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Abstract

The Structural Information Filtered Features Potential for

Machine Learning calculations of energies and forces of atomic

systems.

Jorge Arturo Hernandez Zeledon

In the last ten years, machine learning potentials have been successfully

applied to the study of crystals, and molecules. However, more complex

materials like clusters, macro-molecules, and glasses are out reach of current

methods.

The input of any machine learning system is a tensor of features (the

most universal type are rank 1 tensors or vectors of features), the quality

of any machine learning system is directly related to how well the feature

space describes the original physical system. So far, the feature engineering

process for machine learning potentials can not describe complex material.

The current methods are highly inefficient transforming the information of

the physical structure into the feature vector, the losses of information con-

straint the accuracy of machine learning potentials.

This work introduces the Structural Information Filtered Features (SIFF),

the SIFF is a feature engineering method, based on maximizing the transfer

of information from the physical structure to the feature space. The SIFF

are thought as a universal feature, universal in two senses. First is able to

describe complex systems, as well as molecules, and crystals. Second it can



be easily used as input for any machine learning algorithm.

When applied to crystals the SIFF does as well as the best feature

engineering methods for this materials (SOAP, CGNN). When applied to

molecules the SIFF performs better than the Bag of Bonds method, espe-

cially when the number of structures is reduced to less than 10000, in this

conditions the SIFF shows a superior performance, due to its superior infor-

mation transference. Whit respect to complex system, the SIFF is compared

to the Behler and Parrinello approach, here the SIFF method reach an error

of 0.083eV/structure in 18110 second, in contrast the Behler and Parrinello

method achieved and error of 0.109eV/structure in 61969 seconds.

The main disadvantage of the SIFF method is that the conventionality of

the feature space grows exponentially with the number of chemical species

in the system.
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Chapter 1

Introduction

1.1 Introduction

The invention of materials with the potential to solve daily problems, makes

material science a key discipline for the development of our society. How-

ever, the process of creating materials faces many challenges, especially in

predicting the properties of a given configuration of atoms.

It is true that the wave function contains all the information known about

a given system. Yet the wave function is the result of solving Schrödinger’s

equation (SE), which takes considerably computational resources, even for

simple molecules or crystals. Moreover, prediction of properties requires

extensive knowledge of the potential energy surface (PES) which is only

accessible by molecular dynamics (MD) simulations. Molecular dynamics

simulations rely on knowing the energy, and the forces of the system at every

1



step.

The limitation imposed by the complexity of solving the SE offered oppor-

tunities for alternative methods to calculate energies, and forces of systems of

atoms. By far the most successful of these methods is the Density Functional

Theory (DFT) developed in the 60s by Hohenberg, Kohn, and Sham. DFT

is an exact theory, that instead of focusing on a many-body wave function,

focuses on the many-body density which is a single value quantity. The main

premise of DFT is that the electronic density contains all the information of

the ground state of the many-body system. However, despite the advances

introduced by DFT, ab inito simulations are still far from been feasible for

systems like macro-molecules, or glasses.

Simulations for systems like macro-molecules and glasses are performed

with empirical potentials, or force fields (FF). The FF are a simplification

of the energy function of a system of atoms. This simplification, splits the

total energy in different interactions, such as: bonds, dihedral angles, bend-

ings, torsions, etc. Yet the functions used to represent the energy parts are

unable to capture many of the quantum mechanical phenomena, in conse-

quence molecular dynamics performed by FF is constrained to spaces of the

configuration space where quantum mechanics does not play a fundamental

role.

Then there is dichotomy in the world of theoretical simulations of mate-

rials, in one hand there are methods with quantum mechanical precision, but

bounded by the size, and time of the simulation, on the other hand there are
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methods light enough to manage thousands of particles for even nanoseconds,

but without quantum mechanical accuracy. To solve this discrepancy new

tools have been employed. One of the most significant tools is machine learn-

ing. The field of Machine learning lies in the intersection between: computer

science, mathematics, and statistics. Machine learning are all the algorithms

and methods concern with fitting the parameters of a complex parametric

mathematical mapping to reproduce a given set of data. Machine learning

algorithms are the engine of Machine learning potentials which are the evo-

lution of force fields, the main idea is to use a machine learning algorithm to

learn the potential energy surface of a system of atoms. Perhaps the biggest

advantage of machine learning potentials is that they rely on mathematical

mappings complex enough to reproduce quantum calculations. In the last

10 years the applications of machine learning methods to materials science

have grown exponentially thanks to the apparition of massive data bases

with quantum mechanical calculations. The increasing amount of machine

learning potentials is a prove of its popularity.

While machine learning potentials have proved successful to speed up the

study of materials like crystals and molecules with errors compared to DFT

calculations, the reality is that there are still many challenges. Some prob-

lems are related with the limits of machine learning algorithms themselves,

for example the fact that they need huge amounts of data to be trained with.

Yet there are problems that come specifically from machine learning poten-

tials, fundamentally there are four of them. First, the lack of a universal

3



representation to describe different kinds of materials to be the input to the

machine learning algorithm. Second, the lack of a representation able to be

the input of different machine learning algorithms. Third, the lack of big data

set for materials due to the cost of using DFT, which makes important to

have a representation able to compare systems with differences in the number

of atoms, but similar in their compositions. And last but not least, there is

no machine learning potential capable of describing disorder states with the

same accuracy compared with which machine learning potentials are applied

to crystals and molecules. This last problem is of special importance, since

a structure during a long molecular dynamics simulation is likely to experi-

ence significant modifications, while passing through disordered states in its

configuration space.

In this work the Structural Information Filter Features (SIFF) are intro-

duced. The SIFF is a feature engineering algorithm to transform information

from a physical structure to a feature vector. The goal of the SIFF is to maxi-

mize the information transfer, so that any physical system can be represented

by a feature vector regardless of its complexity. In addition the dimension of

the SIFF feature space is independent on the number of particles in a struc-

ture, and the SIFF can be used as input of any machine learning system.

This dissertation is divided in 7 chapters. Capter 2, deals with the ma-

chine learning methods used to build the machine learning potentials, also

explains the feature engineering process, and how vital good features are for

the success of any machine learning application, it also explains concepts

4



important for the derivation of the SIFF like convolution of neural networks.

Chapter 3 is devoted to DFT, the Hohenberg Kohn theorems are explained,

and the Kohn Sham equation derived, in addition some remarks on practical

applications are mention. Chapter 4, introduces force fields, explains details

about their construction, and applications. To finally analyze their limits.

Chapter 5 summarizes the field of machine learning potentials, reviewing

some of the most influential methods of the last 10 years, as well as impor-

tant methods that influence the SIFF. Chapter 6 is the most substantial,

there the SIFF are formally introduced, also the results of different tests are

presented to prove their reliability, and find their weak spots. Chapter 7 sum-

marizes the conclusions, and expose where further developments should be

done in order to improve the next generation of machine learning potentials.
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Chapter 2

Machine Learning

2.1 An introduction to Machine Learning

Machine Learning is a set of methods, algorithms and procedures, to extract

knowledge out of data, to make predictions. Formally speaking, Machine

Learning is: all the methods, related to the learning of parametric and non-

parametric mappings f : x→ y, to predict the value, of a different outcome

variable ”y”, from the information stored in an input ”x”.

In general, machine learning methods have three stages. First the gath-

ering and preprocessing of the data to teach (train) the machine learning

algorithms (MLA). Second the training of the MLA with the data already

gathered. Third and final, the use of the MLA to make predictions in a data

set different from the one used for training.

In the specific, Machine Learning methods are divided in two groups by

6



how they are trained: supervised learning algorithms and unsupervised learn-

ing algorithms. In supervised learning, the goal is to learn the relationship

between the input x and the target y variables, from a set of examples where

both pieces are known. Instances of methods in the supervised learning class

are: neural networks [1, 2], decision trees [3], support vector machines[4],

Gaussian methods[5]. On the other hand un-supervised learning, the only

known information at the time of training are the input variable x, and the

goal is to find interesting patterns in the data. One well known method in

the un-supervised learning class is the clustering method [6], that tries to

group elements that share properties.

Before writing about specific MLA or preprocessing techniques, it is im-

portant to introduce the notations and common words of the machine learn-

ing field with a simple example. Consider the problem of predicting, whether

a patient hospitalized due to a heart attack will have a second one consid-

ering as input data: demographics, diet, and concentration of glucose and

fat in its blood. In this supervised learning classification problem, the goal

is to teach a MLA how to predict the value of the output variable ”y”, also

known as target or response variable from training data in which we already

know the value of ”y”. Here ”y” is a categorical variable, that can only take

certain values in a definite set yi ∈ {0, 1, 2, ..C}, where C is the total number

of categories, yi can belong to. In the case of the example, the output vari-

able can have two values: y = 0 if the patient does not have a second heart

attack, and y = 1 if the patient has a second heart attack. On the other

7



hand problems where y ∈ < are known as regression problems.

Now with regard of the input variable ”x”, ”x” is usually a column vec-

tor ~xT = (x1, ..., xp, ..., xd). ~x is formally known as the feature vector, the

feature space has a dimensionality ”d”, where the dimensions are features, or

attributes of the system we want to described, such that everyone of the xp

in the feature vector is a piece of information needed to describe the system

for which we want to predict ”y”. In therms of the example; the system

are the hospitalized patients that had a heart attack and the components of

the feature vector are: x1 representing the demographic, x2 the diet, x3 the

concentration of glucose and x4 the concentration of fat.

To train a MLA using supervised learning we need several examples of

the form (~xi, yi), where yi is the target values that the MLA will learn to

predict, and ~xi represents the input information needed to make the predic-

tion. Usually the set of known examples is divided in two groups; one for

training the algorithm with usually 80 % of the data while the remaining

20 % of the data is used to validate the trained algorithm. It is important

to note that sometimes the input information is denoted as X, which repre-

sents a matrix containing all the training examples, with dimensions (N, d),

where every row accommodates a feature vector ~xT , in the same spirit Y is a

column vector of dimension N , with all the training examples concatenated

(see figure 2.1).

The predictions done by the MLA are denoted by f(~xi) or y′i. The learning

process is carried out by a successive minimization of the cost function, which

8



Figure 2.1: Example of the X matrix to represent the input data, where the
number of columns, is the number of features, in the feature space, and the
number of rows is the ”N” number of examples. The Y vector of the target
data, contains the ”N” examples.

is a metric to evaluate how well the mapping f(~xi) predicts the real output

yi. A well known example of cost function J is the one defined with the

square error:

J =
1

2N

N∑
i=1

(yi − f(~xi))
2 (2.1)

In general the cost function is defined as the summation of the losses of

every independent training example: J = 1
2N

∑N
i=1 L(yi, f(~xi)) in the case of

equation 1 the loss function is L(yi, f(~xi)) = (yi − f(~xi))
2.

As it was said before, the learning process is done by a systematic min-

imization of the J function. For the cases where the MLA is a parametric

mapping, like neural networks or Gaussian process, the systematic minimiza-

tion is carry out by a gradient descent algorithm [7, 4, 5], the gradient descent

algorithm updates the parameters of the mapping. However if the mapping is

non-parametric like decision trees, the minimization is carry out by different

algorithms like C4.5 [8], and CART [3]. In both cases the learning process is
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carried out by minimizing J on the training set, and the learning process is

finished once J reach a minimal in the validation set.

To summarize this gentle introduction to supervised machine learning.

The process of machine learning starts, by gathering data to teach the MLA,

once the data is organized in (Y,X)training and (Y,X)validation, the teaching

algorithm can start minimizing the J function, the learning process stops

once the J function reach a minimal for the validation set.

The subsequent sections of this chapter, are going to deal with either:

process, and methods needed to understand the machine learning behind the

machine learning potentials described in this dissertation. The section 2 of

this chapter introduces the process of feature engineering giving examples of

how features are selected and how to evaluated their quality. Section 3 deals

with Neural Networks, how they make predictions and how they are trained.

Finally section 4 is devoted to Gradient Boosting Regression and Regression

Trees.

2.2 Feature Engineering

Feature engineering is all the methods and techniques, in the pre processing

stage for which the input variables X are selected constructed or transformed

to describe different aspects of the target variable Y .

The present section has to two parts, the first part shows examples of

how some iconic features are selected or constructed in the fields of text
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representation, and time series. The second part is more abstract yet of

high practical importance, since it explores the information measurements

needed to select a set of features capable of predicting the target variable

with accuracy.

2.2.1 Examples Of Features

It does not matter what the task of the machine learning method is: a

regression, a classification, or even a clustering. The success of the method

is highly dependent on finding meaningful features [9].

The feature representation can be seen as the result of translating the

information stored in the data, into a language in which a MLA can make

sense of the original information. The features must faithfully represent the

data in a meaningful way. For example, imaging a machine leaning system

trying to differentiate lemons from grapefruits. It would be useless for the

task to use the shape as a feature since lemons and grapefruits are semi-

spherical, contrarily the color and the diameter would result in a better set

of features to tell lemons and grapefruits apart.

One of the most popular applications of machine learning is the detection

of spam email. The first step of this detection consist of transforming the

text in the email into a numeric feature vector. There are many algorithms

capable of this transformation, some of the most advanced are the word em-

bedding algorithms like: word2vec [10] and GloVe [11]. Yet the Bag of Words

[12, 13, 14] is a simple but effective method to transform texts into feature
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vectors. It consist of seeing the text as a collection of independent units

(what we know as words), then counting how many times certain words ap-

pears in the document. The final representation concatenates the frequencies

of appearance of important words in a given document.

A formal definition of the bag of words method is (following the definitions

in Ref [14]); supposed there is a natural language vocabulary (set of words)

V = v1, v2, vN where vi is the ”i” word in the vocabulary V . Then the Bag

of Words representation for the ”j” text document would be:

~xTj = (c(v1, j), c(v2, j), ..., c(vN , j))

Where c(v, j) is the number of times the word v appears in document ”j”.

Since every word is seen as an independent unit of the text one disadvantage

of the Bag of Words is that it is unable to understand syntactic or semantic

relations between words.

The last example of features are the ones proposed by Mörchen to rep-

resent time series [15]. A time series is a set of repeated measurements on

a system over time. The times series ”Z” with Z = (z1, z2, ...zN), where

the measurements ”zi” are performed at usually uniform time steps, t =

(0, t1, ..., tN−1). Some examples of ”Z” are temperature, pressure, prices in

the stock market, wav music files. Time series easily concatenate tens of

thousands of elements this make the comparison between times series hard,

since in spaces of high dimensionalty the notion of proximity is difficult to

define [16]. This is known as the course of dimensionalty and makes the MLA

unable to clearly distinguish between different times series resulting in a lost
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of accuracy. The goal of the feature engineering algorithm is to generate a

smaller and faithful representation of the time sires in such a way that if a

group of time series are similar they should be close together in the feature

space, also if a group of time series are different, then they should be far

apart in the feature space.

The Mörchen method can be summarized on the next steps:

1) Do a discrete Fourier transform (DFT) of the times series to find the

ck coefficients of the time series.

ck =
1

N

N−1∑
n=0

z(tn) ∗ exp
(
−2πikn

N

)

2) Select a number K such that every time series is represented by all the ck

for k ¡ K, the value of K must the big enough to keep the most representative

values of ck.

3) Construct a feature vector Zj
features for every Zj time series

Zj → ~ZTj
features = (cj0, c

j
1, ..., c

j
K−1)

As it could be seen, from the last two examples, the process of transform-

ing raw data (text, music, stock prices) into feature vectors is dependent

on insight knowledge of the particular field the raw data is coming from.

Nevertheless, the quality of the representation can be measured, this mea-

surements allowed researchers to systematically improve the feature repre-
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sentations. The next section deals with the methods needed to study the

predicting power is a set of features.

2.2.2 Feature Selection: General picture

Feature selection is one of the most important pre-process in machine learn-

ing, the goal of the task is to select a set of features with the smallest di-

mension possible while maximizing the amount of information of the original

system stored in the feature representation.

The process of finding a good set of features to faithfully represent data is

not yet standardized and is still heavily depended on domain knowledge, in

addition it is important to have in mind that the construction of an optimal

set of features is an intractable problem (at least so far). There are two kinds

of methods to analyze the quality of a given set: the search based methods,

and correlation based methods [17, 14].

The searched based methods are based on searching for different subsets

of combinations among the set of possible features to describe a data set. A

search based method selection has three stages:

1. The selection of a subset of features.

2. The evaluation of the selected subset.

3. An stopping criterion.

The first stage can be done by randomly selecting the subset or by se-

quentially adding and removing features from the subset. The second part
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depends on a metric for the evaluation of the subset, in the case of a wrapper

model [18, 19] the metric involves a machine learning algorithm, for example

a support vector machine or a decision tree. The idea is to test several com-

binations of features and find out which combination has better results. On

the other hand, in filter methods [18, 19] no machine learning system is used

to evaluate the performance of the subset of features, instead information

based calculations makes the evaluation.

In the correlation based method [17, 20, 9] the features are evaluated in-

dividually using a scoring function s(p). The scoring function measures the

importance of a feature ”xp” by quantifying its power to predict the target

variable (”y”). Some examples of scoring functions are the Pearson corre-

lation coefficient R(p, y), and the mutual information measurement I(p, y)

[21].

The Pearson correlation coefficient measures the linear correlation be-

tween the feature ”xp” and the target value ”y”, and it is calculated through

all the data examples in hand. The value of the coefficient can be in between

-1 and 1, with -1 meaning total linear negative correlation, 1 meaning total

linear correlation (see figure 2.2).

R(p, y) =
N∑
n=1

(xn,p − x̄p)(yn − ȳ)√∑N
n′=1(xn′,p − x̄p)2

∑N
n′=1(yn′ − ȳ)2

(2.2)

Here ȳ represents the average over the N data examples of the target value,

and x̄p is the average of the feature with sub-index ”p” over the N data
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examples.

Another of the scoring functions is the mutual information I(p, y), the

measurement is based on the joint probability distribution (P (xp, y)) between

the feature with sub-index ”p” and the target value ”y”. The higher the value

of I(p, y) the stronger the relationship between the feature and the target

value. In the case in which the feature and the target value are independent

P (xp, y) = P (xp)P (y), the value of I(p, y) is zero.

I(p, y) =
N∑
n=1

N∑
n′=1

P (xn,p, yn′) log

(
P (xn,p, yn′)

P (xn,p)P (yn′)

)
(2.3)

Figure 2.2: Examples of values of the Pearson correlation coefficient and
its data realization. In the upper part of the image, different values of the
Pearson correlation for different grades of linear dispersion. Note that in the
lower part of the image non-linear correlations are shown and for all of them
the Pearson correlation coefficient is zero, meaning that that the Pearson
correlation coefficient can only measure linear correlations (Image created by
Denis Boigelot)

The correlation selection method pursues to rank the features in four
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classes[17, 14] strongly relevant, weakly relevant but non-redundant features,

redundant features, and irrelevant features. To better explain the concepts

behind those four subset, first remember the classification problem from be-

fore, in which a MLA must differentiate between lemons and grapefruits, the

set of features (F) for this task are: the shape of the fruit (f1), the diam-

eter (f2), and the color (f3), formally the set of features can be expressed

as: F = {f1, ..., fd}, a feature subset (subset without feature fj) is defined

by :Sj = F − fj. The target value has two classes since the fruit can either

be a lemon (class 0, y=0), or a grapefruit (class 1, y=1) then set of classes

is C = {C0,C1}. Finally P (C|fj) is the probability distribution of the data

into the classes by taking into account the knowledge given by the feature fj.

