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Abstract 
 

Effects of Aggregate Grading and Admixtures/Fillers 
on Fresh and Hardened Properties of Self-Consolidating 

Concrete 
 

Arka Bhattacharya 
 

 

Self-consolidating concrete (SCC) is becoming a popular material in the concrete 
industry, due to ease of placement in congested reinforcement, reduced labor and 
equipment, nonsegregating character, and excellent surface finish. In spite of its 
several advantages, SCC is exceedingly sensitive to aggregate grading, size, 
admixtures, and filler contents. Though many studies have been conducted on 
rheological behavior of SCC, there is limited information on effects of aggregate size, 
grading, mineral admixture types, and fillers on durability, shrinkage and cracking 
properties. 
 
In this study 17 SCC mixtures were initially developed using local aggregates, fly 
ash, slag, limestone fillers, commercial silica fume, viscosity-modifying admixtures 
(VMA), high-range water-reducing admixtures (HRWRA), shrinkage-reducing 
admixtures (SRA), and steel fibers. The mixtures were evaluated for slump-flow, 
visual stability, J-ring blocking test, L-box passing ability, and column static 
segregation. Comparisons of results with the concept of workability factors 
(representing fine fraction) and coarseness factor (representing coarse fraction) that 
were proposed for normal concrete, indicate that most of the rheological properties 
of SCC are strongly influenced by admixtures and fillers. Based on fresh properties 
and strength criteria, six best SCC were selected for in-depth study of strength 
development with time, free shrinkage, autogenous shrinkage, cracking potential, 
freeze-thaw, air-void parameters, and rapid chloride permeability. 
 
Results show that compressive strength increased as water/powder ratio decreased 
and paste volume increased. The ACI prediction equation for limestone SCC 
underestimated the compressive strength with time. The shrinkage and cracking 
data showed that mixtures containing higher size of coarse aggregates (25 mm 
graded) had lower shrinkage and cracking potential compared to 12.5 mm graded 
aggregates. Autogenous shrinkage contributed significant portions of the total drying 
shrinkage measured. The data was calibrated for six existing models of shrinkage 
and finally a modified ACI based model was recommended for these SCC mixtures. 
SCC with coarse fractions of aggregate cracked later that those with finer fractions of 
aggregate. However, the inclusion of fibers and shrinkage reducing admixtures 
significantly reduced potential cracking, and SCC containing fibers improved the 
post-cracking behavior as well. Though the air-content of most SCC were higher than 
normal, the air-void parameters were within acceptable limits. This was confirmed by 
excellent resistance of SCC against freeze-thaw cycles and high durability factors 
obtained according to ASTM C 666 and C 215. Rapid chloride permeability values of 
SCC were adequate and close to regular HPC. Further studies on fracture parameters 
of hardened SCC are recommended. This should follow a full-scale implementation 
plan for specific structures and long-term monitoring. 
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CHAPTER ONE 
 

INTRODUCTION 
 
This introductory chapter presents background information on self-consolidating 

concrete (SCC). Also, the significance, objectives, and organization of the present 

research work are discussed. 

1.1 Background on Self-Consolidating Concrete 

Self-consolidating concrete (SCC) as defined by ACI 237R-07, is a highly 

flowable concrete which do not segregate and can spread into place, fill the 

formwork with heavily congested reinforcement, and encapsulate the reinforcement 

without any mechanical vibration. It is also known as self-compacting concrete, self-

leveling concrete, and SCC. Okamura in Japan first proposed the necessity of SCC in 

1986 to cater for the reduction in skilled workers in Japan’s construction industry and 

to achieve a durable structure independent of the quality of construction work. After 

its first application in Japan in the late 1980s, interest and use of SCC spread into 

many European countries. Use of SCC in USA started around late 1990s. At first, its 

use was limited in precast industries and cast-in-place application of SCC was 

limited. The use of SCC is increased to 1.8 million cubic meters (2.3 million cubic 

yards) in 2003. In 2002, 40% of precast manufacturers in the USA had used SCC. 

On the other hand, the use of SCC in the ready mixed concrete industry has been 

very limited, with estimated production in 2002 limited to 100,000 cubic meters 

(130,000 cubic yards). It can be seen that the use of SCC has grown tremendously 

since its incorporation. The development of high performance polycarboxylate 

polymers and viscosity modifiers have made it possible to create this “flowing” 

concrete without compromising the durability, cohesiveness, and other hardened 

properties. 

SCC is defined as a concrete mixture that can be placed purely by its own weight, 

with little or no vibration. The main characteristics of SCC are (1) Filling ability, (2) 

Passing ability, and (3) Segregation resistance. Filling ability requires SCC to flow 

into forms and within reinforcements without any vibration and under its own weight. 

Passing ability signifies that SCC must pass through blockage due to aggregate being 

restricted from passing through narrow openings and fill all the open spaces. 

Stability criteria specify that SCC should remain stable during mixing, transportation, 
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placing, and curing without any significant segregation. The advantages of using SCC 

are: 

 Reduced labor and equipment cost, 

 Easier placement in congested reinforcements, 

 Reduce noise pollution, 

 Faster placement, 

 Excellent surface finish, 

 Easier to fill complex shapes, 

 Easier reinforcement detailing,  

SCC can be produced with the same ingredients of traditional vibrated concrete with 

the addition of high-range water reducers and some times a viscosity modifying 

admixture. Although a basic difference between SCC and normal concrete mixture 

(NC/ OC/ TC) is the amount of fines present in the mixtures. SCC mixtures generally 

contain more fines than OC and the maximum aggregate size used in SCC are 

smaller than OC. Different inert fillers and supplementary cementitious materials 

(SCM) are also used to produce SCC. Hence it is extremely important to know the 

effect of aggregate gradation, and admixtures/ fillers on fresh and hardened 

properties of self-consolidating concrete. 

1.2 Research Significance 

SCC is an engineered material and its performance is mainly dependent on 

the quality of local materials, local climatic conditions to which concrete will be 

exposed, and also, mixing and construction methods. Thus, it is necessary to 

develop suitable SCC mixtures using local material sources and construction 

technologies specific for a location or state. 

Although there are several advantages of using SCC researchers listed some 

concerns about SCC that need to be addressed. Some of the concerns are 

summarized below: 

 Proper selection of materials, mixture proportions, differences in local 

aggregate gradation and dosage of chemical admixtures. 

 Possible increased shrinkage and cracking risk due to high finer content 

 Long term durability due to different pore structure and paste volume 

compared to normal concrete 

 Possible loss of stability and segregation 
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 Designing and monitoring false works and forms considering the fluid nature 

of the concrete. 

 Fatigue behavior 

 proper quality control at the job site 

 proper concrete transportation and placement techniques for SCC 

In this research project, emphasis is given on mainly first four points above. Over 

the last few years, many researches and discoveries have been made on different 

behaviors of SCC which includes the concerns listed above. But due to variations in 

different aggregate used, different gradation of aggregates, different filler and 

mineral admixture types, use of a wide range of admixtures made it difficult to 

generalize any specific trend on the properties and behavior of SCC. Hence an in-

depth study on at least some of the concerns would help choosing the proper 

mixture for use in structural applications. 

1.3 Goals and Objectives 

The primary goal of this research is to conduct exploratory study and develop 

guide lines for a follow-up comprehensive project on implementing SCC in West 

Virginia (WV) through investigation and comparison of number of SCC mixtures.  

The main objectives of this study are summarized below: 

 Reviewing extensively the published literatures, reports and state-of-the art 

information about SCC. 

 Developing 17 SCC mixtures containing different graded aggregates and 

various combinations of mineral admixtures, fiber, SRA and admixtures. 

 Testing the fresh properties of the developed mixtures and comparing with 

some acceptable values set earlier based on industry use or from literatures.  

 Understanding the effects of aggregate gradation and mineral admixtures on 

flowability, passing ability, segregation, and as a whole on fresh properties 

 .Evaluating compressive strength for all the mixtures and compare with 

normal concrete and HPC. 

 Understanding the effect of aggregate gradation, paste volume, water to 

binder ratio on compressive strength 

 Selecting six mixtures between the 17 mixtures. 

 Evaluating shrinkage development of selected six SCC mixtures based on 

different parameters and comparing them with normal concrete and HPC 

shrinkage values. 
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 Evaluating restrained shrinkage cracking potential of the selected six 

mixtures. 

 Evaluating durability properties namely rapid chloride permeability (RCPT), 

air-void parameters, and freezing and thawing resistance of the selected SCC 

mixtures. 

1.4 Thesis Organization 

This thesis is organized into eight chapters as follows: 

Chapter 1: A brief introduction is given about SCC and its characteristics, followed by 

the research significance, objectives and organization of the thesis. 

Chapter 2: A detailed literature review on various topics on SCC is presented in this 

chapter. Topics include history and development of SCC, materials and mixture 

proportioning of SCC mixtures, a brief overview of SCC fresh and hardened 

properties. Special emphasis was given on robustness, shrinkage, formwork 

pressure, and restrained shrinkage of SCC mixtures. 

Chapter 3: In this chapter, all the materials used in this project are listed. Their 

sources and detailed properties (chemical and/or physical) are included. The mixture 

proportions and preparation methods of the specimens are presented. An emphasis 

is given on the aggregate gradation of SCC and comparison with NC. 

Chapter 4: Fresh properties of SCC are evaluated in this chapter. The different test 

methods are described in detail in this chapter. Finally the test results are evaluated 

and correlations with different mixture parameters are studied. 

Chapter 5: Hardened properties of SCC mixtures are evaluated in this chapter. 

Compressive strength of the SCC mixtures are evaluated and compared with NC and 

HPC, and correlations with different mixture parameters are studied. Six mixtures 

are selected from the 17 mixtures in this chapter. A detailed analysis of compressive 

strength and splitting tensile strength properties of these mixtures are presented in 

this chapter. Some useful relationships are established based on those results. 

Chapter 6: This chapter is exclusively devoted to the shrinkage and restrained 

shrinkage cracking potential of the selected SCC mixtures. The drying shrinkage and 

autogenous shrinkage of these mixtures were evaluated using a vibrating-wire strain 

gage for better precision. The AASHTO ring specimen test (AASHTO Designation 

PP34-99) is adopted for the restrained shrinkage test. The cracking onset day, the 

average stress development in the steel ring is evaluated and a potential for cracking 

was found for the mixtures based on ASTM C 1581. 
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Chapter 7: The durability properties of the SCC mixtures are developed here on the 

basis of three tests. The tests are rapid chloride permeability test (RCPT), air-void 

content, and resistance to freezing and thawing. Some useful observations are also 

established based on the test results. 

Chapter 8: Conclusions are given in this chapter, and further research needs in this 

area are recommended. 
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CHAPTER TWO 
 

BACKGROUND AND LITERATURE REVIEW 
 
In this chapter, the history and development of the different stages and properties of 

self-consolidating concrete are reviewed. Those include history of development, 

mixture proportion, robustness, fresh and hardened concrete properties, formwork 

pressure, durability characteristics, and use of SCC in USA. 

2.1 History and Development 

Self-consolidating concrete (SCC) as defined by ACI 237R-07, is a highly 

flowable concrete which do not segregate and can spread into place, fill the 

formwork with heavily congested reinforcement, and encapsulate the reinforcement 

without any mechanical vibration. Okamura in Japan first proposed the necessity of 

SCC in 1986 to cater for the reduction in skilled workers in Japan’s construction 

industry and to achieve a durable structure independent of the quality of 

construction work. The first satisfactory prototype of self-consolidating concrete was 

completed in 1988 using materials in the market (Ouchi M, 1998). SCC was 

developed from the existing technology used for high workability and underwater 

concretes, where additional cohesiveness was required (Goodier, 2003). 

The first paper on self-consolidating concrete was presented by Ozawa at the 

second East-Asia and Pacific Conference on Structural Engineering and Construction 

(EASEC-2) in January 1989 (Ozawa et al., 1989). The concept of SCC was spread to 

the world after the presentation on self-consolidating concrete by Ozawa at CANMET 

& ACI International Conference, Istambul, in May 1992. RILEM’s committee on self-

consolidating concrete was founded in January 1997. In April 1997, the Japanese 

Society of Civil Engineers (JSCE) set up a research sub-committee for establishing 

recommendations for the practical application of SCC. This was subsequently 

published in English in August 1999 (Uomoto and Ozawa, 1999). In August 1998, the 

first workshop on self-consolidating concrete was held in Kochi, Japan which was an 

important event for the development of SCC. In the late 1990s, interest and use of 

SCC spread from Japan to other countries, including Europe. Sweden was the first 

country in Europe to begin development of SCC, and in 1993 the CBI organized a 

seminar in Sweden for contractors and producers leading to a project aimed at 

studying SCC for housing (Billberg, 1999). A specification and guideline document 

has been produced in 2002 by EFNARC (European Federation of Producers and 
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Contractors of Specialist Products for Structures) aiming to provide a guideline for 

the design and use of SCC in Europe based on latest research findings combined with 

field experience. Most of the major European countries have developed or currently 

in the process of developing guidelines or specifications for the use of SCC. Since the 

early development of SCC in Japan, this new class of high-performance concrete 

(HPC) has been adopted in several countries in cast-in-place and precast applications 

(ACI 237R, 2007). 

From that time, application of SCC had been increased in a gigantic scale 

because of its enormous advantages over normal concrete. High workability, reduced 

labor and equipment, faster and less noisy construction, energy efficiency, flowability 

through highly congested reinforcement, better finish are some of them.  It has been 

used in many construction applications such as building, bridge, tunnel construction 

in many European countries and Japan. However, in the United States the scope of 

application of SCC was limited and mainly confined in the precast concrete industry 

until recently. But now advantages of using SCC are being recognized by the 

concrete industry in the U.S. and many organizations like State Departments of 

Transportation, FHWA, Precast/Presterssed Concrete Institute (PCI) and American 

Concrete Institute (ACI) are working towards implementing SCC in different 

construction applications (Ouchi et al., 2003). 

The use of SCC in North America has grown dramatically, especially, in the 

precast industry, where it has been used in regular production at present plants in 

the United States since 2000.The majority of such concrete has been used to 

produce precast elements for parking garage structure and architectural panels. The 

estimated volume of SCC in the precast market in the United States was 135,000 

cubic meters (177,000 cubic yards) in 2000; it increased to 1.8 million cubic meters 

(2.3 million cubic yards) in 2003. In 2002, 40% of precast manufacturers in the USA 

had used SCC, and in some cases, new plants are currently being built around the 

idea of using SCC technology. On the other hand, the use of SCC in the ready mixed 

concrete industry has been very limited, with estimated production in 2002 limited to 

100,000 cubic meters (130,000 cubic yards) (Vachon and Dackzo 2002). 

2.2 Materials and Mixture Proportioning 

Traditional concrete with high fluidity usually have a very high water to 

cement ratio, which lower the compressive strength and may compromise the 

durability. But a properly designed SCC can flow through the reinforcements and fill 
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the forms without sacrificing the performance. Three major properties specific to SCC 

in its plastic state are its flowability and stability, segregation resistance, and 

Passing Ability. The high flowability of SCC is generally attained by using high-

range water-reducing (HRWRA) admixtures and not by adding extra water. The 

stability or resistance to segregation of the plastic concrete mixture is attained by 

increasing the total quantity of fines in the concrete and/or by using admixtures that 

modify the viscosity of the mixture (viscosity Modifying Admixtures). Increased fines 

contents can be achieved by increasing the content of cementitious materials or by 

incorporating inert fines such as limestone powder. Admixtures that affect the viscosity 

of the mixture are especially helpful when the grading of available aggregate sources 

cannot be optimized for cohesive mixtures or with large source variations. A well 

distributed aggregate grading helps achieve SCC with reduced cementitious materials 

content and reduced admixture dosage. While successful SCC mixtures can be 

produced with 38 mm (1 ½ inch) aggregate, it is easier to design and control with 

smaller-sized aggregate. Control of aggregate moisture content is also critical to 

producing a good mixture. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Effect of different mixture ingredients on the rheological properties 

of SCC 

 Figure 2.1 illustrates the three prongs of SCC mixtures and illustrates 

the effect of different mixture ingredients on the rheological properties of SCC. The 

HRWRA and the powder contents affect the flowing and filling ability of the SCC 

mixtures. Similarly, the passing ability of SCC is influenced by the small size coarse 

aggregates, HRWRA, and paste/ binder content of the mixture. The stability of the 
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SCC mixtures is affected by the quantity of VMA and fine powders such as limestone 

powder quantity. An ideal SCC should contain a right blend of aggregate size and 

grading, HRWRA, and VMA to achieve a target flowing ability, passing ability, and 

stability or segregation resistance. This fact is clearly shown in the Figure 2.2 below. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 An ideal SCC mixture 

SCC mixtures typically designed to have a higher paste volume, lesser coarse 

aggregate, and higher sand-to-coarse aggregate ratio compared to traditional 

concrete. SCC mixtures can be designed to have a desired mechanical performance 

and hardened properties for a particular application, similar to regular concrete. 

 

 

 

 

 

 

 

 

 

Figure 2.3 Difference of ingredients in SCC and Regular concrete mixture 

proportioning 

(Adopted from: www.selfconsolidatingconcrete.org) 
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Figure 2.3 shows differences between a typical normal concrete mixture and a typical 

SCC mixture. It can be seen that keeping the water and cement quantity same for 

both of the mixtures, SCC properties can be achieved by lowering the coarse 

aggregate (CA) fraction and increasing the fines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Comparison in proportioning of SCC and mixtures and ordinary 

concrete mixtures  

(Adopted from: D’Ambrosia, 2007) 

Figure 2.4 illustrates the fine aggregate to coarse aggregate ratio (FA/CA) and 

aggregate content for SCC mixtures compiled from the literature to illustrate the 

differences between SCC and normal vibrated concrete (D’Ambrosia, 2007). The 

shaded oval on the figure represents normal concrete according to ACI 211.1 

mixture proportioning method. The average water to cementitious material ratio 

(w/cm) in the SCC database was 0.41. It was observed that the total aggregate 

content was lower for SCC than for typical concrete. Low aggregate volume and 

smaller coarse aggregate size are often preferred to improve the passing ability of 

SCC. Higher proportion of sand is observed in the SCC mixtures to provide the 

required cohesiveness, uniformity and segregation resistance.  

SCC can be produced with the same materials as of normal concrete and 

using some special type of admixtures such as viscosity modifying admixtures (VMA) 

and high-range water reducing admixtures (HRWRA) in some cases.  But unlike the 

ordinary concrete, the mix design and fresh and hardened properties of SCC are 

Aggregate content (%) 
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much more sensitive to variability of the quality and consistency of the mixture 

components. To produce a highly flowable concrete with a good resistance against 

segregation, the amount of course aggregate has to be less than that of normal 

concrete and the reduced part to be replaced by the finer particles. As cement is an 

expensive and energy consuming material, fillers and cementitious materials are 

widely used for SCC production. Mineral admixtures like slag, silica fume, ground 

granulated blast furnace slag (GGBS), fly-ash or inert material such as limestone 

powder are most commonly used (Heirman et al., 2003; Goodier, 2003). This fact is 

also supported by Ghezal et al. (2002), who pointed out that cement replacement 

with incorporation of non-cementitious fillers in SCC has not been a popular choice in 

North America and the cost of SCC can be reduced through proper selection of locally 

available materials for making concrete and mixture constituents, with partial 

substitutions of cement and supplementary cementitious materials by readily 

available inert materials such as fillers and limestone powder is a very good choice. 

It has been observed that a particular cement content  which is needed to achieve a 

given slump flow, viscosity, and early age compressive strength ; is reduced by 

replacing high volume of cement (on the order of 100 kg/m3) by limestone filler. As 

noted by Heirman et al. (2003), the influence of filler characteristics on fresh 

properties is not clear because of the high influence of the Superplasticizer and the 

combined effect of filler and admixtures on the rheology of the paste. Also, 

depending on the filler type, the SCC mixtures had a higher or comparable 

compressive strength in comparison with the traditionally vibrated concrete with the 

same water/ cement ratio. The types, uses and effects of powders and fillers are 

described below. 

Generally a powder or a superplasticizer or both are required to produce a 

stable yet flowing concrete with controlled bleeding and segregation. An increase in 

cement content significantly increases the cost of the mixture. Hence, the 

requirement of powder material has been met with higher use of pozzolanic and less 

reactive filler materials now-a-days (Zhu and Gibbs, 2004). Use of limestone powder 

not only increases the early age compressive strength but also improve the 

deformability and stability of the mixture. This may be due to the better particle 

packing of the limestone powder. In their study regarding use of different limestone 

and chalk powders in SCC, Zhu et al. concluded that increase in powder content 

resulted in a decrease of superplasticizer demand and could lead to a more economic 

SCC. They also observed that the mixtures containing limestone powders and chalk 
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powders developed significantly higher compressive strength than the conventional 

concrete mixtures at the same water to cement ratio. 

Ghezal and Khayat (2002) reported that higher material cost of SCC compared to 

conventional concrete of similar mechanical property is due to the use of different 

chemical admixtures and higher fines. Use of non-cementitious fillers as cement 

replacement has not been widely employed in North America. Partial substitution of 

cement by proper selection of filler material can reduce the cost of SCC. They 

developed statistical response models to develop cost-effective SCC with high-

volume replacements of limestone filler. It was concluded that large volumes of 

cement replacement by limestone filler (~100 kg/m3) is shown to reduce the cement 

content needed to achieve a given slump flow, viscosity and compressive strength at 

early age  Also the increase in limestone filler content can reduce the HRWRA 

demand of the mixture for a given deformability. 

Heirman and Vandewalle (2003) studied the influence of filler properties on SCC 

fresh and hardened properties to link the measured properties with the 

characterizing properties of the fillers. Twelve different SCC mixtures and one 

traditionally vibrated concrete mixture were developed. Between the twelve SCC 

mixtures, seven contained limestone filler, two contained fly ashes, two contained 

quartzite fillers, and the remaining mixture contained dolomite filler. Water to 

cement ratio of all the mixtures were 0.5 and the mixtures had a constant volume 

filler to cement ratio of 0.9. It was not possible to find a relationship between the 

filler characteristics and the results of the workability. This could be explained by the 

fact that the workability depends much more on the superplasticizer than the filler 

characteristics. It was also found that compressive strength developed for the SCC 

mixtures were higher than the traditional concrete. Also, strength of the mixtures 

developed with limestone and dolomite fillers were greater than mixtures developed 

with fly ash and quartzite fillers. The shrinkage of the SCC mixtures was found to be 

greater. The freeze-thaw resistance of the mixtures was good but a greater amount 

of scaled material was found when de-icing salts were added.  

It is well known that the addition of steel fibers in concrete improves crack 

resistance, ductility and toughness as well as greater tensile strength. Though 

casting of fiber-reinforced SCC presents greater handling difficulty, Khayat et al. 

(2000) concluded highly flowable yet cohesive FR-SCC with a very good passing 

ability can greatly facilitate constructability of FRC and high deformability was 

obtained when the fiber volume was limited to 0.5% by volume of concrete. Similar 
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findings were achieved by Nehdi et al. (2004). They reported reduction in workability 

and flowability of SCC developed with fibers and the best post-first-crack residual 

strength results for FRSCC mixtures were achieved by a combination of steel and 

synthetic microfibers. Hemant et al. (2007) conducted a study on fresh and 

hardened properties of fiber reinforced SCC mixtures. To improve the workability, 

fiber reinforced SCC mixtures were developed for application in prestressed concrete 

beams. The developed mixtures demonstrated satisfactory performance with regards 

to the stability and workability up to a fiber factor of 55. In general, the FRSCC 

mixtures had greater normalized tensile strength than the traditional fiber reinforced 

concrete mixtures for the same fiber factor. The optimum fiber content was found to 

be dependent upon the workability requirements. They concluded that highly 

workable and stable FRSCC mixtures can be made from locally available construction 

materials. It was also observed that although a higher CA/FA ratio reduced the filling 

ability and deformability of SCC, concrete with a higher CA/FA ratio can be produced 

with the addition of VMA to maintain required stability. The steel fiber enhanced the 

tensile and flexural properties significantly. 

 The chemical admixtures such as the VMA and HRWRA play very important 

roles on the fresh properties of SCC. In general VMAs’ change the viscosity of the 

water and facilitate to resist segregation. It is very difficult to make a concrete with 

high workability having low w/c ratios. But the recently invented Superplasticizer 

(SP) or HRWRA can impart high slump-flow having low water cement ratios and 

retain this slump-flow for an extended period of time which is highly required to the 

manufacture and production of SCC and specially in the precast industry (Sugamata 

et al., 2005). 

The rheology of paste depends on aggregate-paste volume, aggregate 

gradation of fine and course aggregates, shape of aggregate, fine aggregate-course 

aggregate ratio, aggregate surface characteristics and difference of density between 

aggregate and paste (Bui et al., 2002). Bui et al. (2002) developed a new approach 

of mix design based on paste rheology where the effect of aggregate properties and 

content is considered. Experimental results showed that the model is related to 

aggregate spacing and average aggregate diameter, and can be applied for different 

coarse-total aggregate ratios, different cement contents and different water-to-

binder ratios. Stability and workability of fresh SCC are greatly enhanced by 

improving the fine-particle packing, which also facilitates in improving the paste 

matrix density and Interfacial transition zone (ITZ) (Bosiljkov, 2003). In the mixture 
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proportions of traditional concrete, the water/cement ratio is kept constant for 

achieving required strength and durability. But in case of SCC, water/powder ratio 

has to be chosen instead of w/c ratio as self compactibility is more dependent on the 

w/p ratio and it is another important criterion for SCC other than strength and 

durability. Felekoglu et al. (2007) noted that optimum water/ cement ratio for 

producing SCC is in the range of 0.84-1.07 by volume. The ratios above and below 

this range may cause blocking or segregation of the mixture due to presence of high 

cementitious material or high water content respectively. Paste volume is another 

important criterion for SCC as it is designed with a higher paste volume than NC. 

Flowability of SCC increases with higher volume of paste but it may have detrimental 

effects on mechanical properties, time-dependent deformations and cracking 

susceptibility (Roziere et al., 2007). Aggregates are one of the most important 

parameters in any type of concrete and SCC is no exception. The choice of 

aggregates, ratio of coarse and fine aggregate, volume of aggregates affects the 

fresh and hardened properties directly. Xie et al. (2005) found an optimum Vg/Vm 

value to obtain good fresh properties, where Vg is the volume of coarse aggregate 

and Vm is the volume of mortar. It had been also reported that reduction of 

flowability, filling capacity and increase in stability of fresh SCC takes place with the 

decrease of maximum size of coarse aggregate.  Aggregate gradation is of utmost 

importance for successful production and quality control for SCC. As it contains 

different graded aggregates (course and fine), a combined aggregate gradation 

curve is more appropriate. Shilstone (1990) defined coarseness factor (CF) and 

workability factor (WF) for normal concrete and plotted band of aggregate gradations 

on CF chart that produce optimum concrete mixtures in terms of workability. In this 

experimental program, the importance of CF and WF on the properties of SCC will be 

studied.  

Compared to normal concrete, SCC generally requires longer mixing time. 

Chopin et al. (2004) investigated the reason behind the longer mixing time of SCC. 

They reported that mixing time is one of the problems reported by ready-mixed 

concrete firms. Mixing time often reaches 2 min for SCC produced in concrete plants, 

while, ordinary concrete is mixed for approximately for 35 s. To understand why SCC 

and HPC require longer mixing time an experimental plan had been set up to study 

the influence of mix-design parameters through 36 different mixtures. The 

parameters that have been studied were the fine element content, the use of 

limestone filler or silica fume and the HRWRA type and dosage. A first linear, 
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empirical model had been proposed, directly accounting for the mix-design ratios. 

Furthermore, it had been established that the mixing time of a given mixture is 

linked to its actual and its maximum solid content. Those two concepts were related 

to mixture design of concrete. An experimental model, based on those conclusions, 

was proposed for a given mixer. They concluded that mixing time can be reduced by 

the following means (1) increasing the fine particle content, with a constant w/c 

ratio, (2) increasing the total water content, (3) optimizing the granular skeleton will 

lead to a higher maximum solid content, for a constant total aggregate content, and 

(4) replacing part of the cement with silica fume. 

The use of more fines and different chemical admixtures to produce SCC with 

desired properties may increase the material cost of the project. But in the long run, 

the cost offset by less labor cost and reduced construction time generally 

compensates the increase in material cost. Many researches had been done in the 

past and also currently going on to produce cost effective SCC from locally available 

materials. Lachemi et al. (2003) studied the comparative performance of different 

SCC mixtures made with FA, slag and different VMAs based on fresh and mechanical 

properties and also on cost. 21 mixtures had been prepared with w/cm ratio varied 

between 0.35 to 0.45 and cement replacement up to 60% for FA SCC mixtures and 

up to 70% cement replacement for slag SCC mixtures. They concluded that an 

economical SCC mixture with desired properties can be successfully developed by 

incorporating FA, slag, and VMA. It was also found that the most economical SCCs 

with satisfactory properties with a 28-day strength of 35 MPa can be obtained by 

using 50% FA, 60% slag cement as cement replacement. Such SCC can replace a 

normal SCC with significantly reduced cost.  

Another study by Naik et al. (2005) focused on usefulness of limestone-

quarry by-product material in the development of economical SCC. Class C fly ash 

was also used in the study. The main objective of the research was to evaluate the 

possibility for using the stated materials for SCC production and to reduce the cost of 

expensive chemical admixtures. It was observed that the limestone-quarry fines and 

Class C fly ash had a noticeable improvement and high potential for utilization in the 

production of SCC. The test results showed that, the requirements for chemical 

admixtures such as HRWRA and VMA were reduced when the quarry fines and fly ash 

were used as partial replacements of sand and cement, respectively. The major 

observations made from the study are as follows: 
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• Partial replacement of sand with limestone-quarry fines improves the cost 

effectiveness of SCC without affecting the strength, and 

• Use of Class C fly ash as a partial replacement of cement proved to be very 

beneficial to the cost and long-term strength gain for the SCC. 

 

2.3 A Brief Overview of SCC Fresh and hardened Properties 

 Due to the high flowability of the SCC mixtures fresh concrete properties are 

significantly different than normal concrete mixtures. Hence it follows that tests 

should also be different for normal concrete and SCC at fresh stage. The main 

characteristics of SCC at plastic stage are flowability, passing ability, and segregation 

resistance as stated earlier which make it superior than normal concrete. Different 

test methods have been developed to quantify and characterize these properties at 

fresh state. Among these tests the most popular tests are slump flow, J-Ring flow, L-

Box Test, and Column Segregation Test. Details of these tests are described in 

Chapter 4. among these tests, Slump flow test measures the flowability, J-Ring and 

L-box test measure the passing ability, and the column segregation test measures 

the segregation resistance of the SCC. Many international organizations such as 

RILEM, ACI, ASTM etc. has set some target limits for these properties depending on 

the type of application and acceptability of the concrete as SCC. Hwang et al. (2006) 

proposed that SCC designed for structural applications should have a slump flow of 

620 to 720 mm, J-Ring flow 600 to 700 mm (Slump flow – J-Ring flow ≤ 50 mm), L-

Box blocking ratio (h2/h1) 0.7 and maximum surface settlement ≤ 0.5%. Also, a 

combination of the slump flow and either the L-box blocking ratio (h2/h1), J-Ring, or 

V-funnel flow time can be used to assess filling capacity of SCC for placement in 

highly congested reinforcement typically encountered in structural applications. To 

qualify these limits and to achieve the required hardened properties, choice of proper 

mix design and required rheology of paste is of utmost importance. 

