
Graduate Theses, Dissertations, and Problem Reports 

2005 

Development of a heavy duty diesel vehicle emissions inventory Development of a heavy duty diesel vehicle emissions inventory 

prediction methodology prediction methodology 

Prakash Gajendran 
West Virginia University 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

Recommended Citation Recommended Citation 
Gajendran, Prakash, "Development of a heavy duty diesel vehicle emissions inventory prediction 
methodology" (2005). Graduate Theses, Dissertations, and Problem Reports. 2658. 
https://researchrepository.wvu.edu/etd/2658 

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F2658&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/2658?utm_source=researchrepository.wvu.edu%2Fetd%2F2658&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


Development of a Heavy Duty Diesel Vehicle Emissions Inventory Prediction 
Methodology 

 
 
 

Prakash Gajendran 
 
 
 

Dissertation submitted to the  
College of Engineering and Mineral Resources 

at West Virginia University 

 

in partial fulfillment of the requirements 

for the degree of 
 

Doctor of Philosophy 

in 

Mechanical Engineering 

 
 
 
 

Nigel Clark, Ph.D., Chair 
Mridul Gautam, Ph.D. 

Scott Wayne, Ph.D. 
Gregory Thompson, Ph.D. 
Shahab Mohaghegh, Ph.D. 

 

 
Department of Mechanical and Aerospace Engineering 

 
Morgantown, West Virginia 

 2005 
 

 
Keywords: Heavy-Duty Vehicle Emissions, Emissions Inventory, Emissions Prediction, 

Off-Cycle, Vehicle Weight, Speed-Acceleration  
 
 



 

ABSTRACT 
 

Development of a Heavy Duty Diesel Vehicle Emissions Inventory Prediction 
Methodology 

 
By Prakash Gajendran 

 
Emissions from heavy-duty diesel vehicles are known to contribute a substantial fraction 

of the oxides of nitrogen (NOX), and particulate matter (PM) to the atmospheric inventory. 

Prediction of heavy-duty diesel vehicle emissions inventory is substantially less mature than the 

prediction of gasoline vehicle emissions.  

Heavy-duty truck emissions are affected by various parameters like vehicle weight/load, 

driving schedule used, and injection timing control strategies employed to operate the engine at 

more fuel-efficient (but higher NOX) mode.  

Research has revealed a variety of options for inventory prediction, including the use of 

emissions factors based upon instantaneous engine power and instantaneous vehicle behavior. 

Effects of various parameters on the heavy-duty diesel emissions were studied in great detail and 

a speed-acceleration based emissions prediction approach was developed for heavy-duty diesel 

vehicle emissions prediction. A suite of emissions factor tables was generated for emissions 

inventory prediction. Driving schedules, vehicle weight, and off-cycle injection strategy were 

found to affect emissions to varying extents. Detailed analyses of a large body of data enabled to 

quantitatively as well as qualitatively characterize effect of various parameters on heavy duty 

diesel vehicle emissions. A doubling of vehicle weight was found to result in roughly a 50% 

increase in NOX emissions. The accuracy was found to improve with the inclusion of a large 

number of data covering wide range of model year groups and driving schedules.  

 

 



 

Off-cycle operation was found to increase the NOX emissions by more than double. The 

speed-acceleration model predicted the emissions with reasonable accuracy. 
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1 Introduction  

Diesel (or compression ignition) engines are the most fuel-efficient internal combustion 

engines available today and are widely used in heavy-duty on-road and off-road vehicles. 

Although diesel engines emit less carbon dioxide (CO2), carbon monoxide (CO), and 

hydrocarbon (HC) emissions compared to a gasoline engine, they tend to have high oxides of 

nitrogen (NOX) and particulate matter (PM) emissions. The United States Environmental 

Protection Agency (EPA) has set regulations limiting the production of certain chemical species 

that are emitted from diesel engines. The two of primary interest are NOX and PM.  

Emissions from Heavy-Duty Diesel Vehicles (HDDV) are known to contribute a 

substantial fraction of the NOX, PM less than 10 microns (PM10) and PM less than 2.5 microns 

(PM2.5) to the atmospheric inventory [Johnson, 2000; Dementhon, 1997]. Oxides of nitrogen 

contribute to ozone formation and create secondary PM in the air, and both ozone and PM are 

regulated to maintain ambient air quality standards. Polluted states are obliged to pay close 

attention to the heavy-duty mobile source inventory in preparing State Implementation Plans 

(SIP) for air quality improvement. In the United States, the highway diesel engines contribute to 

about 17% of the total mobile source NOX and 22% of the total mobile source PM10 emissions 

[EPA, 2001]. 

Current federal regulations do not require that complete heavy-duty diesel vehicles be 

chassis certified, instead requiring certification of their engines. The diesel engines powering 

these vehicles are certified separately from the vehicle, so that there is little information on actual 

emissions arising from trucks in real use. Truck emissions inventories have traditionally 

employed average fuel economy and engine efficiency factors to translate certification data into 
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distance-specific (g/mile) data, so that inventories do not take into account the real effects of 

truck operating weight on emissions. Consequently, the basic EPA emissions standards are 

expressed in units of brake-specific mass units (g/bhp-hr) and require emission testing over the 

transient federal testing procedure (FTP) engine dynamometer cycle. The FTP prescribed in the 

Code of Federal Regulations (CFR), Title 40, Part 86, Subpart N is a transient test used to 

establish engine certification to emissions standards, which are thus based solely upon the engine 

performance. There is no sophisticated accounting for the application of that engine in the 

vehicle, or the nature of vehicle behavior. 

  For the past few decades, the United States has experienced steady and significant growth 

in heavy-duty vehicle transport on its highway system (ARB, 1998). Emissions inventories use 

existing data from different emissions sources, and the existing data for heavy-duty vehicle 

emissions is not comprehensive, which makes accurate inventories difficult when limited by this 

data. Also, precise tracking and monitoring of heavy-duty vehicle emissions, specifically NOX, 

HC, CO and PM, is extremely difficult in comparison with other types of vehicles. 

There is a number of parameters that affect diesel vehicle emissions, which include 

vehicle class and weight, driving cycles, terrain traveled, and vehicle age [Clark et al., 2002]. In 

addition, the effects of engine control strategies employed play a vital role. Since the early 

1990s, the engine manufacturers used engine control software that caused some engines to 

switch to a more fuel-efficient (but higher NOX) driving mode during highway cruising. The 

higher NOX emissions resulting from this control strategy are referred to as the “Off-Cycle” 

emissions. The off-cycle operation affects the emissions from the heavy-duty diesel vehicles.  
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There is a need for a detailed analysis on the effect of various parameters including the 

off-cycle operation on heavy-duty vehicle emissions to improve the emissions inventory 

prediction.  
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2 Objectives 

Objectives of this research are to understand the extent to which various parameters 

affect the exhaust emissions from heavy-duty diesel vehicles, review different methods used for 

heavy-duty diesel vehicle emissions inventory prediction and to develop a methodology based on 

the speed-acceleration approach to accurately predict the emissions from heavy-duty diesel 

vehicles for emissions inventory purpose.  

The objectives include: 

1. Incorporating the effects of various parameters that affect the emissions in the model 

such as vehicle class/weight, vehicle model year, driving schedules (cycles and routes) 

and injection strategies employed. The effects of each of these parameters on emissions 

will be discussed in detail in Chapter 3. 

2. Gathering emissions data at high speeds typical of highway operation to augment the 

existing data available from the WVU database. 

3. Conducting tests on heavy-duty diesel vehicles to understand the off-cycle operation and 

the extent to which the off-cycle operation affects the emissions.  

4. Finally, examining the validity of the speed-acceleration based approach for emissions 

prediction by gathering additional emissions data and also using emissions data available 

from previous research completed at WVU. 

To meet these objectives, data available from the WVU database were used for the model 

development. Most of the data available in the WVU database do not cover high speeds typical 

of highway operation, although there is an extensive data set on emissions at low speed 

operations. Also, some of these data were found to include the “off-cycle” operation resulting 

from the injection timing strategies employed by the engine manufacturers.  
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 Additional data were gathered, on two different trucks representing two different model 

year groups, to augment the existing data set with higher speed operation. Some of the additional 

data were available to study the “off-cycle” emissions.  

 The effects of different parameters were studied in detail and incorporated in the 

methodology proposed for predictions for inventory purpose. The methodology for emissions 

predictions were validated using measured emissions data from chassis dynamometer testing 

available in the WVU database. 
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3 Literature Survey 

3.1 Vehicle Emissions Inventory Modeling 

A fundamental requirement in the effort to control pollution in any form is to quantify the 

emissions being released. To determine the contribution of heavy vehicles to overall loss of 

atmospheric quality, an emissions inventory is employed. National emission inventories are 

computed in the United States by the Environmental Protection Agency (EPA) and are published 

in the periodically updated “Emission Trends Document” (EPA, 2001). To enable a complete 

and accurate inventory of mobile emissions, each vehicle would need to be tested for emissions 

using a test cycle that exactly reproduces its real world use, and have the total vehicle miles 

traveled (VMT) recorded.  This is obviously impractical, so a simplified inventory model is used. 

3.1.1 EMFAC 2002 

The Air Resources Board (ARB) has maintained the Motor Vehicles Emissions 

Inventory, which are the product of population, activity, and emissions for over 25 years. The on-

road emission inventory data reflects new vehicle testing information and the latest vehicle 

registration data from the California Department of Motor Vehicles. The activity-related data are 

updated by the regional transportation agencies. 

The ARB developed an EMission FACtors (EMFAC) model to calculate emission rates 

from all motor vehicles, from passenger cars to heavy-duty trucks, operating on highways, 

freeways and local roads in California. EMFAC 2002 is the latest version of emissions inventory 

model that calculates emissions inventory for motor vehicles operating on roads in California. It 

supercedes EMFAC 2000, which was released in November 2000. In the EMFAC model, the 
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emission rates are combined with vehicle activity data provided by regional transportation 

agencies to calculate statewide or regional emissions inventories [ARB, 2001].    

An emission inventory (e.g., mass of pollutant emitted per day) can be summarized as the 

product of an emission rate (e.g., grams of pollutant emitted over a mile) and vehicle activity 

(e.g., miles driven per day) summed over vehicle type and vehicle model year.  

EMFAC 2002 uses vehicle chassis dynamometer based emissions data as compared to 

the earlier versions that used engine dynamometer data to develop the emissions factors. 

EMFAC 2002 estimates HC, CO, NOX, PM, CO2 and SOX for different emission processes. It 

should be noted that SOX is attributed to the sulfur content of the diesel fuel. PM estimates are 

provided for total suspended particulate. PM is the general term used for a mixture of solid 

particles and liquid droplets found in the air. Some particles are large or dark enough to be seen 

as soot or smoke. Others are so small they can be detected only with an electron microscope. 

These particles, which come in a wide range of sizes ("fine" particles are less than 2.5 

micrometers in diameter and coarser-size particles are larger than 2.5 micrometers), originate 

from many different stationary and mobile sources as well as from natural sources. Fine particles 

(PM2.5) result from fuel combustion from motor vehicles, power generation, and industrial 

facilities, as well as from residential fireplaces and wood stoves. Coarse particles (PM10) are 

generally emitted from sources such as vehicles traveling on unpaved roads, materials handling, 

and crushing and grinding operations, as well as windblown dust [EPA 2003]. Diesel particulates 

typically have sizes below 1 micrometers [Dieselnet, 2002]. Although fuel consumption is not a 

pollutant, in EMFAC 2002 it is calculated based on the emissions of CO, CO2, and THC using 

the carbon balance equation.   
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The EMFAC 2002 supports calculation of emissions for three modes; Burden, Emfac, 

and Calimfac. 

3.1.1.1 Burden mode  

The Burden mode is used for calculating regional (area-specific) emission inventories. In 

this mode, the model reports total emissions as tons per weekday in the region of interest for 

each pollutant, by vehicle class and the total number of vehicles in a fleet The burden mode uses 

emission factors that have been corrected for ambient conditions and speeds combined with 

vehicle activity to calculate emissions in tons per day. Vehicle activity includes the number of 

vehicles, how many miles are driven per day and the number of daily trips. The Burden mode 

offers the user the option of selecting either an hourly or daily total output. 

3.1.1.2 Emfac mode 

The Emfac mode generates emission factors in terms of grams of pollutant emitted per 

vehicle activity. Vehicle activity can be expressed in terms of grams/mile or grams per hour or 

grams per start and depends on the emissions process. The emission factors depend on basic 

scenario data options for geographic area, calendar year and month or season. In the Emfac mode 

the model calculates a matrix of emission factors at specific values of temperature (-20oF to 

120oF), relative humidity (0% to 100%), and vehicle speed (idle and 1 mph to 65 mph) for each 

vehicle class/technology combination. In the Emfac mode, an additional input form allows users 

to customize their output and select specific temperature, relative humidity and speed values.   
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3.1.1.3 Calimfac mode 

The Calimfac mode is used to calculate very detailed emission rates (basic emission rates 

or BER) for each vehicle class and model years from 1965 to the scenario calendar year. As a 

vehicle ages its emissions increase with vehicle mileage. In the Calimfac mode a linear 

regression equation is obtained by employing a linear curve fit between the emissions data and 

the vehicle mileage. This linear fit results in a zero mile rate (emissions when the vehicle is new) 

and deterioration rate (emissions increase for every 10,000 miles) with a flex point where the 

deterioration rate changes for higher odometer values. These BER are based on standardized 

driving tests. In addition, the user can elect to have the emission factors calculated with or 

without correction factors, which account for ambient and driving conditions not encountered 

during standardized testing. 

In the Calimfac mode, emission factors are calculated using the same data and 

methodology as in the Burden or Emfac mode. When “constants for calculating emission 

factors” (zero-mile and deterioration constants) are reported, they are based on linear regressions 

on the modeled results.   

3.1.2 Latest Updates for EMFAC 

The ARB has recently proposed many modifications to its EMFAC model. These include 

the modifications to the heavy-duty diesel trucks used for the model, fuel correction factors, 

inspection and maintenance programs, and vehicle activity data. These modifications will be 

incorporated in the next version of its on-road emissions inventory model “EMFAC 2005” 

scheduled to be released in the Fall of 2005.  
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The main modifications as far as the trucks used will be to include emissions UDDSata, 

based on the CRC E-55/E-59 study, which cover vehicle model year groups: 1973/75 - 

2003/2004. The main emphasis is laid on HHDDT’s with GVW over 33,000 lb. So far, 75 

HHDDT’s have been tested on the Urban Dynamometer Driving Schedule and the ARB-

developed Heavy-Duty Truck test cycles (ARB, 2004). 

3.1.3 EPA - Mobile 6 

The EPA updated the estimates of heavy-duty engine emission factors currently 

contained in MOBILE 5b. The same methodology employed in previous versions of the 

MOBILE model was followed, using updated inputs. The methodology for heavy-duty vehicles 

entails determination of a gram per mile (g/mile) emission factor by multiplying a work-specific 

emission level (in units of grams per horsepower-hour (g/bhp-hr)) by a conversion factor, which 

converts work units into mileage units (bhp-hr/mile). 

CFmEF ∗=              Equation 3.1 

The bhp-hr/mile conversion factors (CF) are calculated from tabulated brake-specific fuel 

consumption (BSFC) in lb/bhp-hr, fuel density (ρ) in lb/gal, and fuel economy (FE) in mile/gal 

because it is difficult to measure bhp-hr/mile directly.  

FEBSFC
CF

∗
=

ρ             Equation 3.2 

The fuel densities used in the program were collected from fuel surveys, the BSFC from 

previous conversion factor analysis and manufacturer information, and fuel economies from 

highway statistics for trucks and buses (Machiele, 1988). Speed correction factors for NOX alone 

also exist, but their origin and efficacy remain obscure. These factors indicate that for certain 
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speed, there is a minimum emissions rate and higher or lower speed operation increases the 

emissions.   

Engine certification data consist of zero-mile level (ZML) emissions, which correspond 

to new engine emissions, and rates of deterioration at the end of useful life, typically given in 

grams of pollutant per brake horsepower-hour (g/bhp-hr). For heavy-duty diesel engines, the 

certification data sets also generally include an intended service class for each engine model 

(light heavy, medium heavy, heavy heavy, and bus). Useful life is defined as 110,000 miles for 

all heavy-duty gasoline engines and those engines with the intended service class of light heavy-

duty diesel, 185,000 miles for medium heavy-duty diesel engines, 290,000 (model year 1987 – 

2003) miles, and 435,000 (model year 2004 and later) miles for heavy heavy-duty diesel engines 

and buses. 

3.1.3.1 MOVES 

The EPA’s Office of Transportation and Air Quality (OTAQ) is currently working on a 

new modeling system termed the Multi-scale mOtor Vehicle and equipment Emission System 

(MOVES). This new system will estimate emissions for on-road and off-road sources, cover a 

broad range of pollutants, and allow multiple scale analysis, from fine-scale analysis to national 

inventory estimation. When fully implemented MOVES will serve as the replacement for 

MOBILE6 and NONROAD [EPA, 2002]. The new model was initiated by several 

recommendations for improving the EPA’s mobile source modeling tools provided by the 

National Research Council (NRC). MOVES will be a modeling framework, which can be 

applied from very fine scales (e.g., intersections) to national-scale inventories for generating 

estimates of green house gases, toxic pollutants from on and off-road mobile sources.  
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 One of the main characteristics of the MOVES model is the use of Vehicle Specific 

Power (VSP) to characterize “modal” emission rates for the running exhaust emission process. 

The primary benefit of this is that it combines numerous physical factors that influence vehicle 

fuel consumption; vehicle speed, acceleration, road grade, and road load parameters such as 

aerodynamic drag and rolling resistance [EPA, 2002].  

3.1.4 European Inventory Models 

Emissions inventories in European countries are reported in source categories that do not 

always separate diesel from gasoline emissions. There is an increasing penetration of diesel-

fueled vehicles in the passenger car market in Europe. The proportion of diesel cars sold in 1995 

in Belgium and France approached 50% of all new automobiles in these countries [Walsh, 1999]. 

COmputer Programme to Calculate Emissions from Road Transport (COPERT) III is the 

third update of the initial methodology developed on the basis of the results of a working group, 

which was set up for this purpose (the initial version was COPERT 85 (1989) followed by 

COPERT 90 (1993) and COPERT II (1997)). The current version draws its main principles from 

several European activities: COST and MEET [COPERT, 2003]. In principle, COPERT has been 

developed to estimate emissions from road transport to be included in official annual national 

inventories. 

COPERT estimates emissions of all regulated air pollutants (CO, NOX, HC, PM) 

produced by different vehicle categories (passenger cars, light duty vehicles, heavy duty 

vehicles, mopeds and motorcycles) as well as CO2 emissions on the basis of fuel consumption. 

Furthermore, emissions are calculated for an extended list of non-regulated pollutants. Estimated 

emissions estimated are generally distinguished in three sources: Emissions produced during 
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thermally stabilized engine operation (hot emissions); emissions occurring during engine start 

from ambient temperature (cold-start and warming-up effects); and HC emissions due to fuel 

evaporation. The total emissions are calculated as a product of activity data provided by the user 

and speed-dependent emission factors calculated by the software [Hickman, 1998].  

 In the UK, the emissions from road transport are calculated either from a combination of 

total fuel consumption data and fuel properties or from a combination of drive related emission 

factors and road traffic data [AEAT website, 2003].  

Emissions of the pollutants HC, NOX, and CO are calculated from measured emission 

factors expressed in grams per kilometer and road traffic statistics from the United Kingdom’s 

Department of Environment, Transport and the Regions [DETR, 2000]. The emission factors are 

based on experimental measurements of emissions from in-service vehicles of different types 

driven under test cycles with different average speeds. The road traffic data used are vehicle 

kilometer estimates for the different vehicle types and different road classifications in the UK 

road network. These data are further broken down by composition of each vehicle fleet in terms 

of the fraction of diesel- and petrol-fuelled vehicles on the road and in terms of the fraction of 

vehicles on the road made to the different emission regulations which applied when the vehicle 

was first registered. Emissions from motor vehicles are classified into three different types, each 

of which is calculated in a different manner. Exhaust emissions of PM from vehicles are also 

calculated from emission factors and traffic data, but different procedures are used for estimating 

emissions from petrol and diesel vehicles. Particulate emissions from tire and brake wear are also 

estimated from emission factors and traffic data. 
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3.2 Factors Affecting Heavy-Duty Vehicle Emissions 

Heavy-duty diesel vehicle emissions are affected by a number of parameters. These 

parameters include vehicle class, driving test cycle, vehicle age, and terrain traveled [Nine et al., 

2000; EPA, 1999; Clark et al., 2002, Yanowitz et al., 2000].  In addition, the effects of injection 

timing strategies on measured emissions are discussed [Kwan et al., 1997, Clark et al., 2002]. 

Driving cycles are employed to evaluate vehicle emissions using chassis dynamometer based 

testing.  Since driving cycles are usually proposed with vehicle class, driving activity and vehicle 

vocation in mind, the categories mentioned above are not independent of one another. 

3.2.1 Vehicle Class/Weight 

Vehicle class/weight has a significant effect on the exhaust emissions but not much 

information is available on its effect on emissions. Vehicle classes are defined by several entities, 

including the American Automotive Manufacturers Association (AAMA) and are usually based 

upon the Gross Vehicle Weight Rating (GVWR) as shown in Table 3.1. The GVWR is the 

maximum weight a vehicle is allowed to achieve, including the vehicle, driver, payload, and fuel.  

Table 3.1 Vehicle classes as defined by the American Automotive Manufacturers 
Association (AAMA). 
 

Class GVWR 
(lbs.) 

1 6,000 and less 
2 6,001 – 10,000 
3 10,001 – 14,000 
4 14,001 – 16,000 
5 16,001 – 19,500 
6 19,501 – 26,000 
7 26,001 – 33,000 
8 33,001 and over 
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The effect of vehicle class on emissions can be best understood from an analytical point 

of view. The three main factors that cause a vehicle to demand engine power are 

speed/acceleration, weight, and the terrain traveled. As the required power increases, the amount 

of fuel burned to produce that power also increases, and the rate of regulated emissions produced 

will generally increase. (Note, however, that brake specific emissions levels of some 

constituents, such as hydrocarbons, may be high at low power ratings.) This implies that 

emissions will directly vary with truck weight, and thus heavier vehicles produce more regulated 

emissions. The power demanded at the wheels can be obtained by using a road load equation 

(Equation 3.3).  

)(5.0 3 θμρ SingMvgMvAC
dt
dvvMP D ∗∗+∗∗∗+∗∗∗∗+⎟

⎠
⎞

⎜
⎝
⎛∗∗=                        Equation 3.3 

It can be argued from Equation 3.3 that the power demand at the rear wheels is 

proportional to the vehicle weight at low speeds. This energy, required at the rear wheels, differs 

from the energy at the engine by the factor of transmission efficiency. Such variations would be 

accounted for if emissions variations were linear with power, as is NOX in most cases, and if 

differences in the demanded energy were appropriately modeled. By this argument, even if the 

emissions in g/ahp-hr (or g/bhp-hr) were similar for the two vehicles, the emissions in g/mile 

would vary by a factor of the ratio of the ahp-hr/mile used by each vehicle [Clark et al., 2002]. 

Oxides of nitrogen are produced by diesel engines primarily by the combination of 

nitrogen and oxygen to form nitric oxide in the hot burned gas mixture that is still plentiful in 

oxygen. In this way, all else being equal, the quantity of NOX produced is roughly proportional 

to the quantity of fuel injected, and so varies fairly linearly with engine power. Also, NOX is 

generally insensitive to engine transient behavior, and can be modeled closely based on steady 

state engine operating data [Ramamurthy and Clark, 1999]. Hence, the NOX emissions will vary 
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nearly linearly with vehicle weight at low speeds, and a quadratic relationship may be observed 

at higher speeds. Unlike NOX emissions, PM emissions are a strong function of transients; hence 

they cannot be treated in the same way as NOX emissions. In particular, PM will arise during 

rapid increases in torque demand as well as during and immediately after gear changing. HC and 

CO emissions are very low in diesel engines. HC emissions can be erratic, but CO emissions 

follow similar trends to PM, because they depend on in-cylinder air-fuel ratio [Clark et al, 1999]. 

Ramamurthy and Clark (1999) examined the relationship between NOX production (in 

units of g/sec.) and rear axle power of vehicles undergoing chassis dynamometer testing. Data 

were recorded on a second-by-second basis. The processing of these data required techniques to 

account for analyzer measurement delay and diffusion [Ganesan and Clark, 2001]. The analysis 

yielded relationships for several vehicles.  

Kern (2000) compared the emissions from two different heavy vehicles with the same 

engine, noting that these two vehicles had different vocations, transmissions, and horsepower 

ratings. Tables 3.2 and 3.3 show the vehicle information and chassis dynamometer based 

emissions results for a TB and a TT with the same engine. These vehicles had different engine 

power ratings and were tested on a different test cycle.  The two different cycles were the most 

similar test conditions available from the WVU database for two different vehicles with the same 

engine. The bus was tested on the CBD cycle, while the TT was tested on the Truck-CBD cycle 

(also called the Modified CBD cycle). The Truck-CBD cycle has slower acceleration ramps so 

that a vehicle with a lower power-to-weight ratio and an unsynchronized manual transmission 

(TT) can follow the scheduled speed.   

It was found that the TT exhibited lower emissions in NOX, HC, and PM of 26%, 8.2% 

and 30% respectively (Kern, 2000). Furthermore, the total emissions of CO (carbon monoxide) 
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were higher for the TT by 12%. It is evident from these data that conclusions based upon vehicle 

class alone are not reliable, and that vocation (as mimicked by the test cycle) must be considered.   

Table 3.2. Engine data for class comparison [Kern, 2000]. 
Engine Detroit Diesel Corp. 6V-92TA 
Displacement 9.05 liters 
No. of Cylinders 6 
Fuel D2 

 
Table 3.3. Test results for two different vehicles with the same engine (with different power 
ratings) [Kern, 2000]. 

Vehicle Type Transit Bus Tractor Truck  
Model Year 1993 1992  
Rated Power (hp.) 277  300   
GVW (lbs.) 39,600  80,000  
Test Weight (lbs.) 33,175 42,000  
Transmission 4-Speed Automatic 9-Speed Manual  
Test Cycle CBD Truck-CBD  
   Difference* 
NOx (g/mile) 25.0  19.3  - 26% 
CO (g/mile) 6.44  7.24  + 12% 
HC (g/mile) 3.54  3.26  - 8.2% 
PM (g/mile) 1.71  1.27  - 30% 

* Difference/average as a percentage. 

 Research by Graboski et al. (1998) for the Northern Front Range Air Quality Study 

(NFRAQS) reported emissions testing on 21 different heavy-duty vehicles using the WVU Truck 

(i.e. 5-Peak) Cycle, the EPA Urban Dynamometer Driving Schedule for Heavy Duty Vehicles 

(UDDS), and the CBD Cycle as described in SAE J1376. Results of the NFRAQS included 

comparisons of the GVWR of the vehicles against the emission results. The conclusion by 

Graboski et al. was that a heavier vehicle uses more fuel (lower fuel economy) and thus produces 

more exhaust gas on a g/mile basis.  It was also noted that, as a vehicle following a cycle 

exhibited lower fuel economy, higher emissions were produced in units of g/mile.  For example, 

the CBD cycle yielded the lowest average fuel economy, and also the highest emissions as 

compared to the other cycles.    
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3.2.2 Driving Cycle  

Driving test schedules are used in the measurement of vehicle emissions with a chassis 

dynamometer. The driving operation of a vehicle is affected by the traffic conditions and the 

routes traveled. Driving cycles or the test schedules vary widely in that they attempt to mimic 

specific driving behavior. Consequently, measured vehicle emissions are largely affected by the 

driving schedule. Some of the commonly used driving schedules are discussed here. Most 

chassis test schedules are defined by a speed versus time trace, with load implied by a road load 

equation with no gradient assumed. Some test schedules are defined by speed versus distance. 

These are called “Routes.” Routes allow sections of the schedule to demand full power operation 

from the vehicle. Speed versus time plots of every test cycle and routes discussed are included 

for visual comparison. Emissions testing are conducted on engines for EPA certification and so 

chassis driving schedules do not play a direct role in current emissions regulation. The test 

schedules for engine testing are commonly defined by speed and torque traces over a period of 

time. The actual speeds and torques are derived using the maximum torque curve and the rated 

and idle speeds of the engine.   

3.2.2.1 Central Business District Cycle  

The Central Business District (CBD) cycle is a synthesized driving cycle originally 

created for performance verification and fuel economy measurement of transit buses.  This cycle 

is a portion of the Transit Coach Design Operating Duty Cycle, (SAE J1376, 1993), which also 

includes arterial and commuter phases. A modified CBD cycle (which is referred to as the Truck-

CBD Cycle) has lower acceleration rates to suit heavy trucks with manual transmissions, but is 
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no longer in regular use by any chassis dynamometer laboratory.  Figure 3.1 shows a target speed 

versus time plot of the entire CBD cycle.  

Figure 3.1 Central Business District Cycle Target speed versus time plot. 
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3.2.2.2 WVU 5-Peak Cycle 

The WVU 5-Peak Cycle is also called the WVU Truck Cycle. This cycle was developed 

by the research group at the Transportable Heavy Duty Vehicle Emissions Testing Laboratory in 

West Virginia University in 1994 (Clark et al., 1994).  The WVU 5-Peak cycle was designed for 

general truck chassis testing for comparison of diesel and alternate fuels. The target speed versus 

time plot for this cycle is shown in Figure 3.2. The cycle consists of five segments, each with 

acceleration to a peak speed, followed by a brief steady state operation and then a deceleration 

back to idle. The five peak speeds are 20, 25, 30, 35, and 40 mph.  
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Figure 3.2 Target speed versus time plot for the WVU 5-Peak cycle. 
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3.2.2.3 EPA Urban Dynamometer Driving Schedule (UDDS) for Heavy-Duty Vehicles 

The EPA Urban Dynamometer Driving Schedule for Heavy-Duty Vehicles is also 

referred to as “UDDS.” It is a cycle developed from the CAPE-21 database and is presented in 

the Code of Federal Regulations, Title 40, Part 86, Subpart N, as a conditioning cycle for heavy-

duty vehicle evaporative emissions testing. This cycle was developed from the freeway and non-

freeway data collected in the survey, and it is meant to represent heavy-duty driving in all United 

States urban areas (40 CFR Part 86 Subpart M). This speed-time cycle is arduous to follow with 

a heavy truck having a low power-to-weight ratio and an unsynchronized transmission.  

Although it is intended to reflect the same operation as the present day engine certification test, 

Dietzmann and Warner-Selph (1985) found poor emissions correlation between the two. This 

cycle has been employed occasionally as a “best attempt” basis to simulate vehicle activity and 

emissions by most heavy-duty chassis emissions laboratories in North America. Figure 3.3 

shows the scheduled speed versus time plot for UDDS.  
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Figure 3.3 EPA Urban Dynamometer Driving Schedule for heavy-duty vehicles (UDDS) 
target speed versus time plot. 
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3.2.2.4 WVU 5-Mile Route 

The WVU 5-Mile Route is also called the Modified WVU Truck Cycle although it is a 

route, by definition.  A route, as opposed to a cycle, utilizes the vehicle’s maximum acceleration 

to the peak speed followed by a steady-state operation before decelerating to an idle. The total 

distance is always controlled to equal five miles, regardless of the acceleration the vehicle can 

attain. This causes the speed versus time schedule to vary from one vehicle to another. 

Consequently, a more powerful vehicle will be able to complete the driving portion in less time.  

An example of a TB driving this schedule is shown in Figure 3.4 and because the bus can 

accelerate relatively quickly, the extended idle period at the end of the cycle for this bus is to 

match the total driving time of 900 seconds.  Clark and Lyons (1999) have given details of the 5-

Mile Route. The target cycle cannot be illustrated on a speed-time plot, but can be illustrated on 

a speed-distance plot.   

 



 22

Figure 3.4 Plot of actual speed versus time for a TB driving the WVU 5-Mile Route. The 
simulated test weight was 33,000lbs. The vehicle was powered by a 275 hp. DDC Series 50 
engine and was equipped with a 5 speed automatic transmission.   
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3.2.2.5 City Suburban Heavy Vehicle Route (CSHVR) 

The City Suburban Heavy Vehicle Route was developed at WVU by concatenating 

microtrips (defined as one delivery stop to the next) from data collected in the field from trucks 

operating in Richmond, Virginia and Akron, Ohio [Clark et al., 1998].  A speed versus time plot 

of a TT driving the CSHVR is shown in Figure 3.5. 
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Figure 3.5 Actual speed-time plot of a 1996 TB driving the City Suburban Heavy Vehicle 
Route. 

0

5

10

15

20

25

30

35

40

45

0 200 400 600 800 1000 1200 1400 1600 1800
Time (sec)

Sp
ee

d 
(m

ph
)

 

3.2.2.6 Effect of Driving Schedule on Emissions 

It is certain that the test cycle used has profound effect on the emissions yielded [Nine et 

al., 2000]. As an example, consider steady speed operation of a truck. At low speeds, the 

emissions are dominated by the tire rolling losses, while at high freeway speeds, wind losses may 

start to dominate.  

PM emissions depend strongly on transients. In particular, PM will arise during rapid 

increases in torque demand as well as during and immediately after gear changing. PM will also 

be produced in disproportionately high quantity close to or at the engine maximum torque rating 

at any given engine speed. Consideration suggests that the engine is likely to undergo a similar 

number of shift transients regardless of test weight, whereas prolonged high loads may be 

dependent on test weight. Beyond these concerns over transients, the same logic on road and 

wind load may be applied to the PM production as well. 
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HC and CO emissions are usually low for diesel engines. HC emissions may be quite 

erratic, while CO emissions follow similar trends to PM, because they depend on in-cylinder air-

fuel ratio [Clark et al, 1999]. 

A portion of testing conducted at WVU under a contract for the National Renewable 

Energy Laboratory (NREL) involved testing of a single truck on many different test cycles.  The 

NOX emissions data in grams/mile are shown in Figure 3.6. Figure 3.7, and Figure 3.8 show the 

CO and PM emissions in grams/mile for the same vehicle. The vehicle was a 1995 GMC box 

truck with a Caterpillar 3116 engine rated at 170 hp. The fuel used was number 2 diesel and the 

vehicle had a test weight of 22,000 pounds. It can be seen that the NOX emissions from this truck 

varied with the type of test cycle used. The New York Garbage Truck Cycle (NYGTC), New 

York Bus Cycle (NYBUS) and the Yard cycle with very low average speeds exhibit very high 

emissions levels.  
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Figure 3.6 NOX emissions of various test schedules on a box truck [Nine et al., 2000, Clark 
et al., 2002].  

