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Abstract
The Structural Information Filtered Features Potential for
Machine Learning calculations of energies and forces of atomic
systems.

Jorge Arturo Hernandez Zeledon

In the last ten years, machine learning potentials have been successfully
applied to the study of crystals, and molecules. However, more complex
materials like clusters, macro-molecules, and glasses are out reach of current
methods.

The input of any machine learning system is a tensor of features (the
most universal type are rank 1 tensors or vectors of features), the quality
of any machine learning system is directly related to how well the feature
space describes the original physical system. So far, the feature engineering
process for machine learning potentials can not describe complex material.
The current methods are highly inefficient transforming the information of
the physical structure into the feature vector, the losses of information con-
straint the accuracy of machine learning potentials.

This work introduces the Structural Information Filtered Features (SIFF),
the SIFF is a feature engineering method, based on maximizing the transfer
of information from the physical structure to the feature space. The SIFF
are thought as a universal feature, universal in two senses. First is able to

describe complex systems, as well as molecules, and crystals. Second it can



be easily used as input for any machine learning algorithm.

When applied to crystals the SIFF does as well as the best feature
engineering methods for this materials (SOAP, CGNN). When applied to
molecules the SIFF performs better than the Bag of Bonds method, espe-
cially when the number of structures is reduced to less than 10000, in this
conditions the SIFF shows a superior performance, due to its superior infor-
mation transference. Whit respect to complex system, the SIFF is compared
to the Behler and Parrinello approach, here the SIFF method reach an error
of 0.083eV/structure in 18110 second, in contrast the Behler and Parrinello
method achieved and error of 0.109¢V/structure in 61969 seconds.

The main disadvantage of the SIFF method is that the conventionality of
the feature space grows exponentially with the number of chemical species

in the system.
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Chapter 1

Introduction

1.1 Introduction

The invention of materials with the potential to solve daily problems, makes
material science a key discipline for the development of our society. How-
ever, the process of creating materials faces many challenges, especially in
predicting the properties of a given configuration of atoms.

It is true that the wave function contains all the information known about
a given system. Yet the wave function is the result of solving Schrodinger’s
equation (SE), which takes considerably computational resources, even for
simple molecules or crystals. Moreover, prediction of properties requires
extensive knowledge of the potential energy surface (PES) which is only
accessible by molecular dynamics (MD) simulations. Molecular dynamics

simulations rely on knowing the energy, and the forces of the system at every



step.

The limitation imposed by the complexity of solving the SE offered oppor-
tunities for alternative methods to calculate energies, and forces of systems of
atoms. By far the most successful of these methods is the Density Functional
Theory (DFT) developed in the 60s by Hohenberg, Kohn, and Sham. DFT
is an exact theory, that instead of focusing on a many-body wave function,
focuses on the many-body density which is a single value quantity. The main
premise of DFT is that the electronic density contains all the information of
the ground state of the many-body system. However, despite the advances
introduced by DFT, ab inito simulations are still far from been feasible for
systems like macro-molecules, or glasses.

Simulations for systems like macro-molecules and glasses are performed
with empirical potentials, or force fields (FF). The FF are a simplification
of the energy function of a system of atoms. This simplification, splits the
total energy in different interactions, such as: bonds, dihedral angles, bend-
ings, torsions, etc. Yet the functions used to represent the energy parts are
unable to capture many of the quantum mechanical phenomena, in conse-
quence molecular dynamics performed by FF is constrained to spaces of the
configuration space where quantum mechanics does not play a fundamental
role.

Then there is dichotomy in the world of theoretical simulations of mate-
rials, in one hand there are methods with quantum mechanical precision, but

bounded by the size, and time of the simulation, on the other hand there are



methods light enough to manage thousands of particles for even nanoseconds,
but without quantum mechanical accuracy. To solve this discrepancy new
tools have been employed. One of the most significant tools is machine learn-
ing. The field of Machine learning lies in the intersection between: computer
science, mathematics, and statistics. Machine learning are all the algorithms
and methods concern with fitting the parameters of a complex parametric
mathematical mapping to reproduce a given set of data. Machine learning
algorithms are the engine of Machine learning potentials which are the evo-
lution of force fields, the main idea is to use a machine learning algorithm to
learn the potential energy surface of a system of atoms. Perhaps the biggest
advantage of machine learning potentials is that they rely on mathematical
mappings complex enough to reproduce quantum calculations. In the last
10 years the applications of machine learning methods to materials science
have grown exponentially thanks to the apparition of massive data bases
with quantum mechanical calculations. The increasing amount of machine
learning potentials is a prove of its popularity.

While machine learning potentials have proved successful to speed up the
study of materials like crystals and molecules with errors compared to DFT
calculations, the reality is that there are still many challenges. Some prob-
lems are related with the limits of machine learning algorithms themselves,
for example the fact that they need huge amounts of data to be trained with.
Yet there are problems that come specifically from machine learning poten-

tials, fundamentally there are four of them. First, the lack of a universal



representation to describe different kinds of materials to be the input to the
machine learning algorithm. Second, the lack of a representation able to be
the input of different machine learning algorithms. Third, the lack of big data
set for materials due to the cost of using DFT, which makes important to
have a representation able to compare systems with differences in the number
of atoms, but similar in their compositions. And last but not least, there is
no machine learning potential capable of describing disorder states with the
same accuracy compared with which machine learning potentials are applied
to crystals and molecules. This last problem is of special importance, since
a structure during a long molecular dynamics simulation is likely to experi-
ence significant modifications, while passing through disordered states in its
configuration space.

In this work the Structural Information Filter Features (SIFF) are intro-
duced. The SIFF is a feature engineering algorithm to transform information
from a physical structure to a feature vector. The goal of the SIFF is to maxi-
mize the information transfer, so that any physical system can be represented
by a feature vector regardless of its complexity. In addition the dimension of
the SIFF feature space is independent on the number of particles in a struc-
ture, and the SIFF can be used as input of any machine learning system.

This dissertation is divided in 7 chapters. Capter 2, deals with the ma-
chine learning methods used to build the machine learning potentials, also
explains the feature engineering process, and how vital good features are for

the success of any machine learning application, it also explains concepts



important for the derivation of the SIFF like convolution of neural networks.
Chapter 3 is devoted to DFT, the Hohenberg Kohn theorems are explained,
and the Kohn Sham equation derived, in addition some remarks on practical
applications are mention. Chapter 4, introduces force fields, explains details
about their construction, and applications. To finally analyze their limits.
Chapter 5 summarizes the field of machine learning potentials, reviewing
some of the most influential methods of the last 10 years, as well as impor-
tant methods that influence the SIFF. Chapter 6 is the most substantial,
there the SIFF are formally introduced, also the results of different tests are
presented to prove their reliability, and find their weak spots. Chapter 7 sum-
marizes the conclusions, and expose where further developments should be

done in order to improve the next generation of machine learning potentials.



Chapter 2

Machine Learning

2.1 An introduction to Machine Learning

Machine Learning is a set of methods, algorithms and procedures, to extract
knowledge out of data, to make predictions. Formally speaking, Machine
Learning is: all the methods, related to the learning of parametric and non-
parametric mappings f : x — y, to predict the value, of a different outcome
variable ”y”, from the information stored in an input "z”.

In general, machine learning methods have three stages. First the gath-
ering and preprocessing of the data to teach (train) the machine learning
algorithms (MLA). Second the training of the MLA with the data already
gathered. Third and final, the use of the MLA to make predictions in a data
set different from the one used for training.

In the specific, Machine Learning methods are divided in two groups by



how they are trained: supervised learning algorithms and unsupervised learn-
ing algorithms. In supervised learning, the goal is to learn the relationship
between the input x and the target y variables, from a set of examples where
both pieces are known. Instances of methods in the supervised learning class
are: neural networks [1, 2], decision trees [3|, support vector machines[4],
Gaussian methods[5]. On the other hand un-supervised learning, the only
known information at the time of training are the input variable z, and the
goal is to find interesting patterns in the data. One well known method in
the un-supervised learning class is the clustering method [6], that tries to
group elements that share properties.

Before writing about specific MLLA or preprocessing techniques, it is im-
portant to introduce the notations and common words of the machine learn-
ing field with a simple example. Consider the problem of predicting, whether
a patient hospitalized due to a heart attack will have a second one consid-
ering as input data: demographics, diet, and concentration of glucose and
fat in its blood. In this supervised learning classification problem, the goal
is to teach a MLA how to predict the value of the output variable ”y”, also
known as target or response variable from training data in which we already
know the value of ”y”. Here ”y” is a categorical variable, that can only take
certain values in a definite set y; € {0, 1,2,..C}, where C'is the total number
of categories, y; can belong to. In the case of the example, the output vari-
able can have two values: y = 0 if the patient does not have a second heart

attack, and y = 1 if the patient has a second heart attack. On the other



hand problems where y € R are known as regression problems.

