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ABSTRACT 

Developing a Smart Proxy for Fluidized Bed Using Machine 

Learning 

 

Amir Ansari 

 

Using fossil fuel which has been grown dramatically during the recent century, causes an increase 

in greenhouse gas emission. The global warming issue pushes the engineers toward the cleaner 

type of energy like Hydrogen. Coal gasification is one of the cheapest methods to obtain Hydrogen. 

Coal gasification is a special case of more general problem called fluidized bed. In order to design 

and optimize a gasification process, a deep understanding of multiphase flow in a gasifier is 

needed. MFiX is a commercial multi-phase flow simulator which has been used to simulate the 

gas and solid transport and reaction in the gasifier using Computational Fluid Dynamics (CFD). 

Although simulating multiphase flow using commercial CFD software has a lot of flexibilities, it 

is really time-consuming and some other way could be implemented to reduce the run time. The 

effort of this project is to develop an alternate method to perform the same analysis but with much 

lower computational cost. A data-driven approach is used to build a smart proxy by employing the 

knowledge of Artificial Intelligence (AI) and Data Mining (DM). 

In this project, a smart proxy will be developed to study and analyze the fluidized bed problem. 

This smart proxy is then will be used as a replicate of the CFD solver, with a good accuracy and 

faster speed. This proxy needs an incredible less amount of time in comparison to the CFD solver 

with a reasonable error (less than 10%). MATLAB neural network toolbox is used for training.  

The goal of this project is to prove the concept of using AI&DM for computational fluid dynamics 

especially predicting multiphase flow. Multiphase flow has a wide range of application in 

petroleum industry such as multi-phase flow in the wellbore, surface lines, and hydraulic fracturing 

such as proppant transport in the hydraulic fracture. This project opens a new way to accelerate 

the fluid dynamics analysis and reduce its costs.  
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NOMENCLATURE 

𝑑 = Particle diameter 

𝑓𝑔 = Flow resistance due to the internal porous surfaces 

�⃗� = Acceleration of gravity 

𝐼𝑔𝑚 = interaction force representing the momentum transfer between the gas phase and the mth solids phase 

𝐼𝑚𝑙 = interaction force representing the momentum transfer between the mth and lth solids phases 

𝐽 = Objective Function 

𝑃 = Gas pressure 

𝑃𝑠 = Solid pressure 

𝑅𝑔𝑛 = Mass transfer from each of solid phases to the gas phases 

𝑅𝑠𝑚𝑛 = Mass transfer from each of gas phases to the solid phases 

𝑆�̿� = Gas-phase stress tensor 

𝑆�̿�𝑚 = Stress tensor of the mth solid phase 

𝑢𝑔 = Velocity of gas in x direction 

𝑢𝑠 = Velocity of solid in x direction 

𝑣𝑔 = Velocity of gas in y direction 

�⃗�𝑔 = Gas velocity vector 

𝑣𝑠 = Velocity of solid in y direction 

�⃗�𝑠𝑚 = Solid Velocity Vector 

𝑤𝑔 = Velocity of gas in z direction 

𝑤𝑠 = Velocity of solid in z direction 

𝑦𝑎𝑐𝑡𝑢𝑎𝑙  = The actual value which is given by CFD simulator 

𝑤𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  = The predicted value which is calculated by ANN 

 

𝜀𝑔 = Gas volume fraction 

𝜀∗= Maximum packing volume fraction 

𝜀𝑠𝑚 = Solid volume fraction 

𝜌′  = Apparent Solid Density 

𝜌𝑔 = Gas density 

𝜌𝑠𝑚 = Solid density 
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Chapter 1 Introduction 

The global warming is becoming a critical issue nowadays and pushes the engineers more toward 

the clean and environmentally-friendly fuels. Coal is a major fuel for the power plants. According 

to the EIA1 report in April 2016, 33% of the U.S. electricity was generated using coal, and coal 

has a huge contribution to greenhouse gas emission. Integrated Gasification Combined Cycle (IGCC) 

has the potential to reduce the CO2 emissions of carbon based power plants by converting coal into synthesis 

gas (also known as syngas) while capturing CO2 for storage thereby reducing the environmental impact of 

power generation. Hydrogen gas generated, as the results of the gasification process can be used to power 

gas turbines in power generation industry [1]. Modeling and simulation capabilities reduce the cost and 

time to market of new technologies like IGCC by reducing costly design and scale-up testing.  

1.1. Problem Statement 

A coal based power plants (IGCC2) are getting popular in power generation facilities. There are 

about 160 gasification plants in operation in all over the world [2]. IGCC consists of several parts; 

feed system, gasifier, gas clean-up system, and heat exchanger. The heart of an IGCC power plant 

is a gasifier. Understanding the hydrodynamics inside a gasifier allows for achieving optimum 

design. Basically, there are three approaches to simulate a process and find out the characteristics 

of the process; First method is to create a very simple mathematical model and solve the governing 

equations analytically, second method is to create a mathematical model with more complexities 

and discretize the domain in time and space and solve the equations numerically. The third 

approach is to build a prototype (usually in a smaller size) and do some experiments on a smaller 

scale and perform the upscaling to obtain the actual characteristics in the desired scale. 

It is near impossible to capture all the properties of the gasification process with a simple analytical 

model since analytical models apply simplified assumptions which may eliminate the major 

characteristics of the problem. It is also extremely challenging to design a small experimental 

prototype that can mimic the gasification process at very high temperature [3] and high pressure 

and take detailed measurements for improving the performance of the gasifier.  

                                                 
1 U.S. Energy Information Administration 
2 Integrated Coal Gasification Combined Cycle 
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The recommended method is to take the advantage of computational science and using numerical 

simulation to predict the main features of this process. The complexity of this problem is mainly 

due to presence of multiple phases (gas and solid) and the energy and mass transfer between these 

phases. In a complete gasification problem, as many as twenty-two equations should be solved 

simultaneously including mass conservation (2 equations), momentum equation (6 equations), 

energy balance (2 equations) and species mass fraction (remaining 12 equations) [4], [5]. 

Gasification is a transient process with a high degree of non-linearity and chaos that increases the 

computational cost of the process dramatically. Modeling this process by CFD solver typically is 

very time-consuming. As an example, modeling of a very simple case without any reaction and 

mass transfer takes about 4 days on super-computers with several clusters just to simulate 10 

seconds of the actual time. Furthermore, by adding more complexities to the system, the run-time 

will be increasing exponentially. 

This is where there is a critical need to develop new data-driven smart proxies that can help 

engineers to reduce the time needed for simulating complex fluid dynamics problems such as coal 

gasification. This method takes advantage of machine learning algorithm and artificial intelligence 

to come up with a powerful tool to predict the behavior of a system with far less computational 

cost compared to traditional CFD solvers.  

1.2. Objective 

The commercial CFD software’s which are available in the market such as MFIX, Open-FOAM, 

and COMSOL need several days to several weeks to simulate a simple fluidization problem. This 

makes the optimization of any process that requires multiple runs extremely computationally 

intensive and expensive. Therefore, engineers working in the field of fluid dynamics are looking 

for new techniques and tools that have the same capability but with faster turnaround time and 

much lower computational cost. Artificial intelligence and big-data analytics have a proven record 

in replicating the simulation results of complex problems with huge data sets such as those 

introduced in oil and gas industry by Mohaghegh and his team. The same techniques Artificial 

Intelligence (AI) and Data Mining (DM) can be used in a new frame work to develop a new tool 

that is able to completely replicate numerical simulation of CFD problems with the same accuracy 

and in much shorter time. The new approach requires huge amount of data, so the pattern 
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recognition techniques and machine learning algorithms can be used to learn the behavior of the 

system from the given data. 

The main objective of this research is to create a surrogate model that can replicate the CFD 

numerical simulation results for a non-reacting fluidized bed. The final goal of this project is to 

deliver a software package containing a system of artificial neural networks which is able to do 

the same job as CFD simulators does at much faster speed and lower computational cost. 

1.3. Chapter Review 

This proposal includes four chapters. In chapter one, the problem was defined and the final 

objective of the research was determined.  

In chapter two, an introduction about the gasification will be presented. A brief definition of 

multiphase flow and its governing equations will be provided. Also, a literature review that has 

been conducted about using smart proxies in the fluid dynamics problems, will be reviewed. 

Chapter three will be discussing the methodology and the machine learning method which is used 

in this thesis. The artificial neural network with all the required information will be introduced. 

The network architecture with all input and output system will be discussed.  

Results and discussions will be also presented in the fourth chapter. The conclusion will be made 

in the fifth chapter. And finally, this thesis will end up with recommendations and suggestions for 

the new works.  
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Chapter 2 Background 

In this chapter, detailed discussions on three main factors of this project will be presented. First, 

the gasification process will be introduced. Then, the fundamental of fluid dynamic equations and 

their application in gasification process will be presented. Finally, the application of machine 

learning and pattern recognition in this project will be introduced. 

2.1. Gasification 

Gasification is the process by which feedstock such as coal or biomass (dried plants, woods, and 

farm waste) is converted into synthesis gas (also called syngas). Syngas is mainly composed of 

CO, H2 and CO2 along with contaminants such as H2S [6]. Primary species such as H2 and CO can 

be used in power generation or chemical processing industries. Figure 2-1 shows the gasifier vessel 

where the gasification takes place. 

  

Figure 2-1- The gasifier with inputs and outputs [3] 

Gasifiers are classified into three main categories: fixed bed gasifiers, entrained flow gasifiers and 

fluidized bed gasifiers. A fluidized bed gasifier can efficiently mix the feedstock (coal) particles, 

which may be at different stages of gasification. An advantage of a fluidized bed gasifier is the 

nearly uniform temperature that can be achieved in the reactor. In a fluidized bed gasifier, a mixture 
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of steam and oxidizer (air) is introduced at the bottom of the gasifier, with coal particles injected 

along the side of the reactor. After the initial moisture in the coal is released, the coal particles 

undergo devolatilization, where the volatile gases, such as CO, CO2, H2, H2O, CH4 to name a few, 

that are trapped in the coal are released. In the next step, carbon in coal and oxygen react to produce 

carbon monoxide and heat according to equation (2-1). Carbon monoxide further reacts with 

oxygen to produce carbon dioxide and heat, according to equation (2-2).  

𝐶 +
1

2
𝑂2  

 
→  𝐶𝑂 (2-1) 

𝐶𝑂 +
1

2
𝑂2  

 
→  𝐶𝑂2 

(2-2) 

The heat of combustion generated is key in maintaining the gasification process, which is an 

endothermic process. Steam and carbon dioxide gasification takes place, when carbon in coal 

reacts with H2O and CO2 to produce carbon monoxide and hydrogen according to reactions (2-3) 

and (2-4). 

𝐶 +  𝐻2𝑂 →  𝐶𝑂 +  𝐻2 (2-3) 

𝐶 +  𝐶𝑂2  →  2𝐶𝑂 (2-4) 

Depending on the gasification goal, CO and H2 in the syngas can be directed to a water-gas shift 

reactor, where the ratio of CO to H2 produced can be altered according to reaction (2-5). 

