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Abstract 

  Syntheses of Fused Pyrroloheterocycles, Isatins,  
Approach Towards the Indole Fragment of Nosiheptide  

and a Base-Mediated Formation of 3-Hydroxycarbazoles 
 

Sobha Priyadarshini Gorugantula 

  
  The nitro group has been and still is one of the few functional groups widely studied in 
synthetic organic chemistry. The reactivity of the nitro group has had important 
applications in the syntheses of many complex organic molecules, either through its 
assistance in the formation of new carbon-carbon bonds or in the formation of carbon-
heteroatom bonds. Of late, the nitro group has become an important source of nitrogen 
in organic molecules, thus spawning the syntheses of a range of nitrogen heterocycles.  
  This dissertation is one such work, wherein the reactivity of the nitro group has been 
exploited with respect to the syntheses of nitrogen heterocycles. The palladium- 
catalyzed reductive N-heteroannulation reaction discovered in our laboratories a decade 
ago, has been utilized to synthesize a group of fused pyrroloheterocycles from the 
corresponding nitro-alkenylarenes. Also, these annulation conditions, when applied to 1-
(2-haloethynyl)-2-nitrobenzenes, led to the formation of isatins. The isolation of a few 
stable 2-haloisatogens en route to the isatins is an important aspect in this conversion. 
  In addition, the possibility of executing an intramolecular nucleophillic attack on 3-(2-
nitrophenyl)-2-cyclohexenone derivatives to afford hydroxy-carbazoles was 
investigated. A short synthetic approach to a model indole fragment of the natural 
product nosiheptide was also designed and attempted. 
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Chapter 1

 Syntheses of Fused Pyrroloheterocycles

1.1 Introduction:

 Aromatic ring systems with at least one heteroatom fused to a pyrrole nucleus are 

defined as “fused bicyclic pyrrloheterocycles”. These compounds belong to a class of 

nitrogen heterocycles that have been of interest to many researchers for over half a 

century. The interest in these ring systems stems from their isosteric relationship to 

indole and their presence as the structural components in many biologically active 

compounds. Among the several possible fused bicyclic pyrroloheterocycles, those that 

belong to the fused (5,5) category are the subjects under study in this chapter. 

Thienopyrroles, furopyrroles and pyrrolopyrroles belong to the A,B-diheteropentalene1 

system under this classification of compounds. Pyrroloimidazoles, pyrrolothiazoles, 

pyrroloisoxazoles and pyrroloisothiazoles, are some of the examples of ring systems 

with three heteroatoms from the (5,5) fused class of compounds (Figure 1).

1
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Figure 1: Some examples of the (5,5) fused pyrroloheterocyclic system 

                  

 Thienopyrrole subunits are found in several biologically active compounds used in the 

treatment of inflammation, viral infections and CCK antagonists, as well as in inhibitors 

of glycogen phosphorylase, cyclooxygenase, lipoxygenase, MCP-1 and biosteric 

analogs of serotonin agonist N,N-dimethyltryptamine. Bioisosteres of Tenidap, 

Tenoxicam and Lornoxicam, obtained by replacing the benzene ring with thiophene 

gave the analogous compounds 2, 3, 4 which were found to exhibit anti-inflammatory 

activity against rat-paw edema.2
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Figure 2: Bioisosteric analogs of Tenidap

 With furan and its derivatives categorized as the most studied five membered hetero-

ring system for the Diels-Alder reaction, furo[3,2-b]pyrroles and the isomeric furo[2,3-

b]pyrroles have become potential synthetic targets. A glance at the extensive work on 

these compounds by Krutosikova and his group depict the popularity of these 

compounds. Many of the compounds prepared by the Krutosikova group were tested for 

their carcinogenic activity.3 Additional studies on these compounds by the same 

researchers show that they react with dimethylbutynedioate (6) to form substituted 

indoles 8. The formation of these substituted indoles was attributed to a [4+2] 

cycloaddition on the furan ring followed by a facile ring opening of an undetected adduct 

7.4 A similar reaction was observed with ethyl propynoate (9), an unsymmetrical 

dienophile, and this reaction gave a mixture of the two possible isomers 10 and 11 

(Scheme 1).
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COOMe COOMe
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HO
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MeOOC
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    5                                       9                                       10 (60%)                                        11 (11%)

Scheme 1: [4+2]cycloaddition to a furo[2,3-b]pyrrole

 Several pyrrolo[2,3-d]imidazole-5-carboxylate derivatives were synthesized and tested 

for their anti-inflammatory activity against carrageenan-induced rat hindpaw. The 4-

chlorobenzoyl derivative 12 displayed almost thrice the potency of aspirin (Figure 3) and 

sodium 4-(4-bromo-benzenesulphonyl)-pyrrolo[2,3-d]imidazole-5-carboxylate (13), a 

little less anti-inflammatory activity than indomethacin.5

                   

N

N
Me

N
H

NaOOC
O

Cl

                                 

N

N
Me

N
NaOOC

SO
O

Br

                                       12                                                                       13  

Figure 3: Sodium 1-methyl-2-(4-Chlorobenzoyl)pyrrolo[2,3-d]imidazole-5-

carboxylate (12) and sodium 4-(4-bromo-benzenesulphonyl)-pyrrolo[2,3-

d]imidazole-5-carboxylate (13)

 The pyrrolopyrrole scaffold has been found in the blue M1 and M2 pigments (Figure 

4). These compounds have been identified during the “Mailard reaction” between D-
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xylose and glycine and were suggested to be Maillard reaction intermediates through 

the formation of melanoidins.6              
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Figure 4: Blue M1 (14) and Blue M2 (15)

 1,3,4-Trimethyl and 1,2,4-trimethylpyrrolo[3,2-b]pyrroles (Figure 5) have received 

considerable attention as candidates for electropolymerization. Their polymeric films 

have been prepared and found to have electrochromic property.7

                                       

N

N

N

N

                                            16                                                       17

Figure 5: 1,3,4-Trimethylpyrrolo[3,2-b]pyrrole (16) and 1,2,4-trimethylpyrolo[3,2-b] 

pyrrole (17)
  

 Pyrrolo[3,2-d]thiazoles have been reported as anti-phlogistic pharmaceuticals and 

immunomodulators,8 inhibitors and anticoagulants for the prevention and treatment of 

5



thrombosis and embolism,9 and as components of photomaterials.10 Lexitropsins form a 

group of synthetically designed compounds that have  been examined for their DNA 

binding activity.11

                                            

N

N

S

O

H
N

N O

NH

N

O H
N

NH2
H2N

O

NH

Cl

Figure 6: Lexitropsin 1

1.2 Notable synthetic routes to (5,5) fused pyrroloheterocyclic compounds:

 With the ubiquitous acceptance of pyrroloheterocycles as indole isosteres, it is not 

unusual to speculate the applicability of “indole syntheses” to these compounds. 

Despite the plethora of the synthetic pathways, most of the routes available to 

synthesize indole and indole-derivatives were unfavorable to the (5,5) fused 

pyrroloheterocycles. The reason could be attributed to either the lack of availability of 

suitable starting materials or to low yields of the respective products. 

1.2 (a) Hemmetsberger-Knittel synthesis: 

 Among the favored syntheses was the “Hemetsberger synthesis”12, which features the 

thermolysis of an intermediate aryl azido acrylate as the key step to construct the 

“pyrrole ring”. Two examples reported by Garcia and Galvez forming a thieno[3,2-

b]pyrrole and a thieno[2,3-b]pyrrole are shown in Scheme 2.13 The aryl azido acrylates 
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(20 & 23) are prepared from the Knoevenagel condensation between the aromatic 

aldehydes (18 & 22) and an azido ester (19)

SR1 CHO SR1
COOEt

N3

S

H
N

R1
COOEt

reflux, xylene

O

O
EtN3

MeONa

                                                                                                                                                              
         18                         19                                       20                                                21(a) R=H, 91%
                                                                                                                                         (b) R=Br, 95%
                                                                                                                                         (c) R=NO2, 34% 

SR1 O

O
EtN3

CHO

SR

COOEt

N3
S N

H

R1
COOEtreflux, xyleneMeONa

         22                         19                                        23                                              24 (a) R=H, 87%
                                                                                                                                         (b) R=Br, 73%
                                                                                                                                         (c) R=NO2, 8%
      

Scheme 2: Hemmetsberger-Knittel synthesis of the thieno[3,2-b]pyrrole and  

                   thieno[2,3-b]pyrrole

 

 This reaction can be formally seen as going through a nitrene intermediate 27, which 

subsequently inserts into the C-H bond of the arene. However, the isolation of azirine 

intermediates (26) at lower temperatures (80 OC) suggests that this reaction also 

proceeds through the formation of azirine (Scheme 3).14  

                                           

COOMe

N N N

N

COOMe

R R

                                               25                                                                 26 (a) R=H (15%)

                                                                                                                         (b) R=4-Me (74%)                                                                                         
                                                                                                                         (c) R=4-Cl (54%)

Scheme 3: The azirine intermediates isolated by Knittel en route to 

                    indole-2-carboxylates.
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With this result, it is assumed that there is an equilibrium between the azirine (26) and 

the nitrene (27) (Scheme 4).

N

COOMe

R COOMe

N

R

                                            26                                                   27 

Scheme 4: Equilibrium between the nitrene and the azirine

 By far the Hemmetsberger-Knittel synthesis has been the major reaction utilized to 

synthesize several furo[2,3-b]pyrrole and the furo[3,2-b]pyrrole derivatives.15 Analogous 

to the furopyrroles, the construction of both the isomeric pyrroloimidazole rings was 

carried out by this reaction (Entry 9 and 10, Table 1).16 The 1,3,4-trimethyl and 1,2,4-

trimethylpyrrolo[3,2-b]pyrroles,7 thieno[3,2-b:4,5-b’]dipyrrole 17 (Entry 1, Table 1), 

pyrrolo[2,3-b]pyrrole dicarboxylate (Entry 8, Table 1), seleno[3,2-b]pyrrole-2-carboxylate 

(Entry 7, Table 1), seleno[2,3-b]pyrrole-2-carboxylate (Entry 6, Table 1) and furo[2,3-

b]pyrrole-2-carboxylate (Entry 4, Table 1)18 were also synthesized by the same method.

Table 1: Hemmetsberger-Knittel synthesis of (5,5) fused pyrroloheterocycles

Entry The Aldehyde Product Yield

1

S CHOOHC
S

H
N

H
N COOEtEtOOC 54%

2

O
OHC

N
COOMe

O

H
NMeOOC

N

COOMe 56%
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3

O
OHC

N
COOMe

Bn O

H
NMeOOC

N

COOMe

Bn

76%

4

O

CHO

O N
H

COOMe
61%15

5

O CHO
O

H
N

COOEt 58%15

6

Se

CHO

Se N
H

COOEt
86%15

7

Se CHO
Se

H
N

COOEt 82%15

8

N
H

CHO

EtOOC N
H

N
H

COOEtEtOOC 80%15

9 N

N CHOPr

COOEt

N

N

H
N

COOEtPr

COOEt

21%14

10
N

NPr

COOEt

CHO N

N N
H

COOEtPr

COOEt

27%14
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1.2 (b) The Fischer indole synthesis: 

 The “Fischer indole synthesis”,19 developed in 1883 remains a popular reaction to 

construct the indole nucleus even today. Despite its fame, the use of Fischer indole 

synthesis in the construction of pyrroloheterocycles has been sparse.20, 21 The essence 

of this reaction is an acid assisted sigmatropic rearrangement of an aryl hydrazone, 

formed from the condensation of a ketone with the arylhydrazine. An example21 of a 

“Fischer indole synthesis” in the preparation of a thieno[2,3-b]pyrrole derivative (31) 

from 2-butanone (22) and N-t-butoxycarbonyl-N-2-thienylhydrazine (29) is represented 

in Scheme 5.

S
R1

N O

O

NH2

HCl
Ether S

R1
N O

O

NH3

O

R3
R4

AcOH S
R1

N

OO

N

(22) R3 R4

                    
           28                                                           29                                                                        30

                                                                                                                                       
S N

H

R1 R3

R4

                                                                                                                                                     31 (85%)

                                                                                                                             R1 = CH3

                                                                                                                                                      R3 = CH3
                                                                                                                                                R4 = COOEt

Scheme 5: The synthesis of a thieno[2,3-b]pyrrole via Fischer’s indole synthesis

1.2 (c) Batcho-Leimgruber synthesis:

 The two-step Batcho-Leimgruber indole synthesis22 provides a major alternative to 

Fisher’s indole synthesis. In spite of the popularity in indole synthesis, there has been 
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only one report on the applicability of the Batcho-Leimgruber synthesis in the synthesis 

of a thieno[3,2-b]pyrrole. A base catalyzed formation of an enamine (33) from 5-

methyl-4-nitrothiophene-2-carboxylic acid (32) and N,N-dimethylformamide dimethyl 

acetal (DMF-DMA) forms the first step of this reaction. This step is followed by the 

reductive cyclization of the enamine to afford the desired thieno[3,2-b]pyrrole (34) as the 

product (Scheme 6).23

S

O2N

COOH

NMe2
OMe

MeO
R

S

O2N

COOH

RMe2N

HCOONH4-Pd/C

MeOH S

H
N

MeOOC R

         32                                                        33                                                              34 (a) (R=H, 71%)
                                                                                                                                            (b) (R=Me, 72%) 

Scheme 6: Batcho-Liemgruber synthesis

1.2 (d) Sundberg synthesis:    

 Another synthetic route to furo-, thieno- and seleno[3,2-b]pyrroles from substituted 

thiophenes, furans and selenophenes that displays the versatility of azides was reported 

by Salo Gronowitz et al.24 The reaction, referred to as “Sundberg synthesis” was 

performed earlier on substituted benzaldehydes to synthesize indoles.25 The Sundberg 

synthesis utilizes the thermal decomposition of azidoalkenylarenes 36 to form the 

corresponding products 38. The azido compounds required for this synthesis were 

prepared by ‘aldol’ condensation of an azidoaldehyde (35) (Scheme 7). 
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X

N3

CHO OH- X

N3

COCH3

heat

X

H
N COCH3
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CH3COCH3
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COCH3

  
  35                                    36                                                    37                                38 (a) (X = O, 69%)

                                                                                                                                                           (b) (X = S, 90%)

                                                                                                                                                           (c) (X = Se, 82%)

Scheme 7: The preparation of furo-, thieno- and seleno[3,2-b]pyrroles by the 

                   Sundberg reaction.

 This reaction is mechanistically regarded as an insertion of the intermediate nitrene 

(37) into a C-H bond to give the intermediate (37a) followed by a 6π electrocyclization to 

generate the fused heterocycle (38) (Scheme 8).   

X

N

COCH3 X

N
COCH3

X

N

COCH3

N
N

X

N

COCH3

N
N

  

   36a                                      36b                                                 37                                       37a

                                                                                                                                       X

H
N COCH3

                                                                                                                                                 38            

Scheme 8: Plausible mechanism of the Sundberg reaction

1.2 (e) Cadogan-Sundberg synthesis: 

 Another versatile indole synthesis that also involves a nitrene intermediate is the 

Cadogan-Sundberg synthesis.26, 27The generation of the nitrene in this reaction is 

carried out through a trialkyl phosphite assisted reductive deoxygenation of the 

corresponding o-nitroalkenylarene (39). The nitrene intermediate could be imagined to 
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have formed from a nucleophillic attack of the phosphite on the nitro group of 39, 

leading to the intermediate (40). Subsequent loss of triethyl phosphate to form the 

nitroso compound (43), followed by another similar addition and elimination would 

produce the nitrene intermediate (47). Insertion of the nitrene into the C-H bond, as 

suggested in the Sundberg synthesis would generate the required product 48 (Scheme 

10). Successful applications of this reaction with respect to pyrroloheterocycles include 

5-arylthieno[3,2-b]pyrrole and 5-arylthieno[2,3-b]pyrrole 28, 29 as well as their respective 

parent thienopyrroles (Table 2).30                                                                                                                                                               
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Scheme 9: General reaction for the Cadogan-Sundberg synthesis
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Scheme 10: Plausible mechanism for the Cadogan-Sundberg reaction
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Table 2: Thienopyrroles, as prepared from Cadogan-Sundberg synthesis

Entry Substrate Product Yield

1

S

Ph

NO2
N
H

S
Ph 40%

2

S

NO2

Ph

H
N

S
Ph 42%

3

S

NO2

PhMeOOC

H
N

S
PhMeOOC 70%

4

S

O2N NO2

PhPh
S

H
NPh

NO2

Ph
NA

 1.2 (f) Snyder’s synthetic approaches to thienopyrroles:

 Among the numerous syntheses of the thienopyrrole scaffold by various researchers, 

the synthetic efforts of Snyder and his co-workers deserve to be mentioned. The earliest 

report by the Snyder group was an application of the Reissert indole synthesis 31 in the 

synthesis of the parent thieno[3,2-b]pyrrole (55). With a slight modification of the 

Reissert indole synthesis, the Snyder group synthesized the parent thieno[3,2-b]pyrrole 

(55) through the intermediate pyruvic acid (53), that was prepared from 

2-methyl-3-nitrothiophene (49) via an azlactone (52). The pyruvic acid (53) was then 

subjected to reductive cyclization in presence of aqueous NH3 and ferrous sulphate to 

afford the thienopyrrole carboxylic acid (54). Decarboxylation of 54 gave the thieno[3,2-

b]pyrrole (55), which proved to be unstable when exposed to air (Scheme 11).32 
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A similar reaction sequence, when employed to synthesize the isomeric thieno[2,3-

b]pyrrole, resulted in it’s decomposition prior to purification.

S
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NBS, CCl4

S
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CHO S
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      49                                         50                                     51                                          52 (azlactone)

                            

S

NO2
aq NH3

FeSO4S

H
N

COOH
Heat

S

H
N

O COOH

                                 55                                            54                                                      53

Scheme 11: Modified Reissert indole synthesis; preparation of 

                     thieno[3,2-b]pyrrole 

 The “Reissert indole synthesis” sequence of preparing the pyruvic ester (56) from 2-

methyl-3-nitrotoluene  (49) and diethyloxalate was utilized in the preparation of 5-

carboethoxy thieno[2,3-b]pyrrole (21a) (Scheme 12).  

S

NO2
(COOEt)2

S

NO2

COOEt

O SnCl2

S

H
N

COOEt

                       49                                         56                                                   21a

Scheme 12: 5-carboethoxy thieno[2,3-b]pyrrole via the Reissert indole synthesis

 With the observed instability of the parent thienopyrroles, an alternate approach to 

synthesize the thieno[3,2-b]pyrrole (55) as well as the N-benzyl derivative (55a) from 

pyrrole was designed by Snyder.33 This route features the unusual formation of 3-
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thiocyanopyrrole (58) from the pyrrole (57) and thiocyanogen. The 3-thiocyanopyrrole 

(58) was converted into the 3-pyrrolylthioacetic acid (59) which was cyclized to the 

thieno[3,2-b]pyrrole-3-one (60) in presence of polyphosphoric acid. Sodium borohydride 

reduction of 60 afforded the desired thieno[3,2-b]pyrrole (55) (Scheme 13).                                                                         

N
R

Cu(SCN)2

MeOH, 0 OC N
R

SCN
1. BrCH2COOH

2. KOH
3. H+

N
R

S COOH
PPA S

N
R O

   57                                       58                                             59                                                   60

                                                                                                

NaBH4S

N
R

                                                                                                 55 (R= H)

                                                                                                 55a (R= Bn)

Scheme 13: The alternate syntheses of thieno[3,2-b]pyrroles via   

                     “thiocyanation” route.  

     

 The isomeric N-benzylthieno[2,3-b]pyrrole (67) was synthesized by a slightly different 

procedure34 from N-benzyl-3,4-pyrroledicarboxylate (61). Compound 61 was converted 

into the intermediate 2-thiocyano pyrrole derivative (62) utilizing thiocyanogen chloride 

in the first step. This step was followed by the preparation of the pyrroylthioacetate (63) 

by sodium borohydride reduction and subsequent alkylation with ethylbromoacetate. 

The pyrroylthioacetate (63) cyclized to the thieno[2,3-b]pyrrole diester (64) through a 

NaH driven Diekmann condensation. Hydrolysis and decarboxylation in presence of 

sulphuric acid led to the keto acid (64), which was converted to the desired N-

benzylthieno[2,3-b]pyrrole (67) by subsequent reduction and decarboxylation (Scheme 
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    67                                      66                                    65                                           64 

Scheme 14: Synthesis of N-benzylthieno[2,3-b]pyrrole via thiocyanation

1.2 (g) Synthesis from ketene-N,S-acetals:

 Active methylene compounds have become a significant resource in the construction 

of several complex molecules. This strategy has been used to construct a thieno[2,3-

b]pyrrole in two steps, using alkyl or arylisothiocyanate as shown in the Scheme 15.35 

The first step in this synthesis involved a base catalyzed condensation of an activated 

methylene compound (68) with an alkyl or an aryl-isothiocyanate to form an 

intermediate ketene aminothioacetal (69), which reacts with α-bromoethylacetate to 

form the corresponding aminothioacetal (70). A Dieckman cyclization or a Thorpe-

Ziegler cyclization of 70 affords the thiophene (71). The fusion of the pyrrole ring 

occured as the second step, with the reaction between the thiophene 71 and α-

bromoethylacetate in the presence of anhydrous potassium carbonate. The thieno[2,3-

b]pyrrole (72) was obtained as the product after 5 days when acetone was chosen as 

the solvent. 
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 In a comparative study, the same compound was synthesized from the pyrrole 

derivative (74). The first step in this study involved the formation of N-phenyl-S-

methylketene-N,S-acetal (73) from compound 68, phenylisothiocyanate and 

methyliodide under similar basic conditions. Subsequent transformation into the 2-

methylsulfanylpyrrole derivative (74) was easily achieved from a base mediated 

concurrent substitution condensation of 73 with α-bromoethylacetate. The ultimate 

construction of the thiophene ring on the pyrrole 74 was brought forth by a nucleophillic 

aromatic substitution with thiogycolate in presence of a strong base. These two routes 

developed by the Kirsch group35 were used to synthesize a variety of thieno[2,3-

b]pyrroles. However, this reaction is limited to the synthesis of penta-substituted   

thieno[2,3-b]pyrroles only.