Now with regard of the input variable ”x”, ”x” is usually a column vec-
tor 71 = (1,...,Tp, ..., xq). T is formally known as the feature vector, the
feature space has a dimensionality ”"d”, where the dimensions are features, or
attributes of the system we want to described, such that everyone of the z,
in the feature vector is a piece of information needed to describe the system
for which we want to predict "y”. In therms of the example; the system
are the hospitalized patients that had a heart attack and the components of
the feature vector are: x; representing the demographic, x5 the diet, x3 the
concentration of glucose and x4 the concentration of fat.

To train a MLA using supervised learning we need several examples of
the form (7;,y;), where y; is the target values that the MLA will learn to
predict, and ¥; represents the input information needed to make the predic-
tion. Usually the set of known examples is divided in two groups; one for
training the algorithm with usually 80 % of the data while the remaining
20 % of the data is used to validate the trained algorithm. It is important
to note that sometimes the input information is denoted as X, which repre-
sents a matrix containing all the training examples, with dimensions (N, d),
where every row accommodates a feature vector #7, in the same spirit Y is a
column vector of dimension N, with all the training examples concatenated
(see figure 2.1).

The predictions done by the MLA are denoted by f(&;) or y;. The learning

process is carried out by a successive minimization of the cost function, which
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Figure 2.1: Example of the X matrix to represent the input data, where the
number of columns, is the number of features, in the feature space, and the
number of rows is the "N” number of examples. The Y vector of the target
data, contains the "N” examples.

is a metric to evaluate how well the mapping f(Z;) predicts the real output

yi- A well known example of cost function J is the one defined with the

square error:
N

I oy L= 1) (21)
In general the cost function is defined as the summation of the losses of
every independent training example: J = 5t SN L(yi, f(%)) in the case of
equation 1 the loss function is L(y;, f(Z;)) = (y; — f(T))>.

As it was said before, the learning process is done by a systematic min-
imization of the J function. For the cases where the MLA is a parametric
mapping, like neural networks or Gaussian process, the systematic minimiza-
tion is carry out by a gradient descent algorithm [7, 4, 5], the gradient descent
algorithm updates the parameters of the mapping. However if the mapping is

non-parametric like decision trees, the minimization is carry out by different

algorithms like C4.5 [8], and CART [3]. In both cases the learning process is



carried out by minimizing J on the training set, and the learning process is
finished once J reach a minimal in the validation set.

To summarize this gentle introduction to supervised machine learning.
The process of machine learning starts, by gathering data to teach the MLA,
once the data is organized in (Y, X)uaining and (Y, X)yatidation, the teaching
algorithm can start minimizing the J function, the learning process stops
once the J function reach a minimal for the validation set.

The subsequent sections of this chapter, are going to deal with either:
process, and methods needed to understand the machine learning behind the
machine learning potentials described in this dissertation. The section 2 of
this chapter introduces the process of feature engineering giving examples of
how features are selected and how to evaluated their quality. Section 3 deals
with Neural Networks, how they make predictions and how they are trained.
Finally section 4 is devoted to Gradient Boosting Regression and Regression

Trees.

2.2 Feature Engineering

Feature engineering is all the methods and techniques, in the pre processing
stage for which the input variables X are selected constructed or transformed
to describe different aspects of the target variable Y.

The present section has to two parts, the first part shows examples of

how some iconic features are selected or constructed in the fields of text
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representation, and time series. The second part is more abstract yet of
high practical importance, since it explores the information measurements
needed to select a set of features capable of predicting the target variable

with accuracy.

2.2.1 Examples Of Features

It does not matter what the task of the machine learning method is: a
regression, a classification, or even a clustering. The success of the method
is highly dependent on finding meaningful features [9].

The feature representation can be seen as the result of translating the
information stored in the data, into a language in which a MLA can make
sense of the original information. The features must faithfully represent the
data in a meaningful way. For example, imaging a machine leaning system
trying to differentiate lemons from grapefruits. It would be useless for the
task to use the shape as a feature since lemons and grapefruits are semi-
spherical, contrarily the color and the diameter would result in a better set
of features to tell lemons and grapefruits apart.

One of the most popular applications of machine learning is the detection
of spam email. The first step of this detection consist of transforming the
text in the email into a numeric feature vector. There are many algorithms
capable of this transformation, some of the most advanced are the word em-
bedding algorithms like: word2vec [10] and GloVe [11]. Yet the Bag of Words

[12, 13, 14] is a simple but effective method to transform texts into feature
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vectors. It consist of seeing the text as a collection of independent units
(what we know as words), then counting how many times certain words ap-
pears in the document. The final representation concatenates the frequencies
of appearance of important words in a given document.

A formal definition of the bag of words method is (following the definitions
in Ref [14]); supposed there is a natural language vocabulary (set of words)

99299
1

V = v, vy, vy where v; is the word in the vocabulary V. Then the Bag
of Words representation for the ”j” text document would be:

T} = (c(v1, ), c(v2, ), ..., c(vn, 7))

Where ¢(v, j) is the number of times the word v appears in document ”j”.
Since every word is seen as an independent unit of the text one disadvantage
of the Bag of Words is that it is unable to understand syntactic or semantic
relations between words.

The last example of features are the ones proposed by Morchen to rep-
resent time series [15]. A time series is a set of repeated measurements on
a system over time. The times series "7Z” with Z = (z1, 22, ...2x5), Where
the measurements ”z;” are performed at usually uniform time steps, t =
(0,t1,...,tn_1). Some examples of "Z” are temperature, pressure, prices in
the stock market, wav music files. Time series easily concatenate tens of
thousands of elements this make the comparison between times series hard,
since in spaces of high dimensionalty the notion of proximity is difficult to

define [16]. This is known as the course of dimensionalty and makes the MLA

unable to clearly distinguish between different times series resulting in a lost
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of accuracy. The goal of the feature engineering algorithm is to generate a
smaller and faithful representation of the time sires in such a way that if a
group of time series are similar they should be close together in the feature
space, also if a group of time series are different, then they should be far
apart in the feature space.

The Morchen method can be summarized on the next steps:

1) Do a discrete Fourier transform (DFT) of the times series to find the

¢, coefficients of the time series.

2) Select a number K such that every time series is represented by all the ¢
for k | K, the value of K must the big enough to keep the most representative
values of ¢y,.

3) Construct a feature vector Z7

teatures 10T €VeTy Z; time series

Zj — ZTj

features

S T R

As it could be seen, from the last two examples, the process of transform-
ing raw data (text, music, stock prices) into feature vectors is dependent
on insight knowledge of the particular field the raw data is coming from.
Nevertheless, the quality of the representation can be measured, this mea-

surements allowed researchers to systematically improve the feature repre-
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sentations. The next section deals with the methods needed to study the

predicting power is a set of features.

2.2.2 Feature Selection: General picture

Feature selection is one of the most important pre-process in machine learn-
ing, the goal of the task is to select a set of features with the smallest di-
mension possible while maximizing the amount of information of the original
system stored in the feature representation.

The process of finding a good set of features to faithfully represent data is
not yet standardized and is still heavily depended on domain knowledge, in
addition it is important to have in mind that the construction of an optimal
set of features is an intractable problem (at least so far). There are two kinds
of methods to analyze the quality of a given set: the search based methods,
and correlation based methods [17, 14].

The searched based methods are based on searching for different subsets
of combinations among the set of possible features to describe a data set. A

search based method selection has three stages:

1. The selection of a subset of features.
2. The evaluation of the selected subset.

3. An stopping criterion.

The first stage can be done by randomly selecting the subset or by se-

quentially adding and removing features from the subset. The second part
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depends on a metric for the evaluation of the subset, in the case of a wrapper
model [18, 19] the metric involves a machine learning algorithm, for example
a support vector machine or a decision tree. The idea is to test several com-
binations of features and find out which combination has better results. On
the other hand, in filter methods [18, 19] no machine learning system is used
to evaluate the performance of the subset of features, instead information
based calculations makes the evaluation.

