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ABSTRACT

Predicting Permeability and Flow Capacity Distribution with

Back-Propagation Artificial Neural Networks

Alexis Riera

The prediction of permeability is a critical, key step for reservoir modeling and

management of oil recovery operations. Previous studies have successfully demonstrated

that the new technology called Artificial Neural Network (ANN), a biologically inspired,

massive parallel, distributed information processing system, is an excellent tool for

permeability predictions using well log data. This technology overcomes the drawbacks

caused by the inherent heterogeneity of the reservoir and lack of sufficient cores or

pressure transient tests, allowing to define reservoir characterization within an acceptable

accuracy while maintaining costs low. The methodology used in this study takes

advantage of this technology to accomplish such a task.

An ANN was developed obtaining a correlation coefficient R2 of 0.975 when

compared permeability predictions to actual measurements for seven wells using their

well log data in a reservoir in West Virginia, USA. Thereafter, the ANN was used to

forecast the permeability for the rest of the wells in the reservoir. Thus, based on the well

permeability profile, the Flow Capacity and Average Permeability was determined and

mapped throughout the field which defined the most productive areas in the reservoir and

helped to improve the production history matching.
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Chapter 1: Introduction

Characterizing a reservoir is a very complex task since its inherent heterogeneity

provokes large changes of its properties within small areas and spaces. Acquiring enough

data to directly measure such properties from point to point is an extremely expensive

and time-consuming practice. The heterogeneity of a formation is the result of distinct

geological ages, depositional environments, and lithology among other factors.

One of the essential parameters to define an accurate reservoir model is the

permeability distribution. Permeability is often evaluated using cores extracted from

wells or pressure transient tests conducted on the wells. However, due to the high cost

associated with those procedures, cores and well tests are available from a limited

number of wells in a reservoir while geophysical logs are commonly available from the

most, if not all, of the wells. Therefore, the evaluation of permeability from well log data

is an important step to reduce cost while keeping reservoir modeling within an acceptable

accuracy.

Previous studies1-6 have successfully demonstrated that obtaining reliable

permeability values from geophysical log data using Artificial Neural Networks is

possible. Even though these preliminary approaches were useful in predicting

permeability, they did not predict the distribution of this rock property reservoir-wide.

The goal of this study was to map the permeability distribution in a reservoir

utilizing the typical geophysical well logs commonly run in a well, which are Gamma
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Ray (GR) and  Density (RHOB). More than 120 well logs were used to predict and map

permeability throughout the entire reservoir. Furthermore, the flow capacity (kh) was

calculated to define the most productive parts of the reservoir.

The Stringtown Oilfield was selected to conduct this study. This field is located in

Tyler, Wetzel and Doddridge Counties in West Virginia. Its discovery dates back to early

1890’s. Significant volume of oil remains in this reservoir that can be recovered through

waterflooding operations. However, the permeability distribution is required to accurately

estimate the waterflood performance and effectively plan the secondary oil recovery

operation.
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Chapter 2: Background and Theory

2.1 Stringtown Field

The Stringtown Oil Field is located in the northwestern part of West Virginia, in

Tyler, Wetzel and Doddridge Counties. The producing horizon7-8 in this field is the

Upper Devonian Gordon Sandstone. On average, the pay zone starts at a depth of 2950

feet and is in the range from 10 to 25 feet in thickness, being thickest along a north-east

and south-west trend, which is interpreted as shallow marine, shoreline deposits. Within

the field, the Gordon interval consists of sandstone and thin inter-bedded shales and

conglomerate. The field started its productive development as early as 1890, however,

due to some factors such as recurrent paraffin deposition and lack of durability of primary

recovery, led the field to a rather low recovery.  A gas-recycling project was initiated in

mid 1940's, with poor results. Nevertheless, production has continued to present day.

Figure 1. Location of the Stringtown Field in West Virginia
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The field is roughly 5 miles long (north-south trend) and its width is about 2.5

miles, so the total productive area is approximately 8900 acres. The reservoir area is

shaped like an inverted cone, wider in the north, narrower in the south. The oil in the

Stringtown Field has a viscosity of 3.5 cp. at atmospheric pressure and 75�F; gravity of

44� API at 60�F. Total oil production is estimated in some 13 millions barrels to date and

the initial oil in place was estimated in 88.5 million barrels.

The Stringtown field has experienced two main periods of drilling since

discovery. Over 500 wells were drilled before 1901, but most were plugged by 1910.

More than 100 water injection wells and 40 new producing wells have been drilled since

1990 when a full-scale waterflood began after a successful pilot project initiated in a

dual-five-spot pattern (33 acres) in 1980 and lasted until 1985. Total production from

secondary oil operations resulted in an estimated of 1.8 millions barrels.

The operating company divided the field into three development areas: Unit 1

(1815 acres), located in the middle of the field and contains the pilot waterflood was

formed in 1981; Unit 2 (5723 acres) located north of and adjacent to Unit 1 was formed

in 1986; finally Unit 3 consisting of 1360 acres and is located south of Unit 1. Figure 2

depicts a map of the Stringtown Field with the location of the cored wells (referred to by

a convenient nomenclature assumed in this study), and areas of development as

previously defined.
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2.2 Permeability Estimation

Gaining knowledge of formation permeability is one of the fundamental

challenges of petroleum engineers ever since the beginning of oil industry. This rock

property is essential to engineers, since it governs the way a fluid flows through a porous

media, thus, giving them the ability to design and manage more efficiently the operations

of primary and secondary recovery.

Figure 2. Stringtown Field

Cw1

Cw2

Cw3

Cw4

Cw7

Cw6

Cw8

Cw9

Cw5
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Typically, permeability is obtained from cores or pressure transient tests. The

utilization of coring tools, picking samples of the zone of interest and bringing them to

the surface, and finally, measuring their permeability under simulated bottom-hole

conditions is an old practice in the oil industry. However, coring is expensive,

nevertheless it is necessary and inevitable to core some of the wells, regardless of the size

of the field. Thus, it is important to define a representative sample of wells to core,

strategically distributed in the field. A reliable permeability distribution in a

heterogeneous formation, where this property varies rapidly with space, may be

effectively used in reservoir simulation studies.

The second traditional procedure to get the formation permeability is by means of

well testing. A carefully designed well test helps engineers to calculate an average

permeability of the formation, among other parameters such as skin and wellbore storage.

Again, it is a valuable and necessary procedure, although its high cost due to loss of

revenue and production, and the expenses associated to the execution of the test itself,

makes well testing applicable only to a limited number of candidates.

Until a few years ago, many researchers applied rules of thumb developed over

the years for given fields and formations to estimate rock permeability. These rules

basically stated that a relationship between porosity and permeability might be

established. Petroleum engineering concepts also inspired many empirical models to

estimate formation permeability from well log responses. These models established the

existence of a relationship between permeability, porosity and fluid saturation. Although
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these efforts resulted in a major advance in this area, their main drawback is the relations

based on the assumption of the homogeneity of the reservoir. Other approaches have also

used multiple regression analysis based on statistical methods to estimate formation

permeability from well logs. Again, these methods perform poorly when applied to

highly heterogeneous formations.