Route 1:

    

R1

O

R2

O 1. K2CO3/DMF

2. PhNCS
R1

O

R2

O

SPhHN
K2CO3/DMF

R1

O

R2

O

SPhHN COOEt

BrCH2COOEt

               68                                                     69                                                                 70

                                              
S

R2

COOEt

R1

O

PhHNN
Ph

S
COOEt

R2R1

EtOOC
BrCH2COOEt

K2CO3, Acetone

                                                              72 (73%)                                                                71 (79%)

                                                             R1=R2=Me
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Route 2:

    

1. K2CO3/DMF

2. PhNCS
3. CH3I

R1

O

R2

O

SPhHN

BrCH2COOEt

EtOOC N
Ph

SMe

O
R2R1

K2CO3, AcetoneR1

O

R2

O

             68                                                    73                                                                     74

                                                             

K2CO3/ EtOH
HSCH2COOEt

N
Ph

S
COOEt

R2R1

EtOOC

                                                                             72 (71%)
                                                                            R1=R2=Me

Scheme 15: Preparation of thieno[2,3-b]pyrroles from ketene-N-S-acetals

1.2 (h) Synthesis of a pyrrolo[3,2-d]thiazole derivative:

 A lately reported two step synthesis of a pyrrolo[3,2-d]thiazole ring system involved the 

preparation of an intermediate thiooxamide (76) from an aminopyrrole derivative (75) 

using sulphur and chloroacetamide. The oxidative cyclization of the intermediate 

thioxamide (76) with K3 [Fe(CN)6] under basic conditions gave the pyrrolo[3,2-d]thiazole 

derivative (77) as the product (Scheme 16).36

N COOEt

H2N S8, Et3N

ClCH2CONH2

NEtOOC

NH
S

O
H2N

NaOH
K3[Fe(CN)6]

N
S

N COOH

HOOC

           75                                                            76 (55%)                                               77 (98%)

Scheme 16: Synthesis of the pyrrolo[3,2-d]thiazole derivative via oxidative

                    cyclization
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1.3. Transition metal mediated syntheses of pyrroloheterocycles

 1.3 (a) Introduction:

 A glance at the Hemmetsberger-Knittel, Sundberg, and Cadogan-Sundberg syntheses 

depict the formation of nitrenes as intermediates. Current research has focussed on 

either generating or trapping these nitrenes with transition metals. Nickel, platinum, 

rhodium, ruthenium, molybdenium37 and tin have been used in these strategies.38  A 

number of fused nitrogen-heterocycles were synthesized in high yields by Driver and his 

group39 utilizing the concept of rhodium (II) mediated insertion of nitrene into a C-H 

bond (Table 3). The highlight of this reaction was the tolerance of 5% rhodium 

perfluorobutyrate to both electron donating and withdrawing substituents on the aryl ring 

and the generation of the rhodium nitrenoid (79) at sufficiently low temperatures.

COOMe

N3

R

COOMe

N
R

[Rh]
R

N
H

Toluene

 Rh2(O2CC3F7)4
COOMe

       78                                                                                  79                                             80

Scheme 17: Rhodium (II) catalyzed synthesis of nitrogen heterocycles   
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Table 3: Examples of the N-heterocyclic compounds synthesized with 5% Rh(II) at

              60 OC

Entry Substrate Product Yield

1

O

N3
COOMe

 
O

H
N COOMe 79%

2

S

N3
COOMe

S

H
N COOMe 84%

3

N
R

N3
COOMe

N
R

H
N

COOMe  R= piv: 88%
 R= Boc: 94%

 
                                                                                                                                                           

 The ability to form stable complexes with ligands has rendered palladium as an ideal 

catalyst in a number of bond formation reactions in organic chemistry. An application of 

the palladium-catalyzed intramolecular Heck reaction has been described by Wensbo 

and Gronowitz to synthesize all the three isomeric thienopyrrole derivatives from the 

respective Boc-protected aminohalo-thiophenes (Table 4).40 
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Table 4: Intramolecular Heck reaction in the synthesis of the three isomeric
               thienopyrroles  

Entry Substrate Product Yield

1
S

I

N
Boc

N

COOMe

OMe

S N
Boc

N

COOMe

OMe
83%

2

S

N

I

Boc
N

MeOOC

OMe
S

N
Boc

N

COOMe

OMe

81%

3
S

I

N
Boc N

COOMe

OMe

S
N
Boc

N

COOMe

OMe
58%

 Catalyst: Pd(OAc)2, PPh3, K2CO3                                                        

                                         
1.3 (b) Palladium-catalyzed reductive N-heteroannulation:

 Among the multitude of palladium-catalyzed reactions that have been and are still 

being used by a number of researchers around the world, a class of reactions known as 

“palladium-catalyzed reductive N-heteroannulation” reactions has created a niche for 

itself in the realm of palladium chemistry. Cenini et. al reported the first palladium 

catalyzed de-oxygenation of o-substituted nitrostyrenes in the presence of carbon 

monoxide under high temperatures and high pressures.41 An example from their study 

on (2-pyridyl)-o-nitrostyrene (81) with 5 mol% Pd(TMB) under 40 atm. of CO at 180 OC 

for 3 hours gave 2-pyridylindole (82) in good yield (Scheme 18). 41
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N

NO2

Pd(TMB)2, TMPhen

CO (20 atm), Toluene, 140 OC N
H

N

                              81                                                                                      82 (97%)

Scheme 18: The palladium-catalyzed reductive de-oxygenation reaction by 

                     the  “Cenini group”

 With the product, an indole, being the same as the one obtained from the conventional 

Cadogan-Sundberg reaction, Cenini proposed that this reaction also goes through a 

nitrene intermediate, likely bound to the metal (Figure 7).42 Evidence for this proposition 

was later established by Cenini when a ruthenium carbonyl-bound nitrene (84) was 

isolated from a reaction between 2-nitrobiphenyl (83) and a stoichiometric amount of 

Ru3(CO)12. This intermediate metal-bound nitrene reacted with carbon monoxide to yield 

the carbazole (85) (Scheme 19).43

                                                               
N

R

Ar

Pd

Figure 7: The hypothetical palladium-bound nitrene intermediate

             
NO2

Ru3(CO)12

N)2Ru2(CO)9 N
H

CO (49 atm)
220 OC

                    83                                                      84                                                             85

Scheme 19: Reduction of the ruthenium-bound nitrene 
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 Watanabe and his co-workers reported a similar palladium catalyzed reductive N-

heteroannulation of nitroarenes to form indoles. The formation of indole-2-carboxylate 

(87) from the nitroarene (86) under the catalytic conditions of bis-triphenylphosphine 

palladium(II)chloride and stannous chloride is shown under Scheme 20.44 Although the 

reaction conditions were milder than Cenini’s protocol, yields of indoles were moderate. 

                                   

COOMe

NO2

PdCl2(PPh3)2, SnCl2
CO (20 atm), 100 OC
           Dioxan

N
H

COOMe

                                       86                                                                             87 (62%) 

Scheme 20: Watanabe conditions- the palladium-SnCl2 catalyzed formation 

                     of  indoles  

 Much milder conditions for the reductive heteroannulation were discovered in our 

laboratory a decade ago.45 The reaction behind this discovery was the formation of 4-

bromoindole (89) from 1-(2-bromo-6-nitrophenyl)-ethene (88) (Scheme 21). Since then, 

this methodology has been thoroughly investigated on a wide range of substrates.46  

This reaction is performed with 6-10 mol % palladium catalyst, a ligand, and carbon 

monoxide (4-6 atm) pressure in a suitable solvent. It was also observed that the 

reductive N-heteroannulation of a mixture of (E/Z) isomers of 90 gave the indole 91 

indicating that the stereochemistry at the double bond in the o-nitrostyrene does not 

effect the yield or the rate of the reaction (Scheme 22).46           

                                   

Br

NO2

Pd(OAc)2, PPh3

CO (4 atm), MeCN, 70 OC N
H

Br

                                      88                                                                        89 (86%)

Scheme 21: The conditions for reductve N-heteroannulation
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NO2 N

H

Pd(OAc)2, PPh3

CO (4 atm), MeCN, 70 OC

                                      90                                                                       91 (66%)

Scheme 22: The reductve N-heteroannulation of the isomeric mixture

1.3 (c) Proposed Mechanism:

 A plausible mechanism for the N-heteroannulation would involve the coordination of 

palladium to the nitro group of the o-nitrostyrene 92 to form a palladocycle 93 in the first 

step. Carbon monoxide insertion would form 94, which would form the intermediate 

palladium bound o-nitrosostyrene 95 after the loss of carbon dioxide. One of the 

pathways suggested from this intermediate, proceeds through a reductive elimination of 

Pd(0) to give a free nitroso styrene 95a. An intramolecular cyclization followed by a 

[1,5]-H shift would lead to an N-hydroxy indole 95d, which would ultimately be reduced 

to the indole (96).

 The second suggested pathway from 95 parallels the idea of metal bound nitrenes. 

The insertion of carbon monoxide to form 95e, and subsequent loss of carbon dioxide 

would form the palladium bound nitrene (95f). Cyclization, reductive elimination and 

[1,5] H shift would sequentially lead to the indole (96). Another feasible pathway through 

the loss of Pd(0) to form a free nitrene 95i from the palladium bound nitrene (95f) is also 

suggested. An electron cyclization of the free nitrene to the intermediate 95j followed by 

a [1,5]-H shift would form the indole 96 (Scheme 23). 

25



            

N
O

O
Pd(0)

N
O Pd
O

CO

N
O Pd

O
O

-CO2

N
O
Pd

                      92                                  93                                    94                                         95

N
O

Pd

-Pd(0)Path 1
N
O

N
O

N
O

N
OH

N
H

Pd(0), CO

95

95a 95b 95c 95d

96Path 2CO

N
Pd

O

O

-CO2

N
Pd

N
Pd

-Pd(0)

N

95e 95f 95g 95h

-Pd(0)

N N N
H

Path 3

95i 95h 96

Scheme 23: Plausible mechanistic pathways for the N-heteroannulation reaction

1.4 Results and discussion:

 The “reductive N-heteroannulation”, developed in our laboratories, has been 

successful in the synthesis of substituted and fused indoles, carbazoles, 

benzimidazoles, azaindoles,47 diazaindoles, carbazolones, and several natural 

products.46  From this perspective, the synthesis of fused bicyclic pyrroloheterocycles 

(100) from their respective alkenyl nitroarenes (99) was visualised. These precursor 

alkenyl nitroarenes could be prepared via Kosugi-Migita-Stille48 couplings of halo-
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nitroarenes (97) or by condensations of methyl-nitroarenes (98) with benzaldehyde as 

depicted in Scheme 24.

   

NO2

RX

NO2

X= Cl, Br, OTf

Bu3Sn
R

Pd(II), Solvent
RCHO, base

Solvent
NO2

Het Het Het

           97                                                            99                                                                    98

                                                          

Solvent

N
H

R

R= H, Ph

Het

Pd(0), ligand, CO

                                                                          100 

 Scheme 24: The general strategy to synthesize the fused pyrroloheterocycles

 An account of the synthesis and attempted syntheses of some of the pyrrolo- 

heterocycles which belong to the (5,5) fused category is presented henceforth.

1.4 (a) Synthesis of thieno[3,2-b]pyrrole and thieno[2,3-b]pyrrole derivatives:

 The compounds chosen to test the applicability of the palladium-catalyzed N-

heteroannulation reaction in this category were the previously reported thieno[3,2-

b]pyrrole-5-carboxylic acid methyl ester (107) and 5-phenylthieno[2,3-b]pyrrole (109).49 

The synthesis of the thieno[3,2-b]pyrrole derivative began with the nitration of the 2-

methyl-5-thienic acid (101).49 Esterification of the nitro derivative 102 afforded 5-
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methyl-4-nitrothiophene-2-carboxylic acid methyl ester (103)49, which underwent a base 

catalyzed condensation with benzaldehyde to yield the precursor styrylthiophene 104.49

 2-Nitrothiophene (105) was the compound of choice to synthesize the thieno[2,3-

b]pyrrole analogue. Conjugate addition50 of methyl magnesium chloride to 2-

nitrothiophene gave an inseparable mixture of the three possible isomeric methyl-

nitrothiophenes (106). Nitration of 3-methylthiophene was also attempted using Rinke’s 

method,51 but a low yield of 3-methyl-2-nitrothiophene gave us no alternative other than 

to proceed with the mixture of the three isomers. Base catalyzed condensation with 

benzaldehyde yielded 2-nitro-3-styrylthiophene (107)49 along with some unidentified 

material illustrating the necessity of an adjacent electron withdrawing group on the 

arene to activate the methyl group for condensation (Scheme 25).

SHOOC SHOOC
Ac2O, - 20 OC
HNO3 (fuming)

NO2

 MeOH, H2SO4

70 OC, 24 h SMeOOC

NO2

                 101                                                     102 (47%)                                               103 (78%)

                                                                 SMeOOC

NO2

Ph

PhCHO, Pyrrolidine

Reflux, 22 h

                                                                                   104 (60%)

S NO2

CH3MgCl, THF
-50 OC, DDQ S NO2 S NO2S NO2

PhCHO, pyrrolidine
reflux, 22 h S NO2

Ph

 105                                                           106 (59% inseparable)                                               107 (25%)

Scheme 25: Syntheses of the styryl thiophenes, 104 and 107
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 Heteroannulation of the two styrylthiophenes 104 and 107 with carbon monoxide 

under the catalytic conditions of palladium diacetate and triphenyl phosphine afforded 

the respective thienopyrroles 108 and 109 in good yields (Table 5).

Table 5: Heteroannulation of the styrylthiophenes, 104 and 107

Substrate Conditions Time Product Yield

SMeOOC

NO2

Ph

104

Pd(OAc)2, PPh3, 
CH3CN, 70 OC 40 h

SMeOOC

H
N Ph

   108

71%

   S NO2

Ph

               107

Pd(OAc)2, PPh3, 
CH3CN, 70 OC 24 h

           
S N

H

Ph

      109

83%

 The commercial availability of 2,5-thioxene (110) contributed to the task of executing 

the synthesis of a thieno[3,2-b:4,5-b’]dipyrrole derivative (114). 2,5-Dimethyl-3,4-

dinitrothiophene (111) was synthesized from 2,5-dimethylthiophene (110) utilizing the 

procedure reported by Steinkoff et.al.52 A base catalyzed condensation with 

benzaldehyde gave the precursor 3,4-dinitro,2-5-distyrylthiophene (112) as bright 

orange crystals (Scheme 26).53 

S

KNO3, Conc H2SO4

- 5 OC to  5 OC S

NO2O2N
PhCHO, piperidine, isopropanol

8 h, 80 OC S

NO2O2N

PhPh

      110                                                 111 (12%)                                                                    112 (67%)

Scheme 26: Synthesis of 3,4-dinitro-2,5-distyrylthiophene (112)
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 When subjected to heteroannulation conditions with 6% Pd(OAc)2, this compound 

(112) afforded only a trace amount of the dipyrrole 114 and 2-styryl-3-nitro-5-phenyl-4H-

thieno[3,2-b]pyrrole (113)53. Increasing the catalyst load to 11% gave the dipyrrole 

exclusively, but in a moderate yield. The cyclization studies on the compounds 112 and 

113 under different amounts of catalyst are presented in Table 6. 

S

NO2O2N

PhPh
Pd(OAc)2, PPh3, CH3CN

CO (6 atm), 70 OC S

H
NPh

NO2

Ph
S

H
N

H
N PhPh

                112                                                                                  113                                      114

Scheme 27: The heteroannulation of 3,4-dinitro,2-5-distyrylthiophene (112)

Table 6: Conditions evaluated in affecting the cyclization of 
              3,4-dinitro,2-5-distyrylthiophene (112)

Entry Substrate Catalyst loading Time
S

H
NPh

NO2

Ph

               113
S

H
N

H
N PhPh

               114

1 112       11% Pd(OAc)2 4 days 0% 37%

2 112         6% Pd(OAc)2 60 h 89% Trace

3 112       30% Pd(OAc)2 4 days 0% 35%

4 113         6% Pd(OAc)2 2 days 89% Trace

5 113         8% Pd(OAc)2 7 days 31% 15%

 The above results, wherein the formation of 114 occurred in trace quantities from 112 

and 113 (Entry 2 & 4, Table 6) as well as in a moderate yield (Entry 1 & 3, Table 6) imply 

that the aforementioned bicyclisation occurs as a discrete step, which requires a greater 

amount of catalyst loading.
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1.4 (b) Synthesis of furo[3,2-b]pyrrole derivatives:

 With the requirement of a halo or an alkyl substituent adjacent to the carbon bearing 

the nitro group, the procurement of an ideal precursor for the synthesis of furan 

analogues was an arduous task. An article by Saldabol et al.54 in which the procedure 

for the nitration of 5-methyl-2-furanaldoxime (115)55 was reported, assisted us to obtain 

the required precursor (Scheme 28). 5-Methyl-4-nitro-2-furanaldoxime (117), thus 

prepared, underwent the base catalyzed condensation with benzaldehyde to afford the 

precursor 4-nitro-5-styryl-2-furanaldoxime (118). Reductive heteroannulation with 

bis(dibenzylideneacetone) palladium (Pd(dba)2) and 1,10-phenanthroline gave a 

mixture of the corresponding furo[2,3-b]pyrrole as the oxime (119) and nitrile (120) 

(Table 7). Extension of the reaction time led to a decrease in the amount of the oxime, 

which indicated that the oxime gradually dehydrated to the corresponding nitrile (120). 

This result was comparable to the observed decomposition of the isolated oxime at 

room temperature. On the other hand, heteroannulation conditions with Pd(OAc)2 and 

PPh3 resulted in trace quantities of the nitrile and some unidentified matter.

 A test reaction performed on 5-methyl-2-furanaldoxime (115) with Pd(dba)2 did not 

yield any nitrile. This confirmed the necessity of a fused pyrrole moiety to facilitate the 

dehydration process (Scheme 29).
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O CHO

NH2OH.HCl, MeOH
K2CO3, RT, 6 h

O
NOH

HNO3, H2SO4

- 20 OC to -15 OC, 1.5 h O
NOH

O2N
(1:2)

      115                                                      116 (88%)                                                               117 (25%)  

                                                             

PhCHO, MeOH, piperidine
100 OC, 3 h

O
NOH

O2N

Ph

                                                                             118 (86%)

Scheme 28: Preparation of 4-nitro-5-styryl-2-furanaldoxime (118) 

Table 7: Heteroannulation conditions evaluated on 
              4-nitro-5-styryl-2-furanaldoxime (118) 

O
NOH

O2N

Ph
O

N
H
N

Ph
O

CN

H
N

PhOH

                 118                                                                            119                                        120
              

 
Entry

                     
                      Conditions

 
Time      119 120

1 Pd (dba)2, DMF, 1,10-phen, 120 OC  12 h 63% (33 % 118 recovered) 0%

2 Pd (dba)2, DMF, 1,10-phen, 120 OC  22 h 45% 20%

3 Pd (dba)2, DMF, 1,10-phen, 120 OC  48 h 21% 29%

4 Pd (dba)2, DMF, 1,10-phen, 120 OC  72 h 0% 16%

5 Pd (OAc)2, CH3CN, PPh3, 70 OC  16 h 0% Trace

                               O
NOH Pd (dba)2, 1,10- phenanthroline

DMF, CO (6 atm), 120 OC, 36 h O CN

                                       116                                                                                      121

Scheme 29: The test reaction on 5-methyl-2-furanaldoxime (116)
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1.4 (c) Synthesis of 2-methyl-5-phenyl-4H-pyrrolo[3,2-d]thiazole: 

 The reaction between an α-haloketone and thioamide to form a thiazole has been 

known for more than a century. Widely recognized as the “Hantz thiazole synthesis”56, 

this reaction has become one of the favorite “thiazole” syntheses owing to the ease of 

transformation of the reactants into the desired product. Low cost of these reactants is 

an added advantage. The synthesis of the pyrrolo[3,2-d]derivative (127), began with the 

utilization of Hantz synthesis to prepare 2,4-dimethylthiazole (124) from α-chloroacetone 

(123) and thioacetamide (122) following literature procedure.57 The sequential nitration58 

and condensation,59 followed by annulation, gave the desired pyrrolo[3,2-d]thiazole 

derivative (127) (Scheme 30). The results of heteroannulation under different catalytic 

conditions are presented in Table 8.

            

N

S

5 OC to RT to 70 OC (2.5 h),
then at 90 OC (10-16 h)

N

S NO2HNO3, H2SO4

NH2

S

O

Cl
Benzene

Reflux, 1.5 h

               122                  123                              124 (65%)                                                 125 (69%)

                                                                                    

PhCHO, piperidine
DMF, reflux, 1 hN

S NO2

Ph

                                                                                          126 (10%)

Scheme 30: Preparation of 2-methyl-4-nitro-5-styrylthiazole (126)
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Table 8: Heteroannulation of the styrylthiazole (126) under different catalytic
conditions

                               
N

S NO2

Ph
N

S N
H

Ph
Heteroanulation

                                         126                                                          127

 
Entry

                     
                                   Conditions

 
Time      127

1 Pd(dba)2, DMF, 1,10-phen, 120 OC  3 days 16%

2 Pd(OAc)2, CH3CN, PPh3, 80 OC  3 days 61%

3 PdCl2, CH3CN, PPh3, 80 OC  3 days 6%

1.4 (d): Syntheses of pyrrolo[3,2-d]imidazole and pyrrolo[2,3-d]imidazole 

derivatives: 

 According to our general methodology outlined under Scheme 21, it was obvious that 

both the designated pyrroloimidazole derivatives 133 and 134, could be synthesized 

from 4(5)-nitro-5(4)styrylimidazole (130).60 The latter compound was easily formed from 

the condensation of benzaldehyde with 4(5)-methyl-5(4)nitroimidazole (130).61 Facile 

benzylation of 130 with benzyl bromide in N,N-dimethylformamide-potassium carbonate 

afforded an easily separable mixture of the two isomeric precursors 131 and 132 in a 

ratio of 3:1, with an overall yield of > 85% (Scheme 31).60
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N

N
H

N

N
H

NO2

HNO3, H2SO4

0 OC to RT

PhCHO, piperidine, isopropanol
reflux, 3 h

N

N
H NO2

Ph

                   128                                   129 (64%)                                                        130 (82%)

                                       

PhCH2Br, K2CO3

DMF, 75 OC, 20 h
N

N NO2

N

N

NO2

PhPh

Ph

Ph

                                             132     (86%, 3:1)     131

Scheme 31: Preparation of the two isomeric styrylimidazoles 131 and 132

 Subsequent reductive N-heteroannulation of 131 and 132 in DMF with Pd(dba)2 and 1, 

10-phenanthroline afforded the desired pyrroloimidazoles 133 and 134, respectively.

Table 9: Preparation of the two isomeric pyrroloimidazoles 133 and 134

Substrate Conditions Time Product Yield

N

N

Ph

NO2

Ph

131

Pd(dba)2, DMF, 
1,10-phenanthroline,

120 OC
6 days

N

N

N
H

Ph

Ph
133

77%

  

N

N NO2

Ph

Ph  
132

Pd(dba)2, DMF, 
1,10-phenanthroline,

120 OC
3 days

N

N N
Ph

HPh            
134

32%
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1.4 (e) Attempted synthesis of pyrrolo[2,3-d]isoxazole: 

  With only one reported 62 synthesis of 3-methyl-5-arylpyrrolo[2,3-d]isoxazole (137) to 

date, the approach via the “palladium-catalyzed heteroannulation” seemed ideal for a 

second synthetic account. Nitration of 3,5-dimethylisoxazole (135) afforded the 4-

nitro-3,5-dimethylisoxazole (136) 63, which condensed with benzaldehyde in presence of 

piperidine to give the precursor 3-methyl-4-nitro-5-styrylisoxazole (137) (Scheme 32).64 

N O

0 OC to RT, reflux 15 h

N O

NO2

PhCHO, piperidine,MeOH

warm-5 minutes

N O

NO2

Ph
HNO3, H2SO4

    135                                                             136 (44%)                                                          137 (28%)

Scheme 32: Synthesis of 3-methyl-4-nitro-5-styrylisoxazole (137)

  However, this precursor failed to yield the expected product (138) under the attempted 

heteroannulaton conditions (Table 10). 

