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ABSTRACT

Numerical Solutions of Boundary Inverse Problems for

Some Elliptic Partial Differential Equations

Suxing Zeng

In this dissertation, we study boundary inverse problems for some elliptic partial dif-

ferential equations. These are problems arising from quantitative analysis of various non-

destructive testing techniques in applications. In such a problem, we are interested in using

boundary measurements of the solution to recover either an unknown coefficient function

in the boundary condition, or a portion of the boundary, or an unknown interior interface.

We first introduce formulations of the boundary value problems into integral equations, then

design numerical algorithms for solving each of these inverse problems. Numerical imple-

mentation and examples are presented to illustrate the feasibility and effectiveness of the

numerical methods.

Keywords: Robin inverse problem, inverse linear source problem, boundary integral

equation, Tikhonov regularization, Nyström method.

(Some figures in this dissertation are in color only in the electronic version)



Acknowledgements

I sincerely express my appreciation to my thesis advisor, Dr. Weifu Fang, and my official

advisor, Dr. Mary Ann Clarke, for their excellent guidance, advice and continuous support

and encouragement. At the same time, I would like to thank the other committee members

for their assistance during the completion of my thesis.

I would also like to thank the Department of Mathematics at West Virginia University

for providing me with an excellent environment for my five-year study here. My thanks also

goes to all the professors and friends for their help and support.

iii



Contents

1 Introduction 1

2 Formulations by Boundary Integral Equations 6

2.1 Formulation of the Robin Boundary Value

Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Formulation of the Linear Source Problem . . . . . . . . . . . . . . . . . . . 11

2.3 The Nyström’s Method with Trigonometric Interpolation . . . . . . . . . . . 13

3 Recovery of the Robin Coefficient and the Robin Boundary 18

3.1 Recovery of the Robin Coefficient . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 A Direct Linear Method for the Inverse Problem . . . . . . . . . . . . 18

3.1.2 Numerical Implementation and Examples . . . . . . . . . . . . . . . . 21

3.2 Recovery of the Unknown Robin Boundary . . . . . . . . . . . . . . . . . . . 26

3.2.1 The Inverse Problem as a System of Equations . . . . . . . . . . . . . 26

3.2.2 Numerical Implementation and Examples . . . . . . . . . . . . . . . . 31

4 Recovery of the Interface in the Inverse Linear Source Problem 39

4.1 Solution by Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 The Explicit Forms of the Integral Operators and Their Fréchet Derivatives . 42
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Chapter 1

Introduction

In this dissertation, we are interested in studying boundary inverse problems for some elliptic

partial differential equations (PDE), where boundary measurements of the solution are used

to recover unknown coefficients or boundaries in either the boundary conditions or the PDE.

These inverse problems originate from the quantitative analysis of many nondestructive

testing techniques and evaluations. Typically in such a setting, the desired material profile

is represented by a function on an inaccessible portion of the boundary, and measurement

of potential corresponding to certain input current is collected on an accessible part of the

boundary which is then used to extract the information of the profile, and even to determine

the shape and location of the structure. The applications for this type of problem setting

abound in engineering and industrial fields. For example, in the evaluation of metal-to-silicon

contact quality in semiconductor devices, such as MOSFET (metal-oxide-silicon field-effect

transistor), the voltage measurement corresponding to an input current is used to extract

information about the contact resistance and the location and shape of the contact window

(see e.g. [4, 8, 25, 26]). In the language of thermal imaging, the unknown heat-exchange

function can be determined by measuring the temperature on the accessible part of the

boundary (see e.g. [1, 3]). In terms of corrosion detection, the material damage profile on

the non-accessible part can be recovered by the electrostatic measurement that is made on

the accessible part of the boundary (see e.g. [19, 16, 5]). There is vast literature on such

applications and their analysis and solution methods, and we refer to the above references

for more details, discussions and further references.

First, we present a brief description of the models that lead to the inverse problems
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CHAPTER 1. INTRODUCTION

in our study. The original three-dimensional model consists of the Laplace equation for

the potential in a three-dimensional region with Robin boundary condition, and it has two

reduced two-dimensional models: the cross-sectional model and the thin-layer planar model.

It is these two models that we will use to study the related inverse problems.

The cross-sectional model is a two-dimensional version of the original model, and it

is an approximation to the original model when the three-dimensional region is relatively

long in one direction. Let the two-dimensional domain be Ω ⊂ R2 with boundary Γ, and

U = U(x) be the potential. Then the model is (as shown in Figure 1.1):










∆U = 0 in Ω,

∂U

∂ν
+ pU = g on Γ = ∂Ω,

(1.1)

where p = p(x) ≥ 0 with support Γ1 ⊂ Γ, and g = g(x) ≥ 0 is a prescribed input current.

The function p(x) and its support Γ1 represent the desired structural profile (intensity and

location). When p and g are given, the problem (1.1) is well-posed and has a solution U(x).

This is the usual forward problem.

∆ U = 0

Γ
1

Ω
Γ

0

Uν + p U = 0

Uν=g

Figure 1.1: The cross-sectional model

Suppose a measurement of U is taken on Γ0 ⊂ Γ, and we wish to use this information to

infer information about p. This is the inverse problem:

Given u0 = U |Γ0 on Γ0, find Γ1 and p(x) on Γ1. (1.2)

When Γ1 is also given, the inverse problem of finding p from u0 is referred to as the Robin

inverse problem. It is known that there is no uniqueness in recovering both Γ1 and p at once

(see [6]), while the uniqueness of p alone (assuming Γ1 given) is a consequence of Holmgreen’s

theorem ([18]).

2



CHAPTER 1. INTRODUCTION

The planar model is the thin-layer approximation of the three-dimensional model, and

it is governed by the following elliptic boundary value problem (as shown in Figure 1.2):











−∆U + pU = 0 in Ω,

∂U

∂ν
= g on Γ,

(1.3)

where p = p(x) ≥ 0 has support S ⊂ Ω and p = 0 in Ω \ S̄(S̄ is the closure of S), and g

is prescribed. The desired structural profile is again represented by the function p(x) and

its support S, except that now S is a region in Ω, not on the boundary. Thus, the inverse

problem here is:

Given u0 = U |Γ0 on Γ0, find S and p(x) on S. (1.4)

This inverse problem is often referred to as the inverse linear source problem. In general

there is no uniqueness in recovering both p and S. When p(x) = p0 is known, then S is

uniquely determined from the extra knowledge of U on ∂Ω (see [15]).

∆ U = 0 

∆ U = p U 

Ω Uν = g 

S 

Γ
0
 

Figure 1.2: The planar model

In Chapter 2, we will present the formulations of the two boundary value problems (1.1)

and (1.3) into corresponding boundary integral equations (see e.g. [21, 28]). This approach

seems to be natural in view of the fact that the PDEs are relatively simple and available

measurements for the inverse problems are boundary measurements of the solutions. For the

inverse problems (1.2) to recover the Robin coefficient p and the unknown Robin boundary

Γ1, both the unknown coefficient p with its support Γ1 and the boundary measurement u0

are all on the boundary, and the boundary integral equation nicely captures all these relevant

quantities and significantly reduces the size of the computational domain. We will establish

3



CHAPTER 1. INTRODUCTION

the equivalence of the integral equation formulation and the boundary value problem (1.1).

For the inverse linear source problem (1.4), the formulation involves three integral equations

in order to represent the transmission conditions on the interface, and provides a more direct

relation between the interface information and the boundary measurements. We will also

introduce the Nyström method with trigonometric interpolation for weakly singular integral

equations, a numerical method we employ to find numerical solutions for these integral

equations.

In Chapter 3, numerical methods for two inverse problems (1.2) of the Robin boundary

value problem (1.1) for the Laplacian are presented. The first is the inverse problem of

recovering the Robin coefficient on inaccessible boundary from a single partial boundary

measurement of the solution. There have been some theoretical and numerical studies for

this inverse problem, most of which are based on the PDE model (e.g. [5, 16]). The integral

equation approach was adopted in [10, 24] and used to numerically study the inverse problem.

In particular, while inverse problems are usually nonlinear and most solution methods are

iterative, [24] proposed a linear integral equation approach for the Robin inverse problem,

based on the introduction of a new variable. We continue with this approach and present a

more direct, much simpler method for recovering the Robin coefficient. The second inverse

problem under consideration is to recover part of the Robin boundary from either single or

multiple sets of partial boundary measurements. In the literature, there are theoretical and

numerical studies for this inverse problem; in particular, the authors in the series of papers

[14, 16, 17] investigated this problem in the PDE setting (1.1) for the case of thin rectangular

domains, while the authors in [6] studied a similar problem but in a boundary integral

equations setting. We present numerical methods of recovering the unknown boundary

portion Γ1 in an integral equations formulation. We first recast the inverse problem as a

direct system of equations, and then solve the nonlinear system in the least-squares sense

by iteration using Gauss-Newton directions, with partial regularization. In the case where

multiple sets of measurements corresponding to different inputs g are available, we can

naturally incorporate the data into this framework to set up algorithms that are more likely

to yield better recovery results of the unknown Robin boundary Γ1.

In Chapter 4, we investigate the inverse problem (1.4) for the recovery of the unknown

interface from knowledge of the solution to (1.3) on the outer partial boundary. This problem

originates from various industrial applications. For example, it is the planar model in the

4



CHAPTER 1. INTRODUCTION

determination of contact resistivity and contact window of electronic devices (e.g.[8]). In

heat conduction applications, it represents the problem of recovering the shape and location

of an unknown heat source within a bounded region from boundary temperature readings.

Another interpretation would be to detect the location of an inhomogeneity in a body from

surface measurements of current density and voltage. There have been some theoretical and

numerical results for this inverse problem; in particular, [15] studied the problem in the PDE

setting to give a uniqueness result, and [15, 9] presented Newton-type iterative methods by

using the shape derivative with respect to the interface. More recently [29] investigated a

similar inverse obstacle problem to recover the unknown obstacle from sets of Cauchy data

pairs. Based on the boundary integral equation formulation, we will introduce a numerical

method for the inverse problem (1.4), where we seek the solution of a nonlinear least squares

problem by Gauss-Newton iteration. As will be seen, the problem becomes increasingly

difficult as the size of Γ0 (where measurement is available) gets smaller.

5



Chapter 2

Formulations by Boundary Integral

Equations

In this Chapter we present the boundary integral equations formulations for the two bound-

ary value problems (1.1) and (1.3). We will depend on these formulations in our numerical

study of the related inverse problems (1.2) and (1.4) in the later chapters. In Section 3,

we will also present the Nyström method with trigonometric interpolation for numerical so-

lutions of integral equations with weakly singular kernels, which is the numerical method

employed in our study.

2.1 Formulation of the Robin Boundary Value

Problem

Consider the Robin boundary value problem for the Laplace equation in (1.1). Recall that

p = p(x) with support Γ1 ⊂ Γ is the Robin coefficient, and g = g(x) is a prescribed input

function, both of which are non-negative functions on Γ and have nonempty supports, usually

disjoint. Assume that p ∈ L∞(Γ) and g ∈ L2(Γ).

A weak solution U to (1.1) satisfies

(△U, φ) = 0 for φ ∈ H1(Ω),

6



CHAPTER 2. FORMULATIONS BY BOUNDARY INTEGRAL EQUATIONS

and from Green’s identity
∫

Ω

△Uφ+

∫

Ω

∇U · ∇φ =

∫

Γ

∂U

∂γ
φ

we find
∫

Ω

∇U · ∇φ−
∫

Γ

∂U

∂γ
φ = 0.

Then from the Robin boundary condition, the weak solution of (1.1) can be defined as

U ∈ H1(Ω) satisfying
∫

Ω

∇U · ∇φ dx+

∫

Γ

pUφ ds =

∫

Γ

gφ ds for all φ ∈ H1(Ω). (2.1)

The unique existence of such weak solutions can be established by Lax-Milgram Theorem

with the help of the trace theorem and a Poincaré-type inequality (see [27]).

Let Φ = Φ(x, y) stand for the fundamental solution for the Laplacian in R2:

Φ(x, y) =
1

2π
ln

1

|x− y| (2.2)

for x, y ∈ Ω with x 6= y. We present two formulations.

Direct formulation. Denote the trace of the solution U to (1.1) on Γ by u ∈ H1/2(Γ).

