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Abstract 
Characterization of the immune response to lipopolysaccharide in early pregnant ewes as a model to study 

bacterial infection induced embryonic loss. 

Jessalyn Marie Hadfield 

An immunological balance has to be established during pregnancy that protects the mother yet tolerates the 

semi-allogenic fetus. To understand the innate immune response during bacterial infections that may cause early 

embryonic loss, a lipopolysaccharide (LPS) treated sheep model was used. Two objectives of this study were to 

examine if omega-3 PUFAs in the form of supplementary whole flaxseed could reduce the inflammatory response to 

an LPS challenge and to examine if there is a differential immune response to LPS in Suffolk and Dorset ewes. A 

total of 3 experiments were conducted; two investigating the effect of supplement and one investigating the effect of 

breed. Estrus was synchronized by CIDR insertion for 5 days, followed by 20 mg of PGF2α at CIDR withdrawal. 

Early pregnant ewes received via the jugular vein, either phosphate buffered saline (PBS) (3 ml) or LPS (2.5 µg/kg). 

Blood was collected via jugular venipuncture at hour: 0, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 5, 6, 9, 12, and 24. Whole 

blood samples were used to determine white blood cell counts (WBCs) before centrifugation to collect white blood 

cells for RNA extraction. Rectal temperature and change in behavior/physical (lethargy, coughing, nasal discharge, 

absence of eating) appearance were recorded hourly. Real-time PCR was performed for expression of cytokines 

(CXCL8, IL6, TNFα, IFNγ, IL-10, and TGFβ), receptors (TLR4, MRC1), enzymes (COX2, SOD2), transcription 

factors (NF-κB, PPARγ, and Foxp3) and complement component 3. In all experiments, temperature increased in 

response to LPS, peaking at hour 4 before returning to normal by hours 6-9; WBCs dropped by hour 1 before 

returning to normal by hours 6-9. In trial 1 of the supplement study (flaxseed versus a control supplement) (Dorset 

ewes flaxseed + LPS n=3; flaxseed + PBS n=3; control + LPS n=5; control + PBS n=5), LPS increased haptoglobin 

and cortisol levels and affected gene transcription of CXCL8, IFNγ, TLR4, MRC1, SOD2, Foxp3 (by hour), and 

C3.There was a diet effect with regard to cortisol and gene expression of CXCL8, and TLR4. There was a diet x 

LPS interaction with regard to temperature, WBCs (by hour), haptoglobin, serum amyloid A and gene expression of 

CXCL8, IL-6, and TLR4. In trial 2 of the supplement study (Dorset ewes flaxseed + LPS n=11, flaxseed + PBS 

n=10, control + LPS n=11, control + PBS n=10), LPS increased haptoglobin and cortisol and affected gene 

expression of CXCL8, TLR4, MRC1, SOD2, PPARγ, Foxp3, and C3. There was a diet effect on cortisol and gene 

expression of C3.There was a diet x LPS interaction with regard to temperature and cortisol. In the breed effects 

study (Dorset + LPS n=11; Dorset + PBS n=10; Suffolk + LPS n=16; Suffolk + PBS n=16), LPS increased cortisol 

and affected gene transcription of CXCL8, TLR4, MRC1, SOD2, PPARγ, and C3. There was an effect of breed on 

temperature; haptoglobin, serum amyloid A (by hour), and cortisol levels; and gene transcription of IL-6, IFNγ, IL-

10, TLR4, COX2, SOD2, PPARγ, Foxp3, and C3. There was a breed x LPS interaction on change in temperature 

from hour 0, the frequency of behavior/physical changes; haptoglobin, serum amyloid A (by hour), and cortisol; and 

gene transcription of IL-6 and C3. Pregnancy status was assessed at 25 dpc with transrectal ultrasound and 

progesterone was measured in plasma samples. In trial 1 of the supplement study, flaxseed increased progesterone 

but it did not differ between groups in trial 2. There were no differences in progesterone between the breeds tested. 

The number of ewes that lambed in each treatment group was not different in any of the experiments. In summary, 

acute infections may cause embryonic loss by shifting the environment to be pro-inflammatory. There was no clear 

benefit of supplementary ω-3 PUFAs in reducing the inflammatory response. Suffolk ewes had an elevated 

inflammatory response to LPS compared to Dorset ewes and may be more susceptible to embryonic loss in response 

to infection.   
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Chapter 1. Literature Review  

The Post-Partum Dairy Cow and Infection 

 

High producing dairy cows are under considerable metabolic stress as they experience a large 

increase in nutritional and energy requirements for milk production (peaks 4-8 weeks post-partum) after 

calving. The increased energy requirements are only partially offset by increased feed consumption (due 

to limitations in intake and appetite), and the remainder is met by mobilization of body reserves (Bauman 

and Currie, 1980; Evans and Walsh, 2012). This often leads to a state of severe negative energy balance 

(NEB) characterized by loss in body condition, low blood glucose levels, elevated non-esterified fatty 

acid (NEFA) levels, and elevated ketone bodies such as β-hydroxybutyrate (BHB). These changes 

indicate increased lipid mobilization and fatty acid oxidation. This metabolic environment has negative 

effects on immune cells with the resulting immunosuppressive environment making cows more 

susceptible to mammary (mastitis) and uterine (endometritis) infections with less ability to clear the 

infection (Mallard et al., 1998; Hammon et al., 2006; Wathes et al., 2009; Morris, 2014). The immune 

system uses energy produced from oxidative phosphorylation, therefore, being in a state of ketosis 

impairs immune system function. For example, in response to lipopolysaccharide (LPS) the mitochondrial 

activity of macrophages exposed to BHB in vitro was decreased and they produced less reactive oxygen 

species (ROS), which are used to eliminate bacteria. However, with the addition of eicosapentaenoic acid 

(EPA), ROS production by macrophages in response to LPS increased, while docosahexaenoic acid 

(DHA) had no effect (Morris, 2014).  

In selecting dairy cows for high milk production, a global decline in fertility and an increase in 

the incidence of infectious diseases has occurred (Uribe et al., 1995; Thatcher et al., 2010; Walsh et al., 

2011). Cows undergo metabolic adaptations to NEB during the first weeks of lactation (Suriyasathaporn 

et al., 2000), which will impair immune system function making them prone to infectious diseases and, 

subsequently, impacting fertility (Hogan et al., 1989; Goff, 2006; Evans and Walsh, 2012). A number of 

factors contribute to poor fertility in high-producing dairy cows including short duration and low intensity 

of oestrous due to low circulating estrogen (E2) concentrations and increased metabolic clearance rate of 

steroids related to liver blood flow resulting in lowered peripheral concentrations of progesterone (P4) and 

E2. Lowered concentrations of P4 may be unable to prevent prostaglandin F2α (PGF2) release and 

luteolysis and may affect the uterine secretion of proteins and growth factors needed for early embryo 

development (Diskin and Morris, 2008). The most frequent factor contributing to low fertility, however, 

is high embryonic mortality. Embryonic loss can be due to poor oocyte quality resulting from the adverse 
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metabolic environment or due to poor uterine environment influenced by uterine infection and low 

circulating P4 concentrations (Evans and Walsh, 2012).  

For optimum economic return, farmers need to rebreed cows within 2-3 months of calving, 

however, poor fertility is a major problem in the dairy industry with metabolic stress and reproductive 

issues being linked (Roche, 2006). To achieve a 365 day calving interval with a 282 day gestation, 

breeding usually commences 60 days post-partum and the cow needs to conceive by 83 days postpartum. 

For the cow to become and stay pregnant any uterine infections need to be resolved; she needs to recover 

from post-partum NEB; and she needs to resume normal estrous cycles (Walsh et al., 2011). Cows that 

suffer from metabolic disorders (acidosis, fatty liver disease, displaced abomasum, hypocalcaemia, 

hypomagnesaemia, ketosis) in the peri-parturient period are more likely to have increased incidence of 

mastitis, lameness, and endometritis (Roche, 2006) and reduced pregnancy success.  

After parturition, the uterus undergoes remodeling to get back to the pre-pregnant state including 

a reduction in size, removal of cellular debris, and restoration of normal architecture (Gier and Marion, 

1968; Leslie, 1983; Sheldon and Dobson, 2004). It is normal to have uterine contamination with bacteria 

at parturition or during the first few days postpartum with 80-100% of cows having bacterial 

contamination in the first two weeks after calving (Foldi et al., 2006; Lewis, 1997; Sheldon et al., 2006). 

The most prevalent bacteria in the post-partum uterus are Escherichia coli and Arcanobacterium 

pyogenes, but other common bacteria include Fusobacterium necrophorum, Prevotella melaninogenicus, 

and Proteus species, which are associated with increased endometrial inflammation and purulent vaginal 

mucus (Bondurant, 1999; Sheldon et al., 2009a). Initially, mucosal defense and the innate immune system 

are responsible for dealing with the pathogens and eliminating the contamination, which is usually cleared 

within ~3 weeks of calving with complete involution of the uterus and cervix within 4-6 weeks. However, 

lactating dairy cows are predisposed to reduced immune competence, and the immune system of cows 

that cannot clear the bacteria can become overwhelmed resulting in uterine disease (metritis) (King et al., 

2003; Sheldon et al., 2006; LeBlanc, 2008; Walsh et al., 2011). Metritis can develop within 3 weeks post-

partum and in about 20% of cows the pathogenic bacteria will persist in the uterus for longer than 3 

weeks, the consequence being endometritis (Sheldon et al., 2009a). Endometritis is caused by chronic 

bacterial infection in the uterus causing uterine inflammation without systemic illness. The condition is 

characterized by disruption of the endometrial epithelium, infiltration of inflammatory cells and 

lymphocytes, stromal edema, and vascular congestion (Bondurant, 1999). Approximately 15-20% of 

cows have clinical endometritis at 4-6 weeks postpartum, and 30-35% will have subclinical endometritis 

between 4 and 9 weeks postpartum (LeBlanc, 2008). Events associated with parturition can influence 



3 
 

subsequent infection: cows having twins, dystocia, a stillbirth, or retained fetal membranes have increased 

the risk of infection (LeBlanc, 2008).  

Uterine infections are characterized by extensive leukocyte infiltration of the endometrium and 

chronic inflammation (Foldi et al., 2006; Sheldon et al., 2006) resulting in longer intervals to conception 

which increases the likelihood of culling (Lewis, 1997; Fourichon et al., 2000; Gilbert et al., 2005; Wise, 

2016).  Indeed, being diagnosed with clinical mastitis between artificial insemination (AI) and pregnancy 

confirmation (45 days post-AI; 14 days after ultrasound diagnosis) increased the odds of pregnancy loss 

(odds ratio 2.80 clinical mastitis versus no symptoms of disease) in lactating Holstein cows (Chebel et al., 

2004). Several studies have found that the type of bacteria (gram negative or positive) did not affect the 

reproductive parameters evaluated but reported differences when comparing cows without clinical 

mastitis, cows that had mastitis before first AI, and cows that got mastitis after pregnancy diagnosis. The 

group of cows that were diagnosed between first AI and pregnancy confirmation had the lowest percent of 

conception at first AI, the lowest pregnancy rate at 320 DIM, the highest average number of services per 

conception, and the highest number of days open, showing that infection during early pregnancy is 

detrimental to reproductive performance (Barker et al., 1998; Santos et al., 2004b). Progesterone reduces 

cervical mucus production, prevents uterine contractility (Rodriguez-Martinez et al., 1987) and 

counteracts estrogen’s effects on immune protective responses of the reproductive tract such as antibody 

secretion and increased activity of antigen presenting cells in the uterus (Wira et al., 1995; Bondurant, 

1999). Therefore, the presence of a CL and P4 production makes the uterus susceptible to infection and 

hinders the ability of the immune system to clear pathogens, and the presence of bacteria can result in a 

clinical infection after ovulation with the production of P4.  

Embryonic Loss 
In the cow, embryo loss between fertilization and day 24 of gestation is considered early embryo 

mortality, loss between day 25 and 45 (embryonic differentiation is completed) is considered late embryo 

mortality, and losses between day 46 and parturition are considered fetal mortality (Committee on Bovine 

Reproductive Nomenclature, 1972). The peri-implantation period is a critical time in determining if 

pregnancy will be successful. As milk production has increased over the last 50 years in dairy cattle, 

fertility has decreased (Diskin et al., 2006; Sartori et al., 2010; Walsh et al., 2011). In lactating cows, first 

service conception rates are ~32%, whereas in heifers the rate is over 50%. With a fertilization rate over 

80%, the low conception rate does not seem to be due to problems with fertilization (Sartori et al., 2010). 

The low conception rate is instead related to high rates of embryonic loss with 70-80% of embryos being 

lost during the first 3 weeks after insemination (Inskeep and Dailey, 2005; Diskin et al., 2006; Diskin and 
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Morris, 2008; Hansen, 2011b). This has a huge impact on milk production efficiency and profitability 

(Thatcher et al., 2011; Evans and Walsh, 2012).  

During the first 7 days after insemination the embryo develops into a blastocyst dependent on its 

inherent ability to develop, which is associated with oocyte quality, sperm quality, and timing of 

fertilization (Evans and Walsh, 2012). The uterine environment also impacts early embryonic 

development, and persistent issues in the post-partum uterus can make the environment suboptimal 

(Evans and Walsh, 2012). In support of this idea, Rizos et al (2010) conducted a zygote transfer (to the 

oviducts at day 2) experiment that showed that in post-partum lactating Holstein-Friesian cows were less 

able to support very early embryo development compared to Holstein-Friesian heifers. They suggested 

that the reproductive tract of the lactating dairy cow is a less suitable environment for early embryo 

development compared to the tract of a heifer. It is estimated that by day 7 of gestation only 45-55% of 

inseminated lactating cows are pregnant whereas ~75% of inseminated heifers are pregnant (Sartori et al., 

2010; Walsh et al., 2011).  

The presence of pathogenic bacteria can compromise the uterine environment causing embryonic 

death and abortion (Sheldon et al., 2004; 2006). The majority of cows have uterine bacterial 

contamination post-partum, but clinical infection does not always result. (Sheldon et al., 2006). Even 

without clinical infection, inflammation induced by the bacteria can perturb embryo survival (Hansen et 

al., 2004). The majority of microbes enter the uterus by ascending through the reproductive tract after 

being introduced following parturition, abortion, natural service, or AI.  Endometrial cells have pattern 

recognition receptors (PRRs) that recognize pathogen associated molecular patterns (PAMPs) such as 

unmethylated DNA, lipids, and LPS. Following interaction of a PRR with its PAMP, antimicrobial 

peptides, pro-inflammatory cytokines, and chemokines are released resulting in activation and 

mobilization of immune cells and an inflammatory environment (Akira et al., 2006; Herath et al., 2006; 

Sheldon et al., 2009a; Cronin et al., 2012).  

Demand for milk and milk production per dairy cow are expected to continue to increase. In order 

to have dairy cows capable of high milk production and efficient reproduction, it is necessary to optimize 

health, nutrition, and breeding management strategies (Walsh et al., 2011). Strategies that minimize 

embryonic loss will improve the reproductive efficiency of ruminants.  

Maternal Recognition of Pregnancy 
To establish a pregnancy after conception, three events must occur: pregnancy recognition 

signaling, implantation, and placentation (Guillomot et al., 1995; Spencer et al 2004). In ruminants, 

endometrial function in early pregnancy is regulated mostly by P4 produced by the CL and by conceptus 
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secreted factors like IFN-τ produced by the mononuclear trophectoderm cells (Spencer et al., 2004b; 

Spencer et al., 2008; Bazer et al., 2010).  Progesterone from the CL acts on the uterus to stimulate 

preimplantation blastocyst growth and conceptus elongation in ruminants (Spencer et al., 2004b), which 

are critical for production of IFN-τ and prostaglandins (PGs) by the trophectoderm (Spencer et al., 2007). 

Progesterone production is required for the duration of pregnancy; in some species the placenta will 

eventually take over production while in others, the CL is solely responsible. To maintain CL function 

past its normal lifespan during a luteal phase the conceptus must produce a hormone that acts on the 

uterus and/or CL (Bazer et al., 2013).  

In cyclic sheep, the uterus produces luteolytic pulses of PGF2α on days 15-16 of the cycle to 

regress the CL. In ruminants, pregnancy is recognized by the dam through production of IFN-τ by the 

conceptus (Helmer et al., 1989; Bazer, 2013). The IFN-τ gene arose in ruminants through duplication of 

the IFN-ω gene (Roberts et al., 1998) and through evolution the promotor region lost its viral control 

elements while gaining two regions that make its expression trophectoderm-specific (Hansen et al., 1991; 

Ezashi et al., 1998; Roberts et al., 2003). In one of these acquired regions is an enhancer element for the 

transcription factors Ets-2 and AP-1. The transient expression of IFN-τ is regulated by Ets-2, which is 

activated in response to growth factors and cytokines released by the maternal endometrium perhaps in 

response to P4 (Ezashi et al., 1998; Roberts et al., 2003). Secretion of IFN-τ begins at the blastocyst stage, 

peaks during elongation, and is terminated upon trophectoderm attachment to the uterine endometrium in 

ewes (maximum production on days 14-16; production stops on days 21-25) (Guillomot et al., 1990; 

Bazer, 1992; Martal et al., 1998).  

In sheep, pregnancy recognition occurs on day 13 post-mating, and communication between the 

endometrium and conceptus continues during implantation and synepitheliochorial placentation, which 

begins on days 15-16 and is completed between days 50-60 (Wimsatt, 1950; Guillomot, 1995). Binding to 

receptors in the endometrium (Han et al., 1997), IFN-τ acts to suppress transcription of the estrogen 

receptor alpha gene (ESRI) stopping E2-induced expression of the oxytocin receptor (OXTR) in the uterine 

luminal and superficial glandular epithelia. This prevents the oxytocin dependent release of luteolytic 

pulses of PGF2α and regression of the CL, allowing for continued P4 production by the CL (Helmer et al., 

1989; Bazer et al., 2008; Bazer, 2013). Progesterone is the unequivocal hormone of pregnancy as it 

influences uterine functions needed for early embryonic development, implantation, placentation, and 

placental and fetal development (Spencer and Bazer, 1996; Martal et al., 1998; Spencer and Bazer, 2004; 

Roberts et al., 2008; Bazer et al., 2010). During implantation the uterus grows and remodels, placentomes 

develop in the caruncular area of the endometrium, angiogenesis and vascular remodeling occur, and 

intercaruncular endometrial glands increase in size (Wimsatt, 1950). Endometrial epithelial gene 
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expression and function for conceptus elongation in early pregnancy are regulated not only by ovarian, 

CL-produced P4 but also by cortisol, PGs, and IFN-τ (Spencer et al., 2004b; Spencer et al., 2008; Bazer et 

al., 2010; Dorniak et al., 2011; Dorniak et al., 2012a). Endometrial glands are responsible for the 

production of histotroph consisting of growth factors, cytokines, lymphokines, enzymes, hormones, and 

transport proteins, which are needed for conceptus survival and development, fetal and placental growth, 

and the onset of pregnancy recognition signals (Roberts and Bazer, 1988; Gray et al., 2001a, b). 

Implantation 
The success of implantation affects ongoing pregnancy, and any complications at this stage will 

contribute to pregnancy complications and embryonic loss (Song et al., 2002; Dey, 2005). Blastocyst 

implantation in the uterus is required for delivery of nutrients and gas exchange between the developing 

offspring and dam. Implantation involves shedding the zona pellucida (blastocyst hatching), blastocyst 

elongation, orientation of the blastocyst, apposition (trophectoderm becomes closely associated with the 

endometrial luminal epithelium (LE) without adhesion), attachment and adhesion between the 

trophectoderm and the uterine LE forming the placenta (Spencer et al 2004; Guillomot et al., 1995; 

Degrelle et al., 2005; Bazer et al., 2009a).  

A sheep embryo enters the uterus at the morula stage on day 4 post-mating before developing into 

a blastocyst (inner cell mass and blastocoele surrounded by a monolayer of trophectoderm) by day 6 and 

hatching from the zona pellucida on day 8 to 9. The blastocyst then develops into an ovoid or tubular 

form by days 11 to 12 when it is then called a conceptus (embryo-fetus plus associated extraembryonic 

membranes) (Guillomot et al., 1995; Spencer et al 2004). The conceptus then elongates into a filamentous 

form on days 12 to 16. During conceptus elongation the trophectoderm increases exponentially in length 

and weight (Wales and Cuneo, 1989), and this process requires substances secreted from the endometrial 

LE and glandular epithelia (GE) (Gray et al., 2001a; 2002). Blastocyst elongation is critical for 

developmentally regulated production of IFN-τ (Guillomot et al., 1990; Gray et al., 2002) The period of 

elongation also includes the start of extraembryonic membrane differentiation, gastrulation of the embryo, 

formation of the yolk sac and allantois, and cross-talk with the endometrium (Guillomot, 1995; Diskin 

and Morris, 2008).  This is a critical time for successful pregnancy with over 70% of pregnancy failures 

associated with embryonic death during the early and late pre-implantation period (before d16 following 

breeding) (Diskin and Morris, 2008).  

Ruminants have a bicornuate uterus with the endometrium having caruncles and intercaruncular 

areas. The caruncles are aglandular structures composed of LE and compact stroma that are distributed 

over the endometrial surface; they connect to the cotyledons (fetal part of placenta) to form placentomes. 

This type of superficial implantation is called synepitheliochorial placentation, and the placentomes have 
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the role of delivery of nutrients and fetal-maternal gas exchange. The intercaruncular areas contain 

endometrial glands that produce histotroph, a mixture of nutrients, growth factors, enzymes, hormones 

and cytokines particularly important for the embryo before it has attached to the uterus (Spencer and 

Bazer, 2004; Spencer et al., 2004a).  

In sheep, adhesion to the endometrial LE occurs on day 16 between the mononuclear trophoblast 

cells and the endometrial LE. Syncytia form from the fusion of trophoblast binucleate cells with the LE. 

The binucleate cells begin to differentiate in the trophoblast between days 14 and 16 before migrating and 

fusing with the endometrial LE to form syncytia that eventually cover the caruncular surface and help in 

formation of the placentome. Implantation involves loss of expression of the glycoprotein mucin1 

(MUC1) (an antiadhesive protein) and expression of adhesion molecules by the trophoblast and 

endometrial LE (Spencer et al., 2004a), allowing for interdigitation of uterine microvilli with cytoplasmic 

projections on the trophoblast. Even in the intercaruncular regions, villi on the trophoblast interact with 

the endometrial LE; however, these projections disappear by day 20, and attachment is completed around 

day 22 (Boshier, 1969; Guillomot et al., 1981).  

For the embryo to attach and implant in the uterus, the cell surface of the uterine epithelial cells 

undergo biochemical changes including changes to glycan structures. Through the secretion of leukemia 

inhibitory factor (LIF) and IL-1β, macrophages (MΦ) induce the expression of fucosyl transferases that 

increases the surface expression of fucosylated structures on uterine epithelial cells that are involved in 

trophoblast attachment (Jasper et al., 2011; Nakamura et al., 2012). Therefore, changes in the quantity or 

activity of uterine MΦ could impair implantation.  

Implantation will occur only between an implantation-competent blastocyst and a receptive uterus 

which occurs for a limited period of time known as the “window of implantation.” The uterus will be 

unreceptive to a blastocyst before this time and become hostile to blastocyst survival after this receptive 

period (Yoshinaga, 1988; Dey, 2005). Therefore, anything that interferes with implantation during this 

“window of implantation” will cause embryonic loss. Synchronization between acquisition of 

implantation competency by the blastocyst and a receptive uterine endometrium is controlled by maternal 

hormones (E2 and P4) along with locally produced signaling molecules that include cytokines, growth 

factors, lipid mediators, and transcription factors (Dey et al., 2004).  

Lipid signaling has been shown to be critical during implantation. Knock out of cyclooxygenase-

2 (COX-2) in mice has resulted in implantation failure (Lim et al., 1997; Wang et al., 2004). In addition, 

cytoplasmic phospholipase A2α (cPLA2α) null mice had a brief delay of the normal “window” of 

implantation leading to embryonic loss, retarded feto-placental development, and, post implantation 
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retarded development. Exogenous PGE2 and PGI2 , however, restores the normal timing of implantation 

(Song et al., 2002). PLA2α is an enzyme that releases FAs from the second carbon group of glycerol; after 

catalytically hydrolyzing the bond, arachidonic acid (AA) is released which can then be turned into PGH2 

by cyclooxygenases (the rate limiting enzyme in PG synthesis) followed by conversion into eicosanoids 

by specific enzymes (Smith et al., 2000). While COX1 is constitutively expressed, COX2 expression is 

induced by cytokines, growth factors, and mitogens and is responsible for increased PG production 

involved in inflammation, mitogenesis, angiogenesis, and differentiation (Smith et al., 2000). 

Implantation is an inflammatory process, therefore, a role for COX2 and PGs during implantation is 

logical.    

Histotroph is derived mostly from transport and/or synthesis and secretion of substances by the 

endometrial LE and GE (Gray et al., 2001b). The substances (proteins, amino acids, saccharides, lipids, 

cytokines and growth factors) in histotroph control the elongation of the conceptus through effects on 

proliferation and migration of trophectoderm, and play a role in the attachment and adhesion to the 

endometrial LE (Bazer et al., 2010; Carter, 2012). In ewes, endometrial gland hyperplasia occurs between 

days 15 and 50 and is largely dependent on ovine placental lactogen secreted by binucleated trophoblast 

cells starting on day 16 (Wooding et al., 1992; Noel et al., 2003). Hypertrophic growth of the uterine 

glands then occurs after day 60 under the influence of ovine growth hormone of trophoblastic origin 

resulting is maximal histotroph production (Stewart et al., 2000; Noel et al., 2003). Histotroph is secreted 

in response to steroids, IFNτ, ovine prolactin, and placentally expressed ovine growth hormone (Noel et 

al., 2003; Carter, 2012).  

One component of histotroph, lipids, is an important component of cells and have both bioactive 

and structural properties (Ribeiro et al., 2016c). When Ribeiro et al (2016a) categorized recovered dairy 

cow conceptuses as ovoid (1 to 4mm), tubular (5 to 19mm), or filamentous (20 to 60mm) before 

comparing their transcriptomes, they determined that one of the major categories of differently expressed 

genes was lipid metabolism. As the conceptus transitioned from ovoid to tubular to filamentous, genes 

involved in lipid uptake, lipid droplet formation, activation and oxidation of FAs, biogenesis of 

peroxisomes, desaturation and elongation of FAs, mobilization of membrane phospholipids, biosynthesis 

of phospholipids and prostaglandins, and transport of prostaglandins/lipid metabolites became 

upregulated (Ribeiro et al., 2016a). The process of elongation involves rapid remodeling and proliferation 

of cells that need lipids for their membranes (cell and organelle). This lipid is supplied by the uptake of 

lipids from the uterine lumen and from de novo synthesis; therefore, genes related to the uptake of lipids 

from extracellular space (transporters) and genes involved in the synthesis and modification (elongases, 

desaturases) of FAs increase at the start of elongation (Ribeiro et al., 2016a). Lipid accumulates mainly in 
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the LE and superficial GE and is mainly under the control of P4 (Brinsfield and Hawk, 1973) and is likely 

an important FA source for the conceptus. A reduced number of lipid droplets in endometrial epithelial 

cells of pregnant ewes indicates use of the lipids by the conceptus and uterus (Boshier et al., 1987). Not 

only are lipids used in the production of cells, but they are also an energy source, they serve as signaling 

molecules and as precursors of lipid derivatives like eicosanoids (Fernandis and Wenk, 2007; Ribeiro et 

al., 2016a).  

Ribeiro et al (2016c) specifically pointed out that peroxisome proliferator-activated receptor 

gamma (PPARγ) is likely to play an important role in elongation because they saw expression of PPARγ 

increase at the start of elongation; functional analysis selected PPARγ as an upstream regulator of 

transcriptome changes; and PPARγ expression was correlated with gene expression of other genes 

involved in conceptus development and lipid metabolism (Ribeiro et al., 2016c). PPARγ is a receptor that 

functions as a transcription factor in several biological processes (Berger and Moller, 2002; Wieser et al., 

2008) and functions in cell differentiation, uptake and metabolism of FAs, and vascularization in the 

placenta (Schaiff et al 2007; Fournier et al., 2007; Fournier et al 2011; Shalom-Barak et al., 2012). Brooks 

et al. (2015) conducted a loss-of-function study in sheep in which PPARγ was shown to regulate 

elongation. Without PPARγ, conceptuses were growth-retarded and there was reduced secretion of IFN-τ 

and PGs, which affected endometrial physiology. 

Cortisol, P4, IFN-τ, and PGs each have individual actions in addition to interactive and 

coordinated actions to regulate expression of genes in the endometrial epithelium related to elongation 

and implantation. Altering expression of these genes results in secretion or transport of substances from 

the endometrium into the uterine lumen that control conceptus elongation by affecting trophectoderm 

proliferation, migration, attachment, and adhesion (Dorniak et al., 2013a). During days 10 to 12 after the 

onset of estrus or mating in the ewe, P4 induces the expression of genes in the endometrial LE and 

superficial GE that encode intracellular enzymes (prostaglandin synthase 2: PTGS2, 11-beta-

hydroxysteroid dehydrogenase type I: HSD11B1), secreted attachment and migration factors, secreted 

proteases, secreted proteases inhibitors, a secreted cell proliferation factor, glucose transporters, and a 

cationic amino acid transporter. In the endometrial GE, P4 induces expression of genes that encode for a 

secreted cell proliferation factor, a secreted adhesion protein, a glucose transporter, a regulator of 

calcium/phosphate homeostasis, and an immunomodulatory factor (Spencer et al., 2007; Bazer et al., 

2010). The result of these gene changes induced by P4 is an increase in specific amino acids, glucose, 

cytokines, and growth factors in histotroph that support blastocyst growth into an ovoid conceptus and 

elongation to form a filamentous conceptus (Bazer et a, 2010).   
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IFN-τ inhibits the expression of ESR and OXTR in uterine LE and superficial GE, but it does not 

inhibit the expression of PTGS2 (Kim et al., 2003), the rate limiting enzyme in synthesis of PGs. 

Therefore, PGs can still be synthesized, just not in response to oxytocin. Cells of the bovine uterus are 

stimulated to produce PGE2 by IFN-τ, and other type I IFNs stimulate production of phospholipase A2 

(PLA2), providing the substrate for PTGS2, and synthesis of PGE2 and PGF in various cell types (Arosh 

et al., 2004; Bazer et al., 2013; Dorniak et al., 2013). In the ewe, PTGS2 expression is induced by ovarian 

P4 and appears between day 10 and 12 post-estrus and mating in the endometrial LE and sGE (Charpigny 

et al., 1997a; Simmons et al., 2010).  Epithelial and stromal cells of the uterus secrete PGs that affect 

expression of genes critical for elongation and implantation of the ovine conceptus and the elongating 

conceptus synthesizes and secretes additional PGs that have paracrine effects on uterine cells, and 

autocrine effects on the conceptus. Receptors for PGE2 (PTGER2 and PTGER4) and PGF2α (PTGFR) are 

expressed by the conceptus trophectoderm and the endometrium epithelia in the ovine uterus during early 

pregnancy (Dorniak et al., 2011). In addition, the PGI2 receptor (PGIR) and nuclear PG receptors 

(peroxisome proliferating and activating receptors (PPARs)) are expressed by the endometrial epithelia 

and by sheep conceptus during early pregnancy (Cammas et al., 2006).  

Ovine conceptuses secrete 6-keto-PGF1α (stable metabolite of PGI2), PGF, and PGE2 during the 

peri-implantation period that mediate, in part, the effects of IFN-τ and P4 to regulate endometrial 

functions for growth and development of the conceptus during this time (Charpigny et al., 1997b; Dorniak 

et al., 2011; Dorniak et al., 2012b; Bazer et al., 2013; Dorniak et al., 2013). Dorniak et al (2011) reported 

that giving a PTGS inhibitor from days 8-14 post-mating resulted in embryos that had not elongated by 

day 14 when they were flushed. When the PTGS inhibitor was given from days 10-14 post-estrus in 

cyclic ewes a decrease in the expression of  P4-induced endometrial genes such as insulin growth factor 

binding protein-1 (IGFBP1) (mediate trophectoderm migration and attachment) and HSD11B1 (Simmons 

et al., 2009; 2010) was reported. When IFN-τ was infused, instead of the PTGS inhibitor, PTGS activity 

and PG levels in the uterine lumen increased. However, when IFN-τ was co-infused with the PTGS 

inhibitor, IFN-τ stimulation of many genes was reduced (Dorniak et al., 2011). When IFN-τ or PGs 

(PGE2, PGI2) were infused into the uteri from days 10-14 post-estrus,  genes of glucose transporters 

increased and expression of genes thought to be involved in cell proliferation and migration, 

trophectoderm migration and attachment, and angiogenesis increased (Farmer et al., 2008; Simmons et 

al., 2009; Satterfield et al., 2009; Dorniak et al., 2012a). Apparently, PTGS derived prostaglandins are 

involved in mediating endometrial functions and changes in gene expression in response to IFN-τ and P4, 

which are critical for conceptus elongation (Dorniak et al., 2011; 2012a; 2012b; 2013b).  
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The enzyme HSD11B1, which is involved in regulation of intracellular levels of bioactive 

glucocorticoids (GCs), has been suggested to be involved in elongation of the conceptus and to be 

regulated by P4 (Satterfield et al., 2009; Simmons et al., 2010). In the endometrium, P4 induces, and IFN-τ 

stimulates expression of HSD11B1 and HSD11B1 activity to increase regeneration of cortisol from 

cortisone during early pregnancy in sheep (Satterfield et al., 2009; Simmons et al., 2010). Effects of P4 

and IFN-τ are partly mediated by PGs based on a study reporting reduced HSD11B1 activity and cortisol 

levels in the uterine lumen of ewes given an intrauterine infusion of a PTGS inhibitor from days 8-14 of 

pregnancy, whereas, cyclic ewes receiving intrauterine infusions of IFN-τ or PGs had increased 

endometrial HSD11B1 expression and activity and increased uterine lumen cortisol levels (Dorniak et al., 

2012b). Both the ovine uterine endometrium and the conceptus use the enzyme to turn cortisone into 

active cortisol, which then regulates the expression of genes involved in lipid metabolism and triglyceride 

homeostasis. 

 Cortisol acts through the GC receptor located in all endometrial cells of the ovine uterus during 

the estrous cycle and pregnancy and in trophectoderm (Dorniak et al., 2011; Satterfield et al., 2009; 

Simmons et al., 2010). When cortisol or IFN-τ were administered to cyclic ewes from 10-14 days post 

estrus by intrauterine infusion; HSD11B1 expression and activity was stimulated, there was increased 

PTGS2 activity and increased PG in the uterine lumen suggesting cortisol increases total PGs in the 

uterine lumen via effects on PTGS and HSD11B1 in the endometrium. In addition, intrauterine infusion 

of cortisol or INF-τ resulted in up-regulation of genes in the endometrium related to conceptus elongation 

(Dorniak et al., 2013b). Intrauterine infusion of a HSD11B1 inhibitor into cyclic ewes resulted in reduced 

expression of several P4 induced epithelial genes implicated in governing conceptus elongation and, 

indeed, the conceptuses failed to elongate when infused into pregnant ewes from day 10-14 post mating. 

However, IFN-τ infusion along with the enzyme inhibitor rescued elongation suggesting that HSD11B1 

derived cortisol is involved in mediating ovarian P4 actions on endometrial function (Dorniak et al., 

2013b). This set of studies suggest that HSD11B1 derived cortisol helps mediate actions of ovarian P4 and 

works with IFN-τ and PGs to regulate endometrial functions necessary for conceptus elongation and 

implantation (Simmons et al., 2010; Dorniak et al., 2012b; Dorniak et al., 2013b).  

During the pre-implantation period, endometrial gene expression has been found to be 

significantly different compared to the equivalent day of the estrous cycle (Grey et al., 2006). Genes with 

differential expression included ones involved in the innate immune response and variations in 

endometrial gene expression coincided with changes in immune cell populations (Sandra et al., 2015). It 

is important that the uterine immune system is modulated to prevent the embryo from being rejected (Lea 

and Sandra, 2007; Hansen, 2010; Walker et al., 2010). The uterus is not an immunologically inert site; the 
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immune system needs to be present for prevention of reproductive tract infections caused by the 

introduction of microorganisms during mating or parturition (Hansen, 2010).  Progesterone has a major 

influence on the immune system preventing rejection of allografts and clearance of infections (Hansen, 

2010).  

Immune System at the Feto-Maternal Interface 
The maternal-fetal interface once was thought to be immunologically inert but it is now 

understood that the uterus contains numerous types of immune cells playing important roles in 

establishing an adequate microenvironment during pregnancy, tolerance to “non-infectious self” 

(placenta, fetus), placental development, spiral artery remodeling, and elimination of ‘infectious non-self’ 

(pathogens) (Trowsdale and Betz, 2006; Koga et al., 2014). Subfertility can be due to disturbances in pre-

implantation embryonic growth and/or endometrial receptivity; both processes are heavily influenced by 

the maternal immune system. Development and acquisition of implantation competence by the blastocyst 

are influenced by the cytokine environment within the female reproductive tract while fetal tolerance and 

endometrium receptivity are affected by the phenotypes of the immune cell populations present at the 

implantation site (Robertson and Moldenhauer, 2014).  

The maternal immune system recognizes fetal antigens at the decidual-trophoblast interface and 

peripherally due to shedding of fetal antigens into maternal circulation (Lissauer et al., 2009) leading to 

maternal immunological awareness of the developing fetus (Tafuri et al., 1995). In order to have a 

successful, uncomplicated pregnancy, the maternal immune system has to tolerate the semi-allogeneic 

fetus (Erlebacher, 2013; Sharma, 2014). Several mechanisms are involved in generating maternal-fetal 

tolerance including a shift towards T helper cytokine production of a “tolerogenic profile” (Saito et al., 

2010), inhibition of complement activation (Mellor et al., 2001; Girardi et al., 2006b), chemokine gene 

silencing that prevents accumulation of activated T cells (Nancy et al., 2012) expansion of uterine 

immunomodulatory natural killer (uNK) cells (Tabiasco et al., 2006) and generation of regulatory T cells 

(Tregs) specific to paternal antigens (Rowe et al., 2012a). Typical immunoregulatory molecules in this 

environment include indoleamine 2,3-dioxygenase (IDO), tryptophan 2,3-dioxygenase (TDO), 

programmed death ligand 1 (PDL1-an inhibitory T cell costimulatory molecule), galectins, interleukin-10 

(IL-10), and transforming growth factor-beta (TGF-β) (Curti et al., 2009; Blidner and Rabinovich, 2013; 

Santner-Nanan et al., 2013; Zhang et al., 2013).  

IDO and TDO catabolize tryptophan, and the subsequent decrease can suppress T cell activity 

defending against maternal rejection (Munn et al., 1998; Suzuki et al., 2001). Tryptophan is an essential 

amino acid that is needed for cell proliferation, and T cells are sensitive to changes in local concentrations 

of the amino acid (Trowsdale and Betz, 2006). IDO is produced by some tissue MΦ and antigen 
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presenting cells (APCs) in response to interferon gamma (IFNγ), by fetal syncytiotrophoblasts, and by the 

decidua during pregnancy. It can control T cell-dependent inflammatory responses to fetal alloantigens by 

regulating T cell proliferation and activity (Munn et al., 1998; Caucheteux et al., 2003; Trowsdale and 

Betz, 2006). Galectins (Gal) are a family of β-galactoside-binding lectins expressed by several types of 

immune cells and by tissue resident stromal cells that have functions related to the activation (or 

prevention of), proliferation, survival., and migration of effector T cells along with influencing what 

cytokines are produced by T cells. Specifically, gal-1 is important for fetal survival as it functions in the 

generation of tolerogenic dendritic cells (tDCs) and Tregs, can induce the death of effector T cells, 

stimulates the production of anti- verses pro- inflammatory cytokines (PICs) by T helper (Th) cells, and 

controls transendothelial T cell migration (Chung et al., 2000; Stillman et al., 2006; Blois et al., 2007b; 

Rabinovich et al., 2007; Toscano et al., 2007; Motran et al., 2008; Norling et al., 2008; Ilarregui et al., 

2009; Blidner and Rabinovich, 2013).  

The Th1/Th2 paradigm was developed to describe a predominantly Th2 cytokine profile during 

pregnancy to prevent fetal rejection (Wegmann et al., 1993). Indeed, Th2 cytokines have been shown to 

be necessary to prevent fetal resorption, whereas increased levels of Th1 cytokines cause fetal loss 

(Chaouat et al., 1995). However, with continued research this paradigm seems to be an over-

simplification of what is occurring at the feto-maternal interface. Instead, there seems to be sequential 

windows of a series of cytokine interactions that govern immune regulation, adhesion, vascularization, 

and implantation in the uterus (Chaouat et al., 2002). For example, the process of implantation has been 

found to rely on several PICs (ex: LIF) that regulate expression of adhesion molecules and their receptors, 

like laminin and fibronectin, on trophoblasts and uterine decidual cells (Stewart et al., 1992; Chaouat et 

al., 2002; Dimitriadis et al., 2005). 

Even though PICs are important signaling molecules at the beginning of pregnancy, immune 

mediators and the implantation process must be tightly regulated to obtain the correct amount of 

blastocyst invasion and angiogenesis. What has become to be appreciated is that the immune mediators at 

the feto-maternal interface are not strictly pro- or anti- inflammatory, but both types of cytokines have 

specific roles, and they must be produced in appropriate quantities in a correct temporal manner for 

pregnancy success. For example, uNKs regulate trophoblast invasion and uterine vascular remodeling by 

secreting angiogenic factors and chemokines for cells involved in the vascular and tissue remolding 

during implantation including CXCL8, IP-10, (interferon-inducible protein-10) and IFNγ (Ashkar et al., 

2000; Hanna et al., 2006). However, as a PIC, IFNγ can cause fetal loss when produced in large quantities 

in response to infection or in some cases the presence of foreign paternal antigen (Chaouat et al., 1995). 

After implantation, the uterine environment is dominated by anti-inflammatory factors until parturition. 
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Early pregnancy involves implantation, placentation, and vascular remolding; events that include 

invading cells, cells that are dying, and cells that are repairing tissue. A controlled inflammatory 

environment in the uterus is needed to have adequate repair of the uterine epithelium and removal of 

cellular debris. Early pregnancy has been characterized by the presence of CXCL8, Macrophage 

Chemoattractant Protein 1 (MCP-1), RANTES (Regulates on activated normal T cells where it is 

expressed and secreted), and Granulocyte-Colony Stimulating Factor (G-CSF) (Mor, 2008). One source 

of these chemokines are monocytes that are induced to produce them in response to trophoblast cells (Fest 

et al., 2007). While these factors tend to be immune stimulatory, RANTES also has immunosuppressive 

functions (Ramhorst et al., 2004). Trophoblast cells themselves have been found to produce chemokines 

such as GRO-α, MCP-1, and CXCL8 that attract monocytes and macrophages (Abrahams et al., 2005; 

Fest et al., 2007). These cells are important APCs and are involved in tissue remodeling and spiral artery 

transformation (Abrahams et al., 2004). The monocytes will evolve into MΦs and surround the 

trophoblast. In the study by Fest et al (2007) Macrophages stimulated trophoblast cells to secrete more IL-

6 and MCP-1, indicating that monocytes recruited by the trophoblast may then support implantation by 

communicating with trophoblast cells and providing appropriate signals for implantation. After 

placentation, the uterine environment is predominantly anti-inflammatory until the end of gestation as 

parturition is also an inflammatory event (Mor, 2008). While some inflammation is needed to get 

adequate implantation, tipping the scales too far towards pro-inflammation or inflammation as a result of 

infection or failure to tolerate paternal antigens can cause embryonic loss.  

The process of implantation involves extensive tissue remolding and apoptosis of cells that have 

to be cleared to prevent the release of antigens (Abrahams et al., 2004). Macrophages at the feto-maternal 

interface have the job of scavenging the dying cells as well as actively orchestrating apoptosis of 

unwanted cells during tissue remodeling (Savill and Fadok, 2000).  In response to phagocytosing 

apoptotic cells, MΦs synthesize and secrete cytokines and growth factors that govern local cellular and 

tissue interactions (Hunt, 1989; Garcia-Velasco et al., 1998). Specifically, uptake of apoptotic cells 

induces MΦs to produce anti-inflammatory/immunosuppressive cytokines (IL-4, IL-6, IL-10) while 

suppressing MΦs from secreting PICs (TNF-α, IFNγ) (Abrahams et al., 2004). These uterine MΦs have 

an M2 phenotype characterized not only by the production of immune-inhibitory cytokines (TGFβ, IL-10) 

(Heikkinen et al., 2003) but also by the production of pro-tolerance factors PGE2 (Tawfik et al., 1986) and 

IDO (Munn et al., 1999; Renaud and Graham, 2008), upregulation of arginase activity (counteracts NO 

synthesis) (Munder et al., 1998), and increased secretion of the IL-1 receptor antagonist (IL-1Ra) (Fenton 

et al., 1998). Uterine MΦs also produce and regulate matrix metalloproteinases (MMPs), proteases, 

growth factors, chemokines, and cytokines that influence implantation and placental development 
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(Renaud and Graham, 2008). However, a uterine infection can induce MΦs to produce IL-12, IL-1 and 

TNFα through activation of PPRs, or through phagocytosing an overabundance of apoptotic or necrotic 

cells (Hunt, 1989; Abrahams et al., 2004; Nagamatsu and Schust, 2010). Thus, pathogen exposure can 

shift polarity of uterine MΦs from an M2 to an M1 inflammatory phenotype (Nagamatsu and Schust, 

2010). 

Trophoblast cells stimulate MΦs to produce inflammatory mediators needed for implantation but 

may also be able to limit their inflammatory potential during a minimal threat. MΦs exposed to 

trophoblast cells followed by stimulation with a low dose of LPS (0.1μg) did not have an increase in 

inflammatory mediators compared to MΦs only exposed to LPS (Fest et al., 2007). However, when a high 

dose of LPS was used (10μg) the trophoblast cells were unable to control the MΦ’s inflammatory 

response (Fest et al., 2007). High doses of LPS mimic bacterial overgrowth and infection that have 

detrimental effects on pregnancy (Deb et al., 2004). Abortion can result with high doses of LPS (Murphy 

et al., 2005) as a result of the release of embryotoxic substances and excessive release of PICs (IL-1, IL-6, 

TNFα) from MΦs (Hill et al., 1987; Hunt, 1990). Therefore, there is a tipping point where the infection is 

severe enough that the immune system “chooses” to use all its force in clearing the infection to protect the 

mother over continuing the pregnancy.  

One critical immune cell type during pregnancy is maternal Tregs. While Tregs are specific to 

paternal alloantigen, expansion of the Treg population is not dependent on exposure to paternal 

alloantigen as the population expands in both allogeneic and syngeneic pregnancies (Tafuri et al., 1995; 

Aluvihare et al., 2004), and suppression by Tregs is not antigen specific (Chaouat et al., 2012). In 

addition, maternal T cells acquire only a transient state of tolerance for those paternal alloantigens (Tafuri 

et al., 1995), which has been demonstrated in vivo with graft rejection studies in female mice. Pregnant 

mice accept an allogeneic tumor graft as long as the paternal graft displayed the same MHC-peptide 

complexes as the fetus; a graft from a father with different MHC peptides was rejected. In addition, the 

mother would tolerate the allogenic tumor graft only while she was pregnant; after parturition the tumors 

were rejected (Tafuri et al., 1995). In order to generate immune tolerance to paternal antigens the antigens 

need to be presented to maternal immune cells. Generation of tolerance starts before pregnancy with 

antigens present in seminal plasma deposited during copulation (Roberson et al., 2013) being presented to 

T cells. Continued suppression of maternal immune responses to paternal alloantigens may involve 

maternal APCs picking up fetal antigen from buds and microparticles that are shed from the trophoblast 

into the maternal circulation (Chamley et al., 2011). Fetal tissue remodeling involving apoptosis that 

generates cellular debris also is a likely source of fetal antigens that can be presented, as phagocytic cells 

like APCs would be responsible for cleaning up the dead cells.  
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Abumaree et al (2012) showed that phagocytosis of trophoblast debris in vitro by MΦs resulted in 

protein expression changes in the MΦs that would encourage maternal tolerance to be generated. MΦs 

that phagocytosed trophoblast debris reduced cell-surface expression of MHC-II molecules, co-

stimulatory molecules (CD80, CD86, CD40), MCP-1, and ICAM-1 while upregulating PD-1 expression. 

MΦ expression of IDO was increased after exposure to trophoblast debris. These MΦs increased 

secretion of IL-10, IL-6, and IL-1Ra, while decreasing secretion of IL-1β, IL-12p70, and CXCL8 

(Abumaree et al., 2012).  Downregulating MHC-II and co-stimulatory molecules means the MΦ is less 

able to activate effector T cells and, with increased IDO, is able to regulate T cell proliferation. These 

changes will make the MΦ guide maternal immune responses toward tolerance of the fetal antigens 

instead of an inflammatory response.  

The importance of downregulating co-stimulatory molecules was shown in murine studies where 

blocking CD86 or CD80 and CD86 with antibodies early in gestation shifted the cytokine profile to a Th2 

dominance at the feto-maternal interface, and caused expansion of peripheral Treg cells, which led to 

decreased fetal resorption in abortion prone mice pairings (Jin et al., 2005; Zhu et al., 2005).  

The PD-1/PD-L1 pathway has been reported to be critical for feto-maternal tolerance, blocking 

PD-1 signaling increases rejection of allogenic but not syngeneic fetuses in mice (Guleria et al., 2005; 

Wafula et al., 2009; Zhang et al., 2015). PD-1 is a receptor involved in co-stimulatory interactions 

between immune cells. Co-stimulatory signals are the second signal provided to T cells being shown 

antigen. The first signal is interaction between the T cell receptor (TCR) and the MHC molecule with 

bound antigen. Co-stimulatory molecules are either positive secondary signals that promote T-cell 

activation or negative signals that inhibit T-cell responses and mediate T-cell tolerance. PD-1 delivers 

inhibitory signals and its expression can be induced on CD4+ T cells, CD8+ T cells, NK T cells, B cells, 

and by activated monocytes (Sharpe et al., 2007). The PD-1 receptor responds to two ligands: PD-L2, 

which is expressed by DCs and MΦs and PD-L1, which is constitutively expressed by B cells, DCs, MΦs, 

and T cells (Sharpe et al., 2007). PD-L1 also can be expressed by non-hemopoietic cells in certain 

locations, including the placenta (Zhang et al., 2015). PD-1 is involved in inhibiting the activation of 

effector T cells while promoting development and function of induced regulatory T cells (Francisco et al., 

2009; Zhang et al., 2015) Tregs express high levels of both PD-1 and PD-L1 (Lohr et al., 2006), and PD-

L1 has been shown to increase the generation of Treg cells from naïve CD4+ T cells in the presence of 

TGFβ, increase expression of FOXP3, and is produced by Tregs to suppress activated effector T cells 

(Francisco et al., 2009; Zhang et al., 2015).  
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Uterine Natural Killer Cells 
The predominant leukocyte population in the endometrium during implantation and early 

pregnancy are natural killer cells (NK cells) (Croy et al., 2006). NK cells may migrate from the peripheral 

blood into the endometrium in response to chemokines upregulated in response to steroid hormones 

(Sentman et al., 2004; Carlino et al., 2008; Cerdeira et al., 2013) or may be derived from CD34+ cell 

precursors that differentiate into uNKs after interaction with decidual cells (Vacca et al., 2011b). 