In the recent years, a number of studies have demonstrated that Artificial Neural

Networks (ANN) may be successfully used to estimate formation permeability with an

acceptable level of accuracy with geophysical well logs as input. Log data is available

from nearly, if not all, of the wells in a field, either during or immediately after drilling.

Two of the most common logs run in a well are the gamma ray (GR) and the density

(RHOB) logs. Other useful logs are the spontaneous potential (SP) log and the induction

log, either with shallow, medium or deep radius of investigation.

Analysis of the log data yield to a variety of information such as shaliness of

formation rocks, porosity, water saturation, depth of invasion and thickness among

others. ANN uses the log data to predict formation permeability without any assumption

previously stated or predefined model, rather its estimation is based on the particular

characteristics of the formation defined in terms of the relationship among log responses.

This relationship is completely different from well to well and even from point to point in

a same well due to the inherent formation heterogeneity. Since, ANN overcomes this

heterogeneity drawback; it is a powerful, rapid, low cost alternative to obtain the rock

permeability with a reliable level of accuracy.
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2.3 Flow Capacity Determination

Flow capacity (kh) is a measure of how productive a formation can be and is

determined as:

 kh = k*h,

Where k is permeability (md) and h is formation thickness (ft). A formation with

high permeability does not necessarily mean that it will be productive because it also

depends on how thick that formation is. A thick, low permeable formation may produce

similar results to those of a thin, high permeable formation.

There are two ways to estimate the flow capacity of a given well based on the data

available: well test analysis or permeability profile values. The permeability profile

values are given on a length interval basis such as core analysis or ANN predictions.

If data is provided from a pressure transient test, the flow capacity is computed as

a function of the volumetric average permeability obtained from that test, after a Horner

Analysis, and formation thickness. In fact, a flow capacity value obtained in this fashion

is a relatively good indicator, since the test reflects only the average permeability of the

formation and does not consider the large changes that this property may has from point

to point. This is demonstrated in Figure 3.

A second way to determine the flow capacity of a well is based on the

permeability profile. Both core data and ANN predictions are usually given on a length
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interval basis, thus performing a numerical integration of the permeability profile results

in a more reliable value of flow capacity for a given well. See Figure 4.

Figure 3. Flow Capacity from Well Testing

Figure 4. Flow Capacity from Core Data
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2.4 Artificial Neural Networks

Artificial Neural Networks have had a strong comeback since the mid 1980’s

when several and major advances were made by mathematicians. The application of

ANN extends different areas: from finances to engineering, from medicine to

administration, from social studies to management. ANN is a biologically inspired,

massive parallel, distributed information system that mimics the human brain regarding

the pattern recognition, learning and memorization process of those patterns.

In Neural Networks terminology, patterns recognition9 can be described as the

determination of a mapping from a pattern space into a class space. Most researchers

refer to pattern recognition as the process by which classes are determined for sets of

features in a robust, well defined fashion, regardless of variations, omissions or

distortions, in other words, this process defines the ability to retrieve information

(complete patterns) from associated clues, which in this case, consist of a subset of

representative features. The interrelationship (implicit or explicit) of these characteristics

provides a meaningful interpretation of the information supplied.

Neural Networks, as any other Artificial Intelligence model, stems from the idea

of a hypothesis of representation, i.e., knowledge can be acquired, manipulated and

interpreted in a symbolic manner. Although, it is practically impossible to model the

complexity of Mother Nature, as the previous hypothesis assumes, a large amount of

successful applications has been developed with this approach.
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2.4.1 Components

ANN’s were inspired by and mimic the biological nervous system. They offer an

alternative computing paradigm closer to reality, independent of pre-established rules or

models. To fully understand how an ANN works, let’s first get familiar with its

components8.

The very basic element of an ANN is called Neuron. Neurons are elemental

processors that execute simple tasks. They process the information it receives by

applying a mathematical Activation Function that is usually non-linear, to its net input,

producing an Output Signal as a result. A Neuron’s net input is basically a weighted sum

of all of its inputs. As the biological nervous system, Neurons are connected through

Links, which transmit the signals among them. Each Connection Link has an associated

Weight that, in turn, modify the signal transmitted.

Often, Neurons are grouped in so-called Slabs. Similarly, Slabs are grouped in

Layers. Usually, an ANN comprises three layers: Input, Middle and Output Layer.  The

Input Layer receives information (set of features representing the pattern) from the

environment or surroundings and transmits it to the Middle Layer. At this point, it is

important to clarify that every Neuron located in the Input Layer is interconnected with

all of the Neurons in the Middle Layer, such that the information processing task is

carried out parallel and simultaneously. The same is true for the interconnection between

the Middle and Output Layer.
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It is often said that the Middle Layer is the one that actually analyzes or executes

the mapping of the information supplied to the ANN. This layer carries out the pattern

recognition task among all input information by re-coding it to generate an appropriate

internal representation, so that the essential features of the patterns are retained. The

Output Layer receives this analysis and converts it into a meaningful interpretation to

communicate it back to the environment. A simplistic schematic of an ANN is depicted

in Figure 5.

Three properties characterize an ANN:

1. Architecture: the connectivity pattern among neurons

2. Algorithm: its method of determining the weights on the connections

3. Activation Function: a mathematical function that maps a neuron’s net input

into its output value.

Input Layer Middle Layer Output Layer

Figure 5. A Simple Artificial Neural Network
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Each of these characteristics shall be discussed in the following sections

2.4.2 Architectures

The Neural Network’s Architecture or its pattern of connectivity defines how

much knowledge is stored in it. It also determines the algorithm to be used in updating

the weights of each connection. Several different architectures10-11 and learning

paradigms have been developed in the past years, among them are:

1.  Backpropagation Models

Backpropagation networks are known for their prediction capabilities and ability

to generalize well on a wide variety of problems. These models are a supervised type of

network, in other words, trained with both inputs and target outputs. Many variations of

these nets are encountered in the literature, following a list of a few is shown:

a. Standard Nets: each layer connected to the immediately previous layer.

b. Jump Connection Nets: each layer connected to every previous layer

Input
Layer

Middle
Layer

Output
Layer

Figure 6. Standard Nets

Input
Layer

Middle
Layer 1

Output
Layer

Middle
Layer 2

Figure 7. Jump Connection Nets
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c. Recurrent networks with dampened feedback from either the input, hidden, or

output layer.

d. Ward networks with multiple slabs in the middle layer: these networks are

very powerful when each hidden slab is given a different activation function

from the other slabs because they detect different features of the input vectors.

This gives the output layer different viewpoints of the data.

2.  Unsupervised (Kohonen)

The Kohonen Self Organizing Map network is a type of unsupervised network,

and its architecture is the simplest of all with only two layers: input and output. The

Kohonen network has the ability to learn without being shown correct outputs in sample

Input
Layer
Slab 1 Middle

Layer
Output
Layer

Input
Layer
Slab 2

Figure 8. Recurrent Network

Input
Layer

Middle
Layer
Slab 1 Output

Layer
Middle
Layer
Slab 2

Figure 9. Ward Nets
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patterns.  These networks are able to separate data patterns into a specified number of

classes.