The formal definitions of the ranking classes for features are:

1) Strongly relevant features, iff:

P (C|fj, Sj) 6= P (C|Sj) (2.4)

A feature is strongly relevant, if by its own presence is able to change the

probability distribution, for example in the case of the fruit classification the

distribution of fruits would be confusing if only the color and the shape of

the fruits are taken into account, a lemon and a grapefruit have the same

shape (spherical), and similar colors (yellow-green), in contrast if the diam-

eter is taken into account the distribution would change dramatically since

the differences in diameter for lemons and grapefruits are easy to tell.
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2) Weakly relevant but non-redundant features, iff:

P (C|fj, Sj) = P (C|Sj), and (2.5)

∃S ′j ⊂ Sj, such that P (C|fj, S ′j) 6= P (C|S ′j)

A feature is weakly relevant if it can alter the probability distribution but

only with certain sub-sets of features, for example if the subset only contains

the shape feature then by taking into account the color the probability dis-

tribution would change. On the other hand if a subset contains the diameter

then taking into account the color makes no more difference.

3) Redundant features, iff it is also weakly relevant and has a Markov

blanket 1 Mj within F, such that :

P (F −Mj − {fj}, C|fj,Mj) = P (F −Mj − {fj}, C|Mj) (2.6)

Imagine (fj) is the color, which is already a weakly relevant feature, in ad-

dition, the color of a fruit is related with the degree of ripening, which is

related to the diameter, meaning that the diameter is with in the Markov

blanket of the color feature, making the color a redundant feature.

4) Irrelevant features, iff:

∀S ′j ⊂ Sj, P (C|fj, S ′j) = P (C|S ′j) (2.7)

1In the context of feature space, a group of features belongs to the same Markov
blanket if the features are related, tow features (p and p’) are in the same Markov blanket
if P (c|xp, x

′
p) 6= P (c|xp)P (c|x′

p)
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A feature is irrelevant if this feature does not make any change in the prob-

ability distribution, for example since both, lemons and grapefruits have

spherical shape, the shape feature is irrelevant.

So far the usefulness of the features is based on scoring functions mea-

suring the interaction between the features and the target variable. Every

feature is evaluated individually ignoring that in the learning process the

features interact to create a picture of the system they describe. To fix the

discrepancy between evaluating the features individually and using them as

an interacting system, M. Hall [22] proposed a correlation method for feature

selection to take into account the interaction among features. In his method:

”The acceptance of a feature will depend on the extent to which it predicts

classes (values of the target variable) in areas of the instance (feature) space

not already predicted by other features.”

This method not only accounts for correlations among individual features

and the target variable, but also accounts for correlations between individual

features, so that in addition to calculating s(i) it is also important to measure

s(i, j), which is the scoring function between feature ”i” and feature ”j”. The

Pearson correlation coefficient is reproduced here with the feature to feature

approach.

R(i, j) =
N∑
n=1

(xn,i − x̄i)(xn,j − x̄j)√∑N
n′=1(xn′,i − x̄i)2

∑N
n′=1(xn′,j − x̄j)2

(2.8)

If the value of s(i, j) is high then either ”i” or ”j” is redundant and/or irrel-
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evant. Then one of them could be eliminated from the set, here is important

to note that some small redundancy among features is required to decrease

the noise[9].

In conclusion a good set of features, must be strongly correlated with

the target variable while the correlations between features are low. In other

words, every feature must contribute to the collective information of the

target with an independent piece of information about the target.

2.3 Neural Networks

This subsection introduces some of the key concepts behind a Neural Network

(NN). This concepts are needed to understand the Neural Networks Atomic

Potentials (NNAP) [23]. A NN is a parametric mapping f : x → y, where

the number of parameters can easily reach the order of thousands. However

is thanks to the elevate number of parameters and non-linear activation func-

tions that NN can approximate functions regardless of its complexity, with

the condition that enough data for training is provided.

The fundamental unit of a NN is a neuron, the neurons are organized

in layers, and the layers are connected to form the processing system. The

architecture of the NN is defined by the number of neurons, layers, and how

the component are connected. The architecture studied in this subsection is

the Fully Connected Neural Network (FCNN), which is the key of the NNAP

introduced by Behler and Parrinello, in addition, this subsection explains the
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learning process of a NN, and finally it introduces the concept of convolution

of neural networks.

2.3.1 Fully Connected Neural Network (FCNN)

Figure 2.3: Diagram of a Fully Connected Neural Network FCNN. Here
the NN has two hidden layers, plus the input layer and the output layer.
Every node (neuron) performs two operations: first the acquisition and linear
processing of the signals (z), and the calculation of the activation (a), in the
output layer the result of the NN processing is communicated through the
output variable ”y’”

A NN is composed by nodes or neurons organized in layers, the layers

are interconnected to form a processing network [4, 5, 2] as it can be seen

in figure 2.3.1. The process of transforming the information from the input

layer to the output layer is called forward propagation it starts with the input

layer, that has as many nodes as the input feature vector has components,
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every input node is a channel to feed the information, stored in the feature

vector. The layers in between the input layer, and the output layer are the

hidden layers, in fully connected architectures, every node in a current layer

”j”, is connected to all the nodes of the immediately before layer ”j-1”. The

architecture of a FCNN is specified by the number of nodes in every layer

separated by dashes ”-”, for example the architecture of the FCNN of figure

3 is (3-2-2-1), it is normal to refer to the number of nodes in the ”j” layer

as nj, for example: n0 = 3, n1 = 2, n2 = 2, and n3 = 1. A NN can have as

many hidden layers as needed to learn any function. Increasing the number

of layers makes the NN more versatile, but it also increases the amount of

data needed for training. The concept of deep learning comes from the idea

of staking several hidden layers to process information. As figure 2.3.1 shows

every node is divided in two parts (the node performs two operations), first

the gathering and linear processing of the input information ”z”, and then

the calculation activation ”a”. Figure 3 also shows the indexing notation,

where zjq , represents the linear function in layer ”j” and node ”q”, the same

convention goes for the activation ajq.

The communication between layers is done by linear functions, trans-

forming aj−1
p into zjq , the linear functions are dependent of the parameters

θ → (ω, b).

zjq =
nj−1∑
p

aj−1
p ωjp,q + bjq (2.9)

The parameters ωjp,q are the weights communicating the output of node ”p”
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in layer ”j-1”, with the node ”q” in layer ”j”, the parameters bjq are the biases.

The value of ajq is the result of applying the activation function to zjq .

ajq = σj(zjq) (2.10)

Figure 2.4: Diagram of a FCNN. In this NN with two hidden layers, plus
the input layer and the output layer. Every node (neuron) performs two
operations: first the acquisition and linear processing of the signals (z), and
the calculation of the activation (a)

The σj is the activation function acting in the layer ”j”, the activation

functions are responsible for the non-linear properties of the NN, latter in

this subsection different types of activation functions are shown.

Continuing with some notation in figure 2.3.1 part a) there is a scheme

of the forward propagation between the input layer and the first hidden
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layer the scheme shows how the output of a layer (in this case the input

layer) mixes with the weights and biases to connect with the nodes of the

forward layer, then the activations are calculated and the information is

communicated to the next forward layer. Parts b) and c) of figure 2.3.1

shows the ”trick” of writing the forward operations like matrix operations.

Taking the NN of figure 2.3.1 and writing its operations in matrix form, the

forward propagation looks like:

0) Taking as input a feature vector ~x with ”d” features in this case 3, the

vector ~x acts as ~a0, since ~x is the output of the input layer.

1.1) The propagation of ~x into the first layer is done by:

~zt1 = ~xTΩ1 +~bt1

Here Ω1 is a matrix with dimensions (n0, n1), n0 = 3 number of nodes of the

before layer (input layer), and n1 = 2 number of nodes in the current layer

(hidden layer 1), ~z1 and ~b1 have n1 = 2 dimensions

1.2) Calculation of the activation vector of the hidden layer 1 ~a1 by ap-

plying the activation function σ1() to the linear transformation ~zt1:

~aT1 = σ1(~zt1)

2.1) The propagation to the second hidden layer:

~zt2 = ~aT1Ω2 +~bt2

Here Ω2 is a (2,2) matrix because the before layer (hidden layer 1) has 2

nodes and the current layer (hidden layer 2) has to 2 nodes. In addition ~z2

and ~b2 have 2 dimensions
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2.2) The calculation of the activation of the second layer:

~aT2 = σ2(~zt2)

3.1) The propagation to the output layer:

~zt3 = ~aT2Ω3 +~bt3

Here Ω3 is a matrix with dimensions (n2, n3), n2 = 2 number of nodes of the

before layer (hidden layer 2), and n3 = 1 number of nodes in the current

layer (output layer), ~z3 and ~b3 are scalars since the output layer has only one

node.

3.2) Finally the output y′, is calculated applying the activation function

to the ~z3:

y′ = σ3(~zt3)

The process of forward propagation is a succession of linear transforma-

tions and the application of a non-linear function, where the output of the

before layer is the input of the current layer repeating this process until the

information makes its way out through the output node or nodes.

In real life applications of NN, the forward propagation is not done one

feature vector at the time. In general the input is the ”X” matrix presented

in figure 2.1, where the columns are every one of the features in a set of

”d” features, and the rows are every example in a group of ”N” examples.

Thanks to highly efficient matrix operations must Deep Leaning packages
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manage the forward propagation as follows:

Zj = Aj−1Ωj +Bj (2.11)

Here Zj is a matrix with dimensions (N, nj), Aj is also a matrix with di-

mensions (N, nj), and A0 = X, Bj is the result of a broadcasting operation

where the bj with dimensions (1, nj), is staked ”N” times into the rows of

Bj to create a matrix with dimensions (N, nj), in addition the application

of the activation function is an element wise operation, where every scalar

component of Zj is transformed by σj() as it is shown in figure 4c.

Aj = σj(Zj) (2.12)

Now the output of the NN Y ′ has dimensions (N, nJ), where nJ is the number

of nodes in the output layer.

2.3.2 Activation Functions

As we saw in the last subsubsection the propagation of information through

the NN has two fundamental steps, first one linear transformation, and then

the application of a non-linear function. Without the second step, NN would

be linear regresors. It is thanks, to the flexibility introduced by the activation

functions, that NN are able to approximate with success the behavior of

complex functions.
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There are many functions that are used as activation functions, neverthe-

less the NNAP relies on the hyperbolic tangent, in addition to this activation

function, the sigmoid and the Rectified Linear are also introduced.

The logistic or sigmoid function:

Figure 2.5: Sigmoid activation function

σ(z) =
1

1− e−z
(2.13)

The hyperbolic tangent tanh

σ(z) =
e−z − e−z

e−z + e−z
(2.14)

The Rectified Linear:
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Figure 2.6: Tanh activation function

σ(z) =


0 for z < 0;

z for z > 0

(2.15)

2.3.3 The Learning Process

The result of an analysis made by a Neural Network is dependent on the

values of the parameters, weights ω and biases b. The goal of the learning

(training) process is to successively improve the value of the parameters, such

that, the output of the NN resembles the values of the training targets Y .

The performance of the NN is measure by the cost function(defined in

equation 1, reproduced here again):

J = 1
2N

∑N
i=1(yi − y′i)2
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Figure 2.7: Rectified Linear activation function

There are many algorithms to improve the values of the parameters, one of

the simplest, but yet powerful methods is the steepest descent, where the

rule to update the parameters is:

ωjp,q := ωjp,q − α
∂J

∂ωjp,q
(2.16)

bjq := bjq − α
∂J

∂bjq
(2.17)

Where the α is known as the learning rate. The calculation of the partial

derivatives is carry out by back propagation [7], which is an algorithm to

compute the derivatives using the chain rule. The name, back propagation

comes from the fact, that the first partials derivatives to be evaluated, are the

ones in the output layer, from there, the calculation of the partial derivatives
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propagates to deeper layers, until it finally reach the input layer.

Before deriving the back propagation method, let us review the hypothet-

ical last two layers of a FCNN with ”j”, layers:

Last two layers, ”j” and ”j-1”



zj−1
i,p =

∑nj−2

r aj−2
i,r ω

j−1
r,p + bj−1

r

aj−1
i,p = σj(zj−1

i,p )

zji,q =
∑nj−1

p aj−1
i,p ω

j
p,q + bjq

aji,q = σj(zji,q)

Where ”i” is one of the ”N” examples in the input data. The first partial

derivative calculated is: ∂J

∂ωjp,q
:

∂J

∂ωjp,q
=

∂J

∂aji,q

∂aji,q

∂zji,q

∂zji,q

∂ωjp,q
(2.18)

It is usual to call the term ∂J

∂aji,q

∂aji,q

∂zji,q
as dzji,q, now calculating the value of

every term:

∂J

∂aji,q
= −1

N
(yi − aji,q)

∂aji,q

∂zji,q
= σ′j(zji,q)

∂zji,q

∂ωjp,q
= aj−1

i,p

Now the term ∂J

∂ωjp,q
in equation 2.18 can be written as:

∂J

∂ωjp,q
=

N∑
i=1

dzji,qa
j−1
i,p (2.19)
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And for the bjq term:

∂J

∂bjq
=

∂J

∂aji,q

∂aji,q

∂zji,q

∂zji,q

∂bjq
(2.20)

But
∂zji,q

∂bjq
= 1 then

∂J

∂bjq
=

N∑
i=1

dzji,q (2.21)

Now for the parameters in the ”j-1” layer, the partial derivatives goes like:

∂J

∂ωj−1
r,p

=
∂J

∂aji,q

∂aji,q

∂zji,q

∂zji,q

∂aj−1
i,p

∂aj−1
i,p

∂zj−1
i,p

∂zj−1
i,p

∂ωj−1
r,p

(2.22)

Which can be rewritten as:

∂J

∂ωj−1
r,p

= dzji,q
∂zji,q

∂aj−1
i,p

∂aj−1
i,p

∂zj−1
i,p

∂zj−1
i,p

∂ωj−1
r,p

(2.23)

Then writing down the therms:

∂zji,q

∂aj−1
i,p

= ωjp,q (2.24)

∂aj−1
i,p

∂zj−1
i,p

= σ′j−1(zj−1
i,p ) (2.25)

Now it is possible to define:

dzj−1
i,p = dzji,q

∂zji,q

∂aj−1
i,p

∂aj−1
i,p

∂zj−1
i,p
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And using equations 2.23 and 2.24

dzj−1
i,p = dzji,q ω

j
p,q σ

′j−1(zj−1
i,p ) (2.26)

The equations 2.19, 2.21, and 2.26, summarized the process of back propa-

gation, these equations can be written in matrix notation:

dZj−1 = (dZj · ΩTj) ∗ σ′j−1(Zj−1) (2.27)

∂J

∂Ωj
= AT j−1 · dZj (2.28)

∂J

∂Bj
= Sum(dZj)i (2.29)

where the the symbol · represent the usual matrix product and the ∗ represent

an element wise multiplication. Also the partial derivatives ∂J
∂Ωj

and ∂J
∂Bj

represent the gradients respect to Ωj and Bj. The Sum(dZj)i represents the

addition of all the elements of the matrix dZj with dimensions (N, nj) in the

first axis, the result of this operation is a vector with the same dimensions

of Bj. In matrix notation the updates rules for the steepest decent are:

Ωj := Ωj − α ∂J
∂Ωj

(2.30)

Bj := Bj − α ∂J

∂Bj
(2.31)
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Figure 2.8: Diagram with the forward and backward propagation for the
FCNN from figure 2.3.1. The part a) has the forward propagation, every box
represent the process inside every one of the layers of the NN. Part b) has the
back propagation, the way the NN learns, the calculation of the dZj happens
in between layers, then the gradients ( ∂J

∂Ωj
, ∂J

∂Bj
) are calculated, and then

the parameters (Ωj, Bj) are updated with the information from the learning
examples.

The process of training a NN is summarized in figure 2.8. Part a) shows

the forward propagation, while part b) shows the backward propagation.

The cycle of learning, starts with the input of the feature representation,

of the learning examples stored in X, the input propagates through the

NN, until the output A3 is produced, then the cost function is evaluated

J = 1
2N

(~Y − A3)2, where ~Y are the target values of the learning exam-

ples. After the evaluation of the cost function the update of the parameters
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θ = {Ωj, Bj} by back propagation starts. First the calculation of dZ3 is com-

municated to the output layer, to calculate the gradients of the cost function,

respect to the parameters of the output layer ( ∂J
∂Ω3 ,

∂J
∂B3 ), latter the param-

eters are updated, and the algorithm moves to the next backward layer, and

repeats the steps, calculate dZj, calculate gradients ( ∂J
∂Ωj

, ∂J
∂Bj

), and update

parameters. This process is repeated until the parameters in the input layer

are updated.

One cycle of forward and back propagation makes one training step, some

times the number of learning examples overflows the memory of the system,

in those cases the number of examples are divided in batches, and every

learning step is carried out in every batch at the time. A cycle over all

the batches is an epoch. It is normal to have thousands of training steps.

Sometimes after many training steps the value of the cost function evaluated

in the validation set start to increase instead of decrease, when this situation

happens, it means, that the NN is over fitting the training data, and it starts

to lost the generality, needed to make predictions out of the training set. On

the other hand when the cost function evaluated in the training set does not

decrease or decrease a little to then reach a valley, it means that the NN

is lacking the complexity, needed to reproduce the function of the learning

data, in this cases the number of the parameters and/or the number of layers

should be increased. In order the make the learning process faster, it is usual

to use the Rectified Linear activation function, instead of the Logistic or the

Tanh, looking at figures 5, 6, and 7 is clear that the derivatives of the Logistic
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and Tanh have bigger values, only for −1 < x < 1, instead the derivative of

the Rectified Linear is 1 for x > 0, then the learning process is faster using

the Rectified Linear activation function.

2.3.4 Convolution Of Neural Networks

The convolution of neural networks is a widely used neural network architec-

ture in the field of machine vision,[4] where a normal neural network is fed

with the output of several layers of convolutions, the convolutional layers are

a filtering process in between the input images and the neural network, the

goal of the convolution is to extract some important property out of the raw

images.

As an example figure 2.9 shows the process of a convolution layer. In the

first stage there is a filter and a raw image, both represented by matrices,

it is important to note that the filter is smaller than the image, the goal of

the filter is to block some pixels and let through other ones. In the second

stage the filter is applied to the image, note that the same filter is applied to

different sections over the same image, in this case the filter extract the non-

diagonal elements of the subimages matching the application, the extraction

is carried out by an element wise multiplication between the elements of the

image and the elements of the filter that share position, then the output of

every individual application of the filter is added together, and concatenaded

into a feature vector. Keeping the output of every filter separate, helps the

feature vector to keep some of the original geometrical information of the raw
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Figure 2.9: Diagram of the convolution of NN, in the left part, there are
a filter and input image (matrix of pixels). In the center part the filter is
applied to the image. In the right part the products of the filtering are order
in a feature vector.

image. The convolution of neural networks is an example of an application

feature selection in which the raw data is filtered in a way that the features

conserve inside information of the original system in this case geometrical

information.

2.4 Regression Trees And Gradient Boosting

Regression

In most machine learning methods, the goal is to exhaustively train a single

mapping f : ~x→ y, to minimize the error between the target values ”y” and
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the predictions f(~x). In Boosting Methods the goal is still the same, reduce

the error between ”y” and f(~x), but with one difference, instead of investing

all the resources in training a single mapping, the Boosting Method takes

”M”, under trained, and simple mappings, and combined them together to

create a new map. In Boosting Methods, the final mapping is F (~x), and

the individual simple mappings, or estimators are fm(~x), the general idea of

Boosting is expressed in the equation:

F (~x) = f0(~x) +
M∑
m=1

αmfm(~x) (2.32)

In the machine learning literature the F (~x), mapping with error close to

0, is known as a strong estimator, or in the case of classification a strong

classifier, the under-trained mappings fm(~x) with high errors, are known as

weak estimators or in the case of classification weak classifiers. Topically

the weak estimators are a type of simple mapping known as regression tree,

similar to a decision or classification tree, but used to predict values of a

variable in < , instead of predict classes.