Then from the third Green identity ([28]), we have:

U(x) = −
∫

Γ

(

∂Φ(x, y)

∂νy
+ p(y)Φ(x, y)

)

u(y) dsy +

∫

Γ

Φ(x, y) g(y) dsy, x ∈ Ω. (2.3)

Let x ∈ Ω approach to the boundary Γ and, from jump relations for single and double-layer

potentials ([28]), we find that u satisfies the boundary integral equation:

1

2
u(x) +

∫

Γ

(

∂Φ(x, y)

∂νy
+ p(y)Φ(x, y)

)

u(y) dsy =

∫

Γ

Φ(x, y) g(y) dsy, x ∈ Γ. (2.4)

In operator form, (2.4) can be written as
(

1

2
I + D

)

u+ S(pu) = Sg, (2.5)

with the single and double-layer potential operators defined by

(Su)(x) =

∫

Γ

Φ(x, y) u(y) dsy and (Du)(x) =

∫

Γ

∂Φ(x, y)

∂νy
u(y) dsy for x ∈ Γ.

Note that the operators have the following mapping properties (e.g. [28]): S: H−1/2(Γ) →
H1/2(Γ) and D: H1/2(Γ) → H1/2(Γ).

7



CHAPTER 2. FORMULATIONS BY BOUNDARY INTEGRAL EQUATIONS

With the direct formulation (2.4) or (2.5), the forward problem for the boundary value

problem (1.1) is to find the solution u on Γ from (2.5) when functions p and g are given,

while the inverse problem is to look for p and its support Γ1 based on the knowledge of the

solution U on the boundary.

Indirect formulation. We can also seek solution U as a single-layer potential:

U(x) =

∫

Γ

Φ(x, y) ϕ(y) dsy, x ∈ Ω, (2.6)

for some potential density ϕ ∈ H− 1
2 (Γ). As a single-layer potential, U is a harmonic function

for any density ϕ. In order for U to satisfy the Robin boundary condition, ϕ must solve the

following boundary integral equation:

1

2
ϕ(x) +

∫

Γ

∂Φ(x, y)

∂νx

ϕ(y) dsy + p(x)

∫

Γ

Φ(x, y) ϕ(y) dsy = g(x), x ∈ Γ. (2.7)

In operator form, it can be written as

(

1

2
I + D′

)

ϕ+ p · Sϕ = g,

where

(D′u)(x) =

∫

Γ

∂Φ(x, y)

∂νx

u(y) dsy, x ∈ Γ,

is the dual operator of D. Clearly, U given as the single-layer potential solves (1.1) if and only

if its density function ϕ solves the integral equation (2.7). Therefore, the forward problem is

solving (2.7) for the density ϕ and then computing u by (2.6), and the inverse problem is to

recover p or the unknown boundary Γ1 from the knowledge of some integrated information

about ϕ in (2.7).

Both formulations can be used to solve the solutions of the inverse problems. We note

that in [6] the formulation (2.6)-(2.7) is used for the study of completion of Cauchy data

for the Laplacian. In our methods for recovering the Robin coefficient p and the unknown

boundary Γ1 that are to be introduced in Chapter 3, we will use the direct formulation for

the analysis and numerical computation of the solutions, and the indirect formulation for

generating synthetic data u0 with the addition of random noise.

In the following, we will establish the equivalence of the boundary integral equation(BIE)

formulation (2.4) and the boundary value problem(BVP) (1.1).

8



CHAPTER 2. FORMULATIONS BY BOUNDARY INTEGRAL EQUATIONS

The equivalence of the BIE (2.4) and the BVP (1.1). Similar to the Neumann

problem, the Robin problem has a necessary condition for its solution, as stated in the

following lemma.

Lemma 2.1 If u(x) ∈ L2(Γ) satisfies the integral equation (2.4), then

∫

Γ

p(x)u(x)dsx =

∫

Γ

g(x)dsx.

Proof. From (2.4) we have (
1

2
I + D)u = S(g − pu). Apply ψ on both sides of the equation:

((
1

2
I + D)u, ψ) = (S(g − pu), ψ) ψ ∈ N(

1

2
I + D′). (2.8)

Since ((
1

2
I + D)u, ψ) = (u, (

1

2
I + D′)ψ) = 0, the right hand side of (2.8) is equal to 0:

∫

Γ

ψ(x)

∫

Γ

Φ(x, y)(g(y)− p(y)u(y))dsydsx = 0. (2.9)

In fact, this is a Fredholm alternative. From [21, theorem 6.25] we know v(x) = (Sψ)(x) is

a solution of the homogeneous interior Neumann problem. By uniqueness, v(x) must be a

constant. Changing the orders of integration in (2.8), since Φ(x, y) is symmetric and v(x) is

a constant,

∫

Γ

Φ(x, y)ψ(x) is a constant. Hence

∫

Γ

(g(y)− p(y)u(y))dsy = 0. 2

With the help of this lemma, we can state the following theorem:

Theorem 2.2 The boundary value problem (1.1) and the integral equation (2.4) are equiv-

alent.

Proof. If U is the solution to (1.1), obviously, U on Γ must satisfy the integral equation

(2.4). Conversely, if u satisfies the integral equation (2.4), we can construct a solution U(x)

to (1.1) as follows. Define

U(x) = −
∫

Γ

∂Φ(x, y)

∂νy
u(y) dsy +

∫

Γ

Φ(x, y)(g(y)− p(y)u(y))dsy x ∈ R2 \ Γ. (2.10)

Then U(x) is harmonic in R2 \ Ω̄ and Ω respectively, and U ∈ H1(Ω) and U ∈ H1(Ωr \ Ω̄)

for large enough r (Ωr denotes the disk centered at the origin with radius r) ([28, Theorem

9



CHAPTER 2. FORMULATIONS BY BOUNDARY INTEGRAL EQUATIONS

6.11]). By taking the trace of U on Γ from outside (+) and inside (−) of Ω respectively, and

from (2.4) for u, we find the traces U+ and U− as:

U+(x) = −
∫

Γ

∂Φ(x, y)

∂νy

u(y) dsy −
1

2
u(x) +

∫

Γ

Φ(x, y)(g(y)− p(y)u(y))dsy

= 0 x ∈ Γ,

(2.11)

and

U−(x) = −
∫

Γ

∂Φ(x, y)

∂νy

u(y) dsy +
1

2
u(x) +

∫

Γ

Φ(x, y)(g(y)− p(y)u(y))dsy

= u(x) x ∈ Γ.

(2.12)

From Lemma 2.1,

∫

Γ

{g(y)− p(y)u(y)}dsy = 0, hence, U(x) by (2.10) can be also expressed

as

U(x) = −
∫

Γ

∂Φ(x, y)

∂νy
u(y) dsy +

∫

Γ

Φ(x, y)(g(y)− p(y)u(y))dsy

−Φ(x, 0)

∫

Γ

(g(y)− p(y)u(y))dsy x ∈ R2 \ Ω̄,
(2.13)

from which we see that U(x) is bounded in R2 \ Ω̄. Hence U(x) is harmonic and bounded in

R2\Ω̄ with U+(x) = 0 on Γ. By the uniqueness of the exterior Dirichlet problem, we have

U(x) ≡ 0 , thus
∂U+

∂ν
= 0 on Γ. By the jump relations of the normal derivatives of single

and double-layer potentials on the boundary, we find from (2.10) that:

∂U+

∂ν
(x) = −∂

+

∂ν

∫

Γ

∂Φ(x, y)

∂νy
u(y) dsy +

∫

Γ

∂Φ(x, y)

∂νx
(g(y)− p(y)u(y))dsy

−1

2
(g(x) − p(x)u(x)) x ∈ Γ,

(2.14)

and

∂U−

∂ν
(x) = −∂

−

∂ν

∫

Γ

∂Φ(x, y)

∂νy
u(y) dsy +

∫

Γ

∂Φ(x, y)

∂νx
(g(y)− p(y)u(y))dsy

+
1

2
(g(x) − p(x)u(x)) x ∈ Γ.

(2.15)

Then we have
∂U−

∂ν
− ∂U+

∂ν
= g − pu.

Since
∂U+

∂ν
= 0,

∂U−

∂ν
= g − pu = g − pU−. That is, U(x) given in (2.10) on Ω is indeed the

H1(Ω) solution to (1.1). 2

10



CHAPTER 2. FORMULATIONS BY BOUNDARY INTEGRAL EQUATIONS

2.2 Formulation of the Linear Source Problem

Next, we introduce the boundary integral equations formulation for the linear source problem

(1.3), where we assume further that

p(x) = p0χS(x) =

{

p0 > 0 if x ∈ S ⊂ Ω

0 if x ∈ Ω \ S.

The boundary function g(x) is nonnegative on ∂Ω. It is known that, when Ω and S are

smooth domains in R2 and g is continuous on ∂Ω, the H1(Ω) solution U is C1-Hölder

continuous: U ∈ C11, β(Ω) (for some 0 < β < 1), and is analytic inside both S and Ω \ S
(see. e.g. [23]).

Introduce the values of U on ∂Ω and ∂S as

u(x) = U(x) for x ∈ ∂Ω, v(x) = U(x), w(x) =
∂U

∂ν
(x) for x ∈ ∂S,

where ν denote the unit outward normal to ∂Ω or ∂S. Notice that, on ∂S, both U and its

normal derivative ∂U
∂ν

are continuous. Then the boundary value problem (1.3) for U on Ω

can be transformed into a system of integral equations for u, v, and w as follows.

Since U is a harmonic function Ω \ S, from Green’s formula [21, theorem 6.5], we have

U(x) =

∫

∂Ω

(

Φ(x, y)g(y)− ∂Φ(x, y)

∂νy

u(y)

)

dsy

−
∫

∂S

(

Φ(x, y)w(y)− ∂Φ(x, y)

∂νy
v(y)

)

dsy for x ∈ Ω \ S,
(2.16)

where Φ(x, y) is the fundamental solution for the Laplacian:

Φ(x, y) = − 1

2π
ln |x− y|.

By letting x ∈ Ω \ S approach the boundaries ∂Ω and ∂S, respectively, we can obtain two

boundary integral equations:

1

2
u(x) +

∫

∂Ω

∂Φ(x, y)

∂νy
u(y)dsy +

∫

∂S

(

Φ(x, y)w(y)− ∂Φ(x, y)

∂νy
v(y)

)

dsy

=

∫

∂Ω

Φ(x, y)g(y)dsy for x ∈ ∂Ω,

(2.17)

11
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and

1

2
v(x) +

∫

∂Ω

∂Φ(x, y)

∂νy

u(y)dsy +

∫

∂S

(

Φ(x, y)w(y)− ∂Φ(x, y)

∂νy

v(y)

)

dsy

=

∫

∂Ω

Φ(x, y)g(y)dsy for x ∈ ∂S.

(2.18)

Second, U satisfies −∆U + p0U = 0 in S, and the fundamental solution associated with

this operator is

Ψ(x, y) =
1

2π
K0(q0|x− y|) (2.19)

where q0 =
√
p0 and K0(·) denotes the modified Bessel function of order 0 of the second

kind. A summary of the relevant special functions is presented in the Appendix. Again, by

Green’s formula, U in S can be expressed as

U(x) =

∫

∂S

(

Ψ(x, y)w(y)− ∂Ψ(x, y)

∂νy
v(y)

)

dsy for x ∈ S, (2.20)

and letting x ∈ S approach ∂S leads to another integral equation on ∂S:

1

2
v(x) +

∫

∂S

(

∂Ψ(x, y)

∂νy
v(y) − Ψ(x, y)w(y)

)

dsy = 0 for x ∈ ∂S. (2.21)

Therefore, solving (1.3) for U in Ω has been transformed into solving the system of integral

equations (2.17), (2.18) and (2.21) for u (on ∂Ω), v and w (both on ∂S).

We can further simplify the system of equations for (u, v, w) by writing it in operator

matrix form. To do so, we denote the operators according to the pairing domains of their

densities and potentials. For example, denote the single-layer potential operators as

S0 : ∂Ω → ∂Ω, S1 : ∂S → ∂S, S10 : ∂Ω → ∂S, S01 : ∂S → ∂Ω.

Similar notations are applied for the double-layer potentials D. The potentials with Ψ are

denoted as Sp and Dp (both from ∂S to ∂S). Then the system consisting of (2.17), (2.18)

and (2.21) can be expressed as









1
2
I0 + D0 −D01 S01

D10
1
2
I1 −D1 S1

O10
1
2
I1 + Dp −Sp

















u

v

w









=









S0g

S10g

0









. (2.22)

12
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2.3 The Nyström’s Method with Trigonometric Inter-

polation

We present briefly the Nyström’s method with trigonometric interpolation, a numerical

method for numerical solution of integral equations with weakly singular kernels (see [21] for

more details).