𝐶𝑂 + 𝐻2𝑂 ↔ 𝐶𝑂2 + 𝐻2 (2-5) 

Gasification process also has its own complexity and concerns. One of the major issues of this 

process is handling and processing the solids. On the other hand, simulation of fluid dynamics in 

a gasifier is a tedious task due to multi-phase nature of flow and reaction in a high temperature and 

pressure.  

2.2. Multiphase Flow 

Transport in the gasification process consists of two flow regimes; coal transport and smoke 

transport. This is a challenging problem because of the multi-phase nature of the process and 
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heterogeneous fluid and particle interactions. Traditionally, the modeling and optimization of 

multiphase flow is performed by empirical modeling based on the experimental observation 

without going into the detail of physics and mathematics. The empirical modeling needs large 

investment for data gathering and data processing. Data gathering is itself a big challenge in 

gasification vessel since it is hard to measure the flow properties inside the gasifier due to its high 

temperature. Multiphase computational fluid dynamics does not have these difficulties, it also has 

a lot of flexibilities to tweak the system characteristics to optimize the process.  

Basically, there are two different modeling scheme; Eulerian and Lagrangian. Eulerian refers to 

bulk fluid simulation that has a fix coordinate system while Lagrangian refers to particle tracking 

simulation where there is a coordinate assigned to each particle and moving with particle velocity 

with respect to fixed coordinate. 

 Continuum (Eulerian): Select a fix control volume and assume the flow is continuum and 

use the Navier-Stokes equation by averaging the properties over the volume. Continuum 

approach needs less computational time but it cannot capture all the complexities, 

especially in multiphase flow where interaction between particles plays a major role [8].  

 Discrete Particle (Lagrangian): Track each particle in the fluid by using Newton’s Law of 

motion. This method is more straightforward to apply, even in multiphase flow, but the 

computational costs is high [8].  

There are several approaches to modeling multiphase flows. Depending on the application, either 

the gas phase or the solid phase or both phases can be modeled in an Eulerian or a Lagrangian 

framework [8]–[10]. Table 2-1 shows different approaches to model multiphase flows. 

Table 2-1- Multiphase Flow Modeling Approaches [8] 

 Name Gas Phase Solid Phase Coupling Scale 

1 Discrete bubble model Lagrangian Eulerian Drag Closure for bubbles 10 m 

2 Two Fluid Model Eulerian Eulerian Gas-Solid drag closure 1 m 

3 Unresolved Discrete particle model Eulerian Lagrangian Gas-particle drag closure 0.1 m 

4 Resolved Discrete particle model Eulerian Lagrangian 
Boundary condition at 

particle surface 
0.01 m 

5 Molecular Dynamics Lagrangian Lagrangian 
Elastic collisions at particle 

surface 

<0.001 

m 
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Coal gasification includes two phases; first phase is gas (oxygen and sometimes water vapor) and 

the second phase is solids (coal). The governing equations of the motion are partial differential 

equations. To completely model this process, coupling of those equations for mass transport, 

energy transport, and momentum equation for two phases should be considered. Solving the 

coupled partial differential equations analytically is not an easy task, so the numerical method 

should be utilized to solve the equations.  

CFD (computational fluid dynamics) is a combination of numerical analysis, fluid dynamics, and 

computer science. The governing partial differential equations for the fluid flow could be solved 

more easily by CFD method which is a tool to replace PDE by a set of linear algebraic equations. 

There are several commercial CFD simulator available in the market with different capabilities in 

different aspects. Among those software, MFiX has been chosen for this project to simulate fluid 

and solid dynamics in gasifier. 

Modeling the multi-phase fluid dynamics inside a gasifier is extremely complex. To model the 

gasification process, not only the hydrodynamics of gas and solid flow have to be modeled by 

solving for gas and particle transport equations, also the chemical reaction processes such as 

devolatilization, coal combustion and gasification, homogeneous oxidation and water gas shift 

reactions have to be modeled as well Often times it’s difficult to make detailed measurements 

inside a gasifier, due to the high temperature, high pressure and harsh conditions in a gasifier. 

Simulations, therefore, provides an alternative to designers and engineers to access the 

performance of a gasifier. 

Watanabe and Otaka [3] used CFX-4 CFD software to investigate the effect of air flow rate and 

coal type on the performance of a gasifier. The purpose of their study was to optimize the 

performance of the gasifier by changing the air ratio and coal type.  

Papadopoulos et al., [7] used a ANSYS-CFX CFD code to develop a high pressure, high 

temperature model. He used the same concepts and equations as Watanabe and Otaka did. 
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2.2.1. MFiX  

MFiX is an open source multiphase CFD software developed and maintained by NETL1. MFiX is 

able to handle heat and mass transfer and chemical reactions in fluid-solids systems. It has been 

used to model the bubbling, circulating fluidized beds, and spouted beds. The output of MFiX 

consists of transient information on the distribution of volume fractions, pressure, velocity, 

temperature, and species mass fractions of each phase being considered. MFiX has its own post-

processing tool to visualize the results, but it is compatible with multiple software such as Paraview 

[4], [5]. 

2.2.2. Governing Equation 

In this section, all the equations which MFiX uses to simulate fluid and solid dynamics are 

reviewed. There will not be any detailed discussion on the derivation of the equations and the 

purpose of providing these equations is to introduce all the important parameters that later on will 

be used in the machine learning algorithm as input. Moreover, the step by step algorithm that MFiX 

uses to solve the problem will be discussed since this will play an important role for the machine 

learning when implicit prediction is utilizing. 

2.2.2.1. Conservation of mass 

MFiX can handle one gas phase and multiple solid phases, so there is one scalar equation for 

conservation of gas and multiple equations for conservation of each solid phase [11]. 

Equation (2-6) shows the conservation of mass of gas phase 

𝜕

𝜕𝑡
(𝜀𝑔𝜌𝑔) + ∇. (𝜀𝑔𝜌𝑔�⃗�𝑔) = ∑ 𝑅𝑔𝑛

𝑁𝑔

𝑛=1

 (2-6) 

 

Where 𝜀𝑔 is the gas volume fraction, 𝜌𝑔 is the gas density, �⃗�𝑔 is the gas velocity vector and 𝑅𝑔𝑛 is 

mass transfer from each of solid phases to the gas phase, this mass transfer could be due to 

chemical or physical processes such as evaporation and reaction 

                                                 
1 National Energy Technology Laboratory  
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As mentioned, MFiX can handle multiple solid phases. Equation (2-7) shows the conservation of 

mass of mth solid phase. 

𝜕

𝜕𝑡
(𝜀𝑠𝑚𝜌𝑠𝑚) + ∇. (𝜀𝑠𝑚𝜌𝑠𝑚�⃗�𝑠𝑚) = ∑ 𝑅𝑠𝑚𝑛

𝑁𝑠𝑚

𝑛=1

 (2-7) 

 

Where 𝜀𝑠𝑚 is the solid fraction of mth solid phase, 𝜌𝑠𝑚 is the density of mth solid phase, �⃗�𝑠𝑚 is the 

solid velocity vector and 𝑅𝑠𝑚𝑛 is mass transfer from gas phase to the solid phase.  

2.2.2.2. Conservation of Momentum 

The gas-phase momentum balance is expressed by equation (2-8). 

𝜕

𝜕𝑡
(𝜀𝑔𝜌𝑔�⃗�𝑔) + ∇. (𝜀𝑔𝜌𝑔�⃗�𝑔�⃗�𝑔) = ∇. (𝑆�̿�) + 𝜀𝑔𝜌𝑔�⃗� − ∑ 𝐼𝑔𝑚

𝑀

𝑚=1

+ 𝑓𝑔 (2-8) 

 

Where 𝑆�̿� is the gas-phase stress tensor, 𝐼𝑔𝑚 is the interaction force representing the momentum 

transfer between the gas phase and the mth
 solids phase, and 𝑓𝑔 is the flow resistance offered by 

internal porous surfaces. 

The momentum equation for the mth
 solids phase is 

𝜕

𝜕𝑡
(𝜀𝑠𝑚𝜌𝑠𝑚�⃗�𝑠𝑚) + ∇. (𝜀𝑠𝑚𝜌𝑠𝑚�⃗�𝑠𝑚�⃗�𝑠𝑚) = ∇. (𝑆�̿�𝑚) + 𝜀𝑠𝑚𝜌𝑠𝑚�⃗� − ∑ 𝐼𝑚𝑙

𝑀

𝑙=1
𝑙≠𝑚

+ 𝐼𝑔𝑚 (2-9) 

 

Where 𝑆�̿�𝑚 is the stress tensor for the mth solid phase, 𝐼𝑔𝑚 is the interaction force representing the 

momentum transfer between the gas phase and the mth
 solids phase, and 𝐼𝑚𝑙 is the interaction force 

representing the momentum transfer between the mth
 and lth

 solids phases. 

All the important parameters describing the gasification process can be extracted using equations 

(2-6) to (2-9) and equations described in appendix I. Table 2-2 shows the key parameters involved 

in the simulation process, this information will be used in the next chapter to define the input 

parameters for the artificial neural network.  
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Table 2-2- Important parameters for multiphase flow 

Key factors of gas-solid system 

Gas Density (ρ) 

Volume fraction (ɛ) 

Particle diameter (d) 

Maximum packing volume fraction (ɛ*) 

Velocity vector of gas (u, v, w) 

Velocity vector of solid (u, v, w) 

Pressure field of gas (P) 

Pressure field of solid(Ps) 

Time (t) 

Location to the boundaries (x, y, z) 

Location to the interface (x, y, z) 

2.2.3. MFiX solution Algorithm 

Equations (2-6) to (2-9) form a system of nonlinear partial differential equations. In order to solve 

this system of PDEs, a step by step iterative algorithm has been developed by MFiX solver. The 

sequence of solving the equations and calculating the parameters are important for this project in 

order to establish the best solution scenario. Each solution scenario has its own approach, in some 

of them (implicit scenarios), the sequence of calculating of parameters is so important. The MFiX 

solution algorithm might be a good start point for the implicit scenarios. There will be a detailed 

discussion about different solution scenarios in the next chapter. Figure 2-2 shows the step by step 

algorithm which is used by MFiX to solve the system of coupled PDE equations. 
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Figure 2-2- MFiX solution Algorithm [4] 

2.3. Machine Learning 

Based on Arthur Samuel (1959) definition, “Machine learning is a field of study that gives 

computers the ability to learn without being explicitly programmed.” 

Machine learning is a process through which computer will learn from data to find a possible 

pattern in the data set. This process encompasses three main components as follows: 

 Learning algorithm 

 Data 

 A pattern in the data 
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If these three components are present, a successful learning process can be achieved based on the 

capability of the learning algorithm. There are two major type of Machine Learning: supervise 

learning and unsupervised learning [12]. 

2.3.1. Supervised Learning 

In supervised learning, some data, is provided as input and output to the learning algorithm, with 

the goal of finding the relationship between input and output. There are two general types of 

supervised learning; Regression and Classification. When the output data is in continuous form, 

regression should be used to find the trend between input and output. This trend could be linear or 

nonlinear based on the problem characteristics. When for different inputs, there is finite possible 

output, the classification should be considered. For example, the type of cancer (malignant, benign) 

could be classified based on the age of the patient and size of the tumor.  

