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Abstract 
Limiting DNS covert channels and Network Validated DNS 

 
Rex McCracken 

 
 Despite the variety and number of network security devices and policies available, 
sensitive data, such as intellectual property and business data, can still be surreptiously 
sent via the Internet to unscrupulous receivers.  Furthermore, few security mechanisms 
address securing or limiting covert channels.  This study defines a framework for 
determining a rule set to minimize covert channel capacity on the DNS protocol 
specifically.  The information and techniques used in this study may be useful in aiding 
security professionals and developers with enforcing security policies on DNS and other 
Internet protocols.  
 This research resulted in the development of a rudimentary tool, referred to as 
NV-DNS, capable of detecting and effectively limiting the capability of covert channels 
in DNS communication packets. 
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Chapter 1  
1 Introduction 
 
 Running a business in the 21st century is different from any other time in history.  

Years ago, merchants and vendors could assure themselves a piece of the market share by 

simply carrying a wanted product that no other vendor carried.  Few businesses anymore 

have the fortune to be the only vendor marketing a unique product to the public as 

imitators and competing products are introduced to the masses through various 

advertising venues, hauled to a local shopping mall, or shipped directly to the consumer’s 

home.  Regardless of a business’ financial classification or products, competing vendors, 

manufacturers, and even charities would all love to have something from their 

competition that is more valuable than a single product:  intellectual property. [1] 

 Intellectual property is a major portion of the foundation on which every business 

grows and develops.  Every business has some form of intellectual property, be it 

customer information lists, purchasing prices, diagrams for a new piece of equipment 

under development, or a new manufacturing process.  Intellectual property therefore 

becomes the advantage that a particular business has over its competitors in order to 

continue to exist in the business place. Thus the largest threat to a company’s competitive 

edge and existence is the loss or leakage of their intellectual property to a competitor.  

Internet access is available in nearly every business location and is used in daily 

operations of a business.  While beneficial to the operation and expansion of a company, 

the speed and stability of the communications afforded by internet access also allows a 

malicious employee to send a company’s intellectual property with relative ease to 
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someone external to the company without dealing with some type of physical security 

mechanism. [2] 

 E-mail, FTP, HTTP, and instant messaging programs are the easiest and most 

common methods of transferring large amounts of data across the Internet.  E-mail 

accounts are typically given all company employees for company use and nearly every e-

mail program available has the ability to send file attachments of any size, hampered only 

by the recipient’s e-mail file size.  FTP communications provide a direct means of 

efficiently transferring files of any size from client to server or vice versa and does not 

suffer from the size limitations e-mail is potentially subject to, but requires a valid IP 

address or domain name in order to successfully initiate communications.   

 HTTP communications allow for the same possibilities as FTP and E-mail and is 

commonly known as “web surfing.”  The newest communication class proliferating on 

network channels is instant messaging programs such as AOL Instant Messenger, MSN 

Messenger, and Yahoo Messenger, just to name a few.  The basic function of these 

programs is to send and receive text messages from one username to another.  Early 

versions of the messaging programs lacked file transfer and encryption capabilities, but 

recent revisions of the software have incorporated these features as well as video and 

audio capabilities.  Spin-offs and clones of these software programs have similar 

capabilities. 

 E-mail, FTP, and HTTP traffic are the most commonly used methods of 

transferring data and are also the most commonly logged actions on a company network.  

User’s e-mails are typically stored on the main e-mail server and archived for later 

retrieval or restoration.  Employees sending out attachments of private company data 
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through e-mail can quickly be traced through a combination of username and Internet 

Protocol (IP) address tracing.  Unauthorized FTP connections and traffic pushing data out 

of the company network can easily be traced through the router logs or denied in the 

router settings, thus limiting the effectiveness of FTP as a means of transferring files.  

HTTP connection pushing out large amounts of data from non-server computers raise 

their own questions, and are subject to the same requirements that FTP traffic falls under.  

Instant messaging programs are slightly more difficult to block or protect against, but 

most programs send messages and files without encryption over the network and can be 

reconstructed using packet sniffing software.   

 Routers and firewalls are typically the main defensive lines any network 

administrator utilizes to help minimize an intruder’s foray into the business’ LAN.  Basic 

firewalls and routers can easily be set to forward, allow, or deny access to any 

combination of thousands of ports and many guides, websites, and other articles are 

available to help customize these settings based on the business’ network topography.  

Advanced networking equipment and software can further enhance and extend the basic 

permit and deny rules using technologies like Stateful Packet Inspection, bandwidth 

throttling, and intrusion detection systems at an often significant financial investment for 

more capable hardware and software.  Despite the range of technologies available to 

combat external intruders and malicious internal users, there is a basic and integral 

service of the Internet that is typically unmonitored by businesses and security 

professionals alike. 

 DNS, or domain name service, is an integral part of the workings of the internet.  

Every time a user attempts to connect to a site, be it google.com, wvu.edu, or any other of 
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a number of sites, a query is sent upwards through a hierarchy of computers and routers 

to try and find the IP address to which a specific domain name is mapped.  Without DNS, 

users would be forced to remember a series of numbers for each site they wanted to visit.  

Attempts to remember Google (64.233.167.99), WVU (157.182.140.235), and ZDNet 

(216.239.115.140) would quickly devolve into random number guessing and make 

Internet connectivity little more than a passing interest, especially should the IP address 

of the domain change.   

 As a necessary service for the Internet to work, the DNS protocol specification, as 

approved by the Internet Engineering Task Force (IETF), uses an iterative hierarchical 

model to process domain name to IP address queries.  DNS takes a domain name as an 

alphanumeric string and iteratively queries DNS name servers, returning a valid IP 

address of the form x.x.x.x, where x is a number from 0 to 255 when the DNS server 

returns a positive response.  The protocol’s specification answered a large number of 

questions concerning the handling of future growth of the Internet, but designers knew 

they could not foresee all the potential possibilities of DNS.  With this in mind, designers 

chose to leave room for future revisions and additions to the protocol in the form of 

undefined or reserved bits, bytes, ranges, and experimental options.  [3] 

 The protocol’s specification calls for these unused bits and bytes to all be set to 

zero, but failure to properly set these bits will not result in failed responses as systems 

receiving DNS queries and responses ignore the undefined portions of the DNS packet.   

The unspecified bits coupled with an un-enforced request allows for data-stuffed packets 

to be created and sent on without disturbing the packet’s validity as seen by the routers 

and DNS servers.  A crafty employee could utilize these gaps in the protocol to send out 
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seemingly innocent DNS requests while simultaneously sending off bits and pieces of 

company data.  The practice of hiding a communication within a medium is known as 

creating a covert channel. 

 The focus of this research is on the detection and logging of covert channels in 

DNS to aid security professionals and software development personnel faced with the 

daunting task of controlling unauthorized communications through design and 

application.  This research is also being done in response to an article reported on August 

2nd 2004 concerning the ability of DNS to contain covert channels and the lack of 

monitoring of this particular protocol. [4] 

 

1.1 Definitions of Steganography and Covert Channels 
 
1.1.1 Steganography 
 
 Steganography is the art of inconspicuously hiding data within data, literally 

meaning “covered writing”. [5] The overall goal of steganography is to hide the message 

within the data well enough such that unintended recipients do not suspect a hidden 

message exists. [6] A simple text message using steganography to hide a message may be 

as follows: 

 Prepare and shutdown system workstations or remote 

datalinks : Storms will offline realtime data feeds.  

Interrupted several hours. 

 The body of the text hides the message “password : swordfish” using the first 

character of the initial word and the first character following a space.  The steganography 

method is simple and for the most part, so is its detection.  [6] notes that an important part 
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of steganography’s success is the naïve attitude of human beings by not accepting the 

possibility that there is more than meets the eye occurring.  Several other simple text-

based steganography techniques include word spacing and invisible characters.  Images, 

audio clips, and movies employ steganographic techniques such as least significant bit 

(LSB) alterations, color palette modifications, and manipulation of the compression 

algorithms. [5] 

 [5] states that “information hiding within electronic media requires alterations” 

that introduces degradation or unusual characteristics.  These anomalies in the media can 

be viewed as signatures broadcasting a hidden message’s existence within a 

communication; a point directly countering the goal of steganography.  Steganalysis can 

be defined as “attacks and analysis on hidden information” and is the counter to 

steganography.  The goal of steganalysis is to examine an image, message, or other 

medium that could potentially contain a hidden message, determine if a message exists, 

extract the message if possible, or disable or remove the hidden data.  To determine if a 

hidden message exists, steganalysis relies heavily on statistical analysis of the medium’s 

properties to determine if any anomalies exist and if these anomalies are naturally 

occurring or the result of tampering. [5] 

 Steganography is similar in nature to cryptography in several ways, but the two 

methods are exclusive.  Both methods are concerned with passing a message from party 

A to party B without party C being able to understand the message, but the means by 

which the messages are passed is where the difference lies.  Steganography’s means of 

communication relies on stealth and naivety for all non-intended recipients to ensure the 

security of a private message.  Cryptography’s means of communication relies on the 
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strength of the encryption algorithm and key management to secure the message and 

makes no attempt to hide the existence of the communication.   

 Beyond that main difference, steganography and cryptography follow an 

algorithm and “key” to encode and later decode the data.  For cryptographic messages, 

the key is the password, while steganography’s key is the location of the hidden data. 

Cryptographic techniques are beyond the scope of this document and will not be 

discussed. 

1.1.2 Covert Channels 
 
 Covert channels are the application of steganographic techniques to 

communications mediums.  Digital communications protocols used on the Internet are 

filled with unused and reserved bit, bytes, open-ended options, and devoid of any type of 

validation mechanism to verify the correctness of these communications.  Thus, a 

steganographer can piggyback their communications onto a valid communications 

protocol piece by piece and slowly cart off bits and pieces of data without much worry of 

being detected at all.  The ease with which a steganographer can piggyback their message 

onto an existing protocol depends primarily upon the protocol’s syntax and usage.  This 

document discusses the DNS protocol and some network topology, making general 

references to the protocols upon which DNS traffic operates, TCP and UDP. 

 The Domain Name Service, or DNS, is an Internet Protocol (IP) utilizing the 

Transmission Control Protocol (TCP) and/or User Datagram Protocol (UDP) for sending 

and receiving domain name translation requests.  TCP is a “connection-oriented” 

protocol, designed to ensure the delivery and ordering of transmitted packets from sender 

to receiver.  [7] UDP is a “connectionless” protocol that predates TCP and does not 
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ensure the delivery of packets or ordered reception of received packets. [8] UDP is the 

protocol primarily used to transmit DNS messages as UDP does not require the overhead 

setup that TCP uses to setup the reliable connection.  TCP is used in zone and domain 

transfers where a large amount of data is passing from server to server and the data must 

be carefully preserved. [3], [9] 

 

1.2 Statement of Problem 
 
 The goal of this research is to show the weaknesses in the DNS protocol and 

provide a methodology for protecting this and future communications protocols from 

subversion for use with unauthorized communications.   

 

1.3 Organization 
 
The remainder of this thesis will be organized as follows: 

• Chapter 2 will be a literature review that will form the background for this 

research.  The concepts of steganalysis, protocol validation, and real-time network 

analysis will be discussed regarding current research in the fields. 

• Chapter 3 will discuss the application of steganalysis and protocol validation to 

the Domain Name Service and other per-packet protocols on a network. 

• Chapter 4 will provide a description of the architecture of NV-DNS and its usage 

on a network segment. 

• Chapter 5 will discuss the results of NV-DNS as applied to several example 

problems. 
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• Chapter 6 will be a final discussion and conclusion of this particular work and 

will include suggestions and extensions for the future to be even more flexible 

and usable in the real world. 
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Chapter 2  
2 Literature Review 
 
 This chapter provides a review of previous research in the fields of 

steganographic detection, protocol validation, and real-time network analysis, which form 

the foundation for the work conducted in this thesis.  This chapter’s goal is to provide the 

reader with a basic understanding and background of each area by discussing several 

concepts related to each field. 

 

2.1 Steganography 
 
 This section will provide a brief description of the current research in the area of 

steganography and its detection. 

2.1.1 Steganography Overview 
 
 Individuals have long been concerned with keeping messages and other 

communications from prying eyes.  This desire to secure communications fueled two 

different means of achieving the same end.  One method commonly used to secure digital 

communications and data is encryption.  With encryption, a private message is scrambled 

using some type of algorithm with a sequence of bits known as a key that serves to 

configure the algorithm.  This methodology of securing a message hopes to guarantee 

privacy by the strength of the encryption algorithm and key complexity. 

 Steganography pursues a different means to achieve the goal of private 

communications.  Message security in a steganographic model is achieved by hiding the 

existence of the message in the first place.  [6] defines steganography as “the art of 

inconspicuously hiding data within data” such that unintended recipients do not suspect 
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the existence of hidden data.  The exact process of hiding the information varies from 

medium to medium and type to type, but the basic steganographic process requires three 

items:  cover medium, hidden message, and embedding algorithm.  An optional fourth 

item required is a key. 

 The cover medium in the digital realm is some type of object, be it an image, 

audio, video, text file, data packet, or other file or grouped item or element.  A hidden 

message can be text, a file, or any other data type, including single bits.  The embedding 

algorithm is typically a cover medium-specific algorithm designed to take advantages of 

redundancies and unused bits and bytes specialized to that particular piece of data.  The 

optional key can be used to encrypt the data, configure the embedding algorithm, or both. 

 The exact process of hiding the information varies from medium to medium, but 

the basic design starts with an analysis of the cover medium.  The process finds the bits 

unnecessary to maintain the medium’s integrity, named the redundant bits, and then the 

embedding process replaces the redundant bits with bits from the hidden message. [10] 

Based on the cover medium, this embedding process varies in its usage, analysis, and 

replacement. 

 The cover medium is also known as the carrier type, as it is the item which 

“carries” the steganographic message.  The carrier type can literally be anything physical 

(wax on wood tablets) or intangible (bits of data in data communications).  History tells 

of early steganography attempts by prisoners that hid messages on the wood of the wax-

covered tablets they were given.  Another account tells of how a Roman general shaved a 

slave’s head, tattooed a message, and then sent him to deliver the message after the 

slave’s hair had grown back.   Suggested recent physical uses of steganography were 
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used in the quilts hanging outside the homes of those aiding slaves in the Underground 

Railroad, giving them directions and instructions in plain view while keeping their 

existence hidden from those unaware of the messages. [11] 

 Steganography has taken on a new dimension with the explosion of computing 

technology and the plethora of digital carrier types the computing growth has created.  

Digital cover mediums span a variety of categories and are continually expanding.  

Common carries of steganographic messages include the following types listed below. 

• Images – Gifs, JPEGs, and other image file formats typically have some type of 

redundancy.  Manipulation of these images relies on minute shifts that do not 

drastically alter the image. 

• Audio – While images are effective for steganography, the human ear can be less 

discernable, especially when trying to listen to quiet background noises under a 

loud foreground sound. 

• Video – The sheer size of video files as well as the encoding methods used 

permits a much larger amount of data to be stored. 

• Text – Fonts, spacing, and even word and line ordering can hide a message. 

• Network Communications – Many network protocols have unused bits and bytes 

reserved for future use and rely on honest implementation and “best practices” 

The focus of this research is on network communications, but it is important to be aware 

of the other applications of steganography in a digital medium. 

 Regardless of the medium used, some type of encoding schema must be used to 

integrate the hidden data and the cover medium.  There are a variety of encoding schemes 

available and discussed in the academic community, some of which are applicable to 
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multiple carriers, many of which are limited to a specific carrier type.  Common 

steganographic encoding methods for images, audio, and video include Least Significant 

Bit (LSB) and wavelets. 

 The simplest of these methods is Least Significant Bit substitution where the low-

order bit in all or some bytes is replaced by bits from the hidden or secret message.  Since 

the human eyes and ears are only so discerning and sensitive, the least significant bits of 

the object can typically be modified without worry of a person being able to detect it 

visually or audibly.  However, a computer program can look directly at these bits and 

reconstruct them to form a message or file quickly and easily. 

 The most complex and potentially rewarding method of steganography lies in a 

mathematical modeling concept known as a wavelet.  Wavelets are functions satisfying 

specific mathematical requirements and are used in the representation of functions as well 

as other data. [12] discusses the foundations of wavelets and their ability to see “the 

forest and the trees.”  He also mentions the ability to choose a wavelet best suited for a 

particular data set or truncating the coefficients below a specific threshold to achieve data 

compression.  Research by [13] shows that wavelet manipulation can compress an object 

to a maximum compression without threatening a single bit of the hidden message.  This 

capability of wavelets is an important characteristic which will be discussed shortly. 