The Nyström’s method is a quadrature method for the approximate solution of integral

equations of the second kind with continuous kernels or the kernels with at most a logarithmic

singularity. More specifically, the method finds the solution to an integral equation of the

second kind

φ−Kφ = f

as the approximated solution φn of

φn −Knφn = f,

which reduces to solving a finite-dimensional linear system. Here Kn is the series approxi-

mation of the integral operator K with selected quadrature rules. Here the quadrature rule

we choose for the integral operators is trigonometric interpolation. In the following, we

use the integral equation (2.4) as an example to demonstrate the Nyström’s method with

trigonometric interpolation in finding its solution.

To actually perform numerical computations for the boundary integral equations, a para-

metric description of the boundary is necessary. With the parametrization, we can express

the kernels of the integral operators in the formulation (2.4) or (2.6)-(2.7) in explicit forms,

which are needed in the numerical calculation of the solutions to the integral equations.

We use a regular 1-periodic parametrization for Γ with counterclockwise orientation

x(t) = (x1(t), x2(t)), 0 ≤ t ≤ 1, (2.23)

where x1(t), x2(t) ∈ C2
p [0, 1] and |x′(t)| ≥ 0 for 0 ≤ t ≤ 1. For x = (x1, x2), we denote

x⊥ = (x2,−x1). We also set u(t) = u(x(t)) for simplicity. Then the integral operators in

13
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(2.4) and (2.7) can be expressed explicitly in terms of their kernels as

(Su)(t) =

∫ 1

0

A(t, s) u(s) ds with A(t, s) =
|x′(s)|

2π
ln

1

|x(t) − x(s)| ,

(Du)(t) =

∫ 1

0

B(t, s) u(s) ds and (D′u)(t) =

∫ 1

0

B′(t, s) u(s) ds

(2.24)

where the kernels B(t, s) and B′(t, s)are

B(t, s) =



















1

2π

x′(s)⊥ · (x(t) − x(s))

|x(t) − x(s)|2 , t 6= s

1

4π

x′(t)⊥ · x′′(t)
|x′(t)|2 , t = s

and B′(t, s) = B(s, t)
|x′(s)|
|x′(t)| (2.25)

for 0 ≤ t, s ≤ 1. The kernel A is weakly singular while B and B′ are continuous. The two

boundary integral equations (2.4) and (2.7) become

1

2
u(t) +

∫ 1

0

{B(t, s) + p(s)A(t, s)}u(s) ds =

∫ 1

0

A(t, s) g(s) ds (2.26)

and
1

2
φ(t) +

∫ 1

0

{B′(t, s) + p(t)A(t, s)}φ(s) ds = g(t), (2.27)

respectively, for 0 ≤ t ≤ 1. When using formulation (2.27), we obtain u from φ by

u(t) =

∫ 1

0

A(t, s)φ(s) ds.

The singularity in the kernel A(t, s) can be rearranged as

ln |x(t) − x(s)| = ln(2| sin(π(t− s))|) + A0(t, s)

with continuous kernel

A0(t, s) =















ln
|x(t) − x(s)|

2| sin(π(t− s))| , t 6= s

ln
|x′(t)|

2π
, t = s.

(2.28)

So equation (2.4) can be written as:

1

2
u(t) +

∫ 1

0

{A1(t, s) ln(2| sin(π(t− s))|) + A2(t, s)} u(s) ds = f(t) (2.29)

14
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for 0 ≤ t ≤ 1, where f(t) =

∫ 1

0

A(t, s) g(s) ds, A1 and A2 are continuous functions on

[0, 1] × [0, 1], satisfying periodic conditions such as A1(t, 0) = A1(t, 1). Specifically,

A1(t, s) = −p(s) |x
′(s)|
2π

and A2(t, s) = B(t, s) + A1(t, s)A0(t, s).

Let [0, 1] be uniformly partitioned into 2n subintervals with quadrature points tj = j/2n for

j = 0, 1, · · · , 2n. Using the Lagrange basis described in section 11.3 of [21]:

Lj(t) =
1

2n

{

1 + 2

n−1
∑

k=1

cos k(2π(t− tj)) + cosn(2π(t− tj))

}

n, k ∈ Z+

for t ∈ [0, 1] and j = 0, · · · , 2n−1, we replace A1(t, s)u(s) by its trigonometric interpolation

polynomials:

A1(t, s)u(s) =

2n−1
∑

k=0

Lk(s)A1(t, tk)u(tk).

Thus equation (2.29) for the approximation u(n)(t) becomes

1

2
u(t) +

2n−1
∑

k=0

(R
(n)
k (t)A1(t, tk) +

1

2n
A2(t, tk))u(tk) = f(t) (2.30)

with

R
(n)
k (t) =

∫ 1

0

ln(2| sin(π(t− s))|)Lk(s) ds (2.31)

for k = 0, 1, · · · , 2n − 1. By the Nyström’s method ([21, Theorem 12.7]), we solve for the

values of uj = u(tj) in the following linear system of equations:

1

2
uj +

2n−1
∑

k=0

(R
(n)
|j−k|A1(tj , tk) +

1

2n
A2(tj , tk))u(tk) = f(tj) (2.32)

for j = 0, 1, · · · , 2n − 1. Here R
(n)
|j−k| = R

(n)
k (tj) are determined by the exact integration of

(2.31), given by

R
(n)
k = − 1

2n
(

n−1
∑

m=1

1

m
cos

mkπ

n
+

(−1)k

2n
) (2.33)

for k = 0, 1, · · · , 2n− 1.

Example. We present a test example using the Nyström’s method with trigonometric

interpolation. For simplicity, take the domain Ω to be an elliptic region bounded by Γ :

x2
1/a

2 + x2
2/b

2 = 1 with (a, b) = (1, 0.2). The ellipse has the standard parametrization

15
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x = x(t) = (a cos(2πt), b sin(2πt)), for 0 ≤ t ≤ 1. We choose the exact solution to the Robin

problem (1.1) as u = a cos(2πt) + a, and let p(x(t)) = sin4(π(t− 0.1)/0.3) for t ∈ (0.1, 0.4)

and p = 0 elsewhere. The g on Γ is determined by the Robin boundary condition:

g(x1, x2) = ∇u(x1, x2) · ν + p(x1, x2)u(x1, x2) on Γ,

where the outward normal direction vector ν on Γ is given by

ν =
〈bx1/a, ax2/b〉

√

(bx1/a)2 + (ax2/b)2
.

By choosing g this way, we have the exact solution to the integral equation (2.4) as the

chosen harmonic function u. On the other hand, we find the numerical solution of (2.4)

by the Nyström’s method. Table 2.1 gives the errors between the exact solution and the

numerical solution at t = 0, 0.1, 0.5, where the en-column represents the maximum norm of

the error vector. The table shows the exponentially decreasing behavior of the errors, as we

expect from general error analysis (see [7, §3.5]): there exist positive constants C and σ such

that

|u(n)(t) − u(t)| ≤ Ce−σn, 0 ≤ t ≤ 2π,

for all n. To visualize the behavior, in Figure 2.1, we plot the errors at t = 0.5 (represented

by “+”) and the maximum error en’s (represented by “o”) as logarithmic scales for n =

5, 10, 20, 40. We observe that for different n’s, the data points of “+” and “o” share the

same slope, which implies the existence of the constant σ.

n t = 0 t = 0.1 t = 0.5 en

5 9.2066e-001 8.2916e-001 6.7465e-001 9.2066e-001

10 1.0152e-002 9.1896e-003 6.3795e-003 1.0152e-002

20 3.0294e-006 2.7423e-006 1.9031e-006 3.0294e-006

40 2.7267e-013 2.4758e-013 1.7217e-013 2.7800e-013

Table 2.1: Errors between the exact solution and the numerical solution of (2.4).
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Figure 2.1: Exponential decrease of the errors.
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Chapter 3

Recovery of the Robin Coefficient and

the Robin Boundary

In this chapter, based on the boundary integral equation formulation introduced in Chapter

2, we study numerical solutions to the two inverse problems of the Robin boundary value

problem for the Laplacian in (1.2): one is to recover the Robin coefficient, and the other

is to recover the unknown Robin boundary, from the partial boundary measurement of the

solution.

3.1 Recovery of the Robin Coefficient

The first inverse problem being considered here is: Given u = u0 on Γ0 ⊂ Γ with Γ0∩Γ1 = ∅,
can we find the Robin coefficient p on Γ1? We present a direct, linear integral equation

method for this inverse problem. Numerical examples will be presented to illustrate the

effectiveness of this simple yet useful method. Because of its simplicity, it can also be

used to provide a quick, quality initial guess for more computationally-expensive iterative

algorithms.

3.1.1 A Direct Linear Method for the Inverse Problem

Now we introduce the direct solution method for the inverse problem of recovering the

coefficient function p(x) on Γ1 from a single boundary measurement u0 of u on Γ0.

18
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Direct System for (u,v). Similar to [24], we introduce a new variable:

v(x) = p(x)u(x). (3.1)

The support of v is contained in Γ1. Then equation (2.5) becomes linear in both u and v:

(
1

2
I + D)u+ S1v = Sg, (3.2)

where (S1v)(x) =

∫

Γ1

Φ(x, y)v(y) dsy for x ∈ Γ. Denote the restriction operator from Γ to

Γ0 by R0 : L2(Γ) → L2(Γ0). That is, (R0u)(x) = u(x) for x ∈ Γ0. Then the measurement of

u on Γ0 can be expressed as:

R0u = u0. (3.3)

We cast the inverse problem as a direct problem of finding p from (3.1)-(3.3). Since u on

the other part of the boundary is unknown, we will view (3.2)-(3.3) as a system to find both

u on Γ and v on Γ1. We write them as a system of operator equations:

[

1
2
I + D S1

R0 O

][

u

v

]

=

[

Sg
u0

]

or Aw = f. (3.4)

Here O denotes the zero operator from L2(Γ1) to L2(Γ0). Once u on Γ and v on Γ1 are found

from (3.4), we can use the simple relation (3.1) to find the Robin coefficient p on Γ1.

Regularization. The system (3.4) is a linear system for w = (u, v)T , but is ill-posed.

We will apply the classical Tikhonov regularization method to address the ill-poseness. In

fact, we will seek an approximate solution wα to w from the minimization of a quadratic

functional that consists of a fidelity term and a regularization term ([21, 20]):

min
w

1

2
‖Aw − f‖2

L2[0,1] +
α

2
‖w′‖2

L2[0,1],

i.e. wα solves the regularized system

ATAw − αHw = ATf, (3.5)

where we choose the regularization operator H as H = (D2
pu,D

2
0v)

T (D2
p is the second deriva-

tive operator with periodic boundary condition, while D2
0 is the second derivative operator

with zero boundary conditions). The positive constant α is the regularization parameter. In

our experiments, the parameter is chosen by inspection and trial and error.
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From (2.1) it can be easily shown that the solution U ∈ H1(Ω) is non-negative on

Ω(e.g.[27]), and, if the solution is more regular, classical maximum principles can be applied

to yield positivity of u on any compact subset of Γ1([5]). Hence, in such situations, it may

be valid to solve p from the relation (3.1) by simple division: p(x) = v(x)/u(x). However,

when solving wα from (3.5), the component uα is not guaranteed to be positive, hence we

need extra care when computing p from this relation. Based on a Tikhonov regularizaiton

consideration for the possibly ill-posed problem of solving p from p(x)u(x) = v(x), we find

an approximate solution pα,β(x) for the Robin coefficient p(x) as

pα,β(x) =
v+

α (x)u+
α (x)

β + (u+
α (x))2

, x ∈ Γ1, (3.6)

for some small β ≥ 0, where v+ = max{v, 0} denotes the non-negative part of a function v.

In nearly all of our numerical examples, uα(x) is indeed positive and we are able to set β to

be 0. There are other regularization methods for this problem; a common one is to express

p(x) in terms of appropriate basis functions such as B-splines then find the corresponding

coefficients([6, 10]).

In order to apply the Tikhonov regularization scheme (3.5), we need to establish the

injectivity of the operator A and the denseness of its range.

Theorem 3.1 The operator A: L2(Γ)×L2(Γ1) → L2(Γ)×L2(Γ0) is injective. Furthermore,

if the operator S is injective, then A has dense range.

Proof. If Aw = 0 for some w = (u, v)T ∈ L2(Γ) × L2(Γ1), then

1

2
u+ Du+ S1v = 0 and R0u = 0.