This subsection is divided in two parts, first an introduction to regression

trees, and then an explanation of the Boosting method applied to regression

trees and optimized with gradient methods.
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2.4.1 Regression Trees

A regression tree (RT) [3] is a method to learn the value of a function, but

instead of optimizing a preconceive parametric mapping, the RT learns by

systematically dividing the feature space in rectangles, and assigning a con-

stant value to everyone of the rectangular regions, this process, of recursively

dividing the feature space, it is done by growing the RT using binary splits

of the data.

Figure 2.10: Scheme of a regression tree RT, and how the feature space
(x1, x2) is divided in 6 regions. Every node shows the binary splitting process,
and how the tree grows, by successive binary splitting every node, until the
stopping criterion is reach, in which case the node became a leaf, and no
subsequent splitting is done.

To introduce the process of growing the RT [2], consider learning a RT
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from ”N” examples of the form {~xn, yn}, where every ~x is represented in a

feature of space of the form ~x = (x1, x2). The RT are grown from top to

down, in series of binary splittings (as it can be seen in figure 2.10 ). At first

all the ”N” training examples are in the first node (the root node, node 1)

where the growing algorithm makes the first binary split, the split is done

in one of the feature coordinates, with respect to a threshold value, how the

feature and the threshold value are chosen will be addressed latter, for now,

in the first binary splitting the feature selected is x1 and the threshold value

is U0, the examples where x1 < U0 advance through the left side branch,

or yes branch, while the examples where the statement is not true advance

through the right side branch, or no branch. In either case the data goes to

their respective next node. For the data in the left hand side of the tree, the

next node (node 2) makes the binary splitting on the x2 feature, with V1 as

threshold value, after this partition the data goes to their respective terminal

nodes (leafs). Every leaf Rm represents a region in the feature space. The

RT makes the regression by assigning the same output value ”γm” to all the

examples in the same Rm region. The set of all the Rm regions, and all the

s splittings, needed to create the tree, are known as the θ parameters of the

RT θ = {Rm, s}, in addition, the mapping done by a RT with parameters θ

is usually referenced as T (~x, θ). Then for a RT with ”M” total regions the

prediction values are:

y′n = T (~xn, θ) =
M∑
m

γmI(~xn ∈ Rm) (2.33)
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Where I(~xn ∈ Rm) = 1 if the hypothesis inside is true and it is 0 other wise.

Now in order to grow a tree in a systematic manner, there are tree points

the algorithm must addressed [3]

1. A rule to split the data at every node, this is how to choose the feature

(coordinate) to split and the value of the threshold to do the division.

2. A rule to determine when a node is terminal, when a node became a

leaf.

3. A rule to assign the value of every γm.

The algorithm assumes that there are ”N” training examples of the form

(~xn, yn) where ~xn is a feature vector with ”d” components ~xn = (xn1, ..., xnd).

The first point to be addressed is the third one, Here the algorithm makes

two assumptions: first, at the end the data is grouped in M different regions,

and second the cost function for minimization has the form J =
∑N

n=1
1
2
(yn−∑M

m γmI(~xn ∈ Rm))2, under this conditions the value of γm that minimizes

J is:

γm = aver(yn|~xn ∈ Rm)) (2.34)

Now with respect to the rule to split the data in a node, it was shown by

Hyafil and Rivest [24] that an optimal solution to a decision tree is an NP

problem, as consequence building an optimal decision tree is unrealistic, then

the splitting problem is solved, with a greedy approach, where at every node,

the algorithm looks for the best split at that point, regardless of whether,
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that particular split, is going to lead to a good split latter down in the tree.

Then at every node the splitting problem is reduced to finding the xp feature

(coordinate) and the s value for which the splitting reduces the J function

at that particular node. The splitting cuts the xp coordinate in two planes:

region 1 R1(p, s) = {~xn|xnp ≤ s} and region 2 R2(p, s) = {~xn|xnp > s}, then

the best splitting is:

argmin
p,s

[
argmin

c1

∑
~xn∈R1(p,s)

(yn − c1)2 + argmin
c2

∑
~xn∈R2(p,s)

(yn − c2)2
]

(2.35)

Where cm = aver(yn|~xn ∈ Rm(p, s))), m ⊂ {1, 2}. The greedy algorithm

looks for the best split (p,s), by scanning all the possible ”s” values, for either

all the ”p” coordinates, if the feature space is not too big, or a randomly

generated subset of features, if the feature space is too big. After knowing

which particular splitting reaches the biggest minimization of J , that splitting

is carried out, and the same process is done in the next nodes.

Finally, there are two mainstream stopping criterion, one is by fixing the

number of total nodes in the tree, at the beginning of the training process,

the other one is by defining the minimal number of training examples at every

terminal node, such that once a node reaches, that amount of examples, it

automatically became a leaf. It is important to note that, regression trees are

easy to over fit the data, this means that if a tree grows to big, with too many

nodes or too few examples per leaf, then it would have a low error in the

training set, but a high error in the validation set. To avoid the over fitting
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problem, many trees are grown to a tall structure but then they are pruned

to accommodate a smaller number of nodes. Another common procedure is

to grow several different trees, with different numbers of nodes, and selecting

the one with the small error and fewer nodes, as the final regression tree.

2.4.2 Gradient Boosting regression

Recalling the beginning of this section, where the Boosting method [6, 2] was

introduced in equation 32, as a precise collective regression method, built by

integrating several under trained MLA. In this subsection the goal is to show

how to construct a Boosting method out of regression trees, and training the

collective regression method using a gradient approach.

In terms of regression trees Tm(~xi, θm) the boosting regression mapping

looks like:

F (~xi) = T0(~xn, θ0) +
M∑
m=1

αmTm(~xi, θm) (2.36)

Where Tm(~xi, θm) is a regression tree with regions and splitting parameters

θm = {Ri,m, sm}, αm is the shrinkage parameter which has the role of a

learning rate, and ”M” is the total number of RT (Tm(~xi, θm)) to be used as

basic regressors in the Boosting method.

The Boosting mapping of equation 2.36 is trained in an iterative manner

with a gradient approach. For the case of regression it is common to define the

cost function J =
∑N

i=1 L(yi, F (~xi)) as a sum of square looses L(yi, F (~xi)) =

(yi − F (~xi))
2.
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The iterative training fits the mapping F (~xi), by fitting one tree at the

time, every training step seeks to find the ”m” RT such that:

argmin
θm

N∑
i=1

L(yi, Fm−1(~xi) + Tm(~xi, θm)) (2.37)

To minimize the cost function, its gradient is taken with respect to the F (~xi)

mapping and evaluated with respect to the Fm−1(~xi):

gi,m = ∂L(yi,F (~xi))
∂F (~xi)

∣∣
F (~xi)=Fm−1(~xi)

Using L(yi, F (~xi)) = (yi − F (~xi))
2 the gradient became:

gi,m = −(yi − Fm−1(~xi)) (2.38)

Then the ”m” tree is trained with (~xi, gi,m) instead of (~xi, yi), once the ”m”

tree is grown the Fm−1(~xi) is updated with the rule:

Fm(~xi) = Fm−1(~xi) + αmTm(~xi, θm)) (2.39)

Then in every new iteration, the learning algorithm is trying to predict the

residues (gradients) of the step before, in this way the learning regardless of

being slower is more robust.

With regard to over fitting, is important to recall that there are three im-

portant hyper-parameters for Gradient Boosting Regression: the total num-

ber of RT ”M”, the size of every RT, and the α. The α value can be adjusted

by hand, taking into account that a smaller value is better than a bigger
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value, since slower learners are more robust. To avoid over fitting the size of

every RT must be small between 4 and 8 nodes [2] remembering that, the

key behind the GBR is not a single strong regressor, but several weak ones,

so it does not matter if every single RT has high error by it self. Then the

important hyper parameter is ”M” that is usually as high as a 1000, this

depending on the diversity, of the data set it has to learn, but it should be

taking care of not being to big that the GBR will over fit.

2.5 Mixtures of gaussians

The mixture of gaussians is a regression model. As any other machine learn-

ing model, the main idea is to learn a function f(~xi, {ω}) = yi from a set of

”N” examples {~x, ytarget}, with a set of {ω} parameters. As its name points

out, the parametric model is an addition of gaussians:

f(~xi) =
N∑
j=1

αjK(~xi, ~xj) (2.40)

Where the sum is over αj are known as mixing parameters, and K(~xi, ~xj)

represents the gaussian kernel measuring the similarity between the data

points ”i” and ”j”, K(~xi, ~xj) = e
−|~xi−~xj |

2

2σ2 .

The minimization of the cost function (equation 2.1) with a regularization
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term of the form λ
∑

i α
2
i , leads to the minimization problem:

min
α

∑
i

(ytarget,i − f(~xi))
2 + λ

∑
i

α2
i (2.41)

The solution for the α values using a vector notation, ~α = (α1, ..., αN),

~λ = (λi, ..., λN), ~ytarget = (ytarget,1, ..., ytarget,N), and the kernel matrix K →

Ki,j = K(~xi, ~xj):

~α = (K + ~λI)−1~ytarget (2.42)

Compare with the other methods exposed in this chapter, the mixture of

gaussians is less powerful, however it had been useful for some machine learn-

ing potentials, specially on molecular applications, as it is going to be shown

in the next chapters.
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Chapter 3

Density Functional Theory

3.1 The original problem, many body quan-

tum mechanics

To know properties like energy, phonon spectra, stability, bond order, while

studying a material with standard quantum mechanics. It is necessary to

know the wave function of the system, the wave function is the solution to the

Schrödinger equation taking into account the most important interactions.

For a system with N nuclei, and n electrons, the total Hamiltonian looks like:
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Htotal =
N∑
I

−∇2
I

2MI

+
∑
I,J 6=I

1

2

ZIZJ

| ~RI − ~RJ |

+
n∑
i

−∇2
i

2
+

1

2

∑
i,j 6=j

1

|~ri − ~rj|

+

N,n∑
I,i

ZI

|~ri − ~RI |
(3.1)

The total Hamiltonian is in atomic units, the terms in the first line refer to the

kinetic energy (
∑N

I
−∇2

I

2MI
) of the nuclei, and the Coulomb interaction between

the nuclei (
∑

I,J 6=I
1
2

ZIZJ
| ~RI− ~RJ |

) at positions ~RI , and ~RJ , with atomic numbers

ZI , and ZJ . The second line has the electronic terms, first the kinetic energy

of every electron in the system (
∑n

i
−∇2

i

2
), and then the Coulomb interaction

between electrons (1
2

∑
i,j 6=j

1
|~ri−~rj |). The last line of the Hamiltonian is the

Coulomb interaction between the nuclei and the electrons (
∑N,n

I,i
ZI

|~ri− ~RI |
). The

presence of terms like ZIZJ
| ~RI− ~RJ |

, 1
|~ri−~rj | ,

ZI
|~ri− ~RI |

makes impossible to have single

particle solutions, hence the wave function will be dependent on the positions

of all the nuclei and electrons in the system (Ψ({~RI}, {~ri})).

Since it is not possible to find a analytic solution for equation 3.1 [25, 26],

several simplifications have to be done. Born and Oppenheimer (BP) intro-

duced an approximation, that uncouples the electronics, and nuclei degrees of

freedom [27], the approximation is based on the fact that, form the electronic

perspective the nuclei are fixed, with this, the kinetic energy of the nuclei

goes to zero, and the nuclei-nuclei Coulomb potential is a constant, and the
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nuclei-electron interaction can be seen as an external potential. However,

even with this simplification, the Hamiltonian (HBO) is complicated, and for

a system with many electrons it still lacks an analytic solution.

HBO =
n∑
i

−∇2
i

2
+

1

2

∑
i,j 6=i

1

|~ri − ~rj|
+

N,n∑
I,i

ZI

|~ri − ~RI |
+ ENuclei (3.2)

The next approximations to try to solve HBO were introduced by Hartree and

Fock. Hartree used an ansatz, assuming that the wave function of the sys-

tem (Ψ(~x1, . . . , ~xn)H) can be modeled, using the product of one electron wave

functions, or single particle orbitals (Ψ(~x1, . . . , ~xn) = φ1(~x1)...φi(~xi)...φn(~xn)),

with this approximation the Hartree energy can be written as:

EH = 〈ΨH |HBO |ΨH〉

=
n∑
i

〈φi|
−∇2

i

2
+ Vext(ri) |φi〉+

1

2

∑
i,j 6=i

〈φiφj|
1

|~ri − ~rj|
|φiφj〉 (3.3)

The Hartree Hamiltonian is the result of the minimization principal the EH ,

with respect to single particle orbitals (〈φi|), assuming that the right singe

particle orbitals are those that make EH minimal:

HH =
−∇2

i

2
+ Vext(ri) +

∑
j 6=i

〈φj|
1

|~ri − ~rj|
|φj〉 (3.4)
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Here Vext(ri) is the potential due to the nuclei.

As a result of the Hartree wave function ansatz, HH , is a single parti-

cle Hamiltonian that can be solved self consistently, since the Hamiltonian

acting on |φi〉 depends on |φj〉. The electron-electron interaction is mimic

by the term 〈φj| 1
|~ri−~rj | |φj〉, this term can be seen as a mean field approach

[28], where the interaction between electrons is substituted by the interac-

tion between the ”i” electron, and the effective field produced by the other

electrons.

While the simplification introduced by Hartree was successful to trans-

form the many-body problem to a single particle problem, it does not take

into account the fermionic character of the electrons. As it is known, elec-

trons are indistinguishable, as consequence, the wave function of a system

of electrons must change sing every time the positions of two electrons are

exchanged (Pauli exclusion principle). To take into account this constraint,

Fock used as ansatz a wave function following the Slater determinant, with

the one electron wave functions as basis set.

ΨHF = 1√
n!

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(~x1) φ1(~x2) . . . φ1(~xn)

φ2(~x1) φ2(~x2) . . . φ2(~xn)

...
...

...

φn(~x1) φn(~x2) . . . φn(~xn)

∣∣∣∣∣∣∣∣∣∣∣∣∣
The Hartree-Fock energy is:
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EHF = 〈ΨHF |HBO |ΨHF 〉

=
n∑
i

〈φi|
−∇2

i

2
+Vext(ri) |φi〉+

1

2

∑
i,j 6=i

〈φiφj|
1

|~ri − ~rj|
|φiφj〉−

1

2

∑
i,j 6=i

〈φiφj|
1

|~ri − ~rj|
|φiφj〉

(3.5)

Following the same method, as for the EH , minimizing EHF with respect to

the single particle orbitals, the Hartree-Fock Hamiltonian is:

HHF =
−∇2

i

2
+ Vext(ri) +

∑
j 6=i

〈φj|
1

|~ri − ~rj|
|φj〉 −

∑
j 6=i

〈φj|
1

|~ri − ~rj|
|φi〉 (3.6)

Where the new term 〈φj| 1
|~ri−~rj | |φi〉 is a consequence of the exchange symme-

try obeyed by the electrons, this term has the particularity that is dependent

on the single particle orbital, the Hamiltonian is solved for (|φi〉).

While Hartree-Fock methods reach an acceptable performance for describ-

ing physical systems [29, 30], their treatment of the exchange and correlation

is rather simplistic, then further improvements needs a more careful treat-

ment of this term.

3.2 Density functional theory

The density functional theory (DFT) was developed in the 1960s by Kohn,

Sham, and Hohemberg to solve the many body quantum problem exposed
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before [31, 32], DFT resembles the Hartree-Fock method, however its deriva-

tion comes from a different idea. In the Hartree-Fock method, the ansatz of

the many body wave function is the key to the simplification process, that

transform the many-body Hamiltonian in an effective single particle one.

On the other hand, DFT is derived from the idea that, the electronic den-

sity is the quantity that determines all the ground state properties of the

electronic system, then DFT is a theory about a quantity dependent on a

single variable, the electronic density (ρ(~r)), instead of being a theory about

the individual electronic states. The idea of calculating molecular properties

using electronic densities come from the 1920s, with calculations made inde-

pendently by Fermi, Thomas, and Dirac, however the Thomas-Fermi-Dirac

model did not produce good results when applied to molecules [33].

The main steps into the utilization of the density to describe the many-

body quantum problem come from the theorems presented by Hohenberg

and Khon, the theorems are:

• For any system of interacting particles in an external potential vext(~r),

the potential is determined uniquely, except for a constant, by the

ground state particle density ρo(~r).

• A universal functional of the energy E[ρ] in terms of the density ρ(~r) can

be defined, valid for any external potential. For any particular vext(~r)

the exact ground state energy of the system is the global minimum value

of this functional, and the density ρ(~r) that minimizes the functional
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is the exact ground state density ρo(~r).

Figure 3.1: Diagram, showing the usefulness of the Hohenberg Kohn theo-
rems. The single arrows show the solution cycle of the Kohn Sham equation,
the external potential (vext(~r)) defines the system, and all its states Ψi({~r}),
even the ground state (Ψo({~r})). The double arrows show how the Hohen-
berg Kohn theorems link the ground state energy to the vext(~r) defining the
system, this figure was taken from Ref [34].

However, the theorems only prove the existence of two things. First a

universal energy functional, and second an electronic density that minimizes

the energy functional, which is the truth ground state density. These the-

orems would have been a theoretical curiosity without the reformulation of

the problem made by Kohn and Sham. The reformulation results in an aux-

iliary system, that is soluble, and shares some properties of the interacting

many-body system.

The energy functional of the auxiliary system proposed by Kohn and

Sham is:
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E[ρ] = T [ρ] + Exc[ρ] +
1

2

∫ ∫
ρ(~r)ρ(~r′)d3rd3r′

|~r − ~r′|
+

∫
vext(~r)ρ(~r)d3r (3.7)

Where T [ρ] =
∑n

i 〈φi|
−∇2

i

2
|φi〉 is the kinetic energy of system of not inter-

acting particles, 1
2

∫ ∫ ρ(~r)ρ(~r′)d3rd3r′

|~r−~r′|
is an aproximation of the electron eletron

energy known as the Hartree energy VH (do not confuse with the Hartree

energy from the last section),
∫
vext(~r)ρ(~r)d3r is the external potential due

to the nuclei, and Exc[ρ] is the exchange correlation energy. Conceptually

the exchange correlation can be expressed as:

Exc[ρ] = TInt[ρ]− T [ρ] + Vee − VH (3.8)

The exchange correlation functional is the term accounting for all the ap-

proximations done in equation 3.7, it corrects for using the kinetic energy

of a non interacting system, instead of the kinetic energy of an interacting

system (TInt[ρ]), it also corrects for using VH instead of the exact potential

interaction between electrons Vee. On the paper the DFT functional ex-

pressed in equation 3.7 is an exact theory of the many-body problem since

the exact Exc introduces all the needed corrections, however, the exact form

of the Exc[ρ] functional is unknown, then for real life applications it has to

be approximated.

The electronic density is defined in terms of the fi occupancy, and the
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single orbital states ψi(~r):

ρ(~r) =
∑
i

fi|ψi(~r)|2 (3.9)

Then the auxiliary problem proposed by Kohn and Sham materialize by

minimizing the energy functional defined in equation 3.7 with respect the

electronic density, which ends up with the Kohn-Sham equation:

(
−∇2

i

2
+ vext(~r) +

∫
ρ(~r′)d3r′

|~r − ~r′|
+ Vxc

)
ψi(~r) = εiψi(~r) (3.10)

Which has the form:

HKS |ψi(~r)〉 = εi |ψi(~r)〉 (3.11)

Where Vxc = δExc[ρ]
δρ(~r)

. Equation 3.10 describe a system of individual particles,

with the same (up to the exchange correlation functional) ground state den-

sity than the original interacting system, then by solving equation 3.10 and

finding ρo(~r) the many body system is solved.