In the correlation based method [17, 20, 9] the features are evaluated in-
dividually using a scoring function s(p). The scoring function measures the
importance of a feature "x,” by quantifying its power to predict the target
variable ("y”). Some examples of scoring functions are the Pearson corre-
lation coefficient R(p,y), and the mutual information measurement I(p,y)
21].

The Pearson correlation coefficient measures the linear correlation be-

b}

tween the feature "z,” and the target value "y”, and it is calculated through
all the data examples in hand. The value of the coefficient can be in between
-1 and 1, with -1 meaning total linear negative correlation, 1 meaning total

linear correlation (see figure 2.2).

N _ _

(@np — Zp) Y — J)
R(p.y) =) — (22)
=t \/25=1 (T p — Tp)? Z,]X:l(yn’ —9)?

Here 3 represents the average over the N data examples of the target value,

and 7, is the average of the feature with sub-index ”p” over the N data
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examples.

Another of the scoring functions is the mutual information I(p,y), the
measurement is based on the joint probability distribution (P(x,,y)) between
the feature with sub-index ”p” and the target value ”y”. The higher the value
of I(p,y) the stronger the relationship between the feature and the target

value. In the case in which the feature and the target value are independent

P(x,,y) = P(z,)P(y), the value of I(p,y) is zero.

I(p,y) = Z Z P(2yp, yn) log (%) (2.3)

n=1n/=1

Figure 2.2: Examples of values of the Pearson correlation coefficient and
its data realization. In the upper part of the image, different values of the
Pearson correlation for different grades of linear dispersion. Note that in the
lower part of the image non-linear correlations are shown and for all of them
the Pearson correlation coefficient is zero, meaning that that the Pearson
correlation coefficient can only measure linear correlations (Image created by
Denis Boigelot)

The correlation selection method pursues to rank the features in four
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classes[17, 14] strongly relevant, weakly relevant but non-redundant features,
redundant features, and irrelevant features. To better explain the concepts
behind those four subset, first remember the classification problem from be-
fore, in which a MLA must differentiate between lemons and grapefruits, the
set of features (F) for this task are: the shape of the fruit (f;), the diam-
eter (fy), and the color (f;), formally the set of features can be expressed
as: F'= {f;, ..., [y}, a feature subset (subset without feature f;) is defined
by :S; = F — f;. The target value has two classes since the fruit can either
be a lemon (class 0, y=0), or a grapefruit (class 1, y=1) then set of classes
is C' = {Cy, C1}. Finally P(C|f;) is the probability distribution of the data
into the classes by taking into account the knowledge given by the feature f;.
The formal definitions of the ranking classes for features are:

1) Strongly relevant features, iff:

P(Clf;,5;) # P(C15;) (2.4)

A feature is strongly relevant, if by its own presence is able to change the
probability distribution, for example in the case of the fruit classification the
distribution of fruits would be confusing if only the color and the shape of
the fruits are taken into account, a lemon and a grapefruit have the same
shape (spherical), and similar colors (yellow-green), in contrast if the diam-
eter is taken into account the distribution would change dramatically since

the differences in diameter for lemons and grapefruits are easy to tell.
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2) Weakly relevant but non-redundant features, iff:

P(Clf;, S;) = P(C|S;), and (2.5)

35% C Sj, suchthat P(C|f;, S}) # P(C|S})

A feature is weakly relevant if it can alter the probability distribution but
only with certain sub-sets of features, for example if the subset only contains
the shape feature then by taking into account the color the probability dis-
tribution would change. On the other hand if a subset contains the diameter
then taking into account the color makes no more difference.

3) Redundant features, iff it is also weakly relevant and has a Markov

blanket ! M; within F, such that :

P(F — M; —{f;},Clf;, Mj) = P(F — M; — {f;}, C|Mj) (2.6)

Imagine (f;) is the color, which is already a weakly relevant feature, in ad-
dition, the color of a fruit is related with the degree of ripening, which is
related to the diameter, meaning that the diameter is with in the Markov
blanket of the color feature, making the color a redundant feature.

4) Irrelevant features, iff:

VS, c S5, P(C|f,,S)) = P(C|S)) (2.7)

'In the context of feature space, a group of features belongs to the same Markov
blanket if the features are related, tow features (p and p’) are in the same Markov blanket
if P(clay,ap,) # P(clwp)P(clay,)
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A feature is irrelevant if this feature does not make any change in the prob-
ability distribution, for example since both, lemons and grapefruits have
spherical shape, the shape feature is irrelevant.

So far the usefulness of the features is based on scoring functions mea-
suring the interaction between the features and the target variable. Every
feature is evaluated individually ignoring that in the learning process the
features interact to create a picture of the system they describe. To fix the
discrepancy between evaluating the features individually and using them as
an interacting system, M. Hall [22] proposed a correlation method for feature
selection to take into account the interaction among features. In his method:

"The acceptance of a feature will depend on the extent to which it predicts
classes (values of the target variable) in areas of the instance (feature) space
not already predicted by other features.”

This method not only accounts for correlations among individual features
and the target variable, but also accounts for correlations between individual
features, so that in addition to calculating s(7) it is also important to measure
s(4, j), which is the scoring function between feature ”i” and feature ”j”. The
Pearson correlation coefficient is reproduced here with the feature to feature

approach.

o al (Tni — Ti)(Tny — Tj)
R(ij)=Y ’ — (28)
=t \/Zfz\{:l(ajrﬂ,i — 232 Y (T — 1)

If the value of s(i, ) is high then either ”i” or ”j” is redundant and/or irrel-
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evant. Then one of them could be eliminated from the set, here is important
to note that some small redundancy among features is required to decrease
the noise[9)].

In conclusion a good set of features, must be strongly correlated with
the target variable while the correlations between features are low. In other
words, every feature must contribute to the collective information of the

target with an independent piece of information about the target.

2.3 Neural Networks

This subsection introduces some of the key concepts behind a Neural Network
(NN). This concepts are needed to understand the Neural Networks Atomic
Potentials (NNAP) [23]. A NN is a parametric mapping f : x — y, where
the number of parameters can easily reach the order of thousands. However
is thanks to the elevate number of parameters and non-linear activation func-
tions that NN can approximate functions regardless of its complexity, with
the condition that enough data for training is provided.

The fundamental unit of a NN is a neuron, the neurons are organized
in layers, and the layers are connected to form the processing system. The
architecture of the NN is defined by the number of neurons, layers, and how
the component are connected. The architecture studied in this subsection is
the Fully Connected Neural Network (FCNN), which is the key of the NNAP

introduced by Behler and Parrinello, in addition, this subsection explains the
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learning process of a NN, and finally it introduces the concept of convolution

of neural networks.

2.3.1 Fully Connected Neural Network (FCNN)
®

S

Y Neuron or node 2 Neuron or node 2

in layer 1 in layer 2

Hidden Layer 1 Hidden Layer 2

Output Layer

Input Layer

Figure 2.3: Diagram of a Fully Connected Neural Network FCNN. Here
the NN has two hidden layers, plus the input layer and the output layer.
Every node (neuron) performs two operations: first the acquisition and linear
processing of the signals (z), and the calculation of the activation (a), in the
output layer the result of the NN processing is communicated through the
output variable 7y’

A NN is composed by nodes or neurons organized in layers, the layers
are interconnected to form a processing network [4, 5, 2] as it can be seen
in figure 2.3.1. The process of transforming the information from the input

layer to the output layer is called forward propagation it starts with the input

layer, that has as many nodes as the input feature vector has components,
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every input node is a channel to feed the information, stored in the feature
vector. The layers in between the input layer, and the output layer are the
hidden layers, in fully connected architectures, every node in a current layer
737, is connected to all the nodes of the immediately before layer ”j-1”7. The
architecture of a FCNN is specified by the number of nodes in every layer
separated by dashes ”-”, for example the architecture of the FCNN of figure
3 is (3-2-2-1), it is normal to refer to the number of nodes in the ”j” layer
as n’, for example: n° = 3, n! =2, n2 =2, and n® = 1. A NN can have as
many hidden layers as needed to learn any function. Increasing the number
of layers makes the NN more versatile, but it also increases the amount of
data needed for training. The concept of deep learning comes from the idea
of staking several hidden layers to process information. As figure 2.3.1 shows
every node is divided in two parts (the node performs two operations), first
the gathering and linear processing of the input information ”2”, and then
the calculation activation ”"a”. Figure 3 also shows the indexing notation,
where zg, represents the linear function in layer ”j” and node ”q”, the same
convention goes for the activation ag.