From the first equation, we see that u is the boundary value of the harmonic function in

Ω (also denoted by u for simplicity) with Neumann boundary condition
∂u

∂ν
= −ṽ, where

ṽ denotes the zero extension of v on Γ1 to the entire Γ. In particular,
∂u

∂ν
= 0 on Γ0 since

Γ1 ∩ Γ0 = ∅. But the second equation above also gives u = 0 on Γ0. Hence, by Holmgren’s

uniqueness theorem ([18]), u = 0, and consequently v = 0. Therefore w = 0 and A is

injective.

To show that A has dense range, we prove that A′ is injective as follows. Note that

A′ =

[ 1
2
I + D′ R′

0

S ′
1 O′

]
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where R′
0 : L2(Γ0) → L2(Γ) is the zero extension operator from Γ0 to Γ, S ′

1 : L2(Γ) → L2(Γ1)

is S restricted to Γ1, and O′ : L2(Γ0) → L2(Γ1) is the zero operator. If A′z = 0 for some

z = (ξ, η)T ∈ L2(Γ) × L2(Γ0), then

1

2
ξ + D′ξ + R′

0η = 0 and S ′
1ξ = 0.

From the first equation, the single-layer potential u = Sξ on Ω is the solution to the Nuemann

boundary value problem with
∂u

∂ν
= −R′

0η. In particular,
∂u

∂ν
= 0 on Γ1. The second equation

above also gives u = 0 on Γ1. Hence, by Holmgren’s theorem again, we find that u = 0 and

thus ξ = 0 since S is injective, consequently η = 0. Therefore z = (ξ, η)T = 0 and A′ is

injective. Thus A′ has dense range. 2

3.1.2 Numerical Implementation and Examples

In this section, we provide implementation details of our direct linear method for finding the

solutions to the system (3.4) for [u, v]T or w. Numerical results are also presented to show

the effectiveness of the method. We adopt the parametrization of boundary Γ as in (2.23).

Coefficient matrices. After discretization, using the Nyström’s method with trigono-

metric interpolation, we can find the coefficient matrices for [u, v]T in system (3.4). Divide

the interval [0, 1] into 2n equal-distance subintervals with nodal points {tj}2n
j=0(t0 identified

with t2n). Suppose the supports for the relevant parts Γ1 and Γ0 on [0, 1] are [n1, n2] and

[n3, n4], respectively. Then system (3.4) is reduced to the linear system of equations for the

unknown vectors u = [u(t0), u(t1), · · · , u(t2n−1)]
T and v = [v(tn1), v(tn1+1), · · · , v(tn2)]

T :

[

1
2
I +D S1

R0 O

] [

u

v

]

=

[

Sg

u0

]

or Aw = f (3.7)

where the matrices and vectors are the results of the discretization of the corresponding

operators and functions.

By rearranging the logarithmic singularity, the kernel A(t, s) corresponding to the oper-

ator S is expressed as:

A(t, s) = A1(t, s) ln(2| sin(π(t− s))|) + A1(t, s)A0(t, s)
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where

A1 = −|x′(s)|
2π

and A0(t, s) =















ln
|x(t) − x(s)|

2| sin(π(t− s))| , t 6= s

ln
|x′(t)|

2π
, t = s.

Note that both A0(t, s) and A1(t, s) are continuous kernels. The kernel for the integral

operator D is B(t, s) and it is continuous. Then following the discussion of the Nystöm’s

method, we find the coefficient matrices of S and D as:

S = [Sj,k] with Sj,k = R
(n)
|j−k|A1(tj , tk) +

1

2n
A1(tj , tk)A0(tj , tk)

and

D = [Dj,k] with Dj,k =
1

2n
B(tj, tk)

for j, k = 0, 1, · · · , 2n − 1. Here R
(n)
|j−k| = R

(n)
k (tj) are determined by the exact integration

of the logarithmic kernels, given by form (2.33). Once the t-ranges of Γ1 and Γ0 are given,

the coefficient matrices S1 and R0 in (3.7) can be easily determined by S and the identity

matrix I: S1 consists of the n1-th to n2-th columns of S; while R0 is a (n4 − n3 + 1) × 2n

zero matrix with the n3-th to n4-th columns block being replaced by the identity matrix.

We further notice that the discrete system (3.7) has 2n + (n4 − n3 + 1) equations and

2n+ (n2 − n1 + 1) unknowns, and it is solved by the regularized system (3.5) which has size

(2n + n2 − n1 + 1) × (2n + n2 − n1 + 1). In this experiment, the regularization operator

H = (D2
pu,D

2
0v) in system (3.5) are chosen as:

D2
p =





















−2 1 1

1 −2 1
. . .

. . .
. . .

1 −2 1

1 1 −2





















and D2
0 =





















−2 1

1 −2 1
. . .

. . .
. . .

1 −2 1

1 −2





















.

Numerical Examples. In our examples, the domain is chosen as the rounded rectangle:

Ω = {(x1, x2) : 0 ≤ x1 ≤ a, 0 ≤ x2 ≤ b} with (a, b) = (1, 0.2).

We set the input function g(t) as a characteristic function:

g(t) = 1 for t ∈ [0.4, 0.6] and g(t) = 0 elsewhere.
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The two segments Γ1 and Γ0 are

Γ1 = {x(t) : t ∈ [0.1, 0.4]} and Γ0 = {x(t) : t ∈ [0.6, 0.9]}.

Our calculations are carried out using Matlabr. The discretization mesh size is set to

h = 1/200. To generate the synthetic data u0 on Γ0, we use the indirect formulation (2.6)-

(2.7) to compose the data u0(t) from u|Γ0 and add to it uniformly distributed random noise

of noise level δ (relative to the L2-norm):

u
(noise)
0 (t) = u0(t) + 2δ‖u0(t)‖2(rand− .5), (3.8)

where rand denotes a random number from the uniform distribution of interval (0, 1).

Example 3.2 The effect of noise levels on p.

In this example, we investigate how different noise levels in the measurement affect the

overall quality of the recovered p. The single green dashed line in each plot represents the

true p profile and the blue dashed lines are the reconstructions. In order to provide a better

illustration, we present in each plot in Figure 3.1 10 recovered results of p from 10 sets of data

within the same noise level; each data is generated by (3.8) with one particular realization

of the random noise from (0, 1). The regularization parameter α is chosen by experiment.

As can be seen from the results, for smaller noise level, the method is capable of recovering

the Robin coefficient very well.

Example 3.3 Recovery results for different true p profiles.

In Figure 3.2, we present several recovered results for different true profiles of p. Again,

in each example, we present 10 times of the results for 10 sets of data with random noise

in the same noise level. The true p profiles are the green dotted lines. We observe that

the reconstructions for the smooth profiles of true p are generally better than that of the

profiles with corners. This is due to our choice of the regularization operator H as the second

derivative operators in system (3.5).

Example 3.4 The effect of the aspect ratio of the domain on the recovery results.
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Figure 3.1: Results of 10 recovered p (dashdot) from 10 measurements with same noise level

in each plot, for the same true profile p (dashed).

In the last example, we illustrate the effect of the thickness of the rounded rectangular

domain on the recovery results. We change the aspect ratio of a : b by fixing a = 1 and

varying b at the numbers 0.2, 0.5, 1.2. We use 0.1%-noisy data for the single-hump profile

(Figure 3.3, left) and noise-free data for the two-hump profile (Figure 3.3, right). In both

cases, as b increases, the recovered p becomes less accurate. This reflects the fact that the

problem becomes more ill-posed when Γ1 is far apart from Γ0.

Remark. We further remark on the results of our direct method in comparison with

the results from methods presented in [24] by similar integral equation formulations. The

results by our simple direct method are slightly better in general than the direct least-
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Figure 3.2: Results of 10 recovered p (dashdot) from 10 measurements with same noise level

δ = 1%, for different true profile p (dashed).

squares method by [24]; the main difference in implementation between the two methods

is the size of the linear systems involved: the system (3.5) is twice as large as the size

of the normal equation systems for single v in [24]. The iterative quadratic programming

method by [24] is more robust and produces better results in general. However, it is worth

noting that our simple direct method here is far more economical computationally, yet it is

capable of producing comparable results in quality, especially in cases with simple profiles

(e.g. Figure 3.1 here vs. Figure 4 in [24]). Because of its simple and economical nature, our

direct method here in general can provide a quick quality initial guess for iterative methods

that are more computationally extensive, such as the quadratic programming method or
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Figure 3.3: Results of recovered p for rounded rectangular domain with various b.

methods from a PDE approach.

3.2 Recovery of the Unknown Robin Boundary

The second inverse problem we are interested in is to recover the unknown boundary: if

the Robin coefficient p(x) has support in Γ1 ⊂ Γ and g(x) is a prescribed input function,

then given p and the measurement u = u0 on Γ0 ⊂ Γ, Γ0 ∩ Γ1 = ∅, can we recover the

unknown Robin boundary Γ1? In some applications the support of the input g is assumed

to be accessible but disjoint from Γ0, while in other applications it is allowed to have overlap

with Γ0. Based on an integral equations formulation, we present numerical methods for the

inverse problem and numerical results to illustrate the effectiveness of our algorithm. We

also discuss other factors that might affect the recovery results of the unknown boundary.

3.2.1 The Inverse Problem as a System of Equations

Denote the restriction operator from Γ to Γ0 by R0; that is, for u defined on Γ, R0u is

defined on Γ0 with (R0u)(x) = u(x) for x ∈ Γ0. Then, for a given input g, the measurement

u0 of u on Γ0 can be expressed as

R0u = u0. (3.9)

A straightforward approach for the inverse problem would be to recognize the dependence

of u on the Robin boundary Γ1 through (2.4), and find the Γ1 that “best” fits the data in
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(3.9). That is, we find the solution to the inverse problem as the minimizer of the least-

squares problem

min
x

‖R0(u(x)) − u0‖L2[0,1] . (3.10)

Note that u depends on x nonlinearly, and one possible approach to solve (3.10) is to use the

Gauss-Newton iteration method where the updata step for x is found from the linearization

of the equation R0(u(x)) − u0. In an alternative approach for this inverse problem, the

integrals in (2.4) could be split into integrals on Γ0 and on Γ \ Γ0:

1

2
u(x) +

∫

Γ0

∂Φ(x, y)

∂νy
u0 dsy +

∫

Γ\Γ0

(

∂Φ(x, y)

∂νy
+ p(y)Φ(x, y)

)

u(y) dsy

=

∫

Γ

Φ(x, y) g(y) dsy, x ∈ Γ,

(3.11)

where u is replaced by the measurement u0 on Γ0; the resulting system of integral equations

(on the two smaller domains) could then be used to solve for Γ1 and u on Γ \ Γ0. A similar

approach was taken in [6] for a different integral equation formulation (using the potential

(2.6)-(2.7) instead), supplemented by additional regularization techniques in the iterative

algorithms.

Nonlinear system of equations. In our method, we recast the inverse problem of

finding Γ1 from u0 as solving a nonlinear system of equations by least-squares, and set up

the Gauss-Newton iteration method. Since u(x) depends on the unknown boundary, in the

following, we treat u on the entire Γ as an independent unknown in addition to the unknown

Γ1, and the inverse problem is cast as a direct problem of finding both Γ1 and u on Γ from

the two equations (2.5) and (3.9). The system is most likely inconsistent which means it

may not have a unique solution or the solution may not be stable, especially in the presence

of noise in the data u0. Hence we understand the solution for the system in the nonlinear

least-squares sense.

To be more specific, we introduce parametrization of the boundary Γ as in (2.23). The

dependence of the operators on Γ will then be denoted by their dependence on x as S = S(x)

and D = D(x). In fact, after parametrization, the dependence of the integral operators on the

unknown boundary is transformed to the dependence of the kernels on the parametrization

of the boundary. We can view it obviously in the explicit form of the kernels which are

already developed in chapter 2. For convenience, we denote the operators on the left-hand
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side of (2.4) as

F(x)u ≡
(

1

2
I + D(x)

)

u+ (S(x)) (pu).

Assume that x(t) is unknown only when t ∈ [a, b] (i.e. the Γ1 part), and the rest of the

boundary is known and fixed. By treating the composition u◦x as an independent unknown,

we cast the inverse problem as finding u(t) = (u ◦ x)(t) for t ∈ [0, 1] and x(t) for t ∈ [a, b]

from the following nonlinear system:

{

F(x)u = S(x)g,

R0u = u0.
(3.12)

Note that, with the parametrization, the first equation is an equation for all t ∈ [0, 1], while

the second is for t ∈ [c, d]. Moreover, both equations are linear in u, and the first equation

is nonlinear in x while the second is independent of x. We seek a solution to this system as

a solution to the nonlinear least-squares problem:

min
(u,x)

1

2
‖F(x)u− S(x)g‖2

L2[0,1] +
1

2
‖R0u− u0‖2

L2[c,d]. (3.13)

If another set of data û0 from a different input ĝ is also available, we can easily include

another set of equations like (3.12) for û and consider a system of 4 equations for the 3

unknowns u, û and x:


























F(x)u = S(x)g,

R0u = u0,

F(x)û = S(x)ĝ,

R0û = û0.