Trophoblast cells also secrete chemokines to actively recruit NK cells to the area (Hanna et al., 2003).  

The NK cells are important players in immune responses to infections, and peripheral NK cells 

fight pathogen infections through their cytotoxic activity of perforin and granzyme secretion. These cells 

can have two major phenotypes; however, CD16+ CD56dim NK cells have high cytotoxic potential but are 

not major producers of cytokines whereas CD16neg CD56bright NK cells have poor cytotoxic activity 

(Crncic et al., 2007). The majority (~90%) of peripheral NK cells are highly cytotoxic with ~ 10% 

producing high levels of cytokines (Koopman et al., 2003). The uNK (CD16neg CD56bright), however, are 

specialized in that even though they possess the machinery (perforin and granzyme cytotoxic granules) to 

lyse cells, they have low cytotoxic activity (Koopman et al., 2003; Kopcow et al., 2005; Crncic et al., 

2007), which may be regulated by P4 upregulating gene expression of non-polymorphic MHC molecules, 

which can bind to inhibitory receptors on NK cells (Yie et al., 2006).  

Instead of having a cytotoxic role in the uterus, uNKs play an important role in establishing and 

maintaining maternal-fetal immune tolerance, in inducing Treg cells, acting as local guardians against 

infection, controlling trophoblast invasion and vascular angiogenesis through the secretion of 

angiogenesis-regulating molecules (Hanna et al., 2006; Tabiasco et al., 2006; Kalkunte et al., 2009; Vacca 

et al., 2010; Vacca et al., 2011a; Winger and Reed, 2013). The uNK cells, like other immune cells at the 

feto-maternal interface, express high levels of gal-1, which is a critical mediator of immune tolerance 

during pregnancy (Koopman et al., 2003; Blois et al., 2007b; Rabinovich and Toscano, 2009). The 

trophoblast and maternal-fetal interface is assumed to modify recruited peripheral NK cells, changing the 

phenotype and function to that of uNK cells (Du et al., 2014; Tao et al; 2015; Li et al., 2016). 

Uterine NKs produce IFNγ early in pregnancy that acts in an autocrine manner to further 

stimulate IFNγ production in addition to vascular endothelial growth factor (VEGF), angiopoietin 2, and 

PGF involved in angiogenesis in early pregnancy and nitric oxide (NO), which stimulates vasodilation 

(Warning et al., 2011). Interferon-γ (IFN-γ) also has been shown to regulate inflammatory Th17 cells (Fu 

et al., 2013). While IFNγ contributes to the important placentation step of spiral artery remodeling 

(Ashkar et al., 2000), production of the cytokine must be regulated as elevated levels, like during an 

infection, can cause fetal loss (Shiono et al., 2007). 
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  While uNKs do not display the cytotoxic functions of their peripheral counterparts, uncontrolled 

or exaggerated inflammation at the maternal-fetal interface can cause uNKs to revert back into their 

peripheral NK phenotype and cause embryonic loss (Murphy et al., 2005; Murphy et al., 2009; Kwak-

Kim et al., 2014). IL-12 stimulates IFNγ production by NK cells and induces their cytotoxic activity. The 

PICs TNFα, IL-1β, and IL-15 synergize with IL-12 to induce IFNγ production and IL-15 also promotes 

NK cell maturation. IL-10 can regulate IFNγ production by NK cells by inhibiting IL-12 production while 

TGFβ can block proliferation and cytotoxicity of NK cells as well as inhibit IFNγ and IL-12 production 

(Biron et al., 1999; Eriksson et al., 2004; Eriksson et al., 2006). IL-10 and TGFβ are produced by Tregs 

and tDCs in the uterus to regulate fetal tolerance and the amount of the cytokines produced at the feto-

maternal interface (Simpson et al., 2002) regulating the response/phenotype of uNK to pathogens.  

 When uNK cells gain cytotoxic capability during inflammation they cause apoptosis of 

trophoblast cells with the transfer of granulysin with the help of perforin (Nakashima et al., 2008). 

Several authors haves suggested that LPS can act on NK cells directly and that uNK cells are major 

players in LPS stimulated embryonic loss. The NK cells express TLR4 (Duriez et al., 2014), and 

treatment of uNK cells results in production of TNF-α (Li et al., 2016). LPS has been shown to recruit 

additional NKs to the uterus and trigger a phenotypic change in uNK cells that leads to abortion. This 

effect is likely to be mediated by PICs as depletion of NK cells or neutralization of TNFα prevented 

pregnancy loss (Murphy et al., 2009). LPS not only triggers a robust inflammatory response characterized 

by the production of PICs, such as TNF-α and IL-1β, and a shift in the Th1/Th2 balance at the fetal-

maternal interface (Park et al., 2009) but also has been reported to induce uNK cytotoxic activation that 

could lead to NK cell mediated killing of embryonic cells (Murphy et al., 2005). Indeed, treatment of 

peripheral blood mononuclear cells with LPS results in proliferation and enhanced cytotoxic activation of 

NK cells (Miranda et al., 1998; Goodier and Londei, 2000). In IL-10 null mice treated with LPS, 

depletion of NK cells can restore pregnancy (Murphy et al., 2005).  IL-10 null mice are missing a 

cytokine used to regulate the phenotype of NKs in the uterus making it easier for them to gain cytotoxic 

capability. Restoration of pregnancy in an LPS model by depleting these cells demonstrates how critical it 

is that they maintain their phenotype.  

Regulatory T Cells 
Regulatory T cells are a subset of CD4+ T cells that express FOXP3 and CD25 constitutively and 

can suppress immune responses in an antigen-independent fashion (Sakaguchi, 2004; Wan and Flavell, 

2006). There are two ways for Tregs to be generated. Natural Tregs (nTregs) originate in the thymus by a 

selective process involving T cells being presented with self-antigens and gaining a regulatory function. 

Inducible Tregs are produced in lymph nodes by a mechanism that generates Tregs with receptors specific 
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for antigens not expressed in the thymus but instead restricted to different peripheral tissues (Shevach et 

al., 2002). The APCs can induce naïve CD4+ cells to become Tregs (iTregs) by presenting antigen that is 

recognized by their T cell receptor while producing IL-2 and TGFβ (IL-10 may also contribute) which 

leads to FOXP3 expression (Chen et al., 2003; Horwitz et al., 2003; Fantini et al., 2004; Wan and Flavell, 

2006; Murphy, 2012).  

Treg cells are characterized by the transcription factor, FOXP3. In order for a naïve CD4+ T cell 

to polarize into a Treg cell, TGFβ must be present at the time of TCR ligation with its antigen. The APC 

not only provides the antigen to stimulate the naïve CD4+ T cell but produces the cytokines that 

determine how the naïve CD4+ cell is polarized in response to that particular antigen (Chen et al., 2003). 

TGFβ is important during Treg polarization because it induces FOXP3 expression via SMAD3- and 

retinoic acid receptor binding sites (Zheng et al., 2010). TGFβ also may aid in the proliferation of mature 

Tregs by modifying the function and signaling capabilities of DCs (Ghiringhelli et al., 2005b). PGE2, also 

delivered to the female reproductive tract during mating, may work with TGFβ in generating Tregs as 

PGE2 has been reported to enhance the inhibitory capacity of human Treg cells in vitro and to induce a 

regulatory phenotype in CD4+CD25- T cells (Baratelli et al., 2005).  

After the naïve CD4+ T cell has recognized its antigen, it is activated, will proliferate and then 

leave the lymph node (Walker et al., 2003). Inducible Tregs are critical for successful pregnancy because 

Tregs with TCRs specific to paternal alloantigens, which are foreign to maternal self, must be generated 

to control aggressive immune responses to foreign looking antigens displayed by the conceptus (Samstein 

et al., 2012). While all inducible Tregs generated in peripheral tissues have to undergo antigen driven 

activation and proliferation to gain full suppressive function, actual suppressive effector function is 

antigen non-specific (Thornton and Shevach, 1998; Samy et al., 2006). The maternal immune system first 

encounters paternal antigens when seminal fluid is delivered to the female reproductive tract at coitus 

(Robertson and Sharkey, 2001). Treg cells populations start to expand within days of mating (Aluvihare 

et al., 2004) and must be at the feto-maternal interface and functional before implantation (Zenclussen et 

al., 2005; Shima et al., 2010).  

CD25 is the alpha chain of the IL-2 receptor; upon IL-2 binding, the IL-2Rα, β, and γc chains 

oligomerize, and a JAK (Janus Kinase)-STAT (signal transducer and activator of transcription) pathway 

is activated. IL-2 is required for the generation and maintenance of Tregs (Horwitz et al., 2003). JAK1 is 

associated with IL2Rβ while JAK3 is associated with IL-2Rγc but can also interact with the β chain. The 

activated JAKs phosphorylate tyrosine residues in the β chain then phosphorylate STAT5, which is 
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responsible for expression of FOXP3, the transcription factor for development of Tregs and their 

immunosuppressive phenotype (Wan and Flavell, 2006). 

At ovulation, the elevated E2 levels cause a systemic expansion in Tregs and recruitment to the 

uterus by inducing FOXP3 mRNA expression and increasing uterine expression of Treg chemokines, 

CCL3, CCL4, and CCL5 (Polanczyk et al., 2004; Kallikourdis and Betz, 2007). The corpus luteum (CL) 

is formed after ovulation, and P4 may be involved in sustaining and further expanding Treg populations. 

In vitro, P4 was able to convert CD4+CD25- T cells into CD4+CD25+ Treg cells (Mao et al., 2010). P4 

was also seen to be able to convert naïve fetal (cord blood) T cells into Treg cells that had been 

allogenically activated. These differentiated Treg cells expressed FOXP3, high levels of memory T-cell 

markers and had impaired expression of the IL-6 receptor, which should stabilize them towards having a 

regulatory phenotype and inhibit conversion to a Th17 cell (Lee et al., 2011). The E2 induced Treg 

expansion occurs after every ovulation with E2 probably targeting Tregs regardless of their TCR 

specificity meaning these Tregs will not be specific to paternal alloantigen. Indeed, E2 was seen to expand 

Treg cells in different tissues in mice while in vitro E2 converted CD4+CD25- cells, to CD4+CD25+ cells 

which then expressed FOXP3 and IL-10 and were able to suppress naïve T cell proliferation in a mixed 

lymphocyte reaction (Tai et al., 2008).  

To be activated and have suppressive function, inducible Tregs require TCR ligation with antigen 

and appropriate polarizing signals. During coitus, seminal fluid delivers paternal antigens that also will be 

expressed by conceptus tissues as well as TGFβ and PGE2 into the female reproductive tract (Robertson 

et al., 2009; Robertson et al., 2013; Schjenken and Robertson, 2014). This will cause DCs to be recruited 

to the uterus, mature into a tolerogenic phenotype, pick up the alloantigen and take it to the draining 

lymph nodes to present to naïve CD4+ T cells polarizing them towards a Treg phenotype by TCR ligation 

with the antigen in the presence of IL-2 and TGFβ. These Treg cells will be specific to alloantigen and are 

recruited to the uterus by chemokine CCL19 that is expressed on glandular and luminal epithelial cells 

and binds to the CCR7 receptor on Tregs (Guerin et al., 2011). Seminal fluid is responsible for induction 

of uterine expression of CCL19 mRNA, which regulates Treg cell retention in peripheral tissues (Alt et 

al., 2002; Engelhardt et al., 2006). The presence of sperm in addition to seminal fluid was reported to be 

required for maximal expression of the chemokine and local Treg accumulation in the uterus before 

implantation (Guerin et al., 2011). Interaction with paternal antigens also induces Tregs to express the 

chemokine receptor CCR5, and the chemokine CCL4 is involved in sequestering activated, antigen-

specific CCR5+ Treg cells to the gravid uterus (Kallikourdis et al., 2007). During and after implantation, 

tissue remodeling of gestational tissues and the growing fetus will release additional alloantigens and the 

chemokine CCL4 to further expand and recruit Treg cell populations to the feto-maternal interface 
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(Robertson et al., 2013). Placental trophoblasts secrete TGFβ that is likely involved in regulating the Treg 

population. Trophoblast cells have been shown to induce FOXP3 expression along with a Treg cytokine 

profile in naïve T cells and to secrete inducible Treg chemoattractants (Ramhorst et al., 2012).  

With regard to the E2 induced peri-ovulatory expansion of the Treg cell pool, seminal fluid 

provides the signals to select clones that are specific to paternal antigens from the broader TCR repertoire 

and expand them to provide protection for the fetus (Robertson et al., 2013). TGFβ, derived from male 

accessory glands like the prostate and seminal vesicle (Robertson et al., 2002), along with PGE-related 

prostaglandins have been associated with the generation of Treg cells by inducing naïve CD4+CD25- T 

cells to differentiate into suppressor T cells that express FOXP3 (Chen et al., 2003; Baratelli et al., 2005). 

Studies have shown that seminal fluid and TGFβ in the seminal fluid delivered during coitus are 

responsible for activation and proliferation of Tregs.  In mice, Treg cells are increased about 2 fold 3.5 

days post-coitus compared with the estrus associated increase in cycling females, but if seminal vesicles 

were removed from males before mating, the increase did not occur (Robertson et al., 2009; Guerin et al., 

2011). The importance of TGFβ is shown by studies in which exogenous TGFβ given to female mice of 

abortion-prone matings increased vaginal Treg cell numbers and reduced fetal loss (Clark et al., 2008).  

After becoming activated and fully functional, Tregs leave the lymph nodes and travel through 

the circulation to the appropriate peripheral location in response to chemokines where they interact with 

other cells in the local environment to exert immune suppressive functions in an antigen non-specific 

manner (Thornton et al., 2000). Immunosuppressive functions of Tregs are mediated by cell-cell contact 

involving cell-surface molecules, by the production of specific cytokines, and by competitive deprivation 

of other T cells of IL-2 (Thornton et al., 1998; Nakamura et al., 2001; Boussiotis et al., 2001; Scheffold et 

al., 2005; Wan and Flavell, 2006; Shevach, 2009). Tregs suppress the proliferation of other T cell 

subtypes, the production of IFNγ and IL-2 by effector cells and can suppress immunoglobulin production 

by B cells (Thornton and Shevach, 1998; Nakamura et al., 2001; Garín et al., 2007). Mature Tregs secrete 

the cytokines IL-10 and TGFβ which further expand the Treg cell response through paracrine suppressive 

properties (Fontenot et al., 2003; Hori et al., 2003; Wahl et al., 2004).  

Besides CD25, other surface markers on Tregs include cytotoxic T-lymphocyte antigen-4 

(CTLA-4), glucocorticoid-induced tumor necrosis factor receptor (GITR) family-related gene, 

lymphocyte activation antigen-3 (LAG-3) (Sakaguchi, 2004; Huang et al., 2004) and the cell surface 

bound form of TGFβ (Nakamura et al., 2001). These surface molecules are used for cell contact mediated 

actions of Tregs (Thornton et al., 2000). TGFβ also is secreted when CD3 is stimulated on the Treg, and 

secretion is enhanced when CD28, IL-2R, and CTLA4 are engaged in co-stimulation (Nakamura et al., 
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2001). LAG3 is a CD4-related molecule that binds MHC class II molecules on APCs, and interaction 

between Tregs and immature DCs using these molecules induces an ITAM (immunoreceptor tyrosine-

based activation motif) mediated inhibitory signaling pathway in the DC that prevents maturation and 

immunostimulatory capacity of the APC (Huang et al., 2004; Liang et al., 2008). 

Tregs constitutively express CTLA4 (Takahashi et al., 2000) and ligation of the molecule induces 

production of TGFβ (Chen et al., 1998) by the Treg cell, which enhances their suppressive function. 

CTLA-4 interacts with CD80/CD86 on APCs, which can prevent the up-regulation (or cause down-

regulation) of expression of these co-stimulatory molecules by APCs (Oderup et al., 2006; Onishi et al., 

2008). Reduced expression of CD80 and CD86 by APCs will limit the ability of the cells to activate naïve 

T cells through CD28 and in fact, antigen presentation without sufficient co-stimulatory molecule 

interaction can cause a naive T cell to become anergic (Murphy, 2012). Crosslinking of CTLA-4 with 

CD3 and CD28 inhibits T cell proliferation, IL-2 secretion, suppression of IFNγ from Th1 cells and IL-4 

from Th2 cells (Chen et al., 1998).  

Tregs, through CTLA4-CD80/CD86 interaction along with production of TGFβ and IL-10 induce 

local DCs to express IDO, which catabolizes tryptophan (Grohmann et al., 2002; Fallarino et al., 2003). 

Expression of IDO by DCs also is a mechanism for DCs to activate Tregs and stimulate them to maintain 

suppressive functions. Thus, a positive feedback loop to ensure a suppressive local immune environment 

is created (Sharma et al., 2007, Grohmann et al., 2002).  

Tregs influence the population of T helper cells in the local environment by inhibiting Th1 cell 

proliferation and inducing Th1 cell apoptosis (Robertson et al., 2013). IDO catabolizes tryptophan to 

kynurenine, which is toxic to T cells that are neighboring the producing cell (La Rocca et al., 2014). 

Tryptophan metabolites can inhibit activation of T cells and NK cells (Frumento et al., 2002, Terness et 

al., 2002), and low doses of kynurenine induce selective apoptosis of Th1 versus Th2 cells (Terness et al., 

2002; Fallarino et al., 2002), which could aid in creating a Th2 cytokine bias in the uterus. Tregs also can  

kill cells in a granzyme-and perforin dependent manner or send negative signals to the targeted cell that 

control its function, proliferation, and survival (La Rocca et al., 2014). Tregs provide signals to 

responding T cells through the co-stimulatory molecules CD80 and CD86 expressed on the responder cell 

(Paust et al., 2004). In a cell-contact mediated mechanism, cAMP is transferred through gap junctions 

from Treg cells to the responder T cells where it inhibits proliferation and IL-2 production (Bopp et al., 

2007). In a different mechanism, using surface expressed CD39 and CD37, the Treg cell generates 

pericellular adenosine from extracellular nucleotides that binds to the adenosine A2A receptor on 

activated effector T cells (Deaglioet al., 2007) inhibiting T cell activation, proliferation, and expansion 

(Huang et al., 1997).  Extracellular ATP is a DAMP signal that can increase CD86 expression on DCs; 
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activated Tregs express CD39, which hydrolyzes extracellular ATP to AMP thus eliminating the 

inflammatory signal (Shevach, 2009). Tregs express Nrp-1, which promotes long interactions between the 

Treg cell and immature DCs and in doing so limits interactions between effector cells and the APC 

(Shevach, 2009).  

The importance of Tregs during pregnancy is demonstrated in murine studies showing Treg 

deficient BALB/c nude females transferred Treg depleted polyclonal T cells experienced fetal resorption 

in allogenic pregnancies but not in syngeneic pregnancies (Aluvihare et al., 2004). Regulatory T cell 

depletion with anti-CD25 monoclonal antibodies during implantation resulted in implantation failure or 

during early pregnancy resulted in fetal resorption in allogeneic but not syngeneic pregnancies (Munn et 

al., 1998; Darrasse-Jéze et al., 2006; Shima et al., 2010). The Tregs that expand during pregnancy are 

specific to fetal antigens (Kahn and Baltimore, 2010; Rowe et al., 2012a). Comparing synergistic and 

allogenic mice matings, allogeneically pregnant females had a greater increase in Treg number, which 

resulted in enhanced immune suppression to paternal antigens. (Kallilourdis et al., 2007; Zhao et al., 

2007). Decidual lymphocytes from mice that had abortions produced significantly less IL-10 and 

significantly more TNFα than decidual cells from normal pregnant mice (Zenclussen et al., 2005). This 

group also reported that mice that had abortions had reduced numbers of Treg cells and showed that 

exposure to paternal antigen is necessary to generate Tregs that are competent at promoting protection to 

the fetus as transfer of Tregs from normal non-pregnant mice to pregnant abortion prone mice had no 

benefits. It is also critical that Tregs be at the feto-maternal interface during the peri-implantation period 

when the trophoblast starts making contact with maternal tissues, as transfer of Tregs after implantation in 

mice did not prevent abortion (Zenclussen et al., 2005). These results show that Tregs are important for 

generating maternal tolerance to paternal antigen expressed by the fetus, Tregs are important for 

successful implantation, and that Tregs must recognize fetal antigens to create an immunosuppressive 

environment.   

Seminal Fluid 
The affects of seminal fluid on the female reproductive tract have been well studied in mice. A 

response that resembles an inflammatory event occurs with the production of cytokines such as LIF, IL-6, 

and granulocyte colony stimulating factor (GM-CSF) from E2 primed epithelial cells that recruit 

additional innate and adaptive immune cells (Robertson et al., 1998; Tremellen et al., 1998). Within hours 

of mating, the numbers of MΦ, DCs, neutrophils, T cells and granulocytes within the uterine endometrial 

stroma and lumen are increased (McMaster et al., 1992; Robertson et al., 1998; Tremellen et al., 1998). 

This transient inflammatory response to seminal fluid recruits additional immune cells to the female 

reproductive tract and is seen in other species including sheep (Scott et al., 2006). 
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When the female is receptive to mating around ovulation, DCs are abundant in the endometrial 

tissue (Robertson et al., 1996; Blois et al., 2007a). The addition of seminal fluid at coitus further recruits 

APCs to endometrial tissues (Robertson et al., 1996) as a result of seminal fluid inducing expression of 

the chemokines CCL2, CCL3, CCL5, CCL20, CCL22, and CXCL10 (Robertson et al., 1998). The DCs in 

the endometrial tissue normally have a tolerogenic phenotype (Blois et al., 2007a), which will be 

maintained as long as cytokines such as GM-CSF, IL-4, and IL-10 are produced by uterine tissue and 

dominate the local cytokine environment (Robertson et al., 2000). The importance of seminal fluid is 

shown by in vitro studies in which seminal fluid is able to direct the differentiation of DCs into a 

tolerogenic phenotype that then produce higher amounts of IL-10 and TGFβ, and can induce Treg 

differentiation (Remes et al., 2012). Within uterine tissues, tDCs will phagocytose spermatozoa, soluble 

antigens and apoptotic somatic cells in the seminal fluid deposited during coitus. Seminal fluid induces 

production of PICs in the female reproductive tract, which causes the DCs to traffic to the draining lymph 

nodes after uptake and processing of antigen or to interact with local Treg cells in the uterus. Both of 

these actions by DCs lead to the activation and expansion of clonal subsets of Treg cells that express 

TCRs that are specific to seminal fluid antigens (Moldenhauer et al., 2009a; Robertson et al., 2013). The 

P4 from the CL stabilizes the Treg cell pool, and, if conception is successful after mating, apoptotic 

placental and fetal cells from tissue remodeling provide further alloantigens to be cross-presented to T 

cells by maternal DCs, increasing the number of Treg cell clones specific to paternal alloantigens 

(Robertson et al., 2013). While seminal fluid and the conceptus share antigens, it is unlikely that all 

paternal antigens that will be expressed by the conceptus are presented to Tregs during initial Treg cell 

priming. Therefore, the notion of “bystander tolerance” mediated by Treg cells (Shevach et al., 2002; 

Corthay, 2009; Shevach, 2009; Kahn and Baltimore, 2010) is important during pregnancy meaning that a 

selection of paternal antigens that will be expressed by the conceptus are presented and used to generate 

Treg cell clones that then proliferate and generate an overall immune suppressive environment at the feto-

maternal interface. Because Tregs are suppressive in an antigen independent manner once activated, so 

they are able to regulate the uterine immune environment without having been presented every paternal 

antigen that will be expressed during gestation.  

Seminal fluid also may affect steroidogenesis. In mice, exposure to seminal fluid is associated 

with increased numbers of MΦs in the CL (Gangnuss et al., 2004), and these innate immune cells seem to 

play a critical role in remodeling events required to sustain steroidogenic function (Care et al., 2013). 

Administration of seminal fluid to pigs at ovulation also has been associated with an increase in CL MΦs 

along with increased steroidogenic function and increased circulating plasma P4 (O’Leary et al., 2006). 
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Not only is P4 critical for maintenance of pregnancy and embryo development, this hormone has direct 

positive effects on Treg cell differentiation, proliferation and suppressive function (Mao et al., 2010).  

Transforming growth Factor Beta  

After being deposited into the female tract as a component of seminal fluid, TGFβ is activated by 

acidic vaginal pH, enzymes originating in the male or female tract, or through conformational changes 

induced by interaction with epithelial cell docking proteins (Robertson et al., 2002). This cytokine has a 

role stimulating the post-coital inflammatory response, inducing maternal immune tolerance to seminal 

antigens, preventing immunity to sperm, and priming an appropriate maternal immune response to 

embryo implantation because many seminal antigens will be expressed by the conceptus (Robertson et al., 

2002). Interacting with uterine and/or cervical epithelial cells, TGFβ upregulates several PICs and 

chemokines leading to recruitment and activation of leukocytes including neutrophils, MΦs, and DCs 

(McMaster et al., 1992; Robertson et al., 1992a; Robertson et al., 1996) Also a component in seminal 

fluid, PGE aids in recruitment of leukocytes through promotion of CXCL8 expression (Denison et al., 

1991). TGF-β is involved in the induction and maintenance of Treg function (Clark et al., 1997; 

Gabrysová et al., 2011). Tregs are generated in the lymph nodes beginning at mating and then circulate in 

the blood to be sequestered into the endometrium in a chemokine-dependent manner prior to implantation 

(Zenclussen et al., 2005; Robertson et al., 2009; Guerin et al., 2011; Shima et al., 2012; Robertson et al., 

2013). Uterine NKs also colonize the uterine lining at or shortly after implantation and their production of 

TGF-β may help with the generation and maintenance of Treg cells (Vacca et al., 2010). Both E2 and P4 

upregulate the expression of uNK cell chemokines CXCL10 and CXCL11 in the endometrium (Sentman 

et al., 2004). TGFβ is expressed by the endometrium and maternal lymphomyeloid cells (Clark et al., 

1997; Simpson et al., 2002; Gabrysová et al., 2011) and is involved in preparing the uterus for 

implantation by inducing expression of LIF (d’Hauterive et al., 2005) and GM-CSF (Robertson et al., 

2002), which results in leukocyte recruitment (Tremellen et al., 1998). TGFβ also reduces IL-6 

production (d’Hauterive et al., 2005) and inhibits Th1 responses (Eriksson et al., 2004).  

TGFβ is a potent cytokine in its ability to limit inflammation and modify innate and adaptive 

immunity; however, its effects are dependent on context (Sporn, 1999) and the presence of other 

cytokines in the local environment. TGFβ acting on resting cells usually results in them being turned 

on/activated, whereas, inflammatory cells that are already active respond to TGFβ by being inhibited by 

the cytokine (Sporn, 1999). TGFβ can suppress activated MΦ functions (Bogdan and Nathan, 1993; Chen 

and Wahl, 2002), suppress NO production (Vodovotz et al., 1993), influence T cell differentiation 

(Gorelik et al., 2002), and suppress effector T cell proliferation, cytokine responses, and cytotoxic effects 
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by inhibiting granzyme-B and the transcription factors for Th1 (T-bet) and Th2 (GATA3) (Gorelik and 

Flavell 2000; Heath et al., 2000; Gorelik et al., 2000; Chen et al., 2003; Lin et al., 2005; Thomas and 

Massaqué, 2005).  

TGFβ also suppresses cell proliferation by suppressing c-Myc and the cell cycle inhibitors 

p15INK4b and p21CIP1 (Wahl et al., 2004). IL-2 can perturb the inhibitory influence of TGFβ (Chen and 

Wahl, 2002). IFNγ is another cytokine that can alter TGFβ functions. By enhancing expression of 

inhibitory Smad7, IFNγ can block TGFβ signaling (Nakao et al., 1997; Strober et al., 1997). TGFβ can 

directly inhibit IFNγ and IL-2 production by T cells or indirectly by affecting the ability of APCs to 

activate Th1 cells by suppressing CD40 expression, suppressing IL-12 production by APCs, and/or 

inhibiting IL-12 from activating Jak-Stat pathways (Strober et al., 1997; Bright and Sriram, 1998; 

Gortham et al., 1998). These examples of complex immunregulatory circuits demonstrate that the balance 

of pro and anti-inflammatory cytokines and how they interact will influence the generation and 

maintenance of Treg cells and tolerance at the feto-maternal interface.  

Injecting TGF-β into the vaginal tracts of female mice of abortion-prone matings that have a 

suboptimal Treg response to the male ejaculate promotes pregnancy success and is shown to recruit Treg 

cells to the vaginal tract (Clark et al., 2008). Seminal fluid has been shown to be the key regulator of the 

uterine Treg cell population by stimulating proliferation of Tregs and thus increasing the pool of available 

Treg cells and by promoting recruitment of Tregs from the circulation to the implantation site (Guerin et 

al., 2011). During copulation, sperm and seminal plasma are deposited into the female genital tract where 

they interact with resident MΦs and DCs. Being APCs, the MΦs and DCs pick up paternal alloantigen 

and carry it to the draining lymph nodes where stimulatory DCs can activate αβ T cells to become 

effectors of rejection or tolerogenic DCs will activate Tregs (Clark and Chaouat et al., 2012). TGFβ in the 

seminal fluid is important for polarizing the DCs encountering paternal antigens into a tolerogenic 

phenotype, so that they induce Tregs in the lymph nodes. This is achieved by regulating which 

costimulatory molecules and cytokines are expressed by DCs (Robertson et al., 2002). DCs matured in 

vitro with TGFβ express low levels of the T-cell costimulatory molecules CD80, CD86, and CD40 and 

can exert a tolerant function in vivo (Lu et al., 1997).  Once Treg cells have been activated and 

proliferated they will leave the lymph node and enter the circulation. Seminal fluid and sperm are also 

responsible for increasing the expression of the Treg chemokine CCL19 by glandular and luminal 

epithelial cells in the uterus. CCL19 interacts with the CCR7 receptor on Tregs to recruit and retain Tregs 

in peripheral tissues, in this case the uterus (Guerin et al., 2011). Other types of T cells that can cause fetal 

rejection also localize to the uterine lining but their function is kept in check by tDCs via IDO and the 
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tryptophan metabolite 3-hydroxyanthranillic acid (3HAA) (can induce T cell apoptosis) along with TGFβ 

promoting Treg activity (Clark and Chaouat et al., 2012). Insufficient tDCs and/or increased amounts of 

stimulatory DCs can lead to fetal rejection.  

Interleukin-10  
Interleukin-10 (IL-10) is a critical anti-inflammatory cytokine involved in immune tolerance at 

the feto-maternal interface and controlling response to PAMPs. IL-10 inhibits COX-2 transcription 

induced by LPS (Niiro et al., 1995), thus limiting PGE2 production. This occurs through inhibition of 

STAT5 through suppression of LPS induced GM-CSF production (LPS->GM-CSF->STAT5->COX-2) 

(Yamaoka et al., 1998) and by preventing LPS activation of ERK2 and p38 MAPK in monocytes (Nirro 

et al., 1998). IL-10 blocks upregulation of TLR4 in response to LPS or PICs (Muzio et al., 2000), limiting 

the inflammatory response to LPS. IL-10 can inhibit MHC class II antigen expression on monocytes 

through inhibition of the transport of mature, peptide loaded MHC class II molecules to the plasma 

membrane (Koppelmann et al., 1997). IL-10 inhibits expression of co-stimulatory molecules, CD54 

(ICAM), CD80, and CD86 by monocytes (de Waal Malefyt et al., 1991; Ding et al., 1993; Willems et al., 

1994; Koppelmann et al., 1997). IL-10 also will affect MHC class II and co-stimulatory molecules 

expression by DCs as well as the cytokines produced by the DC (Moore et al., 2001). These effects will 

be detrimental to the ability of the APC to present antigen/stimulate T cells. T cell “activation” in the 

presence of IL-10 induces CD4+ T cells to become anergic in an antigen specific manner (Caux et al., 

1994; Groux et al., 1996) that is not reversible with IL-2 or stimulation of CD3 and CD28 (Groux et al., 

1996). These anergic cells will no longer react to the antigen they are specific for and can act as 

suppressor cells by competing with other antigen-activated T cells for IL-2 (Wan and Flavell, 2006). 

 IL-10 inhibits the activation of NFκB in activated monocytes/macrophages and the production of 

cytokines (IL-1α, IL-1β, TNFα, IL-6, IL-12, IL-18, GM-CSF, M-CSF, LIF, PAF) and chemokines 

(MCP1, MCP-5, Mip-1α, Mip1β, Mip-3α, Mip-3β, RANTES, MDC, IL-8, IP-10, MIP-2) by innate 

immune cells that recruit monocytes, DCs, neutrophils, and T cells (Moore et al., 2001; Akdis et al., 

2011).  

IL-1 and TNFα tend to have synergistic effects on inflammatory pathways inducing additional 

inflammatory mediators such as chemokines, PGs, and platelet activating factor (PAF). By inhibiting 

production of these two cytokines, IL-10 has significant anti-inflammatory effects. In addition, IL-10 

enhances production of IL-1Ra (Moore et al., 2001), an endogenous blocker of IL-1 effects. IFNy induces 

IP-10 expression, which attracts Th1 cells, while IL-10 inhibits IFNγ activated STAT molecules, which 

may occur through upregulation of suppressor of cytokine signaling 3 (SOCS3) (Cassatella et al., 1999; 

Ito et al., 1999; Yamaoka et al., 1999). By interfering with downstream IFNγ signaling, IL-10 suppresses 
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Th1 recruitment (Moore et al., 2001). The importance of IL-10 mediating the cytokine environment at the 

feto-maternal interface is shown by IL-10 null mice being more susceptible to LPS induced fetal loss as a 

result of increased expression of TNFα, IL-6, IL-1, and IL-12 compared to LPS treated control mice 

(Robertson et al., 2007).  

Galectin-1 

Galectins are a family of β-galactoside-binding proteins involved in immunoregulatory functions. 

After release from a cell, galectins crosslink β-galactoside-containing cell-surface glycoconjugates, 

leading to changes in cell signaling, adhesion, and cell survival (Rabinovich et al., 2002).  Gal-1 

recognizes and binds multiple glucose-β1-4-N-acetylglucosamine (LacNAc) units located on branches of 

N-Linked or O-linked glycans (Rabinovich and Toscano, 2009).   

Galectin-1 is expressed in reproductive tissues including the myometrium, decidua of the uterus, 

and invasive extravillous trophoblast (Phillips et al., 1996; Maquoi et al., 1997; Rabinovich, 1999; Sasaki 

et al., 2004; von Wolff et al., 2005; Kallikourdis et al., 2007; Blois et al., 2007b; Ramhorst et al., 2012; 

Than et al., 2012; Tirado-González et al., 2013) where it may play a role in controlling inflammation by 

triggering apoptosis of infiltrating effector T cells and reducing production of PICs (Rabinovich et al., 

2002). It is produced by Tregs, MΦs, and uNKs located at the fetomaternal interface (Rabinovich et al., 

1998; Koopman et al., 2003; Kopcow et al., 2008). Expression by the placenta is likely involved in cell 

adhesion and invasion of the trophoblast, but gal-1 also plays an important role in maternal tolerance to 

placental alloantigens (Than et al., 2012).  

With regard to modulating effector functions by other T cells, gal-1 interacts with surface 

glycoproteins on T cells and specifically CD45, CD43, and CD7 are involved in gal-1 induced apoptosis 

(Pace et al., 1999). Gal-1 inhibits production of IL-2, IFNγ, and TNFα from activated T cells and IL-12 

from infected MΦs; decreases release of AA and PGE2 production from MΦs; decreases PLA2 induced 

edema, neutrophil extravasation and mast cell degranulation; and causes cell-cycle arrest and/or apoptosis 

of activated peripheral T cells, and infected MΦs (Perillo et al., 1995; Blaser et al., 1998; Rabinovich et 

al., 1999; Vespa et al., 1999; Rabinovich, 2000; Rabinovich et al., 2000; Rabinovich et al., 2002). Gal-1 

influences T cell physiology and survival by initiating signal transduction events including ERK-2 

phosphorylation, calcium influx, activation of the transcription factor AP-1, and downregulation of the 

anti-apoptotic protein BCL-2 (Vespa et al., 1999; Rabinovich et al., 2000). Binding of gal-1 to a T cell 

alone or with antigen stimulation causes partial phosphorylation of TCR-zeta and generation of inhibitory 

pp21zeta (Chung et al., 2000). Galectin-1 limits membrane reorganization and causes cross-linking events 

that limit the size of lipid raft clusters at the TCR contact site and raft-associated protein tyrosine 
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phosphorylation. Because of these gal-1 actions, functions in the T cell that need only partial TCR 

signals, like apoptosis, can occur but functions that require co-stimulation or tyrosine phosphorylation, 

like IL-2 production, are blocked (Chung et al., 2000) meaning that the T cell cannot be activated or 

induced to proliferate.  

Galectin-1 has been reported to be important for the generation of feto-maternal tolerance through 

involvement in the generation of tDCs and Tregs. Blois et al (2007b) showed that gal-1 deficient mice had 

higher rates of fetal loss during allogenic matings but not syngeneic matings. Treating gal-1 deficient 

mice with recombinant Gal-1 prevented fetal loss and restored tolerance. This was associated with a shift 

towards a Th2 dominant cytokine profile at the fetomaternal interface which is known to be crucial for 

successful pregnancy (Wegmann et al., 1993; Blois et al., 2007b). Galectin-1 expression may be regulated 

by P4 as Blois et al (2007b) reported that treatment with the P4 derivative dydrogesterone increased gal-1 

expression that was correlated with expansion of Treg cells and DCs with a regulatory phenotype in the 

myometrium and decidua of stress-challenged pregnant mice. P4, and gal-1 may work in a reciprocal 

manner as treatment with gal-1 prevented the stress-induced decrease in P4 and in fact increased systemic 

P4 levels higher than amounts measured in non-stressed pregnancies (Blois et al., 2007b). Choe et al 

(1997) also reported that gal-1 is under steroid hormone control, and uterine expression is particularly 

high around the time of implantation in the mouse. 

Galectin-1 control over T helper cytokine profiles may be due to susceptibility of the different 

subsets to Gal-1 induced apoptosis (Motran et al., 2008). Signaling and subsequent cell death by gal-1 is 

dependent not only on clustering and segregation of CD45 with CD3 and CD43 with CD7 on the target 

cell (Pace et al., 1999), but on the glycosylation status of the glycoproteins (Nguyen et al., 2001; Amano 

et al., 2003; Hernandez et al., 2006; Toscano et al., 2007). Th1 and Th17 cells express the surface glycans 

that Gal-1 binds to cause apoptosis, Th2 cells, however, are protected from Gal-1 through differential 

sialylation of their cell surface glycoproteins (Toscano et al., 2007; Kopcow et al., 2008; Rabinovich and 

Ilarregui, 2009; Ramhorst et al., 2012b). Galectin-1 also will induce activated CD8+ T cells to undergo 

apoptosis (Kopcow et al., 2008).  

Recombinant gal-1 induces DCs to have a tolerogenic phenotype. The tDCs then promote 

expansion of Tregs characterized by production of IL-10. Tregs play an essential role in the generation of 

feto-maternal tolerance by influencing the types of cytokines produced and suppressing proliferation of 

CD25- T cells. Tregs are generated in an antigen specific manner and create an overall 

immunosuppressive local environment where that antigen is expressed. This is important at the feto-

maternal interface because the mother needs to tolerate the paternal antigens expressed by the fetus 

(Aluvihare et al., 2004; Sasaki et al., 2004; Somerset et al., 2004; Kallikourdis et al., 2005) The 
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importance of Tregs was shown when feto-maternal tolerance failed to be generated in mice depleted of 

Tregs or deficient in IL-10, even with the addition of Gal-1. This result also demonstrates that one of the 

mechanisms of Gal-1 in generating tolerance is through generation of Tregs (Blois et al., 2007b; 

Ramhorst et al., 2012b) and inducing production of IL-10 from T lymphocytes (van der Leij et al., 2004).  

Regulatory T cells also produce Gal-1 and expression is upregulated upon TCR activation. It 

plays a role in the suppressive function of Treg cells as anti-gal-1 antibody reversed the suppressive 

function of human and mouse Tregs in vitro and Tregs isolated from gal-1 null mice also had reduced 

suppressive capabilities (Garín et al 2007). Tregs use the molecule to control other types of T cells (Garín 

et al., 2007). Gal-1 inhibits cytokine production from Th1 and Th17 cells, induces cytokine production 

from Th2 and Treg cells and inhibits adhesion and transendothelial migration of effector T cells (Norling 

et al., 2008; Rabinovich and Ilarregui, 2009; Ramhorst et al., 2012b). 

Galectin-1 expression is increased during an inflammatory response (Ilarregui et al., 2009) and 

expression has been shown to be induced by NF-κB (Toscano et al., 2011). A regulatory mechanism to 

control the inflammatory response is built in by gal-1 being able to inhibit activation of NF-κB (Toscano 

et al., 2011).  

Dendritic Cells  
The phenotype of DCs is important because they can either be immunogenic and cause fetal loss 

or promote immune tolerance at the feto-maternal interface (Kämmerer et al., 2003; Miyazaki et al., 2003; 

Blois et al., 2005; Arck et al., 2007), which is dependent on the signals they receive and the cytokines 

they produce when presenting antigen. tDCs are either immature, maturation resistant, or alternatively 

activated DCs (activated after exposure to corticosteroids or anti-inflammatory cytokines). These cells 

express MHC molecules, inhibitory molecules, low levels of co-stimulatory molecules (CD40, CD0, 

CD86), have low production of PICs, produce IL-10, and do not synthesize Th1 polarizing cytokines (IL-

12p70) (Arck et al., 2007). tDCs not only play an important role in the generation of Tregs but are 

involved in the shift towards a predominantly Th2 cytokine profile at the feto-maternal interface 

(Miyazaki et al., 2003).  

The low ratio of co-stimulatory to inhibitory signals makes it so that when tDCs present antigen, 

there is inadequate co-stimulation to activate and cause proliferation of effector T cells (instead they 

undergo apoptosis or become anergic), but tDCs can cause the generation and expansion of Treg cells 

(Morelli and Thomson, 2007). Treg cells are end-stage effector cells that arise from differentiation away 

from the alternative Th17 effector pathway, and this is influenced by TGF-β and IL-6. While IL-6 

influences activated CD4+ T cells to become Th17 cells, TGF-β plus IL-2 can prevent IL-6 from 
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converting iTregs cells into Th17 type T cells by down-regulating IL-6 receptor expression (Zheng et al., 

2008). While the polarization of naïve CD4+ cells into T help cell subsets is generally viewed as 

irreversible, this may not be true for Treg and Th17 cells. These two T helper cell subsets are less stable 

and have greater plasticity in switching between the two phenotypes if environmental conditions change 

(Zhou et al., 2009). This means an infection or other insult that increases PICs can result in a shift from 

Treg cells to Th17 cells that would be detrimental to pregnancy. 

Ilarregui et al (2009) reported that Gal-1 induces DCs to produce IL-27 which subsequently 

promotes DCs to be tolerogenic, to produce IL-10, and to cause the generation of induced T regulatory 

type 1 (Tr1) cells  (lack FOXP3 expression) that also produce IL10 to regulate T cell function. The 

importance of IL-27 from DCs in causing the differentiation of naïve CD4+ T cells into IL-10 producing 

Tr1 cells was reported by Awasthi et al (2007); TGFβ was also reported to amplify the generation of Tr1 

cells by IL-27.  

Interleukin-27 producing tDCs were generated from interaction with Tregs, most likely in 

response to gal-1 produced by the Tregs (Awasthi et al., 2007; Garín et al., 2007). The cytokine induces 

the transcription factors AhR and c-Maf, which bind together to promote transactivation of the IL-10 and 

IL-21 promoters. The DC then uses these cytokines to cause the generation of Tr1 cells (Apetoh et al., 

2010). IL-21 has also been shown to induce IL-10 synthesis via STAT3 phosphorylation, and can mediate 

IL-27 induced IL-10 production, modifying the plasticity of committed Th17 cells (Spolski et al., 2009.) 

IL-27 promotes the differentiation of IL-10 producing Treg cells while inhibiting generation of Th17 cells 

by inhibiting IL-17 secretion and other molecules associated with the function and maintenance of a Th17 

phenotype (Murugaiyan et al., 2009).  

Activated Th cells exposed to gal-1 increase expression of the surface-bound immunomodulatory 

molecules CD25, CTLA-4, and PD-1, produce IL-10, and stop producing IFNγ and IL-17, essentially 

turning them into Tr1 cells (Cedeno-Laurent et al., 2012). Gal-1 treated cells had increased 

phosphorylation of STAT1 and STAT3, which have already been established as being associated with Tr1 

formation (Wang et al., 2011).  IL-10 production in response to gal-1 was associated with expression of 

the transcription factors c-Maf, AhR and Jun-B (mediates IL-10 expression in Th2 cells (Wang et al., 

2005)) (Cedeno-Laurent et al., 2012). C-Maf has already been identified as a crucial transcription factor 

in Tr1 cell differentiation (Pot et al., 2009). Th1 and Th17 cells have been seen to be susceptible to gal-1 

mediated apoptosis at concentrations >7μM (Toscano et al., 2007), thus there may be two consequences 

to Th1 and Th17 exposure to gal-1 depending on the exposure amount. Consequence 1 is IL-10 synthesis 

during differentiation or after commitment to Th subtypes through the c-MAF/AhR/IL-21 pathway 
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(Cedeno-Laurent et al., 2007) and consequence 2 is cell death at high concentrations (Toscano et al., 

2007). IDO expression by tDCs can also induce apoptosis of activated effector T cells (Th1 and Th17) 

and is involved in promoting Treg generation through the generation of 3-hydroxyanthranillic acid, a 

tryptophan metabolite (Morelli and Thomson, 2007).  

Progesterone 
Progesterone is produced by the CL and by the placenta to varying degrees depending on the 

species. The steroid hormone is known to have immunosuppressive affects and plays a role in modulating 

the immune environment in the uterus. P4 has genomic and non-genomic effects with non-genomic effects 

being mediated by G-protein coupled receptors and genomic effects being mediated by two isoforms of 

its nuclear receptor (PR-A and PR-B) that act as transcription factors (Li et al., 2004; Mulac-Jericevic and 

Conneely, 2004; Arck et al., 2007).  In the peri-implantation uterus, P4 has been reported to regulate 

several genes including amphiregulin (in the EGF superfamily), Hox-A10 and Hox-A11 (homeobox gene 

family), histidine decarboxylase (histidine->histamine), calcitonin, immune response gene-1 (Irg-1), 

Muc1, Indian hedgehog, and gal-1 (Choe et al., 1997; Arck et al., 2007). Progesterone can influence 

cytokine production as well as immune cell function.  

In pregnant women, P4 causes the production of P-induced blocking factor (PIBF) that mediates 

some of progesterone’s immunological effects (Arck et al., 2007). PIBF activates the JAK/STAT pathway 

activating STAT6, which then causes transcription of SOCS-3. SOCS-3 will bind to the IL-12R, 

inhibiting IL-12 signaling and preventing IL-12 activation of STAT4 (Kozma et al., 2006), thus 

influencing T cells towards a Th2 phenotype and blocking a Th1 phenotype. PIBF therefore, leads to TH2 

dominant cytokine production (Szekeres and Wegmann, 1996) and blocks NK cell activation because of 

the reduced IL-12 production (less Th1 cells) (Szekeres-Bartho et al., 1996). In sheep, the P4 induced 

immunoregulatory molecule is not PIBF but instead a member of the serine proteinase inhibitor family 

called uterine serpin. This molecule is also secreted from the endometrium of goats, cattle, and pigs and 

has been reported to block lymphocyte proliferation in vitro (Liu et al., 1999; Peltier et al., 2000).  

Murine studies have shown that CD4+ T cells contain the nuclear PR, and P4 reduces effector 

activity of these cells through binding of its nuclear receptor and repressing transcription of IFNγ (Hughes 

et al., 2013). Also, through interaction with its nuclear receptor, P4 has been shown to promote the 

generation of murine induced Treg cells in vitro that have suppressive functions with regards to 

generation of effector T cells and inflammation in vitro and in vivo (on target T cells) (Lee et al., 2012). 

P4 suppresses mTORC1 signaling which is needed for the generation of Th1 and Th17 cells; in its 

absence, Treg cells are produced (Haxhinasto et al., 2008; Lee et al., 2012). P4 also leads to the expansion 

of the Treg population during murine pregnancy (Mao et al., 2010). 



33 
 

 Culture of human peripheral blood mononuclear cells (PBMCs) from pregnant women with P4 

resulted in reduced production of IFNγ and TNFα, while increasing production of IL-4 (Lissauer et al., 

2015). P4 is a potent inducer of Th2 cytokines (Piccinni et al., 1995; Miyaura and Iwata, 2002) including 

IL-4 which mediates P4 stimulated LIF (Piccinni et al., 1998) and M-CSF (Piccinni et al., 2001) 

producing T cells. LIF is critical for implantation as it mediates uterine receptivity (Rosario and Stewart, 

2016) while M-CSF is important for pregnancy development (Piccinni et al., 1998; Piccinni et al., 2001; 

Song et al., 2009). The Th2 cytokines, IL-4 and IL-10, can inhibit development and function of Th1 cells 

and MΦs, which is important as IL-12 and IFNγ downregulate LIF and a Th1 response promotes allograft 

rejection (Piccinni et al., 1998; Piccinni et al., 2001). 

Progesterone can regulate mature DC function and DC-stimulated proliferation of T cells in a 

receptor-mediated manner (Butts et al., 2007). Treatment of LPS activated mature bone marrow derived 

dendritic cells (BMDCs) with P4 did not alter antigen take up by DCs, but suppressed production of the 

PICs TNFα and IL-1β without affecting IL-10 production. Treatment with P4 also down regulated 

expression of the co-stimulatory molecule CD80 by DCs and inhibited DC-stimulated T cell proliferation 

(Butts et al., 2007). As the major APC in the uterus, reduced PIC production and decreased expression of 

co-stimulator molecules by DCs will limit Th1 responses and T cell responses to fetal antigen.  

Acting through the GC and P4 receptors, P4 can downregulate innate immune responsivity of MΦs 

by modulating TLR signaling (Jones et al., 2008; Su et al., 2009). The downregulation is associated with 

the suppression of NF-κB activation and enhancement of SOCS1 expression leading to a decrease in NO, 

IL-6, and IL-12 production (Miller et al., 1996; Su et al., 2009).   

Mucin-1 expression is induced by E2 and expressed in humans by the syncytiotrophoblast at the 

feto-maternal interface and by the extravillous trophoblast cells invading the decidua (Jeschke et al., 

2002). Mucin-1 is thought to control the correct placement and timing of implantation. Blastocyst 

implantation is proposed to be regulated by a uterine barrier consisting of a high density of Muc-1 at the 

epithelial cell surface that inhibits blastocyst adhesion (Aplin et al., 2001). Downregulation of Muc-1 

expression by the uterine epithelium at the implantation site during the window of implantation allows for 

blastocyst adhesion. This may be regulated by P4 antagonizing Muc1 expression (Brayman et al., 2006).  

