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ABSTRACT 

 

Production and Cost Assessment of a Potential Application of  

Surface Miners in Coal Mining in West Virginia 

 

Timothy A. Nolan 

 

The broad objective of this research was to improve current mining practices and reduce 

negative environmental impact of surface coal mining in West Virginia (WV).  The 

specific objectives were to (i) build the production and cost models to determine if 

conventional surface mining unit operations such as drilling, blasting, digging, loading, 

and crushing can be replaced with one mining machine called a surface miner (SM), (ii) 

apply the analytical hierarchy process (AHP) to help select the optimal mining method, 

and (iii) determine the extent of which the SM would benefit surface coal mining in WV, 

particularly by reducing some of the negative environmental impacts associated with 

current extraction practices. 

 

The entire production and cost models were developed in MS Excel. The design and the 

procedures used for achieving the objectives involved six interrelated modules.  Module 

#1 includes rock properties of sandstone, shale, which are the predominant overburden 

and interburden materials in WV, and sub-bituminous coal.  Module #2 considers drilling 

and blasting operations.  Module #3 includes digging and loading of overburden material. 

It specifically addresses mining equipment such as electric and hydraulic shovels and 

front-end wheel loaders.  Interburden material also includes sandstone and shale, and the 

two unit operations involved are ripping and pushing by bulldozers and loading by 

hydraulic backhoe shovel.  Module #4 covers coal extraction by hydraulic backhoe 

shovel and the crushing operation.  Module #5 focuses on the SM, while Module #6 is 

used to conduct comparative analyses among all mining unit operations for overburden, 

interburden, and coal.  The resulting production rates, ownership, and operating costs 

were also presented.  The analytical hierarchy process (AHP) was used to help select the 

optimal mining method based on both qualitative and quantitative factors. 

 

Based on the results of this research, application of SM would benefit coal extraction in 

surface mining operations in WV.  The estimated cost of coal extraction is lower than 

with conventional mining methods, and the machine is able to work selectively with high 

separation accuracy.  Thin seams of coal and overburden can be mined separately, thus 

preventing dilution with interburden material.  Rising operating costs for the SM become 

an issue as the quantity of material being extracted increases and higher values of 

unconfined compressive strength are encountered.  Cutting tools on the drum wear out 

faster and require more changes and, at a certain point, the SM becomes unfeasible 

because of the time and cost involved in changing cutting tools.  A significant advantage 

of SM, where applicable, is the elimination of the negative environmental impacts 

associated with blasting.  
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Chapter 1  

 

Introduction 

 

1.1 Background 

 

Coal mining is the backbone of West Virginia’s economy. The state produced roughly 

143 million tons of coal in 2011 (WV Coal, 2011). Approximately 50 million tons or 

35% of total coal production came from surface mines. 

 

The current surface mining practices in West Virginia (WV) consist of conventional 

mining unit operations including: drilling, blasting, digging, loading, haulage, and 

disposal (Figure 1.1). Draglines are used in some mines for stripping and direct disposal 

of overburden material into excavated areas. Coal crushing is the final conventional 

mining unit operation. 

 

WV used almost 465,000 tons or 930 million lb of explosives in the mining, quarrying, 

and construction industries in 2008 (Apodaca, 2010).  The state ranks second in the 

nation for explosives consumption.  Almost 85% or 790.5 million lbs were used in 

surface coal mining.  Considering an average price of blasting agents (bulk emulsions, 

slurry and ANFO) of $0.52 per lb, the surface coal mines in WV spent $411 million for 

explosives alone.  This does not include additional blasting accessories such as 

detonators, boosters, detonating cords, lead lines, additional costs for labor, explosives 

truck-delivery, and shot services. The addition of the drilling, digging, loading, and 
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hauling costs for the blasted material amounts to a significant overall cost to mine 

operators. 
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Drilling and Blasting

Overburden

Overburden Removal

1st Coal Seam

Extraction

Interburden Ripping

Interburden Removal

2nd Coal Seam

Extraction

Drill Rig & Explosives

Loading Equipment &

Haulage

Backhoe Shovel

Bulldozer

Loading Equipment &

Haulage

Backhoe Shovel

Crusher

Overburden Disposal Haulage Equipment

Interburden Disposal Haulage Equipment

Coal Crushing

Coal Crushing Crusher

 

Figure 1-1 Conventional Surface Mining Process  

(Image Sources: Atlas Copco, Terex, Caterpillar, Kecojevic, Hitachi, and Liebherr) 
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Current blasting methods, if not properly designed and executed, can create hazards like 

flyrock, toxic fumes, ground vibration, and surface vibration created by air-blast.  

Blasting methods have been refined and are performed in a safer manner but the hazards 

still remain. 

 

It is required that coal seams, overburden, and interburden be mined separately, thus 

preventing dilution of the coal with non-coal material.  This is particularly important for 

the surface coal mines in WV where most of the seams are interspersed with interburden 

layers (Figure 1.2).  The capability of the extraction systems to work selectively provides 

a better quality of the coal, less dilution, and higher utilization of the coal deposits.  

 

 

Figure 1-2 Surface Coal Mine in WV (Kecojevic, 2006) 
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The Surface Miner (SM) is a multi-purpose production machine that integrates cutting, 

crushing, and loading (Figures 1.3 and 1.4).  It is applied in numerous coal and quarry 

mining operations around the world.  The SM is capable of continuously mining 

materials with compressive strengths up to 180 MPa or 26,100 psi (Wirtgen, 2010). The 

largest SMs have achieved a production rate of 5,300 loose yd
3
 per hour and can excavate 

layers of up to three feet of material in one step. 

 

 

Figure 1-3 Surface Miner (Wirtgen, 2010) 
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Figure 1-4 Surface Miner Diagram (Wirtgen, 2010) 

 

The SM is mounted on four crawler tracks with an almost infinite adjustability.  As the 

machine advances, a rotating drum studded with carbide-tipped cutting tools (Figure 1.5) 

cuts the material to sizes suitable for haulage.  The cutting drum rotates upwards, i.e. the 

helically arranged cutting tools on the drum transport the material towards the center of 

the drum from where it is transferred by the primary belt to the secondary discharge belt. 
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Figure 1-5 Rotating Drum and Carbide-Tipped Cutting Tools (Wirtgen, 2010) 

 

The SM can be used for the following operations: i) cutting, crushing, and loading of 

overburden, interburden, and coal into haulage units such as trucks or belt conveyors; ii) 

cutting, crushing, and side casting; and iii) cutting, crushing, and windrowing.  Therefore, 

one single machine can replace several conventional surface mining unit operations 

including drilling, blasting, digging, loading, and crushing. Since only one machine is 

used for several unit operations, it has a significant potential to reduce capital and 

operating costs, reduce manpower, and simplify coordination and planning of the mining 

process. 

 

SMs are either equipped with wire rope sensors connected with side plates or sonic 

sensors which measures the distance from the ground and adjust the cutting depth 

accordingly.  When a GPS receiver is connected to the automatic cutting depth controller, 

predefined profiles can be cut after programming the receiver.  The ability to selectively 
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mine results in better quality of the mined coal, less dilution, and higher recovery of the 

coal deposits. Figure 1.6 shows the selective work of the SMs in a coal mine in the U.S. 

 

 

Figure 1-6 Selective Extraction of Coal by SM (Kecojevic, 2006) 

 

Depending on the rock properties and the desired material size, the pick configuration on 

the cutting drum can be modified accordingly.  The pick pattern (helix) on the drum 

remains fundamentally the same, but variations in pick type and spacing between picks 

will change to achieve the desired material size.  The amount of picks on the cutting 

drum and the spacing between picks must be defined.  This value is determined based on 

the material properties and the desired size of processed material.   
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1.2 Problem Statement 

 

Surface coal mining in WV faces many challenges. These challenges include more 

restrictive regulations, a negative public perception, and difficult geological formations.  

The industry as a whole has a negative image in the public eye due to, among other 

factors, blasting hazards involving flyrock, toxic fumes, ground vibration, and surface 

vibration created by air-blast. Although these hazards do not occur with every blast it 

only takes a few incidents to tarnish the reputation of the entire industry.  Exploring and 

applying alternative safe and environmentally friendly technology provides the potential 

to minimize if not eliminate these hazards. 

 

The geologic formations in WV consist of overburden and multiple layers of sandstone 

and shale rock types with bituminous coal seams of varying thicknesses interspersed 

between layers of interburden.  Overburden and interburden layers must be removed 

before the coal is extracted.  Depending on the thickness of the interburden layers, 

various methods are used for its removal.  Layers with a thickness of generally less than 

five feet are ripped by a bulldozer.  If the rock is ripped, additional loading is required to 

load and haul the material.  If the interburden is too thick or too hard to rip, drilling and 

blasting is required to loosen the rock.  The process of ripping or blasting continues with 

each interburden layer that is encountered in the mine.  Once the coal seam is exposed, a 

shovel or front-end wheel loader digs and loads the coal into haulage equipment, 

typically dump trucks.  The use of this type of loading equipment generates issues with 

the coal quality.  Loading coal with a shovel or front-end wheel loader is conducted based 

on the operators’ “best judgment” and “experience” attributes.  This approach is the 
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common practices which helps distinguish between coal, overburden, and interburden 

material.  While this approach can be effective, there is a potential for a large margin of 

error.  Excavating coal in this manner can create quality issues, which will require 

additional work to clean.  Technology, such as the SM, can be employed to lessen the 

effects created by this conventional approach to coal extraction. 

 

More stringent governmental regulations and public pressure are forcing the mining 

industry to evolve and minimize its environmental impacts.  Future coal mining 

operations will need to incorporate new design features and practices that can 

substantially reduce these impacts to achieve “low impact” mining.  These design 

features and practices will be necessary to ensure that the coal industry can design, 

permit, build, operate, reclaim, and monitor future mines in full compliance with the 

increasingly stringent environmental performance standards.  New mining technologies 

and systems can minimize environmental disturbances during overburden removal and 

coal extraction, while improving coal recovery. 
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1.3 Scope of Work 

 

The broad objective of this research was to improve current mining practices and reduce 

negative environmental impacts of surface coal mining in WV.  The specific objectives 

are: 

 

(i) Build the production and cost models to determine if conventional surface mining 

unit operations including drilling, blasting, digging, loading, and crushing can be 

economically replaced with a surface miner (SM). 

(ii) Apply the analytical hierarchy process (AHP) to help select the optimal mining 

method based on both qualitative and quantitative factors. 

(iii) Determine if the SM would benefit surface coal mining in WV, particularly by 

reducing the negative environmental impacts associated with the conventional 

mining method. 

 

The following chapters provide a literature review of relevant studies, the methodology 

developed for this research, results, discussion, conclusions, and recommendations for 

future work. 
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Chapter 2  

Literature Review 

 

One of the most comprehensive studies on the application of SMs was conducted by Dey 

and Ghose (2008).  The authors established a Cuttability Index (CTI) to explore the 

applicability of the SM for various values of rock properties.  The rock and machine 

properties including point load strength, volumetric joint count, abrasivity, direction of 

cutting with respect to joint directions, and machine power are given numerical values, as 

shown in the Table 2.1. 

 

Table 2-1 Rating of the Parameters of New Rockmass Cuttability Classification  

(Dey and Ghose, 2008) 

 

 

 

A summation of the values is performed to generate a CTI between 20 and 100.  Based 

on this value, the applicability of the SM is ranked on the Excavatability Index from 

Class I II III IV V

Point Load Index (I S 50) < 0.5 0.5 - 1.5 1.5 - 2.0 2.0 - 3.5 > 3.5

Rating (I S ) 5 10 15 20 25

Volumetric joint count (no/m
3
) > 30 30 - 10 10 - 3 3 -1 1

Rating (J V ) 5 10 15 20 25

Abrasivity < 0.5 0.5 - 1.0 1.0 - 2.0 2.0 - 3.0 > 3.0

Rating (A W ) 3 6 9 12 15

Direction of cutting respect to 72
0
 - 90

0
54

0
 - 72

0
36

0
 - 54

0
18

0
 - 36

0
0

0
 - 18

0

major joint direction

Rating (JS) 3 6 9 12 15

Machine Power (kW) > 1000 800 - 1000 600 - 800 400 - 600 < 400

Rating (M ) 4 8 12 16 20
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“Very Easy Excavation,” if lower than 50, to “Surface Miner Should Not be Deployed” if 

the CTI is greater than 80 (Table 2.2). 

 

Table 2-2 Applicability of Surface Miner Based on Excavatability Index (Dey and Ghose, 2008) 

Excavatability Index Possibility of Ripping 

  CTI < 50   Very Easy Excavation 

  50 < CTI < 60   Easy Excavation 

  60 < CTI < 70   Limit of Economic Excavation 

  70 < CTI < 80   Difficult Excavation, May be Not Economic 

  CTI > 80   Surface Miner Should Not be Deployed 

 

Production rate is estimated by applying this rated machine capacity and a factor that 

considers influence from pick shape and pick spacing to the cuttability index.  

 

The methodology developed by Dey and Ghose (2008) is used for an initial examination 

of the applicability of a SM.  The production rate is calculated by considering only a few 

of many factors.  This method does not account for operator influenced factors and will 

be marginally off when compared to the actual production rate.  Additional factors such 

as time delays would add to the validity of the production rate calculated by this method. 

 

Origliasso (2011) performed production and cost calculations for the SM based primarily 

on the power of the machine.  Major aspects of the calculations, such as production rate, 

fuel consumption, and cutting speed, are determined based on the machine’s power.  The 

equation used to determine cutting speed is verified by the case studies performed at 

quarry operations.  The speed is determined for the hard rock applications and may 

require some adjustments for a coal type operation.  Origliasso’s (2011) approach, with 
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the integration of specific energy of the SM, is fairly sophisticated.  The SM calculations 

estimate an actual production rate as it considers delays that are encountered.  The cutting 

time has been built into equations as well as the machine power, rock abrasivity, and the 

rock’s unconfined compressive strength.  This method produces reasonably accurate 

values unless any anomalies are encountered for which a more detailed analysis of 

cutting time would be useful. 