The communication between layers is done by linear functions, trans-

forming " into zJ, the linear functions are dependent of the parameters

0 — (w,b).

nd—1

=S, 29)
p

The parameters wg,q are the weights communicating the output of node ”p”
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in layer ”j-17, with the node ”q” in layer ”j”, the parameters bg are the biases.

The value of a] is the result of applying the activation function to zJ.

a) = o’ () (2.10)

q

1 - . 1 1_ .1 1 _
Tiwy + Towy g + Tawsy + 0 = 2 o' (z1) = ag

1 1 1 1 1 171
T\wy o+ Towp g + 3wz +0y =2 0 () =a

/

Wi Wipg
(w1 w2 @3) |why wis |+ (b BY) = (2 z3)— ZTQ 47 =
oI

31 Wiz

Figure 2.4: Diagram of a FCNN. In this NN with two hidden layers, plus
the input layer and the output layer. Every node (neuron) performs two
operations: first the acquisition and linear processing of the signals (z), and
the calculation of the activation (a)

The o/ is the activation function acting in the layer ”j”, the activation
functions are responsible for the non-linear properties of the NN, latter in
this subsection different types of activation functions are shown.

Continuing with some notation in figure 2.3.1 part a) there is a scheme

of the forward propagation between the input layer and the first hidden
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layer the scheme shows how the output of a layer (in this case the input
layer) mixes with the weights and biases to connect with the nodes of the
forward layer, then the activations are calculated and the information is
communicated to the next forward layer. Parts b) and c) of figure 2.3.1
shows the "trick” of writing the forward operations like matrix operations.
Taking the NN of figure 2.3.1 and writing its operations in matrix form, the
forward propagation looks like:

0) Taking as input a feature vector & with ”d” features in this case 3, the

-0

vector I acts as a’, since ¥ is the output of the input layer.
1.1) The propagation of Z into the first layer is done by:
#— FTQL 4 it
Here Q' is a matrix with dimensions (n° n'), n® = 3 number of nodes of the
before layer (input layer), and n! = 2 number of nodes in the current layer
(hidden layer 1), Z! and b' have n! = 2 dimensions
1.2) Calculation of the activation vector of the hidden layer 1 @' by ap-

plying the activation function o'() to the linear transformation z*!:

2.1) The propagation to the second hidden layer:

5%2 — &*’1‘192 + bt2

Here 2 is a (2,2) matrix because the before layer (hidden layer 1) has 2
nodes and the current layer (hidden layer 2) has to 2 nodes. In addition z2

and b? have 2 dimensions
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2.2) The calculation of the activation of the second layer:

3.1) The propagation to the output layer:
#3 — gT2Q)3 4 pt3

Here Q3 is a matrix with dimensions (n?,n3), n? = 2 number of nodes of the
before layer (hidden layer 2), and n®* = 1 number of nodes in the current
layer (output layer), 2% and b° are scalars since the output layer has only one
node.

3.2) Finally the output ¥/, is calculated applying the activation function

to the 25:

The process of forward propagation is a succession of linear transforma-
tions and the application of a non-linear function, where the output of the
before layer is the input of the current layer repeating this process until the
information makes its way out through the output node or nodes.

In real life applications of NN, the forward propagation is not done one
feature vector at the time. In general the input is the ” X matrix presented
in figure 2.1, where the columns are every one of the features in a set of
7d” features, and the rows are every example in a group of "N” examples.

Thanks to highly efficient matrix operations must Deep Leaning packages
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manage the forward propagation as follows:

73 = ATIQY 4 B (2.11)

Here Z7 is a matrix with dimensions (N,n/), A7 is also a matrix with di-
mensions (N, n’), and AY = X, B’ is the result of a broadcasting operation
where the ¢/ with dimensions (1,n7), is staked "N” times into the rows of
B’ to create a matrix with dimensions (N,n’), in addition the application
of the activation function is an element wise operation, where every scalar

component of Z7 is transformed by ¢7() as it is shown in figure 4c.

Al = oI (Z9) (2.12)

Now the output of the NN Y’ has dimensions (N, n”), where n” is the number

of nodes in the output layer.

2.3.2 Activation Functions

As we saw in the last subsubsection the propagation of information through
the NN has two fundamental steps, first one linear transformation, and then
the application of a non-linear function. Without the second step, NN would
be linear regresors. It is thanks, to the flexibility introduced by the activation
functions, that NN are able to approximate with success the behavior of

complex functions.
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There are many functions that are used as activation functions, neverthe-
less the NNAP relies on the hyperbolic tangent, in addition to this activation
function, the sigmoid and the Rectified Linear are also introduced.

The logistic or sigmoid function:

Sigmoid

10 1

0.8 -

0.6 -

alx)

04 4

0.2 1

00 A

o(z2) = (2.13)

The hyperbolic tangent tanh

e —e’ %

0(2) = —— (2.14)

e *+4+e*®

The Rectified Linear:
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Tanh

100 4

075 4

050 4

025 4
000 4

alx)

—0.25 1

—0.50 4

—0.75 1

=1.00 4

Figure 2.6: Tanh activation function

0 for z < 0;
o(z) = (2.15)

z for z>0

2.3.3 The Learning Process

The result of an analysis made by a Neural Network is dependent on the
values of the parameters, weights w and biases b. The goal of the learning
(training) process is to successively improve the value of the parameters, such
that, the output of the NN resembles the values of the training targets Y.
The performance of the NN is measure by the cost function(defined in

equation 1, reproduced here again):

N
J = ﬁ Zizl(yi - y;)Q
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Rectified Linear

Figure 2.7: Rectified Linear activation function

There are many algorithms to improve the values of the parameters, one of
the simplest, but yet powerful methods is the steepest descent, where the

rule to update the parameters is:

, , oJ
Why = Wy — O‘awqu (2.16)
- , oJ

Where the « is known as the learning rate. The calculation of the partial
derivatives is carry out by back propagation [7], which is an algorithm to
compute the derivatives using the chain rule. The name, back propagation
comes from the fact, that the first partials derivatives to be evaluated, are the

ones in the output layer, from there, the calculation of the partial derivatives
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propagates to deeper layers, until it finally reach the input layer.
Before deriving the back propagation method, let us review the hypothet-

ical last two layers of a FCNN with ”j”, layers:

P
j—1 _ i -2 1 i—1
Zz',p _Zr ai,r wr,p _'_bg“
i—1 |

R 9 ” ag’p :O'J(Zip>

Last two layers, ”j” and "j-1
ittt -1 j
Zi,q_zp @ip wp,q—i_bé
R |
ai,q =0 (Zi,q)

\
Where 7i” is one of the "N” examples in the input data. The first partial

derivative calculated is: aa;'] :

Wp,q

oJ oJ 0Oaj, 04,

Ol Ol 02 dw) (2.18)
p,q i,q i,q p,q
- o 0] J :
It is usual to call the term o o as dz; ,, now calculating the value of
%iq 9%iq ’
every term:
aJ _ -1 J
9al W(yi - az}q)
2,9
oa’ . .
i,q 17 ( ~J
82’3’(1. ( l,q)
84,(} _ i1
Owhg P
Now the term aa}] in equation 2.18 can be written as:
“Wp,q
N
oJ e
— = di al! (2.19)
a 7 2,9 1,p
Wh,q i=1
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And for the b{l term:

07 _ 07 9ai, 93, (2.20)
oby  Oaj, 0z, Oby

827
9
But e 1 then

0J L
i=1

Now for the parameters in the ”j-17 layer, the partial derivatives goes like:

oJ oJ 8@{7,1 azfq aag;l &zf;l

71 = 57 9. -1 5.1 71 (2.22)
owr.p da; , 0z, Oa; ,;° 0z ;" Owrp
Which can be rewritten as:
0J 0z al ' 9271
I dZ] 2,4 P ,p (2 23)
i1 e gt g1 g :
w'r7p a/l,p zl,p Wr,p
Then writing down the therms:
0z .
—L = (2.24)
Z?p
i—1
da’ ,
Lp =1, 31
—5 =07 (2)) (2.25)
0z ’
Z7p
Now it is possible to define:
i—1 A
dzl7' =dy) —he _ip
P 2,9 8(1%’1? azz{pl
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And using equations 2.23 and 2.24

dzl -V =dz! Wl o (2.26)

%,p 1,9 "p,q 4,p

The equations 2.19, 2.21, and 2.26, summarized the process of back propa-

gation, these equations can be written in matrix notation:

dZi=t = (dZ7 - Q") x o1 (277 (2.27)
% = ATI7 qz7 (2.28)
% = Sum(dZ?); (2.29)

where the the symbol - represent the usual matrix product and the * represent

. . . . . . . oJ oJ
an element wise multiplication. Also the partial derivatives g5: and 277
represent the gradients respect to €/ and B’. The Sum/(dZ”); represents the
addition of all the elements of the matrix dZ7 with dimensions (N, n?) in the

first axis, the result of this operation is a vector with the same dimensions

of B’. In matrix notation the updates rules for the steepest decent are:

Q= — a% (2.30)
Bl =B — ozaaéj (2.31)
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% = Sum{dZ"); aB = Sum(dZ?), 355 = Sum(dz®);

d. ) o.J ;
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dZ' = (d7% - Q1)+ 0" (2]

Figure 2.8: Diagram with the forward and backward propagation for the
FCNN from figure 2.3.1. The part a) has the forward propagation, every box
represent the process inside every one of the layers of the NN. Part b) has the
back propagation, the way the NN learns, the calculation of the dZ7 happens

in between layers, then the gradients (%, %) are calculated, and then

the parameters (€, B’) are updated with the information from the learning
examples.

