

problem,” where group average characteristics (neighboring province carbon dioxide emissions 

and structural characteristics) affect individual outcomes (local carbon dioxide emissions) but the 

parameters in the model are not identifiable. These criticisms are very important, however, 

addition research is needed on causality based upon correct model specification and/or the correct 

interpretation of parameter estimates. To further test the validity of spatial panel data models, an 

alternative validation strategy that is less dependent on prior theory will be used in this dissertation. 

That is, these models will be taken as black box and be tested against empirical reality (Freedman, 

1991).  

 

1.2 Background of China 

Since the market-oriented reform of 1978, China has experienced remarkable economic 

growth at an average annual growth rate of 9.8%. Its GDP has reached 40,120.20 billion Chinese 

Yuan (CNY) (about $5,815 billion) by the end of 2010 and ranked 2nd in the world following the 

US (Data from the World Bank). Figure 1.1 displays the share of the world’s GDP of China, USA, 

India and OECD without USA during the period from 1990 to 2010. It is clear that China’s GDP 

has rapidly increased; the share of the world’s GDP has risen from 1.63% to 9.37% in the last 

twenty years. 
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Figure 1.1 Share (Percentage) of the World’s GDP 

However, this rapid economic growth is based on high energy consumption and high GHG 

emissions. More than 30 years of rapid industrialization has burned substantial amounts of coal 

for energy and thereby produced large increases in GHG emissions. China’s energy consumption 

has increased from 0.99 billion tce (tons of standard coal equivalent) in 1990 to 3.25 billion tce in 

2010, at an average annual increase rate of 5.84% (Data from China Statistical Yearbook). Figure 

1.2 shows that China’s energy consumption as a proportion of the world total grew from 10.06% 

in 1990 to 19.15% in 2010, nearly doubled in twenty years. Figure 1.3 displays the share of the 

world’s CO2 emissions. China’s CO2 emissions accounted for 11.03% in 1990 and increased to 

21.92% in 2010 of the world’s total, with an average annual growth rate of 6.57%.  
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Figure 1.2 Share (Percentage) of the World’s Energy Consumption 

 

 

Figure 1.3 Share (Percentage) of the World’s CO2 Emissions 

An analysis at a more disaggregated level reveals an imbalance in economic growth and 

energy consumption among different provinces in China. For example in 2010, Jiangsu, Shandong, 
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and Guangdong provinces accounted for over 3 trillion CNY in GDP whereas provinces such as 

Hainan, Qinghai, and Ningxia accounted for less than 300 billion CNY. These disparities also 

reveal themselves in terms of province-level CO2 emissions.  

 

Figure 1.4 Provincial CO2 emission intensity through time 

Three points in time (1990, 2000, and 2010) are chosen to display China’s provincial CO2 

emission intensity distribution, which are shown in Figure 1.4. From 1990 to 2010, the CO2 

emission intensity of each province decreased year by year. The results show that provinces such 

as Shanxi and Ningxia consistently have the highest CO2 emission intensities — their CO2 

emission intensities are almost six times higher that provinces such as Hainan and Guangdong. 

That means, in order to produce the same GDP, the provinces with the highest CO2 emission 

intensity will produce about six times the CO2 emissions as the provinces with the lowest CO2 

emission intensity. The disparity of CO2 emission intensity reveals itself in trends of spatial 

clustering. As displayed in Figure 1.5, the northern and western provinces are aggregated in terms 
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of their higher CO2 emission intensities, and the southern and eastern provinces are generally 

aggregated in terms of their low CO2 emission intensities.  

 

Figure 1.5 Spatial distribution of average CO2 emission intensity over the sample period 

These differences have caused the government to change the economic growth pattern so 

as to realize the economic, energy and environment coordinated sustainable development. Three 

levels of policies have been formulated by the Chinese government in the outline of the “Twelfth 

Five-Year Plan for National Economic & Social Development of the People’s Republic of China”. 

The national level plan is to slow down the rate of economic growth. The “Twelfth Five-Year Plan 

(2011-2015)” proposed that the economic growth target is to significantly improve the quality and 

efficiency of energy use based on an average annual growth rate of 7%, much lower than in the 

previous 20 years (The average annual growth rate was 15.74% between 1990 and 2010). The 

regional level plan is to promote balanced economic development across all regions. In the 

planning of national development priority zones, the land space is divided into optimized 

development, key development, restricted development and prohibited development areas 
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according to resources, environmental carrying capacity, existing development and so on, to 

coordinate future regional development. On the industrial level, policies such as clean energy, 

renewable energy development, energy saving and emission reductions, etc. have been formulated. 

Among them, the CO2 emission controlling policies are most important parts. 

With the “Copenhagen Accord Submission,” China set the goal to reduce its carbon 

intensity by 40-45% of 2005 levels by 2020. Although CO2 emission intensities have been 

decreasing year by year in China as illustrated in Figure 1.6, the country still has a long way to go 

to achieve its reduction goal. These reductions are expected to be achieved through improvements 

in energy efficiency, and reductions in energy consumption. 

 

Figure 1.6 CO2 emission intensity of China, 1990-2010 
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1.3 Objectives 

The overall objective of this research is to conduct a spatial panel data empirical analysis 

of China’s province level carbon dioxide emissions, so that to provide a basic reference for policy 

makers to set emission reduction targets and policy.  

The specific objectives are to: 

 Analyze the driving forces of China’s province level CO2 emission intensity by comparing 

the non-spatial model and the different spatial econometric models. 

 Estimate the province level spatial convergence of CO2 emission intensity in China. 

 Test the empirical application of spatial econometric models by comparing the forecasting 

emissions and the reality emissions. 

 

1.4 Outline of the Dissertation 

The dissertation consists of eight chapters including the introduction. Chapter 2 offers the 

literature review. Chapter 3 offers a description of the data types and sources. Chapter 4 gives a 

brief introduction to spatial econometric techniques. Chapter 5 presents the first essay that studies 

the influential factors of energy-related carbon dioxide emission intensity in China. Chapter 6 

presents the second essay that examines whether the province-level carbon dioxide emission 

intensity is convergence in China. Chapter 7 presents the third essay that provides an empirical 

analysis of how the spatial panel data models perform in forecasting against non-spatial panel data 

models for province-level carbon dioxide emissions in China. This dissertation concludes in 

Chapter 8, with the main directions of future research.  
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CHAPTER 2: BACKGOUND AND LITERATURE REVIEW 

2.1 Impact Factors of Emission Intensity 

This estimate of CO2 emissions, based on energy consumption, is frequently used as proxy 

for actual emissions since carbon dioxide emissions are highly related to energy consumption 

(Blasing et al., 2004). This estimate of emissions is consistent with emission estimates found 

within such sources as the International Energy Agency, the U.S. Energy Information 

Administration, the British Petroleum Statistical Review of World Energy, the World Bank, and 

the United Nations (BP, 2012; IEA, 2012; UN, 2012; USEIA, 2012; WB, 2012). Since carbon 

dioxide emissions are based on estimates of energy consumption, it also represented as “energy-

related” emissions. The reason that these energy-related estimates are used is because it would be 

too costly to monitor such a large variety of mobile and stationary sources of emissions 

(Auffhammer and Steinhauser, 2007). The distinction between actual versus estimated emissions 

is important however, because I are not making the claim that there are spillovers in CO2 emissions 

themselves rather, there are province-level spillovers in energy consumption which in turn create 

CO2 emissions. More specifically, I argue that there is spatial dependence among the drivers of 

energy-related emissions and other economic forces which cross provinces. Therefore, factors that 

influence energy intensity also influence CO2 emission intensity.  

Past studies have found that the main factors driving China’s environmental emissions are 

pressures from population, urbanization, industrialization, GDP per capita and energy intensity 

(Kambara, 1992; Fan et al., 2006; Hang and Tu, 2007; Ma and Stern, 2008; Halicioglu, 2009; Lin 

et al., 2009; Li et al., 2011). These factors have a positive effect on emissions but the impact has 

been gradually declining over the past few decades. Using a decomposition analysis (similar to the 
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Kaya identity), Fan et al. (2006) found that GDP, energy use, and population have the greatest 

impact on CO2 emissions in China from 1975-2000. Using a bounds testing procedure of 

cointegration, Halicioglu (2009) found that carbon dioxide emissions are determined by energy 

consumption, income and foreign trade in the long-run relationship. Other factors such as 

technological advancement have also been identified as influencing China’s CO2 emissions. 

Despite China’s high (aggregate) carbon dioxide emissions, the country has experienced 

an overall decrease in energy intensity since the 1980s due to adjustments in the industrial sector 

(Kambara, 1992). Ma and Stern (2008) found that structural changes at the industrial and sectoral 

level are the main factors driving the decline of China’s overall energy intensity for the period 

1980-2003. In addition to structural changes, Hang and Tu (2007) found that energy prices have 

played an important role in the improvement of China’s energy efficiency, which in turn has put 

less pressure on the country’s energy intensity. 

 

2.2 Development of Beta Convergence 

The concept of convergence comes from economic growth literature. In the most general 

sense, it refers to a decrease in the differences of the economic growth across countries or regions 

over time. However, convergence is not restricted to the economic growth literature alone, and has 

been applied recently to other fields, including energy economics (Ezcurra, 2007; Duro et al., 2010; 

Ma and Oxley, 2012; Herrerias, 2012; Herrerias and Liu, 2013). According to Islam (2003), there 

are different definitions of convergence that are in turn linked to econometric approach in different 

ways. Among them, we can distinguish between absolute convergence and conditional 

convergence. The absolute convergence means if economies are identical in terms of preferences 

and technology, with time they tend to reach the same steady state level (Solow, 1956). The 
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conditional convergence means convergence after differences in the steady states across countries 

have been controlled for (Islam, 1995).    

 

Figure 2.1 CO2 emission intensity of each province in China, 1990-2010 

In the last two decades, the carbon dioxide emission intensities across the provinces in 

China have been decreasing year by year as illustrated in Figure 2.1. A large number of past studies 

have examined the factors which have led to the decline in CO2 emission intensity. For example, 

Liddle (2010) found that improvements in technology, changes in the country’s economic structure, 

and energy efficiency accounted for most of the decline. Zhao et al. (2014) found that 

improvements in energy consumption structure, transportation structure and the aggregation of 

population could reduce the CO2 emission intensity in China. Others have found that an adjustment 

in economic structure and a decline in the secondary industry’s CO2 emission intensity have 

reduced China’s CO2 emission intensity (Gonzalez and Martinez, 2012; Ma et al., 2012; Ma and 

Oxley, 2012). However, an examination as to whether the differences in China’s province-level 
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CO2 emission intensities have diminished over time, resulting in convergence, has received little 

attention in the literature. 

 There are two types models generally used to estimate β-convergence in the literature: 

cross-sectional models (Fan and Casetti, 1994; Rey and Montouri, 1999; Ezcurra et al., 2007) and 

panel data models (Islam, 1995; Lopez-Rodriguez, 2008). The traditional neoclassical cross-

sectional regression model assumes that all regions or economies under consideration have the 

same steady state income path. Islam (1995) proposed a panel data approach to study growth 

convergence. The motivation for the panel data approach is to capture the differences across 

regions or countries. The unobserved differences such as preferences and technology are not easily 

measurable, so they can be treated as unobserved individual effects in the panel data regression 

framework (Hsiao, 2002). 

However, most of these approaches typically ignore spatial autocorrelation within the 

underlying data. Spatial autocorrelation can be an important factor in determining regional 

convergence. To wit, regional scientists often posit that the rates of economic growth are 

interdependent across regions due to (economic) spillover effects (Conley and Ligon, 2002). 

Therefore, a spatial, dynamic panel data framework would seem to be appropriate because it 

controls for both time-invariant heterogeneity across regions and spatial autocorrelation between 

regions. The preponderance of empirical evidence on regional β-convergence is based almost 

exclusively on cross-sectional or panel data models without spatial effects. Arguably, regional data 

cannot be regarded as spatially independent because of the presence of similarities among 

neighboring regions. As a result, models without spatial effects may lead to biased or inefficient 

estimates of the rate of convergence (Arbia et al., 2005). Further, if the growth rates of the poor 

regions are higher than the growth rates of the rich regions, the spatial inequality may decrease 
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over time, which may result in convergence (Gezici and Hewings, 2007). Even though the 

neoclassical economic model assumes perfect mobility of factors of production between 

economies, there may be significant adjustment costs or barriers to mobility for labor and capital. 

In cases where regions pursue their own growth promoting policies, there may be spillover effects 

from those regions to the adjacent regions (Anselin, 1998). Thus, incorporating spatial effects into 

the dynamic panel data model may lead to more efficient estimates of the rate of convergence 

across provinces. 

 

2.3 Development of Spatial Econometric Models 

Traditional econometrics largely ignored spatial autocorrelation until the development of 

spatial econometrics. There has been tremendous growth in the spatial econometric literature over 

the past three decades. Spatial econometrics is an applied field of econometrics that deals with 

sample data that is collected with reference to location measured as points in space. What 

distinguishes spatial econometrics from traditional econometrics is that the locational data may be 

characterized by spatial dependence or spatial heterogeneity (LeSage and Pace, 2009). The idea of 

spatial dependence, or technically spatial autocorrelation, is similar to the concept of temporal 

autocorrelation found within the times series literature. As in time series, if this autocorrelation is 

present and unaccounted for then it could lead to biased or worse inconsistent regression estimates.  

Anselin (1998) and LeSage and Pace (2009) point out that a local region’s characteristics may 

depend on its neighbors; therefore, ignoring spatial dependence would lead to model 

misspecification or create biased estimated parameters in an ordinary least squares framework. 