2.3.2. Unsupervised Learning 

In unsupervised learning, there is little or no information about the output. The learning algorithm 

tries to find the pattern between input data without having the output. This process is named 

clustering. For example, grouping the customer of a company based on the type of product that 

they buy daily.  

2.3.3. Artificial Neural Network 

One of the popular machine learning processes is Artificial Neural Network (ANN). The idea of 

ANN came from the neurons of the brain and the way they are communicating with each other to 

solve a problem. Each artificial neural network consists of an input layer, one or more hidden 

layers, and an output layer. The number of output and input layers are chosen based on the problem 

and the property which is going to be predicted. Figure 2-3 shows a typical ANN with three inputs 

and two outputs. ANN has one or more hidden layers and each layer has a specific number of 

neurons [13].  

In order to have a well-trained network, proper parameters should be introduced to the network. If 

improper data are used to train the network there is no guarantee to have a well-trained network 

that lead to correct predictions, in other words, “Garbage in, Garbage out.” In chapter three, a 

smart way of picking parameters will be introduced. 
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Figure 2-3- Artificial Neural Network Schematic 

The number of hidden layers and the neurons in each hidden layer depends on the complexity of 

the problem, number of parameters, and number of records. Experience also plays a role in this 

decision. But generally, there is no solid rule for them. As a rule of thumb, the number of neurons 

in the first hidden layer shouldn’t be less than the number of input parameters. 

2.3.4. Objective function 

Regardless of the learning method, each machine learning process needs an optimization procedure 

that helps the process reduce the error as much as possible. The very common and simple objective 

function in supervised learning is the summation of all the differences between predicted values 

by the learning method and the actual values of output. Sometimes the negative errors cancel the 

positive errors and the total error becomes very small although none of the data points have good 

predictions, by calculating the square of the differences, the mentioned problem could be resolved. 

Equation (2-10) shows this objective function [13]. 

𝐽(𝜃0, 𝜃1) =
1

2𝑚
∑(𝑦𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

2
𝑚

𝑖=1

 (2-10) 

 

During the learning process, the learning algorithm tries to assign different weights to each of the 

lines in Figure 2-3, in a way that the global error of objective function becomes minimum. Also, a 
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blind validation is done simultaneously to stop the learning process. We will discuss the validation 

and test in more depth in the next chapter. 

2.4. Previous work done in this area 

The idea of using AI in petroleum engineering was first introduced by S. Mohaghegh [14]. He 

took advantage of ANN for predicting the permeability of the formation based on geological well 

logs. He showed that neural network is capable of making the task of permeability determination 

automated rather than doing it over and over by log analyst. He also stated that neural network can 

handle far more complex tasks. He also used ANN for predicting gas storage well performance 

after hydraulic fracture in the same paper and his later investigations [15].  

Alizadehdakhel et al.[16] used ANN to predict the pressure loss of a two-phase flow in the 2 cm 

diameter tube. In two-phase fluid, separation of the phases may occur because different phases 

may have different velocities, so the traditional Navier-Stocks equation is not capable of finding 

the exact pressure drop in different flow condition. The authors used three main property of the 

fluid (gas velocity number, liquid velocity number, and line slop1) as the input of the ANN and 

only one output which was the average pressure drop. They utilized 8 different networks with a 

different number of neurons to find out the optimum number neurons. MSE and R-square were 

used as a criterion to pick the best network design. They also tried to find the most efficient transfer 

function between Log-Sigmoid, Hyperbolic-Tangent Sigmoid, and linear. The data had come from 

the experimental setup that they had built. The pressure in upstream and downstream of the pipe 

was measured and the pressure loss was calculated. 

Shahkarami et al. [17] took advantage of ANN to model the pressure and saturation distribution in 

a reservoir which was used for CO2 sequestration purpose. This problem required a large number 

of time steps for simulation of CO2 injection and storage using commercial software. They ran 10 

different cases in CMG (commercial reservoir simulator) and then the results were used as input 

for ANN. The output of the ANN was selected to be pressure distribution, water saturation, and 

CO2 mole fraction. 80% of the data coming from CMG simulation were used to train the network, 

10% were used for the validation and the rest of the data were used for the test process. They have 

                                                 
1 Pressure drop in one meter, ΔP/L (Pa m-1) 
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shown that ANN can be used as a powerful tool for multiphase flow simulation in oil and gas 

industry. 

Esmaili and Mohaghegh [18] introduced a new way of using completion and production data with 

the well logs in order to find out the shale reservoir behavior under certain condition. By 

understanding the behavior of the shale reservoir, conducting the hydraulic fracture could be much 

easier. Moreover, this method has the ability to perform the history matching on the production 

data. 

Kalantari-Dehghani et al. [19] coupled reservoir numerical simulator with AI method to develop 

a shale proxy model that is able to regenerate a numerical simulation results in just a few seconds. 

They introduced three different well-based tier systems to achieve a comprehensive input data for 

the ANN. In another research [20], they showed that data-driven proxy models at the hydraulic 

fracture cluster level could be used separately as a reservoir simulator especially in low 

permeability reservoir such as shale which has a nonlinear behavior.  
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Chapter 3 Methodology 

In this chapter, the methodology of solving a problem in the field of computational fluid dynamics 

will be discussed in detail. First, the problem will be defined with all the initial and boundary 

conditions. Then the modeling process in MFiX (commercial CFD simulator) will be explained. 

Creating the input of the neural network is the next discussion in this chapter that is the most 

important step of data training. By knowing all the provided information from previous chapters, 

the neural network model will be created and the training will be performed.  

3.1. Defining the problem 

The gasification process is a very complicated problem. In order to demonstrate the usefulness of 

using ANN to create proxy models for the gasification process, first a proof of concept study has 

been carried out to show that ANN can be applied to a simple CFD simulation of a flow inside a 

rectangular fluidized bed. 

Figure 3-1 shows the geometry of the problem which is a rectangular fluidized bed with a square 

cross section. The dimension of the fluidized bed is depicted in Figure 3-1. One-sixth of the 

fluidized bed is filled with sand which is initially at rest. The sand particles are perfect spheres 

with the density of 1160 kg/m3. The initial volume fraction of gas (voidage) is 0.42. 

The y-component of the initial velocity of the air inside the fluidized bed (where sand is located) 

is 1.43 m/s and the y-component of the initial velocity of the air in the freeboard region (above the 

sand) is 0.6 m/s.  

The inlet air velocity is set to 0.6 m/s that is uniformly distributed in the upward direction. The air 

discharges into atmospheric pressure up on top of the bed. 

As air is injected into the bed, initially large gas pockets form that cause sand particles to move 

upward as a slug. In matter of few seconds, the gas pockets break up, leading to the breakup of 

sand slugs, which shower back down. At this time, air entering the bed forms bubbles, which move 

up through the sand bed, leading to the fluidization of the sand particles.  
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Figure 3-1- Geometry and initial condition of the problem 

3.2. MFiX 

The geometry setup in the previous section, is simulated in MFiX. The output data generated by 

MFiX is used as the input data to the ANN. 

The model has been created and ran successfully. The next step is to get the results from MFiX 

and organize the data in order to make the data ready for the ANN. Since MFiX reports the results 

based on the grids, the order and exact location of each grid is extremely important for ANN. The 

output file of MFiX has an extension of *.vtu for each time-step which needs to be converted to 
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*.csv files. ParaView is an open source software which can be used for data visualization and 

format conversion.  

3.2.1. Grid system 

Several mesh resolutions could be considered depending on the desired accuracy. Table 3-1 shows 

different grid sizes and the number of cells associated with each grid size. The very fine grid system 

with 118,098 cells was selected for this study.  

Table 3-1- different grid size and the amount of cells 

Grid Classification Cell size No. of Cells No. of Nodes 

Coarse 8*48*8 (15 mm) 3,072 3,969 

Medium 12*72*12 (10 mm) 10,368 12,337 

Fine 18*108*18 (6.6 mm) 34,992 39,349 

Very Fine 27*162*27 (4.4 mm) 118,098 127,792 

 

It is important to understand the output files structure of MFiX and understand the format of each 

file and the order information that is reported. For this purpose, the grid system should be 

completely known. Figure 3-2 shows the numbering order of the grids. The numbers start from the 

origin of the coordinates and moves in the y-direction first, as it gets to the last grid in y-direction 

it moves in the x-direction and goes to the next column. After the first layer numbering is 

completed, it moves in z-direction to the second, third and all the way to the last layer. 

3.3. Artificial Neural Network Setup 

The output file of MFiX which was converted to *.csv file is ready to be reorganized to serve as 

the input for the ANN. Every time-step has one *.csv file containing 9 columns and 118,098 rows. 

Each column indicates one property and each row corresponds to one cell. Table 3-2 shows those 

9 parameters. The input of the ANN is all the data at time-step t while the output will be one or 

more parameters of time-step t+1. In this approach, the network will learn what the output should 

be given a set of input data. When the learning process gets done, the deployment process 

(prediction) will be performed. 
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Figure 3-2- MFiX numbering order 

Table 3-2- All the useful parameters reported in the MFiX result file 

Symbol Description 

𝜀𝑔 Gas volume fraction 

𝑃 Gas Pressure 

𝑃𝑠 Solid Pressure 

𝑢𝑔 Velocity of gas in x direction 

𝑣𝑔 Velocity of gas in y direction 

𝑤𝑔 Velocity of gas in z direction 

𝑢𝑠 Velocity of solid in x direction 

𝑣𝑠 Velocity of solid in y direction 

𝑤𝑠 Velocity of solid in z direction 

3.3.1. Tier System 

In order for the ANN to learn in an effective manner, a tier system has been developed. Each cell 

is in contact with 28 surrounding cells; 6 of them have the surface contact with the original cell, 
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12 of them have line contact with the original cell, and 8 of them have point contact with the 

original cell. 

Like any numerical method, the values of each cell has a relation with the value of the surrounding 

blocks. With that idea in mind, the ANN will not only learn from the 9 parameters (Table 3-2) of 

the cell, it will also learn from the surrounding cells which are called “Tier”. There are several 

tiers at the neighbor of each cell and depending on the complexity of the problem, one can use tier 

1 (surface contact), tier 2 (line contact), and tier 3 (point contact). Figure 3-3 shows a tier 1 

structure, where the main cell is surrounded by its 6 neighboring cells. For this case, the 9 

parameters of the original cell and 9 parameters of the tier 1 cells make 63 different parameters, 

which are the input for the ANN. Depending on the complexity of the problem and spatial and 

temporal correlations between different tiers and the center cell more or less input parameters 

might be required.  

 

Figure 3-3- The tier system of a 3-D simulation 

3.3.2. Input Matrix 

It is not enough to consider only the values of each parameter in a center cell and related tiers in 

the input matrix, but for the network to learn the behavior of the process and perform pattern 

recognition step, the location of each cell in the geometry is also crucial. Adding the location as 

an input helps the system understand the spatial correlation between different parameters, as well. 