3.  Probabilistic Neural Network (PNN)

This network is a type of supervised network known for their ability to train

quickly on sparse data sets.  PNN also separates data into a specified number of output

categories.

4.  General Regression Neural Network (GRNN)

Like PNN networks, General Regression Neural Network is a type of supervised

network and also to trains quickly on sparse data sets but, rather than categorizing it,

GRNN applications are able to produce continuous valued outputs. GRNN can have

multidimensional input, and it will fit multidimensional surfaces through data. Because

GRNN networks evaluate each output independently of the other outputs, GRNN

networks may be more accurate than Backpropagation networks when there are multiple

outputs. Its architecture is similar to that of a standard network.

  5.  GMDH Network (Group Method of Data Handling or Polynomial Nets)

GMDH works by building successive layers with links that are simple polynomial

terms, which are created by using linear and non-linear regression.  The initial layer is

simply the input layer. The first layer created is made by computing regressions of the

input variables and then choosing the best ones. The second layer is created by

Input
Layer

Output
Layer

Figure 10. Kohonen Network
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computing regressions of the values in the first layer along with the input variables.

Again, the algorithm chooses only the best, which are called survivors. This process

continues until the net stops getting better, according to a prespecified selection criterion.

The resulting network can be represented as a complex polynomial, in other words, a

familiar formula describing the model and it should contain the most significant input

variables. In some respects, this procedure resembles very much regression analysis, but

it is far more powerful than this.  GMDH can build very complex models while avoiding

overfitting problems.

2.4.3 Algorithms

The algorithm defines how the weights on the connections are updated. This

requires a specification of the network’s architecture. In some models new values of

weights associated to links are determined at a regular time and applied to all units

simultaneously, while in other models the rule is applied to a certain number of

connection links at a time. In the latter case the model is said to perform asynchronically.

Since in ANN’s, a specific mapping is implemented through the learning process

by iteratively adjusting the weights, the algorithm and the network’s response to a

Input
Layer

Middle
Layer 1

Output
Layer

Middle
Layer n

Figure 11. GMDH Network
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training signal become of paramount importance. Generally, the mapping to be learnt is

represented by a training set of input patterns and the correspondent target outputs.

There are two basic classes of learning in parallel-distributed processing models:

associative learning and regularity detectors. In the former, the goal is to learn the

association between patterns such that if the network is exposed to noisy or a good

pattern, it will respond with the appropriate output. This association is either hetero-

association or auto-association. In hetero-associative learning two distinctive patterns are

shown to the network, the input pattern and the required output, whereas for auto-

associative systems, the same pattern is used both for input and output.

No output is provided for regularity detectors. The unit will learn to respond to

certain features depending on an internal teaching function and the nature of the input

patterns. In this case, it is said that system undertakes an unsupervised learning.

2.4.4 Activation Functions

As mentioned before, the basic operation of an artificial neuron involves summing

its weighted input signal and applying an activation function to it, which as a result

produces an output signal to be transmitted to the next layer.  For the input layer, this

function is the linear or identity function. Generally, the same activation function is used

for all neurons in any particular slab. In order to obtain the benefits of parallel-distributed

processing system that ANN’s offer a non-linear activation function is generally used.



18

Activation functions may be divided into four categories: linear, binary, sigmoid

and probabilistic. The most common functions are listed below:

1. Linear Functions:

� Identity: xxf �)(

� Linear Scaled: bmxxf ��)(

These functions are used primarily in the input layer so that the input pattern data

set is passed just as is to the middle layer.

2. Binary Functions:

� Step: �)(xf 1 if x � b or �)(xf 0 if x < b

This function is utilized to convert continuo data into a binary unit. This feature is

very helpful when building net to establish classes or categories

3. Sigmoid Functions:

� Logistic: 
� �xe

xf
���

�
1

1
)(

� Hyperbolic Tangent: )tanh()( xxf �

� Hyperbolic Tangent 1.5: )5.1tanh()( xxf �

� Symmetric Logistic: 
� �

1
1

2
)( �

�
�

� xe
xf

�

Sigmoid functions (S-shaped curves) are useful activation functions. They are

especially advantageous for use in neural nets trained by the back-propagation paradigm,

because the simple relationship between the value of the function at a point and the value

of the derivative at that point reduces the computational overburden during training. For

instance, in the case of the logistic function, the relationship is:
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If taking the hyperbolic tangent as example:
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The range of these functions is emphasized by the steepness parameter �.

4. Probabilistic Functions:

� Gaussian: 
2

)( xexf ��

� Gaussian Complement: 
2

1)( xexf ���

The probabilistic functions are unique in ANN’s applications, because unlike the

others, they are not increasing functions. The Gaussian function is the classic bell shaped

Figure 12. Sigmoid Functions
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curve, which maps high values into low ones, and maps mid-range values into high ones.

It brings out meaningful characteristics not found at the extreme ends of the sum of

weighted values. On the other hand, the Gaussian Complement function tends to bring

out meaningful characteristics in the extremes of the data. Both functions are very useful

in Ward networks.

2.4.5 Training

Although the specific training of a given network depends on its architecture,

most nets undergo a training process similar to that of a backpropagation model. The

back-propagation algorithm uses the generalized delta rule, which is simply a gradient

descent method to minimize the total squared error of the output compute by the net8.

Backpropagation stands for propagating or sending back this error to the previous

connection links between layers and adjust the correspondent weights accordingly.

Figure 13. Probabilistic Functions
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The goal with this network model, as is the case with most nets, is to achieve a

training that balance its ability to respond correctly to the input patterns that are used for

training (the memorization process) and its ability to give reasonable good responses to

similar, yet not identical, input used in the same training process (generalization).

The training of a network by backpropagation involves three stages: the

feedforward of the input training pattern, the calculation and backpropagation of the

associated error and the adjustment of the weights.

During the feedforward process, all weights associated to the connection links are

initialized and information is provided to the network via the input layer. Input data is

multiplied by those weights. The sum of the product of all input neurons and their

corresponding weights are then transmitted toward each middle neuron. Each of these

middle neurons executes a simple computation by mapping the sum to output signal

using its own activation function. The result is again multiplied this time by the weights

of the connection links between each middle and output neuron. Output neurons calculate

the sum of their weighted inputs to determine the final network output.

At his point, each output unit compares its computed value with its target output,

to determine the associated error for that pattern with that unit, which initiates the second

stage of the training: the backpropagation of this error. Based on this error, a correction

factor (CF1) is calculated using the generalized delta rule. This correction factor helps to

distribute the error from each output neuron back to all middle neurons that are connected
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to it. Similarly, another correction factor (CF2) is computed for each middle neuron to

propagate the error back to the neurons in the input layer.