 Although the fresh properties of SCC and normal concrete (NC) are 

significantly different, the hardened properties with respect to testing and types of 

tests are almost same. As far as compressive strength is concerned, there is not 

much significant difference between SCC and normal concrete (NC). Though the 

modulus of elasticity of SCC is slightly lower than that of NC, the tensile splitting 

strength of SCC is higher than NC (Suksawang et al., 2006). This may be due to the 

fact that NC mix contains more coarse aggregate than SCC and lower cementitious 
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paste volume. Also, drying shrinkage of SCC is higher than NC because of its higher 

finer content. An investigation of the early age mechanical behavior of SCC by 

Ambrosia et al. (2005) has revealed a potentially high risk for cracking at early age. 

The main factors which contribute to the cracking risk are stress developed by 

autogenous shrinkage at early age and diminished creep capacity in low w/cm ratio 

materials. 

Some of the properties of SCC were expected to be different that NC. A detail 

literature review of these properties is discussed below: 

2.3.1 Shrinkage  
Shrinkage maybe defines as time dependent volumetric change of concrete due to 

loss of moisture from the surface or within the concrete, or due to the carbonation of 

Hcp. 

Types of Shrinkage: 

1. Plastic Shrinkage 

2. Autogenous Shrinkage 

3. Drying Shrinkage 

4. Carbonation Shrinkage 

2.3.1.1 Plastic shrinkage 
This type of shrinkage occurs when the concrete is in the plastic stage. The water in 

concrete mixture is lost by evaporation from the surface of the concrete or suction 

from dry sub-surface. When the evaporation or suction rate exceeds the rate of 

bleeding, and the free settlement period is ended, a hydrostatic tension begins to 

develop due to the formation of menisci at the water surfaces within the capillaries 

(Neville, 1996). As a result, concrete may be subjected to cracking unless 

evaporation loss is prevented. 

2.3.1.2 Autogenous shrinkage 

This type of shrinkage occurs after the setting of the cement paste has taken place 

and is the result of self-desiccation. When the cement particle and water are in 

contact, the hydration begins. During this process, if no additional water is provided 

(through curing), concrete will begin to dry internally and the autogenous 

deformation occurs. The autogenous shrinkage tends to increase with higher cement 

content, and possibly with finer cement. For HPC, due to its lower porosity and high 

volumes of cementitious paste, autogenous shrinkage due to self-desiccation within 
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concrete is significant in spite of water sprayed on the outside of the concrete decks, 

and sometimes, constitutes more than 50% of total drying shrinkage. 

2.3.1.3 Drying shrinkage 
Drying shrinkage occurs in hardened concrete stored in unsaturated air when the 

water (free water or adsorbed water) is removed from inside of the hardened 

concrete. The lower the relative humidity of the air surrounding the concrete, the 

higher the rate of drying shrinkage is. Three phenomena are believed to contribute 

to drying shrinkage of concrete (Mindess et al., 2003): capillary stress, disjoining 

pressure, and changes in surface free energy, as shown in Figure 2.5 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Shrinkage mechanism in concrete 

(Adopted from: Mindess et al., 2003) 

 

2.3.1.4 Factors affecting shrinkage 

Factors that affect the drying and autogenous shrinkage of concrete have been 

outlined below 

2.3.1.4.1 Water-cementitous material ratio 

For normal concrete, shrinkage becomes larger as the water to cementitious 

materials ratio (w/cm) becomes higher, as the w/cm determines the amount of 

evaporable water in the cement paste. Brooks (1989) showed that shrinkage of 

hydrated cement paste is directly proportional to w/cm ratio between the values of 

0.2 to 0.6. Above the 0.6 w/cm ratio water is evaporated without causing shrinkage. 
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With constant w/cm ratio, increase in cement content increases shrinkage due to 

greater paste volume. If workability is kept constant that means the water content is 

kept constant increase in cement content decreases shrinkage since effective w/cm 

is reduced. 

High strength concretes having a low w/cm has a greater early age shrinkage this is 

probably due to the greater amount of paste content. In case of HPC using 

supplementary cementing materials (particularly silica fume) and low w/cm (≤ 0.4) 

the shrinkage values are much higher, if the drying of concrete starts at very early 

stage (within 72 hours). This happens due to loss of moisture internally and 

subsequent self desiccation and additional shrinkage. 

2.3.1.4.2 Size and grading of aggregate 

The size and grading of aggregate do not influence the amount of shrinkage. Since 

use of larger size aggregates make the mix leaner, hence in a lower shrinkage. 

2.3.1.4.3 Aggregate modulus of elasticity 

More the aggregate modulus of elasticity, higher its restraining capacity hence the 

concretes have a lower shrinkage. If aggregates have a tendency to shrink the 

overall shrinkage of concrete is increases. 

2.3.1.4.4 Cement properties 

Cement properties have little effect on shrinkage. Fineness of cement is a factor in 

the sense that the cement particles coarser than 75 micron hydrates very slowly 

hence cause a restraining effect. Cements deficient in gypsum exhibit considerably 

greater shrinkage. 

2.3.1.4.5 Supplementary cementitious materials 

Inclusion of supplementary cementing materials (SCM) increases shrinkage to a 

considerable extent. Brooks and Neville (1992) showed that often this increase is 

from 20 to 60 percent more than a concrete containing same amount of Ordinary 

Portland Cement and same w/cm. Whereas addition of slag with silica fume increases 

drying shrinkage and addition of fly ash to silica fume was found to increase drying 

shrinkage though the effect of variation of fly ash content from 15 to 25 % was 

found not to have a significant difference. 

2.3.1.4.6 Admixtures 

Neville (1996) reported that both WRA’s and superplasticizers (High range water 

reducing admixtures) increase shrinkage. Although WRA causes small increase in 

shrinkage 10 to 20% more shrinkage is observed due to addition of superplasticizers. 

2.3.1.4.7 Curing and storage condition 
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Prolonged moist curing delays the advent of shrinkage and also reduces ultimate 

shrinkage of concrete. However for neat cement pastes greater the amount of 

hydrated paste lesser the amount of restraint. Hence a prolonged curing cause a 

higher amount of shrinkage in neat cement pastes. 

The mechanical performance of SCC is an increasing concern among the researchers. 

This is due to different paste rheology, more fine aggregate content, and higher 

paste content, low water to cementitious material ratio compared to ordinary 

concrete.  

2.3.1.5 A brief discussion on shrinkage of SCC 
Ambrosia et al. (2005) conducted a study on mechanical performance of SCC 

at early age. He concluded that lower w/cm ratio and higher paste volume are the 

factors which lead to higher compressive strength of SCC mixtures compared to 

normal concrete. The rate of strength gain is also higher for SCC due to its high 

paste content. In their experiment on shrinkage, it was found that SCC mixtures had 

a high autogenous shrinkage at early age. Low w/cm and high paste content were 

attributed to the fact and may result in stress development and cracking at early 

age.  Overall the investigation revealed a potentially high risk of cracking. Higher use 

of cement paste content and a relatively low w/cm ratio resulted in high autogenous 

shrinkage that may cause significant stress at early age and the creep capacity may 

be diminished due to the low w/cm ratio. 

Turcry and Loukili (2003) conducted a study of plastic shrinkage cracking of SCC. 

They developed six SCC mixtures with water to binder (w/b) ratio varied from 0.23 

to 0.41 for the study. The plastic shrinkage of SCC mixtures was found to be at least 

two times higher than the ordinary concrete mixtures. As the w/b ratios of the SCC 

mixtures were lower than that of the ordinary concrete mixtures, difference in pore 

structure may have contributed to the higher plastic shrinkage. In another study, 

Turcry and Loukili (2006) conducted plastic shrinkage cracking tests on five SCC 

mixtures and compared the results with ordinary concretes. They conducted the test 

in three different environments; one with sealed condition, one with no-wind 

condition, and the other with wind condition. It was concluded that in moderate 

evaporation rate plastic shrinkage occurs before and during setting. Drying shrinkage 

was higher for SCC compared to OC mixtures due to difference in bleeding. At higher 

evaporation rate, SCC and OC mixtures exhibited the same plastic shrinkage. 

Restrained shrinkage tests performed in windy condition resulted in less cracking in 

SCC. It was also suggested that curing of SCC used in horizontal applications should 
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be recommended to compensate for the lack of bleeding and subsequently less 

potential for cracking. 

Poppe and Schutter (2005) studied the creep and shrinkage of SCC mixtures made 

with different parameters like cement type, filler type, and cement to powder ratio. 

The applicability of the standard creep and shrinkage models were also studied. They 

found a decrease of the creep deformation. The decrease in the creep coefficient 

resulted from the increased w/c ratio. They also concluded that combination of w/c 

and water to powder ratio (w/p) should be considered for time-dependent 

deformations. Comparison of the experimental results with traditional models 

showed that ACI-model was the closest. It was also concluded that shrinkage values 

of SCC are comparable to that of ordinary concrete.  

Hammer (2003) investigated the cracking susceptibility of SCC due to volume 

changes. Volume changes considered were plastic settlement and shrinkage, 

autogenous deformation, thermal dilation, and drying shrinkage. It was observed 

that drying shrinkage cracking of SCC is not significantly different than OC, unless a 

considerable high amount of paste is used for the SCC. Due to higher cement and 

filler content, SCC is particularly vulnerable to cracking at early stage compared to 

OC. Also SCC mixtures designed with high w/c or w/b ratio, risk of “thermal 

cracking” is higher than ordinary concrete. 

Hammer (2001) studied the effect of volume changes as driving forces to self-

induced cracking of Norwegian SCC. Paste content, w/b and binder type are the main 

parameters behind the risk of plastic shrinkage cracking, thermal cracking, and 

shrinkage cracking of SCC mixtures. The development work focused at maintaining 

the above mentioned parameters as close to equivalent traditional concrete as 

possible. That resulted in similar settlement, plastic shrinkage, autogenous 

shrinkage, thermal dilation, and drying shrinkage values for SCC and OC mixtures. 

However lower w/b ratio or increased paste volume can lead to higher risk of 

cracking for the SCC mixtures. 

Turcry et al. (2006) evaluated cracking tendency of SCC subjected to restrained 

shrinkage. Cracking risk is not only dependent on the magnitude and rate of 

shrinkage, but also on different material properties, such as modulus of elasticity, 

creep, tensile strength, and fracture properties. (Shah et al., 1998). Three SCC 

mixtures and three OC mixtures were investigated for shrinkage cracking potential. A 

comparison was done considering on the age-dependent parameters governing 

cracking risk, such as shrinkage, viscoelastic properties and fracture properties. 
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Restrained shrinkage cracking by ring test was done and a numerical study was 

performed to simulate the ring test using the material properties. It was found that, 

when compressive strength was held constant, shrinkage, modulus of elasticity, 

tensile strength, and specific creep of SCC and OC mixtures were comparable. 

However, the modulus of elasticity of SCC was found to be smaller than that of OC 

mixtures, although the difference was insignificant. In the experiment, SCC mixtures 

had shown a much earlier-age cracking compared to OC mixtures.  

Gomez and Landsberger (2007) evaluated the shrinkage prediction models of SCC. 

An extensive database of shrinkage values for SCC and OC were first generated. The 

different parameters were cement content, filler content, aggregate content, w/c 

ratio, w/p ratio and compressive strength. Different standard shrinkage prediction 

models such as ACI 209R-92 model, CEB-FIP 1990 model, EHE model, B3 model, 

and GL 2000 models were used to predict and compare the shrinkage values with the 

database. A residual analysis and coefficient of variation calculation were also done 

to better interpret the result; the influence of various parameters on mean shrinkage 

strain and coefficient of variation was also evaluated. The results indicated that 

despite difference between different models, there were no significant differences in 

the shrinkage strain values for SCC and OC mixtures. B3 and ACI model were found 

to be the best models for estimation of shrinkage in SCC mixtures. It was also found 

that B3 model slightly underestimated the shrinkage strains, whereas ACI model 

slightly overestimated the strain values. The CEB-FIP 1990, EHE, and GL 2000 

models grossly underestimated the shrinkage of the SCC mixtures. 

Assie et al. (2003) studied the durability properties of SCC. Durability properties of 

same strength SCC and vibrated concrete (VC) were tested. It was found that SCC 

and VC had similar drying and autogenous shrinkage up to 90 days. After 90 days, 

SCC mixtures showed higher autogenous shrinkage than VC mixtures. Delayed 

deformation under load or creep, was found to be higher than VC mixtures. SCC had 

greater basic creep and total creep than VC. For same water-accessible porosity, 

SCC mixtures presented a lower “dry” intrinsic permeability than that of the VC 

mixtures. 

2.3.2 Formwork Pressure 

Formwork pressure of SCC might be a problem for SCC due to its highly fluid nature. 

As per ACI 237, the formwork pressure of SCC is generally higher than normal 

concrete, especially when the casting rate is higher. Also, the types of forms 

determine the characteristics and stability of SCC after placement. ACI 347R 
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recommend that unless a method based on appropriate experimental data is 

available, formwork should be designed to withstand the full hydrostatic head of fluid 

concrete. This provision is problematic for the contractors as they have to use strong 

forms for the pouring of SCC. Another problem is there are no standard test methods 

defined to find the formwork pressure in the laboratory. Hence, there is a great need 

to focus on this topic for this type of highly flowable concrete. 

Many laboratory experiments and field tests have shown that SCC pouring do not 

ncessarily generate full hydrostatic pressure at the bottom of the structure. Tests 

performed by Vanhove and Djelal (2002) resulted in a maximum pressure 64% of 

maximum hydrostatic pressure for a wall placed at 25 m/h from above and a 

maximum of 68% of maximum hydrostatic pressure for a wall placed at 19.5m/h by 

pumping from the bottom of the wall. Also, the maximum pressure was not found at 

the bottom of the wall but at a height of 1.5m.  

Several new techniques are being invented for studying formwork pressure with SCC 

in the laboratory. One method used by researchers at the University of Sherbrooke 

and the University of Illinois at Urbana-Champaign (UIUC) used a PVC tube with 

sensors mounted to the tube. An alternative laboratory set up is used by researchers 

at Northwestern University. Their testing apparatus utilizes a short column of 

concrete, 300 mm, in a steel mold.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Formwork measuring device 

(Adopted from: www.selfconsolidatingconcrete.org) 

Figure 2.4 is a picture of their test set-up. A loading frame is used to apply a load on 

the top of the column of concrete to simulate the effect of a larger column of 
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concrete. This can also apply increasing loads over time to simulate varying casting 

rates. The cylinder has two pressure cells mounted on the sides. One is used to 

measure total horizontal pressure and the second sensor is used to measure pore 

water pressure.  

Assad and Khayat (2006) investigated the effect of casting rate and concrete 

temperature on formwork pressure exerted by SCC. The initial temperature of the 

concrete was varied between 10 to 30  C or with high early-strength cement and set-

accelerating admixture. The concrete were placed either continuously at casting rate 

varied between 5 and 25 m/h or by intermediate stopping as per some pre-

determined time. They observed that decrease in casting rate from 25 to 5 m/h 

reduced the maximum initial pressure by 15% without any considerable effect on the 

rate of pressure drop with time. It was also concluded that fresh concrete 

temperature had little or no effect on the maximum developed lateral pressure. They 

observed that at the end of dormant period of cement hydration, the accelerated rat 

of formation of hydrates enabled the mixture to becoming self-bearing leading to 

abrupt drop in pressure. 

They also studied (2008) the measurement systems for determining formwork 

pressure of SCC. They suggested that flush diaphragm milivolt output type pressure 

sensors can be used to find the lateral pressure of SCC. They had used rigid PVC 

tubes for their experiment and concluded that 10 mm thick wall is sufficient for a 

column height of 2800 mm.  

Gregori et al. (2008) investigated experimental simulation of SCC formwork 

pressure. The effects of casting rate and mixture composition on formwork pressure 

were investigated by pressurizing a volume of material inside a cylinder and 

measuring the lateral pressure evolution. They used mixtures with four different w/b 

content and two different casting rates. They concluded that casting rate is the main 

factor controlling formwork pressure and the mixture composition can also play an 

important role. They observed that for a given casting rate, reducing the w/b ratio 

reduces the formwork pressure. Also, faster pressure drop was observed when fly 

ash was used. 

2.3.3 Restrained Shrinkage 

In the previous sections, the mixture proportions, fresh and hardened properties 

such as compressive strength and shrinkage properties of SCC mixtures were 

discussed. Those properties are regarded as very important parameters that control 

performance of SCC. However, for structures like bridge decks, the cracking induced 
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by restraints either due to reinforcement or the boundary conditions is of serious 

concern because of its detrimental effect on service-life performance. A better and 

more thorough understanding of cracking properties of SCC designated for bridge 

decks and other important structures is therefore essential to anticipate or prevent 

crack development. To this end, the restrained shrinkage test is a useful method to 

evaluate the cracking potential of HPC mixtures. The effect of restrained shrinkage 

on SCC will be investigated in this section. 

2.3.3.1 A review of restrained shrinkage test methods 
In order to evaluate the cracking tendency of different concrete mixtures, a number 

of retrained shrinkage test methods have been developed. These tests are conducted 

on three different types of specimens: bar, plate, and ring, as described below.  
2.3.3.1.1 Bar test 

The bar specimen test is also called a uniaxial restrained shrinkage test, which 

provides relatively uniform uniaxial state of stress along the specimen tested. There 

are two types of uniaxial restrained specimens. One is so-called “dog-bone” 

specimen, and the other one is prismatic beam specimen. 

2.3.3.1.2 Plate (slab) test 

The plate or slab specimen is usually used for the measurement of plastic shrinkage 

cracking. However the plate or slab specimen is a good choice to simulate the 

restraint experienced in an actual structure such as a bridge deck, or an industrial 

floor. 

2.3.3.1.3 Ring specimen test 

The ring test was first developed by Carlson in early 1940s. His work was first 

published in 1942 (Carlson, 1942), then subsequently published in 1988 (Carlson 

and Reading, 1998). In this test, a 25.4 mm (1 in) thick steel ring with an external 

diameter of 178 mm (7 in) was used as a restraint source. The concrete or mortar 

ring specimens were cast around the exterior surface of steel rings. As a result of 

drying, the concrete ring shrinks, and exerts axisymmetric pressure over the “rigid” 

steel rings, leading to tension cracking on the outer surface of the concrete ring 

specimen. The cracking onset depends on the degree of drying of concrete, stiffness 

of inner steel and concrete material properties. 

In 1998, AASHTO approved a provisional standard for the ring test, as “Standard 

Practice for Estimating the Cracking Tendency of Concrete.” The steel ring 

recommended has a wall thickness of 12.8 mm (½ in), an outside diameter of 305 

mm (12 in), and height of 152 mm (6 in). Four strain gages are suggested to be 
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mounted to the interior surface of the steel ring on opposite directions to monitor the 

onset of concrete cracking. In practice, a smaller size of ring is also sometimes used 

if aggregate for concrete mixture is small. The detail description of the AASHTO ring 

test is illustrated in Chapter 6. 

A similar test was proposed by the ASTM Committee C09 in ASTM C 1581-04 

(Standard Test Method for Determining Age at Cracking and Induced Tensile Stress 

Characteristics of Mortar and Concrete under Restrained Shrinkage) in 2004. The 

process is similar to that of AASHTO ring test with some exceptions. One of the 

exception is the dimension of the steel and concrete ring used. The following figure 

illustrates the dimensions for the ASTM ring test. 

 

 

 

 

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

Figure 2.7 ASTM Ring dimensions 

(Adopted from: ASTM C 1581-04) 

Apart from the other similarities with the ASTM ring test, this test quantitatively 

assesses the strain rate factor and stress rate. A classification table for cracking 

potential based on net time-to-cracking and the average stress rate at cracking is 

also provided to aid in the comparison of materials. A detail of these calculations is 

provided in Chapter 6. But one of the limitations of this test is that this method is 

only applicable to mixtures with aggregates of 13 mm (0.5 in) maximum nominal 

size or less. But, most of the time for major structural applications, aggregate size 

greater than 13 mm (0.5 in) is used. Hence this test was not used in this study as 
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the mixtures studied contain aggregates above the specified nominal maximum size 

of 13 mm (0.5 in) and due to its limited applicability. 

Hwang and Khayat (2008) studied the effect of mixture composition on restrained 

shrinkage cracking of SCC used in repair. The concrete mixtures were prepared with 

various types and volumes of structural fiber, two types of HRWRAs, and different 

dosage rates of SRA. A polynapthalene sulfonate (PNS) based HRWRA and 

polycarboxylate (PC) based HRWRAs were used. Two types of polypropylene 

synthetic fibers (SyF1 and SyF2) were used. Continuously graded crushed limestone 

aggregate of 10 mm (0.39 in) maximum nominal size and well-graded siliceous sand 

were employed. The workability of SCC was evaluated using the slump flow, L-box, 

caisson filling capacity, and surface settlement tests. A ring-type test (ASTM C 1581) 

was used to evaluate the potential for restrained shrinkage cracking and tensile 

creep behavior of SCC. Time to cracking varied from 4.6 to 17.2 days, with most of 

the mixtures cracked earlier than 10 days. It was concluded from the experiment 

that (1) an increase in fiber volume can reduce the cracking potential of SCC due to 

restrained shrinkage. An increase in fiber volume from 0 to 0.25% led to 55% and 

65% increase in tensile creep coefficient of SCC mixtures made with two types of 

fibers. On average, the increase in fiber volume from 0 to 0.25% and 0.25% to 

0.50% lead to a 40% increase in the elapsed time before crack occurrence. (2) The 

use of SRA leads to a significant decrease in drying shrinkage. SCC made with high 

concentration of SRA exhibited longer elapsed time before cracking at 20.7 days 

compared with 8.8 days for the same concrete prepared without SRA. That was 

attributed to a 37% lower drying shrinkage of the former SCC. (3) It was also 

observed that for a given level of drying shrinkage, a decrease in cracking potential 

can occur when the concrete develops lower modulus of elasticity at the time of 

initiation of drying. 

Ray et al. (2007) studied the shrinkage and cracking potential of high-performance 

concrete used in bridge decks. They concluded that cracking properties of regular 

HPC can be significantly improved by using SRA or latex modified concrete. The use 

of SRA improved the shrinkage characteristics without affecting the modulus of 

elasticity, tensile strength, and creep properties. 

Turcry et al. (2006) conducted experimental study and modeling of cracking 

tendency of SCC subjected to restrained shrinkage. Shrinkage cracking potential of 

SCC was investigated through a comparison of different SCC and OC mixtures, 

designed with various ingredients and compressive strengths ranging from 35 to 55 
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MPa. First, comparison is done by considering age-dependent properties governing 

cracking risk, such as shrinkage, viscoelastic properties, and fracture parameters. 

Second, shrinkage cracking is experimentally studied using a restrained shrinkage 

test, also called the ring test. Third, a numerical study is performed to simulate the 

ring test using the measured material properties. Three SCC mixtures were 

compared to three associated OC mixtures, i.e., mixtures designed with the same 

ingredients and the same compressive strength, and with volume of paste about 

20% lower. The potential for shrinkage cracking was investigated by means of 

material properties measurements and restrained shrinkage tests (ring tests). 

Numerical simulations were also performed. When compressive strength is held 

constant, total shrinkage, modulus of elasticity, tensile strength, and specific creep 

were observed to be almost equivalent for SCC and OC mixtures designed with the 

same ingredients. However, although the difference is quite small, modulus of 

elasticity of SCC was found to be smaller than that of OC, for the tested mixtures. In 

the same way, total shrinkage of SCC was found to be systematically higher than 

that of OC. Differences in material properties were not easy to explain with mix-

design parameters. For instance, difference of paste volume could not provide a 

satisfactory explanation for difference in shrinkage and modulus of elasticity (which 

was not surprising because the paste of the SCC and the OC is designed differently). 

Segregation resistance of SCC may be another parameter to justify the differences in 

behavior, since the SCC mixture with a lack of stability presents certainly poor (i.e., 

non-uniform) transfer properties. Differences in material properties between SCC 

and OC are minor: the risk of cracking due to restrained shrinkage may be analogous 

for the two types of concrete. Nevertheless, in this study, a SCC mixture showed a 

much earlier age of cracking in the ring test than the associated OC mixture. A 

restrained shrinkage test is undoubtedly a more powerful tool for assessing the 

potential of shrinkage cracking than direct exploitation of material properties. 

However, material properties can also be used for simulating restrained shrinkage. 

Indeed, comparison of simulations and experiments of the ring tests was proved to 

be quite correct. Simulations of the compressive creep tests and of the ring tests 

confirmed that the CEB-FIP model gives a relevant estimation of the creep for both 

SCC and OC. 

2.3.4 Robustness 
Robustness is defined by the ability of the mixture to maintain the composition and 

fresh properties before and after casting of single batch or multiple batches of SCC. 
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Robustness depends on various parameters such as mixture composition, shear 

properties, and application. Because of the low viscosity and yield stress and 

completely different mixture design, SCC may be more susceptible to changes thus 

affecting the robustness. The use of different materials, presence of different mineral 

and chemical admixtures, moisture content, entrapped air, everything plays an 

important role as the rhelogical properties and robustness of SCC mixtures are 

concerned. Many researches are gong on currently in this field. 

2.4 Appearance 

SCC is generally a very good choice for structures having aesthetic importance. 

Although in general, the appearance for SCC is far better than normal concrete and 

HPC, complete defect free practical and field application is not ensured. Ramsburg 

(2004) investigated the effects of form material and releasing agent types on the 

appearance of SCC. It was concluded in the study that plywood forms were the best 

regarding finish but not durable. Steel forms were the ideal casting surface while the 

standard textured form liners can also be used with proper cleaning and use of 

releasing agents. It was also observed that barrier type releasing agents should not 

be used with SCC when the finishing of the product is important, properly selected 

reactive type agent should be used instead. Figure 2.8 clearly illustrates the 

difference in surface aesthetics between SCC and normal concrete. 

 
 

 
 
 
 
 
 

Figure 2.8 Comparison of aesthetics in SCC and OC 

(Adopted from: www.selfconsolidatingconcrete.org) 
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2.5 Application and Case Studies 

Since the development in the eighties, there were numerous applications of SCC. As 

stated earlier, the application of SCC is mainly limited to precast and prestressed 

concrete industry in North America. Apart from that application, cast-in-place 

applications are also on the rise. Anther major less explored application of SCC is in 

repair works. SCC can be used for cast-in-place applications such as slabs, 

abutments, piers and for repair of existing structures, in particular in hard to reach 

repair projects, with a restricted access to pumping concrete (Paczkowski et al., 

2007). In case of ordinary concrete, the major problem for on-site placement is 

assurance of good quality of material, proper degree of vibration to avoid gaps and 

reduce shrinkage cracks. SCC offers an excellent solution by improving the quality of 

concrete structures by eliminating some of the potential for human error. It’ll help 

replace the problems associated with manual compacting. Some application and case 

studies of projects where SCC were used instead of traditional vibrated concrete are 

given below. 

The first application of SCC was at the towers of a prestressed concrete cable-stayed 

bridge in 1991 (Sakamoto et al., 1991). In the construction industry, the main 

reasons for using SCC are: 

• To shorten construction period 

• To assure compaction to the structure in confined zones where vibration is 

difficult 

• To reduce noise and vibration, especially at concrete production plants. 

As of large scale construction, SCC was first used in the anchorages of Akashi-Kaikyo 

bridge with tha longest suspension of 1991 meters in the world at that time (Tanaka 

et al., 1993; Okamura and Ozawa, 1996). It was estimated that the use of SCC 

shortened the anchorage construction period by 20%, from 2 to 2.5 years. 

Higashi-Oozu Viaduct, Japan 

Precast, prestressed T-girders were used for main girders of the Higashi-Oozu 

Viaduct. In the beginning of the fabrication, the conventional concrete with slump of 

80mm was planned. However, it was found that conventional concrete was not 

capable of forming suitable surface of the girder because of girder dimensions. Also, 

complaints associated with noise and vibration was occurred from neighbors of the 

plant. Under this situation, SCC was chosen to fabricate the girders. It was learned 

after the successful completion of the project that material cost was increased by 

4%, labor cost decreased by 33%, and total cost decreased approximately 7% 
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compared to conventional concrete. It was observed that precast, prestressed T-

girders by SCC manufactures the precast factory showed good cost performance 

although SCC in Japan is still regarded as special concrete because of its cost 

performance and difficulty in quality control. 

In United States of America, choice and application of SCC is growing day by day as 

stated earlier. Here are some examples of SCC applications in USA (ACI 347R, 

2007). 

Pedestrian Overpass (I-4), Orlando, Florida 

The required concrete mixture was to be placed within an anchor block structure as 

part of the pedestrian overpass. The 75 mm (3 in) maximum slump for the class IV 

FL DOT concrete mixture, combined with two channel sections that ran the length of 

the sides toward the top of the block, made it impossible to use an immersion 

vibrator for proper consolidation. Hence, a SCC mixture with a w/cm ratio of 0.43 

was used with a slump flow of 710 mm (28 in). The SCC was allowed to free fall for 

4.6 m (15 ft) and no mechanical vibration was needed. The project was a success 

with excellent aesthetics of the SCC finish. 

National Museum of the American India, Washington, D.C. 

The main reason to use the SCC mixture was the overcrowded reinforcement and the 

complicated shapes of the structure. There was little to no room left for the 

vibrators. SCC enabled the placing of certain elements in one lift and significantly 

improve the aesthetics. The use of SCC also enabled turnaround times to be reduced 

from 5 days to 2 days. The quantity of SCC used was greater that 23,000 cubic 

meter (30,000 cubic yards).  

Reaction Wall in Structural Laboratory, Universite de Sherbrooke, Sherbrooke, 

Quebec, Canada 

A strong reaction wall deign to enable dynamic testing of large structural sections 

was constructed at the structural engineering laboratory at the university using high-

performance SCC. The wall measured 9.3m (30.5 ft) wide, 7m (23 ft) high, and 4m 

(13 ft) thick, and had three hollow sections in the middle. The wall was supported on 

a 3m (9.8 ft) deep foundation system made with a series of highly reinforced beams 

anchored to rock bed. The use of SCC reduced the noise in the laboratory and 

facilitated construction activities in a working environment and last but not the least, 

high quality was secured. 

Drilled shaft Applications at Lumber River Bridge Project, South Carolina 
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Brown et al. (2007) conducted a study on evaluation of SCC for drilled shaft 

applications at Lumber Bridge Project, South Carolina. Case studies have shown that 

when conventional concrete mixture are used in congested drilled shafts, lack of 

adequate workability or flow between reinforcing bars may lead to trapped laitance 

or segregation between the inside and outside of the reinforcing cage. SCC was 

evaluated as a viable material for this kind of applications due to its high flowability 

and segregation resistance. Several 1.8m (6 ft) diameter drilled shafts were 

constructed using SCC and a high slump gravel aggregate concrete mixture. 

Observations indicated very good performances can be achieved in difficult 

construction conditions such as congested cage, tremie placement, and lengthy 

placement times and it was concluded that SCC is highly feasible for use in 

congested drilled shaft applications. 

2.6 Concluding Remarks 

 In this chapter, the background, history, development, mixture design, and 

fresh and hardened properties were investigated. The fresh properties of SCC 

mixtures are quite different than traditional vibrated concrete mixtures. Hence the 

testing standards and equipments are also quite different for SCC mixtures. The 

hardened concrete testing for normal concrete and SCC are not much different. As 

the SCC mixtures generally contain more fines than NC, and due to its higher paste 

volume and different rhelogical and robustness characteristics, SCC may exhibit 

some problems.  Some of the major concerns for SCC mixtures as learned as 

robustness, shrinkage cracking, restrained shrinkage behavior and formwork 

pressure. All of them were studied in detail above. It was impossible to conduct an 

in-depth study on all of the concerns above; hence shrinkage behavior and 

restrained shrinkage cracking were selected for an in-depth study in this research 

program apart from establishing the mixture designs, fresh and hardened properties. 

The development of mixture design with the details of the materials, mixing 

procedure, and curing details are described in detail in the next chapter. 
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CHAPTER THREE 
 

MATERAILS AND MIXTURE PROPORTIONS 
 
This chapter describes the materials and mixture proportions for a total of 17 

different SCC mixtures those were developed for the evaluation of fresh, hardened 

and durability properties.  