Table 10: Attempted heteroannulation of 3-methyl-4-nitro-5-styrylisoxazole (137)

                                     

N O

NO2

Ph
N
O

N
H

PhHeteroannulation

                                          137                                                               138

 Entry Conditions Time

1a Pd(dba)2, DMF, 1,10-phen, CO (6 atm),120 OC 4 days

2a Pd(OAc)2, CH3CN, PPh3, CO (6 atm), 80 OC 3 days

   a Starting material recovered
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1.4 (f) Attempted syntheses of pyrrolopyrrole derivatives: 

 Having met with substantial success so far in effecting cyclization of alkenyl 

nitroarenes to the expected fused (5,5) pyrroloheterocycles, utilizing the 

heteroannulation conditions developed in our laboratory, the next target was the fused 

pyrrolopyrrole system. The first compound chosen in this category was a pyrrolo[3,2-

b]pyrrole (1e). The synthesis of compound 1e commenced with the nitration of  1,2,5-

trimethylpyrrole (139) following the literature procedure reported by Pavia.65 By the 

manipulation of the reaction conditions, a trace of the 1,2,5-trimethyl-3,4-dinitropyrrole 

(141) along with the mononitropyrrole (140) was obtained (Scheme 33). Attempts to 

procure the requisite heteroannulation precursor 142 were futile, as no expected 

condensation reaction occurred between the mononitropyrrole and benzaldehyde (Table 

11).

                        
N

Conc H2SO4 / KNO3

0 OC to RT N

NO2

N

NO2O2N

                               139                                                         140                      141
                            ____________________________________________________
                                   Time
                                 30 min                                                 62%                       ---

                                 40 min                                                 47%                       2% 
                                     

Scheme 33: Nitration of 1,2,5-trimethylpyrrole (139)  
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Table 11: Conditions evaluated in the synthesis of the precursor styrylpyrrole 142

                                          
N

NO2
PhCHO

N

NO2

Ph

                                                140                                           142

 
Entry PhCHO (eq)

 
   Base(eq)     Solvent Additive Temp Time

1 2.6 KOH (3.3) DMSO --- RT 4 h

2 2.4 KOH (3.3) DMSO --- RT 36 h

3 2.2 KOH (2.2) DMSO --- RT 2 h

4 2.1 piperidine EtOH --- 60 OC 36 h

5 1.8 piperidine Benzene --- 80 OC 9 h

6 2.3 piperidine Benzene AcOH 80 OC 9 h

7 2.2 KOH (2.2) CH3CN --- 80 OC 8 h

 

 After several unsuccessful attempts to condense 140 with benzaldehyde, it was 

decided to try the reaction on a pyrrole with an electron withdrawing substituent. The 

substrate by choice was 5-methyl-1-(4-chlorophenyl)pyrrole-2-carboxylic acid methyl 

ester (146), which was synthesized 66 with ease from p-chloronitrosobenzene (144) and 

methylsorbate (143) in excellent yield. Nitration of 146 afforded the corresponding nitro 

derivative 147. But, even the presence of the electron withdrawing group on the pyrrole 

failed to give the desired condensation product 150. Even the 1-(4-chlorophenyl)-2-

methyl-3-nitropyrrole (149), obtained from the decarboxymethylation of 147 (Scheme 

34) failed, to respond to the attempted condensations (Table 12 and 13).
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COOMe

N
O N

O

COOMeCl

Cl

N

Cl

COOMe

CH2Cl2 Al2O3 column
RT, overnight Benzene

                    143               144                                 145 (60-80%)                             146 (88%)   

70% HNO3

N

Cl

COOMeO2N

1.MeOH, 2M NaOH

0 OC, 2-3 h

2. HClN

Cl

O2N COOH

Cu, quinoline
185 OCN

Cl

O2N                                                             
     149 (72%)                                      148 (84%)                                                   147 (48%)

Scheme 34: Synthesis of 1-(4-chlorophenyl)-2-methyl-3-nitropyrrole (149)
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Table 12: Attempted condensation of (147) with benzaldehyde 

                                 

N

Cl

MeOOC NO2

N

Cl

MeOOC
NO2

Ph
PhCHO

                                            
                                           147                                                     150

 
Entry PhCHO (eq)

 
   Base(eq)     Solvent Additive Temp Time

1 7 KOH (7) THF --- 60 OC 20 h

2 2.2 KOH (2.5) DMSO --- 80 OC 22 h

3 4 piperidine MeOH AcOH, HCOOH 100 OC 72 h

4 4 piperidine MeOH AcOH 60 OC 36 h

5 1.8 piperidine Benzene --- 80 OC 9 h

Table 13: Attempted condensation of (149) with benzaldehyde

                                 

N

Cl

NO2

N

NO2

Ph
PhCHO

                                            
                                       149                                                       151

 
Entry PhCHO (eq)

 
   Base(eq)     Solvent Temp Time

1a 7 KOH (7) DMSO 60 OC 3.5 days

2b 2.2 KOH (2.5) DMSO RT 3 h

3a 4 KOH (4) DMSO 60 OC 72h

a Products unidentified
b Recovered the starting material 149
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 The synthesis of 3-nitro-4-(2-phenylethynyl)pyrrole (155) by Albert van Leusen et. al 

from the nitro-diene 154 and TosMIC (tosyl methylisocyanide) has provided another 

pyrrole substrate to test the feasibility of heteroannulation conditions. 67 The nitro-diene 

154 required for this synthesis was prepared by the Henry reaction between 

cinnamaldehyde (152) and nitromethane (153).68 

                

CHO
CH3NO2

1. NaOH, MeOH, 0 OC

2. HCl, 0 OC
3. 0 OC to RT

NO2

                 152                                153                                                      154 (54%)

                                             

TosMIC
1.t-BuOK, THF, -75 OC, N2

2.-75 OC to -30 OC
3. H2O to RTN

H

O2N

Ph

                                                     155 (45%)  

Scheme 35: Synthesis of 3-nitro-4-(2-phenylethynyl)pyrrole 

                                                                                                              

 The pyrrole 155 was then converted into the N-methylpyrrole derivative (156) via a 

phase transfer catalyzed methylation,67 and also the tosyl derivative (Scheme 36).

                     

N
H

O2N

Ph
CH3I, KOH(aq), CH2Cl2

triethylbenzyl ammonium chloride, RT, 1 hr N

O2N

Ph

CH3

t-BuOK, DMF, 0 OC

Tosyl Chloride, 2 hrs N

O2N

Ph

Ts

156 (100%)

157 (77%)

155

Scheme 36: Preparation of N-methyl and N-tosyl derivatives of 3-nitro-4-(2-

phenylethynyl)pyrrole                                                                                                  
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 Despite having an ideal pyrrole precursor, the heteroannulation conditions did not yield 

the desired pyrrolopyrrole 158; the precursor 156 was recovered unchanged in the two 

attempts (Table 14). Even the choice of having an N-tosyl derivative 157 proved 

unsuccessful with the formation of some unidentified substances (Entry 2 & 3 Table 14).

Table 14: Attempted heteroannulation on N-methyl- and N-tosyl-3-nitro-4-(2-

                phenylethynyl)pyrrole

                                   
N
R

O2N

Ph

N
R

HN

Ph

Heteroannulation

                                                                       
                                       R= Me (156)                                      158
                                       R= Ts (157)                                       159 

 Entry Substrate Conditions Time

1a 156 Pd(dba)2, DMF, 1,10-phen, CO (6 atm),120 OC 5 days

2b 157 Pd(dba)2, DMF, 1,10-phen, CO (6 atm),120 OC 3.5 days

3b 157 Pd(OAc)2, CH3CN, PPh3, CO (6 atm), 80 OC 3.5 days

4a 156 Se, CO (70 psi), CH3CN, 70 OC 3 days

a Starting material recovered
b Unidentified products

1.5 Conclusion:      

  The syntheses of several fused (5,5) pyrroloheterocyclic systems such as the 

thieno[2,3-b]pyrrole, thieno[3,2-b]pyrrole, furo[3,2-b]pyrrole, pyrrolo[3,2-d]thiazole, and 

the two isomeric pyrroloimidazoles has been accomplished through the palladium-

catalyzed reductive N-heteroannulation reaction. In addition to these compounds, a 
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thienodipyrrole derivative was also synthesized. Despite the success in the aforesaid 

systems, the heteroannulation methodology was unsuccessful in the synthesis of the 

pyrrolopyrrole and the pyrroloisoxazole analogues. The reason behind the recovery of 

the precursor 3-methyl-4-nitro-5-styrylisoxazole in all the heteroannulation attempts 

remains unclear. Quite so, the difficulty in the preparation of 2-styryl-3-nitropyrrole 

derivatives has further impaired any conclusive evidence to account for the failure in the 

synthesis of the pyrrolo[3,2-b]pyrrole system.  
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Chapter 2

Palladium-Catalyzed Synthesis of Isatins

2.1. Introduction to isatin chemistry: 

 The history of isatin dates back to 1841 when Erdmann 69 and Laurent 70 prepared 

isatin(indole-2,3-dione) (161) independently by the oxidation of indigo (160) with 

chromic and nitric acids. Although regarded as a synthetic compound for more than a 

century, isatin’s existence in nature was found in the fruits of the cannon ball tree 

Couroupita quianensis Aubl and in Calanthe discolor LINDL.71 It is also reported as a 

metabolite derivative of adrenaline in humans and as a component in the parotid 

gland secretions of Bufo frogs.71 

                                                          
N
H

O H
N

O

                                                                        160

Figure 8: Indigo

 The chemistry of isatins emerged as an offspring to the intense research in the 

branch of indigo chemistry during the late nineteenth century. Baeyer reported the 

formation of dioxindole (161), along with isatide (162), a white substance when isatin 

was reduced. Further reduction of dioxindole in presence of hot zinc oxide gave 

oxindole (163) and finally, indole (96) (Scheme 37).71
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                                                                                            163                                               96

Scheme 37: The stepwise reduction of isatin to indole as recorded by Baeyer

 The ability of isatin to dissolve in an alkali to form the salt of isatinic acid (165) 

inspired Kekule to suggest that isatinic acid was o-aminobenzoylformic acid and that 

isatin (164) was its internal anhydride. Baeyer realized Kekule’s proposition, and saw 

the relationship of dioxindole and oxindole to isatin. This led Baeyer to formulate his 

synthesis of isatin in 1878 by the oxidation of oxindole73 and  also to propose two 

structures for isatin: the “stable” lactam isatin (164) and the “labile” lactim isatin (166) 

(Figure 9).71  
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COO
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                                                     164                                          165

Scheme 38: The reaction behind Kekule’s proposition 
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Figure 9: The two proposed structures of isatin by Baeyer                             
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Scheme 39: The first preparation of isatin          

 Eventually, Baeyer synthesized isatin by boiling o-nitrophenylpropiolic acid with 

alkali in 1878.72                                                                                                                                                                                                                       

 2.2 Significant isatin syntheses:

 The discovery of isatin, an orange crystalline solid has spawned a multitude of 

reactions pertaining to its synthesis. This section summarizes some of the well-known 

syntheses of isatin.

2.2 (a) Claisen and Shadwel isatin synthesis73:

 One of the earliest preparatory routes to isatin was a three step synthesis from o-

nitrobenzoylchloride (167) developed in 1879. Known as the Claisen and Shadwel’s 

synthesis, the first step was the conversion of o-nitrobenzoylchloride (167) into the 

nitrile by the action of KCN, which was successively treated with HCl and KOH to 

afford the potassium salt of o-nitrophenylglyoxalic acid (isatinic acid) (168). Reduction 

of 168 in an alkaline medium to the potassium salt of o-aminophenylglyoxalic acid 

(169) as the second step, was ultimately followed by an acid treatment to complete 

the formation of  isatin. In this manner, Claisen and Shadwel’s synthesis substantiated 

the structure of isatin as  suggested by Kekule (Scheme 40).
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Scheme 40: Claisen and Shadwel isatin synthesis

2.2 (b) Sandmeyer’s syntheses:

 Sandmeyer’s method74 of synthesizing isatin and many of isatin derivatives tends to 

be the favorite of many synthetic organic chemists even today. This reaction begins 

from an aniline 170, being treated with chloral hydrate and hydroxylamine in presence 

of aqueous sodium sulfate to form an intermediate isonitrosoacetanilide 171. The 

subsequent conversion of 171 to isatin 164, when treated with sulfuric acid or less 

frequently polyphosphoric acid completes the sequence of Sandmeyer’s synthesis 

(Scheme 40). Several substituted anilines have been successfully converted into the 

corresponding isatins, usually in high yields. The advantage of this method lies in the 

fact that the reagents are cheap and easily available. For example, isatin (164) was 

prepared in >75% yields;72 however, methyl-3-aminobenzoate (170x) afforded the 

corresponding methyl-4-isatincarboxylate (164x) in a low yield of 34%.75 The 

drawback of this method lies in the inefficiency to prepare nitroisatins from 

nitroisonitrosoacetanilides and also in the formation of two isomers from meta-

substituted anilines.
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    170                                                                   171                                              164 (R=H)
     170x (R= 3-COOMe)                                                                                            164x (R=4-COOMe) 

Scheme 41: The Sandmeyer synthesis

 A second method developed by Sandmeyer to synthesize isatins, generally referred 

to as “Sandmeyer’s diphenylurea isatin synthesis”,72 begins with a reaction between a 

symmetrical diphenylthiourea (172) and potassium cyanide in the presence of lead 

carbonate to form a cyanoformamidine (173). The next step is the reduction of 173 

with ammonium sulfide and subsequent ring closure to isatin-2-anil (175) in presence 

of sulphuric acid; The ring closure to isatin-2-anil (175) could also be accomplished 

with aluminium chloride in the presence of benzene or carbon disulfide.  An acid 

catalyzed hydrolysis of isatin-2-anil (175) afforded the desired isatin (164) (Scheme 

42).
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H
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Scheme 42: Sandmeyer’s diphenylurea isatin synthesis
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2.2 (c) Stolle’s synthesis: 

 An alternative to Sandmeyer’s synthesis is the Stolle’s method (Scheme 43). This 

synthesis involves the reaction between the aniline (170) and oxalyl chloride to form 

the intermediate chlorooxalylanilide (176), which cyclized to the corresponding isatin 

in the presence of a Lewis acid, usually aluminium chloride or BF3.Et2O or TiCl3.76 

This reaction was particularly useful in the synthesis of 1-aryl and polycyclic isatins.72 

An application of this reaction is seen in the synthesis of Melostatin A, although in low 

yields.77  

                  

R
NH

O

O

R
NH2 N

H

O

ORCl
(COCl)2 Lewis acid

                        170                                                 176                                                  164 (R=H)

Scheme 43: Stolle’s isatin synthesis

2.2 (d) The Martinet isatin synthesis72, 73, 78: 

 The Martinet synthesis features a condensation between an aromatic amine and an 

oxomalonate ester (meso-oxalic acid esters) (178) in the presence of an acid to yield 

a 3-(3-hydroxy-2-oxindole)carboxylic acid derivative (179), which upon oxidative 

decarboxylation affords the desired isatin (Scheme 44). This method was successfully 

applied to synthesize 5,6-dimethoxyisatin (180) from 4-aminoveratrole (177), but was 

less successful when applied to 2,4-dimethoxyanilne.72 
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Scheme 44: Martinet isatin synthesis

2.2 (e) Gassman synthesis: 

 Another general procedure was developed by Gassman and his group79 in the late 

nineteen seventies. Although rarely used, this procedure deserves to be mentioned 

because of a different pathway, wherein a sulphur compound was used en route to 

isatins. The applicability to anilines with a broad spectrum of electron-withdrawing and 

electron-donating substituents offers an additional advantage of this reaction. The 

synthetic sequence begins with the preparation of a 3-methylthio-2-oxindole (176) 

from a substituted aniline (170). Subsequent chlorination of the 3-methylthio-2-

oxindole 176 with NCS followed by hydrolysis yields the corresponding isatin. Two 

methods were designed to synthesize the 3-methylthio-2-oxindole (176), and the 

method of choice depends upon the substituents on the aromatic ring. With electron-

withdrawing groups substituted on the aromatic ring, the synthesis of the oxindole 

derivative was achieved via an N-chloroaniline intermediate 171, which further reacts 

with a methylthioacetate ester (172) to give the azasulfonium salt (174) (Method 1). In 

the case of electron donating substituents, the azasulphonium salt 174 was 

synthesized by reacting the aniline with the chlorosulfonium salt (173) (Method 2). 

  The reaction is believed to proceed through a proton abstraction from the 

azasulfonium salt 174 to form an intermediate sulphur ylide 175, which undergoes a 

50



Sommelet-Hauser rearrangement, followed by ring closure, to afford the 3-

methylthio-2-oxindole 176. 
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Scheme 45: Gassman’s isatin synthesis

 2.3 Miscellaneous Syntheses:

 A considerable number of less frequently employed procedures have been 

developed by several of researchers for the preparation of isatin and isatin-

derivatives. One of those less frequently referred syntheses is the Reissert’s synthesis 
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of isatin, documented in 1904. This reaction involves the formation of isatin from 

thiooxanilide in the presence of sulphuric acid (Scheme 46).80 

                           NH O

SPhHN
Conc. H2SO4
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R
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R

                                        178                                                164 (R=H)

Scheme 46: Reissert isatin synthesis

 A relatively recent method, published in 1994, is based upon the directed ortho-

metalation of N-pivaloyl- and N-Boc anilines.81 The dianions formed are trapped with 

diethyloxalate and the isatins are obtained after deprotection and cyclization of the 

intermediate ketoesters 186 under acidic conditions (Scheme 47). This method has 

the advantage of being regioselective when meta-substituted anilines with metalation 

directing groups such as OMe are used. 
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                   179                                          180                                                   164 (R=H)

Scheme 47: Isatins via metalation of anilide derivatives

 Another report describes the synthesis of isatins via a lithium-halogen exchange 

reaction of ortho-bromophenylureas. Carbonylation and subsequent cyclization 

afforded the respective isatins in good yields.82 
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Scheme 48: Isatins via lithium assisted carbonylation

 There have been several articles pertinent to the oxidation of indoles by chromic 

acid as a preparatory route to isatins. A recent article by Yadav and his group 

described an indium chloride catalyzed, IBX (2-iodoxybenzoic acid) mediated 

oxidation of indoles to isatins in excellent yields.83 Another noteworthy preparation of 

isatin involving a mild oxidation of 3-bromoindole (183) with N-bromosuccinimide 

through the formation of the intermediate 3,3-dibromo-2-oxindole (186) has been 

reported by Parrick and coworkers. Facile hydrolysis of the intermediate 186 in 

aqueous methanol afforded the isatin in high yield.84 This strategy was applied to 

obtain 4- and 6-substituted isatins from the hydrolysis of the corresponding 3,3-

dihalo-2-oxindoles (Scheme 49).85
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Scheme 49: Oxidation of indole to isatin with NBS
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 The use of a palladium in the synthesis of isatins has been demonstrated by 

Yamamoto and his coworkers. The synthetic sequence describes the “palladium- 

catalyzed double carbonylation” of ortho-haloacetanilides (187) in the presence of 

diethylamine to yield the corresponding α-ketoamide 188. The α-ketoamide afforded 

the isatin (164) in nearly quantitative yield upon acid hydrolysis (Scheme 50).86 
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Scheme 50: Isatins via palladium-catalyzed double carbonylation

2.4 The significance of isatin:

 The ability to display a wide variety of biological activities has established isatin as a 

‘versatile starting material’ in the design and synthesis of several new compounds. 

Isatin has been found as an endogenous material in mammalian tissues. The 

presence of both the keto and the lactam groups in isatins has led to numerous 

reactions of which reduction and nucleophillic addition at the C-3 keto group are of 

potential interest. The property of isatins to yield indoles on reduction has been 

applied in the synthesis of substituted ellipticine derivatives.87 Partial reduction of 

isatins yields dioxindole and oxindole. An acid catalyzed reaction between isatin (164) 

and oxindole (163) gives isoindigo (189), which is diastereoselectively converted into 

diazacrisenodiones (191) via reduction and subsequent rearrangement of the 

intermediate 190 (Scheme 51).71
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Scheme 51: Reaction between isatin and oxindole

 Isatin was used as the starting material in the synthesis of the analgesic drug, 

pemedolac (195). The precursor to this drug, an indole derivative, was synthesized 

from isatin and methyl-3-phenylpropionate (192). This reaction was initiated by a C3 

alkylation to yield a dioxoindole derivative (193), which was reduced to the 

corresponding indole (194) (Scheme 52).
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Scheme 52: The intermediate to Pemedolac

 A similar reaction sequence was used in the synthesis of the alkaloid, Hobertine 

(198).71

N
H

O

O

N

H H
Piperidine

EtOH N
H

O

HN

H

H

N
H

HN

1. KBH4

2. LAH

H

H

       164                        196                                      197 (86%)                                          198 (25%)

Scheme 53: Synthesis of Hobertine 

 

 Isatin reacts with hydroxylamine and hydrazine derivatives to give the expected 

condensation products, but the reaction with ammonia led to the formation of isamic 

acid (201) and isamide (202). Although these products were known since 1876, it was 

not until 1976 that their actual structures were elucidated by Sir John Cornforth.88 

Isamic acid is structurally regarded as a dimer formed from the reaction between two 

56



molecules of isatin and one molecule of ammonia. The formation of isatin imine, from 

a condensation in the first step, followed by the imine attack on the second molecule 

of isatin, would lead to an intermediate 200 that is ultimately transformed into isamic 

acid 201. This transformation is assumed to proceed via lactamization and 

subsequent ring opening and re-closure by an internal nucleophillic attack. A second 

equivalent of ammonia converts the acid into the amide 202 (Scheme 54).
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Scheme 54: The reaction between isatin and ammonia     

                                                                                                                                       

 Contrary to the expected nucleophillic attack at C3, the reaction between ammonia 

and N-acetylisatin  (203) occured with a nucleophillic attack at C2 resulting in a ring 

opening reaction. The benzoylformamide (204) obtained as the product further reacts 

with a second equivalent of ammonia to yield the quinazoline derivative (205) 

(Scheme 55).71
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Scheme 55: The reaction between N-acetylisatin and ammonia 

 Oxidizing agents like hydrogen peroxide or chromic anhydride oxidize isatin to 

isatoic anhydride (206), which condenses with proline to afford a 

pyrrolo[1,4]benzodiazepine ring (207), a structural pattern found in antineoplastics 

(Scheme 56)71. 
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Scheme 56: The pyrrolo[1,4]benzodiazepine ring synthesis

 Known as the ‘Pfitzinger reaction’ in organic chemistry, the reaction between isatin 

(164) and acetone in presence of an aqueous alkali to give quinoline-4-carboxylic acid 

(cinchoninic acid) (211) was first published by Pfitzinger in 1886.89 Since its discovery, 

there have been numerous articles wherein isatin and its derivatives were reacted 

with several ketones to generate a series a cinchoninic acid derivatives.90 The 

generally accepted mechanism for this reaction involves the hydrolysis of the amide 

bond of isatin to form the salts of isatoic acid (169) that condense with the ketones to 

form the salt of the enamine (208). The salt undergoes cyclization and dehydration to 
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yield the desired 4-quinoline-carboxlic acids as the salts (210), which are hydrolyzed 

with an acid, usually acetic acid to form the desired products (Scheme 57). The 

Pfitzinger reaction has also been carried out with α-acetoxyacetophenones, in which 

case 3-hydroxy-quinoline-4-carboxylic acids were obtained. Articles with hydrazides 

and enaminones leading to 4-carboxamido-quinoline-3-carboxylates as well as  

imidines, which lead to 2-aminoquinoline-4-carboxamides were also reported. 
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Scheme 57: The Pfitzinger reaction

 A large number of isatin applications are listed in several scientific journals, including 

those in medicine and pharmacy. The use in colorimetry, owing to the property of 

isatin to form coloured substances with certain amino acids and steroids and also the 

use in catalysis, when complexed with transition metals, are some of the 

miscellaneous applications worth mentioning. 
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2.5 Results and discussion:

 As a result of the success encountered in the synthesis of indoles and 

pyrroloheterocycles via the ‘palladium-catalyzed reductive N-heteroannulation 

methodology’, the similar annulation conditions of palladium diacetate (6 mol%), 

triphenylphosphine and carbon monoxide (6 atm) were tried by a former student Chet 

Howerton on a new substrate, 2-(2-bromoethynyl)-1-nitrobenzene (212a).91 He 

observed that 212a was completely consumed within an hour at 70 OC yielding a new 

product, identified as isatin (Scheme 58). 
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H
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                                  212a                                                          164 (35%)                                                     

Scheme 58: The discovery of the palladium-catalyzed synthesis of isatin

 Reflecting upon the unique position isatin occupies in the annals of medicinal and 

organic chemistry, this reaction was subjected to further investigation. Executing the 

reaction in the absence of carbon monoxide, nevertheless resulted in the formation of 

isatin, indicating that carbon monoxide was not a requirement in this reaction (Table 

15). The addition of benzoquinone as an oxidant did not produce any remarkable 

change except when THF was used as the solvent (Table 15, Entry 6). When this 

reaction was performed in the presence of triphenylphosphine in water, without any 

palladium catalyst at room temperature, isatin was obtained after 24 h in a low yield 

along with the acetylene 213. This result indicated that palladium does indeed 

catalyze the formation of isatin from its precursor 212a (Scheme 59).
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Scheme 59: The reaction behind the necessity of palladium to catalyze the
                     isatin  formation

 This reaction was then tested with a variety of solvents and two other palladium 

catalysts, bis(acetonitrile)palladiumchloride [PdCl2(MeCN)2] and 

bis(triphenylphosphine)palladiumchloride [PdCl2(PPh3)2] under different conditions. 