 Data masking and filtering techniques are not discussed here as these techniques 

extend data over a cover medium.  These are commonly used as a form of digital 

watermarking and do hide information, but technically are not considered forms of 

steganography.  They will not be discussed further in this document. 
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 Medium- and format-specific steganographic algorithms are the most common 

techniques available used to encode data.  GIF image files commonly have their color 

palette modified or reordered to hold hidden data.  JPEG images can have hidden 

messages intertwined in the data coefficients describing the image pixels.  MP3s and 

WAV files are susceptible to hidden messages being encoded quietly during loud 

portions of a musical crescendo or other loud noise.  Text documents can hide 

steganographic data through line spacing, character fonts, text positioning, and even letter 

arrangements.  Data packets and protocols with loosely defined or undefined bits and 

bytes can transmit information untouched by routers or end systems relaying the 

information.  The list of steganographic mediums and algorithms continues on and on, 

including things such as redundant instruction sets in program executables and even file 

system tables and definitions. 

 Regardless of the medium chosen, steganographic techniques can usually be 

applied to the medium to encode a message within.  While steganography itself is a 

powerful means of securing a message, it can be strengthened.  Encryption algorithms 

can be used in conjunction with steganography methods to further scramble and more 

effectively hide the embedded message.  Prior to the embedding the hidden data in the 

cover medium, the encryption algorithm of choice is run on the hidden message to 

encrypt its contents.  Once encryption is complete, the scrambled message is embedded 

in the cover medium using the algorithm for the specific medium.  Some encryption 

algorithms used include DES, 3DES, and AES. 

 The innocuous nature of steganography is also its main weakness.  Embedded 

data in a cover medium is extremely fragile and is usually threatened or even destroyed 
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by any modifications to the cover medium.  Text documents and GIF images are often 

irreparably altered simply by viewing the file and then saving it without making even a 

single edit. [5] Though there are some encoding methods which provide reliable 

robustness against destruction of the hidden message, many techniques are highly 

susceptible to attacks on message integrity.  Despite this weakness, these mediums and 

others are still used to try and pass hidden messages. 

 
2.1.2 Network Covert Channels 
 
 Covert channels encompass all types of communications, such as inter-process, 

input and output, and even hardware communications.  Network covert channels are a 

specific focus area in steganography and covert channels using communications protocols 

as the medium for sending covert messages.    Network and Internet communications are 

not the only types of covert channels available, though many of the same theories apply.  

For the purpose of this research, network covert channels will be the main type of covert 

channels discussed. 

 [14] defines network covert channels as exploits “by the manipulation of 

communications resources or transmission characteristics” of a communication protocol.  

Manipulation of the communications resources includes modification of any of the fields 

or values defined in the protocol specification to something other than the expected 

usage.  Transmission characteristics include miniscule items such as timing between 

packet transmissions and the size of the packets being transmitted. 

 Most of the research found concerning covert channels was concerned with 

detecting and disrupting the timing of communications as a means to combat time-based 

communications.  [14], [15], and [16] all discuss timing as the methodology of choice to 
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secretly transmit data.  [17] briefly mentions a second means of secretly encoding data by 

placing it in network headers, one of the early examples of network covert channels. 

 The paper continues with a breakdown of covert channel research into four 

disciplines:  Explanation, Identification, Measurement, and Mitigation.  [14] also 

provides some methods of measuring a channel’s capacity and provides a concept useful 

in combating not only timing channels, but a time-independent item as well: the 

introduction of noise into a channel. 

2.1.3 Steganalysis 
 
 Directly countering the art and science of steganography is steganalysis.  The goal 

of steganalysis is to detect, extract, or disable steganography in any type of medium.  

Regardless of how good the steganography method is, [10] says all steganographic 

methods are invasive and therefore leave evidence of their actions.  The most difficult 

portion of steganalysis is reliably and accurately detecting an embedded message.  There 

are two different theories driving steganalysis detection:  statistical review and 

information theory. 

 Based on the medium, there are a number of characteristics that can be gleaned 

from analysis of said medium to create a statistical template.  Some characteristics used 

in image analysis include luminance, coefficient values, and even image continuity.  

These characteristics are then compared to values and tolerances previously generated, 

and any values or characteristics exceeding the threshold are flagged and dealt with 

accordingly. [10] Depending on the threshold and characteristic values chosen, the 

number of erroneous responses (false negatives and false positives) may lead analysts on 

a wild goose chase or may keep them from analyzing objects containing hidden data.   
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 Information theory was pioneered by a researcher named Shannon beginning in 

the 1940s.  This area of research relates to message sources, communication channels, 

and theorems relating entropy to channel capacity.  The fundamental concept of 

information theory is that information is regarded as only those symbols uncertain to the 

receiver in his body of knowledge.  A message is analyzed using information theory, the 

redundancies and predictabilities are removed, and the resulting message is sent, 

minimizing the message’s size while maximizing the number of simultaneous messages 

that can be transmitted. [18] 

 For example, the message “We have a large database to transmit containing secret 

agent records” could be minimized to “We hve lrg db 2 trnsmt cntaing scrt agt recs.”  

While a simplistic example, it helps illustrate the broader uses of information theory 

when transmitting real-time video for streaming internet or cable or satellite TV, or real-

time audio over cellular phones and landlines.  Transmitting a studio-quality full-motion 

video TV signal to a home requires 70,000,000 bits per second, a rate which is 

economically impractical even using high bandwidth fiber optics connection.  Using 

information theory, this rate can be compressed to 368, 192, or even 56 kilobytes per 

second.  The same idea follows for phones, where voice data is compressed down as low 

as 64 kilobits per second, if not lower. [18] 

 Information theory plays a role in steganalysis because of its reducing and 

compressing nature.  Using information theory, analysts can determine the object’s 

capacity to store extra data or determine whether or not the object has redundancies that 

should have been removed during the original encoding process.  By examining the 

results from each of these processes, analysts can more accurately predict the probability 
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that the object has information embedded in it.  Information theory can be applied to all 

carrier types and cover mediums with algorithms specific to the type and medium 

structure or format.  For communications protocols, information theory can be used to 

determine the protocol’s capacity to hold hidden data and whether or not the protocol is 

being used to send extra data.  [19] 

 

2.2 Real-time Network Analysis 
 
 This section will review research regarding real-time network analysis and 

supporting areas. 

2.2.1 Real-time Network Analysis 
 
 Humans have long had questions about the truth of what is really happening 

during an event.  We may think that we know what is happening, but we still want proof 

that what we think is occurring is truly occurring.  Ask any network administrator and he 

will tell you that one of the things that he wants to know and be sure of is that what he 

thinks is happening on his network IS happening on his network is happening RIGHT 

NOW.  Like anyone responsible for safeguarding a location, item, or person, finding out 

that someone was trying to break into the network or was engaging in a denial-of-service 

attack even as few as five minutes ago is often unacceptable. 

 This is where real-time network analysis has its stake.  The ideal of real-time 

network analysis is to examine every packet passing through a particular network 

segment to determine anomalies, show traffic patterns, and respond to changes or 

unauthorized behavior or traffic accordingly.  On small, slow, and rarely-used home 

networks, this goal may be easily attained; large, fast and busy networks can end up 
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overwhelming a single system, causing a bottleneck and degrading network 

responsiveness, throughput, and productivity.  The goals of real-time network analysis 

are to provide as clear a picture of the network and its utilization as possible without 

having a detrimental affect on any of the network’s services, usage, or throughput. 

 [20] discusses a simple, efficient, and effective real-time network analysis 

strategy based on a queue structure that samples incoming packets for analysis.  By 

examining packet frequencies, end points, and end ports, a clearer view of how the 

network is utilized is created at that instant.  His simple model shows how a large 

network can quickly be analyzed for anomalies such as abnormally high traffic patterns 

or unexpected traffic types between systems.  [20]’s case studies were performed on a 

network gateway with a bandwidth of 7 MB and an average of 1000 to 4000 packets 

passing through it per second. 

 Research by [21] on an OC-3 network running at 155 MB was published in 1997.  

This group’s work gathered varying statistics from the network such as average packet 

size, source information, destination information, and the protocols used to transfer the 

information over IP.  This statistical sampling was again a rather simple analysis of 

network traffic again centered on the basic information gleaned from the header 

information on each packet. 

 The largest hurdle of real-time network analysis is being able to perform an 

intensive analysis of every packet in real time without degrading the usability of the 

network.  [20]’s research showed a node processing 1000 to 4000 packets per second on 

average, which translates into an average processing time of 0.00025 to 0.001 seconds to 

analyze a packet.  When gathering statistics on a network, this limitation can be easily 
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met by a few lines of code and a few conditional statements, all of which can be 

optimized.  The processing time complexity of such a statistical algorithm is low.  

Performing an in-depth analysis of the packets based on source, destination, protocol, and 

content validity and integrity has a much larger processing time complexity and can 

quickly lead to dropped packets and inefficient usage of network resources. 

 Optimizing analysis code and providing faster support hardware to execute the 

analysis code are two common methods for overcoming this boundary, but each has their 

own drawbacks.  Optimized code is typically limited to the system architecture it is 

written for, and faster supporting hardware is often financially burdensome.  It is also 

difficult to analyze gigabit plus data rates used in inter-backbone communications 

reliably.   

 The next theory is to split the analysis processing into smaller, more manageable 

sections such as network segments.  While analysis of these smaller, slower segments can 

be done with older equipment, this benefit is offset by the necessity of the amount of 

equipment required to monitor an entire network.  Instead of a single high-performance 

system at the entry point to an entire network, there would be multiple inexpensive 

systems utilized on the network. 

 [22] reports that network packet analysis requires too much human and hardware 

resources to be used on anything than a small network segment.  Requirements for simply 

recording all of the traffic without loss of packet data through network saturation or 

storage delay are difficult enough to reliably achieve.  This group’s body of work 

suggests that data analysis post-event allows for a less time-restricted decision to be 
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rendered.  This also gives the analyst a potentially large body of data to support and 

justify any claims made.   

2.2.2 Application of Real-time Network Analysis 
 
 The applications of real-time network analysis to the problem of network 

steganography on the DNS protocol are straightforward.  First, we are performing a real-

time analysis of the network traffic and attempting to gather usage and packet 

characteristics.  Our particular problem domain is a subset of the traffic monitored by a 

typical network monitor, traffic running to or from port 53.  This is the port the Domain 

Name Service is commonly available on.   

 Traffic analysis will look at all packets with a source or destination port of 53 and 

perform an in-depth review of these packets to validate packet structure based on the 

protocol specifications and network topology.  Here we are first concerned with whether 

or not the protocol is being utilized properly based on the protocol’s specification.  

Traffic failing to conform to the standard or using undefined options are subject to 

review.  Secondly we are concerned with the traffic’s flow with regards to network 

topology based on services available on a specific network segment.  There should not be 

any DNS requests going to or DNS responses coming from a network segment that does 

not have a DNS server.  Evidence of the failures is likely to show an improperly 

configured machine, incorrect implementations of the DNS protocol, or rogue 

applications and servers. 

 The final application of network analysis to this problem area is a hands-on 

approach that modifies packet data.  This intensive approach permits rogue packets to be 

caught and hopefully rendered inert as they are forwarded on.  Unfortunately this 
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particular process is extremely invasive, but executed properly results in an entirely 

transparent process to honest users.  Since our goal is to minimize, if not eliminate covert 

communications over DNS, modification of any weak or easily manipulated fields is an 

essential portion of our analysis that must be done in real-time. 

 

2.3 Summary 
 
 The review of literature provided in this chapter has shown some of the more 

recent and prominent research regarding steganography, steganalysis, covert channels, 

and real-time network analysis. This body of work will attempt to unify these areas into a 

networking tool that will provide a contribution to the field of computer security.  It has 

become apparent from the research described previously that there is very little attention 

paid to covert channels within network communications.  Most research for 

steganography or covert channels returns some information on network-related fields, but 

little information was available beyond the basics concerning specific algorithms or 

communications.  With the integral parts that communications protocols play in basic 

Internet usage, it is disturbing to see that very little research is available to counter the 

weaknesses inherent in many protocols.  Malicious and rogue users are quick to employ 

and utilize such weaknesses to achieve their own goals, yet very little is done to minimize 

this risk. 

 It was also observed that there is a great deal of potential for continuing research 

and application of current real-time analysis work with regards to security.  The current 

trends of analysis rely heavily on gathering basic statistics from network packets to gain a 

clearer view of network utilization.  It has been shown that analysis can detect unusual 
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behaviors such as port scanning [20], but little work is listed about the network 

responding to anomalies such as this by bandwidth throttling, packet dropping, or other 

techniques.  Since we can see the activities occurring in real-time, we should also be able 

to respond to them in real-time as well. 

 The remainder of this thesis will be focused on describing a specific algorithm for 

minimizing the capability of covert channels in DNS as well as a generic algorithm for 

the achieving the same goal on other protocols.  This includes the Network Validated 

DNS tool, a tool implemented from this algorithm and drawing its inspiration from 

research discussing the capabilities and bandwidth of covert channels. 
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Chapter 3  
 
3  Limiting DNS Covert Channels 
 
 In chapters 1 and 2 it was observed that there was very little formal research done 

to minimize the potential for covert channels in networked systems.  Most of the research 

provided means of detection, if possible, and does not provide any methods of disabling 

or attacking the hidden data.  In this chapter, several methods of detection and disabling 

are discussed with regards to the DNS protocol.  This chapter will form the basis for tools 

applying this methodology that will be described in chapter 4. 

 

3.1 Understanding the DNS protocol 
 
 The DNS protocol is an integral service of the internet responsible for translating 

domain name requests, such as www.wvu.edu, into their corresponding IP addresses 

(157.182.140.235).  Without DNS, users would be forced to remember a series of 

numbers for each site they wanted to visit.  Attempts to remember Google 

(64.233.167.99), WVU (157.182.140.235), and ZDNet (216.239.115.140) would quickly 

devolve into random number guessing and make Internet connectivity little more than a 

passing interest, especially should the IP address of the domain change.  In chapter 1, it 

was mentioned that rogue users could subvert the DNS protocol to use it as a 

communications channel.  Understanding how the protocol works is essential to all other 

aspects of our attempt to control covert channels within it.  The following definitions 

come from [3] and [9], with definitions from other RFCs included. 
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3.1.1 Historical Perspective 
 
 Beginning in the 1960s with ARPAnet, hostname to IP address name mappings 

were collected, updated and distributed via FTP from the Network Information Center, a 

single location on ARPANET.  This scheme originally worked well as there were few 

hosts and few changes to the network addresses.  In the years prior to 1983, the number 

of hosts on the Internet had increased dramatically and threatened an explosion of 

growth, creating a need for a more efficient and dynamic method of performing domain 

name translations.  The resulting proposals centered on the concept of a distributed 

hierarchical model roughly corresponding to the organizational structure of the domain 

names.   The basic structure and operation of DNS was implemented in 1983 and was 

proposed as an RFC in 1987. [3] 

 DNS is designed to be as flexible as possible to allow a more general-purpose tool 

that can be used across multiple network types with varying domain name structures.  It 

also is designed to be able to locate data beyond simple IP address mappings, thus 

requiring greater flexibility.  This flexibility and expansive approach allows for a large 

amount of maneuvering room, enough to permit the subversion of the protocol. 

 The protocol runs primarily over UDP/IP to minimize connection overhead, but 

TCP/IP can also be used when data ordering is important or while transferring a large 

amount of data.  Further historical information can be found in [3] and the following 

sections assume that the reader is somewhat familiar with [3] and [9], as well as network 

technologies and concepts.  Figure 3.1 shows a high-level overview of a DNS packet.  

Each section of the DNS packet will be discussed in detail in the following subsections. 
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Figure 3-1  DNS Packet Sections Overview 

Table 3.1  DNS Packet Sections Description 

Field Description 
Header Contains processing information and protocol-

specific options 
Questions Contains the request for an unresolved domain 

name or Internet Address 
Resource Records Contains response information for the question  

 
3.1.2 Header Definition 
 
 Each DNS packet sent and received is composed of a fixed-length header section, 

an optional question section, and a variable number of variable length resource records.  

The question section is described in section 3.1.3 and the resource records are described 

in section 3.1.4. 

 The header of each DNS packet is a fixed 12 byte length, beginning at the zero 

offset of the data section of packet payload.  The header is show in figure 3.2 and a brief 

description of each field is listed in table 3.2. 

 

 
Figure 3-2  Packet Header 
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Table 3.2  Packet Header Field Definitions 

Field Type Valid Values Description 
ID 16 bit unsigned int 0 - 2^16-1 ID assigned by program generating DNS query 
QR 1 bit 0 - 1 Query (0) or Response (1) 
Opcode 4 bit unsigned int 0 - 2 Describes the type of query 
AA 1 bit 0 - 1 Authoritative Answer 
TC 1 bit 0 - 1 TrunCated message indicator 
RD 1 bit 0 - 1 Recursion Desired 
RA 1 bit 0 - 1 Recursion Available 
Z 3 bits 0 Reserved 
Rcode 4 bit unsigned int 0 – 5 Response Code 
QDCount 16 bit unsigned int 0 - 2^16-1 Number of questions encoded 
ANCount 16 bit unsigned int 0 - 2^16-1 Number of answers encoded 
NSCount 16 bit unsigned int 0 - 2^16-1 Number of Nameservers encoded 
ARCount 16 bit unsigned int 0 - 2^16-1 Number of Additional Records encoded 

 
 The field definitions listed above are fairly straightforward and simple to 

understand, just as the values for each field based on a condition set are simple to 

understand.  The definition of the header field includes a number of specific conditions 

that must be met for the values in each field to be valid.  These specifics will be discussed 

further in sections 3.2 and 3.3. 