3.1 Materials 

3.1.1 Cement 
 Commercially available Type I Portland cement was used, conforming to 

ASTM C 150 (Standard Specification for Portland cement). The basic physical 

properties and compound compositions of cement are presented in Table 3.1 and 3.2 

respectively. 

Table 3.1  Physical properties of Type I Portland cement used 

Setting time 
Specific gravity Fineness Initial 

(min.) 
Final 

(min.) 
3.15 320 m2/kg 90 260 

1 m2/kg = 703 in2/lb 

Table 3.2 - Compound compositions of Portland cement 

Compounds Percentage by mass 
Tricalcium Silicate (C3S) 49.0 
Dicalcium Silicate (C2S) 25.0 

Tricalcium Aluminate (C3A) 12.0 
Tetracalcium Aluminoferrite 

(C4AF) 
8.0 

Gypsum (CSH2) 2.8 
Free Lime (CaO) 0.8 

Free Magnesia (MgO) 1.4 
Others 2.0 

 

3.1.2 Coarse Aggregate 

 Two different types of graded aggregates from Arrow Concrete, WV were 

used. Aggregates used conformed to ASTM C 33 (Standard Specifications for 

Concrete Aggregates). Table 3.3 shows few physical properties of the coarse 

aggregate (CA). 
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Table 3.3 – Properties of coarse aggregates 

Properties Values 
Absorption (%) 0.53 

SSD Specific Gravity 2.69 
Bulk Specific Gravity 2.68 

Apparent Specific Gravity 2.719 
 
Among the two types of coarse aggregate used, the maximum size of one of the 

aggregate was 25 mm (1 in) (CA 25) and the maximum size of the other coarse 

aggregate was 12.5 mm (3/8 in) (CA 12.5). The sieve analysis data for CA 25 and 

CA 12.5 are shown in Table 3.4 and Table 3.5, respectively. 

Table 3.4 – Sieve analysis result for CA 25 

Weight 
retained 

Amount 
retained 

Cumulative 
amount 
retained 

Cumulative 
amount 
passing Sieve size 

(gm.) (%) (%) (%) 
25 mm 1 " 36.30 0.88 0.88 99.12 
19 mm 3/4 " 626.50 15.20 16.09 83.91 
12.5 
mm 1/2 " 1778.40 43.16 59.25 40.75 
12.5 
mm 3/8 " 1052.90 25.55 84.80 15.20 
4.75 
mm No. 4 587.20 14.25 99.05 0.95 
2.36 
mm No. 8 13.20 0.32 99.37 0.63 
1.18 
mm No. 16 1.70 0.04 99.41 0.59 

1 mm = 0.039 in., 1 gm = 2.205x10-3 lb 

Table 3.5 – Sieve analysis result for CA 12.5 

Weight 
retained 

Amount 
retained 

Cumulative 
amount 
retained 

Cumulative 
amount 
passing Sieve Size 

(gm.) (wt. %) (%) (%) 
19 mm 3/4 " 0.00 0.00 0.00 100.00 
12.5 mm 1/2 " 4.50 0.41 0.41 912.59 
9.5 mm 3/8 " 127.20 11.45 11.86 88.14 
4.75 mm No. 4 827.20 74.47 86.33 13.67 
2.36 mm No. 8 137.50 12.38 98.70 1.30 
1.18 mm No. 16 3.10 0.28 98.98 1.02 

 
 

 

 

1 mm = 0.039 in., 1 gm = 2.205x10-3 lb 
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3.1.3 Fine Aggregate (FA) 

 One type of river sand from Arrow Concrete, WV conforming to ASTM C 33 

(Standard Specifications for Concrete Aggregates) was used in this study. Table 3.6 

and 3.7 shows the properties of fine aggregate and sieve analysis data, respectively. 

Table 3.6 – Properties of fine aggregate 

Source and Basic Properties 

Facility Source Arrow Concrete 

Type Natural river fine 

aggregate 

SSD Specific Gravity 2.61 

Bulk Specific Gravity 2.59 

Apparent Specific Gravity 2.65 

Absorption 1.0 % 

 

Table 3.7 – Sieve analysis of fine aggregate 

Weight. 
retained 

Amount 
retained 

Cumulative 
amount 
retained 

Cumulative 
amount 
passing Sieve size 

(gm.) (wt. %) (%) (%) 
9.5 mm 3/8 " 0.00 0.00 0.00 100.00 
4.75 
mm No. 4 25.50 4.98 4.98 95.02 
2.36 
mm No. 8 58.30 11.39 16.37 83.63 
1.18 
mm No. 16 55.10 10.76 27.13 72.87 
600 μm No. 30 90.80 17.74 44.87 55.13 
300 μm No. 50 217.30 42.45 87.32 12.68 
75 μm   60.30 11.78 99.10 0.90 

1 mm = 0.039 in., 1 gm = 2.205x10-3 lb, 1 μm = 3.937x10-5 in. 

3.1.4 Mineral Admixtures 

3.1.4.1 Fly ash 
Fly ash (FA) is a finely divided residue resulting from the combustion of 

ground or powdered coal. It is finer than cement and consists of glassy-

spherical particles. The Class F fly ash used in this study conforming to 

AASHTO M 295/ ASTM C 618 (Standard Specification for Coal Fly Ash and 

Raw Calcined Natural Pozzolan for Use as a Mineral Admixture in Portland 
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cement concrete) was hailed from Arrow Concrete, WV. The specific gravity, 

specific surface area, and oxide composition are listed in Table 3.8. 

3.1.4.2 Silica fume 
Silica fume (SF) is a by-product for producing silicon or ferrosilicon alloys. 

Because of its chemical and physical properties, it is highly reactive Pozzolan 

of very fine nature, and is able to pack between cement particles. The silica 

fume used in this study was commercially available and supplied by BASF. It 

conformed to AASHTO M 307/ ASTM C 1240 (Standard Specification for Silica 

Fume for Use in Hydraulic-Cement Concrete and Mortar). The specific gravity, 

specific surface area, and oxide composition are listed in Table 3.8. 

Table 3.8 – Basic properties of silica fume and fly ash 

 Silica fume Fly ash 

Specific gravity 2.18 2.47 

Specific surface (m2/kg) 
21400 (Nitrogen 

Absorption) 
496 

Loss of ignition, % 1.64 3.00 

SiO2, % 98 49.34 

Al2O3, % 0.20 22.73 

CaO, % 0.20 3.09 

MgO, % 0.25 1.06 

SO3, % 0.15 0.97 

Na2O, % 0.20 1.15 

K2O, % 0.50 1.60 

Fe2O3, % 0.50 16.01 

1 m2/kg = 703.07 in2/lb 

3.1.4.3 Slag 

Ground granulated last furnace slag or simply slag (SL) is defined as a finely 

ground glassy granular material formed when molten blast-furnace slag is 

rapidly chilled. Slag is varying in size depending on its chemical composition 

and method of production as well as that of its iron source. Commercially 

available slag from Arrow Concrete, WV conforming to AASHTO M 302/ ASTM 

C 989 (Standard Specification for Ground Granulated Blast-Furnace Slag for 

Use in Concrete and Mortar) was used for the study. The original source of 

slag was Essrock, PA. Table 3.9 shows typical properties of Slag. 
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Table 3.9 – Basic properties of slag 

Specific Gravity 2.88 

Specific Surface (m2/kg) 581 

C3S, % 48 

C2S, % 19 

C3A, % 8 

C4AF, % 7.73 

Na2O, % 0.67 

Appearance White Powder 

Odor No Distinct odor 

Physical State Solid (powder) 

pH Value (in water) 10.5 to 12.7 

Solubility in water, % Slightly (0.1 to 1.0) 

Melting Point (oC) 1300-1350 

1 m2/kg = 703 in2/lb 

3.1.5 Chemical Admixtures 

Chemical admixtures constitute essential ingredients in concrete, in addition 

to Portland cement, SCM, water, and aggregates. In this research, several 

different admixtures were used to achieve desired SCC mixtures which have 

specific properties requirement such as high slump flow, low segregation, 

proper viscosity and less blocking. Chemical admixtures have much more 

effect on SCC compared to normal concrete as these admixtures helps to 

achieve the integral property of SCC, i.e., flow without segregation and 

blocking. Hence the type and specific objectives of the admixtures are 

described in details below. 

3.1.5.1 Water reducing admixture (WRA) 

A commercially available water reducing admixture (WRA) from BASF. was 

used in the study. It conformed to ASTM C 494/ C 494M and met the 

requirements for Type A, water reducing, Type B, retarding, and Type D, 

retarding and water reducing, admixtures. 

3.1.5.2 High-range water reducing admixture (HRWRA) 

The high range water reducing admixture (HRWRA) used in this project is a 

commercially available polycarboxylate based full-range water reducing 

admixture from BASF. The admixture meets the ASTM C 494/ C 494M 
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requirements for Type A, water reducing, and Type F, high range water 

reducing, admixtures. The admixture is particularly recommended for SCC 

mixtures where high flowability and less segregation are needed. According to 

the specification provided by the seller, the maximum dosage is up to 1170 

mL/100 kg of cementitious material (18 fl oz/cwt). However, in some special 

cases like variation in job condition or materials like silica fume may require 

dosage outside the recommended range. 

3.1.5.3 Viscosity-modifying admixture (VMA) 
One of the most important admixtures needed for a successful SCC mixture 

and uncommon to normal concrete is the viscosity modifying admixture 

(VMA). Some of the benefits of using the admixture were to control bleeding, 

reduction of segregation, better surface appearance, and stability of the 

mixture. A commercially available viscosity modifying admixture from BASF. 

was used in the study. The VMA used does not affect the air content, setting 

time, and compressive strength of concrete. 

3.1.5.4 Shrinkage-reducing admixture (SRA) 

The shrinkage reducing admixture (SRA) used in the project is a commercially 

available product from BASF. It has been developed specifically to reduce 

drying shrinkage of concrete and mortar, and the potential for subsequent 

cracking. It functions by reducing capillary tension of pore water, a primary 

cause of drying shrinkage. 

3.1.5.5 Air-entraining admixture (AEA) 
The air entraining admixture (AEA) used in this project is a commercially 

available air-entraining admixture from BASF. and meeting the requirements 

of ASTM C 260, AASHTO M 154 and CRD-C 14. 

3.1.6 Mixing Water 

Mixing water used in this study was tap water from the Morgantown city 

water supply and was assumed to have a density of 100 kg per cubic meter. 

3.1.7 Limestone Powder (LP) 

Limestone powder was added to some of the mixtures as a filler material. Due 

to its fine particle size, LP increases the finer content of the concrete to make 

the mixture more stable against segregation and also adds to the strength. 

The LP used in this study is a commercially available material from O-N 
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Minerals, PA. The LP had a reflectance brightness RD of 81.33 and 13.8% 

retained on a 44 μm sieve. It was in white powder form with a specific gravity 

of 2.7. 

3.1.8 Fiber (F) 
For the SCC with steel fibers, a commercially available product CAR-25-CDM 

with a continuous deformed mild steel fiber of length 25 mm. (1 in.) was 

used. The fiber fraction was designed as 0.5% by volume of the concrete 

mixture. The aspect ratio was 45. 

3.2 Mixture Proportioning of SCC 

 Proper mixture proportioning and mixing is of utmost importance in the 

production of successful SCC mixtures. A total of 17 mixtures were prepared for the 

study (Table 3.10 through 3.12). The mix designs were developed by following 

guidelines given in the report by ACI Committee 237 (2007) and referring to well 

established literatures. As a starting point, it was assumed that 50% of the total 

concrete volume should be filled with the bulk volume of coarse aggregate. The 

powder content for the mixtures were between 450-500 kg/m3, where powder 

included cement, fly ash, slag, limestone fillers, and materials crushed to less than 

0.125 mm (No. 100 sieve), which is suggested for a slump flow of greater than 650 

mm. The other parameters were also kept in the permissible range, for example, 

paste fraction (calculated on volume) were kept between 34 to 40% of total mixture 

volume, mortar fraction were between 68 to 72% of total mixture volume and 

absolute volume of coarse aggregate were between 28 to 32%. Detail calculations of 

all the variables and parameters and their permissible values have been documented 

in Appendix A. It was decided that the effect of aggregate gradation, effect of 

different mineral admixture, addition of limestone powder, fiber and shrinkage 

reducing admixture will be studied on different properties of SCC. Hence, it resulted 

in 17 different mixture proportions with mainly four different categories which are 

listed below- 

• Aggregate gradation 

• Addition of filler and mineral admixtures 

• Addition of fiber and 

• Addition of shrinkage reducing admixture 

Among those 17 mixtures, six were selected for further in depth study on 

shrinkage and cracking of SCC. Table 3.11 shows the aggregate gradation of the 
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mixtures and Table 3.12 shows mix design of all 17 mixtures. In Table 3.11 the 

mixtures are designated as follows: For example, SCC 1 consists of 35% of 25 mm 

CA, 15% of 12.5 mm CA and 50% of fine aggregate by weight of total aggregates, 

and limestone powder. The above combination is designated as 0.35/0.15/0.50/LP. 

Similar designations were followed for other mixtures. 

 SCC 1 through SCC 3 and SCC 12 consisted of limestone powder with 

different combinations of coarse and fine aggregate. SCC 4 through SCC 7 and SCC 

13 consisted of slag + silica fume with different combinations of coarse and fine 

aggregate. SCC 14 through SCC 17 consisted of fly ash + silica fume with different 

combinations of coarse and fine aggregate. SCC 8 and SCC 9 consisted of fiber at a 

quantity of 39 kg/m3 with SCC 8 containing limestone powder and SCC 9 containing 

slag + silica fume. Similarly, SCC 10 and SCC 11 consisted of SRA at a quantity of 

4.95 kg/m3 with SCC 10 containing LP and SCC 11 containing SL + SF. Table 3.10 

shows the water to cementitious material ratio (w/cm), aggregate-paste (A/P) 

volume, coarse aggregate to fine aggregate ratio (CA/FA), fine aggregate to total 

aggregate ratio, paste volume in liters, and water to powder ratio (w/p). 

Table 3.10 – SCC mixture parameters 

SCC w/cm 
Agg./paste 

Vol. 
CA/FA 

FA/total 
agg. 

Paste 
vol. 

(liters) 
w/p 

SCC 1 0.40 2.19 0.96 0.51 324.74 0.30 
SCC 2 0.40 2.19 0.96 0.51 324.57 0.30 
SCC 3 0.40 2.19 0.96 0.51 324.57 0.30 
SCC 4 0.40 2.01 0.96 0.51 309.07 0.38 
SCC 5 0.40 2.01 0.96 0.51 3012.57 0.38 
SCC 6 0.40 2.11 1.18 0.46 300.46 0.39 
SCC 7 0.40 2.11 1.38 0.42 300.49 0.39 
SCC 8 0.42 2.12 0.96 0.51 333.16 0.31 
SCC 9 0.41 1.97 0.96 0.51 315.74 0.39 
SCC 10 0.39 2.21 0.96 0.51 326.57 0.29 
SCC 11 0.39 2.04 0.96 0.51 310.07 0.37 
SCC 12 0.40 2.22 0.96 0.51 320.67 0.30 
SCC 13 0.40 2.02 0.96 0.51 311.07 0.39 
SCC 14 0.40 1.96 0.97 0.51 318.00 0.38 
SCC 15 0.40 1.96 0.96 0.51 318.00 0.38 
SCC 16 0.40 1.96 0.96 0.51 317.59 0.38 
SCC 17 0.40 1.96 0.96 0.51 317.59 0.38 

1 liter = 0.264 gallon 
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Table 3.11 – Aggregate gradation of different SCC mixtures 

SCC Aggregate Fraction 
SCC 1 0.35/0.15/0.50/LP 
SCC 2 0.25/0.25/0.50/LP 
SCC 3 0.15/0.35/0.50/LP 
SCC 4 0.35/0.15/0.50/SL/SF 
SCC 5 0.25/0.25/0.50/SL/SF 
SCC 6 0.27/0.27/0.46/SL/SF 
SCC 7 0.29/0.29/0.42/SL/SF 
SCC 8 0.35/0.15/0.50/LP/Fiber 
SCC 9 0.35/0.15/0.50/SL/SF/Fiber 
SCC 10 0.35/0.15/0.50/LP/SRA 
SCC 11 0.35/0.15/0.50/SL/SF/SRA 
SCC 12 0.0/0.50/0.50/LP 
SCC 13 0.0/0.50/0.50/SL/SF 
SCC 14 0.0/0.50/0.50/FA/SF 
SCC 15 0.35/0.15/0.50/FA/SF 
SCC 16 0.25/0.25/0.50/FA/SF 
SCC 17 0.15/0.35/0.50/FA/SF 

Table 3.12 – Mixture proportioning for 1 m3 of SCC 

SCC 
CA  
25 

mm. 

CA  
12.
5 

mm. 

Fine 
agg. 
(FA) 

Limestone 
Filler (LF) 

Cement 
Slag 
(SL) 

Silica 
Fume 
(SF) 

Fly 
Ash 
(FA) 

Water VMA 
HRWR

A 
WRA 

SCC 1 563 241 836 112 386 - - - 154 0.835 4.9 1 

SCC 2 402 402 836 112 386 - - - 154 0.835 4.725 1 

SCC 3 241 562 836 112 386 - - - 154 0.835 4.725 1 

SCC 4 565 242 840 - 260 130 24 - 165 0.67 4.025 0.6 

SCC 5 403 403 840 - 260 130 24 - 165 1.33 3.85 0.6 

SCC 6 453 453 771 - 250 125 24 - 160 0.835 4.725 1 

SCC 7 487 487 705 - 250 125 24 - 160 0.835 4.725 1 

SCC 8 563 241 836 112 386 - - - 161 0.835 5.6 1.9 

SCC 9 565 242 840 - 260 130 24 - 169 0.67 5.6 2 

SCC 10 563 241 836 112 386 - 0 - 151 0.835 4.725 1 

SCC 11 565 242 840 - 260 130 24 - 160 0.67 4.725 1 

SCC 12 - 804 834 112 380 - - - 152 0.835 4.725 1 

SCC 13 - 816 846 - 260 130 24 - 167 0.835 3.85 0.6 
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SCC 
CA  
25 

mm. 

CA  
12.
5 

mm. 

Fine 
agg. 
(FA) 

Limestone 
Filler (LF) 

Cement 
Slag 
(SL) 

Silica 
Fume 
(SF) 

Fly 
Ash 
(FA) 

Water VMA 
HRWR

A 
WRA 

SCC 14 - 808 836 - 318 - 20 86 168 0.835 3.5 0.6 

SCC 15 567 240 840 - 318 - 20 86 168 0.835 3.5 0.6 

SCC 16 404 404 840 - 318 - 20 85 168 0.835 3.5 0.6 

SCC 17 241 566 840 - 318 - 20 85 168 0.835 3.5 0.6 

Notes: 
• All the values are in Kilograms. 
• Mixtures contained 0.39 kg/m3 (0.657 lb/yd3) of AEA. 
• 1 kg = 2.205 lb. 
• 1 kg/m3 = 1.685 lb/yd3 

3.3 Aggregate Gradation 

3.3.1 Introduction 
 As noted in chapter 2, proper aggregate gradation is one of the key for 

making a successful SCC mixture. In this section, combined aggregate curves will be 

generated for different aggregate fractions and their effect on certain fresh and 

hardened properties of SCC will be studied in depth later on. 

3.3.2 Combined Grading Curves 

 Sieve analysis had been performed for the CA 25, CA 12.5, and fine 

aggregate. The combined grading had been done on the basis of their aggregate 

fraction. The detailed calculation had been shown in Appendix B. Table 3.13 

summarizes the grading for different aggregate fractions. 

Table 3.13 – Combined aggregate grading 

Aggregate Fraction (CA 25/CA 12.5/FA) Sieve 
Size 35/15/5

0 
25/25/5

0 
15/35/5

0 
0/50/5

0 
27/27/4

6 
29/29/4

2 
25 mm 99.69 99.78 99.87 100.00 99.76 99.74 
19 mm 94.37 95.98 97.59 100.00 95.66 95.34 
12.5 mm 79.20 85.09 90.97 99.80 83.89 82.70 
12.5 mm 68.54 75.84 83.13 94.07 73.90 71.97 
4.75 mm 49.89 51.17 52.44 54.35 47.66 44.15 
2.36 mm 42.23 42.30 42.36 42.46 38.99 35.68 
1.18 mm 36.79 36.83 36.88 36.94 33.95 31.07 
600 μm 27.56 27.56 27.56 27.56 25.36 23.15 
300 μm 6.34 6.34 6.34 6.34 5.83 5.32 
75 μm 0.45 0.45 0.45 0.45 0.41 0.38 

 

1 mm = 0.039 in., 1 μm = 3.937x10-5 in. 
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Aggregate gradation is of utmost importance for successful production and quality 

control for SCC. As it contains different graded aggregates (coarse and fine), a 

combined aggregate gradation curve is more appropriate. Figure 3.1 represent the 

combined aggregate grading curves made with various combinations of 25 mm 

coarse aggregate, 12.5 mm coarse aggregate, fine aggregate for different SCC. The 

combined aggregate gradation was differentiated by particle size ranges: material 

equal to and larger than 12.5 mm (designated as “Q” for quality filter), material 

smaller than 12.5 mm and retained on 2.36 mm (designated as “I” for Intermediate 

particle) and material smaller than 2.36 mm (designated as “W”). The larger 

particles related to strength, intermediate particles are related to mobility of the mix 

and the particles smaller than 2.36 mm contributes to workability of the mix. In this 

study the aggregate gradations for all SCC spanned across three ranges defined 

above, indicating a combinations of strength, mobility and workability of mix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Chart showing aggregate gradation 
 

3.3.3 Coarseness Factor and Workability Factor 
 As per Shilstone (1990), concrete mixtures can be optimized using a 

relationship between a workability factor (= W/ (Q+W+I)) and a coarseness factor 

(=Q/ (Q+I)). The workability factor (WF) and coarseness factor (CF) had been 

calculated for all the aggregate fractions and shown in Table 3.14. 
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Table 3.14 – Coarseness factor and workability factor 

Aggregate 
Fraction 

Q I W WF CF 

35/15/50 31.15 26.31 42.23 42.36 54.21 
15/35/50 16.74 40.77 42.36 42.42 29.11 
25/25/50 23.94 33.54 42.30 42.39 41.65 
27/27/46 25.86 34.91 38.99 39.08 42.55 
29/29/42 27.77 36.29 35.68 35.77 43.36 
0/50/50 5.93 51.61 42.46 42.46 10.30 

 

According to Shilstone, mixtures within the band shown in Figure 3.2 are 

expected to be superior in terms of workability and will exhibit the lowest water 

demand for given cement content. But he developed the relationships for normal 

range of slump. The coarseness factor and workability factor from aggregate 

gradation for SCC mixtures used in this study are plotted in the Figure 3.2. It is 

observed that the trend achieved by these six aggregate gradations is above the 

Shilstone’s band and it is approximately parallel. This means as a starting point of 

SCC mix design, the aggregate gradation can be chosen in such a way that for a 

given CF, the WF should be above the band proposed by Shilstone and also the CF 

preferably be less than 60. However more data are required to finally recommend 

the values. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Band of aggregate gradation on CF-WF chart 
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3.4 Mixing Procedure 

As the fluctuations in gradation of aggregates and free moisture content can have 

significant influence on the stability of SCC mixtures, the moisture content of 

aggregates were maintained strictly and surface moisture quantities were subtracted 

from the total water quantity to keep the w/cm ratios constant. As the level of 

fluidity has a direct impact on the stability of the mixture, once a suitable mixture 

has been developed the fluidity level at which the mixture becomes unstable was 

determined. It was done using the variable dosage of HRWRA to get fluid yet stable 

mixtures. For the mixing a non-tilting horizontal axis variable speed laboratory mix 

was used. All the mixing was completed within 15 minutes. All mixtures were 

prepared in two batches to account for the variations of batching, mixing, placing, 

and curing of concrete. 

 

 

Figure 3.3 Variable speed laboratory mixture machine 
Mixing procedures were based on guidelines and sequences recommended by 

industry experts and established literatures. The detailed mixing sequences are listed 

as follows: 

3.4.1 Mixing Sequence for SCC with Limestone Powder 
1. Batched the material by weight; 

2. Added the AEA to the fine aggregate; 
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3. Added the WRA, VMA, and 2/3 of HRWRA to the water, and stirred 

thoroughly; 

4. Cleaned and wetted the mixer; 

5. Added the coarse aggregates, 3/4 of the mixing water with the solution of 

WRA, VMA, and HRWRA and mixed them for 1 minute. 

6. Added the fine aggregate to mixer, and mixed it for another 2 minutes; 

7. Added cement and limestone powder in one third quantities each and rotated 

the mixer for some time. The procedure was repeated for three times; 

8. Added remaining water to the mixture and rotated for 1 minute; 

9. Added the remaining HRWRA and mixed for about 3 minutes; 

10. Rotated the mixer till the target slump flow was achieved. 

3.4.2 Mixing Sequence for SCC with Slag and Silica Fume 

1. Batched the material by weight; 

2. Added the AEA to the fine aggregate; 

3. Added the WRA, VMA, and 2/3 of HRWRA to the water, and stirred 

thoroughly; 

4. Cleaned and wetted the mixer; 

5. Added the coarse aggregates, silica fume, and 3/4 of the mixing water with 

the solution of WRA, VMA, and HRWRA and mixed them for 1 minute. 

6. Added the fine aggregate to mixer, and mixed it for another 2 minutes; 

7. Added cement and slag in one third quantities each and rotated the mixer for 

some time. The procedure was repeated for three times; 

8. Added remaining water to the mixture and rotated for 1 minute; 

9. Added the remaining HRWRA and mixed for about 3 minutes; 

10. Rotated the mixer till the target slump flow was achieved. 

3.4.3 Mixing Sequence for SCC with Fiber 
 Similar procedure as listed above was followed for the fiber-reinforced SCC 

mixtures except the fact that fibers were added to the mixer at the starting of mixing 

with the coarse aggregates. Also it may be noted here that for SCC with fibers have 

more water demand than the other SCC mixtures for the same slump flow. Hence 

the quantity of HRWRA and water must be properly adjusted to maintain the desired 

slump flow yet produce a stable mixture.  
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3.4.4 Mixing Sequence for SCC with SRA 

 SRA had been added to the mixing water prior to mixing and stirred 

thoroughly. Rest of the process was same as described above. 

3.5 Curing 

 Immediately after casting (within 5 minutes), the molded specimens were 

covered with wet barlap and kept for about 24 hours at room temperature. After 24 

hours, the specimens for compressive strength test and splitting tensile tests were 

cured under lime saturated water at 23 ± 2 oC (73 ± 3 oF) until testing age. 

3.6 Concluding Remarks 

 In this chapter the materials and mixture proportions for 17 SCC mixtures are 

described in details. The 17 mixtures were divided into different categories based on 

their aggregate gradation, filler content, mineral admixture content, fiber content, 

and SRA content. Combined aggregate gradation curves, CF and WF of each mixture 

were calculated. The combined aggregate gradation curve was differentiated by 

particle size ranges as quality filter (Q), intermediate particles (I), and materials 

smaller that 2.36 mm (W). The aggregate gradation for the developed SCC mixtures 

spanned across three ranges defined above, indicating a combination of strength, 

mobility and workability of the mixture. The coarseness factor and workability factor 

was also calculated for each mixture depending on their aggregate gradation and 

plotted in CF-WF chart. It was observed that the trend achieved by the SCC mixtures 

developed, was above the Shilstones’s band in CF-WF chart. That signifies that, as a 

starting point of SCC mixture design, the aggregate gradation can be fixed such a 

way that for a given CF, the WF should be above the band proposed by Shilstone and 

also the CF preferably be less than 60. The mixing procedure for each type of SCC 

was described in detail. It was observed that SCC required longer mixing time than 

normal vibrated concrete as reported by many other researchers. In the next chapter 

the fresh properties of the 17 SCC mixtures are described in detail.
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CHAPTER FOUR 
 

FRESH PROPERTIES OF SCC 

4.1 Introduction 

 This chapter contains detail description of the different test methods adopted 

for testing the fresh properties of the 17 mixtures. It also lists the results obtained 

by the test methods in the laboratory and detailed analysis and correlation of the 

results with certain parameters. 

 As the SCC is completely different in rheological and robustness from normal 

concrete, the fresh property measurement is radically different than the normal 

concrete. As described in Chapter 2, there are many methods to quantify the fresh 

properties of SCC. As stated early, the main parameters to measure the properties of 

SCC at fresh stage are flow rate, viscosity, stability, passing ability, and segregation. 

The fresh concrete tests those were performed were (a) slump flow test according to 

ASTM C 1611/C 1611M-05( Standard Test Method for Slump Flow of Self-

Consolidating Concrete) (b) Passing ability of SCC by J-ring conforming to ASTM C 

1621/C 1621M-06 ( Standard Test Method for Passing Ability of Self-Consolidating 

Concrete by J-Ring) (c) Static segregation of SCC using column technique according 

to ASTM C 1610/C 1610M-06 and (Standard Test Method for Static Segregation of 

Self-Consolidating Concrete Using Column Technique) (d) L-box test according to 

“The European Guidelines for Self Compacting Concrete” (Annex B: Test Methods; 

Annex B.3; Testing fresh concrete – Part B3: L-box test). The L-Box test was done 

with two bars, although three bar test could have been done to simulate more 

congested reinforcement. The detailed description of the test methods are as follows. 

4.2 Test Methods 

4.2.1 Slump Flow Test 

 ASTM C 1611/C 1611M-05 was followed for the slump flow test. The purpose 

of the test is to monitor the consistency of fresh, unhardened SCC and its unconfined 

flow potential. The rate at which the concrete spreads is directly related to its 

viscosity. This test method also covers a non-mandatory procedure that was used to 

evaluate an indication of relative viscosity of the SCC mixture. 

 The test method consist of the same slump cone for determining slump of 

normal concrete and a base plate of minimum diameter of 915 mm (36 in.). The 
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slump flow is the average diameter measured after raising the slump cone at the 

centre of the base plate and after the flow of the concrete stop completely. At the 

time of performing the slump flow test, the time it takes for the outer edge of the 

concrete mass, to reach a diameter of 500 mm (20 in.) provides a relative 

assessment of the unconfined flow rate of the concrete mixture. This time period, 

termed as T50, gives an indication of the relative viscosity of the SCC mixture. The 

stability of the concrete can be observed visually by inspecting the concrete mass. 

Table 4.1 contains Visual Stability Index (VSI) values to qualitatively assess the 

stability of the SCC. 

Table4.1 – Visual Stability Index Values 

VSI Value Criteria 

0 = Highly Stable No evidence of segregation or bleeding. 

1 = Stable No evidence of segregation and slight bleeding observed as a 

sheen on the concrete mass. 

2 = Unstable A slight mortar halo ≤ 0.5 in. (≤ 10 mm) and/or aggregate 

pile in the center of the concrete mass. 

3 = Highly Unstable Clearly segregating by evidence of a large mortar halo > 0.5 

in. (> 10 mm) and/or a large aggregate pile in the center of 

the concrete mass. 

(Reproduced from: ASTM C 1611/C 1911M – 05) 

 Figure 4.1(a) shows a schematic diagram of the base plate and Figure 4.1(b) 

depicts the slump flow test going on in the laboratory. 

 

 

 

 

Figure 4.1 (a) Base plate for slump flow test Figure (b) Slump flow measurement 

(Reproduced from: The European Guidelines for Self Compacting Concrete) 
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4.2.2 J-Ring Test 

 ASTM C 1621/C 1621M-06 was followed for the J-ring test. The purpose of the 

test is to determine the passing ability of fresh SCC mixtures. Passing ability is 

defined as the ability of the SCC to flow under its own weight without vibration and 

completely fill all spaces within the formwork. Difference between the slump flow and 

the J-ring flow indicates the extent of the passing ability of a particular mixture. 