 

One of the problems that have remained when considering a SM is determining what type 

and size is optimal for the specific application.  Pradhan and Dey (2009) explored this 

problem and developed software that can be applied to this situation to provide a suitable 

SM and the optimal mode for its operation.  This technique relies on the methodology 

developed by Dey and Ghose (2008), in which the cuttability index and production rate 

are found.  The software provides a quick way for mine planners and engineers to 

evaluate the use of a SM.  The Pradhan and Dey (2009) approach to the evaluation of the 

applicability of SMs is again based on the cuttability index created by Dey and Ghose 

(2008) and will provide the same results but in a nearly instantaneous timeframe.  This 

software provides the specifics of the SM and requires a cost model to be created by a 

separate process. 

 

Schimm (1997) studied the application of a Wirtgen SM in a limestone and pegmatite 

mining operation.  This case study occurred over a four week period during which the 

performance and requirements of the SM were logged.  The objectives of this study were 

to (i) determine limestone mining costs without blasting, (ii) reduce transport cost to the 
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nearby cement factory, and (iii) determine if selective mining of pegmatite was feasible.  

The properties of the limestone allowed for an average production rate of 210 tons per hr.  

The costs for operating and owning the machine during the time of the study were also 

observed.  The transportation costs were determined for three scenarios, one with an in-

pit mobile crusher, one with a semi-mobile crusher, and one with the Wirtgen SM.  The 

results of this portion of the study proved the SM to be the most economical of the three 

scenarios.  During the mining of pegmatite, the SM was able to extract the material in a 

highly selective manner where the rock was not rippable. For this reason, as well as the 

crushed material the SM produced, the SM was again the most economical method.  The 

study concluded that when mining in medium to hard material, the SM provides an 

economical alternative to conventional mining methods. 

 

The study performed by Schimm (1997) provides a detailed breakdown of the costs 

associated with operating and owning a Wirtgen SM.  While the study relates the use of a 

SM to the unconfined compressive strength of the material, many other rock parameters 

are not considered.  The inclusion of the abrasivity of the limestone and pegmatite would 

have been a valuable piece of information for the considering a SM.  As this is a case 

study, values for the SM were not calculated but observed, and the abrasivity may not 

have been known.  However, this study provides useful information that can be expected 

regarding similar conditions. 

 

The application of a SM in the Nongtrai Limestone Mine in Meghalaya, India was 

studied by Ghose et al. (2010).  This study for a possible alternative mining method was 
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performed in response to a Supreme Court order to stop all mining activities.  The 

objective of this study was to determine if SMs could be used as an alternative mining 

method.  The authors proceeded by applying eleven empirical approaches that have been 

developed by various mining professionals.  The evaluation of each empirical approach 

would determine if the SM would be applicable, if the material could be cut by that type 

of machine, or if there was a SM that would be able to cut the rock.  The results of the 

study indicated that there was no SM available that would be applicable to the studied 

limestone mine.  

  

The study performed for the Nongtrai Limestone Mine in Meghalaya, India described a 

situation any mine could face in light of evolving litigation.  The approaches used in this 

study varied in complexity but provided reasonable results while focusing on 

applicability. 

 

SMs are built in many sizes and have various applications based on the capability of the 

machine.  The objectives when considering any new SM technology is to lower cost of 

operation, reduce coal dilution, and improve coal recovery.  In his research, Schroder 

(2011) considered the cost comparison of the larger KSM type machine from Krupp 

Fordertechnik. Three different applications were explored and compared to the 

conventional mining method.  The first was a comparison of the KSM, the hydraulic 

shovel, and the front-end wheel loader.  In a study conducted for a coal mine in India, the 

author indicated that the SM was the most economical option.  The second study 

pertained to the transportation of material.  It compared a SM and truck mining unit to a 
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SM and belt conveyor mining unit in a Russian mine.  The SM and conveyor belt 

combination provided the lower cost.  In a third study, the comparison of the SM, 

hydraulic shovel, and front-end wheel loader was conducted to prepare a highwall for an 

auger mining operation.  The SM was found to be the most economical method. 

 

The studies by Schroder (2011) show various uses of the SM and evaluate where it is the 

most economical method.  While the results are clearly presented, the methodology 

behind the calculations is not evident.  The inclusion of rock parameters and mine site 

specifications would assist in understanding the calculations.  While the data and 

calculations may not be stated, some of the SM’s applications are. The SM does not only 

serve the purpose of the primary mining process but can perform supporting processes as 

well. 

 

Designing and calculating costs for a mining project does not encompass all of the issues, 

the post-mining reclamation plans must also be designed.  While economic evaluations 

can be performed for each scenario, the final reclamation design ultimately relies on the 

decision team.  To aid in this group decision process Bascetin (2006) uses the Analytical 

Hierarchy Process (AHP) developed by Saaty (1980).  In this study, the AHP was used to 

determine the optimal reclamation method for an open-pit coal mine in the Seyitomer 

region in Turkey.  The AHP model developed by Bascetin (2006) considers capital cost, 

operating cost, natural factors, and cultural factors.  Both natural and cultural factors have 

multiple sub-criteria that are included in the AHP.  The end result of this study will be 

one of five different alternatives for a reclamation method. 
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The study performed by Bascetin (2006) was to determine if the AHP would aid in the 

decision process for a particular reclamation method.  The AHP model developed 

enabled decision makers to look at each of the possible reclamation methods and decide 

what their weaknesses and strengths were.  The model was determined to be an 

improvement on the team’s decision making process, as well as reducing the time and 

effort devoted the process.  This model can be used for a basis when considering multiple 

reclamation methods with some variations to suit a specific project.   
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Chapter 3  

Methodology 

 

3.1 Introduction 

 

The objective of this research is to determine whether the Surface Miner mining method 

is a suitable option for surface coal mines in WV.  The design and procedures used for 

achieving the objectives involve six interrelated modules.  Module #1 includes rock 

properties of sandstone, shale, and bituminous coal, which are the predominant 

overburden, interburden, and coal types in WV.  Module #2 considers drilling and 

blasting operations.  Module #3 includes digging and loading of overburden material and 

specifically addresses mining equipment such as the electric and hydraulic shovels and 

front-end wheel loaders.  Two unit operations are involved with the removal of the 

interburden material: ripping and pushing by bulldozers and loading by hydraulic 

backhoe shovel.  Module #4 covers coal extraction by a hydraulic (backhoe) shovel and 

the coal crushing operation.  Module #5 focuses on the SM and its production, 

ownership, and operating costs for overburden, interburden, and coal.  Module #6 

consists of a comparative analysis of all unit mining operations for overburden, 

interburden, and coal.  It also presents the results for the production rates, ownership and 

operating costs.  The production and cost models were developed in MS Excel.  The 

analytical hierarchy process (AHP) is used for the selection of the optimal mining method 

based on both qualitative and quantitative factors.  
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An algorithm was developed in order to determine the appropriate mining method for 

each rock unit in an organized fashion.  This algorithm or one similar to it should be 

followed to insure all results are accurately calculated for the cost module comparison.  

This algorithm can be seen in Figure 3.1. 

 

Is SM applicable for

given rock properties?
No Yes

Determine costs of

both mining methods.

Perform calculations for

conventional mining equipment.

Perform calculations for

the Surface Miner.

Determine site specific rock properties

(rock type, UCS, abrasivity, seismic wave

velocity, density, swell factor, drillability

factor)

Start

Use conventional mining method

for entire mining operation.

Compare both methods for

Overburden, Interburden, and Coal to

find most economical method for each

rock unit.

Most economical mining

method or combination of

methods for entire mining

process.

 

Figure 3-1 Mining Method Selection Algorithm 
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The cost and production models for both the conventional and SM mining methods 

consider a medium-size surface coal mine in WV.  For this study, the medium-size mine 

is defined with a production rate of 10 million bank cubic yards of overburden, 1 million 

bank cubic yards of interburden, and 1.5 million tons of coal to be excavated annually. 

 

3.2 Rock Properties (Module 1) 

 

Module #1 contains the descriptions of possible rock types and properties within the state 

of WV.  The typical rock units found in the surface coal mines of WV (generally the 

majority of the state excluding the eastern panhandle) are sandstone, shale, and 

bituminous coal (WVGES, 2011).  The bituminous coal in WV and the surrounding area 

is found in varying thickness and in multiple seams.  There may be instances where 

multiple seams of varied thickness exist in the same formation and are being mined or 

abandoned. 

 

Properties such as bank & loose density, unconfined compressive strength, abrasivity, 

seismic wave velocity, quartz content, and swell factor were compiled from Caterpillar 

(2010), Hartman (1992), Rusnak (2000), Schubert (2007), Mavko (2011), Plinninger 

(2010), Ingresoll-Rand (2003), Kecojevic (2010). Average values were generated for 

each property and applied to the conventional mining and SM equations.  Table 3.1 

shows the average values for the rock and coal properties in WV that are used in this 

study. 
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Table 3-1 Average Values of Coal and Rock Properties in WV 

Rock type Bituminous coal Sandstone Shale 

Bank density (lb/yd
3
) 2,150 4,250 2,800 

Loose density (lb/yd
3
) 1,600 2,550 2,100 

Specific gravity 1.28 2.5 1.66 

Swell factor 1.35 1.6 1.45 

Unconfined Compressive Strength (psi) 2,901 14,500 10,875 

Cerchar Abrasive Index (CAI) 1 2 1.5 

Seismic Wave Velocity (ft/sec) - 9,020 5,900 

Equivalent Quartz Content (%) 5 75 45 

Drillability factor  1.8 2.0 

 

 

3.3 Drilling and Blasting Operations (Module 2) 

 

Equations developed by Atlas Copco (2006), Ingresoll-Rand (2003), Sandvik Tamrock 

(1999), Austin Powder (2009), Dyno Nobel (2010) and Kecojevic (2010) were used to 

calculate drilling and blasting parameters. These parameters include hole diameter, 

penetration rate, overall drilling rate, bench height, burden, spacing, sub-drilling, hole 

inclination, hole depth, hole length, stemming, particle size for stemming, hole charge 

length, hole charge concentration, total charge per hole, type of total amount of 

explosives, bottom and column charge concentration, volume of rock per foot of hole, 

volume of rock per hole, weight of rock per hole, number of required holes, specific 

drilling, total required drilling, powder factor, and delay times.  Ammonium Nitrate + 

Fuel Oil (ANFO) and emulsions are the most common explosives agents used in WV 

surface coal mines and are used in this study. 
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The total drilling cost is calculated and it is expressed in $/yd
3
 and $/year.  Blasting cost 

related to explosives, detonators, boosters, leadline, tubes, labor, and shot service is also 

determined. A total blasting cost is expressed in $/yd
3
 and $/year. 

 

3.4 Digging and Loading (Module 3) 

 

This module pertains to the equipment used for digging and loading of the overburden 

and interburden.  For this study, the production rate is defined to be 10 million bank cubic 

yards of overburden and 1 million bank cubic yards of interburden. 

 

3.4.1 Overburden 

 

In most WV surface coal mines several machines are used to dig and load overburden 

material.  This equipment includes hydraulic shovels, electric (rope) shovels, front-end 

wheel loaders, and draglines (which are used mainly for stripping and disposal into the 

excavated area).  Haulage costs are not considered in this research and therefore draglines 

are not included in the mining method comparison.   

 

Production rates for these machines except for the dragline are calculated and ownership 

and operating costs are determined.  Various sources such as Caterpillar (2010), Komatsu 

(2011), P&H (2005), Hartman (1992), and Kecojevic (2010) are used to determine the 

production rates.  Equations for ownership and operating costs are well documented in 

the sources stated previously and are used to calculate the costs in this research.  

Compiled cost data are obtained from InfoMine (2010).  The total cost for each piece of 

equipment is expressed in $/yd
3
, $/hr and $/year. 
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3.4.2 Interburden 

 

The interburden material in WV is typically, but not limited to, a sandstone or shale type 

rock.  This material is interspersed between coal seams.  The thickness and material 

properties of the interburden determines whether the rock is ripped, excavated, and 

loaded or the rock is to be blasted.  It is assumed that interburden less than five feet thick 

can be ripped by a bulldozer. 

 

The ability to rip interburden is dependent on the properties of the rock; specifically the 

seismic wave velocity.  A bulldozer’s specific capabilities are based on the machine’s 

power, shank characteristics, and size.  To insure the widest array of applications in 

varying thicknesses of interburden, the Caterpillar D11T CD or similar large size 

bulldozer was chosen for this study.  Caterpillar (2009) provides the production rates for 

the bulldozers.  

 

The interburden is first ripped by a bulldozer and then it is loaded by a hydraulic backhoe 

shovel.  Production rates for these units are calculated and ownership and operating costs 

are determined.  Compiled cost data are obtained from InfoMine (2010).  The total cost 

for each unit is expressed in $/yd
3
, $/hr and $/year. 
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3.5 Coal Extraction & Crushing (Module 4) 

 

Module #4 covers coal extraction by hydraulic (backhoe) shovel and the crushing 

operation.  Once the coal is crushed it is transported to the processing facility in its 

fragmented form.  In most cases, the coal needs to be reduced in size for its final use.  

The size and type of crusher is determined by the production rate, the feed and product 

sizes, the material characteristics such as lump factor, the number of drives, the drive 

efficiency, and the Bond’s Work Index.  The production rate and the feed and product 

sizes are values that will be generated by the specifications of the mine.  The material 

lump factor is determined by the material composition, which can range from course to 

fine material.   The drive efficiency depends on what type of motor is used in the crusher.   

 

The ownership and operating costs are calculated based on production rate, crusher 

power requirement, and crusher settings.  The total cost is expressed in $/ton, $/hr, and 

$/year. 

 

3.6 Surface Miner Method (Module 5) 

 

This module describes the calculations of the SM in three different extraction scenarios; 

overburden, interburden, and coal extraction. 

 

The first item to consider in the SM mining method is the mine design.  The SM requires 

adequate room on both sides of the cut to turn the machine.  An example of a mine 

design, where ramps are required on both ends of the row to allow the SM to turn around 
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and re-enter the working area, is shown in Figure 3.2.  This mine design is an example of 

one way to use the SM.  There are multiple ways to use the machine depending on the 

orientation of the material being excavated. 