3.1.3 Question Section Definition 
 
 Every DNS packet typically has a question included in its contents.  Questions 

form the basis of the client aspect of the client-server relationship DNS functions.  The 

question section of the DNS protocol is a variable length field followed by two fixed-

length fields.  Figure 3.3 shows the layout of the question section and table 3.3 contain 

descriptions of the field types and the values permitted for each field. 
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Figure 3-3  Question Format 

Table 3.3  Question Field Definitions 

Field Type Valid Values Description 
Qname <Domain-name> See syntax table Domain Name of the question 
Qtype 16 bit unsigned int 1-16, 252-255 Type of query requested 
Qclass 16 bit unsigned int 1-4 Query class format 
 
3.1.4 Resource Record Definitions 
 
 Each DNS packet optionally contains one or more variable length and structure 

items known as resource records.  Resource records contain varying types of data such as 

IP addresses, start of authority records, and mailbox information.  By far, this portion of 

the packet is the most important portion of the packet being transmitted as it handles 

numerous data types.  Regardless of the data types being passed, each resource record has 

a header specifying the record’s name, type, class, time to live, and data length.  The data 

portion of the record immediately follows the data length field and is formatted according 

to the type and class fields specified.  Figure 3.4 describes the resource record format 

while table 3.4 describes the field names and types. 
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Figure 3-4  Resource Record Format 

Table 3.4  Resource Record Field Definitions 

Field Type Valid Values Description 
Name <Domain-name> See syntax table Node to which this resource record pertains 
Type 16 bit unsigned int 1 - 16 Type code determining structure of the Rdata 
Class 16 bit unsigned int 1 – 4 Class code for determining format of the Rdata 
TTL 32 bit unsigned int 0-(2^32)-1 Time To Live 
RDLength 16 bit unsigned int 0-(2^16)-1 Size of the Rdata structure 
Rdata Varies by Type See Type table Data of the Resource Record, determined by type code 

 
 The type field is responsible for determining the structure of the data portion of 

the resource record.  The class field is primarily used to specify the data format based on 

the addressing format used:  Internet, CSNet, CHAOS, or Hesiod.  Tables 3.5 and 3.6 list 

the valid types and classes per [3] and [9].  The following subsections will explain the 

structure of the resource record for each type value. 

Table 3.5  Resource Record Types 

Name Value Description 
A 1 Answer 
NS 2 Authoritative Name Server 
MD 3 Mail Destination 
MF 4 Mail Forwarder 
CNAME 5 Canonical name for alias 
SOA 6 Start of Zone Authority 
MB 7 Mailbox domain name 
MG 8 Mail group domain name 
MR 9 Mail rename domain name 
NULL 10 Any data valid 



 30 

WKS 11 Well-Known Service 
PTR 12 Domain Name Pointer 
HINFO 13 Host Information 
MINFO 14 Mailbox/Mail list information 
MX 15 Mail Exchange 
TXT 16 Text Strings 
AFXR 252 Entire Zone Transfer 
MAILB 253 Request for Mailbox-related records 
MAILA 254 Request for all mail agents 
* 255 Request for all records 
 
Table 3.6  Resource Record Classes 

Name Value Description 
IN 1 Internet 
CS 2 CSNet 
CH 3 CHAOS Net 
HS 4 Hesiod 
 
 
3.1.3.1 – Type A 

 
Figure 3-5  Type A Resource Record Format 

Table 3.7  Type A Resource Record Field Definitions 

Field Type Valid Values Description 
ADDRESS 32 bit IP Address 0-(2^32)-1 IP Address 
 
3.1.3.2 – Type NS 
 

 
Figure 3-6  Type NS Resource Record Format 

Table 3.8  Type NS Resource Record Field Definitions 

Field Type Valid Values Description 
NSDNAME <Domain-name> See syntax table Authoritative Nameserver 
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3.1.3.3 – Type MD 
 

 
Figure 3-7  Type MD Resource Record Format 

Table 3.9  Type MD Resource Record Field Definitions 

Field Type Valid Values Description Notes 
MADNAME <Domain-name> See syntax table Mail Destination Obsolete 
 
3.1.3.4 – Type MF 
 

 
Figure 3-8  Type MF Resource Record Format 

Table 3.10  Type MF Resource Record Field Definitions 

Field Type Valid Values Description Notes 
MFRDATA <Domain-name> See syntax table Mail Forwarder Obsolete 
 
 
 
3.1.3.5 – Type CName 
 

 
Figure 3-9  Type CNAME Resource Record Format 

Table 3.11  Type CNAME Resource Record Field Definitions 

Field Type Valid Values Description 
CNAME <Domain-name> See syntax table Canonical name for an alias 
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3.1.3.6 – Type SOA 
 

 
Figure 3-10  Type SOA Resource Record Format 

Table 3.12  Type SOA Resource Record Field Definitions 

Field Type Valid Values Description 
MNAME <Domain-name> See syntax table Primary nameserver for 

zone data 
RNAME <Domain-name> See syntax table Zone administrator's 

Mailbox 
SERIAL 32 bit unsigned int 0 - (2^32)-1 Original version number of 

zone 
REFRESH 32 bit unsigned int 0 - (2^32)-1 Time interval before zone 

refresh 
RETRY 32 bit unsigned int 0 - (2^32)-1 Time interval before zone 

refresh on failed 
EXPIRE 32 bit unsigned int 0 - (2^32)-1 Time limit before zone no 

longer authoritative 
MINIMUM 32 bit unsigned int 0 - (2^32)-1 Minimum TTL field exported 

from this zone 
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3.1.3.7 – Type MB 
 

 
Figure 3-11  Type MB Resource Record Format 

Table 3.13  Type MB Resource Record Field Definitions 

Field Type Valid Values Description Notes 
MADNAME <Domain-name> See syntax table Host containing the 

specified mailbox 
Experimental 

 
 
3.1.3.8 – Type MG 
 

 
Figure 3-12  Type MG Resource Record Format 

Table 3.14  Type MG Resource Record Field Definitions 

Field Type Valid Values Description Notes 
MGMNAME <Domain-name> See syntax table Specifies member mailbox 

of mail group specified by 
domain 

Experimental 

 
 
3.1.3.9 – Type MR 
 

 
Figure 3-13  Type MR Resource Record Format 

Table 3.15  Type MR Resource Record Field Definitions 

Field Type Valid Values Description Notes 
NEWNAME <Domain-name> See syntax table Specifies mailbox which is 

the proper rename of 
specified mailbox 

Experimental 
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3.1.3.10 – Type NULL 
 

 
Figure 3-14  Type NULL Resource Record Format 

Table 3.16  Type NULL Resource Record Field Definitions 

Field Type Valid Values Description Notes 
<ANYTHING> <8 bit unsigned int> Any value Field permitting any kinds of 

values to be input.  Used for 
testing. 

Experimental 

 
 
3.1.3.11 – Type WKS 
 

 
Figure 3-15  Type WKS Resource Record Format 

Table 3.17  Type WKS Resource Record Field Definitions 

Field Type Valid Values Description 
ADDRESS 32 bit IP Address 0 - (2^32)-1 IP Address 
Protocol 8 bit unsigned int 6 (TCP), 17(UDP) Protocol number as 

determined by IANA for IP 
<BIT-MAP> 8 bit unsigned int 0 - 255 Bitmap showing available 

service ports on the 
specified IP Address 

 
3.1.3.12 – Type PTR 
 

 
Figure 3-16  Type PTR Resource Record Format 

Table 3.18  Type PTR Resource Record Field Definitions 

Field Type Valid Values Description 
PTRDNAME <Domain-name> See syntax table Pointer to some location in 

the domain name space 
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3.1.3.13 – Type HINFO 
 

 
Figure 3-17  Type HINFO Resource Record Format 

Table 3.19  Type HINFO Resource Record Field Definitions 

Field Type Valid Values Description Notes 
CPU <character-string> See syntax table Specifies host CPU type 40 char max 
OS <character-string> See syntax table Specifies host OS 40 char max 
 
3.1.3.14 – Type MINFO 
 

 
Figure 3-18  Type MINFO Resource Record Format 

Table 3.20  Type MINFO Resource Record Field Definitions 

Field Type Valid Values Description 
RMAILBOX <Domain-name> See syntax table Specifies mailbox 

responsible for mailing list 
or mailbox 

EMAILBOX <Domain-name> See syntax table Specifies mailbox to receive 
error messages 

 
3.1.3.15 – Type MX 
 

 
Figure 3-19  Type MX Resource Record Format 
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Table 3.21  Type MX Resource Record Field Definitions 

Field Type Valid Values Description 
PREFERENCE 16 bit unsigned int 0 - (2^16)-1 Specifies mailbox 

responsible for mailing list 
or mailbox 

EXCHANGE <Domain-name> See syntax table Specifies mailbox to receive 
error messages 

 
3.1.3.16 – Type TXT 
 

 
Figure 3-20  Type TXT Resource Record Format 

Table 3.22  Type TXT Resource Record Field Definitions 

Field Type Valid Values Description 
TXT-DATA <character-string> See syntax table Holds descriptive text 
 
 Table 3.6 listed the legal class values permitted and defined in [3] and [9].  The 

most prevalent class value in use is class 1, Internet, but the protocol’s designers wanted 

DNS to be a flexible service, so the values for CSNet, CHAOS, and Hesiod were 

included to allow for cross-addressing protocol communications.  For the purpose of this 

research, non-Internet protocols were included, but specifics of the varying class types 

will not be discussed in the paper. 

3.1.5 Syntax and Compression 
 
 There are two further pieces of information that must be understood to fully 

understand the DNS protocol:  syntax and message compression. 

3.1.5.1 Message Syntax 
 
 Throughout the definitions of the resource records, references were made to a data 

type known as <Domain-name>.  Table 3.23 breaks this data type into its atomic pieces 

and defines the valid values.  
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Table 3.23  Message Syntax Definition 

Field Definition 
<Domain-name> <subdomain> | " " 
<subdomain> <label> | <subdomain> "." <label> 
<label> <let-dig>[[<ldh-str>]<let-dig>] 
<ldh-str> <let-dig-hyp> | <let-dig-hyp> <ldh-str> 
<let-dig-hyp> <let-dig> | "-" 
<let-dig> <letter> | <digit> 
<letter> A - Z, a – z 
<digit> 0 – 9 
 
 Each label begins with an octet defining the length of the following label, and a 

series of labels is always terminated by a zero or null octet.  In addition to the syntax 

listed above, there are several length requirements that must be met.  The first is each 

label’s length is limited to 63 bytes at a maximum.  The reason for this limit will be 

discussed under message compression.  The final requirement for a series of labels is that 

the maximum length of all of the labels, including the label length octets, is 255 octets. 

 IP addresses can also be encoded as part of a DNS request, but their format seems 

opposite that of a standard domain name.  A request for 64.233.167.99 would be encoded 

as 99.167.233.64.IN-ADDR.ARPA. 

 The resource record definitions also made reference to a data type listed as 

<character-string>.  Unless otherwise specified, this data type is characterized by a single 

label length octet followed by that number of characters, making the maximum permitted 

length of the character data and the length octet 256 characters.  The information in the 

data type is treated as binary information.  <Character-string> can be expressed in two 

ways:  as a set of contiguous characters lacking spaces, or as a string encapsulated within 

a pair of quotation marks (“).  Strings encapsulated within quotation marks containing 

quotation marks themselves must be quoted using the backslash. 
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3.1.5.2 Message Compression 

 In order to minimize the size of a message by removing redundant information, 

inline message pointers were implemented in the body of the DNS packet for the Name 

data type of the resource record, allowing data from one record to be utilized in another 

record.  This concept is illustrated in figure 3.21 below.  The top line is the offset value 

from the packet start, boldface characters are ASCII values, and regular characters are 

integer values. 

 
Figure 3-21  Message Compression Example 

 
 As we can see, ns1.nameserversite.com becomes the only fully domain name used 

in the entire packet, even though there are eight nameservers listed.  Records ns2 through 

ns8 point to the offset in the packet where .nameserver.com originate, saving a significant 

amount of data per resource record.  Message Compression is indicated by setting the 

first two high-order bits of a label length octet to 1.  The remaining 6 bits of that octet and 

the following octet form the offset from the start of the packet where the next portion of 

the domain name can be found.  It is possible for a single domain name to have multiple 

pointers, such as the described in figure 3-22.   
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Figure 3-22  Multiple Inline Pointers 

 
 Thus, we see that the resource record for www.lcsee.cemr.wvu.edu has two 

pointers for message compression.  Pointers can also be used to start a domain name, as 

shown by the last entry in figure 3.22.  Here we have a record that is part of the 

www.wvu.edu record, and to compress the record data, the record begins with a pointer 

to the original www.wvu.edu record.  These are slightly simplistic examples, but we can 

see how message compression can be utilized to minimize the size of a DNS packet. 

 

3.1.6 Summary 
 
 This subsection was intended to be an informational overview describing the DNS 

protocol at a slightly higher-level while maintaining enough technical content to allow a 

proper analysis of the protocol definition in section 3.2.  In this subsection, all valid 

syntax and values were defined for each of the fields and a number of condition sets were 

created, all of which will be used in aiding our analysis and response. 
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3.2 Identification of Fields 
 
 In order for a protocol to be subverted and remain inconspicuous and valid to 

anyone weakly monitoring the data, a certain amount of weakness must be present in the 

protocol’s definition.  In this section, the protocol definitions are broken into several 

categories based on their requirements as part of the packet and whether the legal values 

are completely set.  The four resulting categories are as follows: 

• Required strong fields – Fields that must be present and must have a set value to 

be valid 

• Required weak fields – Fields that must be present but do not require a specific 

value to function 

• Optional strong fields – Fields that may be present and must have a set value to be 

valid 

• Optional weak fields – Fields that may be present but do not require a specific 

value to function 

 

 The reason we are breaking these down is these fields all take up a certain portion 

of the transmission channel bandwidth and therefore affect the amount of data that can be 

transmitted in each packet.  Table 3.24 below shows a breakdown of the four fields as 

each relates to the packet bandwidth. 

Table 3.24  Packet Type Breakdown 

Type Values Bits per Packet 
Required Strong RS 
 Weak RW 
Optional Strong OS 
 Weak OW 
 RS+RW+OS+OW=Packet size 
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However, as this relates to covert channels, the weak fields represent the maximum bits 

per packet that can supposedly be transmitted without affecting the operation of the 

protocol.  In effect, this value is lower as there are still some requirements placed on the 

syntax and format of the data.   

3.2.1 Required fields 
 
 Research and understanding of the DNS protocol leads to the conclusion that the 

only required portion of the protocol that was to be present in every packet is the header 

section.  From here, review of the fields within the header revealed that only one field 

with a required value: the Z field where all bits within this field must be zero.  The rest of 

the fields were set according to direction and packet information and were therefore 

classified as required weak fields.  Table 3.25 contains a full list of the findings. 

 
Table 3.25  Required Strong and Weak Fields 

Strong Fields Value Weak Fields 
Z 0 ID OPCODE 
  QR RCODE 
  AA QDCOUNT 
  TC ANCOUNT 
  RD NSCOUNT 
  RA ARCOUNT 
 
 
3.2.2 Optional fields 
 
 The question section and resource records were determined to be optional sections 

as they were not required in every packet like the header.  The fields of the question and 

record portion of the protocol were found to be composed entirely of weak fields and 

were classified as such.  Resource record structures based on class type were also 

examined for weak and strong fields.  Table 3.26 contains a comprehensive list of the 
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varying type value structures and their definitions.  Review of these fields show that no 

field has any strong fields, so all of the type value definitions were classified as optional 

weak fields since their parent, the resource record, is optional. 