  
The NOX emissions varied by a factor of seven, being highest for a low speed, high idle content 

cycle, and lowest for a highway cycle. It is evident that cycles with long period of idle resulted in 

high values of NOX emissions. This was also true for cycles with high percentage of idle 

operation for which the distance traveled were shorter than a similar cycle with less idle. This 

resulted in higher distance-specific emissions. PM and CO emissions are more variable than the 

NOX emissions.  
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Figure 3.7 CO emissions of various test schedules on a box truck [Nine et al., 2000, Clark et 
al., 2002].  

 

Figure 3.8 PM emissions of various test schedules on a box truck [Nine et al., 2000, Clark et 
al., 2002].  
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3.2.3 Injection Timing Variances 

NOX production does depend strongly on in-cylinder temperature and the time available 

for NO formation until the expansion stroke cools and “freezes” the reactions. In this way 

injection timing can have a profound effect on the NOX level. PM emissions are also known to 

be affected strongly by the timing of the in-cylinder fuel injection. Advanced injection timing 

will result in a longer mixing time for the injected fuel and in-cylinder air. This will result in 

better mixing of the fuel and air and hence better combustion of the fuel-air mixture and hence 

lower PM emissions. It is common to present a hyperbolic “NOX-PM tradeoff” curve for an 

engine, with more advanced timing leading to higher NOX, and lower PM. Within a reasonable 

operating range, there is also a tradeoff between NOX and efficiency, with advanced timing 

leading to a higher NOX levels and higher thermal efficiency (less fuel consumed). 

Many modern electronically controlled engines do not embody timing throughout their 

operating range that reflects the timing employed during the engine certification test. These 

deviations in timing during “off-cycle” operation may lead to emissions of NOX in grams/mile 

that are higher than those that would occur during the certification test at the same engine speed 

and load.  In other words, a vehicle with an engine that complies with the certification may still 

result in higher fuel-specific or brake-specific NOX emissions over large parts of the operating 

envelope in real world operation. The vehicle component or software that allows excess 

emissions to be produced has been termed a “defeat device” by regulators. In the case of a 

heavy-duty NOX defeat device, the device (software) was active during steady-state operating 

modes such as cruising down the freeway, but was mostly inactive during transient operation 

[EPA, 1999]. According to a report by the EPA, these devices were built into heavy-duty diesel 

vehicles beginning in the 1988 model year, and completely removed by the 2000 model year. 
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Figure 3.9 presents a plot of chassis-based NOX emissions versus power output at the rear 

axle for a late model diesel truck (Kern, 2000). These data were obtained by West Virginia 

University as part of its field research funded by the U.S. Department of Energy, Office of 

Transportation Technologies. The lower NOX data set, when plotted versus axle power, 

corresponds well to the line of 6.25-g NOX/ahp-hr (where ahp is horsepower measured at the rear 

axle).  A certification rate of 5 g/bhp-hr, coupled with an assumed drivetrain efficiency of 80% 

yields a 6.25 g/ahp-hr value. The 80% value is offered as an approximation because precise 

records of transmission and drivetrain efficiency are not commonly available. Also, loads on the 

engine due to accessories are incorporated in the 20% loss. In the figure, the higher NOX values 

represented by the upper “arm” of the bifurcation represent the “off cycle” operating points.   

Figure 3.9 Smoothed axle power versus shifted NOX showing bifurcation of data.  
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Injection timing variations influence the overall emissions inventory in two ways. Firstly, 

the timing variations cause the actual NOX inventory to be higher than predicted based upon 

certification data, and secondly, the timing variations cause the actual PM inventory to be lower 
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than predicted based upon certification data. It is widely acknowledged that the NOX effect is far 

more significant than the PM effect. Timing variations in electronically controlled diesel engines 

present the single greatest obstacle to present day emissions inventory prediction. Clark et al. 

(2002) found the injection timing strategy to be a significant factor in influencing diesel 

emissions. Neural network model prediction performed on engine-dynamometer emissions 

UDDSata showed that NOX emissions can be predicted reasonably accurately using a simple 3-

layer model. PM and CO could not be predicted to the same extent due to their complicated 

formation mechanism (Tehranian, 2003). The author however believes that avoiding too many 

inputs from engine map and adding some other input as oxygen concentration may lead to some 

improvements in CO predictions. 

3.3 Methods of Generating Emissions Factors 

 Various approaches exist for the prediction of heavy-duty vehicle emissions contributions 

to the national or to a regional inventory. In the absence of accurate measurement of emissions 

from every vehicle performing every task, all approaches must be an approximation and it may 

prove impossible with current data to develop a highly accurate approach. Following are some of 

the approaches that can be used for emissions prediction [Kern, 2000, Clark et al., 2003]. 

1. Use of Certification Data 

2. Direct Use of Chassis Dynamometer Data 

3. Use of Power Based Emissions Factors 

4. Use of NOX / CO2 Ratios 

5. Use of Modal Approaches 

6. Use of Speed-Acceleration Data 
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3.3.1 Use of Certification Data. 

The present Environmental Protection Agency’s (EPA) approach to prediction of 

emissions output from heavy-duty vehicles relies on the use of emissions certification data to 

yield, for each species, an emissions factor with units of g/bhp-hr. This is the approach used in 

the EPA’s MOBILE 5 and it was continued in MOBILE 6. This approach is also used in the 

California Air Resources Board’s (CARB) previous model EMFAC 7. The Federal Testing 

Procedure (FTP) is a transient stationary dynamometer test used to evaluate an engine’s emission 

production level for federal certification and is used to provide emissions input for MOBILE. 

The target values (engine speed and load values) were arrived at through the use of a Monte 

Carlo simulation of data collected in Los Angeles, CA and New York, NY in the early 1970’s.  

The vehicles represented in the study had a lower power-to-weight ratio than current highly 

turbocharged diesel powered heavy-duty vehicles. 

 Emissions factors for heavy-duty vehicles for use in models such as MOBILE are usually 

expressed in grams/mile. However, the emissions certification data for the engines that power 

these vehicles are available in units of grams per brake horsepower-hour (g/bhp-hr). Machiele 

(1988) has proposed a method to convert the certification data to vehicle emissions.  To use this 

method, the conversion factor of brake horsepower-hour per mile (bhp-hr/mile) of the vehicle is 

needed. The conversion factor is obtained using the fuel density, fuel energy content, engine fuel 

conversion efficiency and fuel economy of the vehicle. The formula for vehicle emissions in 

g/mile is given earlier in this chapter.  

Figure 3.10 shows the trend through two decades of emissions of a vehicle that achieves a 

fuel economy of 3.0 miles per gallon and has a brake specific fuel consumption of 0.5 pounds 

per brake horsepower-hour (Kern, 2000).  These values are from the representative data given in 
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Machiele’s report for a 1980’s vintage heavy-duty diesel vehicle. The emissions factors in g/mile 

are then multiplied by vehicle miles traveled (VMT) to yield the mass of emissions released into 

the environment. The emissions factors can also be expressed in terms of grams per second 

(g/sec) if the speed of the vehicle is known. Emissions in g/sec are determined by multiplying the 

g/mile data by miles/second. A speed correction factor exists for emissions of NOX in the 

MOBILE approach. 

Figure 3.10 Plot of vehicle NOX emissions versus model year using the data from Machiele 
(1988) (Kern, 2000). 
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The main problem with using this method is that the FTP emissions certification test is 

based on vehicle behavior that is probably not relevant to the average real world vehicle usage. 

Also, it does not properly represent the extremes of freeway cruising and stop-and-go city 

service vehicle behavior. The emissions tests were conducted under closely controlled conditions 

with respect to intake air temperature and the engine intake and exhaust manifold pressures. In 

reality, engines are subject to the vagaries of weather and the influence of altitude and 
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maintenance. Certification data may also not reflect emissions in the field if “off-cycle” injection 

timing strategies are employed in the engine controller. The EPA’s emissions inventory model 

MOBILE 6, and ARB’s EMFAC 2002 incorporate corrections for off-cycle operation. 

Also there is little information as to how the emissions vary with accumulated engine 

mileage. Even though manufacturers provide these factors, they do not account for the tampering 

and/or malfunction. Some effects of tampering have been described by McKain et al. (1998). 

Concerns over the effect of vehicle condition will rise as exhaust aftertreatment devices become 

prevalent in use. 

3.3.2 Direct Use of Chassis Dynamometer Data 

Heavy-duty vehicles can be tested on a chassis dynamometer for emissions 

characterization, as is the present approach for light duty vehicles [Clark et al., 1995, Graboski et 

al., 1998, Deitzman et al., 1985]. The emissions results can be obtained directly in g/mile for 

each emissions constituent. A simple approach for prediction therefore involves taking the 

product of these emissions factors and the vehicle miles traveled. This approach is at least as 

valid as the FTP-based approach and offers the advantage that fuel economy need not be 

considered in the process.  All else being equal, a vehicle with a less efficient drivetrain would 

simply yield higher emissions factors in units of grams/mile. 

One advantage of chassis testing is that the vehicles can be tested as received, including 

influences of tampering or malfunction that might be lost if the engine were first removed from 

the vehicle. There is also the advantage that vehicles are more readily tested using chassis 

dynamometer systems than by removing the engine from the vehicle, so that data more 

representative of the whole fleet, rather than new vehicles. 
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There is no single cycle that mimics the real world spectrum of vehicle activities. 

Although the Urban Dynamometer Driving Schedule (40 CFR, Part 86) exists as a companion to 

the engine certification test, it does not correlate well with the FTP engine certification test 

[Deitzman and Warner-Selph, 1985] and does not represent all behaviors.   

The California Air Resources Board is now employing direct chassis based emissions 

measurements from either a cycle or a route for the new EMFAC 2002 model. Based on these 

data, the approach of using direct chassis dynamometer data for emissions inventory has appeal 

only for future testing following the development of a suite of cycles that are acceptably 

representative of fleet behavior, considering regional and vocational differences. 

Figure 3.11 shows the results from a chassis test performed on a 1996 TB. The effect of 

test weight and test cycle used on resulting emissions can also be seen. 

Figure 3.11 Emissions data from the 1996-TB on different test weights and test cycles 
(Clark et al. (1997)). 

0

10

20

30

40

50

60

70

80

CO (g/mile) NOX (g/mile) HC*100 (g/mile) PM*10 (g/mile)

E
m

is
si

on
s 

V
al

ue

CBD Cycle (27,758 lbs.)
CBD Cycle (32,843 lbs.)
CBD Cycle (38,072 lbs.)
WVU 5-Peak Cycle (32,843 lbs.)
WVU 5-Mile Route (32,843 lbs.)
New York Bus Cycle (32,843 lbs.)
Test D (32,843 lbs.)

 



 34

 The chassis-testing laboratory at WVU reports results for a vehicle driving a test schedule 

in g/mile of an emissions species. These data can be used directly as an emissions factor for that 

vehicle providing that the test cycle used was representative of the vehicle’s actual use. Figure 

3.12 shows the results of testing of full size transit buses. Testing was performed by WVU on 

diesel-powered buses driving the CBD test cycle described in SAE J1376. The line shown on the 

plot represents the trend of bus emissions factors, but this is specific to the CBD behavior. 

Further data, showing trends of emissions of Detroit Diesel powered buses have been published 

by Clark et al. (2000).  

Figure 3.12 Vehicle NOX emissions versus model year for CBD cycle using data from 
chassis laboratory testing [Kern, 2000]. 
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3.3.3 Power Based Emissions Factors 

Chassis dynamometer data can be used to obtain the emissions factors in a different way. 

Continuous emissions data from chassis dynamometer are acquired for NOX, CO and HC. These 

data can be considered in the development of models that can then be used to project the 
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emissions from the vehicle under a broad range of operating conditions. The data gathered by the 

WVU Translabs were acquired by the laboratories in units of parts per million for each of the 

species in diluted exhaust, but are readily converted to units of grams per second using the 

dilution tunnel mass flow rates. The dilution tunnel mass flow rate varies over the cycle 

depending on the engine speed and power requirements, and is also affected by the exhaust gas 

mass flow rate from the vehicle. 

It is possible, if a successful model can be developed to relate the emissions from a 

vehicle to its operating parameters, that the emissions may be predicted for any other cycle for 

which the operating conditions are known. Ramamurthy and Clark (1998) have proposed an 

approach where the emissions are related to the instantaneous power output from the vehicle rear 

axle. Instantaneous chassis dynamometer emissions data for a particular vehicle were processed 

to yield the instantaneous emissions in grams per second as a function of the single variable of 

rear axle power, as shown in Figure 3.13. In using these factors, one must employ correct time 

alignment of instantaneous power and the emissions constituent [Messer and Clark, 1995].  

Work has been completed at WVU to understand the time alignment of instantaneous power and 

its resulting emission production. The axle power was measured instantaneously yet the resulting 

emissions are measured after a time delay of the gas traveling from the engine to the analysis 

bench. An effect defined as “smearing” has also been observed and is when a spike of emissions 

from the engine is smeared into a bell-shaped curve (in time) when it reaches the analyzers 

[Ramamurthy and Clark, 1998, Ganesan and Clark, 2001]. 
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Figure 3.13 Continuous NOX versus power for a 1995 TT tested on the CSHVR. 
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contribution, heavy HC contribution, sulfate contribution and varying PM formation mechanisms 

all render this as an approximate approach. Data from devices such as the Tapered Element 

Oscillating Microbalance are being used with more accurate estimates of instantaneous PM 

emissions. 

Once an acceptable model has been formulated, vehicle activity data can be used to 

project as many cycles as are needed to describe the vocations of the fleet The model can be used 

to predict emissions from each of those cycles in g/mile without direct experimentation.  This 

approach is considered to have great potential, but will require further effort in model 

development. 

3.3.4 Use of NOX / CO2 Ratios  

NOX and CO2 values on a mass basis (grams) can easily be reported as a NOX over CO2 

ratio. Fuel usage on a volume basis (gallons) can be inferred from the CO2 mass production thus 

giving a predictor of NOX emissions produced on a per gallon of fuel basis. The CO2 production, 

or mass of CO2 produced per mass of fuel used, can be obtained by using a carbon balance. It 

should be noted that CO and HC have very little effect on the carbon balance, as they are very 

low for diesel engines. This results in 44 grams of CO2 produced for (approximately) every 13.8 

grams of diesel used (based on a C:H ratio of 1:1.8). It may be noted that the fuel density and 

carbon content vary a little,  hence, this method will be a good approximation unless the exact 

composition is known. Again, the database values are subject to the characteristics of the driving 

cycle followed on the chassis dynamometer.  

Figure 3.14 shows the continuous data of NOX plotted against CO2 for 5 consecutive test 

runs on the CBD Cycle. The vehicle was a 1996 TB powered by a Cummins M-11 engine rated 
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at 280 hp. Data scatter arises due to the “smearing” of instantaneous values by the two analyzers 

coupled with the presence of severe transients in the cycle. The average value of the ratio 

throughout this testing was determined to be 0.014 grams of NOX per gram of CO2. To predict 

vehicle emissions in grams/mile, the fuel mileage of the vehicle, density of the fuel, and CO2 

production per amount of diesel need to be determined. Then Equation 3.4 can be used to obtain 

the emissions value in grams/mile. 
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This approach will not prove sufficiently accurate if the engine timing varies substantially 

over the operating envelope. It will also be unreliable for other emissions species, which do not 

vary in proportion to CO2. 

Figure 3.14 Variation of NOX with CO2 for 5 consecutive test runs on the CBD cycle for a 
1996 model year 40-foot TB powered with 280 hp Cummins M11 engine.  
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3.3.5 Modal Approaches 

In addition to the continuous data approach, segments of the test may be considered, 

yielding modal emissions factors. It is argued that any vehicle behavior can be viewed as a 

collection of modes such as “cruising at high speed,” “idling” or “accelerating.” This approach 

exists as a simplification of the modeling approach, but it is argued that it will at best be 

approximated when considering response of PM, CO and HC to transient engine behavior. 

3.3.6 Use of Speed-Acceleration Data  

This approach is closely related to the modeling and modal approaches and is the 

approach favored in this research. It is common in reviewing light-duty vehicle emissions data to 

consider the speed and acceleration of the vehicle to be governing independent variables. For a 

given vehicle, the speed governs the road load losses, and the product of speed and acceleration 

governs the instantaneous inertial power demand. Emissions for a vehicle can be binned 

according to its speed and acceleration characteristics in the post processing of cycle data. There 

is a question as to whether vehicle speed and acceleration offer advantage over the single 

variable of power in heavy-duty applications, since the engine responds solely to power demand, 

and vehicle acceleration rates are low in heavy-duty vehicles. However, since more gear shifting 

occurs at lower speeds, speed is likely to add value as a variable. The objective of the emissions 

model is therefore to provide an emissions value, in the units of g/mile or g/sec, for each species 

as a function of speed and acceleration. This is accomplished by placing measured instantaneous 

emissions data into pre-determined speed and acceleration bins, and averaging the data in each 

bin. 
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These averaged emissions values can then be combined with the vehicle activity data to 

obtain emissions factors for inventory application. The vehicle activity data is the percentage of 

the time the vehicle spends in a particular speed and acceleration value (bin) in real world 

operation, for the entire range of speed and acceleration encountered by the vehicle. The vehicle 

activity data can be converted to the speed-acceleration form similar to the emissions data. Then, 

the emissions value in each bin can be multiplied by the activity data, which is the percentage of 

time of operation in a particular bin, in the corresponding bin and summed over the whole range 

of bins to obtain an average value. This procedure is explained in detail in Chapter 5. 

Problems in using a speed-acceleration approach for prediction arise when the speed-

acceleration profile of the vehicle for which an emissions factor is to be determined encounters 

hills, or grades. The extent to which a grade affects the emissions is not well known because the 

test schedules used to date on chassis dynamometers have no provisions for simulating hills. The 

WVU chassis dynamometers do not have the ability to motor the vehicle to simulate downhill 

driving and are limited in their ability to absorb full power at low speeds. This presents a 

problem when correlating the emissions to the speed-acceleration profile of the actual activity of 

a vehicle. As a vehicle is traveling uphill, the rate of change of speed (acceleration) is low while 

the axle power demand is high as compared when the vehicle is traveling on level ground, as 

simulated on the dynamometer. The only full-power emissions data that are gathered on the 

dynamometer are at a high rate of change of speed. This means that the predicted emissions of 

the vehicle ascending the grade will be lower than the actual emissions produced. This will hold 

true for emissions species that correlate well with axle power, such as NOX. Likewise, the 

emissions predicted when the vehicle descends a hill will be higher than the actual emissions 
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produced because the vehicle can attain a relatively high rate of change of speed, for which there 

are emissions data at full power. 

As discussed earlier, not all existing cycles cover the speed-acceleration envelope 

thoroughly. Figures 3.15 and 3.16 show the speed vs. acceleration plots for a 1996 TB powered 

by 280 hp Cummins M-11 engine over a CBD cycle and a the same vehicle tested over the City-

Suburban Heavy Vehicle Route  (CSHVR) respectively. The CBD has all acceleration rates 

defined, whereas the CSHVR is a speed-distance based route, and at certain points requires 

maximum vehicle acceleration. It can be seen that the CBD cycle fails miserably in covering the 

envelope, although the CSHVR has better coverage. In real world operation a vehicle may be 

able to achieve acceleration rates that are higher than those demanded by a test schedule. In order 

to develop a model that can predict the emissions with reasonable accuracy for the real world 

operation, the UDDSata must be obtained for a wide range of acceleration and speed values that 

are typical of day-to-day vehicle operation. Real world emissions are affected by atmospheric 

conditions, altitudes, driving terrain, and nature of driving and engine thermal history. 

Aggressive driving with frequent braking or clutch riding can have a serious effect on emissions.  
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Figure 3.15 Speed versus acceleration for a 1996 model year TB driving the CBD Cycle.  
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Figure 3.16 Speed versus acceleration for a 1996 model year TB driving the CSHVR. 
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Table 3.4 Speed-acceleration based NOX emissions (g/s) matrix for the 1994-97 model year 
tractor trucks. ND represents cells with no data. 

 

As an example, Table 3.4 shows the speed-acceleration based emissions factor table for 

the 1994-97 model year tractor trucks available in the WVU database. This table was obtained 

from the continuous NOX emissions data for all the tests performed on the 1994-97 model year 

tractor trucks. The analysis was performed as a part of a research project sponsored by NCHRP. 

The NOX emissions were grouped according to a speed-acceleration based matrix. Each speed 

bin was 5 mph wide except for the first bin. The acceleration ranges were divided into seven 

bins; heavy acceleration (> 2 mph/s), medium acceleration (> 1 mph/s and < 2 mph/s), light 

acceleration (> 0.3 mph/s and < 1 mph/s), cruise (> -0.3 mph/s and < 0.3 mph/s), light 

deceleration (> -1 mph/s and < -0.3 mph/s), medium deceleration (> –2 mph/s and < -1 mph/s), 

heavy deceleration (< -2 mph/s). The value in each bin represents the average value obtained 

from all the UDDSata in the 1994-97 model year group. The bins that have a “ND” have no data 

available for that speed and acceleration conditions. It can be seen that the existing database does 

not provide emissions values at speeds above 52.5 mph. 

It can be concluded that the existing models do not take into consideration all of the 

parameters that affect the emissions from heavy-duty diesel vehicles. There is a need for a model 

Speed Bin 
Heavy 

Acceleration 
Medium 

Acceleration 
Light 

Acceleration Cruise 
Light 

Deceleration 
Medium 

Deceleration
 Heavy 

Deceleration 
0 - 2.5 0.1120 0.0645 0.0564 0.0291 0.0281 0.0196 0.0354

2.5 - 7.5 0.1684 0.1267 0.0837 0.0551 0.0220 0.0175 0.0397
7.5 - 12.5 0.1713 0.1896 0.1151 0.0660 0.0166 0.0147 0.0402
12.5 - 17.5 0.1822 0.2475 0.1804 0.0949 0.0142 0.0104 0.0536
17.5 - 22.5 0.3235 0.2864 0.2741 0.1018 0.0049 0.0077 0.0534
22.5 - 27.5 0.4505 0.3115 0.3405 0.1060 0.0022 0.0058 0.0537
27.5 - 32.5 0.4391 0.3805 0.3544 0.1148 0.0041 0.0048 0.0614
32.5 - 37.5 ND 0.3440 0.3893 0.1656 0.0124 0.0055 0.0615
37.5 - 42.5 ND 0.3977 0.4255 0.1959 0.0398 0.0080 0.0545
42.5 - 47.5 ND 0.4042 0.4214 0.2748 0.0633 0.0094 0.0639
47.5 - 52.5 ND ND 0.2585 0.2827 ND ND 0.1168
52.5 - 57.5 ND ND ND ND ND ND ND
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that can predict the emissions accurately and at the same time incorporate the effects of different 

parameters that have profound effect on the exhaust emissions. It is evident that the driving 

schedule used has a significant effect on emissions from a vehicle. Clearly, none of the present 

day driving schedules covers the entire speed-acceleration range that is representative of real 

world operation. Additional data covering high-speed operation typical of highway operation is 

needed to augment the existing database. 

The extent to which vehicle weight/load affects the emissions needs to be studied in 

detail. There is a need for an emissions prediction methodology that fully explores and 

incorporates the various parameters that affect the emissions. 
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4 Experimental Set Up and Details of Tests Conducted 

4.1 Experimental Set-Up  

Specific data have been gathered to characterize and study the effects of various 

parameters on heavy-duty diesel vehicle emissions. Emissions data were obtained using various 

test schedules, which consisted of cycles or routes. Data were gathered using the West Virginia 

University Transportable Heavy Duty Emissions Testing Laboratories (Translabs) [Clark et al., 

1999 and Lyons et al., 1995]. Figure 4.1 shows a truck being tested on one of the transportable 

laboratories. The two West Virginia University Translabs are heavy-duty chassis dynamometer 

systems that can be moved from site to site with a dedicated semi-trailer and a laboratory trailer. 

The cycle-averaged emissions data gathered by the laboratories are added to a database. Each 

laboratory consists of a mobile chassis test bed and an emission analyzer trailer. The test vehicle 

was driven onto the test bed via ramps and chained down with the drive wheels supported on 

four pairs of free-spinning rollers. Right and left sets of flywheel weights and eddy-current 

power absorbers load the vehicle through drive shafts connected to the vehicle’s right and left 

hubs respectively. Road load (wind and rolling resistance) is simulated by two Mustang air-

cooled eddy-current power absorbers. The power absorber load was varied by electric current 

flow controlled by Dyn-loc IV power absorber controllers. Irreversible (frictional) dynamometer 

losses were considered during system calibration. Axle torque was measured using two Eaton 

torque transducers with a 22,600 N-m (16,669-ft -lbf.) rating. Vehicle exhaust was ducted to a 

full flow dilution tunnel with nominal flow rate options of 0.47, 0.71, 1.0, or 1.2 m3/s (1000, 

1500, 2000, or 2500 standard cubic feet per minute [scfm]) controlled by a critical flow venturi. 

Sample probes near the end of the dilution tunnel delivered diluted exhaust gas samples to the 

analyzer bench for continuous concentration measurement of HC, CO, CO2 and NOx. Analyzer 
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output was collected using an RTI-815 analog to digital data acquisition board that delivered an 

ADC signal (0-4000), depending on the selection of a particular channel, to a computer at a 

frequency of 10Hz. Data were readily converted to a frequency of 1 Hz and available in 

continuous second-by-second format. 

The data collected during the tests were available as continuous records of vehicle speed, 

vehicle power, and emissions of CO, NOX, and HC. Data were also available for CO2, and PM 

emissions from TEOM. 

Figure 4.1 A historical photograph showing one of the WVU Transportable Laboratories 
testing a New York city Department of Sanitation truck at Brooklyn Union Gas site. 

 

4.2 Development of a High Speed Cycle 

The existing data in the WVU database do not provide emissions data for heavy-duty 

trucks at high speeds typical of highway operation. Since typical highway operation represents 

longer period of cruise at highway speeds, there is a need for emissions data at these speeds in 
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order to obtain an emissions factors table for an inventory prediction model. To augment the 

existing WVU database with high-speed data, a cycle was developed with typical highway 

operation. This cycle was created using the second-by-second data available from the Battelle 

study of truck activity in California [Battelle, 1999]. The cycle was created using truck trips from 

activity data collected by Battelle Memorial Institute, limited to Class 8 vehicles, and limited to 

trips that included high speed driving.  

For the development of a cycle, the most important parameter is vehicle speed as a 

function of time. In the present effort, speed-time data from the Battelle database were used for 

that purpose. The speed-time data were divided into microtrips. A microtrip was defined as a 

period of driving activity typically commencing from an idle condition and ending at an idle 

condition. 

Acceleration data were obtained from the first derivative of the speed-time data. Then the 

acceleration and speed data were separated into vehicle acceleration (VA), vehicle deceleration 

(VD), vehicle cruise (CR), and idle segments. Idle was defined as any time that the speed equals 

0 mph and acceleration equals 0 mph/s. The VA, VD, and CR were differentiated by using 

different values of the acceleration as cutoff values discussed in Section 3.3.6 of Chapter 3.  

Cruise occurred when, according to the criteria set, the vehicle was not accelerating, decelerating 

or idling. 

The above process reduced the second-by-second distance data to speed, VA, VD, CR, 

idle times, acceleration times, deceleration times, and cruise times. Next, two separate sets of 

statistics were generated: one set for each individual microtrip, and a second for the whole 

Battele database. 
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All statistics used in the development of the cycle excluded idle times. Idle times vary 

widely among heavy-duty vehicles. Some trucking companies have devices that shut down a 

vehicle when it idles for a certain length of time, hence, it was decided that the idle time would 

be added to the cycle after the active portions were developed in proportion to the idle time in the 

database. This does not affect the statistics of the cycle, because the idle times were excluded 

during the evaluation of the statistics. 

Four main criteria that were considered for the cycle development were the degree to 

which the cycle was representative of the entire set of microtrips (the database) in terms of: 

average vehicle velocity (mph), standard deviation of velocity, the average value of velocity2 

(proportional to specific energy), and the standard deviation of velocity2. 

A cycle was developed by randomly adding together one or more microtrips until the 

total time of the microtrips reached a desired value. These combinations of microtrips (termed a 

“cycle”) were examined to determine how well the above criteria were met 

For each of the cycles thus formed, the average velocity (mph), standard deviation of 

velocity (mph), average velocity2, and standard deviation of velocity2 were determined. These 

values were then compared to the average values of the entire database using a root mean square 

(RMS) formula. The RMS value is given by 

5.02222
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where, AS is the average speed, SS is the standard deviation of average speed, AE is the average 

velocity2, and SE is the standard deviation of velocity2. The subscripts CYC and DB refer to the 
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cycle and the database respectively. Figure 4.2 shows the flow chart used for the methodology 

used to develop the high-speed cycle. 

Figure 4.2 Flow chart depicting the methodology used to develop the high-speed test cycle. 
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Each combination of microtrips or cycles had a RMS value. The goal was to pick a cycle 

with a low RMS value. Once the desired cycle was identified, the idle times were added back to 

form the final cycle. A cycle was developed using this method and its details are given below. 

Decelerations were limited, by altering the cycle, to 2.5 mph/sec. Higher decelerations 

were encountered in original activity data, but these may have been associated with uphill grades 

coupled with braking or emergency stops, and high rates of deceleration are a safety issue during 

dynamometer testing. The resulting cycle was 1900 seconds long. The new cycle, termed the 

“Inventory Highway Cycle” (IHC) offered good coverage of speeds and accelerations typical of 

tractor-trailer operation. The maximum acceleration in the driver’s target trace was 7.82 mph/sec 

and the highest speed attained was 68.08 mph. Table 4.1 gives the statistical information for this 

cycle. Figure 4.3 shows the actual speed-time performance of a 1995 model year TT over the 

new cycle (IHC). Figure 4.4 and Figure 4.5 show the plots of speed versus acceleration and 

distribution of operating points along speed and acceleration bins for the IHC. It can be seen that 

this cycle covers more fully the speed-acceleration envelope typical of tractor-trailer operation. It 

can be noted that the decelerations have been limited to –2.5 mph/s. Small differences existed 

between the target trace and actual performance due to the need to change gears and due to 

power limitations of the vehicle during transients. 

Table 4.1 Statistical information for the Inventory Highway Cycle (IHC).  
Data Value 
Maximum Speed (mph) 68.08 
Average Speed (mph) 36.94 
Total Duration (seconds) 1900 
Total Distance (miles) 19.50 
Maximum Acceleration (mph/s) 7.82 
Total Idle Time (seconds) 124 
Average Speed without Idle considered (mph) 39.5 
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Figure 4.3 Speed-time trace of the Inventory Highway Cycle (IHC). 

 

Figure 4.4 Speed-acceleration trace of the Inventory Highway Cycle (IHC). 
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Figure 4.5 Distribution of operating points along speed and acceleration bins for the 
Inventory Highway Cycle (IHC).  

4.3 Details of Vehicles Tested 

Additional emissions data were obtained from two over the road trucks representing two 

different model year groups on two different cycles. The tested vehicles include “Test Vehicle 

1,” which was a 1995 model year TT with a GVWR of 56,000 lb. and “Test Vehicle 2,” which 

was a 1982 model year truck with a GVWR of 80,000 lb. These vehicles were tested on the IHC 

and the CSHVR. The CSHVR provided coverage at lower speeds typical of urban stop and go 

traffic condition. The older model year truck was tested at a test weight of 60,000 lb. The newer 

model year truck was tested at test weights of 56,000 lb. and 42,000 lb. respectively. 
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The Test Vehicle 1 was tested on two different configurations. The first configuration 

was the as sold mode with off-cycle emissions and from here on is referred to as a “dual map” 

truck. In the dual map mode, the vehicle is capable of operating in the off-cycle mode (high 

NOX). The same vehicle was also configured to operate with no off-cycle emissions. This is 

termed as “single map” and leads to lower NOX emissions overall. This enabled the study of the 

effect of off-cycle emissions.  

A detailed analysis was performed on the emissions data gathered from the two Test 

Vehicles and Table 4.2 gives the details of tests conducted on these two trucks.  

Table 4.2 Tests conducted on the two over-the-road tractor trucks.   
Test weight (lbs.) Test Schedule Single/Dual Map No. of Repeats 

Tests on the “Test Vehicle 1” - 1995 model year TT 

42,000 IHC Dual Map 2 
42,000 CSHVR Dual Map 3 
56,000 IHC Dual Map 3 
56,000 CSHVR Dual Map 4 
56,000 IHC Single Map (Low NOX 

mode) 
4 

56,000 CSHVR Single Map (Low NOX 
mode) 

2 

Tests on “Test Vehicle 2” - 1982 model year truck 
60,000 CSHVR Mechanical 3 
60,000 IHC Mechanical 4 
 
  To cover the range of model year groups, emissions data available from Phase I of a 

research project conducted for Coordinating Research Council (CRC) were used. This study 

involved the testing of 25 different Class 8 trucks on 6 different driving schedules at two 

different test weights. Multiple test runs were available for each of the driving schedule. Table 

4.3 gives the distribution of the trucks according to the model year groups. Details of the vehicles 

tested and the test schedules used are tabulated in Table 4.4. Emissions data from these tests 

enabled the study of the effects of model year groups and test weight on vehicle emissions. 
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Table 4.3 Distribution of vehicles according to model year group. 

Vehicle Model Year Group Number of Vehicles 
1974 - 1977 2 
1978 -19 81 2 
1982 – 1985 3 
1986 – 1989 3 
1990 – 1993 6 
1994 – 1997 4 

1998 and Newer 5 
 

Table 4.4 Details of test vehicles from the CRC Study 

E55CRC 
(Truck) 

Engine 
Manufacturer Engine Model 

Engine 
Model 
Year 

Vehicle 
Model 
Year 

E55CRC-1 Detroit Diesel Corp. Series 60 1994 1994 
E55CRC-2 Caterpillar 3406B 1995 1995 
E55CRC-3 Cummins NTCC-300 1985 1985 
E55CRC-4 Caterpillar C-10 2000 2000 
E55CRC-5 Cummins N14-435E1 2000 2000 
E55CRC-6 Cummins M11-300 1995 1995 
E55CRC-7 Detroit Diesel Corp. Series 60 1990 1990 
E55CRC-8 Cummins M11-300 1996 1996 
E55CRC-9 Caterpillar C12 1998 1998 
E55CRC-10 Detroit Diesel Corp. Series 60 1998 1998 
E55CRC-11 Cummins ISM-11 2000 2000 
E55CRC-12 Cummins 300 1986 1986 
E55CRC-13 Cummins 350 1978 1978 
E55CRC-14 Cummins LTA10 1985 1986 
E55CRC-15 Cummins NTC-350 1986 1973 
E55CRC-16 Caterpillar 3208 1979 1979 
E55CRC-17 Cummins L-10 1993 1993 
E55CRC-18 Cummins L-10 1991 1991 
E55CRC-19 Cummins L-10 1987 1987 
E55CRC-20 Detroit Diesel Corp. Series 60 1992 1992 
E55CRC-21 Caterpillar 3406B 1990 1990 
E55CRC-22 Cummins L10-280 1993 1993 
E55CRC-23 Cummins Plate Not Available N/A 1983 
E55CRC-24 Cummins NTCC-350 1975 1975 
E55CRC-25 Cummins Plate Not Available 1983 1983 
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The vehicles listed in Table 4.3 were tested on the following six test schedules: UDDS 

(UDDS), AC5080, CARB Idle3 Cycle, CARB Cruise3 Cycle, CARB Trans3 Cycle, and CARB 

Creep Cycle. 