Complement  
The complement system is part of the innate immune response and is involved in killing 

pathogens, inflammation, production of PICs, chemotaxis of inflammatory cells, opsonisation and 

clearance of immune complexes (Molina, 2005; Murphy 2012). Proper control of complement in the 

uterine environment is necessary to prevent inflammation and embryo loss since inappropriate 
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complement activation results in loss of maternal-fetal tolerance (Xu et al., 2000; Mellor et al., 2001; 

Caucheteux et al., 2003; Mao et al., 2003). There are 3 complement pathways that differ in how the 

pathway initiates, but all converge at the formation of C3 convertase. The classical pathway is initiated 

when complement proteins bind antigen-antibody complexes; the lectin pathway is initiated when 

mannose-binding lectin binds to mannose residues in microbial proteins and polysaccharides, and the 

alternative pathway is initiated when complement fragments bind directly to the microbial cell wall. The 

pathways end with the formation of the membrane attack complex, which is inserted into the wall of a 

target cell resulting in it being lysed. During the complement cascade some complement fragments have 

other effects rather than being involved in formation of the convertases or membrane attack complex. 

These complement fragments (C3a, C3b, C4a, C5a) have effects such as opisonization of target cells, 

causing degranulation of mast cells, basophils, and eosinophils, extravasation and chemotaxis of 

leukocytes to the inflammatory site, aggregation of platelets, release of hydrolytic enzymes from 

neutrophils, and increased expression of complement receptors by neutrophils (Murphy, 2012).  

Murine studies have shown the role of complement deposition in fetal loss, abnormal placental 

development and the importance of complement regulation in the uterine environment to prevent 

complications (Xu et al., 2000; Wu et al., 2000; Mao et al., 2003). Girardi et al (2006b) reported that C3 

deposition in the decidua of mice was associated with increased necrotic tissue, fetal debris, and 

infiltration of inflammatory cells such as neutrophils and monocytes. Xu et al (2000) demonstrated that 

deficiency in the complement regulatory protein Crry (complement receptor 1-related gene/protein y) in 

mice results in fetal loss due to spontaneous C3 deposition in the placenta at the fetomaternal interface 

and embryos being invaded by polymorphonuclear cells. Complement fragments cause increased 

production/release of PICs, such as TNFα (Girardi et al., 2006b). Increased TNFα levels at the feto-

maternal interface can lead to fetal loss as TNFα can reduce inner cell mass proliferation, induce 

trophoblast apoptosis and restrict trophoblast invasiveness (Hunt et al., 1989; Yui et al., 1994; Pamofer et 

al., 1994a; Pampfer et al., 1994b; Silver et al., 1994; Pampfer et al., 1995). Fetal loss in Crry deficient 

mice was attributed to C3 activation because Crry null mice pups were born only if they were on a C3 

deficient background (Xu et al., 2000) Crry is a membrane bound protein that inhibits the deposition of 

activated C3 and C4 on the surface of autologous cells and has been shown to be expressed in 

trophoblasts and maternal decidual tissues. While Crry is specific to mice, other complement regulatory 

proteins that have been found in high levels in human placentas, such as decay accelerating factor 

(DAF/CD55) and membrane cofactor protein (MCP/CD46) may have a similar role in other species 

(Caucheteux et al., 2003).  
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Female mice of abortion prone matings were reported to have increased complement activation 

that was associated with impaired placental vascularization and a deficiency in the number of trophoblast 

giant cells (Girardi et al 2006a). Trophoblast giant cells mediate implantation and invasion of the decidua 

by the conceptus; efficient numbers of these cells leads to placental failure (Kraut et al., 1998; Cross et 

al., 2005). Placental development requires angiogenic growth factors, VEGF and placenta growth factor 

along with expression of their receptors (Lam et al., 2005). By binding to the tyrosine kinase receptors 

VEGFR-1 (Flt-1) and VEGFR-2, VEGF promotes placental development and invasiveness (Ferrara et al., 

2003). The VEGFR-1 can be alternatively spliced to produce a secreted form of the receptor (soluble 

sVEGFR-1/sFLT-1) that lacks the cytoplasmic and transmembrane domains of the receptor but retains the 

ligand binding domain (Kendall and Thomas, 1993). This secreted form of the receptor is actually anti-

angiogenic by binding and sequestering circulating VEGF and placental growth factor, preventing the 

molecules from interacting with their endogenous receptors (He et al., 1999).  Impaired placental 

vascularization in abortion prone mice matings in Girardi et al’s study (2006a) was found to be due to 

C5a produced during the complement cascade inducing infiltrating monocytes to produce sVEGFR-1 that 

then bound VEGF inhibiting its activity during placental development. Thus, complement can affect the 

pro-angiogenic functions of uterine MΦs impairing pregnancy success.  

Bacterial Infections and the Innate Immune System 
Although there are numerous mechanisms in place to generate and maintain maternal tolerance to 

the fetus (Trowsdale and Betz, 2006), an acute or chronic uterine infection during pregnancy that 

activates the immune system to clear the infection can also result in disruption of maternal tolerance and 

ultimately fetal loss (Mor, 2008; Koga et al., 2014). Infection induced loss is most likely to occur during 

the early phases of pregnancy when maternal tolerance is still being generated. Paternal alloantigens 

presented during a uterine infection are likely to be presented in the presence of PICs, which will favor 

activation of inflammatory/effector T cells instead of Tregs, which can result in fetal rejection (Trowsdale 

and Betz, 2006).  

A uterine infection will cause inflammation by signaling innate immune cells through PAMPs 

and DAMPs; LPS even increases expression of the IFNγ and TNFα receptors heightening the 

inflammatory response. This can result in a shift in cytokine expression, a switch from tolerogenic to 

immunogenic DCs, a loss in Treg cell function, and uNKs to become cytotoxic, ultimately resulting in 

fetal loss. Exposure to a PAMP or DAMP can also cause MΦs, trophoblast cells, and endothelial cells to 

up-regulate surface expression of a membrane pro-thrombinase (Fibrinogen-like protein 2/mFGL2) that 

will activate thrombin and result in fibrin deposition, vascular thrombosis, and inflammation. Once 

thrombin is activated there is positive feedback for further activation. Thrombin will activate complement 
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component 5 which will spilt into C5a and C5b (Clark and Chaouat et al., 2012). C5a will then act as a 

chemoattractant to bring in additional innate immune cells and cause release of inflammatory mediators 

(Murphy, 2012). The combination of polymophonuclear leukocytes recruitment by endothelial cells and 

C5a, inflammation, and fibrin deposition will impair the vascular supply to the placenta and cause fetal 

loss (Clark and Chaouat et al., 2012).  

DC maturation results in upregulation of surface expression of MHCII, CD80, CD86, CD40, 

CCR7, and production of cytokines like IL-12 and TNFα. Maturation occurs in response to DAMPs, 

PAMPs, and PICs (Morelli and Thomson, 2007). Monocyte derived DCs that mature in the presence of 

PGE2 are induced to migrate to secondary lymph nodes (Luft et al., 2002). This effect maybe mediated by 

PGE2 altering CCR7 signal transduction (Scandella et al., 2004). This chemokine receptor responds to the 

ligands CCL19 and CCL21, which are expressed in lymphoid organs (Scandella et al., 2004). An 

infection that increases PICs and PGE2 will result in DCs traveling to lymph nodes to present antigen 

while producing Th1 polarizing cytokines.   

Regulatory T  cells control NK cell proliferation, secretory function, and cytotoxic activity in a 

TGFβ dependent manner involving downregulation of the NKG2D receptor (receptor on the surface of 

NK cells, cytotoxic CD8+ cells, and γδ T Cells; ligand binding leads to perforin-mediated cytotoxicity), 

insufficient quantity of Treg cells can result in an overabundance of NK cell activity (Ghiringhelli et al., 

2005a). Treg cells, however, cannot suppress NK cell function when the IL-2Rγ chain (cytokine receptor 

sub unit that is a part of the receptors for IL-2, IL-4, IL-7, IL-9, IL-15, or TLR4 is activated (Ghiringhelli 

et al., 2005a). This means that with an acute infection or LPS exposure, Tregs will be unable to prevent 

NKs from proliferating and having cytotoxic activity. With regards to pregnancy, a uterine infection will 

likely convert specialized uNK cells into cytotoxic NKs that behave similarly to their peripheral 

counterparts resulting in pregnancy loss.  

Infection can be a stressful event and can involve the activation of the hypothalamic-pituitary-

adrenal (HPA) axis. High levels of GCs exert adverse effects on the uterus and fetus and inhibit LH, E2 

and P4 secretion (Magiakou et al., 1997). Stressful events during pregnancy can also challenge the 

immune suppressive environment of the uterus leading to pregnancy loss (Arck et al., 1995). 

Allogenically mated mice exposed to stress early in gestation causes a decrease in P4 (Joachim et al., 

2003), increased secretion of PICs (Blois et al., 2004b), migration of inflammatory cells to the feto-

maternal interface (Blois et al., 2005), and decreased Treg cells and gal-1 (Blois et al., 2004b; Blois et al., 

2007b), thus resulting in a switch from an anti-inflammatory to a pro-inflammatory environment.   
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The trophoblast expresses PPRs that sense bacteria, viruses, dying cells, and damaged tissue in 

the surrounding environment (Abrahams et al., 2005; Mor et al., 2005, Costello et al., 2007). In response 

to PAMPs and DAMPs, the trophoblast will secrete cytokines that will act on immune cells (MΦs, DCs, 

Tregs, NK cells) in the uterus and recruit additional immune cells (Fest et al., 2007). Immune cells in the 

pregnant uterus tend to have a specialized phenotype: NK cells are not cytotoxic, DCs are tolerogenic, T 

cells are regulatory; however, infections can cause them to lose that phenotype. While they were 

promoting fetal tolerance, with an infection, they switch to functions that promote fetal rejection (Murphy 

et al., 2005; Fest et al., 2007; Mor, 2008). The trophoblast can respond to PICs in addition to producing 

them, and an increase in PICs can change trophoblast resistance to Fas-mediated apoptosis leading to 

embryonic death (Abrahams et al., 2004). There are 3 major ways for a viral or bacterial infection to gain 

access to the uterus: through the maternal circulation, by ascending into the uterus from the lower 

reproductive tract (most common), or by descending into the uterus from the peritoneal cavity (Deb et al., 

2004; Espinoza et al., 2006).  

Inflammation 
Inflammation is a mechanism to restore homeostasis in response to infection or injury but also 

after physiological changes in tissue architecture like ovulation or parturition (Medzhitov, 2008; Sheldon 

et al., 2014). Classical signs of inflammation are redness, swelling, heat, and pain. There are seven groups 

of inflammatory mediators: vasoactive amines, vasoactive peptides, complement fragments, lipid 

mediators, cytokines, chemokines, and proteolytic enzymes (Medzhitov, 2008). Vasoactive amines, such 

as histamine and serotonin, are released from granules in mast cells causing increased vascular 

permeability and vasodilation or vasoconstriction depending on the situation.  Vasoactive peptides 

(substance P, fibrinopeptide A, fibrinopeptide B, fibrin degradation products) cause vasodilation and 

increased vascular permeability directly or by causing histamine release from mast cells. Fragments 

generated during the complement pathways (C3a, C4a, C5a) trigger the synthesis of cytokines, 

chemokines, and adhesion molecules, promote granulocyte and monocyte recruitment and cause mast cell 

degranulation (granule contents then affect vasculature) (Medzhitov, 2008; Dinarello, 2010). Lipid 

derivatives (eicosanoids, platelet-activating factors, resolvins) are produced from phospholipids located in 

cell membranes. 

 Activated PLA2 releases arachidonic acid (AA) from membranes to be turned into eicosanoids. 

Cyclooxygenases (COX 1 and COX2) turn AA into PGs and thromboxanes while lipoxygenases turn AA 

into leukotrienes (LTs) and lipoxins (LXs) (Medzhitov, 2008). Some prostaglandins cause vasodilation 

(PGE2 and PGI2), and PGE2 is hyperalgesic and causes fever (Higgs et al., 1984). Lipoxins along with 
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resolvins and protectins produced from dietary omega-3 fatty acids inhibit inflammation and aid in the 

resolution of inflammation and tissue repair (Serhan, 2007).  

Cytokines (interleukins, interferons, adipokines, tumor necrosis factors, mesenchymal growth 

factors) can be separated into groups based on their primary function:  cytokines that are mostly 

lymphocyte growth factors, ones that are mostly pro-inflammatory, ones that are mostly anti-

inflammatory, or cytokines that polarize the immune response to antigen. Cytokines activate endothelium 

and leukocytes, cause fever, resistance to viral infections, lead to elevated white blood cell counts, and 

induce the acute phase response. Chemokines are responsible for controlling leukocyte extravasation and 

chemotaxis of additional immune cells to the affected area (Dinarello, 2007; Medzhitov, 2008). 

Proteolytic enzymes (elastin, cathepsins, matrix metalloproteinases) degrade extracellular matrix and 

basement membrane proteins, which is important for allowing leukocytes to move through the area and 

during tissue remodeling (Medzhitov, 2008).  

The beginning of the inflammatory response is characterized by pro-inflammatory mediators 

(PIMs) (IL-1β, IL-6, TNFα, IL-8, PGE2) that attract and activate immune cells like neutrophils and MΦs 

to remove the pathogen and damaged cells. After the pathogens have been cleared, mediators like IL-10 

(suppresses IFNγ, IL-1, TNFα, IL-6) and resolvins are released to stop the inflammatory reaction and to 

repair any damaged tissue (Dinarello, 2007; Sheldon et al., 2014). While inflammation is an important 

mechanism for restoring tissue homeostasis and is an important part of the innate immune system, chronic 

inflammation has adverse effects. 

Infection  
Infection is an important trigger for inflammation that is harmful to pregnancy and can lead to 

embryonic loss. There are PRRs located at the maternal-fetal interface (expressed on immune cells, 

trophoblast, epithelial cells, stromal cells) that recognize and bind PAMPs, which are unique to the 

surface of microorganisms (Martinon et al., 2009; Schroder and Tschopp, 2010; Murphy, 2012). Binding 

of these receptors to pathogen molecules results in the activation of anti-pathogen responses, such as the 

synthesis and secretion of chemokines, PICs, antimicrobial peptides, and acute phase proteins (APPs) 

(Wira et al., 2005; Akira et al., 2006; Davies et al., 2008; Medzhitov, 2008; Koga et al., 2014). PAMPs 

are typically molecules that are vital for microbial survival; therefore, they are unlikely to change because 

that would be detrimental to the microbe. Examples include bacterial structural components, such as LPS 

and peptidoglycan, and viral nucleic acids. PAMPS can be specific to classes of microbes and their 

invariance makes them a good way of alerting the innate immune system of a microbe’s presence 

(Martinon et al., 2009).  
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Toll like receptors (TLRs) are one family of innate immune system receptors with 10 members, 

some of which are located in the endosome and some are displayed on the cell surface. The TLRs that 

respond to bacteria are TLR2, which forms heterodimers with TLR1 and TLR6 and recognizes bacterial 

lipopeptides, and TLR4, which recognizes the gram negative bacterial cell wall component, LPS in 

complex with CD14 and MD2 (Chow et al., 1999; Saito et al., 2000; Abrahams, 2008; Takeuchi and 

Akira, 2010). LPS is an endotoxin located in the cell walls of gram-negative bacteria and consists of 

mostly carbohydrates and lipids. LPS has a hydrophilic core of repeating polysaccharides attached to an 

O-specific chain and the hydrophobic lipid-A domain (Raetz, 1993). The core region is conserved 

between different types of gram negative bacteria, whereas, the O-specific chain of repeating 

polysaccharides has some structural diversity. The lipid A region is the portion recognized by other cells 

and is responsible for LPS-induced biological responses (Rietchel et al., 1994). Endotoxins are constantly 

shed into the bacteria’s environment, released after gram negative bacteria are ingested by phagocytes and 

degrade in vacuoles, and released when the bacterium lyse or disintegrate (Deb et al., 2004). The 

endotoxin can then interact with local host cells and/or travel in the blood to cause a variety of responses 

(Deb et al., 2004). In the circulation, LPS is bound to lipoproteins or LPS-binding proteins (LBP).  

Not only are neutrophils, MΦs, and DCs able to respond to PAMPs and DAMPs but other non-

immune cells also have PRRs. Endometrial epithelial and stromal cells express the TLR4/CD14/MD2 

receptor complex and respond to LPS by secreting IL-6, CXCL8, and PGE2 (Herath et al., 2006; Herath et 

al., 2009b; Cronin et al., 2012). In response to binding its ligand, TLRs initiate production and release of 

PICs or type I interferons (IFN) and IFN-inducible proteins (Akira and Hoshino, 2003; Koga et al., 2014). 

TLRs responding to bacterial components with the help of MYD88 stimulate IL1R associated kinases 

(IRAK4/IRAK1), which activate TNFR associated factor 6 (TRAF6) which catalyzes a complex 

consisting of TGFβ activated kinase 1 (TAK1) and members of the TAK1 binding protein (TAB) family. 

This complex can activate the MAPK pathway (JNK, ERK1/2, p38) leading to activation of the 

transcription factor AP-1 or it can activate the IKK complex (IKKα, IKKβ, IKKγ) causing 

phosphorylation and ubiquitination of IκB. Ubiquitination of IκB causes degradation of the protein which 

releases NF-κB from the complex allowing it to translocate into the nucleus. In the nucleus, the 

transcription factors AP-1 and NF-κB activate transcription of PIMs including cytokines (IL-1α, IL-1β, 

IL-6, TNFα), chemokines (CXCL8, CXCL1), and lipid mediators (PLA2, PGHS, PGES). On the other 

hand, endosomal TLR4 recognizes viral envelope glycoproteins and signals in a MyD88 independent 

pathway that involves Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF). TRIF then 

either leads to activation of NF-kB for PIC production or IFN regulatory factor-3 (IRF-3) for type I IFN 

and IFN-inducible genes production (Takeuchi et al., 2000; Yamamoto et al., 2003). 
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Prostaglandins are inflammation mediators and are produced in a cell-specific manner. Activation 

of the transcription factor NF-κB by IL-1 or TNFα leads to COX2 gene expression and the production of 

PGE2 (Dinarello, 2007). Monocytes/MΦs produce large amounts of PGE2 and PGF2α upon stimulation 

while neutrophils produce moderate amounts of PGE2, and mast cells produce PGD2. The enzyme 5-LOX 

is expressed by mast cells, monocytes, MΦs, and granulocytes and converts AA into the 4-series LTs and 

hydroxyl and hydroperoxy derivatives (5-HETE and 5-hydroperoxyeicosatetraenoic acid (5-HPETE)) 

(Calder, 2003).  

Prostaglandin E2 is involved in acute inflammation by inducing fever, lowering pain thresholds, 

promoting local vasodilation/vascular permeability and by promoting local attraction/activation of 

neutrophils, MΦs, and mast cells (Calder, 2003; Dinarello, 2010; Kaliński, 2012). However, PGE2 also is 

considered an immunosuppressive product of inflammation. PGE2 can induce IL-10 production and can 

reduce levels of PICs, chemokines, and adhesion molecules reducing nonspecific and chronic 

inflammation (Dinarello, 2010; Kaliński, 2012).   

Not only does PGE2 recruit cells to the local inflammatory site, but it also can affect their 

function. With regards to NK cells, PGE2 can suppress their ability to respond to IL-12 and IL-15 (Joshi 

et al., 2001; Walker and Rotondo, 2004), which results in suppressed cytolytic function (Bankhurst, 1982; 

Goto et al., 1983), and inhibit NK cell production of IFNγ, which is used to help DC cells induce Th1 and 

cytotoxic T cell responses (Mailliard et al., 2005). PGE2 can reduce phagocytosis and release of 

lysosomal enzymes by granulocytes (Smith, 1977).  

PGE2 is a potent suppressor of T cell function. PGE2 increases intracellular cAMP levels, which 

then suppresses IL-2, IFNγ, and TNFα production (Dinarello, 2007; Dinarello, 2010). PGE2 not only 

inhibits IL-2 production (Walker et al., 1983) but also the expression of the IL-2 receptor and JAK3 

needed for IL-2 responsiveness by T Cells (Rincón et al., 1988, Kolenko et al., 1999), thus suppressing T 

cell activation and proliferation. DCs that mature in the presence of PGE2 are characterized with a 

phenotype of impaired ability to induce cytotoxic T lymphocytes, Th1, and NK cell mediated immunity 

(Kaliński et al., 1998; Kaliński et al., 1999; Gustafsson et al., 2008) but instead promote Th2 responses 

(Kaliński et al., 1999). PGE2 is able to suppress production of the Th1 polarizing cytokine IL-12 in 

monocytes (van der Pouw Kraan et al., 1995) and DCs (Kaliński et al., 1997; Kaliński et al., 1998) and 

can suppress IL-12 receptor expression and responsiveness (Wu et al., 1998). More directly, PGE2 

inhibits Th1 IFNγ production but does not affect Th2 cytokines, IL-4 and IL-5, by CD4+ T cells (Betz 

and Fox, 1991; Snijdewint et al., 1993). PGE2 can cause development of Th17 cells through suppression 

of IL-12, which is inhibitory to Th17 polarization and by enhancing IL-23, which promotes Th17 
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polarization (Kahyrullina et al., 2008). The PG also increases IL-17 production and augments IL-6 

production (Calder, 2003; Dinarello, 2007; Dinarello, 2010). While Th17 cells are inflammatory, PGE2 

also promotes the development of Tregs from naïve T cells (Baratelli et al., 2005) and the interaction of 

DCs with Tregs (Muthuswamy et al., 2008), which may promote Treg expansion (Banerjee et al., 2006). 

PGE2 can also affect chemokine expression at the inflammatory site so that pro-inflammatory type MΦs, 

cytotoxic T lymphocytes, NK cells, and Th1 cells are not attracted to the area (McIlroy et al., 2006; 

Gustafsson et al., 2008; Muthuswamy et al., 2008; Van Elssen et al., 2011), but Th2 and Tregs cells are 

attracted (McIlroy et al., 2006; Muthuswamy et al., 2008).   

Neutrophils are usually the first responders to arrive at the site of an invading pathogen (Sadik et 

al., 2011). They are recruited from the vasculature to the site of pathogen invasion to aid in containing 

and clearing the pathogen (Chiang et al., 2012). To get neutrophils to the inflammation site they must be 

“captured” by the vascular endothelium, transverse into the tissue, and then migrate to the inflammation 

site (Sadik et al., 2011). Neutrophils phagocytose pathogens and destroy them in phagocytic vacuoles 

using protease enzymes housed in granules (Segal, 2005). Due to their destructive nature they can 

potentially cause tissue damage; therefore, recruitment and activity of neutrophils must be regulated. 

There are several chemoattractants that have been identified to recruit neutrophils to the site of infection 

including CXCL8, IL-17, IL-37, leukotriene B4 (LTB4), platelet activating factor (PAF), and complement 

components C5a and C3a (Sadik et al., 2011). Neutrophils are made in the bone marrow and will move 

out into the periphery in response to the hematopoietic cytokine G-CSF during acute inflammation. 

PAMPs and DAMPs will activate tissue resident sentinel cells (MΦ, mast cells) or stromal cells to release 

PIMs and neutrophil chemoattractants (chemokines and lipid mediators (LTB4 and PAF)) (Arancibia et 

al., 2007; Borregaard, 2010; Williams et al., 2011).  

In order for neutrophils to exit the blood stream and migrate to the injury/inflammation site, 

adhesion molecules must be displayed by the endothelial cells neighboring the area. Neutrophils will 

engage in a sequence of physical interactions with endothelial cells that can be referred to as the 

leukocyte adhesion cascade (Williams et al., 2011) and includes rolling, activation, adhesion 

strengthening, and then diapedesis (Murphy, 2012); events that are orchestrated by PGE2, leukotrienes, 

adhesion molecules, and chemokines (Calder, 2003; Phillipson et al., 2006; Wegmann et al., 2006; Lou et 

al., 2007; Borregaard, 2010; Sadik et al., 2011; Murphy, 2012). Lipid mediators such as LTB4 usually act 

at the start of neutrophil recruitment and at the local site of inflammation as they are rapidly produced but 

have a short half-life. Chemokines, on the other hand, are produced slower (as they are often regulated 

transcriptionally and their release is subject to post-translational regulation) and have a longer half-life 

making them suited to be used later in recruitment cascades and at longer distances (Sidak et al., 2011). In 
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tissue, the main job of neutrophils is thought to be phagocytosis; however, in peripheral tissues they can 

release chemokines, cytokines, and lipid mediators (Scapnin et al., 2000; Kasama et al., 2005; 

Borregaard, 2010) contributing to biological mediator production at the inflammation site. While a single 

neutrophil cannot produce the same quantity of mediators as other immune cells (ex: MФ) due to their 

sheer number at the inflammation site their mediator production is significant (Kasama et al., 2005; Chou 

et al., 2010). In producing these mediators, neutrophils can recruit additional neutrophils to the site, aid in 

orchestrating the progression of an acute inflammatory response from a predominantly neutrophilic 

infiltrate to a monocytic one (Soehnlein et al., 2009), and participate in the resolution of inflammation 

through the production of specialized pro-resolving mediators (SPMs) through sequential steps involving 

endothelial cells and MΦs in addition to neutrophils (Serhan and Savill, 2005; Ariel et al., 2006; 

Borregaard, 2010). When MΦs phagocytosis apoptotic neutrophils they decrease their production of IL-

23, this leads to a decrease in production of IL-17 from Th17 cells and consequently less G-CSF is 

produced from fibroblast and endothelial cells in the area to stimulate neutrophil production in the bone 

marrow (Borregaard, 2010).  

Murine Treg cells have been reported to express several TLRs including TLR 4, 5, 7, and 8 

(Caramalho et al., 2003) and respond to the TLR4 ligand LPS in vitro. When cultured with LPS, murine 

Tregs cells proliferated, had increased survival, and increased suppressor function (Caramalho et al., 

2003). Activation of Tregs by microbial PAMPs does not stop the immune system from clearing an 

infection, but it may limit the magnitude of the immune response to protect against host damage and 

targeting self-antigens (Hori et al., 2002). The balance between effector and regulatory cells depends on 

the antigens being presented, thus with the onset of acute infection a high amount of nonself peptides are 

presented resulting in activation of naïve responder cells. As the pathogen is dealt with and the debris is 

cleared, the predominant type of antigen being presented shifts towards self-antigen being presented to 

Tregs. Activated Tregs can then work to control inflammation, restore homeostasis, and prevent the 

activation of naïve, autoreactive T cells by self-antigen presented in an inflammatory context (Caramalho 

et al., 2003).  

Ligation of PAMPs to TLRs on DCs leads to maturation of the APCs characterized by 

upregulation or MHCII and the co-stimulatory molecules CD80 and CD86, and the production of 

cytokines (Murphy, 2012). LPS matures DCs and stimulates them to produce PICs including IL-6, which 

has been shown to allow activation and function of pathogen specific effector T cells even in the presence 

of Tregs cells (IL-6 signaling allows effector T cells to overcome the suppressive effect of Treg cells) 

(Pasare and Medzhitov, 2003).  
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While the response of the innate immune system to a pathogen is not specific to the type of 

invader (inflammation, phagocytosis, complement), the adaptive immune system tailors its response to 

the type of pathogen (bacteria, virus, parasite) through subsets of T helper cells with different functions 

and through CD8+ T cells and B cells with antigen specific receptors (Murphy, 2012). The different T 

helper cell subsets are under the control of distinct lineage specifying genes that are activated in response 

to 1) CD4+ TCR recognizing antigen presented by an APC, 2) interaction between co-stimulatory 

molecules between the T cell and APC, 3) specific cytokines released by the APC (Murphy, 2012). An 

APC producing IL-12 and IFNγ when presenting antigen to a naïve CD4+ T cell will cause the 

transcription factors STAT4 and T-bet to become activated leading to a Th1 cell that will produce IL-2 

and IFNγ while aiding in virus elimination. An APC producing IL-4 and IL-2 will cause the transcription 

factors STAT6 and GATA3 to be produced by a naïve CD4+ T cell turning it into a Th2 call that will aid 

in eliminating parasites and produce the cytokines IL-4, IL-5, and IL-10. Naïve CD4+ cells are polarized 

towards a Th17 phenotype in the presence of IL-17, IL-6, IL-21, and IL-23 from the APC which activate 

the transcription factors STAT3 and RORγt. Th17 cells are a pro-inflammatory T helper cell subset that 

produce IL-17 that recruits neutrophils to the site of infection. Treg cells are polarized in response to the 

cytokines TGFβ and IL-2 from the APC and the transcription factors STAT5 and Foxp3. Tregs have 

suppressive functions and produce TGFβ and IL-10 (Reiner, 2007; Murphy, 2012) Tregs can switch to a 

Th17 phenotype in the presence of PICs (Koenen et al., 2008), but this switch can be suppressed by IDO 

(Baban et al., 2009).   

Fever  
Fever is an upward resetting of an individual’s temperature “set point” (threshold for the 

activation of thermal responses) in response to infection (Cooper et al., 1964). Recognizing PAMPS, 

leukocytes release endogenous pyrogens that affect the hypothalamic temperature sensors leading to a rise 

in the temperature set point. The individual is then in a hypothermic state since body temperature is below 

the new temperature set point. Effector mechanisms are activated to elevate body temperature including 

increased metabolic heat production, decreased heat loss by decreasing skin blood flow and evaporative 

heat loss, and behavioral responses such as seeking an area of warmer temperature (Kluger, 1978).  

The major mediator of fever is PGE2 produced by brain vascular endothelial cells (Stitt, 1986; 

Engstrӧm et al., 2012; Wilhelms et al., 2014). The lipid effector is produced in response to pyrogenic 

cytokines and activates neurotransmitters that raise core body temperature (Evans et al., 2015). Pyrogenic 

cytokines (IL-1, IL-6, and TNFα) are produced in response to bacterial products, toxins, or the microbes 

themselves at the site of infection and travel through the circulation to the brain vascular where they are 

either actively transported across the blood-brain barrier or through passive transport cross into the brain 
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through fenestrated capillaries in the circumventricular organs (Netea et al., 2000; Evans et al., 2015). 

LPS may also be able to induce fever by stimulating PIC production by endothelial cells in 

circumventricular organs (Netea et al., 2000). Pathogenic stimuli also cause peripheral PGE2 production 

by hematopoietic cells that can travel through the blood-brain barrier and initiate a fever response (Netea 

et al., 2000; Evans et al., 2015). 

The cytokines IL-1 and TNFα are produced initially, and both cytokines can then stimulate IL-6 

production. All 3 cytokines work to stimulate PGE2 production (Netea et al., 2000; Evans et al., 2015). 

The systemic or locally produced pyrogenic cytokines act on brain endothelial cells to induce synthesis of 

the enzymes COX-2 and prostaglandin E synthase 1 resulting in PGE2 production (Engstrӧm et al., 2012; 

Wilhelms et al., 2014). IL-1 receptors mediating COX2 induction, and, thus, PGE2 synthesis, have been 

identified on brain endothelial cells within the median preoptic nucleus region of the hypothalamus and 

signal via the p38 MAPK and c-Jun pathway (Konsman et all, 2004; Ching et al., 2007). Il-6 binds to IL-

6Rα on brain endothelial cells inducing COX2 expression and PGE2 synthesis via the STAT3 signaling 

pathway (Eskilsson et al., 2014). To induce fever, PGE2 binds to the PGE2 receptor 3 (EP3) expressed by 

thermoregulatory neurons in the median preoptic nucleus region of the hypothalamus (Ushikubi et al., 

1998; Lazarus et al., 2007). Neurons expressing EP3 trigger the sympathetic nervous system to release 

noradrenaline which increases thermogenesis in brown adipose tissue and reduces passive heat loss in 

extremities by inducing vasoconstriction. Acetylcholine also is released, which increases overall 

metabolic rate and stimulates muscle myocytes to induce shivering (Hasday et al., 2014; Evans et al., 

2015).  

In moderation, an elevation in body temperature is beneficial in that it inhibits bacterial growth, 

increases bactericidal activity of innate immune cells, causes leukocyte mobilization, and stimulates acute 

protein synthesis, allowing the host to clear the infection and survive (Kluger, 1978; Netea et al., 2000). 

Specifically, fever-range temperatures increases neutrophil recruitment to local sites of infection and 

enhances respiratory burst, a bacteriolytic mechanism of neutrophils (Evans et al., 2015). Phagocytic 

activity of MΦs and DCs are increased with heat as well as their response to pathogens through 

upregulation of TLR2 and TLR4. Heat also increases expression of MHC I, MHC II, and co-stimulatory 

molecules (CD80 and CD86) by mature DCs and augments secretion of Th1 polarizing cytokines (IL-12, 

TNFα) and CC-chemokine receptor 7 (CCR7) dependent migration through afferent lymphatics to 

draining lymph nodes; thus increasing their potential to sense pathogens and then present antigen to naïve 

T cells.   
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Several chemokines contain binding sites within their promoter regions for heat-inducible 

transcription factor heat shock factor protein 1 (HSF1) including chemokines that recruit neutrophils, NK 

cells, monocytes, CD4+ and CD8+ T cells (CXCL8, CXCL9, CXCL10, CXCL11, and CXCL12) (Hasday 

et al., 2014), suggesting fever aids in infiltration of immune cells to infection sites.  Heat also functions to 

increase release of immunomodulatory molecules such as cytokines, NO, and heat shock protein 70 

(Evans et al., 2015). While febrile temperatures initially increase PIC production by MΦs at the 

inflammatory site, heat also dampens cytokine production after MΦs become activated. This is a result of 

elevated temperature reducing transcription of genes for PICs through repressive activities of the HSF1. 

In addition, there is reduced recruitment of NF-κB to promoter regions of cytokine encoding genes and 

reduced cytokine mRNA stability (Evans et al., 2015).  

Acute Phase Response 
An acute phase response (APR) is a nonspecific reaction with the goal of restoring homeostasis 

(Ceciliani et al., 2002; Murata et al., 2004; Gruys et al., 2005; Cray et al., 2009). The APR is part of the 

innate immune response and can be activated by infection, stress, and inflammation (Murata et al., 2004; 

Cray et al., 2009). Local response to these triggers is production of PICs that act at the level of the central 

nervous system (CNS), autonomic nervous system (ANS) and the adrenal gland. PICs acting at the level 

of the CNS on the HPA axis leads to behavior changes like disinterest in social activities as well as 

anorexia, adipsia, and lethargy (Tracey, 2002; Gruys et al., 2005; Karrow, 2006). Activation of the ANS 

can modulate the APR by depressing the release of the cytokines by inflammatory cells and by affecting 

hypothalamic responses (Karrow, 2006). Cortisol released from the adrenal gland works systemically to 

cause leukocytosis and alter acute phase protein (APP) production. 

Systemic effects that compose the APR include fever, leukocytosis, increased cortisol, decreased 

thyroxine concentrations, metabolic changes in lipolysis, gluconeogenesis, and muscle catabolism, 

decreased serum iron and zinc concentrations and changes in APP levels. There can be decreases in the 

APPs albumin and transferrin (negative APPs), while there can be increases in the APPs C-reactive 

protein (CRP), serum amyloid A (SAA), haptoglobin (Hp), alpha-1-acid glycoprotein (AGP), 

ceruloplasmin (Cp), and fibrinogen (positive APPs). APPs are synthesized primarily by hepatocytes when 

stimulated by the PICs IL-6, IL-1, IFN-γ, or TNF-α and then released into the bloodstream (Heinrich et 

al., 1990; Petersen et al., 2004; Murata et al., 2004; Gruys et al., 2005) but also can be made by other 

tissues including the endometrium (Chapwanya et al., 2013). APPs have various functions such as 

proteinase inhibitors, enzymes, metal-binding proteins, transport proteins, and coagulation factors. These 

functions are important in mediating immune function, pathogen trapping, preventing replication of the 
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pathogen, tissue repair, and remodeling (Ceciliani et al., 2002; Murata et al., 2004; Petersen et al., 2004;  

Karrow, 2006;  Cray et al., 2009; Thatcher et al., 2010).  

There are major, moderate, and minor APPs. Major APPs have low serum concentrations 

(<1µg/L) in healthy animals that increase by 100-1000 fold when activated while moderate APPs increase  

by 5-10 fold when activated (Eckersall and Bell, 2010). Major APPs tend to show an early and large 

increase in concentration with a rapid decline while moderate APPs tend to require more time to increase 

and return to normal values. There can be species specific production and response of APPs. The major 

APPs in both cows and sheep are haptoglobin (Hp) and serum amyloid A (SAA) (Cray et al., 2009; 

Lecchi et al., 2012; Chapwanya et al., 2013).  

The APR prevents microbial growth while some APPs opsonize microorganisms and activate 

complement, scavenge cellular remnants and free radicals, neutralize proteolytic enzymes, or modulate 

the immune response (Gruys et al., 2005).  Activities of SAA include being chemotaxic to monocytes, 

polymorphonuclear cells, and T cells, scavenging potentially dangerous oxidized cholesterol, and 

opsonization of bacteria (Petersen et al., 2004; Hari-Dass et al., 2005; Cray et al., 2009). Haptoglobin 

binds free hemoglobin reducing iron availability for bacterial growth and prevents pro-oxidant activity of 

hemoglobin on tissues (Allison, 1958; Eaton et al., 1982; Petersen et al., 2004; Cray et al., 2009).  

Upon activation of the immune system the PICs IL-1, IL-6 and TNF-α are produced. All 3 

cytokines have autocrine activities, stimulating their own production. In addition, IL-1β and TNFα 

stimulate each other and both stimulate IL-6.  IL-6 then inhibits the secretion of TNFα and IL-1β (κ; 

Ceciliani et al., 2002). These cytokines activate the HPA axis as seen by increases in CRH, ACTH, and 

GCs (Heinrich et al., 1990; Turnbull and Rivier, 1999). Tκα works by synergistically enhancing IL-1 

induced ACTH and/or GC secretion (Turnbull and Rivier, 1999), and both amplify and prolong the 

inflammatory response by activating surrounding cells to release more IL-1 and inflammatory mediators 

including eicosanoids, NO, and ROS (Tracey, 2002).  In addition, IL-1β and IL-6 work together to induce 

the fever response associated with the APR. GCs inhibit the production of all 3 cytokines to prevent 

overproduction; however TNFα has the greatest sensitivity to this suppression while IL-6 is fairly 

resistant to this suppression. IL-6 acts synergistically with GCs to stimulate hepatic APP production 

(Heinrich et al., 1990; O’Conner et al., 2000; Ceciliani et al., 2002; Murata et al., 2004) and to down 

regulate cytokine production by monocytes and MΦs (Baybutt and Holsboer, 1990; Ceciliani et al., 2002; 

Murata et al., 2004).   

The APR involves activation of the HPA axis and production of GCs which can have anti-

inflammatory effects through regulation of gene transcription. Binding to intracellular steroid receptors, 
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the ligand-receptor complex migrates into the nucleus to bind to specific DNA sequences that oppose the 

function of the transcription factors AP-1 and NF-κB. This will prevent transcription of pro-inflammatory 

genes such as TNF-α, pro-IL-1β, and IL-6. Reduced TNF-α and IL-1β affects normal downstream actions 

of these cytokines such as expression of the enzymes COX2 and iNOS as well as expression of 

intracellular adhesion molecule-1 (ICAM-1). GCs also suppress expression of IFNγ and inflammatory 

genes for cytokines involved in T cell growth and T helper cell polarization (IL-2, IL-4, IL-15, IL-17). 

While decreasing expression of PICs, GCs increase expression of anti-inflammatory molecules, like IL-10 

and the IL-1 type 2 decoy receptor (Dinarello, 2010).  

Acute phase proteins are considered a nonspecific diagnostic tool; while measurements cannot be 

used as a marker for a particular disease, APP levels provide evidence that an individual has subclinical 

inflammation or an infection and can be used in prognosis and in monitoring response to therapy 

(Petersen et al., 2004; Gruys et al., 2005; Eckersall and Bell, 2010). APPs have been used as biomarkers 

for monitoring inflammation, infection, and trauma in humans for decades (Eckersall and Bell, 2010) and 

in recent years have progressively been used as biomarkers in veterinary medicine in companion and farm 

animals (Petersen et al., 2004; Murata et al., 2004; Cray et al., 2009; Eckersall and Bell, 2010).  

Inflammasome  
Due to its highly pro-inflammatory nature and potential to damage host cells extra precaution is 

taken when activating IL-1β. In order for IL-1β to be synthesized, processed to its active form and 

secreted by MΦ, the cell must respond to two distinct stimuli and an inflammasome must form (Meylan et 

al., 2006; Sutterwala et al., 2006). NOD-like receptors (NLRs) are a family of PRRs that are mostly 

expressed in the cytosol; NALP3 is a member of the NLR subfamily NALP (Martinon et al., 2009). Upon 

activation, the NALP3 inflammasome forms from a combination of the NALP3 protein, CARDINAL., 

ASC (apoptosis-associated speck-like protein containing a CARD (caspase recruitment domain)), and 

caspase-1. The NALP3 protein (also known as cryopyrin) is composed of an N-terminal pyrin domain 

(effector domain), carboxy-terminal ligand-sensing leucine rich repeats (LRRs), the central nucleotide 

domain NACHT (nucleotide-binding and oligomerization domain) (mediates oligomerization), and a 

NACHT-associated domain (NAD) (Meylan et al., 2006; Martinon et al., 2009). The adaptor molecule, 

ASC controls the activation of caspase-1 which cleaves two members of the IL-1 family of ligands, pro-

IL-1β and pro-IL-18 into their biologically active, secreted forms (Meylan et al., 2006; Sutterwala et al., 

2006; Dinarello, 2007; Dinarello, 2009; Schroder and Tschopp, 2010). Caspases are cysteine proteases 

that initiate or execute functions involved in inflammation or cell death, therefore, their function is tightly 

controlled by being synthesized as inactive zymogens that have to be activated by proteolytic cleavage 

(Martinon et al., 2009; Schroder and Tschopp, 2010)  
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The first signal needed to get IL-1β produced is an inflammatory signal recognized by a TLR, 

such as LPS binding to TLR4. Downstream of the TLR, NF-κB will be activated leading to transcription 

of the IL-1β gene, which is then translated into an immature pro-form of the cytokine (Meylan et al., 

2006; Sutterwala et al., 2006). The second necessary signal is one that will activate the inflammasome to 

form allowing caspase-1 to cleave the cytokine into its mature form which can then be secreted. The 

NALP3 inflammasome responds to some PAMPs such as peptidoglycan and its degradation products, 

bacterial RNA, and small antiviral compounds (Martinon et al., 2004; Kanneganti et al., 2006; Schroder 

and Tschopp, 2010). The NALP3 inflammasome also responds and becomes activated in response to 

DAMPs that cause K+ efflux resulting in low intracellular concentrations of potassium (Perregaux and 

Gabel, 1994; Meylan et al., 2006; Mariathasan et al., 2006; Pétrilli et al., 2007; Schroder and Tschopp, 

2010). This occurs when extracellular ATP binds the P2X7 receptor or in response to NAD+, bacterial 

toxins, or uric acid crystals (Perregaux and Gabel, 1994; Solle et al., 2001; Shi et al., 2003; Kahlenberg 

and Dubyak, 2004; Martinon et al., 2006; Kanneganti et al., 2006; Kawamura et al., 2006).  

Lipopolysaccharide does not activate the NALP3 inflammasome (Martinon et al., 2004; 

Mariathasan et al., 2006), however, in combination with DAMPs that do, LPS leads to the production of 

mature IL-1β (Meylan et al., 2006; Mariathasan et al., 2006; Sutterwala et al., 2006). TLRs agonists (ex: 

LPS) induce pro-cytokine synthesis and DAMPS (ex: extracellular ATP) stimulate caspase-1-dependent 

cleavage and secretion of the active form of IL-1β and IL-18 (Mariathasan et al., 2006; Sutterwala et al., 

2006). ATP induced K+ efflux through P2X7 signaling causing an increase in intracellular Ca2+ may also 

be necessary for activation of active phospholipase C and calcium dependent PLA2 needed for exocytosis 

of IL-1β containing lysosomes (Andrei et al., 2004). Phospholipases act on phospholipids in membranes 

to produce lipid metabolites that are involved in the final stages of membrane fusion (Goñi and Alonso, 

2000; Brown et al., 2003). 

It was suggested that TLR signaling might also be required for expression of some of the 

inflammasome components, since although ATP was required for caspase-1 activation, ATP by itself 

without LPS priming did not activate caspase 1 (Mariathasan et al., 2006; Sutterwala et al., 2006). Indeed, 

Bauernfeind et al (2009) reported that NF-κB activation by TLR agonists or PICs (TNFα) is required for 

gene transcription of Nlrp3. The necessity of an extracellular signal that leads to NF-κB activation to get 

transcription of NLRP3, pro-IL-18 and pro-IL-1β combined with a host danger signal to activate NLRP3 

allowing for inflammasome assembly may provide insurance that IL-1β and IL-18 are produced when 

pathogenic bacteria are present and not in response to commensal bacteria (Meylan et al., 2006; 

Bauernfeind et al., 2009). Caspases also have functions related to forms of cell death. At low levels of 
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caspase-1 activation, the protease functions to stimulate cell survival responses and control intracellular 

growth in addition to forming active PICs. However, if activation of caspase-1 crosses a threshold level 

the MΦ undergoes pyroptosis, a form of cell death characterized by rapid plasma-membrane rupture and 

release of proinflammatory intracellular contents (Bergsbaken et al., 2009).  With this form of cell death 

caspase-1 is responsible for the formation of pores in the plasma membrane that results in loss of control 

of cellular ionic gradients, a net increase in osmotic pressure, water influx that causes the cell to swell and 

ultimately osmotic lysis that releases inflammatory intracellular mediators (Fink and Cookson, 2006; 

Bergsbaken et al., 2009). Neutrophils are able to process the IL-1β precursor independent of caspase-1 

using other enzymes. In these cells, proteinase-3 can cleave pro-IL-1β into its active form (Guma et al., 

2009; Joosten et al., 2009).   

Primary sources of IL-1β are innate immune cells including tissue MΦs, blood monocytes, and 

DCs, however, NK and B lymphocytes can also produce the cytokine (Dinarello, 2009). IL-1β induces 

gene expression and synthesis of COX2, PLA2, and iNOS resulting in production of PGE2, NO, and 

platelet activating factor (PAF). These mediators are involved in fever, lowered pain threshold, 

vasodilation, and hypotension (Dinarello, 2009). IL-1β also induces the expression of adhesion molecules 

by mesenchymal and endothelial cells to aid in the infiltration of immune cells into the inflammatory area 

(Dinarello, 2009). Cytokines exist in “cascades” and tend to act in a synergistic fashion (Dinarello, 2010). 

In general, PICs will function to induce other PICs, feedback to induce each other and stimulate further 

expression of themselves to increase inflammatory cytokine expression. IL-1β will stimulate production 

of other cytokines (IL-6, IL-17) and APPs (Dinarello, 2009). IL-1β is involved in IL-17 production by 

stimulating production of IL-6 and IL-23; Th17 polarizing cytokines that activate STAT3 which then 

induces the Th17 transcription factor RORγt (Dinarello, 2009; Murphy, 2012). IL-17 is chemoattractant 

to neutrophils and MΦs and has also been shown to stimulate the production and release of IL-1β from 

primary human blood monocytes (Dinarello, 2009; Dinarello, 2010; Murphy, 2012).  

Inflammasomes are also responsible for cleavage of pro-IL-18 into its mature form, another PIC. 

IL-18 in conjunction with IL-12 induces IFNγ production by other immune cells and naïve T cells to 

polarize towards a Th1 phenotype. With regards to IFNγ production, IL-18 and IL-12 signaling leads to 

activation of transcription factors that induce transcription of IFNγ. Working through a signaling pathway 

with similar components to TLR signaling, IL-18 activates MyD88, IRAK (IL-1 receptor-associated 

kinase) proteins, and TRAF6 (TNF receptor-associated factor) to activate p38 MAP, AP-1 and cause 

translocation of NF-κB into the nucleus. IL-12 leads to activation of STAT4 and AP-1 (Robinson et al., 

1997; Nakanishi et al., 2001). These transcription factors bind the promoter region of IFNγ and together 

cause gene transcription (Nakanishi et al., 2001). Th1 (but not Th2) cells express IL-18Rα (Robinson et 
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al., 1997; Yoshimoto et al., 1998; Xu et al., 1998) and IL-18 induces cell proliferation of Th1 cells in 

addition to acting as a costimulant molecule to augment production of IL-2, IL-2Rα, and GM-CSF 

production by these cells (Robinson et al., 1997; Yoshimoto et al., 1998). IL-18 (along with IL-2) in the 

absence of IL-12 cause naïve T cells to polarize towards a Th2 phenotype and production of IL-4 and IL-

13 (Nakanishi et al., 2001).  

Because IL-1 and IL-18 have such potential to cause host damage with their inflammatory nature, 

not only is their production/activation tightly regulated but there are specific mechanisms to control their 

function once they have been secreted to prevent runaway inflammation. IL-1Ra is a receptor antagonist 

that binds the IL-1 receptor with greater affinity than IL-1, thus reducing IL-1β function. IL-18 binding 

protein (IL-18BP) is an endogenous neutralizer of IL-18 activity as it has greater affinity for IL-18 than 

the IL-18 receptor has for the cytokine (Novick et al., 1999; Dinarello, 2009).  

Lipopolysaccharide  
Lipopolysaccharide (LPS) is a component of gram negative bacteria cell walls and is a PAMP for 

host immune cells to recognize pathogens. LPS will directly activate monocytes/ MΦs to produce PICs 

(TNF-α, IL-1β, IL-6, IL-8), eicosanoids (PGE2), NO, and MMPs (Calder, 2003). LPS will induce the 

expression of adhesion molecules (ICAM-1, VCAM-1, E-selectin) by endothelial cells and leukocytes 

which are needed for the movement of cells into the inflammatory/infected site (Calder, 2003). The 

cytokines and eicosanoids produced will regulate the whole-body response to infection/injury (fever, pain 

sensitivity) (Calder, 2001). While infections need to be cleared to protect the host, over activation of the 

PRR pathways and production in PICs is detrimental to pregnancy. Neutralization of LPS or blockage of 

TLR4 signaling has been shown to prevent fetal loss in murine pregnancy (Friable et al., 2011).   

Endotoxins can decrease embryo cleavage rates, blastocyst formation and impair implantation, 

resulting in embryonic loss (Deb et al., 2004). LPS mediates its biological effects mostly through PICs. 