 
Table 3.26  Optional Weak Fields 

Weak Fields 
QNAME TTL CNAME EXPIRE <BIT-MAP> 
QTYPE RDLENGTH MNAME MINIMUM PTRDNAME 
QCLASS RDATA RNAME MGMNAME CPU 
NAME ADDRESS SERIAL NEWNAME OS 
TYPE NSDNAME REFRESH <ANYTHING> RMAILBOX 
CLASS MADNAME RETRY PROTOCOL EMAILBOX 
PREFERENCE EXCHANGE TXT-DATA 

 
 

3.3 Network Topology Awareness 
 
 While format requirements and valid data ranges can help minimize the 

subversion of the protocol, the direction and types of traffic transmitted across the 

network can impact the usage of covert channels.  DNS is a client-server protocol where 

a request is made to a server and the server responds with an answer.  It is common for 

the DNS server for one client to itself become a client to another DNS server in order to 

resolve a particular request.  The hierarchical nature of DNS paints a portrait of a network 

designed as shown in figure 3.23. 
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Figure 3-23  Example Network Layout 

 
 
 It is from the network’s topology that we further pare down the permissible 

options and fields to a subset of valid options based on the network structure.  For 

example, DNS traffic coming from the 157.182.213.X network does not have a DNS 

server in that particular collision domain, so we can effectively rule out specific values 

and options in a number of weak fields due to the expected types of traffic coming from a 

particular network segment.  Due to the client-server nature of DNS, a second 

categorization of the fields into client and server functionality occurred.   
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 It was noted that since servers could also act as clients, the categories would be 

divided into server-only, client-server, and client-only, where the client-only fields were 

for machines that were strictly end-systems, while servers potentially utilized the whole 

set of DNS fields and functionality.  Server-only categories of functionality are intended 

for DNS servers on the absolute root of the domain hierarchy, such as .com, .org, and .net 

servers.  However, due to the nature of the protocol, this server-only division is not 

guaranteed.  It has been included as a category as theoretically it is possible to have a 

system that behaves as a pure server. 

 By being aware of the network’s topology and of the expected services 

permissible in a segment, we can further reduce the capabilities of covert channels in 

DNS.  Tables 3.27 and 3.28 contain a list of client-only fields and valid values for both 

incoming and outgoing traffic.  Tables 3.29 and 3.30 contain a listing of server-only 

fields and the valid values for incoming and outgoing traffic.  Certain inbound and 

outbound types have been excluded as the resource record definitions for those types are 

not permitted. 
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Table 3.27  Client-Only Expected Field Values 

Field Name Outbound Inbound 
ID Any Matches previous outbound 
QR 0 1 
OPCODE 0 - 2 0-2 
AA 0 0,1 
TC 0 Usually 0 
RD 0,1 0 
RA 0 0,1 
Z 000 000 
RCODE 0 0-5 
QDCOUNT 1 1 
ANCOUNT 0 0 - (2^16)-1 
NSCOUNT 0 0 - (2^16)-1 
ARCOUNT 0 0 - (2^16)-1 
QNAME <Domain-name> Matches previous outbound 
QTYPE 1-16, 252-255 Matches previous outbound 
QCLASS 1-4 Matches previous outbound 
NAME - <Domain-name> 
TYPE - 1 - 16 
CLASS - 1 - 4 
TTL - 0 - (2^32)-1 
RDLENGTH - 0 - (2^16)-1 
RDATA - See Client RR table 
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Table 3.28  Client-Only Expected RR Values 

RR Type Field Inbound 
A ADDRESS 32 bit IP address - Some exceptions 
NS NSDNAME <Domain-name> 
MD MADNAME <Domain-name> 
MF MADNAME <Domain-name> 
CN CNAME <Domain-name> 
SOA MNAME <Domain-name> 
 RNAME <Domain-name> 
 SERIAL 0 - (2^32)-1 
 REFRESTH 0 - (2^32)-1 
 RETRY 0 - (2^32)-1 
 EXPIRE 0 - (2^32)-1 
 MINIMUM 0 - (2^32)-1 
MB MADNAME <Domain-name> 
MG MGMNAME <Domain-name> 
MR NEWNAME <Domain-name> 
NULL <ANYTHING> Anything 
WKS ADDRESS 32 bit IP address - Some exceptions 
 PROTOCOL 6 (TCP), 17 (UDP) 
 <BIT-MAP> 0 - 255 
PTR PTRDNAME <Domain-name> 
HINFO CPU <character-string> 
 OS <character-string> 
MINFO RMAILBOX <Domain-name> 
 EMAILBOX <Domain-name> 
MX PREFERENCE 0 - (2^16)-1 
 EXCHANGE <Domain-name> 
TXT TXT-DATA <character-string>[<character-string>] 
 
 



 47 

Table 3.29  Server-Only Expected Field Values 

Field Name Outbound Inbound 
ID Matches previous inbound Any 
QR 1 0 
OPCODE 0-2 0 - 2 
AA 0,1 0 
TC Usually 0 0 
RD 0 0,1 
RA 0,1 0 
Z 000 000 
RCODE 0-5 0 
QDCOUNT 1 1 
ANCOUNT 0 - (2^16)-1 0 
NSCOUNT 0 - (2^16)-1 0 
ARCOUNT 0 - (2^16)-1 0 
QNAME Matches previous inbound <Domain-name> 
QTYPE Matches previous inbound 1-16, 252-255 
QCLASS Matches previous inbound 1-4 
NAME <Domain-name> - 
TYPE 1 - 16 - 
CLASS 1 - 4 - 
TTL 0 - (2^32)-1 - 
RDLENGTH 0 - (2^16)-1 - 
RDATA See Server RR table - 
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Table 3.30  Server-Only Expected RR Values 

RR Type Field Outbound 
A ADDRESS 32 bit IP address - Some exceptions 
NS NSDNAME <Domain-name> 
MD MADNAME <Domain-name> 
MF MADNAME <Domain-name> 
CN CNAME <Domain-name> 
SOA MNAME <Domain-name> 
 RNAME <Domain-name> 
 SERIAL 0 - (2^32)-1 
 REFRESTH 0 - (2^32)-1 
 RETRY 0 - (2^32)-1 
 EXPIRE 0 - (2^32)-1 
 MINIMUM 0 - (2^32)-1 
MB MADNAME <Domain-name> 
MG MGMNAME <Domain-name> 
MR NEWNAME <Domain-name> 
NULL <ANYTHING> Anything 
WKS ADDRESS 32 bit IP address - Some exceptions 
 PROTOCOL 6 (TCP), 17 (UDP) 
 <BIT-MAP> 0 - 255 
PTR PTRDNAME <Domain-name> 
HINFO CPU <character-string> 
 OS <character-string> 
MINFO RMAILBOX <Domain-name> 
 EMAILBOX <Domain-name> 
MX PREFERENCE 0 - (2^16)-1 
 EXCHANGE <Domain-name> 
TXT TXT-DATA <character-string>[<character-string>] 
 
 
 
 
3.4 Identifying and Limiting Covert Channels 
 
 In sections 3.2 and 3.3, we identified a number of protocol- and network-specific 

constraints that were to be followed in order to maintain compliance with the protocol’s 

standards.  With these constraints in mind, a series of permitted operations based on the 

protocol and network layout from our lists can be derived.  We can generate rule listings 

based on tables 3.27, 3.28, 3.29, and 3.30 that were in turn derived from the protocol and 

network definitions. 



 49 

 From tables 3.27 and 3.28, we can see that the rule set for the client side is fairly 

simple, depending on the functionality we want to permit on the network segment.  

However, the question of how we detect covert channels remains.  The most obvious way 

to detect them is to see which, if any, of the rules a packet fails and then paying special 

attention to that packet.  This is the most obvious way to detect covert channels, but does 

not mean that the other packets do not have covert transmissions hidden within.   

 Since we are not able to fully detect all types of covert communications, the 

option we have is to manage all fields not requiring an explicit value to function, such as 

the ID field.  Limiting the potential for covert communications can be achieved by 

placing a layer of abstraction between the user’s computer and the outgoing network 

interface from a segment.  In this model, when a packet is received, all fields except the 

data payload field are rewritten or regenerated, and then the query is passed on to the 

DNS server.  The ID field, which may previously have had a value of 1042, may now 

have a value of 249 courtesy of a random number generator.  The response from the 

server is processed in a similar manner, removing any invalid response options, and the 

original field data with a reply is returned to the user.  Regular users see nothing amiss 

while rogue users may be forced to utilize another method to transmit their data. 

 
3.5 Response Options 
 
 Once identification of a covert channel has occurred, the question of how to 

respond to the channel remains.  From the steganography model, there are three options 

we can glean from the portrayal of Alice, Bob, and the warden: Permit, Drop, and 

Reprocess. 
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 The option to respond by permitting all traffic is a response that trusts the packets 

passing through without any question.  Packets failing the filtering rule are permitted to 

continue on without any modifications or other response.  Any type of network 

implementing this choice long-term does not require any type of validation service unless 

looking for unexpected services or monitoring traffic. 

 Choosing to drop any packets failing the filtering rules is the second of the three 

options derived from the warden’s portrayal.   With this choice, packets failing any of the 

filters are simply discarded as though they were dropped somewhere along the line by the 

network.  This implementation choice can cause a buildup of DNS traffic on the segment 

as the protocol’s definition suggests a number of times to retry a request following the 

lack of a response within an allotted time period.  Small network segments without a 

large amount of DNS traffic can utilize this measure with little impact on network 

responsiveness. 

 Reprocessing a message is the equivalent of the active warden model, where the 

warden takes a message from Alice, types it up on the typewriter and performs some 

other analysis on it, and then gives it to Bob.  The application of this model to the 

problem of DNS covert channels involves rewriting as much of the packet as possible 

without losing the meaning of the message being passed.  In this application, 

reprocessing would entail overwriting every field failing the filtering rules and other 

fields whose modification does not impact the packet integrity. 

 The response options given by steganalysis are simple concepts that can be used 

to disrupt and combat steganography attempts in general.  Covert channels are a specific 

field within steganography, but are still susceptible to these response techniques, albeit 
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varying from those of images or video.  The difficulty with covert channels lies in the 

fact that the communications are not typically stored to disk like images and video.  With 

covert communications, a decision must be rendered nearly instantaneously on a limited 

amount of data. 

 
 
3.6 Additional Considerations 
 
 Minimizing and eliminating the capabilities of covert channels is a difficult 

process as there are many ways to hide data within legitimate communications.  With this 

in mind, there are several additional considerations that must be taken by one attempting 

to limit covert channels. 

3.6.1 Standard Revisions 
 
 The internet and its communication protocols are constantly evolving, adding new 

features, making others obsolete, and competing with other protocols for implementation.  

This document and its content used [3] and [9] to generate the rule listings and tables 

found within.  There have been a number of proposed and accepted updates to these 

documents that add additional features like DNSSEC.  Other revisions and clarifications 

are sure to follow in the future as demand for additional functionality from the protocol 

increases.  Each new revision will require analysis, verification, and some means of 

permitting backwards compatibility to older protocol definitions. 

3.6.2 Covert Channel Logging 
 
 A facet of communications protocols that is often overlooked is the packaging 

that holds the specific data desired.  The packaging explains a number of things about the 

data encoded within, but is discarded once the packet reaches its endpoint and is decoded.   
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The choice to discard all of the communications except the specific data is potentially 

limiting as we cannot later review all the data in the packet should a new method of 

analysis become available.  Consciously copying all of the original data on its way from 

the client and from the outside server allows for later review of the data and its packaging 

for covert transmissions.  This storage of the whole packet allows for a thorough, long-

term analysis of packet data for covert messages. 

3.6.3 Network Issues 
 
 Two issues arise from the network structure that must be addressed to ensure 

validation of all DNS traffic:  deployment location and packet routing. 

 The goal is to analyze all DNS packets coming and going through a particular 

network segment, so the most logical placement of a device to handle this task would be 

on the gateway.  Here all traffic entering and leaving the segment would be forced to go 

through the single location leading to the next level of the network.  This location 

presents a somewhat unexpected problem in that packets leaving the segment are 

monitored, but packets remaining in the segment that never attempt leave the segment fail 

to go through the gateway and therefore are not processed.   

 The second routing problem theoretically results from deviation from the 

expected routing structure of the DNS hierarchy.  DNS queries are supposed go through a 

specific hierarchy of name servers to obtain a response.  Typically, addresses for name 

servers are determined by DHCP or are set by a network administrator.  In a typical 

model, queries would go to these servers first and then head out of the network.  A rogue 

user specifying a DNS request to a name server outside of the network can avoid the 

hierarchy and theoretically validation as well.   
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 With these problems in mind, we would want to ensure all traffic leaving or 

staying in the segment is validated.  This suggests a means of forwarding all DNS packets 

received on a segment to first go through the validation mechanism prior to being sent to 

their intended destination. 
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Chapter 4  
4 NV-DNS 
 
 NV-DNS is a Domain Name Service packet processor that checks and validates 

DNS packets for correctness, validity, and other implementation errors.  The intent of this 

program is to evaluate DNS communications for hidden or covert channels within the 

contents of the packet. In addition, NV-DNS will aid security professionals and software 

designers in providing a more secure networked computing environment.  Inspiration 

from this program came from the concept of real-time network analysis, where packets 

are examined and recorded for usage statistics. 

 NV-DNS processes incoming UDP-based DNS packets based on the specification 

of the Domain Name Service in RFC 1034 and RFC 1035. [3], [9] it utilizes a 

configuration file to determine the permissible DNS options and classes on a particular 

network segment.  Based on this configuration, the program also executes a set of desired 

actions to perform on packets failing configuration rules.  Ideally NV-DNS is a 

monitoring tool set on network gateways to determine the validity of the communications 

passing through.  It can also be used to push software designers towards network-

validating software to minimize the possibility of rogue programs subverting protocols 

for unauthorized use.  
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4.1 Architectural Overview 
 
 NV-DNS is composed of three main components: 

• The Packet Parser 

• The Validation Module 

• The Packet Crafter 

 

 The Packet Parser is responsible for parsing DNS packets into its various fields to 

allow for simpler validation.  The Validation Module processes the packet based on a rule 

filter to check for invalid values and fields, determining if the packet is a candidate for 

any type of covert communications.  The Packet Crafter repackages the packet based on 

the rule filter and overwrites some fields based on the necessity of the field data, like the 

ID field. 

 The design of NV-DNS is intended to allow for a high degree of flexibility and 

maintainability.  With these aspects of development in mind, the components of this tool 

were implemented in a modular fashion that permits simple upkeep of the current 

modules or replacement of the modules with their own without affecting program 

functionality.  Figure 4.1 shows a simple diagram describing the flow of NV-DNS and 

will be used as the foundation for describing the tool’s functionality. 
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Figure 4-1  NV-DNS Flowchart 
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 Connections for incoming DNS requests are received and the packet is fed into 

the Packet Parser, which simply breaks the packet into specific fields to allow for easier 

validation.  Once the packet has been parsed, the Validation Module tests the packet 

structure based on the packet’s direction, network topology of the segment, and 

adherence to protocol specifications.  The validation rules are loaded from a 

configuration file previously generated by a network administrator.  The resulting 

validation response is fed into the Packet Crafter and a new packet is crafted with valid 

data and sent off to the next-level DNS server.  The program awaits a response and 

processes the response in the same way that the request was processed.  The original 

request and response are also stored to disk with packet header information. 

4.1.1 The Packet Parser 
 
 The Packet Parser is responsible for breaking the DNS packet into the varying 

fields to assist in analysis of the packet data.  This includes pulling the specific bit fields 

out of the header and converting bits into numbers.  The methodology chosen to create a 

structure suitable for validation is not intended to be the fastest or most efficient means of 

validation, but the simplest.  Memory is allocated for a structure that contains the DNS 

fields and their values, and the data is parsed into the allocated fields.  During this 

parsing, data is converted, packed, or unpacked into its respective fields before being 

returned to the calling routine.  The newly allocated structure is then passed on to the 

validation module that performs the tedious task of reviewing the values in each of the 

fields. 
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4.1.2 The Validation Module 
 
 The Validation Module is the second major component of NV-DNS and is easily 

the most complex module of the system.  It is also by far the most important component 

of NV-DNS.  This particular module must validate all portions of the DNS protocol 

specification and must also account for network location rules.  The concept of having 

some type of off-system validation mechanism was influenced heavily by the RFCs 

trusting implementation and utilization in “good faith” to the programmers.  Secondary 

influences for off-system validation are found littered throughout research papers and 

articles on steganalysis and covert channels. 

 Validation of all aspects of a protocol based on its definition is a potentially 

difficult task.  Every valid combination of the protocol definition must be processed as 

valid while any invalid combinations or definitions must be appropriately labeled as such.  

Implementing code to properly analyze and validate the protocol is the most difficult 

portion of the NV-DNS program.  The validation of the protocol based on traffic 

direction is a much simpler validation to make in terms of complexity as there are only 

two directions to traffic.  Most of the functions can be grouped into a few basic rule sets 

on either direction, thus minimizing the complexity of this type of validation.  Once 

validation is complete and a response code has been generated by the module, the 

response code and packet are passed on to the final module. 

 
4.1.3 The Packet Crafter 
 
 The last module being discussed is the Packet Crafter, which can be an optional 

module in the system.  The purpose of the module is evident from its name, but for some 

reasons which may not be fully obvious at first glance.  As the name implies, this 
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particular module crafts a new DNS request or response from the input it receives from 

the Validation Module and originally the Packet Parser.  The main reason for crafting a 

new packet is to minimize the chance an undetected covert channel could survive intact.  

By removing and potentially restructuring the packet, we can further attack any potential 

covert channels by scrambling the data ordering of a query or reply. 

   
4.2 Further Considerations 
 
 In this section, the components of NV-DNS were outlined and a reasonable scope 

of the prototype’s functionality was described.  There are a number of other challenges 

associated with this tool that are beyond the scope of this research.  However, it is 

anticipated that the work done here will provide a foundation for future covert channel 

work. 