After all of the correction factors have been determined, the weights for all layers

are adjusted simultaneously. The adjustment for each weight is a function of the

correspondent correction factor and the activation function of the previous neuron. That

is, the adjustment of the weights of the connection links between the input and middle

layer depends on CF2 and the activation function of the input neurons. Whereas weights

of the connection links between the middle and output layer are altered based on CF1 and

the activation function of the middle neurons

When training a net by backpropagation, there are several parameters that must be

set before training actually begins. Two of the most important settings are the Learning

Error

Input Layer
Middle Layer

Output Layer

Target Output

Figure 14. Training of an ANN by Backpropagation
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Rate and Momentum. These two parameters work together and help to define how fast

and how stable the learning process is.

Each time a pattern is presented to the network, the weights leading to an output

neuron are modified slightly during learning in the direction required to produce a

smaller error the next time the same pattern is presented. Learning Rate controls the

amount of modification in weights leading toward a smaller error. The larger the learning

rate, the larger the weight changes, and the faster the learning will proceed while.

However, large learning rates often lead to oscillation of weight changes and

learning might never complete, or the model converges to a solution that is not the

optimum. Momentum prevents oscillation of weight changes and control convergence by

making the weight change a function of the previous weight change to provide a

smoothing effect.  The momentum factor determines the proportion of the last weight

change that is added into the new weight change.

2.4.6 Verification

As aforementioned, the usual motivation for applying an ANN is to achieve a

balance between correct responses to training patterns and good responses to new input

patterns, in other words a balance between memorization and generalization. Therefore, it

is not necessarily advantageous to continue training until the total squared error actually

reaches a minimum. To accomplish this goal, two sets of data are used during training,

which are completely disjoint: a set of training patterns and set of training-testing



24

patterns. In other words, the pattern data set is formed by the training set and the test set.

Weight adjustments are based on the training set, however, at intervals during training,

the error is computed using the test set. As long as the error on the test set decreases,

training continues. The net is saved on the best performance on the test set. When the

error begins to increase, the net starts to memorize the training data set too specifically

and begins to lose its ability to generalize as well. At this point, training is should be

concluded.

Calibration is another useful parameter when training a net, since it defines how

often the test set is evaluated, thus optimizing the network’s generalization.

Other way to verify the network’s predictions is by using a third data set called

the production set, which is not used in the training process of the net. The production set

Figure 15. Assuring Good Generalization of ANN

ANN Saved on Min.
Error over Test Set

Error
on Set

Training Events

Test Set

Pattern Set
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contains similar data to that of the pattern set, that is, a set of inputs describing features as

well as its correspondent target outputs. This data set is rather utilized to compare the

predictions of the network with the actual target values by exposing the net developed to

that set. In other words, by applying the ANN just created to this new data in the

feedforward mode only.

After training has been successfully accomplished in the sense that network

predictions are reasonable good, application of the net involves only the computations in

the feedforward phase to make forecasts on new data sets. The only requirement is that

these new sets must be formatted in the same fashion as the input parameters used during

training. Even if training is slow, a trained network can produce its outputs very fast.
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Chapter 3: Methodology

In the following sections, the approach used in this study is described thoroughly.

First, the goal of the study is addressed as well as its justification. Then, it is described

how the correlation between core and log data was determined. Second, the input

selection criteria and the development of the ANN are discussed. Third, the training and

verification of the neural net are carried out to finally obtain the net predictions.

3.1 Objective of the Study

Characterizing and describing a reservoir is a very complex task since its inherent

heterogeneity provokes large changes of its properties in small portions of area and space.

In addition, acquiring enough data to directly measure such properties from point to point

is an extremely expensive and time-consuming practice. The heterogeneity of a formation

is caused by several factors; among them are distinct geological ages of creation,

different depositional environments, and nature of the rocks.

Permeability distribution is one of the essential parameters to define a good

reservoir model. Permeability is usually evaluated from cores extracted from wells or

pressure-time tests executed on the wells. However, due to the additional time and cost,

cores and well tests are available from few wells in a reservoir while geophysical logs are

available from most, if not all, of the wells. Therefore, the evaluation of permeability

from well log data is an important step to reduce cost while keeping reservoir modeling

within an acceptable accuracy.
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Previous studies1-6 have successfully proven that obtaining reliable permeability

values from geophysical log data using Artificial Neural Networks is possible. However,

although those useful, preliminary approaches established that good permeability

predictions could be made, they did not really carry out any prediction to extend the net’s

forecast field-wide or yet, on a small area of the field.

In this study, the goal is to map the permeability and flow capacity distribution

(kh) to define the most productive zones in the Stringtown Oil Field utilizing the most

common geophysical logs run in a well, Gamma Ray (GR) and Density (RHOB).

The Stringtown Oil Field is located in the borderline between the Tyler and

Wetzel Counties in West Virginia. Its discovery dates from early 1890’s. Significant

volume of oil remains in this reservoir that can be recovered through waterflooding

operations. However, accurately estimate this waterflooding performance and efficiently

plan this operation depends, as stated previously, on the permeability distribution, hence,

the importance and justification of this study is stressed.

3.2 Data Available

For the purpose of this study, the core data from seven wells (Cw1 to Cw7) in the

reservoir was collected; two of which are located in the waterflooded pilot area. The data

from two other cored wells (Cw8 and Cw9) was not used because these wells did not

have logs. The geophysical well logs from 125 wells strategically distributed in the field

were also collected, as well as the Production and Water Injection History from the pilot
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area. A map with the location of the cored, pilot waterflood and all of the uncored wells

is shown in Figure 16.

The location of the wells in the pilot area is given in Figure 17, which depicts the

dual-five spot pattern with six injector wells and two producers. One of the producer

wells (Pw2) did not have any data log available since it was drilled in the 1890’s. The

two wells with cores in this area are Cw1 and Cw2.

Figure 16. Stringtown Field Well Location
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Figure 17. Pilot Area Wells

Table 1. Core and Log Data Summary

X Coord

Y
 C

oo
rd

Cw1

Cw2

Pi3

Pi2

Pi4
Pi1

Pp2

Pp1

Top B o ttom

C w 1 14-D ec-79
M idd le  o f F ie ld  

P ilo t A rea 
2889.6 2909.8 20 .2

C onven tiona l P lug  
and F u ll D iam eter  

T ype  

G R , R H O B , 
ILD

C w 2 04 -D ec-80
M idd le  o f F ie ld  

P ilo t A rea 
3083.4 3101.0 17 .6

C onven tiona l P lug  
T ype  

G R , R H O B , 
ILD

C w 3 24 -Jan-86
M idd le  o f F ie ld  

N ex t to  P ilo t A rea 
2779.0 2799.0 20 .0

C onven tiona l P lug  
Type  

G R , R H O B , 
N eu tron , LLD

C w 4 24 -Jan-86
M idd le  o f F ie ld  

N ex t to  P ilo t A rea 
2988.5 3015.0 26 .5

C onven tiona l P lug  
Type  

G R , R H O B , 
N eu tron , LLD

C w 5 26 -D ec-85
M idd le  o f F ie ld  

N ex t to  P ilo t A rea 
3086.0 3115.0 29 .0

C onven tiona l P lug  
Type  

G R , R H O B , 
N eu tron , ILD

C w 6 27 -D ec-84
N orthern  A rea o f 

the  F ie ld
2880.7 2896.5 15 .8

C onven tiona l P lug  
and F u ll D iam eter  

T ype  

G R , R H O B , 
ILD

C w 7 08 -O ct-93
N orth-E astern  

A rea o f the  F ie ld
3032.4 3061.5 29 .1

C onven tiona l P lug  
Type  

G R , R H O B , 
N eu tron

W ell N am e C ore D ate Location  A na lys is  P e rform ed
T h ickness 

(ft)
D ig itazed 

Logs 

C ore  In terva l (ft)
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The core analysis usually included determination of maximum, horizontal and