Finally to calculate the energy of the system with the solutions of equation

3.9, and the density defined in equation 3.9 the following formula is used:

E =
∑
i

εi −
1

2

∫ ∫
ρ(~r)ρ(~r′)d3r′d3r

|~r − ~r′|
+ Exc[ρ]−

∫
Vxc[ρ]ρ(~r)d3r (3.12)

The first term adds the eigen-energies of all the occupied molecular orbitals,

then the second term corrects for over counting the electron-electron interac-
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tion, finally the exchange correlation is added and the effects of the exchange

correlation potential in εi are taken away by subtracting Vxc.

3.2.1 Approximate exchange correlation functional

How the exchange correlation functional is approximated defines the success

of a given application of DFT. A good functional is supposed to capture all

the many-body effects, and handle the errors coming from not using the right

kinetic energy, and electron-electron interaction.

The two dominant approaches to approximate the Exc are: the local den-

sity approximation (LDA), and the general gradient approximation (GGA).

The LDA was the path followed by Kohn and Sham originally, it assumes

that the Exc does not change abruptly with ρ(~r), then the functional can be

written like:

Exc[ρ] =

∫
ρ(~r)εxc(ρ(~r))d3r (3.13)

Where εxc(ρ(~r)) = −3
4

(
3
π
ρ(~r)

)(1/3)

account for the exchange and correlation

per electron in an uniform electron gas [35, 31, 26].

The LDA approximation is an expansion where the only terms taken

into account are the ones depending on ρ(~r), to increase the perturbation

accuracy, the generalized gradient approximation (GGA) [36, 37, 38] include

terms dependent on ~∇[ρ(~r)], the GGA functional represent an improvement,

specially in calculations on finite systems like molecules.

For a calculation, it is important to note that, there is not a single univer-
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sal functional [39], then, the selection of Exc depends upon the properties to

calculate, as well as the atomic system (crystal, molecules, surface) on which

the calculations are going to be performed.

The limitations on the current Exc functionals, are the result of treating

an interaction as a local one, while it is non-local in nature, both the LDA

and GGA describe the Exc as a function of ρ(~r) or ~∇[ρ(~r)], this means that

the point ~r is only affected by the value of the density and its gradient at that

given point, ignoring that a more faithful representation should be a function

of ~r and ~r′, to capture the correlation with other parts of the system. However

the development of a non-local representation is extremely complicated, and

it is unlikely that a multipurpose potential will be developed in the near

feature [26].

3.2.2 DFT implementation

The following discussion is going to outline the main properties of the DFT

implementation proposed by Sankey and Niklewski [40], since this method is

the root of the FIREBALL software [41], with the LDA approximation [42,

43, 44] used for most of the calculations in this dissertation.

FIREBALL is a software, and a method to solve equation 3.10, find an

approximation to the ground state density, and evaluate the energy functional

of equation 3.12.

The basis set used by FIREBALL is composoed by pseudo-atomic-orbitals

(PAO) [45], this orbitals simulate the valence electron states of an atom in

56



Figure 3.2: Diagram of the a self consistent cycle to solve the Kohn-Sham
equation. First a density is guessed (ρo(~r)), the HKS is build with ρ(~r) =
ρo(~r), the Hamiltonian is diagonalized to find a set of molecular orbitals
Ψi(~r), this states in addition with the occupation number of every molecular
orbital (fi) a new density is calculated (ρk+1(~r)), if the new density is equal
to the old density (up to a threshold) self consistency is achieved and the
calculation ended, if the densities are no equal, then the new density feeds te
Kohn-Sham Hamiltonian and the process starts again until self consistency
is achieved, the density from the last step ’K’ is close to the ground state
energy ρK(~r) ≈ ρo(~r).

its neutral ground state, they are calculated using the Herman-Skillman [40]

approach using pseudo-potentials, and a local density approximation for the

exchange correlation. The boundary condition imposed over the PAO make

them vanish after a certain cutoff radius, the effect of this confined that the

orbitals are slightly exited.

The molecular orbitals in FIREBALL are expanded in terms of the PAO

functions:

ψi(~r) =
∑
l,µ

ai(l, µ)φPAOµ (~r − ~Rl) (3.14)
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Where the ”i” index counts the molecular orbitals, ”l” counts the center of

the atomic like orbital (usually the position of a nuclei), ”µ” is the type of

atomic orbital (s, px, py, pz, etc).

To solve equation 3.10 a initial density is needed to initialize the Hamil-

tonian, in FIREBALL the initial density is the result of adding the neutral

and spherical atomic densities of the the atomic like potentials (ρ0(~r) is the

initially guessed density), with this initialization, and substituting equation

3.14 into equation 3.10, then multiplying by φPAOν (~r− ~R′l), to have a system

of algebraic equations to find the ai(l, µ) coefficients.

∑
l′,ν

hl,l
′

µ,νai(l
′, ν) = εi

∑
l′,ν

Sl,l
′

µ,νai(l
′, ν) (3.15)

Where the elements of the Hamiltonian and the Overlap matrix are calculated

like:

hl,l
′

µ,ν = 〈φPAOµ (~r − ~Rl)|HKS |φPAOν (~r − ~R′l)〉 (3.16)

Sl,l
′

µ,ν = 〈φPAOµ (~r − ~Rl)| |φPAOν (~r − ~R′l)〉 (3.17)

The eigen-vectors and eigen-values are find with the secular equation:

det |h− εS| = 0 (3.18)

The Kohn-Sham equation is solved in a self consistent manner, where the so-

lutions of equation 3.15 are use to construct a new density ρ1(~r), this process

is carry out ”k” times to minimize the energy and find and approximation to
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the truth ground density ρo(~r), in FIREBALL comparing ρk(~r) with ρk+1(~r)

constitute the stopping criteria, for a given energy threshold.

3.2.3 Pseudo-potentials

Many of the physical properties of systems of atoms, like crystals, and

molecules are due, primarily to the dynamics of valence electrons. Valence

electrons are screened by the core electrons in the inner layers of atoms,

then, they are less attached to their original core nuclei, having the freedom

to interact with other cores. As a consequence the behavior close to the

nuclei do not need to be over realistically represented. With this thought

pseudo potentials are introduced to facilitate the description of the physics

in materials.

The wave function close to the nuclei has higher frequencies than the

wave function far from the nuclei where the behavior is more of a decay,

image 3.2.3 compares an ionic potential V1 and its pseudo-potential V2. The

ionic potential produces the Ψ1 wave function, also known as all electrons

wave function. The divergence of the ionic potential results in an all electron

wave function with rapid oscillations inside the core region of the atom. An

accurate description of these oscillations has a limited impact on molecular

calculations, but they require several basis functions for its description, mak-

ing the calculations harder to carry out. The pseudo-potential on the other

hand, makes a faithful representation of the physics in the valence region, so

that, the pseudo-wave function Ψ2 is indistinguishable from the all electron
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Figure 3.3: V1 represents the all electrons ionic potential. Ψ1 is the wave
function resulting from solving the Schrödinger equation with V1 as potential.
V2 represents the pseudo-potential. Ψ2 is the wave function resulting solving
the Schrödinger equation with V2 as potential.

wave function after certain cut off radii rc, where the valence properties are

more important than the core properties. The pseudo wave function has no

nodes inside the core region, and it is easy to describe with fewer basis func-

tions. One constraint over Ψ2 is it the total charge in the core region must

be the same whether it is described with Ψ2 or Ψ1. The pseudo-potential is

calculated for every element, by taking into account an isolated atom. Then

the resulting pseudo-potential is used to represent the ionic potential of that

given element in a DFT calculation.

The pseudo-potentials used in FIREBALL are the separable and non-

local, more details of its implementation in Ref [46, 42].
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Chapter 4

Force Fields

4.1 Introduction

Many studies of material properties for large and complex materials like

glasses and biological macromolecules are carried out with computational

simulations like molecular dynamics (DM). The key component of the com-

putational simulations (aka MD) are the force fields (FFs)[47, 48, 49], FFs

are the intellectual parents of machine learning potentials, in the sense that

several properties and parts of the machine learning potentials are heavily

influenced by force fields. A FF is a parametric function, no more complex

than a polynomial, from which the energy and forces of a system of particles

can be easily evaluated, only knowing the set of positions {~Rn}, and species

{Zn} of all the atoms in the system, unlike any ab initio method, where

the calculation of energies and forces require the solution of complex partial
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differential equations. The main idea behind the FF is to fit the parameters

of the parametric functions to reproduce benchmark data obtained from ex-

periments, or ab initio calculations. After the fitting process, the FF is able

to estimate the energies and forces of systems similar to the ones used for

fitting the parameters. However if the systems processes by the FF are far

from the configurations used for fitting the parameters, or if the complexity

of the system’s potential energy surface (PES)1 is higher than the complex-

ity the parametric function can handle, then the FF is not going to estimate

the energies and forces accurately. To summarize the accuracy of the FF

is dependent on the number parameters of the parametric functions used to

represent the PES, and the data used to fit those parameters, and in general,

the FFs have small areas of prediction in the configuration space.

This chapter is devoted to the force fields, section 4.2 introduces the FF in

a more formal manner, in addition, every part of the FF is explained in the

subsections of section 4.2. Section 4.3 is devoted to the process of fitting the

parameters of the force field, this process is also known as the parametriza-

tion of a force field, this section is a review of the specific techniques used to

fit every family of parameters. Finally as a form of conclusion section 4.4,

talks about the limitations of the FFs and puts in perspective the Machine

Learning Potentials as a solution to the problems of FFs.

1The Potential Energy Surface of a system of ”N” atoms is a manifold in a space of 3N
coordinates, describing the energy of the system as function of the positions of the ”N”
constituent atoms E({ ~R1, ..., ~RN})
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4.2 Force Fields: Functional Form

A force field is a parametric function, that approximates the PES for certain

regions of the configuration space of a structure2. The main idea supporting

the functional form of the FFs is that the total energy of a structure can be

divided into quasi-independent terms, every term representing a type of in-

teraction added to the total energy. The most common energy decomposition

for FFs is [49]:

Estructure = Ebonds + Eangle bending + Etorsion + Eelectrostatic + EV an der Waals

(4.1)

Equation 4.2 is the prototypical expression for popular force fields like: AM-

BER [50], OPLS [48, 51], CHARMM [52], and GROMOS [47]. Every one of

the terms represented has an specific functional form (polynomial) based on

physical insights about the interaction it is meant to reproduce. In the next

subsections all of this energy terms will be described in deepness.

4.2.1 Bonding Energy

The first term in equation 4.2, is the energy stored in the stretching of the

bonding between two atoms, based on physical experience, the bonding in-

teractions resembles (in a first approximation) a harmonic potential, the

variable defining the value of the energy in the harmonic potential is the in-

2Structure: In this dissertation, a structure will refer to crystals, molecules, clusters,
and in general any system ordered or disordered constituted with atoms
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teratomic distance between the atoms making up the interaction, the actual

form for the parametric function describing the Ebond is:

Ebond =
∑
bonds

kr(r − r0)2
(4.2)

Every component of the bonding energy is defined by its force constant kr

and its equilibrium bonding distance r0. Figure 4.2.2 part A, shows different

configurations of bonding, that need different values of the force constant to

be properly described, the value of the force constant change regarding the

species involved in the bonding, as well as the quantum properties of the

bonding. The final value of the Ebond is the result of adding all the bonding

interactions, up to a cutoff radius, or bonding criteria, for example in some

cases only bonding among near neighbors is considered.

4.2.2 Angle Bending Energy

The second term in the energy takes into account the energy stored in

the bending of the angle defined by three atoms (1,2,3), where atom 1

is in the vertex, then the mathematical expression for the angle is: θ =

cos−1

(
~R12·~R13

|~R12||~R13|

)
. The angle bending energy functional form is also a har-

monic potential of the angle θ.

Eangle bending =
∑
angles

kθ(θ − θ0)2 (4.3)
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Figure 4.1: A) In rectangle ”A” three different classes of bonding, showing
how every kind of bonding stretching interaction has its own kr parameter,
for instance, the upper image Kr models the bonding interactions between
”blue” atoms, K ′r models the interaction between ”blue” and ”red” atoms. In
addition r0 is the equilibrium position, and r the distance between the atoms
in the bonding. B) rectangle ”B” shows the angle interaction, where trios
with different kind of constituents needs different Kθ for a proper description.
Here θ0 is the equilibrium angle, and θ is just the angle defined by the three
atoms. C) Description of the dihedral angle, in the upper part a molecule
with three atoms a, b. c, d, over the (~x, ~y) plane is seen from ~z, the atom ”a”
and ”b” are bonded, as well as ”a” and ”c”, and ”b” with ”d”, the dihedral
angle is the angle between the (a,c) and (b,d) bonding, projected over the
plane intersecting the (a,b) bonding, in the case of the lower image that plane
is (~y, ~z)

The parameters are the force constant kθ and equilibrium bonding angle

θ0, similarly to the Ebond not all the possible angles are taken into account

only those angles formed by first or second bonding neighbors. Figure 4.2.2

part B shows different realizations of the angle bending interaction, in which

different values of the kθ force constant are necessary to properly describe

the interactions.
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Finally the θ0 is the angular equilibrium position, due to the symmetry of

the angular bending, one single interaction described by one kθ, may need

several values of θ0 to account for all the different equilibrium positions the

system can have, it is clear that the harmonic potential does not describe

the interaction in a faithful manner, however the complexity of a realistic

description carries a heavier cost than the numerical error introduced by this

simplification.

4.2.3 Torsion Energy

The third term in the total energy expansion equation 4.2 is the contribution

due to the torsion (rotations) of the dihedral angle. The dihedral angle is

the angle defined by subsets of 4 atoms (a,b,c,d), the bonds of the set of

atoms are {(c, a), (a, b), (b, d)}, the dihedral angle is the angle formed by the

intersection of two planes, plane 1 containing (c,a,b) and plane 2 containing

(a,b,d) as the figure 4.2.2 part C shows.

The energy as result of perturbing the dihedral angle is a periodic function

[53], therefore the representation in the force field is a Fourier series of the

dihedral angle φ, with parameters: kφ amplitude, n multiplicity of the di-

hedral angle, and δ phase angle. The ETorsion is the last of the internal or

intermolecular terms (bond, angle bending, torsion)

Etorsion =
∑

dihedrals

kφ(1 + cos(nφ+ δ)) (4.4)
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4.2.4 Electrostatic Energy

The electrostatic energy is the next component in the FF expansion. The

usual Coulomb potential is employed to model the interaction, where the

atoms in the systems are supposed to be point-like charges, the total contri-

bution of the electrostatic energy is:

Eelectrostatic =
∑
i<j

qiqj
rij

(4.5)

As usual ”qi”, ”qj” represent the charges of atoms ”i” and ”j”, rij is the

distance between the same atoms, the summation takes into account bonds

between first and second neighbors, in some cases other degrees of neigh-

boring are used but in those cases the charges are re-scaled to represent the

screening effect of electrons and other atoms. [54].

4.2.5 Van der Waals Energy

The Van der Waals (VdW) is the last term in the FF energy expansion, the

VdW interaction is usually model by a Lenard Jones (LJ) potential:

EV an der Waals = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6]
(4.6)

The VdW interaction is a simplified representation that describes what hap-

pens when two atoms with electronic clouds interact with each other. At

first if the two atoms are far apart, but start getting closer, their electronic
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clouds move to form two dipoles, the dipole-dipole interaction is attractive

at first, and described by the

(
σij
rij

)6

term, if the atoms keep getting closer,

then the dipole-dipole attraction lose preponderance compared to the repul-

sion between the nuclei, this is when the

(
σij
rij

)1

2 term is predominant. The

parameters of the LJ potential are the ε which is the depth of the potential

well, and σij is the distance between atoms ”i” and ”j” at which the attrac-

tive and repulsive forces balance each other.

4.3 The Force Field As A Whole

The PES is a complex manifold in a space of 3N (N number of particles in

the structure) dimensions. An actual representation of the PES is (so far)

only possible for small systems [55]. For realistic systems, the FFs are over-

simplifications of the actual PES. However it does not mean that FFs are

simple to calculate, a FF for a system with many particles and/or different

species requires thousands of parameters to even describe the system around

the equilibrium configurations, for example, the FF OPTLS 2005 [51] has

around 6000 parameters, 1054 for bonding, 3997 for angle bending, and 1576

for torsions.

It is hard to think where do all the parameters come from by only looking at

equation 4.2, but the reality is that every one of the energy terms in equation

4.2 is encapsulating many different interactions of a specific kind. For exam-

68



ple, figure 4.2.2 part A, shows 3 different contributions to the Ebond, every one

of this bond interactions would need a different Kr to have a proper descrip-

tion Kr → (Kr, K
′
r, K

′′
r ). Besides figure 4.2.2 part A only shows cases where

the differences in bonding are the result of different species in the interaction,

however, even interactions with the same species, may need different param-

eters due to changes in the properties of the interactions, for instance, a C-C

bonding is different, regarding whether the atoms have a π or a σ bond, and

also which hybridization is involve. In general, the diversity of parameters is

not only a consequence of the interactions between different species but also

due to differences in the quantum properties of the interactions.

The FF is then a recipe to build the energy of a structure, every one of the

terms is an ingredient representing and specific interaction. The particulari-

ties of the interactions define a chemical environment, the goal of the FF is

to learn as many different chemical environments as possible, however, if the

chemical environments became too specific then the FF would lose transfer-

ability to reproduce other configurations in the phase space of the PES.

A FF able to describe many chemical environments need a large number of

parameters, the value of the parameters is selected to reproduce benchmark

data from previous experimental and theoretical results. The procedure to fit

the FF parameters to the benchmark data is known as the parametrization

of the FF, the next section gives a glance of how a standard parametrization

looks like.
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4.4 Parametrization Of A Force Field

Similar to the learning process of a machine learning algorithm (described in

chapter 2), the FF parameters are selected to reproduce training data. How-

ever, unlike the machine learning training, the fitting of the FF parameters

is done by training the parameters separately depending on the interaction

the parameters are supposed to reproduce, this means that the fitting of

the bonding parameters is carried out independently and with different data

than the training of the torsion parameters, which increases the difficulty

of fitting FF. In addition the ordering of the fitting process is important,

due to correlations between the different components in the energy expan-

sion. The subsequent sections are going to explain the different stages of the

Parametrization of a FF, following the usual order of parametrization.

Figure 4.2: Image taken from [54] page 151. The energy of a small molecules
is calculated as function of the distance between to atoms of carbon, the goal
is to find the value of the Kr for a carbon carbon interaction, in this case the
cause the changes in energy is isolated to the change in distance between the
carbon dimer
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4.4.1 Parametrization For The Bonding Energy And

The Angle Bending Energy

The fitting process starts with the selection of the equilibrium positions

(r0, θ0)[56]. In the case where the goal of the FF is to describe molecules, it is

usual to obtain the value of the equilibrium positions from isolated ab initio

calculations of dimers representing the chemical environment of interest. In

the case where the FF is meant to describe bulk materials, then the equilib-

rium positions come from experimental data like X-ray diffraction patterns.

For the force constants, (kr, Kθ) the fitting process follows a similar trend.