The importance of geography is captured in the argument for a “pollution displacement” 

hypothesis in which higher-income regions are effectively exporting their pollution to lower-
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income regions. One could argue that higher-income regions are inducing greater emissions by 

importing goods from the more energy intensive, lower-income regions. The pollution haven 

hypothesis has been explored in context of the environmental Kuznets curve (Stern et al., 1996; 

Rothman, 1998). If this hypothesis is correct, the carbon dioxide emissions of a poor region 

adjacent to a rich region would more likely have higher emissions than an equally poor region 

since distance and the existence of common land borders are important factors in facilitating trade. 

Geography has been identified as a major determinant of cross-country economic growth due to 

factors such as the diffusion of technology (Keller, 2004). One could argue that CO2 emission 

intensity would decrease with technological improvements, so the diffusion of technology could 

possibly help improve neighboring environmental conditions. Geography is also important 

because environmental policies promulgated in one region might spill over into other neighboring 

regions. Local governments, such as a province, most likely assess their policies against those of 

their neighbors in order to reduce the costs of decision making (Markusen et al., 1995).  

Recognizing the importance of geography, Auffhammer and Carson (2008) use a spatial 

econometrics model to forecast China’s emissions using province-level information. Yu (2012) 

incorporated spatial dependence into a statistical model of China to analyze the influential factors 

of China’s regional energy intensity. The authors found that incorporating spatial dependence into 

their regression model, in general, improved forecasts and the analysis. Despite their contribution, 

the authors only estimated the spatial dependence within the dependent variable and the error term 

in the regression model. They did not explore different data generating processes for the spatial 

dependence (for example, a spatial Durbin model is specified with a spatially lagged dependent 

variable and with spatial autocorrelation among the explanatory variables) nor did they offer a 

rigorous interpretation of the spatial impacts, which include the direct and indirect effects 
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estimation of the independent variables. These small deficiencies, therefore present a gap in the 

literature. 

Recent advances in spatial econometrics have led to the development of longitudinal or 

panel data models that control for spatial autocorrelation. Longitudinal data are simply cross-

section observations collected over time. Spatial panel data models are a promising means to 

examine the spatial and temporal distribution of CO2 emissions. These models offer the dual 

benefit of potentially controlling for province-level unobserved or heterogeneous fixed effects and 

spatial dependence.  

In general terms, there are two kinds of spatial panel data models. One is a non-dynamic, 

spatial panel data model, which has received considerable attention in the context of forecasting 

over the past decade (Kelejian and Robinson, 2000; Baltagi and Li, 2006; Kelejian and Prucha, 

2007; Elhorst, 2010; Baltagi et al., 2012). Non-dynamic, spatial panel data models control for both 

the unobservable province-level fixed effects and potential spatial dependence (autocorrelation) 

inherent in the underlying data. However, these models do not necessarily control for temporal 

autocorrelation. Given the recent interests in using spatial panel data models for forecasting 

purposes, dynamic, spatial panel models make for a nice alternative to the non-dynamic 

counterparts as they control for both spatial and temporal autocorrelation – hence, these types of 

models are often called spatio-temporal panel data models. Giacomini and Granger (2004) 

arguably offered the seminal paper in this literature. In recent years, more and more papers have 

moved toward forecasting with dynamic, spatial econometric models (Kholodilin et al., 2008; 

Angulo and Javier Trivez, 2010; Schanne et al., 2010; Kholodilin and Mense, 2012; Ohtsuka and 

KaKamu, 2013). A few papers have used this methodology to examine the sub-national forecasts 
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of carbon dioxide emissions (Auffhammer and Steinhauser, 2007; Auffhammer and Carson, 2008; 

Auffhammer and Steinhauser, 2012). 
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CHAPTER 3: DATA DESCRIPTION 4 

In this dissertation, the three essays use the same data set, which includes a panel of China’s 

thirty provinces and municipalities for the period 1990-2010 (CSY, 1991-2011). Hong Kong, 

Macao, Taiwan and Tibet are excluded due to a lack of data. The data are from China Statistical 

Yearbook (CSY) and China Energy Statistical Yearbook (CESY). 

 

3.1 Dependent Variable  

 In the first and second essays, the dependent variable is CO2 emission intensity, which is 

calculated as the units of CO2 emissions per unit GDP (CO2 emissions divided by GDP). In the 

third essay, the dependent variable is CO2 emissions.  

Since it is difficult to compare total carbon dioxide emissions across provinces because of 

the variation in their size and economic activity, I instead analyze province-level emission 

intensities for the influential factors and the convergence. Emission intensity, which is simply the 

ratio of overall province emissions to province-level gross domestic product, normalizes emissions 

across provinces to offer a more compatible apples-to-apples comparison. From a policy sense, an 

analysis of emission intensity offers a more equitable measure for negotiating multilateral 

agreements. 

Generally, there are four sources data of CO2 emissions in China: the Carbon Dioxide 

Information Analysis Center (CDIAC), the Energy Information Administration (EIA), 

International Energy Agency (IEA), and calculation by the IPCC guidelines or the other 

                                                           
4 The data set for this study, in Excel format, is available for replication purposes. 
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calculation methods. However, there are no statistical data on province level CO2 emissions in 

China. Therefore, in this research, I estimate the CO2 emissions for each province by following 

the revised 1996 Intergovernmental Panel on Climate Change’s “Guidelines for National 

Greenhouse Gas Inventories” (IPCC, 1996). The Carbon Dioxide Information Analysis Center, 

within the U.S. Department of Energy (DOE), defines carbon dioxide emissions as a linear 

function of fossil fuel combustion and cement manufacturing (Boden, Marland, and Andres, 

2013)5. More specifically, emissions are estimated by multiplying the amount of fuel usage by a 

thermal conversion factor as determined by the chemical properties of the fuel. Itkonen (2012) 

offers a simple explanation of how the energy emissions are estimated 

2, ,oil coal gas flare

t oil t coal t gas t flare t tCO E E E E S                                         (3-1) 

where , , , 0oil coal gas flare     are the related thermal conversion factors, or coefficients of carbon 

emissions. Different organizations, such as the DOE, the institute of Energy Economics of Japan, 

and the Energy Research Institute of National Development and Reform commission (NDRC) of 

China, calculate emissions differently by using different coefficients, but the differences are often 

negligible. The carbon emission coefficients of various types of energy are summarized in Table 

3.1. In this research, I choose the coefficients reported by the Energy Research Institute of NDRC 

of China in 2003. Following the equation offered by Itkonen (2012), I calculate CO2 emissions 

based on the final energy consumption of three primary types of energy sources in China: coal, 

petroleum and natural gas (CESY, 1991-2012). I assume that all carbon in the fuel is completely 

combusted and transformed into carbon dioxide.  

 

                                                           
5 Due to data limitations, I do not calculate CO2 emissions from cement manufacturing. 
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Table 3.1 Carbon Emission Coefficients for Various Types of Energy 

 

 

3.2 Explanatory Variables 

The first essay seeks to examine the geographical distribution of the driving forces of CO2 

emission intensities in China. I estimate a model of CO2 emission intensity based upon per-capita 

GDP, energy prices, population density, the structure of energy consumption, and the 

transportation structure. All of the variables are derived from the China Statistic Yearbooks and 

the provincial Statistical Yearbooks. 

The specific definition of each variable is provided here: 

1. Per capita GDP (PCGDP): measured by the gross domestic product (GDP) divided by the 

population. The GDP uses the current real price of each year. I hypothesize that economic growth 

is one of the most important factors in determining energy consumption and energy efficiency, 

which then exerts an influence on CO2 emission intensity. The empirical results of Markandya 

(2006) and Qi (2011) indicated that the decrease of the gap of per-capita GDP between developing 

and developed countries lead to the decrease of the gap in energy intensity. Yu (2012) also 

indicated that an increase of province level per-capita GDP reduced the energy intensity in China. 

Further, Fan et al. (2007) using a decomposition analysis, found that the largest contributor to the 

decline carbon intensity was a reduction in the percentage of coal in the primary energy mix. This 

reduction in carbon intensity in tandem with a period of economic expansion is consistent with the 

Data source Coal Petroleum Natural Gas Hydro-power

DOE/EIA 0.7020 0.4780 0.3890 0

The Institute of Energy 

Economics, Japan 0.7560 0.5860 0.4490 0

Energy Reseach Institute of 

National Development and 

Reform Commission, China 0.7476 0.5825 0.4435 0
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environmental Kuznets curve literature (Jalil and Mahmud, 2009). Based on this findings, I 

hypothesize that per-capita GDP will reduce CO2 emission intensity at the province-level in China. 

2. Energy prices (EP): as in the standard economic law of demand, I hypothesize that energy 

prices are an important determinant of energy consumption. I predict that the energy price for a 

specific fossil fuel will be inversely related to the consumption of that fuel type. Since CO2 is 

measured based upon energy consumption, I assert that energy prices will be inversely related CO2 

emission intensity. In China, the main costs of the energy consumption of each region are the cost 

of raw materials, fuels, and power. Purchasing price indices for raw materials, fuels and power 

reflect changes in the level and degree of prices paid by industrial enterprises when they purchase 

these production inputs, so I will use these indices to represent the energy prices of each province 

(CSY, 2012a). 

3. Population density (PD): is measured as the population divided by the area of each province. 

Theoretically, as China’s population increasingly migrates to urban areas, which have greater 

access to modern energy technologies (e.g., automobiles, electric power, home heating and 

cooling). This greater energy consumption is particularly relevant to carbon dioxide emissions 

since ‘consumption-based’ rather than ‘production-based’ measures of carbon dioxide emissions 

are utilized. The empirical results of Auffhammer and Carson (2008) indicated that population 

density is positively related to CO2 emissions in China. So I hypothesis a positive relationship 

between population density and CO2 emission intensity. However, agglomeration effects can 

optimize the spatial allocation of production and energy resources which could improve production 

and energy efficiencies. 

4. Ratio of coal consumption to total energy consumption (RCC): represented as the 

percentage of coal consumption of the total energy consumption. Since coal consumption 
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accounted for the highest rate of total energy consumption in China (USEIA, 2012), and the power 

transfer efficiency of coal is relatively lower than petroleum, natural gas and hydro-power, I predict 

that the higher the ratio of coal consumption the higher the CO2 emission intensity in each province. 

5. Total length of highways (TH): is measured as the total kilometers of paved highways at 

the province level in a particular year. The total length of highways serves as a proxy for activity 

in the transportation sector. The transportation sector in China accounts for a large portion of CO2 

emission intensity. Road transportation alone is consuming about half of the total energy used by 

the transport sector in China. Advances in technology have led to a reduction in certain pollution 

emissions, such as nitrogen oxides, sulfur dioxides, and ground-level ozone, but the transportation 

sector is still the largest and fastest growing consumer of crude oil and the largest producer of CO2 

emissions produced from oil (MOT, 2012). Thus, I expect an increase in the total length of 

highways will increase the CO2 emission intensity.  

 The description statistic results of all the explanatory variables are presented in Table 3.2. 

Table 3.2 Data Description 

 

Variable Description Mean Median Max Min SD

Carbon dioxide emission intensity 5.581 4.216 29.163 0.538 4.197

(tonne/10K Yuan)

Per-capita GDP 11875.569 7160.704 78326.132 892.609 12884.083

(Current Chinese Yuan)

Energy price 106.460 105.600 149.900 85.300 9.300

(Previous year = 100)

Population density 379.167 261.001 3714.516 5.827 481.537

(Person/Square kilometer)

0.682 0.687 0.967 0.254 0.151

TH Total length of Highways 636.639 478.030 2660.820 31.650 521.608

(100 kilometers)

Notes: Max, Min and SD denote the maximum value, minimum value, and standard deviation, respectively.

EP

PCGDP

CI 

RCC The ratio of coal consumption to total 

energy consumption

PD
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 The second essay explores the spatial convergence of CO2 emission intensity and the third 

essay examines how the spatial panel data models perform in forecasting. Since all the explanatory 

variables above are hardly considered exogenous, I do not put them into the regression.  

 Yu and Lee (2012) studied regional growth convergence in the US economy by adopting 

a spatial, dynamic panel data approach without including any explanatory variables. Angulo and 

Trívez (2010) analyzed the forecasting ability of a dynamic, spatial panel data model without 

including explanatory variables as well. Fingleton (2009) evaluated the difference between ex ante 

predictions (in which case the independent variables are forecasted) and ex post predictions (in 

which case the independent variables are known). He concluded that ex ante prediction is more 

problematic and should be analyzed with some caution.  

To avoid any potential problems with exogenous and/or ex ante predictions, I follow a 

similar method as Yu and Lee (2012) and Angulo and Trívez (2010), which does not include any 

explanatory variables other than the temporal and spatial lag of the dependent variable in the 

second and third essays.  
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CHAPTER 4: SPATIAL ECONOMETRIC TECHNIQUES 

Spatial relationships can be modeled in a variety of ways depending on the relationship 

between the dependent variable and the explanatory variables. As pointed out by Anselin et al. 

(2008), when specifying interaction between spatial units, the model may contain a spatially lagged 

dependent variable or a spatial autoregressive process in the error term, known as the spatial 

autoregressive model (SAR) / spatial lag model (SLM), or a spatial error model (SEM), 

respectively. A third model, advocated by LeSage and Pace (2009), is the spatial Durbin model 

(SDM) that contains a spatially lagged dependent variable and spatially lagged independent 

variables. By allowing dynamic features in the spatial models, Anselin (2001) and Anselin et al. 

(2008) introduced spatial dynamic models, including individual time lag, and/or spatial time lag, 

and/or contemporaneous spatial lag in the models. Yu et al. (2008, 2012) and Yu and Lee (2010) 

further studied the spatial dynamic model with the panel data, which is the spatial dynamic panel 

data models (SDPD).   

 

4.1 Spatial Autoregressive Model (SAR) / Spatial Lag Model (SLM) 

The spatial autoregressive model (SAR) is sometimes called the spatial lag model (SLM). 