vertical permeability, helium porosity and grain density as well as fluid saturation. With

the exception of well Cw7, the same laboratory analyzed all of the cored wells. Results of

these analyses are shown on Table 2.  

3.3 Core – Log Correlation

Core Permeability-Log Data correlation began with the determination of the Pay

Zone and digitalization of GR and RHOB logs. A comparison was made between core

porosity and log porosity (derived from density log) for a given depth. For this matter,

assumptions for the matrix and fluid density had to be stated. The zone matrix was

assumed to be Limy Sandstone with a density (�m) of 2.68 gr./cc and the fluid as water

(�f = 1 gr./cc), thus log porosity (	l) was derived as:

100*
)(

)(

fm

bm
l

��

��
�

�

�
�

Table 2. Core Analysis Results

Avg. H elium  Analyzed S torage F low  
A rithm etic H arm onic G eom etric Poros ity % T hickness (ft) C apac ity (�-ft) C apac ity (m d-ft)

C w 1 106 2.7 57 18.2 17.5 290 .7 1698.7

C w 2 72 1.5 19 18.8 11.7 158 .1 603 .7

C w 3 6.5 0.09 0.75 12.4 16.0 199 .0 104 .1

C w 4 52 0.23 2.7 14.7 26.5 389 .4 1372.3

C w 5 41 0.3 6.2 14.9 29.0 415 .9 1155.8

C w 6 0.35 0.24 0.29 7.1 15.8 81.4 4.0

C w 7 2.4 0.07 0.18 8.3 29.0 240 .7 69.6

P lug Perm eability  (m d)W ell 
N am e
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Most of the core plugs are taken in a per-foot basis for all the wells, through the

sample, while the resolution of the digitalization process was selected to be at every three

inches, so that there would be four data points per foot interval.

The comparison of the measured helium porosity values for core plugs and the

porosity values derived from density log suggested the need for some adjustment in core

depths to overcome the inherent inadequacies in coring and core handling techniques11-12.

In other words, the core depths were shifted up or down to provide a good match with log

porosity values. In fact, some points were adjusted individually to match better according

to log porosity trends. Figure 18 shows the porosity correlation for the well Cw5.

Figure 18. Core and Log Porosity vs. Depth for Well Cw5
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Porosity correlation graphs for the rest of the cored wells in the field may be

found in Appendix I. Table 3 shows the average depth shifting applied to each of the

cored wells for porosity correlation.

As it is seen in Figure 19 Core Porosity versus Log Porosity for all wells is plotted

with a 
 10% off limit line to show how well they correlate each other. The R2 coefficient

for this correlation is 0.843.

    Table 3. Average Core Depth Shifting

Figure 19. Porosity Correlation for All Wells

Well Name
Core Depth 
Shifting (ft)

Direction

Cw1 0.12 Downward

Cw2 1.63 Upward

Cw3 0.95 Downward

Cw4 1.50 Upward

Cw5 0.50 Upward

Cw6 0.50 Downward

Cw7 1.75 Upward
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Even though core porosity values are not exactly the same as porosity values

determined from logs, the important point here is that porosity trends follow the same

profile at a given depth interval in the pay zone.

Among the factors that contribute with the fact that core and log porosity values

are not the same are the heterogeneity of the formation, so the matrix density is not

constant in the zone of interest, and the limitations of the methods to estimate porosity.

Logging tools record values based on the average of the surroundings at a given point

whereas core plug measurements reflect more details of that specific point. This effect

can be seen in Figure 18 for well Cw5, at 3103 and 3106 ft. core porosity is less that log

porosity because at these depths are two thin conglomerate-shale layers of 3 to 4 inches

each that the logging tool can not detect but core plug method can.

Once all of the wells were correlated in porosity, the second step correlating the

core-log data was to plot the permeability and log responses (RHOB and GR) versus

depth as resulted in the previous step to observe the similar relationships between them as

it is seen in Figure 20. Annexes A through G show plots for all of the cored wells. In the

development of these plots, a cut-off value in permeability of 0.1 md was considered.

since an interval in the formation having such low permeability would not be of interest.

In addition these low permeable zones do not form part of the main pay zone.
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An empirical correlation with the following function was obtained for the cored

wells, which was initially used to estimate permeability in the pilot wells:

�3853.00275.0 ek �

Where:

k: Permeability (md)

	 = Porosity (%)

This function gives an R2 correlation coefficient of about 73.3%, which is

considered unsatisfactory for the purpose of this study and is also indicative of the

heterogeneous nature of the formation. This confirms that a simple relationship between

permeability and porosity can not be established in such formations to accurately estimate

this rock property.  Observe Figure 21.

Figure 20. Permeability vs. Log Responses for Well Cw4
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3.4 Input Selection

As stated previously, Pattern Recognition, one of the strong points of Neural

Networks, stems from the idea of a hypothesis of representation, in other words,

knowledge can be acquired, manipulated and interpreted in a symbolic manner.

For a successful application of pattern recognition it is necessary to describe the

details of the nature of the object. This stage is of paramount importance since if object is

not described in terms of appropriate physical or conceptual features can lead to complex

decision rules in the ANN, while the choice of adequate features based on a theoretical

guidance will result in simple and comprehensive rules.

Figure 21. Core Permeability - Log Porosity Correlation
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This study departs from the assumption that geophysical log data can provide

valuable information about formation permeability. This relationship between

permeability and log data may not be direct and explicit. Since the objective of the study

is to obtain permeability values from log data, the first and logical selection as input data

was the Gamma Ray (GR) and Density (RHOB) logs. GR logs are an indication of the

clay content and shaliness of the rock, while RHOB log responses measure the porosity

of the formation. Although there were other logs available in the reservoir such as

neutron porosity and induction logs, the choice of this particular set of logs (GR and

RHOB) was primarily dictated by their availability in the majority of the wells in the

Stringtown field.

The second set of input data consisted of the well coordinates and depth intervals

for that well. This data set defines the points where core plugs were taken from the

outcrop, hence locating them in a three-dimensional spatial model.