The process of training a NN is summarized in figure 2.8. Part a) shows
the forward propagation, while part b) shows the backward propagation.
The cycle of learning, starts with the input of the feature representation,
of the learning examples stored in X, the input propagates through the
NN, until the output A% is produced, then the cost function is evaluated

J = ﬁ(? — A%)2 where Y are the target values of the learning exam-

ples. After the evaluation of the cost function the update of the parameters
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0 = {Q, B’} by back propagation starts. First the calculation of dZ3 is com-

municated to the output layer, to calculate the gradients of the cost function,

oJ aJ

563, 3p3), latter the param-

respect to the parameters of the output layer (
eters are updated, and the algorithm moves to the next backward layer, and
repeats the steps, calculate dZ7, calculate gradients (%, %), and update
parameters. This process is repeated until the parameters in the input layer
are updated.

One cycle of forward and back propagation makes one training step, some
times the number of learning examples overflows the memory of the system,
in those cases the number of examples are divided in batches, and every
learning step is carried out in every batch at the time. A cycle over all
the batches is an epoch. It is normal to have thousands of training steps.
Sometimes after many training steps the value of the cost function evaluated
in the validation set start to increase instead of decrease, when this situation
happens, it means, that the NN is over fitting the training data, and it starts
to lost the generality, needed to make predictions out of the training set. On
the other hand when the cost function evaluated in the training set does not
decrease or decrease a little to then reach a valley, it means that the NN
is lacking the complexity, needed to reproduce the function of the learning
data, in this cases the number of the parameters and/or the number of layers
should be increased. In order the make the learning process faster, it is usual

to use the Rectified Linear activation function, instead of the Logistic or the

Tanh, looking at figures 5, 6, and 7 is clear that the derivatives of the Logistic
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and Tanh have bigger values, only for —1 < x < 1, instead the derivative of
the Rectified Linear is 1 for # > 0, then the learning process is faster using

the Rectified Linear activation function.

2.3.4 Convolution Of Neural Networks

The convolution of neural networks is a widely used neural network architec-
ture in the field of machine vision,[4] where a normal neural network is fed
with the output of several layers of convolutions, the convolutional layers are
a filtering process in between the input images and the neural network, the
goal of the convolution is to extract some important property out of the raw
images.

As an example figure 2.9 shows the process of a convolution layer. In the
first stage there is a filter and a raw image, both represented by matrices,
it is important to note that the filter is smaller than the image, the goal of
the filter is to block some pixels and let through other ones. In the second
stage the filter is applied to the image, note that the same filter is applied to
different sections over the same image, in this case the filter extract the non-
diagonal elements of the subimages matching the application, the extraction
is carried out by an element wise multiplication between the elements of the
image and the elements of the filter that share position, then the output of
every individual application of the filter is added together, and concatenaded
into a feature vector. Keeping the output of every filter separate, helps the

feature vector to keep some of the original geometrical information of the raw
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Figure 2.9: Diagram of the convolution of NN, in the left part, there are
a filter and input image (matrix of pixels). In the center part the filter is
applied to the image. In the right part the products of the filtering are order
in a feature vector.

image. The convolution of neural networks is an example of an application
feature selection in which the raw data is filtered in a way that the features

conserve inside information of the original system in this case geometrical

information.

2.4 Regression Trees And Gradient Boosting

Regression

In most machine learning methods, the goal is to exhaustively train a single

9,0

mapping f : £ — y, to minimize the error between the target values ”y” and
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the predictions f(Z). In Boosting Methods the goal is still the same, reduce
the error between "y” and f(Z), but with one difference, instead of investing
all the resources in training a single mapping, the Boosting Method takes
"M”, under trained, and simple mappings, and combined them together to
create a new map. In Boosting Methods, the final mapping is F(Z), and
the individual simple mappings, or estimators are f, (%), the general idea of

Boosting is expressed in the equation:

F(@) = /(@) + ) amf, (D) (2.32)

In the machine learning literature the F'(¥), mapping with error close to
0, is known as a strong estimator, or in the case of classification a strong
classifier, the under-trained mappings f,, () with high errors, are known as
weak estimators or in the case of classification weak classifiers. Topically
the weak estimators are a type of simple mapping known as regression tree,
similar to a decision or classification tree, but used to predict values of a
variable in 3 | instead of predict classes.

This subsection is divided in two parts, first an introduction to regression
trees, and then an explanation of the Boosting method applied to regression

trees and optimized with gradient methods.
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2.4.1 Regression Trees

A regression tree (RT) [3] is a method to learn the value of a function, but
instead of optimizing a preconceive parametric mapping, the RT learns by
systematically dividing the feature space in rectangles, and assigning a con-
stant value to everyone of the rectangular regions, this process, of recursively
dividing the feature space, it is done by growing the RT using binary splits

of the data.

UD Ul Uz 1

Figure 2.10: Scheme of a regression tree RT, and how the feature space
(21, 22) is divided in 6 regions. Every node shows the binary splitting process,
and how the tree grows, by successive binary splitting every node, until the
stopping criterion is reach, in which case the node became a leaf, and no
subsequent splitting is done.

To introduce the process of growing the RT [2], consider learning a RT
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from ”"N” examples of the form {Z,,y,}, where every Z is represented in a
feature of space of the form ¥ = (x1,25). The RT are grown from top to
down, in series of binary splittings (as it can be seen in figure 2.10 ). At first
all the "N” training examples are in the first node (the root node, node 1)
where the growing algorithm makes the first binary split, the split is done
in one of the feature coordinates, with respect to a threshold value, how the
feature and the threshold value are chosen will be addressed latter, for now,
in the first binary splitting the feature selected is x; and the threshold value
is Up, the examples where x; < U, advance through the left side branch,
or yes branch, while the examples where the statement is not true advance
through the right side branch, or no branch. In either case the data goes to
their respective next node. For the data in the left hand side of the tree, the
next node (node 2) makes the binary splitting on the x5 feature, with V; as
threshold value, after this partition the data goes to their respective terminal
nodes (leafs). Every leaf R, represents a region in the feature space. The
RT makes the regression by assigning the same output value ”~,,” to all the
examples in the same R,, region. The set of all the R,, regions, and all the
s splittings, needed to create the tree, are known as the 6 parameters of the
RT 0 = {R,,, s}, in addition, the mapping done by a RT with parameters 6
is usually referenced as T'(#,6). Then for a RT with "M” total regions the

prediction values are:

Yo =T(Zn,0) = Yl (T € Ryy) (2.33)



Where I(Z, € R,,) = 1 if the hypothesis inside is true and it is 0 other wise.
Now in order to grow a tree in a systematic manner, there are tree points

the algorithm must addressed [3]

1. A rule to split the data at every node, this is how to choose the feature

(coordinate) to split and the value of the threshold to do the division.

2. A rule to determine when a node is terminal, when a node became a

leaf.