 Additional data were available from prior tests conducted by the WVU Translabs on five 

different vehicles at different test weights. These data were used to study the effects of test 

weight during initial part of this research. The new data available from the 25 Class 8 trucks 

were augmented to enable complete understanding of the effect of test weights on heavy-duty 

vehicle emissions. 

 The following vehicles were examined during this study and have been reported in prior 

papers [Clark et al., 1997,1999] covering individual studies. 

1) A 1989 model year transit Bus (TB), powered by a DDC 6V-92TA engine, and with an 

automatic transmission. This vehicle was tested at 19,429 lb. and 32,042 lb. over the Central 

Business District (CBD) cycle. 

2) A 1989 model year transit Bus (TB), powered by a DDC 6V-92TA engine, and with an 

automatic transmission. This vehicle was tested at 19,429 lb. and 32,042 lb. over the NY 

composite cycle. 

3) A 1996 model year transit bus (TB), powered by DDC Series 50 engine, and with an 

automatic transmission. This vehicle was tested at 27,650 lb., 32,825 lb. and 38,000 lb. over 

the CBD cycle. 

4) A 1998 model year tractor truck (TT), powered by a Cummins N14 Celect engine, and with a 

manual transmission. This vehicle was tested at 26,000 lb., 36,000 lb. and 46,400 lb. over the 

CSHVR. 
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5) A 1994 model year tractor truck (TT), powered by a Cummins M11-330E engine, and with a 

manual transmission. This vehicle was tested at 29,000 lb., 42,000 lb. and 61,000 lb. over the 

CSHVR. 

To study the effect of test schedule on the vehicle emissions, data from a prior study 

where a single vehicle was tested on 16 different cycles were used engine [Nine et al., 2001, 

Clark et al., 2002] The vehicle was a 1995 model year GMC Box Truck powered by a 170 hp, 

6.6 liter Caterpillar. The vehicle was tested at 22,000 lbs. In prior research, the data from this 

truck have been used to train and predict emissions using Artificial Neural Network (ANN) 

[Tehranian, 2003]. Emissions data from this truck were used to compare the speed-acceleration 

approach with the ANN. Detailed analysis was conducted on the data from all the vehicles, 

including the two test vehicles and the results are presented and discussed in detail in the 

following chapters.  

 
Table 4.5 Details of test schedules for the 1995 Box Truck. 

 

Chassis Test 
Schedule

Length 
(seconds)

Distance 
(miles)

Maximum 
Speed 
(mph)

Average 
Speed 
(mph)

CDB 600 2.0 20.0 12.6
CBD Route 566 2.1 20.0 13.1

14-C 600 2.0 20.0 11.8
NYBUS 600 0.6 30.8 3.7
Arterial 291 2.0 40.0 24.8

5-Peak Cycle 900 5.0 39.9 20.0
5-Mile Route 759 5.0 39.9 23.7

CSR 1605 6.9 43.8 15.5
CSC 1700 6.4 43.8 13.5

ALT-1 1722 6.4 51.3 13.4
ALT-2 1590 6.3 38.7 14.2
Test_D 1060 5.6 58.0 18.9

Yard 1168 1.1 16.8 3.3
Highway 1648 15.5 60.7 34.0

City 1430 3.4 35.8 8.5
FIGE 1722 17.5 56.6 36.6
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5 Development of Speed-Acceleration Based Emissions Factors Tables 

This chapter describes the methodology that was used to generate the speed-acceleration 

based emissions factors tables from the continuous emissions data obtained from chassis 

dynamometer testing. Detailed analyses involved in generating emissions factor tables for the 

HC, NOX, and CO are discussed. Results from the analysis are tabulated and are presented in a 

form that can be used for the emissions inventory prediction method that is favored in this 

dissertation.  

A basic assumption used in constructing Heavy Duty Diesel Vehicle (HDDV) emission 

factors from the WVU chassis dynamometer data was that the second-by-second emissions at 

any given speed-acceleration point were independent of the overall speed-time profile over 

which the vehicle was being driven. In other words, it was assumed that a vehicle would have the 

same emissions (in grams per second) if it accelerates from 18 to 20 mph in one second 

regardless of the previous driving history during the trip. Given this assumption, emissions over 

a particular driving cycle can be estimated by applying the dynamometer-based emission rate at 

each speed-acceleration point in the cycle being evaluated. Summing the gram per second 

emissions over the entire cycle and dividing that total by the distance of the cycle then gives 

emissions in terms of grams/mile. 

The WVU database, which was used in this research, consisted of individual test runs of 

heavy-duty vehicles that were driven on different test sequences. The term “test sequences” 

encompasses both routes and cycles that are present in the database. 
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5.1 Time Alignment of Emissions Data 

The test run data were available as continuous records of vehicle speed, vehicle power, 

and emissions of CO, NOX and HC. As the exhaust gas leaves the vehicle, it travels through a 

transfer pipe, into the dilution tunnel, and then to the analyzers where the emissions were 

measured. The vehicle speed and load were measured instantaneously at the axle, and there was 

a delay time between the measurement of speed and load at the axle and the measurement of the 

exhaust gas produced from that speed and load. This time delay was observed in the emissions 

data for each emission species, and represents the residence time of the exhaust in the transfer 

pipe and dilution tunnel from the vehicle’s engine to the analysis bench. The time shift of the 

emissions data must be corrected to be able to correlate a particular speed-acceleration of the 

vehicle to an emissions event. This was accomplished using a cross-correlation method 

employing Equation 5.1. 

( ) ( )
∑

⎟
⎠
⎞

⎜
⎝
⎛ Δ+

∗=
dt

ttmd

dt
tPdS )(         Equation 5.1 

where P is power in hp and m  is emission species in grams/sec, they represent the continuous 

data recorded from the test. A time shift was chosen and the sum (S) was calculated using 

Equation 5.1. It was assumed that emissions are higher at higher power demand as it directly 

relates to the energy required and hence the amount of fuel burnt. The sum was calculated for 

different values of the time shift, Δt, and the time shift that produced the largest sum was used as 

the best correlation. This method has been used previously by Messer and Clark (1995). As an 

example, the plots of time shift vs. sum for NOX, CO and HC emissions for the Test Vehicle 1 

operating on the dual map are shown in Figure 5.1 through 5.3.  
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Figure 5.1 Plot of sum vs. time shift (Δt) for the NOX emissions from the Test Vehicle 1 on 
dual map over IHC. Time shift in this case was 9 sec. 

The time-shifted emissions were then grouped according to the speed-acceleration bins as 

a two-dimensional matrix in the units of grams per second. The speed and acceleration bin 

ranges were chosen to be same as those for the heavy-duty activity data obtained from Battelle 

Memorial Institute. The speed values were grouped into 14 bins with a width of 5 mph and the 

acceleration values were divided into 7 bins, namely: high acceleration, medium acceleration, 

light acceleration, cruise, light deceleration, medium deceleration, and heavy deceleration. Table 

5.1 shows the acceleration ranges for each of these bins. A suite of tables was created according 

to the vehicle class and model year grouping for the UDDSata used in this research.  
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Table 5.1 Acceleration bin ranges  
Bin label Acceleration range 

Heavy Acceleration > 2 mph/s 

Medium Acceleration 1 to 2 mph/s 

Light Acceleration 0.3 to 1 mph/s 

Cruise -0.3 to 0.3 mph/s 

Light Deceleration -0.3 to –1 mph/s 

Medium Deceleration 1 to 2 mph/s 

Heavy Deceleration < -2 mph/s 

 

The continuous NOX emissions for the test runs on Test Vehicle 1 and Test Vehicle 2 on 

two different cycles are shown in Figures 5.4 through 5.8. These figures all have the same axis 

scales to permit visual comparison. 

Figure 5.2. Plot of sum vs. time shift (Δt) for the HC emissions from the Test Vehicle 1 on 
dual map over IHC. Time shift in this case is 20 sec. HC emissions do not correlate as well 
with power as do CO or NOX emissions. There is some uncertainty in using this method for 
estimating delay time for HC emissions.  
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It can be seen in Figure 5.2 that the HC emissions does not correlate well with the power. 

This may be because the HC emissions may not be proportional to the power. HC emissions may 

be high at light loads due to incomplete (or poor) combustion. However, these are still relatively 

low compared to gasoline engines. 

Figure 5.3. Plot of sum vs. time shift (Δt) for the CO emissions from the Test Vehicle 1 on 
dual map over IHC. Time shift in this case is 8 sec. 

5.2 Presentation of Continuous Emissions Data 

The continuous emissions data from the two over-the-road tractor trucks that were tested 

on the chassis dynamometer as a part of this research are presented in this section. These two 

trucks (discussed in Chapter 4) were tested on the CSHVR and the IHC. Test Vehicle 1 was 

tested at two different test weights of 56,000 lb. and 42,000 lb., and Test Vehicle 2 was tested at 

60,000 lb. Figures 5.4 through 5.6 show some example plots of NOX emissions in g/s vs. time. In 

the continuous plots for each of the emissions species, the y-axis uses the same scale to enable 

better visual comparison. 
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Figure 5.4 Continuous NOX emissions in g/s for the Test Vehicle 1 operating on dual map 
over the City Suburban Heavy Vehicle Route (CSHVR) at 42,000 lbs. 

 
Figure 5.5 Continuous NOX emissions in g/s for the Test Vehicle 2 on the City Suburban 
Heavy Vehicle Route (CSHVR) at 60,000 lbs. 
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 Figure 5.6 Continuous NOX emissions in g/s for the Test Vehicle 2 on the Inventory 
Highway Cycle (IHC) at 60,000 lbs. 

 
Figure 5.7 Continuous NOX emissions in g/s for the Test Vehicle 1 operating on single map 
over the Inventory Highway Cycle (IHC) at 56,000 lbs.  
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Figure 5.8 Continuous NOX emissions in g/s for the Test Vehicle 1 operating on dual map 
over the Inventory Highway Cycle (IHC) at 56,000 lbs. 

Figures 5.7 and 5.8 show the NOX emissions for the Test Vehicle 1 operating on the single and 

dual maps respectively. It can be observed that the NOX emissions are higher for the dual map 

(Figure 5.8). The NOX emissions increased from a value of 14.61 g/mile for single map to 24.75 

g/mile for the dual map operation. This increase in NOX emissions (almost double) is attributed 

to the presence of off-cycle operation. 
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tabulated and the values are presented in this section. For each test configuration, the tests were 

performed on two cycles (CSHVR and IHC). The emissions data from these two cycles were 

blended together to form composite speed-acceleration matrices. Tables 5.2 and 5.3 show the 

NOX emissions data (raw, or “unsmoothed”) and the number of occurrences as a population 

matrix for the Test Vehicle 1 operating on the single map over the CSHVR. The population 

matrix represents the number of occurrences in each bin; this is essentially the number of 

seconds the vehicle spent in a particular speed-acceleration bin. These are examples of the speed-

acceleration based emissions tables that were discussed earlier in this chapter. Tables 5.4 and 5.5 

show the NOX emissions and the population matrix for the same truck on the IHC. The truck was 

operated at a test weight of 56,000 lbs. As can be seen, the CSHVR does not cover high-speed 

operation and this is augmented by the IHC data resulting in the blended matrix that has a better 

coverage over a wide range of speed and acceleration values. Table 5.6 shows the blended matrix 

for the NOX emissions and Table 5.7 shows the resulting population matrix.   

Table 5.2 NOX emissions data in g/s for the Test Vehicle 1 on the single map over the 
CSHVR – 56,000 lbs.  

 
 

 

 

Speed Bin
Heavy 

Deceleration
Medium 

Deceleration
Light 

Deceleration Cruise
Light 

Acceleration
Medium 

Acceleration
Heavy 

Acceleration
0 To 2.5 0.01733 0.01813 0.01902 0.01892 0.04862 0.07833 ND

2.5 To 7.5 0.01405 0.01935 0.02696 0.06721 0.09961 0.10809 0.10426
7.5 To 12.5 0.01146 0.01951 0.03904 0.16434 0.15192 0.18194 0.13639
12.5 To 17.5 0.01250 0.02117 0.03243 0.19525 0.17302 0.23250 0.39705
17.5 To 22.5 0.01246 0.01959 0.04585 0.15138 0.24675 0.30824 0.37151
22.5 To 27.5 0.01232 0.01903 0.02970 0.14271 0.26876 0.34784 ND
27.5 To 32.5 0.00819 0.01938 0.03245 0.14802 0.25356 0.36110 ND
32.5 To 37.5 ND 0.01495 0.06803 0.10465 0.24598 0.38937 ND
37.5 To 42.5 ND 0.02432 0.03583 0.22320 0.29479 ND ND
42.5 To 47.5 ND ND 0.07325 0.11689 0.22821 ND ND
47.5 To 52.5 ND ND ND ND ND ND ND
52.5 To 57.5 ND ND ND ND ND ND ND
57.5 To 62.5 ND ND ND ND ND ND ND

62.5 and above ND ND ND ND ND ND ND
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Table 5.3 Population matrix for the Test Vehicle 1 on the single map over the CSHVR - 
56,000 lbs. 

 
 
Table 5.4 NOX emissions data in g/s for the Test Vehicle 1 on the single map over the IHC - 
56,000 lbs.  

 
Table 5.5 Population matrix for the Test Vehicle 1 on the single map over the IHC - 56,000 
lbs. 

 

Speed Bin
Heavy 

Deceleration
Medium 

Deceleration
Light 

Deceleration Cruise
Light 

Acceleration
Medium 

Acceleration
Heavy 

Acceleration
0 To 2.5 4 14 30 427 19 16 0

2.5 To 7.5 13 21 18 92 39 29 7
7.5 To 12.5 15 21 4 18 23 29 1
12.5 To 17.5 19 15 14 35 29 38 2
17.5 To 22.5 13 24 19 19 24 33 6
22.5 To 27.5 5 30 22 81 34 35 0
27.5 To 32.5 4 18 24 80 42 21 0
32.5 To 37.5 0 4 16 77 17 9 0
37.5 To 42.5 0 4 6 13 14 0 0
42.5 To 47.5 0 0 3 4 4 0 0
47.5 To 52.5 0 0 0 0 0 0 0
52.5 To 57.5 0 0 0 0 0 0 0
57.5 To 62.5 0 0 0 0 0 0 0

62.5 and above 0 0 0 0 0 0 0

Speed Bin
Heavy 

Deceleration
Medium 

Deceleration
Light 

Deceleration Cruise
Light 

Acceleration
Medium 

Acceleration
Heavy 

Acceleration
0 To 2.5 5 11 18 178 17 5 0

2.5 To 7.5 12 11 27 101 23 19 11
7.5 To 12.5 15 9 8 35 18 27 1
12.5 To 17.5 14 7 7 17 13 28 1
17.5 To 22.5 11 11 11 19 13 25 2
22.5 To 27.5 8 8 7 21 15 20 0
27.5 To 32.5 7 9 8 24 24 16 0
32.5 To 37.5 7 6 6 9 5 23 0
37.5 To 42.5 3 5 21 47 31 9 0
42.5 To 47.5 4 1 16 48 27 2 0
47.5 To 52.5 2 4 3 1 13 0 0
52.5 To 57.5 1 6 7 15 23 0 0
57.5 To 62.5 0 4 29 94 34 0 0

62.5 and above 0 0 19 449 41 0 0

Speed Bin
Heavy 

Deceleration
Medium 

Deceleration
Light 

Deceleration Cruise
Light 

Acceleration
Medium 

Acceleration
Heavy 

Acceleration
0 To 2.5 0.01288 0.01287 0.02011 0.02294 0.05766 0.10150 ND

2.5 To 7.5 0.01673 0.01908 0.04077 0.06931 0.11729 0.12588 0.11398
7.5 To 12.5 0.01092 0.01013 0.03479 0.11740 0.17861 0.18139 0.18463
12.5 To 17.5 0.00610 0.01266 0.02435 0.16255 0.20069 0.25033 0.38345
17.5 To 22.5 0.00769 0.01102 0.02219 0.15685 0.23174 0.34579 0.44804
22.5 To 27.5 0.00537 0.01037 0.01688 0.15921 0.26934 0.38557 ND
27.5 To 32.5 0.00487 0.01314 0.01451 0.17841 0.26973 0.38942 ND
32.5 To 37.5 0.00506 0.01262 0.01501 0.12607 0.25243 0.49362 ND
37.5 To 42.5 0.01245 0.01236 0.02031 0.11810 0.35414 0.45454 ND
42.5 To 47.5 0.00452 0.00598 0.02323 0.10623 0.32182 0.51157 ND
47.5 To 52.5 0.00370 0.00428 0.01438 0.13084 0.55198 ND ND
52.5 To 57.5 0.00263 0.00853 0.02361 0.26720 0.42853 ND ND
57.5 To 62.5 ND 0.00937 0.02540 0.14224 0.42942 ND ND

62.5 and above ND ND 0.03032 0.14205 0.33900 ND ND



 67

Figure 5.9 and Figure 5.10 show the plots of NOX emissions in g/s for cruise and medium 

acceleration bins for Test Vehicle 1 on single map over IHC and CSHVR as a function of speed 

bin. It can be observed from Figures 5.9 and 5.10 that there are some deviations from the general 

trend for the cruise bin. This can also be clearly seen from Tables 5.2 and 5.4 respectively. The 

corresponding population matrices show that there is very low activity in these cells. These 

deviations may exist due to measurement errors and thus bring the need for smoothing of data, 

which is discussed in detail in Section 5.5 of this chapter. It can also be observed that 

extrapolation is very sensitive to the form of smoothing equation employed. Proper care must be 

taken when choosing a smoothing equation. 

Figure 5.9 Variation of NOX emissions (g/s) with speed for cruise and medium acceleration 
bins for Test Vehicle 1 on single map over IHC tested at 56,000 lb.  
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Figure 5.10 Variation of NOX emissions (g/s) with speed for cruise and medium 
acceleration bins for Test Vehicle 1 on single map over CSHVR tested at 56,000 lb.  

 
The blended matrices were obtained by obtaining the average for the emissions values in 

each bin resulting from the two test cycles. In the tables presented, the cells that contain a “ND” 

(zero valued cells in the population matrix) represent operating points that the tested vehicles did 

not achieve during the chassis dynamometer operation. These cells can exist because of two 

reasons. The first reason is that the vehicle could not achieve the performance represented by 

some cells, and second is that the test cycle did not require the vehicle to operate at the 

performance level represented by some cells. Of course, operation in some cells, representing 

combinations of high speed and high acceleration, are unrealistic on flat terrain because the 

implied engine power demand would exceed the engine rating. These cells can be filled with 

values using an extrapolation method in the interests of obtaining a more complete matrix. The 

extrapolation methods used to fill in the zero valued cells are discussed in detail later in this 
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chapter. Figure 5.11 shows the plot of percentage difference between the NOX emissions for IHC 

and CSHVR as a function of speed for the Test Vehicle 1 on single map in the overlap area 

corresponding to the blended matrix. It can be seen that the NOX emissions values are within 

20% for most of the operation in all four acceleration bins (cruise, light acceleration, medium 

acceleration, and heavy acceleration). The unusually high value corresponding to 40 mph is 

believed to be caused due to gear shifting and is discussed later in this dissertation. 

 Figure 5.11 Variation of percentage difference of NOX emissions (g/s) between IHC and 
CSHVR for Test Vehicle 1 on single map – 56,000 lbs.  
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Table 5.6 Blended NOX emissions data in g/s for the Test Vehicle 1 on the single map – 
56,000 lbs. 

 
Table 5.7 Population matrix for the blended data for the Test Vehicle 1 on the single map – 
56,000 lbs.. 

  

As mentioned in Chapter 4, Test Vehicle 1 data were available for both dual and single 

maps of operation. Test results showed that the CSHVR did not invoke off-cycle behavior even 

in the dual map mode. However, there was some difference in the NOX emissions values between 

the two modes (for the CSHVR), which can be seen clearly from Figure 5.12. The cycle 

averaged NOX emissions values (in grams/mile) varied by 16%. This difference can be attributed 

to the day-to-day variations in environmental conditions such as the relative humidity and the 

ambient temperature as well as the sensitivity of NOX to driving style. In addition, in the 

experience of the experimental researchers, run-to-run variations of NOX are of the order of 5%. 

Speed Bin
Heavy 

Deceleration
Medium 

Deceleration
Light 

Deceleration Cruise
Light 

Acceleration
Medium 

Acceleration
Heavy 

Acceleration
0 To 2.5 0.01687 0.01751 0.02177 0.02270 0.05453 0.09655 ND

2.5 To 7.5 0.01892 0.02121 0.03673 0.06396 0.10169 0.11490 0.11684
7.5 To 12.5 0.01566 0.01763 0.03450 0.11005 0.15117 0.15767 0.15995

12.5 To 17.5 0.01400 0.01686 0.02538 0.12598 0.16346 0.20842 0.41020
17.5 To 22.5 0.01304 0.01613 0.02136 0.14076 0.21229 0.27392 0.33223
22.5 To 27.5 0.00969 0.01433 0.02320 0.11373 0.22283 0.32857 ND
27.5 To 32.5 0.00663 0.01173 0.01989 0.12267 0.22752 0.32173 ND
32.5 To 37.5 0.00522 0.01496 0.02245 0.09924 0.22915 0.44720 ND
37.5 To 42.5 0.01089 0.01488 0.02271 0.12991 0.33107 0.45454 ND
42.5 To 47.5 0.00452 0.01098 0.02472 0.10397 0.31157 0.51157 ND
47.5 To 52.5 0.00370 0.00428 0.01438 0.13084 0.55198 ND ND
52.5 To 57.5 0.00263 0.00853 0.02361 0.26720 0.42853 ND ND
57.5 To 62.5 ND 0.00937 0.02540 0.14224 0.42942 ND ND

62.5 and above ND ND 0.03032 0.14205 0.33900 ND ND

Speed Bin
Heavy 

Deceleration
Medium 

Acceleration
Light 

Acceleration Cruise
Light 

Deceleration
Medium 

Deceleration
Heavy 

Acceleration
0 To 2.5 8 26 47 608 36 18 0

2.5 To 7.5 25 33 51 179 57 53 17
7.5 To 12.5 31 30 13 54 45 58 2
12.5 To 17.5 32 21 18 50 46 65 2
17.5 To 22.5 25 32 26 38 38 61 6
22.5 To 27.5 16 35 28 97 52 55 0
27.5 To 32.5 10 26 32 105 67 37 0
32.5 To 37.5 7 11 21 84 25 32 0
37.5 To 42.5 4 8 25 58 44 9 0
42.5 To 47.5 4 2 18 52 31 1 0
47.5 To 52.5 1 4 3 1 13 0 0
52.5 To 57.5 1 6 7 15 23 0 0
57.5 To 62.5 0 4 29 94 34 0 0

62.5 and above 0 0 19 449 41 0 0
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To overcome this variation, the CSHVR data for the (Test Vehicle 1 at 56,000 lb.) tests 

performed in single map and dual map modes were averaged and no difference between single 

and dual modes for the CSHVR were considered further. NOX values given in Table 5.6 were 

obtained using the averaged CSHVR data along with the IHC data for the single map. 

Figure 5.12 Comparison of continuous NOX emissions in g/s for the Test Vehicle 1 at 56,000 
lbs between the dual and single map operation over the CSHVR. 

Tables 5.8 through 5.13 present the NOX emissions values in grams/second and the 

corresponding population matrices for the Test Vehicle 1 at 56,000 lbs. on the dual map, Test 

Vehicle 1 at 42,000 lbs. on the dual map and the Test Vehicle 2 at 60,000 lbs. respectively. 
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Table 5.8 Blended NOX emissions data in g/s for the Test Vehicle 1 at 56,000 lbs. on the dual 
map. 

 
 
Table 5.9 Population matrix for the blended data for Test Vehicle 1 at 56,000 lbs. on the 
dual map. 
 

 
Table 5.10 Blended NOX emissions data in g/s for the Test Vehicle 1 at 42,000 lbs. on the 
dual map. 
 

 

Speed Bin
Heavy 

Deceleration
Medium 

Deceleration
Light 

Deceleration Cruise
Light 

Acceleration
Medium 

Acceleration
Heavy 

Acceleration
0 To 2.5 0.01876 0.01821 0.02122 0.02176 0.04847 0.09203 ND

2.5 To 7.5 0.01935 0.01958 0.03011 0.05323 0.08787 0.10507 0.11628
7.5 To 12.5 0.01834 0.01996 0.02803 0.07765 0.12481 0.13020 0.14086

12.5 To 17.5 0.01769 0.01686 0.03165 0.10885 0.14852 0.17706 0.41318
17.5 To 22.5 0.01686 0.01605 0.02363 0.11450 0.19614 0.21755 0.26893
22.5 To 27.5 0.01508 0.01523 0.02484 0.09842 0.20396 0.30061 ND
27.5 To 32.5 0.01085 0.01147 0.02268 0.10921 0.21787 0.28112 ND
32.5 To 37.5 0.00712 0.01183 0.01953 0.09611 0.24346 0.35204 ND
37.5 To 42.5 0.00388 0.01712 0.02370 0.12828 0.30843 0.35877 ND
42.5 To 47.5 ND 0.01573 0.01994 0.11898 0.34194 ND ND
47.5 To 52.5 ND 0.00799 0.06170 0.21253 0.49494 ND ND
52.5 To 57.5 ND 0.00994 0.01193 0.27773 0.41814 ND ND
57.5 To 62.5 ND 0.02900 0.06613 0.36629 0.58501 ND ND

62.5 and above ND ND 0.07493 0.52728 0.76010 ND ND

Speed Bin
Heavy 

Deceleration
Medium 

Deceleration
Light 

Deceleration Cruise
Light 

Acceleration
Medium 

Acceleration
Heavy 

Acceleration
0 To 2.5 6 30 45 620 34 18 0

2.5 To 7.5 20 40 58 150 61 66 9
7.5 To 12.5 28 37 11 55 58 57 4
12.5 To 17.5 29 30 13 48 60 63 2
17.5 To 22.5 21 39 21 35 42 67 3
22.5 To 27.5 14 38 24 81 51 55 0
27.5 To 32.5 4 33 29 102 71 36 0
32.5 To 37.5 1 20 23 82 35 28 0
37.5 To 42.5 1 12 23 60 54 1 0
42.5 To 47.5 0 7 18 40 31 0 0
47.5 To 52.5 0 6 2 1 14 0 0
52.5 To 57.5 0 8 6 10 27 0 0
57.5 To 62.5 0 7 21 98 41 0 0

62.5 and above 0 0 22 430 40 0 0

Speed Bin
Heavy 

Deceleration
Medium 

Deceleration
Light 

Deceleration Cruise
Light 

Acceleration
Medium 

Acceleration
Heavy 

Acceleration
0 To 2.5 0.01639 0.01815 0.02259 0.02193 0.04503 0.08048 ND

2.5 To 7.5 0.01760 0.02118 0.02488 0.05320 0.08500 0.10343 0.11409
7.5 To 12.5 0.01825 0.01845 0.02793 0.08370 0.11593 0.12567 0.12446
12.5 To 17.5 0.01795 0.01949 0.03754 0.10322 0.13787 0.13831 0.18700
17.5 To 22.5 0.01653 0.01558 0.02804 0.10865 0.16136 0.17718 0.16354
22.5 To 27.5 0.01563 0.01383 0.02054 0.08987 0.16680 0.22926 0.11792
27.5 To 32.5 0.01588 0.01038 0.02616 0.10719 0.17565 0.21258 ND
32.5 To 37.5 0.01373 0.01492 0.03256 0.09174 0.20440 0.30309 ND
37.5 To 42.5 0.01411 0.01710 0.03135 0.11113 0.21875 0.26692 ND
42.5 To 47.5 0.01243 0.01738 0.03029 0.10246 0.19685 0.37704 ND
47.5 To 52.5 0.00944 0.03639 0.01308 0.12754 0.40705 0.46195 ND
52.5 To 57.5 0.02290 0.02480 0.05243 0.20929 0.39868 ND ND
57.5 To 62.5 0.00430 0.02500 0.08432 0.36716 0.49800 ND ND

62.5 and above ND ND 0.08336 0.43163 0.69106 ND ND
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Table 5.11 Population matrix for the blended data for the Test Vehicle 1 at 42,000 lbs. on 
the dual map. 

 

Table 5.12 Blended NOX emissions data in g/s for the Test Vehicle 2 at 60,000 lbs. 
 

 
Table 5.13 Population matrix for the blended data for the Test Vehicle 2 at 60,000 lbs. 
 

Speed Bin
Heavy 

Deceleration
Medium 

Deceleration
Light 

Deceleration Cruise
Light 

Acceleration
Medium 

Acceleration
Heavy 

Acceleration
0 To 2.5 13 25 55 646 32 20 0

2.5 To 7.5 32 27 55 154 67 64 14
7.5 To 12.5 41 17 21 33 50 57 5
12.5 To 17.5 38 16 18 42 50 58 7
17.5 To 22.5 39 20 16 40 35 61 4
22.5 To 27.5 28 18 26 88 50 55 1
27.5 To 32.5 14 16 32 109 60 37 0
32.5 To 37.5 9 9 23 98 23 32 0
37.5 To 42.5 3 9 21 58 31 16 0
42.5 To 47.5 2 4 16 62 15 12 0
47.5 To 52.5 4 3 1 1 6 4 0
52.5 To 57.5 1 7 7 11 22 0 0
57.5 To 62.5 0 5 24 101 32 0 0

62.5 and above 0 0 29 457 41 0 0

Speed Bin
Heavy 

Deceleration
Medium 

Deceleration
Light 

Deceleration Cruise
Light 

Acceleration
Medium 

Acceleration
Heavy 

Acceleration
0 To 2.5 0.00743 0.00531 0.00477 0.00415 0.03240 0.06765 ND

2.5 To 7.5 0.00639 0.00820 0.01625 0.03040 0.08498 0.11899 0.13190
7.5 To 12.5 0.00499 0.01031 0.03011 0.11671 0.15199 0.15770 ND
12.5 To 17.5 0.00371 0.00946 0.03469 0.16396 0.23833 0.27006 ND
17.5 To 22.5 0.00562 0.00966 0.02561 0.18781 0.28770 0.40043 ND
22.5 To 27.5 0.00449 0.00846 0.04353 0.14537 0.35785 0.48731 ND
27.5 To 32.5 0.00780 0.00750 0.03967 0.17661 0.36362 0.61139 ND
32.5 To 37.5 0.01151 0.01465 0.03735 0.12555 0.56283 0.73076 ND
37.5 To 42.5 0.00990 0.02153 0.04154 0.17403 0.58025 ND ND
42.5 To 47.5 0.01525 0.01462 0.04243 0.20224 0.64459 ND ND
47.5 To 52.5 0.00488 0.01325 ND 0.31468 0.76483 ND ND
52.5 To 57.5 ND 0.02248 0.03713 0.33079 0.76339 ND ND
57.5 To 62.5 ND 0.02321 0.06872 0.24478 0.77361 ND ND

62.5 and above ND 0.01755 0.10173 0.30120 0.65141 ND ND

Speed Bin
Heavy 

Deceleration
Medium 

Deceleration
Light 

Deceleration Cruise
Light 

Acceleration
Medium 

Acceleration
Heavy 

Acceleration
0 To 2.5 6 28 28 562 18 18 0

2.5 To 7.5 16 42 45 199 49 50 16
7.5 To 12.5 16 42 13 85 56 57 0

12.5 To 17.5 17 46 11 47 45 63 0
17.5 To 22.5 14 50 16 47 53 70 0
22.5 To 27.5 4 54 28 97 66 58 0
27.5 To 32.5 4 34 32 80 60 46 0
32.5 To 37.5 2 18 28 77 68 3 0
37.5 To 42.5 1 10 27 53 54 0 0
42.5 To 47.5 1 4 12 46 29 0 0
47.5 To 52.5 1 5 0 5 18 0 0
52.5 To 57.5 0 7 5 10 30 0 0
57.5 To 62.5 0 4 29 75 48 0 0

62.5 and above 0 1 47 401 49 0 0
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 It can be seen from the tables presented above that the blended matrix has an overall good 

coverage of the speed-acceleration envelope for the Test Vehicle 1 at both test weights. Test 

Vehicle 2 has good coverage for all the acceleration bins except for the heavy acceleration bin. 

This vehicle was an older model year vehicle (1982) tested at 60,000 lbs.  

It can be observed from Tables 5.8, 5.10, and 5.12 that for a given acceleration bin, the 

NOX emissions (g/s) increases with an increase in speed. For example, in Table 5.8 the NOX 

emissions increases from a value of 0.022 g/s for the 0-2.5 mph speed bin to a value of 0.527 g/s 

for the 62.5 and above speed bin. This is consistent with the assumption that emissions increase 

with increase in power demand. The product of speed and acceleration is representative of the 

power demand and for a given acceleration bin, the power required at the rear axle increases with 

increase in speed. Similarly, if we look at a particular speed bin (row), the emissions increase 

from the left most column, which is heavy deceleration, to the right most column, which is the 

heavy acceleration bin. Considering the same example (Table 5.8), it can be seen that for the 2.5-

7.5 mph speed bin, NOX emissions increases from a value of 0.0194 for heavy deceleration to a 

value of 0.1163 g/s for the heavy acceleration bin. This trend is expected, as the power demand 

increases in this direction, being the maximum for the heavy acceleration bin and minimum for 

the heavy deceleration bin.  

The speed-acceleration based blended emissions matrices for CO and HC emissions are 

presented in the following tables. Since the population matrices for the HC and CO emissions are 

essentially the same as the population matrices for NOX emissions presented in this section, the 

population matrices are not repeated in the following tables (Tables 5.14 – 5.21).  
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Table 5.14 Blended CO emissions data in g/s for the Test Vehicle 1 at 56,000 lb. on the 
single map.  
 