 

 

Figure 3-2 Example Mining Sequence of a Surface Miner (Wirtgen, 2008) 

 

The SM mine design requires the cutting of long straight or curved rows.  The rows that 

are cut are gradually stepped down to reach the desired depth or the bottom of the coal 

seam, as seen in Figure 3.3.  When compared to a conventionally blasted highwall, the 

SM creates a cleaner and more stable highwall due to the step down cutting procedure as 

seen in Figure 3.3.  
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Figure 3-3 Typical Mining Sequence of a Surface Miner (Wirtgen, 2008) 

 

A critical value that must be defined in the beginning of the SM calculations is the cutting 

performance, (Q) which is expressed in bank ft
3
/hr.  The Equation 3.1, developed by 

Wirtgen (2010), is used to determine the cutting performance in this thesis.  The 

dimensions of the cut are dependent on the width, (W) in ft, of the cutting drum and an 

average depth, (D) in ft, of the cut.  The cutting velocity, (V) in ft/min, is multiplied by 

the cutting dimensions to find the cutting performance as follows: 

 

           (3.1)  
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The depth and cutting velocity are dependent on the size of SM and the material being 

excavated.  Material with higher compressive strength and abrasivity may require a 

shallow cut to prevent excessive pick wear.  Equation 3.1 does not account for any delays 

that will be encountered in the cutting process.  

 

Essentially, according to equation 3.1, the cutting performance is based on the size of the 

SM and the cutting velocity.  The machine also has a travel (non-cutting) speed that will 

be used in other equations.  The traveling speed is usually designated by the 

manufacturer, but the velocity at which the machine cuts is typically an empirically 

determined value.  Because an experienced value is unavailable for every desired rock 

property scenario, another source for this information is needed.  It is necessary to use an 

additional equation to determine the velocity of the SM while cutting.  An equation 

developed by Origliasso (2011) calculates the cutting velocity, (V) in m/min, and uses the 

machine power, (P) in kW, compressive strength, (UCS) in MPa, and cutting depth, (D) 

in cm, as follows.  

 

   (
  (               )

 
) (3.2)  

 

While this equation for cutting velocity is reliable, it is necessary to add an adjustment 

factor to accommodate for the different types of rock.  The adjustment factor is generated 

based on the cutting velocities the SM will experience in the field for both coal and hard 

rock.  Determination of the cutting velocity in both coal and hard rock is given by 

Equations 3.3 and 3.4, respectively, where the power, (P) is in kW, and cutting depth, (D) 
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is in cm.  The adjustment factor allows the cutting velocity equation to calculate values 

more accurate to what will be experienced in the field.  The conversion factor from 

meters per minute to feet per minute is 3.28.   

 

The adjustment factor, which is determined based on cutting velocity field values, is 1.35 

for coal and 2.9 for hard rock.   These cutting velocity equations are written as follows: 

 

   ((
  (               )

 
)      )  (    ) (3.3)  

 

   ((
  (               )

 
)      )  (   ) (3.4)  

 

One of the most influential variables when considering a SM is the amount of cutting tool 

(pick) wear that occurs during the cutting process.  The reason for this high influence is 

not only the cost of replacement picks but also the time spent on replacing the worn 

picks.  These additional factors affect the direct cost of operating the machine and its 

production capability.  This is the why the SM becomes less economically feasible in the 

harder rock type situations.   

 

Table 3.2 and 3.3 show the equations for the amount of pick wear expected in hard rock 

such as sandstone and shale, as well as coal.  The equations in Table 3.2 and 3.3 were 

derived from pick wear data collected from a road header working in similar conditions.  

Best fit lines of the data were generated and the corresponding equations are displayed in 
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the Tables 3.2 and 3.3.  As both machines exert similar forces on the picks the amount of 

wear of a road header is fairly transferable to that of a SM (Bauer, 2011).
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Table 3-2 Pick Wear Equations for Hard Rock 

 

 

Table 3-3 Pick Wear Equations for Coal 

0-5 MPA 5-30 MPA 30-70 MPA 70 MPA +

5.0 y = 0.0138x - 0.0026 y = 0.0047x1.4595 y = 0.0326x - 0.2617 y = -7E-05x2 + 0.0202x + 1.1617

4.0 y = 0.0002x2 + 0.0043x + 0.0005 y = 0.0016x1.568 y = 0.0281x - 0.6017 y = -0.0002x2 + 0.0547x - 1.5822

3.0 y = 1E-04x2 + 0.0017x + 0.0011 y = 0.0006x1.6334 y = 0.0142x - 0.3167 y = 2E-05x2 + 0.0197x - 0.9434

2.0 y = 0.0011x + 0.001 y = 6E-05x2 + 0.0004x + 0.0014 y = 0.0071x - 0.1713 y = 0.0566e0.0239x

1.5 y = 0.0006x + 0.0012 y = 3E-05x2 - 8E-05x + 0.0055 y = 0.0119e0.0373x y = 0.0186e0.0308x

1.0 y = 0.0003x + 0.0013 y = 8E-06x2 + 1E-04x + 0.0024 y = 0.0035e0.041x y = 0.003e0.0425x

0.6 y = 8E-05x + 0.0013 y = 4E-06x2 - 1E-05x + 0.0018 y = 0.0013e0.0462x y = 0.001e0.0489x

Cerchar 

Abrasivity 

Index

Unconfined Compressive Strength (x)

0-5 MPA 5-30 MPA 30 MPA +

3.0 y = (1E-04x2 + 0.0017x + 0.0011)*.5038 y = (0.0006x1.6334)*.5038 y = (0.0142x - 0.3167)*.5038

2.0 y = (0.0011x + 0.001)*.5038 y = (6E-05x2 + 0.0004x + 0.0014)*.5038 y = (0.0071x - 0.1713)*.5038

1.5 y = (0.0006x + 0.0012)*.5038 y = (3E-05x2 - 8E-05x + 0.0055)*.5038 y = (0.0119e0.0373x)*.5038

1.0 y = (0.0003x + 0.0013)*.5038 y = (8E-06x2 + 1E-04x + 0.0024)*.5038 y = (0.0035e0.041x)*.5038

0.6 y = (8E-05x + 0.0013)*.5038 y = (4E-06x2 - 1E-05x + 0.0018)*.5038 y = (0.0013e0.0462x)*.5038

Unconfined Compressive Strength (x)

Cerchar 

Abrasivity 

Index
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The equations shown in the Table 3.2 and 3.3 are dependent on the unconfined 

compressive strength (UCS), measured in MPa, and the abrasivity of the rock, as 

measured by the Cerchar Abrasive Index, CAI.  The “x” variable in each equation refers 

to the unconfined compressive strength of the rock, while the “y” variable is the amount 

of expected pick wear in picks per bank cubic meter.  The pick wear, when plotted, 

shows an almost uniform wear as the UCS and abrasiveness increase.  Because there are 

irregularities, equations have been derived for each value on the Cerchar Abrasive Index 

as well as for a range of unconfined compressive strengths. 

 

Graphical representations of the equations in Tables 3.2 and 3.3 are displayed in the 

results section showing the relationship between pick wear and volume of material that 

can be cut until replacement is needed.   

 

In addition to the pick wear in hard rocks, these values must also be obtained for wear in 

a softer material such as bituminous coal (Table 3.3).  The pick wear value is determined 

by the characteristics, abrasivity and unconfined compressive strength, of the rock, which 

were described in module #1.  It is necessary to have a description of the softer 

bituminous coal because the unconfined compressive strength and abrasivity are not the 

only factors affecting the amount of pick wear.  Rock properties, such as rock structure 

(solid, fractured, macro/micro seamy), and grain size are a few factors that cause vastly 

different pick wear values at the same unconfined compressive strengths and 

abrasiveness. 
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The pick wear equations as stated previously are derived from the application of a road 

header in similar rock types.  This among other factors cause the equations to generate 

pick wear values that are higher than what may actually be experienced.  These values are 

acceptable but conservative. 

 

With the known pick consumption per bank cubic meter, the amount of pick changes per 

row cut can be calculated.  This value is needed to calculate the real cutting time of the 

SM.  In the case of this research, the values for pick wear (PWSI) generated by the 

equations in Table 3.2 and 3.3, are stated in picks per bank cubic meter.  To avoid 

conversions in all equations using pick wear, a simple conversion factor of 35.32 ft
3
 per 

m
3
 will be used.   The pick wear is represented in picks per bank cubic foot as follows: 

 

              (3.5)  

 

In addition to calculating pick wear in terms of picks per bank cubic foot, it is good 

practice to find the pick wear per bank cubic yards and tons.  The equations used to 

determine the various pick wear values are as follows: 

 

            (3.6)  

      
  

       
 

(3.7)  

 

The number of times the picks need to be changed is found by dividing the volume of 

material in the row length, (RL) in ft, by the pick wear (PW).  It is common practice to 
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replace a minimum of five picks per change sequence.  With the implementation of a pick 

changing tool, the time to change one pick has been reduced to approximately one 

minute.  The equation for the number of pick changes per row (NPC) is as follows: 

 

    
      

    
 (3.8)  

 

The pick wear information in this research is provided in picks per bank cubic meter, 

which may not always be the case.  Pick wear can also be measured in forward distance 

of the machine.  For instance, the pick wear may be measured in the amount of picks per 

foot traveled while cutting.  Equation 3.8 is slightly modified to accommodate the 

calculation of pick wear (PWft) in feet traveled while cutting.  Equation 3.9 represents the 

number of pick changes (NPCL) required when pick wear is calculated in cutting 

distance.  

 

     (
  

      
) (3.9)  

 

When the cutting performance has been determined, delays can be factored in to provide 

a practical cutting performance value.  Delays such as time spent on sumping in and out 

of the cut (ST), turning (TT), pick changing (PCT), and other non-cutting time (NCT) 

lower the real cutting time. Truck haulage adds additional delay time in the calculations 

based on the time to change trucks after loading.  The total time taken to process one row 

length, including all delays, is known as the total time per row (TTR). 
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The first variable needed to find the total time per row is the time the SM is cutting 

material.  The cutting time per row (CTR) is expressed in minutes as follows: 

 

    (
  

 
) 

(3.10)  

 

The second variable in the total time equation is the time spent on changing picks.  With 

the number of changes per row obtained from Equation 3.8, the time spent on pick 

changing, (PCT) in minutes, can be calculated as follows: 

 

          (3.11)  

 

The remaining delay time components are calculated in Equations 3.12, 3.13, and 3.14.  

When the SM starts a cut, there is a span of distance in which the cutting drum is being 

lowered until the appropriate depth is reached.  This distance also exists at the end of a 

cut when the machine raises the cutting drum.  When these two distances are combined 

the total sump length, (TSL) in ft, is determined. The sumping segments are cut at a 

designated sumping speed, (SS) in ft/min. The sumping time is determined in minutes as 

follows:   

 

   (
   

  
                   ) 

(3.12)  
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The SM travels at higher rates of speed while not cutting.  The travel speed, (TS) in 

ft/min, is applied to delays that do not involve cutting, such as turning time, (TT) in 

minutes, and other non-cutting time, (NCT) in minutes.  The equations for these delays, 

calculated in minutes, are as follows: 

 

    (
              

  
) 

(3.13)  

 

    (
                  

  
) 

(3.14)  

 

When all of the delay components have been determined, the total time per row (TTR) is 

calculated in hours as follows: 

 

    (                 )    (3.15)  

 

The Equation 3.1 must account for the delays in the cutting sequence to achieve an 

accurate cutting performance.  The total operating hours that the SM is cutting material is 

known as the real cutting time (RCT), represented in hrs/year, which is a percentage 

(RCT%) of the total operating hours per year (OHY).  The RCT% is a result of the 

amount of time spent cutting a row divided by the total time spent on cutting and non-

cutting time for that row as shown by equation 3.16.   

 

 



37 

 

     
   

   
 

(3.16)  

 

             (3.17)  

 

The cutting performance value with applied delays is called the practical cutting 

performance, (PQ) in bft
3
/hr, and is achieved by multiplying the cutting performance by 

the percentage of real cutting time as follows: 

 

          (3.18)  

 

This practical cutting performance value can be multiplied by the operating hours per 

year (OHY) to show the maximum production (MP) of the SM in a specific scenario and 

is calculated in bank yd
3
/year as follows: 

 

             (3.19)  

 

The MP is a useful value when considering what size of SM and the number of SMs 

required to meet production goals.  If more than one SM is needed to meet production 

requirements, the equations can be modified to calculate the number of required SMs.  

Multiple SMs are needed if the maximum production of the SM is less than the required 

production RP, i.e.  

 

                     (3.20)  
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If more than one machine is needed, the required production will be divided equally 

among all SMs.  This defines a new required production per SM. 

 

When the maximum production of the SM exceeds the required production, a variable 

called the real operating hours per year (ROHY) needs to be considered.  To accurately 

compare both mining methods, their annual production must be the same.  Therefore, if 

the ROHY is less than the OHY, the ROHY will be used for any calculations using the 

OHY. 

 

There is an alternative option to calculate the practical cutting performance and it is used 

as a check to verify its validity.  The practical cutting performance method is verified by 

multiplying the theoretical cutting performance, (TQ) in ft/hr, by the cutting dimensions.  

The TQ can be calculated without including the SM’s cutting dimensions.  It is measured 

in feet per hour instead of cubic feet per hour.  This is done based on the time spent 

cutting.  The TQ is calculated by dividing the RL by the TTR as follows: 

 

   
  

   
 

(3.21)  

 

The theoretical cutting performance can then be multiplied by the operating hours per 

year to find the total distance cut per year.  Although this is a theoretical value, the delay 

times experienced during the cutting process are considered because they are included in 

the total time per row variable.  The distance cut per year is determined by:   
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           (3.22)  

 

The theoretical cutting performance can be used to verify the practical cutting 

performance as stated previously. To do this, the theoretical cutting performance is 

multiplied by the dimensions of the cutting drum and the cutting depth to obtain the PQ. 

 

          (3.23)  

 

An additional validation of the practical cutting performance is the maximum production, 

(MP) per year in byd
3
/year.  This is the yearly theoretical cutting performance multiplied 

by the cutting dimensions and a conversion factor, 27 ft
3
/yd

3
, as follows: 

 

              (3.24)  

 

The TQ may also be necessary when pick wear is described in picks per distance cut. 