While inflammatory cytokines and growth factors play a role in blastocyst development and implantation, 

the quantity and timing of their expression must be tightly controlled, any disturbance in the level of 

expression at the feto-maternal interface can cause embryonic loss (Deb et al., 2004; Agrawal et al., 

2013a). Cell adhesion molecules, cytokines, growth factors, endometrial epithelial integrins, MMPs, PGs, 

and COX-2 are important for successful implantation playing roles in tissue remolding and regulation of 

trophoblast invasion. Expression of these molecules by uterine and trophoblast cells is regulated by 

cytokines and growth factors (IGF, TGF, IL-1, IL-6, TNF) (Lim et al.,, 1999; Bischof et al., 2000; Dey et 

al., 2004).  
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The antifertility effects of LPS can be attributed to modulation of the synthesis and secretion of 

cytokines and growth factors at the feto-maternal interface altering preimplantation embryonic growth 

and development along with appropriate inflammatory reactions at the implantation site. Epithelial and 

stromal cells have been shown to respond to LPS in vitro by phosphorylation of MAPK and nuclear 

translocation of NF-κB, secretion of PGF2α, PGE2, IL-6, CXCL8, and increased expression of 

antimicrobial peptides (MUC1, lingual antimicrobial peptide, tracheal antimicrobial peptide) (Herath et 

al., 2006; Davies et al., 2008; Cronin et al., 2012). Changing the levels and timing of production of 

implantation relevant cytokines can lead to preimplantation embryonic loss or implantation failure (Deb 

et al., 2004). For example, IL-1 α and β binding to their receptors on the uterine endometrium trigger 

integrin expression during implantation (Simón et al., 1998) and IL-1 stimulates production of 

endometrial LIF, which is important for implantation (Dimitriadis et al., 2005; Agrawal et al., 2013a). 

Altered production of cytokines can accelerate or delay the uterine transition to the receptive state 

disrupting coordination between embryonic and uterine development. This can mean a receptive uterus 

and an implantation competent blastocyst do not occur at the same time.  In addition to altering uterine 

receptivity, LPS effects can make the developing blastocyst incompetent for implantation (Deb et al., 

2004). Endotoxin is known to induce embryonic death (Giri et al., 1990) and has been shown to increase 

DNA damage in preimplantation embryos associated with a decrease in heat shock proteins (HSP 90, 

HSP70, HSP60), decrease embryo cleavage rate, decrease blastocyst formation, and induce degeneration, 

fragmentation, and developmental arrest of the preimplantation embryo (Dumoulin et al., 1991; Randall et 

al., 1991; Dostál et al., 1996; Jaiswal et al., 2006; Jaiswal et al., 2013).   

Mediated by PICs, LPS can inhibit steroidogenesis, increase PG production, and cause luteolysis 

of the CL (Bagavandoss et al., 1990; Gorospe et al., 1992; Telleria et al., 1998). PG production can result 

in embryonic death by acting as an abortifacient and/or causing luteolysis of the CL and loss of P4 

production (Deb et al., 2004). Among other actions, P4 regulates uterine receptivity for blastocyst 

attachment and coordinates uterine-embryo interactions (Paria et al., 2002). In the mouse, LPS (given on 

day 0.5 p.c. ) decreased serum P4 while increasing serum E2 and this higher E2/P4 ratio during 

preimplantation led to unsuccessful pregnancy. The change is steroid levels may have prevented the 

uterus from becoming receptive or prevented the blastocysts from developing to the stage where they 

could implant (Agrawal et al., 2011) In addition, LPS given to mice was shown to alter the mRNA 

expression of both the P4 and E2 receptor in embryos and the uterus on preimplantation days which will 

affect the ability of the hormones to regulate implantation (Agrawal et al., 2013b). E. Coli endotoxin 

infusions (1.0 or 2.5 μg/kg over 6 hours) to first trimester cows caused an increase in PGF2α followed by a 

drop in P4 and pregnancy loss (Giri et al., 1990).  
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Bacterial Infections during Pregnancy  
The female reproductive tract has several anatomical barriers to block ascending microbes from 

reaching the uterus including the vulva, vagina, cervix, the stratified squamous epithelium of the vagina, 

and the columnar epithelium of the endometrium. As a second line of defense, the mucosa of the 

reproductive tract contains antimicrobial peptides and mucosal glycoproteins to neutralize bacteria and 

prevent them from reaching the epithelium and causing infection. The bovine endometrium contains the 

antimicrobial peptides β-defensins, lingual antimicrobial peptide, and tracheal anti-microbial peptide 

(Davies et al., 2008; Chapwanya et al., 2013). Gene expression for APPs has also been found in the uterus 

and may be involved in protection against infection (Lecchi et al., 2012; Chapwanya et al., 2013), 

however, the major producer of APPs is the liver in response to PICs. The female reproductive tract also 

contains the complement system which is involved in opsonization of infected cells to mark them for 

phagocytosis and killing of infected cells (Sheldon et al., 2014). If microbes surpass all the passive 

defense systems in the reproductive tract the result is infection.  

Apoptosis inducing cytokines, such as TNFα and IFNγ can cause pre-implantation embryonic 

loss or impair embryo development. TNFα has been seen in vitro to increase the percentage of apoptotic 

mouse blastomeres (Fabian et al., 2007) and IFNγ inhibits the embryotrophic factor GM-CSF (Robertson 

et al., 1992b). GM-CSF is produced by epithelial cells lining the oviduct and uterus around the time of 

conception in response to seminal fluid and is required for normal blastocyst development and fetal 

viability (Robertson, 2007; Sharkey et al., 2007). GM-CSF in the mouse has been reported to promote 

blastocyst formation and increase the number of viable blastomeres by inhibiting apoptosis and the stress 

response and facilitating glucose uptake (Robertson et al., 2001; Chin et al., 2009). With regards to 

generating fetal tolerance, GM-CSF plays a role in upregulating MHC-II and the co-stimulatory 

molecules CD80 and CD86 on APCs like DCs and macrophages and a deficiency in the cytokine impairs 

Ag presentation and T cell response to Ag (Moldenhauer et al., 2010). Paternal antigen must be processed 

and bound to an MHC II molecule to be presented to T cells by APCs and the co-stimulatory molecules 

are critical for stabilizing the peptide-MHC-TCR interaction to generate strong Ag-specific T cell 

responses (Murphy, 2012). Inadequate expression of these molecules by APCs in the reproductive tract 

after coitus will negatively impact Treg cell generation specific to paternal antigens and fetal tolerance. 

Therefore, a uterine infection around the time of conception is likely to prevent a successful pregnancy.  

Omega-3 Polyunsaturated Fatty Acids  

Omega-3 poly-unsaturated fatty acids (PUFA) are known to have anti-inflammatory effects for 

several reasons. They can effect eicosanoid production by displacing AA in cellular membranes (Jaudszus 

et al., 2013) reducing the availability of substrate for production of inflammatory PGs and LTs or by 
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competing with AA for the COX and lipoxygenase (LOX) enzymes. Alterations in the fatty acid 

composition of membranes can also modify membrane fluidity, lipid raft formation, and cell signaling. 

Inflammation is associated with LTs, PGs, and polymorphonuclear neutrophil (PMN) recruitment to the 

inflammatory site. Resolution of inflammation is associated with lipoxin (LX) biosynthesis and decreased 

PMN infiltration (Levy et al., 2001). During inflammation, AA can go through the COX pathway to 

produce PGs or the LOX pathway to produce LTB4. LTB4 increases vascular permeability, is a 

vasoconstrictor, enhances local blood flow, is chemoattractant to leukocytes, induces release of lysosomal 

enzymes, enhances ROS generation and production of PIC (TNFα, IL-1β, IL-6). (Calder, 2003; Afonso et 

al., 2012).  

 Omega-3 FAs inhibit AA metabolism by COX1 and shift the vascular balance to higher levels of 

PGI2 by coupling endothelial COX2 with PGI synthase (PGIS) (Norris and Dennis, 2012; Dennis and 

Norris, 2015). Possible physiological responses of PGI2 binding to the IP receptor include decreased 

platelet aggregation, hyperalgesia, vasodilation, increased IL-10 levels, and decreased TNFα levels 

(Shinomiya et al., 2001; Dennis and Norris, 2015). Omega-3 PUFAs can also shunt AA from the 

inhibited COX pathway into the 5-LOX pathway which produces LTs (involved in inflammation) as well 

as lipoxins, resolvins, protectins (resolve inflammation) (Dennis and Norris, 2015). Omega-3 PUFAs also 

modulate inflammation independent of eicosanoid production by altering gene expression of PICs and 

adhesion molecules (on endothelial cells and leukocytes) (Calder, 2003; 2011). Omega-3 PUFAs can be 

made into eicosanoids by the PTGS and LOX enzymes but these molecules have anti-inflammatory 

effects and have been termed specialized pro-resolving mediators (SPMs) (Bannenberg and Serhan, 2010; 

Serhan and Petasis, 2011). Cytoplasmic phospholipase A (cPLA2) acts on phospholipids to release free 

PUFA, including AA, EPA, and DHA. A diet with high amounts of ω-3 PUFAs will result in cellular 

membranes with more ω-3 PUFAs and less AA which will affect the PUFA released by cPLA2 and the 

subsequent eicosanoids produced, whether pro-inflammatory PGs and LTs or anti-inflammatory SPMs.  

Resolution of Inflammation and Specialized Pro-Resolving Mediators 
Specialized pro-resolving mediators (SPMs) (di- and trihydroxylated metabolites of long chain 

PUFAs) are eicosanoids and docosanoids produced by LOX, COX, and cytochrome P450 enzymes 

working alone or in combination. SPMs include LXs (metabolites of the ω-6 FA AA), resolvins (Resolvin 

E series: COX2 derived metabolites of the ω-3 FA, EPA; Resolvin D series: 15-LOX derived metabolites 

of the ω-3, DHA; Resolvin Dn-3DPA: 15-LOX derived metabolite of the ω-3 FA, DPA; Resolvin T: COX2 

derived metabolite of the ω-3, DPA), protectins (15-LOX derived metabolites of the ω-3, DHA), and 

maresins (MΦ mediators in resolving in inflammation; MaR1 and MaR2 derived from DHA) (Serhan, 

2007; Serhan et al., 2014;Weylandt, 2016).  
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Special pro-resolving mediators are produced at specific temporal intervals to resolve 

inflammation and aid in the return to a state of homeostasis (Bannenberg and Serhan, 2010). SPMs 

accelerate bacterial clearance (Chiang et al., 2012), promote recruitment and activation of monocytes, 

promote neutrophil clearance (efferocytosis: “phagocytic clearance of apoptotic cells before they undergo 

secondary necrosis”), inhibit neutrophil diapedesis, inhibit PIC expression, and turn on anti-inflammatory 

cytokine expression (Schwab et al., 2007; Serhan and Petasis, 2011; Colas et al., 2014; Serhan, 2014; 

Serhan et al., 2014; Dennis and Norris, 2015). The process of efferocytosis increases SPM biosynthesis 

by PMN, including the resolvins D2, and E2 (Norling et al., 2011). Apoptotic PMNs phagocytosed by 

MΦs induce generation of SPMs (LXA4, RvE1, PD1) by the MΦ which further increases phagocytic 

activity and regulates chemokine/cytokine production (↑IL-10, ↓IL-6 and IFNγ) (Schwab et al., 2007). 

Maresin 1 (MaR1), is produced by MΦs when its biosynthetic pathway is activated during phagocytosis, 

it functions to reduce neutrophil migration and increase phagocytosis by MΦs (Serhan, 2007; Serhan and 

Petasis, 2011). MΦs with the M2 phenotype produce the SPMs MaR1 and lipoxin A4 (LXA4) and lower 

amounts of LTB4 and PGs compared to M1 MΦs (Serhan and Chiang, 2013), fitting with M2 MΦ’s role 

of tissue repair and inflammation resolution.   

The transiently and temporal specific production of SPMs is brought about by the activation of 

the biosynthetic pathways to produce SPMs through interaction of inflammatory leukocytes with 

endothelial cells, epithelial cells, and MΦs at the inflammation site (Bannenberg and Serhan, 2010). The 

switch in production of LT to LX (pro-inflammatory to resolution) is mediated by first-phase eicosanoids. 

PGE2 and LTB4 are produced during inflammation, LTB4 recruits neutrophils to the inflammatory site 

whereas PGE2 sets up the resolution phase by amplifying LX expression. PGE2 (and PGD2) accomplishes 

this by increasing gene expression for 15-LOX (which produces LXA4) through a mechanism that 

increases intracellular cAMP, initiating RNA processing of the 15-LOX transcript in PMNs, and 

inhibiting expression of 5-LOX (Levy et al., 2001). As neutrophils migrate into the tissue they will 

encounter PGE2 that initiates phenotypic changes by regulating gene expression (Levy et al., 2001). Once 

15-LOX is transcribed, activity may need to be induced by secondary exposure. Once active, neutrophils 

will produce LXs instead of LTs from AA and resolution will be initiated (Levy et al., 2001).    

Lipoxin A4 has been shown to inhibit neutrophil chemotaxis but enhance MΦ chemotaxis and 

stimulate MΦ phagocytosis of apoptotic neutrophils (Lee et al., 1989; Mitchell et al., 2002). LXA4 has 

also been shown to increase IL-10 which then inhibits TNFα (Souza et al., 2007). Both LTs and LXs are 

produced from AA in the LOX pathway. The PMN chemokine, LTB4, is produced from the 5-LOX 

pathway and also influences release of neutrophil granule products and superoxide anions (Borgeat and 
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Naccache, 1990). Lipoxins are a separate class of LOX generated eicosanoids that oppose the functions of 

LTs by working in an autocrine manner to regulate leukocyte function (Levy et al., 2001).  

Resolvins are produced and act locally by binding to G-protein coupled receptors to elicit their 

biological actions in the picogram-nanogram range (Serhan and Petasis, 2011; Chiang et al., 2012). 

Resolvin E1 (RvE1) binds to the ChemR23 receptor on monocytes and DCs reducing DC migration, 

decreasing IL-12 production, and enhancing macrophage phagocytosis (Arita et al., 2005; Ohira et al., 

2010). RvE1 also interacts with the BLT1 receptor. BLT1 is also the receptor for LTB4, signaling 

neutrophil survival, chemotaxis of neutrophils, and NF-κB activation. RvE1 blocks LTB4 from binding to 

the BLT1 receptor, thus stopping neutrophil infiltration and attenuating NF-κB activation. RvE1-BLT1 

interaction also promotes apoptosis of PMNs and clearance of apoptotic cells by macrophages (Arita et 

al., 2007; El Kebir et al., 2012).  

Special pro-resolving mediators also function through control of microRNAs to change leukocyte 

activity (Li et al., 2013). Binding to GPR32 ALX/FPR2, resolvin D1 (RvD1) upregulates miR-208a 

which increases IL-10 production. RvD1 also upregulates miR-219 causing decreased 5-LOX expression 

and thus decreased production of LTB4 while increasing 15-LOX expression and production of protectin 

D1 (Recchiuti et al., 2011; Krishnamoorthy et al., 2012; Fredman et al., 2012).  

Resolvins and protectins have been seen to control the magnitude and duration of inflammation in 

animal disease models (Schwab et al., 2007), to regulate inflammatory pain (Xu et al., 2010) and to 

increase animal survival (Serhan and Chiang, 2013). Resolution of an E. Coli infection in mice was 

associated with elevated levels of host protectin D1, resolvin D5 and D1 that enhanced bacterial killing 

and SPMs given to mice decreased the amount of antibiotics needed for microbial clearance (Chiang et 

al., 2012). Exogenous LXA4 was reported to increase survival in a sepsis rat model by decreasing levels 

of PIMs through reduction of NF-κB phosphorylation in MΦs. In addition, LXA4 decreased blood 

bacterial load by increasing recruitment of MΦs to phagocytosis the bacteria (Walker et al., 2011). LXs 

have also been reported to stimulate the production of bactericidal peptides by mucosal epithelia (Canny 

et al., 2002). Human Th2 cells have been reported to produce protectin D1 that reduces T cell migration, 

promotes T cell apoptosis, and decreases TNFα and IFNγ (Ariel et al., 2005). Exogenous protectin D1, 

along with RvE1 and LXA4 upregulate CCR5 expression on leukocytes that bind chemokines and 

facilitate leukocyte clearance and resolution of inflammation (Ariel et al., 2006). Dietary omega-3 PUFA 

in humans has been shown to be associated with increased plasma SPMs and Colas et al (2014) also 

reported increased phagocytosis of E. Coli in whole blood collected from volunteers that had taken 

capsules containing essential fatty acids (Mas et al., 2012; Colas et al., 2014). 
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The role of RvD1 in inflammation resolution was examined in a LPS-induced acute lung injury 

murine model (Wang et al., 2011; Liao et al., 2012). Pretreating mice with RvD1 before LPS increased 

survival, inhibited LPS induced recruitment of PMNs and mononuclear leukocytes and IL-6 and TNFα 

production in bronchoalveolar lavage fluids. RvD1 reduced the LPS-increase in COX-2, iNOS, NO, 

PGE2, and adhesion molecules. These affects are thought to be mediated at least in part through RvD1 

interacting with the LXA4 receptor and inhibiting the MAPK and NF-κB pathways (Wang et al., 2011). 

Liao et al (2012) also reported reduced leukocyte counts, TNFα and IL-6 in bronchoalveolar lavage fluids 

of mice treated with RvD1 before LPS. Based on staining they also reported reduced LPS-induced lung 

inflammation with RvD1. Their conclusion was RvD1 works at least in part by suppressing IκBα 

degradation and NF-κB nuclear translocation by a pathway partly dependent on PPARγ activation (Liao 

et al., 2012), although RvD1 has not been shown to directly interact with PPARγ (Krishnamoorthy et al., 

2010)  

Resolvin D2 (RvD2) promotes inflammation resolution by limiting PMN infiltration, enhancing 

phagocytosis of bacteria, and stimulating efferocytosis through binding of the GPR18 receptor (Chiang et 

al., 2015). Spite et al (2009) studied the role of RvD2 in inflammation resolution during microbial 

infection. They concluded that RvD2 reduces PMN infiltration to the inflammation site by affecting 

leukocyte-endothelial interactions by reducing platelet activating factor induced surface expression of 

adhesion molecules (L-selectin and integrin beta 2) by PMNs (Spite et al., 2009). In addition, RvD2 

stimulates local NO production at levels that have anti-adhesive effects instead of pro-inflammatory 

effects (Kubes et al., 1991; Spite et al., 2009) RvD2 also reduced complement (C5a) mediated PMN-

endothelial interactions and C5a stimulated extracellular superoxide generation. When they examined the 

effects of RvD2 in a murine sepsis model using cecal ligation and puncture they reported RvD2 reduced 

the amount of live aerobic bacteria in the blood and peritoneum 12 hours after the procedure. The amount 

of leukocytes and specifically PMNs that infiltrated into the peritoneum was significantly reduced. RvD2 

promoted phagocyte-dependent bacterial clearance and in vitro was seen to enhance MΦ phagocytosis. 

While enhancing bacterial clearance, RvD2 also reduced PICs (IL-6, IL-1β, IL-23, IL-17, TNF-α), the 

chemokine CXCL2 (secreted by monocytes and MФ, recruits polymorphonuclear leukocytes), and PIMs 

(PGE2 and LTB4) (Spite et al., 2009). Lastly, this group reported that when human PMNs were pre-

incubated with RvD2 before incubation with E. coli, the neutrophils had enhanced E. coli phagocytosis 

that was associated with an increase in intracellular ROS (Spite et al., 2009).   

Docosapentaenoic acid (DPA) is a 22 carbon PUFA with 5 double bonds and exists as two 

isomers, a ω-3 (22:5n-3) and as a ω-6 (22:5n-6) (Weylandt, 2016). The body can turn alpha-linolenic acid 

(ALA) (18:3 n-3) into EPA. EPA and AA can be converted into DPA; elongation of EPA (20:5n-3) will 
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give the ω-3 isomer of DPA (22:5n-3) while elongation followed by desaturation of AA (20:4n-6) will 

give the ω-6 isomer of DPA (22:5 n-6). Elongation of EPA (20:5n-3) followed by desaturation provides 

DHA (22:6n-3). (Dalli et al., 2013). Derivatives of both DPA isomers have been reported to have pro-

resolving effects with regards to inflammation (Weylandt, 2016).  

With regards to the ω-6 isomer, using the MΦ cell line RAW 265.7, the DPA derivatives (17S)-

hydroxy-docosapentaenoic acid (17-HDPAn-6) and (10,17S)-dihydroxy-docosapentaenoic acid (10,17-

HDPAn-6) and the DHA derivative 17(R/S)-hydroxy-docosahexaenoic acid (17-HDHA) were reported to 

increase phagocytosis by the MФ, decrease gene expression of TNFα and inducible NO synthase while 

increasing expression of the IL-1ra, suggesting polarization of MФ towards a M2 phenotype and 

inflammation resolution (Chiu et al., 2012). Derivatives of the ω-3 isomer of DPA include protectin D1, 

the D series resolvins (RvD) and the maresins (MaR). Mice given an intraperitoneal injection of zymosan 

(binds TLR2) after an intravenous injection of n-3 DPA derived products had reduced neutrophil 

recruitment, decreased IL-6 and decreased MCP-1 levels (measured in exudates) compared to mice 

receiving only zymosan (Dalli et al., 2013). In vitro studies showed that human neutrophils incubated 

with n-3 DPA products had reduced adhesion to TNFα activated endothelial cells and reduced chemotaxis 

towards an CXCL8 gradient while incubation of human MФ with n-3 DPA products before addition of 

zymosan increased phagocytosis (Dalli et al., 2013).   

The newly discovered 13-series DPA n-3 resolvins (RvT1, RvT2, RvT3, RvT4) also have anti-

inflammatory activities. They are produced by transcellular biosynthesis, where COX2 in endothelial cells 

produces the intermediate 13-HDPA which is then converted to RvT1, RvT2, RvT3, and RvT4 by 

lipoxygenation in neutrophils (Dalli et al., 2015). RvTs increased phagocytosis of E. coli, efferocytosis of 

apoptotic neutrophils and the production of ROS by human MΦs in vitro. Human Neutrophils exposed to 

RvT2 also had increased phagocytosis of E. coli and produced more ROS. RvTs blocked components of 

the inflammasome in MΦs, decreasing caspase-1 and IL-1β expression (Dalli et al., 2015). 

Administration of RvTs 2 hours after intraperitoneal E. coli inoculation in mice dose-dependently 

increased survival rates. Administration of RvTs right before inoculation protected mice from 

hypothermia, limited neutrophil recruitment to the inflammation site, increased bacterial phagocytosis, 

reduced MФ inflammasome activity (as seen be reduced expression of caspase-1 and IL-1β levels), and 

reduced systemic PGD2 and PGE2 levels (Dalli et al., 2015). The reduced PGs could be due to RvTs 

regulating inflammasome activity, as some types of inflammasomes have been reported to produce 

eicosanoids in response to TLR activation (von Moltke et al., 2012). 
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 Jones et al (2013a) reported that feeding pregnant rats a diet supplemented with ω-3 PUFAs 

increased maternal plasma ω-3 PUFAs, increased placental ω-3 PUFAs, reduced placental oxidative 

stress, and increased placental and fetal growth. Supplementation with ω-3 PUFAs also resulted in 

increased levels of LOX15b expression (enzyme driving initial step in resolvin and protectin formation) 

LOX5 expression (enzyme for final stages of resolvin production), resolvins, protectins, and their 

precursors in the labyrinth zone of the rat placenta (Jones et al., 2013b), demonstrating that the placenta is 

capable of producing SPMs and production can be increased with dietary ω-3 PUFA. Increases in 

placental resolvin and protectin levels may enable the placenta to better handle/resolve inflammation in 

response to an inflammatory challenge like infection.  

The biosynthesis of PUFA derived lipid mediators increases and changes with time. PGs and LTs 

are produced first to initiate inflammation but as time goes on there is increased recruitment of non-

inflammatory monocytes and MΦs and lipid class switching to SPMs that promote resolution (Serhan and 

Petasis, 2011). Dietary ω-3 PUFAs can increase the amount of available ω-3 PUFAs and accelerate the 

switch from pro-inflammatory PG and LT production to inflammation resolving SPMs.  

Resolution of inflammation is now considered a coordinated program of events initiated a few 

hours after the response begins. Acute inflammation is characterized by infiltration of granulocytes, with 

neutrophils being the first responders, followed by monocytes that mature into M1 MΦs in the 

inflammatory environment that then effect the functions of resident MΦs (Serhan and Savill, 2005). 

Resolution of inflammation involves stopping neutrophil infiltration into the inflammatory site, increasing 

monocyte/MΦ recruitment to the site to phagocytosis the pathogen and apoptotic neutrophils without 

increasing inflammatory mediator release, and the return of the tissue mononuclear cell population 

(lymphocytes and macrophages) to pre-infiltration numbers and phenotypes (M2 MФ) (Walker et al., 

2011).  

Even as the inflammatory response is being initiated, signaling pathways to terminate the 

response are being programmed. When granulocytes enter tissues they promote the switch of AA-derived 

PGs and LTs to LXs, which initiate the termination sequence. The lipid mediators being produced depend 

on the types of cells being encountered in the environment; neutrophils can interact with other leukocytes, 

platelets, endothelia, mucosal epithelia, interstitial cells, and fibroblasts (Serhan and Savill, 2005). PGE2 

and PGD2 produced at the inflammatory site switch on transcription of enzymes needed to make 

eicosanoids from AA other than PGs and LTs (Levy et al., 2001). Neutrophils respond to PGs by 

transcribing the gene for 15-LOX which leads to the temporal production of LXs from AA (Levy et al., 

2001).  
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Lipoxins halt neutrophil infiltration into inflammatory sites (Serhan et al., 1995) by reducing 

vascular permeability (Takano et al., 1998), promoting nonphlogistic infiltration of monocytes (Maddox 

and Serhan, 1996), stimulating MΦ to ingest apoptotic neutrophils (Godson et al., 2000) and reducing DC 

motility and IL-12 production (Aliberti et al., 2002). LXs initiate the termination sequence but they are 

not the only players, resolvins and protectins are formed from ω-3 PUFAs that are also involved in 

stopping neutrophil infiltration and neutrophil apoptosis (Serhan and Savill, 2005). As MΦs clean up the 

area by phagocytosing apoptotic cells they are stimulated to release anti-inflammatory (IL-10) and 

reparative mediators and stop producing PIM (TNFα, IL-1β, IL-8, GM-CSF, TxB2, LTC4) (Voll et al., 

1997; Fadok et al., 1998; Byrne and Reen, 2002). The process of phagocytosing apoptotic cells stimulates 

the production of TGFβ, PGE2, and PAF which may mediate the decrease in PIC production as the 

addition of these factors to LPS stimulated cells decreased cytokine production (Fadok et al., 1998). 

TGFβ has been shown, in vitro and in vivo studies, to be released by these MΦs which can then suppress 

proinflammatory signaling from TLRs (Byrne and Reen, 2002). Phagocytosing apoptotic cells inhibits 

MΦs from killing resident tissue cells (Duffield et al., 2001) and triggers VEGF secretion that is involved 

in repair of endothelial and epithelial damage that occurred during the inflammatory response (Golpon et 

al., 2004).  

The mechanisms of: PGs signaling lipid class switching in neutrophils, the production of SPMs, 

cell contact between apoptotic neutrophils and MΦs resulting in phagocytosis and release of anti-

inflammatory cytokines and reparative mediators links mechanisms of inflammation resolution with 

tissue repair and cell clearance. Phagocytosis of apoptotic cells also stimulates MΦs to emigrate and the 

departure of M1 MΦs from the response site to local lymph nodes signals the end of the anti-

inflammatory program (Bellingan et al., 1996).  

Peroxisome Proliferator-Activator Receptors  
Peroxisome proliferator-activator receptors (PPARs) are nuclear receptors and ligand activated 

transcription factors that form heterodimers with retinoic acid receptors (Dinarello, 2010; Lian et al., 

2015). PPARs have roles in development and differentiation as well as modulation of fat and glucose 

metabolism and the inflammatory response (Clark et al., 2000; Feige et al., 2006; Dinarello, 2010; Li et 

al., 2014; Lian et al., 2015). Ligands for the receptors include naturally occurring FAs and eicosanoids 

(Forman et al., 1995). Specfically, PPARγ is activated by PUFAs as well as the bioactive metabolite of 

prostaglandin D2, 15deoxyΔ12,14 Prostaglandin J2 (15dPGJ2) and 15-HETE (Forman et al., 1995; 

Bensinger and Tontonoz, 2008). PPAR agonists reduce expression of several PICs, chemokines, and 

adhesion molecules and effect T cell proliferation (including in the placenta) by interfering and inhibiting 

other transcription factors (AP-1, NF-κB, NFAT (nuclear factor of activated T Cells) (IL-2 transcription), 
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STATs (STAT3-IL-6 transcription)) by physically interacting with them in a process termed trans-

repression (Ricote et al., 1998; Clark et al., 2000; Lappas et al., 2002; Genolet et al., 2004; Feige et al., 

2006; Szanto and Nagy, 2008; Dinarello, 2010; Li et al., 2014; Lian et al., 2015). Therefore, another way 

for ω-3 PUFAs to have anti-inflammatory effects is through upregulation and signaling through PPARγ.  

In addition to its role in lipid metabolism, PPARγ controls inflammation through inhibition of 

inflammatory gene expression including IL-1β, TNFα, IL-6, CXCL8, COX-2, VCAM-1, NOS, MMP, 

and APPs (Ricote et al., 1998; Jiang et al., 1998; Jackson et al., 1999; Takano et al., 2000; Wang et al., 

2001). PPARγ also prevents the release of PICs, matrix metalloproteinase activity and vascular smooth 

cell migration (Bensinger and Tontonoz, 2008; Szanto and Nagy, 2008). By inhibiting transcription of 

monocyte chemoattractant protein-1 (MCP-1) and its receptor CCR2 in MΦs, Peroxisome proliferator-

activator receptor γ can inhibit MΦ recruitment to inflammatory sites (Szanto and Nagy, 2008). PPARγ 

can regulate the response of MΦs, and T cells to inflammatory stimuli as well as influence the 

polarization of Th1 versus Th2 cells (Genolet et al., 2004). Peroxisome proliferator-activator receptor γ 

decreases IL-2, INFγ, and TNFα production by Th1 cells and increases IL-4, IL-10, and GATA3 

production by T2 cells (Genoler et al., 2004).  

There are several endogenous agonists including prostacyclin in addition to many synthetic 

ligands for PPARγ (Dinarello, 2010). Dasu et al (2009) investigated the anti-inflammatory effects of the 

synthetic PPARγ agonist pioglitazone on human blood monocytes in vitro when exposed to TLR 2 and 

TLR 4 ligands after pretreatment with pioglitazone. Compared to control, the PPARγ agonist reduced 

gene expression of TLR2 and TLR4 in addition to reducing TLR ligand-induced binding activity of NF-

κB, and the amount of PICs and MCP-1 secreted from the cells. In mice treated with pioglitazone for 10 

days, peritoneal MΦs had reduced expression of TLR2 and TLR4, a decrease in MyD88 dependent 

signaling, a decrease in NF-κB DNA binding activity, and reduced serum levels of PICs and MCP-1 

(Dasu et al., 2009). These in vitro and in vivo studies show that activation of PPARγ has anti-

inflammatory effects by reducing TLR signaling resulting in reduced PIC production. N-3 PUFAs are 

endogenous nuclear receptor ligands that activate PPARs and feeding mice ω-3 PUFAs has been show to 

increase expression of PPARγ associated with a reduction in inflammation and disease severity (Li et al., 

2014; Lian et al., 2015). Li et al (2014) used the cecal ligation and puncture sepsis model in mice fed fish 

oil or a control diet. After the procedure, fish oil fed mice had lower plasma TNFα, and IL-6, and lower 

PGE2 and TNFα in peritoneal lavage fluid. In addition, it was reported that in fish oil fed mice the DNA-

binding activity of PPARγ was increased as well as the mRNA expression of IκBα while NF-κB p65 

DNA binding activity and iNOS protein levels were reduced in the liver (Li et al., 2014).  
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With regard to MΦs, PPARγ promotes alternative activation of the cells (M2 MΦ) by increasing 

expression of target genes involved in M2 MΦ function and preventing MΦs from being activated in 

response to PIMs (Genoler et al., 2004; Bensinger and Tontonoz, 2008). Classical MΦs are activated by 

PICs and infectious agents and produce PIMs. M2 MΦ develop from monocytes in response to IL-4 and 

have a suppressive phenotype characterized by diminished production of PICs and the ability to inhibit T 

cell proliferation and promote inflammatory resolution (Szanto and Nagy, 2008). PPARγ increases MΦ 

production of CXCL8 and IL-1Ra and decreases MΦ production of IL-1β, IL-6, IL-12, IL-15, TNFα, 

iNOS, IP-10, RANTES, and MIP-1α (Genoler et al., 2004). PPARγ activation in MΦ inhibits their 

response to LPS or IFNγ (Ricote et al., 1998). These actions of PPARγ may be due to PPAR stimulating 

the breakdown of inflammatory eicosanoids through induction of β-oxidation or through the ability to 

transrepress other transcription factors such as NF-κB, AP-1, and STAT (Takano et al., 2000; Wang et al., 

2001; Daynes and Jones, 2002). DHA, a fatty acid ligand of PPARγ, induces mRNA expression and 

nuclear translocation of the transcription factor in MΦs (Chang et al., 2015). In a PPARγ dependent 

manner, DHA polarizes MΦ to a M2 phenotype but the transcription factor does not seem to account for 

DHA’s ability to inhibit LPS-induced classical macrophage activation (M1) (Chang et al., 2015).   

With regard to DCs, activation of PPARγ leads to reduced ability to be stimulated by TLR 

agonists, reduced capacity to stimulate T cell proliferation, and inhibition of production of IL-12, IL-15, 

IL-6, TNFα, CXCL10 (IP-10), and CCL5 (RANTES); PICs/cytokines for Th1 polarization and 

chemokines for Th1 cell recruitment (Faveeuw et al., 2000; Gosset et al., 2001; Appel et al., 2005). With 

regards to co-stimulatory molecule expression, PPARγ activation reduces CD80 expression but induces 

CD86 expression, a situation that favors Th2 polarization over Th1 polarization of naïve T cells (Genolet 

et al., 2004). CCR7, the chemokine receptor involved in DC migration, is also reduced with PPARγ 

activation, limiting DC migration to lymph nodes. Altogether, PPARγ activation in DCs will result in less 

antigen presentation to naïve T cells, a shift towards Th2 versus Th1 polarization, a reduction in Th1 

recruitment, and reduced inflammation. Stimulation of human monocyte-derived DCs with PPARγ 

agonists decreased secretion of the Th1 promoting cytokine IL-12 when cells were also stimulated with 

LPS or CD40L compared to DCs only stimulated with LPS or CD40L (Gosset et al., 2001). The PPARγ 

agonists also down regulated synthesis of IL-10 and RANTES, chemokines that attract Th1 lymphocytes 

(Gosset et al., 2001), suggesting PPARγ may regulate DCs function so that DCs do not cause naïve CD4+ 

T cells to differentiate into Th1 cells and do not recruit Th1 cells to the infection/inflammatory site. 

Peroxisome proliferator-activated receptors are expressed by trophoblast cells, in which they have 

roles in placental development and function (Barak et al., 2008). PPARγ specifically has been reported to 
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have a role in trophoblast differentiation and maturation, in regulating the thickness of the 

spongiotrophoblast layer, affecting the labyrinthine vasculature, enhancing fatty acid uptake and 

expression of fatty acid transport proteins (Schaiff et al., 2007; Barak et al., 2008; Wieser et al., 2008). A 

diet high in ω-3 PUFAs, ligands for PPARγ, may increase the anti-inflammatory potential of the uterine 

environment.  

Dietary Supplementation with Omega-3 Polyunsaturated Fatty Acids 

A diet high in ω-3 PUFA can be anti-inflammatory for several reasons. First, the ω-3 PUFAs will 

partially replace the ω-6 PUFA AA in cell membranes which will lead to reduced production of AA-

derived mediators. Eicosanoids are produced from FAs liberated from membrane phospholipids. AA is 

converted into 2-series PGs, thromboxanes, and 4-series LTs; by reducing the amount of AA in 

membranes there is less substrate to be turned into these mediators (Calder, 2003). The PUFAs will also 

compete for the COX and LOX enzymes and EPA has been reported to competitively inhibit oxygenation 

of AA by COX (Obata et al., 1999). Ω-3 PUFAs can also suppress cytokine-induced expression of COX-2 

and 5-LOX gene expression (Curtis et al., 2000; Curtis et al., 2002), limiting the production of 

eicosanoids. Altering the FA composition of cell membrane phospholipids can influence membrane 

activities and cellular responses (Calder, 2003). The FA composition of phospholipids will effect 

membrane fluidity (Stubbs and Smith, 1984) which affects the activity of membrane-bound proteins such 

as receptors, transporters, and enzymes (Murphy, 1990), which will influence how an inflammatory cell 

responds to a stimulus (Grimble, 1998). Membrane phospholipids are used to produce the intracellular 

signals DAG, inositol phosphate, and ceramide; the FA composition of the substrate phospholipids can 

influence the production of these signals by phospholipase enzymes and signal transduction pathways 

(Miles and Calder, 1998).  

Omega-3PUFAs will suppress production of PICs and modulate adhesion molecule expression by 

controlling gene expression of these factors (Calder, 2003). Suppling EPA and DHA in culture inhibited 

IL-1β and TNFα production by monocytes (Calder, 1997) and the production of IL-6 and CXCL8 by 

venous endothelial cells (de Caterina et al., 1994; Khalfoun et al., 1997). Feeding fish oil to mice 

decreased circulating levels of TNFα, IL-1β, and IL-6 after an LPS challenge compared to mice fed 

safflower oil (Sadeghi et al., 1999). With regards to adhesion molecules, human venous endothelial cells 

cultured with EPA or DHA had decreased surface expression of E-selectin, ICAM-1, and VCAM-1 when 

stimulated with cytokines or LPS (de Caterina et al., 1994) and had diminished adhesion of ligand-

bearing monocytes (de Caterina and Libby, 1996). Monocytes cultured with EPA also displayed less 

surface ICAM-1 when stimulate with IFNγ (Hughes et al., 1996). The decrease expression of VCAM-1 
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on the surface of endothelial cells was shown to be due to DHAs effect of gene expression of the adhesion 

molecule (de Caterina et al., 1994).  

In cultured bovine chondrocytes, EPA, DHA, and ALA decreased cytokine induced expression of 

COX-2 (but not COX-1), IL-1α, and TNFα (Curtis et al., 2000). Adding EPA, DHA, or ALA to cultured 

explants of human osteoarthritic cartilage decreased cytokine induced upregulation of COX-2, 5-LOX, 5-

LOX activating protein (FLAP), IL-1α, IL-1β, TNFα, MMP-3, and MMP-13 expression (Curtis et al., 

2002). Gene expression of COX-1, 12-LOX, and 15-LOX were not affected by the ω-3 PUFAs but these 

genes were not induced by the cytokines anyway (Curtis et al., 2002).  

The transcription factor NF-κB is involved in inducing expression of several inflammatory genes 

including COX-2, ICAM-1, VCAM-1, E-selectin, TNFα, IL-1β, NOS, MMPs, and APPs (Christman et 

al., 1998; Chen et al., 1999; Calder, 2002). This transcription factor is located in the cytosol of resting 

inflammatory cells as an inactive heterodimer. When stimulated, a signaling cascade activates the IκB 

kinase (IκK) protein complex which phosphorylates the inhibitory subunit of NF-κB (IκB). IκB then 

dissociates from the rest of the inactive NF-κB trimer (Karin and Ben-Neriah, 2000; Karin and Helhase, 

2000) and is degraded while the remaining NF-κB heterodimer translocates into the nucleus to bind to 

response elements of target genes regulating transcription.  Ω-3 PUFA may regulate gene expression by 

limiting NF-κB activation. When the MΦ cell line RAW264.7 was cultured with EPA and then stimulated 

with LPS, the cells produced less TNFα mRNA and protein, and less PGE2 which was associated with 

reduced NF-κB activity (Lo et al., 1999).   

Feeding fatty acids to cows after the post-partum period of immune-suppression and uterine 

involution may have benefits to future pregnancy. Specific fatty acids could suppress the biosynthesis of 

inflammatory molecules reducing residual inflammatory responses in the uterus to subclinical 

endometritis and preventing PGF2α production and luteolysis (Thatcher et al., 2010).  

The unsaturated fatty acid oleic acid (18:1 n-9) can be made by animal tissues, however, linoleic 

acid (18:2 n-6) and ALA (18:3n-3) are considered dietary essential as the required desaturases to produce 

these FAs are not present in animals (Abayasekara and Wathes, 1999) Linoleic acid (20:4 n-6) undergoes 

elongation and desaturation to form differential n-6 products, such as dihomo-γ linolenic (20:3 n-6) and 

AA (20:4n-6). ALA (18:3 n-3) undergoes elongation and desaturation to form n-3 products such as EPA 

(20:5n-3) and DHA (22:6n-3). AA can be used to produce eicosanoid products, different series of PGs 

(PGF1, PGF2, PGF3), thromboxanes, and LTs (Dennis and Norris, 2015) ALA is found as a component of 

chloroplast lipids and is high in linseed oil from the flax plant (Linum usitatissimum) (Sergent, 1997).   
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The diet of ruminants contains predominantly unsaturated fatty acids but upon ingestion, dietary 

lipids are extensively hydrolyzed in the rumen and the unsaturated fatty acids are biohydrogenated by 

rumen microbes to more saturated products (Wonsil et al., 1994). Supplementation of nonprotected fats 

can decrease dry matter intake (DMI) and reduce digestibility of non-lipid energy sources in ruminants 

due to changes in ruminal fermentation, gut motility, palatability, release of gut hormones, and oxidation 

of fat in the liver (Allen, 2000). Both amount and form of a fat supplement matter when it comes to rumen 

health, DMI, and digestibility. Flaxseed (Linum usitatissimum) on a dry matter (DM) basis contains 20% 

crude protein (CP), 18% neutral detergent fiber (NDF), and 40% ether extract. It is rich in ALA (18:3n-3), 

averaging 18% of the total seed weight and constituting 53% of the total fatty acids (Mustafa et al., 2002). 

Being an oilseed, the high level of PUFAs in flaxseed can negatively affect ruminal fiber digestion 

(Palmquist and Jenkins, 1980).  

Gonthier et al (2004) using a Latin square design fed lactating Holstein cows a control diet with 

no flaxseed at a 64:36 forage: concentrate ratio (DM basis) or flaxseed (12.6 % dietary DM) added as a 

topdressing at a 55:45 forage: concentrate ratio (DM basis) in 3 different forms (raw, micronized, and 

extruded). The study reported that flaxseed supplementation improved post-ruminal organic matter and 

total-tract digestibility (expressed as a percent of passage to duodenum and percent of intake, 

respectively) compared to a diet with no flaxseed, with no harmful effects on rumen function. Schroeder 

et al (2014) using a Latin Square design fed Holstein steers basal diets of 47% concentrate, 30% corn 

silage, 17% alfalfa hay and 6% beet pulp shreds. The concentrate portion contained either 7.5% linseed 

meal (control), 10% whole flaxseed, 10% rolled flaxseed, or 10% ground flaxseed. Dry matter intake was 

similar between diets and treatments had no effect on apparent or true OM digestion in the rumen. Large 

intestine, small intestine, and total-tract digestibilities were similar for the treatments. There was no 

change in protein digestion with the addition of flaxseed supported by no differences in duodenal CP flow 

(bacterial., apparent feed, or total), ileal CP flow, fecal CP output, microbial efficiency, or CP digestibility 

(apparent ruminal., true ruminal., small intestine, large intestine, or total tract) (Schroeder et al., 2014). 

Gonthier et al (2004) reported a reduction in microbial CP flow to the duodenum and microbial 

efficiencies (true and apparent) with flaxseed supplementation suggesting flaxseed can reduce ruminal 

microbial growth. However, ruminal digestion of CP was not affected by diet and post-ruminal CP 

digestibility (percentage of passage to the duodenum) and total tract CP digestibility were greater with the 

flaxseed diets (Gonthier et al., 2004). Flaxseed had no effect on total-tract neutral detergent fiber (NDF) 

or acid detergent fiber (ADF) digestion at the level of 10% of dietary DM and no differences in NDF and 

ADF intake, duodenal flow, ileal flow, fecal output, or digestibility were detected in the Schroeder et al 

study (2014). Gonthier et al (2004) reported the addition of flaxseed (12.6% of dietary DM) decreased 

ruminal ADF digestibility, increased post-ruminal ADF digestibility and had no effect on total tract ADF 
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digestibility (expressed as a percentage of intake). Flaxseed tended to increase post-ruminal and total tract 

digestibilities of DM, OM, NDF, and gross energy (Gonthier et al., 2004). Gonthier et al (2004) reported 

reduced microbial efficiency with raw, micronized, and extruded (12.6% of diet DM) flaxseed compared 

to the control diet without flaxseed but Schroeder et al (2014) feeding flaxseed at 10% DM reported no 

change in microbial efficiency (g of microbial N/kg of OM truly fermented). Schroeder et al (2014) 

reported no effect of feeding flaxseed on ruminal pH, ammonia, or volatile fatty acid (VFA) 

concentrations (total, individual, acetate: propionate, or acetate: butyrate: propionate) indicating similar 

fiber digestion and ruminal fermentation with the different diets. Consistent with this, Gonthier et al 

(2004) reported no difference in average ruminal pH, NH3N, or total VFA. In the Gonthier et al (2004) 

study there was a decrease in the molar proportion of acetate and an increase in the molar proportion of 

propionate when feeding flaxseed which decreased the acetate: propionate ratio. The authors stated that it 

was not clear whether the differences in molar proportions of the two VFAs was due to flaxseed 

supplementation or differences in forage level, as the 3 flaxseed diets had a different forage: concentrate 

ratio than the control diet. Lower acetate and greater propionate proportions with the addition of oilseeds 

to ruminant diets tends to relate to lower ruminal fiber digestion fitting with the reported reduction in 

ruminal ADF digestibility (expressed as a percentage of ADF intake) with the flaxseed diets compared to 

control (Gonthier et al., 2004).  

Petit et al. (2002) fed primiparous lactating Holstein cows one of 3 total mixed diets with a fat 

supplement based on either whole flaxseed (FLA; 10.4% DM), Megalac (MEG; 3.8% DM), or 

micronized soybeans (SOY; 17.7% DM). Cows fed the whole flaxseed had higher milk production than 

those fed MEG, higher milk protein percentage than those fed MEG or SOY, and higher levels of ALA in 

their milk compared to MEG cows. Cows fed flaxseed had a lower DM digestibility compared to the 

SOY group, and lower ether extract, ADF and NDF digestibility compared to the SOY and MEG groups. 

Analyzing blood collected from the cows, FLA cows had reduced levels of NEFAs, total cholesterol 

(mg/100ml) and HDL cholesterol (mg/100mL) compared to the other two diets. With regards to the fatty 

acid profile in the blood samples, compared to the SOY and MEG groups, the FLA cows had lower levels 

of palmitate (16:0) but higher levels of stearic (18:0), ALA (18:3 n-3), and EPA (20:5 n-3) with a reduced 

omega-6/omega-3 ratio (Petit et al., 2002). 

Petit and Côrtes (2010) fed multiparous Holstein dairy cows one of four iso-net energy total 

mixed rations that contained either 21g/kg DM calcium salts of palm oil (CON), 72 g/kg DM whole 

flaxseed (WHO), 72 g/kg DM ground flaxseed (GRO), or 36 g/kg DM whole flaxseed and 36 g/kg DM 

ground flaxseed (MIX). The GRO group had reduced DM intake compared to the other 3 diets and might 

have been due to disturbances in rumen function, this diet contained the largest amount of flaxseed with a 
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disturbed seed coat leaving the oil unprotected from rumen microbes. The CON group had reduced milk 

lactose compared to the 3 flaxseed diets while milk fat and CP showed no differences between diets. 

Among long chain fatty acids, ALA results in high rates of gluconeogenesis which ruminants use for 

lactose production. Increased gluconeogenesis with flaxseed supplementation may explain the increase in 

milk lactose in the 3 diets containing flaxseed. With regards to the fatty acid milk profile, all 3 flaxseed 

diets decreased the amount of palmitate (16:0), increased the amount of stearic acid (18:0), oleic acid 

(18:1 cis 9), ALA (18:3 cis 9,12,15), increased the level of mono unsaturated fatty acids, long chain fatty 

acids, and omega-3 fatty acids, while decreasing the level of saturated fatty acids and the omega-

6/omega-3 ratio. The GRO and MIX diets also significantly increased the levels of poly-unsaturated fatty 

acids while the WHO and MIX diets significantly decreased the omega 6 FA levels compared to CON 

(Petit and Côrtes, 2010).  

Scholljegerdes and Kronberg (2008) using a Latin Square design fed Angus Heifers hay without a 

supplement or supplemented with 0.91 kg/d (3.2% of added dietary fatty acids, DM basis) of whole 

flaxseed, or 1.82 kg/d (5.8% of added dietary fatty acids, DM basis ) of whole flaxseed on a DM basis. In 

agreement with Gonthier et al (2004), Scholljegerdes and Kronberg (2008) reported an increase in 

apparent lower tract OM digestibility (% of duodenal flow) with the addition of flaxseed to the diet, 

however, the apparent total-tract OM digestibility (% of intake) did not differ with the diets. 

Scholljegerdes and Kronberg (2008) reported that flaxseed supplementation increased the apparent lower 

tract and total-tract N digestibility indicating whole flaxseed does not impair ruminal N metabolism and 

that N escaping ruminal degradation is available in the small intestine. There were no differences in 

duodenal or fecal NDF flow and flaxseed had no effect on ruminal, lower tract, or total-tract NDF 

digestibility (Scholljegerdes and Kronberg, 2008). Going from the control diet to 0.91 kg/d to 1.82 kg/d 

of flaxseed, molar proportions of acetate decreased while molar proportions of propionate, isobutyrate, 

isovalerate, valerate increased, and the acetate: propionate ratio decreased. Ruminal pH, NH3, total VFAs, 

and butyrate levels were unaffected by diet. Flax feeding increased intestinal supply of ALA, mono 

unsaturated fatty acids and PUFAs which may increase tissue supply of unsaturated fatty acids 

(Scholljegerdes and Kronberg, 2008).  

Côrtes et al. (2010) using a Latin square design fed lactating Holstein cows isonitrogenous and 

isoenergetic diets: a control diet without flaxseed (CON), a diet (on a DM basis) with 4.2% whole 

flaxseed (FLA), a diet with 1.9% calcium salts of flaxseed oil (SAL), or a diet with 2.3% whole flaxseed 

and 0.8% calcium salts of flaxseed oil (MIX) fed ad libitum. Diets did not affect DMI, digestibility, milk 

production, milk concentrations of protein, lactose, urea N, or total solids. Feeding whole flaxseed did not 

affect rumen pH, concentration of ammonia N, total VFA, the ratio of acetate: propionate, or molar 
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proportions of specific VFAs (Côrtes et al., 2010). Feeding FLA increased the percent of 18:0, and longer 

chain fatty acids in ruminal fluid. With regard to milk, the percent of 16:0 was decreased with FLA 

compared to CON, the percent of long chain fatty acids were increased compared to CON and the FLA 

milk had higher levels of ALA but was not high enough to be significant. The milk ratio of n-6:n-3 was 

also decreased with the FLA diet compared to CON (Côrtes et al., 2010).  