 Same procedure should be followed as the slump flow test, only added 

feature will be a J-ring placed at the center of the base plate. The dimensions of the 

J-ring are shown in figure 4.2(a). A slump flow should be conducted without the J-

rind in accordance with Test Method C 1611/C 1611 M; the two tests shall be 

completed within 6 minutes. The difference between the slump flow and the J-ring 

flow will provide the blocking assessment. A difference less than 25 mm (1 in.) 

indicates good passing ability, whereas, a difference greater than 50 mm (2 in.) 

indicates poor passing ability. Table 4.2 quantifies the blocking assessment. 

Table4.2 – Blocking Assessment 

Difference Between Slump 

Flow and J-Ring Flow 

Blocking Assessment 

0 to 25 mm (0 to 1 in.) No visible blocking 

>25 to 50 mm (>1 to 2 in.) Minimal to noticeable blocking 

>50 mm (>2 in.) Noticeable to extreme blocking 

(Reproduced from: ASTM C 1621/C 1921M – 06) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 (a) J-ring dimensions (b) J-ring test in laboratory 



 

 51

4.2.3 Column Segregation Test 

 ASTM C 1610/C 1610M-06 was followed for measuring the static segregation 

of SCC using column technique. The test provides necessary ways is to determine 

the potential static segregation for fresh SCC mixtures. Static segregation is meant 

by the segregation of the mortar from the coarse aggregate that occurs after the 

placement of the concrete while it is in plastic state. As SCC is a fluid concrete, it 

may prone to segregation unless proportioned properly to design a cohesive SCC 

mixture. Application of SCC is very much dependent on its cohesiveness and 

especially critical for deep vertical sections like wall and columns. As this test method 

measures the degree of segregation of a mixture, it can be used to identify the 

suitability of a mixture for a particular application. 

 The mold used for this test has been shown in Figure 4.3. The column mold 

should be completely filled with the concrete and let stand for around 15 minutes. 

After that, the concrete from the top and bottom part should be washed on a 4.75 

mm No. 4) sieve. Finally the coarse aggregates retained on the sieve should be 

brought to saturated-surface-dry condition. The calculation of the percent static 

segregation is as below: 

 

,100*]
)(
)([2

TB

TB

CACA
CACAS

+
−

=  if TB CACA >                                                             (4.1) 

,0=S  if TB CACA ≤  

where: 

=S static segregation, percent 

=TCA  mass of coarse aggregate in the top section of the column, gms. 

=BCA mass of coarse aggregate in the bottom section of the column, gms. 

Figure 4.6 below shows a column segregation test in process in the laboratory. 

 

There is no specified maximum limit listed in the standard for the percent 

segregation. 15% was assumed as a starting value for this research after consulting 

established literatures and industry experts as stated in Chapter 2. Figure 4.3 shows 

an ongoing column segregation test in the laboratory. 
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Figure 4.3 Column segregation test 

4.2.4 L-box Test 

 This test had been done following The European Guidelines for Self 

Compacting Concrete, Annex B.3. The test is used to assess the passing ability of 

SCC to flow through small openings like highly congested reinforcements and other 

obstructions without blocking or segregation. The principle of the test is to measure 

the difference in height of concrete after a measured volume of fresh concrete is 

allowed to flow horizontally through the gaps between vertical reinforcements.  

 The assembly of the test set-up is shown in Figure 4.4. Concrete is poured 

from a container to the filling hopper and let stand for around 60 ± 10 seconds. Then 

the gate near the reinforcement is raised and concrete is allowed to flow until it 

completely comes to rest.  The heights H1 and H1 are measured to get the required 

passing ability (PA) = H2 / H1. Figure 4.5 shows an L-box test going on in the 

laboratory. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Top section 

Middle section 

Bottom section 
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Figure 4.4 L-box test set-up 
(Reproduced from: The European Guidelines for Self Compacting Concrete) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 4.5 L-box test in laboratory 
 

4.3 Test Results and Discussion 

4.3.1 VSI and T50 Results 

 The VSI values are representative values of the SCC stability and the T50 

provides information on the relative viscosity of the SCC mixtures. Higher T50 values 

correspond to increased viscosity which resists the flow properties of the SCC. Table 

4.3 quantifies the VSI values and T50 values of the 17 SCC mixtures. 
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Table4.3 – VSI Values and T50 Values for SCC Mixtures 

 

SCC 
VSI 

Value 
T50 

(Seconds) 

SCC 1 1 2.3 
SCC 2 1 1.9 
SCC 3 1 1.9 
SCC 4 1 2.3 
SCC 5 1 2.4 
SCC 6 1 2.3 
SCC 7 1 2.3 
SCC 8 1 2.6 
SCC 9 1 2.5 
SCC 10 1 2.0 
SCC 11 1 2.1 
SCC 12 1 1.2 
SCC 13 1 1.3 
SCC 14 1 1.2 
SCC 15 1 2.4 
SCC 16 1 2.2 
SCC 17 1 2.0 

 

 It is observed from the above table is that all the SCC mixtures were stable in 

terms of their VSI values which supports the fact of no segregation was observed 

and slight bleeding was observed as a sheen on the concrete mass. T50 varied from 

1.2 seconds to 2.6 seconds. The differences are very less but one observation was 

T50 was higher for the mixture containing higher fraction of CA 25 than CA 9.5. 

Mixtures containing the fibers were the most viscous ones with T50 of 2.5 and 2.6 

seconds respectively.  

4.3.2 Slump Flow Test Results 
 Figure 4.6 represents the slump flow achieved in the laboratory for the 17 

SCC mixtures. The target minimum slump flow had been fixed as 650 mm (25.6 in.). 

As per ACI Committee 237 (2007), a common range of slump flow for SCC is 450 to 

750 mm (18 to 30 in.). The higher the slump flow, the further the SCC can travel 

from the discharge point and the faster it can fill up the mold or form. From that 

point of view, our initial target was in the higher side and can be used in many 

ranges of application. 
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 Figure 4.6 Slump flow test result for 17 SCC mixtures 
From Figure 4.6 it is clearly visible that almost all the SCC made the initial 

requirement of the target slump flow except SCC 4 which just missed the target flow. 

 

Figure 4.7 Slump flow vs. (a) coarseness factor (b) workability factor 
by few millimeters. Also this shortfall can be overcome by adjusting and/ or 

increasing the HRWRA quantity for that particular mixture. As per the above figure, 

the filler and mineral admixture on the slump flow of the mixture have little or no 
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effect. The slump flow of the mixture containing LP varied between 650 mm (25.6 

in.) to 710 mm (28 in.) and are on the higher side compared to other mixtures. 

Slump flow values of the mixtures containing SL + SF were pretty consistent and 

varied between 645 mm (25.4 in.) to 690 mm (27.2 in.). The slump flow values for 

the FA + SF mixtures varied between 665 mm (26.2 in.) to 675 mm (26.6 in.) and 

on a little bit lower side compared to other mixtures. The negligible effect of filler 

and mineral admixtures on the slump flow values of the SCC mixtures were due to 

various factor like use of different chemical admixtures including WRA, HRWRA, AEA, 

and VMA. To study the effect of CF and WF on the slump flow values, the above 

figures are drawn. It may be interpreted from Figure 4.7 that CF and WF do not have 

any major role in the slump flow values. Although for higher CF, higher slump flow 

values are observed. There are no correlation between WF and the slump flow as 

seen in Figure 4.7. This is also due to the fact that the effects of different mineral 

admixtures, fillers, and chemical admixtures are inter combined and it is very difficult 

to relate only one parameter to the properties. 

4.3.3 J-Ring Flow Test Results 

 As stated earlier blocking is the difference between slump flow and J-ring flow 

and it is the parameter to assess the flowability of the SCC through congested 

reinforcements.  

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.8 Blocking assessments for 17 SCC mixtures 
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Figure 4.8 illustrates the blocking assessment of the 17 SCC mixtures prepared in 

the laboratory. As most of the blocking assessment calculated, as seen from the 

figure, is less than 25 mm (<1 in.) it is clear that the SCC mixtures developed were 

superior in terms of blocking. 

 SCC mixtures made with SL + SF had the least blockage in comparison with 

the SCC mixtures made with LP or FA + SF. Minimal to noticeable blocking were 

observed for SCC 10, SCC 11, SCC 12, and SCC 14 mixtures. It may be noted here 

that slump flow values of the above listed SCC mixtures are also on higher side. This 

problem may be fixed by adjusting the VMA quantity. Also it may not need any 

change at all depending upon the type of application and project specification. 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.9 Blocking assessments vs. coarseness factor and workability factor 
  

Figure 4.9 shows the relation between blocking assessment and CF and WF. As seen 

from the earlier case, there are no correlations at all. Different blocking values at 

same CF or same WF are the direct effect of the admixtures, fillers, and mineral 

admixtures as explained earlier. 

4.3.4 Column Segregation Test Results 
 Figure 4.10 represents the static segregation (%) of the 17 SCC mixtures 

prepared in the laboratory. There are no target limits set for this test in the relevant 

ASTM. It is entirely dependent upon the scope and application of the project where 

the mix is going to be used.  
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Figure 4.10 Static segregation as per column segregation for 17 SCC mixtures 
  

It is seen from the figure that for some of the SCC mixtures, the static 

segregation values are little bit higher. It may be noted here that most of the 

mixtures which exceeded the 20% value, have a greater percentage of CA 25 in total 

coarse aggregate. Due to its higher particle size and weight, mixture containing CA 

25 is more prone to segregation than the mixture which contains more CA 12.5 and 

less CA 25. Increased use of the VMA should invalidate the problem. 

 

 

 
 
 
  
 
 
 
 
 
 
 
 
 

 

Figure 4.11 Aggregate fractions vs. static segregation 
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 Figure 4.11 shows the relation between coarse aggregate fraction and 

static segregation. The red line clearly marks the trend of the graph. Greater the 

amount of CA 25 in the mixture, greater is the static segregation.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.12 Static segregations vs. (a) coarseness factor (b) workability factor 
  

Figure 4.12 shows the effects of coarseness factor and workability factor on 

static segregation of the SCC mixtures. As seen from the figure, same slump flow 

can be achieved at different CF below a CF of 45 approximately with the help of 

chemical admixtures. But when the CF value exceeds 45, more VMA is needed to 

keep the mixture stable.  The workability factor had not any effect on the static 

segregation of the mixtures as seen from the figure 4.12 (b). 

 

4.3.5 L-box Test Results 

  

Figure 4.13 represents the L-box passing ability achieved in the laboratory for the 17 

SCC mixtures. The target minimum L-box passing ability had been set up as 0.7. No 

target limit had been proposed in the relevant standard but 0.7 was chosen after 

consultation with industry experts and well established literature. 
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Figure 4.13 L-box test result for 17 SCC mixtures  
All the SCC mixtures were above the target limit of 0.7 as seen from the figure. That 

means mixtures are well enough to flow through congested reinforcements. If some 

project demands flow through highly congested reinforcements, an L-box PA value 

greater than 0.8 or 0.9 may be used depending the project specification. 

 Figure 4.14 shows the plot between coarseness factor and workability factor 

versus L-box passing ability. It can be concluded from the figures that there are no 

correlation between CF and WF with the L-box passing ability. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.14 L-box PA vs. (a) coarseness factor (b) workability factor 
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4.4 Concluding Remarks 

Different fresh concrete tests were performed on the 17 developed SCC mixtures in 

this chapter. The details of the test methods and the analysis and correlation of the 

results with different parameters were also listed in the chapter. The visual stability 

index (VSI) values which are representative of the SCC mixture stability were found 

to be stable for all the mixtures. The T50 values varied from 1.2 seconds to 2.6 

seconds; higher values were obtained for mixtures containing higher CA 25.  Slump 

flow values for all the mixtures found to be satisfactory with almost all of them 

exceeded the target limit of 650 mm. The effect of filler and mineral admixtures on 

the effects of the slump flow values was not clear enough due to the combine effect 

of fillers, mineral admixtures, HRWRA, WRA, AEA, VMA, different paste volumes, 

different w/p ratios and w/b ratios. Blocking assessment results for the SCC mixtures 

as predicted by the J-ring test indicated that most of the blocking was less than 25 

mm signifying that the SCC mixtures developed were superior in terms of blocking. 

Static segregation by column segregation test result varied from a value of 5% to 

23% indicating a wide range of segregation values between the mixtures. Higher 

value means higher segregation and vice versa. Due to the higher particle size, 

mixtures made with greater percentage of CA 25, showed higher segregation values. 

It was also observed that higher CF resulted in higher static segregation. Very good 

L-box passing ability values were observed for all the SCC mixtures. All of them 

exceeded the target limit value of 0.7. Values greater than 0.9 was also achieved by 

some of the mixtures, indicating very good passing ability and can be of great 

application where flow through congested reinforcement is needed. The next chapter 

describes the hardened properties such as compressive strength and splitting tensile 

strength in detail for the developed SCC mixtures. 
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CHAPTER FIVE 
 

HARDENED PROPERTIES OF SCC AND MIXTURE 
SELECTION 

5.1 Introduction 

 In this chapter the compressive strength of different mixtures has been 

compared. The ACI prediction equation for compressive strength has been 

investigated and compared with the compressive strength results for the selected 

SCC mixtures. Also the effects of w/cm ration, w/p ratio, CF, WF, and paste volume 

on compressive strength has been investigated. 

5.2 Compressive Strength Measurement 

 Compressive strengths of 101.6 mm diameter x 203.2 mm long (4 in. 

diameter x 8 in. long) cylinder specimens were measured in accordance with ASTM C 

39 (Standard Test Method for Compressive Strength of Concrete Specimens). Tests 

were conducted at 7 and 28 days after casting. On an average compressive strength 

of four specimens were tested and the average values are reported here. 

5.3 Compressive Strength of 17 Mixtures 

 Figure 5.1 shows the 7-day and 28-day compressive strength of the 17 SCC 

mixtures prepared in the laboratory. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure5.1 Compressive strength of SCC mixtures 
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Figure 5.2 Compressive strength comparisons case-I (a) 7-day (b) 28-day 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Compressive strength comparisons case-II (a) 7-day (b) 28-day 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.4 Increase in strength (a) case-I (b) case-II 
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Figure 5.2(a) shows the 7-day compressive strength comparison between different 

mixtures. The mixtures are grouped according to their mineral admixture and filler 

content; group I contain LP, group II contain SL+SF, and group III contain FA+SF. 

The three separate groups are marked on the figure. Figure 5.2(b) shows the 28-day 

strength comparison between different mixtures, other parameters remaining the 

same. Figure 5.3(a) compares the 7-day compressive strength between the 17 

mixtures. The mixtures are grouped according to their aggregate fraction. For 

example, the first group contains 35% of CA 25, 15% of CA 9.5, and 50% of FA by 

weight and termed as 35/15/50. Similar nomenclature has been followed for the 

other groups. Figure 5.3(b) compares the 28-day compressive strength between the 

mixtures grouped according to their aggregate fraction. Figure 5.4(a) shows in 

increase in compressive strength from 7-day to 28-day for all the mixtures grouped 

based on their mineral admixture and filler content. 5.4(b) compares the increase in 

strength from 7-day to 28-day for all the mixtures grouped based on their aggregate 

fraction. From Figure 5.1 it is observed that SCC 8 containing fibers had the highest 

28-day compressive strength among all the mixtures with a value of 67.35 MPa 

(9770 psi) followed by SCC 9 and SCC 11 with values of 66.76 MPa (9680 psi) and 

65.84 MPa (9550 psi) respectively. If the mixtures without the fiber and SRA are 

considered, then SCC 1 had the highest 28-day strength of 61.86 MPa (8970 psi) 

followed by SCC 12 and SCC 3 with compressive strength values of 61.82 MPa (8965 

psi) and 61.73 MPa (8950 psi) respectively. It is observed from the above discussion 

that mixtures containing limestone powder developed higher compressive strengths 

at both 7-day and 28-day compared to those mixtures with slag + silica fume or fly 

ash + silica fume. Similar observations have been made by Zhu and Gibbs (2005). 

SCC 1, SCC 12, and SCC 3 all of them had LP in common. It is also evident from 

Figure 5.1 that the compressive strength developed in the SCC mixtures were 

comparable or higher in most cases when compared to the strength value of a typical 

HPC mixture. This opinion is clearly supported from Figure 5.2 where the 

compressive strengths are grouped according to their mineral admixture and filler 

content. Another important fact noted from Figure 5.2(a) is that the early age 

compressive strength development is much higher for the mixtures containing LP 

than the mixtures containing SL+SF or FA+SF. The average 7-day compressive 

strength values for the mixtures containing LP were 53 MPa (7690 psi), whereas the 

average 7-day compressive strength of the mixtures containing SL+SF and FA+SF 

was 34 MPa (4930 psi) and 36 MPa (5220 psi) respectively. Group I containing the 
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LP had a highest 7-day compressive strength of 61.59 MPa (8935 psi) and the lowest 

7-day compressive strength was 47.32 MPa (6865 psi). Group II containing the 

SL+SF had a highest 7-day compressive strength of 44.72 MPa (6490 psi) and the 

lowest 7-day compressive strength was 27.57 MPa. (4000 psi) Group III containing 

the FA+SF had a highest 7-day strength of 40.79 MPa (5915 psi) and the lowest 7-

day compressive strength was 32.01 MPa (4645 psi). It may be also noted that 

within the individual groups, apart from the mixtures containing fiber and SRA, 

strength development is maximum for the mixtures which contains larger CA 25 

percentage. For example in Group II, the highest 7-day compressive strength 

(neglecting mixtures with fiber and SRA) of a value of 32.01 MPa (4645 psi) was 

achieved by the mixture containing an aggregate fraction of 35/15/50 and the lowest 

was 27.57 MPa (4000 psi) with an aggregate fraction of 0/50/50. Similar conclusion 

can be drawn for Group III also; it has a highest 7-day compressive strength 

(neglecting mixtures with fiber and SRA) of a value of 40.79 MPa (5915 psi) was 

achieved by the mixture containing an aggregate fraction of 35/15/50 and the lowest 

was 32.01 MPa (4645 psi) with an aggregate fraction of 0/50/50. Similar trends were 

also observed for the 28-day compressive strength for the mixtures. Figure 5.3 

shows the 7-day and 28-day compressive strength figures for all the mixtures 

grouped according to their aggregate fractions. These figures support the earlier 

proposed fact that the mixtures with higher CA 25 fraction containing the LP gained 

the maximum strength compared to the other mixture combinations. The trend line 

is marked as red in both the figures. Figure 5.4 shows the increase in strength from 

7-day to 28-day for both the categories, one grouped based on their mineral 

admixture content, and the other based on their aggregate fraction content. Some 

interesting facts are observed from Figure 5.4(a). The mixtures containing SL+SF 

and FA+SF gained much more strength in those days compared to mixtures 

containing LP. The maximum strength increase in case of a mixture containing LP 

was 24.31% and the minimum strength increase was 9.35%. Whereas, the 

maximum strength increase in case of a mixture containing SL+SF was 79.72% and 

the minimum strength increase was 47.24% and the maximum strength increase in 

case of a mixture containing FA+SF was 57.16% and the minimum strength increase 

was 30.52%. This observation leads to the conclusion that LP contributes to 

accelerated hydration compared to mineral admixtures like SL+SF or FA+SF. Also, 

due to its finer particle size, strength values are more for the mixtures containing LP 

compared to the mixtures containing SL+SF and FA+SF. 
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Figure5.5 w/cm versus (a) 7-day (b) 28-day Compressive strength 
 

 

 

 

 

 

 

 

 

 

Figure5.6 w/p versus (a) 7-day (b) 28-day Compressive strength 
 

 

 

 

 

 

 

 

 

 

 

Figure5.7 Paste volume versus (a) 7-day (b) 28-day Compressive strength 

1 MPa = 145.04 psi 

1 MPa = 145.04 psi 

1 MPa = 145.04 psi 



 

 67

20

25

30

35

40

45

50

55

60

65

5 15 25 35 45 55

CF

7-
da

y 
C

om
pr

es
si

ve
 S

tre
ng

th
 (M

Pa
)

40

45

50

55

60

65

70

5 15 25 35 45 55

CF

28
-d

ay
 C

om
pr

es
si

ve
 S

tre
ng

th
 (M

P
a)

20

25

30

35

40

45

50

55

60

65

35 36 37 38 39 40 41 42 43 44

WF

7-
da

y 
C

om
pr

es
si

ve
 S

tre
ng

th
 (M

pa
)

45

50

55

60

65

70

35 36 37 38 39 40 41 42 43 44

WF

28
-d

ay
 C

om
pr

es
si

ve
 S

tre
ng

th
 (M

pa
)

 

 

 

 

 

 

 

 

 

 

 

Figure5.8 CF versus (a) 7-day (b) 28-day Compressive strength 
 

 

 

 

 

 

 

 

 

 

Figure5.9 WF versus (a) 7-day (b) 28-day Compressive strength 
 Figure 5.5 through Figure 5.9 tries to establish relation between the 7-day 

and 28-day compressive strengths with different parameters like w/cm ratio, w/p 

ratio, paste volume, coarseness factor, and workability factor. Figure 5.5(a) and 

Figure 5.5(b) shows the plot of w/cm ratio to 7-day compressive strength and 28-

day compressive strength respectively. As observed from the figures, there is no 

correlation between the w/cm ratio and the compressive strength of the mixtures. 

This may be due to the fact that, amount of powders governs the compressive 

strength much more than the cementitious materials. It is found from the figures 

that at same w/cm ratio there mixtures with varied strength were possible. Though 

the w/cm ratios of all the mixtures were kept approximately same, the range of 

compressive strength varied greatly among the mixtures. This is due to the fact that 

1 MPa = 145.04 psi 

1 MPa = 145.04 psi 
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the paste volume and powder content have significant effect on the compressive 

strength. 

Figure 5.6(a) and Figure 5.6(b) show the plot of w/p ratio to 7-day 

compressive strength and 28-day compressive strength respectively. As observed 

from the figures, there is definite correlation between the w/p ratio and the 

compressive strength of the mixtures. The material of size 125 μm or smaller are 

considered as powder. As LP was a very fine filler material and was included in the 

powder calculation, the w/p ratio for SCC with LP was lowest and the value was 0.29, 

whereas w/p ratio for rest of the mixtures was around 0.39. For further 

investigation, the mixtures without the fiber and SRA are plotted against the w/p 

ratios in Figure 5.10 below. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure5.10 w/p versus (a) 7-day Compressive strength (b) 28-day Compressive 
strength (excluding mixtures containing fiber and SRA) 

 

There is a definite trend between w/p ratio and compressive strength as 

evident from the figures with a regression co-efficient of 0.85 and 0.82 respectively. 

However due to strong influence of admixtures on SCC, for a given w/p, different 

level of compressive strengths were possible. 

Paste volume is another important criterion for SCC as it is designed with a 

higher paste volume than normal concrete. Flowability of SCC increases with higher 

volume of paste but it may have detrimental effects on mechanical properties, time-

dependent deformations and cracking susceptibility (Roziere et. al., 2007). Paste 

volume of all the mixtures has been calculated as the total volume of all the mixture 

minus those from coarse and such ass. The paste volumes were highest for the 
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mixtures made with LP (321~333 liters/m3) followed by the FA+SF mixtures (318 

liters/m3). The paste volumes of the SL+SF were the least (300~316 liters/m3). The 

paste volume has been plotted against 7-day and 28-day compressive strengths in 

Figure 5.7. As seen from the figures, there exist correlations between compressive 

strength and paste volume for all the mixtures. Compressive strength was higher for 

the concretes made with higher paste volume. For example, SCC 1 through SCC 4 

was made with highest paste volume of around 330 liters/m3 of concrete and these 

four mixtures exhibited high 7-day and 28-day compressive strengths. Conversely, 

SCC 7 through SCC 10 made with low paste volume (varied between 300~310 

liters/m3) was characterized by low 7-day and 28-day compressive strength 

compared to other mixtures. As in this study the paste volume varied between 

300~330 L/m3 of concrete, more strength data with wider range of paste volume are 

required to support the fact. 

 Figure 5.8(a) and Figure 5.8(b) shows the plot of CF to 7-day compressive 

strength and 28-day compressive strength respectively. Similarly, Figure 5.9(a) and 

Figure 5.9(b) shows the plot of WF to 7-day compressive strength and 28-day 

compressive strength respectively. As seen from the figures that there are no 

definite correlation between the parameters. From the figures it may be concluded 

that it is possible to design mixtures with different strength having same CF or WF. 

This is possible due to the effect of w/p ratio, paste volume, and chemical 

admixtures on the compressive strength of SCC. 
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5.4 Mixture Selection 

5.4.1 Introduction 

 Out of 17 mixtures designed and established earlier six mixtures were 

selected for further in depth study. In this section the basis of selection of mixtures, 

fresh properties, and hardened properties of the mixtures are described. 

5.4.2 Basis of Selection 

 Six mixtures were selected from the 17 mixtures for further study on 

durability. The six mixtures selected are shown in Table 5.1 below with tick marks. 

Table5.1 – Selected Six Mixtures 

Mixture Aggregate Fraction   Nomenclature 
SCC 1 0.35/0.15/0.50/LP √ SCC A (70-30) 
SCC 2 0.25/0.25/0.50/LP √ SCC B (50-50) 
SCC 3 0.15/0.35/0.50/LP √ SCC C (30-70) 
SCC 4 0.35/0.15/0.50/SL/SF     
SCC 5 0.25/0.25/0.50/SL/SF     
SCC 6 0.27/0.27/0.46/SL/SF     
SCC 7 0.29/0.29/0.42/SL/SF     
SCC 8 0.35/0.15/0.50/LP/F √ SCC E (F) 
SCC 9 0.35/0.15/0.50/SL/SF/F     
SCC 10 0.35/0.15/0.50/LP/SRA √ SCC F (SRA) 
SCC 11 0.35/0.15/0.50/SL/SF/SRA     
SCC 12 0.0/0.50/0.50/LP √ SCC D (0-100) 
SCC 13 0.0/0.50/0.50/SL/SF     
SCC 14 0.0/0.50/0.50/FA/SF     
SCC 15 0.35/0.15/0.50/FA/SF     
SCC 16 0.25/0.25/0.50/FA/SF     
SCC 17 0.15/0.35/0.50/FA/SF     

 
 Table 5.1 shows the six mixtures were selected on the following basis. To 

study the effects of aggregate distribution, fibers, and SRA on durability in a limited 

time, it was necessary to omit some parameters which affect directly the hardened 

concrete behavior. Also, SCC mixtures are generally designed with limestone fillers 

as discussed in Chapter 2. The importance of fillers like limestone powder in SCC 

mixtures is due to the fact that it provides stability to the mixture preventing 

segregation and providing better rheology to the paste. Also, SCC with limestone 

fillers performed consistently better than SL+SF and FA+SF mixtures in terms of 

strength development. Due to this reason, the mixtures with limestone powder were 
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given preference. These six mixtures contain different aggregate gradations as well 

as one of the contains fiber and the other contains SRA. Four different kind of 

aggregate distributions such as 35/15/50, 25/25/50, 15/35/50, and 0/50/50 were 

present in the selection which will help to understand the effect of aggregate 

distribution on the cracking and durability properties of SCC. Also the presence of the 

mixtures containing fiber and SRA will help comparison between different SCC 

mixtures from shrinkage and cracking point of view. The nomenclature of the 

selected mixtures are as follows. SCC A contained 35% CA 25, 15% CA 9.5, and 

50% fine aggregate by weight of total aggregate As the amount of CA 25 is 70% of 

the total coarse aggregate by weight, it was designated as SCC A (70-30). Similar 

nomenclature were followed for SCC B through SCC D. SCC E and SCC F both had an 

aggregate fraction of 35/15/50; the only difference was that SCC E contains fiber 

and SCC F contains SRA. Hence the nomenclature for them was decided as SCC E (F) 

and SCC F (SRA) respectively. 

5.4.3 Tests on Selected Mixtures 
 Tests for fresh properties were already performed on these mixtures as 

described in Chapter 4. The main purpose of the selection was to study certain 

hardened property and durability characteristics of the mixtures. Hence extensive 

testing was done on the samples of the selected mixture. The main tests which were 

performed on the SCC mixtures are listed below: 

• Compressive strength test at ages 1,3,7,14,28, and 56 days after casting; 

• Splitting tensile strength at ages 1,3,7,14,28, and 56 days after casting; 

• Drying and autogenous shrinkage at different ages up to 90 days after 

casting; 

•  Restrained shrinkage cracking of ring specimens made by selected SCC 

mixtures; 

• Air-void stability of hardened SCC samples at 28 days after casting; 

• Chloride permeability of selected SCC mixtures after 28 days of casting; and 

• Freeze-thaw resistance of the selected SCC mixtures. 

Between the above mentioned tests, compressive strength and splitting tensile 

strength results are discussed in this chapter. Shrinkage and cracking potential 

studies are discussed in Chapter 6. The remaining test results and discussions are 

described in Chapter 7. 
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5.4.3.1 Compressive strength results for selected mixtures 

Compressive strength was measured as described earlier in this chapter. 

Similar procedure was followed for curing also. Four identical specimen of the same 

mixture were used for each age and the average value is reported here. Figure 5.11 

shows the compressive strength of the six selected mixtures at different ages. 

 

Figure5.11 Compressive strength for selected mixtures 

Figure5.12 Relative comparison of compressive strength for selected mixtures 
Figure 5.12 represents a relative comparison of compressive strength for selected 

mixtures at different ages. It is observed from the figures that the differences of 

1 MPa = 145.04 psi 

1 MPa = 145.04 psi 
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compressive strengths of the mixtures at different ages are minimal. The 7-day 

compressive strength varied between 47.32 MPa (6865 psi) to 61.59 MPa (8935 psi). 

The 28-day strengths between the six mixtures varied from 58.02 MPa (8415 psi) to 

67.35 MPa (9770 psi) and the 56-day compressive strengths varied from 68.59 MPa 

(9950 psi) to 76.53 MPa (11,100 psi). The difference between the compressive 

strengths at different ages became lower with the days. SCC E (F) had the highest 

compressive strength at all ages followed by SCC F (SRA). If the mixtures containing 

fiber and SRA are excluded from the comparison, compressive strengths of the 

remaining 4 mixtures were almost same and varied only between 58~62 MPa 

(8410~8990 psi) at 28-day and 69~72 MPa (10,010~10,440 psi) at 56-day. This is 

due to the fact that all of them contained LP and also the w/p ratios and paste 

volumes were similar.  

5.4.3.2 Comparison with ACI Prediction Eqn. for Compressive strength 

ACI 209 R (Prediction of Creep, Shrinkage, and Temperature Effects in Concrete 

Structures) provides the equation for prediction of compressive strength at any time 

‘t’ with respect to 28-day compressive strength, fc'. Following is the equation: 

28)'()'( CtC f
ta

tf
β+

=                                                                                    (5.1) 

Where for Type I concrete with moist curing, α = 4.0, and β = 0.85 

Figure 5.13(a) through 5.13(f) compare the ACI predicted model for strength at 

different ages with the actual values for SCC A (70-30) through SCC F (SRA). 