 
 
Table 5.15 Blended CO emissions data in g/s for the Test Vehicle 1 at 56,000 lb. on the dual 
map.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Speed Bin
Heavy 

Deceleration
Medium 

Deceleration
Light 

Deceleration Cruise
Light 

Acceleration
Medium 

Acceleration
Heavy 

Acceleration
0 To 2.5 0.00543 0.00661 0.00919 0.00947 0.02249 0.01938 ND

2.5 To 7.5 0.00841 0.01060 0.02285 0.03409 0.02906 0.02515 0.02477
7.5 To 12.5 0.00871 0.00983 0.03267 0.05515 0.03962 0.03826 0.02752
12.5 To 17.5 0.00749 0.00978 0.01347 0.03828 0.03599 0.06047 0.14797
17.5 To 22.5 0.00705 0.00849 0.01284 0.05275 0.05703 0.05721 0.13244
22.5 To 27.5 0.00440 0.00885 0.01017 0.03263 0.05732 0.06879 ND
27.5 To 32.5 0.00454 0.01111 0.01154 0.03504 0.05518 0.06181 ND
32.5 To 37.5 0.00584 0.01051 0.01451 0.02532 0.05352 0.06687 ND
37.5 To 42.5 0.00576 0.01215 0.02556 0.07890 0.08718 0.06339 ND
42.5 To 47.5 0.00250 0.02175 0.02327 0.05489 0.14187 ND ND
47.5 To 52.5 0.00001 0.00066 0.00700 0.06687 0.02865 ND ND
52.5 To 57.5 ND 0.01326 0.03607 0.12904 0.05579 ND ND
57.5 To 62.5 ND 0.01295 0.02979 0.07723 0.08790 ND ND

62.5 and above ND ND 0.02289 0.05336 0.10203 ND ND

Speed Bin
Heavy 

Deceleration
Medium 

Deceleration
Light 

Deceleration Cruise
Light 

Acceleration
Medium 

Acceleration
Heavy 

Acceleration
0 To 2.5 0.00500 0.00435 0.00466 0.00519 0.00460 0.00999 ND

2.5 To 7.5 0.00502 0.00596 0.00786 0.01312 0.01672 0.01811 0.02958
7.5 To 12.5 0.00507 0.00723 0.01030 0.01907 0.02419 0.03131 0.06401
12.5 To 17.5 0.00634 0.00539 0.01155 0.02120 0.02396 0.04865 0.31020
17.5 To 22.5 0.00739 0.00563 0.01227 0.02271 0.04113 0.04658 0.23165
22.5 To 27.5 0.00466 0.00672 0.00869 0.02029 0.04143 0.06175 ND
27.5 To 32.5 0.00521 0.00602 0.01171 0.02231 0.03828 0.05750 ND
32.5 To 37.5 0.00133 0.00585 0.01090 0.02048 0.04517 0.04811 ND
37.5 To 42.5 0.00197 0.00710 0.01090 0.02981 0.06333 0.11828 ND
42.5 To 47.5 ND 0.00321 0.01031 0.01681 0.05264 ND ND
47.5 To 52.5 ND 0.00087 0.01766 0.10977 0.07621 ND ND
52.5 To 57.5 ND 0.00126 0.00315 0.05019 0.09335 ND ND
57.5 To 62.5 ND 0.00177 0.00363 0.01357 0.07974 ND ND

62.5 and above ND ND 0.00527 0.00980 0.05147 ND ND
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Table 5.16 Blended CO emissions data in g/s for the Test Vehicle 2 at 42,000 lb. on the dual 
map.  

 

Table 5.17 Blended CO emissions data in g/s for the Test Vehicle 2 at 60,000 lb.  

  

Table 5.18 Blended HC emissions data in g/s for the Test Vehicle 1 at 56,000 lb. on the 
single map.  
 

 

Speed Bin
Heavy 

Deceleration
Medium 

Deceleration
Light 

Deceleration Cruise
Light 

Acceleration
Medium 

Acceleration
Heavy 

Acceleration
0 To 2.5 0.00196 0.00215 0.00173 0.00133 0.00332 0.00650 ND

2.5 To 7.5 0.00183 0.00404 0.00572 0.01374 0.01551 0.01486 0.01786
7.5 To 12.5 0.00209 0.00267 0.00809 0.01940 0.02250 0.02452 0.02983
12.5 To 17.5 0.00105 0.00155 0.00636 0.01669 0.02334 0.02531 0.05798
17.5 To 22.5 0.00181 0.00107 0.00761 0.01876 0.02838 0.03075 0.04130
22.5 To 27.5 0.00215 0.00206 0.00430 0.01582 0.02315 0.03682 0.06500
27.5 To 32.5 0.00286 0.00234 0.00768 0.01873 0.02483 0.03389 ND
32.5 To 37.5 0.00481 0.00835 0.01000 0.01954 0.03662 0.03671 ND
37.5 To 42.5 0.00281 0.00639 0.00972 0.02125 0.03961 0.05283 ND
42.5 To 47.5 0.00360 0.00125 0.01079 0.02310 0.03353 0.05823 ND
47.5 To 52.5 0.00294 0.01847 0.00895 0.05781 0.05089 0.05895 ND
52.5 To 57.5 0.00622 0.00803 0.02245 0.04341 0.06983 ND ND
57.5 To 62.5 0.00486 0.00437 0.00820 0.01290 0.04969 ND ND

62.5 and above ND ND 0.00921 0.01129 0.02900 ND ND

Speed Bin
Heavy 

Deceleration
Medium 

Deceleration
Light 

Deceleration Cruise
Light 

Acceleration
Medium 

Acceleration
Heavy 

Acceleration
0 To 2.5 0.01921 0.01599 0.01843 0.01843 0.02694 0.05113 ND

2.5 To 7.5 0.02006 0.01907 0.03600 0.04128 0.10091 0.17688 0.31313
7.5 To 12.5 0.01897 0.02054 0.05358 0.09249 0.13864 0.19211 ND
12.5 To 17.5 0.01974 0.02028 0.06390 0.11218 0.14553 0.22400 ND
17.5 To 22.5 0.02457 0.02270 0.05418 0.11326 0.16426 0.23695 ND
22.5 To 27.5 0.01454 0.02187 0.05529 0.07305 0.19642 0.22581 ND
27.5 To 32.5 0.01966 0.02318 0.04985 0.08060 0.17770 0.21576 ND
32.5 To 37.5 0.02299 0.02770 0.05335 0.06745 0.23896 0.29783 ND
37.5 To 42.5 0.00933 0.02948 0.05728 0.09242 0.23165 ND ND
42.5 To 47.5 0.01170 0.01183 0.06555 0.10624 0.24206 ND ND
47.5 To 52.5 0.02550 0.01935 0.00000 0.18041 0.21853 ND ND
52.5 To 57.5 ND 0.03737 0.05267 0.14115 0.24406 ND ND
57.5 To 62.5 ND 0.04439 0.06086 0.10022 0.18854 ND ND

62.5 and above ND 0.04810 0.06017 0.07645 0.14403 ND ND

Speed Bin
Heavy 

Deceleration
Medium 

Deceleration
Light 

Deceleration Cruise
Light 

Acceleration
Medium 

Acceleration
Heavy 

Acceleration
0 To 2.5 0.00216 0.00166 0.00157 0.00141 0.00207 0.00242 ND

2.5 To 7.5 0.00180 0.00172 0.00211 0.00241 0.00236 0.00258 0.00231
7.5 To 12.5 0.00170 0.00149 0.00229 0.00243 0.00233 0.00257 0.00192
12.5 To 17.5 0.00157 0.00152 0.00172 0.00233 0.00229 0.00231 0.00214
17.5 To 22.5 0.00142 0.00144 0.00203 0.00234 0.00240 0.00234 0.00203
22.5 To 27.5 0.00151 0.00133 0.00175 0.00200 0.00226 0.00238 ND
27.5 To 32.5 0.00147 0.00128 0.00182 0.00259 0.00249 0.00238 ND
32.5 To 37.5 0.00116 0.00134 0.00227 0.00314 0.00284 0.00262 ND
37.5 To 42.5 0.00086 0.00153 0.00150 0.00211 0.00256 0.00268 ND
42.5 To 47.5 0.00102 0.00195 0.00247 0.00249 0.00259 0.00315 ND
47.5 To 52.5 0.00109 0.00107 0.00116 0.00226 0.00219 ND ND
52.5 To 57.5 0.00119 0.00179 0.00128 0.00295 0.00313 ND ND
57.5 To 62.5 ND 0.00188 0.00236 0.00255 0.00338 ND ND

62.5 and above ND ND 0.00301 0.00334 0.00366 ND ND
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Table 5.19 Blended HC emissions data in g/s for the Test Vehicle 1 at 56,000 lb. on the dual 
map.  
 

 
 
Table 5.20 Blended HC emissions data in g/s for the Test Vehicle 1 at 42,000 lb. on the dual 
map.  

 

Table 5.21 Blended HC emissions data in g/s for the Test Vehicle 2 at 60,000 lb.  
 

Speed Bin
Heavy 

Deceleration
Medium 

Deceleration
Light 

Deceleration Cruise
Light 

Acceleration
Medium 

Acceleration
Heavy 

Acceleration
0 To 2.5 0.00170 0.00158 0.00136 0.00139 0.00239 0.00250 ND

2.5 To 7.5 0.00142 0.00153 0.00189 0.00235 0.00251 0.00277 0.00318
7.5 To 12.5 0.00127 0.00142 0.00153 0.00234 0.00243 0.00258 0.00327
12.5 To 17.5 0.00128 0.00140 0.00155 0.00215 0.00224 0.00233 0.00193
17.5 To 22.5 0.00126 0.00135 0.00238 0.00223 0.00234 0.00229 0.00182
22.5 To 27.5 0.00120 0.00138 0.00181 0.00208 0.00223 0.00257 ND
27.5 To 32.5 0.00111 0.00133 0.00201 0.00273 0.00256 0.00243 ND
32.5 To 37.5 0.00038 0.00126 0.00226 0.00307 0.00266 0.00217 ND
37.5 To 42.5 0.00032 0.00130 0.00170 0.00210 0.00246 0.00281 ND
42.5 To 47.5 ND 0.00160 0.00309 0.00308 0.00295 ND ND
47.5 To 52.5 ND 0.00154 0.00145 0.00141 0.00222 ND ND
52.5 To 57.5 ND 0.00160 0.00154 0.00195 0.00229 ND ND
57.5 To 62.5 ND 0.00206 0.00252 0.00260 0.00335 ND ND

62.5 and above ND ND 0.00283 0.00292 0.00352 ND ND

Speed Bin
Heavy 

Deceleration
Medium 

Deceleration
Light 

Deceleration Cruise
Light 

Acceleration
Medium 

Acceleration
Heavy 

Acceleration
0 To 2.5 0.00133 0.00129 0.00114 0.00111 0.00168 0.00232 ND

2.5 To 7.5 0.00134 0.00169 0.00224 0.00291 0.00268 0.00276 0.00292
7.5 To 12.5 0.00126 0.00139 0.00191 0.00299 0.00394 0.00349 0.00347
12.5 To 17.5 0.00132 0.00145 0.00225 0.00286 0.00307 0.00325 0.00220
17.5 To 22.5 0.00124 0.00160 0.00230 0.00278 0.00286 0.00302 0.00171
22.5 To 27.5 0.00124 0.00167 0.00162 0.00245 0.00260 0.00285 0.00110
27.5 To 32.5 0.00153 0.00176 0.00237 0.00312 0.00307 0.00285 ND
32.5 To 37.5 0.00170 0.00181 0.00285 0.00339 0.00308 0.00303 ND
37.5 To 42.5 0.00128 0.00188 0.00277 0.00283 0.00318 0.00305 ND
42.5 To 47.5 0.00169 0.00198 0.00309 0.00365 0.00337 0.00330 ND
47.5 To 52.5 0.00203 0.00176 0.00120 0.00190 0.00258 0.00260 ND
52.5 To 57.5 0.00126 0.00205 0.00194 0.00255 0.00293 ND ND
57.5 To 62.5 0.00140 0.00250 0.00318 0.00306 0.00343 ND ND

62.5 and above ND ND 0.00332 0.00331 0.00354 ND ND

Speed Bin
Heavy 

Deceleration
Medium 

Deceleration
Light 

Deceleration Cruise
Light 

Acceleration
Medium 

Acceleration
Heavy 

Acceleration
0 To 2.5 0.01450 0.01451 0.01474 0.01604 0.02314 0.02315 ND

2.5 To 7.5 0.01457 0.01474 0.01915 0.01642 0.02339 0.02637 0.02934
7.5 To 12.5 0.01476 0.01480 0.02193 0.02631 0.02898 0.02947 ND
12.5 To 17.5 0.01385 0.01359 0.01858 0.02637 0.02651 0.02663 ND
17.5 To 22.5 0.01367 0.01428 0.02110 0.02683 0.02699 0.02728 ND
22.5 To 27.5 0.01273 0.01439 0.02058 0.02053 0.02360 0.02682 ND
27.5 To 32.5 0.01055 0.01509 0.02066 0.02226 0.02434 0.02676 ND
32.5 To 37.5 0.00739 0.01303 0.02372 0.02239 0.02539 0.02923 ND
37.5 To 42.5 0.00752 0.01479 0.02127 0.02081 0.02514 ND ND
42.5 To 47.5 0.01215 0.01708 0.02266 0.02309 0.02234 ND ND
47.5 To 52.5 0.00435 0.01258 ND 0.02412 0.02549 ND ND
52.5 To 57.5 ND 0.01809 0.01870 0.02215 0.02287 ND ND
57.5 To 62.5 ND 0.04115 0.03395 0.02771 0.02700 ND ND

62.5 and above ND 0.02845 0.03182 0.02876 0.02902 ND ND



 78

It can be seen from Tables 5.14 through 5.21 that HC and CO emissions exhibit similar 

trends; however, CO emissions tables show considerable variations unlike NOX emissions. This 

illustrates the influence of transient activity on CO. Given the relatively low level of CO and HC 

emissions from diesel vehicles; the erratic behavior is not a particular concern with regard to 

emissions inventory.  

5.4 Combining the Emissions Factors Table with Vehicle Activity Data 

The main objective of an inventory prediction is to provide the average emissions value 

in grams/mile as a function of the average speed class over a period of travel, or over a road link. 

This method is discussed in detail in the next section of this chapter, but is also addressed briefly 

here to assist in understanding of the need for data smoothing and extrapolation. Emissions 

values can be obtained by combining the emissions factors (binned according to the speed and 

acceleration table) with the vehicle activity data. The vehicle activity data were available from a 

prior study by the Battelle Memorial Institute [Battelle, 1999] that was originated by the 

Planning and Technical Support Division of the California Air Resources Board (CARB) and 

jointly supported by the federal Highway Administration (FHWA). The activity data were 

collected using automated data collection equipment that included Global Positioning System 

(GPS) technology [Battelle, 1999]. The Battelle project database contains extensive data for 

heavy-duty trucks that accumulated over 53,000 vehicle miles of travel (VMT) during the data 

collection. The 99 trucks for which complete data were collected included 52 postal/parcel 

trucks, and 22 combination trucks.  

The activity data were available as two-dimensional speed-acceleration matrices. Each 

such matrix represented the percentage time of operation for a particular vehicle class at a 
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particular average speed. The two-dimensional speed-acceleration based emissions tables 

presented earlier in this chapter were intentionally binned according to the same speed and 

acceleration groups that were used for the activity data.  

One such matrix was available for each of the average speed classes. The speed classes 

represented average speeds of operation of 0-10 mph, 10-20 mph, and so on. Two sets of these 

matrices were available, one for urban operation and the other for rural operation. Urban 

operation is defined as operation in areas with a population greater than 5000. All other areas 

were referred to as rural [Battelle, 1999]. 

The emissions tables were multiplied with the activity data for each of the average speed 

class resulting in speed-acceleration based two-dimensional product matrix. One such product 

matrix was obtained for each of the average speed classes. The values in each product matrix 

were summed to obtain a single value and then divided by the average speed to obtain a value in 

grams/mile. Table 5.22 below shows the activity data for the class 8 trucks for one particular 

average speed class (in this case 50-60 mph) in the urban mode of operation. 

As an example, the mass emissions rates (the product matrix) obtained by multiplying the 

activity data for urban operation with the NOX emissions data from the test Vehicle 1 at 42,000 

lbs. on dual map are shown in Table 5.23. Of interest is the fact that almost 89% of the operation 

in Table 5.22 occurs in two speed-acceleration entries. This emphasizes the need for the 

smoothing of emissions values (such as those in Table 5.23) and shows that little operation 

occurs in the high acceleration, high speed zone. 
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Table 5.22 An example of activity data for Class 8 trucks for the average speed class of 50-
60 mph (values in percentage of time of operation) – Urban operation. Note that 89% of 
activity occurs between 52.5 and 62.5 mph. 
 

 
Table 5.23 Activity data multiplied with NOX emissions data (g/s) for the Test Vehicle 1 at 
42,000 lbs. for average speed class of 50-60 mph – Urban operation. 
 

 
  

Figure 5.13 shows a 3-D plot of the activity data for class 8 trucks for the average speed 

class of 50-60 mph in the urban mode of operation. It can be observed that most of the activity 

for this average speed class occurs in the cruise bin.  

 
 
 
 
 
 
 
 

Speed Bin
Heavy 

Deceleration
Medium 

Deceleration
Light 

Deceleration Cruise
Light 

Acceleration
Medium 

Acceleration
Heavy 

Acceleration
0 To 2.5 0.0024% 0.0001% 0.0001% 0.0020% 0.0000% 0.0000% 0.0000%

2.5 To 7.5 0.0002% 0.0001% 0.0000% 0.0001% 0.0000% 0.0003% 0.0001%
7.5 To 12.5 0.0002% 0.0001% 0.0001% 0.0002% 0.0006% 0.0001% 0.0001%
12.5 To 17.5 0.0003% 0.0001% 0.0001% 0.0003% 0.0003% 0.0002% 0.0001%
17.5 To 22.5 0.0002% 0.0003% 0.0000% 0.0001% 0.0004% 0.0003% 0.0001%
22.5 To 27.5 0.0004% 0.0003% 0.0001% 0.0006% 0.0004% 0.0002% 0.0001%
27.5 To 32.5 0.0005% 0.0003% 0.0003% 0.0003% 0.0004% 0.0002% 0.0001%
32.5 To 37.5 0.0012% 0.0007% 0.0008% 0.0015% 0.0013% 0.0007% 0.0002%
37.5 To 42.5 0.0024% 0.0038% 0.0051% 0.0043% 0.0042% 0.0038% 0.0005%
42.5 To 47.5 0.0079% 0.0162% 0.0389% 0.0483% 0.0442% 0.0118% 0.0010%
47.5 To 52.5 0.0283% 0.0736% 0.3453% 3.9541% 0.3728% 0.0453% 0.0073%
52.5 To 57.5 0.0628% 0.2490% 1.7317% 64.4553% 1.6975% 0.1927% 0.0371%
57.5 To 62.5 0.0157% 0.0875% 0.8435% 24.2583% 1.0573% 0.1535% 0.0464%

62.5 and above 0.0003% 0.0013% 0.0072% 0.0392% 0.0155% 0.0039% 0.0066%

Speed Bin
Heavy 

Deceleration
Medium 

Deceleration
Light 

Deceleration Cruise
Light 

Acceleration
Medium 

Acceleration
Heavy 

Acceleration
0 To 2.5 3.91E-07 1.92E-08 2.39E-08 4.42E-07 0.00E+00 0.00E+00 ND

2.5 To 7.5 3.73E-08 1.12E-08 0.00E+00 2.82E-08 0.00E+00 2.74E-07 1.21E-07
7.5 To 12.5 2.90E-08 9.78E-09 1.48E-08 1.77E-07 6.76E-07 1.33E-07 1.32E-07
12.5 To 17.5 4.75E-08 2.07E-08 1.99E-08 2.73E-07 4.38E-07 2.93E-07 1.98E-07
17.5 To 22.5 3.50E-08 4.13E-08 0.00E+00 5.76E-08 5.98E-07 4.69E-07 1.73E-07
22.5 To 27.5 5.80E-08 4.40E-08 1.09E-08 5.71E-07 6.19E-07 3.64E-07 1.25E-07
27.5 To 32.5 7.57E-08 3.30E-08 8.32E-08 3.41E-07 6.51E-07 3.38E-07 ND
32.5 To 37.5 1.67E-07 1.03E-07 2.76E-07 1.41E-06 2.60E-06 2.09E-06 ND
37.5 To 42.5 3.44E-07 6.43E-07 1.61E-06 4.83E-06 9.16E-06 1.02E-05 ND
42.5 To 47.5 9.88E-07 2.81E-06 1.18E-05 4.95E-05 8.71E-05 4.43E-05 ND
47.5 To 52.5 2.67E-06 2.68E-05 4.52E-05 5.04E-03 1.52E-03 2.09E-04 ND
52.5 To 57.5 1.44E-05 6.17E-05 9.08E-04 1.35E-01 6.77E-03 ND ND
57.5 To 62.5 6.74E-07 2.19E-05 7.11E-04 8.91E-02 5.27E-03 ND ND

62.5 and above ND ND 5.96E-06 1.69E-04 1.07E-04 ND ND
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Figure 5.13 3-D plot of activity data for Class 8 trucks for the average speed class of 50-60 
mph (values in percentage of time of operation) – Urban operation. Note that 89% of 
activity occurs between 52.5 and 62.5 mph. 

5.5 Extrapolation and Smoothing (Interpolation) of the NOX Emissions Data – An 

Example 

This section discusses the methodology used to fill in the zero valued cells (represented 

by a “ND” in Section 5.3) in the speed-acceleration based emissions factors tables and 

smoothing (interpolation) to eliminate anomalous values. The analyses performed on the 

emissions data for the Test Vehicles 1 and 2 are presented in this section. Extrapolation was used 

to fill in the zero valued cells in the emissions matrix outside the envelope. The zero valued cells 

in between cells that have emissions values were filled using interpolation (smoothing). It was 

observed from the emissions factors tables presented in Section 5.3 that some cells contain 

quirks and deviations resulting from monotonic behavior that can be attributed to the original 
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cycles used to acquire data. For example, the data acquired at one specific speed-acceleration bin 

might be associated with more transient behavior in the cycle than a neighboring speed-

acceleration bin, or a bin might include some history effects that cannot be eliminated even with 

time alignment. These cells represented cells with a very low activity population matrix (usually 

1 or 2 data points).  

As an example, one case of such deviation was analyzed in detail. Consider the blended 

NOX emissions table for the Test Vehicle 1 on single map tested at 56,000 lb (Table 5.6). The 

cell corresponding to an average speed range of 52.5-57.5 mph in the cruise bin has a value of 

0.2672, which falls out of the general trend considering the adjacent cells in the same cruise bin. 

A review of the raw data showed that this cell had 15 data points. For each of these data points, 

the actual speed values, acceleration values and the actual time of occurrence in the original 

cycle are presented in Table 5.24. These 15 data points resulted from the IHC, as the CSHVR did 

not have any operation in that speed and acceleration bin values. 

Table 5.24 Actual speed, acceleration, and NOX emission values for the 15 data points 
corresponding to 52.5-57.5 mph speed bin in the cruise bin for Test Vehicle 1 on single map 
tested at 56,000 lb. 
 

Point of 
Occurrence

Speed 
(mph)

Acceleration 
(mph/s)

NOX 

Emissions
(g/s)

302 52.6 0.27 0.3653
602 52.9 0.19 0.2715
600 53.1 -0.97 0.0774
1188 53.7 0.26 0.3944
1189 53.9 0.21 0.4198
1190 54.1 0.24 0.4463
1191 54.4 0.27 0.4470
1192 54.7 0.29 0.4104
1193 54.9 0.21 0.3588
1194 55.1 0.21 0.2978
1195 55.3 0.16 0.2689
1196 55.4 0.15 0.2885
1197 55.7 0.28 0.3385
1473 56.4 -0.27 0.0200
1472 56.7 -0.17 0.0346
1471 56.9 -0.29 0.0390
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  The first column in Table 5.24 gives the actual location of the fifteen data points in the 

UDDSata collected. These numbers simply represent the time in seconds starting from the 

beginning of the cycle. Figure 5.14 shows a plot of the actual speed and measured NOX 

emissions versus time. The data points corresponding to the 52.5-57.5 mph in the cruise bin are 

also indicated using arrow marks. It can be observed that these data points actually lie in a steady 

acceleration/deceleration operation. Data point corresponding to 602nd second lies in the region 

where there is a sudden change in the direction of speed. That is it lies at a point where the 

vehicle ends decelerating and starts to accelerate. Even though the vehicle is not cruising, due to 

change in the acceleration from a negative to positive value, the momentary acceleration value 

corresponds to the cruise bin and the emissions value is assigned to cruise bin. Data points from 

1188-1197 seconds and 1471-1473 seconds fall in the acceleration and deceleration region 

respectively. An exploded view of the plot in these two regions show that there is a brief period 

of low acceleration and deceleration values in these two regions. These can be attributed to the 

gearshift effect due to driving style. The exploded view also reveals large spikes in NOX 

emissions values for short periods of time. These result from changes in engine load during 

gearshifts. The exploded view shown in Figure 5.15 and 5.16 clearly shows this effect.  
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Figure 5.14 Continuous NOX emissions and actual driving speed plotted against time for 
Test Vehicle 1 on single map tested at 56,000lb. Data points corresponding to 52.5-57.5 
mph bin are indicated. 

 

Figure 5.15 Exploded view showing points 1471-1473 for NOX emissions and actual driving 
speed plotted against time for Test Vehicle 1 on single map tested at 56,000lb.  
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Figure 5.16 Exploded view showing points 1471-1473 for NOX emissions and actual driving 
speed plotted against time for Test Vehicle 1 on single map tested at 56,000lb.  
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relationship was used, the NOX values were plotted against the actual measured average speeds 
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shows a 3-dimensional plot of the percentage difference between the bin median and the actual 

average speed as a function of speed and acceleration bin ranges. It is clearly seen that the actual 

average speed values vary significantly for most of the cells. As a further example, Figure 5.18 

and Figure 5.19 show the plots of NOX versus speed for both the average and bin median speed 

cases (light acceleration bin) and it can be seen that there is some difference in the curve fits. 

Hence, the actual average speed values were used to obtain the smoothing and extrapolation 

equations. While fitting the smoothing curves to the data, any of the values that were suspected 

to be an artifact or measurement error and had few points of operation, were excluded. This 

required careful judgment coupled with detailed review of the source data in some cases. 

Table 5.25 Actual average speed values (mph) for the 1995 truck on dual map. 
 

Bin Median 
Speed (mph)

Heavy 
Deceleration

Medium 
Deceleration

Light 
Deceleration Cruise

Light 
Acceleration

Medium 
Acceleration

Heavy 
Acceleration

1.25 1.21 1.22 1.27 0.35 1.33 1.91 ND
5 5.02 5.07 4.75 5.34 5.41 4.94 5.04
10 10.39 9.99 9.73 8.95 9.75 10.05 11.44
15 15.18 15.29 15.96 15.45 14.80 15.04 17.11
20 19.63 19.99 20.58 20.49 19.57 20.50 20.01
25 24.44 24.75 25.43 25.25 24.32 25.21 ND
30 29.82 29.69 30.34 30.57 30.20 29.37 ND
35 34.16 34.81 34.95 34.41 34.96 34.44 ND
40 38.86 39.46 40.22 40.45 39.97 40.46 ND
45 ND 44.70 44.06 44.49 44.71 ND ND
50 ND 49.59 51.74 52.33 50.03 ND ND
55 ND 54.80 55.44 53.15 55.04 ND ND
60 ND 59.60 60.28 60.91 60.35 ND ND
65 ND ND 65.10 64.49 64.80 ND ND  
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Figure 5.17 Variation of percentage difference between actual and bin median speed values 
as a function of speed and acceleration bins.  

Figure 5.18 Variation of NOX emissions in g/s with the bin median speed for the Test 
Vehicle 1 on dual map at 56,000 lb. – light acceleration bin. 
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Figure 5.19 Variation of NOX emissions in g/s with the actual average speed for the Test 
Vehicle 1 on the dual map at 56,000 lb.  – light acceleration bin. 
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been shown that for a given engine meeting a given emissions standard, NOX emissions may be 

related closely to CO2 emissions. CO2 directly relates to the amount of fuel burnt and hence the 

power demand. So, NOX emissions can be correlated to the power. The relationships between 

power and NOX emissions for medium and heavy acceleration bins for the Test Vehicle 1 on 

single map at 56,000 lb. are shown in Figures 5.20 and 5.21 respectively. These relationships 

were obtained by plotting the measured NOX emissions value in the respective acceleration bins 

against the power required to maintain the corresponding speed and acceleration values. Power 

required was calculated using the road load equation (Equation 3.3) using the actual average 

speed and actual average acceleration values for each cell and not the bin median values. Terrain 

effects were neglected and the vehicle was assumed to be traveling on a level road. 

The values of constants and variables used in Equation 3.3 to obtain the required power 

are given below. Same coefficients were used for all the four configurations except for the 

frontal area and mass. 

Frontal area “A” – 8.32 m2 (1995 truck), 5.95 m2 (1982 truck) 

Coefficient of friction “μ” – 0.00938 

Acceleration due to gravity “g” – 9.807 m/s2 

Drag coefficient “CD” – 0.76 

Mass of the vehicle tested “M” –   19050.8 kg. (42,000 lbs.) 

– 25401.2 kg. (56,000 lbs.)       

– 27215.5 kg. (60,000 lbs.) 
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Figure 5.20 Variation of NOX emissions (g/s) with power for the heavy acceleration bin 
(Test Vehicle 1, 56,000 lb., single map). 

 
Figure 5.21 Variation of NOX emissions (g/s) with power for the medium acceleration bin 
(Test Vehicle 1, 56,000 lb., single map). 
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The equation obtained from the road load relationship was used to extrapolate and 

smooth the NOX emissions values for the first two acceleration bins. The power required was 

obtained by extrapolation. The relationship between the power required and the average speed 

(Figure 5.22 and Figure 5.23) was obtained and used for the extrapolation of the power values. It 

is recognized that the nature of the power versus speed relationship would depend on the ratio 

between vehicle wind drag and rolling resistance, but the values used in the road load equation 

are judged to be sufficiently representative.  

Smoothing for the cruise bin was done using a logarithmic curve fit, and a linear fit was 

used for light deceleration bin. Remaining acceleration bins were smoothed using a polynomial 

curve fit between NOX emissions and the actual average speed values for the corresponding 

speed bin. The curve fits used for all the five acceleration bins are shown below in Figures 5.24 

through 5.28. All the axes are scaled similarly to permit visual comparison of emissions levels. 

Figure 5.22 Variation of power (hp) with speed for the heavy acceleration bin (Test Vehicle 
1, 56,000 lb., single map). 
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Figure 5.23 Variation of power (hp) with speed for the medium acceleration bin (Test 
Vehicle 1, 56,000 lb., single map). 

 

 

Figure 5.24 Variation of NOX emissions (g/s) with speed for the light acceleration bin (Test 
Vehicle 1, 56,000 lb., single map). 
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Figure 5.25 Variation of NOX emissions (g/s) with speed for the cruise bin (Test Vehicle 1, 
56,000 lb., single map). 
 

Figure 5.26 Variation of NOX emissions (g/s) with speed for the light deceleration bin (Test 
Vehicle 1, 56,000 lb., single map). 

 
 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60 70

Speed (mph)

N
O

X
 E

m
is

si
on

s 
(g

/s
)

y=0.026Ln(x) + 0.031

R2 = 0.56

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60 70

Speed (mph)

N
O

X
 E

m
is

si
on

s 
(g

/s
)

y=8.35E-05x + 0.021

R2=0.37



 94

Figure 5.27 Variation of NOX emissions (g/s) with speed for the medium deceleration bin 
(Test Vehicle 1, 56,000 lb., single map). 

 

Figure 5.28 Variation of NOX emissions (g/s) with speed for the heavy deceleration bin 
(Test Vehicle 1, 56,000 lb., single map). 
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The unsmoothed (raw) NOX emissions data shown in Table 5.6 were smoothed using the 

curve fits obtained from Figures 5.20 through 5.28 and the resulting smoothed NOX emissions 

data are presented in Table 5.26. 

Table 5.26 Smoothed NOX emissions data in g/s for the Test Vehicle 1 (56,000 lbs.) – Single 
map. 
  

 

As discussed earlier in this section, Table 5.6, based on unsmoothed data, contains quirks 

and deviations from monotonic behavior that can be attributed to the original cycles used to 

acquire data. The smoothed data, shown in Table 5.26, eliminate anomalies arising from the 

original cycles and are therefore more suited to application to other vehicle activity patterns. If 

Table 5.6 were used, the unsmoothed values would impose their anomalies on other vehicle 

activity when used for emissions prediction. This discussion also applies to all the emissions 

species pertaining to the other vehicle and test weight data examined in this dissertation. Table 

5.27 presents raw and smoothed NOX emissions factors for Test Vehicle 1 on dual map at 42,000 

lbs. as an example. It can be seen that smoothing of data does not have a significant effect on the 

final result after combining with the activity data giving NOX emissions factor in grams/mile. 

Tables 5.28 through 5.30 present the NOX emissions factors for the rest of the tests performed on 

the two Test Vehicles. 

Speed Bin
Heavy 

Deceleration
Medium 

Deceleration
Light 

Deceleration Cruise
Light 

Acceleration
Medium 

Acceleration
Heavy 

Acceleration
0 To 2.5 0.01856 0.01878 0.02085 0.03656 0.05705 0.10505 0.04933

2.5 To 7.5 0.01714 0.01866 0.02116 0.07216 0.08953 0.12406 0.11799
7.5 To 12.5 0.01532 0.01818 0.02158 0.08996 0.13081 0.15542 0.20955

12.5 To 17.5 0.01359 0.01738 0.02200 0.10037 0.16975 0.19367 0.30111
17.5 To 22.5 0.01194 0.01635 0.02241 0.10775 0.20636 0.23879 0.39266
22.5 To 27.5 0.01037 0.01513 0.02283 0.11348 0.24064 0.29079 0.48422
27.5 To 32.5 0.00890 0.01381 0.02325 0.11817 0.27259 0.34967 0.57578
32.5 To 37.5 0.00751 0.01245 0.02366 0.12212 0.30221 0.41543 0.66734
37.5 To 42.5 0.00620 0.01111 0.02408 0.12555 0.32949 0.48807 0.75889
42.5 To 47.5 0.00499 0.00987 0.02450 0.12858 0.35445 0.56759 0.85045
47.5 To 52.5 0.00385 0.00879 0.02492 0.13128 0.37707 0.65399 0.94201
52.5 To 57.5 0.00281 0.00794 0.02533 0.13373 0.39736 0.74727 1.03356
57.5 To 62.5 0.00185 0.00739 0.02575 0.13596 0.41532 0.84743 1.12512

62.5 and above 0.00097 0.00720 0.02617 0.13802 0.43095 0.95446 1.21668
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Table 5.27 Comparison of raw and smoothed NOX emissions factors in g/mile for the Test 
Vehicle 1 (42,000 lbs. – Dual map) in rural and urban operation.  

 
Table 5.28 Smoothed NOX emissions data in g/s for the Test Vehicle 1 (56,000 lbs.) – Dual 
map. 