Oba et al. (2009) used a crossover design and fed primiparous Holstein cows unprocessed whole 

flaxseed (WF) or rolled flaxseed (RF) at 100 g Kg-1 of dietary DM. DMI, milk yield, and milk 

composition were similar between diets. Apparent total tract digestibility of ether extract was lower for 

WF than RF and excretion of ALA in feces was greater with WF than RF. However, concentration of 

ALA in milk was not different between diets and both diets increased ALA in milk (3x) compared to 

before the study when cows were fed sunflower seed instead of flaxseed. Results suggest that both WF 

and RF increase the absorption of ALA to a similar extent despite the lower digestibility of WF. This may 

be due to reduced lipolysis in the rumen or fatty acid biohydrogenation of WF since the fatty acids are 

protected by an intact seed coat. This idea is supported by a decreased concentration of vaccenic acid (a 

fatty acid intermediate formed during biohydrogenation) in milk fat with the WF diet. While dry-rolling 

flaxseed breaks the seed coat and allows for better access (increased digestibility) to the fatty acids, it also 

allows for increased biohydrogenation in the rumen, therefore, does not necessarily improve absorption of 

ALA (Oba et al., 2009). When feeding the unprocessed WF, intact WF appeared in the feces, however, 

comparing the ether extract in excreted flaxseed to flaxseed before it was ingested there was a 76% 

reduction in ether extract suggesting that the fats present in flaxseed were able to be utilized by cattle 

even though the seed coat appeared intact (Oba et al., 2009). Mesgaran et al (2012) fed lactating dairy 

cows either ground flaxseed, whole flaxseed or extruded soybeans, in a Latin square design, up to 9% of 

diet DM with no differences in regards to DMI, body weight, body condition score, or milk yield. There 

was no difference between diets in plasma NEFAs or BHB. The ground flaxseed diet increased the levels 

of ALA, monounsaturated FAs and PUFAs in the milk. Increases in unsaturated FAs in milk when fed a 

flaxseed diet suggests sufficient quantities of PUFAs in the flaxseed survived bio-hydrogenation in the 

rumen to be transferred to milk fat (Oba et al., 2009; Mesgaran et al., 2012) and is likely to be available 

for use by other tissues and incorporation into the plasma membranes of various cells.   

Wachira et al. (2000) using a Latin square design fed wether lambs 4 iso-energic and iso-

nitrogenous diets based on dried grass and provided similar fat levels (60g/kg DM) from 4 different 

sources. One diet included Megalac (a calcium soap of palm oil) (control; palmitic acid 16:0), one diet 

provided whole flaxseed (ALA, 18:3 n-3), one provided fish oil (EPA 20:5 n-3; DHA 22:6 n-3) and the 

last diet provided whole flaxseed plus fish oil (50:50 mix on an oil weight basis). Wethers were fed 
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1.2kg/day. With the flaxseed diet, duodenal flow of ALA was double compared to the control diet and 

also had higher duodenal flow of 18:0 and trans 18:1 FAs. The increase in duodenal flow of the 18:0 and 

trans 18:1 FAs is likely to be a result of biohydrogenation by rumen microbes and in fact the flaxseed diet 

had a 92.4% biohydrogenation rate of ALA compared to 80.2 % with the control diet. The fact that the 

whole flaxseed had 24.4 g/kg DM of ALA compared to 4.5 g/kg DM in the control diet allowed for 

increased apparent small intestine fatty acid digestibility (duodenum to rectum) of ALA with the whole 

flaxseed diet. This study incorporated the whole flaxseed into a pellet which damaged the seed coat and 

provided the rumen microbes access to the fatty acids (Wachira et al., 2000). Had the flaxseed been fed 

intact, there would have been less biohydrogenation and potentially even greater ALA reaching the small 

intestine. Feeding whole flaxseed compared to control did not affect whole tract (mouth to rectum) 

digestibility of DM, OM, CP, NDF, total FAs, or gross energy. The flaxseed diet compared to control did 

not affect ruminal fluid pH, molar proportions of acetate, propionate, or butyrate, or the ratio of ketogenic 

to glucogenic acids (acetate + butyrate/propionate) (Wachira et al., 2000). The control diet had a lower 

duodenal flow of ammonia-nitrogen but a higher flow of non-ammonia nitrogen while microbial nitrogen 

flow was similar between the control and flaxseed diets. The flaxseed diet compared to control had a 

higher proportion of OM truly digested in the rumen (Wachira et al., 2000).  

Soder et al. (2012) using a Latin Square design supplemented ground flaxseed in a orchardgrass 

diet (70 g of total DM) at the level of 0% (70g of herbage), 5% (5g flaxseed + 65g herbage), 10% (10g 

flaxseed + 60g herbage), and 15% (15g flaxseed + 55g herbage). With increasing flaxseed 

supplementation, apparent DM, OM, and NDF digestibilities decreased, whereas true DM and OM 

digestibilities were not affected (Soder et al., 2012). Flaxseed included in the diets was ground breaking 

the seed coat and allowing the oil to be released in the rumen which may have impacted the rumen 

microbes and nutrient (OM, DM, and NDF) digestibility. While ruminal pH and total VFAs were not 

affected by the flaxseed, molar proportions of acetate and propionate increased while butyrate and 

valerate decreased with increasing flaxseed supplementation resulting in a decreasing acetate: propionate 

ratio with increasing flaxseed supplementation. Ammonia-N concentration, apparent CP digestibility, and 

microbial N synthesis were not affected by diets (Soder et al., 2012).   

An in vitro study (Maia et al., 2007) reported that growth of ruminal bacteria are affected by 

PUFAs which could influence ruminal fermentation, although different species have different levels of 

sensitives and different PUFA are more damaging than others. Ranking the PUFA tested on toxicity to 

bacterial growth, the most toxic was EPA, followed by DHA, ALA, and finally linoleic acid (Maia et al., 

2007). ALA is toxic for the 3 predominant cellulolytic species responsible for fiber digestion 

(Fibrobacter succinogenes, Ruminococcus albus, and Ruminococcus flavefaciens) by disrupting cell 
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integrity (Maia et al., 2007). PUFA may be directly toxic to methanogens that use hydrogen for CH4 

production. With less methanogens there may be more free hydrogen which can inhibit growth of 

cellulolytic bacteria and impair fiber digestion (Soder et al., 2012). However, microbial N-flow was not 

changed by increasing supplementation of flaxseed in Soder et al’s (2012) study suggesting that if there is 

a reduction in methaogenic and cellulolytic bacteria that other microbial species are compensating. When 

feeding whole seeds the fatty acids are protected by the seed coat minimizing PUFA toxicity to rumen 

bacteria and biohydrogenation by the bacteria, potentially increasing their availability in the small 

intestine.  

Omega-3 PUFAs and Benefits to Reproduction  
Fat supplementation in rumen diets is used to increase the energy density of the diet and to utilize 

the properties of specific fatty acids. Several studies using different strategies of fat supplementation have 

reported benefits in health, reproduction, and production of ruminants (Staples et al., 1998; Santos et al., 

2008; Silvestre et al., 2011a; Greco et al., 2015; Rodney et al., 2015). The benefits are not just due to 

increased energy provided by the FAs but by the properties of the specific FAs in the diet (Staples et al., 

1998). Altering the lipid content of the diet can shift the FA profile of tissues and alter tissue physiology 

(Calder, 2012). Indeed, feeding high amounts of omega-3 FAs to cows resulted in a higher proportions of 

omega-3 FAs in the endometrium concurrent with a lower proportion of AA (Burns et al., 2003; Bilby et 

al., 2006c). Reduced amounts of available AA limit the PG response to a stimulus (Mattos et al., 2002). 

Thus, most research investigating the effect of dietary FAs on uterine biology focus on changing the 

endometrial FA profile to reduce the proportion of PG precursors (ex: arachidonic acid) and thus control 

the amount the 2 series PGs that can be produced. Because PGF2α is luteolytic in ruminants, limiting the 

amount of PGF2α should protect the CL and P4 production from the CL (Ribeiro et al., 2016c). In general., 

studies using dietary FA supplementation report benefits with regards to reproduction (Rodney et al., 

2015) with the benefits occurring not only from additional energy but from non-caloric effects of FAs 

(Santos et al., 2008). Non-caloric effects include altering the FA profile at the maternal-fetal interface 

(limiting series 2 prostaglandin precursors), immune modulating functions, altered follicle development, 

changes in oocyte quality, and improved uterine environment (Ribeiro et al., 2016c).  

Postpartum diseases in cattle are a major factor in reproductive failure with cows suffering 

inflammatory diseases having impaired hypothalamic-pituitary-ovarian axis function, impaired conceptus 

development, and increased rates of embryo loss (Ribeiro et al., 2016b). Not only is an inflammatory 

environment not conducive to conceptus development but prostaglandins are mediators of an 

inflammatory response. Since the precursors of prostaglandins are FAs, in a pro-inflammatory 

environment not only will there be an increase in inflammatory prostaglandins but a change in tissue lipid 
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content. During elongation, the conceptus needs lipid for energy as well as for incorporation into new cell 

membranes as cells proliferate. Therefore, an inflammatory environment is not only hostile to an embryo 

but will limit the amount of lipid available for embryo growth. Dietary supplementation of FAs not only 

provides energy for the dam and embryo but depending on the type of FAs added to the diet, the amount 

of inflammatory prostaglandins produced can be reduced and more lipid can be available for conceptus 

growth.  

Feeding fish meal, which is high in the omega-3 FAs EPA and DHA improved pregnancy per AI 

in lactating dairy cows (Armstrong et al., 1990; Burke et al., 1997). When Silvestre et al (2011) fed 

lactating dairy cows fish oil (high in n-3) or palm oil (no n-3; little n-6) around the time of breeding they 

saw a reduction in pregnancy loss to first AI in their fish oil fed cows and an increase in pregnancy to 

second AI. These two results together means fish oil improved the accumulated proportion of pregnant 

cows after 2 postpartum inseminations (Silvestre et al., 2011). Feeding whole flaxseed (10.4 % DM), 

which can be turned into EPA and DHA, to cows has been seen to increase first service pregnancy per AI 

(Petit and Twagiramungu, 2006) and to reduce pregnancy loss (Ambrose et al., 2006 (rolled flaxseed 9% 

DM); Petit and Twagiramungu, 2006).  

 The change in pregnancy success in cows fed PUFAs may be due to immune modulating 

effects of PUFAs which have been seen to have beneficial effects with regards to inflammation (Calder 

2006a,b; 2013a,b,c) and increased amounts of fatty acids are found in the uterus/placenta after 

supplemented feeding. Therefore, feeding PUFAs may result in these fatty acids being able to have direct 

effects on immune cells in the reproductive tract leading to alteration of the immune response in that area. 

In the study that supplemented cows with fish oil, neutrophils isolated from blood samples taken around 

the time of insemination had a highly attenuated production of TNF-α when stimulated with LPS while 

the neutrophils from palm oil supplemented cows had a huge increase in TNF-α when stimulated with 

LPS (Silvestre et al., 2011a; Silvestre et al., 2011b). Greco et al (2015) fed lactating dairy cows diets that 

were formulated with a mixture of oils (fish, safflower, and palm) to produce diets with varying ratios of 

n-6 to n-3 fatty acid concentrations and then evaluated their inflammatory response to an infusion of LPS 

into one quarter of the mammary gland. Cows fed the lowest n-6/n-3 ratio (ate the most omega 3 fatty 

acids) had the lowest level of IL-6 after LPS and had an attenuated increase in somatic cell count while 

the cows fed the diet with the highest n-6/n-3 ratio had significantly higher haptoglobin levels in response 

to LPS (Greco et al., 2015).  

 Vijay-Kumar et al. (2011) fed mice either a diet with fish oil (FO) or saturated fat (SF) before 

2 LPS challenges 7 days apart (100ng of LPS followed by 500 ng of LPS). Mice fed the saturated fat diet 

had higher mortality after the LPS challenges and lost more body weight. With regards to the PIC IL-1β, 
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although not significant different, the FO mice had lower levels compared to the SF mice before LPS 

challenge (100ng) and levels barely increased in FO mice in response to LPS challenge. In the SF mice, 

there was an increase in IL-1β in response to LPS challenge and a significant difference in IL-1β levels 

between FO and SF groups after LPS challenge. With regards to behavior, after the 100ng LPS challenge 

the SF mice became reclusive and went to sleep while the FO mice displayed no abnormal behaviors. 

After the 500ng challenge both groups were moribund, however, mice in the FO group recovered more 

rapidly than the SF mice. (Vijay-Kumar et al., 2011). 

  Caughey et al. (1996) saw a decrease in TNFα, IL-1β, thromboxane B2, and PGE2 production 

by mononuclear cells (in response to LPS stimulation) of male subjects that added flaxseed oil to their 

diet for 4 weeks but subjects that added sunflower oil to their diet had no change in production of the 

PIM. There was an association between PIM production and the EPA content of their cells where 

cytokine production decreased as cellular EPA increased to ~1% of total fatty acids (Caughey et al., 

1996). These studies suggest that PUFAs, specifically ω-3 fatty acids, may dampen the inflammatory and 

APR to bacterial components, which would be favorable during pregnancy when an immunosuppressive 

environment in the uterus is needed for embryo survival. 

A study that fed lactating dairy cows either calcium salts of fish oil (11% of C20:5n-3 + C22:6n-

3) or calcium salts of palm oil (47% c16:0) during the breeding period (30-80 days post-partum) found 

that neutrophils (isolated at 80 days post-partum) cultured with LPS from cows supplemented with fish 

oil produced significantly less TNFα than neutrophils isolated from cows supplemented with palm oil. In 

addition, neutrophils isolated from cows fed fish oil contained significantly higher amounts of omega 3 

fatty acids (C20:5n-3,  C22:5n-3, C22:6n-3) giving them a lower n-6/n-3 fatty acid ratio than neutrophils 

isolated from cows fed the palm oil (Silvestre et al., 2008). This suggests that neutrophils in the fish oil 

fed cows were less inflammatory which could be beneficial when trying to establish a pregnancy, 

especially in a dairy cow that may have subclinical endometritis.  

In vitro, ALA was shown to have beneficial effects on embryo development with regards to the 

percentage of cumulus-oocyte complexes that cleaved and made it to the blastocyst stage and improved 

the quality of the embryos (Marei et al., 2009). A high proportion of embryonic losses precede or occur 

during the period when the embryo inhibits uterine secretion of PGF2α, some of these losses may be due 

to under-sized embryos the secrete insufficient IFN-τ to prevent endometrial secretion of PGF2α (Bilby et 

al., 2006a). Pre-implantation embryonic loss can also be attributed to inflammatory mediators such as 

TNFα, IL-1β, NO, and PGF2α, which would be present if the uterus has any bacterial contamination. 

These PIM hinder embryonic development through damages to the oocyte or developing embryo (Hansen 
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et al., 2004). Direct beneficial effects of ALA on the developing embryo (Marei et al., 2009) or through 

anti-inflammatory effects could prevent early embryonic loss; a sufficiently developed embryo will be 

able to secrete enough IFN-τ to prevent luteolysis.  

Lian et al. (2015) fed male C57BL/6 mice a low (4.62and DHA and 2.8% EPA) or high (12.4% 

DHA and 7.35% EPA) ω-3 PUFA diet in the form of fish oil (Menhaden Oil) for 4-12 weeks. After 12 

weeks of feeding, the PUFA diets caused proliferation of hepatic natural (but not induced Tregs) Treg 

cells (CD25+FOXP3+) increasing the percentage of Tregs among CD4+ cells (Lian et al., 2015). The 

Treg cells also showed higher expression of molecules (CD103 (a TGFβ inducible surface integrin), 

CTLA-4, CD62L) involved in their suppressive roles suggesting enhanced immune suppressive functions 

of Tregs in the fish oil fed mice (Lian et al., 2015). Liver tissue from ω-3 PUFA fed rats had higher IL-10 

and TGFβ expression (Lian et al., 2015), two cytokines that mediate Treg functions and are involved in 

the generation and maintenance of Tregs (Asseman et al., 1999; Nakamura et al., 2001; Nakamura et al., 

2004; Wan and Flavell, 2006). The role of Tregs is to maintain peripheral tolerance, control 

inflammation, and during pregnancy to prevent rejection of the allogenic fetus. This occurs through cell-

cell contact between the Treg and another immune cell (they can suppress the other T helper cell subsets) 

and by Treg production of regulatory cytokines such as TGFβ and IL-10 (Nakamura et al., 2001; Bettelli 

et al., 2006; Shevach, 2009). Lian et al (2015) administered Concanavalin A to mice after 6-8 weeks of 

eating the ω-3 PUFA or control diets to elicit hepatitis and investigate beneficial effects of the diets. Mice 

fed the fish oil had more hepatic Tregs and less liver damage as assessed by liver histology analysis. Fish 

oil fed mice also had increased liver PPARγ and TGFβ (did not reach significance) expression and 

decreased expression of PICs (IL-1β, IL-6, TNFα, IFNγ).  

Upregulation of PPARγ by dietary ω-3 PUFAs may be mediating the increase in Treg cells as 

Lian et al (2015) saw an increase in liver PPARγ along with increased liver Tregs when feeding mice fish 

oil and Cipolletta et al (2012) knocked out PPARγ in mouse Treg cells and concluded that PPARγ was 

critical for accumulation of visceral adipose tissue Tregs and for Treg phenotype. IL-10 and TGFβ are not 

only produced by Tregs to mediate their suppressive functions (Asseman et al., 1999; Hara et al., 2001; 

Nakamura et al., 2004; Wan and Flavell, 2006) but along with IL-2 are involved in polarization of naïve 

CD4+ T cells to a Treg phenotype and maintenance of the phenotype (Wan and Flavell, 2006). TGFβ in 

conjunction with IL-2 activate the transcription factors STAT5 and FOXP3 which polarize a naïve CD4+ 

into a Treg (Bettelli et al., 2006; Murphy, 2012). In a mouse model of atopic dermatitis, administration of 

fermented fish oil (in drinking water) reduced skin inflammation due to increased expression of TGFβ, 

IL-10, and FOXP3 as well as the number of Treg cells at the inflammation site (Han et al., 2012), 
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suggesting the ω-3 PUFA increased Tregs by upregulating FOXP3 or TGFβ which then activated FOXP3 

expression and the increased Tregs reduced inflammation in the fermented fish oil group.  

Jaudszus et al. (2013) cultured human PBMCs with EPA or DHA and reported 

immunosuppressive and pro-resolving effects of the ω-3 PUFAs. Intracellular levels of IL-2, TNF-α, and 

IL-4 were reduced in T helper (Th) cells when incubated with either ω-3 PUFA, although EPA had a 

greater effect. This anti-inflammatory effect of the ω-3 PUFAs involved PPARγ as a mediator as a 

PPARγ antagonist reversed the effects. Levels of IFNγ were unchanged by the ω-3 PUFAs (Jaudszus et 

al., 2013). With regards to pro resolving functions, the ω-3 PUFAs increased the population of IL-10 

positive monocytes. Incorporation of EPA and DHA into cellular membranes was shown to be at the 

expense of AA which resulted in a change in the lipid mediators produced. Cells stimulated with LPS 

after incubation with the ω-3 PUFAs produced decreased amounts of PGE2, thromboxane B2, LTB4, and 

12-HETE and instead 18-HETE (can be metabolized into the E-series resolvins) and RvD1 were 

produced.  

In summary, the above studies demonstrate that ω-3 PUFAs can influence the response to a 

stimulus with regard to the type of PGs produced, the production of SPMs, the production of Tregs, and 

the function of immune cells; all of which factor in to mediating inflammation and maternal tolerance 

during pregnancy.  

Statement of the Problem  
Dairy cows have high rates of early embryonic loss, which influence production, profitability, and 

culling rates. Parturition and the onset of lactation are associated with a state of negative energy balance 

that suppresses the immune system. That combined with bacteria entering the reproductive tract during 

parturition or into the mammary glands makes dairy cows highly susceptible to subclinical and clinical 

infections. A subclinical bacterial infection can turn into a clinical infection under the influence of 

progesterone, which is immunosuppressive, and be detrimental to successful pregnancy. While several 

pro-inflammatory molecules are involved in immunological signaling, stimulating embryonic growth, 

vascular remodeling of uterine arteries and implantation of the embryo, the timing and quantity of the 

molecules must be tightly controlled. Immune cells at the maternal-fetal interface have specific 

phenotypes that regulate maternal tolerance to fetal antigens and mediate vascular remodeling and 

implantation. An infection will result in the production of inflammatory mediators that can act directly on 

the developing embryo to impair development or cause apoptosis of embryonic cells. Inflammatory 

mediators also will affect the phenotype of immune cells resulting in loss of tolerance to fetal antigen and 

impaired vascular remodeling and implantation. Ultimately, infection during early pregnancy can result in 
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embryonic loss. Dietary omega-3 polyunsaturated fatty acids have anti-inflammatory effects and may 

have reproductive benefits. Using LPS to mimic a gram-negative bacterial infection, the objectives of this 

study were to identify the immunological changes in response to LPS in early pregnancy in sheep that 

could be detrimental to embryo survival, to examine whether dietary omega-3 polyunsaturated fatty acids 

could modulate the immune response to LPS, and to examine whether Dorset and Suffolk ewes have 

differential immunological responses to LPS.  
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Chapter 2: Materials and Methods 

Animals 
The first study was conducted in the spring (May 2015) with 16 mature Dorset ewes (10 control, 

6 flaxseed) with an average body weight of 66.5 ± 2.08 kg and the second study in the fall (August-

September 2015) with 42 mature Dorset ewes (21 control, 21 flaxseed) with an average body weight of 

70.96 ± 1.69 kg. Breed responses to LPS were compared in Fall 2015 between 21 mature Dorset ewes 

with an average body weight of 71.78 ± 1.41 kg and 32 mature Suffolk ewes with an average body weight 

of 76.73 ± 2.07 kg. For the fall experiments, ewes were divided into 4 groups in the fall experiments and 

experimental days were a week apart for 4 weeks with the first and third experimental days using Dorset 

ewes (half on the flaxseed supplement and half on the control supplement on both days) and the second 

and forth experimental days using Suffolk ewes. All ewes in the breed study were given the control 

supplement. Abbreviations used for the treatment groups are CP (control supplement + PBS), CL (control 

supplement + LPS), FP (flaxseed supplement + PBS), and FL (flaxseed + LPS) for the supplement studies 

and DP (Dorset + PBS), DL (Dorset + LPS), SP (Suffolk + PBS), and SL (Suffolk + LPS) for the breed 

study. Ewes were synchronized for estrus with a 5-day controlled intravaginal drug releasing insert 

(CIDR) (Pfizer, New York, NY) followed by injection of 4 cc of PGF2α (Lutalyse®, Pharmacia and 

UpJohn, New York, NY) at CIDR removal. Dorset and Suffolk ewes were always in separate pastures. 

With the supplement experiments, Dorset ewes were randomly divided into two groups on the day of 

CIDR removal for supplement feeding. A fertile ram wearing a marking harness was placed with each 

group on the day of CIDR removal, and marking by the ram was checked twice daily when ewes were 

fed. Day of the first breeding was denoted as day 0 post coitus (dpc). Ewes were weighed on the day of 

withdrawal of the CIDR, the day before the LPS challenge (~7 days on supplement), and at 25 dpc 

(~27days on supplement); supplement s did not affect ewe weights.  All ewes were housed at the WVU 

Stewartstown Farm (WVU IACUC # 13-0404.3). 

The day before the experiment (supplement started 7 days prior), ewes were weighed, sorted into 

pens in the barn and given hay and water. Ewes were randomly assigned to receive either LPS (2.5 µg/kg) 

or PBS (3 ml) on day 5/6 post coitus (dpc). At 8 am, a blood sample was collected before jugular 

administration of LPS or PBS. This dose of LPS has been used in previous experiments (Elsasser et al, 

2004; Graham, 2014; Nikpour, 2017). Jugular blood samples (~8 ml) were collected via venipuncture into 

EDTA treated tubes and stored in coolers with ice packs until transported to the laboratory. In the spring, 

samples were collected at 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and 24 hours after LPS or PBS 

injection. During the fall, samples were collected at 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 5, 6, 9, 12, and 24 

hours after LPS or PBS injection. Rectal temperature was recorded right before treatment administration 
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and at each whole hour blood collection. Observable changes in behavior and mucosal responses after 

treatment (lethargy, coughing, vaginal discharge, nasal discharge, and inappetance) were recorded at each 

blood collection. After the 24 hour sample, ewes were returned to pasture. Additional blood samples were 

collected via venipuncture into EDTA treated tubes on 8/9, 15/16 and 25/26 dpc.  

White blood cell counts in 20 μl of whole blood collected at the whole hour time points were 

obtained using a Beckman Coulter Counter (Beckman Coulter, Pasadena, CA). Samples were then 

centrifuged at 2500 rpm for 20 minutes, and plasma was collected and stored at -80. In the spring 

supplement study, buffy coats were collected and pooled for each group at each time point (Flax + LPS, 

Flax + PBS, Con + LPS, Con + PBS). In the fall, buffy coats were collected, and 2-3 samples at each time 

point were randomly pooled for ewes recieving the same supplement and treatment giving 4 pooled 

samples for each supplement with each treatment. For the breed study, buffy coats were collected, and 4 

samples were randomly pooled within treatment for the Suffolk ewes and 2 to 3 samples were randomly 

pooled within treatment for the Dorset ewes giving 4 pooled samples for each breed with each treatment 

at each time point. Cells in the buffy coat were re-suspended in PBS, and any remaining red blood cells 

were removed using ACK lysis buffer (Lonza catalog #10-584E) and washed with PBS. Buffy coat was 

transferred to a polypropylene tube and homogenized in 1.5 ml RNA-bee (Tel-Test, Friendswood, TX) 

and stored at -80 until RNA extraction.  

Detection for pregnancy occurred 25 or 26 dpc via transrectal ultrasonography with a 7.5 MHz 

transducer and Aloka 500 ultrasound console (Corometrics Medical Systems, Inc.Wallingford, CT) for 

visualization of an embryonic heartbeat. Date of birth, number of lambs born and lamb sex were recorded 

after lambing.  
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Figure 1: Timeline outlining the steps of trial 1 (top) of the omega-3 PUFA study (Spring 2015) and the experiments 

that occurred in Fall 2015 (trial 2 of the omega-3 PUFA study and breed study) (bottom) The only major difference 

is the blood collection times on the experimental day.  

 

Feed Manufacture 
Feed was prepared in weekly batches at West Virginia University’s Pilot Feed Mill using a Davis 

horizontal ribbon mixer (Bonner Springs, KS). The flaxseed supplement consisted of 45% sheep ration 

and 55% whole flaxseed (Table 2 and 6) (Commodity Marketing Company, Canada) purchased from 

Valley Point Feed (Albright, WV; Trial 1: Lot # DM1415; Trial 2: Lot # 15-0072), and ingredients for the 

control supplement were stored at the Pilot Feed Mill. The control supplement consisted of 45% sheep 

ration and a 55% mixture of cracked corn, soybean meal, and soybean oil (Table 2 and 6) formulated to 

match the fat and protein in the flaxseed (Tables 1 and 5). All components of the flaxseed supplement 

were added to the mixer and allowed to mix for at least 5 minutes before being transferred to feed bags 

for storage. All components of the control supplement except the soybean oil were added to the mixer and 



78 
 

mixed for 5 min. The soybean oil was then added, and the supplement was mixed for an additional 5 

minutes. Control supplement was transferred to a plastic storage bin. Both supplement s were stored in 

the feed mill and weighed out in buckets to take to the ewes. Ewes were kept on pasture, had access to 

water ad libitum, and were randomly assigned to receive 0.24 kg per head twice a day of the respective 

supplement beginning the afternoon CIDRs were removed until 25/26 dpc. 

Samples of both supplements were analyzed (Tables 3, Tables 7) by the Rumen Fermentation 

Profiling Laboratory at WVU. Ten attributes were compared between samples of the prepared flaxseed 

and control supplement s (Table 5, Figure 10, Table 6, Figure 20). Attributes were compared by T-tests 

and Bonferroni correction was used to control for multiple comparisons (10 attributes) between the 

supplement s; differences with p<0.005 were considered statistically significant. In both trials, the 

flaxseed supplement had a higher percentage of neutral detergent fiber (trial 1: control: 6.77 ± 0.28, 

flaxseed: 19.70 ± 0.78, p=0.0001; trial 2: control: 10.48 ± 0.86, flaxseed: 21.39 ± 1.85, p=0.0002,) and a 

lower percentage of non-fiber carbohydrate (trial 1: control: 41.58 ± 0.90, flaxseed: 33.39 ± 0.67, 

p=0.0005; trial 2: control: 42.46 ± 0.89, flaxseed: 32.84 ± 1.33, p<0.0001).   

Gene Expression  
 For RNA extraction, frozen homogenates (white blood cells in RNA Bee, Fisher Scientific, 

Waltham, MA) were thawed for ~5 minutes in a 37oC water bath; 150 μL 24:1 chloroform/isoamyl 

(Sigma-Aldrich, St. Louis, MO) was added to each tube, which was then shaken vigorously for 15 

seconds and transferred to a microcentrifuge tube. Samples sat on ice for 5 minutes before being 

centrifuged for 15 minutes at 4˚C and 14,000 x g. Following centrifugation, the aqueous (top) layer was 

transferred to a new microcentrifuge tube, in which RNA was precipitated by the addition of an equal 

volume of ice cold isopropanol to the sample, gently inverting the tube to mix the contents and incubating 

on ice for 15 minutes. Samples were then centrifuged for 15 minutes at 14,000 x g at 4oC resulting in the 

formation of an RNA pellet. The RNA was washed twice with 1 ml 75% cold ethanol (centrifuged 10 min 

at 14,000 x g at 4oC), dried under a vacuum and dissolved in ~20 μl ultrapure water. Quality and quantity 

of RNA was assessed using Take3 microvolume plate (BioTek, Winooski, VT), and samples with an 

OD260/OD280 ratio >1.8 were accepted. 

Extracted RNA was diluted in 13 μl of DEPC-treated water to a total concentration of 1.8 μg, and 

cDNA synthesis was conducted by making a master mix composed of 2.5 l of 2.5 mM dNTP (GE 

Illustra, Buckinghamshire, UK), 5.0 l 5X reverse transcriptase buffer (Life Technologies, Burlington, 

ONT Canada), 2.0 l 0.01 M Dithiothreitol (DTT) (Life Technologies, Burlington, ONT Canada), 0.5 l 

RNasin (Promega, Madison, WI), and 2.0 l random hexamer primers (Life Technologies, Burlington, 

ONT Canada). Master mix (12 μl) was added to each sample (13 μl) and then transferred to a 96 well 
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plate. Using a T100 thermal cycler (Bio-Rad, Hercules, CA) samples were denatured at 70oC for 5 

minutes and then chilled at 4oC for 5 minutes. SuperScriptTMII (1μl) (Life Technologies, Burlington, ONT 

Canada) was then added to each sample. Reverse transcription reaction was conducted by heating to 37oC 

for 60 minutes, 90oC for 5 minutes, and cooling to 4oC for 5 minutes using a T100 thermal cycler (Bio-

Rad, Hercules, CA). Quantity of cDNA was determined using Take3 microvolume plate (BioTek, 

Winooski, VT). For trial 1 of the supplement study, samples were diluted 1:5 in DEPC water. For the Fall 

experiments, samples were diluted to 4ng/μl in DEPC water. The RNA was stored at -20oC.   

Primer design was based on mRNA sequences found in the NCBI database. For each candidate 

gene, primers were selected using Primer3 software (Rozen and Skaletsky, 2000). Changes to the default 

program settings included product range 80-120 bp, primer Tm 59-61oC, primer GC% 40-60, max self-

complementarity 3, max 3’ self-complementarity 1, and max poly-x 3.  Primers were purchased from 

Integrated DNA Technologies (Coralville, Iowa); associated GenBank accession numbers and primer 

sequences used in qPCR are shown in Table 4. All primers were used previously (Sommers, 2014; Jacobs 

et al 2016) except NF-κB and SOD2 (Chauhan et al, 2014). The primer efficiency was derived (Sommers, 

2014) from the slope of the regression line fitted to a subset of baseline-corrected data points in the log-

linear phase using LinRegPCR (Ramakers et al, 2003). Efficiency for each primer was higher than (1+E) 

= 1.96. The PCR products were visualized after agarose gel electrophoresis to confirm amplification of 

only one product when the primers were first purchased (Sommers, 2014). Melting curve analysis resulted 

in one well defined peak per reaction indicating only one amplified PCR product. Melting temperatures 

(Tm) of products were consistent with theoretical Tm of the expected PCR products. Gene names and 

primer sequences are in Table 4.  

Quantitative PCR reactions were conducted using a Bio-Rad CFX96 system (Bio-Rad, Hercules, 

CA). Samples were analyzed in duplicate, and the reaction was performed in a total volume of 20 μl 

consisting of 10 μl SYBR GreenTM Select Master Mix (Life Technologies, Burlington, ONT Canada),  1.2 

μl forward primer, 1.2 μl reverse primer, 5.6 μl DEPC-treated water, and 2μl diluted template cDNA. The 

conditions for the qPCR reaction were 50o C for 10 minutes followed by initial denaturation at 95oC for 5 

minutes, then 39 cycles of denaturation at 95oC for 10 seconds, and extension for 30 seconds at 60oC. 

Relative fold changes in expression of candidate genes were obtained using the 2-ΔΔCt method (Livak and 

Schmittgen, 2001). The obtained Ct values were used to calculate ΔCt values of the genes of interest [Ct 

(test)-Ct (reference)]. The reference gene used for normalization was GAPDH. For trial 1 of the 

supplement study, the ΔΔCt values were obtained in reference to the control supplement + PBS group 

sample at each time point. For the fall experiments, the ΔΔCt values were obtained in reference to the 

sample collected at CIDR removal. Graphical representation for each gene is based on fold changes.  
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Assays  
Progesterone concentrations were measured in 25 μl of plasma using an Immulite® 1000 

Immunoassay System, a solid phase, competitive immunoassay using enzyme-labeled chemiluminescent 

technology. Reportable range of the assay was 0.20-40 ng/mL with a sensitivity of 0.46 ng/mL. Control 

samples were from an ovariectomized ewe (negative control) and an ovariectomized ewe injected with 

progesterone (positive control).  For trial 1, P4 concentrations were measured in plasma collected at hour 

0 on 5/6 dpc, 9/10 dpc, and 25/26 dpc. For the fall experiments, P4 concentrations were measured in 

plasma collected on days 8/9 and 25/26 dpc.  

Plasma samples were pooled to measure cortisol, Hp, and SAA. For trial 1, plasma samples were 

pooled for the time points 0, 0.5, 1, 1.5, 2, 2.5, 3, 6, 9, 12, and 24 hours post treatment among ewes 

receiving the same supplement and treatment at each time point. For trial 2, plasma samples were 

randomly pooled in groups of 2 to 3 samples within supplement and treatment (same groups as pooled 

buffy coat for gene expression) giving 4 pooled samples for each supplement with each treatment at the 

time points 0, 1, 2, 3, 6, 9, and 12 hours post treatment for cortisol and at the time points 0, 2, 6, 12, and 

24 hours post treatment for Hp and SAA. For the breed study, plasma samples were randomly pooled in 

groups of 4 samples within treatment for the Suffolk ewes and 2-3 samples within treatment for Dorset 

ewes (same groups as pooled buffy coat for gene expression) giving 4 pooled samples for each breed with 

each treatment at the time points 0, 1, 2, 3, 6, 9, and 12 hours post treatment for cortisol and at the time 

points 0, 2, 6, 12, and 24 hours post treatment for Hp and SAA.  

Concentrations of cortisol were measured using a solid phase competitive ELISA kit from 

Immuno-Biological Laboratories, Inc (Minneapolis, MN; Catalog # IB79135) following manufacturer’s 

instructions. The assay had a detection range of 0-800 ng/mL with a sensitivity of 2.5 ng/mL and an intra- 

and inter-assay CV of 4.73 % and 11.78% respectively. Absorbance was read at 450 nm and raw 

absorbance values for samples and standards were adjusted for blank absorbance. SAA was measured 

using a sheep quantitative sandwich ELISA kit from mybiosource (San Diego, CA; Catalog # 

MBS024559) following manufacturer’s instructions. The assay had a detection range of 3.12-100 μg/mL, 

a sensitivity of 1.0 μg/mL, and intra- and inter-assay CV of 3.83% and 5.35% respectively. Absorbance 

was read at 450nm. Hp was measured using a sheep double antibody sandwich ELISA kit from 

mybiosource (San Diego, CA; Catalog # MBS564186) following manufacturer’s instructions. The assay 

had a detection range of 0-1000 ng/mL with a sensitivity of 15.63 ng/mL and an intra- and inter-assay CV 

of 3.51% and 16.41% respectively. Absorbance was read at 450 nm. Hp was analyzed in samples diluted 

1:2000  (2 μl pooled sample into 198 μl diluent then 15 μl of diluted pooled sample into 285 μl diluent) 

and reported as mg/mL.  
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Statistics 
Data were analyzed using JMP and SAS software (JMP®, Version Pro 12, Copyright ©2015; 

SAS®, Version 9.3, SAS Institute., Cary, NC, Copyright © 2002-2010). Data that were not normally 

distributed were log transformed before analysis and significance criterion alpha level was 0.05. Hourly 

responses in rectal temperature, hourly change in temperature from hour 0, and white blood cells were 

analyzed by repeated measures ANOVA. Main effects in the supplement experiments included 

supplement (flaxseed or control), treatment (LPS or PBS), hour, all 2-way interactions and the 3-way 

interaction. Main effects in the breed study included breed (Dorset or Suffolk), treatment (LPS or PBS), 

hour, all 2-way interactions and the 3-way interaction. All results reported as mean ± SEM. 

For trial 1 of the supplement study, cortisol, Hp, SAA, and gene expression (CXCL8, TLR4, NF-

κB, IL-6, TNFα, IFNγ, COX2, C3, MRC1, IL-10, PPARγ, FOXP3, SOD2) were measured in samples 

collected at various time points, but samples were pooled within supplement and treatment giving only 

one sample per group per time point. Therefore, time points served as trials for each group, and means 

were analyzed by ANOVA for the main effects of supplement, treatment, and their interaction. The 

Benjamini-Hochberg procedure was used to control the false discovery rate (FDR=0.10) with regard to 

gene expression. 

For the Fall experiments, Hp, SAA, cortisol, and fold change in gene expression (CXCL8, TLR4, 

NF-κB, IL-6, TNFα, IFNγ, COX2, C3, MRC1, IL-10, PPARγ, FOXP3, TGFβ, SOD2) were analyzed by 

repeated measures with irregular spacing ANOVA. When significant interactions were detected, least 

square means comparisons were made by slicing with the effect Supplement *Treatment*Hour, slicing 

supplement and hour (supplement study trial 2) or with the effect Breed*Treatment*Hour slicing breed 

and hour (breed study). The Benjamini-Hochberg procedure was used to control the false discovery rate 

(FDR=0.10) with regards to gene expression (CXCL8, TLR4, NF-κB, IL-6, TNFα, IFNγ, COX2, C3, 

MRC1, IL-10, PPARγ, FOXP3, TGFβ, SOD2).  

For mucosal responses and noticeable behavioral changes, the number of symptoms recorded for 

each ewe was summed over time. Sickness symptoms, plasma progesterone at one time point, and the 

number of lambs were analyzed by two-way ANOVA and Tukey’s HSD for the effects of breed (Dorset 

or Suffolk) or supplement (Flaxseed or Control) and treatment (LPS, PBS) and their interactions. In trial 

1, a T-test was used to compare plasma progesterone between the supplement s.  

For the Fall experiments, using the average gestation length (148 days) and the lambing records 

retrospectively, conception date was determined. For each ewe it was then decided based on that 

determined mating date if she was pregnant with that lamb(s) during the experiment and thus did not 
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experience embryonic loss or had a lamb from a mating that occurred after the experiment and could have 

experienced embryonic loss.  

For trial 2 of the supplement  study, multiple contingency analyses with Pearson’s Chi-square 

were used to examine the possible association between 1) pregnancy diagnosis by ultrasound and 

treatment group (CP, CL, FP, FL); 2) pregnancy diagnosis by ultrasound and treatment (LPS, PBS); 3) 

pregnancy diagnosis by ultrasound and supplement  (flaxseed, control); 4) a ewe lambing as a result of the 

mating that occurred before the experiment (no embryonic loss) and treatment (LPS, PBS); and 5) a ewe 

lambing as a result of the mating that occurred during the experiment and supplement  (flaxseed, control). 

Logistic regression was conducted to examine if receiving LPS, eating flaxseed, or the interaction could 

predict the odds of a ewe having a lamb as a result of the mating that occurred before the experiment. For 

the breed study, multiple contingency analyses with Pearson’s Chi square were used to examine possible 

associations between 1) pregnancy diagnosis by ultrasound and treatment group (DP, DL, SP, SL); 2) 

pregnancy diagnosis by ultrasound and breed (Dorset, Suffolk); 3) the association between a ewe having a 

lamb as a result of the mating that occurred during the experiment (no embryonic loss) and experimental 

group (DP, DL, SP, SL); 4) the association between a ewe having a lamb as a result of the mating that 

occurred before the experiment and breed (Dorset, Suffolk) and 5) the association between a ewe having a 

lamb as a result of the mating that occurred before the experiment and treatment (LPS, PBS). Logistic 

regression was conducted to examine if receiving LPS, breed, or their interaction could predict the odds 

of a ewe having a lamb as a result of the mating that occurred before the experiment.  

Chapter 3: Effects of Supplementing with Omega-3 Polyunsaturated Fatty Acids 

on LPS Challenge in Early Pregnant Dorset Ewes  

Introduction 
Reproductive tract infections or immune responses outside of the reproductive tract can 

compromise fertility (Hansen, 2011a). Cows with clinical or subclinical mastitis are less likely to become 

pregnant and are more likely to experience pregnancy loss compared to healthy cows (Hansen et al., 

2004). Immune responses to bacterial infections include the release of bacterial products, ROS, cytokines, 

and chemokines at the inflammation site that can travel systemically to act on the liver, hypothalamus, 

pituitary, and reproductive tract resulting in impaired fertility (Hansen, 2011a). This immune response can 

be mimicked in early pregnant sheep by systemically giving peptidoglycan-polysaccharide complex 

(Holásková et al., 2004; Dow et al., 2010) or LPS (Graham, 2014).  

Several cytokines, including pro-inflammatory ones, are critical for establishing and maintaining 

early pregnancy and implantation. However, temporal-spatial secretion of these molecules is critical. Any 

insult, like an infection, that alters the temporal-spatial secretion of cytokines could negatively affect 
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reproduction. Binding of PAMPs to PRRs activates intracellular signaling (MAPKs, AP-1; NF-κB) that 

leads to transcription/secretion of PICs (IL-1β, IL-6, and TNFα), chemokines (CXCL8), PGs, and 

antimicrobial peptides (Taakeuchi and Akira, 2010; Norris and Dennis, 2012; Badinga et al., 2016). 

Indeed, when Zarrin et al. (2014) injected 200μl of LPS, a gram negative bacteria PAMP, into udders of 

cows, gene expression of IL-1β, IL-6, CXCL-8, IL-10, iNOS, TNFα, NF-κB, Hp, and SAA increased in 

the tissue.  

Microbial infections evoke inflammatory responses mediated by the infiltration of neutrophils, 

phagocytes and other innate immune cells, and the production of cytokines and chemokines to eliminate 

the infection before removing debris and resolving the inflammation. An infection that is not cleared, as 

might occur in a post-partum dairy cow in NEB with a suppressed immune system, can lead to chronic 

inflammation and damage of endometrial cells. Early responses of the uterus to pathogens involves 

neutrophilic influx into the superficial endometrium and then into the lumen (Bondurant, 1999). 

Neutrophils phagocytize bacteria with the aid of opsonins in the uterine fluid and attack the pathogens by 

releasing toxic substances (ROS, reactive nitrogen species, proteinase 3, cathepsin G, elastase) (Cheville, 

1988; Nathan, 2006). These effector molecules are not able to distinguish between host and microbial 

targets, so damage to host tissue also occurs (Nathan, 2002). Besides neutrophils, other immune cells that 

will be at the site of invading pathogens include macrophages, eosinophils, mast cells, and lymphocytes 

(Bondurant, 1999). Activation of mast cells results in degranulation and release of chemotactic factors for 

neutrophils and eosinophils, PIMs (histamine, cytokines, PGs) (Bondurant, 1999), proteases that can 

activate the complement components C3 and C5 (Kéuther et al.,1998), and vasoactive substances 

(Kéuther et al.,1998) that increase the permeability of small vessels allowing serum (containing 

complement components and immunoglobulins) to leak into the superficial endometrial tissue and uterine 

lumen (Bondurant, 1999).  Damage to endometrial epithelial cells from PIMs will cause release of IL-1α 

(a damage associated molecular pattern (DAMP)), further increasing the inflammatory response 

(Medzhitov, 2008; Carneiro et al., 2016). Other DAMPs released from damaged or dead cells include 

ATP and nucleic acids that are thought to bind PRRs and initiate an inflammatory response (Chen and 

Nunez, 2010).  

Chronic infection/inflammation in the endometrium will alter endocrine functions and can affect 

transport of spermatozoa and the hormonal and cytokine milieu involved in implantation of the blastocyst. 

Hill and Gilbert (2008) reported a reduction in trophoblast cells of bovine embryos cultured in media 

conditioned with endometrial fluid collected from an inflamed endometrium. The trophoblast is the outer 

layer of cells of the blastocyst that will be the fetal contribution to the placenta, and a reduction in the 

number of trophoblast cells will have a negative impact on implantation, placentation, and embryonic 
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survival. Endometrial cytokines produced during infection/inflammation may alter steroidogenesis in 

luteal cells resulting in a lower secretion of progesterone than is necessary for pregnancy (Thatcher et al., 

2010). The PICs (TNFα, IL-1, and IFNγ) could act directly on the CL or indirectly hamper P4 production 

through the induction of PGF2α production (Pate, 1995; Niswender et al., 2000; Petroff et al., 2001; 

Erlebacher et al., 2004).    

Cell membranes are composed of phospholipids, in which PUFA are key structural and functional 

components (Calder, 2013). Phospholipids of cells involved in inflammation tend to have more AA than 

ω-3 PUFA (Peterson et al., 1998; Healy et al., 2000), but the addition of fish oil (high in ω-3 PUFAs) to 

the supplement of animals (Peterson et al., 1998; Mattos et al., 2004) or human volunteers (Rees et al., 

2006) resulted in an increase in EPA and DHA in cell membranes with a reduction in AA content in the 

phospholipid pool. Norris and Dennis (2012) also reported that EPA supplementation to macrophages in 

vitro increased membrane EPA and DPA while DHA supplementation increased membrane DHA levels.  

In vivo studies have shown that ω-3 PUFAs decrease eicosanoid synthesis in the bovine uterus 

(Mattos et al., 2004; Petit et al., 2004) while in vitro studies have shown that exogenous EPA inhibits 

PGF2α production by cultured bovine endometrial cells (Mattos et al., 2003; Caldari-Torres et al., 2006; 

Badinga et al., 2016). Effects of supplemental ω-3 PUFA could be due to a decrease in AA in cell 

membranes and an increase in fatty acids that compete with AA for enzyme usage (Mattos et al., 2004). 

In homeostatic conditions, PLA2 is mostly inactive, but, during infection or inflammation, PRRs 

can activate PLA2 causing it to translocate to the perinuclear and endoplasmic reticular membranes. At 

the membranes, PLA2 can release lipids to be used as substrates for other lipid mediators. PLA2 can 

hydrolyze AA containing phospholipids releasing AA to be converted into pro-inflammatory eicosanoids 

by COX enzymes, or PLA2 can release phospholipid-esterified ω-3 PUFAs (EPA, DPA, and DHA), 

which can be turned into anti-inflammatory SPMs by COX and LOX enzymes working together (Norris 

and Dennis, 2012; Dennis and Norris, 2015).  The ω-3 PUFAs, are made from ALA; therefore, a 

supplement high in ALA (like flaxseed) potentially provides an individual with more SPMs during an 

inflammatory response and the ability to recover from that response faster.    

When the macrophages in Norris and Dennis’s study (2012) were stimulated with a TLR4 agonist 

or ATP, the media contained increased levels of the PUFAs that the macrophages were cultured with EPA 

or DHA showing that ω-3 PUFA supplementation results in the FAs being incorporated into cell 

membranes, which are then available for use in the eicosanoid pathways. The macrophages then used the 

released FAs to produce COX metabolites. Cells supplemented with EPA or DHA produced lower levels 

of AA derived COX-metabolites (PGE2, PGD2) and higher amounts of EPA-derived COX metabolites 
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(PGD3, PGE3, and 5-HEPE) and DHA-derived COX metabolites, although COX-2 expression was not 

changed by supplementation. While AA COX-metabolites decreased with supplementation, 5-LOX AA 

metabolites (5-HETE) increased; 5-HEPE, the EPA version of 5-HETE, increased with EPA 

supplementation, and DHA was metabolized by 5-LOX to 4-HDoHE and 7-HDoHE, suggesting that the 

ω-3 PUFA inhibited the COX pathway and shunted the FAs to the LOX pathway (Norris and Dennis, 

2012). End products of the LOX pathway have anti-inflammatory effects.  

ATP activates P2X receptor cation channels, which leads to increases in intracellular Ca2+ and 

translocation of cPLA2 to cell membranes to liberate stored phospholipids. Signaling through this receptor 

allows both AA and EPA to be utilized. However, activation of cPLA2 through TLR4 does not result in 

release of non-AA PUFAs. Long-term TLR4 activation leads to sPLA2 activation, which then contributes 

to eicosanoid production during late-phase activation, which will release ω-3 PUFAs (Norris and Dennis, 

2012). This suggests that the beginning of a response is set up to be pro-inflammatory with predominantly 

AA being released and utilized for eicosanoid production followed by release of ω-3 PUFA causing a 

switch to resolution through inhibition of COX, shunting substrates from the COX to the LOX pathway, 

and serving as substrates for SPMs. Supplementation with ω-3 PUFA and subsequent incorporation into 

cellular membranes can, therefore result in a stronger and quicker resolution phase.      

Both EPA and AA are substrates for the PGHS enzymes, and the two fatty acids compete with 

each other for the enzymes. Thus, increasing the amount of available EPA in the membrane should result 

in increased synthesis of prostanoids of the 3 series with a decrease in the amount of AA being turned into 

prostanoids of the 2 series (Mattos et al 2003; Rees et al., 2006). Another explanation for effects of EPA 

may be that EPA reduces the activity or expression of phospholipase A2, COX, and/or prostaglandin H 

synthase (PGHS) genes (Bousserouel et al., 2003; Wada et al., 2007) leading to reduced synthesis of 

PGE2 and PGF2α. Suppression of secretion of luteolytic PGF2α is necessary for maintenance of the CL and 

progesterone production, which is required for establishment of pregnancy (Bazer et al., 2010).  

Omega-3 PUFAs inhibit PIC production by preventing the phosphorylation and degradation of 

Iκ-Bα by the proteasome complex, thus inhibiting NF-κB signaling pathways (Ren and Chung, 2007). 

Both EPA and DHA inhibited IL-1β, TNF-α, and IFNγ production by human lymphocytes in vitro 

(Purasiri et al., 1997), perhaps through inhibition of NF-κB signaling.  