In the case where the FF is going to be used to calculate properties of com-

plex molecules, the optimization of the force constants is done by directly

calculating the energy of a smaller molecule containing the bond or angle of

interest, in this approach the energy is calculated as a function of different

values of bond distance or bending angle, then the kr or Kθ are chosen to

reproduce the data, as shown in image 4.4. On the other hand when the

force constants are meant to reproduce bulk materials, then ab initio meth-

ods are used to calculated the vibrational spectra of specific normal modes,

assuming that the exited normal modes are directly related to the value of

the force constants kr and Kθ, in some cases, is not the vibrational modes but

the elements of the Hessian matrix the ones used to fit force constants. In

general, the main idea behind the selection of the value of a parameter is to

reproduce a physical quantity (vibrational spectra), that is link exclusively
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to the interaction represented by the fitted parameter.

Parametrization Of The Electrostatic Energy

The next parameters in the fitting process are the atomic charges of the

electrostatic interactions. The usual method to find the value of the atomic

charges is known as CHELP [57]. In the CHELP an ab initio method cal-

culates the electrostatic potential of a model structure, that resembles the

chemical environment of the system of interest (where the FF will be applied),

after the ab initio method gives the value of the electrostatic potential for

a set of interest point around the model structure, the goal is to reproduce

the potential, with a set of point-like charges distributed over the atomic

positions. The calculation of the charges values uses a least square method

to replicate the ab initio electrostatic potential.

4.4.2 Parametrization Of The Lenard Jones Potential

(Van der Waals Energy)

The parametrization of the Lennard Jones parameters is different from the

last terms (Ebonds, Eanglebending, Eelectrostatic), the fitting strategies rely on

the calculation of physical quantities (electrostatic potential, vibration spec-

tra) related to parameters in smaller model system, however due to the many-
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body character and the correlation with other terms, the parametrization of

the Lennard Jones parameters follows an iterative approach, where the FF

with the (Ebonds, Eanglebending, Eelectrostatic) starts working.

The parametrization process starts with the initialization of the Lennard

Jones parameters, the initial values come from former Lennard Jones pa-

rameters used for a similar system. Then the FF field start doing molecular

dynamics with the (Ebonds, Eanglebending, Eelectrostatic) parameters, plus the

Lennard Jones, that was just initialized. The molecular dynamics from the

FF is compared with an ab initio molecular dynamics, the tunning of the

Lennard Jones parameters account for the differences between the results

from the FF and the ab initio method. This approach of optimizing the

Lennard Jones parameters by initializing them, with parameters from simi-

lar systems was introduced for the development of the OPLS [48] force field.

4.4.3 Parametrization Of The Torsion Energy

The torsion parameters are the more difficult in the optimization process

Raabe2017, the difficulties arise from the fact that the torsion term is a

Fourier series, in addition, the torsion energy is correlated with most of the

other terms. The optimization starts by calculating the benchmark data for

the fitting process, the data comes from an energy calculation with an ab

initio method performed on a model system with a similar chemical envi-

ronment, the chemical environment of the model system must resemble the
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chemical environment of the system in which the FF will be used. In spe-

cific the ab initio method calculates the energy of a smaller model system as

function of the dihedral angle of interest, however, due to the correlations

between terms, the torsion energy parameters are not directly fitted to the

energy calculated by the ab initio method, instead, the energy calculation

as a function of the dihedral angle is carried out again with the FF without

the torsion energy terms. Finally, the fitting process fits the torsion energy

terms to the difference of the ab initio energies and the FF energies.

4.5 Force Fields Conclusions

Force fields are simplified mappings of the PES allowing researchers to pre-

dict physical and chemical properties of complex materials like proteins and

RNA under realistic conditions [47, 58, 59]. Most of these calculations are

still impossible to carry out with ab initio methods since the complexity

of the simulations would require larger amounts of computational resources

than the ones in hand of current researchers. Among their advantages, FFs

have a relatively high accuracy around equilibrium configurations, making

the FFs able to describe the dynamics of systems with similar chemical en-

vironments around the equilibrium point. How similar must the chemical

environments be? It is a matter of the transferability of the FF, but as long

as the chemical species and concentrations resemble the ones from the train-

ing data, then the FF should be accurate enough.
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However, regardless of their widespread use and popularity, force fields have

limitations. The biggest limitation is related to their functional form, for

example, the case of the bonding energy the only interactions taken into ac-

count are the ones where r < rcutoff , in which the harmonic approximation

holds. The angle bending interaction is also model like a harmonic potential,

despite the fact that the interaction has explicit periodicity[54]. In addition,

the charges in the electrostatic interactions are assumed to be point-like

charges, when the reality is that the charge distribution in a structure is

hardly spherically symmetric. In consequence, the simplified functional form

can only describe small regions of the PES, close to equilibrium configura-

tions, leaving disordered structures out of the reach of FF [60, 61].

The limited reach of FFs is a well-known problem, and the improvement of

FFs is an active field of research, attempts to improve and redesign the FFs

are proposed in [58, 62], however, the improvement attempts face another

intrinsic disadvantage of FFs. To increase the reach and accuracy the FF

must increase the number of parameters and the complexity of the model,

making the training process even more difficult.

The process to fit the parameters of the FF resembles more an art than a

science, there is a particular order for the parameters to be fitted, and the

data to fit the parameters is a mix of experimental, and ab initio calculations

carefully crafted depending on the interaction needed to describe, so that, an

increment on the number of parameters or an increase in the complexity of

the function would make the FF as hard to parametrize as it is to calculate
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ab initio properties for complex systems.

Under this circumstances the physical community has moved on to develop

new FFs, but instead of assuming a physically motivated functional form, the

new FFs are powered by machine learning algorithms, this approach solves

the problem of increasing the difficulties of training when increasing the com-

plexity of the mapping in the model, plus the training methods for machine

learning algorithms are standard. However, the solution to this problem

brings new problems to the field. In the next chapter, the Machine Learning

Potentials are introduced.
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Chapter 5

Machine Learning Potentials

5.1 Introduction To Machine Learning Po-

tentials

Machine Learning Potentilas (MLPs) are the next step in the evolution of

force fields [FF]. MLPs as the FF try to approximate the PES using less

demanding methods than the ab intio approach. However, and in spite of

sharing the same goal as FF, MLPs are not based on physically motivated ap-

proximations of the total energy, instead the MLPs rely on machine learning

method to directly estimate the energy and forces of an input structure.

The last chapter shown how trying to increase the accuracy, or the reach

of FF predictions, would lead to an increment of parameters, as well as an

increment in the complexity of its functional form, therefore the already

difficult process to fit the parameters of the model, would be even more dif-
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ficult. Using machine learning algorithms, instead of physically motivated

but simplified potentials, directly skips the limitations of FF. Machine learn-

ing mappings are complex enough to mimic any function (*restrictions ap-

ply). Moreover, MLPs learn directly from calculations of the total energy

and forces, with no need to split the benchmark calculations on independent

terms regarding different degrees of freedom.

Nevertheless, while is true that MLPs do not have the same problems

of FF, MLPs have their on flaws. For example; it was just said that they

”can mimic any function”, the reality is that to reproduce complex functions

machine learning algorithms need massive amounts of data to learn from.

Moreover, in spite of being able to calculate the PES for small molecules [63,

64, 65] and crystals [66, 67], the description of disordered materials is still a

challenge for MLPs [68, 69], in addition, to the best of our knowledge, MLPs

have not been employed yet to carry out simulations of complex systems like

proteins.

The process of building a MLPs can be divided in two steps. First the

preprocessing of the data. This stage is concern with transforming the in-

formation from the physical structure to a format suitable to be the input

of a machine learning algorithm. The input of a machine learning algorithm

is a vector composed by features, also known as feature vector. In the con-

text of machine learning potentials, features are also known as: descriptors,

descriptors of chemical environments, atomic descriptors, and finger prints.

The second step in the MLP construction is the actual learning or fitting of
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the machine learning method. The machine learning method learns the as-

sociation between the input features and the target value (energy or forces).

The preprocessing has two approaches depending on how the physical

structure is represented in the feature space, one approach has an atmomistic

view, whereas the other has an structure view. In the atomistic view, the

feature construction process, associates a feature vector to every particle in

the structure, then the machine learning algorithm estimates atomic energies,

so that, the energy of the structure is the addition of the atomic energies,

one disadvantage of this approach from a quantum mechanical perspective

is that, there is no information about atomic energies in a system of atoms,

making the partition arbitrary [70]. On the other hand for structure view, the

feature construction process, generates a feature vector per every structure,

then the machine learning algorithm calculates the energy of the structure

directly, figure 5.1 compares the two approaches. This chapter introduces

the feature creation process and some of the most popular machine learning

potentials, and their applications.

5.2 Feature Creation For Machine Learning

Potentials

The success of any machine learning project is highly dependent on how

the raw data is transformed into the feature representation. In many cases
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Figure 5.1: Comparison between the atomistic view and the structure view.
In the left the atomistic view, the feature construction process calculates a
feature vector for every atom (~x1, ~x2, ~x3, ~x4) in the input structure (four blue
atoms), then the representation of the structure is the matrix of the feature
vectors, in the next step the machine learning potential calculates an atomic
like energy (εi) for every atom in the input structure, finally the energy of
the structure is the addition of all the atomic energies Es =

∑
i εi. In the

right side the structure view, where a feature vector (~xs) represents the input
structure, and the machine learning algorithm calculates the energy of the
structure Es directly.

the transformation is trivial, for example; in the case of the time series of

chapter 2 it is natural to try to represent them as the coefficients of a Fourier
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series. Other example of an easy to understand representation is the bag

of words, also described in chapter 2, the goal of any representations is to

encode the original information into a set of numerical features to which a

machine learning method can assign meaning, and extract knowledge out of

several training examples.

However, for physical structure the feature representation is less triv-

ial, for instance in Ref [71] Lorenz Gross and Scheffler tried to learn the

PES for a hydrogen molecule (H2) using neural networks as their empiri-

cal potential, in this work, the structure was represented by concatenating

the Cartesian coordinates of the atoms in space, into a vector of 6 features

~xT = (R1x, R1y, R1z, R2x, R2y, R2z). Despite of the simplicity of the represen-

tation, the approach was successful and the PES was well represented by the

neural network, however, the neural network trained with this features had

some important limitations. If the order of the atoms in ~xT is exchanged,

then the structure would be the same, but the neural network would assign

a different energy since it was trained with an specific order. Moreover, any

rotation or translation of the H2 molecule would change the value of the

~xT without altering the energy of the molecule, but since the values of ~xT

are different, then the neural network would assign a different value for the

energy.

The former exemplifies the importance of the feature representation. A

feature representation is too specific to details like the reference frame in

which the calculation were made, would lead to a MLP with a lack of trans-
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ferability, then as it was shown in the example of the H2 molecule, the feature

vector must do more than uniquely represent the structure. So far the MLPs

community has came up with some consensus about which requirements, a

set of features should meet in order to be a good set of features, those re-

quirements are [72, 73]:

1. The features should be invariant under the symmetries of the struc-

ture, so that if the structure is invariant under rotation, reflection and

translation, the feature vector does not change after the application of

any of this transformations over the structure under study.

2. The features have to be independent of the ordering of the atoms, and

invariant under permutations of atoms from the same element.

3. The features should be continuous and differentiable.

4. A good representation should uniquely represents the system it is meant

to describe.

Following this principles many feature representations have been proposed,

in the following lines some of the features methods are introduced along with

their machine learning potentials.
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5.3 Neural network potential with symmetry

functions

Figure 5.2: Diagram of the process of calculating Etotal with the BP neu-
ral network. First the structure information about positions and species is
transformed into feature space. In the feature space every atom in the struc-
ture has a feature vector. Then every feature vector is input into a neural
network to predict the atomic like energy εi, Etotal =

∑N
i=1 εi. In general the

representation of the structure is a matrix with rows equal to the number of
atoms, and columns equal to the number of features in the feature space.

The neural network potential proposed by Behler and Parrinello [23, 74]

is an example of an atomistic MLP. In this approach every atom in a given

structure is described by a feature vector, the feature vector is then input

into a fully connected neural network, the output of the neural network is

an atomic like energy (εi), the energy of the structure is then the addition

of all the atomic like energies (Estructure =
∑N

i=1 εi), figure 5.3 depicts this

process. Making the total energy dependent on atomic like energies solves
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the problem of the specific ordering of the atoms in the structure, since the

final result (Estructure) is independent on the ordering of the elements in the

sum. However, it introduces other problems; first, the atomic energies have

no quantum mechanical meaning and are an arbitrary value [70], second

every structure is represented by a matrix which number of rows is equal

to the number of atoms in the structure, therefore, the size of the feature

representation is dependent on the number of atoms in the structure, this

makes the potential harder to implement with machine learning frameworks

like TensorFlow. And third, the back propagation algorithm must run once

per atom, instead of once per structure, slowing down the learning process.

The neural network potential has been successfully applied to calculate

reduced sections of the potential energy surface of Silicon [23], Copper [66],

phonons in crystals [75]. Nevertheless, the method has problems describing

clusters or disorder states [68, 67, 76].

In the Behler and Parrinello neural network, every feature of the input

vector is the result of a symmetry function, the symmetry functions are the

topic of the next subsection.

5.3.1 Symmetry functions

In Behler and Parrinello atomistic approach, there is a vector of features

per atom in the structure, the feature calculation seeks to transform the

information of the chemical environment surrounding the atom into a feature
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vector. The transformation process rely on two types of symmetry functions:

g2b
ip =

∑
j 6=i

exp[−ηp(Rij −Rs)
2]fc(Rij) (5.1)

g3b
ip = 21−ξp

∑
j 6=i

∑
k 6=j,i

(1 + λp cos(θijk))
ξp exp[−ηp(Rij +Rik +Rjk)

2]∗

fc(Rij)fc(Rik)fc(Rjk) (5.2)

fc(Rij) =


0.5

[
cos

(
πRij
Rc

)
+ 1

]
if Rij ≤ Rc

0 if Rij > Rc

(5.3)

The g2b
ip is the symmetry function of the two body interaction center at

the ”i” atom, with parameter ηtow−bodyp , where Rij is the distance between

atom i and atom j Rij = |~Rj − ~Ri|, in addition g3b
ip is the symmetry func-

tion of the three body interaction with parameters ηthree−bodyp , λp, ξp, where

cos(θijk) =
~Rij ·~Rik
|~Rij ||~Rik|

, with ~Rij = ~Rj − ~Ri. Under this feature set, every struc-

ture is represented by a matrix with dimensions (number of atoms, number

of features), every ”i” row represents the chemical environment of the ”i”

atom, the number of features is defined by different combinations of the

p parameters (ηtwo−bodyp , ηthree−bodyp , ξp, and λp), then every row is a feature

vector ~gTi = (g2b
ip , ..., g

2b
ip′ , g

3b
ip , ..., g

3b
ip′) for more details see figure 5.3.1, in appli-

cations of the BP features the dimension of the feature space is in between

50 and a 100 symmetry functions.
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Figure 5.3: Diagrammatic representation of the feature matrix representation
of a given structure. Every row represent the feature vector of every one of the
4 atoms. The feature vector is the concatenation of the two-body, and three-
body symmetry function, in addtion every feature (column) is calculated
with a different set of parameters.

The BP features follow the 4 requirements to be a good feature, the values of

the symmetry functions are invariant under rotations, translations, and re-

flections over the structure, they are also continuous and differentiable. Now

with respect to uniquely describing a structure, there is only one direct eval-

uation to the best of our knowledge, of how well the BP descriptor uniquely

identifies a chemical environment, the evaluation procedure proposed in Ref

[77] determines that in the case of the BP descriptor, the feature vector loses

the ability to uniquely describe a particular chemical environment, when the

number of neighbors taken into account is higher than 10. However due to

the good results of molecular dynamics simulations carried out with the BP

features [66, 67], it is safe to think, that they make a uniquely enough rep-

resentation, at least for the small regions of the phase space in which they
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have been used. Moreover, with regard to the ordering of the atoms, it is

clear that after choosing the ”i” atom (where the function is center) any per-

mutation of atoms will result in the same value for the symmetry function,

nevertheless, the representation of the structure as a whole is dependent on

the ordering of the atoms as it was seen before. Finally, the BP features lost

some of the geometrical information during the summation over the neigh-

boring atoms, as a result the BP features are highly correlated as it is going

to be demonstrated in chapter 6.

5.4 Gaussian approximation potentials

The Gaussian approximation potential (GAP) the method was introduced

by BartóK and Csányi in Ref [78]. The GAP method calculates the energy

of a physical system with an atomistic approach, in which, every ”i” atom

of the structure is represented by a feature vector ~bi, the features for the

GAP are known as: the smooth overlap of atomic positions (SOAP). Then

a Gaussian process is used to calculated the energy of every atom (εi), and

finally the energy of the structure is the addition of the atomic like energies

(Estructure =
∑N

i=1 εi).

The functional for of the atomic like energies is:

ε(~bi) =
∑
n

αne
−

∑
l

(bi,l−bn,l)
2

2θl =
∑
n

αnG(~bi,~bn) (5.4)

Where θl is a set of hyper parameters, ~bn are all the SOAP vectors of the

87



atomic environments in the training set, the αn represents the energy con-

tribution of a given ”n” environment, and G(~bi,~bn) measures the similarity

between the the environment represented by ~bi and ~bn. However, the values

of the εi energies are arbitrary since the only information known is the total

energy Estructure, furthermore, this approach results in a complicated proce-

dure for fitting the model (more details about Gaussian process regression in

chapter 2).

5.4.1 The smooth overlap of atomic positions

The SOAP features are also an atomistic based descriptor of the chemical

environment surrounding an atom, the method as described in the original

formulation starts by calculating the density of particles centered at some

atom ”i” ρi(~r):

ρi(~r) =
∑
j

δ(~r − ~rij)fcut(rij) (5.5)

However newer applications of the method try to smooth the atomic densities

changing the delta distribution for a gaussian function, resulting in smooth

overlap of atomic positions (SOAP):

ρi(~r) =
∑
j

e
−(~r−~rij)

2

2σ fcut(rij) (5.6)

fcut(rij) =
1

2

[
1 + cos

(
rijπ

rcut

)]
(5.7)
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where ~rij = ~rj − ~ri and rij is the magnitude of ~rij, and fcut(rij) is the cutoff

function with rcut cutoff radius.

The densities in equations 5.5 and 5.6 are invariant under exchange of

particles, and translations, yet their are not invariant under rotations, this

because the densities are dependent of the particular orientation of the coor-

dinate system in which they where calculated. To make the density invari-

ant under rotations, the older versions of SOAP expands the density ρi(~r)

on a series of spherical harmonics, with the particularity that those spheri-

cal harmonics belong to a sphere in 4 dimensions, this spherical harmonics

are known as the Wigner matrices U j
m,m′ , the coefficients of the series are

:cji,m,m′ =
〈
U j
m,m′|ρi(~r)

〉
. The advantage to employ the U j

m,m′ matrices to en-

code the information is that, the expansion does not need a special treatment

of the radial degree of freedom, since the surface of a 4 dimensional sphere

is a 3 dimensional manifold, then ρi(~r) belongs to a 3 dimensional space, the

process makes the cji,m,m′ coefficients a faithful representation.

However, in latter developments, the SOAP method makes the projection

of the density on 3 dimensional spherical harmonics Yl,m(θ, φ), and radial

functions gn(r) [69], such that the series representation of the density looks

like:

ρi(~r) =
∑
n,l,m

cin,l,mgn(r)Yl,m(θ, φ) (5.8)

Then the expansion coefficients (cin,l,m) are used to create a power spectrum:
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pin,n′,l =

√
8π2

2l + 1

∑
m,m′

(cin,l,m) ∗ cin′,l,m′ (5.9)

Then one SOAP feature vector is build for every atom ”i” by concatenating

several pin,n′,l up to a threshold value of ”n”, and ”l” depending on the reso-

lution of the computational implementation of the density and the basis set

functions.