 

 

 

 

 

 

Speed Bin
Heavy 

Deceleration
Medium 

Deceleration
Light 

Deceleration Cruise
Light 

Acceleration
Medium 

Acceleration
Heavy 

Acceleration
0 To 2.5 0.01871 0.01938 0.02389 0.02719 0.04495 0.09939 0.05719

2.5 To 7.5 0.01909 0.01879 0.02713 0.05926 0.08501 0.11606 0.10396
7.5 To 12.5 0.01893 0.01799 0.02892 0.08635 0.12676 0.16181 0.17479

12.5 To 17.5 0.01804 0.01717 0.02854 0.09972 0.15855 0.22083 0.25530
17.5 To 22.5 0.01641 0.01634 0.02677 0.10396 0.18405 0.28250 0.34547
22.5 To 27.5 0.01403 0.01550 0.02441 0.10364 0.20692 0.33988 0.44532
27.5 To 32.5 0.01091 0.01464 0.02225 0.10334 0.23083 0.38897 0.55485
32.5 To 37.5 0.00705 0.01377 0.02108 0.10765 0.25945 0.42808 0.67404
37.5 To 42.5 0.00245 0.01288 0.02170 0.12113 0.29644 0.45711 0.80292
42.5 To 47.5 0.00245 0.01198 0.02489 0.14837 0.34547 0.47710 0.94146
47.5 To 52.5 0.00245 0.01107 0.03144 0.19395 0.41022 0.48973 1.08968
52.5 To 57.5 0.00245 0.01014 0.04215 0.26245 0.49434 0.49693 1.24757
57.5 To 62.5 0.00245 0.00919 0.05782 0.35844 0.60151 0.50052 1.41513

62.5 and above 0.00245 0.00823 0.07922 0.48650 0.73540 0.50200 1.59236

Smoothed
NOX (g/mile) NOX (g/mile)

5.96 24.77 23.69 4.35
15.11 16.34 16.44 -0.63
24.21 12.51 12.46 0.39
34.29 10.11 9.82 2.93
45.88 8.54 8.19 4.13
56.06 9.74 11.02 -13.22
61.31 14.61 14.46 1.04

Smoothed
NOX (g/mile) NOX (g/mile)

6.88 17.87 16.22 9.25
15.85 17.70 18.18 -2.73
25.27 13.41 13.38 0.18
35.38 10.36 10.17 1.85
45.93 8.97 9.17 -2.29
55.84 10.03 11.12 -10.92
62.33 16.10 15.32 4.81

Urban Operation

Rural Operation
Percentage 

Difference (%)

Percentage 
Difference (%)

 Average Speed 
(mph)

 Average Speed 
(mph)
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Table 5.29 Smoothed NOX emissions data in g/s for the Test Vehicle 1 (42,000 lbs.) – Dual 
map. 

 
Table 5.30 Smoothed NOX emissions data in g/s for the Test Vehicle 2 (60,000 lbs.). 

 

Similar analyses were performed on the HC and CO emissions and the resulting 

smoothed emissions factors are presented in the following Tables. Tables 5.31 through 5.34 

present the CO emissions factors and Tables 5.35 through 5.38 present the HC emissions factors 

for the two test vehicles (Test Vehicle 1 and Test Vehicle 2). 

 

 

 

 

 

Speed Bin
Heavy 

Deceleration
Medium 

Deceleration
Light 

Deceleration Cruise
Light 

Acceleration
Medium 

Acceleration
Heavy 

Acceleration
0 To 2.5 0.01711 0.02157 0.02024 0.01802 0.04217 0.06031 0.10380

2.5 To 7.5 0.01729 0.01924 0.02673 0.05602 0.08283 0.10291 0.11819
7.5 To 12.5 0.01740 0.01692 0.03144 0.08763 0.12042 0.13522 0.13737

12.5 To 17.5 0.01732 0.01546 0.03262 0.10220 0.14359 0.15388 0.15655
17.5 To 22.5 0.01703 0.01477 0.03138 0.10494 0.15736 0.17040 0.17573
22.5 To 27.5 0.01649 0.01478 0.02881 0.10102 0.16673 0.19255 0.19491
27.5 To 32.5 0.01568 0.01541 0.02599 0.09564 0.17671 0.22489 0.21409
32.5 To 37.5 0.01456 0.01659 0.02404 0.09400 0.19231 0.26942 0.23327
37.5 To 42.5 0.01311 0.01825 0.02403 0.10127 0.21855 0.32606 0.25245
42.5 To 47.5 0.01130 0.02030 0.02707 0.12265 0.26043 0.39312 0.27163
47.5 To 52.5 0.00909 0.02268 0.03424 0.16333 0.32296 0.46777 0.29081
52.5 To 57.5 0.00646 0.02530 0.04665 0.22850 0.41116 0.54645 0.30999
57.5 To 62.5 0.00337 0.02810 0.06538 0.32335 0.53003 0.62516 0.32917

62.5 and above 0.00337 0.03099 0.09153 0.45307 0.68458 0.69985 0.34835

Speed Bin
Heavy 

Deceleration
Medium 

Deceleration
Light 

Deceleration Cruise
Light 

Acceleration
Medium 

Acceleration
Heavy 

Acceleration
0 To 2.5 0.00551 0.00715 0.00406 0.02505 0.05432 0.08370 0.07304

2.5 To 7.5 0.00565 0.00744 0.01751 0.05818 0.06496 0.10396 0.10897
7.5 To 12.5 0.00590 0.00798 0.02965 0.09468 0.15493 0.15667 0.19338

12.5 To 17.5 0.00623 0.00869 0.03639 0.12374 0.23923 0.23875 0.32042
17.5 To 22.5 0.00663 0.00956 0.03903 0.14678 0.31786 0.35018 0.49164
22.5 To 27.5 0.00711 0.01061 0.03888 0.16524 0.39082 0.49098 0.70920
27.5 To 32.5 0.00765 0.01182 0.03725 0.18053 0.45812 0.66114 0.97587
32.5 To 37.5 0.00828 0.01319 0.03547 0.19410 0.51974 0.86066 1.29507
37.5 To 42.5 0.00898 0.01474 0.03483 0.20736 0.57569 1.08954 1.67091
42.5 To 47.5 0.00975 0.01645 0.03665 0.22175 0.62597 1.34779 2.10820
47.5 To 52.5 0.01060 0.01833 0.04224 0.23870 0.67059 1.63540 2.61250
52.5 To 57.5 0.01152 0.02038 0.05291 0.25964 0.70953 1.95237 3.19014
57.5 To 62.5 0.01251 0.02259 0.06998 0.28599 0.74280 2.29870 3.84831

62.5 and above 0.01358 0.02497 0.09476 0.31919 0.77040 2.67439 4.59510
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Table 5.31 Smoothed CO emissions data in g/s for the Test Vehicle 1 (56,000 lbs.) – Single 
map. 

 
Table 5.32 Smoothed CO emissions data in g/s for the Test Vehicle 1 (56,000 lbs.) – Dual 
map. 

 
Table 5.33 Smoothed CO emissions data in g/s for the Test Vehicle 1 (42,000 lbs.) – Dual 
map. 
 

 

Speed Bin
Heavy 

Deceleration
Medium 

Deceleration
Light 

Deceleration Cruise
Light 

Acceleration
Medium 

Acceleration
Heavy 

Acceleration
0 To 2.5 0.00179 0.00226 0.00515 0.01870 0.00710 0.00486 0.01413

2.5 To 7.5 0.00176 0.00236 0.00545 0.01854 0.01152 0.01458 0.02204
7.5 To 12.5 0.00179 0.00253 0.00586 0.01832 0.01700 0.02336 0.03225
12.5 To 17.5 0.00190 0.00273 0.00627 0.01811 0.02201 0.02798 0.04207
17.5 To 22.5 0.00209 0.00297 0.00667 0.01789 0.02656 0.03038 0.05151
22.5 To 27.5 0.00236 0.00324 0.00708 0.01768 0.03064 0.03289 0.06057
27.5 To 32.5 0.00270 0.00355 0.00748 0.01746 0.03425 0.03713 0.06924
32.5 To 37.5 0.00312 0.00389 0.00789 0.01724 0.03741 0.04325 0.07753
37.5 To 42.5 0.00361 0.00427 0.00829 0.01703 0.04009 0.04978 0.08543
42.5 To 47.5 0.00419 0.00468 0.00870 0.01681 0.04231 0.05422 0.09295
47.5 To 52.5 0.00484 0.00513 0.00911 0.01660 0.04407 0.05423 0.10009
52.5 To 57.5 0.00556 0.00561 0.00951 0.01638 0.04536 0.04914 0.10684
57.5 To 62.5 0.00637 0.00612 0.00992 0.01617 0.04618 0.04094 0.11321

62.5 and above 0.00725 0.00668 0.01032 0.01595 0.04654 0.03366 0.11919

Speed Bin
Heavy 

Deceleration
Medium 

Deceleration
Light 

Deceleration Cruise
Light 

Acceleration
Medium 

Acceleration
Heavy 

Acceleration
0 To 2.5 0.00459 0.00465 0.00516 0.01743 0.00552 0.00400 0.00400

2.5 To 7.5 0.00533 0.00548 0.00750 0.01748 0.01238 0.02292 0.00775
7.5 To 12.5 0.00596 0.00623 0.00976 0.01756 0.02097 0.04816 0.11533

12.5 To 17.5 0.00617 0.00661 0.01118 0.01764 0.02891 0.07339 0.22291
17.5 To 22.5 0.00596 0.00668 0.01185 0.01772 0.03622 0.09863 0.33049
22.5 To 27.5 0.00532 0.00647 0.01190 0.01780 0.04289 0.12386 0.43807
27.5 To 32.5 0.00424 0.00602 0.01144 0.01788 0.04892 0.14910 0.54565
32.5 To 37.5 0.00272 0.00537 0.01060 0.01795 0.05431 0.17433 0.65324
37.5 To 42.5 0.00075 0.00458 0.00948 0.01803 0.05906 0.19957 0.76082
42.5 To 47.5 0.00075 0.00367 0.00820 0.01811 0.06318 0.22480 0.86840
47.5 To 52.5 0.00075 0.00270 0.00689 0.01819 0.06666 0.25003 0.97598
52.5 To 57.5 0.00075 0.00171 0.00565 0.01827 0.06949 0.27527 1.08356
57.5 To 62.5 0.00075 0.00073 0.00460 0.01835 0.07169 0.30050 1.19114

62.5 and above 0.00075 0.00073 0.00387 0.01842 0.07325 0.32574 1.29872

Speed Bin
Heavy 

Deceleration
Medium 

Deceleration
Light 

Deceleration Cruise
Light 

Acceleration
Medium 

Acceleration
Heavy 

Acceleration
0 To 2.5 0.00819 0.00840 0.01375 0.02214 0.01921 0.01224 0.01504

2.5 To 7.5 0.00856 0.00865 0.01356 0.03454 0.02925 0.02789 0.01504
7.5 To 12.5 0.00906 0.00899 0.01354 0.04074 0.03968 0.04353 0.06064
12.5 To 17.5 0.00956 0.00934 0.01381 0.04437 0.04727 0.05416 0.10624
17.5 To 22.5 0.01005 0.00972 0.01436 0.04694 0.05261 0.06078 0.15184
22.5 To 27.5 0.01052 0.01010 0.01519 0.04894 0.05629 0.06429 0.19744
27.5 To 32.5 0.01093 0.01051 0.01631 0.05057 0.05891 0.06549 0.24304
32.5 To 37.5 0.01129 0.01094 0.01770 0.05195 0.06105 0.06509 0.28864
37.5 To 42.5 0.01157 0.01138 0.01938 0.05315 0.06330 0.06371 0.33424
42.5 To 47.5 0.01175 0.01185 0.02135 0.05420 0.06625 0.06186 0.37985
47.5 To 52.5 0.01183 0.01234 0.02359 0.05514 0.07049 0.05997 0.42545
52.5 To 57.5 0.01178 0.01285 0.02612 0.05599 0.07662 0.05838 0.47105
57.5 To 62.5 0.01159 0.01338 0.02893 0.05677 0.08521 0.05731 0.51665

62.5 and above 0.01124 0.01394 0.03202 0.05749 0.09686 0.05693 0.56225
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Table 5.34 Smoothed CO emissions data in g/s for the Test Vehicle 2 (60,000 lbs.). 

 

 
Table 5.35 Smoothed HC emissions data in g/s for the Test Vehicle 1 (56,000 lbs.) – Single 
map. 

 
Table 5.36 Smoothed HC emissions data in g/s for the Test Vehicle 1 (56,000 lbs.) – Dual 
map. 

 

Speed Bin
Heavy 

Deceleration
Medium 

Deceleration
Light 

Deceleration Cruise
Light 

Acceleration
Medium 

Acceleration
Heavy 

Acceleration
0 To 2.5 0.01932 0.01466 0.02051 0.04108 0.03556 0.02595 0.01775

2.5 To 7.5 0.01951 0.01619 0.04099 0.05173 0.08435 0.15394 0.12898
7.5 To 12.5 0.01989 0.01822 0.05004 0.06487 0.12783 0.21632 0.21888

12.5 To 17.5 0.02024 0.02026 0.05455 0.07672 0.15492 0.22298 0.26387
17.5 To 22.5 0.02034 0.02229 0.05720 0.08718 0.17284 0.21927 0.28818
22.5 To 27.5 0.02000 0.02432 0.05882 0.09616 0.18678 0.22738 0.31735
27.5 To 32.5 0.01901 0.02636 0.05981 0.10355 0.19999 0.25325 0.37913
32.5 To 37.5 0.01718 0.02839 0.06034 0.10924 0.21374 0.29262 0.50452
37.5 To 42.5 0.01429 0.03043 0.06055 0.11316 0.22730 0.33602 0.72889
42.5 To 47.5 0.01014 0.03246 0.06052 0.11518 0.23797 0.37277 1.09319
47.5 To 52.5 0.00453 0.03449 0.06028 0.11522 0.24110 0.39401 1.64540
52.5 To 57.5 0.00453 0.03653 0.05989 0.11317 0.23004 0.39471 2.44207
57.5 To 62.5 0.00453 0.03856 0.05937 0.10894 0.19615 0.37472 3.55010

62.5 and above 0.00453 0.04060 0.05873 0.10242 0.12884 0.33875 5.04883

Speed Bin
Heavy 

Deceleration
Medium 

Deceleration
Light 

Deceleration Cruise
Light 

Acceleration
Medium 

Acceleration
Heavy 

Acceleration
0 To 2.5 0.00190 0.00149 0.00183 0.00202 0.00205 0.00243 0.00220

2.5 To 7.5 0.00183 0.00150 0.00184 0.00207 0.00212 0.00244 0.00216
7.5 To 12.5 0.00174 0.00151 0.00186 0.00214 0.00221 0.00246 0.00212

12.5 To 17.5 0.00164 0.00152 0.00188 0.00221 0.00230 0.00247 0.00208
17.5 To 22.5 0.00155 0.00152 0.00190 0.00228 0.00239 0.00248 0.00204
22.5 To 27.5 0.00146 0.00153 0.00192 0.00235 0.00248 0.00249 0.00200
27.5 To 32.5 0.00136 0.00154 0.00194 0.00242 0.00257 0.00249 0.00196
32.5 To 37.5 0.00127 0.00155 0.00196 0.00249 0.00266 0.00250 ND
37.5 To 42.5 0.00118 0.00156 0.00198 0.00256 0.00275 0.00251 ND
42.5 To 47.5 0.00108 0.00156 0.00200 0.00263 0.00284 0.00251 ND
47.5 To 52.5 0.00099 0.00157 0.00202 0.00270 0.00293 0.00251 ND
52.5 To 57.5 0.00090 0.00158 0.00204 0.00277 0.00302 0.00252 ND
57.5 To 62.5 0.00081 0.00159 0.00206 0.00284 0.00311 0.00252 ND

62.5 and above 0.00071 0.00160 0.00208 0.00291 0.00320 0.00252 ND

Speed Bin
Heavy 

Deceleration
Medium 

Deceleration
Light 

Deceleration Cruise
Light 

Acceleration
Medium 

Acceleration
Heavy 

Acceleration
0 To 2.5 0.00164 0.00136 0.00161 0.00207 0.00221 0.00264 0.00387

2.5 To 7.5 0.00146 0.00137 0.00166 0.00210 0.00226 0.00259 0.00346
7.5 To 12.5 0.00133 0.00140 0.00172 0.00214 0.00232 0.00252 0.00292
12.5 To 17.5 0.00127 0.00142 0.00178 0.00218 0.00238 0.00245 0.00238
17.5 To 22.5 0.00123 0.00144 0.00184 0.00222 0.00244 0.00238 0.00184
22.5 To 27.5 0.00114 0.00146 0.00190 0.00226 0.00249 0.00232 0.00130
27.5 To 32.5 0.00095 0.00149 0.00196 0.00229 0.00255 0.00225 0.00076
32.5 To 37.5 0.00061 0.00151 0.00202 0.00233 0.00261 0.00218 ND
37.5 To 42.5 0.00005 0.00153 0.00208 0.00237 0.00267 0.00211 ND
42.5 To 47.5 0.00005 0.00156 0.00214 0.00241 0.00273 0.00204 ND
47.5 To 52.5 ND 0.00158 0.00220 0.00245 0.00279 0.00197 ND
52.5 To 57.5 ND 0.00160 0.00226 0.00249 0.00285 0.00191 ND
57.5 To 62.5 ND 0.00163 0.00232 0.00252 0.00291 0.00184 ND

62.5 and above ND 0.00165 0.00239 0.00256 0.00296 0.00177 ND
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Table 5.37 Smoothed HC emissions data in g/s for the Test Vehicle 1 (42,000 lbs.) – Dual 
map. 

 
Table 5.38 Smoothed HC emissions data in g/s for the Test Vehicle 2 (60,000 lbs.). 

5.6 Presentation of Emissions Factors in grams/mile as a function of Average Speed Class 

The smoothed NOX emissions values presented as a speed-acceleration based two-

dimensional matrix for the vehicle configurations discussed above were combined with the 

Battelle activity data for each Battelle average speed class. The smoothed NOX emissions table 

(Table 5.26) was multiplied with the activity data for a particular average speed class and the 

values were summed up to obtain a single value. This procedure was repeated for all of the 

average speed classes and the resulting NOX emissions factors in grams/mile as a function of 

average speed class are presented below in Table 5.39. The emission values in grams/mile were 

Speed Bin
Heavy 

Deceleration
Medium 

Deceleration
Light 

Deceleration Cruise
Light 

Acceleration
Medium 

Acceleration
Heavy 

Acceleration
0 To 2.5 0.00124 0.00140 0.00185 0.00245 0.00268 0.00283 0.00364

2.5 To 7.5 0.00127 0.00144 0.00189 0.00249 0.00272 0.00285 0.00327
7.5 To 12.5 0.00131 0.00149 0.00196 0.00254 0.00277 0.00289 0.00279
12.5 To 17.5 0.00134 0.00155 0.00202 0.00260 0.00282 0.00293 0.00232
17.5 To 22.5 0.00138 0.00161 0.00209 0.00265 0.00287 0.00296 0.00188
22.5 To 27.5 0.00141 0.00166 0.00215 0.00270 0.00292 0.00300 0.00146
27.5 To 32.5 0.00145 0.00172 0.00221 0.00275 0.00297 0.00303 0.00105
32.5 To 37.5 0.00148 0.00177 0.00228 0.00280 0.00303 0.00306 0.00066
37.5 To 42.5 0.00152 0.00183 0.00234 0.00285 0.00308 0.00308 ND
42.5 To 47.5 0.00155 0.00189 0.00241 0.00291 0.00313 0.00309 ND
47.5 To 52.5 0.00159 0.00194 0.00247 0.00296 0.00318 0.00309 ND
52.5 To 57.5 0.00162 0.00200 0.00254 0.00301 0.00323 0.00308 ND
57.5 To 62.5 0.00166 0.00205 0.00260 0.00306 0.00328 0.00305 ND

62.5 and above 0.00170 0.00211 0.00266 0.00311 0.00334 0.00301 ND

Speed Bin
Heavy 

Deceleration
Medium 

Deceleration
Light 

Deceleration Cruise
Light 

Acceleration
Medium 

Acceleration
Heavy 

Acceleration
0 To 2.5 0.01527 0.01404 0.01739 0.02011 0.02480 0.02532 0.02341

2.5 To 7.5 0.01472 0.01414 0.01795 0.02047 0.02486 0.02580 0.01974
7.5 To 12.5 0.01398 0.01428 0.01869 0.02095 0.02494 0.02637 0.02689

12.5 To 17.5 0.01325 0.01441 0.01943 0.02143 0.02502 0.02689 0.02676
17.5 To 22.5 0.01251 0.01455 0.02017 0.02191 0.02510 0.02734 0.02751
22.5 To 27.5 0.01178 0.01468 0.02091 0.02239 0.02518 0.02772 0.03057
27.5 To 32.5 0.01104 0.01482 0.02165 0.02287 0.02526 0.02805 0.03007
32.5 To 37.5 0.01031 0.01495 0.02239 0.02335 0.02534 0.02830 0.03414
37.5 To 42.5 0.00958 0.01509 0.02314 0.02383 0.02542 0.02850 ND
42.5 To 47.5 0.00884 0.01522 0.02388 0.02431 0.02549 0.02863 ND
47.5 To 52.5 0.00811 0.01536 0.02462 0.02479 0.02557 0.02869 ND
52.5 To 57.5 0.00737 0.01549 0.02536 0.02527 0.02565 0.02870 ND
57.5 To 62.5 0.00664 0.01563 0.02610 0.02575 0.02573 0.02863 ND

62.5 and above ND 0.01576 0.02684 0.02623 0.02581 0.02851 ND
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obtained for both rural and urban mode of operation. It can be observed that the NOX emissions 

factor values at low average speeds are higher for urban operation. This is due to the fact that 

urban mode involves considerable operation in typical stop and go city driving pattern. It should 

be noted that same NOX emissions factor table was used to obtain both rural and urban factors. 

The difference in values exists due to the difference in percentage of time of operation in each 

cell present in the Battelle activity data. 

 
Table 5.39 NOX emissions factors in grams/mile for all the trucks as a function of average 
speed class in rural and urban mode of operation. 

Tables 5.40 and 5.41 present the CO and HC emissions factors in grams/mile as a 

function of the average speed class, in rural and urban mode of operation, for all the tests 

conducted on Test Vehicle 1 and Test Vehicle 2. 

 

 
 

Average Speed Bin in mph
Test details  0-10 10-20 20-30 30-40 40-50  50-60 60-70 

Rural
Test Vehicle 1 (1995 truck) - 
56000 lbs. Dual Map 34.55 22.24 17.20 15.40 15.18 18.30 23.79
Test Vehicle 1 (1995 truck) - 
56000 lbs. Single Map 39.24 23.25 17.95 14.92 12.12 9.56 8.82
Test Vehicle 1 (1995 truck) - 
42000 lbs. Dual Map 32.43 21.11 15.29 12.88 12.66 16.07 21.82
Test Vehicle 2 (1982 truck) - 
60000 lbs. 36.46 30.35 27.52 25.40 22.27 18.98 19.39

Urban
Test Vehicle 1 (1995 truck) - 
56000 lbs. Dual Map 36.22 26.54 21.43 15.23 13.65 18.31 22.77
Test Vehicle 1 (1995 truck) - 
56000 lbs. Single Map 41.79 28.74 23.29 16.53 11.66 9.14 8.61
Test Vehicle 1 (1995 truck) - 
42000 lbs. Dual Map 32.49 24.01 18.33 12.31 11.24 16.10 20.75
Test Vehicle 2 (1982 truck) - 
60000 lbs. 39.93 35.70 34.14 28.37 21.02 18.16 18.55
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Table 5.40 CO emissions factors in grams/mile for all the trucks as a function of average 
speed class in rural and urban mode of operation.  
 

 
 
Table 5.41 HC emissions factors in grams/mile for all the trucks as a function of average 
speed class in rural and urban mode of operation. 

5.7 Verification of Speed-Acceleration Approach 

Verification of the speed-acceleration approach for NOX emissions was done in the 

following manner. For this purpose, the Test Vehicle 1 operating on the single map was tested 

over the UDDS (UDDS) cycle at 56,000 lbs. The emission factors as a function of the average 

Average Speed Bin in mph
Test details  0-10 10-20 20-30 30-40 40-50  50-60 60-70 

Rural
Test Vehicle 1 (1995 truck) - 
56000 lbs. Dual Map 9.54 5.21 4.03 3.37 2.48 1.55 1.46
Test Vehicle 1 (1995 truck) - 
56000 lbs. Single Map 18.17 9.44 6.75 5.19 4.27 3.64 3.40
Test Vehicle 1 (1995 truck) - 
42000 lbs. Dual Map 9.54 4.06 2.68 2.01 1.53 1.16 1.02
Test Vehicle 2 (1982 truck) - 
60000 lbs. 29.76 19.18 15.24 12.63 10.23 7.81 6.82

Urban
Test Vehicle 1 (1995 truck) - 
56000 lbs. Dual Map 11.87 7.50 6.47 4.06 2.11 1.39 1.32
Test Vehicle 1 (1995 truck) - 
56000 lbs. Single Map 19.01 10.64 7.91 5.49 4.27 3.62 3.39
Test Vehicle 1 (1995 truck) - 
42000 lbs. Dual Map 10.76 4.76 3.35 2.19 1.48 1.11 1.01
Test Vehicle 2 (1982 truck) - 
60000 lbs. 35.63 25.42 20.34 14.01 9.99 7.55 6.69

Average Speed Bin in mph
Test details  0-10 10-20 20-30 30-40 40-50  50-60 60-70 

Rural
Test Vehicle 1 (1995 truck) - 
56000 lbs. Dual Map 1.10 0.49 0.32 0.23 0.19 0.16 0.15
Test Vehicle 1 (1995 truck) - 
56000 lbs. Single Map 1.09 0.50 0.33 0.25 0.20 0.18 0.16
Test Vehicle 1 (1995 truck) - 
42000 lbs. Dual Map 1.30 0.58 0.37 0.28 0.22 0.19 0.18
Test Vehicle 2 (1982 truck) - 
60000 lbs. 10.80 4.88 3.19 2.37 1.90 1.63 1.49

Urban
Test Vehicle 1 (1995 truck) - 
56000 lbs. Dual Map 1.26 0.61 0.38 0.24 0.19 0.16 0.15
Test Vehicle 1 (1995 truck) - 
56000 lbs. Single Map 1.25 0.61 0.39 0.25 0.20 0.18 0.17
Test Vehicle 1 (1995 truck) - 
42000 lbs. Dual Map 1.48 0.70 0.45 0.28 0.23 0.19 0.18
Test Vehicle 2 (1982 truck) - 
60000 lbs. 12.45 6.16 3.95 2.43 1.90 1.63 1.52



 103

speed class (shown above) were obtained for the emissions results from UDDS for the Test 

Vehicle 1 and are presented in Table 5.42.  

Table 5.42 NOX emissions factors in grams/mile for the Test Vehicle 1 as a function of 
average speed class in rural and urban mode of operation.  

 

A basic assumption used in constructing emissions factors from the UDDSata is that the 

continuous second-by-second emissions at a given speed-acceleration point are independent of 

the overall speed-time profile over which the vehicle is being driven. To assess the validation of 

this assumption and to verify the speed-acceleration method for emissions predictions, the 

UDDSata were divided into 0.5 mile segments as shown in Tables 5.43 – 5.45. Travel demand 

models available to transportation agencies provide speed estimates for links whose lengths are 

typically about half-mile long. The speed values and the emissions values were averaged for 

every 0.5-mile interval and placed in the respective bin. Then, a polynomial curve was fitted to 

the NOX versus average speed class (as in Table 5.39) and the resulting equation was used to 

predict the NOX emissions for each of the 0.5-mile segment (shown in tables below). For each 

bin, the NOX emissions were predicted using the two emissions factor in grams/mile tables. One 

table corresponds to the CSHVR and IHC combined (Table 5.39) and the other one for UDDS 

(UDDS), obtained in a similar manner (Table 5.42). The predicted values were then averaged 

over all the bins and a single averaged value was obtained. The results are also summarized and 

presented in Table 5.46. It can be seen from Tables 5.43 through 5.45 that for some links, the 

NOX emissions were poorly predicted. Consider segment numbers 5, 8, and 9 for the CSHVR 

table (Table 5.43). The percentage difference between predicted and actual NO X emissions were 

Average Speed Bin in mph
Test details  0-10 10-20 20-30 30-40 40-50  50-60 60-70 

Rural
Test Vehicle 1 (1995 truck) -
56000 lbs. - Test_D 37.71 25.15 19.66 16.28 14.59 14.41 15.46

Urban
Test Vehicle 1 (1995 truck) -
56000 lbs. - Test_D 39.74 27.78 22.03 16.83 14.44 14.55 15.34
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over 30% for segments 8 and 9. Segment 9 had an average speed of 5.88 mph, but examination 

of continuous data revealed that most of the operation in this segment was spent in deceleration 

and idle. As seen in Figure 5.29, of the total duration of 306 seconds, the vehicle decelerated 

from 42.5 mph to 1.25 mph during the first 60 seconds and almost 120 seconds were spent in 

idling. The NOX emissions were over predicted for this case because, for this average speed class 

(0 – 10 mph) in the Battelle activity data, most of the operation occurs in the first two speed bins 

in cruise. Segments 5 and 8 have the same average speed (approx 24.3 mph). Examination of the 

continuous data showed that segment 5 exhibited considerable operation in cruise and a little 

operation in acceleration and deceleration similar to the Battelle activity data. Segment 8 has the 

same average speed as segment 5, but most of the operation occurs in acceleration. The vehicle 

accelerates from a speed of 1.14 mph at 7 seconds to a speed of 43 mph at 64 seconds during the 

total of 74 seconds of operation. Hence the emissions are under predicted for this segment. 

Examination of the continuous data for IHC revealed the similar results for cells with high 

percentage error.  

It can be seen from Table 5.45 that NOX predictions were poor for UDDS for segments 7 

and 10. Figures 5.30 and 5.31 show the 3-dimensional plots of activity for Battelle data, 

corresponding to an average speed class of 10 – 20 mph, and UDDS activity. It can be seen that 

activity data for UDDS (with an average speed of 18.25 mph) is not representative of the Battelle 

activity data. One third of the activity in UDDS occurs in cruise and in 0 – 2.5 mph speed bin. 

Nearly 50% of activity in Battelle data for average speed class of 10 – 20 mph occurs in the first 

five speed bins in cruise. This can be attributed to the consistent over prediction of NOX 

emissions for some segments, which do not represent Battelle activity data. 
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Table 5.43 Predicted and actual NOX for Test Vehicle 1 over CSHVR at 56,000 lb. 

 
 

Figure 5.29 Variation of speed and NOX emissions (g/s) with time for segment # 9 for the 
CSHVR prediction table (Table 5.43).  

 

CSHVR - 1995 Truck (56000 lbs.) - Single Map

Segment Length
Avg. 

speed
Actual 
NOx

NOx 
predicted - 

Test_D - 
Rural

NOx 
predicted - 

Test_D - 
Urban

NOx 
predicted - 
CSHVR & 

IHC - Rural

NOx 
predicted - 
CSHVR & 

IHC - Urban

Percentage 
diff. - Test_D 

- Rural

Percentage 
diff. - Test_D 

- Urban

Percentage 
diff. - 

CSHVR & 
IHC - rural

Percentage 
diff. - 

CSHVR & 
IHC - Urban

(mile) (mph) (g/mile) (g/mile) (g/mile) (g/mile) (g/mile) (%) (%) (%) (%)
1 0.5 10.97 30.49 29.37 30.84 28.18 31.54 -3.66 1.14 -7.58 3.46
2 0.5 31.74 19.4 17.12 18.29 15.76 18.71 -11.75 -5.74 -18.78 -3.56
3 0.5 10.59 24.21 29.81 31.20 28.72 31.91 23.12 28.88 18.62 31.80
4 0.5 28.15 21.78 18.16 20.22 16.65 21.19 -16.61 -7.17 -23.56 -2.69
5 0.5 24.35 19.85 19.59 22.39 17.83 23.71 -1.29 12.81 -10.16 19.44
6 0.5 8.55 28.85 32.34 33.52 31.96 34.38 12.11 16.18 10.78 19.15
7 0.5 18.25 28.14 22.92 25.85 20.89 27.09 -18.56 -8.13 -25.75 -3.73
8 0.5 24.26 32.32 19.63 22.44 17.87 23.77 -39.25 -30.56 -44.72 -26.47
9 0.5 5.88 28.41 36.22 37.86 37.18 39.46 27.49 33.27 30.87 38.90

10 0.5 21.74 30.16 20.84 23.88 18.91 25.26 -30.92 -20.81 -37.29 -16.25
11 0.5 18.92 21.09 22.48 25.47 20.45 26.75 6.57 20.79 -3.01 26.86
12 0.5 15.47 32.16 25.00 27.49 23.07 28.49 -22.27 -14.53 -28.26 -11.41
13 0.5 28.73 23.3 17.98 19.90 16.49 20.79 -22.85 -14.61 -29.21 -10.75

Averaged 6.50 14.86 26.17 23.96 26.10 22.61 27.16 -8.44 -0.24 -13.58 3.79
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Figure 5.30 3-Dimensional plot of activity for Battelle database corresponding to average 
speed class of 10 – 20 mph.  

 

 

 

 

 

 

 

 

 

 

 

 

 

0 
To

 2
.5

2.
5 

To
 7

.5

7.
5 

To
 1

2.
5

12
.5

 T
o 

17
.5

17
.5

 T
o 

22
.5

22
.5

 T
o 

27
.5

27
.5

 T
o 

32
.5

32
.5

 T
o 

37
.5

37
.5

 T
o 

42
.5

42
.5

 T
o 

47
.5

47
.5

 T
o 

52
.5

52
.5

 T
o 

57
.5

57
.5

 T
o 

62
.5

62
.5

 a
nd

 a
bo

ve
H

ea
vy

 D
ec

el
er

at
io

n
M

ed
iu

m
 D

ec
el

er
at

io
n

Li
gh

t D
ec

el
er

at
io

n
C

ru
is

e
Li

gh
t A

cc
el

er
at

io
n

M
ed

iu
m

 A
cc

el
er

at
io

n
H

ea
vy

 A
cc

el
er

at
io

n

0%

2%

4%

6%

8%

10%

12%

14%

Pe
rc

en
ta

ge
 T

im
e 

of
 O

pe
ra

tio
n 

(%
)

Speed Bin (mph)

Ac
ce

le
ra

tio
n 

B
in

12%-14%
10%-12%
8%-10%
6%-8%
4%-6%
2%-4%
0%-2%



 107

Figure 5.31 3-Dimensional plot of activity for UDDS cycle corresponding to average speed 
of 18.25 mph.  
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Table 5.44 Predicted and actual NOX for the Test Vehicle 1 over IHC at 56,000 lb.  
 