Flaxseed contains high amounts of the ω-3 PUFA α-linolenic acid (18:3 n-3), which can be 

converted by animal tissues to EPA and DHA. The objective of the following two studies was to examine 

if providing supplementary ω-3 PUFAs in the form of whole flaxseed to ewes would have beneficial 
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effects on the inflammatory response to an LPS challenge during early pregnancy. Reducing the 

inflammatory response to bacterial infections could help mitigate early embryonic loss in dairy cows.  

Results 

Clinical Signs  

Temperature 

 Treatment with LPS (p<0.001) increased rectal temperature that peaked at hour 4 before returning 

to normal (p<0.001). Ewes fed the flaxseed supplement had a blunted temperature increase in response to 

LPS, peaking at 40.05 ± 0.26 oC compared to the CL group which peaked at 41.03 ± 0.14oC. Temperatures 

in the FL group returned to normal by hour 6; the temperatures in the CL group did not return to normal 

until hour 8 (p<0.0064, Figure 2).   

Behavior changes/Mucosal Response 

Due to the low frequency of each individual sickness symptom, observed mucosal response (nasal 

discharge, vaginal discharge, coughing, and diarrhea) and behavioral change (loss of appetite, lethargic, 

lying down, and heavy breathing) were summed for each ewe over the 12 hours post treatment. Ewes 

treated with LPS (p<0.0001) displayed both mucosal responses and sickness behaviors, whereas no PBS 

ewes did, with the FL ewes averaging 8 symptoms and the CL ewes averaging 4 symptoms over the 12 

hours. There was a tendency for effects of feed (p=0.0945) and feed x LPS interaction (p=0.0588, Figure 

3) to increase sickness symptoms.  

Immune System 

 White Blood Cell Counts 

 Counts of white blood cells (WBCs) decreased between hour 0 and 1 in all groups and then 

returned to normal concentrations in the PBS groups by hour 2. The LPS (p<0.001) groups had a larger 

decrease in WBCs after treatment, and it took until hour 5 for the FL group and until hour 6 for the CL 

group to return to normal counts (p=0.0056). The more rapid return to normal WBC counts in the FL 

group resulted in a feed effect (p=0.0157) and a feed x LPS x hour effect (p=0.0056) (Figure 4b). White 

blood cells started to increase above the hour 0 values at hour 6 in the flaxseed groups and after hour 7 in 

the control supplement  groups regardless of LPS or PBS (p<0.0001, Figure 4a). From hour 7 to 12 the 

flaxseed groups had more WBCs than the control supplement groups (p<0.0001).    

Acute Phase Proteins 

 Concentrations of Hp differed by feed (p<0.0001), LPS (p<0.0001) and feed x LPS (p<0.0001) 

with the FL group having the highest concentration of Hp (0.68 ± 012 mg/ml). The CL (0.14±0.01 

mg/ml) group had increased Hp counts compared to PBS (FP 0.04 ± 0.00 mg/ml, CP: 0.04 ± 0.00 mg/ml) 

groups, but not as elevated as the FL group (Figure 5a). Plasma concentratinos of SAA were affected by 

feed (p=0.02116), LPS (p<0.0001), and feed x LPS (p<0.001) with the CL (1.86 ± 0.22 μg/ml)) group 
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having lower SAA levels than the other 3 groups (FL 4.67 ± 0.44 μg/ml, FP 4.83 ± 0.6 μg/ml, CP 5.82 ± 

0.23 μg/ml, Figure 5b).  

Cortisol  

 Plasma cortisol levels were affected by feed (p=0.0468) and LPS (p<0.001). Lipopolysaccharide 

increased cortisol levels (LPS 124.76 ± 12.96 ng/ml, PBS 42.17 ± 7.77 ng/ml) and ewes on the flaxseed 

supplement had lower cortisol levels (Flaxseed 67.67 ± 12.5 ng/ml, Control 99.26 ± 15.01 ng/ml, Figure 

6).     

Gene Expression   

 Fold change in gene expression of CXCL8 was affected by LPS (p<0.0001) and feed (p=0.0486) 

with LPS increasing CXCL8 (LPS 7.32 ± 1.5, PBS 1.1 ± 0.19) and the flaxseed supplement decreasing 

CXCL8 (Flaxseed 2.76 ± 0.61, Control 5.67 ± 1.72). There was a feed x LPS interaction on CXCL8 (FL 

4.31 ± 0.99, FP 1.2 ± 0.45, CL 7.52 ± 2.2, CP: 1 ± 0, p=0.027), such that the flaxseed supplement 

dampened the CXCL8 increase in response to LPS (Figure 7a). Expression of TLR4 was increased by 

LPS (LPS 4.6 ± 0.77, PBS 1.06 ± 0.06, p<0.0001) with flaxseed dampening the increase in response to 

LPS treatment (p=0.0326) (CP 1 ± 0, CL 6.1 ± 3.73, FP 1.13 ± 0.32, FL 3.11 ± 1.15) (Figure 7d). No 

effects were found with regards to NF-κB expression, but the CL group had the largest fold change (2.46 

± 1.15) followed by the FP group (1.92 ± 0.39) and then the FL group (1.38 ± 0.43) compared to the CP 

group (Table 8). IL-6 was affected by feed x LPS (p=0.0296) with the FL group (2.09 ± 0.54) having a 

smaller fold changed compared to the FP (2.82 ± 0.69) and CL (2.62 ± 0.63) groups (Figure 7b). There 

was no differences in TNFα or COX2 (Table 8) expression among treatment groups. LPS (p=0.0024) 

decreased IFNγ expression (LPS 0.58 ± 0.14, PBS: 1.26 ± 0.23) (Figure 7c). C3 increased in response to 

LPS (LPS 4.02 ± 0.67, PBS 1.79 ± 0.32, p=0.0065) with the CL group having the largest change (CP 1, 

CL 4.81±0.33, FP 2.58±0.48, FL 3.32±0.77) (Figure 7e). MRC1 decreased in response to LPS (LPS 0.34 

± 0.07, PBS 0.96 ± 0.08, p<0.0001) and fold change was similar between the FP (0.92±.15) and CP (1±0) 

groups and between the FL (0.35 ± 0.09) and CL (0.33 ± 0.12) groups (Figure 8a). IL-10 was not affected 

by LPS, feed, or their interaction but FL (2.82 ± 0.96) had the greatest fold change followed by FP (2.07 

± 0.49) and then CL (1.67 ± 0.61) compared to the CP (1 ± 0) group (Table 8). PPARγ was not affected 

by LPS, feed, or their interaction (p=0.0702) but the FL (0.65 ± 0.16) group did have a reduction in fold 

change compared to the other 3 groups (CP 1, CL 1.18 ± 0.24, FP 1.18 ± 0.16, Table 8). LPS decreased 

FOXP3 expression (LPS 0.73 ± 0.2, PBS 0.91 ± 0.05, p=0.0259, Figure 8c) and increased SOD2 

expression (LPS 4.31 ± 0.82, PBS 1.00 ± 0.08, p<0.0001, Figure 8b).  
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Reproductive System  

Progesterone  

 Progesterone concentrations were not among between the 4 treatment groups on 5/6 dpc (FL 1.74 

± 0.17 ng/ml, FP 1.93 ± 0.2 ng/ml, CL 1.71 ± 0.27 ng/ml, CP 1.65 ± 0.26 ng/ml) or 25/26 dpc. When 

comparing all four groups, the flaxseed supplement increased P4 (CP 2.33 ± 0.58 ng/ml, CL 2.9 ± 0.66 

ng/ml, FP 4.4 ± 0.22 ng/ml, FL 3.29 ± 0.57 ng/ml, p=0.0752) (Figure 9a). However, when comparing P4 

concentrations on day 25/26 post coitus only between the supplement s (Flaxseed 3.84 ± 0.37 ng/ml, 

Control 2.62 ± 0.43 ng/ml), supplementary flaxseed increased P4 concentrations (p=0.0481) (Figure 9b).  

Trial 2 Supplement Study  

Results 

Clinical Signs 

Temperature 

 Ewes treated with LPS (p<0.0001) had an increase in rectal temperature that peaked at 4 hours 

(CP 39.23 ± 0.18oC, CL 39.89 ± .29oC, FP 38.87 ± 0.1oC, FL 40.56 ± 0.29oC) post treatment before 

decreasing and approaching normal temperatures by hour 6 (p<0.0001, Figure 12a). There was a flaxseed 

x LPS effect (p=0.0164); ewes fed the flaxseed supplement and given LPS had higher temperatures than 

the other 3 groups at hour 2 (p=0.009), 3 (p<0.0001), 4 (p<0.0001), 5 (p<0.001), and hour 6 (p=0.014) 

(Figure 12a). Comparing the average rectal temperature over the 6 hours post treatment, LPS (p<0.0001) 

caused an increase in temperature but more so in the flaxseed-fed ewes than in the control supplement  

fed ewes (CP: 39.29 ± 0.07oC; CL: 39.59 ± 0.11oC; FP: 38.94 ± 0.04oC; FL: 39.94 ± 0.1oC, p<0.0001, 

Figure 12b).  

Behavior changes/Mucosal Responses  

Due to the low frequency of each individual symptom, all observed mucosal responses and 

behavioral changes were summed for each ewe over the 12 hours post treatment. Administration of LPS 

caused ewes to have observable physiological changes (LPS 1.18 ± 0.38, PBS 0.15 ± 0.11, p<0.0001). 

Neither feed nor its interaction with treatment affected display of symptoms (Figure 13).  

Immune System  

 White Blood Cell Counts  

 Treatment with LPS (p=0.0037) resulted in a drop in white blood cells from hour 0 to 1. 

Concentrations then returned to normal by hour 6 and continued to increase so that the LPS ewes had 

higher WBCs at hours 12 and 24 compared to the PBS ewes (Figure 14a). Examining the hours (hour 0-6) 

from the LPS (p<0.0001) induced drop in WBCs until recovery; there was an hour effect (p=0.0004) and 

a LPS x hour (p<0.0001) effect with the LPS groups having significantly lower WBCs at hour 1 
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(p=0.0002), 2 (p=0.0002), 3 (p<0.0001), 4 (p<0.0001), 5 (p=0.019) (Figure 14b). There was no effect of 

supplement.  

Acute Phase Proteins  

 Concentrations of Hp were affected by LPS (p=0.0327), hour (p=0.0078), and the interaction of 

LPS x hour (p=0.0165) with concentrations of Hp increasing in the two LPS groups starting after hour 6. 

Hp increased more in the FL group, giving them more Hp at hour 24 compared to the control supplement 

ewes that received LPS (FL: 0.15±0.01 mg/ml; CL: 0.07±0.02 mg/ml, p=0.0009, Figure 15a).  SAA was 

affected by hour (p=0.0023) and the FP group had different SAA concentrations compared to the CP 

group at hour 2 (FP: 34.84 ± 8.17 μg/ml; CP: 17.88 ± 4.68 μg/ml, p=0.0265) and hour 12 (FP 40.67 ± 

12.55 μg/ml, CP 17.38 ± 3.21 μg/ml, p=0.0029, Figure 15b).  

Cortisol  

 Concentrations of plasma cortisol increased in response to LPS (p<0.0001) and were affected by 

feed (p=0.0235), hour (p<0.0001) and the interactions feed x LPS (p=0.0007), LPS x hour (p<0.0001), 

and feed x LPS x hour (p=0.0105) (Figure 16). Cortisol started to increase in the FL group right after LPS 

administration, peaked at hour 1 before gradually decreasing back to normal by hour 12. The control 

supplement ewes given LPS, however, had a spike in cortisol only at hour 3. These patterns (Figure 16) 

resulted in the FL group having more cortisol than the CL group at hour 1 (FL 129.67 ± 11.3 ng/ml, CL 

24.61 ± 12.31 ng/ml, p<0.0001), hour 2 (FL 127.62 ± 17.91 ng/ml, CL 38.98 ± 7.9 ng/ml, p<0.0001), and 

hour 6 (FL 65.5 ± 20.63 ng/ml, CL 22.23 ± 4.26 ng/ml, p=0.013).   

Gene Expression  

 Treatment with LPS (p=0.016) upregulated expression of CXCL8. Expression in the CL ewes 

increased after treatment, peaked at hour 4 (58.19 ± 53.37), and then decreased to normal by hour 9. The 

CL ewes had higher expression at hour 4 compared to the CP ewes (CL 58.19 ± 53.37, CP 1.98 ± 0.55, 

p=0.0004). Expression in the FL ewes increased more gradually and peaked at hour 6 (FL 29.03 ± 26.99) 

before going back to normal by hour 9 (Figure 17a). There was no significant effect of the flaxseed or any 

of its interactions with LPS.  

 LPS administration (p=0.0002) upregulated TLR4 expression. In both LPS groups, expression 

increased after hour 1 and peaked at hour 3 before returning to normal by hour 9 (hour p<0.0001; LPS x 

hour p<0.0001). The FL group had greater expression compared to FP ewes at hour 3 (FL 12.82 ± 1.73, 

FP 2.3 ± 0.29, p<0.0001) and hour 6 (FL 8.04 ± 0.97, FP 0.98 ± 0.18, p<0.0001). The control ewes 

administered LPS had greater expression of TLR4 compared to PBS ewes at hour 3 (CL 9.57 ± 2.78, CP 

3.4 ± 0.86, p<0.0001, Figure 17c). 
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 There were no main effects or interactions that affected NF-κB, IL-6, TNFα, IFNγ, or IL-10 

expression (Table 9). Expression of COX2 fluctuated with time (p=0.0119), but there were no supplement 

or treatment effects (Figure 17d).  

 Expression of C3 was upregulated in response to LPS (LPS 1.01 ± 0.13, PBS 0.75 ± 0.07, 

p=0.0107) and was affected by the feed (Flaxseed 1.03± 0.12, Control 0.74 ± 0.08, p=0.0041), hour 

(p<0.0001), and the interaction of LPS x hour (p<0.0001). The FP ewes had greater expression 15 

minutes post treatment compared to the FL ewes (FP 1.38 ± 0.82, FL 0.41 ± 0.11, p=0.0246) while the FL 

ewes had greater C3 expression at hour 3 (FP 0.70 ± 0.3, FL 2.97 ± 0.78, p<0.0001) and at hour 6 (FP 

0.78 ± 0.39, FL 3.11 ± 0.62, p<0.0001). Compared to the CP ewes, the CL ewes had greater C3 

expression at hour 3 (CP 0.63 ± 0.03, CL 2.04 ± 0.52, p=0.0014) and hour 6 (CP 0.68 ± 0.05, CL 2.09 ± 

0.30, p=0.0014) (Figure 17b).  

 Administration of LPS downregulated MRC1 expression (LPS 0.61 ± 0.16, PBS 1.24 ± 0.20, 

p=0.0118), which was also affected by hour (p=0.0004) and the interaction of LPS x hour (p=0.0091). 

Expression decreased after LPS administration, reached its lowest expression at hour 12 and had started to 

go back up by hour 24. Compared to CP ewes, the CL ewes had significantly lower expression at hour 12 

(CP 1.74± 1.00, CL 0.26 ± 0.14, p=0.0143) (Figure 18a).  

 Expression of PPARγ was affected by LPS (LPS 0.79 ± 0.10, PBS 1.62 ± 0.15, p=0.0014) and 

hour (p=0.0436). While expression in the two PBS groups fluctuated across time, expression change in 

the LPS groups had a pattern. PPARγ expression increased in the CL group from hour 1 to 3, decreased 

until hour 9 and then stayed low. Expression in the FL group increased only gradually from hour 1 to 6 

before decreasing and staying low. Compared to the CP group, the CL group had significantly lower 

PPARγ expression at hour 6 (CP 2.78 ± 0.93, CL 0.96 ± 0.36, p=0.0085) (Figure 18c).  

 Expression of FOXP3 was affected by the interaction of LPS x hour (p=0.0242). Expression in 

the FL group increased from hour 0 to 2 before decreasing until hour 12. Expression had resumed slightly 

by hour 24. Expression in the CL group fluctuated until hour 3 before decreasing at hour 6 and then 

gradually increasing back to normal by hour 24. Compared to the FP group, expression in the FL group 

was decreased at hour 12 (FP 1.43 ± 0.62, FL 0.10 ± 0.06, p=0.0208) and hour 24 (FP 1.59 ± 0.48, FL 

0.33 ± 0.12, p=0.0268). Compared to the CP group, the CL group had decreased expression at hour 12 

(CP 1.72 ± 0.47, CL 0.57 ± 0.67, p=0.0441) (Figure 18d).  

 Expression of TGFβ was affected by hour (p=0.0117). The PBS groups gradually decreased in 

expression from hour 0 to hour 3, increased at hour 4, and then decreased in expression at hour 6. The FL 
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group gradually decreased in TGFβ expression from hour 0 until hour 9 before increasing expression at 

hour 12. The CL group just gradually decreased in expression from hour 0 until hour 12. Compared to the 

FP group, the FL group had lower expression at hour 4 (FP 1.85 ± 0.32, FL 0.97 ± 0.54, p=0.0363) and 

hour 9 (FP 1.28 ± 0.06, FL 0.34 ± 0.08, p=0.0132). Compared to the CP group, the CL group had lower 

expression at hour 12 (CP 1.20 ± 0.16, CL 0.28 ± 0.09, p=0.015) (Figure 18e).  

 Expression of SOD2 was affected by LPS (LPS 5.93 ± 0.81, PBS 1.83 ± 0.15, p<0.0001), hour 

(p<0.0001), and the interaction of LPS x hour (p<0.0001). While SOD2 expression stayed level in the 

PBS groups it increased in the LPS groups from hour 0 to hour 3 before decreasing back to normal by 

hour 12. Compared to the FP group, the FL group had higher SOD2 expression at hour 1.5 (FP 3.14 ± 

1.09, FL 8.1 ± 2.11, p=0.0413), hour 3 (FP 2.14 ± 0.51, FL 18.35 ± 7.60, p<0.0001) and hour 6 (FP 1.24 ± 

0.08, FL 16.04 ± 6.96, p<0.0001). Comparing the two control supplement groups, the ewes given LPS had 

significantly more SOD2 expression at hour 3 (CP 2.58 ± 0.42, CL 10.82 ± 2.07, p<0.0001) and hour 6 

(CP 1.75 ± 0.37, CL 8.23 ± 0.64, p=0.0017) (Figure 18b). 

Reproductive System  

Progesterone 

 Neither supplement nor LPS treatment affected progesterone on day 9/10 post coitus (3.15 ± 0.18 

ng/ml) or on day 25/26 post coitus (3.90 ± 0.28 ng/ml, Figure 19).  

Pregnancy diagnosis/lambing data 

 The number of ewes pregnant at 25/26 dpc in each group did not differ. Neither treatment nor 

feed affected loss of pregnancy. Logistic regression confirmed the contingency analyses: neither 

treatment, feed, nor the interaction could predict the odds of a ewe having a lamb (p=0.8156). The 

number of lambs born in each treatment group from mating that took place before the experiment did not 

differ among groups.  

Discussion  
 In both trials, LPS caused fever, decreases in WBCs, muscosal responses, behavioral changes, 

increases in Hp, cortisol, and gene expression of CXCL8, TLR4, C3, SOD2, and decreases in gene 

expression of MRC1 and Foxp3.  

Trial 1 showed beneficial effects of supplementary flaxseed on temperature response, change in 

WBCs, and APP and cortisol. APPs are non-specific markers of inflammation and used to restore 

homeostasis; an increase in these proteins in the FL compared to CL group could accelerate pathogen 

clearance and inflammation resolution in the flaxseed fed ewes. Plasma of cortisol were affected by 

supplement and LPS. The HPA axis is activated by PGE2 produced peripherally in response to LPS that 
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circulates to the brain or produced by brain endothelial cells in response to PICs. Reduced cortisol levels 

in the flaxseed group suggests a dampened inflammatory response. LPS caused noticeable behavior and 

mucosal changes and there was no differences between ewes fed the different supplement s. These results 

agree with Farran et al. (2008) who fed supplement s with either ground flaxseed (12.9% DM) or tallow 

(4% DM) to beef steers for 14 days before LPS challenge (0.2 μg/kg of BW). Lipopolysaccharide caused 

an increase in rectal temperature, TNFα, and Hp, while decreasing WBCs within the first hour after 

challenge. Steers fed flaxseed had a reduced response in rectal temperature compared to the tallow fed 

steers.  

 The ω-3 PUFAs in flaxseed can be incorporated into cellular membranes, which will influence 

cytokine production and the type of eicosanoids produced in response to inflammatory signals (Endres et 

al., 1989; Calder, 1996). Fever is induced by PGE2; decreased production of 2 series prostaglandins by 

switching AA for ω-3 PUFAs in cell membranes may be the mechanism of flaxseed’s effect on 

temperature response to LPS. ALA can be converted into EPA and DHA by animal cells (Calder, 1996), 

which can compete with AA for enzymes resulting in a reduction in production of PIMs such as the 2 

series PGs and 4-series LTs (Calder, 1998). Indeed, when Farren et al. (2008) fed crossbred heifer calves 

a supplement  containing ground flaxseed (12.9% DM) for 35 days, plasma lipids were significantly 

enriched in ALA (C18:3n3) and EPA (C20:5n3) with a decrease in dihomo-γ-linolenic acid (c20:3n6) 

compared to the heifers being fed supplement s with added tallow or rolled full-fat soybeans.The addition 

of fish oil (high omega 3 FAs) to supplement s of human volunteers resulted in reduced IL-1β, IL-1α, and 

TNFα production from PBMCs stimulated in vitro with LPS, reduced PGE2 production when stimulated 

with S. epidermidis, and reduced neutrophil chemotaxis in response to LTB4 (measured as increase over 

random migration). The decreased production of PICs went along with a decreased ratio of AA to EPA in 

the membrane phospholipids of the volunteer’s PBMCs (Endres et al., 1989).  

 With regard to gene expression of cytokines, chemokines, transcription factors, receptors, and 

enzymes involved in the inflammatory response, LPS increased expression of CXCL8, TLR4, C3, and 

SOD2, while decreasing expression of IFNγ, MRC1, and Foxp3. The flaxseed supplement decreased gene 

expression of CXCL8 and TLR 4. There was a flaxseed x LPS effect on gene expression of CXCL8, 

TLR4, and IL-6 with the increase in expression of the 3 genes in response to LPS being blunted by the 

flaxseed supplement indicating flaxseed dampens the inflammatory response. After controlling for the 

false discovery rate by the Benjamini-Hochberg procedure due to making multiple comparisons, the only 

effects that were still significant were the LPS effects. However, all the genes examined are involved in 

the inflammatory response, the sample size was small and due to pooling samples the time points had to 

serve as trials to analyze the data, which could have impaired the ability to find important differences 
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between groups. Therefore, expression of all genes examined in trial 1 were examined in trial 2 with a 

larger sample size and time as an effect.  

 In trial 1, flaxseed fed ewes had greater plasma P4 on day 25/26 post coitus compared to control 

supplement fed ewes (Figure 12b). This could mean that flaxseed dampened inflammation induced 

changes in luteal function.  

In trial 2, LPS caused an inflammation and APR evidenced by an increase in rectal temperature, 

Hp, cortisol, a decrease in WBCs, and observable behavioral and mucosal changes. Neutrophils are the 

first responders to an inflammatory site. CXCL8 is one chemokine that recruits neutrophils; increased 

expression of this chemokine in LPS challenged ewes also demonstrates the occurrence of an 

inflammatory response (Figure 21a). LPS leads to the production of NO and ROS as these are used by 

immune cells to kill pathogens. These products can damage host cells and must be scavenged or 

neutralized. SOD2 is one enzyme responsible for protecting the host from damage; increased gene 

expression of SOD2 in the LPS challenged ewes indicates an inflammatory response (Figure 23b).  

Lipopolysaccharide stimulates immune cells at the inflammatory site to produce PICs that can 

then circulate in the blood to the brain vasculature where they are either actively transported across the 

blood-brain barrier or penetrate into the brain through circumventricular organs. LPS also can stimulate 

cytokine production by endothelial cells in circumventricular organs (Breder et al., 1988; Spangelo et al., 

1990; Netea et al., 2000). These pyrogenic cytokines (TNFα, IL-6, IL-1β) induce COX2 expression and 

PGE2 synthesis. Acting on the hypothalamus, PGE2 is the major mediator of the fever response (Engstrӧm 

et al., 2012; Wilhelms et al., 2014). These three PICs also mediate the effects of LPS on the HPA axis 

causing CRH release (McCann et al., 1995). They can activate the HPA axis independently or in 

combination resulting in synergistic effects (Sapolsky et al., 1987; Naitoh et al., 1988; Bernardini et al., 

1990; Imura et al., 1991; Perstein et al., 1991; Perstein et al., 1993). During an infection or inflammatory 

response, TNFα is usually produced first, closely followed by IL-1 production and then IL-6 (Hesse et al., 

1988; Akira et al., 1990; van Deventer et al., 1990). After cells have been initially stimulated to 

synthesize these cytokines, for example through PRR activation, these PICs can further stimulate their 

own production in an autocrine manner. In addition, TNFα and IL-1 stimulate secretion of each other, and 

both stimulate IL-6. However, IL-6 inhibits secretion of the other two cytokines and their effects on target 

tissues. GCs can inhibit the production of all 3 cytokines, but IL-6 is the least responsive to GC inhibition. 

Instead, IL-6 works with GCs to stimulate hepatic production of APPs (Hirano et al., 1990; Boumpas et 

al., 1993). Catecholamines stimulate IL-6 production, which will then inhibit TNFα and IL-1, stimulate 

GCs, and induce the APR (Chrousos, 1995).  
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Lipopolysaccharide increased the average rectal temperature (from immediately before treatment 

until 6 hours post treatment) with the flaxseed supplement ing enhancing the febrile response (CP: 39.29 

± 0.07oC; CL: 39.59 ± 0.11oC; FP: 38.94 ± 0.04oC; FL: 39.94 ± 0.1oC). An elevation in body temperature 

associated with infection could affect embryonic loss as heat stress in cattle that raised body temperature 

during embryonic development (Days 1 to 7) led to decreased survival of embryos recovered/assessed on 

day 7 (Putney et al., 1988).  LPS increased temperature in both supplement groups but more so in the 

flaxseed-fed ewes, which may put their embryos at a greater risk of damage.  

PICs along with stress hormones induce fever, sleepiness, fatigue, loss of appetite, decreased 

libido, and activate hepatic production of APPs; responses labeled as “sickness behavior” and the “acute 

phase response” (Elenkov and Chrousos, 1999). Observable discomfort was obvious in the LPS treated 

ewes noted as lethargy, lying down, inappetence, coughing, nasal discharge, and vaginal discharge but 

there was no effect of supplement . 

 WBCs dropped immediately after LPS treatment before gradually recovering back to normal 

levels by hour 6. The drop in cells is likely due to extravasation into tissues. After returning to normal 

levels at hour 6, the number of cells continued to increase in the LPS groups likely a result of the 

inflammatory response stimulating hematopoiesis. Unlike in trial 1 where the flaxseed supplement 

hastened the recovery of normal cell counts, there was no difference in the response of WBCs to LPS 

between the two supplement treatments. Farran et al (2008) also reported no difference in WBC response 

after LPS challenge between supplement s containing ground flaxseed or tallow.  

Similar to Farran et al. (2008), who did not observe a change in plasma Hp in LPS-challenged 

steers until 24 hours post treatment; ewes challenged with LPS had a delayed response in the APR. 

Plasma Hp in the FL ewes was not elevated until hour 12 and was still elevated at hour 24. Hp in plasma 

increased more gradually and less in the CL ewes, but the highest concentration still occurred at hour 24. 

In trial 1, the flaxseed supplement enhanced the increase in Hp levels in response to LPS, but there was 

no feed x LPS effect in trial 2, likely due to the high variation in levels at hour 12. However, the FL ewes 

did have significantly more Hp at hour 24 compared to the CL ewes. SAA was affected only by time with 

the most fluctuation occurring in the FP group. Thus, it may not be a good marker of inflammation 

occurring in this LPS challenge model. Increased Hp in the FL ewes may accelerate pathogen clearance 

and inflammation resolution as Hp limits bacterial growth by binding free hemoglobin and reducing 

available iron (Cray et al., 2009), inhibiting prostaglandin synthase and PGE2 synthesis (Jue et al., 1983; 

Saeed et al., 1997) and can reduce cytokine production by PBMCs (Arredouani et al., 2005). APP 

production is stimulated by GCs and IL-6. There were no experimental effects on IL-6 gene expression, 

but the flaxseed supplement enhanced the LPS increase in cortisol, which could be associated with the 
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increased Hp in this group. Cortisol increased immediately after LPS administration in the FL group and 

did not return to normal until hour 12 compared to the CL ewes that had a spike in cortisol only at hour 3 

(Figure 20). Initial levels (hour 0) in the FL group were 54.06 ± 9.85 ng/ml and peaked at hour 1 with 

129.67 ± 11.3 ng/ml (difference 75.55 ± 1.46 ng/ml) before slowly declining. Initial levels (hour 0) in the 

CL group were 28.73 ± 5.72 ng/ml with spike to 81.59 ± 61.55 ng/ml (difference 52.87 ± 34.57 ng/ml).  

Activation of the HPA axis has both anti- and pro-inflammatory effects. The end products of the 

adaptive response to stress, cortisol from the adrenal gland and catecholamines (epinephrine & 

norepinephrine) from the sympathetic nervous system, have anti-inflammatory effects (Chrousos, 1995; 

Elenkov and Chrousos, 1999; Agelaki et al., 2002). Glucocorticoids can prevent leukocyte migration from 

the circulation into extravascular fluid spaces, reduce monocyte and granulocyte accumulation at the 

inflammation site, and suppress the production and/or activation of certain cytokines and inflammatory 

mediators (Chrousos, 1995).  

Effects of GC on leukocyte and granulocyte migration are due to inhibition of adhesion molecules 

and their corresponding receptors (Cronstein et al., 1992). Glucocorticoids control inflammation by 

suppressing transcription of genes for the enzymes PLA2, COX2, and NOS responsible for producing 

prostanoids, platelet activating factor, and nitric oxide (Nakano et al., 1990; O’Banion et al., 1992; 

Boumpas et al., 1993; Moncada and Higgs, 1993). Catecholamines, acting on adrenergic receptors 

expressed by immune cells, stimulate intracellular cAMP production that suppresses chemotaxis, the 

release of inflammatory mediators, the lytic activity of NK cells and cytotoxic T cells, and the 

proliferation of T cells (Madden et al., 1995).  

Stress hormones favor a humoral response rather than a cell-mediated response through control of 

cytokine production by inhibition of transcription factors like AP-1 and NF-κB (Elenkov et al., 1999). 

Both GCs (Ramírez et al., 1996) and catecholamines (Madden et al., 1995) inhibit IL-2 and IFNγ 

production by Th1 cells (Elenkov et al., 1999). Furthermore, dexamethasone, epinephrine and 

norepinephrine inhibited the LPS-induced IL-12 production by human peripheral blood mononuclear 

leukocytes in vitro (Elenkov et al., 1996). Glucocorticoids not only inhibit IL-12 production by APCs but 

also downregulate IL-12 receptors on T and NK cells, favoring Th2 polarization since IL-12 is a major 

cytokine for polarization of  Th1 cells (Elenkov and Chrousos, 1999). Shifting from Th1 to Th2 

polarization will decrease IFNγ production, as this cytokine is produced by Th1 cells. In addition, 

catecholamines (norepinephrine and epinephrine) stimulate IL-10 production, which stimulates Th2 

polarization (Elenkov et al., 1996). Due to these various anti-inflammatory and immune modulating 

effects of GCs, the greater cortisol in the FL ewes may accelerate resolution of inflammation and limit 

inflammation at the maternal-fetal interface, which is critical for preventing direct damage to the embryo 

as well as maintaining luteal function and maternal-fetal tolerance.   
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Lipopolysaccharide challenge caused gene expression of TLR4 to increase until hour 3 before 

returning to normal by hour 9. The FL group peaked at a higher fold change compared to the CL group 

but the change from hour 0 to 3 between the two LPS groups was similar and there was no Feed or Feed x 

LPS effect. Although there are no treatment, supplement, or interaction effect on fold change in gene 

expression of the transcription factor NF-κB, the PICs TNFα and IFNγ, the enzyme COX2, or the anti-

inflammatory cytokines IL-10 or TGFβ, gene expression does not always reflect protein levels or provide 

information about activity. TLR4 is known to lead to activation of the transcription factors NF-κB and 

AP-1 to promote inflammation. The febrile response, HPA axis activation, and APP production are all 

downstream of PICs and PGE2 suggesting NF-κB and COX2 are active in the LPS treated ewes and 

TNFα, IL-1β, IL-6, and PGE2 are being produced, even though that is not reflected in the gene expression 

data. In addition, Farran et al (2008) reported elevated TNF-α protein in LPS challenged steers, and LPS 

has been shown to increase TNFα plasma levels in sheep (Graham, 2014). The flaxseed fed ewes had an 

increased febrile response, cortisol production, and Hp production, and tended to have a greater increase 

in TLR4 expression when treated with LPS compared to CL ewes. Downstream of TLR4 activation, the 

FL ewes could have greater production of PICs, enhanced activity of COX2 and PGE2 production but this 

cannot be determined from the present results.  

Peroxisome proliferator-activated receptors are transcription factors with anti-inflammatory 

functions (Clark et al., 2000; Dinarello, 2010; Li et al., 2014; Lian et al., 2015). After binding to an 

agonist, PPARs reduce expression of PICs, chemokines, and adhesion molecules by interfering with other 

transcription factors (Ricote et al., 1998; Clark et al., 2000; Lappas et al., 2002; Genolet et al., 2004; 

Feige et al., 2006; Szanto and Nagy, 2008; Dinarello, 2010; Li et al., 2014; Lian et al., 2015). The 15-

LOX metabolites of ALA, 13-(S)-hydroperoxyoctadecatrienoic acid (13-(S)-HPOTrE) and 13-(S)-

hydroxyoctadecatrienoic acid (13-(S)-HOTrE), acting on PPARγ had anti-inflammatory effects in LPS 

stimulated RAW 264.7 cells (MΦ cell line) and in  mouse peritoneal MΦs. The anti-inflammatory effects 

seen in cultured MΦs included decreasing levels of LPS-induced NO and ROS, increasing expression of 

IL-10, decreasing expression of iNOS, IL-1β, IL-18, NLRP3 and TNFα, and decreasing NF-κB 

translocation. Inhibition of NLRP3 inflammasome activation by the metabolites also contributes to 

reduced IL-1β production in response to LPS. In vivo, mice pre-treated with the metabolites had a higher 

survival rate and displayed less sickness behaviors after LPS injection, while mice that received the 

metabolites and underwent cecal ligation and puncture (sepsis induced by polymicrobial infection) had 

decreased expression of NLRP3, iNOS and IL-1β with an increase in IL-10 compared to controls (Kumar 

et al., 2016). PPARγ expression decreased in response to LPS challenge in ewes and there was no 

supplement effect (Figure 24a). Flaxseed is rich in ALA, therefore, the flaxseed ewes potentially had 
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more PPARγ agonists that could have had anti-inflammatory effects. However, flaxseed-fed ewes did not 

have increased IL-10 expression, decreased TNFα expression, or display less sickness symptoms when 

compared to control supplement fed ewes when challenged with LPS. 

RAW 264.7 cells pretreated with ALA metabolites before LPS stimulation had increased COX2 

expression and levels of PGE2 and PGD2 (Kumar et al., 2016). PGD2 can be converted into PGJ2 and the 

metabolites 12ΔPGJ2 and 15d-PGJ2 (a natural ligand of PPARγ) (Scher and Pillinger, 2005). Activation of 

PPARγ and increased PGE2 (Heusinkveld et al., 2011; Li et al., 2014) has been associated with a change 

in MΦ subtype from M1 to M2 cells (Castrillo and Tontonoz, 2004). Kumar et al. (2016) reported 

activation of PPARγ and increased PGE2 levels in MΦs exposed to ALA metabolites. A switch in MΦ 

subtype may be involved in the anti-inflammatory effects of ALA metabolites. It is important that the 

majority of MΦs at the maternal-fetal interface are the M2 phenotype to maintain fetal tolerance; feeding 

flaxseed could help maintain the tolerogenic phenotypes of immune cells at the maternal-fetal interface 

through ALA metabolites interacting with PPARγ.   

Prostaglandins such as PGE2 are produced during the initial inflammation phase (Levy et al., 

2001) that are involved in the early steps in the control of blood flow and vessel dilation needed for 

leukocytes to undergo firm adhesion and diapedesis (Williams and Peck, 1977). In addition to 

chemokines, LTB4 controls trafficking of neutrophils from the post capillary lumen to the interstitial space 

(Pouliot et al., 2002). Production of PGE2 occurs early in infection/inflammation through upregulation of 

COX2 and PGE synthase 1 in MΦs, endothelial cells, and DCs. Prostaglandin E2 has pro- and anti-

inflammatory effects (Fullerton et al., 2014). Binding to prostaglandin E receptors (EP1, EP2, EP3, EP4), 

PGE2 is responsible for several of the cardinal signs of inflammation early in a response such as pain, 

edema, local heat production, fever, and vasodilation. PGE2 also enhances LTB4 mediated neutrophil 

extravasation and increases vascular permeability (Bray et al., 1981; Serhan 2007; Lazarus et al., 2007; 

Serhan 2014). Later in the response, PGE2 causes expression of 12/15-LOX in cells such as MΦs and 

neutrophils leading to production of SPMs that resolve the inflammation. Therefore, PGE2 plays a 

controlling role in eicosanoid class switching (switch from pro-inflammatory PG production to anti-

inflammatory lipoxins production) (Levy et al., 2001; Serhan and Savill, 2005; Norris et al., 2014). In 

addition, inactivation of PGE2 by prostaglandin dehydrogenase converts PGE2 into 15-keto-PGE2 which 

is a ligand for PPARγ, a receptor with anti-inflammatory effects (Harmon et al., 2010; Dennis and Norris, 

2015).  

Macrophages have been shown to have the EP2 and EP4 receptors and respond to PGE2 by 

decreasing TNFα production and increasing IL-10 production, a result of regulation of cytokine gene 

expression. The increased IL-10 may be involved in decreasing TNFα production (Kunkel et al., 1988; 
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Renz et al., 1988; Shinomiya et al., 2001; Treffkorn et al., 2004). Paracrine or autocrine PGE2 signaling at 

the inflammatory site may play a role in switching production of cytokines from pro- to anti- 

inflammatory (Shinomiya et al., 2001). Cyclooxygenase 2 expression in the 4 experimental groups 

fluctuated over time without any effect of supplement or treatment and which eicosanoids were produced 

in each group of ewes is not known. However, the enhanced febrile response in the FL ewes is indicative 

of more PGE2 production. The combination of more PGE2 that is involved in initiation of inflammation 

resolution and is responsible for eicosanoid class switching with the flaxseed providing ω-3 PUFAs 

(substrates to make SPMs) potentially encourages a more rapid resolution of inflammation, which would 

be critical at the maternal-fetal interface.  

Lipopolysaccharide challenge increased gene expression of C3 and decreased expression of 

MRC1 and FOXP3 but there was no difference in response to LPS between the two supplements. The 

role of complement is to kill pathogens enough to keep the infection from spreading while an adaptive 

immune response is being generated, to promote inflammation by causing production of PICs, to recruit 

additional immune cells and to opsonize pathogens and immune complexes to target them for clearance 

by phagocytes (Molina, 2005; Murphy, 2012). Complement activation during pregnancy has been shown 

to promote inflammation and embryo loss (Xu et al., 2000; Mellor et al., 2001; Mao et al., 2003; 

Caucheteux et al., 2003). Increased C3 expression in the LPS-treated ewes indicates gram negative 

bacterial infections can cause embryonic loss through complement activation.  

Mannose receptor C 1 binds to and is involved in endocytosis of glycoproteins. It is expressed on 

MΦs and DCs to help with neutralization and clearance of pathogens (Shepard et al., 1990; Engering et 

al., 1997). A decrease in MRC1 expression during a bacterial infection could hinder pathogen clearance, 

delay inflammation resolution and increase the chance of embryonic loss.  

Forkhead box P3 is the transcription factor that regulates pathways that give Treg cells their 

immune suppressive functions. Tregs cells are critical for controlling inflammation at the maternal-fetal 

interface and generating maternal-fetal tolerance (Fiorentino et al., 1991b; Fallarino et al., 2003; 

Ghiringhelli et al., 2005a; Mahnke et al., 2007;Shevach et al., 2009). Reduced numbers of Tregs or 

diminished suppressive function of these cells result in embryonic loss (Aluvihare et al., 2004; 

Zenclussen et al., 2005; Zhao et al., 2007). Tregs are not a terminally differentiated cell type; in the 

presence of high amounts of PICs they can turn into effector T cells (Gao et al., 2012). Reduced Foxp3 

expression in ewes challenged with LPS could indicate a reduction in Treg cells, perhaps because they are 

switching into inflammatory T cell subsets, which would be detrimental to pregnancy success. Expression 

of Foxp3 in the LPS-challenged ewes does start to rebound back to normal, which could be due to the 

short-lived response (hours) to the LPS challenge. An actual bacterial infection would take a lot longer to 
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clear and the prolonged inflammatory response is likely to have negative consequences on Treg cell 

numbers and function resulting in inflammation induced damage to the embryo, loss of luteal function, 

and loss of maternal-fetal tolerance.   

Ovarian P4, conceptus IFN-τ, and PGs regulate endometrial functions important for conceptus 

elongation and implantation during the peri-implantation period of pregnancy (Dorniak et al., 2011). P4 

action for 8-10 days induces expression of elongation and implantation related genes in the endometrial 

luminal epithelium and glandular epithelium (Simmons et al., 2010; Charpigny et al., 1997a; Eggleston et 

al., 1990). Some of the gene changes are mediated by cortisol and PGs. P4 upregulates HSD11B1 and 

PTGS2 expression while IFN-τ affects their activity (Simmons et al., 2010; Dorniak et al, 2013b). 

Cortisol also induces HSD11B1 expression needed for production of cortisol from corticosterone 

(Simmons et al., 2010). Infusing cortisol into the uterus of cyclic ewes from day 10-14 after estrus, 

Dorniak et al. (2013b) showed that cortisol stimulates endometrial HSD11B1 expression and activity, 

increases endometrial PTGS2 activity and the amount of PG in the uterine lumen, and up-regulates many 

conceptus elongation-related genes in the endometrium. PGE2 and PGI2, produced by prostaglandin 

synthase 2, mediate some of P4’s effects on gene expression as well as regulating blastocyst implantation, 

decidualization, and uterine angiogenesis (Dorniak et al., 2011).  Inflammation/infections can 1: lead to 

luteolysis and reduced P4 levels, 2: trigger production of PICs that cause apoptosis of trophoblast cells 

and reduced IFN-τ levels, 3: activate the HPA axis through PICs to increase cortisol levels, and 4: 

stimulate PG production. These changes in mediators that regulate elongation- and implantation-related 

genes could result in asynchrony of an implantation-competent embryo and a receptive uterus, thus the 

‘window of implantation” being missed, resulting in implantation failure. Lipopolysaccharide challenge 

on day 5/6 post coitus caused activation of the HPA axis and cortisol production, which may alter timing 

of the expression of uterine genes. The short-lived inflammatory response to the one LPS dose in the 

experiment may not cause much damage in regards to cortisol altering gene expression in the uterus, but a 

prolonged bacterial infection could affect pregnancy success in this manner.  

There was no difference in P4 levels on either 8/9 or 25/26 dpc indicating LPS treatment did not 

affect luteal function. Neither pregnancy diagnosis by ultrasound nor lambing data revealed differences 

between the treatment groups in regards to pregnancy success suggesting the LPS challenge did not cause 

embryonic loss and the flaxseed supplement did not improve pregnancy rates. However, the sample size 

of this study was small compared to other studies that have used hundreds of ewes to examine embryonic 

loss (Dixon et al., 2014).   

In both ω-3 PUFA studies, feed analysis of samples of the prepared supplement s reported more 

neutral detergent fiber (NDF) and less non-fiber carbohydrate (NFC) in the flaxseed supplement. NDF is 
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a reflection of the amount of structural plant components. Therefore, it makes sense that the flaxseed, 

with a seed coat, had higher NDF than the control supplement with added cracked corn, soybean meal, 

and soybean oil (SBO). NFC consists of starch, simple sugars, and soluble fiber and the calculation to 

determine NFC includes percent NDF; therefore, it makes sense that the flaxseed supplement that had a 

higher percent NDF, had a lower NFC percent. It also fits that the control supplement had a higher 

percent NFC because the components of the supplement (cracked corn) would have provided additional 

starch. Supplement s with low NDF/high NFC, like the control supplement compared to the flaxseed 

supplement, can cause ruminal acidosis and decrease the rate of VFA absorption from the rumen. 

However, the ewes in the present study were on pasture, and grass would have increased fiber intake. In 

addition, the amount being fed was split between two feedings per day, and the rumen was not exposed to 

all of the starch at once. Both supplement s were eaten readily when presented and there were no changes 

in body weight of the ewes.  

The addition of unprotected fats to ruminant supplement s can decrease dry matter intake and 

reduce digestibility of non-lipid energy sources as a result of changes to ruminal fermentation, gut 

motility, palatability, release of gut hormones, and oxidation of fat in the liver (Allen, 2000). Numerous 

studies feeding flaxseed to ruminants in various forms (whole, ground, rolled, extruded) have investigated 

effects on digestibilities, rumen health, VFA production, and incorporation of fats into tissues and milk. 

Overall, feeding flaxseed did not have negative effects on ruminant digestion, and ω-3 PUFAs were 

available for use by the animal to incorporate into tissues and milk. This was especially true when feeding 

whole flaxseed since the seed coat helped to protect the oil from rumen bacteria (Wachira et al., 2000; 

Petit et al., 2002; Gonthier et al., 2004; Scholljegerdes and Kronberg, 2008; Petit and Côrtes et al., 2010; 

Côrtes et al., 2010; Mesgaran et al., 2012; Schroeder et al., 2014). Even though flaxseed has a hard outer 

coat, ruminants are able to extract and utilize fats from the seeds post-rumen (Oba et al., 2009).  

Soybean oil was one of the components used in the control supplement of the present experiments 

to match the flaxseed in fat and crude protein content using the Pearson Square method. Soybean oil 

contains unprotected fat and thus can potentially be more damaging to rumen health than the flaxseed. 

However, Wonsil et al. (1994) fed Holstein cows an amount of SBO per pound of animal per day 

comparable to that fed in the present studies (Wonsil et al.: 0.0012 lb SBO/lb cow/day, present study: 

0.0011lb SBO/lb ewe/day). Compared to their control supplement that contained no supplemental fat, the 

addition of SBO did not affect total or individual VFA concentrations or the ratio of acetate to propionate. 

There were no changes in dry matter intake or apparent digestibility (in the rumen or total tract) of dry 

matter, acid detergent fiber, organic matter or nitrogen, indicating that SBO was not toxic to rumen 

microorganisms (Wonsil et al., 1994). There is no information on rumen health or digestibilities of the 

supplement s for the present studies; however, based on previous studies that supplemented comparable 
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amounts of flaxseed or SBO and the fact that weights of the ewes (recorded on: the day the supplement 

started, after 7 days on the supplement, and the day the supplement was stopped: ~28 days) did not 

change (data not shown) it should be fair to say the experimental supplement did not negatively affect 

digestion in ewes.  

Fat in SBO is 14% saturated (10% palmitic; 4% stearic) and 81% unsaturated (51% linoleic; 23% 

oleic; 7% linolenic) (Gunstone, 1996) with most of the fat being linoleic. While SBO contains some 

ALA, levels are way below the ALA content in flaxseed (53% of the total FAs). In addition, the fat in 

SBO is not protected from rumen microbes and will be subject to biohydrogenation increasing duodenal 

flow of stearic and oleic acid, not ω-3 PUFAs. Therefore, even though SBO contains some ALA, feeding 

SBO does not change circulating levels of ALA, EPA, or DHA (Wonsil et al., 1994). The high ALA 

content in whole flaxseed is protected from rumen biohydrogenation by the seed coat, however, making 

ω-3 PUFAs available to the animal (Oba et al., 2009).  

Omega-3 PUFAs are known to have anti-inflammatory effects, and it was hypothesized that 

feeding flaxseed to ewes would dampen the inflammatory response to an LPS challenge. Between the two 

trials, the effect of flaxseed when LPS was given was not consistent for all measurements. In trial 1, 

flaxseed dampened both the febrile response and HPA axis activation in response to LPS but enhanced 

the temperature increase and cortisol levels in trial 2. TLR4 gene expression in response to LPS was 

dampened with flaxseed in trial 1, but tended to be increased in trial 2 compared to the CL group, but did 

not reach statistical significance. In trial 1, the flaxseed supplement hastened the recovery of the decrease 

in WBC counts in reponse to LPS but there was no difference in the second study. Flaxseed enhanced the 

LPS increase in Hp in trial 1 and tended to do so in trial 2. Possible explanations for the discrepancies 

include small sample sizes (especially in trial 1), the amount of flaxseed supplemented might have been 

insufficient to get significant anti-inflammatory effects, the feeding period may have been inadequate (~8 

days) to get a significant amount of ω-3 PUFAs incorporated into cellular membranes before LPS was 

administered, and the fat content of the flaxseed was greater in trial 1 (39.11%) compared to trial 2 

(32.89%), which would have provided less ω-3 PUFAs to the ewes in trial 2. Another likely possibility is 

that the ewes in the spring had a higher intake of ω-3 PUFAs due to spring grass being higher in ω-3 

PUFA than fall grass, and both sets of ewes were kept on pasture. In conclusion, additional studies need 

to be conducted that address the above mentioned issues before stating that flaxseed has beneficial effects 

with regards to inflammation induced by LPS treatment.  
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Tables  
 

Table 1: Analysis of whole flaxseed used in trial 1 of the ω-3 PUFA study (Spring 2015). Whole flaxseed 

was purchased from Valley Point Feed (Albright, WV; Lot # DM1415) and analyzed by the Rumen 

Fermentation Profiling Laboratory at WVU.  

  %"As  Sampled" %Dry Matter Basis 

%Dry Matter* 91.38   

% Moisture 8.62   

% Crude Protein 15.84 17.33 

% Crude Fat 39.11 42.80 

%TDN 118.70 129.9 

NEG, Mcal/lb 1.14 1.25 

NEM, Mcal/lb 1.44 1.58 

NEL, Mcal/lb 1.50 1.64 

*Dry Matter of sample as 

received.   

 

Table 2: Composition of supplements fed to ewes in trial 1 of the ω-3 PUFA study. Ewes received a total 

of 1lb/per day. *Sheep ration consisted of cracked corn, soybean meal, minerals, limestone, and Bovatec 

58 and was already prepared by WVU farm crew. Based on flaxseed analysis (Table 1), cracked corn, 

soybean meal, and soybean oil were used to match the flaxseed in fat content (39.11%) and crude protein 

(15.84%). 