 

The SM ownership and operating costs are calculated once the specifics and capabilities 

of the SM have been determined.  The ownership cost equations come from Caterpillar 

(2009) and are used for every piece of equipment in this research.  Variables used in 

these calculations are machine purchasing cost (PC) in dollars, ownership period (OP) in 

yrs, operating hours per year (OHY) in hrs, depreciation rate (DR) as a percentage, 

interest rate (INTR) as a percentage, insurance rate (INSR) as a percentage, tax rate 

(TXR) as a percentage, and the residual value rate (RV) as a percentage.  The equations 
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for depreciation value per year (DV) in $/yr, the value to be recovered through work 

(VR) in dollars, capital cost (CC) in $/hr, interest cost (INT) in $/hr, insurance cost INS 

in $/hr, and tax cost (TX) in $/hr are as follows: 

 

         (3.25)  

          (3.26)  

         (3.27)  

   (     ) (      ) (3.28)  

    

    
        

    
   

   
 

(3.29)  

    

    
        

    
   

   
 

(3.30)  

 

   

    
        

   
   

   
 

(3.31)  

 

The ownership costs (OC) are calculated after all previous cost values have been 

determined.  The ownership cost is the addition of all costs represented in $/hr as follows: 

 

                 (3.32)  

 

The operating cost (OPC) is the summation of the repair (RC), fuel (FC), grease (GC), 

hydraulic oil (HO), water (WC), picks (PTC), and labor (LBC) stated $/hr. 
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                           (3.33)  

 

The costs for every element except for the cost of picks can be seen in Equations 3.34-

3.38, Caterpillar (2010) and Kecojevic (2010).  The RC uses the machine purchasing cost 

and OHY as follows: 

 

   (     )     (3.34)  

 

The fuel consumption rate, typically provided by the manufacturer, is used to calculate 

the fuel cost.  The manufacturer provided fuel consumption rate generally describes the 

motor under full load capacity (FLC).  The machine will not likely operate at full load 

capacity for long periods of time because of the risk of pushing the machine to its failure 

point.  Therefore, a load coefficient factor (LCF) is used to estimate the average load on 

the motor.  In the calculations for this research, a value of 70 percent is used for the LCF 

(Wirtgen, 2010).  The equations used to calculate fuel and grease cost are as follows: 

 

                     (3.35)  

         (3.36)  

 

The cost of hydraulic oil, (HO) in $/hr, is calculated by the replacement time intervals in 

hrs of the oil (HCI) divided by the capacity of the hydraulic oil tank (VHO).  The cost of 

water, (WC) in $/hr, is determined by the consumption rate multiplied by the water cost.  

These equations are as follows: 
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(3.37)  

 

 

                               (3.38)  

 

The pick cost is dependent on how the pick wear is described; per volume or distance cut.  

Before the cost of replacement picks can be found, the number of picks consumed yearly 

(PCY) must be calculated.  Equation 3.24 calculates the SM’s maximum production.  As 

stated when explaining the ROHY, only the costs for achieving the exact required 

production needs to be calculated.  This usable production (UP) value will be equal to the 

required production unless more than one SM is used to meet the requirement.  If one SM 

is used, then Equation 3.39 is true; if multiple SMs are used, then Equation 3.40 is true.  

 

      (3.39)  

 

   
  

                   
 

(3.40)  

 

It is useful to define the amount of picks per set (PPS) for purchasing reasons.  This value 

depends on the width of the cutting drum and the spacing between the picks on the drum.  

The spacing calculation is in SI units.  The cutting drum width, (W) in meters, is based on 

the size of the SM and the pick spacing, (PS) in millimeters, is determined by the type of 

rock and the desired size of the product. 

 

    (
      

      
) 

(3.41)  
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The amount of picks used to extract the exact amount of material is calculated after the 

usable production is determined, (the pick wear in this research is expressed as picks per 

volume).  Time per set or per pick can also be calculated from the value found in 

Equation 3.42 by using simple arithmetic.  The amount of picks consumed per year 

(PCY) is calculated by dividing the usable production (UP) by the pick wear.  The 

conversion factor 27 ft
3
/yd

3
 is applied to the equation for PCY and is as follows: 

 

    
  

     
 

(3.42)  

 

Multiplication of the values calculated in Equations 3.43 and 3.44 by the amount of 

material will yield the same result as calculated in Equation 3.42.  The cost of pick 

consumption (PTC) is calculated from the amount of picks consumed per year.  The 

equation can be varied to represent this value in the desired units, but it is calculated in 

$/hr to follow the previous cost calculations. 

 

    
             

   
 

(3.43)  

 

The theoretical values are also used to verify the pick consumption and cost calculations.  

The pick wear, (PWL) in pick/ft, is used with the theoretical cutting performance to find 

the pick consumption per year.   

 

             (3.44)  
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The value for pick consumption is based on the distance the SM cuts per year.  The 

practical and theoretical pick consumption values are compared to check the validity of 

the pick consumption calculation.  The pick consumption is correct if these two values 

are the same.   

 

The calculations for the SM are broken down into three excavation scenarios; the 

overburden, interburden, and coal extraction.  The same cost equations are used for the 

overburden, interburden, and coal extraction except for the different values for the pick 

wear, operating hours, and material characteristics.  The costs for all three scenarios are 

calculated in $/hr and are converted to $/yd
3
 for overburden and interburden and $/ton for 

coal for the mining method comparison.  The SM(s) unit operation costs are compared to 

the conventional mining method costs to reveal the most economical mining method.   

 

3.7 Comparison of Mining Methods (Module 6) 

 

In this module, the conventional mining method is compared to the SM mining method.  

By comparing the overburden, interburden, and coal mining unit operations, the most 

economical method is determined.  To insure both methods are comparable, all of the 

final costs are represented in dollars per cubic yard for overburden and interburden and in 

dollars per ton for coal.  The comparison of methods uses the values derived by the 

calculations based on the material properties and characteristics described in module one.  

The results of the comparison module should not be taken as a rule-of-thumb for the 

entire state of WV.  This comparison will provide results based on the average rock and 

material properties.  In order to ultimately determine what method is the most 
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economical, the site specific material properties must be known and then site specific 

calculations can be performed and provide a location specific result.   

 

3.7.1 Analytical Hierarchy Process for the Selection of the Optimal Mining Method 

 

This research uses the analytical hierarchy process (AHP), developed by Saaty (1980), to 

evaluate conventional mining methods with that of a surface miner. The AHP is suitable 

for this application because of its ability to evaluate the qualitative and quantitative 

values derived in this research.  The AHP in this research breaks the problem of selecting 

the optimal mining method into four levels; goals, strategic issues, criterion, and 

alternatives.  The AHP model developed for the selection of the optimal mining method 

can be seen in Figure 3.4. The problem is broken into levels based on the level of 

importance of a specific criterion.  By defining the hierarchy of criteria the problem is 

analyzed in smaller more manageable problems. 
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Selection of Optimal Mining Method

Production EnvironmentalCosts

Ownership Cost Operating Cost Production Rate Blasting Hazards

Conventional Mining Method Surface Miner Method

Level 1: Goal

Level 2: Strategic Issues

Level 3: Criteria

Level 5: Alternatives

Level 4: Rating Scale

Outstanding Good Average Fair Poor

 

Figure 3-4 AHP Model for Selection of Optimal Mining Method 

 

The optimal mining method can be selected when the levels have been defined and 

arranged into pairwise comparison matrices.  The matrices are constructed based on the 

number of candidate requirements.  For the model developed in this research, it uses two 

“n x n” matrices; one “3 x 3” matrix for the level two strategic issues and a “2 x 2” matrix 

for the level three criteria.  No comparison matrix is needed for the production and 

environmental strategic issues because they only contain one criterion.  With the matrices 

constructed, pairwise comparisons of all the requirements are performed.  To assign a 

numerical value to each pair of requirements in the matrix, the scale created by Saaty 

(2008) is used to and can be seen in Table 3.4. 
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Table 3-4 The Fundamental Scale of Absolute Numbers (Saaty, 2008) 

 

 

Eigenvalues, a.k.a. the priority matrix, are generated from the comparison matrix when 

each criteria comparison has been given a value.  The eigenvalues, or priority matrix, 

represent the weights of each criteria considered for the comparison matrix.  The higher 

the weight of a criterion, the higher the influence it will have on the final selection. 

 

1 Equal Importance Two acitivities contribute equally to the objective

2 Weak or Slight

3 Moderate Importance Experience and judgement slightly favour one 

acitvity over another

4 Moderate Plus

5 Strong Importance Experience and judgement strongly favour one 

acitvity over another

6 Strong Plus

7 Very Strong or 

Demonstrated Importance

An activity is favoured very strongly over 

another; its dominance demostrated in practice

8 Very, Very Strong

9 Extreme Importance The evidence favouring one activity over 

another is of the higherst possible order of 

Reciprocals of 

above

If activity i has one of the 

above non-zero numbers 

assigned to it when 

compared with activity j, 

then j  has the reciprocal 

value when compared        

with i

1.1-1.9 If the activities are very 

close

May be difficult to assign the best value but 

when compared with other contrasting 

activities the size of the small numbers would 

not be too noticeable, yet they can still indicate 

the relative importance of the acitivies.

Intensity of 

Importance

Definition Explanation
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The priority matrix represents the weight of each criterion.  This provides weights for 

each specific criterion but does not account for the weights of the other level’s criteria for 

the same alternative.  The last level of criteria/sub-criteria/etc. in an AHP model have 

Global Weights (GW) assigned to them.  The GW considers each criterion, and its 

weight, from any previous level.  For example, if Figure 3.5 would be the AHP model a 

GW would be assigned to the sub-criteria.   

GOAL

STRATEGIC 

ISSUE

CRITERIA

SUB-CRTIERIA 

 

Figure 3-5 Example AHP Model 

 

The GW calculated for the sub-criteria would account for the local weights of the 

strategic issue, the criteria, and the sub-criteria.  A realistic AHP model will have more 

than one for the categories in Figure 3.5.  Each alternative combines of all GW associated 

with it and finally the alternative with the highest value will be the best alternative. 

 

To consider the differences between mining methods, it is necessary to rank the criteria 

for each mining method (level 4).  A ranking system developed by Liberatore et al. 

(1992) uses five ratings: Outstanding (O), Good (G), Average (A), Fair (F), and Poor (P).  
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This system was used by Bascetin (2006) in formulating a pairwise comparison judgment 

matrix to assign values to the five different ratings as seen in Table 3.5.   

 

Table 3-5 Rank Values 

Rank Numerical Value

Outstanding (O) 0.513

Good (G) 0.261

Average (A) 0.129

Fair (F) 0.063

Poor (P) 0.034  

 

A rating and score are assigned at the author’s discretion to each of the criteria.  By 

multiplying the score and the global weight and summing all these values for each mining 

method, a total score for the mining method is achieved.  Finally, after normalizing each 

total score, the higher score is the determined to be the optimal mining method. 

 

The Consistency Index (CI) is calculated to measure the errors in judgment by the user.  

This can be explained as the consistency of the user’s judgments for each comparison in 

the matrix.  An example of a user with consistent judgments would be as follows:   

 

 A is deemed more important than B 

 B is deemed more important than C 

 A is therefore more important than C 

 

This type of input into a comparison matrix would display a consistent judgment making 

process and will likely provide valid results.  An inconsistent judgment for the previous 

example would rate C more important than A. 
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To determine the CI, the maximum principle eigenvalue (λmax) of the comparison matrix 

is needed.  The equation developed by Saaty (1980) for the CI is dependent on the λmax 

and the number or candidate requirements in the matrix “n” as shown in Equation 3.45. 

 

   
      

   
 (3.45)  

 

Finally, Saaty (1980) proposed a method to determine if the matrix is acceptable, by the 

calculation of the Consistency Ratio (CR).  The CR is based on the CI and the 

consistency indices of Randomly Generated Reciprocal Matrices (RI) developed by Saaty 

(1980).  The RI values can be seen in Table 3.6. 

 

Table 3-6 RI Values vs. "n" (Bascetin, 2006) 

 

 

The CR is calculated based on the “n” value equivalent to the comparison matrix and its 

corresponding RI value displayed in Table 3.6.  The equation for the CR is as follows:   

 

   
  

     
 (3.46)  

 

 

n 1 2 3 4 5 6 7 8 9 10

RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49
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A general rule for an acceptable matrix is a CR value less than or equal to 0.10.  The 

AHP can be determined quicker and more accurately by using software such as Expert 

Choice (2012), which uses the principles described here.  This software is used to carry 

out the AHP in this research.   
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Chapter 4  

Results and Analysis 

 

4.1 Global Input Parameters 

 

Throughout this study, variables such as fuel price, hydraulic oil price, electricity price, 

insurance rate, interest rate, and tax rate will remain unchanged and therefore are 

considered to be global parameters.  The values compiled from InfoMine (2011) and 

Kecojevic (2010) are displayed in Table 4.1 as global parameters. 

 

Table 4-1 Global Parameters 

Parameters Value Units 

Fuel Price 3.20 $/gal 

Hydraulic Oil Price 11.00 $/gal 

Electricity Price 0.07 $/kWh 

Insurance Rate 6.00 % 

Interest Rate 1.00 % 

Tax Rate 1.00 % 

 

 

4.2 Results and Analysis 

 

In this section, the results of the methodology described in chapter three is presented. 

 

4.2.1 Drilling and Blasting 

 

The cost assessment of the drilling and blasting operation was conducted for an annual 

production of 10 million bank yd
3
 of overburden material.  Drilling and blasting 



53 

 

parameters are shown in Table 4.2.  The drilling and blasting cost analysis are shown in 

Tables 4.3 and 4.4 respectively.   