The slopes of the log responses versus depth, i.e., the first derivative of these

variables, formed the third set of input data since they would provide useful information

as the rate of change to the neural net. The slopes were computed using the three-point

method, which considers that the value of the derivative at a given point is a function of

the weighted average of the previous and next slopes relative to that point. See Figure 22.
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According to the fore statement, the value of the derivative at point 2, m2, is:
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The next set of input data is conformed by the second derivatives of the log

responses.  Second derivatives, along with the first derivatives give details of relative

minimum and maximum, points of inflexion and curve shape in general. These

derivatives were computed using the same method of three-point used in the calculation

of the first derivatives.

The final set of input data consisted of the GR and RHOB log baselines. They

define important data during the logging procedure such as the tool calibration; also, GR

log baseline helps define the shaliness of the formation surroundings.
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Figure 22. Derivative Calculation Using the Three-point Method
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In summary, the input data selected to train the ANN consisted of eleven

parameters: RHOB and GR log values, well coordinates and depth, the first and second

derivatives of the log responses and the log baselines. Of course, the input data set also

featured the correspondent values of core plug permeability as target outputs of the

supplied log and spatial information.

3.5 Neural Network Development

In order to obtain reliable results of the permeability predictions, several artificial

neural network architectures and paradigms were used. It has been concluded that a three-

layer back-propagation network with three slabs in the middle layer, each slab having a

different activation function is the most appropriate architecture to make forecasts,

because of its prediction capabilities and ability to generalize well on a wide variety of

problems. This type of network is very powerful when each middle slab is given a

different activation function from the other slabs because they detect different features of

the input vectors. This gives the output layer three different viewpoints of the data

simultaneously.

The activation functions used for the middle slabs in this model were a sigmoid

function (hyperbolic tangent) and two probabilistic functions (Gaussian and Gaussian

complement). Sigmoid functions are very useful since they stresses the range of the input

data so if it is not above a certain value a weak output is transmitted, in other words, it

detects the amount of its preferred feature present. On the other hand, probabilistic
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functions are unique in ANN’s applications, because unlike other sigmoid activation

functions, they are not increasing functions. The Gaussian function maps high values into

low ones, and maps mid-range values into high ones. It brings out meaningful

characteristics not found at the extreme ends of the sum of weighted values. On the other

hand, the Gaussian Complement function tends to bring out meaningful characteristics in

the extremes of the data. Figure 23 depicts a schematic of the network architecture.

As usual, the activation function is linear so input variables are passed as such to

the middle layer. Finally the logistic function is selected as the output layer’s activation

function to accent the range of its net input, in addition, as a type of sigmoid function it

helps to reduce the computational overburden during training because of the simple

relationship between the function itself and its derivative.

The number of neurons in the input layer is naturally the same as the number of

relevant variables describing the features of the object in this case eleven; and since there

Figure 23. ANN Architecture Selected
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is only one output variable to predict, a neuron is used in the output layer. The number of

neurons in the middle layer is given by the following formula:

settraininginspodata
outputsinputs

neuronsofnumber int
2

)(
�

�
�

8.1596
2

)111(
��

�
�neuronsofnumber

The number of data points in the training set equals 96 since the test set was

selected as 20% of the pattern set, which is conformed by 119 points. Therefore, the 96

data points in the pattern set form the remaining 80%. The total number of neurons in the

middle layer is evenly distributed among the three slabs so five neurons are assigned to

each middle slab.

3.6 Neural Network Training

The training of the selected artificial neural network took place based on a total of

119 training data points from the cored wells. It is considered that this kind of problem

was very complex and noisy so the learning rate and momentum were set at 0.1 each. The

training data set was split in a pattern set and a test set. The test set was chosen as 20% of

the training set. The data points in the test set were randomly selected. The values to

initialize the weights on all connection links were set at 0.3 and the calibration interval

was set at 200 learning events. The criterion to stop training was set when the number of

training events reached 20,000 after a minimum error on the test set was computed. With

this configuration, the ANN supplied the following results.
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The most important feature to notice in Table 4 is that the R2 coefficient for the

pattern set is as high as 0.9757, where 1.0 is a perfect match. For the training and test set

the R2 coefficient is respectively 0.98 and 0.969.  To compare the network predictions

versus actual core permeability data; a plot of these two values versus depth was made

for each of the cored wells used in training. Figure 24 shows the results for well Cw4.

Table 4. ANN Statistical Results

Figure 24. Comparison of ANN Predictions vs. Actual Core Permeability
(Well Cw4)
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R squared (pattern set): 0.975

r squared (pattern set): 0.9757

Mean squared error: 110.144

Mean absolute error: 6.186

Min. absolute error: 0.015

Max. absolute error: 46.221

Correlation coefficient r: 0.9878

r squared (training set only): 0.980

r squared (test set only): 0.969
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As it is seen in Figure 25, ANN Predictions versus Actual Core Permeability for

all of the wells is plotted with a 
 10% off limit line to show how well they correlate each

other. This graph includes all of the 119 data points used in training.

Figure 25. Correlation between Predicted and Actual Core Permeability
(Complete Pattern Set)
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Figure 26. Correlation between Predicted and Actual Core Permeability
(Test Set Only)
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The strength of the input variables to predict permeability is given by their degree

of contribution to the output layer, which is determined by the weights of the connection

links between layers. On a percentile scale, contribution factors are shown in Table 5. It

is observed from Table 5 that the two most important variables to the ANN are the

RHOB and GR logs. Depth and the log first derivatives also play a significant role in the

model. The weakest variables are the log second derivatives. However this does not mean

that they may be taken out of the model, as it will be seen in the ANN verification

process doing so decreases the R2 coefficient and worsens the permeability forecast.

3.7 Neural Network Verification

Back-propagation models are known by their ability to generalize well on data

that they have never seen due to the use of test sets during training. The ANN was also

carefully designed in terms of setting parameters such as calibration, learning rate and

momentum. The selected ANN architecture provides a great advantage as the

Table 5. Input strength

Input Variable Input Strength

RHOB Log 14.65

GR Log 11.80

Depth 10.15

RHOB Log 1st Derivative 9.56

Y Coordinate 9.14

GR Log 1st Derivative 9.04

RHOB Log Baseline 8.02

GR Log Baseline 7.40

X Coordinate 7.35

RHOB Log 2nd Derivative 6.50

GR 2nd Derivative 6.40

Total 100.00
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simultaneous analysis of the data from three different standpoints. Finally, the results

obtained in terms of the R2 coefficient were promising, both for the pattern and test set, as

well as for the training set. Despite all of the previous facts, one further step was taken to

verify the ANN model and its predictions. This was done by means of production sets.

A production set consists in one input data set with its correspondent actual target

outputs, which was not used during training. Thus, to verify the robustness of the ANN

model, several similar networks were developed, while a cored well was put aside during

training. The net just created was used with the input data set of that well to obtain the

permeability predictions. Then the predictions were compared against the actual core

permeability for that given well. The results of this process are shown in Table 6.