On the other hand, wall has a large effect on the flow pattern and the location of wall should be 
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somehow included into the ANN. To accommodate these ideas, six different distances to the wall 

confinements (top, bottom, east, west, north, and south) are considered to define the exact location 

of each cell and parameters associated with each cell. By adding these 6 distances to the previous 

63 parameters, a total number of parameters used as input becomes 69. So, the dimension of input 

matrix is 69 by 118,098 (i.e., number of parameters multiply by the number of cells). 

3.3.3. Neural Network Architecture 

Each artificial neural network consists of an input layer, one or more hidden layers, and an output 

layer. The inputs and outputs are chosen based on the nature of the problem and the property which 

is going to be predicted. In the last section, the number of input parameters were selected to be 69. 

The output of the ANN could be only one parameter, or it could be more than one parameter. There 

will be different scenarios to compare different ANN with different number of output parameters. 

There is no clear guideline on how many hidden layers and neurons are required at each layer and 

it is basically chosen based on the problem and experience. The only rule of thumb is that, the 

number of neurons in the first hidden layer shouldn’t be less than the number of input parameters. 

For the first try, only one hidden layer with 100 neurons is considered. 69 parameters as input and 

only one parameter as output were selected. All the required numbers to define an ANN are chosen 

and shown in Table 3-3.  

 Table 3-3- Important numbers in Neural Network Model 

Number of Inputs 69 

Number of hidden layers 1 

Number of Hidden Neurons 100 

Number of records 118,098 

Number of Output 1 
 

The network characteristics are defined and shown in the Table 3-4. Feed-forward back 

propagation method is using for the training. The transfer function for hidden layer and the output 

layer was chosen to be TANSIG which is depicted in the Figure 3-4. 
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Table 3-4- Neural Network characteristics 

Network Type Feed-forward Back propagation 

Training Function Levenberg-Marquardt 

Adaption Learning Function LEARNGDM 

Performance Function MSE 

Transfer Function TANSIG 

 

Figure 3-4- nueral network transfer function (TANSIG) 

3.3.4. Data Partitioning 

If all the data is used for the training, the network will learn perfectly for the given dataset, but it 

might not be good to use for new dataset, since the goal of ANN is to predict the same problem 

but with a new database. This problem is called overfitting. Overfitting occurs when the network 

learns to mimic the exact data (that was used in the training process) but it is not general enough 

to predict the new dataset of the same problem. To overcome the overfitting problem only a portion 

of it is used to train the network. Depending on the nature of the problem, a different percentage 

can be assigned for the training purpose and remaining data is then used for the validation and test. 

The validation is a kind of blind test, which is done while training the network. In the test process, 

the rest of data will be used to check the performance of the network after training. The percentage 

of the data prioritization used for the preliminary study of this research is shown in Table 3-5. It is 

important to mention that this partitioning is the preliminary one and a deeper study will be 

conducted on the percentage of the data in section 3.5.6.3. 

Table 3-5- Original Data Partitioning  

Data Training Validation Test 

Percentage of data (%) 70 15 15 
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3.4. Spatio-Temporal Database 

In order to build the smart proxy, a fluidized bed problem has been modeled using MFiX. The 

result has been used to create a Spatio-Temporal Data base. This provided a comprehensive 

database for fluidized bed problem.  

 

Figure 3-5- Spatio-Temporal Database and optimized database 

The Spatio-Temporal database is created based on the data from one single time step for the first 

attempt, and later, more time steps will be added to the database (will be discussed in section 3.5.5). 

The Spatio-Temporal database includes all the 9 different parameters for each cell and its 

neighbors from a certain time step, plus the exact time (simulation elapsed time) of that time step 

and the location of each cell. By this definition, the model ended up having 70 parameters. The 

Spatio-Temporal database treats each cell as a separate record, so the model has 118,098 records 

which is equal to the number of cells. 

This database should be sent to an optimization process to get an optimized database with the 

smaller size but the same efficiency.  

3.5. Solution Scenarios 

Different scenarios are considered to reach the final goal of this project. The term “Different 

scenarios” refers to have different input and output structures and also using different time-steps 

for the training, while the training technique is the same in all the scenarios. Depending on what 

time-steps and how those time-steps are going to be used for the training, different scenarios will 

be designed which is the main discussion of the following section.  

Each scenario has two parts, first is the training process and second is the deployment process. A 

pair of time-steps is used in the training process. The training process stops based on the criteria 

that the user determines. This criterion could be the total number of iteration, the total time of 
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training, or the number of validation failure or a combination of those (In this project, the 

combination of all the mentioned criteria was used). The learning algorithm is such that the 

network learns more and more as it goes through each iteration but in order to avoid overfitting or 

memorization, validation error is always checked. If the validation error increases for a predefined 

number of iterations, the training stops. Most of the time, validation is the criterion which makes 

the training stop. 

As mentioned in the previous sections, 69 parameters are used as the input for the ANN. Figure 3-6 

shows all the 69 input parameters including 6 distances to the boundaries and 9 properties for the 

orange cell and also 6x9 set of parameters for tier blocks. The network also needs the output to be 

trained. In this problem, there are total 9 parameters which any of those could be the output of 

ANN. The output could be one parameter at a time or multiple parameters.  

 

Figure 3-6- 69 different parameter of ANN 

The trained network is then ready for the deployment process. One time-step is given to the trained 

network and the network will give its prediction for the next time-step. The input of the ANN for 

each deployment could come from the CFD directly or from the ANN itself. Cascading and non-

cascading deployment are defined based on what type of input is used for the network and it will 

be discussed in detail in the following sections.  

3.5.1. Early time versus late time 

In this scenario, the 69 inputs come from time-step t and the output is from time-step t+1. The 

output could be one parameter or multiple parameters, which in this case, only one output is used 

at the same time (Figure 3-7). The main question here is which time-step should be used for the 

training since there are multiple time-steps available. For the preliminary runs, one time-step from 

the early time is used for the training when the motion in the system is like a slug flow and no 

bubbles are in the fluidized bed. Figure 3-8 shows a pair of the time-steps for training.  
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Figure 3-7- Input/output parameters and time-steps for the training 

 

 

Figure 3-8- Input/output time-steps for the training (early time) 

For the second try, one pair of time-steps is chosen from the late time when the flow is completely 

chaotic and bubbles are everywhere in the system. Figure 3-9 shows the input/output pair of time-

steps for this scenario. 

 

Figure 3-9- Input/output time-steps for the training (late time) 

The reason for choosing these two training (early time and late time) is because there are two 

different flow regimes at work in these time-steps. Figure 3-10 shows the distribution of solids in 

the fluidized bed in the early time and late time. This figure shows two complete different motions 

in the system. The color bar is the gas volume fraction (voidage); all the figures are generated by 

MATLAB. 
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The purpose of this analysis is to show that the ANN is capable of capturing all the physics 

involved in different time-steps. In the next chapter, complete results of this analysis will be 

presented and discussed in detail.  

 

(a) 

 

(b) 

Figure 3-10- Gas volume fraction distribution on the wall; early time (a) versus late time (b) 

3.5.2. Cascading versus non-cascading 

Cascading and non-cascading refer to what kind of input is used for the deployment process. If the 

input comes from the CFD solver for each deployment stage, it is called non-cascading. If the input 

of the ANN for each deployment stage comes from the output of previous deployment, it is called 

cascading. 

Although it seems that non-cascading deployment has no benefit because the real input from CFD 

solver should be available for every stage, it should always be studied in order to prove that the 

trained network is working properly. Eventually, every parameter should be predicted by 

cascading method but to accomplish this goal, first non-cascading should be done. 
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To better understand the difference between these two approaches, two schematic figures are 

provided. Figure 3-11 shows the non-cascading deployment sequence while Figure 3-12 shows the 

cascading deployment. 

 

Figure 3-11- The process of non-cascading deployment 

 

Figure 3-12- The process of cascading deployment 
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The non-cascading and cascading deployment process is going to be completed for both early and 

late time and the results will be depicted in the next chapter. 

3.5.3. Single output versus multiple output 

As discussed earlier, ANN can have one output at the same time or multiple outputs. Obviously, 

having multiple outputs simultaneously increases the training time, furthermore, the network has 

to fit multiple outputs with the same weights, so the network has less flexibility to learn from data 

but sometimes it gives the better results especially when there is a correlation between the outputs. 

Figure 3-13 and Figure 3-14 show the input and output of the ANN when only one output is used 

and when 3 outputs are used, respectively.  

 

Figure 3-13- Traning with only one output (one component of gas velocity at the same time) 

To examine the ability of the ANN when multiple outputs are used, some different cases are 

considered. Selecting the set of outputs is the most important concern at this point and the main 

question is what outputs could be used at the same time. It is decided to have three components of 

gas velocity at the same time as outputs of the ANN because it is more likely for the gas velocity 

components to have a correlation and the chances are less for the solid pressure and gas velocity 

to have a correlation. 

 

Figure 3-14- Traning with multiple outputs (three components of gas velocity simutanously) 

As another advantage of this approach, it should be stated that having multiple outputs at the same 

time would reduce the number of neural networks. As mentioned in the last section, there are total 
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nine different ANN needed for cascading deployment, this number could be reduced to three if 

each network has three outputs at the same time. The result of this approach is also available in 

chapter 4.  

3.5.4. Explicit versus implicit 

Regardless of the training scenario, the training process needs a pair of data; input and output 

(time-step t and time-step t+1). If all the input data come from time-step t and the output data come 

from time-step t+1, it is called explicit method, exactly like what is common in CFD solution 

methods. Figure 3-14 is a demonstration of explicit training. It is also possible to have the 

combination of data from time-step t and t+1 as input and have time-step t+1 as the output as well. 

Obviously, the parameters from time-step t+1 that has been used for input will not be used for the 

output; this approach is called implicit training. Figure 3-15 shows one of the examples of implicit 

training. The input consists of gas volume fraction, pressures, and gas velocity vector from time-

step t in addition to solid velocity vector from time-step t+1. The output is gas velocity vector from 

time-step t+1.  

 

Figure 3-15- Traning with multiple outputs implicitly 

This approach is very common in the numerical solution of PDE’s, which increases the converging 

speed. It is expected to have a lower error when the implicit approach is applied.  

3.5.5. Training with multiple time-steps 

For all the training until this point of this research, only one pair of time-steps was used. 

Figure 3-16 shows the input and output pair for the training with single time-step. The trained 

network for early time-step (when a slugging flow is dominant) is valid for those time-steps that 

have the same characteristics as slug flow but it is not valid for the entire time range when the bed 
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fluidizes. Vice versa, the trained network for the late time-step, when the bed is fully fluidized is 

not valid for earlier time, when slug flow was present. The question that comes to the mind is “Is 

there a neural network that can predict different time-steps?” In other words, “Is there a general 

neural network that can capture different physics involved in the system?” 

 

Figure 3-16- Input and output pair for the training with single time-step 

When the data from early time-step is used to train the neural networks and the training process 

completes with a good performance, it is definitely a good answer for early time-steps but it might 

not be a good answer for late time-steps. If the data from two time-steps are used for the training 

process, the network algorithm will converge to the solution that can mimic the behavior of both 

time-steps. So, if more time-steps are used in training, the solution will be applicable to more time-

steps and the ANN covers wider time range. 