The results of this study are presented in Table 15. Isatin was obtained in all the 

cases, but was either in low yield, or was contaminated with some inseparable 

material in most attempts. The reaction was also examined with the chloro and iodo 

analogues (212b and 212c) (Table 15, entry 14,16,17,18). The best result was 

observed when the temperature was 60 OC with the solvent as acetone and 

PdCl2(PPh3)2 as the catalyst, wherein isatin was obtained in a yield of 83% (Entry 16). 

With this observed result, iodo-alkynes were chosen as the “substrate of choice” with 

PdCl2(PPh3)2 as the catalyst and acetone as the solvent. 
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Table 15: Optimization of the reaction conditions, as recorded by Chet Howerton

                                                     
N
H

O

O
NO2

X

                                                 212a (X=Br)                                       164          

Entry X Solventa Catalyst (mol%) Additive Temp Time Yieldb

1 Br MeCN Pd(OAc)2 (10)
PPh3 (40 mol%),

CO (4 atm)
70 OC 1 h 35%

2 Br MeCN Pd(OAc)2 (10) CO (4 atm) 70 OC 1 h 11%

3 Br MeCN Pd(OAc)2 (10) ---- 70 OC 4.5 h ~ 22%

4 Br MeCN Pd(OAc)2 (10) Benzoquinone (100 mol %) 70 OC 4 h ~ 42%c

5 Br MeCN Pd(OAc)2 (1) Benzoquinone (100 mol %) 70 OC 22 h 7%

6 Br THF Pd(OAc)2 (10) Benzoquinone (100 mol %) 70 OC 3.5 h 52%

7 Br THF Pd(OAc)2 (5) ---- 65 OC 3.5 h 10%

8 Br MeCN PdCl2(MeCN)2 (10) ---- 70 OC 3 h ~ 24%c

9 Br THF PdCl2(MeCN)2 (5) ---- 70 OC 3 h ~ 24%c

10 Br THF PdCl2(PPh3)2 (5) ---- 65 OC 3.5 h ~ 44%c

11 Br DMSO PdCl2(PPh3)2 (5) ---- 65 OC 3.5 h ~ 25%c

12 Br CH2Cl2 PdCl2(PPh3)2 (5) ---- 65 OC 24 h ~ 48%d

13 Br Acetone PdCl2(PPh3)2 (5) ---- rt 20 h 48%

14 Cl Acetone PdCl2(PPh3)2 (5) ---- rt 22 h 47%

15 Br Toluene PdCl2(PPh3)2 (5) ---- 60 OC 20 h ~ 47%

16 I Acetone PdCl2(PPh3)2 (5) ---- 60 OC 4 h 83%

17 I Acetone PdCl2(PPh3)2 (5) ----- rt 20 h 73%

18 I Acetone AgNO3 (5) ---- rt 237 h 11%

(a) 0.02-0.06 M solution of the substance (b) total consumption of the starting material (c) impure product obtained 

(d) in a closed vessel
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 The synthesis of 2-(2-bromoethynyl)-1-nitrobenzene (212a) was carried out in two 

steps from the commercially available ortho-iodonitrobenzene (214). The first step 

involved the preparation of 2-nitro-1-[2-(trimethylsilyl)ethynyl]benzene (216) utilizing 

the palladium(0) catalyzed “Sonagashira reaction”92 between 214 and 

trimethylsilylyethyne (215). The typical Sonagashira conditions: a palladium(0) 

complex and a halide salt of copper(I) were used with triethylamine as the solvent. 

The palladium(0) complex used in our case was the 

tetrakis(triphenylphosphine)palladium generated in situ from PdCl2(PPh3)2 and 

triphenylphosphine, and the product 2-nitro-1-[2-(trimethylsilyl)ethynyl]benzene (216)93 

was obtained in almost quantitative yield. This compound was then transformed into 

desired 2-(2-bromoethynyl)-1-nitrobenzene (212a) in the presence of NBS and a 

catalytic amount of silver nitrate in DMF as the solvent (Scheme 60).94 

          

I

NO2

TMS

Sonagashira Coupling
NO2

TMS

AgNO3, DMF
NBS NO2

Br

            214                                                    216 (~100%)                                        212a

Scheme 60: The two step synthesis of 2-(2-bromoethynyl)-1-nitrobenzene (212a) 

 A series of iodo-alkynes were then synthesized from a selection of ortho-

iodonitrobenzenes having both electron withdrawing and electron donating 

substituents, following the aforementioned sequence. The Sonagashira coupling 

products were obtained in good yields (80-99%) for all substrates. However, it was 

found that the iodo-alkynes (217a...217g) were unstable and transformed into a red 
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substance on standing at room temperature. Although most of them were beyond 

identity, the one obtained from the iodo-alkyne 217d was identified as the 

corresponding 2-iodoisatogen (249). This bright red solid was stable at room 

temperature, and its structure was confirmed by a single crystal X-ray analysis. The 

formation of this isatogen 249 was also observed when the TMS-alkyne 216d was 

treated with NIS-AgNO3 under different catalyst loading and reaction times, at room 

temperature (Scheme 61). These results as recorded by us are presented in Table 16. 

        
NO2

TMS

AgNO3, DMF

NIS NO2

I
MeO MeO

MeO

N
I

O

O

                     216d                                                       217d                                           249        

Scheme 61: Formation of the 2-iodo-5-methoxyisatogen (249), alongside the
                    iodoalkyne 217d   

Table 16: The reaction conditions evaluated on 5-methoxy-2-nitro-1-
                 [2-(trimethylsilyl)ethynyl]benzene (216d)           

Entry AgNO3 Time
NO2

I
MeO

           217d

MeO

N
I

O

O

         249   

1 50 mol % 1 hr 77% -----

2 50 mol % 5 hr ----- 23%

3 100 mol %   5 min 95% -----

4 5 mol % 24 hr ----- 83%
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 The obtained iodoalkynes were ultimately treated with PdCl2(PPh3)2 (5%) in 

acetone, under an inert atmosphere and at ambient temperature, and the 

corresponding isatins were obtained in moderate yields (Table 17). It was, however, 

the pyridine derivative (220), which failed to yield the corresponding 4-azaisatin. An 

unidentified orange substance was formed in all attempts. 

Table 17: The sequential conversion of 2-halonitrobenzenes to the
                corresponding isatins      

Entry              Sonagashira Coupling-------------- Iodination----------------------- Isatin 

I

NO2
R

NO2

TMS

R
NO2

I

R
N
H

O

OR

1 214a     R = 4-NO2 216a 217a1 (89%) 164a (47%)

2 214b        R = 4-Cl 216b 217b1 (89%) 164b (47%)

3 214c    R = 4-OMe 216c 217c1 (77%) 164c (59%)

4 214d    R = 5-OMe 216d 217d1 (77%) 164d (61%)

5 214e       R = 3-Me 216e 217e1,2 (93%) 164e (79%)

6 214f       R = 4-Me 216f 217f1 (73%) 164f (59%)

7 214g       R = 6-Me 216g 217g1 (93%) 164g (34%)

8
N Cl

NO2
         218

   

N

NO2

TMS

       219

N

NO2

I

            220 (69%)

-------

1 The compounds decompose on standing at room temperature
2 The compound decomposes on attempted purification on silica.

 Taking into account the availability of the inexpensive 6-nitropiperonal (221) and 

foreseeing the method to convert it into the corresponding isatin, the precursor 
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bromoalkyne 223 was synthesized in two steps: a Corey-Fuchs reaction95 as the first 

step to give the dibromide 222, and a cesium carbonate mediated dehyrobromination 

as the second step. The precursor bromoalkyne 223 thus obtained gave the expected 

5,6-methylenedioxyisatin (224) in 35% yield in the presence of PdCl2(PPh3)2 and 

acetone (Scheme 62). 

        

O

O

CHO

NO2

CBr4, PPh3

CH2Cl2, 18 h

O

O NO2
Br

Br O

O NO2

Cs2CO3

DMF, rt, 4 h

Br

             221                                                       222                                                    223

                                                                                                                          
N
H

O

O
O

O

PdCl2(PPh3)2
Acetone

                                                                                                                                    224

Scheme 62: Preparation of 5,6-methylenedioxyisatin (224)

 A notable observation during the conversion of the iodoalkynes to isatins was a 

gradual colour change of the reaction mixture from yellow to orange, and then to red. 

Having identified the isatogen 249 as the transformed product from the iodoalkyne 

217d, an analysis of the reaction at the intermediate “orange-colour” stage was 

attempted. 

 The bromoalkyne 212a was refluxed in dichloromethane with PdCl2(PPh3)2 (10%) at 

45 OC for 80 minutes under an inert atmosphere. The orange solution was cooled to 

room temperature, the solvent evaporated, and the crude was quickly purified by flash 

chromatography. The product obtained was an orange solid, which gradually changed 
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to isatin at room temperature. The spectroscopic analysis of this orange solid 

indicated it to be 2-bromoisatogen (225) (Scheme 63).

 

NO2

Br

PdCl2(PPh3)2

CH2Cl2, 80 min, 45 OC N
O

Br

O

                                           212a                                                            225

Scheme 63: Formation of 2-bromoisatogen (225)

 2.6 Isatogens: 

 Isatogens, also known as 2-substituted-3H-indole-3-one-1-oxides were first 

described by Baeyer during his years of research on indigo in 1881.96 The parent 

isatogen 227 reported by Baeyer was the 2-carboxylic acid ethylester (227), prepared 

by the action of cold sulphuric acid on the o-nitrophenylpropiolic acid ethylester (226) 

(Scheme 64).

NO2

COOEt

H2SO4

N
O

COOEt

O

                                           226                                                       227

Scheme 64: Baeyer’s synthesis of the “parent isatogen” 

 Synthetic routes to 2-aryl-substituted isatogens have been reported from “alkynic 

derivatives”. One of the reported reactions involved a coupling between the 2-

ethynylbenzene 228 and ortho-iodonitrobenzene (214) under the Stephen-Castro 

conditions to yield the (o-nitrophenyl)phenylacetylene (229), which cyclized to 2-
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phenylisatogen (230). A recent publication utilized the Sonagashira conditions on the 

same substrate and the isatogen 230, was isolated as the product after 3-4 days in 

good yield.97 The same procedure was successful in preparing the 2-pyridyl isatogen 

233 in good yield (Scheme 65). 

I

NO2

Cu
Pyridine

N
O

O

NO2
  

214                       228                                                 229                                                 230 (65%)

I

NO2

N PdCl2(PPh3)2

CuI, Et3N
NO2

N

N
O

O
N

214                        231                                                   232                                                233 (70%)

Scheme 65: Stephen-Castro conditions and Sonagashira conditions leading to 

                     the isatogen 

 A reaction that involves an ultraviolet irradiation of pyridinium ethanol derivatives 

236, prepared from 2-nitrobenzaldehydes 234 and benzyl pyridinium salts 235 to form 

2-arylistogens 236, has been developed by Krohnke and his coworkers.98 These 

isatogens 238 were also obtained by the action of a base on vinylpyridinium salts 237, 

the dehyrated products of the pyridinium ethanol derivatives 236 (Scheme 66). 
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CHO

NO2
N

NO2

N
O

O

NO2

HO N
O2N

NO2

hv

    234                          235                                           236                                             238 (91%)

                                                                                      

N
O2N

NO2

- H2O

                                                                                                                  237

Scheme 66: Krohnke’s isatogen synthesis

 Alternately, photochemical transformations of 2-nitrophenylalkyne derivatives have 

also been published.99 Oxidation of 2-substituted indolines provides another route to 

isatogens. Indolines, usually obtained by the reduction of 2-substituted indoles with 

sodium cyanoborohydride, were oxidized to the corresponding isatogens in the 

presence of m-CPBA. 

 Bond and Hooper have reported the formation of 2-phenylisatogen (230) in high 

yield from the peracid oxidation of the corresponding N-hydroxy-2-phenylindole (239) 

(Scheme 67).100 A direct oxidation of 2-phenylindole to 2-phenylisatogen (230) via 

oxidation with Mimoun’s reagent (MoO5-HMPA) deserves to be mentioned as MoO5 

was found to exhibit this property only when complexed with HMPA (Scheme 68).101 
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N
OH

4-nitroperbenzoic acid

N
O

O

                                             239                                                                        230 (98%)

Scheme 67: Bond and Hooper’s isatogen synthesis

                                    

N
H

MoO5. HMPA

N
O

O

                                                240                                                                     230

Scheme 68: Isatogen synthesis with Mimon’s reagent

 Interest in isatogens has been due to their biological activities against a range of 

bacteria and fungi. Some isatogens have been known to inhibit the synthesis of ATP 

from mitochondrial preparations.102 Isatogens were also suggested as spin trap 

adducts for trapping hydroxyl and superoxide radicals.109 The redox potentials of 

isatogens are comparable to naphthaquinones and benzoquinones; a property that 

renders them as good oxidizing agents.103

 The ability of isatogen to exhibit reactivities at both the nitrone and carbonyl groups 

is apparent from its structure. This has instigated a study on the reactivity of these 

compounds, an outcome of which has been the formation of ring expansion products. 

The reaction carried out by Noland and Jones on the 2-phenylisatogen (230) with 

ammonia in presence of ethanol gave 3-phenyl-4-cinnolinol-1-oxide (244), which was 

reduced to 3-phenyl-4-cinnolinol (245). This transformation has been visualized as a 

nucleophillic attack of NH3 on C-2, followed by a ring-cleavage to form the 
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intermediate nitroso-derivative 242. A second intramolecular nucleophillic attack would 

lead to a ring closure to give the intermediate 243 which would undergo air-oxidation 

to the 1-oxide 244 (Scheme 69).104

N
O

O

Ph
NH3

N
OH

O

Ph
NH2

OH

NH2N
O

Ph

N
NH

Ph
OH

OH

        230                                        241                                       242                                   243

                                                                                    

Air

N
N

Ph
OH

O

H2 / Ni

N
N

Ph
OH

                                                                                             245                                      244

Scheme 69: Ring expansion reaction of 2-phenylisatogen with NH3

 A different type of ring expansion was encountered with trichloacetonitrile in xylene 

and phenylacetylene as two separate reactions. The products observed were a 

quinazolinone derivative (246) and 3-phenyl-4-quinolinol (247) respectively (Scheme 

70).105  
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N
O

O

Ph

CCl3N
xylene, reflux

N

NH

O

Ph

Ph

N

Ph
OH

CH3COOH

246

247

230

                                                                                                                                                      

Scheme 70: Ring expansion reactions of 2-phenylisatogen 

 On the other hand, nucleophillic additions at the carbonyl carbon were very rare, 

with only Grignard’s reagents and organolithiums reacting predominantly at the 

carbonyl site to yield the corresponding alcohols. This result substantiates the nature 

of the nitrone group as a potential site of a nucleophillic attack, as is evident from the 

structure.  

 An overview of the reactivity of isotogens encountered so far in literature portrays 

them as interesting intermediates. To our knowledge, 2-haloisatogens have not been 

reported in literature to date. Taking into consideration the isolation of the two 

isatogens 249 and 225, an attempt was made by Chet Howerton to isolate the 

corresponding isatogens from all the prepared iodo-alkynes, 212a and 217(a-g). 

These attempts were unsuccessful, as the isolated orange intermediates either 

displayed signs of decomposition immediately after purification or were contaminated 

with the respective isatin. The only stable isatogen, apart from 249 and 225 was 248, 

obtained in 85% yield along with a trace of the isatin when the solution of compound 

223 in acetone was reacted with PdCl2(PPh3)2 for 50 minutes at room temperature 
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(Scheme 71). Unlike the 2-bromoisatogen 225, this compound was stable enough at 

room temperature to carry out the respective chemical analysis.

O

O NO2

Br

PdCl2(PPh3)2

Acetone, 50 min, RT N
O

Br

O
O

O

                                   223                                                                     248 (85%)

Scheme 71: The preparation of 2-bromo-5,6-methylenedioxyisatogen (248)

 An auric bromide catalyzed cyclization of o-(arylalkynyl)nitrobenzenes to the 2-aryl-

isatogens has been developed by Yamamoto et al.106 Intrigued by the success of this 

AuBr3-catalyzed reaction, the similar reaction was done on compound 212a. The 

reaction was followed by TLC. With no progress after 20 hours, the reaction was 

allowed to stir for 4 days, wherein a red substance was isolated from the crude in a low 

yield. The spectral data showed traces of isatin contaminated with some substance, 

most probably the isatogen. The low yield of a contaminated product, after 4 days has 

led us to believe that the conditions developed by Yamamoto et al. are not ideal for the 

conversion of 212a to isatin or the isatogen (Scheme 72).

                                      
NO2

Br

AuBr3 (3.5 mol%)

CH2Cl2, 4 d, rt N
H

O

O

                                          212a                                                         164 (low yield, contaminated)

Scheme 72: The attempted auric bromide catalyzed reaction

 As the carbon atom of the nitrone group is prone to be attacked by nucleophiles, the 

likeliness of substituting the halogen by a suitable nucleophile cannot be overlooked. 
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A test reaction was performed on the 2-bromoisatogen (225) by allowing it to stir in 

ethanol for 24 hours, under an inert atmosphere. Purification of the crude afforded the 

2-ethoxyisatogen as a yellow solid in an excellent yield of 90% (Entry 1, Table 17). 

However, the reaction with allyl alcohol proved to be unsatisfactory with the 

corresponding allyloxyisatogen obtained in low yield along with the isatin (Table 17). 

  A one pot reaction carried out on 1-(2-bromoethynyl)-2-nitrobenzene 212a in 

dichloromethane as a solvent with Pd(PPh3)2Cl2 (10%) and ethanol also afforded the 

2-ethoxyisatogen (250a) in 70% yield within 3 hours. As an ultimate example, 4-

chloro-2-nitro-1-(2-iodoethynyl)benzene (212c) was dissolved in dichloromethane and 

reacted with Pd(PPh3)2Cl2 (10%) and ethanol. However, this reaction afforded the 

corresponding 2-ethoxy-6-chloroisatogen (250c) in a low yield of 23% after 6 hours 

(Scheme 73).