(3.14)

Similar to the situation for one set of data, the solution (u, û, x) is found as the minimizer

to the least-squares problem for two sets of data:

min
(u,û,x)

1
2
‖F(x)u− S(x)g‖2

L2[0,1] +
1
2
‖R0u− u0‖2

L2[c,d]

+1
2
‖F(x)û− S(x)ĝ‖2

L2[0,1] +
1
2
‖R0û− û0‖2

L2[c,d].

(3.15)

When available, multiple sets of data can be used in this fashion to result in a larger system

of equations with the common unknown x. Specifically, when there are K sets of data from

K different inputs, there will be 2K equations for K + 1 unknowns in the system, and we

understand the solution in the nonlinear least-squares sense.
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Gauss-Newton iteration method. We will employ the Gauss-Newton method for the

nonlinear least-squares problem (3.13). To this end, we need to find the linearization of the

system of equations in (3.12). Since both equations are linear in u and the second one is

independent of x, we only need to linearize the first equation in (3.12) with respect to x.

Let the Fréchet derivatives of operators S(x) and D(x), with respect to x in the direction of

ξ, be denoted by Ṡ(x)uξ and Ḋ(x)uξ, respectively. Both operators are bilinear in u and ξ.

Here ξ is assumed to have support in the interval [a, b].

By the Gauss-Newton method for the nonlinear least-squares problem (3.13), we compute

the update step (µ, ξ) from the linearization of (3.12) at the current iterate (u, x):











F(x)µ+
(

Ḋ(x)u+ Ṡ(x)(pu− g)
)

ξ = −F(x)u+ S(x)g,

R0µ = −R0u+ u0.

(3.16)

The new iterate is then set to be (u+, x+) = (u+µ, x+ ξ). When solving (3.16) in the linear

least-squares sense, we add Tikhonov regularization only for ξ, using its second derivative

with respect to the parameter t:

min
(µ,ξ)

1

2
‖F(x)µ+ Q(u, x)ξ − e1(u, x)‖2

L2[0,1] +
1

2
‖R0µ− e2(u)‖2

L2[c,d] +
α

2
‖ξ′′‖2

L2[a,b], (3.17)

where Q(u, x) = Ḋ(x)u + Ṡ(x)(pu − g), e1(u, x) and e2(u) are the two right-hand sides in

(3.16), and α > 0 is a regularization parameter. If another data set û0 from another input ĝ

is available, then an additional set of equations like (3.16) can be included to form a larger

system of 4 equations for the 3 updates (µ, µ̂, ξ).

We further introduce a finite-dimensional approximation space in which we seek ξ(t):

ξ(t) ∈ span{ξ(1)(t), ξ(2)(t), · · · , ξ(m)(t)}

where the basis functions ξ(j)(t) are pre-selected, and have C2
0 [a, b] components. In the

implementation we use cubic B-splines as the components of these basis functions. Hence ξ

is sought as the form

ξ(t) =
m

∑

j=1

qjξ
(j)(t), (3.18)

and the unknown boundary Γ1 is thus represented by the coefficients {qj}m
j=1. With this
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assumption on ξ, the system (3.16) becomes a system for µ(·) and {qj}m
j=1:











F(x)µ+
∑m

j=1 qj

(

Ḋ(x)u+ Ṡ(x)(pu− g)
)

ξ(j) = −F(x)u+ S(x)g,

R0µ = −R0u+ u0,

(3.19)

or in the simplified form:










F(x)µ+ Q̃q = −F(x)u+ S(x)g,

R0µ = −R0u+ u0.

(3.20)

where Q̃ consists of the column vectors Qξ(j), j = 1, 2, · · · , m.

Explicit form of the Fréchet derivatives of the integral operators. From the

explicit form (2.24)-(2.25) of the integral operators S(x) and D(x) after the parametrization,

we can also express explicitly their Fréchet derivatives by formally computing the derivatives

of the kernels.

The Fréchet derivative of S(x) in the direction of ξ is computed by:
(

Ṡ(x)uξ
)

(t) = lim
h→0

(S(x+ hξ)u)(t) − (S(x)u)(t)

h
,

and similarly, we can find Ḋ(x)uξ . They can be expressed as:

(

Ṡ(x)uξ
)

(t) =

∫ 1

0

Ȧ(t, s) u(s) ds and
(

Ḋ(x)uξ
)

(t) =

∫ 1

0

Ḃ(t, s) u(s) ds,

where

Ȧ(t, s) =
1

2π

{

−A1(t, s) +
x′(s) · ξ′(s)

|x′(s)| ln
1

|x(t) − x(s)|

}

with

A1(t, s) =



















(x(t) − x(s)) · (ξ(t) − ξ(s))

|x(t) − x(s)|2 |x′(s)|, t 6= s,

x′(t) · ξ′(t)
|x′(t)| , t = s

and

Ḃ(t, s) =
1

2π















































ξ′(s)⊥ · (x(t) − x(s)) + x′(s)⊥ · (ξ(t) − ξ(s))

|x(t) − x(s)|2

−2
[

x′(s)⊥ · (x(t) − x(s))
]

[(x(t) − x(s)) · (ξ(t) − ξ(s))]

|x(t) − x(s)|4 , t 6= s,

ξ′(t)⊥ · x′′(t) + x′(t)⊥ · ξ′′(t)
2|x′(t)|2 −

[

x′(t)⊥ · x′′(t)
]

[x′(t) · ξ′(t)]
|x′(t)|4 , t = s
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Note that Ȧ has a logarithmic singularity, while Ḃ is continuous. These kernels are all

linear in ξ. The expressions for these kernels are needed to set up the numerical calculation

of solutions for the relevant integral equations that resulted from the Gauss-Newton steps

(3.16) or (3.19).

3.2.2 Numerical Implementation and Examples

In this section, we present an implementation of our Gauss-Newton iterative methods for the

recovery of the unknown Robin boundary Γ1 from measurements on Γ0, as well as examples

of some recovery results.

Domain setup. The overall shape of the domain for our numerical examples is a rounded

rectangle with 1 : 5 aspect ratio; the unknown part Γ1 is on the top side while the part Γ0

for measurements is on the bottom, as shown in Figure 3.4 below. The parameter ranges for

Γ1 and Γ0 are [a, b] = [0.1, 0.4] and [c, d] = [0.6, 0.9], respectively. The Robin coefficient p is

set to be 10 on Γ1 and 0 elsewhere on Γ. We choose two particular inputs g and ĝ as

g(t) =

{

1 if t ∈ [0.45, 0.55]

0 elsewhere
and ĝ(t) =

{

1 if t ∈ [0, 0.05] ∪ [0.95, 1]

0 elsewhere
(3.21)

Note that these choices are independent of the unknown Robin boundary Γ1, and we have

chosen inputs whose supports do not overlap with Γ0.

t = 0.4

t = 0.6 t = 0.9

x = −1 x = 1

y = 0.2

t = 0.1

Γ
0

Γ
1

y = −0.2

Figure 3.4: Domain setup for the numerical examples.
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Discretization. The interval [0, 1] is divided into n equal-length intervals with nodes

{ti}n
i=0 (tn identified with t0) for our numerical experiments. Since the integral kernels

involved have at most a logarithmic singularity, we employ Nyström’s method with trigono-

metric interpolation on regular grids (see e.g. [21]) for the discretization of the integral

operators. As for the basis functions for ξ in (3.18), we choose m cubic B-splines Bj(t) with

equally-spaced knots, supported in [0.1, 0.4], and set ξ(j)(t) = (0, Bj(t)). We are able to use

the exact derivatives for x(t) and ξ(t) that are needed in the integral kernels.

For a true profile Γ, the synthetic data u0(t) (u on Γ0) corresponding to an input g are

simulated by solving the potential ϕ in (2.7) and using (2.6) for u. To obtain data with noise,

we add random noise of a given level (relative to the L2-norm of the data) to the simulated

data as

u(noise)

0 (t) = u0(t) + δ‖u0(t)‖2X(t) (3.22)

where X(t) represents random numbers uniformly distributed on the interval (−1, 1). More-

over, each of the true Γ1 profiles in our test examples is chosen outside the class of curves

(3.18) where the iterative algorithm looks for approximate solutions.

After the discretization, the system (3.19) or (3.20), is reduced to the linear system of

equations for the unknown vectors µ = [µ(t1), µ(t2), · · · , µ(tn)]
T and q = [q1, q2, · · · , qm]T :

[

F Q

R0 O

] [

µ

q

]

=

[

e1

e2

]

, (3.23)

where the matrices F , Q and R0 are the discretization of the operators F , Q̃ and R0 in

(3.20), and the vectors e1, e2 result from the discretization of the right hand side functions.

By the Gauss-Newton method, this system is then solved by the following normal equations,

with the addition of a regularization term in ξ as in (3.17):

[

F TF +RT
0 R0 F TQ

QTF QTQ+ αDTD

][

µ

q

]

=

[

F T e1 +RT
0 e2

QT e1

]

, (3.24)

where the matrix DTD results from the regularization for ξ′′ using (3.18). The particular

matrix F T stands for the discretization of the dual of the operator F . Suppose there are n0

nodal points in the t-range of Γ0. Then (3.23) has n + n0 equations and n + m unknowns,

and (3.24) is an (n + m) × (n + m) system. When two sets of data u0 and û0 from two

32



CHAPTER 3. RECOVERY OF THE ROBIN COEFFICIENT AND THE ROBIN

BOUNDARY

different inputs g and ĝ are available, the system (3.23) is expanded into















F O Q

R0 O O

O F Q̂

O R0 O























µ

µ̂

q









=















e1

e2

ê1

ê2















, (3.25)

which is then solved through the normal equations with the addition of the regularization in

ξ as









F TF +RT
0R0 O F TQ

O F TF +RT
0R0 F T Q̂

QTF Q̂TF QTQ+ Q̂T Q̂+ αDTD

















µ

µ̂

q









=









F T e1 +RT
0 e2

F T ê1 +RT
0 ê2

QT e1 + Q̂T ê1









(3.26)

Note that the matrices F and F T depend only on Γ and not on the input g, hence the first

two diagonal blocks in (3.26) are the same. When more data sets are available, they can be

easily incorporated by expanding the systems (3.25)-(3.26) in the obvious way. If there are

K sets of data, the resulting systems will have Kn+m unknowns, and as K becomes larger,

it will be necessary to devise iterative methods in solving the large normal systems, such

as Jacobi or Gauss-Seidel, by taking advantage of the favorable matrix structure in systems

like (3.26).

Stopping criteria. We start each iteration with the initial Γ1 as the straight line on

the top of the domain (Figure 3.4), and terminate the iteration as soon as the solution to

(3.24) or (3.26) satisfies

1

m

√

√

√

√

m
∑

j=1

q2
j ≤ ǫ (3.27)

with a predetermined stopping parameter ǫ > 0. In all the examples tested, we observe

that this quantity is monotonically decreasing throughout nearly every iteration, for both

cases of noise-free and noisy data. It should be noted that this observation does not suggest

the convergence of the algorithm; in fact, we have also observed that a smaller value of ǫ

does not in general improve the quality of the recovered Γ1. The selection of this particular

quantity as the stopping criterion can be viewed as an additional regularization treatment

for the reconstruction algorithm to counter the ill-posedness of the problem.
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Numerical examples. In the numerical examples, we set n = 200, m = 27, and

ǫ = 10−5. We choose three true profiles of Γ1 with different characteristics to test our

recovery algorithm, which are shown in the figures below as the red dashed lines. These

profiles cannot be attained exactly by our algorithm even if no noise is added to the simulated

data, since they are not from the same class where the algorithm looks for solutions. Our

reconstructions are the blue solid lines. The choice of the regularization parameter α is by

experiment using a number of convenient numerical values and by visual inspection, which

are by no means the “best” possible choices in any quantitative sense. Typically a larger α

is needed for the case of noisy data.

Example 3.5 Numerical results of noise-free data, using one set and two sets of data.