Furthermore, there are different physics involved in different time-steps of the simulation, and in 

order for the network to learn from all the possible behavior, more time-steps should be used in 

the training process. So, it is decided to use at least three different time-steps with different flow 

characteristics. One time-step from the early time, one time-step from late time, and one time-step 

from the time when the bubbles start forming. In order for the ANN to distinguish between 

different time-steps, another parameter (extra column) is added to the input data that is the exact 

time of the time-step in seconds. Figure 3-17 shows the input and output pair for the training with 

three different time-steps. The three time-steps were chosen visually by looking at the gas volume 

fraction distribution in the fluidized bed. Time-step 200 was chosen because the slugging flow is 

the dominant flow regime, time-step 1000 was chosen because the bubbles started forming but the 

flow is still symmetric, and Time-step 4000 was chosen because the bubbles were developed 

completely and no symmetric motion is in the system and the bed is fluidized. Figure 3-18 depicts 

these three time-steps. 
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Figure 3-17- Input and output pair for the training with 

 

Figure 3-18- Three different time-steps with different flow characteristics 

For the result demonstration, it is not possible to present all the figures, so a different method 

should be used to show the quality of the ANN. In order to quantify the amount of error in each 

simulation, RMSE which is the square root of mean square error will be used. Equation (3-1) 

shows the definition of RMSE. This criterion will be also used when more time-steps is going to 

be added to the training dataset.  

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

2
𝑛

𝑗=1

 (3-1) 
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Each time-step has 118,098 cells (27x162x27), and also there are 70 parameters, which makes the 

total number of data point to be equal to 8,266,860. By adding one time-step for training, more 

than 8 million data points will be added for the analysis. Since our computer resources are limited, 

the number of data points should be decreased in some fashion if more time-steps are going to be 

used for the training. 

3.5.6. Reducing the size of the system 

The size of the input is already very huge and it is not possible to include more than 2 time-steps 

for the training process because of the memory limitation1. The input data is a matrix which rows 

and columns represent records and parameters, respectively. There are a couple of ways to reduce 

the input size; reducing the number of rows (records) or the number of columns (parameters). 

There is also another way to reduce the computational cost for the training that is using fewer data 

for training and using more data for validation and test, in other words, by changing the data 

prioritization. All the mentioned method will be discussed in the next sections.  

3.5.6.1. Reducing number of records 

There are two ways to reduce the number of records. The first method is removing some cells just 

randomly from all the locations, and the second method is removing some cells that have less 

valuable information. For example, the solids are located on the bottom of the fluidized bed, so it 

is a reasonable idea to concentrate only on the bottom of the fluidized bed for all the solid-related 

properties since there are no solids in the freeboard portion of the fluidized bed. Figure 3-19 shows 

the distribution of gas volume fraction at time-step 4000. There are no solids above the blue line, 

so it is a good assumption to remove all the cells above the blue line. As it is shown in Figure 3-20, 

it is decided to keep all the cells below the 70 cells’ line and remove the cells with no significant 

impact in selected parameter. 

                                                 
1 This Study was done on a Corei7 machine with 32 GB of RAM 
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Figure 3-19- distribution of gas volume fraction at time-step 4000 

 

Figure 3-20- The important section of the fluidized bed 
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3.5.6.2. Reducing number of parameters (KPI1) 

The latest input data for the training had 70 parameters and 118,098 records. By concentrating on 

the lower part of the fluidized bed, the number of records reduced to 51,030, while the number of 

parameters remains the same. Some of the parameters are going to be eliminated in this section. 

Reducing the number of parameters is not as straight forward as reducing the number of records 

and it needs some analysis regarding the prioritization of the parameters. Every parameter has 

several weights assigned to it to communicate with the hidden layer, as it is depicted in Figure 3-21. 

If all the weights assigned to one parameter (𝑤11, 𝑤12, …) are integrated to one value (𝑤1), that 

value will represent the total weight and show the priority of that particular parameter when it 

compares to all the other total weights.  

 

Figure 3-21- Network schematic with its weights 

After obtaining all the total weights of the parameters, the tornado chart of each ANN could be 

plotted and the key parameters could be determined. 

3.5.6.3. Changing the Data Partitioning 

In all the previous sections, data from Table 3-5 were the base for data prioritization. According 

to the Table 3-5, 70% of the data is used for training, 15% is used for the validation, and the other 

15% is used for the test. Changing the data prioritization percentage could reduce the 

                                                 
1 Key Performance Indicator 
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computational costs. The computational cost of the training process is mainly for the data training, 

and the validation and test are only a simple multiplication, so by reducing the training percentage, 

the computational costs could be reduced while the total amount of data remains constant. 

3.5.6.4. Reducing number of records using smart sampling 

Reducing the number of records was previously accomplished by concentrating on the lower 

section of the bed. Although using this idea led to having smaller database, still there are some 

points in the lower section of the bed that has less value. Eliminating less valuable records could 

reduce database size further. Figure 3-22 shows the distribution of gas volume fraction at time step 

4000. The distribution has two peaks. The first peak is the gas volume fraction, when solid is at 

maximum packing (cells having fully packed solid). The second peak is when the gas volume 

fraction is either 1 or close to 1 (all air).  

By introducing all the data for the training, the model will learn more about these two peaks and 

will learn less about the transition part that has the gas volume fraction between 0.42 and 1. Since 

it is desired for the model to learn equally from all the different locations and different events in 

the fluidized bed, it is decided to reduce the number of records with the value of 1 and 0.42. By 

this approach, a data with uniform distribution is introduced to the model, and the model will learn 

equally from all the features in the system. Furthermore, the cells with the value of gas volume 

fraction between 0.42 and 1, are located at the interface of the gas and solid phases, and the fluid 

dynamic characteristics are changing significantly in these location, so it is important for the model 

to learn about transition zone due to the dynamic change. 

All the data between these two peaks were kept in the database. And only portions of data from 

two peaks were selected in a way that the final distribution looks like a uniform distribution. The 

gas volume fraction distribution is shown in the Figure 3-23. Total number of records reduced 

from 118,098 to 25,827. 

3.6. Summary 

In this chapter, the problem was defined with all details and assumptions. Also, different scenarios 

were introduced in order to achieve the final goal of this project. Different simulations based on 

the mentioned scenarios or a combination of them were designed and deployed. In the next chapter, 

the results of these different scenarios will be provided.  
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Figure 3-22- Distibution of Gas volume fraction at time step 4000 

 

Figure 3-23- Distibution of Gas volume fraction at time step 4000 after smart sampling  
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Chapter 4 Results and Discussion 

Different scenarios were introduced in the previous chapter. In this chapter, the results of all the 

scenarios will be discussed in detail. The results which will be demonstrated are coming from 

different approaches; early time or late time, single time-step or multiple time-steps for training, 

cascading or non-cascading deployment, single output or multiple outputs, explicit or implicit 

method, and reduced order models or complete models. Before proceeding with the results, there 

will be a short description of how the results are going to be presented. 

4.1. Result Demonstration 

The current problem is three dimensional in space, with time being the fourth dimension. In order 

to demonstrate the results, 5 different vertical cross sections were chosen as it is shown in 

Figure 4-1, all the planes are perpendicular to the z-axis, and the results will be shown for different 

time-steps.  

Each figure has three subplots, the left plot is the result of CFD solver which is coming from MFiX 

directly, the middle plot is the result of smart proxy which is the output of ANN, and the right plot 

is the error distribution which is basically the difference between CFD and smart proxy. 

4.2. Early time-step, non-cascading, single output, explicit 

The simplest case to consider is when one time step from the early time is selected as the input. 

The ANN had only one output, so 9 separate ANN have been trained for all 9 parameters. The 

approach was non-cascading and explicit.  

Time-steps 100 and 101 were used to train the system, and after the training completed, different 

time-steps were input to the trained ANN to get the results. All the time-steps from 101 all the way 

to 120 were input to the ANN and acceptable results were obtained. In the next sections, the results 

of gas volume fraction and gas pressure are provided for one time-step. The results for the rest of 

the parameters are in Appendix III.  
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Figure 4-1- Five different layers for result demonstration 

4.2.1. Gas volume fraction 

The results of the smart proxy versus CFD for gas volume fraction are shown in the next figures. 

As it is shown in Figure 4-2, Smart proxy is able to replicate the MFIX simulation results that 

show gas volume fraction distribution at time-step 102 for layer one. The maximum prediction 

error occurred occasionally at some points with the value less than 5% while we see an error near 

to zero in the rest of the domain. Very similar results have been obtained in other layers (from 

Figure 4-3 to Figure 4-6). 
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Figure 4-2- Comparison of CFD and smart proxy results for gas volume fraction of time-step 102 for layer one 

 

Figure 4-3- Comparison of CFD and smart proxy results for gas volume fraction of time-step 102 for layer two 
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Figure 4-4- Comparison of CFD and smart proxy results for gas volume fraction of time-step 102 for layer three 

 

Figure 4-5- Comparison of CFD and smart proxy results for gas volume fraction of time-step 102 for layer four 
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Figure 4-6- Comparison of CFD and smart proxy results for gas volume fraction of time-step 102 for layer five 

4.2.2. Gas Pressure 

The results of the smart proxy versus CFD for the gas pressure are shown in the next figures. As 

it is shown in Figure 4-7, Smart proxy is able to replicate the CFD MFIX simulation results that 

show gas pressure distribution at time-step 102 for layer one. The maximum prediction error 

occurred occasionally at some points with the value less than 20% while we see an error near to 

zero in the rest of the domain. Very similar results have been obtained in other layers (from 

Figure 4-8 to Figure 4-11). 
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Figure 4-7- Comparison of CFD and smart proxy results for gas pressure of time-step 102 for layer one 

 

Figure 4-8- Comparison of CFD and smart proxy results for gas pressure of time-step 102 for layer two 
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Figure 4-9- Comparison of CFD and smart proxy results for gas pressure of time-step 102 for layer three 

 

Figure 4-10- Comparison of CFD and smart proxy results for gas pressure of time-step 102 for layer four 
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Figure 4-11- Comparison of CFD and smart proxy results for gas pressure of time-step 102 for layer five 

4.3. Late time-step, non-cascading, single output, explicit 

The first attempt which was using the early time-step for training was successful, now the second 

attempt is to figure out if the ANN is capable of handling the bubbles in the fluidized bed or not. 

So, time-steps 4000 and 4002 were picked to train the network. The reason of having time-step 

4002 rather than time-step 4001 is that there is no significant movement in the system only in one 

time-step and the neural network will see more movements by using the pair of 4000-4002 and it 

can learn better. More variation in data set helps the network to be trained better and being more 

powerful in prediction. 

Similar to the previous scenario, the ANN had only one output, so 9 different ANN trained for all 

9 parameters. The approach was non-cascading and explicit. All the time-steps from 4002 all the 

way to 4040 were input to the ANN and acceptable results were obtained. In the next sections, the 

results of the gas volume fraction are provided for one time-step.  