The SAR model hypothesis that the value of the dependent variable observed at a particular 

location is partially determined by a spatially weighted average of neighboring dependent variables. 

This model cannot be estimated by ordinary least squares (OLS) because of the problem of 

simultaneity of the dependent variables on the right hand side (RHS) of equation (4-1). The SAR 

model is formulated as 
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,             1,..., , 1,...,
N

it ij jt it i t it

j

Y W Y X i N t T    


                            (4-1) 

where Yit denotes the dependent variable for the cross-sectional unit i at time t. The term j ij jtW Y

denotes the interaction effect of the dependent variable Yit with the dependent variables Yjt in 

neighboring provinces, where Wij is the i, jth element of a pre-specified nonnegative (N×N) spatial 

weights matrix W describing the arrangement of the spatial units in the sample. Xit is a matrix of 

observations on the explanatory variables. 

The parameter ρ denotes the scalar spatial autoregressive parameter. The parameter β is a 

column vector of regression coefficients. The error term, εit, is assumed to be independently and 

identically distributed with a zero mean and variance σ2. The parameter µi denotes individual 

specific effect for each province, which control for all space-specific time-invariant variables that 

if omitted could potentially bias the coefficient estimates. The parameter ηt denotes a time-period 

specific effect, which control for all time-specific effects whose omission could bias the estimates 

in a typical time-series study (Baltagi, 2005). 

 

4.2 Spatial Error Model (SEM) 

The spatial error model (SEM), on the other hand, posits that the dependent variable 

depends on a set of observed local characteristics and that the error terms are correlated across 

space. This refers to a situation in which the unobserved shock to province i is affected by 

unobserved shocks in neighboring regions. The SEM model is specified as 

1

,             
N

it it i t it it ij it it

j

Y X W       


                                                (4-2) 
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where ϕit reflects the spatially autocorrelated error term and δ is called the spatial autocorrelation 

coefficient. According to Anselin et al. (2008), a spatial error specification does not require a 

theoretical model for a spatial or social interaction process, but, instead, is a special case of a non-

spherical error covariance matrix. The term 
1

N

ij jt

j

W 


 denotes the weighted average value of the 

neighboring provinces on the error terms. 

 

4.3 Spatial Durbin Model (SDM) 

A third form of spatial relationship occurs when the dependent variables can be predicted 

as a function of spatially lagged values of the explanatory variables as well – this is called the 

spatial Durbin model (SDM). This model extends the SAR model with spatially lagged 

independent variables. The SDM model is given as 

1 1

N N

it ij jt it ij jt i t it

j j

Y W Y X W X     
 

                                                     (4-3) 

where θ is a (K×1) vector of spatial autocorrelation coefficients on the explanatory variables and 

ρ denotes a scalar spatial autocorrelation coefficient on the dependent variables in this particular 

specification. The term 
1

N

ij jt

j

W X


 denotes the weighted average value of the neighboring 

provinces on the independent variables. 

This model can then be used to test the hypothesis H0: θ=0 and H0: θ + δβ=0. The first 

hypothesis examines whether the SDM model can be simplified to the SAR model, and the second 

hypothesis whether it can be simplified to the SEM model (Burridge, 1981; Elhorst, 2012). Both 

tests follow a chi-squared distribution. 

 



29 

 

4.4 Spatial Dynamic Panel Data Model (SDPD) 

The spatial panel data models include both spatial and dynamic effects to investigate the 

state dependence and serial correlations. Anselin (2001) and Anselin (2008) divide spatial dynamic 

models into four categories, namely, “pure space recursive” if only a spatial time lag is included; 

“time-space recursive” if only a spatial time lag is included; “time-space simultaneous” if an 

individual time lag and a contemporaneous spatial lag are specified; and “time-space dynamic” if 

all forms of lags are included. The “time-space dynamic” model corresponds to the SDPD model 

if individual effects are included. For the SDPD model, Yu et al. (2008, 2012) and Yu and Lee 

(2010) studied the stable, spatial cointegration, and unit root models, respectively. In this study, I 

will estimate the model with general SDPD specification. A general SDPD model can be specified 

as 

, 1 , 1

1 1

N N

it ij jt i t ij j t it i t it

j j

Y W Y Y W Y X       

 

                                       (4-4) 

where γ captures the pure dynamic effect, and it is a scalar parameter on the temporally lagged 

dependent variable. λ captures the spatial-time effect, and it is the spatial autocorrelation 

coefficient on the temporally lagged dependent variable. The term , 1

1

N

ij j t

j

W y 



 denotes the 

weighted average value of the neighboring provinces on the temporal dependent variable.  

 

4.5 Spatial Weights Matrix 

In the above spatial models, the term W in each equation denotes the spatial weights matrix, 

which is a compact reflection of the geographic relationship among different provinces. In the 

literature, there are a large number of weighting matrix specifications, for instance, binary 
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contiguity matrix, distance function matrix, inverse distance matrix, k-nearest neighbors matrix, 

and so on. The binary contiguity matrix and the distance matrix are the most common 

specifications to be used.  

The neighboring relation in the binary contiguity matrix is determined by observing 

whether the regions share a common border. That is, if two regions i and j are neighbors, then the 

matrix elements wij = 1, otherwise wij = 0. The element in the distance function matrix is 

determined by the distant function wij = f (dij), where dij refers to the distance between the geometric 

centroid (or capitals) of region i and region j. For additional information about the spatial weights 

matrix the reader is referred to LeSage and Pace (LeSage and Pace, 2009). 

In this study, the spatial weights matrix is specified as the binary contiguity matrix. 

Generally, the spatial weighed matrix is normalized according to row standardization, in other 

words, the sum of the elements ijW in each row equals one after normalization. This transformation 

of the spatial weights matrix provides for an intuitive explanation in that any variable pre-

multiplied by the spatial weight matrix will represent a weighted average of the surrounding 

observations.  
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CHAPTER 5: SPATIAL ANALYSIS OF CHINA PROVINCE LEVEL CO2 

EMISSION INTENSITY6 

This essay analyzes the spatial dependence by specifying novel spatial panel data models 

which control for spatial effects across both space and time. That is, I estimate a model of CO2 

emission intensity based upon per-capita GDP, energy prices, population density, the structure of 

energy consumption, and the transportation structure at the province level from 1990-2010. I find 

statistically significant, spatial autocorrelation (dependence) among these driving forces and CO2 

emission intensities at the province-level in China. This spatial autocorrelation implies that any 

policies implemented in one province will have spillover effects in neighboring province. The 

determination of such spillovers is important for understanding the direct and indirect effects of 

province-level policies adopted in China. 

This essay offers four unique contributions to the literature: (1) by more explicitly 

considering and testing for the types of spatial dependence within the relationship between energy-

related emissions and economic forces; (2) using recently developed, spatial panel data models 

and diagnostics to determine the most appropriate spatial econometric model; (3) offering a more 

rigorous interpretation of both the direct and indirect spatial impacts (spillovers); and, (4) 

extending the data to consider the years 1990-2010, which is important for capturing recent 

developments in province-level energy consumption and economic growth. 

 

                                                           
6This essay is based upon the paper: Zhao, X., Burnett, J.W., Fletcher, J.J., 2014. Spatial Analysis of China 

Province-Level CO2 Emission Intensity. Renewable and Sustainable Energy Reviews 33, 1-10. 
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5.1 Empirical Approach 

5.1.1 Regression Model 

I specify the regression model as follows:  

0 1 2 3 4 5it it it it it it i t itci pcgdp ep pd rcc th                                 (5-1) 

where all variables are defined as natural logarithms in order to interpret the coefficients as 

elasticities. The parameter µi denotes the individual effect (or heterogeneity) for each province and 

ηt denotes a common time effect. I treat the individual effect as fixed meaning that I assume that 

this variable is correlated with the explanatory variables and approximately fixed over time for 

each province within the sample. If I estimate (5-1) without controlling for the individual effect, 

then estimation may result in omitted variable bias if the fixed effect is correlated with the 

explanatory variable. The individual effect can be interpreted as characteristics within provinces 

that do not change over time such as unobservable geographic characteristics. The time period 

effects control for time-specific shocks that affects all provinces in a given period of time; e.g., 

national policies that affect CO2 emissions across all provinces in China. 

 In this study, I will estimate the SAR, SEM and SDM models based on this general 

regression model. The specification of the spatial models have introduced in Chapter 4. 

 

5.1.2 Estimation Method 

5.1.2.1 Global Spatial Autocorrelation 

The global spatial autocorrelation (i.e., a general measure of spatial dependence) of China’s 

overall (energy-related) CO2 emission intensity can be measured by Moran’s I index. The formula 

for calculating global Moran’s I index is  
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where Yi and Yj represent CO2 emission intensity of province i and j, respectively. The term wij 

denotes the element in the ith row and jth column of the spatial weight matrix. The global Moran’s 

I index is defined over the interval [-1, 1]. Positive Moran’s I values imply positive spatial 

autocorrelation (or spatial dependence), where a value of one indicates perfect correlation. 

Conversely, negative values imply negative autocorrelation, where a value of negative one 

indicates perfect dispersion. A zero value indicates a random spatial pattern. The significance of 

Global Moran’s I index can be tested by standard z-statistics. 

 

5.1.2.2 Spatial Econometric Analysis7 

In this study, I follow the specification tests outlined in Elhorst (2012). The first step is to 

test the standard, non-spatial panel models against the SAR and SEM models. To test whether the 

spatial effects model (against the non-spatial models) offer an appropriate specification I employ 

a series of Lagrange Multiplier (LM) tests. 

The second step is to investigate the joint significance of individual fixed effects and time-

period fixed effects. The hypothesis tests are 

0 1 2: ... 0NH                                                                                      (5-3) 

                                                           
7 The regressions Ire conducted using Matlab code provided by James LeSages and Paul Elhorst.  

Matlab is a commercially developed numerical computing environment and programming language.  

For additional information about Matlab, the reader is referred to the developer’s website: 

http://www.mathworks.com/products/matlab. 
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0 1 2: ... 0TH                                                                                         (5-4) 

H0: μ1= μ2=…= μN =0 states that the individual fixed effects are jointly insignificant, and H0: η1= 

η2=…= ηT =0 states that the time-period fixed effects are jointly insignificant. Likelihood ratio 

(LR) tests are used to check these null hypotheses. If the p-value is less than five percent, then I 

reject the null hypothesis of joint insignificance (Elhorst, 2012). 

If I fail to reject the spatial model in the previous step, then the third step will be to test 

whether the SDM model can be simplified to the SAR or SEM model. The hypothesis tests for the 

third step are  

0 : 0H                                                                                                              (5-5) 

0 : 0.H                                                                                                     (5-6) 

H0: δ = 0 examines whether the spatial Durbin model can be simplified to the spatial lag model, 

and H0: δ + ρβ = 0 examines whether it can be simplified to the spatial error model. Both tests 

follow a chi-squared distribution. A rejection of both hypotheses suggests that the spatial Durbin 

model provides the best fit to the data. Conversely, a failure to reject the first hypothesis suggests 

that the spatial lag model best describes the data. A failure to reject (5-5) can be balanced against 

the results of the (robust) LM tests for the spatial autoregressive model. Similarly, a failure to 

reject the second hypothesis (5-6) suggests that the spatial error model best describes the data – 

which can also be balanced against the results of the (robust) LM tests for the spatial error model. 

The last step is to estimate the spatial spillover effects of CO2 emission intensity. I follow 

LeSage and Pace (2009) by estimating the direct and indirect effects of the explanatory variables. 

Direct effects estimates measure the impact of changing an independent variable on the dependent 

variable of a spatial unit. Loosely speaking, the indirect effects estimates measure the impact of 

changing an independent variable in a particular unit on the dependent variable of all other units. 
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5.2 Estimation Results 

5.2.1 Global Spatial Autocorrelation 

Table 5.1 displays China’s Global Moran’s I index of carbon dioxide emission intensity 

and its significance in various periods from 1990 to 2010. The overall Moran’s I over twenty year 

period is 0.394, which indicates positive spatial correlation at the one percent significant level. In 

each period, the test reveals that CO2 emission intensity displays positive spatial autocorrelation 

at a five percent significant level. Recall, the CO2 emissions are estimated based upon energy 

consumption, so positive spatial autocorrelation in this sense is referring to the spatial dependence 

of energy consumption. This indicates that China’s CO2 emission intensity tend to cluster together. 

Specially, I find that provinces with high CO2 emission intensities have a tendency to cluster 

together, whereas the provinces with low CO2 emission intensities cluster together.  

Despite the findings of the spatial autocorrelation of CO2 emission intensity, the Moran’s 

I test only assesses the overall pattern and trend. Moran’s I is only effective when the spatial pattern 

is consistent across the provinces. If some of the provinces have positive spatial autocorrelation 

while others have negative spatial autocorrelation, then the effects could offset one other. In which 

case, the global Moran’s I test may reveal non-spatial autocorrelation characteristics. 