 

Table 4-2 Drilling and Blasting Parameters 

Parameters Sandstone Shale Units 

Required production (RP) 10,000,000 10,000,000 bank yd
3
/year 

Operating Hours per Year (OHY) 4,600 4,600 hrs 

Bench height  50 50 ft 

Hole diameter 6 6 in 

Drillability Factor  1.8 2.0  

Overall Drilling Factor  0.70 0.70  

Explosive ANFO ANFO  

Detonation pressure 31 31 kbars 

Density of explosive 0.82 0.82 g/cc 
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Table 4-3 Drilling Cost Analysis 

Parameters Sandstone Shale Units 

Burden  12.90 14.93 ft 

Drill Hole Spacing  16.78 19.41 ft 

Sub-drilling 3.87 4.48 ft 

Hole Length  54.70 55.32 ft 

Stemming  12.90 14.93 ft 

Particle Size for Stemming  0.50 0.50 in 

Hole charge length 41.80 40.39 ft 

Penetration Rate  89.59 98.99 ft/hr 

Overall Drilling Rate  62.71 69.30 ft/hr 

Specific drilling 0.14 0.10 ft/yd
3
 

Total Required Drilling  1,364,499 1,031,196 ft 

Total drilling time 22,903 15,664 hrs 

Number of required drills  5 4  

Machine Purchasing Cost (PC) 598,200 598,200 $ 

Depreciation Value per Year (DV) 89,730 89,730 $ 

Value to be Recovered Through Work (VR) 538,380 538,380 $ 

Residual Value (RV) 59,820 59,820 $ 

Capital Cost (CC) 19.51 19.51 $/hr 

Interest Cost (INT) 4.55 4.55 $/hr 

Insurance Cost (INSR) 0.76 0.76 $/hr 

Tax Cost (TX) 0.76 0.76 $/hr 

Ownership cost (OC) 25.58 25.58 $/hr 

Fuel Cost (FC) 33.60 33.60 $/hr 

Lube Cost (LC) 4.62 4.62 $/hr 

Maintenance Cost   23.93 23.93 $/hr 

Drill Accessory Cost  18.81 13.86 $/hr 

Operating cost (OPC) 100.96 96.01 $/hr 

Total drilling cost for all drills  632.69 486.33 $/hr 

Total Drilling cost  13,765,809 7,237,047 $/year 

Total Drilling cost  1.38 0.72 $/bank yd
3
 

 

 

 

 

 

 

 

 



55 

 

Table 4-4 Blasting Cost Analysis 

Parameters Sandstone Shale Units 

Hole charge concentration  10.04 10.04 lb/ft 

Total charge per hole  419.52 405.40 lb 

Volume of rock per ft of hole  8.02 10.73 yd
3
 

Volume of rock per hole  401 536 yd
3
 

Weight of Rock per Hole  849.93 751.04 ton 

Number of required holes 24,944 18,641  

Total amount of explosive  10,464,391 7,556,998 lb 

Powder factor  1.05 0.76 lb/yd
3
 

Hole to Hole Delay Time  50 50 ms 

Row to Row Delay Time  125 150 ms 

Explosive cost  5,441,483 3,929,639 $ 

Detonator Cost  254,179 189,952 $ 

Booster Cost  73,086 54,618 $ 

Leadline & Tube Cost  80,458 69,682 $ 

Time to Charge all Drill Holes  968.93 699.72 hrs 

Blaster Labor 74,607 53,879 $ 

Delivery Driver 59,686 43,103 $ 

Travel, delivery and shot service 42,000 42,000 $ 

Total blasting cost per year  6,025,500 4,382,872 $/year 

Total blasting cost  0.60 0.44 $/bank yd
3
 

Total drilling and blasting cost  1.98 1.16 $/bank yd
3
 

 

 

Drilling costs for sandstone and shale are $1.38 and $0.72 per bank yd
3
, respectively, 

while blasting costs are $0.60 and $0.44 per bank yd
3
. Total drilling and blasting costs for 

sandstone and shale are $1.98 and $1.16 per bank yd
3
, respectively. 

 

4.2.2 Digging and Loading 

 

Overburden 

 

The handling of sandstone and shale overburden material is considered for the following 

digging and loading equipment: hydraulic shovel, electric (rope) shovel and front-end 
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wheel loader. The selection of the overburden removal machine is based on an annual 

production rate of 10 million bank yd
3
. 

 

The parameters and cost analysis for the overburden hydraulic shovel is given in Tables 

4.5 and 4.6.  

 

Table 4-5 Overburden Hydraulic Shovel Parameters 

Parameters Sandstone Shale Units 

Required production per year (RP) 10,000,000 10,000,000 bank yd
3
/year 

Operating Hours per Year (OHY) 6,000 6,000 hrs 

Number of Cycles  122 122  

Availability 90.00 90.00 % 

Operating Efficiency  83.00 83.00 % 

Fill Factor  85.00 90.00 % 

Machine Purchasing Cost (PC) 7,000,000 6,100,000 $ 

Horsepower  2,000 1,944 HP 

Labor 35.00 35.00 $/hr 
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Table 4-6 Overburden Hydraulic Shovel Cost Analysis 

Parameters Sandstone Shale Units 

Hourly production 1,666.67 1,666.67 bank yd
3
/hr 

Bucket volume  34.42 29.46 yd
3
 

Depreciation Value per Year (DV) 787,500 686,250 $ 

Value to be Recovered Through Work (VR) 6,300,000 5,490,000 $ 

Residual Value (RV) 700,000 610,000 $ 

Capital Cost (CC) 131.25 114.38 $/hr 

Interest Cost (INT) 39.38 34.31 $/hr 

Insurance Cost (INSR) 6.56 5.72 $/hr 

Tax Cost (TX) 6.56 5.72 $/hr 

Ownership Cost (OC) 183.75 160.13 $/hr 

Fuel Cost (FC) 243.20 236.39 $/hr 

Maintenance, Wear Parts & Labor 175.00 152.50 $/hr 

Operating Cost (OPC) 453.20 423.89 $/hr 

Total Digging and Loading Cost 636.95 584.02 $/hr 

Total Digging and Loading Cost 3,821,700 3,504,092 $/year 

Total Digging and Loading Cost 0.38 0.35 $/bank yd
3
 

 

 

The total loading costs for sandstone and shale overburden material are $636.95 and 

$584.02 per hour, respectively, or $3.82-million and $3.50-million on an annual basis, 

respectively. The costs of digging and loading per bank yd
3
 are $0.38 for sandstone and 

$0.35 for shale material. 

 

The parameters and cost analysis for the electric (rope) shovel is given in Tables 4.7 and 

4.8.  
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Table 4-7 Overburden Electric Shovel Parameters 

Parameters Sandstone Shale Units 

Required production per year (RP) 10,000,000 10,000,000 bank yd
3
/year 

Operating Hours per Year (OHY) 6,000 6,000 hrs 

Number of Cycles  120 120  

Availability  90.00 90.00 % 

Operating Efficiency  83.00 83.00 % 

Fill Factor  90.00 95.00 % 

Machine Purchasing Cost (PC) 8,802,000 8,580,000 $ 

Horsepower  3,000 2,700 HP 

Average Electric Draw  32.6 34.6 % 

Labor 35.00 35.00 $/hr 

 

Table 4-8 Overburden Electric Shovel Cost Analysis 

Parameters Sandstone Shale Units 

Hourly production 1,666.67 1,666.67 bank yd
3
/hr 

Bucket volume  33.05 28.38 yd
3
 

Depreciation Value per Year (DV) 352,080 343,200 $ 

Value to be Recovered Through Work (VR) 7,041,600 6,864,000 $ 

Residual Value (RV) 1,760,400 1,716,000 $ 

Capital Cost (CC) 58.68 57.20 $/hr 

Interest Cost (INT) 46.21 45.05 $/hr 

Insurance Cost (INSR) 7.70 7.51 $/hr 

Tax Cost (TX) 7.70 7.51 $/hr 

Ownership Cost (OC) 120.29 117.26 $/hr 

Electricity Cost  51.07 48.78 $/hr 

Maintenance, Wear Parts & Labor 220.05 214.50 $/hr 

Operating Cost (OPC) 306.12 298.28 $/hr 

Total Digging and Loading Cost 426.42 415.54 $/hr 

Total Digging and Loading Cost 2,558,491 2,493,264 $/year 

Total Digging and Loading Cost 0.26 0.25 $/bank yd
3
 

 

 

The total loading costs for sandstone and shale overburden material are $426.42 and 

$415.54 per hour, respectively, or approximately $2.56-million and $2.49-million on an 

annual basis, respectively. The costs of digging and loading per bank yd
3
 are $0.26 for 

sandstone and $0.25 for shale material. 
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The parameters and cost analysis for the front-end wheel loader is given in Tables 4.9 and 

4.10.  

 

Table 4-9 Overburden Front-End Wheel Loader Parameters 

Parameters Sandstone Shale Units 

Required production per year (RP) 10,000,000 10,000,000 bank yd
3
/year 

Operating Hours per Year (OHY) 6,000 6,000 hrs 

Number of Cycles  90 90  

Availability  90.00 90.00 % 

Operating Efficiency  83.00 83.00 % 

Fill Factor 85.00 90.00 % 

Machine Purchasing Cost (PC) 6,700,000 6,500,000 $ 

Fuel Consumption Rate 50.00 44.00 gal/hr 

Labor 35.00 35.00 $/hr 

 

Table 4-10 Overburden Front-End Wheel Loader Cost Analysis 

Parameters Sandstone Shale Units 

Hourly production 1,666.67 1,666.67 bank yd
3
/hr 

Bucket volume  46.66 39.94 yd
3
 

Depreciation Value per Year (DV) 1,005,000 975,000 $ 

Value to be Recovered Through Work (VR) 6,700,000 5,850,000 $ 

Residual Value (RV) 670,000 650,000 $ 

Capital Cost (CC) 167.50 162.50 $/hr 

Interest Cost (INT) 39.08 37.92 $/hr 

Insurance Cost (INSR) 6.51 6.32 $/hr 

Tax Cost (TX) 6.51 6.32 $/hr 

Ownership Cost (OC) 219.61 213.06 $/hr 

Fuel Cost (FC) 160.00 140.80 $/hr 

Tire Cost  66.00 60.00 $/hr 

Maintenance, Wear Parts & Labor 178.67 162.50 $/hr 

Operating Cost (OPC) 439.67 398.30 $/hr 

Total Digging and Loading Cost 659.28 611.36 $/hr 

Total Digging and Loading Cost 3,955,667 3,668,133 $/year 

Total Digging and Loading Cost 0.40 0.37 $/bank yd
3
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The total loading costs for sandstone and shale overburden material are $659.28 and 

$611.36 per hour, respectively, or $3.96-million and $3.67-million on an annual basis, 

respectively. The costs of digging and loading per bank yd
3
 are $0.40 for sandstone and 

$0.37 for shale material. 

 

Interburden 

 

The bulldozer is designated for ripping and pushing interburden material. The bulldozer 

selected for this application is a Caterpillar D11T CD with a single shank or an 

equivalent machine of similar size and capability. The production rate is determined by 

referring to the production rate chart in Caterpillar (2009), which bases production on the 

seismic wave velocity of the material.  If the thickness of interburden is larger than five 

feet or the seismic wave velocity increases, other methods for fracturing the rock, such as 

drilling and blasting, will be required. 

 

The parameters and cost analysis for the bulldozer is given in Tables 4.11 and 4.12.  

 

Table 4-11 Bulldozer Parameters 

Parameters Sandstone Shale Units 

Required production per year (RP) 1,000,000 1,000,000 bank yd
3
/year 

Operating Hours per Year (OHY) 3,000 3,000 hrs 

Machine Purchasing Cost (PC) 1,870,000 1,870,000 $ 

Seismic Wave Velocity  9,020 5,900 ft/sec 

Labor 35.00 35.00 $/hr 
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Table 4-12 Bulldozer Cost Analysis 

Parameters Sandstone Shale Units 

Hourly production 334 334 bank yd
3
/hr 

Depreciation Value per Year (DV) 336,600 336,600 $ 

Value to be Recovered Through Work (VR) 1,683,000 1,683,000 $ 

Residual Value (RV) 187,000 187,000 $ 

Capital Cost (CC) 112.20 112.20 $/hr 

Interest Cost (INT) 22.44 22.44 $/hr 

Insurance Cost (INSR) 3.74 3.74 $/hr 

Tax Cost (TX) 3.74 3.74 $/hr 

Ownership Cost (OC)  142.12 142.12 $/hr 

Operating Cost (OPC) 179.00 160.00 $/hr 

Total Ripping and Pushing Cost 321.12 302.12 $/hr 

Total Ripping and Pushing Cost 963,360 906,360 $/year 

Total Ripping and Pushing Cost 0.96 0.91 $/bank yd
3
 

 

 

The total ripping and pushing costs for sandstone and shale interburden material are 

$321.12 and $302.12 per hour, respectively, or $963,360 and $906,360 on an annual 

basis, respectively. The total cost per yd
3
 is $0.96 and $0.91 per yd

3
, respectively. 

 

After the material has been ripped and pushed, a backhoe shovel is used for loading the 

material into haul trucks. The selection of a hydraulic backhoe is based on an hourly 

production rate of 334 bank yd
3
 of interburden material.  The parameters and cost 

analysis for the backhoe shovel is given in Tables 4.13 and 4.14. 
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Table 4-13 Interburden Backhoe Parameters 

Parameters Sandstone Shale Units 

Required production per year (RP) 1,000,000 1,000,000 bank yd
3
/year 

Operating Hours per Year (OHY) 3,000 3,000 hrs 

Number of Cycles  122 122  

Availability  85.00 85.00 % 

Operating Efficiency  83.00 83.00 % 

Fill Factor  85.00 90.00 % 

Machine Purchasing Cost (PC) 1,600,000 1,400,000 $ 

Horsepower  760 730 HP 

Labor 35.00 35.00 $/hr 

 

Table 4-14 Interburden Backhoe Cost Analysis 

Parameters Sandstone Shale Units 

Hourly production 334 334 bank yd
3
/hr 

Bucket volume  7.30 6.24 yd
3
 

Depreciation Value per Year (DV) 240,000 210,000 $ 

Value to be Recovered Through Work (VR) 1,440,000 1,260,000 $ 

Residual Value (RV) 160,000 140,000 $ 

Capital Cost (CC) 80.00 70.00 $/hr 

Interest Cost (INT) 18.67 16.33 $/hr 

Insurance Cost (INSR) 3.11 2.72 $/hr 

Tax Cost (TX) 3.11 2.72 $/hr 

Ownership Cost (OC)  104.89 91.78 $/hr 

Fuel Cost (FC) 92.42 88.77 $/hr 

Maintenance, Wear Parts & Labor 80.00 70.00 $/hr 

Operating Cost (OPC) 207.42 193.77 $/hr 

Total Digging and Loading Cost 312.30 285.55 $/hr 

Total Digging and Loading Cost 936,915 856,637 $/year 

Total Digging and Loading Cost 0.94 0.86 $/bank yd
3
 

 

 

The total loading costs for sandstone and shale interburden material are $312.30 and 

$285.55 per hour, respectively, or $936,915 and $856,637 on an annual basis, 

respectively. The cost of loading per bank yd
3
 is $0.94 for sandstone and $0.86 for shale 

material. 
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4.2.3 Conventional Coal Extraction and Crushing 

 

A hydraulic backhoe shovel is considered as the coal digging and loading equipment. An 

annual production of 1.5 million tons of bituminous coal is considered in this study. An 

overview of the parameters and cost assessment results for the hydraulic backhoe shovel 

is given in Tables 4.15 and 4.16.  