In Figure 3.5 we present the recovery results (blue solid lines) using noise-free data, from

one set of data u0 for input g (left column), and two sets of data u0 and û0 for inputs g and

ĝ (right column). These data are simulated by the indirect formulation through (2.6)-(2.7)

using the input functions g and ĝ from (3.21). For simpler true profiles in the first two

examples, one set of data is sufficient for a satisfactory recovery of the Robin boundary Γ1.

On the other hand, it is clear that we can recover the true profile of Γ1 better with two

sets of data, especially in the last example where the profile is slightly more detailed. Note

that, even though there is no noise added to the simulated data in these examples, the true

profiles cannot be attained exactly by the algorithm.

Example 3.6 Numerical results of 1%-noisy data, using one set and two sets of data.

In this example, we test the algorithm using data that are contaminated with random noise.

As expected, the problem is very ill-posed, and the addition of the random noise in the

simulated data indeed makes it difficult for the algorithm to recover the Robin boundary

well. In fact, in our experiments, the recovery result from the algorithm depends on the

particular realization of the random variable X in (3.22). To better illustrate the effect

of random noise in the data on the recovery results, for each example in Figure 3.6, we

present in the same plot the results from 10 sets of data with 10 realizations of the random

variable X; that is, each solid curve represents the recovery result from the data generated

by (3.22) with one particular realization of the uniformly distributed random variable X (an

n0-vector). The relative level of random noise added in (3.22) is set to 1% (δ = 0.01). In
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Figure 3.5: Recovery of Γ1 with noise-free data: from one set of data u0 corre-

sponding to input g (left) and from two sets of data u0 and û0 corresponding

to inputs g and ĝ (right).

the case only one data set u(noise)

0 is available, the effect of the random noise in data on the

recovery results is noticeable (the left column in Figure 3.6), especially on the right half of

Γ1, perhaps because of the particular choice of the input pattern g whose support is on the

left vertical side of Γ (see (3.21) and Figure 3.4). On the other hand, the results are much

more satisfactory when we have two sets of data u(noise)

0 and û(noise)

0 available for use in the

recovery algorithm (the right column in Figure 3.6).

Remarks. We conclude with a few remarks on the problem in general and on our

numerical methods in particular.

(i) The aspect ratio of the domain in this inverse problem is a key factor for the ill-
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Figure 3.6: Recovery of Γ1 with 1%-noisy data: from one set of data u(noise)

0

corresponding to input g (left) and from two sets of data u(noise)

0 and û(noise)

0

corresponding to inputs g and ĝ (right).

posedness of the problem, when everything else is kept relatively the same. This problem is

similar to the Cauchy problem on Γ0 for the Laplacian, whose ill-posedness is well known,

and it is more ill-posed when Γ1 is farther away from Γ0. In the studies by [17, 14] using the

PDE model (1.1), it is assumed that the domain is thin, and numerical examples use 1:10

(ours is 1:5) as the aspect ratio. We too observed in our experiments that our algorithms

would work better for cases of smaller aspect ratio (i.e. Γ1 is closer to Γ0), more so with noisy

data. The numerical method given by [14] also assumes that the unknown profile be a small

perturbation from a known profile, while we do not make such assumption for our Gauss-

Newton method. Other factors, such as the relative position and size of Γ0 and Γ1 on the
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domain boundary, the relative magnitude of the Robin coefficient p, and the pattern/profile

of the input function g (see below), also affect the severity of the ill-posedness of the problem.

(ii) The input functions are often chosen as a characteristic function of an interval in t.

In [14], the support of such g is chosen to coincide with Γ0, and in our examples in Figure 3.5

and Figure 3.6, we only use input functions whose supports are disjoint from Γ0 (see (3.21)).

Our experiments seem to indicate that, among the input functions of the same pattern, the

location of its support makes some noticeable difference in the quality of the reconstructed

Γ1 by our algorithms. To demonstrate such difference, we present our recovery results in

Figure 3.7 using data from the input function

g̃(t) =

{

1 if t ∈ [0.7, 0.8]

0 elsewhere
(3.28)

which has the support within Γ0 and directly below Γ1, in contrast to g and ĝ from (3.21)

whose supports are on the vertical sides of the rounded rectangle. These two plots are to be

compared to results using g in the two lower left plots of Figure 3.5 and Figure 3.6. Clearly

data corresponding to g̃ yield better reconstruction results than that from g, possibly because

of the specific configuration of the relative positions of the supports to Γ1 and Γ0. Especially

in the case of noise-free data, the result using just one set of data from g̃ (Figure 3.7 left)

is nearly as good as the result using two data sets from g and ĝ (Figure 3.5, bottom right).

In situations where the pattern of the input functions can be chosen without restriction, it

would be interesting and practical to find out what kinds of input functions, or collection

of such if multiple measurements are possible, would give rise to data that will yield better

results in recovering Γ1.

(iii) For solving the system (3.12), an alternative to our Gauss-Newton method (3.16) is

to utilize the fact that (3.12) is linear in u and set up the following iteration: Given x, solve

the linear system
{

F(x)u = S(x)g,

R0u = u0

for u by least-squares, then with this u, find the Newton direction ξ to update x by the

linearized first equation of (3.12)

(

Ḋ(x)u+ Ṡ(x)(pu− g)
)

ξ = −F(x)u+ S(x)g,
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Figure 3.7: Recovery of Γ1 from one set of data corresponding to input g̃ in

(3.28): with noise-free data ũ0 (left) and with 1%-noisy data ũ(noise)

0 (right).

with the addition of a Tikhonov regularization. This would be in the same spirit as the ap-

proach by [6] for their formulation. Compared to our Gauss-Newton method, this alternative

neglects the ξ-term in (3.16) when solving for the u-component, hence does not solve the two

components simultaneously in a larger coupled system. One advantage is that the systems

involved are smaller, but our experiments indicate that this approach does not perform as

well as the full Gauss-Newton method for us. We should recognize the importance of setting

up the problem this way using the full Gauss-Newton method, since it gives the necessary

basis for the design of other iterative methods when needed. In the case when the full sys-

tem (3.16) or (3.24) is too large, this setup also provides a structure that naturally suggests

iterative methods for efficient solutions. Furthermore, as we have shown, this setting can

deal effectively and efficiently with the case when multiple data sets are available.

(iv) As seen in other studies, the problem is so ill-posed that, besides the standard

Tikhonov-type regularization, it is almost necessary to introduce additional regularization

treatments in order for an algorithm to be reasonably successful. In both [6] and our study

here, the use of the finite dimensional approximation (3.18) for the unknown Γ1 is one

such treatment, in which the presence of regularization is stronger when the number of basis

functions m is smaller. In [6], the number m is chosen adaptively, increasing with iteration; in

addition, the update steps in the iteration are scaled so as to include the extra regularization

effect. With m fixed, the simple stopping criterion (3.27) we design for the Gauss-Newton

method seems to work well in all of our examples; it is practical, and indeed it adds some

needed regularization effect in our algorithms to prevent the iteration to continue into an

undesirable regime due to the ill-posedness of the problem.
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Chapter 4

Recovery of the Interface in the

Inverse Linear Source Problem

In this chapter, we study the inverse problem of the recovery of the unknown interface ∂S

from a boundary measurement of the solution U = u0 on Γ0 ⊂ ∂Ω. This problem is known as

the inverse linear source problem, and we continue to adopt the integral equation approach

to study this inverse problem.

4.1 Solution by Least Squares

Based on the integral equations formulation (2.22) as introduced in Chapter 2, we look

for an approximate solution ∂S in the least squares sense from the outer partial boundary

measurement u = u0 on Γ0 ⊂ ∂Ω.

We introduce the parametrization of ∂Ω and ∂S as follows:

∂Ω = {z0(t) : t ∈ [0, 1]} and ∂S = {z(t) : t ∈ [0, 1]},

and denote

u(t) = u(z0(t)), v(t) = v(z(t)), w(t) = w(z(t)).

For a numerical implementation reason, we assume that z(t) has the star-like form:

z(t) = r(t)(cos 2πt, sin 2πt) for t ∈ [0, 1],

where r(t) is a periodic function.
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Let Γ0 = {z0(t) : t ∈ [a, b]}, 0 ≤ a < b ≤ 1. Denote the restriction operator from ∂Ω

to Γ0 by R0; that is, for u defined on ∂Ω, R0u is defined on Γ0 with (R0u)(x) = u(x) for

x ∈ Γ0. Then, for a given input g on ∂Ω, the measurement u0 of u on Γ0 can be expressed

as

R0u = u0. (4.1)

A straightforward approach to discover the unknown interior boundary ∂S using the

measurement u0 on part of the outside boundary Γ0 is to investigate the dependence of the

solution u(t) on z(t), and then find z(t) that produces the “best” match with the data. That

is, we find z(t) of ∂S from the nonlinear least-squares problem:

min
z(t)

1

2
‖R0u(z(t)) − u0(t)‖2

L2[a,b] , (4.2)

which in turn will be solved by a Gauss-Newton iteration. Let u̇(z)ξ be the Fréchet derivative

of u with respect to z in the direction of ξ. Then we find the Gauss-Newton step ξ at the

current iterate z from the linearization of (4.1):

R0u̇(z)ξ + R0u(z) − u0(t) = 0. (4.3)

With our proper assumption of z(t), we seek ξ with the form:

ξ(t) = ρ(t)(cos 2πt, sin 2πt) for t ∈ [0, 1], (4.4)

where ρ(t) is a periodic function. We find the solution of (4.3) as the solution of the linear

least-squares problem, with an additional Tikhonov regularization term for the new radius

function r(t) + ρ(t), using its second derivative:

min
ξ

1

2
‖R0u̇(z)ξ + R0u(z) − u0(t)‖2

L2[a,b] +
α

2
‖r′′(t) + ρ′′(t)‖2

L2[0,1] . (4.5)

Further, we seek ρ(t) in a finite dimensional space spanned by m pre-determined periodic

basis functions {ρj(t)}m
j=1:

ρ(t) =
m

∑

j=1

qjρj(t) or equivalently ξ(t) =
m

∑

j=1

qjξj(t) (4.6)

with ξj(t) = ρj(t)(cos 2πt, sin 2πt). Thus, ξ is represented by the unknown coefficients

{qj(t)}m
j=1, and solving equation (4.3) for ξ becomes solving for the unknown coefficients

{qj(t)}m
j=1:

m
∑

j=1

qjR0u̇j(z) = u0(t) −R0u(z) (4.7)
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where u̇j(z) = u̇(z)ξj .

To compute the derivatives u̇j(z), we rely on system (2.22) and the Fréthet derivatives

of the operators in the system. Let Ṡ01ξ be the Fréthet derivative of the operator S01 with

respect to z in the direction ξ. Similar notations are used for the other operators. From

system (2.22), by a formal calculus of variation procedure, we find that the derivatives

(u̇, v̇, ẇ) of (u, v, w) with respect to z in the direction of ξ satisfy









1
2
I0 + D0 −D01 S01

D10
1
2
I1 −D1 S1

O10
1
2
I1 + Dp −Sp

















u̇

v̇

ẇ









=









(Ḋ01ξ)v − (Ṡ01ξ)w

(Ṡ10ξ)g − (Ḋ10ξ)u+ (Ḋ1ξ)v − (Ṡ1ξ)w

−(Ḋpξ)v + (Ṡpξ)w









.

(4.8)

Then, in particular, the derivative u̇j(z) can be obtained by solving (4.8) with ξ replaced by

each corresponding ξj = ρj(t)(cos(2πt), sin(2πt)), j = 1, · · · , m. To see this more specifically,

from (4.8), we have:









1
2
I0 + D0 −D01 S01

D10
1
2
I1 −D1 S1

O10
1
2
I1 + Dp −Sp

















u̇j

v̇j

ẇj









=









(Ḋ01ξj)v − (Ṡ01ξj)w

(Ṡ10ξj)g − (Ḋ10ξj)u+ (Ḋ1ξj)v − (Ṡ1ξj)w

−(Ḋpξj)v + (Ṡpξj)w









.