3. A rule to assign the value of every 7,,.

The algorithm assumes that there are "N” training examples of the form
(%, yn) where Z,, is a feature vector with ”d” components Z,, = (Zn1, .., Tnd)-
The first point to be addressed is the third one, Here the algorithm makes
two assumptions: first, at the end the data is grouped in M different regions,
and second the cost function for minimization has the form J = S~ s (yn —
Z% Yl (Z,, € Ry,))?, under this conditions the value of v, that minimizes
J is:

Vm = aver(yn|T, € Ry)) (2.34)

Now with respect to the rule to split the data in a node, it was shown by
Hyafil and Rivest [24] that an optimal solution to a decision tree is an NP
problem, as consequence building an optimal decision tree is unrealistic, then
the splitting problem is solved, with a greedy approach, where at every node,

the algorithm looks for the best split at that point, regardless of whether,
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that particular split, is going to lead to a good split latter down in the tree.
Then at every node the splitting problem is reduced to finding the z, feature
(coordinate) and the s value for which the splitting reduces the J function
at that particular node. The splitting cuts the x, coordinate in two planes:
region 1 Ry(p,s) = {@n|xn, < s} and region 2 Ry(p, s) = {Z,|znp > s}, then

the best splitting is:

argmin [argmin Z (Y — c1)* + argmin Z (Yn — 02)2} (2.35)
ps “ Z.€Ri(ps) 2 Z.€Ra(p,s)

Where ¢,, = aver(y,|Z, € Rn(p,s))), m C {1,2}. The greedy algorithm
looks for the best split (p,s), by scanning all the possible ”s” values, for either
all the "p” coordinates, if the feature space is not too big, or a randomly
generated subset of features, if the feature space is too big. After knowing
which particular splitting reaches the biggest minimization of J, that splitting
is carried out, and the same process is done in the next nodes.

Finally, there are two mainstream stopping criterion, one is by fixing the
number of total nodes in the tree, at the beginning of the training process,
the other one is by defining the minimal number of training examples at every
terminal node, such that once a node reaches, that amount of examples, it
automatically became a leaf. It is important to note that, regression trees are
easy to over fit the data, this means that if a tree grows to big, with too many
nodes or too few examples per leaf, then it would have a low error in the

training set, but a high error in the validation set. To avoid the over fitting
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problem, many trees are grown to a tall structure but then they are pruned
to accommodate a smaller number of nodes. Another common procedure is
to grow several different trees, with different numbers of nodes, and selecting

the one with the small error and fewer nodes, as the final regression tree.

2.4.2 Gradient Boosting regression

Recalling the beginning of this section, where the Boosting method [6, 2] was
introduced in equation 32, as a precise collective regression method, built by
integrating several under trained MLA. In this subsection the goal is to show
how to construct a Boosting method out of regression trees, and training the
collective regression method using a gradient approach.

In terms of regression trees T,,(%;,0,,) the boosting regression mapping

looks like:
M

F(Z;) = To(Zn, 00) + > T (T, 1) (2.36)

m=1
Where T,,(Z;,0,,) is a regression tree with regions and splitting parameters
0mn = {Rim,Sm}, am is the shrinkage parameter which has the role of a
learning rate, and "M?” is the total number of RT (7,,,(Z;,6,,)) to be used as
basic regressors in the Boosting method.

The Boosting mapping of equation 2.36 is trained in an iterative manner
with a gradient approach. For the case of regression it is common to define the

cost function J = S | L(y;, F(Z;)) as a sum of square looses L(y;, F(Z;)) =
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The iterative training fits the mapping F(Z;), by fitting one tree at the

time, every training step seeks to find the "m” RT such that:

N
argmin »  L(yi, Fon1() + T (5, ) (2.37)
0

m =1
To minimize the cost function, its gradient is taken with respect to the F'(Z;)

mapping and evaluated with respect to the F,,_1(Z;):

o 6L(yi,F(f¢))‘
Gim = TOF@E) | F(#)=Fpm_1 (&)

Using L(y;, F(7;)) = (y; — F(@;))? the gradient became:
Gim = — (Ui — Fm1 (75)) (2.38)

Then the "m” tree is trained with (Z;, g;,,) instead of (Z;,y;), once the "m”

tree is grown the F,_1(Z;) is updated with the rule:

Fon (%) = Fo1(T3) + am T (75, 0,)) (2.39)

Then in every new iteration, the learning algorithm is trying to predict the
residues (gradients) of the step before, in this way the learning regardless of
being slower is more robust.

With regard to over fitting, is important to recall that there are three im-
portant hyper-parameters for Gradient Boosting Regression: the total num-
ber of RT "M”, the size of every RT, and the a. The « value can be adjusted

by hand, taking into account that a smaller value is better than a bigger
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value, since slower learners are more robust. To avoid over fitting the size of
every RT must be small between 4 and 8 nodes [2] remembering that, the
key behind the GBR is not a single strong regressor, but several weak ones,
so it does not matter if every single RT has high error by it self. Then the
important hyper parameter is "M” that is usually as high as a 1000, this
depending on the diversity, of the data set it has to learn, but it should be

taking care of not being to big that the GBR will over fit.

2.5 Mixtures of gaussians

The mixture of gaussians is a regression model. As any other machine learn-
ing model, the main idea is to learn a function f(Z;, {w}) = y; from a set of
"N” examples {Z, Yiarget }, With a set of {w} parameters. As its name points

out, the parametric model is an addition of gaussians:
N
f@) =) aK(#, 1) (2.40)
j=1

Where the sum is over «; are known as mixing parameters, and K(Z;, Z;)

represents the gaussian kernel measuring the similarity between the data
—1#;-&;1?

points 71" and "j”, K(%;,¥;) = e 252

The minimization of the cost function (equation 2.1) with a regularization
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term of the form A", aZ, leads to the minimization problem:
moin Z(ytarget,i - f(fz))z + A Z al‘Q (241)

The solution for the « values using a vector notation, @ = (ay,...,ay),
X = (Nis ooy AN)s Yrarget = (Ytarget,1s -+ Yiarget, N ), and the kernel matrix K —
K, ; = K(;,7;):

a = (K4 X)) Fiarger (2.42)
Compare with the other methods exposed in this chapter, the mixture of
gaussians is less powerful, however it had been useful for some machine learn-

ing potentials, specially on molecular applications, as it is going to be shown

in the next chapters.
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Chapter 3

Density Functional Theory

3.1 The original problem, many body quan-
tum mechanics

To know properties like energy, phonon spectra, stability, bond order, while
studying a material with standard quantum mechanics. It is necessary to
know the wave function of the system, the wave function is the solution to the
Schrodinger equation taking into account the most important interactions.

For a system with N nuclei, and n electrons, the total Hamiltonian looks like:
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N
—V? 1 Z;Z
Htotal = Z L + =7

T 2M; [J£I 2|Rr — Ryl
—~-VZ 1 1
+Z 9 +§Z. |7 — 7]
u 4,J7#]
N,n
K ZI
IZ,Z- 75 — Ry

The total Hamiltonian is in atomic units, the terms in the first line refer to the
o2
kinetic energy (32N Q—AZII) of the nuclei, and the Coulomb interaction between

the nuclei (3_; ;; : \EZII—ZPJE'A) at positions Ry, and R, with atomic numbers

Z1, and Z;. The second line has the electronic terms, first the kinetic energy

}V?), and then the Coulomb interaction

of every electron in the system ()

between electrons (3>, it ﬁ) The last line of the Hamiltonian is the
P [ 7

Coulomb interaction between the nuclei and the electrons ( %” |FZ% l). The
) i— R

Z1Zy 1 Zr
|R[7RJ‘ ’ |7'_;_'Fj‘ ’ ‘TQ*RH

presence of terms like makes impossible to have single
particle solutions, hence the wave function will be dependent on the positions
of all the nuclei and electrons in the system (U({B;}, {7})).

Since it is not possible to find a analytic solution for equation 3.1 [25, 26],
several simplifications have to be done. Born and Oppenheimer (BP) intro-
duced an approximation, that uncouples the electronics, and nuclei degrees of
freedom [27], the approximation is based on the fact that, form the electronic

perspective the nuclei are fixed, with this, the kinetic energy of the nuclei

goes to zero, and the nuclei-nuclei Coulomb potential is a constant, and the
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nuclei-electron interaction can be seen as an external potential. However,
even with this simplification, the Hamiltonian (Hpe) is complicated, and for

a system with many electrons it still lacks an analytic solution.

Nmn

Z
Hpo = Z Z‘n_m Zﬁ + Enucei (3.2)

i z];ﬁz I3 |ri -

The next approximations to try to solve Hpgp were introduced by Hartree and
Fock. Hartree used an ansatz, assuming that the wave function of the sys-
tem (W (&, ..., T,) ) can be modeled, using the product of one electron wave
functions, or single particle orbitals (¥ (%1, ..., Z,) = ¢1(Z1)...0:(Z;)...0n(T0)),

with this approximation the Hartree energy can be written as:

Ep = (Vu|Hpo I\I’H>

:Z<¢i‘ —

ext (13) |9i) + Z <¢l¢]‘ |—» — —»’ ’¢z¢]> (3.3)

,Jsﬁz

The Hartree Hamiltonian is the result of the minimization principal the Ey,
with respect to single particle orbitals ({(¢;|), assuming that the right singe

particle orbitals are those that make Fy minimal:

V2
2

1
+‘/ext TZ +Z ¢]| ’Tj_r—»” ’¢]> (34>
JFi ’ !
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Here V., (r;) is the potential due to the nuclei.