 

                              (a)                                                                   (b) 
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                              (c)                                                                   (d) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
                              (e)                                                                   (f) 

Figure5.13 Comparison of compressive strengths at different ages predicted by ACI 
209 R and (a) SCC A (70-30); (b) SCC B (50-50); (c) SCC C (30-70); (d) SCC D (0-

100); (e) SCC E (F) and (f) SCC F (SRA) 
It is observed from the above figures that ACI prediction equation holds good for the 

SCC also. As it is a new type of concrete with entirely different rheology and 

robustness characteristics than normal concrete, it was necessary to calibrate SCC 

with the available equation for normal concrete. The ACI predicted values are less 

than the actual values generated by the SCC mixtures in almost all the ages, and 

almost for all the SCC mixtures and hence conservative. The main difference as seen 

from the figures is the early age strength gain for the SCC mixtures compared to the 

prediction equation. This may be due to the presence of limestone powder in the 

mixture. The difference of strength at later ages are minimal and the ACI equation is 

conservative hence acceptable. The increase in strength due to the presence of LP is 

prevalent at 0 to 21 days for every mixture. Hence a correction factor γCF can be 

applied to this type of SCC mixtures containing LP for determination of early age 

compressive strengths from the ACI predicted equation. The correction factor is valid 
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for only 0 to 21 days, after 21 days the original formula holds well. The value of the 

factor  have been determined as 1.20 for ages from 0 to 7 days and 1.10 for ages 

greater than 7 days and up to 21 days. Hence the proposed formula for strength is: 

CFCtC f
ta

tf γ
β

*)'()'( 28+
=                                                                            (5.2) 

Where for Type I concrete with moist curing 

α = 4.0, and β = 0.85 

γCF = correction factor for SCC containing limestone powder 

     = 1.2 for 0-7 days 

     = 1.1 for 8-21 days 

     = 1.0 for >21 days 

Figure 5.14 shows the new set of curves for different SCC mixtures following the 

proposed formula. 
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                                  (e)                                                          (f) 

Figure5.14 Comparison of compressive strengths at different ages predicted by 
modified ACI equation and (a) SCC A (70-30); (b) SCC B (50-50); (c) SCC C (30-

70); (d) SCC D (0-100); (e) SCC E (F) and (f) SCC F (SRA) 

5.4.3.3 Splitting tensile strength test 
Splitting tensile (ST) strengths of 101.6 mm diameter x 203.2 mm long (4 in. 

diameter x 8 in. long) cylinder specimens were measured in accordance with ASTM C 

496/C 496M-04 (Standard Test Method for Splitting Tensile Strength of Cylindrical 

Concrete Specimens). Each specimen was cured under water as described earlier in 

Chapter 3. Tests were conducted at 1, 3, 7, 14, 28 and 56 days after casting. On an 

average splitting tensile strength of four specimens were tested and the average 

values are reported here. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                

Figure5.15 Splitting tensile strength of selected mixtures with time 
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 Figure 5.15 shows the splitting tensile strength of the selected six mixtures at 

different ages up to 56 days after casting. It is evident from the figure that the trend 

is similar for all the mixtures. The highest splitting tensile value was reached by SCC 

C (F) with a value of 6.80 MPa (985 psi) and the least splitting tensile strength was 

achieved by SCC D (0-100) with a value of 4.24 MPa (615 psi). Because of the 

presence of the fiber, the splitting tensile strength was highest for SCC E (F). If the 

mixtures containing fiber and SRA are neglected, the splitting tensile strength of the 

remaining four mixtures had almost similar values with SCC A (70-30) being the 

highest and SCC D (0-100) being the lowest. The effect of aggregate gradation had 

its effect on the splitting tensile strength too. 

 As per ASTM C 496/C 496M-04, splitting tensile strength is generally stated 

as greater than the direct tensile strength and lower than the modulus of rupture. It 

was decided to verify the validation of the statement for SCC mixtures. ACI 209 R 

(Prediction of Creep, Shrinkage, and Temperature Effects in Concrete Structures) 

provides the equation for modulus of rupture fr and direct tensile strength f’t. 

Following is the equation: 

 
2/1])'([ tcrr fwgf =                                                                                          (5.3) 

 

2/1])'([' tctt fwgf =                                                                                          (5.4) 

 

Where, 

(f’c)t = Compressive strength at age ‘t’ days, MPa 

w = Unit weight of concrete, Kg/m3 

gr = 0.012 to 0.021 

gt = 0.0069 

  

A unit weight of 2400 kg/m3 was assumed for all the SCC mixtures. Although gr had 

a lowest value of 0.012, a value of 0.013 to 0.014 is more realistic in most cases.  A 

value of 0.013 was selected for this project. Direct tensile modulus and modulus of 

rupture are computed using the above equations and from the compressive strength 

values previously computed. Splitting tensile strength, estimated direct tensile 

strength and estimated modulus of rupture are plotted for each of the mixtures and 

shown below in Figure 5.16. 
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                                    (c)                                                                   (d) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                    (e)                                                                   (f) 

Figure5.16 Comparison of splitting tensile strength, direct tensile strength and 
modulus of rupture for (a) SCC A (70-30); (b) SCC B (50-50); (c) SCC C (30-70); 

(d) SCC D (0-100); (e) SCC E (F) and (f) SCC F (SRA) 
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 From the above figures, it is observed that splitting tensile strength is higher 

than direct tensile strength and lower than the flexural strength (modulus of rupture) 

for the mixtures SCC A (70-30) through SCC D (0-100). Splitting tensile strength for 

SCC E (F) and SCC F (SRA) are higher than both the direct tensile strength and the 

modulus of rupture. As the mixtures contained fiber and SRA, it may be possible for 

them to deviate from the general trend. Other than these two mixtures, others were 

quite consistent in their relation to direct tensile strength and modulus of rupture. 

 To study the relation between compressive strength and splitting tensile 

strength, the ratio of splitting tensile strength and compressive strength were found 

out at different ages and listed in Table 5.2 below. 

Table5.2 – Ratio of splitting tensile strength to compressive strength 

 

Ratio of splitting tensile strength to compressive 
strength 

Days 
SCC A 

(70-30) 
SCC B 

(50-50) 

SCC C 
(30-
70) 

SCC D 
(0-100) 

SCC E 
(F) 

SCC F 
(SRA) 

1 0.13 0.14 0.15 0.13 0.18 0.20 
3 0.09 0.09 0.08 0.08 0.13 0.11 
7 0.07 0.07 0.07 0.06 0.09 0.09 
14 0.07 0.07 0.07 0.06 0.09 0.08 
28 0.07 0.07 0.07 0.06 0.10 0.09 
56 0.07 0.07 0.06 0.06 0.09 0.09 

 

 It is observed from the above table is the same ratio of splitting tensile 

strength to compressive strength for SCC mixtures SCC A (70-30) through SCC D (0-

100) for 7-day, 14-day, 28-day, and 56-day. All of them had a value of 0.06~0.07. 

The ratios for the early age are greater than 0.07. For the SCC mixtures with fiber 

and SRA the ratio of splitting tensile strength to compressive strength for 7-day, 14-

day, 28-day, and 56-day were 0.08~0.10. The early age strength for SCC E (F) and 

SCC F (SRA) varies from 0.11 to 0.20.  

 Hence it can be concluded that the ratio for splitting tensile strength to 

compressive strength for ordinary SCC mixtures can be safely assumed as 0.06. 

Here ordinary meant mixtures without fibers or SRA or any special type of materials. 

This proposition is valid at 7 or more days after casting. The ratio of 0.06 can be 

assumed for 0 through 7 days but it’ll be highly conservative. It is to be noted here 

that these values originated from the test results on only six mixtures that contained 

LP. Hence more test results are required to validate the proposed statements. 
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5.5 Concluding Remarks 

 In this chapter the compressive strength of all the 17 SCC mixtures were 

evaluated at 7 days and 28 days after casting. Six SCC mixtures based on their 

performance and other criteria’s were selected among these 17 mixtures. Detailed 

analysis regarding the compressive strength and splitting tensile strength of these 

selected six mixtures were presented in this chapter. The compressive strengths of 

the 17 mixtures were very high compared to normal vibrated concrete mixtures. In 

general, mixtures containing LP showed very high early strength compared to other 

mixtures. Mixtures containing fiber and SRA gained maximum strength among all the 

mixtures. When compared to the aggregate fraction, it was observed that mixtures 

containing higher CA 25 with LP gained maximum strength compared to any other 

combination of aggregate gradation. Mixtures containing LP gained high early 

strength but strength increment from 7-day to 28-day was highest for SL+SF 

mixtures followed by FA+SF mixtures. There was a definite trend between the w/p 

ratio and the compressive strength. Higher the w/p ratio, lower the strength and vice 

versa. There exist definite correlations between compressive strength and paste 

volume for all the mixtures. Compressive strength was higher for the concretes 

made with higher paste volume. No definite correlation between CF or WF and 

compressive strength was observed which may be attributed to the fact that there 

were interrelated effects of w/p ratio, paste volume, and chemical admixtures on the 

compressive strength of SCC. The compressive strength values of the selected SCC 

mixtures were compared with the ACI prediction equation of compressive strength 

and it was observed that ACI equation underestimates the early age compressive 

strength of the LP mixtures. A correction factor γCF was developed to calibrate the 

ACI equation for the LP mixtures. Splitting tensile strength values were found to be 

higher than direct tensile strength and lower than the flexural strength (modulus of 

rupture) with exceptions of the mixture containing fiber and the mixture containing 

SRA. It can be also concluded that the ratio for splitting tensile strength to 

compressive strength for ordinary SCC mixtures containing LP, can be safely 

assumed as 0.06. The drying shrinkage, autogenous shrinkage, and restrained 

shrinkage properties of the selected SCC mixtures are studied in detail in the next 

chapter. 
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CHAPTER SIX 
 

SHRINKAGE AND CRACKING OF SELECTED SCC 
MIXTURES 

6.1 Introduction 

 In this chapter the free and autogenous shrinkage of the selected SCC 

mixtures will be investigated. There are many conflicting observations on shrinkage 

of SCC. Some researchers reported that shrinkage of SCC is comparable to that of 

normal concrete; other researchers observed that drying and autogenous shrinkage 

in SCC is higher than normal concrete as detailed in Chapter 2. The increase in 

shrinkage may be due to higher finer contents, higher paste volume, different 

admixture effects, and different water-powder ratios compared to normal concrete. 

Also, an investigation of the early age mechanical behavior of SCC by Ambrosia et al. 

(2005) has revealed a potentially high risk for cracking at early age. The main 

factors which contribute to the cracking risk are stress developed by autogenous 

shrinkage at early age and diminished creep capacity in low w/cm ratio materials. 

Hence, in this chapter the total, drying and autogenous shrinkage of the selected 

SCC mixtures will be evaluated. The shrinkage values will be compared with few 

existing models and will be calibrated to a model which is the closest one to the 

values generated from the experiment. Restrained shrinkage test is a useful 

method to evaluate the cracking potential of concrete mixtures. As the test setup is 

relatively simple and easy to implement; more and more researchers are 

increasingly using this test. Additionally, ring test can provide sustained and 

sufficient restraint to induce the cracking for common size specimens which makes it 

more suitable for laboratory use. As the ring specimen is axisymmetric, it helps in 

the analysis part too.  

 In this study, the AASHTO type ring specimen test was adopted to investigate 

the restrained cracking behavior of the selected mixtures with LP. Also the effect of 

aggregate gradation, compressive strength, effect of fiber and SRA on cracking will 

be investigated. Cracking potential of the mixtures will be investigated using ASTM C 

1581-04.  
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6.2 Free Shrinkage of SCC Mixtures 

 In this section the shrinkage of the selected six mixtures will be investigated 

as described earlier. The shrinkage values from the experiment will be compared to 

different standard existing models and will be calibrated with the closest model 

among them. The effect of autogenous shrinkage on total shrinkage of SCC will also 

be investigated. 

6.2.1 Test Procedure 

 Free shrinkage test was conducted as per ASTM C 157/ AASHTO T 160. For 

every selected mixture, four 76.2 mm x 76.2 mm x 311.2 mm (3 in x 3 in x 11.75 

in) prisms were cast. Two of them were used to evaluate free shrinkage and the rest 

of them were used to evaluate autogenous shrinkage. After one day curing under 

wet burlap, the prisms were demolded and kept in a environmental chamber with the 

temperature of 23  C (73  F) and relative humidity of 50%. The onset of drying after 

one day was selected to capture shrinkage from early age. 

 Strain measurements were performed by embedding vibrating wire strain 

gauges (VWSG) of gauge length 100 mm (4 in) in the center of the molds. The main 

reason for using the VWSG was to eliminate human error in recording the strains 

through the length comparator and due to its high sensitivity. Vibrating wire principle 

is used in this type of strain gauges; a length of steel wire is tensioned between two 

end blocks that are embedded in concrete. Strain changes of the concrete mass 

results in relative movement of the end blocks, which in turn causes tension in the 

steel wire. This tension is measured by plucking the wire and the resonant frequency 

is measured by using an electro magnetic coil. The other advantages of this type of 

strain gauges are excellent long term stability, maximum resistance to the effects of 

moisture and suitable for transmission over long ranges. The VWSG was also used to 

measure the autogenous shrinkage and temperature right from the begining of the 

tests. the VWSG was suspended in the center of the prism mold using metal ties 

connected to the rigid part of the mold in both the free shrinkage and the 

autogenous shrinkage specimens. The autogenous specimens were carefully wrapped 

in plastic and aluminum foils to prevent loss of moisture in the surrounding. The 

specimens were demolded after 24 hours of casting and left dry in the humidity 

chamber in order to measure the shrinkage. The VWSG was connected to a data 

logger which recorded strains for every 10 minutes until 90 days after casting. Figure 

6.1 shows the molds for free shrinkage and autogenous shrinkage with the VWSG. 

Figure 6.2 shows the storage and entire test set up for the shrinkage test. 
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                         (a)                                                                   (b)                                        

Figure6.1 Test set up for (a) drying shrinkage (b) autogenous shrinkage 
 

 

Figure6.2 Test set up for shrinkage test in the laboratory 
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6.2.2 Test Results 

 Figure 6.3 shows the free shrinkage and autogenous shrinkage graphs for the 

six SCC mixtures. Two lines were drawn for the two free shrinkage samples and 

another two for the autogenous shrinkage sample. The average values for these two 

are also plotted in the graphs for free and autogenous shrinkage both.  
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                            (e)                                                                  (f)  

Figure6.3 Total and autogenous shrinkage test results for (a) SCC A (70-30) (b) SCC 
B (50-50) (C) SCC C (30-70) (d) SCC D (0-100) (e) SCC E (F) (f) SCC F (SRA) 

 

Figures 6.3(a) through (f) show that the shrinkage values obtained from duplicate 

specimens were very consistent for all cases. From the above figures it was observed 

that SCC C (30-70) and SCC D (0-100) achieved a highest shrinkage of 660 micro 

strains in 90 days compared to 640 micro strains achieved by SCC A and SCC B. As 

the w/cm ratio, w/p ratio, paste volume, aggregate-paste volume, CA/FA ratio, S/A 

ratio of the above mentioned four SCC mixtures are almost same; the 90-day 

shrinkage values of the mixtures were very close. The SCC mixtures containing fiber 

and SRA behaved differently than the other mixtures. SCC E (F) had a very low 

shrinkage value of 500 micro strains and SCC F (SRA) had the lowest shrinkage 

value of 465 micro strains after 90 days. The shrinkage reducing admixture had a 

huge impact on the shrinkage strains as it has been reduced by almost 1/3rd 

compared to the other mixtures. It is noted from the above figures that autogenous 

shrinkage contributed immensely on the total shrinkage of the concrete. As stated 

earlier, the total shrinkage contains autogenous shrinkage and drying shrinkage due 

to external drying both. To find out the nature of drying shrinkage, autogenous 

shrinkage values were deducted from the free shrinkage values. The following figures 

were plotted to compare the different shrinkage values among the concretes and 

also to compare the behavior of the mixtures subjected to drying and autogenous 

shrinkage. 
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Figure 6.4 Total shrinkage test results for selected SCC mixtures 

 

Figure 6.5 Autogenous shrinkage test results for selected SCC mixtures 
 

Figure6.6 Drying shrinkage (due to external drying) test results for selected SCC 
mixtures 
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 Figure 6.4 shows the total shrinkage against time for the six selected 

mixtures. Also the shrinkage values for a typical normal concrete (NC) (Chatterjee, 

2004) and a high-performance concrete (HPC) (Gong, 2006) were incorporate in 

Figure 6.4 for comparison purpose. It is noted from the figure that total shrinkage of 

all the SCC mixtures followed the similar pattern with SCC D (0-100) having the 

highest value and SCC F (SRA) being the lowest. Though the total shrinkage values 

of all the mixtures were similar, a comparison relative to their aggregate gradation 

reveals the fact that the mixtures containing higher CA 25 mm resulted in less 

shrinkage compared to the mixtures which contain more CA 12.5 mm. This is due to 

the restraining effect of the coarse aggregates as discussed in Chapter 2. Similar 

observations can be made comparing the total shrinkage values to the CF. Figure 6.7 

shows the plot between CF and total and autogenous shrinkage. It can be seen that 

higher the CF, lower the shrinkage. As the number of sample were very low, more 

experiments should be conducted before coming to a general conclusion, but there 

was definitely a trend between them as shown by the red line in the following figure. 
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Figure6.7 CF versus Total and autogenous shrinkage 
 

 Figure 6.5 shows the autogenous shrinkage of all the six SCC mixtures 

prepared in the laboratory. Some interesting facts are revealed by studying the 

graph as follows: SCC A (70-30) had the highest autogenous shrinkage, though the 

total shrinkage of SCC A is less than SCC D (0-100) and SCC C (30-70). The long 

term autogenous shrinkage values of all SCC mixtures were very high. This may be 

due to the lower w/cm and lower w/p ratio responsible for higher self-desiccation. 

SCC F (SRA) had the lowest autogenous shrinkage followed by SCC E (F) among all 

the mixtures. It may be noted that the mixture containing fiber not only had a lower 
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total shrinkage but also was superior in terms of autogenous shrinkage compared to 

other SCC mixtures except the one with SRA. There may exist a relation between 

autogenous shrinkage and CF as seen from Figure 6.7. Increased CF resulted in 

increased autogenous shrinkage which is shown by the blue trend line in the figure. 

More data will be required to support the fact. Another important fact revealed from 

the tests was the percentage of autogenous shrinkage over the total shrinkage at 90 

days after casting. The ratio of autogenous shrinkage and total shrinkage varied 

between 0.75 and 0.80 for all the mixtures except SCC E (F) which had a high ratio 

of 0.88. This is due to the fact that the concrete containing fibers were less porous 

and higher self-desiccation caused high autogenous shrinkage. Another important 

observation could be the development of autogenous shrinkage and temperature 

change in mixture due to hydration. The VWSG used in the study were able to 

monitor the temperature along with the strains facilitating the investigation. 

 

 

 

                                  (a)                                                               (b)                          

Figure6.8 (a) Early age autogenous shrinkage (b) Temperature change within 
concrete after casting 

 
 Figure 6.8 (a) shows the early age autogenous shrinkage of the SCC mixtures 

with time. All of them had an initial hump at around 12 hours and then a gradual 

incremental phase. SCC E (F) did not follow that path, instead followed in a straight 

path right from the beginning. All the mixtures after one day followed an upward 

Autogenous 
shrinkage 
specimen 
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path except from SCC F (SRA) which followed a path parallel to the time axis initially. 

That was the effect of SRA which reduced the autogenous shrinkage. 

 Figure 6.8 (b) shows the change in temperature after casting for the total 

shrinkage specimen and the autogenous shrinkage specimen for a typical mixture. In 

the initial stages, the rate of heat evolution was much less for an autogenous 

shrinkage specimen as it was wrapped in plastic to prevent moisture loss to outside. 

The less rate of heat evolution signified less shrinkage. Figure 6.9 shows a typical 

curve showing rate of heat evolution during hydration of Portland cement. 

 

 
Figure6.9 Rate of heat evolution for typical portland cements 

(Reproduced from Mindess et al., 2003) 

 

As temperature is a direct measurement of heat, figure 6.8 (b) can be compared 

with figure 6.9 above. It is seen that the two curves resemble very closely and each 

stage can be identified from the data achieved from the experiments. Stage 1 is 

period of rapid evolution of heat which is followed by a period of relative inactivity. 

This period is called as induction or dormant period (stage 2). Stage 3 is termed as 

acceleration period reaching a maximum rate of heat evolution. The next phase is 

termed as deceleration period (stage 4) and the last stage is called steady state 

(stage 5). From Figure 6.8, it is also noted that steady state is achieved for the 

autogenous shrinkage samples after a jump in temperature from stage 4. This 

combined with stage 3 and stage 4 may attribute to the early age strength gain of 

the LP mixtures.  
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6.2.2.1 Comparison and discussion of experimental values with NC, HPC and 
SCC mixtures from other studies 
 

It can be seen from Figure 6.4 that the 90-day value of shrinkage for NC, HPC and 

the SCC mixtures were close. SCC E (F) and SCC F (SRA) were excluded from this 

discussion as they contain fiber and SRA. Instead other SCC mixtures can be 

compared in general with other values. NC shrinkage value was the highest and the 

shrinkage value for the HPC and the SCC mixtures were really close. The 90-day 

shrinkage value for the SCC mixtures varied between 640 microstrains to 660 

microstrains. An extensive database of shrinkage values for SCC presented by 

Gomez and Landsberger (2007) reveal that experimental shrinkage strains for SCC 

vary between 40 and 1210 microstrains with an average mean value of 540 

microstrains. In case of NC, the strains vary between 253 and 980 microstrains with 

a mean value of 581 microstrains. The experimental values were well within that 

range and close to the average. Also, Ambrosia et al. (2005) reported a free 

shrinkage value varied between 500 to 800 microstrains with a w/cm ratio varied 

from 0.34 to 0.41. It is also observed that the shrinkage of NC, HPC and the SCC 

mixtures were similar. There were many contradictory opinions regarding the 

shrinkage of SCC mixtures due to its higher fine content and different paste volume 

fraction compared to NC. A strict comparison of the shrinkage values is problematic 

due to the differences in formulation, admixture types, pozzolan types, procedure 

and specimen size, humidity condition, and type of fillers (Bomen and Shah, 2005). 

They reported that the shrinkage of SCC tends to be greater than ordinary concrete. 

However, substitution of cement by non-pozzolanic filler substantially decreases the 

drying shrinkage.  

 It is very difficult to correctly predict and compare the shrinkage values of 

SCC due to its wide variability as discussed above. But one thing can be concluded 

from the results that the shrinkage values for SCC A (70-30) through SCC D (0-100) 

are not significantly different from the normal concrete and the HPC. Similar 

observation was also reported by Gomez and Landsberger (2007). 
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6.2.3 Comparison and Prediction of Free Shrinkage 

Several models exist associated with the prediction of shrinkage of concrete. 

Among those models, the ACI 209R (1992), CEB MC90-99, B3 model by Bazant 

(1996) and AASHTO Specification (2000) are the most widely used models in 

practice. The following section lists the equations for those four models as well as the 

prediction model for HPC proposed by Gardner and Lockman, 2001.Then, a 

comparison between these predictions and the present experimental data is given, 

followed by a proposed model developed in this study following ACI 209R. 

6.2.3.1 Shrinkage models 

6.2.3.1.1 ACI prediction equation 

ACI prediction equation for is in the following form- 

ushtsh tf
t )()( εε α

α

+
=                                                                                                      (6.1) 

where f is in days and α  is a constant and ush )(α is the ultimate shrinkage strain and 

t is time from the end of initial curing. Normal ranges of the above mentioned 

constants are- 

α  = .9 to 1.3 

f = 20 to 130 days 

ush )(α = is ultimate shrinkage with values between 415 to 1070x10-6 in/in (m/m) 

t = time from end of initial curing 

Based on normal weight, sand light weight and all light weight concretes using both 

moisture and steam curing the appropriate value of α  and ush )(α  were determine as 

1 and 780 x 10-6 m/m respectively. These values are presented by ACI 209R. 

Therefore the recommended equation for shrinkage under standard conditions is 

uhtsh t
t )(

35
)( εα

+
= for shrinkage after 7 days of moist cured concrete…… …………(6.2) 

 

uhtsh t
t )(

55
)( εα

+
=  for shrinkage after 1-3 days of steam cured concrete……   …(6.3) 

ACI has also recommended different correction factors to ultimate shrinkage strain 

value when the conditions are different than the ones mentioned above. 
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Different corrections are described below: 
 
1. Differential shrinkage: For shrinkage considered for other than 7 days for moist 

cured concrete and other than 1-3 days for steam cured concrete, the difference in 

equations 2.11 and 2.12 (as the case may be) is determined for any period starting 

after this time. 

2. Initial moist curing: To determine shrinkage of concrete moist cured other than 7 

days moist curing a cp γ factor is used. Table 2.1 shows cp γ factor corresponding to 

different moist curing duration. 

Table6.1 – Correction for γcp 

Moist curing 

duration, days 
γcp 

1 

3 

7 

14 

28 

90 

1.2 

1.1 

1.0 

0.93 

0.86 

0.75 

 

3. Ambient relative Humidity:  If ambient relative humidity is greater than 40 % λγ is 

used as a correction factor for ultimate shrinkage- 

λγ = 1.4 -.01λ , for 40 80≤≤ λ                                                                       (6.4) 

     = 3.0-.03λ , for 80 100≤≤ λ                                                                     (6.5) 

Where, λ = relative humidity in % 

For ambient humidity lower than 40% a value higher than 1 should be used for λγ  

4. Correction for size and shape: 

(a). Avg. thickness method correction (γh) 

Table 6.2 shows the correction factors for members having average thickness less 

than 150 mm 
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Table6.2 – Correction factors for average thickness method of members less 
than 150 mm 

 

Average thickness 

of member 
Shrinkage, γh 

mm ≤ 1 year 

51 1.35 

76 1.25 

104 1.17 

127 1.08 

 

For average thickness of members greater than 150 mm and up to 300mm to 

375mm the following equations are used for correction 

During the first year of drying: 

Shrinkage γh= 1.23-.00015h                                                                          (6.6) 

where h is the avg. thickness of the member in mm 

For ultimate values 

Shrinkage γh = 1.17-.00114h                                                                         (6.7) 

where h is the avg. thickness of the member in mm 

(b). Volume-surface ratio method (γvs) (more accurate method) 

Shrinkage vsγ = 1.2 exp (-.12v/s)                                                                   (6.8) 

Where v/s is the volume-surface ratio of the member in inches  

Shrinkage vsγ = 1.2 exp (-.00472 v/s)                                                             (6.9) 

Where v/s in mm 

In either method shγ should not be taken less than 0.2. Also ushsh )(εγ ≥  100 x 10-6 

in./in.(m/m) is used if concrete is under seasonal wetting and drying cycles and 

ushsh )(εγ ≥ 150 x 10-6 in./in. (m/m) if concrete is under sustained drying condition. 

5. Temperature other than 70F (21C): This effect is usually considered to be less 

important than relative humidity since the operating range of most structures is 

small. 

6. Correction Factors for Concrete Composition: 
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(a). Slump:  

Shrinkage sγ = 0.89+.00161s                                                            (6.10) 

Where s is observed slump in inches 

 (b). Fine aggregate percentage: 

For ψ ≤  50 percent 

Shrinkage ψγ  = 0.30 + 0.14ψ                                                           (6.11) 

      For ψ > 50 percent 

       Shrinkage ψγ  = 0.90+ 0.002 ψ                                                        (6.12) 

ψ  is the ratio of the fine aggregate to total aggregate by weight expressed as 

percentage. 

(c) Cement Content: 

Shrinkage cγ = 0.75 + .00061c                                                          (6.13) 

where c is cement content in Kg/m3 

(d) Air Content: 

Shrinkage αγ = .95 + .008α                                                              (6.14) 

where α is the air content in percent 

5. Shrinkage ratio of concrete with equivalent paste quality: Shrinkage strain is 

mainly a function of shrinkage characteristic of the cement paste and of the 

aggregate volume concentration. 

3/1
2

3/1
1

2

1

)(1
)(1

)(
)(

v
v

ush

ush

−
−

=
ε
ε

                                                                                     (6.15) 

where 21 )/()( ushush εε is the ratio of shrinkage strain of two mixes with different 

content of paste with equivalent paste quality and v1 and v2 are the total aggregate 

solid volumes per unit volume of concrete for each one of the mixes. 
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6.2.3.1.2 Bazant model (1996) 

He proposed what is called B3 model which is as following- 

Mean Shrinkage strain in the cross section: 

)(),( 0 chshsh ttSktt −−= ∞εε                                                                              (6.16) 

Time curve: 

2/10 )tanh()(
sh

c
ttttS

τ
−

=−                                                                                (6.17) 

Humidity Dependence: 

kh = 1-h3
     for h≤  .98                                               (6.18) 

    = -0.2    for h = 1 (swelling in water) 

    = linear interpolation for .98≤  h≤  1 

Size dependence: 

shτ =0.085tc
-0.08fcm28

-0.25[2ks(V/S)]2 in SI unit                                                (6.19a) 

     =190.8tc
-0.08fcm28

-0.25[2ks(V/S)]2 in in.-lb units                                          (6.19b)  

where V/S is the volume to surface area ration and ks is the effective cross-section 

shape factor 

ks = 1.00    for infinite slab 

    = 1.15     for infinite cylinder 

    = 1.25    for infinite square prism 

    = 1.30     for sphere 

    = 1.55     for a cube 

)(

607

shctcm

cm
ssh E

E

τ

εε
+

∞∞ −=                                                                                    (6.20) 

typical values of ∞shε range from 300x10-6 to 1100x10-6  

⎟
⎠
⎞

⎜
⎝
⎛

+
=

t
tEE cmcmt 85.0428                                                                                 (6.21) 

]270)(26[ 28.'1.2
21 += −

∞ cs fwααε   ( in 10-6)                                       (6.22) 

 

'28.
01 8.190 cftk −=   days in-2                                                            (6.23) 

qα = 1.0 for Type I cement 

     = .85 for Type II cement 

     = 1.1 for Type III cement 
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and 2α  = .75 for steam cured specimens 

            = 1.0 for 100% RH 

 = 1.2 for specimens sealed during curing 

6.2.3.1.3 Gardner and Lockman model (2001) 

They proposed a design office procedure for calculating shrinkage. They used 

28 day compressive strength and a factor K for accommodating different types of 

cement. They suggested by using different values of K it is also possible to include 

the effects of Fly Ash and Ground Granulated Blast Furnace Slag. According to there 

model shrinkage can be estimated using the following equation- 

)()(),( cshucsh tthtt −= ββεε                                                                            (6.24) 

)18.11()( 4hh −=β                                                                                       (6.25) 

62/1

28

10.)30.(.900 −=
cm

shu f
Kε                                                                            (6.26) 

2/1

2)/(12.0)(
)()( ⎥

⎦

⎤
⎢
⎣

⎡
+−

−
=−

SVtt
tttt

c

c
cβ                                                                (6.27) 

where 

h= humidity expressed as a decimal; 

t= age of concrete, days; 

tc= age drying commenced, end of moist curing, days; 

K= 1 for Type I cement; 

K= .70 Type II cement 

K= 1.15 Type III cement; 

V/S= volume-surface ratio, mm; 

fcm28= concrete mean compressive strength at 28 days, MPa 

They also proposed an equation to predict the mean compressive strength at t days. 

4/3

4/3

28 .tba
tff cmcmt +

=                                                                                   (6.28) 

for 
 
Type I cement concretes, a=2.8 and b=0.77                                               (6.28a) 

Type II cement concretes, a=3.4 and b=0.72                                              (6.28b) 

Type III cement concretes, a=1.0 and b=0.92                                             (6.28c) 
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For Blended cement concretes containing Fly Ash or Slag the measured 

concrete strengths should be used to determine which of the equations (5a), (5b) or 

(5c) best represents the test results to determine the value of K to be used in the 

shrinkage prediction equation.  

6.2.3.1.4 The AASHTO specification model (2000) 

31051.0).
35

( −×
+

=
t

tkk hsshε                                                                         (6.29) 

For moist cured concrete, 

923
)/(70.31064

45

26 )/(0142.0 SV

t
t

te
t

k
SV

s
−

×

+

+=                                                         (6.30) 

where, V/S is the volume to surface ratio and 

70
140 Hkh

−
=   For H < 80%                                                                        (6.31a) 

 

70
)100(3 Hkh

−
=   For H ≥ 80%                                                                    (6.31b) 

where H = relative humidity (%) 

6.2.3.1.5 CEB MC90-99 model 

The CEB MC90 model was originally proposed by Muller and Hilsdorf (1990) and was 

intended to predict the time-dependent behavior of a concrete member. The concept 

was similar to that of ACI 209R-92.For high performance concrete a new approach 

subdivides the total shrinkage into autogenous shrinkage and drying shrinkage. This 

model is regarded as CEB MC90-99; where the drying shrinkage component is 

closely related to the CEB MC90 (CEB 1993) model.  