(4.9)

or in the abbreviated form:

F(z)









u̇j

v̇j

ẇj









= ej(ξj , u, v, w), (4.10)

and we find u̇j as the first component of the solution [u̇j, v̇j, ẇj]
T . Thus, with the derivatives

u̇j(z) computed, equation (4.7) can be further expressed as solving the unknown coefficient

vector q = [q1, q2, · · · , qm]T from the following linear system:

[u̇1, u̇2, · · · , u̇m]















q1

q2
...

qm















= u0 −R0u . (4.11)

Initial guess. To proceed with a Gauss-Newton iteration, an initial guess is usually

needed. The above framework also provides a quick way of finding an initial guess from a
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particular class of simple curves, for example, circles. The family of circles can be obviously

parameterized by

z(t) = (a+ r cos 2πt, b+ r sin 2πt)

with parameters a, b, r. We can have a Gauss-Newton iteration:

(â, b̂, r̂) = (a, b, r) + λ(δa, δb, δr)

where we have included a scalar 0 < λ ≤ 1 to ensure that the circle ẑ(â, b̂, r̂, t) remains

within Ω. The direction (δa, δb, δr) is found exactly like the above framework if we identify

(q1, q2, q3) = (a, b, r) and ξ1 = (1, 0), ξ2 = (0, 1), ξ3 = (cos 2πt, sin 2πt)

in the above. This turns out to be an effective way of obtaining a good initial guess for our

algorithms.

4.2 The Explicit Forms of the Integral Operators and

Their Fréchet Derivatives

Suppose Γ is a smooth simple closed curve in R2, and it has the following parametrization

z(t) = (x1(t), x2(t)) for t ∈ [0, 1]

where x1(t) and x2(t) are C2 periodic functions in R with period 1. The outward unit normal

to the boundary of Γ is denoted by νz(t), i.e.,

νz(t) = (x′2(t),−x′1(t))/|z′(t)| = z′(t)⊥/|z′(t)|

where z′(t)⊥ = (x′2(t),−x′1(t)).
Let F (s) be a smooth function on (0,∞) and have at most a logarithmic singularity at

s = 0. Consider the integral operator
∫

Γ

F (|x− y|)φ(y)dsy

as a model of the operators we will encounter in (2.22). Then, for each x = (x1, x2) and

y = z(τ) ∈ Γ, we have the following parametric representations:
∫

Γ

F (|x− y|)φ(y)dsy =

∫ 1

0

F (|x− z(τ)|) φ(z(τ)) |z′(τ)| dτ

≡
∫ 1

0

A(x, z(τ))φ(z(τ))dτ
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∫

Γ

∂F (|x− y|)
∂νy

φ(y)dsy =

∫ 1

0

F ′(|x− z(τ)|) (z(τ) − x) · νz(τ)

|x− z(τ)| φ(z(τ)) |z′(τ)| dτ

=

∫ 1

0

F ′(|x− z(τ)|) (z(τ) − x) · z′(τ)⊥
|x− z(τ)| φ(z(τ)) dτ

≡
∫ 1

0

B(x, z(τ))φ(z(τ))dτ

and
∫

Γ

∂F (|x− y|)
∂νx

φ(y)dsy =

∫ 1

0

F ′(|x− z(τ)|) (x− z(τ)) · νx

|x− z(τ)| φ(z(τ)) |z′(τ)| dτ

≡
∫ 1

0

C(x, z(τ))φ(z(τ))dτ

The kernels B and C are related by

C(ẑ(t), z(τ)) = B(z(τ), ẑ(t))
|z′(τ)|
|ẑ′(t)| (4.12)

for any smooth z and ẑ.

For the fundamental solution Φ in (2.2), F (s) = − 1

2π
ln s and F ′(s) = − 1

2πs
, and hence

the corresponding operators have the kernels as

AΦ(x, z(τ)) = −|z′(τ)|
2π

ln |x− z(τ)|,

BΦ(x, z(τ)) =



















− 1

2π

(z(τ) − x) · z′(τ)⊥
|x− z(τ)|2 , x 6∈ Γ,

1

4π

z′′(τ) · z′(τ)⊥
|z′(τ)|2 , x ∈ Γ.

(4.13)

Note that, BΦ is a continuous kernel; while AΦ has a logarithmic singularity in τ when x ∈ Γ.

Note that these are the same kernels we have in (2.24)-(2.25).

For the fundamental solution Ψ in (2.19),

F (s) =
1

2π
K0(q0s) = − 1

2π
(J0(iq0s) ln s+ F0(q0s))

and

F ′(s) =
q0
2π
K ′

0(q0s) = − q0
2π
K1(q0s) = −F1(q0s)

2πs

where we set

F0(z) = −K0(z) − J0(iz) ln
z

q0
, K1(z) = −K ′

0(z) and F1(z) = zK1(z).
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Here J0 is the Bessel function of order 0 of the first kind. From the asymptotic expansions

of J0, K0 and K1 (see Appendix), we see that F0(z) and F1(z) are both smooth for z > 0

and
F0(z) ∼ γ0 + ln q0

2
+ (γ0 + ln q0

2
) z2

4
+ · · ·

F1(z) ∼ 1 + z2

2
ln z

2
+ · · ·

as z → 0+.

The corresponding operators have the kernels as

AΨ(x, z(τ)) = −|z′(τ)|
2π

{J0(iq0|x− z(t)|) ln |x− z(t)| + F0(q0|x− z(τ)|)}

≡ A
(0)
Ψ (x, z(τ)) ln |x− z(t)| + A

(1)
Ψ (x, z(τ)),

BΨ(x, z(τ)) =
F1(q0|x− z(τ)|)

2π
· (x− z(τ)) · z′(τ)⊥

|x− z(τ)|2 .

(4.14)

Note that A
(0)
Ψ , A

(1)
Ψ and BΨ are all continuous in τ for any x, and BΨ has the same diagonal

value as BΦ.

With the explicit forms of AΦ, BΦ, AΨ and BΨ, we can express the integral operators

involved in system (2.22) explicitly. We adopt the parametrization of ∂S and ∂Ω developed

in the previous section:

∂Ω = {z0(t) : t ∈ [0, 1]} and ∂S = {z(t) : t ∈ [0, 1]}.

For simplicity, set

u(t) = u(z0(t)), v(t) = v(z(t)), w(t) = w(z(t)),

and the kernels for the single-layer and double-layer potential operators are labeled by A

and B respectively, following the same indexing as for the operators. For example,

(S01v)(t) =

∫ 1

0

A01(t, τ)v(τ)dτ with A01(t, τ) = AΦ(z0(t), z(τ))

and so on. Specifically, the kernels of the operators are given by

S0 : A0(t, τ) = AΦ(z0(t), z0(τ)), D0 : B0(t, τ) = BΦ(z0(t), z0(τ)),

S01 : A01(t, τ) = AΦ(z0(t), z(τ)), D01 : B01(t, τ) = BΦ(z0(t), z(τ)),

S10 : A10(t, τ) = AΦ(z(t), z0(τ)), D10 : B10(t, τ) = BΦ(z(t), z0(τ)),

S1 : A1(t, τ) = AΦ(z(t), z(τ)), D1 : B1(t, τ) = BΦ(z(t), z(τ)),

Sp : Ap(t, τ) = AΨ(z(t), z(τ)), Dp : Bp(t, τ) = BΨ(z(t), z(τ)).
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For each derivative operator, we can also provide its kernel. For example, for Ṡ01(z), the

linear operator of Ṡ01(z)ξ acting on w has a kernel denoted by Ȧ01:

(

Ṡ01(z)ξw
)

(t) =

∫ 1

0

Ȧ01(t, τ)w(τ)dτ.

From the formulas of the integral operators developed previously, we can find the explicit

form for the derivative operators as:

Ȧ01(t, τ) = − 1

2π

z′(τ) · ξ′(τ)
|z′(τ)| ln |z0(t) − z(τ)| + |z′(τ)|

2π
· (z0(t) − z(τ)) · ξ(τ)

|z0(t) − z(τ)|2 ,

Ȧ10(t, τ) = −|z′0(τ)|
2π

· (z(t) − z0(τ)) · ξ(t)
|z(t) − z0(τ)|2

,

Ḃ01(t, τ) =
1

2π

−ξ(τ) · z′(τ)⊥ + (z0(t) − z(τ)) · ξ′(τ)⊥
|z0(t) − z(τ)|2

+
1

π

[

(z0(t) − z(τ)) · z′(τ)⊥
]

[(z0(t) − z(τ)) · ξ(τ)]
|z0(t) − z(τ)|4 ,

Ḃ10(t, τ) =
1

2π

ξ(t) · z′0(τ)⊥
|z(t) − z0(τ)|2

− 1

π

[

(z(t) − z0(τ)) · z′0(τ)⊥
]

[(z(t) − z0(τ)) · ξ(t)]
|z(t) − z0(τ)|4

,

Ȧ1(t, τ) = − 1

2π

z′(τ) · ξ′(τ)
|z′(τ)| ln |z(t) − z(τ)| − |z′(τ)|

2π
· (z(t) − z(τ)) · (ξ(t) − ξ(τ))

|z(t) − z(τ)|2 ,

Ȧp(t, τ) = −J0(iq0|z(t) − z(τ)|)
2π

· z
′(τ) · ξ′(τ)
|z′(τ)| ln |z(t) − z(τ)|

−F0(q0|z(t) − z(τ)|)
2π

· z
′(τ) · ξ′(τ)
|z′(τ)|

−|z′(τ)|F1(q0|z(t) − z(τ)|)
2π

· (z(t) − z(τ)) · (ξ(t) − ξ(τ))

|z(t) − z(τ)|2 ,
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Ḃ1(t, τ) =
1

2π

(ξ(t) − ξ(τ)) · z′(τ)⊥ + (z(t) − z(τ)) · ξ′(τ)⊥
|z(t) − z(τ)|2

−1

π

[

(z(t) − z(τ)) · z′(τ)⊥
]

[(z(t) − z(τ)) · (ξ(t) − ξ(τ))]

|z(t) − z(τ)|4 ,

Ḃp(t, τ) =
F1(q0|z(t) − z(τ)|)

2π
· (ξ(t) − ξ(τ)) · z′(τ)⊥ + (z(t) − z(τ)) · ξ′(τ)⊥

|z(t) − z(τ)|2

−F2(q0|z(t) − z(τ)|)
π

·
[

(z(t) − z(τ)) · z′(τ)⊥
]

[(z(t) − z(τ)) · (ξ(t) − ξ(τ))]

|z(t) − z(τ)|4

where in Ḃp we denote

F2(z) = zK1(z) +
1

2
z2K0(z) ∼ 1 − 1

4
z2 + · · · as z → 0+,

and we have used the relation K ′
1(z) = −K0(z) − 1

z
K1(z) in the calculation of F ′

1(z). The

first four kernels are continuous since z(t) 6= z0(τ) for any t and τ . Each of the kernels Ȧ1

and Ȧp has a logarithmic singular part and a continuous part, and the continuous parts have

diagonal values as, respectively,

− 1

2π

z′(τ) · ξ′(τ)
|z′(τ)| and − 1 + γ0 + ln q0

2

2π
· z

′(τ) · ξ′(τ)
|z′(τ)| .

The kernels Ḃ1 and Ḃp are continuous, with the same diagonal value given by

Ḃ1(τ, τ) = Ḃp(τ, τ) =
1

4π

ξ′′(τ) · z′(τ)⊥ + z′′(τ) · ξ′(τ)⊥
|z′(τ)|2 − 1

2π

[

z′′(τ) · z′(τ)⊥
]

[z′(τ) · ξ′(τ)]
|z′(τ)|4 .

These expressions for the integral operators and their Fréchet derivatives are needed in

computing numerical solutions to the system of integral equations (2.22) and in solving the

Gauss-Newton steps in the iterations.

4.3 Numerical Implementation and Examples

In this section, we present the implementation details of our straightforward method to

recover the unknown ∂S from the partial boundary measurement u0 on ∂Ω, as well as

reconstruction results in numerical examples.
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For the sake of simplicity, we assume the measurement u0 is given on the whole ∂Ω; that

is, (R0u)(x(t)) = u(t) for t ∈ [0, 1] on ∂Ω. Consider the linear least-squares problem (4.5):

min
ξ

1

2
‖u̇(z)ξ + u(z) − u0(t)‖2

L2[0,1] +
α

2
‖r′′(t) + ρ′′(t)‖2

L2[0,1] ,

where ξ = ρ(t)(cos(2πt), sin(2πt)). With the representation for ρ:

ρ(t) =

m
∑

j=1

qjρj(t),

the above minimization problem becomes:

min
q

1

2
‖u̇(z)

m
∑

j=1

qjρj(t)(cos(2πt), sin(2πt)) + u(z)− u0(t)‖2
L2[0,1] +

α

2
‖r′′(t) +

m
∑

j=1

qjρ
′′
j (t)‖2

L2[0,1]

where q = [q1 · · · qm]T is the unknown coefficient vector. The notation can be further

simplified as:

min
q

1

2
‖

m
∑

j=1

qju̇j(z) + u(z) − u0(t)‖2
L2[0,1] +

α

2
‖r′′(t) +

m
∑

j=1

ρ′′j (t)‖2
L2[0,1]

where u̇j(z) = u̇(z)ρj(t)(cos(2πt), sin(2πt)). Let

A(z) = [u̇1(z) u̇2(z) · · · u̇m(z)] and B(t) = [ρ′′1(t) ρ
′′
2(t) · · · ρ′′m(t)],

then the above least-squares problem can be expressed in the system form as:

min
q

1

2
‖Aq + u(z) − u0(t)‖2

L2[0,1] +
α

2
‖r′′(t) + Bq‖2

L2[0,1] . (4.15)

Suppose, after discretization, A and B are represented by matrices A and B, respectively.