Ingredient  Flaxseed 

Supplement  

Control 

Supplement  

Sheep 

Ration* 

(total .45lb) 

Cracked Corn  

(76.69%) 

0.35 lb 0.35 lb 

+ 

0.2 lb 

(36.36%) 

 Soybean Meal 

(11.89%) 

0.054 lb 0.054 lb 

+ 

0.21 lb 

(38.18%) 

 Sheperd’s pride 

minerals (8.86%) 

0.04 lb 0.04 lb 

 Limestone (2.53%) 0.011 lb 0.011 lb 

 Bovatec 68 

(0.05%) 

0.0023lb 0.0023lb 

Whole 

Flaxseed 

 .55 lb 0 

Soybean Oil  0 0.14 lb 

(25.45%) 
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Table 3: Results from feed analysis conducted on samples of the prepared supplements used in trial 1 of 

the ω-3 PUFA study. Samples were analyzed by the Rumen Fermentation Profiling Laboratory at WVU. 

T-tests were used to compare each variable between supplements; Bonferroni correction (0.05/10) was 

used to control for multiple comparisons. α=0.005 Results reported as mean ± SEM.  

Variable Control Supplement  

(n=4) (mean±SEM) 

Flaxseed Supplement  

(n=4) (mean±SEM) 

P value  

Percent Dry Matter 90.55±0.104 90.15±0.24 0.1931 

Percent Moisture 9.45±0.104 9.86±0.24 0.1931 

Percent Crude Protein  15.49±0.585 16.58±1.071 0.4144 

Percent Crude Fat  21.52±1.383 16.57±1.09 0.0326 

Percent Neutral Detergent 

Fiber 
6.77±0.281 19.70±0.776 0.0001 

Percent Ash 5.20±0.371 3.90±0.392 0.053 

Percent Non-Fiber 

Carbohydrate 
41.58±0.907 33.39±0.666 0.0005 

Percent Total Digestible 

Nutrients  
76.26±0.922 74.00±0.40 0.084 

Net Energy for Gain  0.88±0.013 0.85±0.005 0.0938 

Net Energy for Maintenance  0.59±0.012 0.56±0.007 0.1078 
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Table 4: Primer sequences of the housekeeping and genes of interest.  

Gene Name Gene 

Symbol 

Forward Primer (5’-3’) 

Reverse Primer (5’-3’) 

bp TM OC 

Complement component 

3 

C3 GCACTGTCCACCAACCTCA 

ATCAGGCTTCTGCTTCTCCA 

87 81.5 

Cyclooxygenase 2 COX2 CTACCCGCCTCATATTCCTG 

CCAAATGGTGGCATACATCA 

94 82 

Forkhead box P3 Foxp3 GAAACAGCACATTCCCAGAGT 

GGATGAGGGTGGCATAGGT 

90 80.5 

Glyceraldehyde 3-

Phosphate 

Dehydrogenase 

GAPDH CAGGAGCACGAGAGGAAGAG 

AATGTATGGAGGTCGGGAGA 

91 83 

Interferon gamma IFNγ ATGACCTGTCGCCAAAATC 

GCAGGCAGGAGAACCATTAC 

97 81 

Interleukin 6 IL-6 TAACCACTCCAGCCACACAC 

GATAACCTTTGCGTTCTTTACCC 

80 79.5 

Interleukin 8 CXCL8 GGATTCACGAGTTCCTGTTCA 

CTGTGAGGTAGAAAGATGACTGAGA 

86 77 

Interleukin 10 IL-10 TTTCCCTGACTGCCCTCTAA 

GCTCCCTGGTTTCTCTTCCT 

105 82 

Mannose Receptor, type 

C 1 

MRC1 GGAGGGAACACAAGGGATG 

GCAAGGAAGGGTCAGGTTG 

94 78.5 

Nuclear Factor kappa B NF-κB ATTCAGCCCTTTGCCCATCT 

ATGGGATGTCAGTGGCGTTA 

  

Peroxisome Proliferator 

Activated Receptor 

gamma 

PPARγ CTTGACGGGAAAGACGACA 

GCTGATGTGCTTGAACTTGATT 

97 75.5 

Superoxide Dismutase 2 SOD2 TCACAGCATCTTCTGGACAA 

TGCTCCTTATTGAAGCCAAG 

  

Toll Like Receptor 4 TLR4  GGCATCATCTTCATCGTCCT 

CCACTCCAGGTAGGTGTTCC 

99 82.5 

 

Table 5: Analysis of the whole flaxseed used in trial 2 of the ω-3 PUFA study. Whole flaxseed was 

purchased from Valley Point Feed (Albright, WV; Lot # 15-0072 GS1 Lot: (10)1-22373) and analyzed by 

the Rumen Fermentation Profiling Laboratory at WVU.  

  %"As  Sampled" %Dry Matter Basis 

%Dry Matter* 92.77   

% Moisture 7.23   

% Crude Protein 21.01 22.65 

% Crude Fat 32.89 35.45 

%TDN 115.2 124.2 

NEG, Mcal/lb 1.09 1.18 

NEM, Mcal/lb 1.39 1.50 

NEL, Mcal/lb 1.41 1.52 

*Dry Matter of 

sample as received.   
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Table 6: Composition of supplements fed to ewes in trial 2 of the ω-3 PUFA study. Ewes received a total 

of 1lb/per day. *Sheep ration consisted of cracked corn, soybean meal, minerals, limestone, and Bovatec 

58 and was already prepared by WVU farm crew. Based on flaxseed analysis (Table 5), cracked corn, 

soybean meal, and soybean oil was used to match the flaxseed in fat content (32.89%) and crude protein 

(21.01%). 

Ingredient  Flaxseed 

Supplement  

Control 

Supplement  

Sheep 

Ration* 

(total .45lb) 

Cracked Corn  

(76.69%) 

0.35 lb 0.35 lb 

+ 

0.1694 lb 

(30.81%) 

 Soybean Meal 

(11.89%)  

0.054 lb 0.054 lb 

+ 

0.2089 lb  

(37.98%) 

 Sheperd’s pride 

minerals (8.86%) 

0.04 lb 0.04 lb 

 Limestone (2.53%) 0.011 lb 0.011 lb 

 Bovatec 68 

(0.05%) 

0.0023lb 0.0023lb 

Whole 

Flaxseed 

 .55 lb 0 

Soybean Oil  0 0.1716 lb 

(31.20%) 
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Table 7: Results from feed analysis conducted on samples of the prepared supplements used in trial 2 of 

the ω-3 PUFA study. Samples were analyzed by the Rumen Fermentation Profiling Laboratory at WVU. 

T-tests were used to compare each variable between supplements; Bonferroni correction used to control 

for multiple comparisons. α=0.005 Results reported as mean±SEM.  

Variable Control Supplement  (n=7) 

(mean±SEM) 

Flaxseed Supplement  (n=5) 

(mean±SEM) 

P value  

Percent Dry Matter 89.01±0.213 89.84±0.118 0.0128 

Percent Moisture 10.99±0.213 10.16±0.118 0.0128 

Percent Crude Protein  18.18±0.625 16.81±0.417 0.1283 

Percent Crude Fat  13.63±0.364 13.76±2.236 0.8959 

Percent Neutral Detergent Fiber 10.48±0.863 21.39±1.852 0.0002 

Percent Ash 4.27±0.433 4.03±0.552 0.7394 

Percent Non-Fiber Carbohydrate 42.46±0.886 32.84±1.327 <0.0001 

Percent Total Digestible 

Nutrients  

72.12±0.552 71.57±0.868 0.5838 

Net Energy for Gain  0.83±0.007 0.82±0.012 0.5995 

Net Energy for Maintenance  0.54±0.007 0.53±0.012 0.5393 
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Table 8: Fold change in cyclooxygenase 2, interleukin-10, nuclear factor kappa B, peroxisome 

proliferator-activated receptor gamma, and tumor necrosis alpha expression compared to the CP group in 

white blood cells in trial 1 of the supplement  study. Data analyzed by ANOVA. Data for IL-10 and 

COX2 were log transformed before analysis. (FL (n=3): flaxseed supplement + LPS, FP (n=3): flaxseed 

supplement + PBS, CL (n=5): control supplement + LPS, CP (n=5): control supplement + PBS) Mean ± 

SEM 

Gene/Time 

points  

Treatment 

Group 

Mean ± SEM Supplement  

Effect 

LPS Effect  Supplement  

x LPS Effect  

COX-2   p=0.27 p=0.15 p=0.18 

0, .5, 1, 

1.5, 2.5, 3 

hrs 

FL 2.37 ± 0.65    

FP 2.65 ± 0.63 

CL 1.86 ± 0.74 

CP 1 ± 0 

IL-10    p=0.08 p=0.43 p=0.88 

0, 1.5, 3, 4, 

5, 6, 10 hrs 

FL 2.82 ± 0.96    

FP 2.07 ± 0.96 

CL 1.67 ± 0.61 

CP 1 ± 0 

NF-κB   p=0.90 p=0.47 p=0.13 

0,1.5,2.5,3, 

4,5,6,7,9, 

10,12,24 

hrs 

FL 1.38 ± 0.43    

FP 1.92 ± 0.39 

CL 2.46 ± 1.15 

CP 1 ± 0 

PPARγ   p=0.45 p=0.17 p=0.07 

0, 0.5, 1, 

1.5, 3, 5, 6, 

7, 8, 9, 10, 

11, 12, 24 

hrs 

FL 0.65 ± 0.16    

FP 1.18 ± 0.16 

CL 1.07 ± 0.24 

CP 1 ± 0 

TNFα   p=0.57 p=0.35 p=0.35 

.5, 1, 1.5, 

2.5, 3, 4, 5, 

6 hrs 

FL 1.6 ± 0.43    

FP 1.6 ± 0.43 

CL 1.74 ± 0.52 

CP 1 ± 0 
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Table 9: Fold change in interferon gamma, interleukin-6, interleukin-10, nuclear factor kappa B, and 

tumor necrosis alpha gene expression to LPS or PBS in early pregnant ewes fed a whole flaxseed or 

control supplement (supplement study trial 2). Data expressed as the fold change in gene expression using 

the 2-ΔΔCt method with GAPDH as the housekeeping gene and the reference time point being the sample 

collected at CIDR withdraw. Data analyzed by repeated measures ANOVA. Mean ± SEM. Mean is the 

overall mean of the fold change across the time points but analyzed with time as the repeated measure.  

(FL (n=11): flaxseed supplement + LPS; FP (n=10): flaxseed supplement + PBS; CL (n=11): control 

supplement + LPS; CP (n=10): control supplement  + PBS) 

Gene/Time 

points  

Treat

ment 

Group 

Mean ± 

SEM 

Supple

ment  

Effect 

LPS 

Effect  

Supplem

ent  x 

LPS 

Effect  

Hour 

Effect 

Supplem

ent  x 

Hour 

LPS x 

Hour 

 

Suppleme

nt  x LPS 

x Hour 

IFNγ   p=0.75 p=0.29 p=0.56 p=0.13 p=0.96 p=0.51 p=0.52 

0,0.5, 1.5, 

3, 6, 9, 12, 

24 hrs 

FL 0.82 ± 0.27        

FP 1.09 ± 0.19 

CL 0.66 ± 0.13 

CP 3.92 ± 1.15 

IL-6   p=0.27 p=0.22 p=0.90 p=0.62 p=0.79 p=0.45 p=0.85 

0, 0.25, 

0.75, 1.5, 

2, 3, 6 hrs 

FL 0.65 ± 0.21        

FP 0.84 ± 0.32 

CL 0.3 ± 0.08 

CP 0.61 ± 0.14 

IL-10   p=0.96 p=0.28 p=0.86 p=0.06 p=.99 p=.35 p=0.36 

0,1.5,3,6, 

9, 12 hrs 

FL 9.52 ± 3.21        

FP 4.47 ± 1.73 

CL 8.4 ± 2.91 

CP 3.7 ± 0.89 

NF-κB   p=0.24 p=0.60 p=0.90 p=0.54 p=0.54 p=0.46 p=0.06 

0, 1.5, 3, 6, 

9 hrs 

FL 0.82 ± 0.39        

FP 1.05 ± 0.24 

CL 0.58 ± 0.14 

CP 0.75 ± 0.18 

TNFα   p=0.16 p=0.60 p=0.71 p=0.22 p=0.79 p=0.26 p=0.21 

0, 0.5, 1 hr FL 1.1 ± 0.20        

FP 1.13 ± 0.31 

CL 0.78 ± 0.14 

CP 0.53 ± 0.09 
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Figures 

Trial 1: The effect of supplementing with ω-3 PUFA on LPS challenge in early pregnant Dorset ewes 

 

 

Figure 2: Hourly response in rectal temperature to LPS or PBS in early pregnant ewes fed a whole flaxseed or 

control supplement. Flax p<0.001, LPS P<0.001, Flax x LPS p=0.0064, Hour p<0.001, LPS x Hour p<0.001 (FL 

(n=3): flaxseed supplement + LPS, FP (n=3): flaxseed supplement + PBS, CL (n=5): control supplement + LPS, CP 

(n=5): control supplement + PBS) Data were analyzed by repeated Measures ANOVA. Mean ± SEM 
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Figure 3: Frequency of sickness symptoms displayed by flaxseed and control supplement fed ewes 

receiving either LPS or PBS. Changes in behavior or mucosal responses were noted at each blood sample 

collection, added up for each ewe over the 12 hours post-treatment, and averaged for each treatment group. LPS 

p<0.0001 (FL (n=3): flaxseed supplement + LPS, FP (n=3): flaxseed supplement + PBS, CL (n=5): control 

supplement + LPS, CP (n=5): control supplement + PBS). Data analyzed by ANOVA. Mean ± SEM 

 

Figure 4: Hourly response in white blood cells to LPS or PBS in early pregnant ewes fed a whole flaxseed or control 

supplement from 0-12 hours (a) and 0-5 hours (b) post treatment. Figure a: Flax p<0.0001, Hour p<0.0001,  

Figure b: Flax p=0.0157, LPS p<0.001, Hour p=0.0039, LPS x Hour p=0.0054, Flax x LPS x Hour p=0.0056 

(FL (n=3): flaxseed supplement + LPS, FP (n=3): flaxseed supplement + PBS, CL (n=5): control supplement + LPS, 

CP (n=5): control supplement  + PBS). Data were analyzed by repeated measures ANOVA.  Mean ± SEM 
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Figure 5: Plasma concentration of acute phase proteins post treatment. Haptoglobin (a) was measured in samples 

collected at time points 0, 30 minutes, 1, 1.5, 2, 2.5, 3,6,9, and 12 hours. Data was log transformed before analysis; 

graph displays untransformed data. Both FL and CL are significantly different from the other 3 groups. Flax 

p<0.0001, LPS p<0.0001, Flax x LPS p<0.0001. Serum amyloid A (b) was measured  in samples collected at time 

points 0, 30 minutes, 1, 1.5, 2, 2.5, 3,6,9,12, and 24 hours. CL had significantly lower SAA concentration compared 

to the other 3 groups. Flax p=0.0216, LPS p<0.0001, Flax x LPS p<0.001 (FL (n=3): flaxseed supplement + LPS; 

FP (n=3): flaxseed supplement + PBS, CL (n=5): control supplement + LPS, CP (n=5): control supplement + PBS) 

Data were analyzed by ANOVA with Tukey’s HSD. Mean ± SEM 

 

 

Figure 6: Plasma concentration of cortisol post treatment. Cortisol was measured  in samples collected at time points 

0, 30 minutes, 1, 1.5, 2, 2.5, 3,6,9, and 12 hours. Flax p=0.0468, LPS p<0.001 (FL (n=3): flaxseed supplement + 

LPS, FP (n=3): flaxseed supplement + PBS, CL (n=5): control supplement + LPS, CP (n=5): control supplement + 

PBS) Data were analyzed by ANOVA. Mean ± SEM  
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Figure 7:  Fold change in gene expression of pro-inflammatory factors measured in white blood cells. Ct values were 

normalized to GAPDH and ΔΔ Ct values were obtained in reference to the CP group.  (a) CXCL8 measured at 3, 4, 

5, 6, 7, 8 hours post treatment. LPS p<0.0001, Flax p=0.0486, Flax x LPS p=0.027 (b) IL-6 measured at 5, 1, 1.5, 

2.5, 3, 4, 5, 6 hours post treatment. Flax x LPS p=0.0296 (c) IFNγ measured at 0, .5, 1, 1.5, 4, 6, 8, 10, 12, 24 hours 

post treatment.  Data log transformed before analysis; graph displays untransformed data. LPS=0.0024 (d) TLR4 

measured at 3, 4, 5, 6, 7, 8, 9, 10 hours post treatment. Flax p=0.0484, LPS<0.0001, Flax x LPS p=0.0326 (e) C3 

measureed at collected 0, .5, 1, 1.5, 2.5, 3, 4, 5, 6 hours post treatment. Data log transformed before analysis; graph 

displays untransformed data. LPS=0.0065 (FL (n=3): flaxseed supplement + LPS, FP (n=3): flaxseed supplement + 

PBS, CL (n=5): control supplement + LPS, CP (n=5): control supplement + PBS) Data were analyzed by ANOVA. 

Mean ± SEM 



113 
 

 

 

Figure 8: Fold change in gene expression of anti-inflammatory factors measured in white blood cells. Ct values were 

normalized to GAPDH and ΔΔ Ct values were obtained in reference to the CP group. (a) MRC1 measured at .5, 1, 

1.5, 2.5, 6, 7, 8, 9, 10, 11, 12, 24 hours post treatment. LPS p<0.0001 (b) SOD2 measured in samples collected at 

1.5, 2.5, 3, 4, 7, 9, 11, 12, 24 hours post treatment. Data log transformed before analysis; graph displays 

untransformed data LPS p<0.0001 (c) Foxp3 measured in samples collected at 1,1.5,3,4,6,7,8,9,10,11,12,24 hours 

post treatment and on d16 & d25 post coitus. Data log transformed before analysis; graph displays untransformed 

data. LPS p=0.0259 (FL (n=3): flaxseed supplement + LPS; FP (n=3): flaxseed supplement + PBS; CL (n=5): 

control supplement + LPS, CP (n=5): control supplement + PBS) Data were analyzed by ANOVA. Mean ± SEM 
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Figure 9: Plasma progesterone levels. (a) Progesterone on day 25/26 post coitus comparing all 4 treatment groups. 

Data analyzed by 2-way ANOVA.  Flax p=0.0752, LPS p=0.6854, Flax x LPS p=0.2026 (FL (n=3): flaxseed 

supplement + LPS, FP (n=3): flaxseed supplement + PBS, CL (n=5): control supplement + LPS, CP (n=5): control 

supplement + PBS) (b) Progesterone on day 25/26 post coitus comparing only between supplements. Data was 

analyzed by a T-test p=0.0481 (flaxseed n=6, control n=10) (FL (n=3): flaxseed supplement + LPS, FP (n=3): 

flaxseed supplement + PBS, CL (n=5): control supplement + LPS, CP (n=5): control supplement + PBS) Mean ± 

SEM 

 

Figure 10: Comparison of the neutral detergent fiber (a) and non-fiber carbohydrate (b) in samples of the prepared 

supplements. Samples were analyzed by the Rumen Fermentation Profiling Laboratory at WVU. Data analyzed by 

T-test with Bonferroni correction with α=0.005.  NDF: p=0.0001, NFC: p=0.0005 (flaxseed supplement samples 

n=4; control supplement samples n=4) Mean ± SEM 
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Trial 2: the effect of supplementing with ω-3 PUFA on LPS challenge in early pregnant ewes 

 

Figure 11: Timeline outlining the steps in the breed effects and the omega-3 PUFA effect on LPS challenge studies 

conducted in the Fall 2015. 

 

Figure 12: Rectal temperature to LPS or PBS in early pregnant ewes fed a whole flaxseed or control supplement. (a) 

Hourly response in rectal temperature. Data analyzed by repeated Measures ANOVA.  LPS p<0.0001, Flax x LPS 

p=0.0164, Hour p<0.0001 (b) Average rectal temperature for the first six hours post treatment. Data were analyzed 

by ANOVA. LPS p<0.0001, Flax x LPS p<0.0001 (FL (n=11): flaxseed supplement + LPS, FP (n=10): flaxseed 

supplement + PBS, CL (n=11): control supplement + LPS, CP (n=10): control supplement + PBS)  
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Figure 13: Frequency of sickness symptoms displayed by flaxseed and control supplement fed ewes receiving either 

LPS or PBS. Changes in behavior or noticeable sickness symptoms were noted at whole hour (hrs 0,1,2,3,4,5,6,9,12) 

blood sample collection times, added up for each ewe over the 12 hours post-treatment, and averaged for each 

treatment group. LPS p<0.0001 (FL (n=11): flaxseed supplement + LPS, FP (n=10): flaxseed supplement + PBS; 

CL (n=11): control supplement + LPS, CP (n=10): control supplement + PBS) Data were analyzed by ANOVA 

Mean ±SEM 

 

Figure 14: Response in white blood cells to LPS or PBS in early pregnant ewes fed a whole flaxseed or control 

supplement from (a) 0-24 hours post treatment. LPS p=0.0037 (b) 0-6 hours post treatment. LPS p<0.0001, Hour 

p=0.0004, LPS x Hour p<0.0001 (FL (n=11): flaxseed supplement + LPS, FP (n=10): flaxseed supplement + PBS; 

CL (n=11): control supplement + LPS, CP (n=10): control supplement + PBS) Data were analyzed by repeated 

measures ANOVA. Mean ± SEM 
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Figure 15: Acute phase proteins were measured in plasma at 0, 2, 6, 12, and 24 hours post-treatment. (a) 

Haptoglobin: LPS p=0.0327, Hour p=0.0078, LPS x Hour p=0.0165 (b) Serum Amyloid A: Hour p=0.0023 (FL 

(n=11): flaxseed supplement + LPS, FP (n=10): flaxseed supplement + PBS, CL (n=11): control supplement + LPS, 

CP (n=10): control supplement + PBS) Data were analyzed by repeated measures ANOVA Mean ± SEM 

 

Figure 16: Cortisol was measured in plasma at 0, 1, 2, 3, 6 and 12 hours post-treatment. Flax p=0.0235, LPS 

p<0.0001, Flax x LPS p=0.0007, Hour p<0.0001, LPS x Hour p<0.0001, Flax x LPS x Hour p=0.0105 (FL 

(n=11): flaxseed supplement + LPS, FP (n=10): flaxseed supplement + PBS, CL (n=11): control supplement + LPS, 

CP (n=10): control supplement + PBS) Data were analyzed by repeated measures ANOVA Means ± SEM 
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Figure 17: Fold change in gene expression of pro-inflammatory factors measured in white blood cells in response to 

LPS or PBS in early pregnant ewes fed a whole flaxseed or control supplement. (a) CXCL8: LPS p=0.0160 (b) C3: 

Flax p=0.0041, LPS p=0.0107, Hour p<0.0001, LPS x Hour p<0.0001 (c) TLR4: LPS p=0.0002, Hour p<0.0001, 

LPS x Hour p<0.0001 (d) COX2: Hour p=0.0119 Gene Expression normalized to GAPDH and referenced to 

expression levels in the sample collected at CIDR withdraw. (FL (n=11): flaxseed supplement + LPS, FP (n=10): 

flaxseed supplement + PBS, CL (n=11): control supplement + LPS, CP (n=10): control supplement + PBS) Data 

were analyzed by repeated measures ANOVA. Mean ±SEM 
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Figure 18: Fold change in gene expression of anti-inflammatory factors measured in white blood cells in response to 

LPS or PBS in early pregnant ewes fed a whole flaxseed or control supplement  (a) MRC1: LPS p=0.0118, Hour 

p=0.0004, LPS x Hour p=0.0091 (b) SOD2: LPS p<0.0001, Hour p<0.0001, LPS x Hour p<0.0001. (c) PPARγ: 

LPS p=0.0014, Hour p=0.0436 (d) Foxp3: LPS x Hour p=0.0242 (e) TGFβ: Hour p=0.0117 (c) TLR4: LPS 

p=0.0002, Hour p<0.0001, LPS x Hour p<0.0001 Gene Expression normalized to GAPDH and referenced to 

expression levels in the sample collected at CIDR withdraw. (FL (n=11): flaxseed supplement + LPS, FP (n=10): 

flaxseed supplement + PBS, CL (n=11): control supplement + LPS, CP (n=10): control supplement + PBS). Data 

were analyzed by repeated measures ANOVA. Mean ± SEM 
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Figure 19: Plasma concentration of progesterone on day 25/26 post coitus in ewes fed flaxseed or a control 

supplement and administered LPS or PBS on day 5/6 post coitus. Data were analyzed by 2-way ANOVA. Flax 

p=0.4303, LPS p=0.8523, Flax x LPS p=0.1766 (FL (n=11): flaxseed supplement + LPS, FP (n=10): flaxseed 

supplement + PBS, CL (n=11): control supplement + LPS, CP (n=10): control supplement + PBS) 

 

Figure 20: Comparison of the neutral detergent fiber (a) and non-fiber carbohydrate (b) in samples of the prepared 

supplement s. Samples were analyzed by the Rumen Fermentation Profiling Laboratory at WVU. Data were 

analyzed by T-test with Bonferroni correction with α=0.005.  NDF: p=0.0002, NFC: p<0.0001 (flaxseed 

supplement samples n=5, control supplement samples n=7) Mean ± SEM 
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Chapter 4: Effect of Breed on the LPS Response in Early Pregnant Ewes 

Introduction  
The fetus was once thought to be ignored by the maternal immune system due to physical 

separation, immunological immaturity of the fetus, and maternal immune inertness (Billington, 2003). It 

is now appreciated that a dynamic dialogue between maternal and fetal tissues has to occur to allow for 

immune tolerance of the fetus, angiogenesis and cytokine and hormonal balance (Dosiou & Giudice, 

2005; Thaxton & Sharma, 2010; Sharma, 2014). During pregnancy, maternal immune cells are in contact 

with fetal trophoblast cells, which express paternal antigens and in order to have a successful pregnancy, 

the maternal immune system has to tolerate the semi-allogeneic fetus (Erlebacher, 2013; Sharma, 2014). 

The immune cells in the pregnant uterus that are in charge of this tolerance are tolerogenic DCs, M2 

MΦs, and regulatory T cells (Tregs). During pregnancy these cells are responsible for creating  a 

microenvironment that is compatible with pregnancy and supports placentation (Sharma, 2014) including 

a shift towards T helper (Th) 2 cytokine dominance and inhibition of complement activation (Mellor et 

al., 2001; Girardi et al., 2006).  

Infection is an important trigger for inflammation causing changes in the function of immune 

cells at the maternal-fetal interface which can cause embryonic loss (Aisemberg et al., 2013; Kwak-Kim 

et al., 2014; Sharma et al., 2014). Pattern recognition receptors at the maternal-fetal interface recognize 

PAMPs; binding of these receptors to pathogen molecules results in the activation of anti-pathogen 

responses, such as the synthesis and secretion of chemokines and PICs, often through the activation of 

transcription factors such as NF-κB and Ap-1(Akira et al., 2006; Koge et al., 2014; Gioia et al., 2015). 

Toll like receptors are one family of these innate immune system PRRs and TLR4 is the member that 

recognizes the gram negative bacterial cell wall component, LPS (Abrahams, 2008). Lipopolysaccharide 

triggers a robust inflammatory response characterized by the production of PICs, such as TNFα and IL-

1β, shifts in the Th1/Th2 balance (Park et al., 2009) and induces uterine NK cell cytotoxic activation 

(Murphy et al., 2005). The immune mediators that are released stimulate cells to upregulate inflammation 

locally, while systemically they activate the HPA axis, cause the release of APPs, and induce the febrile 

response (Chrousos, 1992; 1995; Gabay & Kushner, 1999; Kabaroff et al 2006). While this immune 

response is necessary to clear an infection, over activation of this pathway is detrimental to pregnancy and 

neutralization of LPS, or blockage of TLR4 signaling has been shown to prevent fetal loss in murine 

pregnancy (Friable et al., 2011).  
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Early embryonic loss in response to bacterial infections can be due to several reasons; 1) direct 

embryotoxic effects of PIMs on the blastocyst, 2) apoptosis of blastocyst cells by PICs that hamper 

blastocyst growth and reduce IFNτ production which will affect maternal recognition of pregnancy, the 

prevention of luteolysis, and P4 production, 3) luteolysis (direct action of PICs on the CL or through 

production of PGF2α) and loss of P4 production, (P4 is immunosuppressive and needed to help generate 

maternal tolerance to the fetus in addition to regulating elongation and implantation genes), 4) reduced 

blastocyst size due to apoptosis by PICs and altered gene expression due to decreased IFNτ and P4 can 

result in missing the “window of implantation,” a time when the uterus is receptive to implantation and 

the blastocyst is implantation competent, 5) inflammation changing the normal spatial-temporal 

expression of cytokines involved in implantation, 6) and loss of maternal fetal tolerance. A highly pro-

inflammatory uterine environment can cause the local immune cells to switch from a tolerogenic 

phenotype (tolerogenic DC, uterine NK cell, M2 MΦ, Treg) to an immunogenic phenotype (immunogenic 

DC, peripheral NK cell, M1 MΦ, effector T cell) that will no longer tolerate the presence of foreign 

paternal antigens.  

After acquiring antigen, APCs travel to lymph nodes to present the antigen and activate T cells. If 

the APC is displaying a bacterial antigen, a Th1/pro-inflammatory response would be expected in order to 

clear the pathogen. If the APC was displaying a seminal plasma antigen, a Treg polarization is needed to 

acquire maternal tolerance to the fetus; failure to generate significant numbers of Treg cells specific to 

paternal antigens results in fetal loss (Robertson et al., 2013). A problem generating maternal tolerance 

could occur if there is a substantial uterine bacterial presence after mating resulting in predominantly Th1 

polarization and infiltration of inflammatory cells into the uterus. This could result from failure of a dairy 

cow to efficiently deal with uterine contamination postpartum during NEB and/or by bacterial 

introduction during mating or AI. DCs are professional APC involved in the activation of T cells. 

Tolerogenic DCs have a specific immature or semi-immature phenotype that is pivotal in the activation 

and expansion of Treg cells (Steinman et al., 2003). Tolerogenic DCs have diminished expression of the 

co-stimulatory molecules CD80 and CD86; they do not express the Th1-polarizing cytokine IL-12 

(Steinman et al., 2003) but do express IDO, which allows them to activate resting Tregs, convert 

CD4+CD25- T cells to CD4+CD25+FOXP3+ Tregs, and stimulate Tregs to maintain suppressive activity 

(Sharma et al., 2007). DCs that are differentiated in the presence of TGFβ, IL-10, GM-CSF, and IL-4 are 

reported to behave like tolerogenic DCs and reliably induce CD4+CD25+ Tregs that have 

immunosuppressive function (Sato et al., 2003).   

Estrogen is immune stimulatory. However, post-partum before ovarian activity resumes, estrogen 

is low which can predispose the uterus to bacterial colonization through loss of specific responses 
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(antigen specific T helper cells), leaving the innate immune system to handle any bacterial contamination 

(Bondurant, 1999). Nonspecific responses may be compromised, however. When an LPS infusion was 

used to induce endometritis, the oxygen dependent mechanism (respiratory burst-generation of reactive 

oxygen species) of killing phagocytized bacteria by neutrophils was reduced (Kluciñski et al., 1995). 

Authors suggested that gram-negative bacterial contamination of the uterus postpartum compromised the 

ability of the first line of defense to control and clear pathogens. In addition, being in a state of NEB is 

immune suppressive and neutrophil function was reported to decline as parturition approached and DMI 

decreased and remained depressed after parturition in dairy cows for several weeks (Hammon et al., 

2006). Kimura et al (1999) also reported that the onset of lactation as well as hypocalcemia (Kimura et 

al., 2006) reduced the bactericidal activity of neutrophils and the expression levels of adhesion molecules 

on neutrophils needed for the cells to enter tissues.  For pathogens introduced during estrus, E2 levels are 

rapidly declining, which may allow the pathogen time to establish itself in the reproductive tract. 

Progesterone is immune suppressive, and any bacterial contamination present after ovulation could turn 

into an infection. Therefore, bacterial infections can increase the calving interval and impact lifetime milk 

production, obvious concerns for a producer.  

The present study was conducted to gain information on the mechanism of bacterial infection 

induced embryonic loss using an LPS challenge in early pregnant ewes by measuring aspects of the innate 

immune response and APR. In a previous experiment at WVU, Dorset and Suffolk ewes appeared to have 

a differential response to LPS challenge. The objective in this study was to see if Dorset and Suffolk ewes 

responded to LPS differently in regard to rectal temperature,WBCs, observable symptoms, APPs, gene 

expression of cytokines, chemokines, receptors, and enzymes and whether pregnancy rates were 

associated with the inflammatory response.  

 

Results 

Clinical Signs 

Temperature 

 Rectal temperature was affected by breed (Dorset 39.16 ± 0.05oC, Suffolk 39.45 ± 0.06oC, 

p=0.0284), LPS (LPS 39.54 ± 0.06oC, PBS 38.99 ± 0.04oC, p=0.0001), hour (p<0.0001), and the 

interactions breed x hour (p=0.0330) and LPS x hour (p<0.0001) with the ewes receiving LPS having an 

increase in temperature from hour 0 (DL 39.08 ± 0.15oC, SL 38.6 ± 0.08oC) until hour 4 (DL39.89 ± 

0.34oC, SL 40.11 ± 0.19oC) before decreasing back towards normal (hour 6- DL 39.51 ± 0.26oC, SL 39.32 

± 0.14oC) (Figure 21a). Although, PBS did not change temperature, the PBS- treated Suffolk ewes had a 
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lower temperature than PBS-treated Dorset ewes (DP 39.3 ± 0.07oC, SP: 38.8 ± 0.03oC, p=0.0073) 

(Figure 21a).  

 The change in temperature at each hour from hour zero was affected by LPS (LPS 0.88 ± 0.06oC, 

PBS 0.09 ± 0.03oC, p<0.0001), hour (p=0.0005), and the interactions LPS x breed (DL 0.59 ± 0.09oC, SL: 

1.08 ± 0.07oC, p=0.0314) and LPS x hour (p=0.0001) with LPS causing an increase in temperature in both 

breeds; however, the Suffolk ewes had a greater increase in temperature in response to LPS at hour 2 (DL 

0.56 ± 0.18oC, SL 0.84 ± 0.1oC, p=0.0024), hour 3 (DL 0.73 ± 0.25oC; SL 1.32 ± 0.18oC, p<0.0001), hour 

4 (DL 0.82 ± 0.28oC, SL 1.51 ± 0.19oC p<0.0001), hour 5 (DL 0.61 ± 0.3oC, SL 1.08 ± 0.21oC, 

p=0.0011), and hour 6 (DL 0.43 ± 0.25oC, SL 0.73 ± 0.18oC, p=0.0191) (Figure 21b).  

Behavior changes/Mucosal Responses 

 Due to the low frequency of each individual sickness symptom, all observed mucosal responses 

(nasal discharge, vaginal discharge, coughing, and diarrhea) and behavioral changes (inappetence, 

lethargic, lying down, and heavy breathing) were summed for each ewe over the 12 hours post treatment. 

LPS administration caused ewes to have observable physiological changes (LPS 4.37 ± 0.71, PBS 0.12 ± 

0.08, p<0.0001) and Suffolk ewes administered LPS experienced a higher frequency of sickness 

symptoms than Dorset ewes (DL 1.18 ± 0.62, SL 6.56 ± 0.72, p=0.0029). The Dorset ewes that received 

PBS displayed 0.3±0.21 symptoms while no symptoms were noted for any Suffolk ewes that received 

PBS (Figure 22).   

Immune System  

White Blood cell counts  

 Lipopolysaccharide (LPS 6,688,566 ± 241,538.4, PBS 9,692,214 ± 200,412.5, p<0.0001) 

treatment caused a decrease in WBCs in both breeds. There was also an effect of hour (p<0.0001) and an 

interaction of LPS x hour (p<0.0001). The LPS groups had significantly lower total WBCs at hour 1,2,3,4 

(all p<0.0001) and hour 5 (p=0.0015). White blood cells decreased between hour 0 and hour 1 in both 

breeds receiving LPS. In the SL ewes, total WBCs stayed at that low level at hours 2 and 3 before 

gradually increasing. In the DL ewes, after the decrease in WBCs from hour 0 and 1, cell numbers started 

gradually increasing (Figure 23).  

Acute Phase Proteins 

 Plasma Hp was influenced by breed (Dorset 0.04 ± 0.003 mg/ml, Suffolk 0.12 ± 0.01 mg/ml, 

p=<0.0001), hour (p=0.0405), and the interaction of breed by LPS (p=0.0357) with Suffolk ewes having 

more Hp than Dorset ewes receiving LPS (DL 0.05 ± 0.01 mg/ml, SL 0.10 ± 0.01). All groups had an 

increase in Hp levels from hour 12 to 24, but the largest increase was in the SL group (Figure 24a). 

Plasma SAA was affected by the interactions of breed x hour (p<0.0001) and breed x LPS x hour 
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(p=0.0330), which was due to fluctuations in SAA in both breeds when treated with LPS over the sample 

time (Figure 24b).  

Cortisol  

 Plasma cortisol increased in response to LPS (LPS 59.30 ± 6.58 ng/ml, PBS 30.93 ± 3.25 ng/ml, 

p=0.0029). There were also effects of breed (Dorset 35.62 ± 4.24 ng/ml, Suffolk 54.61 ± 6.31 ng/ml, 

p=0.0284) and the interactions breed x LPS (DL 40.10 ± 6.75 ng/ml, SL 78.5 ± 9.98 ng/ml, p=0.0257), 

LPS x Hour (p<0.0001), and breed x LPS x hour (p=0.0085). Cortisol increased right after LPS 

administration in the Suffolk ewes and stayed elevated until hour 3 before decreasing back to normal by 

hour 12. In the Dorset ewes receiving LPS, cortisol did not increase until after hour 2, peaked at hour 3, 

and decreased back to normal by hour 6. Lipopolysaccharide had significant effects on cortisol at hour 1 

(p<0.0001), hour 2 (p=0.0006), hour 3 (p<0.0001), and hour 6 (p=0.0156). However, this was mainly due 

to the high values in the Suffolk ewes at those time points as the Dorset ewes had an increase in cortisol at 

only hour 3. (Figure 25).  

Gene Expression  

 Lipopolysaccharide treatment upregulated CXCL8 expression (LPS 17.74 ± 3.8, PBS 2.26 ± 0.44, 

p=0.0003) similarily in both breeds. There was an hour (p=0.0005) and a LPS x hour (p=0.0142) 

interaction. CXCL8 increased from treatment administration (DL 3.67 ± 1.93, SL 6.54 ± 2.87) until hour 

4 (DL 58.19 ± 53.37, SL 48.66 ± 18.05) before decreasing back to normal by hour 9 (DL 2.29 ± 1.12, SL 

1.29 ± 0.21). The PBS groups had no change in CXCL8 expression (Figure 26a).  

 TLR4 expression was upregulated in response to LPS (LPS 3.78 ± 0.55, PBS 1.78 ± 0.26, 

p=0.0036) and was also affected by breed (Dorset 3.58 ± 0.52, Suffolk 1.98 ± 0.36, p=0.0030), hour 

(p=0.0121), and LPS x hour (p=0.0105). In the DL group, TLR4 expression increased from treatment 

administration (1.93 ± 0.77) to hour 3 when it peaked (9.57 ± 1.86), and then decreased back to normal by 

hour 9 (1.88 ± 0.21). In the SL group there was a more gradual increase in TLR4 expression from 

treatment administration until hour 6 (hour 0 0.96 ± 0.25, hour 6 5.38 ± 1.49) followed by a decrease until 

hour 9 (2.2 ± 0.67). While PBS did not cause a change in TLR4 expression, Dorset ewes that received 

PBS had greater TLR4 expression at hour 1.5 (DP 3.92 ± 1.29, SP 0.59 ± 0.22, p=0.0004), and hour 3 (DP 

3.40 ± 0.86, SP 0.71 ± 0.26, p=0.0023) than Suffolk ewes (Figure 26d).   

 Nuclear factor-kappa B expression spiked at hour 6 in Suffolk ewes receiving LPS and PBS while 

there was no major changes in expression in the Dorset ewes. The breed x LPS interaction had a p value 

of 0.0443 but using the Benjamini-Hochberg procedure, this was no longer significant. There was no 
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effect of breed, LPS, hour, or any interaction effect on NF-κB expression (Table 10). There was no main 

effect or any interaction effects on TNFα expression (Table 10).  

 Interleukin-6 expression was affected by breed (Dorset 0.46 ± 0.08, Suffolk 3.82 ± 0.52, 

p=0.0007) and breed x LPS (DL 0.3 ± 0.08, SL 2.39 ± 0.57, p=0.0024) with the Suffolk ewes treated with 

LPS starting out with greater IL-6 expression and having an increase in IL-6 expression in response to 

LPS. The other 3 groups did not have a change in IL-6 expression. Compared to the SP group, the SL 

group had significantly greater IL-6 expression at hour 0 (SP 0.44±0.17, SL 1.42±0.71, p=0.0046), 15 

minutes (SP 0.68 ± 0.34, SL 1.79 ± 0.9, p=0.018), 45 minutes (SP 0.42 ± 0.21, SL 2.46 ± 1.95, 

p=0.0122), hour 1.5 (SP 0.48 ± 0.2, SL 1.29 ± 0.64, p=0.0209), hour 2 (SP 0.48 ± 0.18, SL 4.18 ± 3.22, 

p=0.0196), hour 3 (SP 0.43 ± 0.21, SL 2.33 ± 0.38, 0.0137), and hour 6 (SP 0.83 ± 0.56, SL 3.1 ± 1.58, 

p=0.0004) post-treatment (Figure 26b).     

 Expression of IFNγ was affected by breed (Dorset 2.29 ± 0.61, Suffolk 2.99 ± 0.59, p=0.0153) 

where the Suffolk ewes had higher expression compared to the Dorset ewes especially at hour 0 (Dorset 

2.3 ± 1.08, Suffolk: 4.43 ± 2.06), hour 6 (Dorset: 1.02 ± 0.45; Suffolk: 2.68 ± 3.45) and hour 9 (Dorset 

1.16 ± 0.59, Suffolk: 3.05 ± 1.92) (Figure 26c).  COX 2 expression also was affected by breed (Dorset 

0.43 ± 0.05, Suffolk: 1.43 ± 0.19, p=0.0002) with Suffolk ewes having higher expression than Dorset 

ewes. The SL group had its highest COX2 expression at 45 minutes post treatment (DP 0.58 ± 0.29, DL 

0.18 ± 0.04, SP 0.52 ± 0.26, SL 2.94 ± 1.83), and the SP group had its highest expression 30 minutes post 

treatment (DP 0.55 ± 0.23, DL 0.5 ± 0.30, SP 2.08 ± 0.9, SL 0.88 ± 0.3). Expression in the DL (0.32 ± 

0.07) group was different from expression in both the SL (1.65 ± 0.35) (p=0.0022) and the SP (1.2 ± 0.16) 

(p=0.0040) group. The DP (0.53 ± 0.07) group was not different from any other group (Figure 26e). 

 Lipopolysaccharide treatment increased C3 expression (LPS 2.11 ± 0.48, PBS 0.85 ± 0.25, 

p=0.0004). Suffolk ewes had higher C3 expression (Dorset 0.74 ± 0.08, Suffolk 2.22 ± 0.53, p=0.0077), 

and expression was affected by hour (p<0.0001), and the interactions breed x LPS (DL 0.85 ± 0.16, SL 

3.32 ± 0.87, p=0.0004) and LPS x hour (p<0.0001). In the DL ewes, expression started increasing after 

hour 1 (DL 0.20±0.01). In response to LPS, the Suffolk ewes had a spike in C3 expression at 45 minutes 

(SL 3.10 ± 2.1) and expression increased after hour 1 (0.49 ± 0.16). At hour 6, expression was still 

elevated in both LPS groups (DL 2.09 ± 0.3, SL 14.33 ± 4.16) (Figure 26f).   

 There was an effect of LPS (LPS 0.52 ± 0.1, PBS 1.20 ± 0.14, p=0.0028) and hour (p=0.0003) on 

MRC1 expression. The DP, SP, and SL groups had some fluctuation in expression over time but only the 
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DL group had a pattern where expression decreased after LPS treatment until hour 9 and then stayed low 

(Figure 27a).  

 Interleukin-10 expression was affected by breed (Dorset 5.95 ± 1.51, Suffolk 2.93 ± 1.10, 

p=0.0448) with the SL ewes having a spike in expression at hour 6 (DP 2.61 ± 2.23, DL 4.61 ± 2.44, SP 

0.46 ± 0.33, SL 14.15 ± 11.56) and the DL ewes having an increase in expression from hour 6 to 12 with 

significantly higher values at hour 12 compared to the DP ewes (DP 1.58 ± 0.68, DL 23.54 ± 13.28, 

p=0.0049 (SP 0.56 ± 0.4, SL 0.13 ± 0.063)) (Figure 27b). 

 Peroxisome proliferator-activated γ expression was affected by breed (Dorset: 1.36 ± 0.16; 

Suffolk: 0.65 ± 0.07, p=0.0016) with Dorset ewes having a higher fold change in PPARγ expression than 

Suffolk ewes. LPS (LPS: 0.78 ± 0.1; PBS: 1.24 ± 0.15, p=0.0056), hour (p=0.0059), and the interaction 

LPS x hour (p=0.0054) also affected PPARγ expression. In both breeds, LPS caused a spike in expression 

at hour 3 that then returned to normal levels. At hour 9, the SL group had a lower fold change in 

expression compared to the DL group (DL: 0.62±0.24; SL: 0.2±0.04; p=0.0497). The DP ewes had the 

highest fold change in PPARγ expression, being different from the SP ewes at hour 3 (DP: 1.80±0.86; SP: 

0.51±0.16; p=0.0338) and hour 6 (DP: 2.78±0.94; SP: 0.7±0.18; p=0.0147) (Figure 27e). 

 Forkhead box P 3 expression was affected by breed (Dorset 1.13 ± 0.10, Suffolk 0.54 ± 0.05, 

p=0.0001) with Dorset ewes having greater fold change in expression than Suffolk ewes. The biggest 

differences occurred at hour 0 and hour 24. At hour 0, the two LPS groups differed by breed (DL 1.48 ± 

0.85, SL 0.37 ± 0.09, p=0.0148) as did the two PBS groups (DP 1.45 ± 0.4, SP 0.42 ± 0.16, p=0.0333). 

The two LPS groups differed from each other at hour 24 (DL 1.08 ± 0.62, SL 0.29 ± 0.1, p=0.0382) as did 

the two PBS groups (DP 1.34 ± 0.13, SP 0.51 ± 0.10, p=0.0203). The interaction of LPS x hour 

(p<0.0001) affected FOXP3 expression. LPS caused a decrease in expression in the Dorset ewes from 

hour 3 to 6, which then rebounded by hour 24. In the Suffolk ewes, LPS caused an increase in expression 

from hour 0 to 2 after which expression decreased back to pre-treatment values (Figure 27f).  

 Transforming growth factor β was affected by hour (p=0.0161) with most of the change in 

expression occurring in the Suffolk ewes. This breed had greater expression than the Dorset ewes at 

several time points, but the breed effect did not reach significance (p=0.0808). The Suffolk ewes had 

greater expression compared to the Dorset ewes at hour 6, however. Compared to the DP ewes, the SP 

ewes had more expression at hour 6 (DP 0.69 ± 0.14, SP 2.14 ± 0.79, p=0.0131). Compared to the DL 

group, the SL group had higher expression at hour 6 (DL 0.69 ± 0.14, SL 2.72 ± 1.35, p=0.0006) (Figure 

27c).   
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 Lipopolysaccharide (LPS 3.88 ± 0.44, PBS 1.49 ± 0.15, p=<0.0001) treatment, hour (p=0.0001), 

and their interaction (LPS x hour p<0.0001) affected SOD2 expression. In the Dorset ewes, LPS caused a 

sharp increase in SOD2 expression from hour 0 until hour 3. Expression then decreased until hour 12 with 

a slight increase at hour 24. In the Suffolk ewes, LPS caused a more gradual increase in SOD2 expression 

until hour 6 followed by a gradual decrease until hour 24. LPS caused a greater increase in the Dorset 

compared to the Suffolk ewes, and the DL group had greater SOD2 expression compared to the SL group 

at hour 1.5 (DL 4.87±1.42, SL 2.18 ± 0.74, p=0.0415) and hour 3 (DL 10.82 ± 2.07, SL 4.62 ± 1.28, 

p=0.0292). The DL group also had a higher fold change in expression than the SL group at hour 24 (DL 

2.94 ± 0.57, SL 1.13 ± 0.25, p=0.0205) due to expression in that group having a slight increase from hour 

12 to 24. Superoxide dismutase 2 expression was also affected by breed (Dorset 3.58 ± 0.42, Suffolk 1.81 

± 0.25, p=0.0002) and while the PBS groups had no major changes in expression, the DP group had 

greater expression compared to the SP group at hour 1.5 (DP 3.06 ± 1.05, SP 1.08 ± 0.28, p=0.0225), hour 

3 (DP 2.58 ± 0.42, SP 0.62 ± 0.14, p=0.0006), and hour 12 (DP 1.86 ± 0.49, SP 0.57 ± 0.21, p=0.0102) 

(Figure 27d). 

Reproductive System  

Progesterone 

Neither breed nor treatment affected plasma progesterone on day 8/9 post coitus (3.38 ± 0.18 

ng/ml) or on day 25/26 post coitus (3.93 ± 0.15 ng/ml) (Figure 28). 

Pregnancy diagnosis/lambing data 

Pregnancy diagnosis was determined by ultrasound on day 25/26 and the number of ewes found 

to be pregnant was greatest in the SL group (p=0.0421) (Figure 29a) but there was no difference when 

only comparing between breeds (Dorset 42.86%, Suffolk 68.75%, p=0.0613). After the ewes lambed, the 

date of lambing and the average gestation length was used to backtrack to day of conception. Neither 

experimental group (p=0.0873, Figure 29b), breed (p=0.0564), nor treatment (p=0.5007) affected loss of 

pregnancy. Logistic regression confirmed the contingency analyses; neither treatment, breed, nor the 

interaction could predict the odds of a ewe having a lamb (p=0.0987). The number of lambs born from 

each group from mating’s that occurred during the experiment did not differ between the groups 

(p=0.3568, data not shown).  

Discussion  
The temperature response to LPS in Suffolk ewes was about double compared to Dorset ewes. 

Although there were no differences in pregnany rates in this study, an elevation in body temperature 

associated with infection could affect embryonic loss as research studying heat stress in cattle that raised 

body temperature during embryonic development (Days 1 to 7) led to decreased embryonic survival 
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(embryos recovered/assessed on day 7) (Putney et al., 1988).  As the Suffolk ewes had a greater fever 

response, embryos of Suffolk ewes are likely to be at a greater risk of damage due to heat. Temperature is 

increased in response to IL-1β and IL-6, mediated by PGE2; SL ewes had a greater increase in IL-6 gene 

expression compared to the DL ewes, which fits with them having a greater increase in temperature. IL-

1β and TNFα stimulate IL-6 production (and production of each other); SL ewes had high gene 

expression of IL-6; and IL-1β is a major driver of the fever response. PGE2 produced peripherally in 

response to pathogenic stimuli can travel through the blood-brain barrier and initiate a fever response 

(Netea et al., 2000; Evans et al., 2015). Suffolk ewes had a greater change in gene expression of COX2 

and while specific PGs were not measured, LPS is known to stimulate production of PGE2 (Herath et al., 

2009). Elevated peripheral PGE2 production would also contribute to the increased fever response in 

Suffolk ewes. Suffolk ewes tended to have a greater increase in expression of NF-κB which leads to PIC 

production which fits with the greater fever response. IL-1β causes PGF2α and PGE2 secretion by 

endometrial stromal and epithelial cells (Davidson et al., 1995) while TNFα has been shown to cause 

PGF2α secretion by stromal endometrial cells through activation of PLA2 (Skarzynski et al., 2000). 