                                 

N
O

O

OEt

NO2

Br

Pd(PPh3)2Cl2 (10%)
CH2Cl2, EtOH,
  3 h, rt

                                    212a                                                            250a (70%)

                         

N
O

O

OEt
NO2

Br

Pd(PPh3)2Cl2 (10%)
CH2Cl2, EtOH,
  6 h, rt ClCl

                                   212c                                                              250c (23%)

Scheme 73: The one pot synthesis of 2-ethoxyisatogens, 250a and 250c 
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N
O

O

Br
N
O

O

ORROH

                                               225                                             250 (R=OEt)

                                                                                                  251 (R=O-allyl)

Table 18: Conditions evaluated in the preparation of 2-alkoxyisatogens

Entry ROH Solvent Time  Temp. 2-alkoxyisatogen isatin

1 EtOH ----- 24 h              RT 90% ----

2 HO
33 eq

Methylene chloride 24 h RT 30% ----

3 HO
2.5 eq

THF, NaH 3 h RT ----- 29%

4 HO
1 eq

Chloroform 40 min RT ---- 38%

5 HO
4 eq

Chloroform 21 h RT 44%a 13%

6 HO
5 eq

Methylene chloride 16 h RT 38% 33%

7 HO
2 eq

Methylene chloride 26 h RT ---- 30%

8 HO
4 eq

Toluene 18 h RT 17%

9 HO
4 eq

Toluene 2.5 h RT 8% 45%

10 HO
2 eq

Toluene 4 h RT ---- 44%

a Contaminated
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2.7 Conclusion: 

 Although at this stage, the mechanism of these transformations remains unclear, it is 

certain that   palladium has catalyzed the novel transformation of 1-(2-haloethynyl)-2-

nitrobenzenes into the corresponding isatins. This transformation is perceived to have 

taken place through the intermediate thermally labile 2-haloisatogens. It was also 

observed that silver had the unusual ability to catalyze only the formation of 5-

methoxyisatogen (249) from the TMS-alkyne. The reactions executed on the isolated 

2-bromoisatogen (225) have demonstrated that the halogen could be substituted with 

a good nucleophile besides the fact that the prepared 2-ethoxyisatogen and the 2-

allyloxyisatogen are very stable.    
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Chapter 3

  Carbazolones and 3-Hydroxycarbazoles

3.1. Introduction: 

 Carbazoles are identified with a structure consisting of a benzene ring fused onto the 

five-membered ring at 2,3 position of an indole nucleus. The presence of the carbazole 

moiety in many biologically active compounds has garnered widespread attention in the 

branch of heterocyclic chemistry.107 Most of the alkaloids isolated from plants of 

Glycosmis, Clausena and Murraya genera were found to contain the carbazole scaffold; 

the genus Murraya, being the richest source of carbazole alkaloids based on C13, C18, 

C23 skeletons.108 Different species of Streptomyces, slime moulds and marine sponges 

have also been the source to several carbazole alkaloids. In addition to the biological 

sources, abiologic sources such as coal tar, petroleum oil, soil humus and mud were 

also reported to yield carbazoles.109 Treatment of psoriasis with coal tar has been 

known, although not favored by patients due to aesthetic reasons. Investigations on 

psoriasis treatment with fractionated components of coal tar have confirmed carbazole 

to be the active ingredient in coal tar.110

 Contrary to the notion that the numbering of a heterocyclic compound begins with the 

heteroatom, carbazole and its derivatives are numbered beginning with the carbon atom 

closest to the nitrogen atom on the benzene ring, thus assigning the number 9 to the 

nitrogen atom in the molecule (Figure 10).
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Figure 10: Carbazole

          

 Carbazolones, the oxo analogues of carbazole and substituted carbazoles are also 

documented in journals as biologically active compounds. They are frequently 

encountered as intermediates in the synthetic efforts of several carbazole alkaloids, 

such as murrayaquinone A, murrayanine, koenigine-quinones A and B, clausenalene, 

glycoborine, (+)-aspidospermidine, clausenamine, clausenol and clausenine, clausenal, 

dimeric murrayafoline A, pyrrayaquinones A and B, murrayafoline B and 

murrayaquinone B, hepazolidine, glycozolinol, (-)-gilbertine, and glycozoline. An 

example of a carbazolone drug used to prevent nausea in patients undergoing 

chemotherapy and radiation treatments for cancer is ondansetron.111

                                                                        
N
H

O N

N

                                                          

Figure 11: Ondansetron

3.2. The construction of the carbazole ring

3.2 (a) The Fischer indole synthesis:

 A common method to construct the carbazolone ring is the Fischer indole synthesis. 

Beginning with cyclohexane-1,3-dione (252), the requisite phenyl hydrazone 253 was 
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prepared and converted into the carbazolone in presence of a Lewis acid (Scheme 

74).112 This reaction usually works quite well with 2-and 4-substituted phenylhydrazines, 

but a mixture of regioisomers is obtained with the 3-substituted analogues.113

                           
N
H

OO

O

PhNHNH2
AcOH

O

N
NH

H2SO4

                              252                                         253                                        254 (51%)

Scheme 74: Fischer indole synthesis for carbazolones 

 Another widely accepted preparation of the intermediate phenylhydrazone 257 is the 

Japp-Klingmann reaction between benzene diazonium salt and 2-

(hydroxymethylene)-1-cyclohexanones (255). An acid mediated “Fischer indole 

synthesis” on the phenylhydrazone 257 would form the carbazolone (254) in the 

ultimate step (Scheme 75).

       

O
CHOH N2

O
N

N
H N

H

O

Fischer's SynthesisNaOAc
MeOH

          255                     256                                           257                                                            254

Scheme 75: Japp-Klingemann synthesis of the hydrazone 257, the substrate for
                     the Fischer indole synthesis 

3.2 (b) “The heteroannulation” method: 

 A group of carbazolone derivatives 114 have been prepared by Tricia Scott, a former 

member of our group by utilizing the palladium-catalyzed reductive N-heteroannulation 

reaction developed in our laboratory. The synthetic strategy comprised of treating 2-(2-
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nitrophenyl)-2-cycloalkenones 257 and 3-(2-nitrophenyl)-2-cycloalkenones 261 to the 

annulation conditions of the palladium catalyst, ligands and carbon monoxide to afford 

the respective carbazoles in good yields. The synthesis of the cyclization precursors 

257 and 261 was achieved by adopting the “Stille reaction” conditions reported by 

Johnson et.al. to couple 2-iodocycloalkenones 260 or 3-iodocycloalkenones 256 with 

aryl stannanes 255.115

NO2

O

R

R
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CO (4-6 atm)

N
H O
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O

I
R
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R PdCl2(PhCN)2, Ph3As

CuI, NMP

      255                       256                                                      257                                                   258
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O
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R

O
I

R
PdCl2(PhCN)2, Ph3As

CuI, NMP

       255                      260                                                      261                                                    259  

Scheme 76: The strategy to synthesize carbazolones

3.3. Results and Discussion:

 Among the numerous carbazolones prepared by Tricia Scott, were the carbazolones 

258(a-d), synthesized in excellent yields by the palladium catalyzed reductive 

heteroannulation reaction (Table 19). These four carbazolones could also be prepared 

by the Fischer’s indole synthesis. Also, the carbazoles, 258c and 258d, are bound to be 

formed as an isomeric mixture, had they been synthesized by Fisher’s method from 

their common precursor hydrazone 262.  
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Table 19: Carbazolones synthesized via palladium-catalyzed reductive 
                N-heteroannulation reaction

Entry Stille Coupled Product Carbazolone Yield

1

NO2

O

MeO

257a

N
H O

MeO

    
   258a

78%

2

NO2

O

257b

N
H O

    
258b

76%

3

NO2

O

MeO
257c

N
H O

MeO

258c

89%

4

NO2

O

OMe

257d

N
H O

OMe

258d

100%

 A report published in the year 1998 by Chowdhury and his group referred to the 

formation of 2-methoxy-6-methyl-8-oxo-5,6,7,8-tetrahydrocarbazole (258c) from a 

sequential Japp-Klingemann reaction and Fischer indole synthesis as a colourless solid 

in 65% yield.116 Another article by the same research group, published a few years 
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earlier in 1992, has quoted that 4-methoxy-6-methyl-8-oxo-5,6,7,8-tetrahydrocarbazole 

(258d) has formed in a yield of 50% from the same reaction, with no reported yield of 

isomer 258c.113a  Puzzled by these ambiguous results, the reaction was repeated by us 

under the same reported conditions.117 The partner for the Japp-Klingemann reaction, 

2-(hydroxymethylene)-5-methylcyclohexanone (264)118, was prepared from 3-

methylcyclohexanone (263) and reacted with m-methoxybenzene diazonium chloride 

(265) under basic conditions.118 The hydrazone 262 thus obtained, was treated with 

acetic acid and HCl to afford a mixture of the carbazolones 258c and 258d in an 

approximate ratio of 7:1 (Scheme 77).              

O

HCOOEt

Na/EtOH, RT, 22 h

O
CHOH

OMe

N2

O
N

H
NMeOCH3COONa

      263                                             264 (51%)            265                                                  262 (40%)

                                                     
N
H

AcOH
HCl

N
H

MeO

O O

OMe

                                                              258d (7%)                              258c (49%)

Scheme 77: The two isomeric carbazolones, 258c and 258d, obtained via the  

                     Fischer indole synthesis

                    

 In the year 2001, another group of researchers led by A. Chakravorty, a former 

member of the Chowdhury group, reported a Fischer indole synthesis on the 4-

methylcyclohexanehydrazone derivative 268, which was prepared in situ from a 

condensation between m-methoxyphenylhydrazine (267) and 4-methylcyclohexanone 

(266).119 The outcome of this reaction was the formation of two isomeric 
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tetrahydrocarbazoles 269c and 269d in a ratio of 9:1 (Scheme 78). These results are 

comparable to the results of the reaction executed by us as shown in Scheme 77.

N
H

N
H

MeO

OMe

NHNH2

O
OMe

NHNH

AcOH

OMe

 266                    267                            268                                        269d (6%)                       269c (54%) 

Scheme 78: The two isomeric tetrahydocarbazoles as reported by the

                     Chakravorty group

 To further substantiate our results, a Wolff-Kishner-Huang-Minlon reduction of 258c 

gave 269c having 1H-NMR chemical shifts, identical to those reported by the 

Chakravorty group.119 

 While the main focus of our group has been to construct the carbazolone ring from 3-

(2-nitrophenyl)-2-cyclohexeneone derivatives via the heteroannulation reaction, the 

concept of initiating an  internal nucleophillic addition on the nitro group to form a 

hydroxycarbazole was a possible consideration. Moskalev and Makosza have reported 

a reaction between the nitroarene 270 and cyclohexanone (271) in the presence of a 

base that has resulted in the formation of o-hydroxydiarylamines 272. The formation of 

272  was apparent from a direct nucleophillic addition of the cyclohexanone enolate on 

the nitro group. As a result of the problem encountered in the isolation and purification, 

272 was ultimately converted into the stable o-methoxy derivative 273 by the authors 

(Scheme 79).120 
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       270                       271                                         272                                              273 (60%)

                                                                                                                                   (Z= Et2N, R=H)

Scheme 79: Synthesis of o-hydroxydiarylamines by Makosza et. al

 Another reaction that demonstrates an intermolecular carbanion attack on the nitro 

group has also been reported by the same research group, which observed that 

acenaphthenone (274) gave an inseparable mixture of 275 and 276 when reacted with 

NaOH. A reduction of this mixture led to compound 275 exclusively. As a final  part in 

their study, the mixture was treated with methyl iodide to isolate these products as their 

N-methoxy and N-methyl analogues 277 and 278 (Scheme 80).121 
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Zn, AcOH

HN

275

NO2 NaOH, DMSO
RT, 30 min

HN N
HO

           274                                                         275                                    276

                                                                 

MeI, K2CO3
DMF

N N
MeO

                                                                              277                                    278 

Scheme 80: The “Makosza” group’s experiments on acenathenone

 With these reactions in mind, it was speculated that a similar reaction of the 

compound 257b with a base would lead to a carbazole derivative. Thus, a test reaction 

was performed on 257b at 70 OC with DBU as the base and DMF as the solvent. The 

reaction afforded the 1-methyl-3-hydroxycarbazole (279), with no trace of the N-hydroxy 

carbazole derivative.   
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NO2

O

DBU, DMF
70 OC, N2, 16 h

N
H

OH

      
                                        257b                                                       279 (28%) 

Scheme 81: The formation of 1-methyl-3-hydroxycarbazole (279)

 The reaction was also examined on 3-(2-nitrophenyl)-2-cyclohexeneone (257e), which 

afforded 3-hydroxycarbazole (283) in 20% yield under identical conditions. A number of 

conditions were tried in an effort to maximize the yield (Table 20), but the yield could not 

be increased beyond 23%. The reaction could be accounted with an initial nucleophillic 

addition of the carbanion 281a on the nitrogen atom of the nitro group. However, such a 

mechanism, as seen through the intermediate stages 281b through 281g seems to lead 

to a 3,9-dihydroxycarbazole (282) as opposed to the 3-hydroxycarbazole (283) 

(Scheme 82). A similar type of transformation was seen on acenaphthenone,121 

depicted in Scheme 80. The inseparable mixture of 275 and 276 gave the indole 275, 

when reduced with zinc and acetic acid. Comparing our results with those reported by 

the Makosza group, it is likely to assume that the N-hydroxycarbazole (282) is very 

unstable and is quickly transformed (reduced) into the carbazole 283. Also, the failure to 

obtain any N-hydroxymethylcarbazole upon the addition of methyl iodide (Entries 8 and 

10, Table 20) substantiates the assumption that the N-hydroxycarbazole is too short-

lived to be trapped as its methoxyderivative. 
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Table 20: Conditions evaluated in the synthesis of 3-hydroxycarbazole (283)

                                        NO2

O

Base, Solvent
Temp, N2, Time N

H

OH

                                              257e                                                     283

S. No. Base Eq. Solvent Time Temp. 283

SM 
(257e)rec

overed

1 DBU 2 THF 15 hrs 70 OC 20% --

2 DBU 2 THF 6 hrs 70 OC 17% 44%

3 DBU 2 THF 19 hrs 70 OC to 90 OC 17% 22%

4 KOH 1.3 DMSO 30 min reflux -- --

5 DBU 1 THF 21 hrs 70 OC 24% --

6 DBU 1 CH3CN 15 hrs 70 OC -- 35%

7 DBU 2 DMF 2 hrs 100 OC 24% --

8* DBU 1.7 DMF 2 hrs 100 OC 21% --

9** DBU 1 DMF 4 days RT 14% --

10*** DBU 1 DMF 3.5 days RT -- --

                                                                                                                                * MeI added after 2 h, let it go for another 15 min

**  another product, tentatively  assigned as 4,5-dihydroxycarbazole through NMR isolated in 10%, not detected 

through HRMS

*** MeI was added after 36 h, unable to characterize the products
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Scheme 82: The plausible mechanistic pathway to the 3-hydroxycarbazole (283)

3.4. Conclusion:

 In summary, a comparative study on the syntheses of carbazolones via the palladium-

catalyzed reductive N-heteroannulation methodology and Fischer’s synthesis was 

executed. It was evident from the results that the Fischer indole synthesis affords the 

desired products in a lower yield with an additional disadvantage of forming two 

regioisomers from the precursor m-methoxyphenylhydrazone derivative 262. Further, it 
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was also demonstrated that a base mediated reaction on 3-(2-nitrophenyl)-2-

cyclohexenone (257e) forms the 3-hydroxycarbazole (283). Although the yield of the 3-

hydroxycarbazole was low, it undoubtedly provides an insight into the mechanism and 

the stability of the predicted 3,9-dihydroxycarbazole (282). 
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Chapter 4: 

Attempted Synthesis of the Model Indole Fragment of Nosiheptide

 4.1. Introduction:

 Nosiheptide, a sulphur-containing polypeptide antibiotic was isolated from 

Streptomyces actuosus 40037 (NRRL 2954) in the early 1960’s by a group of French 

researchers.122,123 It inhibits protein synthesis in gram positive bacteria by binding to the 

ribosomal unit in vitro. Found to be non-toxic, it is frequently employed as a food 

additive to promote growth and weight gain in pigs and chicken. The structure of 

nosiheptide, determined by a series of chemical degradation processes, X-ray 

crystallographic and NMR studies indicated the presence of two macrocyclic regions, 

incorporating five thiazoles, one pyridine and one indole rings.124 

  To date, there have been no routes to the total synthesis of this antibiotic. However, 

approaches to the fragments have been reported.125 From a retro-synthetic perspective, 

nosiheptide is divided into two hemispheres, each comprising of three fragments: 

dehydroalanine and fragments A (2,3,5,6-tetrasubstituted pyridine), B (threonine), C 

(threonine–cysteine derived propenylthiazole), D (modified glutamate) and E (2,3,4-

trisubstituted indole).

90



                         

N
H

O

S

O

O
OH

S

N O

NH

S
N

N OH

S N

HN

O

O

O

NH2

SN

O

HN
HN

O

S

N NH O

OH

Fragment A

Fragment B

Fragment C

dehydroalanine

Fragment D

Fragment E

Northern Hemisphere

Southern Hemisphere

Figure 12: Nosiheptide

4.2 The “Moody” group’s syntheses of the indole fragment:125

 Synthetic routes to the various fragments of nosiheptide, including that of a potential 

precursor to the B-C-D fragment have been described. Many of these were synthesized 

with protecting groups, which appear to prevent their use in the total synthetic 

sequences. Two syntheses of the trisubstituted indole fragment have been reported by 

Christopher Moody’s group. Their first synthesis of the indole fragment involved the 

application of the Hemmetsberger indole synthesis, which is noted as an efficient 

synthesis to prepare indole-2-carboxylate derivatives. The required substrate for this 

reaction, the α-azidocinnamate derivative 286a was synthesized through a base 

catalysed condensation between o-methylbenzaldehyde 285a and methyl azidoacetate. 

Thermal decomposition of 286a gave the indole 284, which was subsequently 

formylated at the 3-position after a series of reactions to yield the intermediate 289 in 
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good yield. The synthesis of the indole 284 was also carried out from a 2-

tetrahydropyranoyloxymethyl benzaldehyde (285b), but the yields were lower compared 

to the synthesis from o-tolualdehyde (285a). Additionally, the indole 284 was also 

synthesized through Sundberg’s phosphite mediated deoxygenative cyclisation of the 2-

nitrocinnamate derivative 288, which was prepared from 2-bromo-3-nitrotoluene (287) 

and methylacrylate via the palladium catalyzed Heck reaction (Scheme 83). The formyl 

group at the 3-position in the intermediate indole 289 served as an ideal functional 

group that was easily transformed into the desired methyl group seen in the indole 

fragment of nosiheptide molecule.

                     

CHON3CH2COOMe
MeOH, NaOMe

R

COOMe

N3

R

                          286a (R=H, 84%)                                         285a (R=H)
                               286b (R=OTHP, 44%)                                  285b (R=OTHP)

                    

R = OTHP, 55%
R = H, 100%

N
H

COOMe

R
COOMe

NO2

P(EtO)3

NO2

Br

CH2=CHCOOMe
Pd(OAc)2, Et3N

xylene

                         284 (R=H, 89%)                          288 (74%)                                              287  

                  

(ClCH2)2

N
H

COOMe

Cl
CHO

POCl3, NMF

N
H

COOMe

TBSO

                       289 (78%)                                               290 (63%)

Scheme 83: Synthesis of the indole fragment by the Moody group
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 A shorter approach to the indole fragment was also developed by the Moody group 

using the Fischer indole synthesis as the key step (Scheme 84). The requisite hydrazine 

293 was synthesized from the commercially available 3-amino-4-chloro-benzoic acid 

291 in three steps comprising of a diazotization, followed by reduction and an 

immediate condensation of the intermediate arylhydrazine 292, with methyl-2-

oxobutanoate. The polyphosphoric acid assisted Fischer cyclization of 293 gave the 

indole 294, which was subjected to hydrogenolysis to remove the masking chloro 

substituent. Reduction of the carboxylic acid 295 was then carefully executed with 

borane dimethylsulfide complex, and the resulting alcohol 296 was ultimately protected 

as the TBS ether to yield the model indole moiety 290.

COOH

NH2
Cl

1. NaNO2, HCl
2. Sn, HCl

COOH

NHNH2
Cl

EtCOCOOMe

COOH

NH
Cl

N

COOMe
PPA

N
H

COOMe

COOH

Cl

   291                                  292                                    293 (100%)                           294 (87%)

H2, Pd-C
MeOH

N
H

COOMe

COOH

BH3- DMS
THFN

H

COOMe

HO

N
H

COOMe

TBSO

TBSCl
imidazole, DMF

                      
           290 (41%)                                             296 (78%)                                         295 (85%)

Scheme 84: Synthesis of the indole fragment by the Fischer indole synthesis

4.3 Results and discussion: 

 In the course of extending the viability of the conditions for the “reductive N-

heteroannulation’, a group of 2,3-substituted indoles with an electron withdrawing group, 
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present at the 3-position were synthesized.126 Also, a survey of “indole literature” 

reveals the preparation of a plethora of indole-3-carboxylates synthesized by the 

Hemmetsberger-Knittel synthesis. With the requirement of an ester and an alkyl group 

at the 2- and 3-positions, respectively, on the indole fragment of nosiheptide, and the 

results of 2,3-substituted indoles in hand, the synthesis of the indole fragment appeared 

feasible via the palladium-catalyzed annulation reaction.

  Retrosynthetically, the construction of the indole fragment could be seen as a 

palladium-catalyzed reductive N-heteroannulation of the styrene 298. The styrene, 298 

could be envisioned as the coupling product from the stannane 300, a previously 

reported compound synthesized from methyl-2-butynoate 301 and the aryl halide 299.      

N
H

O

S

O

RO

NO2

COOMe

RO

X

NO2
Bu3Sn

COOMe

                                        

         297                                           298                                        299                           300

                                                                   

COOMeCOOH
X

NO2

X = Br or I

                                                                                        302                              301

Scheme 85: Retrosynthesis of the indole fragment of nosiheptide

 The synthesis of the aryl halide 299 required the commercially available 2-bromo-3-

nitrobenzoic acid (302a) to begin with, but owing to its high price, it was synthesized 
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from a relatively less expensive 3-nitrophthalic acid (303) in two steps following a 

published procedure.127 The first step involved the conversion of 3-nitrophthalic acid into 

anhydro-2-hydroxymercuri-3-nitrobenzoic acid (304) using mercuric acetate, sodium 

hydroxide, and acetic acid. Subsequent bromination127 of 304 in the second step 

afforded the 2-bromo-3-nitrobenzoic acid (302a) as a colorless solid.  

 Reduction of 2-bromo-3-nitrobenzoic acid (305) with BH3.DMS complex gave the 2-

bromo-3-nitrobenzylalcohol (305)126 that was brominated using carbon tetrabromide and 

triphenylphosphine to afford 2-bromo-3-nitrobenzyl bromide (306)125 in a moderate 

yield. The allyloxy ether 307 was then prepared from 306 by Williamson’s ether 

synthesis (Scheme 86).126

 The corresponding iodo-analogue (309) of compound 306 was also prepared using 

the same reaction sequence. It was then easily converted into the methoxy ether 299b 

in a good yield.

         

COOH
COOH

NO2

Hg(OAc)2, NaOH
CH3COOH

NO2

O
O

Hg NaBr, Br2

HCl, H2O, NaOH

COOH
Br

NO2

            303                                                       304                                             302a (38%)

                       

BH3.DMS
THF, 45 min, reflux

Br

NO2

OH

PPh3, CBr4
THF, RT, N2

Br

NO2

Br

Na, Bu4NI
Allyl alcohol

Br

NO2

O

                         307 (56%)                             306 (69%)                                   305 (99%)
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COOH
COOH

NO2

COOH
I

NO2

I

NO2

OH

BH3.DMS,
THF, 2 h, reflux

PPh3, CBr4
THF, heat, 18 h,

I

NO2

Br

   303                                     302b                                      308 (90%)                             309 (75%)

                                                                                                                                       

I

NO2

OMe

NaOMe
MeOH

                                                                                                                                         299b (76%)

Scheme 86: Syntheses of the 2-halo-3-nitrobenzyl ethers, 307 and 299b 

 The coupling partner for 299b, the stannane 300 was prepared as a mixture of the E 

and Z-isomers from methyl-2-butynoate (301) by a lithium diisopropylamide mediated 

reaction with tributyltin hydride in the presence of solid copper bromide-dimethyl sulfide 

complex (Scheme 87).128  

                     

COOMe
1. n-BuLi, diisopropyl amine

2. HSnBu3, 0 OC, THF
3. - 78 OC, CuBr-DMS

Bu3Sn

COOMe

                             301                                                                       300 (51%)

Scheme 87: Preparation of the stannane 300

 A Stille coupling between the prepared stannane 300 and the methoxy ether 299b 

failed to yield the required styrene derivative 298a. The two reactants, 299b and 300 

were recovered unchanged. (Scheme 88). A test reaction between 2-iodo-3-nitro-

methylbenzoate (310) and the stannane 300 also failed to yield the corresponding 

coupled product 311; a total recovery of the two reactants was observed in this case.
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I

NO2

OMe

Bu3Sn

COOMe Pd(dba)2, PPh3
Toluene, reflux, 50 h

NO2

COOMe

OMe

                        299b                           300                                                           298a

                    
Bu3Sn

COOMe

COOMe
I

NO2

PdCl2, PPh3

Toluene, Reflux, 4 days
NO2

COOMe

MeO O

                       310                           300                                                               311

Scheme 88: Attempted Stille coupling on 2-iodo-3-nitrobenzylmethylether (299b)  

                     and 2-iodo-3-nitromethylbenzoate (310)

 With the recovery of the two reactants, the idea of executing the Stille-coupling on the 

aryl stannane 312 and methyl-3-iodo-2(Z)-butenoate (313) was considered. Following 

the procedure of Lu and his coworkers, the regiospecific hydroiodination was executed 

on methyl-2-butynoate (301) to afford methyl-3-iodo-2(Z)-butenoate (313) 

(Scheme 89). 129

COOMe
NaI, AcOH, N2

100 OC, 26 h I

COOMe

                                         301                                          313 (40%)

Scheme 89: Preparation of methyl-3-iodo-2(Z)-butenoate (313)

                                           

 A palladium-catalyzed reaction between the methoxy ether 299b and hexamethyl 

distannane gave the desired stannane 312, but in a low yield. The starting material was 

recovered along with α-methoxy-2-methyl-3-nitrotoluene (314).  A better yield was 

obtained when the reaction was carried out at 90 OC (Table 21, Entry 3), but 314 was 

also obtained as a second product. These results are shown below (Table 21). 