As a result of the Hartree wave function ansatz, Hy, is a single parti-
cle Hamiltonian that can be solved self consistently, since the Hamiltonian
acting on |¢;) depends on |¢;). The electron-electron interaction is mimic
by the term (¢;] ﬁ |¢;), this term can be seen as a mean field approach
28], where the interaction between electrons is substituted by the interac-

99 299
1

tion between the electron, and the effective field produced by the other
electrons.

While the simplification introduced by Hartree was successful to trans-
form the many-body problem to a single particle problem, it does not take
into account the fermionic character of the electrons. As it is known, elec-
trons are indistinguishable, as consequence, the wave function of a system
of electrons must change sing every time the positions of two electrons are
exchanged (Pauli exclusion principle). To take into account this constraint,

Fock used as ansatz a wave function following the Slater determinant, with

the one electron wave functions as basis set.

G1(T1) di(T2) ... Gu(Tn)
Ga(1)  2(T2) ... P2(Tn)

The Hartree-Fock energy is:

49



Enp = (Vg F| Hpo |V F)

= 2 <¢z| _2

. 7 .
1,J71 1,70

Following the same method, as for the Fy, minimizing Fyr with respect to

the single particle orbitals, the Hartree-Fock Hamiltonian is:

2
Hyp = _2vi eat(T) +Z (D] =——= |—» 7] 95) — Z (05l =—=; |—’ — 7 |6:) (3.6)
J#i J#i
Where the new term (¢;| ﬁ |¢;) is a consequence of the exchange symme-
try obeyed by the electrons, this term has the particularity that is dependent
on the single particle orbital, the Hamiltonian is solved for (|¢;)).
While Hartree-Fock methods reach an acceptable performance for describ-
ing physical systems [29, 30], their treatment of the exchange and correlation
is rather simplistic, then further improvements needs a more careful treat-

ment of this term.

3.2 Density functional theory

The density functional theory (DFT) was developed in the 1960s by Kohn,

Sham, and Hohemberg to solve the many body quantum problem exposed
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before [31, 32], DFT resembles the Hartree-Fock method, however its deriva-
tion comes from a different idea. In the Hartree-Fock method, the ansatz of
the many body wave function is the key to the simplification process, that
transform the many-body Hamiltonian in an effective single particle one.
On the other hand, DFT is derived from the idea that, the electronic den-
sity is the quantity that determines all the ground state properties of the
electronic system, then DFT is a theory about a quantity dependent on a
single variable, the electronic density (p(7)), instead of being a theory about
the individual electronic states. The idea of calculating molecular properties
using electronic densities come from the 1920s, with calculations made inde-
pendently by Fermi, Thomas, and Dirac, however the Thomas-Fermi-Dirac
model did not produce good results when applied to molecules [33].

The main steps into the utilization of the density to describe the many-
body quantum problem come from the theorems presented by Hohenberg

and Khon, the theorems are:

e For any system of interacting particles in an external potential v, (7),
the potential is determined uniquely, except for a constant, by the

ground state particle density p, (7).

e A universal functional of the energy E|p| in terms of the density p(7) can
be defined, valid for any external potential. For any particular ve.:(r)
the exact ground state energy of the system is the global minimum value

of this functional, and the density p(7) that minimizes the functional
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is the exact ground state density p,(7).

vi({ry)  — We({r})

Figure 3.1: Diagram, showing the usefulness of the Hohenberg Kohn theo-
rems. The single arrows show the solution cycle of the Kohn Sham equation,
the external potential (ve. (7)) defines the system, and all its states W;({r}),
even the ground state (V,({7})). The double arrows show how the Hohen-
berg Kohn theorems link the ground state energy to the ve.(7) defining the
system, this figure was taken from Ref [34].

However, the theorems only prove the existence of two things. First a
universal energy functional, and second an electronic density that minimizes
the energy functional, which is the truth ground state density. These the-
orems would have been a theoretical curiosity without the reformulation of
the problem made by Kohn and Sham. The reformulation results in an aux-
iliary system, that is soluble, and shares some properties of the interacting
many-body system.

The energy functional of the auxiliary system proposed by Kohn and

Sham is:
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Elp) = Tlp) + Euelg / e AT\ Brds’ | [veatpner 30

=7

Where T[p] = > <¢1]

acting particles, £ [ [ p(P)p()drdr!

;) is the kinetic energy of system of not inter-
] is an aproximation of the electron eletron
energy known as the Hartree energy Vi (do not confuse with the Hartree
energy from the last section), [ veu(7)p(F)d*r is the external potential due

to the nuclei, and E,.[p] is the exchange correlation energy. Conceptually

the exchange correlation can be expressed as:

Eyelpl = Trntlp) — T'p] + Vee = Vi (3.8)

The exchange correlation functional is the term accounting for all the ap-
proximations done in equation 3.7, it corrects for using the kinetic energy
of a non interacting system, instead of the kinetic energy of an interacting
system (Trn[p]), it also corrects for using Vi instead of the exact potential
interaction between electrons V... On the paper the DFT functional ex-
pressed in equation 3.7 is an exact theory of the many-body problem since
the exact F,. introduces all the needed corrections, however, the exact form
of the E,.[p] functional is unknown, then for real life applications it has to
be approximated.

The electronic density is defined in terms of the f; occupancy, and the
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single orbital states 1;(7):

= Z Filws (7)) (3.9)

Then the auxiliary problem proposed by Kohn and Sham materialize by
minimizing the energy functional defined in equation 3.7 with respect the

electronic density, which ends up with the Kohn-Sham equation:

—

<_2VZ2 + Uemt(F) + / p|(—7:/)di7r + %c) %(F) = elwl(F) <31O>

Which has the form:
Hgs WJZ(F» =€ WJZ(F» (3-11)

Where V. = 5?&# L. Equation 3.10 describe a system of individual particles,
with the same (up to the exchange correlation functional) ground state den-
sity than the original interacting system, then by solving equation 3.10 and
finding p,(7) the many body system is solved.

Finally to calculate the energy of the system with the solutions of equation

3.9, and the density defined in equation 3.9 the following formula is used:

p=Xa- [ [ WD | i) [Vl 012

T

The first term adds the eigen-energies of all the occupied molecular orbitals,

then the second term corrects for over counting the electron-electron interac-
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tion, finally the exchange correlation is added and the effects of the exchange

correlation potential in ¢; are taken away by subtracting V..

3.2.1 Approximate exchange correlation functional

How the exchange correlation functional is approximated defines the success
of a given application of DFT. A good functional is supposed to capture all
the many-body effects, and handle the errors coming from not using the right
kinetic energy, and electron-electron interaction.

The two dominant approaches to approximate the E,. are: the local den-
sity approximation (LDA), and the general gradient approximation (GGA).
The LDA was the path followed by Kohn and Sham originally, it assumes
that the F,. does not change abruptly with p(7), then the functional can be

written like:

Euolp] = / P Pese(p(P))dr (3.13)

—\

Where €,.(p(r)) = —32 (%p(r))wg) account for the exchange and correlation
per electron in an uniform electron gas [35, 31, 26].

The LDA approximation is an expansion where the only terms taken
into account are the ones depending on p(7), to increase the perturbation
accuracy, the generalized gradient approximation (GGA) [36, 37, 38] include
terms dependent on V|[p(7)], the GGA functional represent an improvement,
specially in calculations on finite systems like molecules.

For a calculation, it is important to note that, there is not a single univer-
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sal functional [39], then, the selection of E,. depends upon the properties to
calculate, as well as the atomic system (crystal, molecules, surface) on which
the calculations are going to be performed.

The limitations on the current F,. functionals, are the result of treating
an interaction as a local one, while it is non-local in nature, both the LDA
and GGA describe the E,. as a function of p(7) or V[p(7)], this means that
the point 7 is only affected by the value of the density and its gradient at that
given point, ignoring that a more faithful representation should be a function
of Fand 1/, to capture the correlation with other parts of the system. However
the development of a non-local representation is extremely complicated, and
it is unlikely that a multipurpose potential will be developed in the near

feature [26].