Segment Length
Avg. 

speed
Actual 
NOx

NOx 
predicted - 

Test_D - 
Rural

NOx 
predicted - 

Test_D - 
Urban

NOx 
predicted - 
CSHVR & 

IHC - Rural

NOx 
predicted - 
CSHVR & 

IHC - Urban

Percentage 
diff. - Test_D 

- Rural

Percentage 
diff. - Test_D 

- Urban

Percentage 
diff. - 

CSHVR & 
IHC - rural

Percentage 
diff. - 

CSHVR & 
IHC - Urban

(mile) (mph) (g/mile) (g/mile) (g/mile) (g/mile) (g/mile) (%) (%) (%) (%)
1 0.5 13.41 32.19 26.83 28.85 25.13 29.67 -16.64 -10.37 -21.92 -7.82
2 0.5 21.61 18.53 20.90 23.96 18.98 25.33 12.81 29.29 2.40 36.71
3 0.5 21.84 42.93 20.78 23.83 18.87 25.20 -51.59 -44.50 -56.05 -41.29
4 0.5 57.93 20.1 14.32 13.34 8.75 9.09 -28.74 -33.65 -56.48 -54.77
5 0.5 60.87 11.66 14.63 13.02 8.46 8.89 25.49 11.63 -27.47 -23.72
6 0.5 65.1 9.28 15.54 12.66 8.89 9.68 67.43 36.44 -4.16 4.31
7 0.5 65.13 8.25 15.55 12.66 8.90 9.69 88.44 53.46 7.90 17.50
8 0.5 64.65 7.41 15.41 12.67 8.79 9.50 107.97 71.04 18.58 28.15
9 0.5 63.73 7.07 15.18 12.73 8.62 9.21 114.65 80.01 21.88 30.27
10 0.5 63.89 10.65 15.21 12.72 8.64 9.25 42.86 19.39 -18.85 -13.13
11 0.5 64.67 8.29 15.42 12.67 8.79 9.50 85.96 52.87 6.05 14.64
12 0.5 64.61 7.69 15.40 12.68 8.78 9.48 100.26 64.83 14.15 23.29
13 0.5 64.42 8.12 15.35 12.68 8.74 9.41 89.03 56.21 7.62 15.93
14 0.5 58.91 11.08 14.40 13.24 8.61 8.99 29.98 19.46 -22.30 -18.86
15 0.5 63.94 13 15.23 12.71 8.65 9.27 17.13 -2.22 -33.46 -28.73
16 0.5 64.31 9.58 15.32 12.69 8.72 9.38 59.92 32.46 -9.01 -2.12
17 0.5 65.13 7.79 15.55 12.66 8.90 9.69 99.57 62.53 14.27 24.44
18 0.5 59.93 4.78 14.51 13.12 8.51 8.92 203.54 174.56 77.97 86.58
19 0.5 30.24 16.77 17.52 19.07 16.11 19.75 4.50 13.71 -3.91 17.74
20 0.5 42.13 18.35 15.16 14.57 13.19 12.81 -17.38 -20.58 -28.14 -30.18
21 0.5 10.87 17.95 29.49 30.93 28.32 31.64 64.27 72.32 57.76 76.26
22 0.5 12.28 33.76 27.96 29.70 26.46 30.45 -17.19 -12.01 -21.63 -9.80
23 0.5 37.95 38.92 15.81 15.65 14.30 14.81 -59.39 -59.78 -63.27 -61.95
24 0.5 59.58 10.05 14.47 13.16 8.54 8.94 43.97 30.98 -15.06 -11.06
25 0.5 61.96 4.93 14.81 12.89 8.46 8.93 200.37 161.53 71.57 81.20
26 0.5 64.51 4.61 15.37 12.68 8.76 9.45 233.47 175.05 89.96 104.88
27 0.5 63.62 8.01 15.15 12.73 8.60 9.18 89.13 58.99 7.38 14.65
28 0.5 64.39 7.86 15.34 12.69 8.73 9.40 95.18 61.39 11.10 19.64
29 0.5 62.95 11.78 15.00 12.79 8.52 9.05 27.34 8.59 -27.66 -23.18
30 0.5 66.38 8.61 15.94 12.69 9.29 10.40 85.18 47.39 7.93 20.75
31 0.5 63.8 6.86 15.19 12.72 8.63 9.23 121.46 85.45 25.77 34.52
32 0.5 62.47 5.27 14.90 12.84 8.48 8.98 182.79 143.63 60.97 70.44
33 0.5 58.7 6.27 14.38 13.26 8.64 9.01 129.40 111.46 37.73 43.69
34 0.5 14.77 27.3 25.59 27.93 23.73 28.87 -6.26 2.30 -13.09 5.74
35 0.5 22.49 33.56 20.45 23.46 18.57 24.83 -39.05 -30.10 -44.65 -26.01
36 0.5 43.98 14.31 14.92 14.27 12.65 12.11 4.28 -0.28 -11.60 -15.37
37 0.5 33.87 3.33 16.61 17.26 15.26 17.28 398.85 418.32 358.40 418.86

Averaged 18.5 37.57 13.97 17.02 15.95 12.13 13.66 21.80 14.18 -13.15 -2.25  
 
Table 5.45 Predicted and actual NOX for the Test Vehicle 1 over Test-D at 56,000 lb.  
 

 
 

 

 

Test-D - 1995 Truck (56000 lbs.) - Single Map

Segment Length
Avg. 

speed
Actual 
NOx

NOx 
predicted - 

Test_D - 
Rural

NOx 
predicted - 

Test_D - 
Urban

NOx predicted 
- CSHVR & 
IHC - Rural

NOx 
predicted - 

CSHVR & IHC 
- Urban

Percentage 
diff. - Test_D - 

Rural

Percentage 
diff. - Test_D - 

Urban

Percentage 
diff. - CSHVR 
& IHC - Rural

Percentage 
diff. - CSHVR 
& IHC - Urban

(mile) (mph) (g/mile) (g/mile) (g/mile) (g/mile) (g/mile) (%) (%) (%) (%)
1 0.5 13.8 23.2 26.46 28.58 24.71 29.43 14.07 23.17 6.51 26.85
2 0.5 5.96 34.3 36.09 37.70 37.01 39.27 5.23 9.92 7.89 14.48
3 0.5 34.7 16.05 16.43 16.89 15.07 16.74 2.38 5.25 -6.09 4.31
4 0.5 16.01 23.94 24.56 27.16 22.60 28.21 2.60 13.44 -5.60 17.83
5 0.5 48.01 13.18 14.51 13.89 11.41 10.92 10.08 5.41 -13.43 -17.17
6 0.5 50.53 12.9 14.33 13.77 10.62 10.34 11.09 6.77 -17.66 -19.82
7 0.5 53.5 20.7 14.22 13.65 9.75 9.77 -31.30 -34.06 -52.91 -52.80
8 0.5 55.57 11.88 14.22 13.53 9.22 9.42 19.72 13.90 -22.40 -20.70
9 0.5 55.85 15.03 14.23 13.51 9.15 9.38 -5.33 -10.10 -39.09 -37.61

10 0.5 17.1 14.51 23.73 26.51 21.72 27.66 63.53 82.72 49.69 90.63
11 0.39 7.41 27.5 33.92 35.15 34.04 36.23 23.34 27.83 23.80 31.76

Averaged 5.39 18.25 19.38 21.16 21.85 18.66 20.67 9.15 12.74 -3.70 6.65
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Table 5.46 Summary of predicted results for NOX emissions.  

 

 
The results of the NOX analysis show very strong agreement between measured and 

predicted values. The values in the last two columns represent the percentage difference between 

the predicted and actual NOX emission values using the IHC and CSHVR data. It can be seen 

that this method predicts the NOX emissions reasonably accurately. The differences between 

measured and predicted values for the rural mode are greater than that predicted for the urban 

mode. The NOX emissions are under predicted by about 14% for the IHC and CSHVR cycle. The 

percentage error for UDDS was about 4% for the whole cycle and about 8% if only the first 5 

miles of the cycle were used. Both CSHVR and UDDS are driving schedules developed to 

represent urban operation, hence the poor agreement between the actual and predicted NOX 

emissions for rural mode are to be expected. IHC reflects highway operation in both urban and 

rural areas. The results confirm the validity of this methodology as the error was within 15%. 

Also, the fact that NOX emissions for UDDS were predicted within 8% of the actual value further 

validates the present approach. One should, however, be aware that this verification was 

undertaken using the emissions results from a single vehicle. The accuracy of the prediction may 

improve if a large number of test results were used, thus minimizing any bias that may exist. The 

validity of this method was verified with additional test results covering a wide range of test 

cycles and test vehicles, and the results are presented in the following section. 

Using 
Test_D 
Data

Using 
CSHVR & 
IHC Data

Using Test_D 
Data

Using 
CSHVR & 
IHC Data

Tital 
Miles Cycle

Average 
Speed

Measured 
NOX

NOX - 
Predicted - 

Rural

NOX - 
Predicted -

Urban

NOX - 
Predicted - 

Rural

NOX - 
Predicted - 

Urban

Percentage 
Difference - 

Rural

Percentage 
Difference - 

Urban

Percentage 
Difference - 

Rural

Percentage 
Difference - 

Urban

Averaged from 0.5 mph segments 6.5 CSHVR 14.86 26.17 23.96 26.10 22.61 27.16 -8.44 -0.24 -13.58 3.79

Averaged from 0.5 mph segments 18.5 IHC 37.57 13.97 17.02 15.95 12.13 13.66 21.80 14.18 -13.15 -2.25

Averaged from 0.5 mph segments 5.4 Test_D 18.25 19.38 21.16 21.85 18.66 20.67 9.15 12.74 -3.70 6.65
Averaged from 0.5 mph segments for 

the first 5 miles 5 Test_D 20.61 18.57 19.88 20.52 17.13 19.11 7.05 10.51 -7.77 2.93
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5.8 Additional Analysis to Validate Speed-Acceleration Method 

The analyses and results presented in Section 5.7 pertain to the two over the road test 

vehicles discussed in Chapter 4. In order to validate the speed-acceleration method, additional 

data that were available at WVU from different research efforts were used. Two different data 

sets were used for this purpose, which are explained in detail in Chapter 4.  The first data set was 

available from Phase I of the Coordinating Research Council (CRC) E55 research project 

conducted on one of the Translabs operated by WVU. This project involved the testing of 25 

different Class 8 trucks covering the following model year groups: 1974-77, 1978-81, 1982-85, 

1986-89, 1990-93, 1994-97 and 1998 and newer. Chapter 4 presents the details of the test 

vehicles and tests conducted on these vehicles. Analysis of this data set resulted in the generation 

of the emissions factors in grams/mile for the range of model year groups. 

 The second data set was from a single 1995 model year Box Truck that was tested on 16 

different driving schedules. This data set enabled to study the effect of driving test schedule on 

the heavy-duty diesel emissions.  

 The speed-acceleration based emissions factors were developed for both data sets using 

the same approach that was discussed in detail earlier in this chapter. The results of the analyses 

follow. 

 Table 5.47 presents the NOX emissions factors in grams/mile as a function of average 

speed class for all the model year groups for a test weight of 56,000 lbs. Table 5.48 presents the 

NOX emissions factors for a test weight of 30,000 lbs. The procedures used to generate these 

emissions factors were discussed in detail in the beginning of this chapter. For each model year 

group, the emissions data in grams per second were averaged for all the test runs. The resulting 

emissions factors tables in grams per second were combined with the vehicle activity data 
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(presented in section 5.4) to generate the grams/mile emissions factor tables. Tables 5.49 through 

5.52 present the grams/mile emissions factor tables for CO and HC emissions respectively. 

Table 5.47 NOX Emissions factors in g/mile as a function of average speed class for the 
CRC data – 56,000 lbs. 

 

Table 5.48 NOX Emissions factors in g/mile as a function of average speed class for the 
CRC data – 30,000 lbs.  

 
 
 
 

 NOX Emissions in grams/mile for the CRC PHASE I Data
Average Speed Bin in mph

Test details  0-10 10-20 20-30 30-40 40-50  50-60 60-70 
Rural

1974-77 Trucks - 56000 lbs. 28.09 26.80 26.03 25.80 25.07 25.66 27.87
1978-81 Trucks - 56000 lbs. 26.21 17.83 13.90 11.38 9.95 9.64 10.50
1982-85 Trucks - 56000 lbs. 30.09 18.41 14.01 11.15 8.93 7.63 7.60
1986-89 Trucks - 56000 lbs. 8.18 9.84 11.92 12.89 12.54 11.35 9.89
1990-93 Trucks - 56000 lbs. 28.56 18.99 19.10 19.56 18.66 17.17 15.74
1994-97 Trucks - 56000 lbs. 30.15 24.11 24.04 25.42 27.17 31.50 36.28
1998 and later Trucks - 56000 lbs. 21.19 12.90 15.22 18.77 21.84 26.52 30.38

Urban
1974-77 Trucks - 56000 lbs. 30.51 32.07 31.30 27.04 24.30 25.64 27.51
1978-81 Trucks - 56000 lbs. 28.57 20.82 16.98 12.22 9.73 9.85 10.48
1982-85 Trucks - 56000 lbs. 31.56 19.89 16.53 12.58 8.85 7.65 7.67
1986-89 Trucks - 56000 lbs. 11.04 13.07 14.04 13.87 12.77 11.41 10.27
1990-93 Trucks - 56000 lbs. 35.01 25.15 22.83 20.80 18.67 17.07 16.04
1994-97 Trucks - 56000 lbs. 33.24 29.37 27.38 24.84 26.33 32.02 35.83
1998 and later Trucks - 56000 lbs. 26.96 19.16 17.79 17.46 21.09 27.10 30.14
All Vehicles Averaged Rural 21.15 13.07 15.35 18.86 21.86 26.54 30.53
All Vehicles Averaged Urban 26.68 19.25 17.96 17.67 21.07 27.12 30.28

 NOX Emissions in grams/mile for the CRC PHASE I Data
Average Speed Bin in mph

Test details  0-10 10-20 20-30 30-40 40-50  50-60 60-70 
Rural

1974-77 Trucks - 30000 lbs. 16.45 18.55 18.34 17.34 16.20 15.08 14.40
1978-81 Trucks - 30000 lbs. 15.63 10.41 8.85 7.90 7.06 6.46 6.34
1982-85 Trucks - 30000 lbs. 11.60 10.39 9.10 7.88 6.99 6.19 5.95
1986-89 Trucks - 30000 lbs. 5.98 6.09 6.94 7.23 6.87 6.04 5.13
1990-93 Trucks - 30000 lbs. 31.50 20.73 17.77 15.99 14.81 14.28 14.10
1994-97 Trucks - 30000 lbs. 24.35 17.77 17.93 19.40 21.45 25.41 29.34
1998 and later Trucks - 30000 lbs. 18.04 9.60 9.42 11.38 13.96 18.72 23.77

Urban
1974-77 Trucks - 30000 lbs. 18.76 19.64 19.18 18.06 16.35 14.91 14.36
1978-81 Trucks - 30000 lbs. 18.33 13.50 11.05 8.46 7.01 6.50 6.38
1982-85 Trucks - 30000 lbs. 12.10 11.43 9.99 8.33 7.03 6.14 5.93
1986-89 Trucks - 30000 lbs. 7.53 7.52 7.84 7.86 7.02 6.05 5.33
1990-93 Trucks - 30000 lbs. 35.79 25.03 20.69 16.47 14.88 14.36 14.19
1994-97 Trucks - 30000 lbs. 27.32 22.09 19.19 17.89 20.69 25.61 28.72
1998 and later Trucks - 30000 lbs. 19.52 12.06 10.10 9.86 12.81 19.01 23.10
All Vehicles Averaged Rural 18.04 9.60 9.41 11.36 13.93 18.72 23.77
All Vehicles Averaged Urban 19.52 12.05 10.08 9.83 12.78 19.00 23.10
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Table 5.49 CO Emissions factors in g/mile as a function of average speed class for the CRC 
data – 56,000 lbs.  

 
Table 5.50 CO Emissions factors in g/mile as a function of average speed class for the CRC 
data – 30,000 lbs.  

 
Table 5.51 HC Emissions factors in g/mile as a function of average speed class for the CRC 
data – 56,000 lbs.  

 CO Emissions in grams/mile for the CRC PHASE I Data
Average Speed Bin in mph

Test details  0-10 10-20 20-30 30-40 40-50  50-60 60-70 
Rural

1974-77 Trucks - 56000 lbs. 18.94 14.09 9.47 5.94 3.73 2.46 2.41
1978-81 Trucks - 56000 lbs. 28.10 18.87 12.63 8.98 7.24 5.99 4.50
1982-85 Trucks - 56000 lbs. 17.09 10.05 5.99 3.33 1.82 1.40 2.06
1986-89 Trucks - 56000 lbs. 16.24 13.23 10.48 7.87 5.98 4.28 2.90
1990-93 Trucks - 56000 lbs. 4.70 4.54 4.95 4.76 4.17 2.82 1.11
1994-97 Trucks - 56000 lbs. 8.67 6.15 4.79 3.73 2.96 2.35 1.92
1998 and later Trucks - 56000 lbs. 8.75 7.15 6.05 5.06 4.34 3.78 3.33

Urban
1974-77 Trucks - 56000 lbs. 19.12 15.17 11.34 6.63 3.74 2.38 2.34
1978-81 Trucks - 56000 lbs. 26.86 19.60 14.48 9.29 7.49 5.98 4.76
1982-85 Trucks - 56000 lbs. 17.18 10.53 7.55 3.83 1.65 1.38 1.91
1986-89 Trucks - 56000 lbs. 17.94 14.92 12.21 8.51 6.40 4.27 3.09
1990-93 Trucks - 56000 lbs. 6.70 6.06 5.63 5.14 4.55 2.78 1.38
1994-97 Trucks - 56000 lbs. 10.04 7.72 5.89 3.95 3.06 2.34 1.98
1998 and later Trucks - 56000 lbs. 9.83 8.49 7.09 5.37 4.50 3.83 3.44
All Vehicles Averaged Rural 8.77 7.18 6.11 5.14 4.39 3.80 3.35
All Vehicles Averaged Urban 9.86 8.53 7.18 5.48 4.54 3.84 3.45

HC Emissions in grams/mile for the CRC PHASE I Data
Average Speed Bin in mph

Test details  0-10 10-20 20-30 30-40 40-50  50-60 60-70 
Rural

1974-77 Trucks - 56000 lbs. 5.46 2.98 1.92 1.31 0.95 0.80 0.84
1978-81 Trucks - 56000 lbs. 3.39 3.91 4.36 4.02 3.38 1.76 0.48
1982-85 Trucks - 56000 lbs. 11.14 4.23 2.57 1.88 1.58 1.52 1.56
1986-89 Trucks - 56000 lbs. 7.35 5.47 4.38 3.51 2.88 2.30 1.86
1990-93 Trucks - 56000 lbs. 0.61 0.36 0.26 0.20 0.16 0.13 0.11
1994-97 Trucks - 56000 lbs. 2.89 1.54 1.07 0.77 0.57 0.43 0.36
1998 and later Trucks - 56000 lbs. 2.33 1.42 0.98 0.68 0.48 0.33 0.28

Urban
1974-77 Trucks - 56000 lbs. 6.28 3.90 2.55 1.39 0.91 0.79 0.82
1978-81 Trucks - 56000 lbs. 4.49 4.13 3.98 4.38 4.00 1.76 0.47
1982-85 Trucks - 56000 lbs. 12.83 5.34 3.16 1.87 1.56 1.54 1.56
1986-89 Trucks - 56000 lbs. 8.08 6.23 5.03 3.78 3.00 2.30 1.94
1990-93 Trucks - 56000 lbs. 0.74 0.52 0.36 0.21 0.16 0.13 0.11
1994-97 Trucks - 56000 lbs. 3.49 2.17 1.45 0.81 0.57 0.43 0.37
1998 and later Trucks - 56000 lbs. 2.56 1.65 1.20 0.75 0.49 0.33 0.28
All Vehicles Averaged Rural 2.32 1.42 0.98 0.68 0.47 0.33 0.28
All Vehicles Averaged Urban 2.56 1.65 1.20 0.75 0.48 0.33 0.28

CO Emissions in grams/mile for the CRC PHASE I Data
Average Speed Bin in mph

Test details  0-10 10-20 20-30 30-40 40-50  50-60 60-70 
Rural

1974-77 Trucks - 30000 lbs. 6.75 6.07 5.49 4.58 3.55 1.94 0.23
1978-81 Trucks - 30000 lbs. 15.10 12.14 9.03 6.80 5.54 5.30 5.88
1982-85 Trucks - 30000 lbs. 3.10 3.33 2.85 2.25 1.70 1.05 0.58
1986-89 Trucks - 30000 lbs. 12.93 10.01 9.02 7.18 5.38 3.35 1.99
1990-93 Trucks - 30000 lbs. 5.85 4.93 4.45 3.82 3.08 2.04 1.05
1994-97 Trucks - 30000 lbs. 4.82 3.40 2.78 2.34 1.99 1.67 1.49
1998 and later Trucks - 30000 lbs. 8.05 5.84 4.84 4.05 3.42 2.80 2.40

Urban
1974-77 Trucks - 30000 lbs. 8.22 7.13 6.21 5.16 3.95 1.91 0.51
1978-81 Trucks - 30000 lbs. 15.31 13.23 10.59 7.11 5.46 5.30 5.75
1982-85 Trucks - 30000 lbs. 3.05 3.33 3.07 2.56 1.81 1.03 0.64
1986-89 Trucks - 30000 lbs. 16.20 11.43 9.51 7.89 5.92 3.29 2.13
1990-93 Trucks - 30000 lbs. 6.71 5.58 5.12 4.31 3.29 2.01 1.22
1994-97 Trucks - 30000 lbs. 5.38 3.94 3.15 2.40 1.99 1.60 1.47
1998 and later Trucks - 30000 lbs. 8.81 6.54 5.50 4.35 3.48 2.77 2.44
All Vehicles Averaged Rural 8.05 5.83 4.83 4.04 3.41 2.80 2.40
All Vehicles Averaged Urban 8.78 6.53 5.48 4.33 3.47 2.76 2.44
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Table 5.52 HC Emissions factors in g/mile as a function of average speed class for the CRC 
data – 30,000 lbs.  

 It can be observed from Table 5.47 that the NOX emissions factors in grams/mile 

decrease as the average speed value increases. NOX emissions factors reach a minimum point 

after which it starts increasing. Figure 5.32 shows the variation of NOX emissions (g/mile) with 

average speed class for the rural operation for a test weight of 56,000 lb. 

Figure 5.32 Variation of NOX emissions (g/mile) with average speed class for the CRC data 
for a test weight of 56,000 lb. – rural operation.  

HC Emissions in grams/mile for the CRC PHASE I Data
Average Speed Bin in mph

Test details  0-10 10-20 20-30 30-40 40-50  50-60 60-70 
Rural

1974-77 Trucks - 30000 lbs. 5.07 2.74 1.85 1.31 0.93 0.60 0.40
1978-81 Trucks - 30000 lbs. 4.58 2.88 2.32 2.02 1.80 1.69 1.64
1982-85 Trucks - 30000 lbs. 6.45 3.64 2.69 2.11 1.77 1.54 1.37
1986-89 Trucks - 30000 lbs. 11.93 6.84 4.92 3.82 3.16 2.73 2.49
1990-93 Trucks - 30000 lbs. 0.86 0.56 0.39 0.28 0.20 0.15 0.14
1994-97 Trucks - 30000 lbs. 2.42 1.38 1.00 0.76 0.60 0.46 0.38
1998 and later Trucks - 30000 lbs. 2.42 1.56 1.13 0.84 0.65 0.52 0.45

Urban
1974-77 Trucks - 30000 lbs. 5.89 3.52 2.41 1.42 0.94 0.58 0.42
1978-81 Trucks - 30000 lbs. 5.37 3.69 2.89 2.08 1.79 1.69 1.65
1982-85 Trucks - 30000 lbs. 7.27 4.29 3.09 2.18 1.82 1.56 1.41
1986-89 Trucks - 30000 lbs. 12.18 7.79 5.83 4.02 3.20 2.75 2.54
1990-93 Trucks - 30000 lbs. 1.04 0.81 0.55 0.31 0.20 0.14 0.13
1994-97 Trucks - 30000 lbs. 2.77 1.68 1.22 0.81 0.61 0.45 0.39
1998 and later Trucks - 30000 lbs. 2.63 1.75 1.32 0.90 0.66 0.52 0.46
All Vehicles Averaged Rural 2.42 1.56 1.13 0.84 0.65 0.52 0.45
All Vehicles Averaged Urban 2.63 1.76 1.33 0.90 0.66 0.52 0.46
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 It can be seen from Figure 5.32 that for the 1994-97 and 1998 and newer model year 

vehicles, NOX emissions increase drastically at high average speeds. This could be attributed to 

the off-cycle operation. Figure 5.33 shows the plot of NOX emissions in g/s versus dispersed axle 

power for one of the test runs from the data corresponding to the 1994-97 model year group. The 

bifurcation in NOX emissions values is clearly evident. When compared to the NOX emissions 

factors for the Test Vehicle 1 (1995 model year) from Table 5.39, the NOX emissions factor 

reaches a minimum at 25 mph however the general trends are similar. NOX emissions factor for 

the Test Vehicle 1 from Table 5.39 showed a minimum at 45 mph.  

If we consider the 1982-85 model year group, the trends are similar. In Table 5.39, the 

NOX emissions factor for Test Vehicle 2 (1982 model year) is 39.93 g/mile at 5 mph bin and 

drops to a minimum of 18.98 g/mile at 55 mph. It can be observed from Table 5.47 that the NOX 

emissions factor for the 1982-85 model year group has a value of 30.09 g/mile at 5 mph bin and 

drops to a minimum of 7.6 g/mile at 65 mph. However, it should be noted that the Test Vehicle 2 

discussed in Table 5.39 was tested at 60,000 lbs. as compared to the 1982-85 model year group 

in Table 5.47, which were tested at 56,000 lb.  

CO emissions factors presented in Table 5.49 and Table 5.50 at 56,000 lb and 30,000 lb 

respectively correlate well with the data presented in Table 5.40. For the entire model year group 

the CO emissions factor steadily decreases with increase in average speed as expected. Let us 

consider the CO emissions factor value for 1994-97 model year group from Table 5.49 and the 

values for Test Vehicle 1 in Table 5.39 for rural operation. CO emissions value from Table 5.49 

drops from 8.67 g/mile at 5 mph to a value of 1.92 at 65 mph. In Table 5.39, for the same change 

in speed the CO values were 9.54 and 1.46 g/mile respectively. 
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Figure 5.33 Variation of NOX emissions (g/s) with dispersed power for one of the test runs 
corresponding to 1994-97 model year group. 

HC emissions factors also exhibit similar trends. However, it can be seen that for lower 

average speeds, HC emissions factors values are higher in Table 5.51 as compared to the 

corresponding value in Table 5.41. 

With these emissions factors tables one can predict the emissions in grams/mile for any 

average speed value. There are two ways by which emissions can be predicted from these 

emissions factors tables. The emissions factors can be plotted against the average bin median 

speed and a relationship can be obtained using a curve fit. Either a best-fit polynomial fit can be 

used to interpolate between the data values or the interpolation can be done using a linear fit 

between the neighboring points. As an example, if one would like to find the emissions for the 

model year group 1994-97 with a test weight of 56,000 lbs. on the rural operation for an average 

speed of 23.8 mph. The data values corresponding to that model year group from Table 5.47 at 

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 20 40 60 80 100 120 140

Dispersed Power (hp)

N
O

X
 E

m
is

si
on

s 
(g

/s
)



 116

average speed values of 15 mph (bin median of 10-20 mph class) and 25 mph (bin median for the 

class 20-30) will be used to obtain a linear interpolation. In this example, corresponding to an 

average speed of 23.8 mph, the NOX emissions value would be 24.048 g/mile. However, as can 

be seen from the emissions factor tables, the emissions factor value rises sharply at low average 

speeds. In which case a best-fit polynomial would yield more accurate results. As the slope of the 

curve changes drastically, a linear fit between adjacent points would not be representative of the 

actual variation in emissions factor values. For example, the lowest average speed value for 

which there is a non-zero value is 5 mph (bin median for the 0-10 mph class). If one wants to 

predict emissions for an average speed of 3.3 mph, which is typical of a Yard Cycle, there is no 

value to the left hand side of the 3.3 mph average speed to obtain a linear interpolation. A 

polynomial curve would better represent the trend of the emissions factor and will allow fairly 

accurate prediction of the emissions in this case. Figure 5.34 shows this point clearly as we can 

see the sharp increase in the emissions factor value near low average speeds. Applying this 

equation to an average speed would result in grams/mile of emissions for that particular species.  

 Table 5.53 presents the actual and predicted NOX emissions in g/mile for the two Test 

Vehicles (Test Vehicle 1 and Test Vehicle 2) using the relationship obtained from Table 5.39.  
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Figure 5.34 Plot of NOX emissions factor vs. average speed class for the Test Vehicle 1 in 
rural operation. Dotted line represents linear interpolation between points. 

 
 
Table 5.53 Actual and predicted NOX Emissions for the two Test Vehicles (“Test Vehicle 1” 
and “Test Vehicle 2”).  
 

Test Information

Average 
Speed 
(mph)

Actual NOX 

Emissions 
(g/mile)

Average 
Speed 
(mph)

Actual NOX 

Emissions 
(g/mile)

Rural Urban Rural Urban Rural Urban Rural Urban
Test Vehicle 1 at 56,000 lbs. 
on Single Map 15.50 25.91 22.85 28.50 36.94 14.61 14.45 15.68 -11.80 10.00 -1.10 7.29
Test Vehicle 1 at 56,000 lbs. 
on Dual Map 15.50 21.81 21.83 27.13 36.94 24.75 15.07 15.01 0.11 24.37 -39.12 -39.37
Test Vehicle 1 at 42,000 lbs. 
on Dual Map 15.50 19.04 20.83 24.41 36.94 21.20 12.58 12.08 9.39 28.21 -40.66 -43.01

Test Vehicle 2 at 60,000 lbs. 15.50 29.46 30.06 36.33 36.94 24.30 24.82 27.12 2.05 23.33 2.15 11.59

Predicted NOX 

Emissions (g/mile)
Predicted NOX 

Emissions (g/mile)
Percentage 
Difference

Percentage 
Difference 

CSHVR IHC CSHVR IHC

  

 Relationships obtained between the NOX emissions and the average speed values from 

Table 5.39 were used to predict the average emissions for the two test vehicles on the two test 

schedules (CSHVR and IHC). For each test schedule, the average speed value from the speed-

time trace was used and the predicted results are compared to the actual average emissions in 
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g/mile obtained from the actual test runs. In other words, the model predicts the emissions that 

would result from the two vehicles if they were driven over the CSHVR and IHC cycle. The 

actual average emissions were obtained from the actual test runs the two vehicles were driven on 

the chassis dynamometer. The last four columns show the percentage difference between the 

predicted and actual emissions. It can be seen that the model predicts the NOX emissions with 

reasonable accuracy for the CSHVR cycle on the rural operation. The model also predicts the 

NOX emissions values fairly well for both the cycles for the single map and the 1982 model year 

vehicle, which does not have the capability to be configured to operate on the dual map (off-

cycle mode). It is clear that the off-cycle operation has profound effect on the emissions, 

especially for a high average speed typical of freeway operation. This is clear from the prediction 

of NOX emissions for IHC using the above method. The NOX values were consistently under 

predicted for the dual map, as the off-cycle effect was not profound at the average spped 

corresponding to 37 mph. 

 To test the validity of the model, the relationship obtained from Table 5.47 corresponding 

to the 1994-97 model year group was used to predict the emissions for the Test Vehicle 1 (1995 

model year) on the dual map. The relationship could not be used to predict the single map 

because the test vehicles used to generate the emissions factor in Table 5.47 could not be 

configured to operate on the single map, hence some off-cycle operation could be present in the 

emissions data. Table 5.54 shows the actual and predicted emissions for the Test Vehicle 1 using 

the relationship obtained for emissions factors from the Table 5.47, corresponding to the 1994-97 

model year group, as a function of average speed. It should be noted that the relationship used 

was obtained from the data pertaining to a group of vehicles corresponding to 1994-97 model 

year group from a different study (CRC E55). 
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Table 5.54 Actual and predicted NOX emissions in g/mile for the Test Vehicle 1 using the 
emissions factors from Table 5.44 (CRC E55 – Phase I Data), corresponding to 1994-97 
model year group.  
 

Test Information

Average 
Speed 
(mph)

Actual NOX 

Emissions 
(g/mile)

Average 
Speed 
(mph)

Actual NOX 

Emissions 
(g/mile)

Rural Urban Rural Urban Rural Urban Rural Urban
Teast Vehicle 1 at 56,000 

lbs. on Dual Map 15.50 21.81 23.99 29.87 36.94 24.75 25.53 25.15 10.00 36.94 3.16 1.63

Predicted NOX 

Emissions (g/mile)
Predicted NOX 

Emissions (g/mile)

CSHVR IHC CSHVR IHC

 
 
 

It can be seen from Table 5.54 that the NOX emissions are predicted accurately except for 

CSHVR on urban mode. The percentage error was within about 3% when the model was used to 

predict the IHC emissions in both rural and urban operation. For the CSHVR, the rural mode 

prediction was within 10%, however, the urban mode value was over predicted. This could be 

attributed to the presence of some off-cycle operation in the data used to generate the emissions 

factors table. Table 5.55 shows the actual and predicted NOX emissions for the 1974-77 model 

year group as an example. This is a self-prediction unlike Table 5.54 because the emissions 

factors generated using the test runs are used to predict the average emissions for the respective 

test schedules over which the vehicles were tested. 

 
Table 5.55 Actual and predicted NOX emissions for the 1974-77 model year trucks tested at 
56,000 lbs. 

 

 It can be observed that the model predicts the NOX emissions fairly well for all the cycles 

except for the CARB Cruise3 cycle, which has an average speed of about 40 mph. Emissions 

Test Schedule

Average 
Speed 
(mph)

Actual NOX 

Emissions 
(g/mile)

Rural Urban Rural Urban
Test_D 18.58 26.98 26.51 32.22 -1.74 19.42
CARB Cruise 39.94 18.80 25.39 25.82 35.06 37.34
CARB Trans3 14.00 29.20 26.86 32.72 -8.02 12.06
CARB Creep3 1.75 27.30 28.86 27.91 5.70 2.24

Predicted NOX 

Emissions (g/mile)
Percentage 

Difference (%)
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data from all the cycles mentioned in Table 5.55, were used to generate the emissions factor 

table. It can also be seen that for lower average speeds, the urban prediction is better than the 

rural as would be expected because the low average speeds typically represent urban stop and go 

driving pattern. 