4.3.1. Gas Volume Fraction 

The results of the smart proxy versus CFD for gas volume fraction when the bed is fluidized are 

shown in the next figures. As it is shown in Figure 4-12 all the way to Figure 4-16, the smart proxy 
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could be able to mimic the CFD simulation results even when the bubbles are in the system. The 

figures show the gas volume fraction distribution at time-step 4004 for layer one through five. The 

maximum prediction error occurred occasionally at some points with the value around 4% while 

we see an error near to zero in the rest of the domain. Very similar results have been obtained in 

other layers (from Figure 4-3 to Figure 4-6). 

 

Figure 4-12- Comparison of CFD and smart proxy results for gas volume fraction of time-step 4004 for layer one 
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Figure 4-13- Comparison of CFD and smart proxy results for gas volume fraction of time-step 4004 for layer two 

 

Figure 4-14- Comparison of CFD and smart proxy results for gas volume fraction of time-step 4004 for layer three 
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Figure 4-15- Comparison of CFD and smart proxy results for gas volume fraction of time-step 4004 for layer four 

 

Figure 4-16- Comparison of CFD and smart proxy results for gas volume fraction of time-step 4004 for layer five 
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4.4. Cascading, single output, explicit 

Previous scenarios proved that the ANN is able to mimic the CFD results both when there is 

moderate change in the dynamics of the multi-phase flow and when the fluid dynamics is chaotic. 

All the analysis has been shown so far indicated the non-cascading scenario. The next attempt is 

to apply the cascading approach, with explicit scheme. 

4.4.1. Gas volume fraction for early time 

To accomplish this scenario, 9 different ANN have been trained by introducing time-step 100 as 

input and time-step 101 as output. Then for the deployment process, time-step 100 was used as the 

input of all 9 trained ANN. The outputs of those ANNs were used again to input the next time-

step. In the following pages, the results of the cascading approach for gas fraction are shown. All 

the results are for layer two but different time-steps in order to see the solid motion. 

By looking at the figures, error propagation could be seen from each time-step to the next one. 

This means that the ANN is able to replicate the results of CFD simulation using cascading scheme 

for only a few time-steps and after a couple of time-steps, the amount of error exceeds the 

acceptable range. In order to overcome the error propagation, more time-steps should be used for 

training. This has been practiced in the later scenarios.  
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Figure 4-17- Comparison of CFD and smart proxy results for gas volume fraction of time-step 101 for layer two (Cascading) 

 

Figure 4-18- Comparison of CFD and smart proxy results for gas volume fraction of time-step 102 for layer two (Cascading) 
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Figure 4-19- Comparison of CFD and smart proxy results for gas volume fraction of time-step 103 for layer two (Cascading) 

 

Figure 4-20- Comparison of CFD and smart proxy results for gas volume fraction of time-step 104 for layer two (Cascading) 
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Figure 4-21- Comparison of CFD and smart proxy results for gas volume fraction of time-step 105 for layer two (Cascading) 

 

Figure 4-22- Comparison of CFD and smart proxy results for gas volume fraction of time-step 106 for layer two (Cascading) 
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Figure 4-23- Comparison of CFD and smart proxy results for gas volume fraction of time-step 107 for layer two (Cascading) 

 

Figure 4-24- Comparison of CFD and smart proxy results for gas volume fraction of time-step 108 for layer two (Cascading) 
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Figure 4-25- Comparison of CFD and smart proxy results for gas volume fraction of time-step 109 for layer two (Cascading) 

 

Figure 4-26- Comparison of CFD and smart proxy results for gas volume fraction of time-step 110 for layer two (Cascading) 
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4.4.2. Gas volume fraction for late time 

The same type of analysis as discussed in the previous section has been performed here using time-

steps 4000 and 4002 as input and output respectively. Only some of the time-steps were shown 

here to show the error propagation from each time-step to the next time-steps. These results show 

that in order to perform the prediction with the cascading approach that is the final goal of this 

research, further investigation is required. In the next sections, more discussion will be provided 

in order to solve this issue. 

 

 

Figure 4-27- Comparison of CFD and smart proxy results for gas volume fraction of time-step 4002 for layer two (Cascading) 
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Figure 4-28- Comparison of CFD and smart proxy results for gas volume fraction of time-step 4004 for layer two (Cascading) 

 

Figure 4-29- Comparison of CFD and smart proxy results for gas volume fraction of time-step 4006 for layer two (Cascading) 
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Figure 4-30- Comparison of CFD and smart proxy results for gas volume fraction of time-step 4020 for layer two (Cascading) 

4.5. Early time-step, non-cascading, multiple output, explicit 

Based on the discussion in chapter 3, it is sometimes beneficial to have multiple outputs rather 

than only one output. Three components of gas velocity were selected to be the output of the ANN; 

the input data is exactly the same as previous scenarios. The inputs came from time-step 100 and 

the outputs came from time-step 101. The ANN was trained successfully and the time-step 102 

was predicted. Figure 4-31 to Figure 4-33 show the results of smart proxy and comparison with 

CFD simulation results. Fairly good results were obtained. Only the lower section of the fluidized 

bed is shown in the figures. Gas velocity in the y-direction has the highest error, which is less than 

20% at some points, but the rest of the domain has error near zero. The maximum error for the gas 

velocity in the x-direction and Gas velocity in the z-direction is smaller. In the next section, the 

implicit results will be presented.  
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Figure 4-31- Comparison of CFD and smart proxy results for gas x-velocity of time-step 102 for layer four (explicit) 

 

Figure 4-32- Comparison of CFD and smart proxy results for gas y-velocity of time-step 102 for layer one (explicit)  
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Figure 4-33- Comparison of CFD and smart proxy results for gas z-velocity of time-step 102 for layer two (explicit) 

4.6. Early time-step, non-cascading, multiple output, implicit 

The final goal of this project is to perform all the simulations using cascading approach and 

implicitly. In this section, the effect of an implicit solution is examined. All the parameters except 

solid velocity are coming from time-step 100, three components of solid velocity are coming from 

time-step 101, and this combination makes the input of the ANN. Also, three components of gas 

velocity from time-step 101 make the output. Figure 4-34 to Figure 4-36 show the results of this 

scenario.  

To investigate the effect of implicit solution, the results are compared to the results from section 

4.5.  
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Figure 4-34- Comparison of CFD and smart proxy results for gas x-velocity of time-step 102 for layer five (implicit) 

By looking at the maximum error, which is the right plot in Figure 4-34, it is concluded that the 

amount of error was reduced from 12% to less than 9% (comparing Figure 4-31 and Figure 4-34). 

Also, Figure 4-35 shows the error reduction from 19% to 12% when it is compared to Figure 4-32, 

and Figure 4-36 shows the error reduction from 5% to 3% (in comparison to Figure 4-33). 
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Figure 4-35- Comparison of CFD and smart proxy results for gas y-velocity of time-step 102 for layer one (implicit) 

 

Figure 4-36- Comparison of CFD and smart proxy results for gas z-velocity of time-step 102 for layer two (implicit) 
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4.7. Using multiple time-steps for training, non-cascading, single output, explicit 

As discussed in the previous chapter, the ANN for early time is valid only for early times and 

probably a short period of time before and after the training time-step. This is also true for the 

ANN for late time. To overcome that problem, both time-steps should be used for training one 

ANN. To generalize the ANN even for times between early time and late time, third time-step was 

also added to train the ANN (Time-steps 200-202, 1000-1002, and 4000-4002 were used). The 

network has been trained and the deployment process was done by inputting time-step 200 all the 

way to time-step 4200. The results are presented in terms of RMSE of gas volume fraction. 

Figure 4-37 shows the RMSE distribution versus time-steps. It is clear that in the time-steps that 

we had training data, the amount of error is minimum but in the other time-steps the RMSE 

increased a little. Also, there are some peaks in the figure and the peaks observed in figure 4-37 

illustrate that further learning at additional time steps are required. Probably, there is a kind of new 

motion in the system in those time-steps that caused ANN did not learn enough to mimic the 

behavior of those time-steps. 

 

Figure 4-37- RMSE distribution versus time-step when three time pair of data were used for training 
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Figure 4-38 shows time-step 500, which is one of the time-steps with a high value of error. By 

looking at this time-step closely, it could be understood that there is a specific kind of motion that 

neural network has not seen so far. Particles are falling down in this time-step and ANN did not 

learn about this kind of motion.  

It is decided to include one more time-step for the training which was time-step 500, and that time-

step was chosen based on Figure 4-37. The same scenario was followed but with 4 different time-

steps for the training. Figure 4-39 shows the improvement in simulation by adding the fourth time-

step for training. The blue curve shows the RMSE before adding the fourth time-step, and the red 

curve shows the RMSE after adding the fourth time-step. 

 

Figure 4-38- Comparison of CFD and smart proxy results for gas volume fraction of time-step 500 for layer two 
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Figure 4-39- RMSE distribution versus time-step when three and four time pair of data were used for training 

4.8. Using four time-steps for training, cascading, single output, explicit 

The same simulation using 4 time-steps for the training was done with the cascading approach. 

Unfortunately, the error propagation is still seen in the results after a few time-steps. One of the 

solutions for this problem is to include more time-steps for the training but because of the memory 

issue, it is not possible to have more than 4 time-steps unless the size of the system reduces. The 

next effort is reducing the size of data in order to be able to add some more time-steps for the 

training. 

4.9. Reducing the number of parameters (KPI) 

Eliminating the upper part of the fluidized bed did reduce the size of the input data. In order to 

reduce the data input size even more, some of the parameters should also be eliminated from the 

training. The ANN has been trained with 69 and 70 parameters up to this point. There is a chance 
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for the ANN to be able to predict the behavior of the system by fewer parameters. In this way, the 

size of input can decrease.  

To figure out what parameters has the top priority and what parameters has not, the tornado chart 

of the total weights of the parameters were plotted for each ANN. Since in back propagation 

method, there is a kind of weighted summation between all the parameters from each layer to the 

next layer, the total weight could be obtained by averaging all the weights corresponding to a 

specific parameter. There are two different ways to find the total weights; averaging all the weights 

by considering their signs, and averaging all the weights by removing the signs. Both approaches 

were accomplished. Tornado chart for both approaches is provided. Figure 4-40 shows tornado 

chart when the weights are averaged regularly, and as we expected before, the gas volume fraction 

of the cell has top priority. Also, Figure 4-41 shows the tornado chart when the weights are 

averaged after removing the sign.  

 

Figure 4-40- parameter pioritization for Gas volume fraction ANN (averaging all the weights) 
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Figure 4-41- parameter pioritization for Gas volume fraction ANN (averaging all the weightsafter removing signs) 

The 14 less important parameters were removed from the input and the ANN has been trained 

again with the new 56 parameters based on the two different approaches. Figure 4-42 shows the 

amount of error when a different number of parameters were used for the training. The blue curve 

is when all the 70 parameters were used, red curve shows the error when 14 parameters were 

removed from the training by simply calculating the average and the yellow curve is when 14 

parameters were eliminated based on the averaging of the absolute value of the weights. This graph 

shows that the prioritization of the parameters is more accurate when the weights are averaged 

without considering the sign. This conclusion is reasonable because some positive and negative 

weights might cancel each other when the average is calculated by considering the signs, the wrong 

result may be obtained.  