The SOAP features are invariant under translation, rotation and reflec-

tions of the space, also every feature vector is invariant under the exchange

of particles, in addition the SOAP density is continuous and differentiable.

Now, with regard to uniquely describing a chemical environment the study

carried out in Ref [77], concludes that the SOAP is able to differentiate be-

tween similar atomic environments for higher number of neighbors than 10.

However, even after matching the 4 conditions to be a good descriptor the

SOAP method had problems describing amorphous or disordered materials

[69].This is extremely interesting, specially because the solution, with which

Deringer and Csányi came up to describe the amorphous phase of carbon

was to increase the dimension of the feature vector, but not by increasing the

number of cin,l,m taken into account, they introduced two new kind features,

one regarding two-body interactions and other one regarding three-body in-

teractions. The two-body interaction feature is the distance between 2 atoms

rij = |~rj−~ri| and the three-body interaction centered at atom ”i” interacting

with atoms ”j” and ”k” is a vector of the form [rij + rik, (rij − rik)2, rjk]
T .
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The introduction of this features increases the accuracy of the GAP method,

the fact that, to increase the accuracy of the method new features where

needed and not just more combinations of cin,l,m, shows that, what the SOAP

method lacked was information about different interactions, to say it in other

way, the information about specific tow-body and three-body interactions

was invisible in the many body interaction given by the density of particles.

5.5 Crystal Graph Convolution Of Neural Net-

works

The Crystal Graph Convolution Of Neural Networks (CGCNN) introduce

[79] is a machine learning potential. The method applies an atomistic view

to extract features out of a crystal, and a structure view to predict the energy

of the structure. The fist stage is based on a convolution of neural networks.

The convolution input depends on a graph build with the information of

the crystal, every node in the graph is related to an atom in the crystal

(the relationship may not be 1:1) and every edge in the graph represents

a bond in the crystal (the relationship may not be 1:1). The convolution

network produces and embedding representation of the structure to feed a

fully connected network that makes the energy calculation.
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5.5.1 The CGCNN algorithm

As it was written above, the CGCNN method has two stages, one extract

information from the structure (seen as a graph), and creates and embedding,

the second part takes the embedding representation and makes a prediction.

The first part combines atomic features ~vi, and bonding features ~u(i,j)k in a

convolution of neural networks to create a structure representation. Seeing

it as a graph every atom is node represented by ~vi, and every bond is an edge

represented by ~u(i,j)k, where ”i”, and ”j” are the atoms present in the bond,

and k accounts for type of bond. The goal of the ”R” convolutions layers is

to build a feature vector for the structure ~vs with the graph representation

{~vi, ~u(i,j)k} as input, mathematically speaking the convolution process is:

~v
(t+1)
i = ~v

(t)
i +

∑
j,k

σ

(
~z

(t)
(i,j)kW

(t)
f + b

(t)
f

)
� g
(
~z

(t)
(i,j)kW

(t)
c + b(t)

c

)
(5.10)

~z
(t)
(i,j)k = ~v

(t)
i ⊕ ~v

(t)
j ⊕ ~u(i,j)k (5.11)

Where � is an element wise multiplication and ⊕ is the concatenation of

vectors.

The application of the pool layer follows the application of ”R” convolution

layers, to create the feature vector representation of the crystal structure (~vs)

~vs = Pool(~v
(0)
0 , ...~v

(0)
N , ..., ~v

(R)
N ) (5.12)
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The Pool function is an average of the atomic feature vectors of the last

convolution layer.

It is important to note that, the CGCNN method encodes the information

about inter-atomic distances and orientations in separate ways. The inter-

atomic distances are encoded in the ~u(i,j)k features, while the orientations are

encoded in the ~vi feature vector, the orientaions are encoded using features

like: group number, and period number. As a result, the CGCNN method

would lost accuracy as the system under study lacks symmetries, for this

reason the applications of the CGCNN method so far are only crystal systems

[79].

5.6 Molecular gausian potentials

The molecular gaussian potentials (MGP) calculate the energy of a struc-

ture (molecule) with a structural approach. For the MGP every structure is

represented by a feature vector, and the energy of the structure is calculated

directly, without estimating the energy of every atom the in the structure.

The MGP uses a gaussian process to calculate the energy of given molecule,

the functional form of the model is:

Estructure( ~M) =
N∑
l=1

αle
−d( ~M, ~Ml)

σ (5.13)

Where ~M , is the feature vector representing a molecule, the addition runs

over all the N molecules in the training set, αl is a regression coefficient, σ
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is an hyper parameters, and d( ~M, ~Ml) is a kernel measuring the similarity

between the M molecule, and the Ml molecule in the training data set. The

d( ~M, ~Ml) can be different functions, it can be the Cartesian norm d( ~M, ~Ml) =

| ~M − ~Ml|2, or a cosine norm d( ~M, ~Ml) =
~M · ~Ml

| ~M |·| ~Ml|
.

The MGP methods for feature selection are the coulomb matrix and the

bag of bonds, they have proved successful in predicting the energy of molec-

ular data sets [80, 81, 82].

5.6.1 The coulomb matrix and the bag of bonds

The next sets of descriptors, belong to structure view in which the feature

vector directly represents the structure, and the MLP calculates the energy

of the system, without estimating the energy of every atom in the structure

separately. The Coulomb matrix (CM) [65] and the Bag of Bonds (BoB)

[63] are similar, actually it is fair to say, that, the BoB method is the direct

decedent of the CM. The main application of the CM, and BoB methods is

to represent molecular structures for energy predictions.

The process to represent a structure with the CM methods starts by

building a matrix of the form:

CMi, j =


0.5Z2.4

i for i = j

ZiZj
|~ri−~rj | for i 6= j

(5.14)

Then the eigenvalues of the CM matrix are calculated: CM → {εl}, in the
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next step, the feature vector is assembled by concatenating the {εl} in de-

creasing absolute value. In cases where the systems have different atoms

the feature vector would have different dimensions, to skip this problem the

smaller vector add values of 0 to create the extra dimensions needed to make

the size of the feature vectors even. The CM method is invariant under the

needed symmetries of rotation, translation, and reflection. The matrix is de-

pendent on the ordering of the atoms, however the representation is based on

the eigenvalues which are invariant under permutations of columns and rows,

in addition the representation is continuous and it is possible to calculate

forces with this approach [83], though, the uniqueness of the representation

is challenging since, the QM is only dependent on distances between pairs of

atoms with no information about the relative orientation of the atoms.

Figure 5.4: A) Representation of a CO2 molecule. B) The Coulomb matrix
representation of the molecule, where OO = 0.5Z2.4

O , OC = ZOZC
|~rO−~rC |

, and so

fort and so on. C) The bag of bonds representation where every element
of the CM are order in different bags, depending the type of bond, in this
example there are the OO, the CC, and the OC bags, to form the final
representation the bags are concatenated into a vector.

The Bag of Bonds [63] (BoB) is the evolution of the CM, the first step

to build the representation is still the calculation of the elements CMij from
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equation 5.14, but instead of forming a matrix with them, the CMij elements

are concatenated in a vector, the ordering of the elements follows a bond

ordering, where every type of bond is concatenated in a bag to finally form

the feature vector concatenating the different bags, as it is shown in figure

5.6.1, for molecules with different number of bonds the BoB will have different

number of dimensions, to fix this, the smaller bags of bonds are filled with

zeros to ensure that all the vectors in the data set have the same size. The

BoB representation is invariant under rotation, translations, and reflections,

the ordering of the atoms also does not matter since the final representation

is sorted in specific order. Finally the BoB is not able to distinguish between

molecules with the same set species and pair wise distances, but with different

relative orientations.

5.7 The Partial Radial Distribution Function

This representation, Partial Radial Distribution Function (PRDF) [84] is a

crystal exclusive representation, and it is not used to calculate energy or

forces, but density of states, however there are some important insights from

the approach employed by KT Schütt. The PRDF features are:

gαβ(rn) =
1

NαNβV

Nα∑
i

Nβ∑
j

θ(dαiβj − rn)θ(rn + dr − dαiβj) (5.15)
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In here α, β are species of atoms, αi, βj are the ”i” and ”j” atoms of species

α, and β. dαiβj is the distance between the atoms ”i” and ”j” of species α,

and β. gαβ(rn) is accounting for how many α, β interactions are in a ring

center at rn with width dr, the interesting point of these features is that,

they not only account for the bond information, but they also communicate

information about the geometry of the system. Another important point

about the PRDF is that the size of the representation is independent of the

size of the system it is describing, since the features add over the number of

atoms in the structure, so for the PRDF there is not need to add zeroes to

create dimensions to compare structure with different numbers of atoms in

them. Since the PRDF are not employed to energy and force calculations its

presentation is not going to be deeper.
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Chapter 6

The Structural Information

Filtered Features (SIFF)

6.1 The Structural Information Filtered Fea-

tures (SIFF)

Despite the success of the methods mentioned in chapter 5, the field of ma-

chine learning potentials lacks a universal set of features to accurately de-

scribe any physical system [69, 76] (crystal, molecule, cluster). So far, there

are different methods focus on specific kinds of materials. For example in

the case of crystalline systems there are the symmetry functions method in-

troduced by Beheler and Parrinello [85] (BP), the SOAP method [78], and

the CGCNN method [79, 86]. Molecular systems on the other hand, can be

described by the CM method [65], or the BoB method [63].
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However, for systems with medium range symmetries or disordered states

like: clusters or glasses, there are no feature method, yet successful to de-

scribe them [87, 69, 88, 89, 90, 91]. The reason why methods like: BP, SOAP,

CGCNN could not describe clusters and glasses is because these methods

(BP, SOAP, CGCNN) rely on long range order symmetries, to encode phys-

ical information into feature representations [77, 92]. Furthermore, methods

like CM, and BoB, fail to describe clusters and glasses, because they exclu-

sively rely on the distance matrix to encode short range two-body interactions

[77, 70, 83].

Then the need for a universal feature representation became even more

clear, when thinking that, one of the possible applications of machine learn-

ing potentials is to perform long runs of molecular dynamics simulations,

in a long molecular dynamic simulation, the system is likely to visit dis-

ordered configurations while transitioning between stable, and metastable

phases [93]. Then a feature method able to describe disordered states as well

as ordered states is desired to carry out long molecular dynamics simulations

with machine learning potentials.

In this chapter the Structural Information Filtered Features (SIFF) are

introduced as an answer to the lack of an universal feature method able to

describe disordered configurations as well as crystals and molecules. The

SIFF method follows the original 4 requirements that outline a good set of

features [72, 73]:

• The features should be invariant under the symmetries of the structure,

99



so that if the structure is invariant under rotation, reflection and trans-

lation, the feature representation does not change after the application

of any of this transformations over the structure under study.

• The features have to be independent of the ordering of the atoms, and

invariant under permutations of atoms from the same element.

• The features should be continuous and differentiable.

• A good representation should uniquely represents the system it is meant

to describe.

In addition to develop the SIFF method, the following 3 requirements are

added:

• The calculation of the features should be as simple as possible, with-

out losing information that would make the machine learning system

misidentified the structures.

• As much geometrical information of the system should be included, but

methods of information redundancy can be utilized to only incorporate

features that contribute significant information about the system.

• The size of the feature representation should be independent on the

number of atoms in the structure.

In the next sections of this chapter, the SIFF method is formally introduced

as a consequence of the 7 requirements listed above, additionally, the SIFF
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method is tested to ensure its capabilities to describe molecules, crystals,

and disordered clusters, while keeping the dimension of the feature vector

constant despite the number of particles of the structures described. The

testing process also compared the performance of the SIFF method with

the SOAP, and CGCNN methods in the case of crystals, the BoB method

in the case of molecules, and since there is no specific feature method for

disordered clusters, a comparison with the BP method was carry out to

show the performance of the SIFF method on disordered structures.

6.2 A formal introduction to the Structural

Information Filtered Features

The feature engineering process to build the feature representation of a phys-

ical system, can be seen as a process in which information is transferred, the

goal of any good feature method is to maximize the information transference,

from the physical structure to the feature representation used as input in the

machine learning algorithm.

To answer the question of: Which information from the physical struc-

ture is needed for a proper description? The Hohenberg-Kohn theorems [31]

from the Density Functional Theory [32] are of good use. Knowing that, the

external potential is responsible for uniquely determining the energy func-

tional of a system of interacting particles. Then the information needed to

define the external potential is the information needed to uniquely identify
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the system. In the case of atomistic systems (crystals, molecules, clusters),

the external potential is due to the positions and species of the atoms making

up the system. Then the only information needed to use as input, for the

feature method are the coordinates and species of the atoms in the structure.

Any proposition of a new feature method must follow the original 4 re-

quirements previously discussed, for convenience the Structural Information

Features are based on the same building blocks as the BP features, where

the building blocks are: the distance matrix (Rij = |~Rj − ~Ri|) between

pair of atoms (i and j) in the structure, and the cosine tensor (cos(θijk) =

~Rij ·~Rik
|~Rij ||~Rik|

, ~Rij = ~Rj− ~Ri))taking into account the relative orientations between

trios of atoms in the structure. Using Rij and cos(θijk) have the advantage

that, the features automatically meet the original 4 requirements, and the

additional requirement of being easy to calculate. Furthermore, the only in-

formation needed to calculate Rij and cos(θijk) are the positions of the atoms

in the structure.

The last two requirements to take into account for the development of the

SIFF method are: the maximization of geometrical information, and keep-

ing the dimension of the feature representation constant. To maximize the

information transfer, the SIFF method filters the geometrical information

originally stored in Rij, and cos(θijk) following the example of convolutions

of neural networks [94]. The idea behind the filtering process is to organize

the information originally stored in Rij, and cos(θijk) in the features, in such

a way, that every feature has a piece of the total information. Figure 6.2
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Figure 6.1: Application of a single convolution layer. In the first stage there
is an image and a filter, then the application of the filter over the image makes
a convolution, selecting certain pixels and combining them into features in a
feature vector

shows a diagram of a convolution process, in the first stage, the information

originally stored in the image (matrix) is filtered. In the figure 6.2 the fil-

ter extracts the information of the anti-diagonal pixels and condensed into

features, then the features are organized in a vector conserving the ordering

of the raw picture. To keep the dimension of the feature space constant,

the SIFF organizes the output of the filtering process following the approach

introduced by The Partial Radial Distribution Function [84] described in

chapter 5.

There are two kinds of SIFF features, the first kind is dependent on the

103



Figure 6.2: Three different filters. Everyone of them extract the information
of bonding distances that are similar to Rp while ηr controls the selectivity.

Rij and is known as SIFF two−body:

SIFF two−body
pq =

∑
i

∑
j 6=i

e−η
two−body
p,q (Rij−Rp)2 ∗ δtwo−bodyij,q (6.1)

Here the Rp parameter group the information about two-body interactions in

such a way that, distances around Rp have a larger weight to those distances

significantly less than Rp. The gaussian e−η
two−body
p,q (Rij−Rp)2 acts as a filter

centered at Rp; the parameter ηtwo−bodyp,q defines the reach of the gaussian.

A very small ηtwo−bodyp,q does not filter significantly, and a very large ηtwo−bodyp,q

filters too much, so that, critical information about the original structure will

be missed. Figure 6.2 shows three different filtering gaussians. In general,

we can also use different combinations of Rp and ηtwo−bodyp,q for improving the

sampling of the geometrical space of the structures we want to represent. The

function δtwo−bodyij,q insures that the filtering parameter ηtwo−bodyp,q is only applied
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to specific element pairwise interactions; for example, the filtering parameter

between one pair of elemental interactions, e.g. AB, will be different than

the filtering parameter between elemental interactions AA or BB.

The second kind is dependent on the cos(θijk) and is known as SIFF three−body:

SIFF three−body
pq =

∑
i

∑
j 6=i

∑
k 6=j,i

e−η
three−body
p,q (cosθijk−cosθp)2 ∗ δthree−bodyijk,q (6.2)

Here the cosθp filters the information about relative orientations. The filter

group trios of atoms by the angle between them. The SIFF three−body does

not have a cutoff function depending on the distances between atoms, for two

reasons, first the SIFF three−body only takes into account angular information,

and second because such function would increase the correlation between the

SIFF three−body and the SIFF two−body, the increment in correlation would

decrease the amount of information stored in the features. Similar to its

two-body analog, ηthree−bodyp,q controls how far from the center of the gaussian

the interactions are taken into account. The function δthree−bodyijk,q is similar to

its two-body analog, that is used to define different feature filters for each

elemental trio of interactions, i.e. the filter for the elemental interaction AAA

is different than the filter for the elemental interaction ABA, so on and so

forth.

Figure 6.3 gives a diagrammatic representation of how the SIFF features

are calculated for a given structure, it also explains what the final dimension

of the feature representation is. A) Given the S structure, it has three atoms,
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Figure 6.3: Diagram of the feature engineering algorithm for obtaining a
feature vector with the Structural Information Filtered Features potentials.
The checkboard and wavy pattern in the feature vector mark the features
that are different from 0

two different species A and B, the distances between the atoms are either d0

or d1, the angles are φ0 or φ1. B) The parameters for the SIFF calculations,

Rp is the center of the Gaussian part of the SIFF two body, it selects (filters)

which interatomic distances are accounted for a given feature, here it can

have two values R0 or R1, the qtwo−body is the set of all the two body com-

binations of the species in the system, Θp is the center of the Gaussian part

of the SIFF three−body, it selects (filters) which trios of particles are taken

into account in a given feature, the qthree−body is the set of all the three body

combinations of the species in the system. C) Scheme of the feature vector

calculation, the circles represent the input needed to calculate an individual
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feature for the feature vector, in the case of the SIFF two−body, the inputs

are: the structure, the value of Rp and the q interaction, in the case of the

first feature (from left to right) Rp = R0 ≈ d0 and the q interaction is AA,

with these parameters the output (represented in the hexagon) is the result

of extracting (filtering) the geometrical parts of the structure that meet the

parameters requirements, in the third example for SIFF two−body the input

information is Rp = R0 ≈ d0 and the q interaction is BB, in this case, there

are no geometrical part of the structure that meets the parameters, thus

the output is 0 (left empty in the figure empty). The three-body feature

calculation follows a similar process but instead of filtering the structure by

interatomic distance, and two body combination, the selection process relies

on the angle and the three-body combination. Finally, the feature vector

for the S structure is the concatenation of all the individual features. The

dimension of the feature vector is the number of Rp values, times the num-

ber of qtow−body interactions, plus the number of Θp values, times the number

of qtow−body. Then the dimension of the feature space is independent of the

number of atoms in the system, and it is only dependent on the geometrical

filters and types of interactions considered.

6.2.1 SIFF force features

The force calculation with the SIFF method is similar to the energy calcula-

tion with respect to the parameters, and the dimension of the feature space,

however, there are some important differences. In first place the learning
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process is not; structure → feature representation → energy (target value),

but, atom → feature representation → force (target value). Furthermore,

the feature representation for a given atom, is not the SIFF, but, its gradient

with respect to the atom for which the force wants to be calculated.

The expression for the calculation of the gradients of the SIFF functions

with respect to the “l” atom are:

~∇l(SIFF
two−body
pq ) =

∑
i

∑
j 6=i

−2ηtwo−bodyp,q e−η
two−body
p,q (Rij−Rp)2∗

δtwo−bodyij,q
~Rij

[
δjl − δil

]
(6.3)

~∇l(SIFF
three−body
pq ) =

∑
i

∑
j 6=i

∑
k 6=j,i

−2ηthree−bodyp,q e−η
three−body
p,q (cosθijk−cosθp)2∗

δthree−bodyijk,q
~∇l(cos θijk) (6.4)

Where:

~∇l(cos θijk) =

(
~Rij

|~Rij||~Rik|
− cos θijk ~Rik

|~Rik|2

)
δil +

(
~Rik

|~Rij||~Rik|
− cos θijk ~Rij

|~Rij|2

)
δil

−

(
~Rij

|~Rij||~Rik|
− cos θijk ~Rik

|~Rik|2

)
δkl −

(
~Rik

|~Rij||~Rik|
− cos θijk ~Rij

|~Rij|2

)
δjl (6.5)

Here (δil, δjlδkl), are the Kronecker deltas, and ~Rij = ~Rj − ~Ri.