5.9 Comparison of Speed-Acceleration Model with Other Models 

5.9.1 Comparison with EMFAC 2002 Model 

In order to compare the speed-acceleration based model with the EMFAC 2002 model, NOX 

emissions were predicted using the EMFAC 2002 model software as a function of average speed 

corresponding to the bin median of the average speed class presented in the g/mile emissions 

factor tables presented in this chapter. The EMFAC 2002 software allowed the user to obtain the 

emissions factors in g/mile for any vehicle class. The model was run to give emissions factors for 

heavy-duty diesel vehicles (Class 8), and the results were tabulated. Emission factors were 

obtained for the same range of model year groups as presented in Table 5.47; however, EMFAC 

did not allow the user to choose a specific test weight. In order to compare the NOX emissions 

factors generated by the speed-acceleration model (Table 5.47) and EMFAC 2002 (Table 5.56), 

the emissions factors were divided by the value corresponding to a speed of 25 mph. The 

resulting speed correction factors for the EMFAC and Speed-Acceleration (SA) model are 

plotted in Figure 5.30 for two different model year groups; 1982-85 and 1994-97. 

Table 5.56 NOX Emissions (g/mile) predicted for Class 8 diesel trucks using EMFAC 2002 
model.  

Average Speed in mph
Test details 5 15 25 35 45 55 65

1974-77 Trucks 46.84 33.41 27.46 26.02 28.41 35.76 51.87
1978-81 Trucks 46.19 32.94 27.08 25.65 28.01 35.26 51.15
1982-85 Trucks 37.17 26.51 21.79 20.65 22.55 28.38 41.17
1986-89 Trucks 28.60 20.40 16.77 15.89 17.35 21.83 31.67
1990-93 Trucks 27.30 19.47 16.01 15.16 16.56 20.84 30.23
1994-97 Trucks 32.53 23.20 19.07 18.07 19.73 24.83 36.02
1998 and later Trucks 23.85 17.01 13.98 13.25 14.47 18.21 26.42
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 As seen in Figure 5.35, the speed correction factors for both 1982 and 1995 model year 

groups predicted by EMFAC are the same. The low point in emissions is achieved at 35 mph. 

The shape of the speed correction factor obtained using the speed-acceleration method for the 

1982 model year vehicle flattens out at high average speeds. The speed-acceleration model 

exhibits different trends. The EMFAC model showed a minimum value corresponding to a speed 

of 35 mph. However, the speed-acceleration model showed a minimum for the Test Vehicle 1 

(corresponding to 1994-97 model year group) at 15 mph and for the 1982-85 model year group 

(Test Vehicle 2), the minimum occurred at a speed of 55 mph. EMFAC employs the same speed 

correction factors for the whole range of model year groups presented in Table 5.56. NOX 

emissions are shown to increase at both lower and higher speeds relative to the 35 mph with a 

value of 1.71 at 5 mph and 1.89 at 65 mph. The shape of the speed correction factors employed 

by EMFAC is not supported by the results of this analysis. Data presented in Table 5.37 indicate 

that the low point for the Test Vehicle 1 occurs at a speed of 45 mph and for the Test Vehicle 2, 

the low point occurs at a speed of 55 mph.  
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Figure 5.35 Variation of NOX speed correction factor with speed for two model year groups 
predicted using speed-acceleration and EMFAC models.  

5.9.2 Comparison with Artificial Neural Network (ANN) Model 

Artificial Neural Network (ANN) is most appropriate when there are imprecise or fuzzy 

correlations exist between one or more variables. ANN can identify highly non-linear relations 

between multiple input and output data, making them well suited for the task of emissions 

prediction. The user is not required to hypothesize the relationship between input and output 

variables, rather is required only to choose the relevant input variables. ANN serves as a pattern 

recognizer and maps them into responses. These responses are then used to predict future events 

or trends in a time series. Trained with adequate amount of relevant data, a suitably configured 

ANN will mimic the function. During the training process, the network learns to ignore any 

inputs that do not contribute to a reliable solution. To compare the speed-acceleration method 

with ANN for emissions predictions, ANN data from a prior study at WVU was used. NOX 
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emissions were predicted using ANN for a 1995 box truck, which was tested on 16 different test 

schedules. The ANN was trained using the axle speed and torque as inputs along with their first 

and second derivatives at different time ranges. The ANN software used for this purpose was 

NeuroShell 2. The results from the ANN are tabulated and compared with speed-acceleration 

method in Table 5.58 

 The continuous data from a 1995 GMC Box Truck over 16 different cycles were used to 

obtain the speed-acceleration based emissions factors using the method described earlier in this 

chapter. The emissions factors in g/s were combined with activity data to obtain emissions 

factors in g/mile as a function of average speed and the values for NOX emissions in rural 

operation is presented in Table 5.57. 

 
 
Table 5.57 NOX emissions factors in g/mile for the 1995 GMC Box Truck exercised through 
16 different driving schedules. 

 

 The values in Table 5.58 represent the average value for all the tests conducted on the 

truck over the 16 different driving schedules. Using these emissions factor values and the 

average speed values for the 16 driving schedules from their target speed-time trace, NOX 

emissions were predicted and are compared with the ANN results in Table 5.58. The column in 

Table 5.58 labeled ANN (Self-Predicted) corresponds to the self predicted NOX emissions values 

using ANN. These values were obtained for each driving schedule by training the ANN with the 

corresponding schedule. In addition to self-predicted NOX values, results from three other 

driving schedules are also presented for comparison. These include the results from ANN trained 

on CBD cycle, FIGE cycle and the Yard cycle. The Yard cycle has an average speed of 3.3 mph 

Average Speed Bin in mph
Emissions Species 0-10 10-20 20-30 30-40 40-50  50-60 60-70 

Rural
NOX 24.98 15.56 11.97 9.87 8.65 8.30 8.33
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and represents stop-and-go operation, FIGE has an average speed of 36.6 mph representing 

typical freeway operation. The CBD cycle with an average speed of 12.6 is an in between 

operation. 

Table 5.58 Comparison of Speed-Acceleration based predicted NOX emissions with actual 
and ANN predicted NOX emissions for the 1995 GMC box truck.  

  

It can be seen from Table 5.58 that the speed-acceleration based model predicts the NOX 

emissions reasonably well. Eleven out of the 16 of the predicted values are within 10% of the 

actual values. ANN does very well with self-prediction, but under predicts when trained on Yard 

cycle and consistently over predicts when trained on the FIGE and CBD cycles respectively. As 

can be seen in Figure 5.36, except for the NYBUS cycle and the YARD cycle, the speed-

acceleration model predicts the NOX emissions reasonably well. These two cycles have average 

speeds of 3.7 and 3.3 mph respectively and represent typical urban stop-and-go operation. It can 

also be seen from Figure 5.32 that self predicted ANN NOX emissions value lie well within the 

10% error band. It can be concluded based on the results presented in Table 5.58 and Figure 5.36 

that speed acceleration method can predict emissions comparable to ANN. It should also be 

noted that in the ANN model, the data are trained on a particular architecture, and hence the 

results obtained could vary significantly between two different architectures. For the same data 

Test 
Schedule

Average 
Speed 
(mph)

Actual NOX 

Emissions 
(g/mile)

Predicted NOX 

Emissions 
(g/mile)

Percentage 
Error (%)

ANN (Self-
Predicted) % Error

ANN 
Trained 
on CBD

% Error
ANN 

Trained 
on FIGE

% Error
ANN 

Trained 
on Yard

% Error

CBD 12.6 17.1 17.0 -0.3 17.8 4.1 17.8 4.1 20.7 20.6 16.1 -6.6
CBD ROUTE 13.1 17.2 16.7 -2.8 19.9 15.7 17.3 -10.7 21.3 9.9 15.9 -18.1

14-C 11.8 18.3 17.6 -3.7 19.0 3.8 18.2 -1.5 21.8 17.6 16.5 -11.0
NYBUS 3.7 41.9 27.0 -35.5 46.5 11.0 36.8 -12.3 48.0 14.5 37.2 -11.3

ARTERIAL 24.8 13.3 12.0 -9.9 15.2 14.3 13.7 3.2 17.1 28.8 9.1 -31.9
5-PEAK CYC 20.0 13.1 13.4 2.2 11.9 -9.2 15.3 17.0 12.8 -2.2 9.9 -24.4

ROUTE 23.7 11.2 12.3 9.6 10.8 -3.6 12.6 13.4 11.6 4.2 8.6 -22.6
CSR 15.5 13.5 15.3 13.4 13.7 1.5 15.1 11.8 15.8 17.2 11.8 -12.4
CSC 13.5 13.3 16.5 23.7 14.3 7.5 16.3 22.6 17.2 29.5 13.1 -1.2

ALT 1 13.4 15.3 16.5 8.0 15.4 0.7 15.0 -2.2 16.1 5.0 12.5 -18.5
ALT 2 14.2 14.9 16.0 7.6 15.2 2.0 14.9 -0.2 15.4 3.4 12.2 -18.2

TEST_D 18.9 12.1 13.8 14.0 12.2 0.8 12.4 3.0 13.9 16.2 9.0 -25.3
YARD 3.3 36.5 27.7 -24.0 37.2 1.9 31.4 -13.7 45.9 26.1 37.2 2.1

HIGHWAY 34.0 9.3 10.1 8.4 9.2 -1.1 9.7 4.5 10.0 7.8 5.4 -42.4
CITY 8.5 20.9 20.6 -1.6 21.3 1.9 18.8 -10.1 22.4 7.2 18.1 -13.6
FIGE 36.6 9.7 9.7 -0.5 10.3 6.2 10.5 8.3 10.3 7.0 5.7 -41.5

Using the Proposed Speed-Acceleration based Model Using Artificial Neural Network Model
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used to train the ANN, a number of different outputs (predicted results) can be obtained 

depending on the type of architecture and type of ANN software employed. Speed-acceleration 

approach eliminates this problem, as the relationships obtained from the data set used to generate 

the emissions factors remain the same for a particular operation. 

Figure 5.36 Actual vs. predicted NOX emissions for the 1995 GMC box truck using speed-
acceleration model.  
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6 Effect of various Parameters on Heavy-Duty Diesel Vehicle Emissions 

6.1 Influence of Vehicle Weight (Load) on Emissions 

Vehicle weight (load) is one of the many factors that affect the exhaust emissions. For a 

given speed and acceleration, the exhaust emissions from a vehicle operating with a heavier 

weight will tend to be higher. Vehicle weight thus becomes an important factor in any emissions 

predictive model. The weight effect is more pronounced in the case of urban buses and garbage 

trucks where the vehicle weight is not constant over the entire trip for a particular vehicle. For 

vehicles like tractor trailers the vehicle weight is generally constant over the entire trip for long 

hauls, but varies in city delivery. This section deals with the effect of test weight/load on vehicle 

emissions in detail. 

6.1.1 Theoretical Approach 

The effect of test weight on vehicle emissions can be best understood from an analytical 

point of view.  

Ramamurthy and Clark (1999) examined the relationship between NOX production (in 

units of g/sec.) and rear axle power of vehicles undergoing chassis dynamometer testing. Data 

were recorded on a second-by-second basis. The processing of these data required techniques to 

account for analyzer measurement delay and diffusion [Ganesan and Clark, 2001]. The analysis 

yielded relationships for several vehicles. A relationship between NOX (in units of grams per 

second) and rear axle power (in units of hp) was obtained for a 1996 model year TT and it was 

found that 

029374.00012199.0)/( +∗= PsgNOX                       Equation 6.1 

where, P is the rear axle power in hp. The equation had an R2 value of 0.93. 
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This truck, from now on referred to as “Truck A,” was powered with a 6-cylinder, 365 

hp, DDC engine, and had a gross combination vehicle weight of 80,000 lb. with a test weight of 

48,000 lb. For a 1995 model year truck, from here on referred to as “Truck B,” powered with a 

350 hp Mack E-7-350 engine, with a gross vehicle weight of 80,000 lb. and tested at 56,000 lb., 

the relationship between NOX (in units of grams per second) and rear axle power (in units of hp) 

was found to be 

0669.00012701.0)/( +∗= PsgNOX                         Equation 6.2 

This relationship had an R2 value of 0.77. 

Now, let us consider the NOX vs. axle power relationships for two different trucks (Truck 

A and Truck B) presented in equations 6.1 and 6.2. If these two equations remain reliable for a 

wide variety of truck applications, it is possible to apply these relationships to the rear axle 

power known for a test schedule or for real truck operation, and therefore to predict the total 

NOX mass arising from the schedule or operation. 

This approach was followed and was applied to the UDDS. The axle power (P) estimated 

by the road load equation (Equation 3.3) is the theoretical power demand at the rear axle for the 

given speed and acceleration conditions to be met In real world operation, the vehicle may not 

reach the theoretical power requirement due to the power limitations. The axle power “P” used in 

equations 6.1 and 6.2 is the actual measured rear axle power during the chassis dynamometer 

testing.  

Using Equation 3.3 and the speed values for the UDDS cycle, an instantaneous power 

demand can be calculated, as shown in Figure 5.22, which is a plot of theoretical axle power 

demand versus time. A vehicle mass of 60,000 lb. (27216 kg) was used to obtain the axle power 

shown in Figure 6.1. “Spikes” in Figure 6.1 occur due to the high acceleration rates and 
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deceleration rates demanded by the driving schedule and can also be attributed to dynamometer 

harmonics. Equation 6.1 (or Equation 6.2) may now be used to predict NOX as a function of 

time, as shown in Figure 5.23. Equation 6.1 was used to obtain the instantaneous NOX emissions 

shown in Figure 6.2.  

Figure 6.1 Instantaneous power demand at the rear axle for the Heavy-Duty Urban 
Dynamometer Driving Schedule (UDDS). (CD = 0.76, μ=0.00938, A=8.32 m2, m=60,000 lb. 
(27216 kg)).  

 The modeled data shown in Figure 6.2 may next be integrated, to yield a modeled 

emissions level for the truck, in units of g/mile. In cases where the power demand is negative 

(that is, during braking), one may ascribe either zero or idle NOX emissions to the vehicle, 

according to the fueling strategy, but this does not affect the NOX emissions values substantially. 
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In this research, NOX emissions were set to zero for negative rear axle power and to at 

least idle value for zero or slight positive torques. Using this process, it is possible to calculate 

the g/mile NOX values for “Truck A” operating at several different weights. Figure 6.3 shows the 

variation of the NOX emissions with test weight for both “Truck A” and “Truck B.” It is clear 

that for a doubling of truck weight from 40,000 lb. to 80,000 lb., NOX emissions rise by 54.6% 

and 41.8% respectively for “Truck A” and “Truck B”. Doubling the weight from 30,000 lb. to 

60,000 lb. resulted in an increase in NOX emissions by 47.2% and 34.7% respectively for “Truck 

A” and “Truck B.” 

A similar analysis was repeated for the City Suburban Heavy Vehicle Route (CSHVR) 

[Clark et al, 1999], and the final results are shown in Figure 6.4. It can be seen from Figure 6.3 

that for doubling the weight from 40,000 lb. to 80,000 lb., NOX emissions rise by 60.5% and 

43.3% respectively for “Truck A” and “Truck B”.  

The percentage increase in NOX emissions for three different changes in vehicle weights 

is presented in Table 6.1. It can be observed that for both the cases discussed, the percentage 

increase in NOX emissions decreases with a lower starting vehicle weight. In other words, NOX 

emissions increase more when the weight is doubled from 40,000 lb. to 80,000 lb., as opposed to 

doubling the weight from 30,000 lb. to 60,000 lb. or 20,000 lb. to 40,000 lb. This shows that 

there is a linear variation of NOX emissions with vehicle weight.  Figures 6.5 and 6.6 show the 

graphical representation of Table 6.1. In Figure 6.3 and Figure 6.4, the trend lines appear straight 

because inertial and tire loss effects dominate wind losses, which are unaffected by weight. For 

heavy trucks, wind losses become a substantial contribution only at sustained speeds of over 50 

mph. 
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Table 6.1 Percentage increase in NOX emissions for different change in vehicle weights. 

 

Figure 6.2 Predicted NOX emissions (g/s) for the 1996 model year truck using the NOX vs. 
power relationship (equation 1.) over the UDDS at 60,000 lb. 
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Figure 6.3 Variation of predicted NOX emissions (g/s) with weight for the two trucks driven 
over the Heavy-Duty Urban Dynamometer Driving Schedule (UDDS).  

 
Figure 6.4 Variation of predicted NOX emissions (g/s) with weight for the two trucks driven 
over the City-Suburban Heavy Vehicle Route (CSHVR). 
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Figure 6.5 Variation of percentage increase in NOX emissions with increase in vehicle 
weight for CSHVR. 

Figure 6.6 Variation of percentage increase in NOX emissions with increase in vehicle 
weight for UDDS. 
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Figure 6.7 shows the ratio of the emissions for “Truck A” and “Truck B” at 80,000 lb. 

(common maximum load) to the emissions at 30,000 lb. (lightly loaded or empty) as a function 

of a steady state speed. It can be seen from Figure 6.7 that the NOX production increases with 

speed until about 30 mph after which it falls. The NOX production ratio for “Truck A” increases 

from 1.22 at a low speed of 5 mph to 1.33 at a speed of 70 mph and peaks at 30 mph with a value 

of 1.61. This is due to the fact that at lower speeds, tire losses dominate the wind drag and hence, 

the power required increases drastically with increase in vehicle weight, which results in higher 

NOX emissions. At higher speeds the wind drag dominates and the effect of weight is less 

profound. Figure 6.8 shows the plot of tire loss and wind drag as a function of steady state speed. 

It can be seen that until a speed of approximately 35 mph the tire loss dominates wind drag, after 

which, the wind drag force increases drastically. Figure 6.9 shows the plot of percentage increase 

in power required when the vehicle weight is increased from 30,000 lb. to 80,000 lb. as a 

function of speed. It can be seen that at lower speeds, the power required increases significantly 

(evident from the slope of the curve) with increase in vehicle weight. At higher speeds, the 

increase in power required falls as can be seen in Figure 6.9. 
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Figure 6.7. Variation of NOX emissions production ratio with steady state speed for “Truck 
A” and “Truck B”.  

 
Figure 6.8. Variation of tire loss and wind drag force with steady state speed. 
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Figure 6.9. Variation of percentage increase in power required with steady state speed 
from a vehicle weight of 30,000 lb. to a vehicle weight of 80,000 lb. 
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The difference in NOX emissions at 30,000 lb. and 80,000 lb. for the same truck (Truck 

A) on the CSHVR, a highly transient cycle, (with an average speed of 14.45 mph) is 1.89. If the 

truck were operated at a steady speed of 14.45 mph, the ratio would be 1.49, which represents a 

33% increase. It is clear that transients can emphasize the weight effects on NOX emissions 

significantly. 

6.1.2 Experimental Data 

Figures 6.10 through 6.13 show measured values of different emissions species as a 

function of vehicle weight for all of the test vehicles discussed in Chapter 4. Table 2 presents 

some details of vehicles considered in this analysis. In these figures, the emissions are plotted 

against the vehicle weight expressed as percentage of Gross Vehicle Weight Rating (GVWR). 

The GVWR is the maximum weight a vehicle is allowed to achieve, including the vehicle, 

driver, payload, and fuel. 

The vehicles used in the plots are listed here in the same order as they appear in the plots. 

Table 6.2 Details of vehicles considered for the analysis. 

 

Vehicle 
Number Model Year Type Cycle

1 1989 Transit Bus CBD

2 1989 Transit Bus NY Bus

3 1996 Transit Bus CBD

4 1998 Tractor Truck CSHVR

5 1994 Tractor Truck CSHVR

6 1995 Tractor Truck CSHVR

7 1995 Tractor Truck Highway
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Figure 6.10 Comparison of NOX emissions in grams/mile from different vehicles as a 
function of percentage GVWR. 

 
 

Figure 6.11 Comparison of HC emissions in grams/mile from different vehicles as a 
function of percentage GVWR.  
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Figure 6.12 Comparison of CO emissions in grams/mile from different vehicles as a 
function of percentage GVWR.  

 
Figure 6.13 Comparison of PM emissions in grams/mile from different vehicles as a 
function of percentage GVWR. 
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In the following discussions, the 1995 TT tested on two different cycles, are listed as 

vehicle (6) and (7). These correspond to the Test Vehicle 1 that was tested on dual map over 

CSHVR and IHC respectively. As can be seen from Figure 6.10, there is an increase in the NOX 

emissions with an increase in the vehicle weight in general. However, the 1996 TB (TB) and the 

1994 tractor truck (TT) show different trends. The slope of the curves for all the vehicles, except 

for the 1996 TB and the 1994 TT are close in value, which means that the NOX emissions vary 

with the vehicle weight in a similar fashion irrespective of the vehicle type or the test cycle used. 

There is a sudden drop in the NOX emissions from the 1996 TB at a test weight close to the rated 

GVW. This vehicle was powered with a 275 hp engine, and operation at a test weight close to the 

GVWR causes operation close to full power. In this way, the vehicle may not follow the cycle as 

closely and comparison may be compromised. Also, NOX formation is strongly controlled by the 

temperature and the availability of oxygen, which may start to be impaired at full load in older 

engines. The trend observed for the 1994 truck can be attributed to the same cause. This vehicle 

was powered by a 365 hp engine and was rated with a GVW of 80,000 lb.  

As seen in Figure 6.11, the HC emissions are almost constant for all of the vehicles 

except for the 1989 TB. HC emissions in a modern diesel engine are very low and are insensitive 

to the vehicle weight. As can be seen in Figure 6.11, the HC emissions are higher for the 1989 

TB. The older model year vehicles yield higher emissions due to earlier engine technology and 

aging. Specifically, the older bus employs two-stroke engine technology. 

As expected, there is scatter in the CO and PM emissions as seen in Figures 6.12 and 

6.13. Both CO and PM emissions are strongly affected by the transients and are also usually less 

repeatable than NOX in test measurements. This can be seen from the CO and PM emissions 

from the 1995 truck (Figures 6.12 and 6.13), which was tested on two different cycles. The truck 
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was tested on the CSHVR, a highly transient route, and the Highway Cycle, which is a high-

speed cycle typical of freeway operation with fewer transients. The CO emissions are almost 

constant with vehicle weight for the Highway cycle, whereas there is a higher relative increase in 

the CO emissions on the CSHVR. Similar trends are observed in the PM emissions too. There is 

an increasing trend in the CO and PM emissions with the vehicle weight for most of the cases.   

Figure 6.14 shows the variation of the CO2 emissions with weight for all the vehicles 

considered. It can be seen that there is a linear increase in the CO2 emissions with increasing 

weight. The CO2 emissions are a measure of the energy expended as they directly correspond to 

the fuel consumption of the vehicle. Transient operation involves extra energy spent during 

accelerations, which is lost during decelerations (braking). This means that a transient cycle (one 

like the CSHVR) will require the vehicle to expend higher energy with increasing weight. This 

can be seen from Figure 6.14, where the slope of the CO2 emission curve is steeper for the 

CSHVR (transient operation). Figure 6.15 shows the plot of NOX over CO2 ratios against GVW 

for different vehicles. The ratio is fairly insensitive to the vehicle weight. This shows that NOX 

emissions increase due to increase in fuel usage, and implies that NOX emissions data in units of 

g/gal. of fuel consumed remain fairly constant despite a weight change. 
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Figure 6.14 Comparison of CO2 emissions in grams/mile from different vehicles as a 
function of percentage GVWR. Fuel consumption is in direct proportion to CO2 

production. 
 
Figure 6.15 Comparison of NOX to CO2 ratios for different vehicles as a function of 
percentage GVWR.  
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Table 6.3 Summary of the UDDSata gathered and the average emissions values for the 
vehicles listed in Table 6.1. 

 

It can be seen that vehicle weight has a significant effect on the emissions but that the 

emissions do not vary in direct proportion to test weight. The NOX emissions showed a 

consistent trend with increasing vehicle weight for most of the cases, except for the 1996 TB and 

the 1994 TT.  The relationship between NOX and vehicle weight was found to be linear for all 

the cases except for the two vehicles mentioned above. This is in good agreement with the theory 

presented at the beginning of this chapter. The NOX values predicted using the relationship 

obtained between NOX and axle power exhibited a linear trend with weight. The theoretical 

approach showed that the NOX emissions increased by about 54% for a doubling of test weight. 

It can be seen from Table 6.3 that for the 1994 TT, which was tested at three different weights, 

doubling of the vehicle weight increased the NOX emissions by about 54%. The observed trends 

correlate well with the theory presented. Also, it can be seen from Figure 6.7 that the trends for 

the NOX emissions are similar for the two test vehicles considered. Similar trends can be 

Vehicle Type Cycle Test Weight (lbs.) GVWR % GVWR PM (g/mile) NOX (g/mile) HC (g/mile) CO (g/mile)
1989 Transit 

Bus CBD 19429 36900 52.7 1.04 19.21 2.97 3.88
CBD 32042 36900 86.8 1.31 25.21 3.19 7.81

NY-Composite 19429 36900 52.7 1.46 26.91 3.54 7.68
NY-Composite 32042 36900 86.8 1.48 35.45 3.93 12.33

1996 Transit 
Bus CBD 27650 37920 72.9 0.21 28.7 0.14 4.56

CBD 32825 37920 86.6 0.22 32.2 0.14 4.51
CBD 38000 37920 100.2 0.34 30.7 0.14 6.91

1998 tractor 
Truck CSHVR 26000 80000 32.5 0.58 18.6 1.84 5.17

CSHVR 36000 80000 45 0.64 21.3 1.74 5.62
CSHVR 46400 80000 58 0.62 23.5 1.86 5.36

1994 Tractor 
Truck CSHVR 29000 80000 36.3 0.34 27.20 0.28 8.90

CSHVR 42000 80000 52.5 0.45 33.00 0.30 8.90
CSHVR 61000 80000 76.3 0.40 42.00 0.27 11.20

1995 tractor 
Truck CSHVR 42000 80000 52.5 0.44 19.2 0.49 4.43

CSHVR 56000 80000 70 0.68 21.8 0.46 6.02
IHC 42000 80000 52.5 0.23 21.20 0.30 2.10
IHC 56000 80000 70 0.32 24.70 0.25 2.11
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observed between the different vehicles considered in Figure 6.10. As discussed earlier, NOX 

emissions are insensitive to the transients.  

The HC emissions appear to be insensitive to the weight. The HC emissions values are 

low for the diesel engines and do not vary significantly with vehicle weight or the test cycle 

used. 

The CO emissions values exhibit an erratic behavior. There is no clear trend in the CO 

emissions with weight although there is an increasing trend for some cases. CO emissions are 

severely affected by transients, as are PM emissions. It was found that the CO emissions were 

insensitive to vehicle weight during steady state operation (less transients). However, there is a 

considerable increase in the CO emissions with vehicle weight during transient operation. For 

example, consider the Test Vehicle 1 that was tested at 42,000 lb. and 56,000 lb. over the 

CSHVR (transient operation) and IHC (steady state operation). The CO emissions value did not 

vary significantly between 42,000 lb. and 56,000 lb. weights over the IHC; however, the CO 

emissions increased by 36% for the same vehicle when tested on the highly transient route, 

CSHVR. Similar trends were observed with PM emissions. The PM emissions were more 

scattered than the NOX and CO2 emissions. 

To further study the effect of test weight on the heavy-duty diesel vehicles, data available 

from CRC E55 Phase I study, which involved testing of 25 different trucks at two different 

weights were analyzed in detail and are presented here. Details of tests conducted including 

vehicle information are discussed in Chapter 4. Figures 6.16 through 6.22 show the ratio of NOX 

emissions at 56,000 lbs. to NOX emissions at 30,000 lbs. for a range of vehicle model years. 

Figures 6.16 through 6.22 were obtained by taking the ratio of NOX emissions factors in 
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grams/mile presented in Tables 5.47 through 5.52 in section 5.8 and plotting them against the 

average speed class.  

Figure 6.16 Ratio of NOX emissions at 56,000 lbs. to NOX emissions at 30,000 lbs. for the 
1974-77 model year group.  
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Figure 6.17 Ratio of NOX emissions at 56,000 lbs. to NOX emissions at 30,000 lbs. for the 
1978-81 model year group.  

Figure 6.18 Ratio of NOX emissions at 56,000 lbs. to NOX emissions at 30,000 lbs. for the 
1982-85 model year group.  
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Figure 6.19 Ratio of NOX emissions at 56,000 lbs. to NOX emissions at 30,000 lbs. for the  
1986-89 model year group.  

Figure 6.20 Ratio of NOX emissions at 56,000 lbs. to NOX emissions at 30,000 lbs. for the 
1990-93 model year group.  
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Figure 6.21 Ratio of NOX emissions at 56,000 lbs. to NOX emissions at 30,000 lbs. for the 
1994-97 model year group.  

Figure 6.22 Ratio of NOX emissions at 56,000 lbs. to NOX emissions at 30,000 lbs. for the 
1998 and newer model year group.  
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It can be seen from Figures 6.16 through 6.22 that vehicle weight has a significant effect 

on the NOX emissions. The ratio of NOX at 56,000 lbs. to NOX emissions at 30,000 lbs. varies 

with the average speed class for both rural and urban operation. For the earlier model year 

vehicles: 1974-77, 1978-81, and 1982-85. The NOX emission ratio decreases with average speed 

until 35 mph and then increases at high speeds. For the 1974-77 model year group, the ratio was 

1.6 at 5 mph and dropped to 1.5 at a speed of 35 mph and then increased to 1.92 at 70 mph. The 

point of lowest NOX ratio increased with the model year group. The results support the theory 

presented earlier in this chapter and also correlate with the experimental results discussed. For 

the 1978-81 group, the minimum occurred at 45 mph. For the 1982-85 group the point moved 

further toward higher speed, which in this case was 55 mph. For the model year group 1986-89, 

the trend changed, the ratio dropped constantly with average speed. The later model year groups: 

1990-93, 1994-97, and 1998 and newer, showed a different trend altogether. The NOX ratio 

increased with average speed and then dropped at higher speeds. The high point occurred at 25 

mph, 45 mph and 35 mph for the model year groups 1990-93, 1994-97, 1998 and newer 

respectively. 

 Figure 6.23 shows the variation of the NOX emissions ratio at 56,000 lbs. to NOX 

emissions at 42,000 lbs. for the Test Vehicle 1 on a dual map. The trends are similar to that of 

the later model years in Figure 6.20, 6.21 and 6.22 with the maximum occurring at a speed of 35 

mph. 
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Figure 6.23 Ratio of NOX emissions at 56,000 lbs. to NOX emissions at 42,000 lbs. for the 
Test Vehicle 1 on dual map. 

It was found from the present study that the vehicle weight had a significant effect on the 

emissions. From the theoretical approach, the NOX emissions were found to have a nearly linear 

correlation with the vehicle weight and did not vary much from vehicle to vehicle. NOX 

emissions were also found to be insensitive to the transients. Hence, the NOX emissions can be 

predicted reasonably accurate using the theory presented in this dissertation. As a rule of thumb, 

the data suggest that a weight increase of X% will result in a NOX increase of roughly about 

X/2% in most cases.  

Hydrocarbon emissions were insensitive to the vehicle weight. There was not much 
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operation. Transient operation increased the CO emissions value by 36%. However, CO and PM 

were found to be insensitive to the vehicle weight during nearly steady state operation.  

6.2 Effect of Test Cycles on Heavy-Duty Diesel Vehicle Emissions 

The test cycles have a significant effect on the emissions from heavy-duty diesel vehicles. 

To study this aspect, the data available from a prior study was used. A 1995 box truck (described 

in Chapter 4) had been tested on 16 different cycles. The continuous emissions data available 

from these tests were used to generate the emissions factors table as described in Chapter 5. 

Table 6.4 presents the emissions factors table in grams/mile as a function of average speed class 

for all of the 16 test schedules.  

 
Table 6.4 Emissions factors in g/mile for the 1995 Box Truck over 16 different cycles.  

 
 The vehicle was tested at 22,000 lbs. Figure 6.24 and Figure 6.25 show the plots of the 

variation of emissions factors with average speed class for rural and urban operation. It can be 

seen from Table 6.5 that the model predicts the NOX emissions reasonably well for most of the 

cycles except for the NYBUS, CSC and Yard cycle. The NYBUS and Yard cycle represent 

typical stop-and-go urban operation and their average speeds are less than 4 mph. Table 6.4 was 

generated using the average of the emissions data for all the 16 cycles. 

 

 Emissions in grams/mile for the 1995 Box Truck on 16 different cycles
Average Speed Bin in mph

Emissions Species  0-10 10-20 20-30 30-40 40-50  50-60 60-70 
Rural
NOX 24.98 15.56 11.97 9.87 8.65 8.30 8.33
HC 2.65 1.33 0.76 0.45 0.29 0.26 0.34
CO 5.86 4.13 2.77 1.78 1.15 0.83 0.80

Urban
NOX 28.18 18.83 14.44 10.11 8.73 8.39 8.38
HC 2.87 1.53 0.98 0.49 0.28 0.26 0.33
CO 6.12 4.64 3.56 2.09 1.20 0.88 0.85
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Table 6.5 Actual and predicted NOX emissions for the Box Truck over 16 different cycles. 

 
 
 
Figure 6.24 Variation of emissions factors with average speed class for the 1995 box truck. 
– Rural mode. 

 

Test 
Schedule

Average 
Speed 
(mph)

Actual NOX 

Emissions 
(g/mile)

Predicted NOX 

Emissions Using 
Polynomial 
Fit(g/mile)

Predicted NOX 

Emissions 
Using Linear 
Interpolation 

(g/mile)

Percentage 
Error - 

Polynomial Fit 
(%)

Percentage 
Error - Linear 
Interpolation(

%)
CBD 12.6 17.1 17.0 17.8 -0.3 3.6

CBD ROUTE 13.1 17.2 16.7 17.3 -2.8 -10.6
14-C 11.8 18.3 17.6 18.6 -3.7 0.4

NYBUS 3.7 41.9 27.0 26.2 -35.5 -37.5
ARTERIAL 24.8 13.3 12.0 12.0 -9.9 -9.5

5-PEAK CYC 20 13.1 13.4 13.8 2.2 5.1
-MILE ROUT 23.7 11.2 12.3 12.4 9.6 12.0

CSR 15.5 13.5 15.3 15.7 13.4 16.6
CSC 13.5 13.3 16.5 17.0 23.7 27.6

ALT 1 13.4 15.3 16.5 17.1 8.0 11.6
ALT 2 14.2 14.9 16.0 16.3 7.6 9.5

TEST_D 18.9 12.1 13.8 14.2 14.0 18.0
YARD 3.3 36.5 27.7 26.6 -24.0 -27.0

HIGHWAY 34 9.3 10.1 10.1 8.4 8.4
CITY 8.5 20.9 20.6 21.7 -1.6 3.7
FIGE 36.6 9.7 9.7 9.7 -0.5 -0.3
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Figure 6.25 Variation of emissions factors with average speed class for the 1995 box truck. 
– Urban mode. 
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in Table 6.5. The speed acceleration based model predicts the emissions over a wide range of 

cycles reasonably accurately. The emissions were predicted using a best-fit polynomial and also 

using a linear interpolation between neighboring points to the NOX emissions factors from Table 

6.4 as explained in Chapter 5. It can be seen that both methods predict the NOX emissions 
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6.3 Effect of Off-Cycle Operation on Emissions 

The off-cycle fuel injection timing strategy practiced commonly during the 1990’s to 

facilitate improved fuel economy, but also to improve cold start in some circumstances. The 

effect is that emissions of NOX are increased, due to the earlier combustion and higher in-

cylinder temperatures, while more complete combustion implies that levels of particulate matter, 

hydrocarbons, and carbon monoxide will be reduced. However, it is acknowledged that the effect 

is most profound with respect to the NOX. 