97



                           

I

NO2

OMe

(Me)6Sn2

SnMe3

NO2

OMe

PdCl2, PPh3

Toluene, Reflux
 

                              299b                                                                      312    

Scheme 90: Preparation of the stannane 312

Table 21: Conditions evaluated in the preparation of stannane 312

Entry Time Temp.

SnMe3

NO2

OMe

         312
NO2

OMe

        314

I

NO2

OMe

        299b

1 68 h         70 OC 7% ---- 46%

2 6 days      70 OC 1.90% Inseparable mixture

3 4 days      90 OC 46% 27% ----

 The Stille coupling conditions, when attempted on the stannane 312 and methyl-3-

iodo-2(Z)-butenoate (313), showed no formation of the desired styrene derivative 298a; 

however, α-methoxy-3-nitrotoluene (315)130 was obtained in a yield of 68% (Scheme 

91).     

 

SnMe3

NO2

OMe

NO2

OMe

I

COOMe Pd(PhCN)2Cl2, CuI
Ph3As, NMP, heat, 44 h NO2

COOMe

OMe

   312                       313                                                               298a (0%)                               315 (68%)

Scheme 91: The attempted Stille coupling between the aryl stannane (312) and 

                      3-iodo-methyl-2-butenoate (313)
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 The Heck reaction131 offers an alternative to prepare aryl substituted alkenes from an 

aryl halide and an alkene. Commercially available methyl-2-butenoate (316) was 

reacted with 299b under the ‘Heck reaction conditions’ of palladium acetate (10 mol %), 

triphenylphosphine (40 mol %) and triethylamine at 70 OC for 4 days. The reaction was 

unsuccessful, marked by the recovery of 299b along with α-methoxy-3-nitrotoluene 

(315), as an inseparable mixture (Scheme 92). 

 Replacing the triphenylphosphine with triphenyl arsine offered no improvement; a 

mixture of compounds 299b and 315 was formed as in the earlier reaction. 

               

I

NO2

OMe

H

COOMe Pd(OAc)2, PPh3

Et3N, Reflux, 4 days
NO2

COOMe

OMe

                299b                     316                                                                298a

Scheme 92: Attempted Heck reaction between methyl-2-butenoate (316) and 

                    2-iodo-3-nitrobenzylmethylether (299b)

 Following the failures to generate the key o-nitrostyrene precursor 298a, a second 

retrosynthesis of the indole fragment was designed, wherein the idea was to construct 

the 3,4-fused indole 317, followed by the cleavage of the ether with a lewis acid. A 

group of 3,4-fused indoles has been synthesized earlier in our laboratory.132 Based upon 

this result, it was proposed to transform the allyl ether 307 into the α,β-unsaturated 

ester 318a/318b through ozonolysis and a subsequent Wittig reaction with 320. The 

possibility of preparing the α,β-unsaturated ester 318a/318b from 2-halo-3-

nitrobenzylalcohol (305/308) and the commercially available γ-bromo-methylcrotonoate 

(319) was another option (Scheme 93).
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COOEt
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X

O

NO2
PPh3
CHCOOEt

                                                                                                                307 (X=Br)              320                                                                                                                                                                                                                                                   

Scheme 93: The second retrosynthetic analysis of the indole fragment

 The preparation of the α,β-unsaturated ester 318a from 2-bromo-3-nitrobenzylalcohol 

(305) and γ-bromo-methylcrotonoate (319) met with no success. Hence, it was decided 

to try the reaction with γ-hydroxy-methylcrotonoate (321)133 and the benzyl bromide 

306. These attempts were also unsuccessful, with the total recovery of the 

benzylbromide 306 in both attempts (Scheme 94).
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Scheme 94: Attempted syntheses of  compound 318a

 4.4 Conclusion: 

 In summary, the synthesis of the indole fragment of nosiheptide via the notable 

Fischer indole synthesis and the Hemmetsberger synthesis by the Moody group offer 

the desired compound in excellent yields. Had our attempts to synthesize the 

heteroannulation precursor been successful, there would have been another significant 

synthesis of nosiheptide’s indole fragment documented in chemical literature. 
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 Experimental Section

All NMR spectra were determined at 600 MHz (1H NMR) and 150 MHz (13C NMR) or 

270 MHz (1H NMR) and 67.5 MHz (13C NMR) in a suitable solvent as stated.  The 

chemical shifts are expressed in δ values relative to Me4Si (0.00, 1H and 13C) or CDCl3 

(7.26, 1H and 77.00, 13C) internal standards.  1H-1H coupling constants are reported as 

calculated from spectra; thus, a slight difference between Ja,b and Jb,a is usually 

obtained.  Results of APT (attached proton test) 13C NMR experiments are shown in 

parenthesis, where relative to CDCl3, (-) denotes CH3 or CH, and (+) denotes CH2 or C.

Tetrahydrofuran (THF), toluene, and diethyl ether were distilled from sodium 

benzophenone ketyl prior to use.  Pyridine, triethylamine, hexanes, acetonitrile, 

diisopropylamine, and ethyl acetate were distilled from calcium hydride.  Chemicals 

prepared according to literature procedures have been footnoted the first time they are 

used; all other reagents were obtained from commercial sources and used as received.  

All reactions were performed under nitrogen atmosphere in oven-dried glassware 

unless otherwise stated.  Solvents were removed from reaction mixtures and products 

on a rotary evaporator at water aspirator pressure or by bulb-to-bulb distillation under 

reduced pressure.  Chromatography was performed on silica gel 60 (35-75 mm, VWR).  

Melting points were determined on a MelTemp and are uncorrected.  Elemental 

analyses were performed in the Department of Chemical Engineering, College of 

Engineering and Mineral Resources, West Virginia University.
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SMeOOC

NO2

Ph
Pd(OAc)2, PPh3, CH3CN

SMeOOC

H
N Ph

CO (6 atm), 70 OC

                                   104                                                                                 108

5-Phenyl-4H-thieno[3,2-b]pyrrole-2-carboxylic acid methyl ester (108)49

To an oven dried, threaded ACE glass pressuretube was added stryryl thiophene 104 

(80 mg, 0.264 mmol), Pd(OAc)2 (4 mg, 0.0178 mmol) and PPh3 (16.3 mg, 0.062 mmol) 

in 5 ml of CH3CN The tube was fitted with a pressure head, and the solution was 

saturated with carbon monoxide (four cycles of 6 atm of CO). The reaction mixture was 

heated at 90 OC (oil bath temperature) under CO (6 atm) for 40 h, cooled to room 

temperature, depressurized and the solvent, removed under reduced pressure. The 

crude was chromatographed on SiO2 (hexane/ethyl acetate,8:2) to yield 108 (32 mg, 

0.118 mmol, 71%) as an off-white solid. Mp 244 OC ( lit49 239 -240 OC);  1H NMR (600 

MHz, DMSO-d6,) δ 12.03 (s, 1H), 7.78 (dd, J= 8.4, 1.2 Hz, 2H), 7.67 (s, 1H), 7.45 (t, J= 

7.8 Hz, 2H), 7.308 (t, J= 7.2, 7.8 Hz, 1 H), 6.97 (t, J=1.2 Hz, 1 H),  3.82 (s, 3H); 13C 

NMR (dmso-d6, 600 MHz): δ 162.9, 141.2, 138.6, 131.8, 130.02, 128.9, 128.1, 127.5, 

124.6, 117.4, 98.6, 51.8.

                                 S NO2

Ph

S N
H

Ph
Pd(OAc)2, PPh3, CH3CN

CO (6 atm), 70 OC

                                        107                                                                              109

5-Phenyl-6H-thieno[2,3-b]pyrrole (109)49

Reaction of 2-nitro-3-styrylthiophene (107) (80 mg, 0.346 mmol) with carbon monoxide 

in presence of Pd(OAc)2 (8 mg, 0.035 mmol) and triphenylphosphine (37 mg, 0.141 
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mmol) in 5 ml of CH3CN as described above for 104 (24 h), gave 109 (57 mg, 0.286 

mmol, 83%) as a pale yellow solid after chromatography (hexanes/EtOAc, 9:1). 

Mp 179 OC (lit49 186 OC-187 OC); 1H NMR (600 MHz, CDCl3) δ 8.49 (br s, 1H), 7.53 (d, 

J= 8.4 Hz), 7.40 (dt, J=8.4, 7.2 Hz), 7.25 (t, J=7.8 Hz, 1H), 7.015 (d, J=5.4 Hz, 1H), 6.85 

(d, J=5.4 Hz, 1H), 6.73 (d, J=1.8 Hz, 1H); 13C NMR (125 MHz, CDCl3)  δ 138.7, 134.9, 

133.2, 132.6, 129.2, 126.9, 124.3, 118.5, 117.9, 99.2.

                          S

NO2O2N
PhCHO, piperidine, isopropanol

8 h, 80 OC S

NO2O2N

PhPh

                                        111                                                                                       112

2,5-distyryl-3,4-dinitrothiophene (112)53

To a solution of 3,4-dinitrothioxene (111)52 (250 mg, 1.404 mmol) in absolute methanol 

(15 ml), freshly distilled benzaldehyde (602 mg, 5.679 mmol) and 10 drops of pyrrolidine 

were added. The solution was refluxed for 8 h during which time, an orange precipitate 

was seen on the walls of the flask. The flask was cooled to room temperature and then 

in ice. The orange precipitate was filtered and washed with ice cold methanol (5 ml) and 

recrystalized from methanol to afford the product 112 (357 mg, 0.994 mmol, 67%) as an 

orange crystalline solid. Mp 230 OC- 233 OC (lit53 227 OC); IR (neat) 1536, 1322, 1403 

cm-1 ; 1H NMR (600 MHz, DMSO-d6): δ 7.71 (d, J=6.6 Hz, 4H), 7.58 (d, J=16.2 Hz, 2H), 

7.49 (d, J=16.2 Hz, 2H), 7.48-7.42 (m, 3H); 13C NMR (dmso-d6,125 MHz): δ 139.2, 

138.1, 135.9, 134.6, 130.2, 129.1, 127.8, 115.5.
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                 112                                                                                 113                                      114                    

2-styryl-3-nitro-5-phenyl-4H-thieno[3,2-b]pyrrole (113)53 and 

3,6-diphenyl-thieno[3,2-b: 4,5-b’]dipyrrole (114): 

Reaction of 2,5-distyryl-3,4-dinitrothiophene (112)53 (80 mg, 0.211 mmol) with carbon 

monoxide in presence of Pd(OAc)2 (3 mg, 0.0134 mmol) and triphenylphosphine (14 

mg, 0.0534 mmol) in 4 ml of CH3CN as described above for 104 (50 h) gave 113 (65 

mg, 0.188 mmol, 89%) as a dark violet solid after chromatography (hexanes/EtOAc, 

8:2). Mp 252 OC (lit53 248-249 OC) along with a trace of compound 114.

                 S

NO2O2N

PhPh

Pd(OAc)2, PPh3, CH3CN
CO (6 atm), 70 OC

S

H
N

H
N PhPh

                                    112                                                                                       114

4H, 5H-3,6-diphenyl-thieno[3,2-b: 4,5-b’]dipyrrole (114)

Reaction of 2,5-distyryl-3,4-dinitrothiophene (112)53 (104 mg, 0.275 mmol) with carbon 

monoxide in presence of Pd(OAc)2 (7 mg, 0.0311 mmol) and triphenylphosphine (31 

mg, 0.118 mmol) in 6 ml of CH3CN as described above for 104 (4 days) gave 114 (32 

mg, 0.102 mmol, 37%) as an off-white solid after chromatography (hexanes/EtOAc, 

8:2). Mp 110 OC; IR (neat) 3435, 1599, 1358 cm-1; 1H NMR (Acetone-d6, 600 MHz): δ 

10.415 (s, 2H), 7.66 (d, J= 7.8 Hz, 4H), 7.36 (dt, J=7.2, 8.4 Hz, 4H), 7.18 (dt, J=7.2, 7.8 

Hz, 2H), 6.84 (d, J=1.8 Hz, 2H); 13C NMR (125 MHz, Acetone-d6): δ 135.5, 134.4, 129.8, 

127.03, 126.8, 126.6, 124.5, 101.6; HRMS Calcd for C20H14N2S 

(M+H+) 314.0873; found, 314.0872.
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                           117                                                                                                  118

4-nitro-5-styryl-2-furanaldoxime (118):

A solution of 5-methyl-4-nitro-2-furanaldoxime (117) (80 mg, 0.471 mmol) in 5 ml of 

absolute methanol was refluxed gently for 2 minutes with 0.1ml of freshly distilled 

piperidine and followed by the addition of freshly distilled benzaldehyde (0.247 mg, 2.33 

mmol). The resulting solution was then refluxed for three hours. An orange solid was 

seen appearing on the walls of the round-bottomed flask in about 20 minutes. The 

solution was cooled to room temperature and finally cooled in an ice bath. The orange 

solid was filtered and washed with 1ml of ice-cold methanol. The filtrate was evaporated 

and the obtained orange solid was combined with the filtered orange precipitate and 

ultimately chromatographed on silica (hexanes/EtOAc, 8:2) to yield 118 (107 mg, 0.4147 

mmol, 88%) as an orange solid. Mp 182-185 OC; 1H NMR (600 MHz, Acetone-d6):  δ 

11.65 (br s, 1H), 7.79 (d, J=16.2 Hz, 1H), 7.69 (d, J=16.8 Hz, 1H), 7.76 (d, J=7.2 Hz, 

2H), 7.62 (s, 1H), 7.47-7.50 (m, 2H), 7.45 (tt, J=7.2, 1.2 Hz, 1H), 7.73 (s, 1H)

13C NMR (150 MHz, Acetone-d6): δ 152.3, 144.2, 139.1, 136.4, 135.8, 135.7, 131.1, 

130.1, 128.8, 113.75, 113.70; IR (neat) 1619, 1537, 1400, 1346 cm-1; HRMS Calcd for 

C13H10N2O4 (M+H+) 259.0721; found, 259.0713.
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                118                                                                                     119                                       120

2-cyano-4H-5-phenylfuro[3,2-b]pyrrole (120) and 5-phenyl-4H-furo[3,2-b]pyrrole-2-

aldoxime (119):                   

A solution of 4-nitro-5-styryl-2-furanaldoxime (118) (75 mg, 0.2907 mmol) in 3 ml of dry 

DMF, Pd(dba)2 (10 mg, 0.0174 mmol) and 1,10-phenanthroline (7 mg, 0.0353 mmol) 

was heated in presence of carbon monoxide as described for 104 (120 OC, 22 hrs). The 

reaction mixture was cooled to room temperature, diluted with water (10 ml) and 

extracted with ethyl acetate (3X20ml). The combined organic layers were washed with 

water (2X50ml) and dried over anhydrous MgSO4 to give an oily crude which was 

chromatographed on silica with (hexanes/EtOAc, 8:2) to yield the 2-cyano-4H-5-

phenylfuro[3,2-b]pyrrole (120) (12 mg, 0.058 mmol, 20 %). Mp 162-163 OC; IR (neat) 

3310, 2209, 1707 cm-1; 1H NMR (600 MHz, CDCl3): δ 8.16 (br s, 1H), 7.53 (d, J=7.2 Hz, 

2H), 7.48 (t, J=7.8 Hz, 2H), 7.33 (t, J=7.2 Hz, 1H), 7.10 (s, 1H), 6.47 (s, 1H); 13C NMR 

(150 MHz, CDCl3): δ 152.7, 141.6, 132.06, 129.2, 128.1, 126.3, 124.6, 123.5, 113.4, 

109.6, 90.1; HRMS Calcd for C13H8N2O (M+H+) 209.0716, found 209.07094.

Further elution afforded  the oxime 119 (30 mg, 0.132 mmol, 45 %), which decomposed 

on standing at room temperature within a few minutes. 1H NMR (600 MHz, CDCl3): δ 

8.05 (br s, 1H), 7.98 (s, 1H), 7.51(d, J=7.8 Hz, 2H), 7.39 (t, J=8.4 Hz, 2H), 6.64 (s, 1H), 

6.46 (s, 1H).
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                                    126                                                                                     127

2-methyl-5-phenyl-4H-pyrrolo[3,2-d]thiazole (127): 

Reaction of 2-methyl-4-nitro-5-styrylthiazole (126)59 (60 mg, 0.244 mmol) with carbon 

monoxide in presence of Pd(OAc)2 (4 mg, 0.017 mmol) and triphenylphosphine (19 mg, 

0.0725 mmol) in 5 ml of CH3CN as described above for 104 for 72 h gave 127 (32 mg, 

0.149 mmol, 61%) after chromatography (hexanes/EtOAc, 8:2) as a pale brown solid. 

Mp 257-258 OC ( decomposed); 1H NMR (600 MHz, DMSO-d6): δ 11.82 (s, 1H), 7.67 (d, 

J=7.8 Hz, 2H), 7.39 (t, J=7.8 Hz, 2H), 7.21 (dt, J=7.2, 7.8 Hz, 1H), 6.78 (d, J=1.8 Hz, 

1H), 2.68 (s, 3H); 13C NMR (125 MHz, DMSO-d6): δ 158.5, 147.3, 136.6, 132.8, 128.8, 

127.1, 126.2, 123.5, 96.3; IR (neat) 1602, 1458, 1184 cm-1; HRMS Calcd for C12H10N2S 

(M+H+) 215.0643; found, 215.06375.

                           

N

N

Ph

NO2

Ph

Pd(dba)2, DMF, 1,10-phenanthroline

CO (6 atm), 120 OC
N

N
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                                        131                                                                                     133

1-Benzyl-1,4-dihydro-5-phenylpyrrolo[3,2-d]imidazole (133): 

A solution of 1-benzyl-5-styryl-4-nitroimidazole (131)60 (58 mg, 0.190 mmol) in 2 ml of 

dry DMF, Pd(dba)2(7 mg, 0.012 mmol) and 1,10-phenanthroline (5 mg, 0.134 mmol) was 

heated in presence of carbon monoxide as described for 104 at 120 OC for 6 days. 

Work up and purifcation of the resulting oily crude by chromatography (hexanes/EtOAc, 

8:2, followed by elution with EtOAc) afforded 133 (40 mgs, 0.146 mmol, 77%) as a 
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brown solid. Mp 244-247 OC; 1H NMR (600 MHz, Acetone-d6) δ 5.32 (s, 2H), 6.29 (s, 

1H), 7.53(s,1H), 7.13 (t, J=7.2 Hz, 1H), 7.29 -7.39 (m, 7H), 7.65 (d, J=7.2 Hz, 2H), 

10.33 (s, 1H);13C NMR (150 MHz, Acetone-d6) δ 138.7, 138.5, 135.3, 135.25, 133.7, 

129.58, 129.63, 128.7, 128.67, 126.5, 124.5, 88.85, 88.8, 50.9 ; IR (neat) 1599, 3111, 

1470, 1452 cm-1; HRMS calcd for C18H15N3 (M+H+) 274.1344; found, 274.1338. 

                         

N

N NO2

Ph
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Ph

HPh Ph

Pd(dba)2, DMF, 1,10-phenanthroline

CO (6 atm), 120 OC

                                     132                                                                                       134

3-Benzyl-3,4-dihydro-5-phenylpyrrolo[2,3-d]imidazole (134)

A solution of 1-Benzyl-4-styryl-5-nitroimidazole (132)60 (125 mg, 0.409 mmol) in 3 ml of 

dry DMF, Pd(dba)2 (15 mg, 0.012 mmol) and 1,10-phenanthroline (27 mg, 0.1361 mmol) 

was heated in presence of carbon monoxide as described for 104 at 120 OC for 3 days. 

Work up and purifcation of the resulting oily crude by chromatography (hexanes/EtOAc, 

8:2, followed by elution with EtOAc) afforded 134 as a brown solid (36 mg, 0.1317 

mmol, 32%). Mp 216 OC (decomposed); IR (neat) 1599, 1383, 1219 cm-1; 

1H NMR (600 MHz, Acetone-d6): δ 5.37 (s, 2H), 6.55 (s, 1H), 7.44 (s, 1H), 7.12 (t, J = 

7.2 Hz, 1H), 7.28-7.36 (m, 7H), 7.558 (d, J=8.4 Hz, 2H), 10.28 (s, 1H); 13C NMR (150 

MHz, Acetone-d6): δ 138.5, 138.0, 136.2, 135.4, 129.7, 129.6, 128.6, 128.0, 126.3, 

124.3, 95.9, 95.8, 49.4; HRMS Calcd for C18H15N3 (M+H+) 274.1344; found, 274.1338.
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                       139                                                          140                     141

1,2,5-trimethyl-3-nitropyrrole (140) and 1,2,5-trimethyl-3,4-dinitropyrrole (141):

To concentrated sulphuric acid (10 ml) at 0 OC, was added 1,2,5-trimethylpyrrole (139) 

(1.042 gm, 9.648 mmol) slowly, during which time the temperature rises to 15 OC. Cool 

it again to 0 OC, and potassium nitrate (2.078 gm, 20.574 mmol) is added in portions. 