 In the next chapter, we discuss the implementation of NV-DNS and several case 

studies conducted to determine how reasonable the prototype is. 
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Chapter 5  
5  Applications of NV-DNS 
 
 This chapter will discuss a rudimentary implementation of Network-Validated 

Domain Name Service (NV-DNS) designed with the purpose of applying steganalysis 

techniques of covert channels and real-time network analysis to the problem of 

identifying and limiting covert channels in the DNS protocol and being able to respond to 

these known and potentially unknown channels in real-time. 

 In the previous chapter, the architecture of NV-DNS was discussed in detail.  The 

version of NV-DNS presented here is in no way intended to be complete and is only 

capable of handling a small amount of DNS traffic at a time.  Further, only simple 

versions of the Packet Parser, Validation Module, and Packet Crafter are implemented. 

 
5.1 Implementation Language 
 
 C was chosen as the implementation language due to the high level of control 

capabilities afforded by the language and a mostly standard implementation across 

platforms.  The complete listing for the source code along with a user’s guide is presented 

in Appendix A. 

 
5.2 Caveats 
 
 NV-DNS is in no way a completely stand-alone protection method against covert 

channels in the DNS protocol.  Some of the major problems encountered with 

implementing the tool are: 

• NV-DNS must be able to recover from all errors without any side effects as a 

failure to recover results in inaccessibility of service to end hosts.   
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• The current implementation of NV-DNS is not time or usage sensitive and does 

not use a modified version of [20]’s analysis model to analyze the frequency of 

the requests. 

• The current implementation is not meant for any type of high-performance 

analysis. 

• The current implementation does not keep a cache of requests and replies to 

improve response time and localize covert channel communications. 

• NV-DNS in its current implementation does not handle TCP-based DNS or most 

server communications. 

• The current implementation is not multi-threaded and does not write data to the 

network. 

 
5.3 Applying NV-DNS 
 
 Once NV-DNS was successfully able to continually run transparently and without 

error, the next step was to determine how well the program responded to a mixed group 

of valid and invalid DNS requests.  A covert channel packet encoder/decoder was created 

to test the full capabilities of NV-DNS.  A small text file was used as the data feed for the 

covert channel.  The source code listing for the program is in Appendix B. User’s guides 

for the programs are also available in their respective appendices.  The results from the 

program are shown in Appendix C. 
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5.4 Summary 
 
 This chapter discussed the implementation of a very rudimentary version of 

Network-Validated Domain Name Service that was capable, to a degree, of identifying 

and limiting covert channels on a client-only network segment.  The data generated by 

NV-DNS is a copy of the original request and reply received by the program that can be 

reviewed in the future to permit the application of future analysis techniques on the 

protocol. 
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Chapter 6  
6 Summary and Conclusion 
 
6.1 Summary and Conclusion 
 
 The research conducted for this thesis resulted in the design of a potentially useful 

framework for providing security professionals, network administrators, and developers 

with a means of effectively limiting the capability of covert channels within DNS 

communications.   

 The major drawback of the goal of limiting covert channels within DNS 

communications lies in the required functionality of the protocol.  There is only so much 

information that can be specified independently of the user before some input from the 

user is required for the protocol to work.  This leaves the potential for validated requests 

that contain some type of covert channel to be assembled at another location without any 

trouble.  However, the work provided within this document is surely a significant step 

towards limiting covert channels within a protocol. 

 This research also focused on the construction of a rudimentary validation tool 

known as NV-DNS inspired by research in real-time network analysis to apply some type 

of real-time network validation of a packet’s structure and information.  NV-DNS as 

implemented and described in this work is only capable of handling a minimal number of 

concurrent DNS requests and replies.  The tool could be used to identify and limit a 

number of covert channel requests but due to the simplicity of the detection algorithms, 

was unable to discover a broader range of covert channel attempts without further 

implementation. 
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6.2 Future Work 
 
The following work may be considered as a future project: 

• Providing full standard compliance for the DNS protocol. 

• Implementing additional detection and response features, such as those suggested 

by [20]. 

• Development of a more efficient, multithreaded version of NV-DNS. 

• Implementation of NV-DNS with a DNS server. 

• Implementation of an analysis tool to review saved packets. 
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Appendix A 
NV-DNS 
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A.1 Overview 
 
 This appendix provides a listing of the NV-DNS tool discussed in Chapters 4 and 

5.  C was the chosen implementation language for the tool due to its high level of control 

and mostly standard implementation across platforms. 

 
A.2 Usage 
 
 To utilize NV-DNS, issue the command: nvdns IP filename.  The IP  argument 

indicates the DNS server or resolver for the current network segment.  The argument 

filename indicates to the program the name of the file that the received packets should be 

written to.  This represents the path and name of the file to be written. 

 
A.3 Source Code Listing 
 
A.3.1 defines.h 
/****************************************************/ 
/*  NV-DNS        */ 
/*  Author : Rex McCracken    */ 
/* Date Created : September 24 2004   */ 
/*  Last Modified : December 1 2004   */ 
/*  Description  : Program to remove covert  */ 
/*      channels in DNS packets  */ 
/****************************************************/ 
/* 
 
  DNS-specific definitions 
 
  Per RFCs 1034 and 1035 
 
  Type values 
  Class values 
  Error codes 
 
  */ 
 
/*  General defines  */ 
#define MAX_UDP_SIZE 512 
#define DNS_PORT 53 
 
 
/*  Network error defines  */ 
#define ERROR_SOCKET_UNBOUND -100 
#define ERROR_BIND_ERROR -101 
 
/*  DNS Header offsets  */ 
#define HEADER_QR 0x80 
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#define HEADER_OPCODE 0x78 
#define HEADER_AA 0x04 
#define HEADER_TC 0x02 
#define HEADER_RD 0x01 
#define HEADER_RA 0x80 
#define HEADER_Z 0x70; 
#define HEADER_RCODE 0x0F 
/*  End DNS Header offsets  */ 
 
/* Error Codes */ 
#define INVALID_QR   0x80000001 
#define INVALID_OPCODE  0x80000002 
#define INVALID_AA   0x80000004 
#define INVALID_TC   0x80000008 
#define INVALID_RD   0x80000010 
#define INVALID_RA   0x80000020 
#define INVALID_Z   0x80000040 
#define INVALID_RCODE  0x80000080 
#define INVALID_QDCOUNT  0x80000100 
#define INVALID_ANCOUNT  0x80000200 
#define INVALID_NSCOUNT  0x80000400 
#define INVALID_ARCOUNT  0x80000800 
#define INVALID_QTYPE  0x80001000 
#define INVALID_QCLASS  0x80002000 
#define INVALID_TYPE  0x80004000 
#define INVALID_CLASS  0x80008000 
#define INVALID_ADDRESS  0x80010000 
#define INVALID_PROTOCOL 0x80020000 
#define INVALID_DOMAIN  0x80040000 
#define INVALID_POINTER  0x80080000 
#define INVALID_STRING  0x80100000 
#define INVALID_PARSING  0x80200000 

 
A.3.2 dnstype.h 
/****************************************************/ 
/*  NV-DNS        */ 
/*  Author : Rex McCracken    */ 
/* Date Created : September 24 2004   */ 
/*  Last Modified : December 1 2004   */ 
/*  Description  : Program to remove covert  */ 
/*      channels in DNS packets  */ 
/****************************************************/ 
 
 
 
#include "defines.h" 
/*  DNS type function prototypes  */ 
 
#define INBOUND 1 
#define OUTBOUND 0 
 
typedef struct dns_def_type { 
 short unsigned int pid; 
 char qr; 
 short unsigned int opcode; 
 char aa; 
 char tc; 
 char rd; 
 char ra; 
 char z; 
 short unsigned int rcode; 
 short unsigned int qdcount; 
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 short unsigned int ancount; 
 short unsigned int nscount; 
 short unsigned int arcount; 
 char data[MAX_UDP_SIZE]; 
 int data_len; 
} dns_def; 
 
 
/* DNS Parse 
  Inputs: 
 data  character pointer to the packet received 
 
  Outputs: 
 dns_def* Pointer to allocated memory structure 
*/ 
dns_def *dnsparse(char *data); 
 
/* Process Packet 
  Inputs: 
 dns   Pointer to the parsed DNS packet 
 direction Traffic flow direction 
 
  Outputs: 
 int   Error code 
*/ 
int process_packet(dns_def *dns, int direction); 
 
/* Packet Crafter 
  Inputs: 
 dns   Pointer to dns_def struct holding the DNS packet 
 ndata  Pointer to new packet buffer 
 idbuffer Pointer to stored ID header 
 fields  Error code for the fields that need overwritten 
 direction Direction of the traffic flow 
 
  Outputs: 
 int   Number of characters the ndata buffer is 
*/ 
int packet_crafter(dns_def *dns, char *ndata, char *idbuffer, int fields, int 
direction); 
 
/*  Display Errors 
  Inputs: 
 error  Error codes 
 direction Traffic direction 
 dns   Pointer to dns_def holding data 
*/ 
void display_errors(int error, int direction, dns_def *dns); 
 
/*  STRing All CoPY 
  Inputs: 
 dest Pointer to destination buffer 
 src  Pointer to source buffer 
 len  Number of characters to overwrite 
 
  Outputs: 
 int  Number of characters written 
*/ 
int stracpy(char *dest, const char *src, int len); 
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A.3.3 dnstype.c 
/****************************************************/ 
/*  NV-DNS        */ 
/*  Author : Rex McCracken    */ 
/* Date Created : September 24 2004   */ 
/*  Last Modified : December 1 2004   */ 
/*  Description  : Program to remove covert  */ 
/*      channels in DNS packets  */ 
/****************************************************/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
#include "defines.h" 
#include "dnstype.h" 
#include <string.h> 
 
/*  STRing All CoPY 
  Inputs: 
 dest Pointer to destination buffer 
 src  Pointer to source buffer 
 len  Number of characters to overwrite 
 
  Outputs: 
 int  Number of characters written 
*/ 
int stracpy(char *dest, const char *src, int len) { 
 int i; 
 for (i=0; i<len; i++) { 
  dest[i]=src[i]; 
 } 
 return i; 
} 
 
/*  Validate header 
  Inputs: 
 dns   Pointer to dns_def holding the packet data 
 direction Traffic flow direction 
 
  Outputs: 
 int   Error code 
*/ 
int validate_header(dns_def *dns, int direction) { 
 int error=0; 
 if (dns->opcode>2) 
  error=error|INVALID_OPCODE; 
 if (dns->z>0) 
  error=error|INVALID_Z; 
 if (dns->qdcount==0) 
  error=error|INVALID_QDCOUNT; 
 if ((dns->data_len<MAX_UDP_SIZE)&&(dns->tc)==1){ 
  error=error|INVALID_TC; 
 } 
 if (direction==OUTBOUND) { 
  if (dns->qr==1) 
   error=error|INVALID_QR; 
  if (dns->aa==1) 
   error=error|INVALID_AA; 
  if (dns->rd==1) 
   error=error|INVALID_RD; 
  if (dns->ra==1) 
   error=error|INVALID_RA; 
  if (dns->rcode>0) 
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   error=error|INVALID_RCODE; 
  if (dns->ancount>0) 
   error=error|INVALID_ANCOUNT; 
  if (dns->nscount>0) 
   error=error|INVALID_NSCOUNT; 
  if (dns->arcount>0) 
   error=error|INVALID_ARCOUNT; 
 } 
 if (direction==INBOUND) { 
  if (dns->qr==0) 
   error=error|INVALID_QR; 
  if (dns->rcode>5) 
   error=error|INVALID_RCODE; 
 } 
 return error; 
} 
 
/* DNS Parse 
  Inputs: 
 data  character pointer to the packet received 
 
  Outputs: 
 dns_def* Pointer to allocated memory structure 
*/ 
dns_def* dnsparse(char *data) { 
 dns_def *dns_packet; 
 //Load packet header into memory 
 dns_packet=(dns_def *)malloc(sizeof(dns_def)); 
 dns_packet->pid=data[0]; 
 dns_packet->pid=dns_packet->pid<<8; 
 dns_packet->pid=dns_packet->pid|data[1]; 
 dns_packet->qr=data[2]&HEADER_QR; 
 dns_packet->qr=dns_packet->qr>>7; 
 dns_packet->qr=dns_packet->qr&0x01; 
 dns_packet->opcode=data[2]&HEADER_OPCODE; 
 dns_packet->opcode=dns_packet->opcode>>3; 
 dns_packet->aa=data[2]&HEADER_AA; 
 dns_packet->aa=dns_packet->aa>>2; 
 dns_packet->tc=data[2]&HEADER_TC; 
 dns_packet->tc=dns_packet->tc>>1; 
 dns_packet->rd=data[2]&HEADER_RD; 
 dns_packet->ra=data[3]&HEADER_RA; 
 dns_packet->ra=dns_packet->ra>>7; 
 dns_packet->ra=dns_packet->ra&0x01; 
 dns_packet->z=data[3]&HEADER_Z; 
 dns_packet->z=dns_packet->z>>4; 
 dns_packet->rcode=data[3]&HEADER_RCODE; 
 dns_packet->qdcount=data[4]; 
 dns_packet->qdcount=dns_packet->qdcount<<8; 
 dns_packet->qdcount=dns_packet->qdcount|data[5]; 
 dns_packet->ancount=data[6]; 
 dns_packet->ancount=dns_packet->ancount<<8; 
 dns_packet->ancount=dns_packet->ancount|data[7]; 
 dns_packet->nscount=data[8]; 
 dns_packet->nscount=dns_packet->nscount<<8; 
 dns_packet->nscount=dns_packet->nscount|data[9]; 
 dns_packet->arcount=data[10]; 
 dns_packet->arcount=dns_packet->arcount<<8; 
 dns_packet->arcount=dns_packet->arcount|data[11]; 
 return dns_packet; 
} 
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/* Process Packet 
  Inputs: 
 dns   Pointer to the parsed DNS packet 
 direction Traffic flow direction 
 
  Outputs: 
 int   Error code 
*/ 
 
int process_packet(dns_def *dns, int direction) { 
 char *s; 
 int current; 
 int err_code=0, temp=0; 
 
 /* Validate the header */ 
 temp=validate_header(dns, direction); 
 err_code=err_code|temp; //Add the error code 
 
 s=dns->data; //Get start of data 
 current=12;//Jump to end of data 
 //Check the count size to the packet size 
 if ((dns->qdcount*6)+(dns->ancount*12)+(dns->nscount*12)+(dns-
>arcount*12)+current>=dns->data_len){ 
 
 err_code=err_code|INVALID_QDCOUNT|INVALID_ANCOUNT|INVALID_NSCOUNT|INVALID_AR
COUNT; 
 } 
 /* Parse the Question section */ 
 if (direction==OUTBOUND){ 
  if (dns->qdcount>1) 
   err_code=err_code|INVALID_QDCOUNT; 
  if (dns->ancount>0) 
   err_code=err_code|INVALID_ANCOUNT; 
  if (dns->nscount>0) 
   err_code=err_code|INVALID_NSCOUNT; 
  if (dns->arcount>0) 
   err_code=err_code|INVALID_ARCOUNT; 
 } 
  
 return err_code; 
} 
 
/*  Display Errors 
  Inputs: 
 error  Error codes 
 direction Traffic direction 
 dns   Pointer to dns_def holding data 
*/ 
 
void display_errors(int error, int direction, dns_def *dns) { 
 int start=0x00000001; 
 int val=0, i; 
 if (error<0) { 
  if (direction==OUTBOUND) 
   printf("Client mode errors:\n"); 
  else 
   printf("Server mode errors:\n"); 
  for (i=0; i<32; i++) { 
   val=error&start; 
   val=val|0x80000000; 
   switch(val) { 
   case INVALID_QR: 
    printf("  Query - %d\n", dns->qr); 
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    break; 
   case INVALID_OPCODE: 
    printf("  Opcode - %d\n", dns->opcode); 
    break; 
   case INVALID_AA: 
    printf("  AA - %d\n", dns->aa); 
    break; 
   case INVALID_TC: 
    printf("  TC - %d\n", dns->tc); 
    break; 
   case INVALID_RD: 
    printf("  RD - %d\n", dns->rd); 
    break; 
   case INVALID_RA: 
    printf("  RA - %d\n", dns->ra); 
    break; 
   case INVALID_Z: 
    printf("  Z - %d\n", dns->z); 
    break; 
   case INVALID_RCODE: 
    printf("  Rcode - %d\n", dns->rcode); 
    break; 
   case INVALID_QDCOUNT: 
    printf("  QDcount - %d\n", dns->qdcount); 
    break; 
   case INVALID_ANCOUNT: 
    printf("  ANcount - %d\n", dns->ancount); 
    break; 
   case INVALID_NSCOUNT: 
    printf("  NScount - %d\n", dns->nscount); 
    break; 
   case INVALID_ARCOUNT: 
    printf("  Arcount - %d\n", dns->arcount); 
    break; 
   default: 
    ; 
   } 
   start=start<<1; 
  } 
 } 
} 
 