The removed parameters for both approaches are shown in the Table 4-1 and Table 4-2. The 

parameters are sorted in two different fashions; by parameter or by location. 
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Table 4-1- Fourteen less important parameters when simple average was used  

By parameter  By location 

ug-south  us-top 

ug-east   

ug-north  ug-north 
  us-north 

wg-east  ws-north 

wg-west   

  ug-south 

us-top   

us-north  wg-west 

us-east  ws-west    
ws-north  ug-east 

ws-west  wg-east 
  us-east    

distance to south  distance to south 

distance to east  distance to east 

distance to north  distance to north 

distance to west  distance to west 

 

 

Table 4-2- Fourteen less important parameters when averaging by removing sign was used  

By parameter  By location 

ug-west  vg-self 

ug-north   

ug-south  vs-bottom 

ug-east   

  ug-north 

vg-self  wg-north 

vg-west  us-north    
wg-north  ug-south    
us-north  ws-west 

  vs-west 

ws-west  ug-west 
  vg-west 

vs-west   

vs-bottom  ug-east    
distance to south  distance to south 

distance to east  distance to east 

distance to west  distance to west 
 

As discussed, the second method was chosen to perform the KPI analysis for the rest of the 

parameters. 

Another interesting fact about Figure 4-42 is that the error distribution of yellow curve (using 56 

parameters) is even less than the blue curve (which was obtained by using 70 parameters). To 
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explain the reason for this phenomenon, it should be stated that the blue curve is from non-

optimized database (Spatio-Temporal database) and the yellow curve is from a reduced database. 

Reducing the number of parameters does not end up having higher prediction error always, it could 

help the network to find the relation between the parameters more easily. In other words, there 

might be some irrelevant parameters in the Spatio-Temporal database which without them the 

process of fitting could be accomplished by higher accuracy. So, in the optimization process, the 

less important parameters are eliminated until the prediction error goes far from the original error.  

 

Figure 4-42- Comparison of RMSE distribution versus time-step for two different approach of averaging 

The number of parameters was reduced to 56 and still the amount of error is lower than the original 

simulation. This motivates us to go further and reduce the number of parameters even more until 

the system breaks. For the second attempt, the number of parameters was reduced to 42 and 

Figure 4-43 shows the error distribution after removing some other parameters. In this figure, the 

amount of error increased a little bit in comparison to the when 56 parameters were used but it is 

still comparable to the original one. 
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Figure 4-43- Comparison between RMSE when different number of parameters were used for training (70, 56, and 42 

parameters) 

For the third attempt, another seven parameters were removed based on the KPI analysis and the 

below curve was obtained. Figure 4-44 shows the error distribution when only 35 parameters were 

used to train the system and it means that almost the same results were achieved by using only half 

of the data. 
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Figure 4-44- Comparison between RMSE when different number of parameters were used for training (70, 56, and 35 

parameters) 

The same analysis was done for all the parameters and the size of data for all of them was reduced. 

Although it was possible to consider a different number of parameter for different ANN, the 

number of parameters was fixed to be 43 for all the ANN for consistency. But it should be 

mentioned that these 43 parameters vary from one ANN to another, for example when the gas 

volume fraction is going to be trained, different parameters are important in comparison to when 

the gas pressure is training. In the previous section, it was mentioned that in order to be able to 

perform the cascading deployment, more time-steps should be used in the training process. 

Because of the memory limitations, it was not possible to add more time-steps in the training but 

now, when the size of input has been decreased; more time-steps could be used in the training, 

which is the discussion of the next section. 
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Table 4-3 shows the size of data before and after size reduction, the data size will be reduced 5 

times after using the latest model.  

Table 4-3- Database size before and after optimization 

Model Size of input Total Data Point 

Original Model 118,098 by 70 8,148,762 

Latest Model 51,030 by 35 1,786,050 

4.10. Using seven time-steps for training, cascading, single output, explicit 

The goal of this section is to train a smart ANN that can replicate the CFD completely, it means 

that the smart package will feed itself instead of feeding by CFD, which is the definition of a 

cascading deployment. The only input from CFD is one time-step as the initial condition. Fairly 

good results were obtained with the non-cascading approach by using 4 time-steps. In this section, 

another three time-steps are going to be added to the training set in order to improve the results. 

The question is what time-steps should be included in the training set. In order to answer this 

question, the error distribution of non-cascading result is plotted versus time as it is shown in 

Figure 4-45. Another three time-steps were selected based on the peaks on the error curve. Time-

steps 574, 904, and 1842 were selected. 

 

Figure 4-45- Comparison between RMSE with and without Ps 
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All the parameters were trained based on the reduced input size by including 7 time-steps for the 

input data. The training process was done successfully and the cascading deployment was 

performed by inputting time-step 4000 to the ANN. The results of the cascading are shown in 

Figure 4-46 for time-step 4020. This figure shows that after 20 time-steps, the error propagates 

and reaches to an unacceptable value. This figure shows that the final goal of this project is not 

achieved yet and more investigations are required.  

 

Figure 4-46- Comparison of CFD and smart proxy results for gas volume fraction of time-step 4020 for layer one (Cascading) 

4.11. Changing the data prioritization 

As the last method to reduce the input size, the percentage of data for training will be reduced in 

order to include more time-steps in the training set. The initial percentage for the training was 

70%. Three different simulations were conducted with different data prioritization and acceptable 

results were obtained. 
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Table 4-4- Data Partitioning in different scenarios 

Data 
Training 

(%) 

Validation 

(%) 

Test 

(%) 

Original simulation 70 15 15 

First attempt 60 20 20 

Second attempt 40 30 30 

Third attempt 30 35 35 
 

The results of the three attempts are shown in the following figures and all of them show that ANN 

still is able to learn the pattern by reducing the percentage of training data down to the 30%.  

 

Figure 4-47- CFD and smart proxy results for gas volume fraction of time-step 4004 for layer one by 60% training (non-

cascading) 
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Figure 4-48- CFD and smart proxy results for gas volume fraction of time-step 4004 for layer one by 40% training (non-

cascading) 

 

Figure 4-49- CFD and smart proxy results for gas volume fraction of time-step 4004 for layer one by 30% training (non-

cascading) 
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4.12. Smart sampling 

The data from time step 4000 was sent in to the Smart Sampling procedure. The deployment started 

from time step 3950 all the way to time step 4150. The same analysis was done without smart 

sampling and all the data were used in the training.  

Figure 4-50 shows RMSE of smart sampling in comparison to the original model. As it is shown 

in the figure, by reducing the number of records (only 20% of the records were used) almost the 

same result obtained.  

 

Figure 4-50- Comparison of RMSE in different time steps with/without smart sampling 

This idea let us include more time steps in the training process in order to reduce the error in the 

cascading deployment. 
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Chapter 5 Conclusions and Recommendations 

5.1. Conclusions 

The original database (Spatio-Temporal database) included 70 parameters and 118,098 records. 

This database was then sent through an optimization process to get an optimized database with the 

smaller size but the same efficiency. In the optimization process, the size of Spatio-Temporal 

database reduced more than 25 times. This optimization was done by different approaches as 

follows and the exact numbers are shown in the Table 5-1. 

1.  Reducing the number of parameters (using Key Performance Indicator) 

2.  Reducing the number of records (focusing on the more important cells using smart sampling) 

3. Reducing the percentage of training (by Intelligent Partitioning). 

Table 5-1- comparison between Spatio-Temporal database and optimized database 

 No. Records No. of Parameters Training Percentage Total data 

Spatio-Temporal Database 118,098 70 100 8,266,860 

Optimized Database 25,827 43 30 333,168 

 

All the data from time step t were used as the input of the model, and all the data from time step 

(t+1) were used as the output (since the method is supervised learning, the output is required). A 

model has been trained by using the original database.  

In order to see the efficiency of the model and successfulness of this method, some blind cases 

(which the model has not seen in the training process) were used for deployment. The results 

proved that the smart proxy is able to predict all the entire range, including the initiation of the 

bubbles, bursting of them, bulk flow, and also the non-linear and chaotic motion.  

A data-driven smart proxy was developed to mimic the CFD results, with a good accuracy and 

faster speed. Table 5-2 shows the comparison of run time of these two approaches. This proxy 

needs an incredible less amount of time in comparison to the CFD solver with a reasonable error 

(less than 10%). This project proved that the idea of using AI&DM for computational fluid 

dynamics actually works.  



76 
 

Table 5-2- comparison between speed of run for CFD and Smart proxy 

Method Execution Time 

CFD 4 seconds simulation = 3 days on 4 CPUs 

Smart Proxy 4 seconds simulation = 180 s = 3 min 

5.2. Recommendations and future works 

This study showed that the smart proxy is feasible to handle a complex, multi-physics, nonlinear 

flow and it is worth to spend more time and effort to improve the results. 

In order to make the model more general in the whole time ranges, more data from different time 

steps could be included in the training process, and this is where using the optimized database is 

beneficial. 

Also, there is a need to spend more time on the cascading deployment in order to completely 

replace the CFD with the smart proxy. 
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APPENDIX 

Appendix I: MFiX Equations  

Fluid-Solids Momentum Transfer 

The fluid-solids interaction force is a combination of buoyancy, the drag force, and momentum 

transfer due to mass transfer. 

 
(0-1) 

 

Where  

 

(0-2) 

And 

 

(0-3) 

 

where Vrm is the terminal velocity correlation for the mth
 solids phase which is a function of gas 

volume fraction only, and the Rem is Reynolds number of mth phase. 

 

(0-4) 

Or 

 

 

(0-5) 
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(0-6) 

The coefficient A and B are calculated as follows. 

 

(0-7) 

 

Solids-Solids Momentum Transfer 

The solids-solids momentum transfer comes from the drag force between different phases and is 

it calculated with the below equation. 

 
(0-8) 

 

Where 

 

(0-9) 

 

where elm and Cflm are the coefficient of restitution and coefficient of friction, respectively, between 

the lth and mth
 solids-phase particles. g0lm is the radial distribution function at contact. 

 

(0-10) 
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Fluid-Phase Stress Tensor 

 

The fluid-phase stress is stated as follows. 

 
(0-11) 

Where Pg is the gas pressure and also 𝜏�̿� is the viscous stress tensor for Newtonian fluid which is 

in the below form. 

 

(0-12) 

Where 𝐼 ̿is identity tensor and �̿�𝑔 is strain tensor which is calculated by the following equation. 

 
(0-13) 

 

Solids-Phase Stress Tensor 

 

In MFIX, there are two different theories for calculating the solid-phase stress and those two 

theories are plastic flow and viscous flow. The stress definition is switched based on the 

comparison of the gas volume fraction with a critical packing which is εg*. 

 

(0-14) 

where Psm is the pressure and τ sm is the viscous stress in the mth solids phase. The superscript p 

stands for the plastic regime and v for the viscous regime. In fluidized-bed simulations, εg* is 

usually set to the void fraction at minimum fluidization. 

In the plastic flow, 𝜏�̿�𝑚
𝑝

 is calculated as follows. 