In all cases, when the training excluded the production set, the R2 coefficient

computed for the pattern set (training + test set) was higher than that calculated using the

whole data set, meaning that the ANN learned well during training. Nevertheless, when

computing the R2 coefficient for all of the data points, it is still acceptable since this value

Table 6. Production Sets Results

Cw1 0.882 0.978 0.861

Cw2 0.932 0.972 0.909

Cw3 0.937 0.981 0.914

Cw4 0.956 0.973 0.932

Cw5 0.873 0.979 0.851

Cw6 0.929 0.973 0.906

Cw7 0.842 0.843 0.821

Well in 
Production Set

R2 Coefficient                  
(Training + Test + Production Set)

R2 Coefficient 
(Training + Test Set)

R2 Coefficient 
(Production Set)
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is higher than 0.84. One of the factors affecting this situation is the fact that when

production sets are used, the ANN trains on fewer points than the complete pattern set, so

it has to infer permeability values based on less knowledge. Yet, in all cases, the R2

coefficient for the production set was reasonably good when compared to that obtained

from the pattern data set.

Three additional verifications were carried out during this process. First, the ANN

was trained excluding the least important inputs according to the input strengths shown

on Table 5, namely the second derivatives of the log responses. Second, the spatial

coordinates were excluded from the training set. Third, since induction digitized logs

were also available for six out of the seven cored wells, this variable and its related inputs

(log baseline, first and second derivative) were included in a training run. Table 7 shows

the results of these three cases.

Table 7. ANN Results When Excluding Inputs

2nd Derivatives Spatial Coordinates

R squared: 0.953 0.778 0.965

r squared: 0.955 0.794 0.966

Mean squared error: 207.715 977.172 165.108

Mean absolute error: 7.852 20.956 8.188

Min. absolute error: 0.046 0.074 0.024

Max. absolute error: 94.424 106.461 58.037

Correlation coefficient r: 0.977 0.891 0.983

Excluding
Including 

Induction Logs
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Results from Table 7 suggest that excluding the log second derivatives may as

well lead to reasonable good permeability predictions. Induction log inputs provide

similar results when included in the model, but spatial coordinates (x and y coordinates

and depth) play a significant role in the model. Induction logs were not included in the

final model because they were available only for a few wells field-wide.

3.8 Neural Network Prediction

With these promising results, permeability was predicted for the rest of the

uncored wells in the reservoir. Finally, an integration by numerical methods of the

permeability profile for each well was made to compute the flow capacity k*h. The

results are shown in Figures 27 (cored well Cw5) and 28 (uncored well Pi1).

Figure 27. Permeability Profile Based on ANN Predictions for Well Cw5
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Since the digitalization process of the log responses provided a resolution of a

quarter foot, it was possible to obtain a permeability value every three inches in the pay

zone interval for any well. Thus the flow capacity for each well was calculated by the

method described in section 2.3. The average permeability per well was computed simply

as the ratio between flow capacity and thickness.

Figure 28. Permeability Profile Based on ANN Predictions for Well Pi1
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Chapter 4: Results

With such promising results from the verification process, permeability was

predicted by exposing the ANN developed to the rest of the uncored wells in the

reservoir. Finally, an integration by numerical methods of the permeability profile for

each well was made to compute the flow capacity k*h. This was made first, for the

waterflooded pilot area and then, for the entire field.

4.1 Pilot Area

The permeability and flow capacity distribution for the pilot area is shown in

Figures 29 and 30 as pattern grid is defined by the block configuration used in the oil

simulator software to match production history.

Figure 29. Flow Capacity Surface Map (kh) for the Pilot Area
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From Figures 29 and 30, it is clearly seen that flow capacity and average

permeability distribution in the waterflooded pilot area follow the same trend, with the

lowest value at injection well Pi3 and the highest at well Cw1. Formation properties at

producer well Pp2 (white circle in both figures) were interpolated among injection wells

defining the corners of its five-spot pattern, since no log data was available for it.

A close look at the permeability profile for each pilot well (Appendix II), suggests

that the pay zone is made of two layers, the upper one with low permeability and the

lower layer with high permeability. The values are given in Table 6 and also plotted in

Figures 31 and 32. With these considerations, an oil simulator was run including the

permeability prediction from the ANN. A better match in the production history was

Figure 30. Permeability Distribution in the Pilot Area

125-150

100-125

75-100

50-75

25-50

Blocks in  Y

Blocks in  X P i4

Cw2

P i1

Cw1

P i3

P i2

P p1

P p2

P erm eability  
Range (m d)



50

achieved from the permeability distribution in the pilot area, not only upon the

cumulative production but also on the general shape of the curve. See Figure 33.

Figure 31. Flow Capacity Distribution in the Upper Layer of the Pilot Area

Table 8. Flow Capacity and Layer Delimitation (Pilot Wells)

from (ft) to (ft) per Layer Total
Pi1 2863 to 2881 18 2863 2869 94.9 1024.9

2869 2881 930.0  
Pi2 2794 to 2801 7 2794 2798 137.6 431.9

2798 2801 294.2
Pi3 2840 to 2846 6 2840 2843 93.8 178.0

2843 2846 84.2
Pi4 2955 to 2964 9 2955 2960 269.4 870.9

2960 2964 601.6
Pp1 2944 to 2950 6 2944 2947 402.9 717.6

2947 2950 314.7
Cw1 2894 to 2907 13 2894 2900 706.0 1881.4

2900 2907 1175.4
Cw2 3084 to 3094 10 3084 3090 127.0 565.5

3090 3094 438.5

Layer Delimitation Flow Capacity (md-ft)

Well
Pay Zone 
Interval (ft)

Thickness 
(ft)

500-750

250-500

0-250

Blocks in Y

Blocks in X

Pi1

Pi3

Pi2

Pi4

Pp2

Pp1

Cw1

Cw2

Flow Capacity 
Range (md-ft)
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Figure 32. Flow Capacity Distribution for the Lower Layer of the Pilot Area

Figure 33. History Production Match
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4.2 Flow Capacity Zones

Once the permeability prediction was done for the pilot area, ANN forecast was

extended field-wide. Similarly, the permeability profile per well was obtained, along with

the computation of the flow capacity k*h and average permeability. The results were

mapped, hence defining the most productive zones in the reservoir.

Figure 34. Flow Capacity Distribution in the Stringtown Field
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Figure 35. Flow Capacity Contoured Map of the Stringtown Field
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Similar trends can be observed between the flow capacity and average

permeability distribution from Figures 34, 35, 36 and 37. This indicates that results are

not influenced by the fact that a well might have a thick pay zone leading to a high flow

capacity, it is rather the result of a high permeability.

Figure 36. Average Permeability Distribution in the Stringtown Field
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Figure 37. Avg. Permeability Contoured Map of the Stringtown Field
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4.3 Discussion

The verification process of the ANN assured that permeability prediction was not

biased by the data from any particular well, since each of the seven cored wells was put

aside while training and the results achieved in every case (Table 6) demonstrated that an

accurate prediction could be obtained regardless of a particular production set.