Table 5.1 Moran’s I Index of China’s CO2 Emission Intensity 

 

To further examine the clustering of among provinces, I employ a Moran’s I scatterplot 

displayed in Figure 5.1. In this scatterplot, the horizontal axis refers to the deviation of provincial 

1990-2010 1990-1995 1996-2000 2001-2005 2006-2010

Moran's I 0.394 0.450 0.389 0.274 0.205

Z-Statistic 3.650 4.129 3.607 2.630 2.034

P-value 0.000 0.000 0.000 0.008 0.042

Significant level *** *** *** *** **

Notes: The symbols ***, **, * denote a significance level of one, five and ten percent, respectively.
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average carbon dioxide emission intensity from 1990 to 2010, whereas the vertical axis refers to 

the spatial lags of the deviation of the average carbon dioxide emission intensity. I calculate the 

spatial lags by using a first-order contiguity spatial weight matrix, which produces an average 

measure of carbon dioxide emission intensity among neighboring provinces. The four quadrants 

in the scatter plot depict:  

1. HH clustering (quadrant I ) — provinces with high CO2 emission intensity are associated 

with neighboring province with high CO2 emission intensity (the star points);  

2. LH clustering (quadrant II) – provinces with low CO2 emission intensity are associated 

with neighboring provinces with high CO2 emission intensity (the circle points) 

3. LL clustering (quadrant III) – provinces with low CO2 emission intensity are associated 

with neighboring provinces with low CO2 emission intensity (the cross points) 

4. HL clustering (quadrant IV) – provinces with high CO2 emission intensity are associated 

with neighboring provinces with low CO2 emission intensity (the square points). 
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Figure 5.1 Moran Scatterplot of China’s Provincial CO2 Emission Intensity (1990-2010) 

The results in Figure 5.1 consist of the following: 

1. Nine provinces in quadrant I: Heilongjiang, Liaoning, Inner Mongolia, Hebei, Shanxi, 

Shaanxi, Ningxia, Gansu, and Xinjiang 

2. Six provinces in quadrant II: Beijing, Tianjin, Henan, Shandong, Sichuan, and 

Chongqing 

3. Ten provinces in quadrant III: Shanghai, Jiangsu, Zhejiang, Hubei, Hunan, Jiangxi, 

Fujian, Guangdong, Hainan, and Yunnan 

4. Five provinces in quadrant IV: Qinghai, Anhui, Guizhou, Guangxi and Jilin  

In this analysis, 63.33% (nineteen provinces) show similar characteristics of spatial 

autocorrelation. Further, 30% (nine provinces) in quadrant I and 33.33% (ten provinces) in 

quadrant III demonstrate similar characteristics of positive spatial autocorrelation. On the other 
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side, 20% (six provinces) in quadrant II and 16.67% (five provinces) in quadrant IV demonstrate 

negative spatial autocorrelation. This means that the spatial autocorrelation and dispersion of 

provincial CO2 emission intensity exist at the same time. 

The Moran’s I analysis implies that China has significant clustering of emissions in high 

emitting provinces and significant clustering of emissions in low emitting provinces for the period 

of observation. The statistically significant, spatial autocorrelation among provinces implies that 

standard ordinary least squares regressions of the drivers of emissions may lead to estimation bias 

in the regression results. Therefore, I test whether a spatial panel data model is preferable to non-

spatial models in the analysis of the drivers of emissions at the province-level in China.  

 

5.2.2 Empirical Results of Spatial Econometric Models 

The estimation results for the non-spatial panel data models are reported in Table 5.2. 

Columns (1) through (4) represent the estimation results of pooled OLS, individual fixed effects 

only, time-period fixed effects only, and individual and time-period fixed effects, respectively. 

When using the classical LM tests, both the hypothesis of no spatially lagged dependent variable 

and the hypothesis of no spatially autocorrelated error term are strongly rejected at a one percent 

significance level with the exception of including both the individual and time-period fixed effects. 

When using the robust LM tests, the hypothesis of no spatially lagged dependent variable is still 

rejected at a one percent significance level for each of the specifications. The hypothesis of no 

spatial autocorrelated error term is rejected at one percent significance level when individual fixed 

effects are included and at five percent significance level when the time-period fixed effects are 

included. But this same hypothesis (robust LM spatial error) cannot be rejected for the pooled OLS. 

These results seem to imply that the SAR model is a more appropriate specification than the non-
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spatial model as I find fairly consistent evidence across all models to reject the null hypothesis of 

no spatial lag. I find mixed results to reject the hypothesis for spatially autocorrelated error term. 

Table 5.2 Estimation results of non-spatial panel data models 

 

To investigate the joint significance of the individual fixed effects and time-period fixed 

effects, I perform the LR tests. The results are shown in Table 5.3. The null hypothesis that the 

individual fixed effects are jointly insignificant is rejected at a one percent level, and the null 

hypothesis that the time-period fixed effects are jointly insignificant is also rejected at a one 

percent level. These test results seem to justify the extension of the model with the two-way fixed 

effects model– i.e., include both the individual fixed effects and time-period fixed effects. I also 

conduct a Hausman test to further test the correct panel data specification between a fixed effects 

Determinants Pooled OLS
Individual Fixed 

effects

Time-period fixed 

effects

Individual and time-

period fixed effects

-0.413*** -0.642*** -0.366*** -0.755***

(-23.038) (-21.822) (-10.382) (-7.466)

0.476** 0.427*** -0.255 0.199

(2.574) (3.737) (-0.743) (0.896)

-0.180*** -1.007*** -0.193*** -1.153***

(-13.119) (-5.328) (-14.163) (-5.610)

1.036*** 0.149 1.061*** 0.080

(16.188) (1.441) (17.068) (0.806)

-0.226*** 0.207*** -0.228*** 0.056

(-12.414) (5.032) (-10.362) (1.035)

5.683*** NA NA NA

(6.229)

σ2 0.137 0.049 0.123 0.044

R
2 0.723 0.900 0.751 0.912

Log Like -251.420 55.585 -219.016 91.450

Sample 600 600 600 600

LM Spatial lag 94.862*** 60.1405*** 26.821*** 0.876

Robust LM Spatial lag 57.297*** 71.2093*** 32.183*** 7.692***

LM Spatial error 37.572*** 15.2978*** 5.624** 0.062

Robust LM Spatial error 0.007 26.3666*** 10.986*** 6.878***

pcgdp

ep

pd

rcc

th

Intercept

Note: All variables are measured as natural logs. The symbols ***, ** and * denote a one, five and ten percent 

significance level, respectively. Numbers in the parentheses represent t -stat values.
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and random effects model. The Hausman test results imply that the fixed effects model is the more 

appropriate specification.  

Table 5.3 Post diagnostic tests of joint significance of fixed effects 

 

Table 5.4 Estimation results of spatial panel data models and interaction effects 

 

Test Chi-Squared Statistic Degree of Freedom P-value

LR 

Individual fixed effects 620.9317 30 0.0000

Time-period fixed effects 71.7303 20 0.0000

Hausman 44.6832 11 0.0000

Note: All tests follow a chi-squared distribution with K degrees of freedom.

Determinants SAR SEM SDM

-0.640*** -0.749*** -0.519***

(-6.300) (-7.118) (-5.073)

0.142 0.204 0.106

(0.639) (0.888) (0.491)

-1.146*** -1.165*** -1.282***

(-5.550) (-5.440) (-5.941)

0.124 0.083 0.257***

(1.243) (0.809) (2.624)

0.073 0.054 0.150***

(1.341) (0.962) (2.748)

0.342*** 0.106**

(7.175) (1.950)

0.094*

(1.658)

-0.702***

(-8.247)

0.203

(0.552)

1.062***

(2.656)

-0.343*

(-1.802)

0.275**

(2.362)

σ 2 0.044 0.047 0.039

R
2 0.918 0.912 0.927

Sample 600 600 600

Log Like 84.973 91.496 147.949

NA

NA

W*th

NA NA

NA NA

NA NA

NA NA

NA

NA

Note: All variables are measured as natural logs. The symbols ***, ** and * denote a 

one, five and ten percent significance level, respectively. Numbers in the parentheses 

represent t-stat values.

rcc

pcgdp

ep

pd

th

W*pcgdp

W*ep

W*pd

W*rcc

ρ

λ NA
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Table 5.4 gives the estimation results of CO2 emission intensity according to the three 

spatial specification panel data models (as per the LR test results I include both the individual and 

time-period fixed effects). 

Since the Lagrange Multiplier test results suggest that the spatial models are a more 

appropriate specification than the non-spatial models, I will continue to test which spatial model 

offers the best fit for the data. I perform both the Wald test and LR test to test the hypothesis 

whether the SDM model could be simplified to the SAR model or SEM model. The results are 

reported in Table 5.5. According to the Wald test result and LR test result, the null hypothesis (5-

5) that the SDM model can be simplified to the SAR model is rejected at a one percent significance 

level. Similarly, the null hypothesis (5-6) that the SDM model can be simplified to a SEM model 

is also rejected at a one percent significance level based on the Wald test result and LR test result. 

These results imply that both the spatial lag model and spatial error model are rejected in favor of 

the spatial Durbin model. Therefore, I conduct a sensitivity analysis of the SDM model.  

Table 5.5 Post diagnostic tests of spatial specification 

 

As can be gleaned from the estimated results in Table 5.4, the coefficients of independent 

variables are basically consistent with the theoretical expectations offered in Chapter 3. Just 

focusing on the SDM coefficient estimates, an interpretation of the coefficient on per-capita GDP 

is that a ten percent increase of per-capita GDP is associated with 5.19% decrease of the CO2 

Test Chi-Squared Statistic Degree of Freedom P-value

LR 

Spatial lag 125.952 5 0.0000

Spatial error 112.906 5 0.0000

Wald test

Spatial lag 105.233 5 0.0000

Spatial error 117.64 5 0.0000

Note: All tests follow a chi-squared distribution with K degrees of freedom.



42 

 

emission intensity (holding all else constant). An interpretation of the ratio of coal consumption to 

total energy consumption is that a ten percent decrease will lead to a 2.57% decrease in emission 

intensity. Similarly, the total length of highways coefficient implies that a ten percent increase will 

lead to 1.5% increase of CO2 emission intensity.  

These results imply that an improvement in the economic performance at the province level 

will lead to a decrease of CO2 emission intensity (as reflected in the coefficient on per-capita GDP); 

while increasing the ratio of coal consumption to total energy consumption and the total length of 

highways will lead to the increase of the CO2 emission intensity. The coefficient on the ratio of 

coal to total energy consumption implies that replacing coal consumption with non-coal energy 

consumption is an effective mechanism to decrease CO2 emission intensity. Further, the coefficient 

on the total length of highways suggests that technological advancements in energy efficiency (i.e., 

barring any rebound effects) of the transportation sector may play a role in decreasing CO2 

emission intensity.  

The results for the SDM in Table 5.4 also suggest that a ten percent increase in population 

density is associated with a 12.82% decrease of the CO2 emission intensity, which implies that 

agglomeration effects are leading to an improvement in energy efficiency which in turn reduces 

emission intensity. Contrary to expectations, I do not find a significant relationship between energy 

prices and CO2 emission intensity, which implies that energy prices do not play a role in reducing 

CO2 emission intensity. A possible explanation for this lack of statistical significance is that the 

Chinese government subsidizes energy prices thereby keeping prices artificially below the market 

price. 

Given the statistically significant spatial autocorrelation coefficient, ρ, the parameter 

estimates in the two-way fixed effects spatial Durbin model cannot be interpreted as marginal 
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effects as in the case of non-spatial models. Therefore, following LeSage and Pace (2009), I 

estimate the direct and indirect effects to yield an interpretation of the spatial spillover effects. The 

direct and indirect effects of each explanatory variable are reported in Table 5.6. The difference 

between the direct effects (Table 5.6) and the coefficient estimates (Table 5.4) are due to the 

feedback effects that arise as a result of impacts passing through neighboring provinces and back 

to the provinces themselves. The feedback effects include both the impacts from the spatially 

lagged dependent variable ( ij jtW Y ) and the impacts from the spatially lagged value of the 

explanatory variable itself ( ij jtW X  ). 

Table 5.6 Direct & Indirect effects of SDM model 

 

The results in Table 5.6 reveal that the direct effects of all the explanatory variables (with 

the exception of energy prices) are statistically significant. Among the direct effects, per-capita 

GDP, population density, and the length of highways are significant at one percent level. The direct 

effect of the ratio of coal to total energy consumption is significant at the five percent level. 

Determinants Direct Effect Indirect Effect Total Effect

pcgdp -0.533*** -0.827*** -1.360***

(-5.412) (-7.594) (-9.626)

ep 0.105 0.231 0.336

(0.466) (0.536) (0.697)

pd -1.252*** 1.002** -0.250

(-5.738) (2.278) (-0.581)

rcc 0.247** -0.353 -0.106

(2.410) (-1.728) (-0.461)

th 0.157*** 0.310** 0.467***

(2.934) (2.457) (3.463)

Note: All variables are measured as natural logs. The symbols ***, 

** and * denote a one, five and ten percent significance level, 

respectively. Numbers in the parentheses represent t-stat values.
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In the non-spatial model, the indirect effects are set, by construction, to zero; however, 

based on the t-statistics calculated from a set of 1,000 simulated parameter values (LeSage and 

Pace, 2009) in the two-way fixed effects spatial Durbin model, there are three statistically 

significant indirect effects. The indirect effect of per-capita GDP is significant at the one percent 

level, and the indirect coefficients on population density and length of highways are significant at 

a five percent level. These coefficients imply that a change per-capita GDP, population density, 

and length of highways in one particular province has an average cumulative effect on the 

corresponding variables in neighboring provinces. 

The statistically significant coefficients on both the direct effect and indirect effect of per-

capita GDP are negative which implies that the own-province per-capita GDP increases will reduce 

the CO2 emission intensity of both own province and neighboring provinces. The coefficients of 

both the direct effect and indirect effect of total length of highways are positive and significant, 

and the implication is that an increase in own-province highway construction leads to an increase 

of both own province and neighboring province CO2 emission intensity. The negative coefficient 

on the direct effect and positive coefficient on the indirect effect of population density imply that 

own-province population density increases will decrease own CO2 emission intensity but increase 

the emission intensity of neighboring provinces. 