 
/* Packet Crafter 
  Inputs: 
 dns   Pointer to dns_def struct holding the DNS packet 
 ndata  Pointer to new packet buffer 
 idbuffer Pointer to stored ID header 
 fields  Error code for the fields that need overwritten 
 direction Direction of the traffic flow 
 
  Outputs: 
 int   Number of characters the ndata buffer is 
*/ 
 
int packet_crafter(dns_def *dns, char *ndata, char *idbuffer, int fields, int 
direction) { 
 int idnew=0; 
 int code=0; 
 
 stracpy(ndata, dns->data, dns->data_len); 
 //Handle ID 
 if (direction==OUTBOUND) { //Extract & save original request 
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  //ID field 
  idnew=dns->pid; 
  idbuffer[1]=(char)idnew; 
  idbuffer[0]=(char)(idnew>>8); 
  idnew=rand()%256; 
  ndata[0]=idnew&0x0000ff00; //Put new data into packet 
  ndata[1]=idnew&0x000000ff; 
  code=fields&0x7fffffff; 
 
 
  if ((code&INVALID_QR)>0){ //Invalid QR type 
   ndata[2]=ndata[2]&0x7f; //Clear bit 
  } 
  if ((code&INVALID_OPCODE)>0){ 
   ndata[2]=ndata[2]&0x87; //Clear 4 bits 
  } 
  if ((code&INVALID_AA)>0){ 
   ndata[2]=ndata[2]&0xfb; //Clear 1 bit 
  } 
  if ((code&INVALID_TC)>0){ 
   ndata[2]=ndata[2]&0xfd; //Clear bit 2 
  } 
  if ((code&INVALID_RD)>0) { 
   ndata[2]=ndata[2]&0xfe;//For always desired, |0x01; 
  } 
  if ((code&INVALID_RA)>0){ 
   ndata[3]=ndata[3]&0x7f; 
  } 
  if ((code&INVALID_Z)>0){ 
   ndata[3]=ndata[3]&0x8f; 
  } 
  if ((code&INVALID_RCODE)>0){ 
   ndata[3]=ndata[3]&0xf0; 
  } 
  if ((code&INVALID_QDCOUNT)>0){ 
   ndata[4]=0; 
   ndata[5]=1; 
  } 
  if ((code&INVALID_ANCOUNT)>0){ 
   ndata[6]=0; 
   ndata[7]=0; 
  } 
  if ((code&INVALID_NSCOUNT)>0){ 
   ndata[8]=0; 
   ndata[9]=0; 
  } 
  if ((code&INVALID_ARCOUNT)>0){ 
   ndata[10]=0; 
   ndata[11]=0; 
  } 
 } 
 else { //Revert original request 
  ndata[0]=idbuffer[0];  
  ndata[1]=idbuffer[1]; 
 } 
 return dns->data_len; 
} 
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A.3.4 nvdns.c 
/****************************************************/ 
/*  NV-DNS        */ 
/*  Author : Rex McCracken    */ 
/* Date Created : September 24 2004   */ 
/*  Last Modified : December 1 2004   */ 
/*  Description  : Program to remove covert  */ 
/*      channels in DNS packets  */ 
/****************************************************/ 
 
#include <winsock.h> 
#include <memory.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <math.h> 
#include <time.h> 
 
//Local includes 
#include "defines.h" 
#include "dnstype.h" 
 
/*  Write packet 
  Inputs: 
 o   File pointer to output data to 
 data  Char pointer to data to write 
 size  Size of the data buffer 
 direction Direction of the data flow 
 error  Error code from the packet processor 
 
  Outputs: 
 int   Number of characters written from packet 
*/ 
int write_packet(FILE *o, char *data, int size, int direction, int error) { 
 int i; 
 if (direction==OUTBOUND) 
  fprintf(o, "Outbound "); 
 else 
  fprintf(o, "Inbound "); 
 fprintf(o, "%d %d\n", error, size); 
 for (i=0; i<size; i++) { 
  fprintf(o, "%c", data[i]); 
 } 
 fprintf(o, "\n\n"); 
 return i; 
} 
 
void usage(char *name){ 
 printf("Usage: %s server filename\n", name); 
 printf("\n  Server  \tIP address of the next level DNS server - x.x.x.x\n"); 
 printf("\n  Filename\tName of the file to store received DNS packets to\n"); 
} 
 
 
int main(int argc, char *argv[]) { 
 
 
 //Network functionality 
 struct sockaddr_in server_sin, client_sin, dns_server; 
 int server_size, dns_size, client_size; 
 SOCKET server_socket, dns_socket; 
 WSADATA wsa_data; 
 int status; 
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 int client_len, len, i, valid; 
 unsigned int d; 
 struct timeval timeout; 
 fd_set sockets, readable; 
 int fdmax, retry, poll; 
 int out_bx=0, in_bx=0; 
 int out_rq=0, in_rq=0; 
 int error; 
 
 char data[MAX_UDP_SIZE], crafted[MAX_UDP_SIZE], idbuf[2]; 
 FILE *f=NULL; 
 dns_def *dns_data_ptr; 
 
 if (argc==1){ 
  usage(argv[0]); 
  exit(1); 
 } 
 if ((argc>=2)&& (argc<4)){ 
  if (strcmp(argv[1], "/?")==0){ 
   usage(argv[0]); 
   exit(0); 
  } 
  else { 
   d=inet_addr(argv[1]); 
   if (d==INADDR_NONE){ 
    usage(argv[0]); 
    exit(1); 
   } 
   f=NULL;  
   if (argc==3) { 
    if ((f=fopen(argv[1], "w"))==NULL){ 
     printf("Error creating the file.  Check permissions!\n"); 
     exit(11); 
    } 
   } 
  } 
 } 
 
 //Startup communications 
 if ((status = WSAStartup(MAKEWORD(1,1),&wsa_data)) != 0) { 
  fprintf(stderr,"%d is the WSA startup error\n",status); 
  exit(1); 
 } 
 timeout.tv_sec=0; 
 timeout.tv_usec=500000; 
 FD_ZERO(&sockets); 
 FD_ZERO(&readable); 
 
 /* Setup the server socket */ 
 server_socket = socket(PF_INET, SOCK_DGRAM, 0); 
 if (server_socket==INVALID_SOCKET) { 
  printf("Error, unable to create server socket!\n"); 
  exit(ERROR_SOCKET_UNBOUND); 
 } 
 memset((void*)&server_sin, 0, sizeof(server_sin)); 
 server_sin.sin_family = AF_INET; 
 server_sin.sin_port = htons(DNS_PORT); 
 server_sin.sin_addr.s_addr = htonl(INADDR_ANY); 
 server_size=sizeof(server_sin); 
 status=bind(server_socket, (struct sockaddr*)&server_sin, server_size); 
 if (status==SOCKET_ERROR) { 
  printf("Error binding the server socket... try another port.\n"); 
  exit(ERROR_BIND_ERROR); 
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 } 
 /* Server socket setup */ 
 if((f=fopen("packets.txt", "w"))==NULL) { 
  printf("error opening file\n"); 
  exit(2); 
 } 
 
 /* Setup the gateway */ 
 dns_socket = socket(PF_INET, SOCK_DGRAM, 0); 
 if (dns_socket==INVALID_SOCKET) { 
  printf("Error, unable to bind socket!\n"); 
  exit(ERROR_SOCKET_UNBOUND); 
 } 
 memset((void *)&dns_server, 0, sizeof(dns_server)); 
 dns_server.sin_family = AF_INET; 
 dns_server.sin_port = htons(DNS_PORT); 
 dns_server.sin_addr.s_addr = d; 
 if (dns_server.sin_addr.s_addr == INADDR_NONE) { 
  printf("Invalid IP address\n"); 
  exit(3); 
 } 
 dns_size=sizeof(dns_server); 
 /* Gateway setup */ 
 
/* Check for errors (Winsock does this slightly differently) */ 
/* Clear the structure so that we don't have garbage around */ 
/* AF means Address Family - same as Protocol Family for now */ 
/* Fill in port number in address (careful of byte-ordering) */ 
/* Fill in IP address (careful of byte-ordering) */ 
/* Bind the sockets for communications */ 
 
 FD_SET(dns_socket, &sockets);   
 fdmax=dns_socket; 
 srand(time(NULL)); 
 while (1) { 
  error=0; 
  readable=sockets; 
  for (len=0; len<MAX_UDP_SIZE; len++) { //Clear out the data buffer 
   data[len]=0; 
  } 
  client_len=sizeof(client_sin); 
  valid=1; 
  while (valid) { 
   printf("%d packets out: %d bytes\t%d packet in: %d bytes\n",out_rq, 
out_bx, in_rq, in_bx ); 
   if((in_rq>0)&&(out_rq>0)){ 
    printf("Avg out:%d\tAvg In:%d\t", (int)out_bx/out_rq, 
(int)in_bx/in_rq); 
    printf("Ratio:%2.2f/%2.2f\n", 
((float)out_bx/(float)(out_bx+in_bx))*(float)100, 
((float)in_bx/(float)(out_bx+in_bx))*(float)100); 
   } 
   len=recvfrom(server_socket, data, MAX_UDP_SIZE, 0, (struct 
sockaddr*)&client_sin, &client_len); 
   if (len>=0){ 
    break; 
   } 
  } 
  out_rq++; //Update statistics 
  out_bx+=len; 
  data[len]=0; 
  dns_data_ptr=dnsparse(data); 
  stracpy(dns_data_ptr->data, data, len); 
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  dns_data_ptr->data_len=len; 
  //Do my processing steps 
  error=process_packet(dns_data_ptr, OUTBOUND); 
  display_errors(error, OUTBOUND, dns_data_ptr); 
  if ((len>0)&&(f!=NULL)) 
   write_packet(f, data, len, OUTBOUND, error); 
  packet_crafter(dns_data_ptr, crafted, idbuf, error, OUTBOUND); 
  idbuf[2]=0; 
  status=sendto(dns_socket, crafted, len, 0, (struct sockaddr*)&dns_server, 
dns_size); 
  retry=0; 
  do { //Timeout handling 
   poll=select(fdmax+1, &readable, NULL, NULL, &timeout); 
   for (d=0; d<=(unsigned int)fdmax; d++) { 
    if ((FD_ISSET(d, &readable))&&(d==dns_socket)) { 
     len=recvfrom(dns_socket, data, MAX_UDP_SIZE, 0, (struct 
sockaddr*)&dns_server, &dns_size); 
    } 
   } 
   switch(poll) { 
   case 0: //Handling if the packet is dropped 
    printf("Timeout... Retransmitting\n"); 
    status=sendto(dns_socket, crafted, len, 0, (struct 
sockaddr*)&dns_server, dns_size); 
    if (status==SOCKET_ERROR) { 
     closesocket(dns_socket); 
     dns_socket=socket(PF_INET, SOCK_DGRAM, 0); 
     status=sendto(dns_socket, crafted, len, 0, (struct 
sockaddr*)&dns_server, dns_size); 
    } 
    retry++; 
    break; 
   case SOCKET_ERROR: //Handling if the socket dies 
    printf("Socket error #%d\n", WSAGetLastError()); 
    i=closesocket(dns_socket); 
    printf("closesocket=%d\n", i); 
    dns_socket=socket(PF_INET, SOCK_DGRAM, 0); 
    status=sendto(dns_socket, crafted, len, 0, (struct 
sockaddr*)&dns_server, dns_size); 
    break; 
   default: 
    ;//printf("%d sockets available\n", poll); 
   } 
  } while ((poll==0)&&(retry<3)); 
 
  free((dns_def *)dns_data_ptr); 
 
  data[len]=0; 
  in_bx+=len; 
  in_rq++; 
  dns_data_ptr=dnsparse(data); 
  stracpy(dns_data_ptr->data, data, len); //Copy all the data over 
  dns_data_ptr->data_len=len; 
  client_size=sizeof(client_sin); 
 
  error=process_packet(dns_data_ptr, INBOUND); 
  display_errors(error, INBOUND, dns_data_ptr); 
  if ((len>0)&&(f!=NULL)) 
   write_packet(f, data, len, INBOUND, error); 
  packet_crafter(dns_data_ptr, crafted, idbuf, error, INBOUND); 
  //Send the crafted packet 
  status=sendto(server_socket, crafted, len, 0, (struct 
sockaddr*)&client_sin, client_size); 
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  free((dns_def *)dns_data_ptr); 
  printf("\n"); //Give us some spacing for the next time 
 } 
 return -1; 
} 
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Appendix B 
Encode/Decode DNS 
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B.1 Overview 
 
 This appendix provides a listing of the Encode/Decode DNS tool used to test the 
effectiveness of the NV-DNS implementation.  C was the chosen implementation 
language for the tool due to its high level of control and mostly standard implementation 
across platforms. 
 
B.2 Usage 
 To use Encode/Decode DNS, issue the command: eddns mode field filename [IP].  
The argument mode tells the program to run in either client (-c) or server (-s) mode.  The 
argument field determines the DNS field the program will encode and decode the data 
from.  filename is the name of the file to be read in client mode or written in server mode.  
IP is only valid for the client mode and is the IP address of the computer running the 
server portion of Encode/Decode DNS with the same field option.  Running eddns by 
itself will give a list of all valid options. 
 
B.3 Source Code Listing 
 
B.3.1 defines.h 
/****************************************************/ 
/*  Encode/Decode DNS     */ 
/* Author   : Rex McCracken    */ 
/* Date Created : November 21 2004   */ 
/*  Last Modified : December 1 2004   */ 
/*  Description  : Definitions for edDNS  */ 
/*           */ 
/****************************************************/ 
 
/*  Operation Mode definitions */ 
#define SERVER 1 
#define CLIENT 0 
#define UNDEFINED -1 
 
/*  Encoding Mode definitions */ 
#define ID 1 
#define QR 2 
#define OPCODE 3 
#define AA 4 
#define TC 5 
#define RD 6  
#define RA 7 
#define Z 8 
#define RCODE 9 
#define QDCOUNT 10 
#define ANCOUNT 11 
#define NSCOUNT 12 
#define ARCOUNT 13 
#define QNAME 14 
#define QTYPE 15 
#define QCLASS 16 
#define NAME 17 
#define TYPE 18 
#define CLASS 19 
#define TTL 20 
#define RDLENGTH 21 
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#define RR_A 31 
#define RR_NS 32 
#define RR_MD 33 
#define RR_MF 34 
#define RR_CNAME 35 
#define RR_SOA 36 
#define RR_MB 37 
#define RR_MG 38 
#define RR_MR 39 
#define RR_NULL 40 
#define RR_WKS 41  
#define RR_PTR 42 
#define RR_HINFO 43 
#define RR_MINFO 44 
#define RR_MX 45 
#define RR_TXT 46 
 
#define DOMAIN_NAME 0 
#define RR_TYPE 2 

 
B.3.2 setup.h 
/****************************************************/ 
/*  Encode/Decode DNS     */ 
/* Author   : Rex McCracken    */ 
/* Date Created : November 21 2004   */ 
/*  Last Modified : December 1 2004   */ 
/*  Description  : Header defining functionality */ 
/*      text over DNS packets  */ 
/****************************************************/ 
 
/* Operating Mode 
  Inputs: 
 mode String with the choice of modes 
 
  Outputs: 
 int  Number designating the operating mode 
*/ 
int operating_mode(char *mode); 
 
/* Encoding Mode 
  Inputs: 
 mode String with the choice of encoding fields 
 
  Output: 
 int  Number designating the encoding mode 
 */ 
int encoding_mode(char *mode); 
 
/* Encoding Size  
  Input: 
 Field Field used for encoding 
 
  Output: 
 int  Size of the field in bits 
*/ 
int encoding_size(int field); 
 
/*Client mode functions*/ 
 
/* File size 
  Input: 
 in  File pointer to file needing size check 
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  Output: 
 int  Size of the file 
*/ 
int file_size(FILE *in); 
 
/* Bit Encode   
  Inputs:  
 Packet Packet to encode the data into 
 Size Size of the packet 
 Field Field # to encode data into 
 Data Data to encode into field 
 Start Current bit needed encoding 
 
  Output: 
 int  Contains the number of bits used in encoding 
*/ 
int bitencode(char packet[], int size, int field, char *data, int start); 
 
/*  Generate Packet 
  Input: 
 packet Pointer to char array to contain the packet 
 field Number designator for the field being encoded 
 
  Output 
 int  Size of the packet generated 
*/ 
int generate_packet(char *packet, int field); 
 
 
/*Server mode functions*/ 
/* Bit Decode 
  Inputs: 
 packet  Packet as received 
 size  Packet size 
 field  Encoding type 
 response Buffer containing current slice 
 rsize  Size of the response 
 used  Number of bits used so far in the response 
 
  Outputs:  
 char  Updated buffer with newest slice 
*/ 
char* bitdecode(char *packet, int size, int field, char *response, int 
*bits_found, int used, int *r_size); 
 