The total shrinkage εsh(t,tc) can be calculated from Eq. (6.31) 

),()(),( ccdscascsh ttttt εεε +=                                                                           (6.32) 

Where εsh(t,tc) is the total shrinkage, εcas(t) the autogenous shrinkage, and εcds(t,tc) is 

the drying shrinkage of concrete at t (days) after beginning of drying. The 

autogenous part is calculated according to the following equation: 

)()()( 28 tft ascmcasocas βεε =                                                                              (6.33) 

where, 

6
5.2

28

28
28 10

/6
/)( −×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−=
cmocm

cmocm
ascmcaso ff

fff αε                                                      (6.34) 

and, 
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⎛
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ttasβ                                                                          (6.35) 

where, 

fcm28 = 28-day mean compressive strength of concrete (MPa or psi) 

fcmo = 10 MPa (1450 psi) 

t = age of concrete 

t1 = 1 day 

αas = coefficient depending upon type of cement (Table 6.3) 

Table6.3 – Coefficients for CEB MC90-99 model 

Type of cement αas αds1 αds2 

SL (slowly-hardening cements) 800 3 0.13 

N or R (normal or rapid hardening cements) 700 4 0.12 

RS (rapid hardening high-strength cements) 600 6 0.12 

 

The drying shrinkage is calculated from the following equation. 

)()()(),( 28 cdsRHcmcdsoccds tthftt −= ββεε                                                            (6.36) 

Where εcdso(fcm28) is the notional drying shrinkage coefficient and the factor βRH(h) 

takes into account the effect of relative humidity. βds(t-tc) is a time function from 

equation (6.38). 

( ) ( )[ ] 6
282128 10/exp110220)( −×−+= cmocmdsdscmcdso fff ααε                                    (6.37) 
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1.0

28
1

5.3
⎟⎟
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⎞
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⎝

⎛
=

cm

cmo
s f

f
β                                                                                          (6.40) 

where αds1 and αds2 are coefficients depending on the type of cement (Table 6.3). βs1 

takes into account the effect of self-desiccation in high-performance concrete. 

h = ambient relative humidity in decimal 

h0 = 1 

V/S = Volume to surface ratio in mm (in) 

(V/S)0 = 50 mm (2 in) 
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fcmo = 10 MPa (1450 psi) 

tc = age of concrete at beginning of drying (days) 

t1 = 1 day 

6.2.3.2 Comparison with models 

Comparisons of the experimental values of shrinkage for the six mixtures with 

the above discussed models are shown in Figure 6.10. 
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                                 (e)                                                                 (f)                              

Figure6.10 Comparison of free shrinkage with different available models for (a) SCC 
A (70-30) (b) SCC B (50-50) (C) SCC C (30-70) (d) SCC D (0-100) (e) SCC E (F) (f) 

SCC F (SRA) 
From the above figures the following conclusions can be made: 

1. All the prediction models grossly under estimate the free shrinkage values 

for SCC mixtures at early age except for SCC E (F) and SCC F (SRA). 

2. For SCC A (70-30) through SCC D (0-100), the 90-day shrinkage value 

was best predicted by ACI 209R model. Almost all of them have similar 

shrinkage values at the age of 90 days after casting. Similar results were 

obtained by Poppe and Schutter (2005). 

3. Other models grossly under estimate the shrinkage value at early age as 

well as at later stages for SCC A (70-30) through SCC D (0-100). 

4. CEB MC90-99 model under estimated the shrinkage values in all the cases 

and predicted the lowest shrinkage values. 

5. The B3 and AASHTO model shrinkage were close at later stage and 

predicted closest to the values given by ACI 209R model and the values 

for SCC mixtures. 

6. SCC E (F) and SCC F (SRA) behaved differently than other SCC mixtures 

due to the fiber and SRA content. The GL and CEB MC90-99 models were 

closest to the final shrinkage value for SCC E (F) and all the other models 

over estimated the shrinkage values. 

7. Due to the effect of SRA the shrinkage values for SCC F (SRA) was the 

lowest and when compared to the models, it was closest to the values 
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predicted by CEB MC90-99 followed by the GL model. All the other models 

over estimate the shrinkage values for SCC F (SRA). 

ACI 209.2R-08 explained that due to wide variation between material, mixtures, 

pouring, admixtures and other effects, it is unrealistic to expect results from the 

prediction models to be within ± 20% of the test data. Also, the prediction 

models were calibrated only for normal concrete with typical compositions but not 

for concrete containing slag, silica fume, fly ash or limestone powders. Hence 

models for concretes made with such materials should be calibrated by testing.  

 As seen from the figures, the shrinkage values predicted by ACI 209R model 

resembles most closely to the experimental results, it was decided to calibrate 

the ACI model for SCC A (70-30) through SCC D (0-100) which were normal SCC 

mixtures without any addition of fibers or SRA. As SCC E (F) and SCC F (SRA) 

shrinkage values were close to the CEB MC90-99 and the GL model, any one of 

them can be used to predict the ultimate free shrinkage values. 

 

6.2.3.3 Proposed model 

In this study, the inverse best-fit method as recommended by ACI 209R was 

adopted to find the prediction equation on the basis of the experimental values 

obtained in this research. The ACI prediction equation was given by Eq. (6.1). By 

inversing the equation the following equation is achieved. 

shushush t
f

t εεε
11

)(
1

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=                                                                             (6.41) 

Equation (6.40) is a linear equation of the form y = mx+ c. As all the mixtures 

had a same w/p ratio of 0.30, same w/cm ratio of 0.40 and all the mixtures 

contained LP, they can be grouped together on shrinkage point of view. Hence, 

the experimental data were manipulated using equation (6.40) and a linear best-

fit curve was obtained. The typical plot and the equation of the best-fit curve 

results is illustrated in the Figure 6.11. From the slope and intercept of the fitting 

curve, the values of f and εshu were calculated. The computed values for f and εshu 

were 9.25 and 715 respectively.  
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Figure6.11 Typical plot of the best-fit curve 
 

 The proposed prediction curve as well as the experimental values is plotted in 

Figure 6.12.  

 

Figure6.12 Comparative plots of proposed model and experimental values 
 

(Proposed prediction equation) 
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McDonald and Roper (1993) mentioned that a residual plot can give a good idea 

about the accuracy of a prediction model. Positive residuals indicates that the model 

overestimated the values and negative residuals indicate that the model 

underestimate the results. A model is said to be better if the values are closer to the 

zero axis and evenly distributed in the positive and negative ranges. Figure 6.13 

shows the residual plots for the model and the SCC mixtures. As seen from the 

figure, almost all the values are closer to the zero axis and are evenly oriented along 

the axis signifying a good model. 

 

Figure6.13 Residual plot of the proposed model 
As seen from the above figures, the model gives fairly good results for all the 

SCC mixtures. This model can be used for SCC mixtures with LP and having a w/p 

ratio of 0.30. As the number of data was very less for this study, more experiments 

will be conducted in the future to validate the model.  
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6.3 Restrained Shrinkage of SCC Mixtures 

6.3.1 Introduction 

 In the previous chapters and sections, the fresh properties, compressive 

strength, splitting tensile strength and free shrinkage properties of different SCC 

mixtures were investigated. Those properties are regarded as very important 

parameters with respect to the performance criteria of SCC. However, for different 

structures like bridge decks, the cracking is induced by restraints from the 

reinforcements or the boundary condition which can have direct impact on their 

safety and service life. Also, as SCC is a new type of concrete, the cracking 

tendencies may be different than the normal concrete or the HPC due to the effect of 

higher fines, different rheology or different admixture contents. Hence, a better 

understanding of cracking properties of SCC is essential to anticipate or prevent 

crack development. The restrained shrinkage test had been so far a useful test 

method to evaluate the cracking potential of concrete mixtures. 

 Between the different restrained shrinkage tests available as discussed in 

Chapter 2, ring test is being used by the researchers very often due to its simplicity 

and ease of implementation. Also, the ring test provides sustained and sufficient 

restrain to induce cracking for an affordable size specimen. In 1998, AASHTO 

adopted the ring test as a provisional test standard test (AASHTO 1998). ASTM C 

1561-04 (Standard Test Method for Determining Age at Cracking and Induced 

Tensile Stress Characteristics of Mortar and Concrete under Restrained Shrinkage) 

proposed a very similar standard for determination and estimation of restrained 

shrinkage cracking potential of concrete mixtures. Recently, several researchers 

have used the ring test to investigate the restrained properties of concrete (Gong, 

2006). Hwang and Khayat (2008) recently investigated the effect of mixture 

composition on restrained shrinkage cracking of self-consolidating concrete used in 

repair. Turcry et. al. (2006) investigated the cracking tendency of self-compacting 

concrete subjected to restrained shrinkage. They all have used ring test to study the 

restrained shrinkage cracking behavior. 

 In this study, the AASHTO type ring test was adopted to investigate the 

restrained shrinkage cracking behavior of the selected SCC mixtures. ASTM type ring 

test is very similar except some dimensional variation of the ring and the concrete 

thickness compared to AASHTO ring test. The ASTM ring test limits the applicability 

of the test for aggregates of 13 mm (0.5 in) maximum nominal size or less. There 

was no such restriction for AASHTO ring test. This may be due to the reduced 
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concrete thickness in case of the ASTM ring test. As in this experimental study, the 

nominal maximum size of the aggregated in some of the mixtures exceeded the 

limiting value provided in the ASTM; AASHTO ring test was followed instead of the 

ASTM ring test. ASTM ring test additionally provide some formulas to calculate the 

stress rate in the ring specimens and also gives a potential for cracking classification 

among the samples based on net time to cracking and average stress rate. These 

formulas will be modified for the AASHTO ring test based on the revised dimensions 

and the cracking potential of the selected six SCC mixtures will be investigated in 

this chapter. 

6.3.2 Testing Procedure 

 The testing was conducted as per “Standard Practice for Estimating the 

Cracking Tendency of Concrete (AASHTO Designation: PP 34-pp (2006)) which was 

originally approved in December 1997. This provisional standard was first published 

in June 1998, reconfirmed in 2005 and again in 2006. The details of the test method 

are described as follows: 

a) The test specimen was made of a concrete ring cast around a steel ring. The 

outside diameter of the concrete ring was 457 mm (18 in) and the outside 

diameters of the steel ring were 305 mm (12 in) and 280 mm (11 in), 

respectively. The inner and outer faces of the steel ring were machined to a 

smooth polished surface. The height of the ring was 152 mm (6 in). The set 

up is shown in figure 6.14.  Although, structural steel pipe conforming to 

ASTM A 501 or A 53M/ A 53 12 –in extra-strong with an outside diameter of 

324 mm (123/4 in) and a wall thickness of 13 mm (1/2 in) may be used, if the 

inner and outer faces are machined to a smooth, polished surface. In this 

experiment, the second set of dimensions was used. 

b) The types of mixtures in this test are the same as those used in the free 

shrinkage tests. For each mixture, three replicate rings were cast. Two for the 

measurement of strain versus time and the remaining for the temperature 

measurement. The preparation of the concrete followed the relevant 

requirements of ASTM M 210 an ASTM R 39. A total of 18 ring samples were 

tested. 

c) The concrete ring was cast within an exterior plastic mold and steel ring, 

placed over a plywood board. After 24 hours curing under wet burlap, the 

specimens were demolded and coated with silicon caulk on the top surface. 

Care was taken to seal the top and bottom face of the concrete ring so that 
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evaporation of moisture can not take place through the surfaces. All the 

specimens were then moved to a controlled environmental chamber with a 

constant temperature of 23 oC (73 oF) and relative humidity of 50%, which 

was same as the environmental conditions for the free shrinkage test. 

d) Four strain gauges were used for each ring specimen. They were used to 

measure the strain inside the steel rings and automatically capture the 

cracking onset time. Strain gauges were bonded at four equidistant mid-

height locations on the interior surface of the steel ring. 

e) A highly sensitive data acquisition system was used in this study. The strain 

readings were automatically recorded every 2 minutes. 

f) A strain decrease of more than 30 microstrains in one or more gauges usually 

indicates cracking as per the AASHTO standard. Though all the cracking 

occurred before 35 days, strain readings were continued until 90 days after 

casting to study the behavior of the post-cracking strain in the rings. 

Figure 6.15 shows a typical specimen with strain gauges bonded to the 

interior surface of the steel ring, and Figure 6.16 shows an overview of the 

test setup in the environmental chamber. 

 

 

 
(1 mm = 0.03937 in) 

 
Figure6.14 Schematic view of a ring specimen 
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Figure6.15 Close view of a typical ring specimen with strain gauges  
 

 
Figure6.16 Overview of test setup 
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6.3.3 Results and Discussions 

6.3.3.1 Strain versus time for ring specimens 

                                 (a)                                                                (b)                              

                                 (c)                                                                (d)                              

                                (e)                                                                   (f)                                 

Figure 6.17 Strain developments with time inside steel ring 
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 Figure 6.17 illustrates the strain development inside the steel ring with time 

for the selected six SCC mixtures. As stated earlier, two rings were monitored for the 

strains; average for each ring were calculated and plotted in the above figures. As 

seen from the figure, the two rings for each concrete cracked almost at the same 

age. The cracking point can be seen very clearly from the figures where the strain 

abruptly changed and moved vertically upward. The following table lists the cracking 

age of individual rings and the average cracking days for all the mixtures. 

Table6.4 – Cracking age for selected SCC mixtures 

Cracking Age 
SCC Aggregate Fraction 

Ring 1 Ring 2 

Avg. 
Cracking 
Age (tcr) 

SCC A (70-30) 0.35/0.15/0.50/LP 23.52 22.67 23.10 
SCC B (50-50) 0.25/0.25/0.50/LP 11.89 10.54 11.21 
SCC C (30-70) 0.15/0.35/0.50/LP 15.80 16.76 16.28 
SCC D (0-100) 0.0/0.50/0.50/LP 13.21 13.21 13.21 

SCC E (F) 0.35/0.15/0.50/LP/F 20.47 20.46 20.47 
SCC F (SRA) 0.35/0.15/0.50/LP/SRA 30.69 29.81 30.25 

 

As seen from the above table, SCC F (SRA) cracked after 30.25 days after starting of 

drying which is the highest and SCC B (50-50) cracked after 11.21 days after 

initiation of drying and is the lowest value among all the mixtures. Figure 6.12 shows 

typical cracks on the ring surface. 

 

 

 

 

 

 

 

Figure6.18 Typical crack on ring surface 
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Surface 
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 The mixture containing the SRA cracked last as expected followed by the 

mixture SCC A (70-30) and the mixture containing fiber. These mixtures cracked 

between 20 to 30 days after initiation of drying. In the other three remaining 

mixtures, cracking occurred between 11 and 16 days which are substantially lower 

than the previous three mixtures. This may be due to the effect of SRA, fiber and 

aggregate gradation. SCC F (SRA) showed minimum free shrinkage compared to 

other mixtures and this is one of the main reasons that it cracked last. SCC E (F) 

contained fibers and its free shrinkage was also next to SCC F (SRA) owing to higher 

age of cracking. SCC A does not contained SRA or the fiber but still had a higher 

cracking onset day. This may be due to its higher CA 25 content. The w/cm ratio is 

the most important parameter affecting strength and the effect of the aggregate is 

generally ignored. But in case of tensile and fracture properties its effect can not be 

ignored (Mindess et. al., 2003). An increase in coarse aggregate size and quantity 

generally results in an increase in tensile strength and fracture energy due to the 

greater tendency toward crack bridging and the greater path length as cracks pass 

around the aggregate particles.  As the fracture properties are improved by the 

higher CA size and content, SCC A (70-30) which had a highest percentage of CA 25 

mm compared to other concretes cracked at a later stage. Similar observation can be 

made for SCC C (30-70) and SCC D (0-100). Due to higher percentage of CA 25 in 

SCC C (30-70) it cracked at a later day than SCC D (0-100). Although SCC B (50-50) 

is an exception of the above mentioned justification, the cracking onset day was 

really close to that of SCC C (30-70) and SCC D (0-100). To strengthen the 

justification, the following figure is plotted. 

Figure6.19 Average age of cracking versus (a) CF (b) WF 
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Figure 6.19 illustrates the relation between average age of cracking and CF and WF. 

As seen from the figure, there is definitely a trend between the two. Higher the CF, 

higher was the age when cracks developed. It supports the facts concluded above. 

Relation between WF and the age of cracking is just a mirror image of the plot 

between CF and age of cracking. Higher the WF, higher is the tendency to develop 

cracks early. 

6.3.3.2 Relation between free shrinkage and restrained shrinkage 

To investigate the relation between free, autogenous and drying shrinkage with the 

restrained ring shrinkage the following figures are plotted. 

 

 

 

 

 

 

 

 

 
 
 
 
 
                                                                      (a)                                                  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                       (b)                       
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                                                           (f)                                                         
Figure6.20 Shrinkage comparisons for (a) SCC A (70-30) (b) SCC B (50-50) (C) SCC 

C (30-70) (d) SCC D (0-100) (e) SCC E (F) (f) SCC F (SRA) 
 

Figure 6.20 illustrates the nature of different shrinkage curves for each SCC mixtures 

I this experiment. It is observed from the figures that cracking occurred at a period 

which is very near to the zone when the drying shrinkage values were maximum. It 

is also observed that SCC A (70-30) through SCC D (0-100) cracked when the drying 

shrinkage reached a maximum value around 300 microstrains. SCC E (F) and SCC F 

(SRA) cracked at a much lower drying shrinkage values of the shrinkage specimens. 

Another observation can be made that the mixtures which cracked at a later stage 

like SCC A (70-30), SCC E (F), and SCC F (SRA), the specimens cracked after the 

drying shrinkage reached its highest value. While SCC B (50-50), SCC C (30-70), 

and SCC D (0-100) cracked at the time when the drying shrinkage reach its peak 

value or just before that. 

6.3.3.3 Comparison with HPC 
 Comparison can be made with a similar work made by Gong (2006) 

for HPC mixtures. The result of the ring test has been presented in Table 6.5. SL-SF-

0.35 represents the mixture contains SL and SF with a w/cm ratio of 0.35. Similar 

nomenclature was followed for all the mixtures. MK represents Metakaoline. The 

results for w/cm ratios of 0.30, 0.35, and 0.40 are presented below and compared 

with the results for the SCC mixtures in this experiment. 
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Table6.5 – Cracking onset days for different HPC mixtures 

Mixtures 

Average onset 

of cracking 

(days) 

SL-SF-0.40 13 

FA-SF-0.40 13 

MK-0.40 12 

SL-SF-0.35 10 

FA-SF-0.35 11 

MK-0.35 12 

SL-SF-0.30 8 

FA-SF-0.30 9 

MK-0.30 8 

 

(Adopted from Gong, 2006) 

As seen from the above table that average cracking onset was less for low w/cm 

ratios and vice versa. This may be due to the higher powder content of the low w/cm 

mixtures. It is observed that the values varied between 8 and 13 days. Where as the 

cracking onset day for the SCC mixtures varied from 11 to 30 days. Most importantly 

the water to binder ratio of the SCC mixtures was around 0.30. When compared to 

the HPC mixtures with w/cm of 0.30, it was no doubt superior in terms of restrained 

shrinkage cracking. This may be due to the advantageous effect of the admixtures, 

fiber, and also may be due to the presence of LP. Hence it may be concluded that 

these SCC mixtures are superior in terms of restrained shrinkage cracking compared 

to typical HPC mixtures. Though, due to variation in different parameters and test 

procedure, more experiments should be conducted before coming to any conclusion. 

6.3.3.4 Post-cracking ductility of FRSCC 

 Plain concrete is a brittle material with low tensile strength and strain 

capacities. To overcome these disadvantages, fibers are added to the matrix.  Fiber 

reinforced concrete may be defined as concrete incorporating short, discrete, and 

discontinuous fibers (Mindess, 2003). The purpose of fibers is not to increase the 

strength but to control the cracking and then to modify the behavior of the material 

once the concrete matrix has cracked. Fibers provide post-cracking ductility by 

bridging across the cracks as they begin to open. Hence, addition of fibers may or 

may not significantly increase the strength, but they have enormous effect on the 
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toughness of the concrete mixture. The increase in toughness occurs in the post-

cracking parts of the curves. Hence addition of fibers does not necessarily mean that 

cracking potential of the concrete mixture is higher but it signifies that the post 

cracking behavior of the concrete will be definitely better and the ductility provided 

by the fibers will resist any sudden failure of the member.  

 The cracking and post cracking behavior of the fiber reinforced SCC 

(FRSCC) mixture can be compared with the other mixtures for this experiment. As 

seen from Figure 6.17, the strains in the concrete rings just before and after cracking 

were closest for SCC E (F). The differences in strains for the SCC mixture containing 

fibers were around 30 microstrains, whereas for all the other SCC mixtures it was 

more than 50 microstrains. It supports the crack-bridging principle of the fibers as 

stated earlier.  

 The post cracking strains of the SCC mixtures other than SCC E (F) 

shows an irregular pattern with high variation and random pattern of strains. 

Although, SCC F (SRA) showed a better post cracking strain behavior, the sudden 

decrease in strains just before and after cracking indicates very low ductility and 

chances of sudden failure. Whereas, SCC E (F) showed a very ductile nature of strain 

pattern after the cracking onset. The strain values after cracking onset were very 

consistent and varied only between 30 and 40 microstrains, thus indicting a very 

good ductility. Hence it may be concluded from the above discussion, that though 

SCC E (F) does not developed a very good resistance to initial crack occurring 

compared to SCC F (SRA) and SCC A (70-30), but it developed a very good post-

cracking behavior and ductility compared to the other mixtures. Further study may 

be conducted on the beneficial role of fibers on SCC by measuring the crack growth 

and conducting fracture tests. 

6.3.3.5 Potential for cracking for different SCC mixtures 
 

ASTM C 1581-04 describes a process to calculate the stress rate q for each test 

specimen and the net time to cracking and q are correlated to potential for cracking 

of concrete mixtures. The basic equation is as follows: 

εnet = α√t + k                                                                                              (6.42) 

where, 

εnet = net strain, m/m (in/in) 

α = strain rate factor for each strain gage on the test specimen, (m/m)/day½ 

((in/in)/day1/2) 
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where, 

q = stress rate in each test specimen, MPa/day (psi/day), 

G = 72.2 GPa (10.47 x 106 psi) is a constant based on the ring dimensions 

avgα = absolute value of the average strain rate factor for each test specimen, 

(m/m)/day½ ((in/in)/day1/2), and 

tr = elapsed time at cracking, days 

 The net strain is defined as the difference between the recorded 

strain starting from the age of drying in the steel ring and the initial strain. To find 

the strain rate factor α, net strain and square root of elapsed time were plotted. 

Linear regression analysis was done to fit a straight line through the data. The strain 

rate factor was the slope of the line. A typical example of calculating the strain rate 

factor is described below. Figure 6.21 shows a typical plot for net strain and square 

root of time. 

Figure6.21 Net strain versus square root of time for SCC A (70-30) 
In Figure 6.21, net strain for SCC A (70-30) was plotted against square root of 

elapsed time. Two curves were obtained for two rings. Then linear regression 

analysis was performed to fit two straight lines. The equations of the straight lines 

are shown in the figure. From the equations, the α and k values were computed. 
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Similar procedure was followed for each SCC mixtures. The results for avgα  and 

k for all the mixtures are shown in Table 6.6 below: 

Table6.6 – Strain rate factor for different SCC mixtures 

  avgα  k  

  ((m/m)/day1/2)   
Ring Specimen 1 1.54045E-05 1.5E-07 

SCC A (70-30) 
Ring Specimen 2 1.88231E-05 4E-06 
Ring Specimen 1 0.00002329 5.1E-06 

SCC B (50-50) 
Ring Specimen 2 1.85127E-05 1.5E-06 
Ring Specimen 1 2.29183E-05 8.3E-06 

SCC C (30-70) 
Ring Specimen 2 3.19655E-05 7.2E-06 
Ring Specimen 1 2.67081E-05 1.7E-05 

SCC D (0-100) 
Ring Specimen 2 2.76598E-05 1.8E-05 
Ring Specimen 1 1.70046E-05 8.2E-06 

SCC E (F) 
Ring Specimen 2 0.000017225 3.8E-06 
Ring Specimen 1 1.85336E-05 1.2E-05 

SCC F (SRA) 
Ring Specimen 2 1.74687E-05 1.8E-05 

  

The above values are the average strain rate factor for each test specimen. The αavg 

values will be used to calculate the stress rate factor, q. As described in Equation 

(6.43), the stress rate, q depends on a constant G that depends on the ring 

dimensions. As the ring dimensions in the ASTM and the AASHTO ring test is 

different, this factor should be modified properly if the equation is applied for the 

AASHTO ring specimens as tested in this experiment. 

6.3.3.6 Modification of the constant, G 

To modify the value of the constant, G, basic stress-strain behavior of the ring 

specimens was reviewed. Since the concrete ring is restrained against horizontal 

movement by the steel ring, internal pressure p will be developed as the concrete 

shrinks. The steel ring will experience deformation under compression. The 

interaction between the steel ring and the concrete ring can be illustrated in Figure 

6.22. 
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Figure6.22 Interaction between concrete ring and steel ring 
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Where, 

RIC = the inner radius of concrete ring 

ROC = the outer radius of the concrete ring 

RIS = the inner radius of the steel ring 

ES = the Young’s modulus of steel 

The stress rate, q in Equation (6.43) can be derived by differentiating Equation 

(6.44) with respect to time and equating –εsteel(t) in Equation (6.44) to εnet as 

( )
r
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t

G

dt
ktd

G
dt
d

q
2

αασ
=

+
==                                                                  (6.46) 

 If the values of the parameters as per ASTM ring tests are applied to 

Equation (6.45), the resulting value of G becomes 72.2 GPa (10.47 x 106 psi). The 

input parameters for the ASTM ring tests are shown in Table 6.7 below: 

Table6.7 – G for ASTM ring geometry 

Es 199947.96 MPa 
ROS 165.1 mm 
RIS 152.4 mm 
ROC 203.2 mm 

G = 72.244 GPa 
(1 MPa = 145 psi, 1 mm = 0.039 in) 

Since the values for the AASHTO ring dimensions are different than the ASTM ring 

dimensions, the same formula is applied to calculate the G value for the AASHTO 
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ring test also. The input parameters for this experiment are shown in Table 6.8 

below: 

Table6.8 – G for AASHTO ring geometry 

Es 199947.96 MPa 
ROS 161.9 mm 
RIS 149.2 mm 
ROC 238.1 mm 

G = 40.986 GPa 
 

(1 MPa = 145 psi, 1 mm = 0.039 in)) 

 

After using the modified values for AASHTO ring dimension as illustrated in Table 

6.7, the value of G obtained as 40.986 GPa (5.9446 x 106 psi). This value of G will 

be used in the Equation (6.43) to evaluate the stress rate factor, q. 

 The values of G, αavg, and tr were used as input for Equation (6.43) 

and the resulting values of q were tabulated in Table 6.9. The average stress rates, S 

were calculated for the test specimens to the nearest MPa/day (psi/day). 

Table6.9 – Stress rate factors for different SCC mixtures 

 q tcr Savg 

   (MPa/day) (days) (MPa/day) 
Ring Specimen 1 0.07 

SCC A (70-30) 
Ring Specimen 2 0.08 

23 0.07 

Ring Specimen 1 0.14 
SCC B (50-50) 

Ring Specimen 2 0.12 
11 0.13 

Ring Specimen 1 0.12 
SCC C (30-70) 

Ring Specimen 2 0.16 
16 0.14 

Ring Specimen 1 0.15 
SCC D (0-100) 

Ring Specimen 2 0.16 
13 0.15 

Ring Specimen 1 0.08 
SCC E (F) 

Ring Specimen 2 0.08 
20 0.08 

Ring Specimen 1 0.07 
SCC F (SRA) 

Ring Specimen 2 0.07 
30 0.07 

(1 MPa/day = 145 psi/day) 

  

 

To study the effect of CF on the average stress rate, Figure 6.23 is plotted as shown 

below. 
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 (1 MPa/day = 145 psi/day) 

Figure6.23 CF versus average stress rate 
 

As seen from the above figure, average stress rate were lowest for higher CF and 

vice versa.  

ASTM C 1581-04 furnishes a table to calculate the potential for cracking classification 

based on the values of net time-to-cracking and average stress rate, S. The following 

Table 6.10 illustrates the potential for cracking classification: 

Table6.10 – Potential for cracking classification 

Net Tim-to-Cracking, 

tcr days 

Average 

Stress Rate, S 

(psi/day) 

Average Stress 

Rate, S 

(MPa/day) 

Potential for 

Cracking 

0< tcr ≤ 7 S ≥ 50 S ≥ 0.34 High 

7< tcr ≤ 14 7≤ S < 14 0.17≤ S < 0.34 Moderately-High 

tcr ≤ 28 14≤ S < 25 0.10 ≤ S < 0.17 Moderately-Low 

tcr ≥ 28 S < 15 S < 0.10 Low 

(1 MPa/day = 145 psi/day) 

(Adopted from ASTM C 1581-04) 

 

Table 6.10 can be used to assess the relative performances of the concrete mixtures. 

The values for the selected SCC mixtures can be compared from Table 6.9 to assess 

the relative potential for cracking of the developed mixtures. Table 6.11 shows the 
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potential for cracking of the selected SCC mixtures based on net time-to-cracking 

and average stress rate, S. 

Table6.11 – Potential for cracking for selected SCC mixtures 

 

 

Potential for cracking 
based on net time-to-

cracking (tcr, days) 

Potential for cracking based 
on average stress rate (S, 

MPa/day) 

SCC A (70-30) Moderately-Low Low 

SCC B (50-50) Moderately-High Moderately-Low 

SCC C (30-70) Moderately-Low Moderately-Low 

SCC D (0-100) Moderately-High Moderately-Low 

SCC E (F) Moderately-Low Low 

SCC F (SRA) Low Low 

 

 It is observed from the above table that all the SCC mixtures had 

moderately-low to low cracking potential based on average stress rate. SCC F (SRA), 

SCC E (F), and SCC A (70-30) had the lowest average stress rate, hence it had the 

lowest potential for cracking as expected. All the other mixtures had a moderately-

low potential for cracking based on the average stress rate. 

 Potential for cracking based on net time-to-cracking indicates a low to 

moderately-high cracking potential for the SCC mixtures. SCC F (SRA) had a low 

potential for cracking followed by SCC A (70-30) and SCC F (SRA) which had 

moderately-low potential for cracking. SCC B (50-50) and SCC D (0-100) had a 

moderately-high possibility of cracking when compared to the net time-to-cracking. 

 From the above discussion, it may be concluded that all the SCC 

mixtures were good against cracking with SCC F (SRA) having the lowest potential 

for cracking and SCC B (50-50) and SCC D (0-100) having moderately-high potential 

for cracking. All the other mixtures had moderately-low potential for cracking. Hence 

it is recommended that SCC B (50-50) and SCC D (0-100) may not be used where 

cracking can be a crucial factor like tanks, bridge decks and other important 

structures. 

 It may be also concluded from Figure 6.23 and Table 6.8 that the 

mixtures having higher CF had the lowest average stress rate subsequently lower 

potential for cracking. SCC A (70-30), SCC E (F), and SCC F (SRA) had the highest 
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CF and subsequently the lowest potential for cracking. SCC D (0-100) had the lowest 

CF factor and developed highest average stress rate which ultimately led to a 

moderately-high possibility of cracking. SCC B (50-50) was the only exception. More 

test results are needed to support the fact. 