3.2.2 DFT implementation

The following discussion is going to outline the main properties of the DFT
implementation proposed by Sankey and Niklewski [40], since this method is
the root of the FIREBALL software [41], with the LDA approximation [42,
43, 44] used for most of the calculations in this dissertation.

FIREBALL is a software, and a method to solve equation 3.10, find an
approximation to the ground state density, and evaluate the energy functional
of equation 3.12.

The basis set used by FIREBALL is composoed by pseudo-atomic-orbitals

(PAO) [45], this orbitals simulate the valence electron states of an atom in
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Guess the value of
PU (7) | Self consistency achieved |

plr) = 3, Lilwa()” !
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Build the Hamiltonian
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Find a new wave functions Builld a new density

wi (f’) plr) = 52, filtu (77

Figure 3.2: Diagram of the a self consistent cycle to solve the Kohn-Sham
equation. First a density is guessed (p°(7)), the Hgg is build with p(7) =
p°(7), the Hamiltonian is diagonalized to find a set of molecular orbitals
U, (), this states in addition with the occupation number of every molecular
orbital (f;) a new density is calculated (p**1(7)), if the new density is equal
to the old density (up to a threshold) self consistency is achieved and the
calculation ended, if the densities are no equal, then the new density feeds te
Kohn-Sham Hamiltonian and the process starts again until self consistency
is achieved, the density from the last step 'K’ is close to the ground state

—\

energy p™(7) & p,(7)

its neutral ground state, they are calculated using the Herman-Skillman [40]
approach using pseudo-potentials, and a local density approximation for the
exchange correlation. The boundary condition imposed over the PAO make
them vanish after a certain cutoff radius, the effect of this confined that the
orbitals are slightly exited.

The molecular orbitals in FIREBALL are expanded in terms of the PAO

functions:

¥i(r) = Z a;(l, M)beAO(F— él) (3.14)

Ly
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Where the ”i” index counts the molecular orbitals, 717 counts the center of

b} ’7

the atomic like orbital (usually the position of a nuclei), is the type of
atomic orbital (s, p,, py, s, €tc).

To solve equation 3.10 a initial density is needed to initialize the Hamil-
tonian, in FIREBALL the initial density is the result of adding the neutral
and spherical atomic densities of the the atomic like potentials (p°(7) is the
initially guessed density), with this initialization, and substituting equation

3.14 into equation 3.10, then multiplying by ¢£49 (7 — ﬁ;), to have a system

of algebraic equations to find the a;(l, 1) coefficients.

Zhl + = eZZS” a;(l',v (3.15)

Where the elements of the Hamiltonian and the Overlap matrix are calculated

like:
hit, = (oh 0 (F — )| Hies |62 (7 — R)) (3.16)
Sit = (@40 (F = Ry)| o) (F — R))) (3.17)

The eigen-vectors and eigen-values are find with the secular equation:

det |h — €S| =0 (3.18)

The Kohn-Sham equation is solved in a self consistent manner, where the so-
lutions of equation 3.15 are use to construct a new density p'(7), this process

is carry out "k” times to minimize the energy and find and approximation to

58



the truth ground density p,(7), in FIREBALL comparing p* () with p*(7)

constitute the stopping criteria, for a given energy threshold.

3.2.3 Pseudo-potentials

Many of the physical properties of systems of atoms, like crystals, and
molecules are due, primarily to the dynamics of valence electrons. Valence
electrons are screened by the core electrons in the inner layers of atoms,
then, they are less attached to their original core nuclei, having the freedom
to interact with other cores. As a consequence the behavior close to the
nuclei do not need to be over realistically represented. With this thought
pseudo potentials are introduced to facilitate the description of the physics
in materials.

The wave function close to the nuclei has higher frequencies than the
wave function far from the nuclei where the behavior is more of a decay,
image 3.2.3 compares an ionic potential Vi and its pseudo-potential V5. The
ionic potential produces the ¥; wave function, also known as all electrons
wave function. The divergence of the ionic potential results in an all electron
wave function with rapid oscillations inside the core region of the atom. An
accurate description of these oscillations has a limited impact on molecular
calculations, but they require several basis functions for its description, mak-
ing the calculations harder to carry out. The pseudo-potential on the other
hand, makes a faithful representation of the physics in the valence region, so

that, the pseudo-wave function Wy is indistinguishable from the all electron
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Figure 3.3: V) represents the all electrons ionic potential. W, is the wave
function resulting from solving the Schrodinger equation with V; as potential.
V5 represents the pseudo-potential. W, is the wave function resulting solving
the Schrodinger equation with V5 as potential.

wave function after certain cut off radii r., where the valence properties are
more important than the core properties. The pseudo wave function has no
nodes inside the core region, and it is easy to describe with fewer basis func-
tions. One constraint over ¥, is it the total charge in the core region must
be the same whether it is described with Wy or ;. The pseudo-potential is
calculated for every element, by taking into account an isolated atom. Then
the resulting pseudo-potential is used to represent the ionic potential of that
given element in a DFT calculation.

The pseudo-potentials used in FIREBALL are the separable and non-

local, more details of its implementation in Ref [46, 42].
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Chapter 4

Force Fields

4.1 Introduction

Many studies of material properties for large and complex materials like
glasses and biological macromolecules are carried out with computational
simulations like molecular dynamics (DM). The key component of the com-
putational simulations (aka MD) are the force fields (FFs)[47, 48, 49], FFs
are the intellectual parents of machine learning potentials, in the sense that
several properties and parts of the machine learning potentials are heavily
influenced by force fields. A FF is a parametric function, no more complex
than a polynomial, from which the energy and forces of a system of particles
can be easily evaluated, only knowing the set of positions {én}, and species
{Z,} of all the atoms in the system, unlike any ab initio method, where

the calculation of energies and forces require the solution of complex partial

61



differential equations. The main idea behind the FF is to fit the parameters
of the parametric functions to reproduce benchmark data obtained from ex-
periments, or ab initio calculations. After the fitting process, the FF is able
to estimate the energies and forces of systems similar to the ones used for
fitting the parameters. However if the systems processes by the FF are far
from the configurations used for fitting the parameters, or if the complexity
of the system’s potential energy surface (PES)! is higher than the complex-
ity the parametric function can handle, then the FF is not going to estimate
the energies and forces accurately. To summarize the accuracy of the FF
is dependent on the number parameters of the parametric functions used to
represent the PES, and the data used to fit those parameters, and in general,
the FFs have small areas of prediction in the configuration space.

This chapter is devoted to the force fields, section 4.2 introduces the FF in
a more formal manner, in addition, every part of the FF is explained in the
subsections of section 4.2. Section 4.3 is devoted to the process of fitting the
parameters of the force field, this process is also known as the parametriza-
tion of a force field, this section is a review of the specific techniques used to
fit every family of parameters. Finally as a form of conclusion section 4.4,
talks about the limitations of the FFs and puts in perspective the Machine

Learning Potentials as a solution to the problems of FF's.

!The Potential Energy Surface of a system of "N” atoms is a manifold in a space of 3N
coordinates, describing the energy of the system as function of the positions of the ”N”
constituent atoms E({Ry,..., Rn})
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4.2 Force Fields: Functional Form

A force field is a parametric function, that approximates the PES for certain
regions of the configuration space of a structure?. The main idea supporting
the functional form of the FFs is that the total energy of a structure can be
divided into quasi-independent terms, every term representing a type of in-
teraction added to the total energy. The most common energy decomposition

for FFs is [49]:

Estructure = Ebonds + Ecmgle bending + Etorsion + Eelectrostatic + EVan der Waals

(4.1)
Equation 4.2 is the prototypical expression for popular force fields like: AM-
BER [50], OPLS [48, 51], CHARMM [52], and GROMOS [47]. Every one of
the terms represented has an specific functional form (polynomial) based on
physical insights about the interaction it is meant to reproduce. In the next

subsections all of this energy terms will be described in deepness.

4.2.1 Bonding Energy

The first term in equation 4.2, is the energy stored in the stretching of the
bonding between two atoms, based on physical experience, the bonding in-
teractions resembles (in a first approximation) a harmonic potential, the

variable defining the value of the energy in the harmonic potential is the in-

2Structure: In this dissertation, a structure will refer to crystals, molecules, clusters,
and in general any system ordered or disordered constituted with atoms
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teratomic distance between the atoms making up the interaction, the actual

form for the parametric f