 

5.3 Conclusions 

In this essay, I analyzed the influence of economic activity, energy prices, population 

density, energy consumption structure, and transportation structure on CO2 emission intensity in 

China. I used spatial econometrics methods so as to avoid the potential coefficient bias from 

ignoring spatial autocorrelation as in OLS estimation. 
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The regression results suggest that per-capita GDP reduces CO2 emission intensity, which 

implies that promoting the local economic development, may help to reduce CO2 emission 

intensity. These results suggest that economic development can still be compatible with CO2 

emission mitigation as China is in the middle stages of industrialization. A possible policy 

prescription for China would be to target a rate of increase per-capita GDP but weigh such targets 

with policies to reduce emission intensities.   

The findings suggest that an increase in population density leads to a decrease of CO2 

emission intensity. The provinces with large population density, such as Shanghai, Beijing and 

Tianjin, have relative low CO2 emission intensity; and the provinces with small population density, 

such as Xinjiang, Ningxia and Inner Mongolia, have relatively high CO2 emission intensity. This 

finding suggests that population concentration could improve the production efficiency and energy 

efficiency so as to decrease emission intensities. This does not imply, however, that population 

control should be unmitigated. This study also finds that an increase in the ratio of coal 

consumption to total energy consumption leads to a significant increase in CO2 emission intensity. 

Compared with the other energy resources, the power transfer efficiency of coal is relatively low. 

This finding may suggest that the Chinese government should encourage the development of less 

carbon-intensive energy resources such as natural gas or renewables.  

The regression results also suggest that an increase in the total length of highways leads to 

an increase of CO2 emission intensity. This finding suggests that the Chinese government should 

continue to encourage technological advancements which reduce emission intensity and encourage 

further fuel efficiency standards in its transportation sector, especially as China’s transportation 

infrastructures continues to grow at an accelerated pace. 
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Moreover, I find that the energy prices in China have no significant effect on the CO2 

emission intensity, which differed from my expectations. A possible explanation for this is that 

government policies such as subsidies and price controls have artificially lowered energy prices in 

order to stimulate economic growth. China has recently instituted market-oriented reforms so that 

the price of fossil fuels more accurately reflects the true market cost (Hang and Tu, 2007). This 

finding may suggest that the Chinese government should further deregulate energy prices to reduce 

artificial price distortions. 

I also find that per-capita GDP, population density, and total length of highways have 

statistically significant effects on both the own province and the neighboring province elasticities. 

Both of these findings are consistent with the hypothesis of economic distance (Conley and Ligon, 

2002). These findings suggest that the Chinese government should promote the sharing and 

exchange of information and technology across provinces, and develop appropriate policies to 

strengthen cross-province development. 

The findings have implications for inter- and intra-regional land use planning and 

economic policy. Land use regulations can delay residential development and increase 

development costs, but such regulations can address market failures (e.g., addressing the social 

costs of global climate change) and ensure a well-organized urban spatial structure (Kim and 

Hewings, 2013). The regression results from the spatial model imply that the driving forces of CO2 

emissions are inter-related at the province-level in China. This inter-relatedness suggests that 

China’s province-level governments (and municipal governments) should offer coordinated land 

use planning and economic policy. Raising barriers to development can assist in labor relocation 

and possibly social mobility as increasing numbers move from rural areas to the heavily urbanized 

parts of the country. As the population in general becomes more affluent and educated, the 
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populace can begin to apply pressure on the government to reduce CO2 emissions and other 

harmful pollutants that have plagued the country over the past couple of decades. 

This study suffers from some limitations including the problem of measurement error. The 

measure of CO2 emissions, which is consistent with the rest of literature, is based upon the 

consumption of energy, so it is subject to mis-measurement. An additional problem is that I 

specified a single equation, reduced-form model, not a structural model. Although these reduced-

form models are used fairly frequently in the energy literature, they can offer limited information 

for policy decisions because such models ignore issues such as inter-fuel substitution, technical 

change, and changes in supply (Bhattacharyya, 2011).  

Finally, I acknowledge that spatial econometric models may suffer from issues of 

identification (endogeneities within the explanatory variables) and a lack of theoretical foundation 

as pointed out by Partridge et al. (2012). But the same issues can be pointed out about reduced-

form models in the econometrics literature in general. The relationship between CO2 emissions 

and economic drivers is highly complicated, so studies often use decomposition analyses (with 

similar explanatory variables as this particular study) such as the Kaya identity found within IPCC 

reports (IPCC, 1996). Decomposition analyses are useful for analyzing this relationship for 

descriptive purposes, but it is merely an accounting identity not a rigorously defined statistical 

analysis. Therefore, I argue that spatial econometric models will continue to contribute to this 

larger literature as it helps to disentangle the complicated relationship between emissions and the 

economy. 
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CHAPTER 6: PROVINCE LEVEL CONVERGENCE OF CHINA CO2 EMISSION 

INTENSITY 

In this essay, I followed the work of Yu and Lee (2012) by adopting a spatial, dynamic 

panel data (SDPD) approach to analyze convergence. After controlling for spatial effects, we 

investigate how the estimated rate of convergence changes. Compared to previous studies, this 

study offers two unique contributions to the literature. First, I offer an analysis of the convergence 

of energy-related emission intensities at the province-level in China. It is difficult to compare total 

carbon dioxide emissions across provinces because of the variation in their size and economic 

activity, so I instead analyze province-level emission intensities. Emission intensity normalizes 

emissions across provinces to offer a more compatible apples-to-apples comparison. From a policy 

sense, an analysis of emission intensity offers a more equitable measure for negotiating multilateral 

agreements. Second, I use a novel spatial, dynamic panel data model which includes both the 

individual effects and the spatial effects. By including the individual effects, I potentially avoid 

the omitted variable bias in the cross-sectional regression, and by including the spatial effects, I 

potentially avoid the omitted variable bias in the non-spatial, dynamic panel data regression. 

Based on the estimation results, I find evidence that CO2 emission intensities are 

converging across provinces in China. I also find that the rate of convergence is higher with the 

dynamic panel data model (conditional convergence) than with a cross-sectional regression model 

(absolute convergence). This result is consistent with the study of Islam (1995). The individual 

effects that are ignored in cross-sectional regressions potentially create omitted variable bias. The 

panel data framework arguably offers a more precise (efficient) rate of convergence. Finally, I find 

that province-level CO2 emission intensities are spatially correlated, and the rate of convergence, 

when controlling for spatial autocorrelation, is higher than with the non-spatial models. This result 
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is consistent with the study of Yu and Lee (2012). According to past literature a significant factor 

in understanding economic growth convergence is through the persistent difference in levels of 

technology across regions (Krugman, 1987; Islam, 1995; Jones, 1997).  Lesser differences in 

technology levels suggest that convergence would proceed at a faster rate. The results imply that 

technological spillovers, embodied in both the unobserved individual effects and the spatial 

autocorrelation coefficient, have a direct effect on the rate of convergence of carbon intensity 

among provinces.  

 

6.1 Regression Model 

6.1.1 Cross Section Regression Model 

The traditional neoclassical cross-sectional regression model assumes that all regions or 

economies under consideration have the same steady state income path. In this particular case, it 

would imply that if provinces have similar technologies and environmental policies, then higher 

emission intensity provinces’ emission should decrease faster than lower emission intensity 

provinces. The general cross-sectional regression model is given as follows 

, , ,ln( ) ln( ) ,i t i t i ty y                                                                                (6-1) 

where ,i ty is the emission intensity for province i at initial time point t, ,i ty  is the emission intensity 

for province i at the end of time point, t  , and  is the time interval. That is, the regression 

observes the convergence of the emission intensity of the time period [t, t+τ]. I assume that the 

rate of convergence, β, is defined by an exponential decay function as follows 

,e                                                                                                                (6-2) 
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where an estimate of ̂ within the interval 0 <  < 1 implies that convergence to the steady state 

is direct and involves no oscillations. The parameter  is the implied rate of convergence, which 

can be calculated from the regression results as follows 

ˆln( ) / .                                                                                                        (6-3) 

 The term “cross-sectional regression” is often confused because there is a province-level 

index, i, and a time interval index,  , that are specified in (6-2). Such a specification makes it 

appear as if this is a panel data approach. However, the subscripts are for notational purposes only. 

A time interval is specified because the model uses the natural log of province-level emission 

intensity in the last year of the interval against the natural log of province-level emission intensity 

in the initial year of the interval. As the interval increases, the effect of the initial condition on the 

average growth rate declines (Barro and Sala-i-Martin, 2004). Within a large longitudinal or panel 

data set, one could in principal look at several different intervals across the full sample. Such 

procedures are often used to omit any trending or cyclical behavior within the data that may affect 

the convergence estimates. An example is provided by Barro and Sala-i-Martin (2004), in which 

the authors examine the convergence of personal income across U.S. states for the period 1980-

2000. The authors then estimate beta convergence across eleven ten-year-intervals over the entire 

sample. There is no concrete method for choosing the length of each interval – the selection, 

although arbitrary, depends on the full sample size and the frequency of observations (i.e., daily, 

monthly, quarterly, or annually).  

As I mentioned above, it is important to investigate the spatial patterns that may indicate 

the spillover effects among regions. If I include the spatial lag of the dependent variable in the 

equation, then I derive the cross-sectional spatial autoregressive (SAR) model (Rey and Montouri, 

1999) as follows 
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, , , ,

1

ln( ) ln( ) ln( ) ,
N

i t ij i t i t i t

j

y W y y       



                                                (6-4) 

where  denotes the scalar, spatial autoregressive parameter on the dependent variable,  

 Furthermore, if I include both the contemporary spatial effects and the lagged spatial 

effects in the equation (Yu and Lee, 2012), then I would derive the spatial cross section regression 

model 

, , , , ,

1 1

ln( ) ln( ) ln( ) ln( ) ,
N N

i t ij i t i t ij i t i t

j j

y W y y W y        

 

                       (6-5) 

where  is spatial autocorrelation coefficient on the initial emission intensity levels.  

Overall, since there are no controls on province-level heterogeneous fixed effects in the 

above cross-sectional regression and spatial regression models, the estimates are interpreted as 

absolute convergence. 

 

6.1.2 Dynamic Panel Data Model 

As Quah (1993) points out, the traditional cross-sectional approach does not reveal the 

dynamics of the growth processes. In response, Islam (1995) proposed a panel data approach to 

study growth convergence. The motivation for the panel data approach is to capture the differences 

across regions or countries. The unobserved differences such as preferences and technology are 

not easily measurable, so they can be treated as unobserved individual effects in the panel data 

regression framework (Hsiao, 2002). The general econometric specification of a dynamic panel 

data model is given as follows 

, , 1 ,ln( ) ln( ) ,i t i t i i ty y                                                                                (6-6) 
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where i denotes the individual effect for each province. To avoid confusion between the cross-

sectional models in the previous subsection, I use the subscript i to denote each region and t to 

denote each time period. Note the contrast between  in the previous subsection and t in the 

current subsection. With the approach in this subsection, I examine beta convergence within a 

longitudinal or pooled data set. It should be noted that in principle one could examine the panel 

data within intervals as well. 

 Even though the dynamic panel data model could reveal the dynamic growth process, there 

are may be spillover effects from one region to the adjacent regions. For example, technological 

diffusion and environmental policies may follow a spatial pattern as regions may have different 

capacities to create or absorb new technologies and policies. Therefore, this modeling approach 

seeks to control for spatial autocorrelation within a dynamic panel data framework. By using the 

spatial dynamic panel data (SDPD) models with fixed effects, I can avoid not only the omitted 

variable bias in the cross sectional regression (where the individual effects are omitted), but also 

the omitted variable bias in the dynamic panel data regression (where the spatial effect is omitted). 

 Similar to the cross-sectional model, if I include the spatial lag of the dependent variable 

in the equation, then I would get the dynamic panel SAR model as follows 

, , , 1

1

ln( ) ln( ) ln( ) ,
N

i t ij i t i t i it

j

y W y y   



                                                      (6-7) 

 Further, if I include both the contemporary spatial effects and the lagged spatial effects in 

the equation, then I derive the spatial dynamic panel data model as follows 

, , , 1 , 1

1 1

ln( ) ln( ) ln( ) ln( ) .
N N

i t ij i t i t ij i t i it

j j

y W y y W y     

 

                           (6-8) 

While the cross sectional estimates might be better interpreted as rates of absolute 

convergence, those of the panel models can be interpreted as the rates of conditional convergence. 
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Conditional convergence is interpreted as convergence after differences in the steady states across 

different regions have been controlled for; i.e., by controlling for the heterogeneous fixed effects

i . 

 

6.2 Estimation Results 

In this study, I divide the entire sample into several shorter time intervals. As Islam (1995) 

argued, one can use a time span for just one year, which is technically feasible given that the 

underlying data set provides annual data. However, yearly time spans are generally too short to be 

appropriate for studying growth convergence. In other words, short-term disturbances may loom 

large in such brief time spans. Additionally, by considering the spatial effects, a shorter time span, 

such as one or two year span may be inappropriate because the spillover effects (such as 

technological spillovers) might take several years to propagate across regions. Hence, I choose 

five year time intervals as is done in Islam’s (1995) use of the dynamic panel data approach and 

in accordance with China’s “Five-Year Plans”; i.e., 5  . Therefore, I use the corresponding 

years for this analysis: 1990, 1995, 2000, 2005, and 2010. Following Yu and Lee (2012), I also 

estimate the model with four year intervals to check whether the results are robust to different time 

interval specifications. 

 

6.2.1 Empirical Results Using Cross Sections 

In this section, I estimate single cross-sectional regression model for the entire sample 

period, and estimate pooled cross-sectional regression models with five-year and four-year 

intervals. For the single cross-sectional regression model, I regress 2010ln( )y on 1990ln( )y . For the 
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five-year spans, I regress 2010ln( )y on 2005ln( )y , 2005ln( )y on 2000ln( )y , 2000ln( )y on 1995ln( )y , and 

1995ln( )y on 1990ln( )y , and then construct the mean value of the regressions. I also present the 

parameter estimates for the four-year interval specification. The results of the cross sectional 

regression without spatial effects is presented in Table 6.1. 