Then a machine learning map f(x, ω) = ytarget can be trained using

as input the gradient of the SIFF vector respect to the position of atom
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”l” (~∇l(SIFF )), and as target, the value of the force on atom ”l” (~Fl),

f(~∇l(SIFF ), ω) = ~Fl.

6.3 Results of SIFF calculations on clusters

6.3.1 SIFF comparison with BP on random clusters

For clusters, the SIFF is tested on two data sets, with different complexities.

The two data sets are: C10 composed by 20000 clusters of Carbon with 10

atoms each, and CO1214 with 25000 clusters of Carbon and Oxygen with 12

and 14 atoms in different proportions.

For the C10 data set, SIFF and BP features were calculated, and both

feature representations were used to train neural networks with the same

number of parameters, and similar architectures. The goal of these experi-

ments is to determine the performance of the SIFF features, and compared

them with the reference value given by the BP features. Additionally, a sec-

ond experiment is carried out, with the SIFF method only, and using the

more complex CO1214 data set. The experiment determines the effects on

transferability of the SIFF method, for a complex data set. Finally, the SIFF

method is used as input for a Gradient Boosting Regression (GBR), to show

the advantages of a feature method, that can be used as input of different

machine learning algorithms [95].
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Clusters data sets creation

The process to build C10 started with the generation of 1000 different clus-

ters (structures) with the firefly algorithm as implemented in the Pychemia

software [96], the 1000 structures were generated randomly under certain

constrains (e.g. the atoms shouldn’t be to close) to ensure that the struc-

tures are uncorrelated among then but still physically realistic, then every

one of these 1000 structures were input into the FIREBALL software [97] to

perform DFT energy calculations, and 20 steps of free dynamics molecular

dynamics, with temperature increasing from 500k to 1000k, the exchange

correlation functional was the LDA functional implemented in FIREBALL

[98, 99], in all the DFT MD steps the energy was converged until 1meV.

With a time steps in the MD of 0.1fs.

The second data set for the cluster test C01214 was generated in a sim-

ilar fashion to C10. First 250 random structures were generated for 10 dif-

ferent concentrations of C and O (C10O2, C8O4, C6O6, C2O10, C12O2, C10O4,

C8O6, C6O8, C4O10, C2O12) for a total of 2500 random structures created with

Pychemia, then the structures followed the same process described for the

C10 data set, whith one difference, instead of using 20 steps of free dynamics

MD for CO1214, 10 steps of free dynamics MD were used.

Results on the C10 data set

The C10 data set, were split in 17000 structures for training, and 3000 for

validation, the feature space for both methods SIFF, and BP have 48 di-
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mensions (details about feature calculations in the Appendix). Both feature

representations are scaled with the MaxAbsScaler function implemented in

Scikit-learn [100].

The architecture for the neural network with the best performance for

the BP features has; an input layer with 48 nodes (dimension of the feature

space), a first hidden layer with 20 nodes, a second hidden layer with 20

nodes, and an output layer with a single node representing the atomic like

energy. The activation function, between the input layer, and the first hidden

layer is a sigmoid function, as well as in the transition between the first and

second hidden layers. Yet, the activation function between the second hidden

layer, and the output layer is a linear function. This architecture has 1421

parameters to train, the neural network was implemented using Google’s

deep learning framework TensorFlow [101].

The training process for the BP features stopped when over fitting ap-

peared at 200 000 steps, it took the neural net a total of 61 969 seconds (about

17 hours) to do the process. At the end, the root-mean-square error (RMSE)

in the training and validation set was: RMSEtraining = 0.107eV/structure

and RMSEvalidation = 0.109eV/structure, both agree with similar measures

of error found in Ref [102, 68, 76, 67, 66]

For the SIFF method, the neural network used has the same architecture

employed for the BP features, with 1421 parameters. However, in the case

of the SIFF method, the neural network predicts directly the energy of the

structure, instead of an atomic like energy, as a result of this simplification,
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the time needed to carry out the 200 000 training steps was of 18 110 seconds

(about 5 hours). At the end, the root-mean-square error (RMSE) in the

training and validation set was: RMSEvalidation = 0.083eV/structure, and

RMSEtraining = 0.072eV/structure. Table 6.3.1 compares the results for

both methods, using the neural net with 1421 parameters.

Feature Training time 200 000 steps RMSEtraining RMSEvalidation
BP 61 969 seconds 0.107 eV/structure 0.109 eV/structure
SIFF 18 110 seconds 0.072 eV/structure 0.083 eV/structure

Table 6.1: Comparison between the BP and SIFF methods, for a neural
network with 1421 parameters

Furthermore, the SIFF features were used to train a Gradient Boost-

ing Regression (GBR) model. The GBR model employed was implemented

using Scikit-learn, the parameters were: 800 estimators, a maximal depth

of 8, minimal samples split of 2, minimal samples leaf of 2, learning rate

of 0.109, and the loss function is the least squares regression. At the end,

the root-mean-square error (RMSE) in the training and validation set was:

RMSEvalidation = 0.036eV/structure, andRMSEtraining = 0.0006eV/structure.

Figure 6.4 shows a plot of the cumulative error (meV/atom) for the three

models, BP with neural network (NN), SIFF with NN, and SIFF with GBR;

for the BP features only 20% of the structures has an error smaller than

10meV/atom in the validation set, for the SIFF in the same neural net-

work the percentage of structures with error less than 10meV/atom in the

validation set increases to 35%. Showing that the SIFF method increase
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Figure 6.4: (C10 data set) Plot of the cumulative error in the validation set;
in blue, a neural network with 1421 parameters after 200 000 epochs with the
BP features; in orange, a neural network with 1421 parameters after 200 000
epochs with the SIFF features; and in green the Gradient Boosting regression
with the SIFF features

the accuracy of machine learning potentials. However, figure 6.4 also show

that for GBR+SIFF nearly 80% of the validation structures have errors less

than 10meV/atom, thereby demonstrating the advantage of using a feature

method (SIFF) able to be input to different machine learning algorithms.

Results on the CO1214 data set

For the CO1214 data set, only the SIFF features were calculated in a feature

space of 152 features (details about feature calculations in the Appendix),

the features were scaled with the MaxAbsScaler function implemented in

Scikit-learn. The 25000 total structures were split in a validation data set

with 3000 structures, and 22000 structures for training. The parameters for

the GBR energy model were: 650 estimators, a maximal depth of 7, minimal
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samples split of 2, minimal samples leaf of 3, learning rate of 0.1732, and

the loss function is the least squares regression. Also, the parameters for

the GBR force model were: 900 estimators, a maximal depth of 8, minimal

samples split of 2, minimal samples leaf of 3, learning rate of 0.1732, and the

loss function is the least squares regression.

Figure 6.5: (CO1214 data set )a) Cumulative error for energy using a GBR
model with the SIFF method, training set in orange, and validation set in
blue. b) Cumulative error for force component using a GBR model with the
graient SIFF method, the results shown are part of the validation set, in
green the x component of the force, in orange the y component, and in blue
the z component.

Figure 6.5 a) shows how for energy, the SIFF method is able to keep 90%

of the structures in the validation set with an error of less than 10meV/atom.

In addition, figure 6.5 b) shows that, 90% of the structures in validation set
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have a force error of less than 0.25eV/Å, moreover, the average error for the

force calculations in the validation set were of 0.0666eV/Å, which is less than

the 0.1eV/Å error reported by successful calculations of phonons [103, 75].

These results demonstrate the efficiency of the SIFF method to transform

the information from the physical structure to the feature representation,

regardless of the complexity of the data set. With the SIFF method, a

machine learning algorithm can simulate the potential energy function of

a data set composed by structures with different species, concentrations,

number of atoms, and without any specific symmetry.

Analysis of results from the C10 and CO1214 data sets

Figure 6.4 shows that the use of the SIFF method improved the performance

of a NN with the same architecture, number of parameters, and training

steps, than the BP method. The reason why the SIFF method does better

than the BP method is because, the feature vectors calculated with the SIFF

method have more information about the original structure than the feature

vectors calculated with BP. To prove this hypothesis, the correlation matrix

for both feature representations were calculated (see figure 6.6 c and 6.6 d).

The elements of the correlation matrix are the Pearson correlation coef-

ficients between features in the feature vector. In the case of the SIFF and

BP features vectors for the C10 data set, the size of the correlation matrices

is 48x48. The results are shown in figure 6.6, where is clear that, for the

features calculated with BP, more than 50% of the correlation coefficients
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Figure 6.6: (CO 10 data set)a) Histogram of the correlation coefficients for
the BP method, the diagonal elements of the correlation matrix were ex-
cluded of the count. b) Histogram of the correlation coefficients for the SIFF
method.c) Correlation matrix, between the 48 BP features,red means 1.0 or
perfect correlation, and blue means 0.0 or non correlation. d) Correlation
matrix, between the 48 SIFF features

rank in between 0.6 and 1.0 (figure 6.6 a). On the contrary, for the SIFF

features, more than 50% of the correlation coefficients rank in between 0.0

and 0.2 (figure 6.6 b).

Finally, in the case of the CO1214 data set, the reason for the accuracy of

the machine learning model, rely on two sources; first the good representation

of the potential energy function done by the GBR algorithm, and second, the

low amount of correlation present in the SIFF feature vectors (figure 6.7).
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Figure 6.7: Correlation matrix, between the 152 SIFF features for the
CO1214 data set, red means 1.0 or perfect correlation, and blue means 0.0
or non correlation.

Hence, as it was discussed in chapter 2: the lower the correlation among

features the higher the information passed to the machine learning algorithm

making it more accurate.

6.4 Results of SIFF calculations on Molecules

6.4.1 Molecular data sets

The performance of the SIFF method was studied on molecules from the

GDB9-14B database, the actual DFT calculations and structures were ob-

tained from the site http://quantum-machine.org [104]. The machine learn-

ing calculations were performed on two different subsets of data: OCH, and
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C7O2H12. The properties of OCH were calculated with a DFT/B3LYP/6-

31G(2df,p) level of theory, while the properties of the C7O2H12 data set were

calculated with a G4MP2 level theory.

The first data set, OCH has 50592 molecules with different concentrations

of Oxygen, Carbon, and Hydrogen, and with between 3 and 29 atoms. The

SIFF method was used to predict the lowest unoccupied molecular orbital

(LUMO), highest occupied molecular orbital (HOMO), and gap (the gap be-

tween the LUMO and HOMO levels), of the OCH molecules, with a machine

learning potential. In addition, the performance of the SIFF method was

compared with the Bag of Bonds (BoB) method.

The second data set C7O2H12 contains 6095 molecules of C7O2H12. The

SIFF method was used to predict internal energy and free energy, of the

C7O2H12 molecules. In addition, the performance of the SIFF method was

compared with the Bag of Bonds (BoB) method.

6.4.2 Model selection

A uniform grid search, was the method used to find the best combination of

parameters for the machine learning potentials. The Mean Absolute Error

(MAE), was the metric used to evaluate every model. Due to is good per-

formance and lower training time, the Gradient Boosting Regression (GBR)

was the only kind of model considered.

For the OCH data set, the testing grid has 27 points. The number of

estimators could take values of [500, 600, 700]. The maximal depth could

118



Figure 6.8: a) Models studied for predictions with the BoB method on the
OCH data set. Mean Absolute Error (MAE) was the metric used to evaluate
the models b) Models evaluated for predictions with the SIFF method, on
the OCH data set.c) Models studied for predictions with the BoB method
on the C7O2H12 data set. d) Models studied for predictions with the SIFF
method on the C7O2H12 data set.

take values of [3, 5, 7], and the learning rate could take values of [0.8, 0.11,

0.15]. Some parameters stayed constant during the searching process, min-

imal sample split = 3, minimal sample leaf = 3, and the loss function was

the least square regression. The models were rated by their ability to predict

the gap energy, figure 6.8 a and b shows the results of the 27 models for the

OCH data set, for both feature methods (BoB, SIFF) .

In the case of the C7O2H12 data set, the testing grid also had 27 points.

The number of estimators could take values of [400, 500, 600]. The maximal

depth could take values of [3, 5, 7], and the learning rate could take values
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of [0.8, 0.11, 0.15]. Some parameters stayed constant during the searching

process, minimal sample split = 3, minimal sample leaf = 3, and the loss

function was the least square regression. The models were rated by their

ability to predict the free energy, figure 6.8 c and d shows the results of the

27 models for the C7O2H12 data set, for both feature methods (BoB, SIFF).

The parameters for the best models are summarized in table 6.4.2

Feature Data set MAE (eV/structure) LR MD NE
BoB OCH 0.0087 0.15 5 700
SIFF OCH 0.0057 0.15 7 500
BoB C7O2H12 0.0067 0.15 3 600
SIFF C7O2H12 0.0045 0.11 5 600

Table 6.2: Models with the best performance for every method and molecular
data set. Learning rage LR, maximal depth MD, number of estimators NE.

6.4.3 Results and analysis on the OCH data set

There are three physical properties used as target in the OCH data set:

gap, HUMO, and LUMO. For every property, and every feature type (SIFF,

BoB) a GBR model were trained. All trained models follow the parameters

described in table 6.4.2. The split of the 50529 structures was: 37944 struc-

tures for training and 12648 for validation, the MAE reported below belongs

to the validation set. The SIFF method produced a feature space with 297

dimensions (more details about parameters in the Appendix), and the BoB

method a feature space with 484 dimensions.
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Figure 6.9: (OCH data set) a)Visualization of the learned manifold from gap
energy target, using BoB features. b) Visualization of the learned manifold
from gap energy target, using SIFF features. c) Visualization of the predicted
manifold for gap energy validation using BoB features. d) Visualization of
the predicted manifold for gap energy validation using SIFF features.

The MAE for the gap prediction using the SIFF method was 0.11 kcal/mol,

for the BoB method was 0.15 kcal/mol, independent results for BoB and other

features on similar (molecular) data sets can be found in Ref [80, 81, 82, 105].

Figure 6.9 is a visualization of the reduced feature manifold, the reduction

was achieved using the TSNE method implemented in Scikit-learn. Figure

6.9 a and b, shown the learned manifolds. The SIFF method groups the

higher energies in an outer rim, and the energy increases, as the radius of the

rim decreases. In contrast, the BoB method has ghettos of lower gap values

scattered over the feature space. Figures 6.9 c and d, shown the predicted

manifold using the validation data. Both pictures exhibit the consistency of

the features, predicting similar properties for structures with similarities in

the feature space.
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Figure 6.10: (OCH data set) a) Cumulative error comparison for the valida-
tion set using SIFF and BoB. b) Error manifold for the validation set using
BoB. c) Error manifold for the validation set using SIFF.

A dipper analysis of the error comes from figure 6.10. Part a demonstrate

that, the SIFF does a better prediction than the BoB method. Parts b and c

details the regions on the manifolds where the errors come from. For the BoB

method, points with higher errors (more than 1.0 kcal/mol, yellow) scatter

all over the feature space, while for the SIFF these points with higher errors,

seem to be group toward the center of the feature space.

In the prediction of the HOMO the SIFF method scores a MAE of 0.0707

kcal/mol, while the BoB method scores 0.0850 kcal/mol. Figure 6.11 follows

the trend set by the gap manifold, where the BoB method has dispersed

pockets of regions with similar energies, whereas the SIFF method has bigger

and concentrated pockets in specific areas of the feature space. Moreover,

figure 6.12 a, shows the SIFF method doing slightly better, however, figure

6.12 b and c, follow the trend of a BoB method with high errors straggling,
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Figure 6.11: (OCH data set) a)Visualization of the learned manifold from
HOMO target, using BoB features. b) Visualization of the learned manifold
from HOMO target, using SIFF features. c) Visualization of the predicted
manifold for HOMO validation using BoB features. d) Visualization of the
predicted manifold for HOMO validation using SIFF features.

while the SIFF errors stay in concentrated areas.

The last property predicted with the OCH data set was the LUMO, where

the SIFF had MAE of 0.0844 kcal/mol, while the BoB method had a mae

of 0.1229kcal/mol. Figure 6.13 depict the LUMO manifold in the reduced

feature space. The SIFF method is consistent on grouping structures with

similar energies in concentrated areas of the reduced feature space. Whereas,

the BoB method group structures with similar energies in scatter pockets

around the feature space. Figure 6.14 b and c illustrate the discrepancy

between the grouping capabilities of the two methods. The SIFF method has

small concentrated pockets of high error structures, in contrast the high error

points are situated on extensive areas of the BoB feature space. Furthermore,

figure 6.14 a) shows how the SIFF method makes a more accurate prediction
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Figure 6.12: (OCH data set) a) Cumulative error comparison for the valida-
tion set using SIFF and BoB. b) Error manifold for the validation set using
BoB. c) Error manifold for the validation set using SIFF.

of the LUMO values.

The tests carried out on the OCH data set, consistently show that, the

SIFF method is more accurate to predict the value of the physical property,

whether it is gap, HOMO or LUMO. In addition, for the SIFF method, there

are well-defined regions with structures with similar values of gap, HOMO,

or LUMO, also in the SIFF method the errors are consistently reduced to

specific regions of the feature space. The BoB method on the other hand,

struggles to make general pockets, so that, small groups of structures with

similar gap, HOMO or LUMO are scattered on the feature space, similarly,

the error points are dispersed on the feature space.

The SIFF method does a better grouping of the OCH structures, than

the BoB method. A potential explanation come from the fact that, the BoB

method rely on organizing the distance matrix elements by type of bonding,
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Figure 6.13: (OCH data set) a)Visualization of the learned manifold from
LUMO target, using BoB features. b) Visualization of the learned manifold
from LUMO target, using SIFF features. c) Visualization of the predicted
manifold for LUMO validation using BoB features. d) Visualization of the
predicted manifold for LUMO validation using SIFF features.

however, this approach accounts only for the strength of the bonding ignoring

the relative orientations. On the other hand, the SIFF method takes into

account the strength of the bonding and its relative orientation. The extra

information results in a more accurate representation in feature space, and

as consequence, an improvement in performance.

6.4.4 Results and analysis on the C7O2H12 data set

There are two physical properties used as target in the C7O2H12 data set:

internal energy, and free energy. Following the same procedure as for the

OCH data set, a GBR model was trained for every property, and feature

type. The trained models have the parameters described in 6.4.2. From the
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Figure 6.14: (OCH data set) a) Cumulative error comparison for the valida-
tion set using SIFF and BoB. b) Error manifold for the validation set using
BoB. c) Error manifold for the validation set using SIFF.

6095 total structures, 4571 were used as training set, and 1524 as validation

set. The dimension of the feature space with the SIFF method was 702 (more

details about parameters in the Appendix), while for the BoB method, the

dimension of the feature space was 702.

The MAE for the internal energy prediction on the validation set was

0.0440 kcal/mol for the SIFF method, while for the BoB method was 0.1150

kcal/mol. Figure 6.16 a, shows how 80% of the structures described by the

SIFF features have less than 0.25 kcal/mol error, in comparison only 60%

of the structures described with BoB have errors of less than 0.25 kcal/mol.

Besides, figure 6.16 b and c, shows that, for the BoB method the structures

with higher errors are distributed over the whole manifold, however, for the

SIFF features the structures with higher errors are group in a specific region.