In the case of the heavy-duty vehicles, the excess NOX emissions that were produced 

during off-cycle operation mostly occurred during steady state operating modes such as cruising 

down the freeway, and rarely occurred during transient operation. 

In this section the results from the tests conducted on the “Test Vehicle 1” on single map 

(without off-cycle) and dual map (with off-cycle) operation are discussed in detail. Let us 

assume that the off-cycle (Rural or Highway) emissions and on-cycle (Urban or City) emissions 

are separate and discrete, based upon existing data.  In order to predict the NOX inventory, it is 

necessary to know both the difference between the on-cycle and off-cycle NOX mass emission 

rates, and the fraction of time (or mileage) for which the two modes are enacted. Algorithms 

used by the engine manufacturers to implement the advanced timing strategy are not in the 

public domain, so that a simulation approach cannot be used to infer the incidence or fraction of 

high NOX operation 

 Figures 6.26 and 6.27 show the continuous plots of NOX emissions as a function of time 

for the 1995 truck “Test Vehicle 1” in dual (with off-cycle) and single (without off-cycle) maps. 
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Figure 6.26 Continuous NOX emissions in g/s for the Test Vehicle 1 on single map over the 
Inventory Highway Cycle (IHC) at 56,000 lbs.  

Figure 6.27 Continuous NOX emissions in g/s for the Test Vehicle 1 on dual map over the 
Inventory Highway Cycle (IHC) at 56,000 lbs. 
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It is evident from Figures 6.26 and 6.27 that NOX emissions are higher on the dual map 

due to the effect of “off-cycle” operation. Figures 6.28 and 6.29 below show the plots of NOX 

versus power for these two cases. The off-cycle emissions in the dual map can be seen as the 

upper “arm” in the bifurcated data (Figure 6.29). 

Figure 6.28 Plot of NOX vs. power for the Test Vehicle 1 (56,000 lbs.) on the single map (low 
NOX) over the Inventory Highway Cycle (IHC). No “off-cycle” emissions are evident. 
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Figure 6.29 Plot of NOX vs. power for the Test Vehicle 1 (56,000 lbs.) on the dual map (high 
NOX) over the Inventory Highway Cycle (IHC). The “off-cycle” emissions are shown. 

 
 NOX emissions factors as a function of average speed class for the Test Vehicle 1 is 

presented for the single and dual map operation at a test weight of 56,000 lbs. in Table 6.6. These 

values are also presented in Table 5.39 in Chapter 5. 

Table 6.6 Variation of NOX emissions factor in grams/mile with average speed class for 
Test Vehicle 1. 

  

As can be seen in Table 6.6, the NOX emissions increase in the dual map for speeds 

above 40 mph for both Rural and Urban modes. Using Table 6.6, NOX emissions for a 1995 

truck at a specific average speed can be predicted with and without off-cycle operation. For 
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Average Speed Bin in mph
Test details  0-10 10-20 20-30 30-40 40-50  50-60 60-70 

Rural
1995 truck - 56000 lbs. 
Dual M ap 34.55 22.24 17.20 15.40 15.18 18.30 23.79
1995 truck - 56000 lbs. 
Single M ap 39.24 23.25 17.95 14.92 12.12 9.56 8.82

Urban
1995 truck - 56000 lbs. 
Dual M ap 36.22 26.54 21.43 15.23 13.65 18.31 22.77
1995 truck - 56000 lbs. 
Single M ap 41.79 28.74 23.29 16.53 11.66 9.14 8.61
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example consider the rural mode if we plot the NOX emissions factors against the average speed 

class, as in Figure 6.30. A curve fit can be obtained for the data, and the equation obtained from 

the curve fit can be used to estimate the NOX emissions factor for any average speed value. It is 

clear from Figure 6.30 that the dual and single map curves deviate after an average speed of 

approximately 35 mph. 

Figure 6.30 Plot of NOX emissions factor with average speed class for Test Vehicle 1 in dual 
and single maps for the rural mode of operation.  

 
 Using the equations shown in Figure 6.30, for an average speed of 58.3 mph, the NOX 

emissions for a 1995 truck will be estimated to be 19.87 g/mile in dual map (with off-cycle) and 

9.13 g/mile in single map (without off-cycle). For the same average speed, NOX emissions with 

off-cycle are more than twice the value of NOX emissions without off-cycle. 
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y = -2E-07x5 + 4E-05x4 - 0.0033x3 + 0.1332x2 - 3.0198x + 46.712

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70

Average Speed (mph)

N
O

X
 E

m
is

si
on

s 
Fa

ct
or

 (g
/m

ile
)

1995 truck - dual map (56,000 lb.)

1995 truck - single map (56,000 lb.)

Dual Map

Single Map



 158

 The NOX emissions value with off-cycle and without off-cycle, and the ratio of NOX 

emissions with and without off-cycle are tabulated in Table 6.7 for a range of average speed 

values chosen arbitrarily. The NOX emissions values were estimated using the equations from 

Figure 6.30. It is clear that the NOX emissions ratio between dual and single maps increase with 

increasing speed. Higher average speed means longer periods of operation in the high-speed 

region and hence, higher off-cycle emission values. With knowledge of amount of time spent by 

a truck in different average speed class, one can estimate the total NOX emissions for that vehicle 

which may include both dual and single map operation. 

Table 6.7 Variation of NOX emissions in g/mile and ratio of NOX emissions with and 
without off-cycle for different average speed values.  

 

 Figure 6.31 shows the variation of the ratio between NOX emissions with off-cycle and 

NOX emissions without off-cycle operation as a function of average speed. Figure 6.25 was 

plotted using the data presented in Table 6.7. A 6th degree polynomial curve was fitted to the data 

and the resulting equation obtained is presented in the Figure 6.31. Now this equation can be 

used to predict the NOX emissions for the Test Vehicle 1 without off-cycle operation if the 

Average 
Speed    
( mph)

NOX (g/mile) 
emissions 

with off-cycle

NOX (g/mile) 
emissions 

without off-
cycle

Ratio of NOX 

withoff-
cycle/without off-

cycle
5 39.23 39.23 1.00
10 29.15 29.15 1.00
15 23.28 23.28 1.00
20 19.92 19.92 1.00
25 17.89 17.89 1.00
30 16.39 16.39 1.00
35 15.00 15.00 1.00
40 14.96 13.55 1.10
45 15.30 12.06 1.27
50 16.38 10.67 1.53
55 18.25 9.58 1.90
60 20.83 8.94 2.33
65 23.80 8.81 2.70
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emissions values are known for that vehicle with off-cycle operation or vice versa. Table 6.8 

presents the actual and predicted NOX emissions for Test Vehicle 1 without off-cycle operation 

using the ratio presented in Table 6.7 and the actual measured NOX emissions for the vehicle 

with off-cycle operation. 

Figure 6.31 Variation of ratio of NOX emissions with and without off-cycle operation as a 
function of average speed.  
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Table 6.8 Actual and Predicted NOX emissions in g/mile for dual map (with off-cycle) 
operation for the Test Vehicle 1.  
 

 
Off-cycle injection timing strategies have a significant effect on the NOX emissions. Off-

cycle emissions are evident at higher speeds typical of freeway speeds. Results show that the test 

vehicle entered off-cycle mode after a speed of a little over 35 mph. There is an increase in NOX 

emissions with increase in the speed. This variation of NOX emissions with speed is not linear. 

For an average speed of 45.8 mph the ratio between NOX emissions with off-cycle and NOX 

emissions without off-cycle was 1.3. For an average speed of 65 mph, this ratio was found to be 

2.7. The approach proposed in this dissertation can be used to predict the off-cycle emissions 

from heavy-duty trucks. One must remember, however, that the results presented were obtained 

from a single truck on three different test runs and two driving cycles. Accuracy of prediction 

can be improved with additional data from many trucks tested over a wide range of test 

schedules covering a range of model year groups. 

 

 
 
 
 
 
 
 

Average 
Speed 
(mph)

Measured NOX 

Emissions with 
Off-Cycle 
(g/mile)

Predicted Ratio 
of NOX 

Emissions with 
and without Off-
Cycle (g/mile)

Predicted NOX 

Emissions with Off-
Cycle (g/mile)

Percentage 
Difference between 

Predicted and Actual 
NOX Emissions with 

Off-Cycle
5 34.55 1.00 39.26 13.66
15 22.24 1.00 23.32 4.87
25 17.20 1.00 17.87 3.91
35 15.40 1.02 15.16 -1.55
45 15.18 1.27 15.34 1.01
55 18.30 1.91 18.22 -0.45
65 23.79 2.70 23.81 0.09
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7 Conclusions and Recommendations for Future Research 

7.1 Conclusions 

Prediction of heavy-duty diesel vehicle emissions inventory is substantially less mature 

than the prediction of gasoline passenger car emissions. Diesel vehicles are now receiving great 

attention, because they are acknowledged to be significant contributors to the atmospheric 

inventory of PM and NOX. Heavy-duty diesel vehicle emissions are affected by a wide variety of 

factors and there is a need for thorough understanding of various factors that affect emissions 

and to develop methodology to accurately predict heavy-duty diesel vehicle emissions for 

inventory purpose.  

Various factors that affect heavy-duty diesel vehicle emissions were studied in detail to 

understand the extent to which they affect emissions. Different emissions prediction 

methodology were reviewed and speed-acceleration based emissions prediction methodology 

was analyzed in detail and presented as an emissions predictive tool. 

To address the lack of high-speed emissions data additional data were acquired using a 

high-speed chassis dynamometer cycle that was developed as a part of this dissertation. A large 

body of data was analyzed in great detail and a suite of emissions factors tables were produced to 

be used with the emissions predicting approach proposed.  

The speed-acceleration based emissions prediction model predicts the emission values 

with reasonable accuracy. It was found that cycle-to-cycle variations could be minimized if a 

large set of data is used to generate the emissions factors tables. A technique was also developed 

to smooth and extrapolate the emissions factors tables to fill in unpopulated cells and minimize 

any anomalies observed in the emissions factors tables. 
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With the initial data that was gathered by conducting tests on two over the road tractor 

trucks, the speed-acceleration based emissions method enabled prediction of NOX emissions 

fairly well even though there was some over prediction in some cases. NOX emissions were 

predicted for a 1995 model year vehicle within 15% error in rural mode and under 6% error for 

urban mode. It was found that the speed-acceleration model could predict the NOX emissions 

fairly well for the CSHVR cycle on the rural operation. The model also predicts fairly well on 

both the cycles for the 1995 truck on single map and the 1982 model year vehicle, which does 

not have the capability to operate on the dual map (off-cycle mode). It is clear that the off-cycle 

operation has a profound effect on the emissions, especially for a high average speed typical of 

freeway operation. The accuracy of the model improved with the inclusion of additional data 

available form different studies.  

Analysis of additional data resulted in a suite of emissions factor tables in g/mile 

covering a wide range of model year groups. The vehicle model year was found to have a 

significant effect on the emissions. From a deeper analysis of the second-by second raw data, it 

was found that gearshift could affect the emissions factors tables to some extent. Careful analysis 

is necessary in generating the emissions factors tables. 

When the emissions factors obtained for the 1994-97 model year group was used to 

predict the NOX emissions for the two test vehicles, the percentage error was within 3% for both 

rural and urban operation. For the CSHVR, the rural mode prediction was within 10%. However, 

the urban mode value was over predicted by 25%. This could be due to the presence of some 

“off-cycle” operation in the data used to generate the emissions factors table. This shows that the 

model can predict the NOX emissions for any truck fairly accurately using the emissions factors 

tables presented for different model year groups. 
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When the model was used to self-predict for a special case (1974-78 model year group), 

It was found that the model predicts the NOX emissions fairly well for all the cycles except for 

the cruise part of CARB hddt cycle, which has an average speed of about 40 mph. It can also be 

seen that for lower average speeds, the urban prediction is better than the rural as would be 

expected because the low average speeds typically represent urban stop and go driving pattern.  

The speed-acceleration approach was compared with CARB’s EMFAC 2002 model. It 

was found from the analysis that the shape of speed correction factors for NOX emissions 

employed by EMFAC is not supported by the results. EMFAC showed that the speed correction 

factor increased both at lower and higher than 35 mph.  

When compared with ANN, the proposed approach did fairly well in predicting the NOX 

emissions from a single truck that was driven on 16 different test schedules. Eleven out of the 

total sixteen predictions by the speed-acceleration method were within a 10% error band. ANN 

did very well with self-prediction, but under predicted when trained on Yard cycle and 

consistently over predicted when trained on the FIGE and CBD cycles respectively 

Heavy-duty diesel vehicle emissions are affected by many parameters such as the vehicle 

weight, driving cycle, injection timing strategy, vehicle age and terrain effects. It was found that 

vehicle weight had a profound effect on NOX emissions. There was a nearly linear relationship 

between NOX and vehicle weight. In general for every X% increase in vehicle weight, there was 

a X/2% increase in NOX emissions. This conclusion was also supported by the theoretical 

analysis performed to understand the weight effects. NOX emissions were insensitive to the 

transients. However, PM and CO emissions were affected very much by transients. Using the 

theoretical approach, it was found that transients could emphasize the weight effects for NOX 

emissions. As an example, for Test-D cycle with an average speed of 18.9 mph, the ratio of NOX 
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emissions at 30,000 lb to that at 80,000 lb was found to be 1.79. If the same truck were operated 

at steady state speed of 18.9 mph, the ratio would be 1.56, a 15% increase. 

The experimental results correlated well with the theoretical approach on vehicle weight 

effects. It was found that the ratio of NOX emissions at two different weights, varied significantly 

with the average speed. The trend in the variation of NOX emissions ratio with average speed 

was also affected by the model year group to a great extent. For a 1994 truck that was tested at 

three different weights, doubling of the vehicle weight increased NOX emissions by 54%. 

Driving schedule was found to have significant effect on the emissions. The Speed-

acceleration model under predicted the NOX emissions for the NYBUS cycle and the YARD 

cycle. These two cycles have average speeds of 3.7 and 3.3 mph respectively and represent 

typical urban stop-and-go operation.  

 The speed-acceleration based emissions prediction methodology was found to predict the 

emissions with reasonable accuracy. The method showed better prediction for NOX than any 

other emission species. CO and hence PM are hard to model as they are very strong function of 

the transients. HC emissions are very low in diesel engines and they exhibit erratic behavior.  

Off-cycle emissions resulting from injection timing control strategy affected NOX 

emissions. The effect was profound during highway speed operation exceeding 35 mph. NOX 

emissions almost doubled when the same vehicle was operated in the dual map (high NOX mode) 

as opposed to single map (low NOX mode). 

Using the equations obtained from a theoretical approach discussed in Chapter 6, 

considering an average speed of 58.3 mph, the NOX emissions for a 1995 truck was estimated to 

be 19.87 g/mile in dual map (with off-cycle) and 9.13 g/mile in single map (without off-cycle). 

For the same average speed, NOX emissions with off-cycle are more than twice the value of NOX 
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emissions without off-cycle. Off-cycle emissions were not evident up to a speed of around 35 – 

40 mph. 

The proposed speed-acceleration approach was found to be promising in developing 

emissions factors for heavy-duty diesel vehicles for emissions predictions for inventory purpose.  

7.2 Recommendations for Future Research 

Effect of vehicle operating weights on emissions needs further research. Comprehensive 

testing of heavy-duty vehicles on chassis dynamometer at various test weights would help 

understand the extent to which the emissions are affected by vehicle weight. 

 The accuracy of the speed-acceleration model can be greatly improved if emissions data 

were available for a large number of different vehicles covering wide range of model year 

groups, vehicle weight and test schedules. The E-55/59 and Gasoline/Diesel PM Split studies 

undergone at WVU are producing those data for future analysis. 

 Off-cycle operation has a significant effect on NOX emissions. Collection of emissions 

data for many trucks that are capable of operating without off-cycle operation (single map) will 

enable to improve the accuracy of the speed-acceleration model for predicting off-cycle 

emissions. 

 Some anomalies present in the emissions factors tables were attributed to the gearshift 

effect. Even though these anomalies were dealt with smoothing of the emissions factors tables, a 

detailed study of effect of gearshift on emissions would greatly improve the emissions factors 

development.  
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7.3 Publications based on Present Research 

A paper titled “A predictive Tool for Emissions from Heavy-Duty Diesel Vehicles” has been 

published in Environmental Science & Technology, 2003, 37(1), pg 7-15. 

 

A paper titled “Effect of Truck Operating Weight on Heavy-Duty Diesel Emissions” has been 

published in Environmental Science and Technology, 2003, 37(18), pg 4309-4317. 
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Appendix A Error Analysis of Translab 

 

A good way to understand if there is any systematic drift over time is to plot the repeat data for a  

single vehicle over time. Unfortunately such data were not available in the existing database. 

However, data were available for 25 different vehicles as a part of the CRC E55 study (discussed 

in Chapter 4). These vehicles were tested over a period of 11 months. Figure A.1 shows the plot 

of CO2 emissions in grams/mile as a function of test date for these 25 vehicles tested over UDDS 

cycle.  

Figure A.1 Variation of CO2 emissions with UDDSate for 25 Class 8 trucks tested on UDDS 
cycle at a test weight of 56,000 lbs,. A best fit curve is also plotted for these data. 

 It can be seen from Figure A.1 that there is a slight downward drift in the best-fit trend 

line. Figure A.2 shows the model year distribution of the 25 vehicles as a function of test date. 

The best-fit line shows a 5.15% drop in CO2 emissions over a period of 11 months. This 

variation is well within the day to day variation, which may arise due to test conditions and 
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atmospheric conditions. In addition, trucks recruiting may have been biased with respect to 

model year over time, provoking a fuel economy trend. 

Figure A.2 Model year distribution of the 25 class 8 trucks tested on UDDS cycle at a test 
weight of 56,000 lbs,.  

 

 

 

 

 

 

 

1970

1975

1980

1985

1990

1995

2000

2005

7/28/2001 9/16/2001 11/5/2001 12/25/2001 2/13/2002 4/4/2002 5/24/2002 7/13/2002

Date of Test

Ve
hi

cl
e 

M
od

el
 Y

ea
r



 169

References 

ARB, “Proposed Identification of Diesel Exhaust as a Toxic Air Contaminant,” Report by the 
staff of the California Air Resources Board and the Office of Environmental Health Hazard 
Assessment, April 22, 1998. 

ARB, “Mobile Sources Emission Inventory Program,” http://www.arb.ca.gov/msei.html, 
accessed September 2002. 

ARB, http://www.arb.ca.gov/msei/msei.htm, accessed November 19, 2004. 

Atkinson, C. .M., Clark, N. N., Long, T. L., and Hanzevack, E. L., “Neural Network based 
Vehicle Emissions Modeling for Inventory Applications – An Update on Virtual Sensing,” 
Eighth CRC On-Road Vehicle Emissions Workshop, San Diego, CA, April 1998. 

Battelle,“Heavy-Duty Truck Activity Data,” final report prepared for Office of Highway 
Information Management, Office of Technology Applications, Federal Highway Administration, 
Washington, D.C. 20590, by Battelle Memorial Institute, Columbus, OH 43201, April 30, 1999. 

Barth, M., An, F., Younglove, T., Scora, G., and Levine, C., “Development of a Comprehensive 
Modal Emissions Model: Final Report,” Prepared for National Cooperative Highway Research 
Program under NCHRP Project 25-11, April 2000. 

Butler, J. W., Kornisk, T. J., Reading, A. R., and Kotenko, T. L., “Dynamometer Quality Data 
On-board Vehicles for Real-World Emission Measurements,” Proceedings of the Ninth CRC On-
Road Vehicle Workshop, San Diego, CA, April 19-21 1999. 

Clark, N. N., McKain, D. L., Messer J. T., and Lyons, D. W., “Chassis Test Cycles for Assessing 
Emissions from Heavy Duty Trucks,” SAE Paper 941946, 1994. 

Clark, N. N., and McKain, D. L., “Transient Chassis Cycles for Heavy Duty Trucks and 
Tractors,” Int. Jour. of Vehicle Design (Heavy Vehicle Systems), Vol.2, pg.143-159, 1995. 

Clark, N. N., Messer D. J., McKain, D. L., Wang, W. G., Bata, R. M., Gautam, M., and Lyons 
D.W., “Use of the West Virginia University Truck Test Cycle to Evaluate Emissions from Class 
8 Trucks,” SAE Paper 951016, 1995. 

Clark, N. N., Lyons, D. W., Bata, R. M., Gautam, M., Wang, W. G., Norton, P., and Chandler, 
K., "Natural Gas and Diesel TB Emissions: Review and Recent Data," SAE Paper 973203, 1997. 

Clark, N. N., Nine, R. D., Daley, J. J., Atkinson, C. M., Tennant, C. J., and Lyons, D. W., 
“Heavy Duty Truck Emissions: Vehicle Activity, Driving Routes, and NO/NO2 Ratios,” 
Proceedings of Eighth CRC On-Road Vehicle Emissions Workshop, San Diego, CA, April 20-
22, 1998. 



 170

Clark, N. N., Atkinson, C. M., Thompson, G. J., and Nine, R. D., “Transient Emissions 
Comparisons of Alternative Compression Ignition Fuels,” SAE Paper 1999-01-1117, 1999. 

Clark, N. N., Daley, J. J., Nine R. D., and Atkinson C. M., “Application of the New City-
Suburban Heavy Vehicle Route (CSHVR) to Truck Emissions Characterization,” SAE Paper 
1999-01-1467, 1999. 

Clark, N. N., Jarrett R. J., and Atkinson C. M., “Field Measurements of Particulate Matter 
Emissions, Carbon Monoxide, and Exhaust Opacity from Heavy-Duty Diesel Vehicles,” Journal 
of the Air & Waste Management Assoc: Vol. 107, pg. 84-93, 1999. 

Clark, N. N., Azadeh Tehranian., Jarret R. P., and Nine R. D., “Translation of Distance-Specific 
Emissions rates between Different Heavy Duty Vehicle Chassis Test Schedules,” SAE Paper 
2002-01-1754, 2002. 

Clark, N. N., Kern J. M., Atkinson C. M., and Nine R. D., “Factors Affecting Heavy-Duty Diesel 
Vehicle Emissions,” Journal of the Air & Waste Management Association, Vol. 52. pg 174-185, 
January 2002. 

Code of Federal Regulations, “Protection of the Environment,”  Title 40, Part 86, Subpart N, 
U.S. Government Printing Office, 1996. 

Code of Federal Regulations, Title 40, Part 86, Subpart N, 1998. 

“COPERT,” http://vergina.eng.auth.gr/mech/lat/copert/copert.htm, accessed January 2003. 

Dementhon, J. B., “Influence of Various Diesel Traps on Particulate Size Distribution,” SAE 
Paper 97299, 1997. 

DETR, “Transport Statistics Bulletin- Road Traffic Statistics: 1999,” United Kingdom 
Department of Environment, Transport and the Regions (DETR), London, UK, SB (00) 20 
August 2000. 

Dieselnet, “Diesel Particle Size Distribution,” http://www.dieselnetcom/tech/dpm_size.html, 
accessed April 2000. 

Dieselnet, “Diesel Emission Inventory,” http://www.dieselnetcom/tech/env_inv.html, accessed 
September 2002. 

Dieselnet, “Heavy-duty Truck and Bus Engines,” http://www.dieselnetcom/standards/us/hd.html, 
accessed September 2002. 

Dietzman, H. E., and Warner-Selph, M. A., “Comparison of Emissions from Heavy-duty 
Engines and Vehicles During Transient Operation,” Energy Sources and Technology 
Conference, Dallas, TX, ASME Paper 85-DGP-10, 1985. 



 171

EPA, “Heavy-duty Vehicle Cycle development,” Environmental Protection Agency, Office of 
Air and Waste management, Office of Mobile Source Air Pollution Control, Emission Control 
Technology Division, Ann Arbor, Michigan, EPA-460/3-78-008, 1978. 

EPA Document, “Emissions Standards reference Guide for Heavy-Duty and Nonroad Engines,” 
Report EPA 420-F-97-014, 1997. 

EPA, “Development and Use of heavy-Duty Defeat Device Emission Effects for Mobile5 AND 
Mobile6,” EPA Report Number M6.HDE.003, EPA420-P-99-030, October 1999. 

EPA, “National Air Quality and Emissions Trends Report, 1999,” U. S. Environmental 
Protection Agency, Office of Air Quality Planning and Standards, Report EPA 454/R-01-004, 
March 2001. 

EPA, “National Air Quality and Emissions Trends Report,” U.S. Environmental Protection 
Agency, Office of Air Quality Planning and Standards, Report EPA 454/R-01-004, March 2001. 

EPA, “EPA’s New Generation Mobile Source Emissions Model: Initial EPA, Proposal and 
Issues,” Report EPA420-R-01-007. Office of Air and Radiation, Ann Arbor, MI, April 2001. 

EPA, "EPA's Plan for MOVES: A Comprehensive Mobile Source Emissions Model,” presented 
at the CRC On-Road Vehicle Emissions Workshop, San Diego, April 2002. 

EPA, "Methodology For Developing Modal Emission Rates For EPA's Multi-Scale Motor 
Vehicle & Equipment Emission System,” produced by North Carolina State University EPA420-
R-02-027, August 31, 2002. 

EPA, "Mobile Source Observation Data (MSOD) Database Update, Interim Report,” produced 
by Eastern Research Group, EPA420-R-02-033, October 31, 2002. 

Fuel Economy Measurement Test (Engineering Type) for Trucks and Buses - SAE J1376, SAE 
Handbook, Vol. 4, 1993. 

Gamo, O. S., Ouladrine, M., and Rachid, A., “Diesel Engine Exhaust Emissions Modeling using 
Artificial Neural Networks,” SAE Paper 1999-01-1163, 1999. 

Ganesan, B., and Clark, N. N., “Relationships Between Instantaneous and Measured Emissions 
in Heavy Duty Applications,” SAE Paper 2001-01-3536, 2001.  

Graboski, M. S., Ross, J. D., and McCormick, R. L., “Transient Emissions from No. 2 Diesel and 
Biodiesel Blends in a DDC Series 60 Engine,” SAE Paper 961166, 1996. 

Graboski, M. S., McCormick, R. L., Yanowitz, J., and Ryan, L., “Heavy-Duty Diesel Vehicle 
Testing for the Northern Front Range Air Quality Study,” Fort Collins, CO, February 1998.  



 172

Hackman, J. D., Hassel, R., Joumard, Z., and Sorenson, S., “Methodology for Calculating 
Transport Emissions and Energy Consumption,” TRL Report PR/SE/491/98, Crowthorne, U.K., 
362 p., and European Commission, DG VII, ISBN 92-828-6785-4, Luxembourg, 362 p. 

Harris, D. B., King, F., Brown, J. E., Nine, R. D., Clark, N. N., and Kopasko, J., “Comparison of 
On-Road and Chassis Dynamometer Emissions Results,” Seventh CRC On-Road Vehicle 
Emissions Workshop, San Diego, pg.. 5-93 to 5-111, April 1997. 

Health Effects Institute, “Diesel Exhaust: A Critical Analysis of Emissions, Exposure, and 
Health Effects,” April 1995. 

Japar, S. M., “Motor Vehicles and Particle Air Pollution: an Overview,” Particulate Matter: 
Health and Regulatory Issues, VIP. 49, Air & Waste Management Association, Proceedings of 
an International Specialty Conference, Pittsburgh, PA, pg. 577-599, April 4-6 1995. 

Johnson V. T., “Diesel Emission Control – Last 12 Months in Review,” SAE Paper 2000-01-
2817, 2000. 

Kihara, N., Tsukamoto, T., Matsumoto, K., Ishida, K., Kon, M., and Murase, T., “Real-Time On-
Board Measurement of Mass Emission of NOX, Fuel Consumption, Road Load, and Engine 
Output for Diesel Vehicles,” SAE Paper 2000-01-1141, 2000. 

Krijnsen H. C., Van Kooten, W. E. J., Calis, H. P. A., Verbeek, R. P., and Vanden Bleek, C. M., 
“Evaluation of an Artificial Neural Network for NOX Emission Prediction from a Transient 
Diesel Engine as a Base for NOX Control,” Canadian Journal of Chemical Engineering, pg. 408-
417, April  2000. 

Kwan, S., Parker D., and Nolan K., “Effectiveness of Engine Calibration Techniques to reduce 
Off-Cycle Emissions,” SAE Paper 971602, 1997. 

Long, T. R., “Design and Construction of a Transportable Heavy-duty Vehicle Emission Testing 
Laboratory,” Annual Automotive Technology Development Contractors’ Coordination Meeting, 
Dearborn, MI, Oct. SAE Special Publication P-256, 1991. 

Lloyd, A. C., and Cackette, T. A., “Diesel Engines: Environmental Impact and Control,” Journal 
of Air & Waste Management Association, Vol. 51, pg. 809-847, 2001. 

Lyons, D., Bata, R., Wang, W., Clark, N., Palmer, M., Gautam, M., Howell, A., Loth, J., and 
Long Jr., T., “Design and Construction of a Transportable Heavy Duty Vehicle Emission Testing 
Laboratory,” Annual Automotive Technology Development Contractors’ Coordination Meeting, 
Dearborn, MI,  pg.. 593-598, SAE P-256, October 28-31 1991. 

Machiele, P. A., “Heavy-Duty Vehicle Emissions Conversion Factors II,” EPA-AA-SDSB-89-
01, October 1988. 



 173

McKain, D. L., Clark N. N., McDaniel T. I., and Hoppie, J., “Chassis Test Cycle Development 
for Engine Test Compliance on Heavy Duty Engines,” SAE International Congress, Detroit, 
SAE Paper 980407, February 1998. 

Nine, R. D., Clark, N. N, Norton, P., “Effect on Emissions of Multiple Driving Test Schedules 
Performed on Two Heavy-Duty Vehicles,” SAE Paper 2000-01-2818, 2000. 

Ntziachristos, L., and Samaras, Z., “Computer Programme to Calculate Emissions from Road 
Transport - Methodology and Emission Factors (Version 2.1),” COPERT III, European Topic 
Centre on Air Emissions, European Environment Agency, November 2000. 

Okrent, D. A., “Optimization of a Third Generation TEOM Monitor for Measuring Diesel 
Particulate in Real-Time,” SAE Paper 980409, 1998. 

Perkins, G. C. H., “Analytical Process to Develop a Local Truck Driving cycle,” SAE Paper 
821256, 1982. 

Quenou Gamo, S., Ouladsine M., Rachid, A., “Diesel Engine Exhaust Emissions Modeling 
Using Artificial Neural Networks,” SAE Paper 1999-01-0163, 1999. 

Ramamurthy, R., Clark, N. N, Atkinson, C. M., and Lyons, D. W, “Models for Predicting 
Transient Heavy-Duty Vehicle Emissions,” SAE Paper 982652, 1998. 

Ramamurthy, R., and Clark, N. N., “Atmospheric Inventory Data for Heavy-Duty Vehicles,” 
Environmental Science &Technology, Vol. 33 pg. 55-62, 1999. 

Tehranian, Azadeh., “Effects of Artificial Neural Networks Characterization on Prediction of 
Diesel Engine Emissions,” Master’s Thesis, West Virginia University, 2003. 

Thompson, G. J., Atkinson, C. M., Clark, N. N., Long, T. W., and Hanzevack, E., “Neural 
Network Modelling of the Emissions and Performance of a Heavy-Duty Diesel Engine,” Proc 
Instn Mech Engrs, Vol. 214, Part D, No. D04499, 2000. 

Walsh, M. P., “Global Trends in Diesel Emissions Control – A 1999 Update,” SAE Paper 1999-
01-0107, 1999. 

Wang, W., Sun, X., Bata, R., Gautam, M., Clark, N. N., Palmer, M., and Lyons, D., “Emissions 
Comparisons of Twenty-Six Heavy Duty Vehicles Operated on Conventional and Alternative 
Fuels,” International Truck and Bus Meeting and Exposition, Detroit, MI, November 1-4, SAE 
Paper 932952, 1993. 

Weinblatt, H., Dulla, R. G., and Clark, N. N., “A Vehicle Activity Based Procedure for 
Estimating Emissions of Heavy-Duty Vehicles,” Transportation Research Board Meeting, Hilton 
Energy and Environmental Analysis, Poster Session 309 (03-3962), January 13, 2003. 



 174

Watson, H. C., Milkins, E. E., Preston, M. O., Chittleborough, C., and Alimoradian, B., 
“Predicting Fuel Consumption and Emissions—Transferring Chassis Dynamometer Results to 
Real World Driving Conditions,” SAE Paper 830435, 1983. 

Yanowitz, J., McCormick, R. L., and Graboski, M. S., “In Use Emissions from Heavy-Duty 
Diesel Vehicles” Environmental Science & Technology, Vol. 34, pg. 729-740, 2000. 

 


	Development of a heavy duty diesel vehicle emissions inventory prediction methodology
	Recommended Citation

	Development of a Heavy Duty Diesel Vehicle Emissions Inventory PredictionMethodology
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Objectives
	Literature Survey
	Vehicle Emissions Inventory Modeling
	Factors Affecting Heavy-Duty Vehicle Emissions
	Vehicle Class/Weight
	Driving Cycle
	Injection Timing Variances
	Methods of Generating Emissions Factors
	Use of Speed-Acceleration Data
	Experimental Set Up and Details of Tests Conducted
	Development of Speed-Acceleration Based Emissions Factors Tables
	Generating the Speed-Acceleration based Emissions Factors Tables
	Combining the Emissions Factors Table with Vehicle Activity Data
	Extrapolation and Smoothing (Interpolation) of the NOX Emissions Data – AnExample
	Presentation of Emissions Factors in grams/mile as a function of Average Speed Class
	Verification of Speed-Acceleration Approach
	Additional Analysis to Validate Speed-Acceleration Method
	Effect of various Parameters on Heavy-Duty Diesel Vehicle Emissions
	Influence of Vehicle Weight (Load) on Emissions
	Effect of Test Cycles on Heavy-Duty Diesel Vehicle Emissions
	Effect of Off-Cycle Operation on Emissions
	Conclusions and Recommendations for Future Research
	Publications based on Present Research
	References

		2005-08-30T12:50:20-0400
	John H. Hagen
	Revised document for content; originally approved Summer 2005; 8/12/05.