Table 6.1. Cross-Sectional Regression without Spatial Effects 

 

(              )

-0.6556 0.5574*** 0.0292

(-1.6762) (3.4738) (τ=20)

-0.2594 0.8350***

(-1.4281) (11.2043)

-0.0663 0.7837***

(-0.4208) (8.9314)

-0.0911 0.9617***

(-0.6071) (8.7389)

-0.4482 0.9753***

(-4.2141) (11.4824)

-0.2162 0.8889*** 0.0236

(-1.6675) (10.0893) (τ=5)

-0.3773* 0.9659***

(-1.8758) (11.7057)

0.1381 0.6886***

(0.9151) (9.1389)

-0.0475 0.8615***

(-0.3883) (10.7684)

-0.3486** 1.1367***

(-2.7464) (11.5074)

-0.2644*** 0.9096***

(-2.8595) (11.4108)

-0.1800 0.9125*** 0.0229

(-1.3910) (10.9063) (τ=4)

Single Cross 

Sectional Regression
1990-2010 0.3012

1990-1995 0.8176

1995-2000 0.7402

Period Constant β R
2

0.7786

2000-2005 0.7317

2005-2010 0.8248

1990-1994 0.8243

2002-2006 0.8192

Pooled Regression 

with 4 Year Intervals

1994-1998 0.7400

1998-2002 0.7986

0.7998

Joint 

subperiods

Pooled Regression 

with 5 Year Intervals

Joint 

subperiods

Note: The symbols ***, ** and * denote a one, five and ten percent significance level, 

respectively. Numbers in the parentheses represent t-stat values.

2006-2010 0.8167

e  Implied 

Implied 

e  
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From Table 6.1, I find that the coefficients of the initial emission intensity are positive and 

significant for both the single cross-sectional regression and the pooled regressions, and the values 

are all between zero and one. These results imply that CO2 emission intensities are converging 

across provinces in China. For the entire sample period specification, the implied rate of 

convergence is 0.0292 for the single cross-sectional regression. The five-year and four-year 

interval specifications yield estimated rates of convergence of 0.0236 and 0.0229, respectively. 

Therefore, the pooled cross sectional regression yield similar results to the single cross sectional 

results. 

Table 6.2 reports the estimation of the cross-sectional SAR model. I find that the single 

cross-sectional regression yields a higher rate of convergence of 0.0345 for the entire sample 

period. By using five-year and four-year intervals, the estimated rates of convergence are 0.0167 

and 0.0217, respectively. Therefore, these regressions yield similar rates of convergence as the 

non-spatial models. 
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Table 6.2. Cross-Sectional Regression with Contemporary Spatial Effects 

 

Table 6.3 presents the results which include both contemporary spatial effects and lagged 

spatial effects. I see that the estimated rates of convergence in this single cross-sectional regression 

is 0.0380, and the estimated rates of convergence are 0.0185 and 0.0239 for the pooled cross 

sectional regressions with five and four year intervals. These regressions also yield similar rates 

of convergence with the non-spatial model and cross sectional SAR model. 

 

(              )

-0.6237* 0.5001*** 0.1470 0.0345

(-1.6595) (2.8826) (0.6299) (τ=20)

-0.2596 0.8386*** -0.0047

(-1.4658) (6.9081) (-0.0322)

-0.0222 0.8469*** -0.1179

(-0.1392) (7.0515) (-0.7597)

-0.0212 1.0279*** -0.1339

(-0.1241) (8.3092) (-0.8666)

-0.4598*** 0.9656*** 0.0320

(-4.0914) (10.5532) (0.8111)

-0.1907 0.9198*** -0.0561 0.0167

(-1.4551) (8.2055) (0.2119) (τ=5)

-0.3787* 0.9048*** 0.0759

(-1.9481) (6.6889) (0.5227)

0.1002 0.6229*** 0.1119

(0.6269) (5.9696) (0.7647)

0.0733 1.0024*** -0.2659**

(0.5988) (9.8712) (-2.0530)

-0.3557** 1.1304*** 0.0140

(-2.5253) (10.1898) (0.1074)

-0.2467** 0.9234*** -0.0450

(-2.2923) (10.6697) (-0.3154)

-0.1615 0.9168*** -0.0204 0.0217

(-1.1080) (8.6778) (-0.1947) (τ=4)

R
2

1994-1998 0.7432

1998-2002 0.8265

0.8057

0.7745

2000-2005 0.7205

2005-2010 0.8188

1990-1994 0.8229

2002-2006 0.8197

Note: The symbols ***, ** and * denote a one, five and ten percent significance level, respectively. 

Numbers in the parentheses represent t-stat values.

Pooled Regression 

with 5 Year Intervals

Pooled Regression 

with 4 Year Intervals

Joint 

subperiods

Joint 

subperiods

2006-2010 0.8163

Single Cross 

Sectional Regression
1990-2010 0.2915

1990-1995 0.8111

1995-2000 0.7476

Period Constant β ρ e  Implied 
Implied 

e  
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Table 6.3. Cross-Sectional Regression with Contemporary Spatial Effects and Lagged Spatial 

Effects 

 

However, the spatial effects in Table 6.2 and Table 6.3 are not significant. This might be 

due to omitted individual or heterogeneous effects. In the framework of cross-sectional regression, 

it is not possible to take account of the unobservable or unmeasurable factors such as the preference 

and technology. This would leads the bias estimation results. So I extend the analysis to include 

the individual effects with the spatial dynamic panel data model in the following section and 

compare the previous results with the estimated rates of convergence from the spatial dynamic 

panel data model. 

(              )

-0.6219* 0.4673** 0.1380 0.0350 0.0380

(-1.6581) (2.4667) (0.5910) (0.5187) (τ=20)

-0.2569 0.8159*** -0.0139 0.0286

(-1.4737) (6.5032) (-0.0954) (0.9117)

-0.0226 0.8471*** -0.1149 -0.0018

(-0.1411) (6.7522) (-0.7356) (-0.0384)

-0.0213 1.0299*** -0.1319 -0.0042

(-0.1242) (8.0261) (-0.8272) (-0.0583)

-0.4755*** 0.9531*** -0.0129 0.0553

(-4.1993) (10.2716) (-0.0940) (0.8599)

-0.1941 0.9115*** -0.0684 0.0195 0.0185

(-1.4846) (7.8883) (-0.4447) (0.4381) (τ=5)

-0.3789* 0.9111*** 0.0719 -0.0030

(-1.9480) (6.6279) (0.4929) (-0.0841)

0.0968 0.6092*** 0.1019 0.0233

(0.6118) (5.6640) (0.6916) (0.5844)

0.0757 0.9854*** -0.2849** 0.0318

(0.6279) (9.4548) (-2.2059) (0.7511)

-0.3572** 1.1245*** 0.0049 0.0152

(-2.5345) (9.7909) (0.0371) (0.2256)

-0.2532** 0.9145*** -0.0710 0.0336

(-2.3333) (10.1748) (-0.4804) (0.4632)

-0.1634 0.9089*** -0.0354 0.0202 0.0239

(-1.1152) (8.3424) (-0.2929) (0.3880) (τ=4)

Pooled Regression 

with 4 Year Intervals

1990-1994 0.8165

2002-2006 0.8131

Single Cross 

Sectional Regression
1990-2010 0.2985

Pooled Regression 

with 5 Year Intervals

1990-1995 0.8093

1995-2000 0.7379

Joint 

subperiods

Period Constant β ρ λ R
2

Note: The symbols ***, ** and * denote a one, five and ten percent significance level, respectively. Numbers in the 

parentheses represent t-stat values.

1994-1998 0.7365

1998-2002 0.8247

0.8000

0.7685

2000-2005 0.7103

2005-2010 0.8166

Joint 

subperiods

2006-2010 0.8100

Implied 
Implied 

e   e  
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6.2.2 Empirical Results Using Dynamic Panel Data 

According to Barro and Sala-i-Martin (2004), one advantage of panel data over cross 

sectional data is that one does not need to hold constant the steady state growth level because it is 

implicitly estimated using fixed effects. One potential problem with panel data models is that one 

needs a sufficiently large amount of time series observations in order to overcome dynamic panel 

data bias (Nickell, 1981; Judson and Owen, 1999). Dynamic panel data bias occurs when a lagged 

dependent variable is specified on the right hand side of the regression and the panel does not 

contain enough time series observations. To help ensure that I are getting efficient estimates of the 

speed of convergence, I use the bias-corrected least squares dummy variable (LSDVC) model. 

Judson and Owen (1999) showed that the LSDVC model provided the least biased estimates of 

the coefficient on the lagged dependent variable. The results presented in this section are the bias-

corrected results. 

The results of the dynamic panel data model without spatial effects are presented in Table 

6.4. Here, I see that the estimated rate of convergence is 0.1787 for the five year spans, and is 

0.1403 for the four year spans. They are larger than the cross sectional estimates of 0.0236 and 

0.0229 in Table 6.1. Hence, after considering the individual effects, I have a higher rate of 

convergence.  

Table 6.4. Dynamic Panel without Spatial Effects 

  

(              )

5 Year Intervals 0.4092** 0.1787

(17.1500) (τ=5)

4 Year Intervals 0.5706** 0.1403

(16.4400) (τ=4)

β R
2

0.8552

0.8971

Note: The symbols ***, ** and * denote a one, five and ten percent significance 

level, respectively. Numbers in the parentheses represent t-stat values.

Implied 

e  
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The results for the dynamic panel SAR model and the SDPD model are summarized in 

Table 6.5 and Table 6.6, respectively. I find that the spatial effects are positive and statistically 

significant in Table 6.5 and Table 6.6. This implies that province-level CO2 emission intensities 

are spatially correlated in China and suggest that I should consider the spatial correlation in the 

growth regressions; otherwise there might be omitted variable bias due to excluding the spatial 

effects. 

Table 6.5. Dynamic Panel with Contemporary Spatial Effects 

 

Table 6.6. Dynamic Panel with Contemporary Spatial Effects and Lagged Spatial Effects 

 

Strangely, the results for the dynamic spatial panel data model provide statistically 

insignificant estimates on the parameter of the temporally and spatially lagged autocorrelation 

coefficient,  , in Tables 6.3 and 6.6. Since I used four and five year intervals within the data 

(which may cause this lack of significance because I are filtering out economic cycles), I test the 

model by using the full data set (i.e., I used one year time intervals). I find similar results that 

(              )

5 Year Intervals 0.3959*** 0.4570*** 0.1853

(5.9401) (5.3752) (τ=5)

4 Year Intervals 0.5081*** 0.3799*** 0.1693

(8.1268) (5.0551) (τ=4)
0.9155

ρ

0.9037

Note: The symbols ***, ** and * denote a one, five and ten percent significance level, respectively. 

Numbers in the parentheses represent t-stat values.

β R
2

Implied 

e  

(              )

5 Year Intervals 0.3847*** 0.4450*** 0.0217 0.1911

(3.6918) (4.4751) (0.1688) (τ=5)

4 Year Intervals 0.4416*** 0.3010*** 0.1423 0.2043

(5.1105) (3.0026) (1.2042) (τ=4)

0.9035

0.9153

λβ ρ R
2

Note: The symbols ***, ** and * denote a one, five and ten percent significance level, respectively. Numbers in the 

parentheses represent t-stat values.

Implied 

e  
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is still insignificant (results not provided), which implies the insignificance is not due to the interval 

specification.  

A possible explanation for the lack of statistical significance of  is that each province 

implements short-run strategies to reduce emission intensity to comply with pressure from the 

national government. This is further reinforced by the significance of  , which is the parameter 

on the contemporaneous spatially lagged dependent variable. These parameters suggest perhaps 

that provinces are adopting short-run measures to ease emission intensity, which explains the 

evidence of spatial dependence found with the significance of contemporaneous spatially lagged 

variable. The lack of significance of λ may suggest that individual provinces are adopting different 

medium-run strategies or policies to reduce emission intensity. If the medium run strategies are 

not uniform across provinces then I would not expect to see evidence of spatial spillovers in the 

temporally and spatially lagged dependent variable. This may also imply that provinces are 

endogenously enforcing rules to improve the environmental quality, which is found by Wang and 

Wheeler (1999). In this case, this suggests that medium-run, province-level policies to reduce 

carbon emission intensities are not uniform.  

For the dynamic panel SAR model, the rate of convergence of the five year and four year 

spans are 0.1853 and 0.1693, respectively, which are much larger than the cross sectional estimates 

of 0.0167 and 0.0217 in Table 6.2. For the SDPD model, the rate of convergence of the five year 

and four year spans are 0.1911 and 0.2043, respectively, which are also larger than the cross 

sectional estimates of 0.0185 and 0.0239 in Table 6.3. Therefore, estimated rate of convergence is 

much higher with the dynamic panel data than the cross section regression. We can also interpret 

this as the rate of conditional convergence is higher than the absolute convergence. 
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After considering the spatial effects, the rate of convergence of the dynamic panel SAR 

model and the SDPD model with five year intervals are 0.1853 and 0.1911, which are larger than 

the rate of convergence of the non-spatial panel data model. We have the same result with the four 

year intervals as well. Therefore, the technological spillover reduces the persistent difference of 

the technology level among the provinces, thus leads a faster rate of convergence. 

 

6.3 Conclusions 

In this essay, I analyzed the provincial convergence of CO2 emission intensity in China. I 

proposed a spatial dynamic panel data approach that controls for both time and space – this differs 

from the conventional panel date convergence literature which does not control for spatial 

autocorrelation. By using a spatial dynamic panel data model, I potentially avoid omitted variable 

bias if the underlying data are characterized by spatial dependence. 