 
(0-15) 

In viscous flow, 𝜏�̿�𝑚
𝑝

 is in the below form. 

 
(0-16) 
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Appendix II: MFiX Gasification code  

# 3-D Rectangular Fluidized Bed  

# --------------------------------------------------------- 

# Run control 

# ---------------------------------------------------------  

 RUN_NAME = 'FB_S2G1'  

 DESCRIPTION = 'Bubbling Fluidized Bed Simulation'  

 RUN_TYPE = 'new'  

 UNITS  = 'si'  

 TIME   = 0.0  

 TSTOP  = 30.0 !change as needed 

 DT  = 5.0E-3 

 DT_MAX = 5.0E-3 !Don't go larger that write_usr output freq  

 NODESI = 4 

 NODESJ = 16 

 NODESK = 4  

# --------------------------------------------------------- 

# Equations 

# --------------------------------------------------------- 

 ENERGY_EQ = .FALSE.  

 SPECIES_EQ = .FALSE. .FALSE. 

 DRAG_TYPE = 'GIDASPOW' 

 SCHAEFFER = .FALSE. 

 FRICTION = .FALSE. 

# ---------------------------------------------------------  

# Geometry Section  

# ---------------------------------------------------------  

 COORDINATES = 'cartesian'  

 XLENGTH = 0.120 IMAX = 27  

 YLENGTH = 0.720 JMAX = 162  

 ZLENGTH = 0.120 KMAX = 27 

# ---------------------------------------------------------  

# Gas-phase Section  

# ---------------------------------------------------------  

 MU_g0 = 1.9E-5 

 MW_avg = 29.0 
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# ---------------------------------------------------------  

# Solids-phase Section  

# ---------------------------------------------------------  

 RO_s0 = 2000.0 ! kg/m3  

 D_p0 = 0400.0E-6 ! m  

 C_e = 0.80 

 Phi  = 30.0  

 EP_star = 0.42 

# ---------------------------------------------------------  

# Initial Conditions Section  

# ---------------------------------------------------------  

 ! Bed Freeboard  

 IC_X_w(1:2) = 0.000 0.000  

 IC_X_e(1:2) = 0.120   0.120  

 IC_Y_s(1:2) = 0.000  0.120  

 IC_Y_n(1:2) = 0.120 0.720  

 IC_Z_b(1:2) = 0.000 0.000  

 IC_Z_t(1:2) = 0.120 0.120  

 IC_EP_g(1:2) = 0.420 1.000 

 IC_P_g(1:2)  = 101.325E3  101.325E3  

 IC_T_g(1:2) = 300.0 300.0  

 IC_U_g(1:2) = 0.000  0.000  

 IC_V_g(1:2) = @(0.6/0.42) 0.600  

 IC_W_g(1:2) = 0.000 0.000  

 IC_U_s(1:2,1) = 0.000 0.000  

 IC_V_s(1:2,1) = 0.000 0.000  

 IC_W_s(1:2,1) = 0.000 0.000 

 IC_T_s(1:2,1)  = 300.0  300.0  

# ---------------------------------------------------------------  

# Boundary Conditions Section  

# --------------------------------------------------------------  

# South North West East Back Front  

 BC_X_w(1:6) = 0.000 0.000 0.000 0.120 0.000 0.000  

 BC_X_e(1:6) = 0.120 0.120 0.000 0.120 0.120 0.120  

 BC_Y_s(1:6) = 0.000 0.720 0.000 0.000 0.000 0.000  

 BC_Y_n(1:6) = 0.000 0.720 0.720 0.720 0.720 0.720  

 BC_Z_b(1:6) = 0.000 0.000 0.000 0.000 0.000 0.120  

 BC_Z_t(1:6) = 0.120 0.120 0.120 0.120 0.000 0.120  
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 BC_TYPE(1:6) = 'MI' 'PO' 'NSW' 'NSW' 'NSW' 'NSW'  

 BC_EP_g(1:2) = 1.0 1.0 

 BC_P_g(1:2)  = 2*101.325E3 

 BC_T_g(1:2)  = 2*300.0  

 BC_U_g(1) = 0.0  

 BC_V_g(1) = 0.6  

 BC_W_g(1) = 0.0  

 ! BC_ROP_s(1,1)  = 0.000  

 ! BC_U_s(1,1) = 0.000 

 ! BC_V_s(1,1)  = 0.000 

 ! BC_W_s(1,1)  = 0.000  

#  

# Output Control  

#  

 RES_DT = 0.01  

 !  

 ! EP_g P_g U_g U_s ROP_s T_g X_g  

 ! P_star V_g V_s T_s1 X_s Theta Scalar  

 ! W_g W_s T_s2  

 SPX_DT = 0.01 0.01 0.01 0.01 0.01 100. 100. 100.0 100.0  

 NLOG = 100  

 full_log = .true.  

write_dashboard = .true. 

write_vtk_files = .true. 

time_dependent_filename = .true. 

vtk_dt = 0.05 

vtk_varlist(1,1:5) = 1 2 3 4 5  

call_usr = .true. 

usr_dt(1) = 0.005 

 ENABLE_DMP_LOG = .F 

 CHK_BATCHQ_END = .T. 

 BATCH_WALLCLOCK = 1800d20 ! 30 Days 

 TERM_BUFFER = 120d0 ! 15 min 
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Appendix III: Early time-step, non-cascading, single output, explicit 

In the below graphs, the results of non-cascading deployment are shown for early time steps for 

different parameters. 

 

Figure 0-1- Comparison of CFD and smart proxy results for gas x-velocity of time-step 102 for layer one (explicit) 

 



86 
 

 

Figure 0-2- Comparison of CFD and smart proxy results for gas y-velocity of time-step 102 for layer one (explicit) 

 

Figure 0-3- Comparison of CFD and smart proxy results for solid x-velocity of time-step 102 for layer one (explicit) 
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Figure 0-4- Comparison of CFD and smart proxy results for solid y-velocity of time-step 102 for layer one (explicit) 

 

Figure 0-5- Comparison of CFD and smart proxy results for gas z-velocity of time-step 102 for layer one (explicit)  
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Appendix IV: MATLAB Code (Creating Spatio-Temporal database) 

%% This program read two different time step as input and output  
clc 
clear; 
close all; 
%% Input and Output Time step 

  
Time_Step_in=100; 
Time_Step_out=Time_Step_in+1; 

  
%% Defining the geometry 
imax = 27; %number of cell in x-direction 
kmax = 27; %number of cell in z-direction 
jmax = 162; %number of cell in y-direction 
Dim_x = 0.12; %length of domain 
Dim_y = 0.72; %height of domain 
Dim_z = 0.12; %width of domain 
Dim_cell = Dim_x/imax; %dimension of cell, the cell is a cube 
CellNo=imax*jmax*kmax; %total number of cells 

  
%% Loading the CSV files from time step start to final 

  
data_input = ReadFiles( Time_Step_in,Time_Step_in,CellNo ); 
data_output = ReadFiles( Time_Step_out,Time_Step_out,CellNo ); 

  

  

  
%% Initialize the matrices 
location = zeros(CellNo,3); %(x,y,z) of each cell 
CellID = zeros(CellNo,1); % ID of each cell 
tier1 = zeros(CellNo,6); % tier system with of order 1 

(bottom,top,west,north,east,south) 
DisToBoundary = zeros(CellNo,6); % distance to the boundaries 

(bottom,top,west,north,east,south) 
counter = 1;  

  

  
%% Filling the geomtry matrices 
for k = 1:kmax 
 for i = 1:imax 
 for j = 1:jmax 
 location(counter,:) = [i j k]; 
 CellID(counter) = (k-1)*jmax*imax+(i-1)*jmax+j; 
 %cell ID of tier cells(bottom,top,west,north,east,south) 
 tier1(counter,:) = [(k-1)*jmax*imax+(i-1)*jmax+j-1 (k-1)*jmax*imax+(i-

1)*jmax+j+1 (k-1)*jmax*imax+(i-2)*jmax+j (k)*jmax*imax+(i-1)*jmax+j (k-

1)*jmax*imax+(i)*jmax+j (k-2)*jmax*imax+(i-1)*jmax+j]; 
 %distance of center of each cell to the 

boundaries(bottom,top,west,north,east,south) 
 DisToBoundary(counter,:) = [(j-0.5)*Dim_cell Dim_y-(j-0.5)*Dim_cell (i-

0.5)*Dim_cell Dim_z-(k-0.5)*Dim_cell Dim_x-(i-0.5)*Dim_cell (k-0.5)*Dim_cell 

]; 
 %% filling zero at for the tiers for the cells at the boundary  
 if i==1 
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 tier1(counter,3) = 0; 
 elseif i==imax 
 tier1(counter,5) = 0; 
 end 

  
 if j==1 
 tier1(counter,1) = 0; 
 elseif j==jmax 
 tier1(counter,2) = 0; 
 end 

  
 if k==1 
 tier1(counter,6) = 0; 
 elseif k==kmax 
 tier1(counter,4) = 0; 
 end 

  
 counter=counter+1; 
 end 
 end 
end 

  

  
%% Filling the properties of tier1 system 

  
tierData=zeros(CellNo,7*11); 
for i = 1:CellNo 
 tierData(i,1:11)=data_input(i,:); 
 for j = 1:6 
 index = tier1(i,j); 
 if index==0 %if index iz zero, it means that no cell is there 
 t = zeros(1,11); 
 else 
 t = data_input(index,:); 
 end 
 tierData(i,11*(j)+1:11*(j+1)) = t; 
 end 
end 

  
%% Creating the output file 
geometry=[CellID location DisToBoundary tier1 tierData data_output(:,:)]; 

  
NN_input=[DisToBoundary tierData(:,1:9) tierData(:,12:20) tierData(:,23:31) 

tierData(:,34:42) tierData(:,45:53) tierData(:,56:64) tierData(:,67:75)]; 

  
Fraction=data_output(:,1); 
Gas_Pressure=data_output(:,2); 
Solid_Pressure=data_output(:,3); 

  
Gas_Velocity=data_output(:,[4 5 6]); 
Gas_Velocity_x=data_output(:,4); 
Gas_Velocity_y=data_output(:,5); 
Gas_Velocity_z=data_output(:,6); 

  
Solid_Velocity=data_output(:,[7 8 9]); 
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Solid_Velocity_x=data_output(:,7); 
Solid_Velocity_y=data_output(:,8); 
Solid_Velocity_z=data_output(:,9); 

  
NN_input=NN_input'; 

  
Fraction=Fraction'; 
Gas_Pressure=Gas_Pressure'; 
Solid_Pressure=Solid_Pressure'; 

  
Gas_Velocity=Gas_Velocity'; 
Gas_Velocity_x=Gas_Velocity_x'; 
Gas_Velocity_y=Gas_Velocity_y'; 
Gas_Velocity_z=Gas_Velocity_z'; 

  
Solid_Velocity=Solid_Velocity'; 
Solid_Velocity_x=Solid_Velocity_x'; 
Solid_Velocity_y=Solid_Velocity_y'; 
Solid_Velocity_z=Solid_Velocity_z'; 
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