/*  Generate Response 
  Inputs: 
 packet Pointer to char array containing the packet 
 
  Outputs: 
 int  Size of the packet created 
*/ 
int generate_response(char *packet); 
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B.3.3 setup.c 
/****************************************************/ 
/*  Encode/Decode DNS     */ 
/* Author   : Rex McCracken    */ 
/* Date Created : November 21 2004   */ 
/*  Last Modified : December 1 2004   */ 
/*  Description  : Support functions for edDns  */ 
/*           */ 
/****************************************************/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
 
#include "defines.h" 
#include "setup.h" 
 
/* Operating Mode 
  Inputs: 
 mode String with the choice of modes 
 
  Outputs: 
 int  Number designating the operating mode 
*/ 
int operating_mode(char *mode) { 
 int a=UNDEFINED; 
 if (strcmp(mode, "-s")==0) 
  a=SERVER; 
 if (strcmp(mode, "-c")==0) 
  a=CLIENT; 
 return a; 
} 
 
/* Encoding Mode 
  Inputs: 
 mode String with the choice of encoding fields 
 
  Output: 
 int  Number designating the encoding mode 
 */ 
int encoding_mode(char *mode) { 
 int a=UNDEFINED; 
 if (strcmp(mode, "id")==0) 
  a=ID; 
 if (strcmp(mode, "qr")==0) 
  a=QR; 
 if (strcmp(mode, "opcode")==0) 
  a=OPCODE; 
 if (strcmp(mode, "aa")==0) 
  a=AA; 
 if (strcmp(mode, "tc")==0) 
  a=TC; 
 if (strcmp(mode, "rd")==0) 
  a=RD; 
 if (strcmp(mode, "ra")==0) 
  a=RA; 
 if (strcmp(mode, "z")==0) 
  a=Z; 
 if (strcmp(mode, "rcode")==0) 
  a=RCODE; 
 if (strcmp(mode, "qdcount")==0) 
  a=QDCOUNT; 
 if (strcmp(mode, "ancount")==0) 
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  a=ANCOUNT; 
 if (strcmp(mode, "nscount")==0) 
  a=NSCOUNT; 
 if (strcmp(mode, "arcount")==0) 
  a=ARCOUNT; 
 return a; 
} 
 
/* Encoding Size  
  Input: 
 Field Field used for encoding 
 
  Output: 
 int  Size of the field in bits 
*/ 
int encoding_size(int field) { 
 int a=UNDEFINED; 
 switch(field) { 
 case QR://QR 
 case AA://AA 
 case TC://TC 
 case RD://RD 
 case RA://TA 
  a=1; 
  break; 
 case Z://Z 
  a=3; 
  break; 
 case OPCODE://OPCODE 
 case RCODE://RCODE 
  a=4; 
  break; 
 case ID://ID 
 case QDCOUNT://QDCOUNT 
 case ANCOUNT://ANCOUNT 
 case NSCOUNT://NSCOUNT 
 case ARCOUNT://ARCOUNT 
 case QTYPE://QTYPE 
 case QCLASS://QCLASS 
 case TYPE://TYPE 
 case CLASS://CLASS 
 case RDLENGTH://RDLENGTH 
  a=16; 
  break; 
 case TTL://TTL 
  a=32; 
  break; 
 case QNAME://QNAME 
 case NAME://NAME 
  a=DOMAIN_NAME; 
  break; 
 default://RR_ types 
  a=RR_TYPE; 
  break; 
 } 
 return a; 
} 
 
//Client-specific functions 
 
/*  Generate Packet 
  Input: 
 packet Pointer to char array to contain the packet 
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 field Number designator for the field being encoded 
 
  Output 
 int  Size of the packet generated 
*/ 
int generate_packet(char *packet, int field) { 
 int a; 
 char name[13]={ 3, 'w', 'w', 'w', 3, 'w', 'v', 'u', 3, 'e', 'd', 'u', 0 }; 
 char *p; 
 for (a=0; a<12; a++) { 
  packet[a]=0;  //Clear out the packet header for easy viewing 
 } 
 packet[5]=1; //QDcount 
 p=&packet[12]; //Qname start 
 strncpy(p, name, 13); 
 a+=13; 
 packet[25]=0; //Qtype 
 packet[26]=1; 
 packet[27]=0; //Qclass 
 packet[28]=1; 
 a=29; 
 if (field>16) { //We have resource records 
  ; 
 } 
 return a; 
} 
 
/* File size 
  Input: 
 in  File pointer to file needing size check 
 
  Output: 
 int  Size of the file 
*/ 
int file_size(FILE *in) { 
 int a=0; 
 char c; 
 while (!feof(in)) { 
  fscanf(in, "%c", &c); 
  a++; 
 } 
 a--; 
 rewind(in); //Move pointer back to file start 
 return a; 
} 
 
/*  Bit Slice 
  Inputs: 
 Data  Data to be encoded 
 bit_req  Bits requested for slice 
 cur_bit  Offset from data start to be encoded 
 
  Outputs: 
 int   Number of bits encoded 
 slice  Low-bit packed character 
*/ 
int bitslice(char *data, int bit_req, int cur_bit, int *slice) { 
 int byte=0, len=0; 
 int bit=0, a=0; 
 char *b_slice=0, temp=0; 
 int val=0; 
 
 len=strlen(data); 
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 bit=cur_bit%8; 
 byte=(cur_bit-bit)/8; 
 for (a=0; a<bit_req; a++) { 
  /* Pack into temp */ 
  if (bit==0){ 
   temp=data[byte]&0x80; 
   temp=temp>>7; 
  } 
  if (bit==1) { 
   temp=data[byte]&0x40; 
   temp=temp>>6; 
  } 
  if (bit==2){ 
   temp=data[byte]&0x20; 
   temp=temp>>5; 
  } 
  if (bit==3){ 
   temp=data[byte]&0x10; 
   temp=temp>>4; 
  } 
  if (bit==4){ 
   temp=data[byte]&0x08; 
   temp=temp>>3; 
  } 
  if (bit==5){ 
   temp=data[byte]&0x04; 
   temp=temp>>2; 
  } 
  if (bit==6){ 
   temp=data[byte]&0x02; 
   temp=temp>>1; 
  } 
  if (bit==7){ 
   temp=data[byte]&0x01; 
  } 
  /*Place into slice*/ 
  val=val<<1; 
  val=val|temp; 
  bit++; 
  if (bit==8){ 
   bit=0; 
   byte++; 
  } 
  if (byte>len){ 
   a++; 
   break; 
  } 
 } 
 *slice=val; 
 return a; 
} 
 
 
/* Bit Encode   
  Inputs:  
 Packet Packet to encode the data into 
 Size Size of the packet 
 Field Field # to encode data into 
 Data Data to encode into field 
 Start Current bit needed encoding 
 
  Output: 
 int  Contains the number of bits used in encoding 
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*/ 
int bitencode(char *packet, int size, int field, char *data, int start) { 
 int enc_size=UNDEFINED, esize=0; 
 int bits_returned=0; 
 int slice=0; 
 int bitcount=start; 
 int max_bitlen=0, bitlen=0; 
 
 max_bitlen=strlen(data)*8; 
 enc_size=encoding_size(field); 
 if (enc_size>7) { 
  esize=8; 
 } 
 else 
  esize=enc_size; 
 while ((bitcount-start)<enc_size) { 
  bits_returned=bitslice(data, esize, bitcount, &slice); 
  bitcount+=bits_returned; 
  switch(field){ 
  case ID: 
   packet[0]=(char)slice; 
   bits_returned=bitslice(data, esize, bitcount, &slice); 
   bitcount+=bits_returned; 
   packet[1]=(char)slice; 
   break; 
  case QR://QR 
   slice=slice<<7; 
   packet[2]=packet[2]|slice; 
   break; 
  case OPCODE://OPCODE 
   slice=slice<<3; 
   packet[2]=packet[2]|slice; 
   break; 
  case AA://AA 
   slice=slice<<2; 
   packet[2]=packet[2]|slice; 
   break; 
  case TC://TC 
   slice=slice<<1; 
   packet[2]=packet[2]|slice; 
   break; 
  case RD://RD 
   packet[2]=packet[2]|slice; 
   break; 
  case RA://RA 
   slice=slice<<7; 
   packet[3]=packet[3]|slice; 
   break; 
  case Z://Z 
   slice=slice<<4; 
   packet[3]=packet[3]|slice; 
   break; 
  case RCODE://RCODE 
   packet[3]=packet[3]|slice; 
   break; 
  case QDCOUNT://QDCOUNT 
   packet[4]=slice; 
   bits_returned=bitslice(data, esize, bitcount, &slice); 
   bitcount+=bits_returned; 
   packet[5]=slice; 
   break; 
  case ANCOUNT://ANCOUNT 
   packet[6]=slice; 
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   bits_returned=bitslice(data, esize, bitcount, &slice); 
   bitcount+=bits_returned; 
   packet[7]=slice; 
   break; 
  case NSCOUNT://NSCOUNT  
   packet[8]=slice; 
   bits_returned=bitslice(data, esize, bitcount, &slice); 
   bitcount+=bits_returned; 
   packet[9]=slice; 
   break; 
  case ARCOUNT://ARCOUNT 
   packet[10]=slice; 
   bits_returned=bitslice(data, esize, bitcount, &slice); 
   bitcount+=bits_returned; 
   packet[11]=slice; 
   break; 
  case QTYPE://QTYPE 
   packet[25]=slice; 
   bits_returned=bitslice(data, esize, bitcount, &slice); 
   bitcount+=bits_returned; 
   packet[26]=slice; 
   break; 
  case QCLASS://QCLASS 
   packet[27]=slice; 
   bits_returned=bitslice(data, esize, bitcount, &slice); 
   bitcount+=bits_returned; 
   packet[28]=slice; 
   break; 
  case TYPE://TYPE 
   packet[42]=slice; 
   bits_returned=bitslice(data, esize, bitcount, &slice); 
   bitcount+=bits_returned; 
   packet[43]=slice; 
   break; 
  case CLASS://CLASS 
   packet[44]=slice; 
   bits_returned=bitslice(data, esize, bitcount, &slice); 
   bitcount+=bits_returned; 
   packet[45]=slice; 
   break; 
  case TTL://TTL 
   packet[46]=slice; 
   bits_returned=bitslice(data, esize, bitcount, &slice); 
   bitcount+=bits_returned; 
   packet[47]=slice; 
   bits_returned=bitslice(data, esize, bitcount, &slice); 
   bitcount+=bits_returned; 
   packet[48]=slice; 
   bits_returned=bitslice(data, esize, bitcount, &slice); 
   bitcount+=bits_returned; 
   packet[49]=slice; 
   break; 
  case RDLENGTH://RDLENGTH 
   packet[50]=slice; 
   bits_returned=bitslice(data, esize, bitcount, &slice); 
   bitcount+=bits_returned; 
   packet[51]=slice; 
   break; 
  default: 
   printf("Shouldn't be here\n"); 
   bitcount=bitlen; 
   break; 
  } 
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 } 
 return bitcount; 
} 
 
//  Server specific functions  
 
/*  Generate Response 
  Inputs: 
 packet Pointer to char array containing the packet 
 
  Outputs: 
 int  Size of the packet created 
*/ 
int generate_response(char *packet) { 
 int a; 
 char *p, name[13]={3, 'w', 'w', 'w', 3, 'w', 'v', 'u', 3, 'e', 'd', 'u', 0}; 
 
 packet[2]=(char)0x84; 
 for (a=3; a<12; a++) { 
  packet[a]=0; 
 } 
 packet[5]=1; 
 packet[7]=1; 
 p=&packet[26]; 
 strncpy(p, name, 13); 
 a=26+13; 
 packet[39]=0; 
 packet[40]=1; 
 packet[41]=0; 
 packet[42]=1; 
 a=43; 
 return a; 
} 
 
 
/* Bit Offset 
  Inputs: 
 Field # of the encoding field 
 
  Outputs: 
 int  Bits from the start of the packet 
*/ 
int bitoffset(int field) { 
 int a; 
 switch(field){ 
 case ID: 
  a=0; 
  break; 
 case QR: 
  a=16; 
  break; 
 case OPCODE://OPCODE 
  a=17; 
  break; 
 case AA://AA 
  a=21; 
  break; 
 case TC://TC 
  a=22; 
  break; 
 case RD://RD 
  a=23; 
  break; 
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 case RA://RA 
  a=24; 
  break; 
 case Z://Z 
  a=25; 
  break; 
 case RCODE://RCODE 
  a=28; 
  break; 
 case QDCOUNT://QDCOUNT 
  a=32; 
  break; 
 case ANCOUNT://ANCOUNT 
  a=48; 
  break; 
 case NSCOUNT://NSCOUNT 
  a=64; 
  break; 
 case ARCOUNT://ARCOUNT 
  a=80; 
  break; 
 case QTYPE://QTYPE 
  a=25*8; 
  break; 
 case QCLASS://QCLASS 
  a=27*8; 
  break; 
 case TYPE://TYPE 
  a=42*8; 
  break; 
 case CLASS://CLASS 
  a=44*8; 
  break; 
 case TTL://TTL 
  a=46*8; 
  break; 
 case RDLENGTH: 
  a=50*8; 
  break; 
 default: 
  printf("Error!\n"); 
  a=-1; 
  break; 
 } 
 return a; 
} 
 
/*  Create Mask 
  Inputs: 
 Field Number designator of the encoding field 
 
  Outputs: 
 char Character containing a bitmask for that field 
*/ 
char create_mask(int field) { 
 char a; 
 switch (field){ 
 case ID: 
 case QDCOUNT: 
 case ANCOUNT: 
 case NSCOUNT: 
 case ARCOUNT: 
 case QTYPE: 
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 case QCLASS: 
 case TYPE: 
 case CLASS: 
 case TTL: 
 case RDLENGTH: 
  a=(char)0xff; 
  break; 
 case QR: 
 case RA: 
  a=(char)0x80; 
  break; 
 case OPCODE: 
  a=0x78; 
  break; 
 case AA: 
  a=0x04; 
  break; 
 case TC: 
  a=0x02; 
  break; 
 case RD: 
  a=0x01; 
  break; 
 case Z: 
  a=0x70; 
  break; 
 case RCODE: 
  a=0x0f; 
  break; 
 } 
 return a; 
} 
 
/*  BitExtraction 
  Inputs: 
 Packet   Packet with data encoded 
 Prev_offset  Offset in bits from the last returned octet 
 Field   Field # containing the encoded data 
 
  Outputs: 
 char   Low order packed byte containing the extracted data 
*/ 
char bitextract(char *packet, int prev_offset, int field){ 
 int bit=0, byte=0, a=0; 
 char extract=0; 
 int esize=-1; 
 char mask; 
 int offset; 
 
 offset=bitoffset(field); 
 mask=create_mask(field);//Returns a mask for the field we're working with 
 bit=(offset+prev_offset)%8; 
 byte=(offset+prev_offset-bit)/8; 
 extract=packet[byte]&mask; 
 switch(field){ //Extract Data 
 case QR: 
 case RA: 
  extract=extract>>7; //Slide data to low-order 
  extract=extract&0x01; //Clear extra data 
  break; 
 case OPCODE: 
  extract=extract>>3;  //Slide data to low-order 
  extract=extract&0x0f; //Clear extra data 
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  break; 
 case AA: 
  extract=extract>>2; //Slide data to low-order 
  extract=extract&0x01; //Clear extra data 
  break; 
 case TC: 
  extract=extract>>1; //Slide data to low-order 
  extract=extract&0x01; //Clear extra data 
  break; 
 case Z: 
  extract=extract>>4; //Slide data to low-order 
  extract=extract&0x07; //Clear extra data 
  break; 
 default: 
  ; 
 } 
 return extract; 
} 
 
/* Bit Decode 
  Inputs: 
 packet  Packet as received 
 size  Packet size 
 field  Encoding type 
 response Buffer containing current slice 
 rsize  Size of the response 
 used  Number of bits used so far in the response 
 
  Outputs:  
 char  Updated buffer with newest slice 
*/ 
 
char* bitdecode(char *packet, int size, int field, char response[], int 
*bits_found, int used, int *rsize) { 
 int enc_size=0, r_size=0, e_size=0; 
 char slice; 
 char *alldata=NULL, p=0; 
 int bit=0, byte=0, bitcount=0; 
 