The findings of the province-level convergence of CO2 emission intensity imply that the 

provinces with high emission intensity and provinces with low emission intensity are tending to 

converge to the same steady state equilibrium over time. In other words, the province-level 

disparity of CO2 emission intensity is gradually shrinking over time, and the differences in the 

technology is less persistent across provinces.  

By controlling for the heterogeneous effects and spatial effects, I are potentially controlling 

for factors such as energy consumption, technology and the province’s energy infrastructure. 

Improvements in these factors may have direct positive effects on the provinces’ short-run 

emission intensity level. The higher rate of convergence with the individual effects and the spatial 

effects imply that the technological spillover has a direct effect on the rate of convergence and is 

also embodied in the unobserved individual effects. 
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The statistically significant spatial autocorrelation suggests that, while provinces may be 

converging to a unique steady state equilibrium, they do not do so independently but rather tend 

to display movements similar to their regional neighbors. The results from the spatial dynamic 

panel data model suggest that own-province policies may have an effect on neighboring provinces 

and vice versa in the short run, but not necessarily in the medium run. The lack of statistical 

significance of spatial effects in the long run suggests that provinces are not adopting uniform 

policies to mitigate carbon dioxide emissions intensities.  

The existence of convergence implies that China has started to transition towards less 

energy and carbon intensive growth. However, according to Yang et al. (2014), the forecasting 

results suggest that China’s carbon intensity in 2020 will be only 32.9% below the 2005 level, 

which implies that China would be short of the 40%-50% Copenhagen target. Therefore, in order 

to meet the Copenhagen commitment, additional mitigation efforts will be needed to ensure 

compliance. 

A potential limitation within this study is due to the relative short nature along the time 

dimension of this data set. The natural process of convergence can take several decades if not 

longer to play out. Unfortunately, the data have a limit time frame of availability. However, with 

its tremendous growth, the Chinese economy has also got significant technological advancements 

and policies to reduce each province’s CO2 emission intensities. Given these rapid advancements 

the results are perhaps telling of an initial sign of convergence, which suggests that provinces may 

have an easier task of negotiating emission reductions in the future. As additional data comes 

available it will be important for future studies to examine this relationship in China.
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CHAPTER 7: FORECASTING PROVINCE LEVEL CO2 EMISSIONS IN CHINA8 

This essay compares forecasts of province-level carbon dioxide emissions against 

empirical reality using dynamic panel data models with and without spatial effects. The spatial 

dynamic panel data models are a promising means to examine the spatial and temporal distribution 

of CO2 emissions. 

This study contributes to the literature by offering an assessment of how the spatial panel 

data models perform in forecasting against non-spatial panel data models in a root mean square 

error context. I compare the performance of several predictors for province-level CO2 emissions 

for one through five-year-ahead forecasts. Based on forecast performance, I find a spatio-temporal 

panel data model (that controls for fixed effects) outperforms the other models analyzed. This 

finding suggests the importance of considering not only spatial and temporal dependence but also 

the individual or heterogeneous characteristics within each province. 

 

7.1 Regression Models 

In this particular study, I apply three different spatial econometric models with individual 

intercept for each province (fixed effects models) and common intercept for all of them (pooled 

models). In brief, I analyzed the following models: spatial autoregressive (SAR), spatial error 

model (SEM), spatio-temporal panel data models (STPD), and non-spatial, ordinary least squares 

(OLS).  

                                                           
8 This essay is based upon the paper: Zhao, X., Burnett, J.W., 2013. Forecasting Province-Level CO2 Emissions in 

China. Letters in Spatial and Resource Science. 
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7.1.1 Dynamic, Pooled Panel Data Models 

The dynamic, pooled panel data model imposes the homogeneity restriction on both the 

intercept and slope coefficients across all provinces. It assumes equal average growth rates in all 

provinces and allows us to take advantage of the panel dimension. The dynamic, pooled panel data 

model is given as follows 

, 1 , 1

1 1

1

,

N N

it ij jt i t ij j t it

j j

N

it ij jt it

j

y W y y W y

W

    

   

 

 



    

 

 


                                                (7-1) 

where ity denotes CO2 emissions for the cross-sectional unit i at time t. The parameter  is the 

common intercept for all the provinces;  is a scalar parameter on the temporally lagged 

dependent variable;  denotes the scalar spatial autoregressive parameter on the dependent 

variable;  is the spatial autocorrelation coefficient on the temporally lagged dependent variable; 

and  is the spatial autocorrelation coefficient on the error term.  

It should be noted that this model follows closely to that of Angulo and Trívez (2010), who 

explicitly identify that the estimators are biased but consistent with T, the total number of 

observations. The bias stems from including the temporally lagged dependent variables (or 

dynamic terms) on the right hand side of the equation. Nickell (1981) demonstrated that using the 

standard within-group estimator (more on this below) for dynamic models, with fixed individual 

effects, generates biased or worse inconsistent estimates as the number of cross-sectional 

observations tends toward infinity and the number of time series observations remains fixed. This 

is sometimes referred to as dynamic panel data bias. Using Monte Carlo analysis, Judson and Owen 

(1999) found that dynamic panel data bias is sizeable, even for models in which T = 20; however, 

this biasedness is reduced by having a sufficiently large number of time series observations within 
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the panel, and the degree of bias is affected by the strength of temporal autocorrelation within the 

data. 

 This approach somewhat circumvents this problem of dynamic panel data bias. Because I 

are appealing to the validation strategy of forecast performance evaluation to assess the models, 

so I are less concerned about proper model specification, estimation, and fit of the within-sample 

data, which is an alternative validation strategy. In other words, if the bias is substantial then one 

would expect that it would be revealed through the forecast error performance of the particular 

model. Thus, in an indirect manner, forecast performance evaluation is an alternative approach to 

assess estimation bias. That is, forecast performance evaluation can be an alternative to Monte 

Carlo analysis which directly seeks to estimate the degree of bias. 

 The restriction of the parameters within Equation (7-1) defines the specific type of spatial 

panel data model used.  The spatial autoregressive model (SAR) is obtained by restricting both 

0  and 0  . This model exhibits spatial dependence within only the dependent variable. The 

spatial error model (SEM) is obtained by restricting both 0  and 0  . This model exhibits 

spatial dependence within only the error terms. The spatio-temporal panel data models (STPD) is 

obtained by restricting 0  . This model allows for spatial dependence within both the dependent 

variable and the temporal dependent variable. Finally, if all the parameters with the exception of 

 are restricted, then the model reduces to the traditional pooled OLS model.  

 

7.1.2 Dynamic Panel Data Models with Fixed/Random Effects 

The dynamic panel data models could be treated with fixed effects or with random effects. 

The model is given as follows 
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The only difference between the fixed effects panel data model and the random effects 

panel data model is the intercept. In the fixed effects model, i  is introduced as a dummy variable 

for each spatial unit, while in the random effects model, i is treated as a random variable that is 

independently and identically distributed with zero mean and variance
2

 . 

 

7.1.2.1 Dynamic Fixed Effects Panel Data Models 

The dynamic fixed effect panel data model allows for province-specific intercepts, in order 

to account for the heterogeneity among spatial units. I can also define the same three types of 

spatial models as above by restricting the parameters. 

Performing out-of-sample forecasting is straightforward when assessing pooled panel data 

models, but it more challenging when fixed effects are included. Schmalensee et al. (1998) and 

Auffhammer and Steinhauser (2012) forecasted the out-of-sample by examining a variety of 

specifications. Elhorst (2012) circumvented direct estimation of the fixed effect terms by 

demeaning the variables to eliminate the fixed effects from the regression equation – this provides 

an easier method to forecast the models. The least squares dummy variable (LSDV) estimator can 

be obtained by transforming the data as deviations from mean as follows  
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1
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T 

   .                      (7-3) 
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This transformation eliminates the individual fixed effects. This type of estimator is sometimes 

referred to simply as the “fixed effects estimator” or “within estimator” instead of LSDV 

depending on which literature one reads. 

 

7.1.2.2 Dynamic Random Effects Panel Data Models 

The dynamic random effect panel data model assumes that the random variables i and it

are independent of each other. I could define three types of spatial models with random effects as 

well.  

For the within-sample data (first 15 years), I find that the fixed effects model is more 

appropriate than the random effects model by using the Hausman’s specification test (result not 

provided). The explanation of the Hausman test could be reviewed in the book of Baltagi (2005). 

However, whether the random effects model is an appropriate specification for the out-sample data 

remains uncertain. So I would like to estimate the random effects panel data models as well. 

Similar as the fixed effects panel data models, Elhorst (2009) provided the direct estimation of the 

random effect terms by demeaning the variables.  The variable estimators could be obtained by the 

following equation 

 
1

1
(1 ) .

T

it it it

t

y y y
T





   
                                                                                  

(7-4) 

where  denotes the weight attached to the cross-sectional component of the data, with 

2 2 2 20 / ( ) 1T        . If 0  , this transformation simplifies to the demeaning procedure 

of equation (7-4) and hence the random effects model to the fixed effects model.  

 



68 

 

7.2 Forecast Performance of the Different Models 

The purpose of this section is to obtain and evaluate the CO2 emission forecast performance 

for the thirty provinces in China. Before forecasting, I first regress the models using the within-

sample observations (the first fifteen years of data). I then use the parameter estimates from these 

regressions to forecast out against the out-of-sample observations (the last five years of data). I 

assume the spatial autocorrelation ( , ,   ) is consistent with the within-sample data when I do 

the out-of-sample forecasting. In other words, I compare the forecasts against empirical reality (in 

a forecasting error context) to determine which model provides the most accurate predictions.  

 

7.2.1 Estimation Results of With-in-Sample 

Based upon the regressions and post-diagnostic testing, the results of the within-sample 

regressions imply that the SAR model is the most appropriate specification of the dynamic pooled 

panel data models; the SEM model is the most appropriate specification of the dynamic random 

effects panel data model; and the spatio-temporal model is the most appropriate specification of 

the dynamic fixed effects panel data model. The results of these models are provided in Table 7.1, 

Table 7.2, and Table 7.3, respectively. 
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Table 7.1 Estimation Results of the Dynamic Pooled Panel Data Models 

  

From the results in Table 7.1, I find that the spatial autocorrelation parameter of  in the 

SAR model is statistically significant, but the spatial autocorrelation parameter of  in the SEM 

model and the parameters of  and   in the STPD model are non-significant. The SAR model 

is suggested as a more appropriate specification than the non-spatial model as well as the other 

spatial models (SEM and STPD) for the within-sample pooled regression analysis.  

I also perform the Lagrange Multiple (LM) tests to test the hypotheses whether the SAR 

model and SEM is prefer than the non-spatial model. The LM test results in Table 7.4 show the 

SAR model is statistically significant, but the SEM model is not.   

 

 

 

Determinants OLS SAR SEM STPD

0.0653*** 0.0626*** 0.0647*** 0.0590***

(7.8092) (7.4237) (7.0589) (6.3437)

0.9708*** 0.9631*** 0.9692*** 0.9634***

(102.8268) (94.4650) (101.1678) (94.7002)

-0.0562

(-0.8458)

0.0360** 0.0880

(1.9011) (1.3454)

0.0940

(1.4380)

σ
2 0.030 0.030 0.030 0.030

R
2 0.959 0.960 0.959 0.960

Sample 450 450 450 450

Log Like 150.813 152.617 151.918 153.030

NA NA NA

Note: The symbols ***, ** and * denote a one, five and ten percent significance level, 

respectively. Numbers in the parentheses represent t-stat values.

λ NA NA NA

δ

Constant

β

ρ NA NA
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Table 7.2 Estimation Results of the Dynamic Fixed Effect Panel Data Models 

 

From the results in Table 7.2, I found that the spatial autocorrelation parameter of  in the 

SAR model, the parameter of  in the SEM model, and the parameters of  and   in the STPD 

model are statistically significant. These results suggest that spatial models are more appropriate 

specifications than the non-spatial models for the within-sample fixed effect regression analysis. 

As an additional step, I perform Likelihood Ratio (LR) tests to test the hypotheses whether 

the STPD model can be simplified to the SAR or SEM model. According to the LR test result 

(7.221, 2 df, p < 0.01), the null hypothesis of the STPD model could be simplified to SAR model 

is rejected at a one percent significant level; the null hypothesis of the STPD model could be 

simplified to SEM model is also rejected at a one percent significant level based on the LR test 

result (48.985, 2 df, p < 0.01). These results imply that the SAR and SEM models are rejected in 

favor of STPD model. 

 

 

Determinants FE SAR SEM STPD

0.8448*** 0.6833*** 0.7882*** 0.6482***

(31.4920) (20.4311) (25.4302) (17.7397)

0.1818**

(2.5189)

0.2830*** 0.1650***

(7.3357) (2.6382)

0.2340***

(3.8433)

σ
2 0.028 0.026 0.028 0.026

R
2 0.688 0.720 0.688 0.722

Sample 450 450 450 450

Log Like 169.818 195.605 174.723 199.215

NA

β

λ NA NA NA

NA

δ NA NA

ρ NA

Note: The symbols ***, ** and * denote a one, five and ten percent significance level, 

respectively. Numbers in the parentheses represent t-stat values.
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Table 7.3 Estimation Results of the Dynamic Random Effects Panel Data Models 

 

From the results in Table 7.3, I found that the spatial autocorrelation parameter of  in the 

SAR model, the parameter of  in the SEM model, and the parameters of   in the STPD model 

are statistically significant. Thus, spatial models are more appropriate specifications than the non-

spatial models for the within-sample random effect regression analysis. 

I also perform the Lagrange Multiple (LM) tests to test the hypotheses whether the SAR 

model and SEM is prefer than the non-spatial model. The LM test results in Table 7.4 show the 

SEM model is statistically significant, but the SAR model is not.   