 

Table 4-15 Coal Extraction Parameters 

Parameters Coal Units 

Required production per year (RP) 1,500,000 tons/year 

Operating Hours per Year (OHY) 3,000 hrs 

Number of Cycles  115  

Availability  85.00 % 

Operating Efficiency  83.00 % 

Fill Factor  85.00 % 

Machine Purchasing Cost (PC) 1,800,000 $ 

Horsepower  760 HP 

Labor 35.00 $/hr 
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Table 4-16 Coal Extraction Cost Analysis 

Parameters Coal Units 

Hourly production 500 tons/hr 

Bucket volume  9.06 yd
3
 

Depreciation Value per Year (DV) 231,429 $ 

Value to be Recovered Through Work (VR) 1,620,000 $ 

Residual Value (RV) 180,000 $ 

Capital Cost (CC) 77.14 $/hr 

Interest Cost (INT) 20.57 $/hr 

Insurance Cost (INSR) 3.43 $/hr 

Tax Cost (TX) 3.43 $/hr 

Ownership Cost (OC) 104.57 $/hr 

Fuel Cost (FC) 92.42 $/hr 

Maintenance, Wear Parts & Labor 96.00 $/hr 

Operating Cost (OPC) 223.42 $/hr 

Total Digging and Loading Cost 327.99 $/hr 

Total Digging and Loading Cost 983,962 $/year 

Total Digging and Loading Cost 0.66 $/ton 

 

The total digging and loading cost for bituminous coal is $327.99 per hour or $936,962 

on an annual basis. The cost of digging and loading is $0.66 per ton. 

 

The selection of a crusher was based on the hourly production rate of 500 tons of coal 

being extracted by the backhoe shovel.  The parameters and cost assessment results for 

the crusher is given in Tables 4.17 and 4.18.  
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Table 4-17 Crushing Parameters 

Parameters Coal Units 

Required production per year (RP) 1,500,000 tons/year 

Operating Hours per Year (OHY) 3,000 hrs 

Feed Size  15.0 in 

Product Size  4.0 in 

Material Lump Factor  2.0  

Bond’s Work Index  11.37 kW/tonne 

Drive Efficiency  0.85  

Machine Purchasing Cost (PC) 260,000 $ 

Labor 25.00 $/hr 

 

Table 4-18 Crushing Cost Analysis 

Parameters Coal Units 

Hourly production 500 tons/hr 

Reduction Ratio  3.8  

Bond’s Work per Tonne  0.173 kWh/tonne 

Power  240 HP 

Depreciation Value per Year (DV) 21,273 $ 

Value to be Recovered Through Work (VR) 234,000 $ 

Residual Value (RV) 26,000 $ 

Capital Cost (CC) 7.88 $/hr 

Interest Cost (INT) 2.84 $/hr 

Insurance Cost (INSR) 0.47 $/hr 

Tax Cost (TX) 0.47 $/hr 

Ownership Cost (OC)  11.66 $/hr 

Electricity Cost 12.89 $/hr 

Wear Parts  3.03 $/hr 

Spare Parts 2.60 $/hr 

Operating Cost (OPC) 43.52 $/hr 

Total Crushing Cost 55.18 $/hr 

Total Crushing Cost 165,537 $/year 

Total Crushing Cost 0.11 $/ton 

 

 

The total crushing cost for bituminous coal is $55.18 per hour or $165,537 million on an 

annual basis, and $0.11 per ton.  
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4.2.4 Surface Miner Method 

 

Two important parameters that need to be considered in the process of selection of SM 

are the unconfined compressive strength (UCS) and the abrasiveness of the rocks. The 

former is expressed in MPa or psi while the later by the Cerchar Abrasive Index (CAI).  

The CAI is used to describe the abrasiveness of a rock.  The Cerchar Index was created in 

the 1970’s by the Cerchar Institute in France (Rostami et al., 2005).  The test consisted of 

scratching a rock surface with a steel pin and measuring the amount of wear, which 

defined the Cerchar Index.  The amount of wear a pick experienced at varying values of 

abrasivity and UCS for both hard rock and coal can be seen in the Figure 4.1 and 4.2, 

respectively.  These figures were obtained by plotting the pick wear equations described 

in chapter three.  The equations and consequently the graphs are based on the pick wear 

data collected from a road header, which operated in similar conditions.  Graphing the 

pick wear equations displays the amount of pick wear that can be expected based on the 

characteristics of the material.  Referring to the pick wear graphs can provide and initial 

estimate of the cost of using the SM.  It should be noted that the amount of wear caused 

by the hard rock and coal as calculated in Figures 4.1 and 4.2 may be higher than seen in 

the field.  As expected, the more abrasive and the higher the compressive strength of the 

rock, the higher wear on the pick. 
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Figure 4-1 Pick Wear in Hard Rock 
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Figure 4-2 Pick Wear in Coal 

 

Variations of practical cutting performance of the SM are given in Tables 4.19, 4.20, and 

4.21 based on the compressive strength and abrasivity.  These rates are given for the SM 

with the following properties: 8.2 ft cutting drum and an engine output approximately 

780 kW.  The practical cutting performance rates were calculated by using equation 3.18 

described in chapter 3.  The figures are color-coded to show the ranges of production 

rates for this particular SM. 
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Table 4-19 Surface Miner Performance in Sandstone (bank yd
3
/hr) 

 
 

 

 

Table 4-20 Surface Miner Performance in Shale (bank yd
3
/hr) 
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Table 4-21 Surface Miner Performance in Coal (tons/hr) 

 

 

The parameters and cost analysis for the SM in overburden material is given in Tables 

4.22 and 4.23.  

 

Table 4-22 Surface Miner Parameters for Overburden 

Parameters Sandstone Shale Units 

Required production per year (RP) 10,000,000 10,000,000 bank yd
3
/year 

Operating Hours per Year (OHY) 6,000 6,000 hrs 

Cutting Depth (CD) 1.48 1.48 ft 

Cutting Width (CW) 8.20 8.20 ft 

Cutting Velocity (V) 11.97 21.49 ft/min 

Pick Wear (PW) 0.017489 0.005527 pick/ bank ft
3
 

Machine Purchase Cost (PC) 2,800,000 2,800,000 $ 

Fuel Consumption at Full Load (FLC) 50.6 50.6 gal/hr 

Load Coefficient Factor (LCF) 70.00 70.00 % 

Cutting Pick Cost 17.04 17.04 $/pick 

Labor (LBC) 35.00 35.00 $/hr 
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Table 4-23 Surface Miner Cost Analysis for Overburden 

Parameters Sandstone Shale Units 

Cutting Performance (Q) 321.84 577.97 bank yd
3
/hr 

Pick Changes per Row (NPC) 84.67 26.76  

Pick Changing Time (PCT) 423.34 133.78 min 

Sump Time (ST) 1.00 1.00 min 

Turning Time (TT) 0.92 0.92 min 

Non-Cutting Time (NCT) 0.00 0.00 min 

Real Cutting Time (RCT) 1,693 2,441 hrs 

Practical Cutting Performance (PQ)  90.80 235.14 bank yd
3
/hr 

Maximum Production (MP) 544,827 1,410,828 bank yd
3
/year 

Number of Required Surface Miners 19 8  

Usable Production (UP) 526,316 1,250,000 bank yd
3
/year 

Real Operating Hours per Year (ROHY)  5,796 5,316 hrs 

Number of Picks Consumed (PCY) 248,525 186,526 picks/year 

Depreciation Value per Year (DV) 252,000 252,000 $ 

Value to be Recovered Through Work (VR) 2,520,000 2,520,000 $ 

Residual Value (RV) 280,000 280,000 $ 

Capital Cost (CC) 43.48 47.40 $/hr 

Interest Cost (INT) 15.94 17.38 $/hr 

Insurance Cost (INS) 2.66 2.90 $/hr 

Tax Cost (TX) 2.66 2.90 $/hr 

Ownership Cost (OC)  64.73 70.58 $/hr 

Repair Cost (RC) 38.65 42.14 $/hr 

Fuel Cost (FC) 113.32 113.32 $/hr 

Grease Cost (GC) 9.07 9.07 $/hr 

Hydraulic Oil Cost (HO) 1.45 1.45 $/hr 

Water Cost (WC) 0.00 0.00 $/hr 

Pick Cost (PTC) 730.63 597.89 $/hr 

Operating Cost (OPC) 928.12 804.71 $/hr 

Total Cost per Surface Miner  992.85 869.44 $/hr 

Total Cost per Surface Miner 5,754,720 4,621,994 $/year 

Total Surface Miner Cost 10.93 3.70 $/bank yd
3
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The total cost per SM for sandstone and shale are $992.85 and $869.44 per hour, or 

$5,754,720 and $4,621,991 on an annual basis, respectively.  The overall total cost per 

bank yd
3
 is $10.93 for sandstone and $3.71 for shale material. 

 

The parameters and cost analysis for the SM in interburden material is given in Tables 

4.24 and 4.25.  

 

 

Table 4-24 Surface Miner Parameters for Interburden 

Parameters Sandstone Shale Units 

Required production per year (RP) 1,000,000 1,000,000 bank yd
3
/year 

Operating Hours per Year (OHY) 3,000 3,000 hrs 

Cutting Depth (CD) 1.48 1.48 ft 

Cutting Width (CW) 8.20 8.20 ft 

Cutting Velocity (V) 11.97 21.49 ft/min 

Pick Wear (PW) 0.017489 0.005527 pick/ bank ft
3
 

Machine Purchase Cost (PC) 2,800,000 2,800,000 $ 

Fuel Consumption at Full Load (FLC) 50.6 50.6 gal/hr 

Load Coefficient Factor (LCF) 70.00 70.00 % 

Cutting Pick Cost 17.04 17.04 $/pick 

Labor (LBC) 35.00 35.00 $/hr 
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Table 4-25 Surface Miner Cost Analysis for Interburden 

Parameters Sandstone Shale Units 

Cutting Performance (Q) 321.84 577.97 bank yd
3
/hr 

Pick Changes per Row (NPC) 84.67 26.76  

Pick Changing Time (PCT) 423.34 133.78 min 

Sump Time (ST) 1.00 1.00 min 

Turning Time (TT) 0.92 0.92 min 

Non-Cutting Time (NCT) 0.00 0.00 min 

Real Cutting Time (RCT) 846 1,221 hrs 

Practical Cutting Performance (PQ)  90.80 235.14 bank yd
3
/hr 

Maximum Production (MP) 272,413 705,414 bank yd
3
/year 

Number of Required Surface Miners 4 2  

Usable Production (UP) 250,000 500,000 bank yd
3
/year 

Real Operating Hours per Year (ROHY)  2,753 2,126 hrs 

Number of Picks Consumed (PCY) 118,049 74,610 picks/year 

Depreciation Value per Year (DV) 252,000 252,000 $ 

Value to be Recovered Through Work (VR) 2,520,000 2,520,000 $ 

Residual Value (RV) 280,000 280,000 $ 

Capital Cost (CC) 91.53 118.51 $/hr 

Interest Cost (INT) 33.56 43.45 $/hr 

Insurance Cost (INS) 5.59 7.24 $/hr 

Tax Cost (TX) 5.59 7.24 $/hr 

Ownership Cost (OC)  136.28 176.45 $/hr 

Repair Cost (RC) 81.36 105.34 $/hr 

Fuel Cost (FC) 113.32 113.32 $/hr 

Grease Cost (GC) 9.07 9.07 $/hr 

Hydraulic Oil Cost (HO) 1.45 1.45 $/hr 

Water Cost (WC) 0.00 0.00 $/hr 

Pick Cost (PTC) 730.63 597.89 $/hr 

Operating Cost (OPC) 1,042.38 973.79 $/hr 

Total Cost per Surface Miner 1,107.11 1,038.52 $/hr 

Total Cost per Surface Miner 3,048,072 2,208,317 $/year 

Total Surface Miner Cost 12.19 4.42 $/bank yd
3
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The total cost per SM for sandstone and shale are $1,107 and $1,039 per hour, or 

$2,048,072 and $2,208,317 on an annual basis, respectively.  The overall total cost per 

bank yd
3
 is $12.19 for sandstone and $4.42 for shale material. 

 

The parameters and cost analysis for the SM in bituminous coal is given in Tables 4.26 

and 4.27.  

 

Table 4-26 Surface Miner Parameters for Coal 

Parameters Coal Units 

Required production per year (RP) 1,500,000 tons/year 

Operating Hours per Year (OHY) 3,000 hrs 

Cutting Depth (CD) 1.48 ft 

Cutting Width (CW) 8.20 ft 

Cutting Velocity (V) 21.49 ft/min 

Pick Wear (PW) 0.000108 pick/ bank ft
3
 

Machine Purchase Cost (PC) 2,800,000 $ 

Fuel Consumption at Full Load (FLC) 50.6 gal/hr 

Load Coefficient Factor (LCF) 70.00 % 

Cutting Pick Cost 17.04 $/pick 

Labor (LBC) 35.00 $/hr 
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Table 4-27 Surface Miner Cost Analysis for Coal 

Parameters Coal Units 

Cutting Performance (Q) 878.12 tons/hr 

Pick Changes per Row (NPC) 0.52  

Pick Changing Time (PCT) 2.62 min 

Sump Time (ST) 1.00 min 

Turning Time (TT) 0.92 min 

Non-Cutting Time (NCT) 0.00 min 

Real Cutting Time (RCT) 2,807 hrs 

Practical Cutting Performance (PQ)  821.49 bank yd
3
/hr 

Maximum Production (MP) 2,464,477 tons/year 

Number of Required Surface Miners 1  

Usable Production (UP) 1,500,000 tons/year 

Real Operating Hours per Year (ROHY)  1,826 hrs 

Number of Picks Consumed (PCY) 4,084 picks/year 

Depreciation Value per Year (DV) 252,000 $ 

Value to be Recovered Through Work (VR) 2,520,000 $ 

Residual Value (RV) 280,000 $ 

Capital Cost (CC) 138.01 $/hr 

Interest Cost (INT) 50.60 $/hr 

Insurance Cost (INS) 8.43 $/hr 

Tax Cost (TX) 8.43 $/hr 

Ownership Cost (OC)  205.48 $/hr 

Repair Cost (RC) 122.68 $/hr 

Fuel Cost (FC) 113.32 $/hr 

Grease Cost (GC) 9.07 $/hr 

Hydraulic Oil Cost (HO) 1.45 $/hr 

Water Cost (WC) 0.00 $/hr 

Pick Cost (PTC) 38.11 $/hr 

Operating Cost (OPC) 460.38 $/hr 

Total Cost per Surface Miner 525.11 $/hr 

Total Cost per Surface Miner 958,825 $/year 

Total Surface Miner Cost 0.64 $/ton 

 

 

The total cost for bituminous coal is $525.11 per hour or $958,825 on annual basis.  The 

cost per ton of bituminous coal is $0.64.  The combination of the values determined in 

this section form a benchmark for the each of the mining methods to be compared in the 

following section. 
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4.2.5 Comparison of Mining Methods 

 

Figure 4.3 shows the cost of the extraction of sandstone overburden (UCS: 100 MPa, 

CAI: 2) for four different scenarios: drilling, blasting, and hydraulic shovel (scenario #1); 

drilling, blasting, and electric shovel (scenario #2); drilling, blasting, and front-end loader 

(scenario #3); and SM (scenario #4). Scenario #2 yields the lowest cost of $2.24 per bank 

yd
3
, followed by, in increasing order, scenario #1 with the cost of $2.36 per bank yd

3
, 

scenario #3 with the cost of $2.38 per bank yd
3
, and scenario #4 with the cost of $10.93 

per bank cubic yard. 