The figure 6.15 depicts the learned manifolds, despite to the small number
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Figure 6.15: (C7O2H12 data set) a)Visualization of the learned manifold
from internal energy target, using BoB features. b) Visualization of the
learned manifold from internal energy target, using SIFF features. c) Visu-
alization of the predicted manifold for internal energy validation using BoB
features. d) Visualization of the predicted manifold for internal energy vali-
dation using SIFF features.

of structures of this data set it is possible to see specific clusters of particles

with similar internal energies emerging.

The MAE for the formation energy prediction on the validation set was

of 0.043 kcal/mol for the SIFF features, and 0.1140 kcal/mol for the BoB

feature. Similarly, to the internal energy, figure 6.19 a, shows that, 80% of

the structures represented using the SIFF method have errors of less than

0.25 kcal/mol, while for the BoB features is about 50% of the structures the

ones with errors less than 0.25 kcal/mol. In addition, figure 6.19 b and c,

reinforce the idea that the SIFF features concentrate the error into specific

zones unlike the BoB method. The results of the predictions on the C7O2H12

show that, the combination of SIFF + GBR is able to accurately learn the
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Figure 6.16: (C7O2H12 data set))a) Cumulative error comparison for the
validation set using SIFF and BoB. b) Error manifold for the validation set
using BoB. c) Error manifold for the validation set using SIFF.

manifold of a physical property (PES in the case of energy being the physical

property), regardless of a limited number of training examples. These results

are of paramount importance since, realistic application of machine learning

potentials must deal with the fact that, the number of molecules in the data

sets may decrease, as the number of particles in the molecules increases.

6.5 Results of SIFF calculations on Crystals

6.5.1 Crystal data set

The crystal data set is composed by 2400 structures of (AlxGayInz)2O3 where

x+ y + z = 1. The data set is called AlGaInO, and come from the machine

learning competitions site ’https://www.kaggle.com/c/nomad2018-predict-
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Figure 6.17: (C7O2H12 data set)) a)Visualization of the learned manifold
from free energy target, using BoB features. b) Visualization of the learned
manifold from free energy target, using SIFF features. c) Visualization of
the predicted manifold for free energy validation using BoB features. d)
Visualization of the predicted manifold for free energy validation using SIFF
features.

Figure 6.18: (C7O2H12 data set) a) Cumulative error comparison for the
validation set using SIFF and BoB. b) Error manifold for the validation set
using BoB. c) Error manifold for the validation set using SIFF.

129



transparent-conductors/data’, the data set was part of a competition to pre-

dict formation energy (eV/atom), and band gap (eV).

The best models in the competition [106] used CGCNN [79, 107] and

SOAP [78, 108, 109] methods to calculate features (more details about the

competition in Ref [106]). In the competition, the CGCNN method achieved

a MAE of 114meV for the band gap, and a MAE of 15 meV/atom for the

formation energy, while the SOAP features achieved a MAE of 93 meV for

the band gap, and a MAE of 13 meV/atom for the formation energy. In

this section the SIFF features are compared to the CGCNN method and the

SOAP method.

6.5.2 Model selection

For the AlGaInO data set, the model selection method follows the same

steps as the model selection for molecular data sets. The GBR models are

evaluated with respect to the MAE while predicting the formation energy

property.

The testing grid for the SOAP features has 54 points. The number of

estimators could take values of [550, 600, 700]. The maximal depth could

take values of [5, 6, 7], the learning rate could take values of [ 0.12, 0.15,

0.18]. The minimal samples split and the minimal samples leaf both could

take values of [5, 6], the loss function was the least square regression.

The testing grid for the SIFF features has 36 points. The number of

estimators could take values of [400, 500]. The maximal depth could take
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Figure 6.19: Models performance for the AlGaInO data set.

values of [5, 6, 7], the learning rate could take values of [ 0.13, 0.15, 0.17].

The minimal samples split and the minimal samples leaf both could take

values of [4, 6], the loss function was the least square regression.

The testing grid for the CGCNN features has 90 points. The number of

estimators could take values of [300, 400, 500, 600, 700]. The maximal depth

could take values of [5, 6, 7], the learning rate could take values of [ 0.12,
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0.15, 0.18]. The minimal samples split and the minimal samples leaf both

could take values of [5, 6], the loss function was the least square regression,

the models with the best performances are summarized in table 6.5.2.

Feature MAE (eV/atom) LR MD NE MS
CGCNN 0.0203 0.12 7 600 5
SOAP 0.01789 0.15 5 700 5
SIFF 0.0202 0.15 5 500 4

Table 6.3: Models with the best performance for every method in the Al-
GaInO data set. Learning rage LR, maximal depth MD, number of estima-
tors NE, minimal samples (split, leaf) MS.

6.5.3 Results and analysis on the AlGaInO data set

Figure 6.20: (AlGaInO data set) a) Cumulative error comparison for the
validation set using CGCNN, SOAP, and SIFF. b) Error manifold for the
validation set using SIFF. c) Error manifold for the validation set using
CGCNN. d) Error manifold for the validation set using SOAP
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Similarly to the original Kaggle competition, the properties predicted

were: the formation energy and the band gap. For every property and feature

type a GBR model was trained. All the trained models follow the parameters

for its given feature as shown in table 6.5.2. The split of the 2400 structures

was: 1920 structures for training, and 480 structures for validation. All MAE

reported bellow belongs to the validation set. The SIFF method produced

a feature space with 1744 dimensions (more details about parameters in the

Appendix), the SOAP method produced a feature space with 500 dimensions,

and the CGCNN method produced a feature space with 92 dimensions.

The MAE for the formation energy prediction using the SIFF method was

18.45 meV/atom, using the SOAP method the MAE was 18.02 meV/atom,

and using the CGCNN method was 18.71 meV/atom. As figure 6.21 shows,

the three sets of features are good at creating pockets of structures with sim-

ilar energies. Moreover, figure 6.20 a shows that, the three sets of features

have a similar performance on describing the formation energy for the Al-

GaInO data set. However, figure 6.20 also shows that, non of the features

used were able to isolate the structures with higher errors into a concentrated

zone.

The MAE for the band gap prediction using the SIFF method was 117.39

meV, using the SOAP method the MAE was 115.27 meV, and using the

CGCNN method was 138.24 meV. Figure 6.22 illustrate the band gap mani-

fold, the SIFF, and SOAP methods created clusters of structures with similar

band gaps, also the clusters seem ordered on a smooth transition of band gap
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Figure 6.21: (AlGaInO data set) a)Visualization of the learned manifold
from formation energy target, using SIFF features. b) Visualization of
the predicted manifold for formation energy validation using SIFF features.
c)Visualization of the learned manifold from formation energy target, using
SOAP features. d) Visualization of the predicted manifold for formation en-
ergy validation using SOAP features. e)Visualization of the learned manifold
from formation energy target, using CGCNN features. f) Visualization of the
predicted manifold for formation energy validation using CGCNN features.
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Figure 6.22: (AlGaInO data set) a)Visualization of the learned manifold
from band gap target, using SIFF features. b) Visualization of the predicted
manifold for band gap validation using SIFF features. c)Visualization of the
learned manifold from band gap target, using SOAP features. d) Visualiza-
tion of the predicted manifold for band gap validation using SOAP features.
e)Visualization of the learned manifold from band gap target, using CGCNN
features. f) Visualization of the predicted manifold for band gap validation
using CGCNN features.
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values. Figure 6.23 b, c, and d demonstrate that, none of the feature meth-

ods can isolate the error in a specific section of the feature space. Moreover,

6.22 a) shows that the performances of the three method in this data set are

fairly similar.

Figure 6.23: (AlGaInO data set) a) Cumulative error comparison for the
validation set using CGCNN, SOAP, and SIFF. b) Error manifold for the
validation set using SIFF. c) Error manifold for the validation set using
CGCNN. d) Error manifold for the validation set using SOAP

It is important to note that, neither the SOAP method, nor the CGCNN

methods used in the Kaggle competition and in this section are the exact

original methods. In the case of the SOAP method for this section and

following the example of the Kaggle competition, a structure base SOAP

descriptor was used instead of the atomistic base SOAP descriptor. The

structure SOAP is the result of averaging the atomic contributions for a

given structure. The CGCNN method used in this section employed the
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original neural network to create a structure embedding. This embedding

is the same used by the CGCNN as input for its neural network to make

predictions, however, a GBR method was used to make predictions instead

of the neural network in this section. Also the values of MAE from the Kaggle

competition reported in table 6.5.3 were performed on a validation set with

600 structures, and it is different to the validation data set for this section.

Feature MAE BG* (meV) MAE BG MAE FE* (meV/atom) MAE FE
CGCNN 114 138 15 18.7
SOAP 93 115 13 18.0
SIFF - 117 - 18.5

Table 6.4: Reference of the results from the Kaggle competition for SOAP
and CGCNN. BG* stands for the band gap value in the competition, BG
stands for band gap results in this section. FE* stands for the formation
energy value in the competition, FE stands for formation energy results in
this section

However, even when the values of MAE achieved in the Kaggle compe-

tition, and the MAE values obtained in this section are not directly compa-

rable, it is important to note that, they do not differ substantially, having

values in similar ranges. The calculations from the official competition were

performed on a training data set of 2400 structures, and a validation set of

600 structures. In comparison, the calculations outline in this section were

performed with 2160 structures in the training set, and 240 in the validation

set, and both sets were part of the original 2400 training set from the Kaggle

competition.

Nevertheless, from the calculations performed in this section is possible
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to conclude that, the SIFF method does as well as the best methods designed

to describe crystal structures. The SIFF method does not improve the per-

formance compared to other methods, likely because crystal structures are

not highly complex in comparison with molecules and random clusters, then

methods like CGCNN and SOAP, that, rely on large symmetries are good

enough to describe the crystals. On the other hand a disadvantage of the

SIFF method is the rapid increase in dimension of the feature space, while

dealing with many different species of atoms. For the AlGaInO data set

nearly 1800 features were need it to describe the structures.
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Chapter 7

Conclusions

7.1 Conclusions

The prediction of material properties requires long runs of molecular dy-

namics simulations, and calculations on systems with many particles. Ab

intio methods can perform long runs of MD simulations, and calculations

on systems with many particles, nevertheless, the amount of time, and com-

putational resources needed is such, that, the calculations are possible but

infeasible. Machine learning potentials can make this kind of simulations fea-

sible, however, a standard method for transforming physical structures into

feature vectors is still needed.

This work introduces the Structural Information Filtered Features to feed

machine learning potentials. The SIFF method is an answer to the lack

of a universal and standard method to feed machine learning potentials.
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Unlike the old feature methods introduced in Chapter 5, the SIFF method is

derived not only taking into account physical insights like: symmetries and

bonding strength, but also feature engineering premises like: maximizing the

information storage, and keeping the dimension of the feature space constant,

regardless of the number of atoms in the structure.

The SIFF method is a universal feature construction framework in two

senses. First it is able to properly transform the information stored in: crys-

tals, disordered clusters, and molecules, into vectors of features for machine

learning potentials. Second it can feed different machine learning algorithms,

from neural networks, to regression trees.

The SIFF method increases the amount of information in the features.

The increment is the result of storing parts of information of the structure,

in separate features (the filtering process). In this way every feature com-

municates a valuable and independent part of the total information. Thanks

to the increment in information and the low correlations between features,

the SIFF method can accurately describe structures in a disordered state,

the accurate description is not limited to calculation of energies, the SIFF

method can also calculate atomic forces, such that, long runs of MD sim-

ulations where the system visits configurations far from its equilibrium are

possible.

Moreover, the SIFF method represent every structure by a feature vector,

among the advantages of this approach, the machine learning potential can

predict the energy of the system directly, saving time without compromising
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accuracy. It also allows the feature representation to be the input of any ma-

chine learning algorithm. Another important property of the SIFF method

is that. It produces a feature space that is independent on the number of

atoms in the structure. This make possible to compare systems with similar

compositions, but different number of atoms, it also makes easier the imple-

mentation of machine learning potentials with machine learning frameworks

like: TensorFlow or Scikit-Learn.

This work also opens the door to future improvements. One of them

regards the management of systems with many species, for the AlGaInO

data set the SIFF method needed about 1800 features to properly describe

the structures. Furthermore, a better selection of the validation set is needed,

so far the selection is random, but this end up with areas of the configuration

space that are over represented, a better algorithm will select structures

trying to uniformly represent the configuration space.

**
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Appendix A

Feature parameters

A.1 SIFF parameters for the C10 data set

The parameters for the equation:

SIFF two−body
pq =

∑
i

∑
j 6=i

e−η
two−body
p,q (Rij−Rp)2 ∗ δtwo−bodyij,q (A.1)

For Rp = [1.0,1.3,1.6,1.9,2.2,2.5,2.8,3.1,3.4,3.7,4.0,4.3,4.6,4.9,5.2], the value

of ηtwo−bodyp,q was 76.75.

For Rp = [1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5], the value of ηtwo−bodyp,q was

27.63.

The parameters for the equation:
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SIFF three−body
pq =

∑
i

∑
j 6=i

∑
k 6=j,i

e−η
three−body
p,q (cosθijk−cosθp)2 ∗ δthree−bodyijk,q (A.2)

For cosθp= [0.97, 0.91, 0.80, 0.66, 0.50, 0.30, 0.10, -0.10, -0.30, -0.50 ,-0.66,

-0.80, -0.91, -0.97], the value of ηthree−bodyp,q was 950.0.

For cosθp= [9.51e-01, 8.09e-01, 5.88e-01, 3.09e-01, 7.96e-04, -3.08e-01, -5.86e-

01, -8.08e-01, -9.50e-01], the value of ηtwo−bodyp,q was 1000.0.

A.2 BP parameters for the C10 data set

The parameters for the equation:

g2b
ip =

∑
j 6=i

exp[−ηp(Rij −Rs)
2]fc(Rij) (A.3)

The Rs parameter is 0. the Rc (cut off radius) is 6.1, ηp takes values

[0.05,0.075,0.10,0.15,0.20,0.225,0.25,0.30,0.350,0.4,0.425,0.45,0.50,0.55,0.60, 0.65,0.675,0.70,0.75,0.775,0.80,0.825,0.85,0.875].

The parameters for the equation:

g3b
ip = 21−ξp

∑
j 6=i

∑
k 6=j,i

(1 + λp cos(θijk))
ξp exp[−ηp(Rij +Rik +Rjk)

2]∗

fc(Rij)fc(Rik)fc(Rjk) (A.4)
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The values of the parameters are: ηp= [0.05,0.10,0.15,0.20,0.25,0.30,0.350,0.4,0.45,0.50,0.55,0.60,0.65,0.70,0.75,0.80,0.825,0.85,0.875,0.9,0.05,0.10,0.15,0.20],

ξp= [1.000,2.000,3.000, 4.00, 5.00, 6.00,7.00,8.00,9.00,10.00,11.00,12.00,13.0,14.00,15.00,16.00,17.00,18.00,19.00,20.00,5.00,

6.00,7.00,8.00], p= [1.000,-1.000,0.750, -0.75, 0.90, -0.90,0.60,-0.60,0.85,-0.85,0.40,-

0.40,0.5,-0.5,0.35,-0.35,0.25,-0.25,0.15,-0.15,0.40,-0.40,0.5,-0.5].

A.3 SIFF parameters for the CO1214 data

set

For equation A.1 the parameters are: forRp = [1.0,1.4,1.8,2.2,2.6,3.0,3.4,3.8,4.2,4.6,5.0,5.4],

the value of ηtwo−bodyp,q was 43.17.

The parameters for the equation A.2 are: for cosθp= [9.23e-01, 7.07e-01,

3.83e-01, 7.96e-04, -3.83e-01, -7.07e-01, -9.23e-01], the value of ηthree−bodyp,q

was 70.0.

For cosθp= [0.90, 0.62, 0.22, -0.22, -0.62, -0.90], the value of ηtwo−bodyp,q was

75.0.

A.4 SIFF parameters for the OCH data set

For equation A.1 the parameters are: forRp = [1.0,1.4,1.8,2.2,2.6,3.0,3.4,3.8,4.2,4.6,5.0,5.4],

the value of ηtwo−bodyp,q was 43.17.

The parameters for the equation A.2 are: for cosθp= [9.23e-01, 7.07e-01,

3.83e-01, 7.96e-04, -3.83e-01, -7.07e-01, -9.23e-01], the value of ηthree−bodyp,q
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was 70.0.

For cosθp= [0.90, 0.62, 0.22, -0.22, -0.62, -0.90], the value of ηtwo−bodyp,q was

75.0.

A.5 SIFF parameters for the C7O2H12 data

set

For equation A.1 the parameters are: forRp = [1.0,1.4,1.8,2.2,2.6,3.0,3.4,3.8,4.2,4.6,5.0,5.4],

the value of ηtwo−bodyp,q was 43.17.

Rp = [1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5], the value of ηtwo−bodyp,q was

27.63.

Rp = [1.0, 1.6, 2.2, 2.8, 3.4, 4.0, 4.6, 5.2], the value of ηtwo−bodyp,q was 19.19. The

parameters for the equation A.2 are: for cosθp= [9.23e-01, 7.07e-01, 3.83e-01,

7.96e-04, -3.83e-01, -7.07e-01, -9.23e-01], the value of ηthree−bodyp,q was 70.0.

For cosθp= [0.90, 0.62, 0.22, -0.22, -0.62, -0.90], the value of ηtwo−bodyp,q was

75.0.

cosθp= [9.51e-01, 8.09e-01, 5.88e-01, 3.09e-01, 7.96e-04, -3.08e-01, -5.86e-01,

-8.08e-01, -9.50e-01], the value of ηtwo−bodyp,q was 1000.0.
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A.6 BoB parameters for the OCH and C7O2H12

data sets

The BoB features where calculated with the molml software (https://pypi.org/project/molml/)

with the BagOfBonds() object.

A.7 SIFF parameters for the AlGaInO data

set

For equation A.1 the parameters are: Rp = [1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0,

4.5, 5.0, 5.5], the value of ηtwo−bodyp,q was 27.63.

Rp = [1.0, 1.3, 1.6, 1.9, 2.2, 2.5, 2.8, 3.1, 3.4, 3.7, 4.0, 4.3, 4.6, 4.9, 5.2], the

value of ηtwo−bodyp,q was 76.75.

The parameters for the equation A.2 are: for cosθp= [9.23e-01, 7.07e-01,

3.83e-01, 7.96e-04, -3.83e-01, -7.07e-01, -9.23e-01], the value of ηthree−bodyp,q

was 70.0.

cosθp= [0.97, 0.91, 0.80, 0.66, 0.50, 0.30, 0.10, -0.10, -0.30, -0.50 ,-0.66, -0.80,

-0.91, -0.97], the value of ηthree−bodyp,q was 950.0.
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A.8 SOAP parameters for the AlGaInO data

set

The SOAP features were calculated with the dscribe package (there is no arti-

cle yet about the dscribe package) the code can be find in ’https://github.com/SINGROUP/dscribe’.

The features were calculated with: from dscribe.descriptors import SOAP

rcut= 10.0 nmax= 4 lmax= 4 periodicsoap = SOAP ([49, 31, 13, 8], rcut, nmax, lmax, periodic =

True, sparse = False)

soapcrtl = periodicsoap.create(crtl)soapcrtlaver = np.average(soapcrtl, axis =

0)soapfeat.append(soapcrtlaver)

Where is an instance of from ase.spacegroup import crystal

A.9 CGCNN parameters for the AlGaInO data

set

The CGCNN [79] features were calcualated with the CGCNN package ’https://github.com/txie-

93/cgcnn’.

The embedding features where calculated with parameters: training set 2400,

atom features 90, hidden features length 90, number of convolution 1, hidden

layers 3, epochs 30, learning rate 0.3.
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