The robustness of the architecture selected and the importance of each input were

stressed when excluding some of these variables from the training set and testing various

architectures. The best model included 11 inputs (spatial coordinates, GR and RHOB log

responses, first and second derivatives of log responses and log baselines) and a 3-layer

backpropagation network with three middle slabs having a different activation function

each, which led to a R2 correlation coefficient as high as 0.975.

Flow capacity and average permeability distribution was successfully determined

for the waterflooded pilot area using the Artificial Neural Network selected. Similar

trends between these two variables were found. The analysis of each permeability profile

in this area also indicated that two layers formed the pay zone, a low permeable upper

layer and a highly permeable lower layer. More over, the flow capacity trend between the

two layers was also the same. The spatial distribution of this rock property yielded to a

better match in the production history of the pilot area, which is an alternate approach to

verify the ANN forecast.
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Regarding the field-wide flow capacity distribution, Figure 34 shows that the

most productive areas in the Stringtown field as a NE-SW trend and that these areas are

located to the eastern side of the reservoir. The northern area of the field has rather a poor

permeability and low flow capacity, suggesting that secondary oil procedures must be

reinforced in this part of the reservoir.

The best zones are located in the mid-field. This part of the reservoir was the first

area subject to waterflood operations and is where cumulative production peaks are found

when studying the production history of the field.

One key factor to notice in Figures 34 and 35 is that southern areas show better

potential than those of northern. This is of paramount importance if one takes into

account that the development pattern of the field did not consider the exploitation of the

south part of the reservoir until late in the life of the Stringtown field.
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Chapter 5: Conclusions and Recommendations

5.1 Conclusions

The results indicated that the methodology described using Backpropagation

Artificial Neural Networks is a useful, powerful tool not only for accurately predicting

permeability, but also to identify productive areas, pay zone limits and suggest areas of

completion. The ANN overcame the drawback of the heterogeneity of the formation;

making it a powerful, rapid, low cost alternative to obtain the rock permeability with a

reliable level of accuracy.

The approach shown in this work served to define productive areas in the

Stringtown Field, thus narrowing target zones to execute and/or reinforce oil recovery

procedures.

Permeability predictions obtained from ANN improved the production history

matching with an oil simulator, verifying once more the spatial distribution of this rock

property as defined previously.

All of the results obtained with this approach and the verifications carried out

demonstrated, once more, the applicability of artificial neural networks in the Petroleum

Industry.
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The most important factors in developing an Artificial Neural Network are the

input data selection to properly describe a given problem and its architecture.

5.2 Recommendations

A more exact distribution of rock permeability may be obtained if an ANN is

developed using continuos seismic data and geological considerations are included in the

model. Integrating geological interpretations and trend variations per location may help to

further substantiate any decision to divide the heterogeneous formation into several

zones.

Several ANN architectures were used in the development of this study such as

back-propagation models with one or two slabs in the middle layer, General Regression

Nets and GMDH models (Polynomial nets). It was found that the model selected (Three-

Layer Back-Propagation architecture with three slabs in the middle layer, each having a

different activation function) gave the best results and it is recommended for good

predictions.

Different activation functions applied to hidden layer slabs detect different

features in the input data.  For example, a network design may include a Gaussian

function on one hidden slab to detect features in the mid-range of the data, a Gaussian

complement function in another hidden slab to detect features from the upper and lower

extremes of the data and a Sigmoid function to emphasize the range of the input data.
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Thus, the output layer will receive different viewpoints of the data. Combining these

features in the middle layer definitely lead to better predictions.

Even though the results are reasonably acceptable, the ANN developed in this

work has two drawbacks. First, it cannot be used to predict permeability values in any

other field since it was trained with spatial coordinates own of this particular location.

Second, log-core data correlation was manually developed to the highest R2 coefficient

between core porosity and log porosity, by shifting core depth values, in order to find the

log response values correspondent to a given core plug permeability value. This

introduces a little uncertainty to the study since the shifting is arbitrary.
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Appendix I

 Cored Well Graphs
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Annex A – Well Cw1

Figure 38. Core and Log Porosity vs. Depth (Well Cw1)

Figure 39.  Porosity Correlation for Well Cw1
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Figure 40. Core Permeability vs. Log Responses (Well Cw1)

Figure 41.  ANN Predictions and Core Permeability vs. Depth (Well Cw1)
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Annex B – Well Cw2

Figure 42. Core and Log Porosity vs. Depth (Well Cw2)

Figure 43. Porosity Correlation for Well Cw2
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Figure 44. Core Permeability vs. Log Responses (Well Cw2)

Figure 45. ANN Predictions and Core Permeability vs. Depth (Well Cw2)
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Annex C – Well Cw3

Figure 46. Core and Log Porosity vs Depth (Well Cw3)

Figure 47. Porosity Correlation for Well Cw3
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Figure 48. Core Permeability vs. Log Responses (Well Cw3)

Figure 49. ANN Predictions and Core Permeability vs. Depth
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Annex D – Well Cw4

Figure 50.  Core and Log Porosity vs. Depth (Well Cw4)

Figure 51.  Porosity Correlation for Well Cw4
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Figure 52. Core Permeability vs. Log Responses (Well Cw4)

Figure 53. ANN Predictions and Core Permeability vs. Depth (Well Cw4)
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Annex E – Well Cw5

Figure 54. Core and Log Porosity vs. Depth (Well Cw5)

Figure 55. Porosity Correlation for Well Cw5
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Figure 56. Core Permeability vs. Log Responses (Well Cw5)

Figure 57. ANN Predictions and Core Permeability vs. Depth
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Annex F – Well Cw6

Figure 58. Core and Log Porosity vs. Depth (Well Cw6)

Figure 59. Porosity Correlation for Well Cw6
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Figure 60. Core Permeability vs. Log Responses (Well Cw6)

Figure 61. ANN Predictions and Core Permeability vs. Depth (Well Cw6)
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Annex G – Well Cw7
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Figure 62. Core and Log Porosity vs. Depth (Well Cw7)

Figure 63. Porosity Correlation for Well Cw7
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Figure 64. Core Permeability vs. Log Responses (Well Cw7)

Figure 65. ANN Predictions and Core Permeability vs. Depth (Well Cw7)
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Appendix II

Permeability Profile (Pilot Wells)
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Figure 66. Permeability Profile based on ANN Predictions (Well Pi1)

Figure 67. Permeability Profile based on ANN Predictions (Well Pi2)
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Figure 68. Permeability Profile based on ANN Predictions (Well Pi3)

Figure 69. Permeability Profile based on ANN Predictions (Well Pi4)
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Figure 70. Permeability Profile based on ANN Predictions (Well Pp1)

Figure 71. Permeability Profile based on ANN Predictions (Well Cw1)
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Figure 72. Permeability Profile based on ANN Predictions (Well Cw2)
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Appendix III

Thickness Distribution Map of the Stringtown Field
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Figure 73. Thickness Distribution Map of the Stringtown Field
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Figure 74. Thickness Distribution Contoured Map of the Stringtown Field
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