 

 

Figure 4-3 Conventional vs. SM Mining Method Comparison in Sandstone Overburden 
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costs based on the UCS and CAI of the material being extracted are displayed in Table 

4.28.  These values provide an idea for where the applicability of this machine could be.  

Table 4.28 shows that as the UCS and CAI decreases, the possible application of this 

machine increases.  The material with higher UCS and CAI than what is shown results in 

costs that are obviously too high for any application and are disregarded.   

 

Table 4-28 Total Cost of SM per Cubic Yard in Sandstone Overburden 

 
 

 

Figure 4.4 shows the cost of extraction of shale overburden (UCS: 75 MPa, CAI: 1.5) for 

four different scenarios: drilling, blasting, and hydraulic shovel (scenario #1); drilling, 

blasting, and electric shovel (scenario #2); drilling, blasting, and wheel loader (scenario 

#3); and SM (scenario #4). Once again, scenario #2 yields the lowest cost of $1.41 per 

bank yd
3
, followed by, in increasing order, scenario #1 with the cost of $1.51 per bank 

yd
3
, scenario #3 with the cost of $1.53 per bank yd

3
, and scenario #4 with the cost of 

$3.70 per bank yd
3
. 
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Figure 4-4 Conventional vs. SM Mining Method Comparison in Shale Overburden 

 

Scenario #4 is much higher in cost when compared to the remaining three scenarios.  This 

is the situation created when calculating the costs based on the average property values as 

stated in module one.  Table 4.29 shows the SM costs for various values of UCS and CAI 

in shale overburden.  The same trend as seen in sandstone overburden exists in shale, the 

lower the UCS and CAI, the lower the costs will be. 

 

Table 4-29 Total Cost of SM per Cubic Yard in Shale Overburden 
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The overburden calculations provide an estimated comparison that could be expected if 

the given conditions were encountered in the field.  While the SM is more expensive in 

each type of overburden, it is much more expensive in the stronger and more abrasive 

sandstone than in shale.  If the UCS and CAI are found to be lower, the likelihood of 

using the SM in shale will be higher than in sandstone.   

 

Figure 4.5 shows the cost of extraction of sandstone interburden for two different 

scenarios: ripping and pushing by bulldozer and loading by backhoe shovel (scenario #1); 

and SM (scenario #2). Scenario #1 yields the cost of $1.90 per bank yd
3
, while the cost 

for scenario #2 is $12.19 per bank yd
3
. 

 

 

Figure 4-5 Conventional vs. SM Mining Method Comparison in Sandstone Interburden 
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Table 4.30 shows the SM costs for various values of UCS and CAI in sandstone 

overburden.  The same trend as seen in sandstone overburden can be observed for 

sandstone interburden.    

 

Table 4-30 Total Cost of SM per Cubic Yard in Sandstone Interburden 

 
 

 

Figure 4.6 shows the cost of extraction of shale interburden material for two different 

scenarios: ripping and pushing by bulldozer and loading by backhoe shovel (scenario #1); 

and SM (scenario #2). Here, scenario #1 yields the cost of $1.77 per bank yd
3
, while the 

cost for scenario #2 is $4.42 per bank yd
3
. 
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Figure 4-6 Conventional vs. SM Mining Method Comparison in Shale Interburden 

 

Again, using the SM in a shale type interburden would be less economical than the 

conventional mining methods.  The costs of the SM operating in shale interburden for 

various values of UCS and CAI are displayed in Table 4.31. 

 

Table 4-31 Total Cost of SM per Cubic Yard in Shale Interburden 
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The interburden calculations provide an estimated comparison that could be expected if 

the given condition were encountered.  While the SM is more expensive in each type of 

interburden, it is much more expensive in the stronger and more abrasive sandstone than 

in shale.  If the UCS and CAI are found to be lower, the likelihood of using the SM in 

shale would be higher than in sandstone.   

 

Figure 4.7 shows the cost of extraction of bituminous coal for two different scenarios: 

digging and loading with backhoe shovel and crushing (scenario #1); and SM (scenario 

#2).  Here, scenario #2 yields the lowest cost of $0.64 per ton, while the cost for scenario 

#1 is $0.77 per ton of coal. 

 

 

Figure 4-7 Conventional vs. SM Mining Method Comparison in Coal 
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Unlike the previous comparison, the SM was calculated to be the most economical option 

for the extraction of bituminous coal.  As the SM is less expensive than the conventional 

extraction method, a crushing unit could be added to the SM mining method if necessary 

and still be the more economical mining option.  As with the previous comparison the 

values for costs of the SM in varying coal properties have been calculated and displayed 

in Table 4.32.  This table shows much more favorable results than the previous ones.  If 

the coal properties vary in either direction, the cost of the SM will likely still be lower 

than the conventional mining methods. 

 

Table 4-32 Total Cost of SM per Ton in Bituminous Coal 

 

 

The comparison of the conventional mining method and the SM mining method have 

shown that for the values tested in this research, the SM will only be more economical in 

the coal mining process.  However, for overburden and interburden materials, the 

conventional mining methods are the more economical option.   
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4.2.5.1 Surface Miner Benefits 

 

A benefit of introducing SMs to surface coal mining in WV would be an environmental 

one.  If the conditions are favorable and the SM can be applied, most of the blasting 

processes that concern communities can potentially be eliminated.  Specifically, SM 

usage can eliminate the generation of flyrock, toxic fumes, ground vibration, and surface 

vibration created by air-blast. While these issues are not frequent when blasting, the 

possibility still exists and this is a tremendous opportunity to address these environmental 

issues.  In addition, the application of SMs enables clean cut edges and benches and very 

stable benched highwalls as opposed to blasted edges.  The crushing process provided 

directly by the machine generates an even grade (96% < 6”) of small particle sizes that 

can either be sold as secondary product (such as road base) or the material could also be 

used without further treatment for the reclamation process (Wirtgen, 2010).  

 

The elevated grade control eliminates the need of at least the secondary crusher and 

possibly even (depending on the material) the need for a primary crusher. The SM creates 

a complete even and smooth surface, which leads to reduced damage to vehicles and 

tires. The mine operator has continuous control over drainage because the SM is able to 

cut a slope. 

 

4.2.6 AHP Results and Analysis 

 

The results of the cost and production analysis indicate that the SM would be applicable 

for the coal extraction phase.  The cost comparison does not account for the negative or 

positive environmental factors created by either mining method.  For this reason the use 
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of the AHP for optimal mining method selection adds a vital piece of information to the 

overall judgment by considering these additional factors.  The selection of the optimal 

mining method was developed by the author of this thesis.  Since the AHP is based on the 

user-defined input values, the results will be subjective to the user’s preferences.  To 

combat the subjective nature of the AHP, a sensitivity analysis of the results was 

included.   

 

The values in the comparison matrices were determined based on the user’s knowledge 

and point of view in this case the user is the author of this thesis.  The level of importance 

of each issue/criteria can be decided on when all aspects of surface coal mining in WV 

have been considered.  When comparing production to cost it was decided that 

production is 1.2 times more important than cost.  When comparing cost to 

environmental issues it was decided that environmental issues were 1.4 times more 

important than cost.  When comparing production to environmental issues it was decided 

that environmental issues were 1.5 times more important than production.  Finally, when 

comparing ownership cost to operating cost it was decided that operating cost is 1.1 times 

more important than ownership cost, due to the variations in operating cost over the life 

of the operation. The scale used for the comparison matrices ranges from 1 to 9, as seen 

in Figure 3.4, with 9 representing an extremely important issue/criterion.  The values 

decided on for these matrices represent small variations in the level of importance and 

still affect the outcome.  These values are entirely biased to the user and will differ from 

user to user.  To provide the most neutral outcome it is important to have multiple users 
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input values.  The pairwise comparison matrices for the mining method selection can be 

seen in Table 4.33.   

Table 4-33 Pairwise Comparison Judgment Matrices for the Selection of the Optimal Mining Method 

Goal Costs Production Environmental Priority

Costs 1 0.8 0.7 0.275

Production 1.2 1 0.6 0.304

Environmental 1.4 1.5 1 0.420

CR = 0.01

Cost Ownership Cost Operating Cost Priority

Ownership Cost 1 0.9 0.476

Operating Cost 1.1 1 0.524

CR = 0.0  

 

The values given to each comparison can be seen in Table 4.33.  The eigenvalues, or 

priority matrix, of the comparison matrices yields the priority weights for costs, 

production, environmental, ownership cost, and operating cost.  These values are 0.275, 

0.304, 0.420, 0.476, and 0.524, respectively.  Finally, a Consistency Ratio (CR) is 

determined and for each comparison matrix.  The CR is calculated to measure how 

consistent the judgments of the user have been when compared to large samples of 

random judgments (Coyle, 2004).  They are considered acceptable because the CR is less 

than 0.10. 

 

The next step in the AHP was to generate the global weights for each criterion involved 

in the AHP model.  The global weight combines all local weights from each level to 

achieve an overall weight.  These global weights can be seen in Table 4.34.  
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Table 4-34 Composite Priority Weights for Critical Factors 

Strategic Issues Local Weights Criteria Local Weights Global Weights

Costs 0.275 Ownership Cost 0.476 0.131

Operating Cost 0.524 0.144

Production 0.304 Production Rate 1.000 0.304

Environmental 0.420 Blasting Hazards 1.000 0.420

 

 

The local weights for each strategic issue and criteria are displayed in Table 4.34.  Global 

weights account for all of the local weights and the capital cost, operating cost, 

production rate, and blasting hazards are 0.131, 0.144, 0.304, and 0.420, respectively.  

Blasting hazards has the highest weight, as seen in Table 4.34, due to the level of 

importance placed on the environmental issues in the comparison matrices.  A ranking of 

the highest to lowest global weights is shown in Table 4.35. 

 

Table 4-35 Ranking of Critical Factors 

Rank Criteria Global Weights

1 Blasting Hazards 0.420

2 Production Rate 0.304

3 Operating Cost 0.144

4 Ownership Cost 0.131  
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The Global Weights (GW) show what criteria will have the most effect on the decision 

making process.  Table 4.36 shows the ratings and scores applied to each of the criteria 

and the resulting adjusted global weight.  The rating scores are as follows: 

 

 Outstanding (O) – 0.513 

 Good (G) – 0.261 

 Average (A) – 0.129 

 Fair (F) – 0.063 

 Poor (P) – 0.034 

 

Table 4-36 Application of the AHP Model to Mining Method Selection 

Rating Score xGW Rating Score xGW

Cost

  Ownership Cost 0.131 A 0.129 0.0169 A 0.129 0.0169

  Operating Cost 0.144 G 0.261 0.0377 P 0.034 0.0049

Production

  Production Rate 0.304 O 0.513 0.1561 A 0.129 0.0393

Environmental

  Blasting Hazards 0.420 P 0.034 0.0143 O 0.513 0.2156

Total Scores 0.2250 0.2767

Renormalized Scores 0.4485 0.5515

Strategic Issues                               

Criteria                          

Global 

Weights

Conventional Mining Method Surface Miner Method

 

 

The results shown in Table 4.36 indicate that the SM mining method is the better option 

due to the high weight associated with the environmental strategic issue.    Figure 4.8 

shows the results of the AHP with the global weights and scores in Table 4.36 as 

percentages.  In Figure 4.8 each mining method has a designated color, red for the SM 

mining method and blue for the conventional mining method.  As each line crosses a 

strategic issue (cost, production, or environment) it represents the level of importance for 

that issues.  These are simply used to visually assist in understanding the strengths and 
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weaknesses for each mining method.  For example, the conventional mining method is 

more important in terms of cost and production as seen by the blue line being higher than 

the red in those two categories.  The results of performing the AHP provide the global 

weights for each criterion and the final weight or priority of the alternatives. 

 

 

Figure 4-8 Performance Sensitivity Analysis 

 

Figure 4.8 displays the global weights of each criterion for cost, production, and 

environmental as 27.54%, 30.43%, and 42.03%, respectively.  After applying a rating 

score to each of the criteria the optimal mining method is determined by the highest 
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priority.  In this case the SM mining method with 55.15% is the optimal method 

compared to 44.85% for the conventional mining method. 

 

4.2.6.1 AHP Sensitivity Analysis 

 

As the presented AHP results are obtained based on user-defined input values; this 

approach requires sensitivity analyses to be performed.  For this purpose, the Expert 

Choice (2012) is used to adjust the criteria’s priority, while simultaneously adjusting the 

remaining criteria relative to one other.  Three separate sensitivity analyses were 

conducted; the first on the level of importance assigned to a criteria in the comparison 

matrix, the second on the final priority percentages of the criteria, and thirdly on the 

rating given to blasting hazards.   