The resulting solution is stirred at 0 OC for 10 minutes. The temperature is then slowly 

allowed to rise up to room temperature and the stirring is continued for a further 30 

minutes. The mixture is poured into crushed ice with vigorous stirring, when an yellow 

solid separates. The yellow precipitate is filtered, washed with cold water, dried and 

chromatographed (hexanes/EtOAc, 6:4) to afford 140 (705 mg, 4.578 mmol, 47%) as an 

yellow solid. Mp 115-116 OC (lit64 mp 113 OC); Further elution gave 141 (40 mg, 0.201 

mmol, 2%) as a pale yellow solid. Mp 207-210 OC. 1H NMR (270 MHz, CDCl3): δ 3.48 

(s, 1H), 2.48 (s, 2H); 13C NMR (67.5 MHz, CDCl3): δ 131.3, 128.9, 31.4, 10.9; HRMS 

calcd. for C7H9N3O4 (M+H+) 200.0671, found 200.0666.
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                                          155                                                    157

3-nitro-4-styryl-1-tosylpyrrole (157):

To a solution of 3-nitro-4-styrylpyrrole (155)67 (190 mg, 0.888 mmol) in anhydrous DMF 

(10 ml), was added BuOK (132 mg, 1.179 mmol) at 0 OC, and the resulting orange 

solution was allowed to stir at 0 OC under an inert atmosphere for 45 min. A solution of 

tosyl chloride (224 mg, 1.179 mmol) in DMF (1 ml) was then added to the above 

solution with a syringe; the solution turns yellow upon the addition. The reaction mixture 

was continued to stir under an atmosphere of nitrogen at 0 OC for 2.5 h. Aqueous work 

up at this stage followed by extraction with ethylacetate (2X25 ml), washing of the 

organic phase with water (2X25 ml), drying (MgSO4), and concentration gave an yellow 

crude that was purified on a short column of Al2O3 (hexanes/EtOAc, 8:2) to afford  the 

product 157 (257 mg, 0.698 mmol, 79 %) as an yellow solid. Mp 124-125 OC.

1H NMR (600 MHz, CDCl3): δ 8.00 (d, J=2.8 Hz, 1H), 7.87 (d, J=8.5 Hz, 2H), 7.48 (d, 

J=8.5 Hz, 2H), 7.34-7.44 (m, 6 H), 7.40 (dd, J=16.2, 0.8 Hz, 1H), 7.30 (tt, J=7.3, 1.7 Hz, 

1 H), 6.94 (d, J=16.5 Hz, 1H), 2.46 (s, 3H); 13C NMR (67.5 MHz, CDCl3): δ 147.1, 137.3, 

136.5, 134.2, 132.3, 130.8, 128.9, 128.4, 127.8, 126.8, 122.3, 121.8, 117.0, 116.4, 21.9; 

IR (neat) 1489, 1370, 1057, 964 cm-1; HRMS calcd. for C19H16N2O4S (M+H+) 369.0909, 

found 369.0903. 
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TMS

NO2

Br
PdCl2(PPh3)2, CuI

TMSA, Et3NO2N O2N                                 
                                         214a                                                           216a

2,4-Dinitro-1-[2-(trimethylsilyl)ethynyl]benzene  (216a) 

To a solution of 2,4-dinitro-1-bromobenzene (214a) (750 mg, 3.03 mmol) prepared in 

triethylamine (Et3N, 20 ml), trimethylsilylethyne (329 mg, 3.35 mol), CuI (58 mg, 0.304 

mmol) and PdCl2(PPh3)2 (214 mg, 0.304 mmol) were added and the reaction mixture 

was stirred under an atmosphere of nitrogen for 24 hours. The solvent was removed 

under reduced pressure, and the dark crude obtained was purified by chromatography 

(hexanes/EtOAc, 9:1) to afford 216a (336 mg, 1.42 mmol, 47%) as an yellow solid. 

Mp 82-83 OC; 1H NMR (600 MHz, CDCl3): δ 8.87 (d, J=1.8 Hz, 1H), 7.83 (d, J=9 Hz, 

1H), 8.39 (dd, J=8.4, J=2.4 Hz, 1 H), 0.31 (s, 9H); 13C NMR (125 MHz, CDCl3): 

δ 150.1, 146.5, 136.2, 126.7, 124.3, 120.1, 111.4, 97.7, -0.64; IR (neat) 3092, 2962, 

1594 cm-1; Anal calcd for C11H12N2O4Si: C, 49.99; H 4.58; N, 10.60. Found: C, 50.26; H 

4.58; N, 10.38.

                                    NO2

TMS

NO2

I
PdCl2(PPh3)2, CuI

TMSA, Et3NCl Cl

                                              214b                                                          216b

4-Chloro-2-nitro-1-[2-(trimethylsilyl)ethynyl]benzene (216b): 

Reaction of 4-chloro-2-nitro-1-iodobenzene (214a) (700 mg, 2.49 mmol) with 

trimethylsilylethyne (290 mg, 2.95 mol), CuI (38 mg, 0.12 mmol) and PdCl2(PPh3)2 (20 

mg, 0.02 mmol) in triethylamine (Et3N, 30 ml), as described above for 216a (room 

temperature, 22 hours) afforded 216b (583 mg, 2.29 mol, 92%) as an yellow solid after 
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chromatography (hexanes/EtOAc, 95:5). Mp 44-47 OC; 1H NMR (270 MHz, CDCl3): δ 

7.99 (d, J=2.1 Hz, 1H), 7.56 (d, J=8.3 Hz, 1H), 7.49 (dd, J=8.5, 2 Hz, 1 H), 0.24 (s, 9H); 

13C NMR (67.5 MHz, CDCl3)134: δ 150.2, 135.8, 134.5, 132.8, 124.6, 116.7, 105.0, 98.2, 

-0.57; IR (neat) 3096, 2961, 2164 cm-1; Anal calcd for C11H12ClNO2Si: C, 52.06; H 4.77; 

N, 5.52. Found: C, 52.37; H, 4.86; N, 5.87.

                           NO2

TMS

MeONO2MeO

I
PdCl2(PPh3)2, CuI

TMSA, Et3N

                                        214c                                                                   216c                                                                                                                                          

4-Methoxy-2-nitro-1-[2-(trimethylsilyl)ethynyl]benzene (216c):

Reaction of 4-methoxy-2-nitro-1-iodobenzene (214c) (500 mg, 1.79 mmol) with 

trimethylsilylethyne (206 mg, 2.09 mmol), CuI (30 mg, 0.157 mmol) and PdCl2(PPh3)2 

(63 mg, 0.09 mmol) in triethylamine (Et3N, 30 ml), as described above for 216a (room 

temperature, 40 hours) afforded 216c (425 mg, 0.95 mol, 95%) as a pale  yellow solid 

after chromatography (hexanes/EtOAc, 9:1). Mp 68-69 OC; 1H NMR (600 MHz, CDCl3): 

δ 7.53 (d, J=9 Hz, 1H), 7.51 (d, J=2.4 Hz, 1H), 7.08 (dd, J=9, 3 Hz, 1 H), 3.88 (s, 3H), 

0.27 (s, 9H); 13C NMR (125 MHz, CDCl3): δ 159.8, 151.3, 136.2, 119.7, 110.8, 109.4, 

101.6, 99.6, 56.2, -0.11; IR (neat) 2161, 1620, 1530 cm-1; Anal calcd for C12H15NO3Si: 

C, 57.80; H 6.06; N, 5.62. Found: C, 58.39; H 6.55; N, 5.30.
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                                       214d                                                                    216d

5-Methoxy-2-nitro-1-[2-(trimethylsilyl)ethynyl]benzene (216d): 

Reaction of 5-methoxy-2-nitro-1-iodobenzene (214d) (1.01 gm, 3.62 mmol) with 

trimethylsilylethyne (399 mg, 4.06 mmol), CuI (60 mg, 0.315 mmol) and PdCl2(PPh3)2 

(123 mg, 0.175 mmol) in triethylamine (Et3N, 25 ml), as described above for 216a (room 

temperature, 18 hours) afforded 216d (790 mg, 3.36mol, 92%) as an yellow solid after 

chromatography (hexanes/EtOAc, 8:2). Mp 65-68 OC; 1H NMR (600 MHz, CDCl3): δ 

8.07 (d, J=9.6 Hz, 1H), 7.07 (d, J=2.4 Hz, 1H), 6.91 (dd, J=9, 3 Hz, 1 H), 3.89 (s, 3H), 

0.29 (s, 9H); 13C NMR (125 MHz, CDCl3): δ 162.9, 143.4, 127.2, 120.9, 119.2, 115.1, 

103.8, 100.1, 56.2, -0.14; IR (neat) 2966, 2898, 2165,1602 cm-1; Anal calcd for 

C12H15NO3Si: C, 57.80; H 6.06; N, 5.62. Found: C, 57.97; H 6.31; N, 5.77.

                                     
NO2

TMS

NO2

I
PdCl2(PPh3)2, CuI

TMSA, Et3N

                                       214e                                                          216e 

3-Methyl-2-nitro-1-[2-(trimethylsilyl)ethynyl]benzene (216e):     

Reaction of 3-methyl-2-nitro-1-iodobenzene (214e) (1.70 gm, 6.45 mmol) with 

trimethylsilylethyne (690 mg, 7.03 mmol), CuI (123 mg, 0.646 mmol) and PdCl2(PPh3)2 

(274 mg, 0.390 mmol) in triethylamine (Et3N, 25 ml), as described above for 216a (room 

temperature, 26 hours) afforded 216e (1.366 gm, 5.86mol, 91%) as an oil, that turns 

into a solid in the freezer after chromatography (hexanes/EtOAc, 95:5). 1H NMR (600 
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MHz, CDCl3): δ 7.39 (d, J=7.8 Hz, 1H), 7.29 (t, J=7.8 Hz, 1H), 7.23 (d, J=7.8 Hz, 1 H), 

2.32 (s, 3H), 0.23 (s, 9H); 13C NMR (125 MHz, CDCl3): δ 153.2, 131.3, 130.9, 129.9, 

129.8, 116.2, 101.8, 97.8, 17.4, -0.50; IR (neat) 2962, 2160, 1600 cm-1; Anal calcd for 

C12H15NO2Si: C, 61.77; H 6.48; N, 6.00. Found: C, 62.28; H 6.64; N, 6.30.

                                      NO2

TMS

NO2

I
PdCl2(PPh3)2, CuI

TMSA, Et3N

                                       214g                                                             216g

6-Methyl-2-nitro-1-[2-(trimethylsilyl)ethynyl]benzene (216g):      

Reaction of 6-methyl-2-nitro-1-iodobenzene (214g) (1.50 gm, 5.70 mmol) with 

trimethylsilylethyne (626 mg, 6.37 mmol), CuI (90 mg, 0.473 mmol) and PdCl2(PPh3)2 

(210 mg, 0.300 mmol) in triethylamine (Et3N, 25 ml), as described above for 216a (50 

OC, 27 hours) afforded 216g (649 mg, 2.78 mmol, 49%) as an oil (turns into an yellow 

solid in the freezer) after chromatography (hexanes/EtOAc, 95:5). 1H NMR (600 MHz, 

CDCl3): δ 7.76 (d, J=8.4 Hz, 1H), 7.45 (d, J=7.2 Hz, 1H), 7.30 (t, J=8.1 Hz, 1 H), 2.51 (s, 

3H), 0.28 (s, 9H); 13C NMR (125 MHz, CDCl3): δ 151.0, 143.7, 133.6, 127.9, 121.6, 

117.6, 108.5, 97.6, 21.2, -0.34; IR (neat) 2960, 1528, 1346, 1249 cm-1; HRMS calcd for 

C12H15NO2Si (M+H+) 234.0950, found 234.0946.
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                                    218                                                             219

3-Nitro-1-[2-(trimethylsilyl)ethynyl]pyridine (219): 

Reaction of 2-bromo-3-nitro-pyridine (218) (502 mg, 2.47 mmol) with trimethylsilylethyne 

(291 mg, 2.96 mmol), CuI (55 mg, 0.289 mmol) and PdCl2(PPh3)2 (94 mg, 0.134 mmol) 

in triethylamine (Et3N, 25 ml), as described above for 216a (room temperature, 54 

hours) afforded 219 (388 mg, 1.98 mmol, 80%) as a brown solid after chromatography 

(hexanes/EtOAc, 8:2). Mp 36-38 OC; 1H NMR (600 MHz, CDCl3): δ 8.79 (dd, J=1.2, 4.8 

Hz, 1H), 8.32 (dd, J=8.4, 1.8 Hz, 1H), 7.43 (dd, J=8.4, 4.2 Hz, 1 H), 0.31 (s, 9H); 13C 

NMR (125 MHz, CDCl3): δ 137.0, 132.4, 123.2, 105.6, 98.9, -0.47; IR (neat) 2962, 2160, 

1591, 1527 cm-1; 

                            

I

NO2

TMS

NO2

TMS

PdCl2(PPh3)2, CuI, Et3N

                             214                                                         216                                                                                                                           

1-Nitro-2-[2-(trimethylsilyl)ethynyl]benzene (216):

Reaction of 214 (3.00 gm, 12.00 mmol) with trimethylsilylethyne (1.607 gm, 16.4 mmol), 

CuI (192 mg, 1.01 mmol) and PdCl2(PPh3)2 (423 mg, 0.602 mmol) in triethylamine (50 

ml), as described above for 216a (72 h) afforded 21694 (2.652 gm, 12.01 mmol) as an 

yellow oil after chromatography (hexanes/EtOAc, 95:5) in a quantitative yield.
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                                216                                                       212a                                                                 

2-[2-Bromoethynyl]-1-nitrobenzene99 (212a):

To a solution of 216 in anhydrous DMF (10 ml), silver nitrate (134 mg, 0.078 mmol) was 

added and the flask was covered with an aluminium foil. It was cooled in ice and N-

bromosuccinimide (1.38 gm, 7.75 mmol) was added in portions. The reaction mixture 

was allowed to warm to room temperature and continued to stir for 22 hours. The 

reaction mixture was cooled in ice and ice water (20 ml) was added and the mixture was 

extracted with diethyl ether (3 X 20 ml). The combined organic layers were washed with 

water (3X 20 ml), dried over anhydrous MgSO4 and filtered. The solvents were removed 

under reduced pressure and the crude was purified by chromatography (hexanes/

EtOAc, 8:2) to yield 212a (1.358 gm, 6.00 mmol, 80%) as a brown solid. Mp 98-102 OC 

(lit101 94-98 OC).

                     
NO2

TMS

NIS, AgNO3, DMF

NO2

I

O2N O2N

                                  216a                                                                    217a

2,4-Dinitro-1-[2-iodoethynyl]benzene (217a):

Reaction between 216a (182 mg, 0.77 mmol) and NIS (192 mg, 0.85 mmol) in presence 

of silver nitrate (13 mg, 0.076 mmol) in anhydrous DMF (5 ml) as described above for 

212a (4 h) afforded the product 217a (219 mg, 0.689 mmol, 89%) as an yellow solid135 

after work up and chromatography (hexanes/EtOAc, 85:15). Mp 112-113 OC; 1H NMR 
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(600 MHz, CDCl3): δ 8.90 (d, J=2.4 Hz, 1H), 8.42 (dd, J=8.4, 2.4 Hz, 1H), 7.84 (d, J=9 

Hz, 1 H); 13C NMR (125 MHz, CDCl3): δ 146.9, 137.3, 127.1, 124.6, 120.5, 92.8, 88.3, 

25.9; IR (neat) 3094, 2161, 1592 cm-1. 

                     NO2

TMS

NIS, AgNO3, DMF

NO2

I

Cl Cl

                                216b                                                                  217b

4-chloro-2-nitro-1-[2-iodoethynyl]benzene (217b):

Reaction between 216b (485 mg, 1.91 mmol) and NIS (477 mg, 2.11 mmol) in presence 

of silver nitrate (40 mg, 0.23 mmol) in anhydrous DMF (10 ml) as described above for 

212a (3 h) afforded the product 217b138  (523 mg, 1.70 mmol, 89%) as an yellow solid 

after work up and chromatography (hexanes/EtOAc, 8:2). Mp 94-96 OC; 1H NMR (270 

MHz, CDCl3): δ 8.05 (d, J=1.6 Hz, 1H); 7.59 (d, J=8.9 Hz, 1H), 7.55 (dd, J=8.3, 1.8 Hz, 

1 H); 13C NMR (67.5 MHz, CDCl3)136: δ 150.4, 136.6, 135, 133.0, 124.8, 116.9, 88.0, 

18.7; IR 2165, 1555 cm-1.

                         NO2

TMS

NIS, AgNO3, DMF

NO2

I

MeO MeO

                                      216c                                                                  217c

4-Methoxy -2-nitro-1-[2-iodoethynyl]benzene (217c):

Reaction between 216c (100 mg, 0.42 mmol) and NIS (107 mg, 0.47 mmol) in presence 

of silver nitrate (37 mg, 0.22 mmol) in anhydrous DMF (3 ml) as described above for 

212a (2 h) afforded the product 217c138 (99 mg, 0.33 mmol, 77%) as an yellow solid 

after work up and chromatography (hexanes/EtOAc, 8:2). Mp 92-94 OC; 1H NMR (270 
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MHz, CDCl3): δ 7.54 (d, J=8.6 Hz, 1H), 7.53 (d, J=2.7 Hz, 1H), 7.10 (dd, J=8.6, 2.7 Hz, 

1H); 13C NMR (67.5 MHz, CDCl3): δ 159.9, 151.4, 136.8, 119.8, 110.9, 109.4, 89.0, 

56.2, 13.8. IR (neat) 2170, 1560, 1527 cm-1.

                             NO2

TMS

NIS, AgNO3, DMF

NO2

I
MeO MeO

                                          216d                                                                      217d

5-Methoxy -2-nitro-1-[2-iodoethynyl]benzene (217d):

Reaction between 216d (300 mg, 1.27 mmol) and NIS (318 mg, 1.41 mmol) in presence 

of silver nitrate (122 mg, 0.658 mmol) in anhydrous DMF (2 ml) as described above for 

212a (1 h) afforded the product 217d138 (299 mg, 0.987 mmol, 77%) as a pale yellow 

solid after work up and chromatography (hexanes/EtOAc, 8:2). Mp 87-88 OC; 1H NMR 

(270 MHz, CDCl3): δ 8.09 (d, J=9.1 Hz, 1H), 7.07 (d, J=2.7 Hz, 1H), 6.93 (dd, J=9.3, 2.8 

Hz, 1H), 3.89 (s, 3H); 13C NMR (67.5 MHz, CDCl3)136: δ 162.8, 143.3, 127.1, 120.8, 

119.9, 115.1, 89.5, 56.1, 16.8; IR (neat) 2160, 1606, 1573 cm-1.

                                  
NO2

TMS

NIS, AgNO3, DMF

NO2

I

                                     216e                                                                       217e

3-Methyl-2-nitro-1-[2-iodoethynyl]benzene (217e):

Reaction between 216e (175 mg, 0.751 mmol) and NIS (189 mg, 0.838 mmol) in 

presence of silver nitrate (135 mg, 0.771 mmol) in anhydrous DMF (5 ml) as described 

above for 212a (20 min) afforded the product 217e (200 mg, 0.697 mmol, 93%) as a 
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yellow solid after work up. The product decomposes upon standing at room temperature 

and on attempted purification on silical gel. 1H NMR (600 MHz, CDCl3): δ 7.39 (d, J=7.8 

Hz, 1H), 7.33 (t, J=7.8 Hz, 1H), 7.26 (d, J=7.5 Hz, 1 H); 13C NMR (67.5 MHz, CDCl3)136: 

δ 153.6, 131.9, 130.5, 130.1, 116.8, 87.6, 17.8, 14.9; 

                                   NO2

TMS

NIS, AgNO3, DMF

NO2

I

                                        216f                                                                        217f

4-Methyl-2-nitro-1-[2-iodoethynyl]benzene (217f):

Reaction between 216f96 (715 mg, 0.751 mmol) and NIS (768 mg, 3.404 mmol) in 

presence of silver nitrate (58 mg, 0.108 mmol) in anhydrous DMF (5 ml) as described 

above for 212a (1 h) afforded the product 217f (646 mg, 2.25 mmol, 73%) as a yellow 

solid138 after work up and chromatography (hexanes/EtOAc, 9:1). Mp 94-96 OC; 1H 

NMR (600 MHz) δ 7.85 (s, 1 H), 7.51 (d, J=7.8 Hz, 1H), 7.37 (d, J=8.4 Hz, 1 H), 2.44 (s, 

3H); 13C NMR (150 MHz) δ 150.5, 140.4, 135.8, 125.1, 115.9, 89.2, 21.5, 15.2.

                                     NO2

TMS

NIS, AgNO3, DMF

NO2

I

                                        216g                                                                      217g

6-Methyl-2-nitro-1-[2-iodoethynyl]benzene (217g):

Reaction between 216g (135 mg, 0.579 mmol) and NIS (144 mg, 0.638 mmol) in 

presence of silver nitrate (53 mg, 0.303 mmol) in anhydrous DMF (2 ml) as described 

above for 212a (5.5 h) afforded the product 217g (155 mg, 0.54 mmol, 93%) as a yellow 

120



solid after work up and chromatography (hexanes/EtOAc, 9:1). Mp 87-88 OC. 1H NMR 

(600 MHz) δ 7.81 (d, J=8.4 Hz, 1 H), 7.48 (d, J=7.8 Hz, 1H), 7.33 (t, J=8.1 Hz, 1 H), 

2.53 (s, 3H); 13C NMR (150 MHz) δ 151.6, 144.9, 134.0, 128.4, 122.1, 118.1, 87.8, 21.3, 

20.5. IR (neat) 2928, 2169 cm-1.

   

N

NO2

TMS

NIS, AgNO3, DMF N

NO2

I

                                       219                                                                        220

2-(3-Nitropyridyl)-1-iodoethyne (220):

To a solution of 219 ( 55 mg, 0.28 mmol) in 5 ml anhydrous DMF, cooled in ice, silver 

nitrate (6 mg, 0.035 mmol) and NIS (75 mg, 0.332 mmol) are added and the mixture 

was slowly allowed to warm up to room temperature. The reaction flask was covered 

with an aluminium foil and the mixture was stirred under nitrogen for 21 h. Work up and 

chromatography (hexanes/EtOAc, 7:3) as described for 212a gave the product 220 (53 

mg, 0.193 mmol, 69%) as a yellow solid. Mp 162-164 OC; 1H NMR (600 MHz) δ 8.81 

(dd, J=4.8, 1.2 Hz, 1H), 8.36 (dd, J=8.4, 1.8 Hz, 1H), 7.46 (dd, J=8.4, 4.8 Hz, 1H); 13C 

NMR (150 MHz) δ 153.6, 147.7, 136.9, 132.6, 123.5, 89.9, 21.2. IR (neat) 1593, 1520, 

1339, 819, 759 cm-1. Anal. calcd. for C7H4IN2O2: C, 30.68; H, 1.10; N, 10.22. Found C, 

30.93; H, 1.24; N, 9.73. HRMS calcd for C7H4IN2O2 M+H+  274.9318,  found 274.9312.