6.4 Concluding Remarks 

In this chapter the free and autogenous shrinkage of the selected SCC 

mixtures were investigated. In this study, the AASHTO type ring specimen test was 

adopted to investigate the restrained cracking behavior of the selected mixtures with 

LP. Also the effects of aggregate gradation, compressive strength, effect of fiber and 

SRA on cracking were investigated. Cracking potential of the mixtures was also 

investigated using ASTM C 1581-04. Total shrinkage values for the SCC mixtures 

were found to be similar to that of normal concrete mixtures and the HPC mixtures. 

Autogenous shrinkage had played a big part in the shrinkage values for all the SCC 

mixtures. SCC F (SRA) followed by SCC E (F) showed best performance regarding 

shrinkage. When compared to standard shrinkage prediction models, ACI model best 

predicted the shrinkage values for the SCC mixtures. The ACI equation was then 

calibrated for the mixtures containing LP. Restrained shrinkage tests illustrated that 

SCC mixtures were superior when compared to the HPC mixtures with SCC F (SRA) 

and SCC E (F) performing best. An elastic analysis followed by the procedure 

described in ASTM C 1581 was used to find the cracking potential for the SCC 

mixtures. The cracking potential was found to be good in general and was in the 

range of “low” to “moderately low” signifying better resistance against restrained 

shrinkage cracking. The chloride permeability, air-void parameters, and freeze-thaw 

resistance of the selected mixtures are discussed in details in the next chapter. 
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CHAPTER SEVEN 
 
DISCUSSIONS ON AIR-VOID PARAMETERS, FREEZING 

AND THAWING, AND CHLORIDE PERMEABILITY 
 
Concrete structures are particularly susceptible to attacks from external deleterious 

materials. It is of utmost importance that concrete structures should perform well 

during its expected service life without any major durability problem. That is, it 

should maintain its strength and serviceability during its life time. Although concrete 

is inherently a non-reactive durable material, it is vulnerable to attacks such as frost, 

deicing chemicals, and sulfate or chloride diffusion. Each of these processes involves 

movement of water or ions, transporting aggressive agents through the pore 

structures of concrete. As SCC is a new type of concrete with different pore structure 

and paste properties, it requires better evaluation of durability properties because of 

the potential complexity resulted from fillers, supplementary cementing materials or 

aggregates that may cause unexpected durability problem. In this chapter, the 

chloride permeability, air-void parameters, and freezing and thawing characteristics 

of the developed mixtures will be investigated. 

7.1 Chloride Permeability Test 

The problem of chloride attack arises usually when chloride ions ingress from 

outside. This can be caused by application of de-icing salts in bridge decks during 

winter season. Ingress of chloride ion takes place by none-steady state diffusion. The 

protective passive layer on the surface of embedded steel consists of gama-Fe2O3 

that tightly adheres to the steel, which protects the steel to be intact. However, this 

layer can be destroyed with the presence of chloride ion. This is one the major 

problem nowadays for the concrete bridge decks and girders in USA.  

7.1.1 Test Method 
 The rapid chloride permeability test (RCPT) is a measure of electrical 

conductivity or resistivity of concrete pore solution. The test was first adopted in 

AASHTO T 277 and later in ASTM C 1202 (Standard Test Method for Electrical 

Indication of Concrete’s Ability to Resist Chloride Ion Penetration), and is widely used 

due to its simplicity and rapidity. Many state departments and Federal Highway 

Administration (FHWA) recommended this test as standard method to evaluate 

chloride permeability for normal as well as high-performance concrete mixtures.  
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 The specimens were cast in plastic cylinder molds of diameter 101.6 mm and 

height 203.3 mm. All specimens were demolded after 24 hours of casting and cured 

under lime saturated water at 23±2  C. After curing for 56 days, all specimens were 

removed from water. For RCPT test, disc specimens were cut from the middle of 

cured cylinder specimens using a diamond cutting saw from each cylinder, two discs 

of size 102mm diameter and 51±3 mm height were collected. The middle discs were 

selected to avoid the heterogeneity of top and bottom portions of the cylinders. Disk 

specimens were coated on the circumferential surface, dried, put into beaker and 

vacuumed for 3 hrs. Then distilled water, which was boiled to escape bubbles, was 

let into the beaker and the disk was soaked with this water for 18 hours. Then, the 

disk specimens were taken out of water, put into chloride permeability cell and a 

constant voltage of 60 V was applied. 

 The specimens were tested between 60 and 62 days. This extra time was required 

to condition and prepare the specimens according to ASTM C 1202. For each 

concrete four discs were prepared. Two discs were tested with standard solutions of 

3% NaCl and 0.3N NaOH, respectively in ach cell as per the standard. The other two 

discs tested with water used for conditioning of specimens in each cell instead of the 

standard solutions. The later test is defined as ‘blank test’. The purpose of the blank 

test is to observe the effects of ionic species within concrete pore solutions 

introduced solely from chemical and mineral admixtures. The temperatures of the 

tests were monitored by inserting thermocouples inside the test specimens. The 

current and charge passed were recorded by printing at an interval of 5 minutes for 

the first hour and then using an interval of 30 minutes until the end of test.  

Figure 7.1 RCPT test being conducted in the laboratory 
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 There are some concerns regarding the RCPT test (Uchoa et. al., 2007). The 

major concerns are (1) it measures not only the chloride ions movement but other 

ions movement including hydroxide, which has greater mobility than chloride ions (2) 

high heat is generated due to high voltage applied across the specimens. This leads 

to higher values for RCPT tests and (3) the mineral admixtures such as silica fume, 

fly ash, and slag have significant effects on pore solutions that influences the 

electrical conductivity subsequently affecting the RCPT results. Lane (2005) proposed 

modifications to improve the reliability of the RCPT test results by using conductivity 

values obtained in the first 10 minutes of testing. This is due to the fact that many 

researchers reported heating problems due to the duration value of 6 hours for the 

test. That particularly influences the smaller size specimens which yields in greater 

charge passed. Hence it was suggested that the initial current measurement is more 

useful to estimate the specimen conductivity. Though Lane proposed the modification 

using first 10 minutes, most of the other researchers suggested using the 30 

minutes charge multiplied by 12 to avoid the heating effect. The use of early values 

also leads to reduce variability of the test results.  

7.1.2 Test Result and Discussion 

The summary of test results is shown in Table 7.1 below. 

Table 7.1 – Summary of charge passed results for all the mixtures 

Mixtures 
360 
min. 

10 
min. 
x 36 

30 
min. x 

12 
Blank 

360 
min. 

minus 
Blank 

% 

360 min. 
minus 

10 x 36 
min. % 

360 min. 
minus 

30 x 12 
min. % 

SCC A (70-
30) 

1799 1872 1554 1614 10.3 -4.1 13.6 

SCC B (50-
50) 

1820 1548 1596 1588 12.7 14.9 12.3 

SCC C (30-
70) 

1576 1350 1380 1081 31.4 14.3 12.4 

SCC D (0-
100) 

1746 1476 1482 1141 34.7 15.5 15.1 

SCC E (F) 2839 2304 2304 1107 61.0 18.8 18.8 
SCC F (SRA) 1341 1188 1200 770 42.6 11.4 10.5 
HPC (Typ.) 1824 1408 1422 1123 38.4 22.8 22.0 
 

Table 7.1 compares the 56-day results from standard 360-min RCPT, 10-min RCPT 

charge multiplied by 36 to obtain extrapolated charge for 360-min RCPT, 30-min 

RCPT charge multiplied by 12 to obtain extrapolated charge for 360-min RCPT, and 

charge passed during blank test. Charge passed values for one typical normal slump 
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HPC values are also listed (Uchoa et al., 2008). Charges passed recorded in the 

blank test were quite high for almost all the cases. This shows that under voltage 

difference large amount of charge were able to pass through specimens even in 

absence of chloride ions in the cell solution.  

                                 (a)                                                                (b)                          

Figure 7.2 Charge passed versus time for (a) RCPT (b) blank test 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3 Comparison of charge passed between RCPT and blank test 
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Figure 7.4 Comparison of normal RCPT and suggested extrapolated charge passed 
values  

Figure 7.2 illustrates charge passed over time for different concrete mixtures for 

normal 360 min RCPT and the blank test. It is observed that the curves are non-

linear in nature, although the degree of non-linearity is very low. The nature of the 

curves suggests that the difference between the RCPT and the blank test increased 

non-linearly with time. It is also observed that the value of charges passed over time 

was maximum for SCC E (F). Other mixtures had almost similar RCPT values with 

SCC F (SRA) being the lowest. The abnormal behavior of SCC E (F) was probably due 

to the fibers. As per ASTM C 1202-05, the presence of reinforcing steel or any other 

embedded electrically conductive materials may have significant effect on the results 

as the test results are a function of the electrical resistance. The fibers used in this 

study may be electrically conductive thus giving erroneous values. 

 The difference of charge passed between standard RCPT test and the blank 

test is furnished as percentage in Table 4. The smaller percentage means relatively 

higher values for the blank test, and therefore a greater influence of pore solutions 

on RCPT for that particular type of concrete. This difference is graphically illustrated 

in Figure 7.3. It is observed from Table 4 and Figure 7.3 that for SCC A (70-30) and 

SCC B (50-50) the difference between standard RCPT test and the blank test was 

less and in the range of 10~12%. All other mixtures had a greater difference 
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compared to the above mentioned concrete and ranged from 31.4% for SCC C (30-

70) to 61% for SCC E (F). In general the difference was in the range of 30~40% 

except SCC A (70-30) and SCC B (50-50). It signifies that pore solutions had greater 

influence for these two concretes. This may be due the presence of more CA 25 mm 

aggregates in the paste. It can be concluded that the influence of pore solutions are 

relatively higher for mixtures containing higher larger size aggregates. 

Figure 7.4 compares the standard 360 min RCPT values with 10 min and 30 

min extrapolated values. Table 4 also lists the difference between these values in a 

percentage format. It can be easily seen from the table and figure that the charge 

passed values over time for standard RCPT test is higher for almost all the mixtures. 

The only exception was SCC A (70-30). It is also observed that the extrapolated 

values from 10 min charge passed and 30 minute charge passed were very close. 

The difference between the standard RCPT test and the 10 min and 30 min tests 

varied in the range of 14~20%. The temperature of the anode is generally less at 

the beginning of the test and heat and temperature increases steadily due to the 

high applied voltage. This promotes escalation of the movement of charges 

subsequently ending in higher RCPT values. This fact is supported by the differences 

of charge passed between standard RCPT and the 10 min and 30 min extrapolated 

values.  

The difference between the RCPT values for the HPC and the SCC mixtures 

was very less. Although SCC mixtures had a slightly less values of standard 360 min 

RCPT charge passed values compared to the typical HPC mixture. The only major 

difference that was noticed for the HPC was the percentage difference 360 min 

standard RCPT and the extrapolated values from the charge passed at 10 min and 30 

minute were quite higher than that of the SCC mixtures. The average differences for 

the SCC mixtures were 13%, whereas the average difference for the HPC was 22%. 

This signifies that the rate of heat generation in case of HPC mixtures were higher 

than the rate of heat generated for the SCC mixtures.  

No general relation was found between charge passed and compressive 

strength for all the mixtures. This is because the two parameters are controlled by 

different factors. Charges passed depend on the porosity of the paste, connectivity of 

the pores, movement of both chloride and hydroxyl ions, and aggregate texture. 

Whereas, the compressive strength values mainly depend on porosity of paste and 

strength of C-S-H gel which depend on the w/cm ratio, aggregate texture, and bond 

of aggregate-paste interface. 
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According to ASTM C1202, the chloride permeability of concrete may be rated 

in following five categories 

Table 7.2 – Chloride ion permeability based on charge passed 

Charge Passed 
(Coulombs) 

Chloride Ion 
Penetrability 

> 4000 High 

2000-4000 Moderate 

1000-2000 Low 

100-1000 Very Low 

< 100 Negligible 
 

(Adopted from ASTM C 1202-05) 

Applying this threshold to the above results, it was found that all the concrete 

mixtures belonged to low permeability concrete except charge passed value of SCC E 

(F) which can be categorized as moderately permeable. 

Maine Department of Transportation (2003) conducted some studies on 

experimental use of SCC for precast prestressed box beams. They reported an 

average RCPT value of 2620 after 138 days and an average value of 1948 after 150 

days of casting. Generally RCPT values decreases with age. As the 60-day RCPT 

values from this experiment is lower than the 138-day and 150-day RCPT values, it 

may be concluded that SCC A (70-30) through SCC F (SRA) were superior in terms 

of chloride permeability. Ozyildirim and Lane (2003) evaluated the RCPT properties 

of 15 SCC mixtures with w/cm varied from 0.33 to 0.47 and FA/TA ratio varied 

between 0.50 and 0.57. They reported the 28-day RCPT values ranging from 992 to 

1726 Coulombs. These values were lesser than the SCC mixtures in this study but 

first of all their mixture compositions were different and secondly their curing 

process was also different. Also the 28-day compressive strength for the mixtures 

was much less than the SCC mixtures used in this study. Suksawang et. al. (2006) 

conducted evaluation studies on the mechanical properties of SCC. They reported a 

much higher charge passed for the SCC mixtures compared to two HPC mixtures. 

Their 56-day charge passed values varied from around 3000 coulombs to around 

7000 coulombs. Whereas the RCPT values for the HPC mixtures were around 2500. 

They reported that SCC mixtures had significantly higher RCPT values at all testing 

days. They attributed the results to the increase of paste volume which increases the 

capillary voids. They also observed that added SCM had a significant effect on the 

RCPT. They reported around 70% reduction in the amount of charge passed with the 
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addition of SF and FA. These wide variation of test results supports the fact reported 

in the “Final report of RILEM TC 205-DSC: durability of self-compacting concrete” 

(2008). It was reported there that the addition of powder content and different 

admixtures result in different paste volumes, different ionic compositions in the pore 

solution and perhaps different chloride binding behavior between SCC and OC. Some 

general findings for RCPT as described in the report are given below 

• The type of cement and additional powder used for the concrete have a 

significant effect on the chloride diffusivity. 

• Results suggest that it can not be ensured that the RCPT values for SCC and 

traditional concrete with same strength grade or same w/c ratio will be same. 

• The standard test method of RCPT for normal concrete can be directly 

adopted for SCC even though the microstructure of SCC is different than NC. 

• However, care should be taken to interpret the results particularly when the 

indirect methods based on principle of electrical resistivity such as ASTM C 

1202 or AASHTO T277 was used.   

7.2 Air-Void Parameters 

One of the main disadvantages of concrete is its deterioration under freezing and 

thawing environment. Only one winter’s exposure can badly damage the concrete so 

much that it effectively precludes the use of concrete in major applications if 

corrective measures are not taken promptly (Mindess et. al., 2003). All porous 

materials have the same problem unless the material is specifically designed to resist 

the freezing and thawing cycles. Air-entraining admixtures are designed to provide 

the concrete this resistance against freezing and thawing. Properly air-entrained 

concrete can survive years with exposure to cold weather and serve its purpose as 

designed. It also helps in making the mixture more uniform and workable. 

 Air-entraining admixtures increase the amount of air in the concrete which is 

incorporated during the time of mixing. It is expressed as a percentage of the 

concrete volume. Generally speaking 2 to 8% of entrained air provides very good 

durable mixtures without affecting the strength much. The actual amount depends 

on the maximum size of the aggregates as more paste is required to provide 

workable concrete with a lower maximum size of coarse aggregate. 

 The use of air-entraining admixtures not only improves the freeze-thaw 

resistance but also increases its workability particularly for mixtures having low 

cement contents, poor aggregate grading, or harsh aggregate textures. But the 
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introduction of air-entraining agents affects the strength in a negative way. As it 

introduces more voids in the matrix, the capillary porosity is also increased reducing 

the strength gain. That is particularly a problem for low w/c ratios. Generally 1% of 

entrained air reduces the strength by 5% for a hardened concrete. An optimum 

amount of air quantity is needed for both strength and freeze-thaw durability. 

Excessive amount of air can reduce the compressive strength of the mixture 

drastically. Also, the use of other admixtures used simultaneously used with air-

entraining admixture affect the air content of the concrete. This is because these 

admixtures can entrain air by themselves causing an error in the total air 

entrainment. Thus care should be taken while using many admixtures together with 

the air-entraining admixture. 

 The critical parameters for a good air-void system are void frequency, spacing 

factor, and specific surface area. ASTM C 457-06 (Standard Test Method for 

Microscopical Determination of Parameters of the Air-Void System in Hardened 

Concrete) provides test methods to determine these critical parameters. Spacing 

factor (L) as defined by the ASTM C 457 is a parameter related to the maximum 

distance in the cement paste from the periphery of an air void. It is regarded as the 

single most important indicator of the durability of the cement paste matrix. The 

spacing factor usually ranges between 0.1 mm to 0.2 mm (0.004 to 0.008 in) and 

the maximum value for moderate exposure is usually taken as 0.2 mm (0.008 in). 

Although, these values may be somewhat relaxed in case of superplasticized 

concrete and at low w/c ratios (Mindess et. al., 2003). Void frequency (n) can be 

defined as the voids per unit length of the traverse; the number of air voids 

intercepted by a traverse line divided by the length of that line. It is a critical 

parameter in determining the magnitude of the specific surface area and the spacing 

factor. Specific surface (α) is the surface area of the air voids divided by their 

volume, expressed in compatible units so that the unit of specific surface is 

reciprocal length. ASTM C 457 suggested that the usual range of specific surface is 

between 24 to 43 mm-1 (600 to 1100 in-1). 

 There are two methods for measuring the air content of hardened concrete, 

namely the linear-traverse method and the modified point-count method. In this 

experiment the modified point-count method was used to determine the air-void 

parameters of the developed SCC mixtures after 28-days of casting. The results are 

shown in Table 7.3 below. 
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Table 7.3 – Air-void parameters for the SCC mixtures 

Mixture 
Air 

Content, 
A 

Specific 
Surface, 

α 

Void 
Spacing 
Factor, L 

Void 
Frequency 

Paste 
Content, 

p 

  (%) mm-1 (mm) (voids/mm) (%) 
SCC A (70-30) 15.2 17 0.10 0.64 23.9 
SCC B (50-50) 13.6 13 0.15 0.44 26.4 
SCC C (30-70) 14.3 17 0.11 0.59 27.0 
SCC D (0-100) 12.9 13 0.17 0.42 28.3 

SCC E (F) 5.0 14 0.34 0.17 27.5 
SCC F (SRA) 4.1 17 0.34 0.16 29.9 

                                                      (1 mm = 0.039 in) 

It is seen from Table 7.3 that the air content of mixtures SCC A (70-30) through SCC 

D (0-100) were very high and in the range of 13~15%. The air content of SCC E (F) 

and SCC F (SRA) were very low in comparison to other mixtures and were in the 

range of 4~5%. This increased air content in the four mixtures may have been the 

effect of the high quantity of WRA and HRWRA used to increase the workability of the 

mixtures. These admixtures may have entrained additional air apart from the AEA 

which caused the air content to go up. In case of SCC E (F) and SCC F (SRA), the 

effect of fiber and SRA counteracted the effect of these admixtures. Fibers are known 

to increase the water demand causing a mixture of low porosity. The effect of fibers 

and the admixtures may have cancelled each other. In case of SCC F (SRA) the 

result can not be interpreted easily, SRA might have reduced the air content of the 

mixture. These results also explain why the compressive strength values for SCC E 

(F) and particularly SCC F (SRA) were higher than the other mixtures. 

 The void spacing factor (L) varied between 0.10 to 0.17 (mm) for mixtures 

SCC A (70-30) through SCC D (0-100). All of the values were between the 

acceptable values prescribed by ASTM C 457. It may be noted here that though the 

air content of the mixtures were quite high, the void spacing factors were well within 

the range. The void spacing factor for SCC E (F) and SCC F (SRA) were quite high 

and had a value of 0.34 for both the mixtures. Higher void spacing indicates lower 

air voids which ultimately lead to higher strengths. The values were higher than the 

prescribed values specified in the ASTM, but as stated earlier, these limits may be 

relaxed in case of superplasticized concrete and low w/c ratios. Also, the pore 

structure and microstructure of SCC mixtures are completely different than normal 

concretes which may have lead to the higher values for the void spacing factor.  

A view of the sample prepared and views of air-void system at different depths are 

shown in the figures below. 



 

 133

 

 
 
 
 
 
 
 
 
 
 
                                                                   (a)                                                                  

                                 (b)                                                           (c)                                   
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                   (d)                                                                  

Figure 7.5 (a) Typical view of the prepared cross section of the cylinder (b) Typical 
view at a depth of 2 inches in the cylinder (c) Typical view at a depth of 4 inches in 

the cylinder (d) Typical view at a depth of 6 inches in the cylinder 
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                                                                   (d)                                                                  

Figure 7.6 (a) View of the prepared cross section of the cylinder SCC E (F) (b) 
Typical view at a depth of 2 inches in the cylinder SCC E (F) (c) Typical view at a 

depth of 4 inches in the cylinder SCC E (F) (d) Typical view at a depth of 6 inches in 
the cylinder SCC E (F) 



 

 135

 
 
 
 
 
 
 
 
 
 
                                                                   (a)                                                                  
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                                                                   (d)                                                                  

Figure 7.7 (a) View of the prepared cross section of the cylinder SCC F (SRA) (b) 
Typical view at a depth of 2 inches in the cylinder SCC F (SRA) (c) Typical view at a 
depth of 4 inches in the cylinder SCC F (SRA) (d) Typical view at a depth of 6 inches 

in the cylinder SCC F (SRA) 
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Figure 7.5 illustrates typical sample for the air-void test and views at depths 2 in, 4 

in, and 6 inch in the cylinders for SCC mixtures SCC A (70-30) through SCC D (0-

100). Similarly Figure 7.6 and 7.7 illustrates typical sample and views at depths 2 in, 

4 in, and 6 in for mixtures SCC E (F) and SCC F (SRA) respectively. From the figures, 

the difference in distribution of voids between the mixtures is easily demonstrated. 

For mixtures SCC A (70-30) through SCC D (0-100) smaller and uniformly 

distributed voids can be located at a depth of 2 in. The size of the voids grew at a 

depth of 4 in; bigger and less voids were found at a depth of 6 in. Voids in the SCC E 

(F) mixture show different pattern. In this case, voids were bigger and more in 

number at a depth of 2 in. Size of the voids grew smaller and the number of voids 

became lesser as the depth increased. Very few voids were noticeable in the figures 

for SCC E (F). Figure 7.7 illustrates yet another pattern for SCC F (SRA). Very small 

tiny voids many in numbers can be seen at 2 in depth. As the depth increased from 2 

to 6 in, the voids became bigger and achieved maximum size at a depth of 6 in. The 

frequency of voids in the mixture was more than that of SCC E (F). But the voids in 

the mixtures SCC A (70-30) through SCC D (0-100) were much prominent, uniform, 

and more frequent than the other two mixtures. These portray the variance of 

microstructure caused by fibers and SRA. 

 As air content has direct impact on compressive strength, the effects of two 

of the most critical parameters for air content, void spacing factor and void 

frequency, is investigated below. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                      (a)                                                       (b)                       
 

Figure 7.8 Effect of (a) Spacing factor and (b) Void frequency on 28-day strength 
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 Figure 7.8 depicts the relation between 28-day compressive strength with 

spacing factor and void frequency respectively. It can be seen that increased spacing 

factor resulted in higher compressive strength. As increased spacing factors signifies 

greater distance from any point in the paste to the edge of nearest void means less 

number of voids and low capillary porosity. That increases the compressive strength 

of the mixture. On the contrary, void frequency denotes voids per unit length. Lesser 

void frequency means lesser number of voids per unit length subsequently leading to 

higher compressive strength. This scenario can be clearly understood from the trend 

lines in Figure 7.8 (a) and Figure 7.8 (b).  

7.3 Resistance to Freezing and Thawing 

Freezing and thawing in the cold region of the world can cause severe deteriorations 

of concrete. The nature of scaling is physical-not chemical. Many researchers now 

believe that during freezing, stresses resulting from osmotic pressure cause most of 

the frost damage to cement paste. It was found that during freezing most of the 

water movement is towards, not away from, site of freezing. 

 As concrete is a porous material, it is susceptible to damage under repeated 

cycles of freezing and thawing. As SCC is a new type of concrete with different 

microstructure compared to normal concrete, the effect of freezing-thawing cycles of 

SCC needs to be evaluated. As per the “Final report of RILEM TC 205-DSC: durability 

of self-compacting concrete” (2008), critically saturated SCC is susceptible to 

damage by exposure to repetitive freeze-thaw cycles. The flowing conclusions were 

made regarding the frost durability of SCC: 

• Internal frost resistance of SCC and normal vibrated do not differ much if the 

concrete is made with sound aggregate, proper air-void system, resistance to 

segregation, and adequate strength. 

• Greater air-void system can be achieved when the mixture contains more 

cementitious material or low w/cm ratio. 

• Care should be taken to fix the dosage of AEA as other admixtures such as 

WRA, HRWRA, and VMA may affect the air content and air-void parameters of 

SCC. 

• As there are many interfering parameters affecting the freeze-thaw 

characteristics of SCC, it is advised to evaluate the air-void parameters and 

freeze-thaw resistance of SCC by standard test methods before using it in 
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structures which will be exposed and highly susceptible to salt frost scaling or 

internal deterioration from repetitive freezing and thawing cycles. 

A general rule is that a decrease in the w/cm ratio improves the ability of 

concrete to withstand cycles of freezing and thawing (Mindess et. al., 2003). Studies 

showed that a concrete mixture with w/cm lower than 0.24 does not require any 

external air entrainment. For higher w/cm ratios, entrained air is required to provide 

resistance against freezing and thawing cycles. As per Mindess, HPC mixtures usually 

are superior in terms of durability compared to normal concrete mixtures. This is 

because of the low permeability and greater uniformity and homogeneity combined 

with lower porosity, which is exhibited by the HPC mixtures.  

A number of test methods are available for the evaluation of SCC mixtures 

subjected to repeated cycles under freezing and thawing. The tests involve 

subjecting the concrete to different freeze-thaw cycles and measuring the internal 

damage by monitoring weight loss, decrease in strength, and decrease in dynamic 

modulus of elasticity. Recently a novel approach of combinations of testing adopted 

by Ray et al. (2007) to eliminate the limitations of individual testing of freezing and 

thawing (ASTM C 666) and scaling resistance (ASTM C 672) is a significant step 

towards assessing the durability. They studied the durability of different HPC 

mixtures which were simultaneously exposed to freeze-thaw cycles and deicing salt 

solution. Although the test proved to be efficient and produced meaningful 

information, the standard test method provided by ASTM C 666 was followed instead 

in this study as it is a new type of concrete and the durability properties are 

relatively unknown. 

7.3.1 Test Method 

 ASTM C 666/C 666M-03 (Standard Test Method for Resistance of Concrete to 

Rapid Freezing and Thawing) was used to evaluate the frost resistance of the SCC 

mixtures in this experiment. There are two procedures for freezing; Procedure A 

requires the specimen to be completely submerged in water at all times while it is 

subjected to freezing and thawing and Procedure B requires the specimens to be 

surrounded by air at the time of freezing but thawed in water. Procedure A was 

followed during this experiment.  As described in the standard, a cooling and heating 

cycle between 4  C and -18  C (40 to 0  F) to be completed in 2 to 5 hours. For 

procedure A, not less than 25% of the time shall be used for thawing. At the end of 

cooling period the temperature at the centers of the specimens shall be -18 ± 2  C (0 

± 3  F) and at the end of heating period the temperature shall be 4 ± 2  C (40 ± 3 
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 F) with no specimen at any time reaching a temperature lower than -19  C (-3  F) 

nor higher than 6  C (43  F). Figure 7.9 illustrates the freezing and thawing cycles for 

the SCC mixtures. 

 Three test specimens each of size 75 mm x 100 mm x 405 mm (3 in x 4 in x 

16 in) were cast from the batch for each concrete mixture. The specimens were 

cured for 14 days prior to testing by immersing in lime saturated water at 23 ± 2  C 

(73.4 ± 3  F). The testing was started by placing the specimens in the thawing water 

at the beginning of the thawing cycle. The specimens were removed from the 

apparatus in thawed condition at 35 cycle interval. As per the standard, the 

maximum interval can be 36 cycle. After removal, the fundamental transverse 

frequency and the mass were measured and returned back to the apparatus for 

following cycles. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.9 Temperature cycles used for freezing and thawing 
 
The fundamental transverse frequency was measured following ASTM C 215-02 

(Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional 

Resonant Frequencies of Concrete Specimens). This process was repeated until the 

transverse frequency became 60% of the original value or 300 cycles whichever 

happened earlier. The calculations for quantification are as shown below: 

Pc = (n1
2/n2) x 100                                                                                        (7.1) 

Where: 

Pc = Relative dynamic modulus of elasticity, after c cycles of freezing and thawing 

expressed as a percentage, 

n = fundamental transverse frequency at 0 cycles of freezing and thawing, and 

n1 = fundamental transverse frequency at c cycles of freezing and thawing. 

Time (hour) 



 

 140

60.00

70.00

80.00

90.00

100.00

110.00

0 50 100 150 200 250 300 350

Number of cycles

R
el

at
iv

e 
dy

na
m

ic
 m

od
ul

us
 (%

)

SCC A (70-30) SCC B (50-50)

SCC C (30-70) SCC D (0-100)

SCC E (F) SCC F (SRA)

The durability factor was calculated using the following equation: 

DF = PN/M                                                                                                   (7.2) 

Where: 

DF = durability factor of test specimen, 

P = relative dynamic modulus of elasticity at N cycles, %, 

N = number of cycles at which P reaches the specified minimum value for 

discontinuing the test or the specified number of cycles at which the exposure is to 

be terminated, whichever is less, and 

M = specified number of cycles at which the exposure is to be terminated. 

7.3.2 Test Results and Discussions 

The relative dynamic modulus over different cycles is shown in Figure 7.10. 

 

Figure 7.10 Relative dynamic modulus of elasticity versus number of cycles 
 

From the figure it is clearly seen that all the mixtures behaved same under the 

freezing and thawing cycles. The relative dynamic modulus of elasticity varied 

between 95~98 %. As seen, the change in the relative dynamic modulus is very less 

signifying very good protection against freezing and thawing. Table 7.4 below lists 

the durability factor (DF) and mass loss of SCC mixtures. It is also observed that 

none of the mixtures showed a 40% reduction in their relative dynamic modulus 

prompting the test to be terminated after 300 cycles. 
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Table 7.4 – DF and mass loss for the SCC mixtures 

Mixture 
DF 

Mass Loss 
(%) 

SCC A (70-30) 98.59 0.32 
SCC B (50-50) 97.44 1.87 
SCC C (30-70) 98.39 2.17 
SCC D (0-100) 96.57 2.14 

SCC E (F) 95.51 2.30 
SCC F (SRA) 95.76 0.60 

 
It is observed from the above table that mass losses were negligible for mixtures 

SCC A (70-30) and SCC F (SRA) with values 0.32% and 0.60% respectively. SCC E 

(F) had the highest mass loss of 2.30% followed by mixtures SCC C (30-70) and SCC 

D (0-100) with a value of 2.17% and 2.14% respectively. Hence it can be concluded 

that SCC mixtures used for this study had a very high freezing-thawing resistance. 