 

 

 

 

 

 

Determinants RE SAR SEM STPD

0.9692*** 0.8925*** 0.9299*** 0.9091***

(106.6390) (48.6421) (68.1787) (54.051007)

-0.0748

(-1.1131)

0.1099*** 0.1609**

(3.8628) (2.5473)

0.1533**

(2.3437)

σ
2 0.026 0.029 0.030 0.029

R
2 0.962 0.954 0.955 0.954

Sample 450 450 450 450

teta NA 0.4741*** 0.1042** 0.5422***

NA

Note: The symbols ***, ** and * denote a one, five and ten percent significance level, 

respectively. Numbers in the parentheses represent t-stat values.

ρ NA NA

δ NA NA

β

λ NA NA NA
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Table 7.4 LM test results of the different dynamic panel data models 

 

 

7.2.2 Forecasting Performance 

I compute the prediction (forecasts) for the ith individual province at a future period T   

for 1,2,...,5  . The forecasts are conducted by regressing the model on the entire initial within-

sample (15 years) designation, and then forecasting over the entire out-of-sample period (n years) 

using the empirical observations of the independent variables within the out-of-sample period. 

This method provides a metric for evaluating the short- or medium-run predictive ability of the 

model. Prediction is evaluated by means of root mean square error (RMSE), which is defined as 

 

1/2

2

1 1

1
[ ( ) ( )]

T N

t i

RMSE F t A t
N  

 
  
 
                                                                  (7-5) 

where T is the total periods and N is the total number of provinces. The term F(t) denotes the 

forecast value and A(t) denotes the actual empirical observation. Since the errors in a RMSE test 

are squared before they are averaged, the RMSE gives a relatively higher weight to large errors – 

so the RMSE arguably offers a more severe penalty for inaccurate forecasting errors. Note that the 

smaller the RMSE value, the smaller the forecast error, so lower values imply more accurate 

forecasts. 

Test Pooled Model Fixed Effects Model Random Effects Model

LM Spatial Lag 3.7128* 55.4144*** 0.1962

LM Spatial Error 2.4677 10.0946*** 7.5185***

Robust Spatial Lag 2.3841* 49.2731*** 1.5507

Robust Spatial Error 1.1389 3.9532** 8.8730***

Note: The symbols ***, ** and * denote a one, five and ten percent significance level, respectively.
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 The results of the forecast error performance, in the context of RMSE, of the dynamic 

pooled panel data model and dynamic fixed effect panel data model are presented in Table 7.5.  

Table 7.5 Forecast Error Performance of the different dynamic panel data models 

 

From this table, I can highlight four important results. First, in terms of the dynamic pooled 

panel data model, the SAR model outperforms the other spatial models (SEM and STPD) and the 

non-spatial model (OLS) in all years of forecasting. Second, in terms of the dynamic fixed effect 

panel data model, the STPD model outperforms the other spatial models (SAR and SEM) and the 

non-spatial model (FE) in all years of forecasting. These out-of-sample forecasting results are 

consistent with the within-sample estimations. Third, in terms of dynamic random effect panel 

data model, the non-spatial model (RE) outperforms the other spatial models (SAR, SEM and 

STPD), these out-of-sample forecasts are not consistent with the within-sample estimation. Finally, 

it is also very clear that the fixed effect models outperform their pooled model and random effect 

model counterparts, and the spatio-temporal panel data model with fixed effects outperforms all 

other models. 

1 year 2 years 3 years 4 years 5 years Average

Pooled Models

OLS 0.1719 0.1754 0.1743 0.1754 0.1663 0.1727

SAR 0.1715 0.1747 0.1743 0.1736 0.1656 0.1719

SEM 0.1721 0.1755 0.1752 0.1756 0.1756 0.1748

STPD 0.1782 0.1794 0.1762 0.1797 0.1797 0.1786

FE 0.0000 0.1377 0.1545 0.1561 0.1488 0.1194

SAR 0.0000 0.1311 0.1459 0.1442 0.1386 0.1120

SEM 0.0000 0.1345 0.1504 0.1532 0.1457 0.1168

STPD 0.0000 0.1268 0.1449 0.1418 0.1381 0.1103

RE 0.1714 0.1697 0.1693 0.1646 0.1571 0.1664

SAR 0.2028 0.1820 0.1790 0.1764 0.1710 0.1822

SEM 0.1808 0.1718 0.1714 0.1670 0.1607 0.1703

STPD 0.1901 0.1768 0.1749 0.1713 0.1657 0.1758

Fixed Effects Models

Random Effects Models

Note: Numbers highlighted in Bold above indicate the smallest forecast errors in each group of estimators. Numbers highlighted in 

Bold and Italic above indicate the smallest forecast errors among all the esimators.
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7.3 Conclusions 

The interest in spatial econometrics models has grown markedly in the past three decades, 

and there are more and more of these models in empirical applications (Auffhammer and Carson, 

2008; Auffhammer and Steinhauser, 2012; Yu and Lee, 2012). Criticisms surrounding 

identification issues and a lack of appeal to theory have cast some doubt on these models. To 

further test the validity of spatial panel data models, I compared the forecasting performance of 

these models against empirical reality using root mean square error tests. The findings suggest that 

a dynamic, spatio-temporal panel data model with fixed effects outperforms all the other models 

analyzed. These findings imply that spatial panel data models performed better in forecasting 

ability than the non-spatial models, and the models that control for fixed effects perform better 

than models that do not control for such effects. 

 The findings within this study are important for two reasons. From a policy standpoint, it 

is important to predict the trending behavior of carbon dioxide emissions. Understanding the 

changing trends will help better equip policy makers to design effective climate change mitigation 

policies in China. From a statistical standpoint, it is important to continue to test spatial 

econometric models to see how they perform against non-spatial models. With advances in spatial 

panel data econometrics, this methodology can now be tested in terms of the model’s forecasting 

ability. The results suggest that controlling for both time and space improves prediction. 
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CHAPTER 8: CONCLUSIONS 

This dissertation presents three essays that investigate China province-level carbon dioxide 

emissions by using both general and newly developed spatial econometric techniques. The three 

essays investigate the influential factors of energy-related carbon dioxide emission intensity, 

whether the province-level CO2 emission intensity is convergence, and how the spatial panel data 

models perform in forecasting against non-spatial panel data models for province-level carbon 

dioxide emissions in China, respectively. Positive, statistically significant, spatial autocorrelations 

of the CO2 emissions and CO2 emission intensities among the provinces are found in all the three 

essays, which implies that any policies implemented in one province will have spillover effects in 

neighboring provinces. The determination of such spillover is important for future mitigation 

policies adopted in China. 

The first essay (Chapter 5) studies the influential factors of energy-related CO2 emission 

intensity in China. I argue that there is spatial dependence among these influential factors which 

cross provincial lines. Spatial dependence implies that policies adopted within one province will 

affect policies in neighboring provinces. Specifically, I estimate a model of CO2 emission intensity 

based upon per-capita GDP, energy prices, population density, energy consumption structure and 

transportation structure at province-level from 1990-2010. The results suggest that emission 

intensities are negatively affected by per-capita, province-level GDP and population density, 

positively affected by energy consumption structure and transportation structure, and are not 

affected by energy prices. 

In the second essay (Chapter 6), I examine whether the province-level CO2 emission 

intensity is convergence in China. Convergence in energy intensity could imply that technological 

differences across regions diminish over time (Herrerias, 2012). This study seeks to determine 
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interregional differences in technology tend to disappear or increase over time. If differences 

diminish naturally over time then policymakers may be less worried about a mitigation scheme. If 

the differences tend to perpetuate or grow over time (which implies a lack of diffusion of energy-

related technologies) then it may be too difficult to reach the country’s mitigation targets. In this 

essay, I test for the convergence hypothesis among a panel of provinces in China by using a newly 

developed spatial, dynamic panel data model (SDPD). The results suggest that CO2 emission 

intensities are converging across provinces in China. The rate of convergence is higher with the 

dynamic panel data model (conditional convergence) than with a cross-sectional regression model 

(absolute convergence), and the rate of convergence, when controlling for spatial autocorrelation, 

is higher than with the non-spatial models. The results imply that technological spillovers, 

embodied in both the unobserved individual effects and the spatial autocorrelation coefficient, 

have a direct effect on the rate of convergence of carbon intensity among provinces.  

In the last essay (Chapter 7), I provide an empirical analysis of how the spatial panel data 

models perform in forecasting against non-spatial panel data models for province-level carbon 

dioxide emissions in China. From a policy standpoint, understating how to predict emissions is 

important for designing climate change mitigation policies. From a statistical standpoint, it is 

important to test spatial econometrics models to see if they are a valid methodology to describe 

the underlying data. This study contributes to the literature by offering an assessment of how the 

spatial panel data models perform in forecasting against non-spatial panel data models in a root 

mean square error context. I compare the performance of several predictors for province-level CO2 

emissions for one through five-year-ahead forecasts. The results of this essay suggest that the best 

model of forecasting province-level CO2 emissions is the spatio-temporal panel data model with 

controlling the fixed effects. The findings demonstrate the importance of considering not only 
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spatial and temporal dependence but also the individual of heterogeneous characteristics within 

each province. 

 

8.1 Policy Implications 

The final goal of this study is to provide a basic reference for policy makers to set emission 

reduction targets and policy. Although China has started to transition towards less energy and 

carbon intensive growth, there is still no reason to be optimistic that China’s future CO2 emissions 

will meet the international admissions, such as the Copenhagen commitment. Therefore, besides 

continuing to emphasize some implemented policies, additional mitigation efforts will also be 

needed to ensure compliance. 

 Economic development depending on “green growth”. China has achieved miraculous 

economic growth over the past 30 years to become the world’s second largest single-

country economy. The rapid economic growth definitely decreased the emission intensity. 

However, it is recognized that the next round of economic development should depend on 

achieving “green growth” that meets both economic goals as well as those for 

environmental sustainability.  

 Population aggregation with energy efficiency. Population-dense provinces in China 

contribute less emissions per GDP than other areas of the country. That is because, the 

efficiency of energy consumption in service establishments is higher in densely populated 

provinces. Therefore, population density increasing should accompany with higher energy 

efficiency for reducing emission intensities.  

 Clean energy technology. Coal consumption accounted for the highest rate of total energy 

consumption in China, and the power transfer efficiency of coal is relatively lower than the 
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other energy sectors. However, price reforms will be needed to establish a sound market 

economy, and economic openness enables China to access cleaner technologies at lower 

costs, both of which help achieve economic growth with less adverse environmental 

impacts and lower emission intensity. 

 Further fuel efficiency standards. The transportation sector has become the most-rapidly 

growth contributor to CO2 emissions in China. Urbanization and transportation systems 

have caused the environmental quality to decline. To obtain mitigation targets based on 

Copenhagen commitments, a combination of policies that address technological 

advancements and the transition to more fuel efficiency standards is necessary. 

 Deregulate energy prices. Even though China has recently instituted market-oriented 

reforms so that prices of fossil fuels more accurately reflect the true market cost, 

government policies such as subsidies and price controls still artificially lower energy 

prices in order to stimulate economic growth. China should increase its use of market-

based price to regulate pollution behavior. This price deregulate instrument can achieve the 

same environmental target as the command-and-control approach but with lower costs. 

 Information and technology sharing and exchange. The findings of spatial autocorrelation 

imply that the technology diffusion does exist among the provinces in China. Technology 

has a positive impact on resource conservation and pollution abatement, the technology 

diffusion provides incentives for local government to innovate and adopt better and cheaper 

environmental friendly technology. Therefore, China should promote technology policies 

that encourage cost-effective green innovations instead of prescribing specific technologies 

to be adopted by individual provinces. 
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8.2 Further Discussion 

This dissertation generally provides a framework of province-level CO2 emissions in China, 

including the influential factors, the convergence rate, and the forecasting performances. It still 

suffers from some limitations, which also provide the directions for future work. 

 

8.2.1 Data Size and Quality 

The data set that used in this dissertation only includes the data from 1990 to 2010, which 

is a relative short nature along the time dimension, so the analysis only observed the impact factors, 

convergence and prediction in the short run. The natural process of convergence can take several 

decades if not longer to play out. And the long-run forecasting performances could provide better 

suggestions. So, the direction of future work would be to collect more year’s data as possible. As 

additional data comes available it will be important for future studies to examine the long-run 

convergence and long-run prediction, which will help better serve policy making in the context of 

climate change mitigation.  

In this dissertation, the measure of carbon dioxide emissions is based upon the consumption 

of energy but not actual ambient carbon dioxide emissions, and only considered three main basic 

sector in China, so it may subject to mis-measurement. However, this is the only available 

information for calculating the province-level emissions in China. Therefore, the only way that I 

can improve is the calculation method. The future work would be to calculate the CO2 emissions 

based on the small categories of each sector.  
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8.2.2 Model simulations with different variables 

In this dissertation, I only considered five explanatory variables as the impact factor in the 

first essay because of the data limitation. However, a lot of factors such as the inter-fuel 

substitution, technical change, and the industry structures will indeed affect the emission intensity. 

Future studies for the first essay should be include more explanatory variables in the model. 

Moreover, I didn’t include any explanatory variable in the second and third essay. So future studies 

should consider the convergence and the forecasting ability of spatial panel data models by 

incorporating explanatory variables in the models.  

For spatial econometric estimation, a spatial weights matrix is required to express the 

geographic structure of economic interactions among the provinces during the time period. In this 

dissertation, I use the most common geographical contiguity weights matrix. The advantage of this 

contiguity weights matrix is that the 0,1 matrix elements are easily measured. However, this 

geographical contiguity weights matrix is of questionable validity for some of the studies. For 

instance, in this dissertation, it does not take into account the change of the energy transitions. 

Therefore, the future studies could consider to develop a formulation that is more attuned to the  

energy transition system.
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