Prostaglandin F2α is not only luteolytic but is thought to have negative effects on embryo development 

and may be embryotoxic, especially during the morula to blastocyst transition (Buford et al., 1996; Seals 

et al., 1998; Scenna et al., 2004). If Suffolk ewes produce more PGF2α during inflammation, they may be 

more susceptible to embryonic loss in response to bacterial infections during the pre-implantation period.  

Acting on the brain, PICs cause behavioral changes that serve as an adaptive response to enhance 

recovery by conserving energy to fight acute inflammation. These behavioral changes include appetite 

disturbances, sleep disturbances, reduction of locomotor activity, exploration and grooming, reduced 

interest in the social and physical environment, loss of sexual interest, and impaired cognitive abilities 

(Konsman et al., 2002). Circulating LPS causes mucosal responses in the respiratory, digestive, and 

reproductive tracts. Observable changes in response to LPS that were noted during the experiment 

included lethargy, lying down, inappetence, heavy breathing, coughing, diarrhea, vaginal discharge, and 

nasal discharge. Ewes challenged with LPS had noticeable changes in sickness symptoms. The increase in 

discomfort and greater fever response in Suffolk ewes suggests a greater immune response to LPS in this 

breed.   

The number of WBCs in the circulation decreased in response to LPS from hour 0 to 1 before 

slowly recovering over the next few hours. After treatment, the WBCs end up in the lungs and muscosal 

linings where they are responsible for the muscosal and respiratory changes. The change in WBCs in the 

LPS groups confirms that the LPS elicited an immune response. The first innate immune cells to be 

attracted to an inflammatory site are neutrophils, with one of their chemokines being CXCL8, activated 
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by NF-κB. Interleukin-8 gene expression increased in response to LPS, confirming that an inflammatory 

response was generated. Nuclear factor-κB activation occurs in response to a signaling cascade initiated 

by a PAMP binding to a PRR; TLR4 is the PRR that binds LPS. Lipopolysaccharide treatment increased 

TLR4 expression, and Dorset ewes had more TLR4 expression, which potentially means there could be 

increased interaction between LPS and TLR4 in the Dorset ewes leading to a greater inflammatory 

response. Indeed, infertile cows had greater endometrial expression of TLR4, IL-1beta, and a greater ratio 

of IL-1β to IL-10 (Herath et al, 2009). However, looking at temperature response, symptoms, cortisol 

levels, and gene expression of other inflammatory mediators, the Dorset ewes had a reduced 

inflammatory response compared to the Suffolk ewes suggesting better clearance mechanisms. The 

peripheral blood mononuclear cells in Dorset ewes may be releasing TLR4 to its soluble form, which still 

binds LPS but does not increase cytokine production. Instead, soluble TLR4 binds LPS attached to LPS-

binding protein, and the complex is them phagocytosed by macrophages (Oever et al., 2014). If this is 

occurring in the Dorset ewes it would explain the higher TLR4 gene expression compared to Suffolk ewes 

but the reduced inflammatory response to LPS.  

The complement system is activated during bacterial infections to kill pathogens, promote 

inflammation through stimulating production of PICs, recruit inflammatory cells, and opsonize and clear 

immune complexes (Molina, 2005; Murphy, 2012). Proper control of complement in the uterine 

environment has been shown to be critical to prevent excessive inflammation and embryo loss (Xu et al., 

2000; Mellor et al., 2001; Mao et al., 2003; Caucheteux et al., 2003). Expression of C3 in LPS challenged 

ewes increased with time starting from hour 1 but increased more in the Suffolk ewes. Immunoglobulin A 

will bind LPS in mucosal linings and cause activation of the classical complement pathway leading to 

production of pro-inflammatory cytokines. Suffolk ewes had increased C3 expression, and in response to 

LPS, an increased fever response, cortisol, sickness symptoms, and IL-6 expression. These responses are 

all downstream of pro-inflammatory cytokines that can be produced after complement activation.  

The two major ovine APPs are Hp and SAA (Cray et al., 2009; Lecchi et al., 2012; Chapwanya et 

al., 2013) and are important in restoring homeostasis. Expression of SAA fluctuated over time, being 

affected by the interactions of breed x hour and breed x LPS x hour. Lipopolysaccharide caused in 

increase in Dorset SAA but did not cause a change in Suffolk SAA perhaps putting Suffolk ewes at a 

disadvantage at resolving an infection/inflammatory response. Suffolk ewes had more Hp compared to 

Dorset ewes and had a larger increase in Hp in response to LPS. Hp has been reported to dampen LPS 

induced inflammatory effects in vitro and in vivo. Hp can bind to innate immune cells and in vitro 

reduced cytokine (TNF-α, IL-12p70, IL-10) production by human PBMCs stimulated with LPS 

(Arredouani et al., 2005).  
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Lipopolysaccharide led to activation of the HPA axis with a greater increase in corticol in the SL 

ewes. This could be a reflection of the greater IL-6 gene expression induced in these ewes by LPS and 

potentially greater PGE2 levels (increased COX2 expression). Cortisol is responsible to sickness 

symptoms and the increase in cortisol in the Suffolk ewes fits with their greater display of sickness 

symptoms. Downstream of cortisol and IL-6 is activation of APPs; therefore, greater concentrations of Hp 

levels in the Suffolk ewes also fits. Acute phase proteins are general markers of inflammation. Suffolk 

ewes having greater Hp might be a reflection of generally being in a more pro-inflammatory state 

reflected by having greater gene expression of COX2, C3, IFNγ, and lower gene expression of PPARγ, 

Foxp3, and IL-10 (even without treatment).  

There were no significant effects on NF-κB expression; however, the Suffolk ewes tended to have 

a greater increase in expression. The breed x LPS effect was significant until the Benjamini-Hochberg 

procedure was used to control for multiple comparisons with the Suffolk ewes receiving LPS having a 

greater increase in NF-κB expression than Dorset ewes. Potentially more NF-κB in the Suffolk ewes 

would fit with the increase in IL-6 gene expression in this breed. NF-κB also causes transcription of 

TNFα and IL-1β. While IL-1β was not measured, TNFα gene expression was not affected by breed or 

treatment. Gene expression does not always reflect protein levels, however, and TNFα protein has been 

shown to increase in response LPS in sheep (Graham, 2014) and has been shown to be embryotoxic (Soto 

et al., 2003a; Loureiro et al., 2007). Whether, there is a difference between Suffolk and Dorset ewes is yet 

to be determined. A difference in IFNγ gene expression was shown with Suffolk ewes having higher 

expression. Because IFNγ is embryotoxic by limiting trophectoderm proliferation (Hill et al., 1987), 

embryos in Suffolk ewes may be at a higher risk of damage compared to embryos in Dorset ewes. 

PICs and ROS are damaging to embryos. IL-1β and TNFα stimulate the production of 

eicosanoids, NO, and ROS to help fight infections (Tracey, 2002), and nitric oxide has been shown to 

block development of preimplantation bovine embryos in vitro (Soto et al., 2003b). Although neither NO 

or ROS were measured, gene expression of SOD2, an enzyme that neutralizes ROS, increased with LPS 

treatment in both breeds. Neutrophils are a major producer of reactive oxygen species and are the first 

responders to any type of infection or inflammation. Increased expression of the neutrophil 

chemoattractant CXCL8 along with increased SOD2 expression indicates the elevated production of 

reactive oxygen species occurs in this LPS model.  Expression of SOD2 increased more in the DL ewes, 

and greater expression would allow them to neutralize ROS more rapidly and minimize damage to other 

cells and the embryo.  

Suffolk ewes had greater levels of IL-6, a cytokine with various functions depending on the 

presence and quantity of other mediators. It plays a role in regulating the balance between IL-17 
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producing Th17 cells, which are pro-inflammatory and Treg cells that have suppressive functions. In 

conjunction with TGFβ, IL-6 induces naïve CD4+ cells to polarize into Th17 cells. However, TGFβ in 

conjunction with IL-2 induces Treg polarization; IL-6 can inhibit this TGFβ function (Robertson et al., 

2013). Not only is TGFβ important for polarization towards Treg cells, but it is produced by Tregs and 

tDCs to mediate some of their suppressive functions (Simpson et al., 2002; Ghiringhelli et al., 2005a).  

Treg cells are not a terminally differentiated cell type; they can turn into Th1 or Th17 cells if 

exposed to high amounts of PICs, such as IL-6, IFNγ, or IL-1 (Gao et al., 2012). The only significant 

effect on TGFβ expression was hour, but Suffolk ewes tended to have a greater increase in expression of 

the cytokine. Expression in the SL ewes spiked at hour 6, the same hour the SL group had elevated 

expression of IL-6, and peak expression of TLR4, NF-κB, IFNγ, C3, IL-10, and SOD2. TGFβ, IL-10, and 

SOD2 are anti-inflammatory mediators while the others are pro-inflammatory. With regards to 

inflammation at the maternal-fetal interface, the specialized immune cells in charge of regulating 

implantation and maternal tolerance to the fetus can change function. Tolerogenic DCs can become 

immunogenic, anti-inflammatory M2 MΦs can become pro-inflammatory M1 MΦs, uterine NKs can gain 

cytotoxic functions, and Tregs can become effector T cells. The necessity of maintaining these 

tolerogenic phenotypes has been demonstrated in various in vivo studies, and the balance of protein 

expression and activity of the pro- versus anti-inflammatory mediators will determine if immune cells 

change phenotype. Suffolk ewes having increased gene expression of IL-6 and TGFβ may mean their 

Tregs and switching to Th17 cells. 

Treg cell depleted mice (Aluvihare et al., 2004; Zhao et al., 2007) and abortion-prone mice 

(Zenclussen et al., 2005) have demonstrated the necessity of Tregs in allogenic pregnancy to generate 

maternal tolerance to paternal antigen expressed by the fetus. Treg cell derived factors are needed by DCs 

for maintenance of their tolerogenic phenotype (Fiorentino et al., 1991b, Mahnke et al., 2007), by M2 

MΦs, and by uterine NKs cells to maintain their non-cytotoxic phenotype (Ghiringhelli et al., 2005a).    

Wegorzewska et al. (2014) exerted a local inflammatory response by injecting LPS into the fetal 

liver of mice in utero and reported an increase in effector T cells (CD8+ T cells and non-Treg CD4+ T 

cells) and a decrease in Treg cells in uterine tissue surrounding the resorbed fetuses (increased Teff/Treg 

ratio). An increase in CD25 (α chain of the IL-2 receptor) on all of the T cell subsets may indicate 

increased activation of T cells in the uterus during inflammation and/or increased proliferation. Indeed, 

LPS induced inflammation in the fetus caused proliferation of both effector T cells and Treg cells with a 

higher proportion of effector T cells to Tregs in uterine tissue surrounding resorbed fetuses 

(Wegorzewska et al., 2014). A shift in the effector to Treg balance will result in embryonic loss due to 
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loss of control over the tolerogenic uterine environment. Inflammatory mediators produced in response to 

infection enter systemic circulatation. The resident immune cells in the uterus during early pregnancy can 

be exposed to these circulating mediators and Suffolk ewes having a more intense inflammatory response 

may expose their uterine immune cells to elevated levels of these inflammatory mediators. This would 

increase the chance of the immune cells switching from a tolerogenic to immunogenic phenotype.  

 The transcription factor Foxp3 is the master regulator of multiple downstream pathways that 

govern Treg cell function. A decrease in Foxp3 could mean that there are less Treg cells or the cells are 

expressing less of the transcription factor, which will reduce their immune suppressive functions. Foxp3 

expression was affected by LPS x hour causing decreases in Foxp3 expression. Suffolk ewes had 

significantly less Foxp3 expression compared to Dorset ewes suggesting Tregs in Suffolk ewes have 

reduced suppressive function. This is critical since infection induced dampening of Treg suppression at a 

time when sustained tolerance to fetal antigen is essential, such as the peri-implantation period (Shima et 

al., 2010), plays a crucial role in pregnancy loss (Rowe et al., 2012b). 

Transforming growth factor β is an important regulator of inflammation. One method of action is 

cross-talk with TLR4 signaling pathways leading to decreased NF-κB activation and production of PIMs.  

TGFβ null mice, even in the absence of an inflammatory trigger, have increased gene expression of 

TLR4, TNFα, IL-1β, and inducible NOS that can be prevented by blocking NF-κB activation. While 

Suffolk ewes tended to have higher TGFβ expression and had lower TLR4 expression, they had higher 

NF-κB and IL-6 expression suggesting a strong inflammatory response even with the presence of the anti-

inflammatory cytokine.  

Interleukin-10 is an anti-inflammatory cytokine that downregulates expression of PICs and 

stimulates and reinforces changes to both the innate and adaptive immune system such as inducing 

regulatory phenotypes in DCs, MΦs, and T cells (Fiorentino et al., 1991a; Fiorentino et al., 1991b; 

Maynard and Weaver, 2008). Interleukin-10 is involved in generating Treg cells and is produced by Tregs 

to mediate some of their suppressive functions (Maynard and Weaver, 2008; Shevach, 2009; Huber et al., 

2011). This cytokine has been shown to be critical during an inflammatory response to prevent fetal loss 

(Murphy et al., 1990; Robertson et al., 2007; Prins et al., 2015). Suffolk ewes had reduced IL-10 

expression which probably contributes to their enhanced inflammatory response compared to Dorset 

ewes. In addition, the lower IL-10 expression in Suffolk ewes may make their uterine immune cells more 

susceptible to phenotype switching during inflammation, which would be detrimental to pregnancy.  

Interleukin-10 and TGFβ are produced by Tregs and tDCs in the uterus to regulate fetal tolerance 

and the cytokine milieu at the maternal-fetal interface (Simpson et al., 2002) regulating the 
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response/phenotype of uNK cells to pathogens. While uNK cells do not display the cytotoxic functions of 

their peripheral counterparts, uncontrolled or exaggerated inflammation at the maternal-fetal interface can 

cause uNK cells to revert back into their peripheral NK cell phenotype and cause embryonic loss (Murphy 

et al., 2005; Murphy et al., 2009; Kwak-Kim et al., 2014). Uterine NK cells with cytotoxic capability 

cause apoptosis of trophoblast cells by transferring granulysin with the help of perforin (Nakashima et al., 

2008). IL-12 stimulates IFNγ production by NK cells and induces their cytotoxic activity. The PICs 

TNFα, IL-1β, and IL-15 synergize with IL-12 to induce IFNγ production and IL-15 also promotes NK 

cell maturation. IL-10 can regulate IFNγ production by NK cells by inhibiting IL-12 production while 

TGFβ can block proliferation and cytotoxicity of NK cells as well as inhibit IFNγ and IL-12 production 

(Biron et al., 1999; Eriksson et al., 2004; Eriksson et al., 2006). While Suffolk ewes tended to have higher 

TGFβ gene expression, they had lower IL-10 gene expression and higher IFNγ gene expression, which 

would make their uNKs vulnerable to becoming cytotoxic and killing the embryo.  

Peroxisome proliferator-activator receptors (PPARs) are nuclear receptors and ligand activated 

transcription factors (Dinarello, 2010; Lian et al., 2015) with anti-inflammatory functions (Clark et al., 

2000; Feige et al., 2006; Dinarello, 2010; Li et al., 2014; Lian et al., 2015) that are expressed in the ovine 

endometrium (Cammas et al., 2006). Peroxisome proliferator-activator receptor agonists reduce 

expression of several PICs, chemokines, and adhesion molecules and affect T cell proliferation (including 

in the placenta) by interfering and inhibiting other transcription factors (Ricote et al., 1998; Clark et al., 

2000; Lappas et al., 2002; Genolet et al., 2004; Feige et al., 2006; Szanto and Nagy, 2008; Dinarello, 

2010; Li et al., 2014; Lian et al., 2015). Lipopolysaccharide caused a decrease in PPARγ gene expression 

in both breeds after hour 3 post treatment. Dorset ewes however, had more PPARγ expression compared 

to Suffolk ewes. This also indicates Suffolk ewes will have a prolonged inflammatory response as 

methods to stop the production of inflammatory mediators are dampened in this breed. 

 Peroxisome proliferator-activator receptors γ can inhibit gene expression and release of IL-6, 

COX-2, INFγ and APPs while increasing IL-10 production (Ricote et al., 1998; Jiang et al., 1998; Jackson 

et al., 1999; Takano et al., 2000; Wang et al., 2001; Genoler et al., 2004; Bensinger and Tontonoz, 2008; 

Szanto and Nagy, 2008). The smaller change in PPARγ in Suffolk ewes may be associated with the larger 

change in IL-6, COX2, IFNγ and SAA and smaller change in IL-10 gene expression compared to Dorset 

ewes. PPARγ regulates the response of immune cells to inflammatory stimuli and influences the 

polarization of Th1 versus Th2 cells (Genolet et al., 2004). The transcription factor promotes alternative 

activation of MΦs (M2) by preventing MΦs from being activated in response to PIMs (M1 MΦs) 

(Genoler et al., 2004; Bensinger and Tontonoz, 2008) and inhibits their response to LPS or IFNγ (Ricote 
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et al., 1998). In DCs, activation of PPARγ reduces the cell’s ability to be stimulated by TLR agonists, its 

capacity to stimulate T cell proliferation, and inhibits cytokines for Th1 polarization and chemokines for 

Th1 cell recruitment (Faveeuw et al., 2000; Gosset et al., 2001; Appel et al., 2005). Lower PPARγ 

activity in Suffolk ewes would lead to a more robust inflammatory response and, at the maternal-fetal 

interface, a change in the phenotypes of immune cells followed by embryonic loss.  

Mannose receptor C type 1 is expressed by MΦs and DCs to neutralize/clear pathogens and for 

antigen uptake and presentation (Shepard et al., 1990; Engering et al., 1997). The receptor recognizes 

complex carbohydrate structures on glycoproteins and mediates the endocytosis of glycoproteins by MΦs. 

Lipopolysaccharide has been shown to decrease MRC1 activity on MΦs in vitro that could be prevented 

by pre-treatment of the MΦs with dexamethasone (Shepherd et al., 1990) likely due to GCs increasing 

mannose receptor synthesis (Shepherd et al., 1985). Lipopolysaccharide challenge in ewes caused a 

decrease in MRC1 expression with the most change occurring in the DL group; however, there was no 

breed x LPS effect. MRC1 expression may not have changed as much in the Suffolk ewes due to higher 

cortisol levels in this breed (Shepherd et al., 1985; 1990). Potentially reduced expression of the receptor 

by MΦs and DCs during a bacterial infection would prolong clearance of the pathogen and increase the 

risk of embryonic loss.   

Progesterone is a critical hormone for pregnancy (Bazer et al., 2008). There was no difference in 

P4 levels between the four groups on day 8/9 or 25/26 post coitus suggesting LPS challenge did not result 

in luteolysis, or ewes that were open had recycled and were back in a luteal phase. Pregnancy diagnosis 

by ultrasound had significantly more ewes in the SL group being pregnant compared to the other 3 

groups. However, after lambing when conception date was determined retrospectively, there was no 

difference between groups on the percentage of ewes that carried a lamb(s) from the mating that occurred 

during the experiment (no difference in embryonic loss). Bacterial infections are known to decrease 

pregnancy rates, but this was not seen with the LPS challenge. This could be because the immune 

response to the experimental LPS challenge is less than 12 hours in duration for most of the factors 

measured, whereas, depending on the condition of the animal, an actual infection could last days to 

weeks. So while this LPS model provides insight into the mechanisms of bacterial infection induced 

embryonic loss, it may not sustain physiological changes long enough to cause a significant amount of 

embryonic loss. 

 Small sample size potentially limited detecting differences in embryonic loss. Suffolks have 

greater losses in embryos and fetuses compared to Dorset ewes (Dixon et al., 2014). As seen from the 

present results, Suffolk ewes tend to have a stronger inflammatory response that could result in a change 
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in the production of hormones needed to time the “window of implantation” (including P4), could damage 

or cause death of the embryo, and/or change the phenotype of the local immune cells resulting in loss of 

maternal-fetal tolerance. Therefore, the difference in the inflammatory response seen between the two 

breeds in the present study may help explain the differences seen in pregnancy loss reported by Dixon et 

al. (2014). Both breeds originated in England and gram negative bacteria are everywhere; therefore, the 

differential inflammatory response between the breeds in unlikely to be due to selection pressure. Instead, 

perhaps different haplotypes in TLR4 exist that make the LPS response in the Suffolk ewes more severe 

(Koets et al., 2010). In using this model to mimic mastitis in the dairy cow, it is important to note that the 

breeds differ in their responses. This may impact the results of a study examining ways to dampen the 

inflammatory response to prevent embryonic loss; a given treatment may work better or worse in the 

Suffolk breed that experiences an elevated inflammatory response or the treatment dose may need to be 

adjusted. In addition, the response in one of the breeds may more closely match the response of a mastitic 

dairy cow and would provide more applicable results.  
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Tables  
Table 10: Fold change in nuclear factor kappa B and tumor necrosis alpha gene expression to LPS or PBS in early 

pregnant Dorset and Suffolk ewes. Data expressed as the fold change in gene expression using the 2-ΔΔCt method 

with GAPDH as the housekeeping gene and the reference time point being the sample collected at CIDR withdraw. 

Data analyzed by repeated measures ANOVA. Mean ± SEM. Mean is the overall mean of the fold change across the 

time points but analyzed with time as the repeated measure. (SL (n=16): Suffolk ewe + LPS; SP (n=16): Suffolk ewe 

+ PBS; DL (n=11): Dorset ewe + LPS, DP (n=10): Dorset ewe + PBS) 

Gene/Time 

points  

Treat

ment 

Group 

Mean ± 

SEM 

Breed 

Effect 

LPS 

Effect  

Breed x 

LPS 

Effect  

Hour 

Effect 

Breed x 

Hour 

LPS x 

Hour 

 

Breed x 

LPS x 

Hour 

NF-κB   p=0.05 p=0.97 p=0.04 p=0.43 p=0.60 p=0.18 p=0.18 

0, 1.5, 3, 6, 

9 hrs 

SL 2.62 ± 0.72        

SP 2.48 ± 1.52 

DL 0.58 ± 0.14 

DP 1.45 ± 0.53 

TNFα   p=0.41 p=0.06 p=0.67 p=0.24 p=0.66 p=0.21 p=0.14 

0, 0.5, 1 hr SL 0.79 ± 0.2        

SP 0.49 ± 0.13 

DL 0.78 ± 0.14 

DP 0.53 ± 0.09 

 

Figures 
 

 

Figure 21: Response in rectal temperature to LPS or PBS in early pregnant Dorset and Suffolk ewes. (a) Hourly 

temperature: Breed p=0.0284, LPS p=0.0001, Hour p<0.0001, Breed x Hour p=0.0330, LPS x Hour p<0.0001 

(b) Change in rectal temperature at hours 1-6 compared to time 0: LPS p<0.0001, LPS x Breed p=0.0314, Hour 

p=0.0005, LPS x Hour p=0.0001 (SL (n=16): Suffolk ewe + LPS, SP (n=16): Suffolk ewe + PBS, DL (n=11): 

Dorset ewe + LPS, DP (n=10): Dorset ewe + PBS). Data were analyzed by repeated measures ANOVA Mean ± 

SEM 
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Figure 22: Frequency of sickness symptoms displayed by Suffolk and Dorset ewes receiving either LPS or PBS. 

Changes in behavior or noticeable sickness were noted at whole hour (hrs 0, 1, 2, 3, 4, 5, 6, 9, 12) blood sample 

collection times, added up for each ewe over the 12 hours post-treatment, and averaged for each treatment group. 

LPS p<0.0001, LPS x Breed p=0.0029 (SL (n=16): Suffolk ewe + LPS, SP (n=16): Suffolk ewe + PBS, DL (n=11): 

Dorset ewe + LPS, DP (n=10): Dorset ewe + PBS) Data were analyzed by ANOVA. Mean ± SEM 

 

 

Figure 23: Response in white blood cells to LPS or PBS in early pregnant Dorset and Suffolk ewes from hours 0-6 

post treatment. LPS p<0.0001, Hour p<0.0001, LPS x Hour p<0.0001 (SL (n=16): Suffolk ewe + LPS, SP (n=16): 

Suffolk ewe + PBS, DL (n=11): Dorset ewe + LPS, DP (n=10): Dorset ewe + PBS). Data were analyzed by repeated 

measures ANOVA. Mean ± SEM 
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Figure 24: Response in acute phase proteins to LPS or PBS in early pregnant Suffolk and Dorset ewes from 0-24 

hours post treatment. (a) Haptoglobin: Breed p<0.0001, Breed x LPS p=0.0357, Hour p=0.0405 (b) Serum 

Amyloid A: Breed x Hour p<0.0001, Breed x LPS x Hour p=0.0330 (SL (n=16): Suffolk ewe + LPS, SP (n=16): 

Suffolk ewe + PBS, DL (n=11): Dorset ewe + LPS, DP (n=10): Dorset ewe + PBS). Data were analyzed by repeated 

measures ANOVA. Mean ± SEM 

 

Figure 25: Cortisol response to LPS or PBS in early pregnant Dorset and Suffolk ewes from 0-12 hours post 

treatment. Breed p=0.0284, LPS p= 0.0029, Breed x LPS p=0.0257, Hour p<0.0001, LPS x Hour p<0.0001, 

Breed x LPS x Hour p=0.0085 (SL (n=16): Suffolk ewe + LPS, SP (n=16): Suffolk ewe + PBS, DL (n=11): Dorset 

ewe + LPS, DP (n=10): Dorset ewe + PBS). Data were analyzed by repeated measures ANOVA. Mean ± SEM 
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Figure 26: Fold change in gene expression of pro-inflammatory factors measured in white blood cells in response 

to LPS or PBS in early pregnant Suffolk and Dorset ewes. Gene Expression normalized to GAPDH and referenced 

to expression levels in the sample collected at CIDR withdraw.  (a) CXCL8: LPS p=0.0003, Hour p=0.0005, LPS x 

Hour p=0.0142 (b) IL-6: Breed p=0.0007, Breed x LPS p=0.0024 (c) IFNγ: Breed p=0.0153 (d) TLR4: Breed 

p=0.0030, LPS p=0.0036, Hour p=0.0121, LPS x Hour p=0.0105 (e) COX2: Breed p=0.0002 (f) C3: Breed 

p=0.0077, LPS p=0.0028, Breed x LPS p= 0.0004, Hour p<0.0001, LPS x Hour p<0.0001 (SL (n=16): Suffolk 

ewe + LPS, SP (n=16): Suffolk ewe + PBS, DL (n=11): Dorset ewe + LPS, DP (n=10): Dorset ewe + PBS) Data 

were analyzed by repeated measures. ANOVA Mean ± SEM 
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Figure 27: Fold change in gene expression of anti-inflammatory factors measured in white blood cells in response 

to LPS or PBS in early pregnant Suffolk and Dorset ewes. Gene Expression normalized to GAPDH and referenced 

to expression levels in the sample collected at CIDR withdraw. (a) MRC1: LPS p=0.0028, Hour p=0.0003 (b) IL-

10: Breed p=0.0448 (c) TGFβ: Breed p=0.0808, Hour p=0.0161 (d) SOD2: Breed p=0.0002, LPS p<0.0001, 

Hour p=0.0001, LPS x Hour p<0.0001 (e) PPARγ: Breed p=0.0016, LPS p=0.0056, Hour p=0.0059, LPS x 

Hour p=0.0054 (f) Foxp3: Breed p=0.0001, LPS x Hour p<0.0001 (SL (n=16): Suffolk ewe + LPS, SP (n=16): 

Suffolk ewe + PBS, DL (n=11): Dorset ewe + LPS, DP (n=10): Dorset ewe + PBS). Data were analyzed by repeated 

measures ANOVA. Mean ± SEM 
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Figure 28: Plasma concentration of progesterone on day 25/26 post coitus in Dorset and Suffolk ewes administered 

LPS or PBS on day 5/6 post coitus. Breed p=0.2137 LPS p=0.2739 Breed x LPS p=0.3254. Data were analyzed by 

2-way ANOVA. Mean ± SEM (SL (n=16): Suffolk ewe + LPS, SP (n=16): Suffolk ewe + PBS, DL (n=11): Dorset 

ewe + LPS, DP (n=10): Dorset ewe + PBS) 

 

Figure 29: Analysis examining (a) whether a ewe was found to be pregnant or open by ultrasound on 25/26 days 

post coitus (Pearson’s chi square p=0.0421) or (b) whether or not a ewe had a lamb as a result of the mating that 

took place during the experiment (Pearson’s chi square p=0.0873) was contingent on experimental group. (SL 

(n=16): Suffolk ewe + LPS, SP (n=16): Suffolk ewe + PBS, DL (n=11): Dorset ewe + LPS, DP (n=10): Dorset ewe 

+ PBS) 
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Chapter 5: Discussion  
Mastitis impacts the profit of dairy producers associated with lost milk production, clinical 

treatment, culling, and increased replacement animals. Bar et al. (2008), using information from five dairy 

farms in New York, estimated, that lost revenue from a case of clinical mastitis at $179; milk loss ($115), 

increased mortality ($14), and treatment associated costs ($50). However, as the price of milk increases, 

cost due to mastitis increases due to increased profit losses. Mastitis is often caused by environmental 

bacteria, such as gram negative E. coli, which induce inflammation via its cell wall component LPS. The 

energy demands of lactation early postpartum put dairy cows into a state of negative energy balance that 

impairs immune function, making them susceptible to infections. Dairy cows with mastitis, as well as 

other diseases, can experience various reproductive issues including impaired resumption of ovulation 

postpartum, compromised fertilization, impaired conceptus development, changes in expression of genes 

associated with conceptus development and implantation, increased early pregnancy loss, and reduced 

pregnancy per insemination. Overall, these reproductive issues increase the calving interval, which is 

detrimental to profits of dairy producers. Mechanisms of how periparturient diseases lead to reproductive 

issues has not been clarified (Santos and Ribeiro, 2014), but pre-implantation is known to be a critical 

period for embryonic loss in lactating dairy cows (Wiltbank et al., 2016). 

Binding of LPS to TLR4, initiates an immediate response involving activation of intracellular 

signaling cascades and the expression of inflammatory mediators including IL-1β, TNFα, IL-6, IFNγ, 

CXCL8, and PGs. During mastitis, circulating levels of TNFα, IL-1, and IL-6 can increase. Cells from 

infected mammary glands have increased mRNA expression for IL-1β, TNFα, IL-10, and IL-12 and 

increased TNFα protein (Riollet et al., 2001; Ślebodziński et al., 2002; Hansen et al., 2004). The 

inflammatory mediators have local and systemic effects and recruit additional immune cells to the 

infection site to eliminate the pathogen. These mediators can travel from the mammary gland to the 

reproductive tract and influence follicle growth, oocyte quality, uterine function, embryo development, 

and implantation (Turner et al., 2012).  

Systemic administration of LPS to early pregnant ewes in the current studies consistently resulted 

in an inflammatory response characterized by fever, increased mucosal secretions, and behavioral 

changes, decreased number of circulating WBCs, increased serum Hp, activation of the HPA axis, 

increased gene expression of C3, CXCL8, TLR4, and SOD2, and decreased gene expression of MRC1, 

Foxp3, and PPARγ. All of these changes were expected as the animal believes it has a bacterial infection 

that needs to be cleared.  

Lipopolysaccharide signals through this TLR4 and LPS will activate the complement system. 

Downstream of TLR4 and complement (C3) is transcription of CXCL8 that recruits neutrophils to the 
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inflammatory site. As neutrophils are the first responders to pathogen invasion, increased expression of 

CXCL8 and neutrophil mobilization were expected. Neutrophils use ROS to control the increase in, and 

spread of bacteria, but ROS are not specific when it comes to causing damage and can have effects on 

host cells. Therefore, antioxidants are secreted to convert ROS into less harmful molecules. In all three 

studies, gene expression of the antioxidant, SOD2, was upregulated with LPS treatment, suggesting an 

increase in ROS. Excessive ROS in the reproductive tract will damage embryonic and uterine cells. This 

might be one mechanism contributing to embryonic loss caused by bacterial infections. 

Lipopolysaccharide, TNFα, and IFNγ have been shown to induce NO synthase and NO inhibits 

embryonic development (Athanassakis et al., 2000; Soto et al., 2003b). Thus, providing additional 

antioxidants during early pregnancy might benefit reproductive success. Suffolk ewes had a reduced 

change in expression of SOD2 compared to Dorset ewes, which may put their embryos at increased risk 

of oxidative damage. Therefore, therapies to reduce ROS may have siginificant effects on embryonic loss 

in Suffolk ewes more than Dorset ewes.  

Lipopolysaccharide treatment consistently decreased PPARγ, Foxp3, and MRC1 expression. 

Peroxisome proliferator-activated receptor γ is a transcription factor important for inhibiting gene 

transcription of pro-inflammatory mediators such as IL-6, COX-2, INFγ, and APPs while increasing 

expression of anti-inflammatory IL-10 (Ricote et al., 1998; Jiang et al., 1998, Jackson et al., 1999, Takano 

et al., 2000, Wang et al., 2001, Genoler et al., 2004, Bensinger and Tontonoz, 2008, Szanto and Nagy, 

2008). Forkhead box P3 is the transcription factor responsible for suppressive functions of Tregs. These 

cells are responsible for the generation and maintenance of maternal tolerance to fetal antigens. A 

decrease in Foxp3 expression could be due to loss of Tregs, or loss of their suppressive functions and 

conversion into effector T cells in response to exposure to PICs. Changes in quantity or function of Tregs 

leads to embryonic loss (Rowe et al., 2012b). Mannose receptor c type 1 is a receptor on MΦs that is a 

marker for alternatively activated M2 MΦs that produce Th2 cytokines compared to classically activated, 

pro-inflammatory M1 MΦs that produce PICs (Gordon and Martinez, 2010). A loss in MRC1 expression 

suggests conversion of M2 to M1 MΦs and increased production of PICs. When in animal has an 

infection, the goal is to clear the pathogen as soon as possible, this process is initiated with a strong 

inflammatory response. A decrease in these genes, which allows for an inflammatory response, therefore, 

is not unexpected. However, the inflammatory products produced and phenotype switching of immune 

cells from tolerogenic to immunogenic will put the embryo at risk.    

With regard to Foxp3, there was a breed effect with Suffolk ewes having less expression, which 

fits with their enhanced inflammatory response. Fold change in gene expression on the experimental day 

was in reference to expression on the day of CIDR withdrawal (7 to 8 days prior) in the fall experiments. 

All of the Dorset ewes had an increase in Foxp3 between the two days (hour 0), but this increase did not 
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occur in Suffolk ewes. Regulatory T cells increase in early pregnancy and accumulate in the uterus to 

establish maternal tolerance. This also results in increased Tregs in circulation. A lower fold change in 

Foxp3 expression in the Suffolk ewes at hour 0 may suggest differences in the generation of Tregs in 

early pregnancy in this breed, which is likely to be associated with increased rates of embryonic loss.  

No effects of LPS on gene expression of IL-6, COX2, IFNγ, or IL-10 were detected. This does 

not mean a change in plasma protein levels of these mediators did not occur, however. While a change in 

gene expression of TNFα was not detected, protein levels of TNFα have been shown to increase after LPS 

treatment in early pregnant ewes (Graham, 2014). In addition, gene expression of NF-κB was not affected 

by LPS, but this transcription factor is downstream of TLR4, which was upregulated, and it turns on 

transcription of CXCL8, IL-6, IL-1β, and TNFα. Possibly, changes in gene transcription of NF-κB were 

not detected because it may be rapidly translated. This transcription factor is mainly regulated by the Iκκ 

protein complex that holds it in the cytoplasm until activation of signal transduction pathways cause 

release of the Iκκ proteins and translocation of NF-κB into the nucleus. Graham (2014) showed elevated 

TNFα protein in response to LPS in ewes; current studies showed upregulation of CXCL8 expression; IL-

1β and IL-6 induce the fever response through activation of PGE2 in the brain, as well as activation of the 

HPA axis; and cortisol and IL-6 activate production of APPs, of which, Hp was increased in the current 

studies in response to LPS. Therefore, LPS likely increased production of TNFα, IL-1β, and IL-6. 

Additional studies should focus on measuring protein levels of these to get a clearer picture of the 

immune response to LPS in sheep. Measurement of TNFα and IL-1β protein expression using ELISA kits 

was unsuccessful. Future attempts should use radioimmunoassays instead.  

Lipopolysaccharide always resulted in activation of the HPA axis and production of cortisol. 

Suffolk ewes had an enhanced production of cortisol in response to LPS, as did the flaxseed fed ewes in 

trial 2. Glucocorticoids have pro- and anti-inflammatory effects; they activate APP production, cause 

behavioral changes, and modulate cytokine production. Effects of LPS on TNFα and IL-6 gene 

expression were not detected, but protein levels of these cytokines are likely to have been increased as 

they are upstream of cortisol, the temperature response, and the sickness symptoms. Glucocorticoids can 

inhibit PIC production, but, associations between elevated cortisol levels and PIC concentrations were not 

determined. The consistent increase in Hp by LPS treatment suggests that cortisol was acting in a pro-

inflammatory manner, however. The increase in Hp concentrations in the LPS treated ewes agrees with 

studies reporting that cows with uterine disease after parturition have increased production of Hp 

(Sheldon et al., 2001). Suffolk ewes had higher concentrations of the APP. This could be due to higher 

baseline levels, which could be beneficial in controlling bacterial growth, or Suffolk ewes may normally 

be in a more pro-inflammatory state compared to Dorset ewes.  
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The complement system has a critical role in initiating inflammatory responses and activation of 

complement is known to result in pregnancy failure (Molina, 2005; Xu et al., 2000, Mellor et al., 2001, 

Mao et al., 2003; Caucheteux et al., 2003). LPS in the current studies increased expression of the 

complement molecule, C3, showing that complement is involved in mediating inflammation in this LPS 

model, and bacterial induced embryonic loss likely involves complement activation. LPS treated Suffolk 

ewes had an enhanced increase in C3 expression, which could lead to a greater inflammatory response in 

this breed. Indeed, even though Suffolk ewes had a lower expression of TLR4, they had a greater increase 

in temperature, “sickness symptoms,” cortisol and Hp concentrations, and change in IL-6 and IFNγ gene 

expression in response to LPS. This could be explained by increased complement activation and PIC 

production downstream of complement activation. Suffolk ewes also had a reduced change in PPARγ and 

Foxp3 expression, two transcription factors regulating anti-inflammatory functions, and the anti-

inflammatory cytokine IL-10. All of this information shows a more pro-inflammatory response in Suffolk 

ewes.   

Embryotrophic factors produced by the oviduct and endometrium also are often immune 

modulators, including pro-inflammatory factors. Changes in the amount or temporal expression of these 

factors, such as during an infection, can affect embryonic development. The enhanced inflammatory 

response in Suffolk ewes will make them more susceptible to embryonic loss. Therapies that dampen the 

inflammatory response, therefore, will be more cost effective in Suffolk ewes that have higher rates of 

embryonic loss (Dixon et al., 2014). In addition, sheep producers may be interested in crossing the two 

breeds to try to get animals with a reduced inflammatory response compared to the Suffolk breed. In 

addition, studies investigating possible therapies for mastitis and reducing embryonic loss in dairy cows 

should be conducted using Suffolk ewes that have an exaggerated inflammatory response to LPS.  

A possible reason for the breed differences may be modifications in the LPS-TLR4 interaction 

due to single nucleotide polymorphisms (SNPs) in TLR4. Susceptibility to bacterial infections in cattle 

has been associated with SNPs in TLR2, which led to changes in the immune response to pathogens 

(Koets et al., 2010). SNPs in TLR 2, 4, 6, and 9 have also been found in cattle but only a small effect was 

found on susceptibility to uterine infection (Pinedo et al., 2013). In order to investigate this possibility, 

TLR4 would need to be sequenced in the two breeds of sheep and compared 

Prostaglandins are produced by COX enzymes, and LPS is known to increase production of PGE2 

(Herath et al., 2009; Bromfield et al., 2015). Although no change in gene expression of COX2 in response 

to LPS was detected, PGs are mainly produced in tissues and not by circulating WBCs. Again, while it is 

likely that PGs were produced, measuring levels would confirm this and allow for the effects of the 

flaxseed supplement and breed to be determined. Suffolk ewes did have higher expression of COX2 

compared to Dorset ewes, but whether they have increased PGE2 levels should be confirmed with 
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measurement of protein. PICs induce PGE2 production by brain endothelial cells. The PG then acts on the 

hypothalamus to cause behavioral changes (Elenkov and Chrousos, 1999). In all 3 studies, LPS caused 

noticeable discomfort in ewes, further evidence of PIC production and COX pathway activation. 

“Sickness behavior” was most pronounced in the Suffolk breed, also suggestive of increased PG 

production in these ewes.  

Lipopolysaccharide consistently caused fever, which also is induced by PGE2 action on the 

hypothalamus (Netea et al., 2000; Evans et al., 2015). The enhanced temperature increase in the Suffolk 

ewes in response to LPS is likely to be a result of increased PGE2, as this breed had higher expression of 

COX2. Studies investigating heat stress have shown that elevated body temperature negatively impacts 

early embryonic development (Putney et al., 1988; Ealy et al., 1993), and the fever response to LPS likely 

has negative effects on embryo function. In trial 1 of the supplement study, feeding flaxseed dampened 

the fever response, but this was not the case in trial 2. A differential effect of flaxseed between the trials 

also occurred with gene expression of IL-6, IL-8, and TLR4 where in trial 1, a flaxseed x LPS interaction 

occurred with the increase in expression of the pro-inflammatory factors being dampened compared to 

control fed ewes. These effects were not seen in trial 2. This could be due to a lower fat content in the 

flaxseed used in trial 2, thus lower omega 3 PUFA intake. Another possiblility for the differential effects 

is grass content of ω-3 PUFAs. In both the spring and fall trials, the ewes were on pasture and grass in the 

spring has a higher ω-3 PUFA content than grass in the fall. Therefore, the ewes in trial 1 (spring) 

probably ingested an increased amount of ω-3 PUFAs. In order to have the same anti-inflammatory 

effects in trial 2 (fall) we probably needed to increase the amount of flaxseed being fed. Anti-

inflammatory effects of flaxseed should be investigated further by feeding different amounts of flaxseed, 

for various amounts of time prior to LPS treatment, to examine if there is a threshold intake level needed 

for beneficial effects on the inflammatory response. Flaxseed could reduce fever through altering the 

products of the COX pathway towards more pro-resolving mediators and less inflammatory PGs (Jones et 

al., 2013a, Jones et al., 2013b; Serhan et al., 2014). This could be especially important in the Suffolk ewes 

because they have higher COX2 expression and, therefore, may have increased PG production compared 

to Dorset ewes, therefore, possible anti-inflammatory effects of flaxseed should also be investigated in 

Suffolk ewes.  

In conclusion, information gained from these studies suggest gram negative bacterial infections 

are likely to cause embryonic loss through the involvement of ROS, complement activation, heat damage 

to the embryo, production of PGs, production of PICs, conversion of Tregs to effector T cells, conversion 

of M2 to M1 MΦs, and loss of maternal tolerance to the fetus. Differences in gene expression indicate 

Suffolk ewes are set up for a more rapid, intense, and prolonged inflammatory response compared to 

Dorset ewes and this enhanced response was observed when LPS was administered. The information 
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gained with this research can be benefical to sheep producers deciding what breeds of sheep to raise and 

when making decisions about cross-breeding. In addition, knowledge of the immune response to LPS in 

sheep can be used to develop therapies for use by the dairy industry to combat economic losses associated 

with bacterial infections. 
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Table 11: Summary of p-values across the three studies for main effects and interactions. The Benjamini 

Hochberg procedure was used to control for the false discovery rate (FDR=0.10)  

Variable Experiment LPS Feed or 

Breed 

Hour Feed or 

Breed X 

LPS 

Feed or 

Breed x 

Hour  

LPS x 

Hour 

Feed or 

Breed 

X Hour 

X LPS 

Temperature Supplement  

Trial 1 
<0.001 <0.001 <0.001 0.0064 0.6540 <0.001 0.2683 

 Supplement  

Trial 2 
<0.0001 0.9942 <0.0001 0.0164 0.1445 <0.0001 0.3016 

 Breed  0.0001 0.0284 <0.0001 0.0879 0.0330 <0.0001 0.0862 

         

Symptoms Supplement  

Trial 1 
<0.0001 0.0945  0.0588    

 Supplement  

Trial 2 
<0.0001 0.0498  0.0498    

 Breed  <0.0001 0.3183  0.0029    

         

 WBCs Supplement  

Trial 1 
<0.001 0.0157 0.0039 0.8608 0.4827 0.0054 0.0056 

 Supplement  

Trial 2 
<0.0001 0.2284 0.0004 0.4034 0.5096 <0.0001 0.9275 

 Breed  <0.0001 0.3240 <0.0001 0.3045 0.4592 <0.0001 0.6694 

         

Haptoglobin Supplement  

Trial 1 
<0.0001 <0.0001  <0.0001    

 Supplement  

Trial 2 
0.0327 0.0982 0.0078 0.9681 0.2903 0.0165 0.0802 

 Breed  0.6804 <0.0001 0.0405 0.0357 0.2366 0.2712 0.4907 

         

Serum 

Amyloid A 

Supplement  

Trial 1 
<0.0001 0.0216  <0.001    

 Supplement  

Trial 2 

0.4771 0.4496 0.0023 0.0552 0.1324 0.5375 0.0844 

 Breed  0.0848 0.3228 0.3431 0.2221 <0.0001 0.6979 0.0330 

         

Cortisol Supplement  

Trial 1 
<0.001 0.0468  0.8277    

 Supplement  

Trial 2 
<0.0001 0.0235 <0.0001 0.0007 0.1750 <0.0001 0.0105 

 Breed  0.0029 0.0284 <0.0001 0.0257 0.1262 <0.0001 0.0085 

         

Gene expression of pro-inflammatory factors      

C3 Supplement  

Trial 1 
0.0065 0.2651  0.1020    

 Supplement  

Trial 2 
0.0107 0.0041 <0.0001 0.2770 0.8603 <0.0001 0.7626 

 Breed  0.0028 0.0077 <0.0001 0.0004 0.3877 <0.0001 0.5603 
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Variable Experiment LPS Feed or 

Breed  

Hour Feed or 

Breed x 

LPS 

Feed or 

Breed x 

Hour 

LPS x 

Hour 

Feed or 

Breed x 

Hour x 

LPS 

COX2 Supplement  

Trial 1 

0.1469 0.2671  0.1748    

 Supplement  

Trial 2 

0.1497 0.3335 0.0119 0.7254 0.6789 0.1702 0.0262 

 Breed  0.2874 0.0002 0.7742 0.1441 0.8189 0.9809 0.5316 

         

IFNγ Supplement  

Trial 1 
0.0024 0.3768  0.8616    

 Supplement  

Trial 2 

0.2852 0.7478 0.1325 0.5615 0.9550 0.5091 0.5203 

 Breed  0.9118 0.0153 0.4470 0.6391 0.5154 0.1554 0.1996 

         

IL-6 Supplement  

Trial 1 

0.3356 0.3186  0.0296    

 Supplement  

Trial 2 

0.2174 0.2738 0.6169 0.9012 0.7886 0.4452 0.8527 

 Breed  0.5316 0.0007 0.7256 0.0024 0.9561 0.7193 0.8528 

         

IL-8 Supplement  

Trial 1 
<0.0001 0.0486  0.027    

 Supplement  

Trial 2 
0.0160 0.3185 0.1215 0.3238 0.3742 0.0990 0.2952 

 Breed  0.0003 0.5996 0.0005 0.4210 0.8304 0.0142 0.6080 

         

NF-κB Supplement  

Trial 1 

0.4731 0.90  0.1283    

 Supplement  

Trial 2 

0.6009 0.2375 0.5398 0.9022 0.5339 0.4623 0.0563 

 Breed  0.9684 0.0518 0.4320 0.0443 0.6027 0.1815 0.1836 

         

TLR4 Supplement  

Trial 1 
<0.0001 0.0484  0.0326    

 Supplement  

Trial 2 
0.0002 0.5209 0.2734 0.0496 0.2734 <0.0001 0.1865 

 Breed  0.0036 0.0030 0.0121 0.0608 0.0572 0.0105 0.9920 

         

TNFα Supplement  

Trial 1 

0.3482 0.5703  0.3482    

 Supplement  

Trial 2 

0.6070 0.1603 0.2229 0.7149 0.7932 0.2600 0.2130 

 Breed  0.0608 0.4093 0.2390 0.6700 0.6566 0.2085 0.1443 

         

Gene expression of anti-inflammatory factors      

Foxp3 Supplement  

Trial 1 
0.0259 0.8934  0.2878    

 Supplement  

Trial 2 

0.1249 0.4214 0.2116 0.0914 0.0956 0.0242 0.4022 

 Breed  0.2861 0.0001 0.2819 0.5833 0.4560 <0.0001 0.9459 
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Variable Experiment LPS Feed or 

Breed 

Hour Feed or 

Breed x 

LPS 

Feed or 

Breed x 

Hour 

LPS x 

Hour 

Feed or 

Breed x 

LPS x 

Hour 

IL-10 Supplement  

Trial 1 

0.4274 0.0813  0.8777    

 Supplement  

Trial 2 

0.2788 0.9603 0.0646 0.8639 0.9854 0.3456 0.3585 

 Breed  0.1459 0.0448 0.3033 0.7898 0.2340 0.8370 0.6515 

         

MRC1 Supplement  

Trial 1 
<0.0001 0.8170  0.6190    

 Supplement  

Trial 2 
0.0118 0.3273 0.0004 0.9326 0.9950 0.0091 0.9807 

 Breed  0.0028 0.5054 0.0003 0.5817 0.3018 0.1294 0.9159 

         

PPARγ Supplement  

Trial 1 

0.1696 0.4523  0.0702    

 Supplement  

Trial 2 
0.0014 0.2355 0.0436 0.9671 0.7764 0.6366 0.6932 

 Breed  0.0056 0.0016 0.0059 0.1483 0.9956 0.0054 0.5925 

         

SOD2 Supplement  

Trial 1 
<0.0001 0.8022  0.7071    

 Supplement  

Trial 2 
<0.0001 0.0779 <0.0001 0.0226 0.2068 <0.0001 0.1794 

 Breed  <0.0001 0.0002 0.0001 0.3674 0.4452 <0.0001 0.5132 

         

TGFβ Supplement  

Trial 1 

       

 Supplement  

Trial 2 

0.1503 0.1003 0.0117 0.2196 0.8771 0.0691 0.2573 

 Breed  0.4916 0.0808 0.0161 0.5908 0.0144 0.1860 0.5186 

         

P4 25/26 dpc Supplement  

Trial 1 

0.6854 0.0752  0.2026    

 Supplement  

Trial 2 

0.8523 0.4303  0.1766    

 Breed 0.2739 0.2137  0.3254    
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