 

The first sensitivity analyses consider the level of importance given to a criterion when 

compared to another in a comparison matrix.  An example of decreasing the level of 

importance by 10 percent is shown below.  

 

 Production is 1.2 time more important than cost is decreased to 1.1 times more 

important than cost.  

 

This is an analysis of the level of importance only and does not consider the ratings and 

scores.  Tables 4.37 – 4.39 display the results of these analyses.  The check mark displays 

the optimal mining method for each scenario.  The optimal mining method remains the 

same in each case regardless of the importance level varying by 20 percent in both the 
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positive and negative direction.  This analysis shows that variations of the criteria’s 

importance do not have the largest effect on the outcome of the AHP. 

 

 
Table 4-37 Production and Cost Sensitivity Analysis 

 

 

Table 4-38 Environmental and Cost Sensitivity Analysis 
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Table 4-39 Environmental and Production Sensitivity Analysis 

  

 

The second sensitivity analysis adjusts the criteria (cost, production, and environmental) 

in increments of approximately 10 percent in both the positive and negative directions.  

This is a sensitivity analysis of the criteria only and does not include variations in rating 

scores.  The optimal mining method has the highest priority percentage and is displayed 

in red font.  The results of these adjustments for the cost criteria can be seen in Table 

4.40. 

 

Table 4-40 Sensitivity Analysis on Final Criteria 

Sensitivity Analysis

-10% 0 +10% +20% -10% 0 +10% -10% 0 +10%

Cost % 17.44 27.54 37.52 47.50 31.53 27.54 23.63 32.24 27.54 22.76

Production % 34.67 30.43 26.24 22.05 20.36 30.43 40.32 35.62 30.43 25.15

Environment % 47.88 42.03 36.24 30.45 48.11 42.03 36.05 32.14 42.03 52.10

Surface Miner Method % 56.79 54.67 52.30 49.60 61.33 54.67 48.63 47.29 54.67 61.95

Conventional Mining Method % 43.21 45.33 47.70 50.40 38.67 45.33 51.37 52.71 45.33 38.05

Cost Production Environment

 

 

Table 4.40 displays the global weights of each criterion for cost, production, and 

environmental as well as the optimal mining method (displayed in red font).  The optimal 

mining method selection continues to be the SM mining method until the of cost priority 



93 

 

percentage is increased by 20%.  This result was expected as the SM has a lower score 

for costs.  A similar trend exists when adjusting the production priority percentage.  The 

optimal mining method remains the SM mining method until the production priority is 

increased by 10%.  This was expected as the SM has a lower score for production and 

will affect the optimal method at some point.  Conversely, as the environmental priority 

percentage decreases (-10%) the optimal mining method becomes the conventional 

mining method.  This was expected as the SM has a higher score for environmental issues 

and at a point in lowering its priority the optimal mining method will change.   

 

As mentioned previously this sensitivity analysis does not account for variations in rating 

score input values.  Since blasting hazards is the highest weighted criteria, a sensitivity 

analysis of the rating score was performed on it.  In this sensitivity analysis the global 

weights of the three strategic issues will remain unchanged, while the influence of the 

rating scores will vary and impact the decision accordingly.  Figure 4.9 shows that the 

conventional mining method score for blasting hazards rise to “fair” with all remaining 

scores unchanged.   
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Figure 4-9 Sensitivity Analysis (Conventional Blasting Rating: Fair) 

 

Raising the blasting hazards score for the conventional mining method to “fair” will not 

affect the selection of the optimal mining method as the priority of the SM mining 

method is 53.84% compared to 46.16% for the conventional mining method.   

 

Figure 4.10 shows the SM mining method score for blasting hazards dropping to “good” 

with all remaining scores unchanged.   
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Figure 4-10 Sensitivity Analysis (SM Blasting Rating: Good) 

 

Lowering the blasting hazards score for the SM mining method to “good” will affect the 

selection enough to change the optimal mining method to the conventional mining 

method with a priority of 56.85% compared to 43.15% for the SM mining method.    

 

Finally, Figure 4.11 shows the conventional mining method rising to “fair” and the SM 

mining method dropping to “good” with all remaining scores unchanged.   
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Figure 4-11 Sensitivity Analysis 

(Conventional Blasting Rating: Fair, SM Blasting Rating: Good) 

 

 

Lowering the blasting hazards score for the SM mining method to “good” and raising the 

conventional to “fair” will affect the selection to the conventional mining method with a 

priority of 58.14% compared to 41.86% for the SM mining method.   

 

The results of the sensitivity analysis for the blasting hazards score are to be expected as 

it is the only rating were the SM mining method is superior.  By performing these 

sensitivity analyses, it can be seen how dependent the selection of the optimal mining 
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method is on environmental factors.  The combination of the results produced by the cost 

and production analysis and the application of the AHP, allows for an informed decision 

on the optimal mining method to be made.   
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Chapter 5  

Conclusions and Recommendations for Future Research 

 

5.1 Conclusions 

 

Based on the results of the study it can be concluded that the application of the SM would 

benefit surface coal mining operations in WV.  These benefits include: lower costs of 

extraction of bituminous coal when compared with conventional mining unit operations;  

improved selective mining where thin coal seams, overburden, and interburden can be 

mined separately, thus preventing dilution of coal; generates an even grade of coal which 

reduces costs of further processing; and a more environmentally friendly mining method. 

 

The downside of using the SM in surface mining operations begins with the limited 

quantity of the overburden and interburden material being extracted. An application 

problem arises with higher values of unconfined compressive strength and abrasivity of 

overburden and interburden material.  Picks on the cutting drum will wear out faster and 

require more changes.  At a certain point this method becomes unfeasible due to the 

slower advance rate and cost involved in a high amount of pick changes.  New pick 

changing tools have accelerated this process, but it still remains one of the main factors of 

the operating cost.  The negative aspects of using the SM are: a lower production rate 

when compared with conventional mining units; a high operating cost or inability to work 

in rocks with a very high value of unconfined compressive strength of 

overburden/interburden material. 
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As governmental regulations become more stringent and public pressure increases, future 

coal mining operations will need to achieve “low impact” mining.  Incorporating new 

design features and practices that can substantially reduce negative impacts is one of 

many steps that will need to be taken.  New mining technologies and systems can also 

minimize environmental disturbances while improving coal recovery.  The SM is one 

such technology that can eliminate blasting, which is one of the major public concerns.  

These types of changes are necessary to ensure that the coal industry can continue to 

operate safely and economically in the changing atmosphere.   

 

5.3 Recommendations for Future Research 

 

Some of the limitations in this research include the lack of data from any specific mine in 

WV; absence of the haulage considerations (specifically haul trucks) in the model; and 

the absence of dragline consideration as a digging and disposal mining unit. These three 

limitations should be included and addressed in future research. 

 

To confirm the results of this research, it is necessary to test a SM in one of the existing 

surface coal mines in WV.  Data collected from the testing should be focused on the 

engine load factor, the amount of pick wear, cutting depth, and cutting velocity in 

sandstone and shale overburden and interburden.  This would greatly help determine the 

fuel consumption and maintenance costs involved with the SM.  The formulas used for 

calculation of pick wear would be confirmed or determined to need revision given the 

data generated from an experimental trial in a material with the known properties.  



100 

 

References 

 

 

1. Atlas Copco, 2009. Blasthole Drilling in Open Pit Mining. Atlas Copco, 1
st
 ed. 

Garland, TX. pp. 206. 

 

2. Bascetin, A. 2006. A Decision Support System Using Analytical Hierarchy Process 

(AHP) for the Optimal Environmental Reclamation of an Open-pit Mine. 

Environmental Geology. Springer-Verlag. Vol .52. Issue 4. pp. 663-672. 

 

3. Bauer, R. 2011. Pick Wear of A Road Header. Internal Documentation by Wirtgen. 

pp. 1. 

 

4. Brahma, K.C. 2007. A Study on Application of Strategic Planning Models and 

Operations Research Techniques in Opencast Mining. Department of Mining 

Engineering. National Institute of Technology. Rourkela. pp. 224. 

 

5. Caterpillar, 2009. Caterpillar Performance Handbook, 40
th

 ed. Peoria, IL: Caterpillar 

Inc. pp. 1442. 

 

6. Coyle, G. 2004. The Analytical Heirarchy Process (AHP). Practical Strategy, Pearson 

Education Limited. pp. 11. 

 

7. Dev, K., Ghose, A.K. 2008. Predicting “Cuttability” with Surface Miners – A 

Rockmass Classification Approach. National Institute of Technology. Rourkela. 

Indian School of Mines University. Dhanbad. Journal of Mines, Metals and Fuels. 

Vol. 56. Issue 5-6. pp. 85-91. 

 

8. Dyno Nobel, 2010. Cost of Explosives. Salt Lake City, UT: Dyno Noble. pp. 2. 

 

9. Expert Choice, 2012. Expert Choice Software. Arlington, VA.                   

http://www.expertchoice.com. 

 

10. Ghosh, A., Mondal, S., Singh, S., Sinha, A. 2010. Application of Surface Miner in 

Nongtrai Limestone Mine of Lafarge Umiam Mining PVT. LTD. in Meghalaya, 

India. Central Institute of Mining & Fuel Research. Department of Science & 

Technology. Government of India. Jharkhand, India. pp. 66. 

 

11. Hartman, H. 1990. SME Mining Engineering Handbook. Society for Mining, 

Metallurgy, and Explorations Inc. Littleton, CO. pp. 727-744. 

http://www.expertchoice.com/


101 

 

 

12. InfoMine, 2010. Mine and Mill Equipment Costs. Spokane Valey, WA: InfoMine 

USA Inc. pp. [SU-2]-[SU-43]. 

 

13. Ingersoll-Rand, 1998. Bench Drilling Techniques and Equipment Selection Manual. 

1
st
 ed. Roanoke, VA: Ingersoll-Rand. pp. 85. 

 

14. Kecojevic, V. 2010. Surface Mining: Lectures 4-14. West Virginia University. 

Morgantown, WV. 

 

15. Komatsu, 2011. Application Principles. 2
nd

 ed. Peoria, IL: Komatsu America Co. pp. 

[G-1]-[16-4]. 

 

16. Liberatore, M., Nydick, R., Sanchez, P. 1992. The Evaluation of Research Papers (Or 

How to Get an Academic Committee to Agree on Something). Interfaces 22:2. pp. 

92–100. 

 

17. Mavko, G. 2011. Parameters That Influence Seismic Velocity. Conceptual Overview 

of Rock and Fluid Factors that Impact Seismic Velocity and Impedance. Stanford 

Rock Physics Laboratory. pp. 73-112. 

 

18. Origliasso, C. 2011. Surface Miners: Design Features and New Approaches for 

Performance Prediction and Costs Calculation. Politechnico Di Torino. Tesi di laurea 

magistrale. Ingegneria per I’Ambiente e il Territorio. pp. 87. 

 

19. Plinninger, R. 2010. Hardrock Abrasivity Investigation Using the Rock Abrasivity 

Index (RAI). Taylor & Francis Group. London. pp. 3445-3452. 

 

20. Pradhan, P., Dey, K. 2009. Rock Cutting with Surface Miner: A Computational 

Approach. Department of Mining Engineering. National Institute of Technology. 

Rourkela, India. Journal of Engineering and Technology Research. Vol. 1. pp. 115-

121. 

 

21. Rostami, J., Ozdemir, L., Bruland, A., Dahl, F. 2006. Review of Issues Related to 

Cerchar Abrasivity Testing and Their Implications on Geotechnical Investigations 

and Cutter Cost Estimates. Department of Mining Engineering. University of Tehran. 

Earth Mechanics Institute. Colorado School of Mines. Norwegian University of 

Science and Technology at Trondheim. SINTEF Technology and Society. Ch. 57. pp. 

738-741. 

 



102 

 

22. Rusnak, J., Mark, C. 2000. Using the Point Load Test to Determine the Uniaxial 

Compressive Strength of Coal Measure Rock. Peabody Group. NOISH. In 

proceedings of the 19
th

 International Conference on Ground Countrol in Mining. 

Morgantown, WV: West Virginia University. pp. 362-371. 

 

23. Saaty, T. 1980. The Analytic Hierarchy Process: Planning, Priority Setting, Resource 

Allocation. McGraw-Hill International Book Co. New York. pp. 287. 

 

24. Saaty, T. 2008. Decision Making with the Analytical Hierarchy Process. Katz 

Graduate School of Business. University of Pittsburgh, PA. International Journal 

Services Science. Vol. 1. No. 1.pp. 83-98. 

 

25. Schimm, B. 1997. Mining of Medium Hard Rock Without Blasting by Means of 

Cutting.  Experience and Economics of the Wirtgen Surface Miner. Wirtgen GmbH. 

Windhagen, Germany. Denver, CO: Society for Mining, Metallurgy, and Exploration, 

Inc. pp. 5. 

 

26. Schroder, D. n.d. Large Surface Miners – Applications and Cost Calculations. Krupp 

Fordertechnik GmbH. Essen, Germany. Accesed 2011. pp. 6. 

 

27. Schroder, D., Schwier, E. 1996. Selection of Mining Systems for Large Open Pits. 

Braunkohle, Surface Mining. pp. 8. 

 

28. Schubert. 2007. Rock Excavation by Drill and Blast. Lecture 10. Institute for Rock 

Mechanics and Tunneling. Graz University of Technology.  

 

29. Apodaca. L.E. 2010. Explosives. In Minerals Yearkbook 2010. U.S. Geological 

Survey. pp. 6. 

 

30. Wirtgen. 2008. Wirtgen Surface Mining Manual. Germany: Wirtgen Group. pp. 172. 

 

31. Wirtgen. 2010. Wirtgen Surface Mining Manual. Germany: Wirtgen Group. pp. 172. 

 

32. WV Coal. 2011. Coal Facts-West Virginia Coal: Fueling an American Renaissance. 

Publication of West Virginia Coal Association. WV. pp. ?. 

 

33. WVGE. 2011. Geologic Map of West Virginia. Mont Chateau Research Center. 

Morgantown, WV: West Virginia Geological and Economical Survey.  

 

 


	Production and Cost Assessment of a Potential Application of Surface Miners in Coal Mining in West Virginia
	Recommended Citation

	Production and Cost Assessment of a Potential Application of Surface Miners in Coal Mining in West Virginia