121



 

O

O

CHO

NO2

PPh3, CBr4, CH2Cl2 O

O NO2

Br

Br

                                       221                                                                       222

5-(2,2-Dibromoethen-1-yl)-6-nitrobenzo[1,3]dioxole (222):

A solution of carbon tetrabromide (679 mg, 2.05 mmol) in dichloromethane (25 ml) was 

cooled in an ice bath at 0 OC. Triphenylphosphine (1.074 gm, 4.1 mmol) was added in 

portions in 10 minute intervals followed by the addition of 6-nitropiperonal (221) (200 

mg, 1.025 mmol). The resulting wine red mixture was allowed to warm to room 

temperature, and stirred under an atmosphere of nitrogen for 18 hours. The solvent was 

removed under reduced pressure, and the orange crude was purified quickly by flash 

chromatography (hexanes/EtOAc, 8:2) due to the observed gradual decomposition of 

the product on silica. The product, 222 (273 mg, 0.778 mmol, 76%) was obtained as an 

yellow crystalline solid. Mp 158-160 OC; 1H NMR (600 MHz) δ 7.71 (s, 1H), 7.63 (s, 1H),  

6.95 (s, 1H), 6.16 (s, 2H); 13C NMR (150 MHz) δ 151.9, 148.2, 141.3, 134.5, 128.0, 

110.1, 105.5, 103.3, 92.6; IR (neat) 1503, 1483, 1318, 1028, 830 cm-1; HRMS calcd for 

C9H6Br2NO4 (M+H+ ) 349.8664, found 349.8658. 
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Br

                                            222                                                              223

5-(2-Bromomoethyny-1-yl)-6-nitrobenzo[1,3]dioxole (223):

To a solution of 222 (105 mg, 0.299 mmol) prepared in DMF (3 ml), crushed and oven 

dried Cs2CO3 (283 mg, 2.99 mmol) was added and the resulting mixture was stirred at 

room temperature under an inert atmosphere (4 h). Dichloromethane (50 ml) was then 
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added followed by water (25 ml). The dichloromethane layer was extracted, washed 

with water (2 X 50 ml), dried (anhydrous MgSO4), filtered and evaporated under 

reduced pressure to leave an yellow crude which was purified by flash chromatography 

(hexanes/ EtOAc, 85:15). The product 223 was obtained as an yellow solid in an almost 

quantitative yield (80 mg, 0.296 mmol, 99%). Mp 110-112 OC; 1H NMR (600 MHz) δ 7.55 

(s, 1H), 6.98 (s, 1H), 6.14 (s, 2H); 13C NMR (150 MHz) δ 151.8, 148.5, 114.2, 113.5, 

105.7, 103.6, 75.9, 57.9; IR (neat) 1603 cm-1; Anal. calcd. for C9H4BrNO4: C, 40.03; H 

1.49; N, 5.19. Found: C 40.09; H 1.61; N, 4.93. 
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                                                 212a                                                       164

1H-Indole-2,3-dione (164)136:

To a solution of 212a (104 mg, 0.460 mmol) in acetone (10 ml), PdCl2(PPh3)2 (24 mg, 

0.0342 mmol) was added and the resulting mixture was stirred under an atmosphere of 

nitrogen at room temperature. After 22 hours, the solvent was removed under reduced 

pressure, and the crude residue was purified by chromatography (hexanes/EtOAc, 7:3) 

to give the product 164 (22 mg, 0.165 mmol, 36%) as a red solid.

Mp 195-197 OC (lit.137  mp 197-198 OC).
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                                                   217a                                                         164a

6-Nitroisatin (6-Nitroindole-2,3-dione) (164a): 

The reaction between 217a (140 mg, 0.44 mmol) and PdCl2(PPh3)2 (16 mg, 0.023 

mmol) in acetone (6 ml), as described for 164 (room temperature, 6 h), afforded the 

product 164a (25 mg, 0.208 mmol) after chromatography (hexanes/ EtOAc, 6:4) as a 

yellow solid. Mp 268 OC (decomposed) (lit.84 288-290 OC); 1H NMR (600 MHz, DMSO-

d6) δ 11.35 (br s, 1H), 7.86 (dd, J=7.8, 1.8 Hz, 1H), 7.54 (d, J=1.8 Hz, 1H); 13C NMR 

(150 MHz) δ 183.1, 158.8, 152.5, 150.7, 125.4, 122.4, 117.7, 106.3.

NO2

I

Cl

PdCl2(PPh3)2
Acetone N

H

O

O
Cl

                                              217b                                                            164b

6-Chloroisatin (6-Chloroindole-2,3-dione) (164b): 

The reaction between 217b (50 mg, 0.163 mmol) and PdCl2(PPh3)2 (15 mg, 0.021 

mmol) in acetone (10 ml), as described for 164 (room temperature, 96 h), afforded the 

product 164b (12 mg, 0.076 mmol, 47%) after chromatography (hexanes/ EtOAc, 7:3) 

as a yellow solid. Mp 268 OC (decomposed) (lit.138 263 OC); 1H NMR (600 MHz, DMSO-

d6) δ 11.15 (br s, 1H), 7.52 (d, J=7.8 Hz, 1H), 7.11 (dd, J=8.4, 1.8 Hz, 1H); 13C NMR 

(150 MHz) δ 183.6, 160.1, 152.5, 142.9, 126.9, 123.4, 117.4, 112.8.
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                                                217c                                                           164c

6-Methoxyisatin (6-methoxyindole-2,3-dione)139 (164c):

The reaction between 217c (90 mg, 0.297 mmol) and PdCl2(PPh3)2 (12 mg, 0.017 

mmol) in acetone (10 ml), as described for 164 (room temperature, 48 h), afforded the 

product 164c (31 mg, 0.175 mmol, 59%) after chromatography (hexanes/ EtOAc, 1:1) 

as a yellow solid. Mp 220 OC (decomposed) (lit.140 229-230 OC); 1H NMR (600 MHz) 

(DMSO-d6 ): δ 10.95 (s, 1H), 7.49 (d, J= 8.4 Hz, 1H ) , 6.59 (dd, J=8.4, 2.4 Hz, 1H), 6.40 

(d, J=2.4 Hz, 1H), 3.87 (s, 3H); 13C NMR (150 MHz): δ 181.5, 167.7, 160.5, 153.5, 

127.3, 111.1, 108.8, 97.8, 56.1.
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                                           217d                                                          164d

5-Methoxyisatin (5-methoxyindole-2,3-dione) 141 (164d):

The reaction between 217d (290 mg, 0.957 mmol) and PdCl2(PPh3)2 (35 mg, 0.049 

mmol) in acetone (10 ml), as described for 164 (room temperature, 36 h), afforded the 

product 164d (103 mg, 0.581 mmol, 61%) after chromatography (hexanes/ EtOAc, 6:4) 

as a dark red solid. Mp 190-195 OC (lit142,140 mp 200-201 OC); 1H NMR (270 MHz) 

(DMSO-d6 ): δ 10.85 (s, 1H), 7.19-7.15 (dd, J=8.6 Hz, 8.4 Hz, 1H), 7.05 (dd, J=2.4 Hz, 

1H), 6.84 (d, J=8.6 Hz, 1H), 3.73 (s, 3H); 13C NMR (67.5 MHz): δ 184.8, 159.7, 155.4, 

144.7, 125.0, 118.2, 113.4, 108.9, 55.9.
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                                            217e                                                          164e

7-Methylisatin (7-methylindole-2,3-dione) (164e): 

The reaction between 217e (170 mg, 0.592 mmol) and PdCl2(PPh3)2 (22 mg, 0.031 

mmol) in acetone (10 ml), as described for 164 (room temperature, 30 h), afforded the 

product 164e (67 mg, 0.416 mmol, 70%) after chromatography (hexanes/EtOAc, 6:4) as 

an orange solid. Mp 265-268 OC (lit144,145 267-269 OC); 1H NMR (600 MHz) (DMSO-d6): 

δ 11.06 (br s, 1H), 7.42 (d, J=7.8 Hz, 1H), 7.33 (d, J=7.2 Hz, 1H), 6.98 (t, J=7.8 Hz, 1H), 

2.19 (s, 3H); 13C NMR (125 MHz): δ 184.7, 150.9, 149.2, 139.4, 122.6, 121.9, 121.5, 

117.5, 15.4.
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                                             217f                                                           164f

6-Methylisatin (6-methylindole-2,3-dione)143 (164f):

The reaction between 217f (165 mg, 0.575 mmol) and PdCl2(PPh3)2 (22 mg, 0.031 

mmol) in acetone (10 ml), as described for 164 (room temperature, 36 h), afforded the 

product 164f (57 mg, 0.342 mmol, 59%) after chromatography (hexanes/EtOAc, 6:4) as 

an orange-red solid. Mp 182-184 OC (lit146 187-189 OC); 1H NMR (600 MHz) (DMSO-d6): 

δ 10.97 (br s, 1H), 7.39 (d, J=7.8 Hz, 1H), 6.88 (dd, J=7.8 Hz & 1.2 Hz, 1H), 6.72 (d, 
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J=0.6 Hz, 1H), 2.35 (s, 3H); 13C NMR (125 MHz): δ 183.6, 159.8, 151.1, 150.1, 124.7, 

123.5, 115.5, 112.6, 22.2.
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                                           217g                                                        164g

4-Methylisatin (4-methylindole-2,3-dione) (164g):

The reaction between 217g (115 mg, 0.40 mmol) and PdCl2(PPh3)2 (14 mg, 0.02 mmol) 

in acetone (10 ml), as described for 164 (room temperature, 20 h), gave 164g (22 mg, 

0.137 mmol, 34%) as the product after chromatography (hexanes/EtOAc, 7:3), as an 

orange solid. Mp 182-184 OC (lit144186-187 OC); 1H NMR (600 MHz) (CDCl3): δ 8.13 (br 

s, 1H), 7.40 (t, J=7.8 Hz, 1H), 6.89 (d, J=7.2 Hz, 1H), 6.71 (d, J=7.8 Hz, 1H), 2.57 (s, 

3H); 13C NMR (125 MHz): δ 183.5, 159.3, 149.2, 141.9, 138.1, 126.4, 116.7, 109.6, 

18.3.
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                                            223                                                                  224

5H-[1,3]Dioxalo[4,5-f]indole-6,7-dione (224)145:

The reaction between 223 (80 mg, 0.296 mmol) and PdCl2(PPh3)2 (10 mg, 0.014 mmol) 

in acetone (6 ml), as described for 164 (room temperature, 5 h), afforded the product 

224 (20 mg, 0.105 mmol, 35%) after chromatography (hexanes/EtOAc, 1:1) as a pink 

solid. Mp 280-281 OC (lit146 284 OC) ; 1H NMR (600 MHz):  δ 10.76 (s, 1H), 7.05 (s, 1H ), 
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6.55 (s, 1H), 6.13 (s, 2H); 13C NMR (150 MHz): δ 181.3, 160.3, 156.1, 150.4, 143.6, 

110.0, 103.8, 102.5, 94.6. 
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                                              212a                                                     225 

2-Bromo-3-oxo-3H-indole-1-oxide (225):

To a solution of 212a (235 mg, 1.03 mmol) in CH2Cl2 (25 ml), PdCl2(PPh3)2 (77 mg, 

0.109 mmol) was added and the reaction mixture was heated to reflux for 80 minutes. 

The solvent was removed under reduced pressure and the resulting crude was purified 

by chromatography (hexanes/EtOAc, 6:4) to yield the product 225 (230 mg, 1.017 

mmol, 99%) as an orange solid. 1H NMR (270 MHz):  δ 7.74-7.55 (m, 4H); 13C NMR 

(67.5 MHz): δ 180.5, 147.8, 135.1, 135.0, 131.6, 131.5, 123.0, 122.3, 114.0; IR (ATR) 

1735, 1652, 1506 cm-1.      
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                                             223                                                                      248     

6-Bromo-7-oxo-7H-[1,3]dioxalo[4,5-f]indole-5-oxide (248):

To a solution of 223 (28 mg, 0.104 mmol) in acetone (5 ml), PdCl2(PPh3)2 (4 mg, 0.006 

mmol) was added and the reaction mixture was allowed to stir at room temperature for 
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50 minutes. The solvent was removed under reduced pressure and the resulting crude 

was purified by chromatography (hexanes/EtOAc, 6:4) to yield the product 248 (24 mg, 

0.089 mmol, 86%) as a brown solid. Further elution afforded a trace amount of the isatin 

224. Mp 125 OC (decomposed); 1H NMR (600 MHz) δ 7.17 (s,1H), 7.05 (s, 1H), 6.17 (s, 

2H); 13C NMR (150 MHz) δ 179.7, 153.1, 150.1, 144.7, 117.4, 117.1, 103.6, 103.3, 97.8; 

IR (ATR) 1717, 1500, 1292, 1031 cm-1; HRMS (ESI) calcd for C9H5BrNO4 (M+H+) 

269.9402, found 269.9399.

                

N
O
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Br

Pd(PPh3)2Cl2 (10%)

CH2Cl2, EtOH, 3 h, rt

               
                                         212a                                                                250a

2-Ethoxyisatogen (250a):

To a solution of 212a (50 mg, 0.221 mmol) in DCM (5 ml), PdCl2(PPh3)2 (12 mg, 0.017 

mmol) and EtOH (0.5 ml) was added and the reaction mixture was heated at 45 OC (3 h) 

under an inert atmosphere. The solvent was removed under reduced pressure and the 

resulting crude was purified by chromatography (hexanes/EtOAc, 7:3) to yield the 

product 250a (30 mg, 0.156 mmol, 70%) as an yellow solid. Mp 45-47 OC; 1H NMR (600 

MHz) δ 7.92 (d, J=8.4 Hz, 1H), 7.71 (d, J=9 Hz, 1H), 7.38 (dt, J=9, 2.4 Hz, 1H), 7.23 (dt, 

J=8.4, 2.4 Hz, 1H), 4.54 (q, 2H), 1.49 (t, 3H); 13C NMR (150 MHz) δ 157.7, 157.3, 

153.9, 131.3, 127.9, 120.7, 120.5, 116.3, 62.4, 14.5; IR (neat)  1726, 1304, 1224, 1178 

cm-1.
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                                          212c                                                                       250c

6-Chloro-2-ethoxyisatogen (250c):

To a solution of 212c (132 mg, 0.43 mmol) in DCM (20 ml), PdCl2(PPh3)2 (35 mg, 0.05 

mmol) and EtOH (0.5 ml) was added and the reaction mixture was stirred at room 

temperature (6 h) under an inert atmosphere. The solvent was removed under reduced 

pressure and the resulting crude was purified by chromatography (hexanes/EtOAc, 8:2) 

to yield the product 250c (25 mg, 0.09 mmol, 23%) as a pale orange solid. 

Mp 74-75 OC; 1H NMR (600 MHz) δ 7.89 (dd, J=9,  0.6 Hz, 1H), 7.72 (dd, J=1.8, 0.6 Hz, 

1H), 7.17 (dd, J=9, 1.8 Hz, 1H), 4.55 (q, 2H), 1.49 (t, 3H); 13C NMR (150 MHz) δ 

157.8, 156.9, 154.6, 137.9, 130.0, 122.1, 118.9, 114.8, 62.7, 14.4; IR (neat) 1737, 

1218,1198 cm-1. 
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                                            225                                                               251

2-Allyloxyisatogen (251): 

To a solution of 225 (149 mg, 0.66 mmol) in dichloromethane (10 ml), allyl alcohol 

(200mg, 3.46 mmol) was added and the reaction mixture was stirred at room 

temperature (16 h) under an inert atmosphere. The solvent was removed under reduced 
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pressure and the resulting crude was purified by chromatography (hexanes/EtOAc, 9:1) 

to yield the product 251 (50 mg, 0.25 mmol, 38%) as a pale brown solid. Mp 33-35 OC;

1H NMR (600 MHz) δ 7.93 (ddd, J=8.8, 0.8, 0.8 Hz, 1H), 7.72 (ddd, J=9.1, 0.9, 0.8 Hz, 

1H), 7.39 (ddd, J=9.1, 6.4, 0.6 Hz, 1H), 7.25 (ddd, J=8.8, 6.4, 0.9 Hz, 1H), 6.09 (ddt, 

J=17.2, 10.5, 5.9 Hz, 1H), 5.51 (dq, J=17.2, 1.3 Hz, 1H), 5.38 (dq, J=10.5, 1.3 Hz, 1H), 

4.98 (dt, J=5.9, 1.3 Hz, 1H); 13C NMR (150 MHz) δ 157.5, 156.8, 153.5, 131.2, 131.1, 

127.9, 120.5, 120.4, 119.8, 116.2, 66.5; IR (neat) 1719, 1306, 1195 cm-1; HRMS Calcd  

for C11H9NO3 (M+H+) 204.0660; found 204.0655.
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                               262                                                         257d                                      257c

2,3,4,9-Tetrahydro-7-methoxy-3-methyl-1H-carbazol-1-one (257c) and 2,3,4,9-

tetrahydro-5-methoxy-3-methyl-1H-carbazol-1-one (257d):                                          

The phenyl hydrazone 262 (197 mg, 0.788 mmol) was dissolved in glacial acetic acid 

(1.3 ml) and refluxed with Conc. HCl (0.4 ml) for 5 min. The reaction mixture was diluted 

with ice water and filtered. The precipitate obtained was purified by chromatographed 

over a silica column (hexane/EtOAc, 9:1) to afford 257c (90 mg, 0.390 mmol, 49%) as a 

colorless solid. Mp 204-206 OC. (lit116, 113a. mp 211 OC). Further elution with  (hexane-

ethyl acetate, 7:3) gave 257d (13 mg, 0.057 mmol, 7%) also as a colorless solid.  

Mp 198 OC (lit.113a mp 201 OC).
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                                                257b                                                    279 

1-methyl-3-hydroxycarbazole (279):

To a solution of compound 257b (105 mg, 0.454 mmol) in anhydrous DMF (3ml), was 

added DBU (71 mg, 0.466 mmol) and heated under an atmosphere of nitrogen for 16 h. 

The reaction mixture was cooled to room temperature, diluted with water (20 ml), and 

extracted with dichloromethane (2X20 ml). The organic phase was  dried  (anhydrous 

MgSO4) and concentrated to give an oily dark crude, that was purified by 

chromatography (hexanes/EtOAc, 7:3) to yield 279 (25 mg, 0.127 mmol, 27.8%) as an 

off-white solid. Mp 158-160 OC; 1H NMR (600 MHz) δ 7.96 (d, J=7.8 Hz, 1H), 7.805 (br 

s, 1H), 7.42 (d, J=7.8 Hz, 1H), 7.39 (t, J=7.2 Hz, 1H), 7.34 (d, J=1.8 Hz, 1H), 7.19 ( t, 

J=7.8 Hz, 1H), 6.82 (d, J=1.8 Hz, 1H), 4.63 (br s, 1H), 2.51 (s, 3H); 13C NMR (150 MHz) 

δ 149.5, 140.4, 134.1, 125.9, 123.8, 123.7, 121.0, 120.7, 119.3, 115.8, 111.0, 103.3. IR 

(neat) 3149, 1492, 1373, 1172, 1061 cm-1; HRMS calcd. for C13H12NO (M+H+) 

198.0919, found 198.09134.
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                                             257e                                                      283

3-Hydroxycarbazole (283): 

To a solution of compound 257e (100 mg, 0.4603 mol) in anhydrous DMF (4 ml) was 

added DBU (190 mg, 1.248 mmol) and heated under an atmosphere of nitrogen for 2 h. 

Work up and purification as described for compound 279, gave 3-hydroxycarbazole 

(283) (20 mg, 0.109 mmol, 24%) after purification by chromatography (hexane/EtOAc, 

7:3) as a colorless solid.147 Mp 252-255 OC (lit148 260-261 OC). 

COOH
I

NO2

I

NO2

OH

BH3.DMS,
THF, 2 h, reflux

                                           302b                                        308

2-Iodo-3-nitrobenzylalcohol (308):

To a solution of 2-iodo-3-nitrobenzoic acid (2.95 gm, 0.01 mol) prepared in dry THF (20 

ml), was added borane-dimethylsulfide complex (10 ml, 2M) slowly with a syringe and 

the reaction mixture was heated to reflux under an atmosphere of nitrogen for 2 hours. 

The solution was cooled to room temperature and methanol (10 ml)  was added 

slowly until the bubbles cease, followed by water (20 ml). Extraction of the resulting 

solution with ethyl acetate (2X20 ml), drying (anhydrous MgSO4) and evaporation of the 

solvent under reduced pressure gave an yellow solid which was purified by 
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chromatography (hexanes/EtOAc, 6:4) to yield 308 (2.512 gm, 0.009 mol, 90%) as a 

yellow solid. Mp 78-80 OC; 1H NMR (600 MHz) δ 7.71 (dt, J=7.8, 1.6, 0.8 Hz, 1H), 7.58 

(dt, J=7.8, 1.6, 0.5 Hz, 1H), 7.49 (t, J=7.8 Hz, 1H), 4.78 (s, 2H), 2.27 (br s, 1H); 13C 

NMR (150 MHz) δ 154.9, 146.2, 130.8, 129.3, 123.7, 88.4, 69.9.

I

NO2

OH

PPh3, CBr4
THF, heat, 18 h,

I

NO2

Br

                                              308                                         309

2-iodo-3-nitrobenzylbromide (309):

2-Iodo-3-nitrobenzylalcohol (308) (1.04 gm, 3.728 mmol), carbon tetrabromide (1.324 

gm, 3.994 mmol) and triphenyl phosphine (1.05 gm, 4.003 mmol) are taken in an oven-

dried round-bottomed flask, and dry THF (20 ml) is added with a candula under an inert 

atmosphere. The resulting reaction mixture is heated to reflux (4 h), cooled to room 

temperature, and extracted with EtOAc (2X50 ml) after the addition of water (25 ml). 

The combined organic phases are washed with aq. NaHSO4 (25 ml), dried (anhydrous 

MgSO4) and the solvent is removed under reduced pressure to give an yellow solid, 

which was purified by chromatography (hexanes/EtOAc, 8:2) to afford 309 (954 mg, 

2.79 mmol, 75%) as an yellow solid. Mp 65-67 OC; 1H NMR (600 MHz) δ 7.66 (dd, 

J=7.8, 1.8 Hz, 1H), 7.54 (dd, J=7.8, 1.2 Hz, 1H), 7.46 (t, J=7.2 Hz, 1H), 4.70 (s, 2H); 13C 

NMR (150 MHz) δ 156.1, 144.0, 133.2, 129.7, 124.3, 92.1, 38.6; HRMS calcd. for 

C7H5BrINO2 (M+H+)  341.8626, found 341.8621.
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                                               309                                     299b

2-iodo-3-nitromethoxytoluene (299b):

A solution of sodium methoxide, prepared by dissolving sodium (124 mg, 5.391 mmol) 

in methanol (10 ml) is added to a methanolic solution of 309 (925 mg, 2.705 mmol) 

under an inert atmosphere at 0 OC. The resulting reaction mixture is allowed to stir 

rapidly at 0 OC (4 h). The removal of the solvent under reduced pressure gave an yellow 

solid, which after purification by chromatography (hexanes/EtOAc, afforded 299b (600 

mg, 2.047 mmol, 76%) as an yellow solid. Mp 26-27 OC; 1H NMR (600 MHz) δ 7.63 (dd, 

J=7.2, 0.6 Hz, 1H), 7.55 (dt, J=7.8, 0.6 Hz, 1H), 7.46 (t, J=7.8 Hz, 1H), 4.503 (s, 2H); 

3.52 (s, 3H); 13C NMR (150 MHz) δ 155.0, 144.3, 130.9, 129.1, 123.6, 88.6, 59.1;  

HRMS calcd. for C8H8INO3 293.9627, found 293.9621.
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