Similar observation was made by Christensen and Ong (2005). They examined the 

relationship between air-void parameters and the resistance of SCC to cycles of 

freezing and thawing. They had made an extensive database representing a variety 

of admixture combinations, mixture proportions, materials, and stability. They 

prepared a plot of durability factor and spacing factor achieved by air-void study. It 

was concluded that all SCC mixtures with an air-void spacing factor of less than 0.4 

mm had a very high resistance to freezing and thawing cycles. The mixtures with an 

air content of 2% in the hardened state had a very high spacing factor and were 

marginally stable and lost most of the entrained air during placement. For these 

mixtures the freezing and thawing test failed. But, interestingly, mixtures with high 

air content and high spacing factors still had durability greater that 60% after 300 

cycles of freezing and thawing. Hence they concluded that durable SCC mixtures can 

be obtained that has air-void systems with specific surface areas less that 24 mm-1 

and spacing factors much larger that 0.20 mm which are the values specified for 

achieving durability for conventional concrete. This supports the fact that SCC E (F) 

and SCC F (SRA) had a very high spacing factor of 0.34 mm, much above the 0.20 

mm limit but still those mixtures showed a very good durability against freezing and 

thawing. The above statement that SCC mixtures with specific surface areas less 

than 24 mm-1 can achieve high durability is also supported from the experiment on 

current SCC mixtures. The specific surface areas achieved in this experiment of six 

SCC mixtures varied between 0.13 and 0.17 mm-1 which are much below the 

prescribed limit of 24 mm-1; but still they had a very high resistance against freezing 

and thawing. 
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Figure 7.11 illustrates the relation between spacing factor and durability factor as 

achieved in this experiment and the data collected by Christensen and Ong (2005). 

It can be seen that all the data were within a small range. Hence it can be generally 

stated that the freeze-thaw resistance of SCC mixtures made with w/cm ratio 0.40 

and below are very high and the DF is above 90%. Proper care should be taken for 

mixtures with greater w/cm ratio which are exposed to severe freeze-thaw cycles 

and the mixture shall be evaluated before application in the field. 
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Figure 7.11 Durability factor against spacing factor for different SCC mixtures 
 

A typical range of durability factor and spacing factor was proposed by Mindess et. 

al. (2003) for traditional vibrated concrete. It was proposed that all the target values 

should be achieved for a properly air-entrained concrete. These ranges of values and 

the values achieved by this experiment and from the literature are shown below in 

Figure 7.12. 
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Figure 7.12 Relationship between durability factor and spacing factor 
 

The proposed band is shown as the area surrounded by the blue lines. It is observed 

from the figure that all SCC mixtures were confined in a limited space at the top of 

the graph signifying very good freeze-thaw resistivity. But the relationships hold well 

for a spacing factor less than 0.3 mm. It may be stated that SCC mixtures with 

spacing factors more than 0.3 mm also showed a very good durability characteristics 

which are lacking for traditional vibrated concrete as seen from Figure 7.12. 

Ozyildirim and Lane (2003) reported similar freeze-thaw resistance for the laboratory 

SCC mixtures. They reported DF values of 106%, 108%, and 96% and weight loss 

values of 0.7%, 1.0%, and 2.3% respectively for three SCC mixtures studied. Maine 

Department of Transportation (2003) conducted some studies on experimental use 

of SCC for precast prestressed box beams. An average DF of 97.016% and an 

average mass loss of 4.3% was reported. But these average values contained 

mixtures with no air entrainment also. The DF of the SCC mixtures that contained 

air, varied from 93 to 100% and mass loss varied from 3.1 to 5.3%. Similar 

observations were also noted by Heirman and Vandewalle (2003). They concluded 

that compared to the reference concrete, SCC mixtures were very good in freezing 

and thawing resistance. Although they noted somewhat greater amount of scaled 

material when de-icing salts were added. 

 Hence, it can be concluded from the above discussions that the SCC 

mixtures studied in this experiment had superior resistance to freezing and thawing 

(1 mm = 0.039 in) 
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cycles compared to normal concrete and at per with the values reported by other 

researchers on the durability of SCC mixtures. It can also noted here that SCC 

mixtures with high spacing factor and low specific surface areas can also show high 

resistance to freezing and thawing in contrast to traditional concrete provided that 

the w/cm ratio is 0.40 or below. 

7.4 Concluding Remarks 

 The chloride permeability, air-void parameters and freezing and thawing 

resistance of the selected SCC mixtures were investigated in this chapter. In general 

it was observed that SCC mixtures showed very good results against freezing and 

thawing cycles, although the hardened concrete air content were quite high for some 

of the mixtures. The freeze-thaw resistance was superior to that of normal vibrated 

concrete. It may be concluded that SCC mixtures with superior freeze-thaw 

resistance can be produced with air-content parameters not conforming to the values 

specified values for normal concrete. RCPT values for the SCC mixtures were also 

found to be similar as normal concrete and HPC mixtures. In general, the durability 

performance of the six mixtures was satisfactory if not excellent. 
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CHAPTER EIGHT 
 

CONCLUSIONS 

8.1 Introduction 

 This chapter draws the conclusions on the materials and tests done so far for 

the self-consolidating concrete mixtures. Based on the study, recommendations on 

future work are also presented. The following sections discuss the concluding 

remarks for mixture proportioning, fresh properties, hardened properties, free and 

restrained shrinkage, chloride permeability, air-void parameters, and freezing and 

thawing resistance of the SCC mixtures developed; and suggests the scopes for 

future works. 

8.2 Conclusions 

8.2.1 Materials and Mixture Proportions 
1. A variety of SCC mixtures were developed using different aggregate sizes and 

gradation, fillers, mineral admixtures such as slag + silica fume, fly ash + 

silica fume, fibers, shrinkage reducing admixture. 

2. Combined aggregate curves for the SCC mixtures showed that the aggregate 

gradations spanned across the three ranges namely “Q” for quality filter, “I” 

for intermediate filter, and “W” for particles smaller than 2.36 mm (affects the 

workability), signifying a combination of strength, mobility, and workability of 

the mixtures. 

3. The coarseness factor (CF) and workability factor (WF) for the SCC mixtures 

were plotted and observed that the resulting trend is above the Shilston’e 

band optimized for better workability for normal concrete mixtures. 

4. While designing SCC mixtures, the aggregate gradation can be chosen such a 

way that for a given CF, the WF should be above the band proposed by 

Shilstone. Also, the CF preferably be less than a value of 60. 

5. Mixing procedure for the SCC mixtures was a bit different than normal 

concrete mixtures. The mixing sequence was altered such a way that finer 

particles mix well with coarse particles forming a uniform mix. Constant 

monitoring was required at the time of mixing. 
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6. Proper addition of HRWRA seemed to be very important. In this experiment, 

HRWRA was added in different stages of mixing depending on the desired 

slump. 

7. Mixtures with fibers showed difficulty in achieving a given slump that was 

easily achieved the same mixture without the fiber. 

8. More mixing time was required for the SCC mixtures compared to that of 

normal vibrated concrete mixtures. 

8.2.2 Fresh Properties of SCC 
1. VSI values for all the SCC mixtures were found to be “1”, indicating all the 

mixtures to be “stable”. 

2. T50 time varied from 1.2 seconds to 2.6 seconds. Increased viscosity was 

observed for the mixtures containing greater percentage of CA 25. 

3. Slump flow values of all the SCC mixtures were found to be satisfactory with 

almost all of them reaching the target limit of 650 mm. 

4. J-ring test on the SCC mixtures indicated that most of the SCC mixtures had 

a blocking less than 25 mm (1 in) signifying “no visible blocking”. 

5. SL+SF mixtures showed least blockage compared to the mixtures made with 

LP or FA+SF. 

6. Column segregation values varied between a wide range of 5% to 23% with 

higher value meaning greater segregation. Amount of VMA may be increased 

to reduce the higher segregation values, if desired. 

7. Due to the higher particle size, mixtures made with greater percentage of CA 

25, showed higher segregation values. It was also observed that higher CF 

resulted in higher static segregation. 

8. Very good L-box passing ability values were shown by all the mixtures. All of 

them achieved a target limit set as 0.7.  

9. Values greater than 0.9 was also achieved by some of the mixtures, indicating 

very good passing ability and can be of great application where flow through 

congested reinforcement is needed. 

10.  No correlation could be achieved between the fresh properties and the CF 

and the DF. That is due to the fact that the effects of aggregate gradation, 

fillers, mineral admixtures, fibers, SRA, HRWRA, VMA, AEA, different paste 

volumes, different w/cm and w/b ratios were interrelated and it was very 

difficult to find a correlation between the fresh properties and one of the 

above parameters. 
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8.2.3 Hardened Properties of SCC and Mixture selection 

1. Compressive strength values for the 17 SCC mixtures were high compared to 

normal concrete mixtures. 

2. Mixtures containing limestone powder developed higher compressive 

strengths at both 7-day and 28-day compared to those mixtures with slag + 

silica fume or fly ash + silica fume. 

3. The early age compressive strength development was much higher for the 

mixtures containing LP than the mixtures containing SL+SF or FA+SF. 

4. Mixtures with higher CA 25 fraction showed trends of higher compressive 

strength than other mixtures; mixtures with high CA 25 containing the LP 

gained the maximum strength compared to the other mixture combinations. 

5. The mixtures containing SL+SF and FA+SF gained much more strength from 

7-day to 28-day compared to mixtures containing LP. The maximum strength 

increase in case of a mixture containing LP was 24.31% and the minimum 

strength increase was 9.35%. Whereas, the maximum strength increase in 

case of a mixture containing SL+SF was 79.72% and the minimum strength 

increase was 47.24% and the maximum strength increase in case of a 

mixture containing FA+SF was 57.16% and the minimum strength increase 

was 30.52%. This observation leads to the conclusion that LP contributes to 

accelerated hydration compared to mineral admixtures like SL+SF or FA+SF. 

Also, due to its finer particle size, compressive strength values are more for 

the mixtures containing LP compared to the mixtures containing SL+SF and 

FA+SF. 

6. There was definite correlation between the w/p ratio and the compressive 

strength of the mixtures. As LP was a very fine filler material and was 

included in the powder calculation, the w/p ration for SCC with LP was lowest 

and the value was 0.29, whereas w/p ratio for rest of the mixtures was 

around 0.39. Higher the w/p ratio, lower the strength. 

7. There exist definite correlations between compressive strength and paste 

volume for all the mixtures. Compressive strength was higher for the 

concretes made with higher paste volume. 

8. There were no definite correlation between CF or WF and compressive 

strength. This is possible due to the effect of w/p ratio, paste volume, and 

chemical admixtures on the compressive strength of SCC. 

9. The compressive strength values of the selected SCC mixtures were 

compared with the ACI prediction equation of compressive strength and it 
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was observed that ACI equation underestimates the early age compressive 

strength of the LP mixtures.  

10.  Splitting tensile strength values were found to be higher than direct tensile 

strength and lower than the flexural strength (modulus of rupture) with 

exceptions of the mixture containing fiber and the mixture containing SRA. 

11.  It can be also concluded that the ratio for splitting tensile strength to 

compressive strength for ordinary SCC mixtures containing LP, can be safely 

assumed as 0.06. 

8.2.4 Shrinkage and Cracking of Selected SCC Mixtures 
1. Apart from the mixtures containing fiber and SRA, 90-day shrinkage strains of 

the other mixtures were pretty close and were in the range of 650 micro 

strains. SCC E (F) had a very low shrinkage value of 500 micro strains and 

SCC F (SRA) had the lowest shrinkage value of 465 micro strains after 90 

days. 

2. The shrinkage reducing admixture had a huge impact on the shrinkage strains 

as it has been reduced by almost 1/3rd compared to the other mixtures. 

3. Autogenous shrinkage contributed immensely on the total shrinkage of the 

concrete. As stated earlier, the total shrinkage contains autogenous shrinkage 

and drying shrinkage both. 

4. Though the total shrinkage values of all the SCC mixtures were similar, a 

comparison relative to their aggregate gradation revealed the fact that the 

mixtures containing higher CA 25 mm resulted in less shrinkage compared to 

the mixtures which contain more CA 12.5 mm. 

5. The long term autogenous shrinkage values of the SCC mixtures were really 

high. This may be due to the lower w/cm and lower w/p ratio responsible for 

higher self-desiccation. 

6. The ratio of autogenous shrinkage and total shrinkage varied between 0.75 

and 0.80 for all the mixtures except SCC E (F) which had a high ratio of 0.88. 

7. 90-day value of shrinkage for NC, HPC and the SCC mixtures were close with 

shrinkage value of NC being the highest. The shrinkage values of the SCC 

mixtures were in line with the shrinkage values generated by other 

researchers. 

8. The standard shrinkage prediction models grossly under estimated the free 

shrinkage values for SCC mixtures at early age except for SCC E (F) and SCC 

F (SRA). 
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9. For SCC A (70-30) through SCC D (0-100), the 90-day shrinkage value was 

best predicted by ACI 209R model. Almost all of them have similar shrinkage 

values at the age of 90 days after casting. 

10. The B3 and AASHTO model shrinkage were close at later stage and predicted 

closest to the values given by ACI 209R model and the values for SCC 

mixtures. 

11. SCC E (F) and SCC F (SRA) behaved differently than other SCC mixtures due 

to the fiber and SRA content. The GL and CEB MC90-99 models were closest 

to the final shrinkage value for SCC E (F) and all the other models over 

estimated the shrinkage values. 

12.  The calibrated ACI prediction equation gave fairly good results for all the SCC 

mixtures considering the residual plot. 

13. In terms of the restrained shrinkage cracking test, the mixture containing the 

SRA cracked last as expected followed by the mixture SCC A (70-30) and the 

mixture containing fiber. These mixtures cracked between 20 to 30 days after 

initiation of drying. In the other three remaining mixtures, cracking occurred 

between 11 and 16 days which are substantially lower than the previous three 

mixtures. 

14. There was definitely a trend between the CF and the age of cracking. Higher 

the CF, higher was the age when cracks developed. 

15. It is observed from that cracking occurred at a period which is very near to 

the zone when the drying shrinkage values were maximum. 

16. The cracking onset values for HPC mixtures varied between 8 and 13 days. 

Where as the cracking onset day for the SCC mixtures varied from 11 to 30 

days. Most importantly the water to binder ratio of the SCC mixtures was 

around 0.30. When compared to the HPC mixtures with w/cm of 0.30, it was 

no doubt superior in terms of restrained shrinkage cracking. 

17. Post cracking behavior of the fiber reinforced SCC (FRSCC) mixture was found 

to be superior to the other SCC mixtures. 

18. It is observed that all the SCC mixtures had moderately-low to low cracking 

potential based on average stress rate. SCC F (SRA), SCC E (F), and SCC A 

(70-30) had the lowest average stress rate, hence it had the lowest potential 

for cracking as expected. All the other mixtures had a moderately-low 

potential for cracking based on the average stress rate. 
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19. Potential for cracking based on net time-to-cracking indicates a low to 

moderately-high cracking potential for the SCC mixtures. SCC F (SRA) had a 

low potential for cracking followed by SCC A (70-30) and SCC F (SRA) which 

had moderately-low potential for cracking. SCC B (50-50) and SCC D (0-100) 

had a moderately-high possibility of cracking when compared to the net time-

to-cracking. 

20. In general, it may be concluded that all the SCC mixtures were good against 

cracking with SCC F (SRA) having the lowest potential for cracking and SCC B 

(50-50) and SCC D (0-100) having moderately-high potential for cracking. All 

the other mixtures had moderately-low potential for cracking. Hence it is 

recommended that SCC B (50-50) and SCC D (0-100) may not be used where 

cracking can be a crucial factor like tanks, bridge decks and other important 

structures. 

8.2.5 Discussions on Air-void Parameters, Freezing and Thawing, and 
Chloride Permeability 

1. The difference between the RCPT values for the HPC and the SCC mixtures 

was observed as very less. Although SCC mixtures had a slightly less values 

of standard 360 min RCPT charge passed values compared to the typical HPC 

mixture. 

2. The only major difference that was noticed for the HPC mixtures was the 

percentage difference 360 min standard RCPT and the extrapolated values 

from the charge passed at 10 min and 30 minute were quite higher than that 

of the SCC mixtures. 

3. No general relation was found between charge passed and compressive 

strength for all the mixtures. This is because the two parameters are 

controlled by different factors. 

4. It was found that all the concrete mixtures belonged to low permeability 

concrete category prescribed by ASTM except charge passed value of SCC E 

(F) which can be categorized as moderately permeable. 

5. The difference between the standard RCPT test and the 10 min and 30 min 

tests varied in the range of 14~20%. The temperature of the anode is 

generally less at the beginning of the test and heat and temperature 

increases steadily due to the high applied voltage. This promotes escalation of 

the movement of charges subsequently ending in higher RCPT values. This 
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fact was supported by the differences of charge passed between standard 

RCPT and the 10 min and 30 min extrapolated values. 

6. Charges passed recorded in the blank test were quite high for almost all the 

cases. This shows that under voltage difference, large amount of charge were 

able to pass through specimens even in absence of chloride ions in the cell 

solution. 

7. Air content of mixtures SCC A (70-30) through SCC D (0-100) were observed 

very high and were in the range of 13~15%. The air content of SCC E (F) and 

SCC F (SRA) were very low in comparison to other mixtures and were in the 

range of 4~5%. That may be due to the entirely different pore structure of 

the mixture containing fiber and SRA. 

8. Though the air content of the mixtures were quite high, the void spacing 

factors were well within the range except SCC E (F) and SCC F (SRA) which 

had a high void spacing factor. 

9. Increased spacing factor and lower void frequency resulted in higher 

compressive strength. 

10. The relative dynamic modulus of elasticity varied between 95~98 % after 300 

cycles of freezing and thawing. As seen, the change in the relative dynamic 

modulus is very less signifying very good protection against freezing and 

thawing. 

11. SCC mixtures with spacing factors more than 0.30 mm also showed a very 

good durability characteristics which is completely out of range for traditional 

vibrated concrete. 

12. SCC mixtures studied in this experiment had superior resistance to freezing 

and thawing cycles compared to normal concrete and at per with the values 

reported by other researchers on the durability of SCC mixtures. 

8.3 Suggestions for Future Work 

1. There exists very few fracture studies on SCC. The six established SCC 

mixtures can be further studied for their fracture properties. As it is a new 

type of mixture composition, fracture properties may be significantly different 

than NC and HPC leading to an entirely different fracture energy and crack 

propagation behavior. 

2. All the selected six SCC mixtures LP in common. Similar tests can be done for 

the other 11 mixtures containing SL+SF and FA+SF. 
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3. The modulus of elasticity of SCC mixtures is generally lower than that of 

normal concrete. A study of modulus of elasticity and creep can be conducted 

to better understand the behavior of SCC. 

4. Although many researches have been done regarding the form-work pressure 

of SCC, it may be better to conduct tests to establish the form-work pressure 

of the selected SCC mixtures and provide guidelines for the design of the 

form-work. 

5.  Many tests on SCC have been done so far in laboratory scale. Behavior of 

prototype structure made with these SCC mixtures at plant scale may be 

studied to simulate the actual field conditions. 
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APPENDIX A 
 

Typical Calculation for SCC Mixture Proportion 
 

SCC 1
For 1cum. of SCC:

Cl. 4.4.1.1 Coarse Aggregate Content:

A57 563 kg⋅:=Course Aggregate Content CA 25 =

Course Aggregate Content CA 12.5   = A12.5 241 kg⋅:=

Total Course Aggregate AT A57 A12.5+:= AT 804kg=

Bulk dry-rodded unit weight of course aggregate dA 1600 kg⋅:= per cum.

Hence, 

Dry course aggregate should be as per 237R-17, A 0.5 dA⋅:= A 800kg= ok 

Absolute Volume of course aggregate=
Vabs 0.299

m3

m3
⋅:= of concrete

Vabs 8.073
ft3

yd3
= of concrete Hence, O.K

As per ACI 237R-17, approximately the absolute volume should be 7.5 to 9 cft. for 1 cubic yard of
concrete. Hence O.K.

Cl. 4.4.2 Powder Content

Cement = C 386
kg

m3
⋅:=

Slag = SL 0
kg

m3
⋅:=

Silica Fume = SF 0
kg

m3
⋅:=

Limestone Filler = L 112
kg

m3
⋅:=
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Hence, O.K.Powder Content, P C SL+ SF+ L+:= P 839.406
lb

yd3
=

As per ACi 237R-17, appropriate powder content for initial testing should be 650 to 800 lb/yd3. Also,
while performing trial batches, it may be more prudent to start with higher powder contents, and then
optimize the mixture for improved economy.

Cl. 4.4.3 Paste and mortar volume

Paste Volume = Vp 324.99m3
⋅:= (includes cementitious & other powder, water, admixtures

and air)

Mortar Volume= Vm 645.30m3
⋅:= (includes paste volume plus volume of fine aggregates)

Total Volume = VT 944.51m3
⋅:=

Hence,

Paste Volume as a percentage =
Vp

VT
100⋅ 34.408= % Hence O.K.

Mortar Volume as a percentage = Vm

VT
100⋅ 68.321= % Hence O.K.

As per ACI 237R-17, Paste fraction should be between 34 to 40% and Mortar fraction should be
between 68 to 72% (calculated on volume). The common target ratios are: Paste volume ratio 0.34
to 0.40 and Mortar volume ratio 0.60 to 0.70.

Powder Content = P 498
kg

m3
⋅:= (including limestone powder) Slightly Higher

Typical Cement (powder content) as per ACI 237R-17 is 386 to 475 kg/m3 as per Table 4.2.
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APPENDIX B 
Aggregate Mix Proportioning 

 
  Course Aggregate # 57 

  
Wt. retained Amount 

Retained 

Cumulative 
amount 
retained 

Cumulative 
amount 
Passing 

Sieve Size (gm.) (wt. %) (%) (%) 
25 mm 1 " 36.30 0.88 0.88 99.12 
19 mm 3/4 " 626.50 15.20 16.09 83.91 
12.5 mm 1/2 " 1778.40 43.16 59.25 40.75 
9.5 mm 3/8 " 1052.90 25.55 84.80 15.20 
4.75 mm No. 4 587.20 14.25 99.05 0.95 
2.36 mm No. 8 13.20 0.32 99.37 0.63 
1.18 mm No. 16 1.70 0.04 99.41 0.59 

Sample Weight 4120.40    
      

  Course Aggregate # 8  

  
Wt. retained Amount 

Retained 

Cumulative 
amount 
retained 

Cumulative 
amount 
Passing 

Sieve Size (gm.) (wt. %) (%) (%) 
19 mm 3/4 " 0.00 0.00 0.00 100.00 
12.5 mm 1/2 " 4.50 0.41 0.41 99.59 
9.5 mm 3/8 " 127.20 11.45 11.86 88.14 
4.75 mm No. 4 827.20 74.47 86.33 13.67 

2.36 mm No. 8 137.50 12.38 98.70 1.30 
1.18 mm No. 16 3.10 0.28 98.98 1.02 

Sample Weight 1110.80    
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  Sand 

  
Wt. retained Amount 

Retained 

Cumulative 
amount 
retained 

Cumulative 
amount 
Passing 

Sieve Size (gm.) (wt. %) (%) (%) 
9.5 mm 3/8 " 0.00 0.00 0.00 100.00 
4.75 mm No. 4 25.50 4.98 4.98 95.02 
2.36 mm No. 8 58.30 11.39 16.37 83.63 
1.18 mm No. 16 55.10 10.76 27.13 72.87 
0.6 mm No. 30 90.80 17.74 44.87 55.13 
0.3 mm No. 50 217.30 42.45 87.32 12.68 
0.075 
mm   60.30 11.78 99.10 0.90 

Sample Weight 511.90    
Combined Aggregate Grading (35/15/50)       
          
  Cumulative Percentage passing for      

Sieve Size Fine 
Aggregate 

Course 
Aggregate 

#57 

Course 
Aggregate 

# 8 
0.5 x FA 0.35 x CA 

#57 
0.15 x CA 

#8 Σ 

Grading 
of 

combined 
aggregate 

25 mm 1 " 100.00 99.12 100.00 50.00 34.69 15.00 99.69 99.69 
19 mm 3/4 " 100.00 83.91 100.00 50.00 29.37 15.00 94.37 94.37 
12.5 mm 1/2 " 100.00 40.75 99.59 50.00 14.26 14.94 79.20 79.20 
9.5 mm 3/8 " 100.00 15.20 88.14 50.00 5.32 13.22 68.54 68.54 
4.75 mm No. 4 95.02 0.95 13.67 47.51 0.33 2.05 49.89 49.89 Q = 31.15
2.36 mm No. 8 83.63 0.63 1.30 41.81 0.22 0.19 42.23 42.23 I = 26.31
1.18 mm No. 16 72.87 0.59 1.02 36.43 0.21 0.15 36.79 36.79 W = 42.23
0.6 mm No. 30 55.13 0.00 0.00 27.56 0.00 0.00 27.56 27.56 Σ 99.69
0.3 mm No. 50 12.68 0.00 0.00 6.34 0.00 0.00 6.34 6.34 WF 42.36
0.075 mm   0.90 0.00 0.00 0.45 0.00 0.00 0.45 0.45 CF 54.21
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Combined Aggregate Grading (25/25/50)       
  Cumulative Percentage passing for      

Sieve Size Fine 
Aggregate 

Course 
Aggregate 

#57 

Course 
Aggregate 

# 8 
0.5 x FA 0.25 x CA 

#57 
0.25 x CA 

#8 Σ 
Grading of 
combined 
aggregate 

25 mm 1 " 100.00 99.12 100.00 50.00 24.78 25.00 99.78 99.78 
19 mm 3/4 " 100.00 83.91 100.00 50.00 20.98 25.00 95.98 95.98 
12.5 mm 1/2 " 100.00 40.75 99.59 50.00 10.19 24.90 85.09 85.09 
9.5 mm 3/8 " 100.00 15.20 88.14 50.00 3.80 22.04 75.84 75.84 
4.75 mm No. 4 95.02 0.95 13.67 47.51 0.24 3.42 51.17 51.17 Q = 23.94
2.36 mm No. 8 83.63 0.63 1.30 41.81 0.16 0.32 42.30 42.30 I = 33.54
1.18 mm No. 16 72.87 0.59 1.02 36.43 0.15 0.25 36.83 36.83 W = 42.30
0.6 No. 30 55.13 0.00 0.00 27.56 0.00 0.00 27.56 27.56 Σ 99.78
0.3 No. 50 12.68 0.00 0.00 6.34 0.00 0.00 6.34 6.34 WF 42.39
0.075   0.90 0.00 0.00 0.45 0.00 0.00 0.45 0.45 CF 41.65
Combined Aggregate Grading (0/50/50)       
  Cumulative Percentage passing for      

Sieve Size Fine 
Aggregate 

Course 
Aggregate 

#57 

Course 
Aggregate 

# 8 
0.5 x FA 0 x CA #57 0.5 x CA 

#8 Σ 
Grading of 
combined 
aggregate 

25 mm 1 " 100.00 99.12 100.00 50.00 0.00 50.00 100.00 100.00 
19 mm 3/4 " 100.00 83.91 100.00 50.00 0.00 50.00 100.00 100.00 
12.5 mm 1/2 " 100.00 40.75 99.59 50.00 0.00 49.80 99.80 99.80 
9.5 mm 3/8 " 100.00 15.20 88.14 50.00 0.00 44.07 94.07 94.07 
4.75 mm No. 4 95.02 0.95 13.67 47.51 0.00 6.84 54.35 54.35 Q = 5.93
2.36 mm No. 8 83.63 0.63 1.30 41.81 0.00 0.65 42.46 42.46 I = 51.61
1.18 mm No. 16 72.87 0.59 1.02 36.43 0.00 0.51 36.94 36.94 W = 42.46
0.6 No. 30 55.13 0.00 0.00 27.56 0.00 0.00 27.56 27.56 Σ 100.00
0.3 No. 50 12.68 0.00 0.00 6.34 0.00 0.00 6.34 6.34 WF 42.46
0.075 No.  0.90 0.00 0.00 0.45 0.00 0.00 0.45 0.45 CF 10.30
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Combined Aggregate Grading (15/35/50)       
  Cumulative Percentage passing for      

Sieve Size Fine 
Aggregate 

Course 
Aggregate 

#57 

Course 
Aggregate 

# 8 
0.5 x FA 0.15 x CA 

#57 
0.35 x CA 

#8 Σ 
Grading of 
combined 
aggregate 

25 mm 1 " 100.00 99.12 100.00 50.00 14.87 35.00 99.87 99.87 
19 mm 3/4 " 100.00 83.91 100.00 50.00 12.59 35.00 97.59 97.59 
12.5 mm 1/2 " 100.00 40.75 99.59 50.00 6.11 34.86 90.97 90.97 
9.5 mm 3/8 " 100.00 15.20 88.14 50.00 2.28 30.85 83.13 83.13 
4.75 mm No. 4 95.02 0.95 13.67 47.51 0.14 4.79 52.44 52.44 Q = 16.74
2.36 mm No. 8 83.63 0.63 1.30 41.81 0.09 0.45 42.36 42.36 I = 40.77
1.18 mm No. 16 72.87 0.59 1.02 36.43 0.09 0.36 36.88 36.88 W = 42.36
0.6 No. 30 55.13 0.00 0.00 27.56 0.00 0.00 27.56 27.56 Σ 99.87
0.3 No. 50 12.68 0.00 0.00 6.34 0.00 0.00 6.34 6.34 WF 42.42
0.075 No.  0.90 0.00 0.00 0.45 0.00 0.00 0.45 0.45 CF 29.11
Combined Aggregate Grading (27/27/46)       
  Cumulative Percentage passing for      

Sieve Size Fine 
Aggregate 

Course 
Aggregate 

#57 

Course 
Aggregate 

# 8 
0.46 x FA 0.27 x CA 

#57 
0.27 x CA 

#8 Σ 
Grading of 
combined 
aggregate 

25 1 " 100.00 99.12 100.00 46.00 26.76 27.00 99.76 99.76 
19 3/4 " 100.00 83.91 100.00 46.00 22.66 27.00 95.66 95.66 
12.5 1/2 " 100.00 40.75 99.59 46.00 11.00 26.89 83.89 83.89 
9.5 3/8 " 100.00 15.20 88.14 46.00 4.10 23.80 73.90 73.90 
4.75 No. 4 95.02 0.95 13.67 43.71 0.26 3.69 47.66 47.66 Q = 25.86
2.36 No. 8 83.63 0.63 1.30 38.47 0.17 0.35 38.99 38.99 I = 34.91
1.18 No. 16 72.87 0.59 1.02 33.52 0.16 0.27 33.95 33.95 W = 38.99
0.6 No. 30 55.13 0.00 0.00 25.36 0.00 0.00 25.36 25.36 Σ 99.76
0.3 No. 50 12.68 0.00 0.00 5.83 0.00 0.00 5.83 5.83 WF 39.08
0.075 No.  0.90 0.00 0.00 0.41 0.00 0.00 0.41 0.41 CF 42.55
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Combined Aggregate Grading (29/29/42)       
          
  Cumulative Percentage passing for      

Sieve Size Fine Aggregate Course 
Aggregate #57 

Course 
Aggregate 

# 8 
0.42 x FA 0.29 x CA 

#57 
0.29 x CA 

#8 Σ 

Grading 
of 

combined 
aggregate 

25 1 " 100.00 99.12 100.00 42.00 28.74 29.00 99.74 99.74 
19 3/4 " 100.00 83.91 100.00 42.00 24.34 29.00 95.34 95.34 
12.5 1/2 " 100.00 40.75 99.59 42.00 11.82 28.88 82.70 82.70 
9.5 3/8 " 100.00 15.20 88.14 42.00 4.41 25.56 71.97 71.97 
4.75 No. 4 95.02 0.95 13.67 39.91 0.28 3.97 44.15 44.15 Q = 27.77
2.36 No. 8 83.63 0.63 1.30 35.12 0.18 0.38 35.68 35.68 I = 36.29
1.18 No. 16 72.87 0.59 1.02 30.60 0.17 0.30 31.07 31.07 W = 35.68
0.6 No. 30 55.13 0.00 0.00 23.15 0.00 0.00 23.15 23.15 Σ 99.74
0.3 No. 50 12.68 0.00 0.00 5.32 0.00 0.00 5.32 5.32 WF 35.77
0.075 No.  0.90 0.00 0.00 0.38 0.00 0.00 0.38 0.38 CF 43.36
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