Then the discretized normal equation becomes

(ATA+ αBTB)q = AT (u0 − u) − αBT r′′. (4.16)

Note. When the measurement u0 is known only on part of the boundary ∂Ω, i.e., u0 has

support on Γ0 ⊂ ∂Ω, we can still follow the same structure of system (4.15) and its normal

equation (4.16) to find the solution. All we need to do is restrict the function u on the

support Γ0 of u0. If multiple sets of data are available on the outer boundary, we suggest one

approach to incorporate the additional information into our system by expanding the least-

squares problem (4.15) and its corresponding normal equation (4.16) as follows. Suppose
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there are two sets of data u0 and û0 from two different inputs g and ĝ, respectively. Then

we find our solution from the least-squares problem:

min
q

1

2
‖Aq + u− u0‖2

L2[0,1] +
1

2
‖Âq + û− û0‖2

L2[0,1] +
α

2
‖r′′ + Bq‖2

L2[0,1]. (4.17)

The corresponding normal equation is given as

(ATA+ ÂT Â + αBTB)q = AT (u0 − u) + ÂT (u0 − û) − αBT r′′. (4.18)

Note that, if A is a n × m matrix, then the resulting system of the normal equation for

multiple sets of data is still m×m, the same size as in the case of a single data set.

Numerical results. Now we illustrate the feasibility of our method by presenting

numerical results. For simplicity, we take the outer boundary ∂Ω as a circle centered at the

origin and with radius 2; the measurement u0 is given on Γ0 ⊂ ∂Ω, as shown in Figure 4.1.

We choose two particular inputs g and ĝ as the characteristic functions: g(t) = 1 for t ∈ [0, 1]

and ĝ = 1 for t ∈ [0, 0.5] and 0 elsewhere.

 Ω

S

Γ
0

+2−2

+2

−2
Figure 4.1: Domain setup for the numerical examples.

For discretization, we divide [0, 1] into n equidistant subintervals with quadrature points

ti = i/n, i = 0, · · · , 1 (tn = t0). Since the integral kernels involved have at most a logarithmic

singularity, we employ the Nyström’s method with trigonometric interpolation to deal with

the singularities for the discretization of the integral operators. As for the basis functions

of ρ(t), we choose ρj(t) as m C1-periodic cubic B-splines with equally-spaced knots and

support in [0, 1]. This guarantees the computation of the exact derivatives of z(t) and ξ(t)

that are needed in the integral kernels.
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The synthetic data u0, measurement of u(t) on Γ0, is simulated by solving (2.22) for u(t)

from a given true profile of ∂S and a prescribed input function g(t). To obtain data with

noise, we add to the simulated data u0(t) random noise with a given noisy level δ relative to

the L2-norm of the data:

u
(noise)(t)
0 = u0(t) + δ||u0(t)||2X(t) (4.19)

where X(t) represents random numbers uniformly distributed on the interval (−1, 1). Fur-

ther, all of the true profiles of ∂S chosen in our examples do not belong to the class of curves

(4.6) where our algorithm looks for solutions.

We start each iteration from our initial guess, a circle within Ω chosen by our initial

guess algorithm. As stated before, the initial guess algorithm follows the same idea as our

straightforward method, that is, to look for a circle within Ω that minimize the L2 norm of

the equation u(t)−u0(t). The initial guess provides the Gauss-Newton iteration a relatively

closed location where to look for solutions. We terminate the iteration when the solution to

(4.16) satisfies
√

√

√

√

m
∑

j=1

q2
j ≤ ǫ (4.20)

with a predetermined stopping parameter ǫ > 0. This can be considered as an additional

regularization treatment to the ill-posedness of the problem in our reconstructions. From our

observation, in the examples we test below, the stopping quantity is decreasing throughout

nearly each iteration for both cases of noise free and noisy data. However, we should note

that this observation does not suggest the convergence of the algorithm, since smaller ǫ does

not in general improve the reconstruction quality of the unknown boundary ∂S.

In the numerical examples, we set n = 100, m = 25, and ǫ = 10−5. We choose different

true profiles of ∂S to test our recovery algorithm. In the figures, the true profiles are shown

as the red dashed lines and the constructions are represented by the blue solid lines. The

regularization parameter α is chosen by experiment and inspection. In general, a larger α is

needed for a heavier noisy data.

Example 4.1 Recovery of different true profiles of ∂S using noise-free data.

In Figure 4.2, we recover 3 true profiles of ∂S from noise-free data that are given on the

entire outer boundary ∂Ω. As can be seen, the reconstructions are almost exact for all the

profiles except at the area where indentation occurs.
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7 iterations, α = 1 × 10−12 8 iterations, α = 1 × 10−10 7 iterations, α = 1 × 10−12
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Bean shape Kite shape Rose shape

(Measurement u0(t) is given on the entire outer circle.)

Figure 4.2: Recovery of different true profiles of ∂S with noise-free data.

Example 4.2 Recovery of different true profiles of ∂S using 1%-noisy data.

Next, we test our algorithm using noisy data. Indeed, our recovery becomes more difficult

when the data are contaminated by random noise. In Figure 4.3, to better illustrate the effect

of random noise on the recovery results, we present in each recovery example the results from

5 sets of data with 5 corresponding realizations of random noise. The approximations are

much less satisfactory especially in the concave part of the true profiles of ∂S, however, our

algorithm can still determine the rough shape and location of the true profiles.

Example 4.3 Recovery of the interface ∂S from measurement on part of outer circle.

In this example, we illustrate the recovery results for the bean shape using 1%-noisy data

and the data are given only on part of ∂Ω. Figure 4.4 shows 3 reconstructions for the data

that are known on an entire circle, on half a circle, and on a quarter circle, respectively. As

expected, with less information given on the outer boundary, the more difficulty we have in

recovering the true profile of the interior interface. In the case when u0 is known only on

a quarter circle(the last example), we can barely obtain the ‘bean’ shape of the true profile

but a “circle” body, possibly due to the initial guess configuration.

Example 4.4 Recovery of the interface ∂S using one set and two sets of noisy data.
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6 iterations, α = 5 × 10−8 6 iterations, α = 5 × 10−8 7 iterations, α = 3 × 10−8
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(Measurement u0(t) is given on the entire outer circle.)

Figure 4.3: Recovery of different true profiles of ∂S with 1%-noisy data.

For our last example, we compare the recovery results with one set of data and the results

with two sets of data, using boundary measurement with added noise. We employ the

approach suggested in (4.17)-(4.18) for using two sets of data. Figure 4.5 shows the recoveries

using one set of data for input g (left) and two sets of data for inputs g and ĝ (right) from the

boundary measurements u0 and û0 on the entire outer circle. By comparing the results, we

do not observe significant improvements in the result using more data sets. We also tested

for the noise-free case and for the case where u0 is given only on the upper-half circle, and

did not observe much difference between the use of one set or two sets of data.

Remark. Our least-squares approach based on the integral equations formulation is a

straightforward method for the inverse linear source problem. The system involved has only

one equation and it has the same parametric range as the partial outer boundary measure-

ment u0. Compared to other PDE methods, this approach has much less computational

cost; once we set up the forward solver with system (2.22), the derivatives u̇ in the iterative

system (4.7) can be easily computed. As a by-product, this framework provides a quick

method of obtaining a very good initial guess for the Newton-type iterative schemes. When

the measurement u0 is known on the whole outer boundary Ω, our reconstruction algorithm

for the unknown ∂S works very well for the noise-free case. Results are less satisfactory for

the noisy data, but still quite accurate in terms of location and overall shapes. When the
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6 iterations, α = 5 × 10−8 6 iterations, α = 5 × 10−8 4.2 iterations, α = 7 × 10−8
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u0(t) on the entire outer circle u0(t) on the upper half circle u0(t) on the first quarter circle

t ∈ [0, 1] t ∈ [0, 0.5] t ∈ [0, 0.25]

Figure 4.4: Recovery of ∂S with 1%-noisy data on partial ∂Ω.

measurement is given only on part of the outer boundary, the recovery becomes very difficult

and indeed, the inverse problem is highly ill-posed. The analysis of the ill-posedness in this

situation is studied by [15] from the view point of “recovery from limited angle data”. If

there are multiple sets of data available on the outer partial boundary, our method provides

a simple basic structure to incorporate the extra information into the system, but we have

not observed significant improvement in the reconstruction results.
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6.2 iterations, α = 5 × 10−8 6.4 iterations, α = 2 × 10−7
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Figure 4.5: Recovery of ∂S using one set versus two sets of 1% noisy data.
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Appendix A

The Modified Bessel Function K0

Here we state the asymptotic behavior for the modified Bessel function K0(z) of order 0 of

the second kind near the singularity z = 0. We need these properties in the formulations of

the linear source problem since the fundamental solution Ψ is given by K0. More complete

details can be found in [2].

For each integer n, let Jn(z) and Yn(z) denote the Bessel functions of order n of the first

and second kind, respectively. They are linear independent solutions to the Bessel’s equation

z2y′′(z) + zy′(z) + (z2 − n2)y(z) = 0.

The modified Bessel functions Kn are closely related to Jn and Yn.

We are interested in the 0 order modified Bessel function K0:

K0(z) =
π

2
i (J0(iz) + iY0(iz)) .

Using the series expressions of J0 and Y0,

J0(iz) =

∞
∑

k=0

(−1)k

(k!)2

(

iz

2

)2k

=

∞
∑

k=0

1

(k!)2

(z

2

)2k

,

Y0(iz) =
2

π

(

ln
iz

2
+ γ0

)

J0(iz) −
2

π

∞
∑

k=1

(−1)kak

(k!)2

(

iz

2

)2k

= iJ0(iz) +
2

π

(

ln
z

2
+ γ0

)

J0(iz) −
2

π

∞
∑

k=1

ak

(k!)2

(z

2

)2k

,
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we deduce that

K0(z) = −
(

ln
z

2
+ γ0

)

J0(iz) +
∞

∑

k=1

ak

(k!)2

(z

2

)2k

= −
(

ln
z

2
+ γ0

)

∞
∑

k=0

1

(k!)2

(z

2

)2k

+

∞
∑

k=1

ak

(k!)2

(z

2

)2k

.

Here ak =

k
∑

m=1

1

m
, and γ0 = lim

k→∞
(ak − ln k) = 0.5772 . . . is the Euler constant.

We will also need the derivative of K0:

K ′
0(z) = −K1(z) =

π

2
(J1(iz) + iY1(iz))

where

J1(iz) =

∞
∑

k=0

(−1)k

k!(k + 1)!

(

iz

2

)2k+1

= i

∞
∑

k=0

1

k!(k + 1)!

(z

2

)2k+1

,

Y1(iz) = − 2

πiz
+

2

π

(

ln
iz

2
+ γ0 −

1

2

)

J1(iz) −
1

π

∞
∑

k=1

(

2ak − 1 +
1

k + 1

)

(−1)k

k!(k + 1)!

(

iz

2

)2k+1

= − 2

πiz
+ iJ1(iz) +

2

π

(

ln
z

2
+ γ0 −

1

2

)

J1(iz) −
i

π

∞
∑

k=1

2ak − 1 + 1
k+1

k!(k + 1)!

(z

2

)2k+1

.

Hence

K ′
0(z) = −1

z
+

(

ln
z

2
+ γ0 −

1

2

)

iJ1(iz) +
1

2

∞
∑

k=1

2ak − 1 + 1
k+1

k!(k + 1)!

(z

2

)2k+1

= −1

z
−

(

ln
z

2
+ γ0 −

1

2

) ∞
∑

k=0

1

k!(k + 1)!

(z

2

)2k+1

+
1

2

∞
∑

k=1

2ak − 1 + 1
k+1

k!(k + 1)!

(z

2

)2k+1

.

These series expressions for K0 and K ′
0 describes the asymptotic behavior of these func-

tions near the singularity z = 0.
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