 //Response size 
 if (response==NULL) {  //If we don't have a response size, allocate one 
  switch (field){ 
  case ID://ID 
  case QDCOUNT://QDcount 
  case ANCOUNT://ANcount 
  case NSCOUNT://NScount 
  case ARCOUNT://ARcount 
  case QTYPE://Qtype 
  case QCLASS://Qclass 
  case TYPE://Type 
  case CLASS://Class 
  case RDLENGTH://Rdlength 
  case Z://Z - Z overflow 
   r_size=2; 
   break; 
  case TTL://TTL 
   r_size=4; 
   break; 
  default://QR, OPCODE, AA, TC, RD, RA, RCODE 
   r_size=1; 
   break; 
  } 
  alldata=(char*)calloc(sizeof(char), r_size); 
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 } 
 else { 
  alldata=response; 
  r_size=*rsize; 
 } 
 enc_size=encoding_size(field); 
 if (enc_size>7) 
  e_size=8; //Max number of bits to get per loop 
 else 
  e_size=enc_size; //Bits to get per loop 
 while (bitcount<enc_size) { //Loop to get large fields & small fields 
  slice=bitextract(packet, bitcount, field);//Get the appropriate bits 
  bitcount+=e_size; //Add the encoding size to the bits 
  if (field==Z) { //Check for overflow - Applies to Z field ONLY 
   bitcount+=used; 
   if (alldata==NULL){ 
    printf("ERROR!!!!!!!!!!!!\n\n"); 
    exit(1); 
   } 
   if ((bitcount-8)>0){ //Handle 9 & 10 bits 
    if ((bitcount-8)==1) {  //Handle 2 bits over 
     alldata[0]=alldata[0]<<2; 
     alldata[0]=alldata[0]|((slice&0x06)>>1); //Mask slice and 
align 
     alldata[1]=slice&0x01;;  //Mask for final bit 
    } 
    if ((bitcount-8)==2) { //Handle 1 bit over 
     alldata[0]=alldata[0]<<1; //Move data over 
     alldata[0]=alldata[0]|((slice&0x04)>>2);  //Mask slice and 
align 
     alldata[1]=slice&0x03;; //Mask for 2 bits 
    } 
   } 
   else { //Handle 0-8 bits 
    alldata[0]=alldata[0]<<e_size; //Move data over 
    alldata[0]=alldata[0]|slice; //Add data 
   } 
  } 
  if ((e_size<8)&&(field!=Z)){ //Handle small fields 
   alldata[0]=alldata[0]<<e_size; 
   alldata[0]=alldata[0]|slice; 
  } 
  if (e_size==8) { 
   alldata[byte]=slice; 
   byte++; 
  } 
 } 
 response=alldata;  //Set / return our response 
 *bits_found=enc_size; //Return the encoding size 
 *rsize=r_size;   //Return the buffer size 
 return response;  //Return the response 
} 
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B.3.4 main.c 
/****************************************************/ 
/*  Encode/Decode DNS     */ 
/* Author   : Rex McCracken    */ 
/* Date Created : November 21 2004   */ 
/*  Last Modified : December 1 2004   */ 
/*  Description  : Program to encode and decode */ 
/*      text over DNS packets  */ 
/****************************************************/ 
 
//Standard Includes 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <time.h> 
#include <winsock.h> 
 
//Local Includes 
#include "defines.h" 
#include "setup.h" 
 
/* Usage 
  Input: 
 name Name of this program 
 
  Output: 
 None 
*/ 
 
void disp_header(char *packet) { 
 printf("ID: %c%c\n",packet[0], packet[1]); 
 printf("QR: %d\n", (packet[2]&0x80)>>7); 
 printf("Op: %d\n", (packet[2]&0x78)>>3); 
 printf("AA: %d\n", (packet[2]&0x04)>>2); 
 printf("TC: %d\n", (packet[2]&0x02)>>1); 
 printf("RD: %d\n", (packet[2]&0x01)); 
 printf("RA: %d\n", (packet[3]&0x80)>>7); 
 printf("Z : %d\n", (packet[3]&0x70)>>4); 
 printf("Rc: %d\n", (packet[3]&0x0f)); 
 printf("QD: %c%c\n", packet[4], packet[5]); 
 printf("AN: %c%c\n", packet[6], packet[7]); 
 printf("NS: %c%c\n", packet[8], packet[9]); 
 printf("AR: %c%c\n", packet[10], packet[11]); 
} 
 
void usage(char *name) { 
 printf("Usage instructions for %s\n\n", name); 
 printf("%s (OP_MODE) (ENCODE_MODE) (FILENAME) [IP] \n\n", name); 
 printf("Where:\n"); 
 printf("OP_MODE\n\t -s \tServer mode\n"); 
 printf("\t -c \tClient mode\n\n"); 
 printf("ENCODE_MODE\n"); 
 printf("\t id\n"); 
 printf("\t opcode\n"); 
 printf("\t aa\n"); 
 printf("\t tc\n"); 
 printf("\t rd\n"); 
 printf("\t ra\n"); 
 printf("\t z\n"); 
 printf("\t rcode\n"); 
 printf("\t qdcount\n"); 
 printf("\t ancount\n"); 
 printf("\t nscount\n"); 
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 printf("\t arcount\n"); 
 printf("\n"); 
 printf("FILENAME\n"); 
 printf("\tName of the file to be read (client) or written (server)\n\n"); 
 printf("IP\n"); 
 printf("\tIP address NV-DNS is running on\n"); 
 printf("\n"); 
} 
 
 
int main(int argc, char *argv[]) { 
 //Network-related Variables 
 struct sockaddr_in comm_sin, client_sin, server_sin; 
 int comm_size, client_size, server_size; 
 int client_len, packet_cnt=0; 
 SOCKET sock; 
 WSADATA wsa_data; 
 int status, len, valid=1, started=0, resp_size=0; 
 char msg[512]; 
 fd_set sockets, readable; 
 struct timeval time; 
 int fdmax, poll, retry; 
 
 //Local variables 
 FILE *f=NULL; 
 char name[20], *p=NULL, *s=NULL; 
 char ip[35]; 
 char *data=NULL; 
 int op_mode=UNDEFINED, choice=UNDEFINED, enc_mode=UNDEFINED; 
 int enc_size=UNDEFINED, i=0; 
 int d_size=-1, bitcnt=0, bits_returned=0; 
 char c; 
 
 for (i=0; i<=512; i++) { 
  msg[i]=0; 
 } 
 if ((argc<4)||(argc>5)) { 
  p=argv[0]; 
  usage(p); 
  exit(1); 
 } 
 
 /* Initialize communications */ 
 if ((status = WSAStartup(MAKEWORD(1,1),&wsa_data)) != 0) { 
  fprintf(stderr,"%d is the WSA startup error\n",status); 
  exit(1); 
 } 
 /*  Parse command line */ 
 s=argv[0]; 
 p=argv[1]; 
 op_mode=operating_mode(p); 
 if (op_mode==UNDEFINED){ 
  usage(s); 
  exit(1); 
 } 
 if ((op_mode==CLIENT)&&(argc==4)){ 
  usage(s); 
  exit(1); 
 } 
 p=argv[2]; //Encoding mode 
 enc_mode=encoding_mode(p); 
 if (enc_mode==UNDEFINED) { 
  usage(s); 
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  exit(1); 
 } 
 enc_size=encoding_size(enc_mode); //Determine the encoding scheme size 
 strcpy(name, argv[3]);//Filename determination 
 if (argc==5) {//Client Destination IP 
  if (op_mode==CLIENT) { 
   strcpy(ip, argv[4]); 
  } 
  else { 
   usage(s);    
   exit(1); 
  } 
 } 
 if (op_mode==SERVER) {//File handling 
  if ((f=fopen(name, "w"))==NULL) { 
   printf("Error opening file for writing!\n"); 
   usage(s); 
   exit(2); 
  } 
 } 
 else { //Client functions 
  if ((f=fopen(name, "r"))==NULL) { 
   printf("File not found!\n"); 
   usage(s); 
   exit(2); 
  } 
 } 
 
 //Polling timeout selection 
 if (op_mode==CLIENT) { 
  time.tv_sec=(long)1; 
  time.tv_usec=(long)0; 
 } 
 else { 
  time.tv_sec=(long)5; 
  time.tv_usec=(long)0; 
 } 
  
 /* Client specific code */ 
 if (op_mode==CLIENT) { 
  //Set socket /network options 
  sock=socket(PF_INET, SOCK_DGRAM, 0); 
  if (sock==INVALID_SOCKET) { 
   printf("Error!  Unable to create a socket!\n"); 
   exit(10); 
  } 
  memset((void*)&comm_sin, 0, sizeof(comm_sin)); 
  comm_sin.sin_family = AF_INET; 
  comm_sin.sin_port = htons(53); 
  comm_sin.sin_addr.s_addr= inet_addr(ip); 
  comm_size=sizeof(comm_sin); 
 
  FD_ZERO(&sockets); 
  FD_ZERO(&readable); 
  FD_SET(sock, &sockets); 
  fdmax=sock; 
 
  printf("Client mode\t"); 
  printf("Port:%d\tDest:%s:%d\n", sock, inet_ntoa(comm_sin.sin_addr), 
htons(comm_sin.sin_port)); 
  d_size=file_size(f);  //Load the file into memory 
  if (d_size>0) { 
   data=(char*)calloc(sizeof(char), d_size); 
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   for (i=0; i<d_size; i++) { 
    fscanf(f, "%c", &c); 
    data[i]=c; 
   } 
   data[d_size]=0; 
   for (i=0; i<d_size; i++) { 
    printf("%c", data[i]); 
   } 
   printf("\n"); 
   printf("Sending this data will require %d packets\n", 
d_size*8/enc_size); 
   bitcnt=0; 
   while (bitcnt<d_size*8) { 
    //Generate packet 
    len=generate_packet(msg, enc_mode); 
    //Insert data 
    i=bitencode(msg, len, enc_mode, data, bitcnt); 
    bitcnt+=(i-bitcnt); 
    retry=0; 
    sendto(sock, msg, len, 0, (struct sockaddr*)&comm_sin, comm_size); 
    do { 
     readable=sockets; 
     poll=select(fdmax+1, &readable, NULL, NULL, &time); 
     switch (poll) { 
     case 0: 
      printf("Packet timeout, resending.\n"); 
      sendto(sock, msg, len, 0, (struct sockaddr*)&comm_sin, 
comm_size); 
      retry++; 
      break; 
     case SOCKET_ERROR: 
      printf("Socket Error!\n"); 
      bitcnt=d_size*8; 
      break; 
     default: 
      ; 
     } 
    } while ((poll==0)&&(retry<3)); 
    //If we time out too many times 
    if (retry>=3) { 
     printf("Server connection unavailable\n"); 
     bitcnt=d_size*8; 
     break; 
    } 
    len=recvfrom(sock, msg, 512, 0, (struct sockaddr*)&comm_sin, 
&comm_size); 
    msg[len]=0; 
    printf("%s packet %d Received a response\n", argv[2], packet_cnt); 
    packet_cnt++; 
   } 
  } 
  else { 
   printf("Empty file %s!\n", name); 
   exit(3); 
  } 
 } 
 
 /*  Server specific code  */ 
 else { 
  //Set socket / network options 
  sock=socket(PF_INET, SOCK_DGRAM, 0); 
  if (sock==INVALID_SOCKET) { 
   printf("Error!  Unable to create a socket!\n"); 
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   exit(10); 
  } 
  memset((void*)&client_sin, 0, sizeof(client_sin)); 
  memset((void*)&server_sin, 0, sizeof(server_sin)); 
  server_sin.sin_family = AF_INET; 
  server_sin.sin_port = htons(53); 
  server_sin.sin_addr.s_addr=htonl(INADDR_ANY); 
  server_size=sizeof(server_sin); 
  status=bind(sock, (struct sockaddr*)&server_sin, server_size); 
  if (status==SOCKET_ERROR) { 
   printf("Error binding socket!\n"); 
   exit(12); 
  } 
  listen(sock, 10); 
 
  FD_ZERO(&sockets); 
  FD_ZERO(&readable); 
  FD_SET(sock, &sockets); 
  fdmax=sock; 
 
  printf("Server mode: %s:%d\n", inet_ntoa(server_sin.sin_addr), 
htons(server_sin.sin_port)); 
  bitcnt=0; 
  client_size=16; 
  client_len=0; 
  while (valid) { 
   if(started) { 
    readable=sockets; 
    poll=select(fdmax+1, &readable, NULL, NULL, &time); 
    switch(poll){ 
    case 0: 
     printf("Data feed ended.\n"); 
     valid=0; 
     break; 
    default: 
     ; 
    } 
   } 
   if (valid==0) 
    break; 
   len=recvfrom(sock, msg, 500, 0, (struct sockaddr*)&client_sin, 
&client_size); 
   msg[len]=0; 
   started=1; 
   if (len==SOCKET_ERROR) { 
    printf("The last error:%d\n",WSAGetLastError()); 
    exit(1); 
   } 
   //Recv packet until timeout 
   data=bitdecode(msg, len, enc_mode, data, &bits_returned, bitcnt, 
&resp_size); 
   data[resp_size]=0; 
   bitcnt+=bits_returned; 
   if (bitcnt>7) { //If we have a full packet 
    bits_returned=bitcnt%8; 
    if ((bits_returned>0)||(enc_mode==Z))//If we don't have a full 
byte - Z field 
     bitcnt=resp_size-1; //Limit by one 
    else 
     bitcnt=resp_size; 
    for (i=0; i<bitcnt; i++) { 
     fprintf(f, "%c", data[i]); //Write this to file 
    } 
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    if (bits_returned>0) { 
     data[0]=data[bitcnt]; //Move the data from unfully used to 
start 
     i=1; 
    } 
    else 
     i=0; 
    for (i; i<resp_size; i++) { 
     data[i]=0; //Clear out the rest of the field 
    } 
    bitcnt=bits_returned; //Reset the used bits field 
    printf("\n"); 
   } 
   len=generate_response(msg); 
   len=sendto(sock, msg, len, 0, (struct sockaddr*)&client_sin, 
client_size); 
   packet_cnt++; 
   printf("%s packet %d\n", argv[2], packet_cnt); 
   //Sleep(250); 
  } 
  i=0; 
  while(data[i]>0) { 
   fprintf(f, "%c", data[i]); 
   i++; 
  }  
 } 
 fclose(f); 
 
 if (op_mode==SERVER) { 
  printf("Retrieved data: "); 
  f=fopen(name, "r"); 
  while(!feof(f)){ 
   fscanf(f, "%c", &c); 
   if (c>0) 
    printf("%c", c); 
   c=0; 
  } 
  printf("\n"); 
  fclose(f); 
 } 
 return 0; 
} 
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Appendix C 
Results from NV-DNS and Encode/Decode DNS 
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 The file used in the encoding process was a simple text file with the text “i’m just 
a long text file that i’m transmitting across myself.”  The results of the transmission 
between the client and server aspects of Encode/Decode DNS alone and with NV-DNS 
are included in the following subsections. 
 
C.1  ID field 
C.1.1  No NV-DNS 
 
i'm just a long text file that i'm transmitting across myself. 
 

C.1.1  NV-DNS 
 C ¸ ö    
 N ¯ 1⁄2 î € Í ‹ R )   O & ’ ç Ç } Œ 9 W | 1⁄4 _ ÿ w 7 ð ‹ 
 
 

C.2  QR field 
C.2.1  No NV-DNS 
i'm just a long text file that i'm transmitting across myself. 
 
C.2.2  NV-DNS 
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□ 
 

 
C.3  OPCODE field 
C.3.1  No NV-DNS 
i'm just a long text file that i'm transmitting across myself. 
 
C.3.2  NV-DNS 
□ □ □□□□ □ □□□□ □□□□ □□□□ □□□□ □ □ □□□□□□□□□□□□ □□□□□□ □□□□□□ □ 

 
 
C.4  AA field 
C.4.1  No NV-DNS 
i'm just a long text file that i'm transmitting across myself. 
 
C.4.2  NV-DNS 
□□ □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□ 

 
 
C.5  TC field 
C.5.1  No NV-DNS 
i'm just a long text file that i'm transmitting across myself. 
 
C.5.2  NV-DNS 
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□ 
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C.6  RD field 
C.6.1  No NV-DNS 
i'm just a long text file that i'm transmitting across myself. 
 
C.6.2  NV-DNS 
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□ 

 
 
C.7  RA field 
C.7.1  No NV-DNS 
i'm just a long text file that i'm transmitting across myself. 
 
C.7.2  NV-DNS 
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□ 

 
 
C.8  Z field 
C.8.1  No NV-DNS 
i'm just a long text file that i'm transmitting across myself. 
 
C.8.2  NV-DNS 
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□ 

 
 
C.9  RCODE field 
C.9.1  No NV-DNS 
i'm just a long text file that i'm transmitting across myself. 
 
C.9.2  NV-DNS 
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□ 

 
 
C.10  QDCOUNT field 
C.10.1  No NV-DNS 
i'm just a long text file that i'm transmitting across myself. 
  
 
C.10.2  NV-DNS 
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□ 
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C.11  ANCOUNT field 
C.11.1  No NV-DNS 
i'm just a long text file that i'm transmitting across myself. 
  
 
C.11.2  NV-DNS 
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□ 

 
 
C.12  NSCOUNT field 
C.12.1  No NV-DNS 
i'm just a long text file that i'm transmitting across myself. 
  
 
C.12.2  NV-DNS 
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□ 

 
 
C.13  ARCOUNT field 
C.13.1  No NV-DNS 
i'm just a long text file that i'm transmitting across myself. 
  
 
C.13.2  NV-DNS 
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□ 
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