
Graduate Theses, Dissertations, and Problem Reports

2004

Limiting DNS covert channels and network validated DNS Limiting DNS covert channels and network validated DNS

Rex D. McCracken
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
McCracken, Rex D., "Limiting DNS covert channels and network validated DNS" (2004). Graduate Theses,
Dissertations, and Problem Reports. 1884.
https://researchrepository.wvu.edu/etd/1884

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Research Repository @ WVU (West Virginia University)

https://core.ac.uk/display/230460682?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1884&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/1884?utm_source=researchrepository.wvu.edu%2Fetd%2F1884&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Limiting DNS Covert Channels
and Network Validated DNS

Rex D. McCracken

Thesis submitted to the

College of Engineering and Mineral Resources
At

West Virginia University
In partial fulfillment of the requirements

For the degree of

Master of Science
In

Computer Science

Roy Nutter, Chair
John Atkins
Bojan Cukic

Todd Montgomery

Lane Department of Computer Science and Electrical Engineering
Morgantown, West Virginia

2004

Keywords: DNS, covert channels, real-time network analysis, packet validation,
protocol validation, network validated DNS

©2004 Rex McCracken

Abstract
Limiting DNS covert channels and Network Validated DNS

Rex McCracken

 Despite the variety and number of network security devices and policies available,
sensitive data, such as intellectual property and business data, can still be surreptiously
sent via the Internet to unscrupulous receivers. Furthermore, few security mechanisms
address securing or limiting covert channels. This study defines a framework for
determining a rule set to minimize covert channel capacity on the DNS protocol
specifically. The information and techniques used in this study may be useful in aiding
security professionals and developers with enforcing security policies on DNS and other
Internet protocols.
 This research resulted in the development of a rudimentary tool, referred to as
NV-DNS, capable of detecting and effectively limiting the capability of covert channels
in DNS communication packets.

 iii

Acknowledgements

 First and foremost, I would like to thank God for giving me the strength, wisdom,
and mental clarity to complete this task I undertook. Secondly I would like to thank my
chairman, Dr. Nutter, for helping me choose a topic suitable for me and capable of being
completed in a realistic timeframe. Without his guidance, I would still be working on an
overly grandiose project.

 I would also like acknowledge my committee and thank them for their belief that I
can create a high-quality research work. Dr. Atkins guided me through my early days as
an undergraduate and a graduate, helping me choose the courses I should take and
steering me away from those he deemed detrimental. Dr. Cukic opened my eyes to
computer security issues all around and security in general, giving me a much larger
perspective on the role of security in daily operations. Todd Montgomery is also an
excellent instructor and taught me the basics of networking and multicast, as well as
being an all-around nice guy.

 I want to thank my family and friends for understanding the stress I was under
during the creation of this document. Mom and Dad, thanks for giving me the room to
work and vent my frustrations out, as well as the unwavering faith that I would figure the
problem at hand out and complete the task at hand. Ben, thanks for the suggestions for
finding problems in my code. It helps to have a voice reminding you of the things that
you already know but forget during stress. Julia, thank you for being zany; it is more of a
stress-reliever than you know.

 Danielle, I know it was anything but a joyride to be around me for the past few
months, but I thank you for your patience and understanding. I won’t be such a grouch to
be around now that I don’t have any impending deadlines beating the sanity out of me.

 I’d also like to thank a few of the many students I have met during my time at
WVU: Greg, Dave, Chris Delche, Jesse, John, Jay, and the many others that I don’t have
the space to mention.

 iv

Dedication

 This thesis is dedicated to my parents, Ben and Marion McCracken, who have
guided, supported, and encouraged me to the completion of one of the most difficult tasks
of my life thus far. I wholeheartedly appreciate everything that both of you have done
and continue to do to help me grow, mature, and achieve my goals in life. I love you.

 v

Contents

Chapter 1 .. 1

1 Introduction ... 1
1.1 Definitions of Steganography and Covert Channels...................................... 5

1.1.1 Steganography ... 5
1.1.2 Covert Channels... 7

1.2 Statement of Problem... 8
1.3 Organization .. 8

Chapter 2 ...10
2 Literature Review.. 10

2.1 Steganography ... 10
2.1.1 Steganography Overview.. 10
2.1.2 Network Covert Channels... 15
2.1.3 Steganalysis ... 16

2.2 Real-time Network Analysis .. 18
2.2.1 Real-time Network Analysis.. 18
2.2.2 Application of Real-time Network Analysis... 21

2.3 Summary ... 22
Chapter 3 ...24

3 Limiting DNS Covert Channels .. 24
3.1 Understanding the DNS protocol ... 24

3.1.1 Historical Perspective .. 25
3.1.2 Header Definition .. 26
3.1.3 Question Section Definition.. 27
3.1.4 Resource Record Definitions .. 28
3.1.5 Syntax and Compression .. 36
3.1.6 Summary .. 39

3.2 Identification of Fields ... 40
3.2.1 Required fields ... 41
3.2.2 Optional fields.. 41

3.3 Network Topology Awareness ... 42
3.4 Identifying and Limiting Covert Channels.. 48
3.5 Response Options .. 49
3.6 Additional Considerations.. 51

3.6.1 Standard Revisions... 51
3.6.2 Covert Channel Logging .. 51
3.6.3 Network Issues ... 52

Chapter 4 ...54
4 NV-DNS ... 54

4.1 Architectural Overview.. 55
4.1.1 The Packet Parser .. 57
4.1.2 The Validation Module... 58
4.1.3 The Packet Crafter ... 58

4.2 Further Considerations... 59

 vi

Chapter 5 ...60
5 Applications of NV-DNS ... 60

5.1 Implementation Language.. 60
5.2 Caveats .. 60
5.3 Applying NV-DNS .. 61
5.4 Summary ... 62

Chapter 6 ...63
6 Summary and Conclusion ... 63

6.1 Summary and Conclusion .. 63
6.2 Future Work .. 64

Appendix A ..65
NV-DNS ... 65

A.1 Overview ... 66
A.2 Usage... 66
A.3 Source Code Listing... 66

A.3.1 defines.h... 66
A.3.2 dnstype.h.. 67
A.3.3 dnstype.c .. 69
A.3.4 nvdns.c... 74

Appendix B ..79
Encode/Decode DNS.. 79

B.1 Overview ... 80
B.2 Usage... 80
B.3 Source Code Listing... 80

B.3.1 defines.h... 80
B.3.2 setup.h.. 81
B.3.3 setup.c.. 83
B.3.4 main.c .. 94

Appendix C ..100
Results from NV-DNS and Encode/Decode DNS ... 100

C.1 ID field .. 101
C.1.1 No NV-DNS... 101
C.1.1 NV-DNS .. 101

C.2 QR field ... 101
C.2.1 No NV-DNS... 101
C.2.2 NV-DNS .. 101

C.3 OPCODE field ... 101
C.3.1 No NV-DNS... 101
C.3.2 NV-DNS .. 101

C.4 AA field ... 101
C.4.1 No NV-DNS... 101
C.4.2 NV-DNS .. 101

C.5 TC field ... 101
C.5.1 No NV-DNS... 101
C.5.2 NV-DNS .. 101

C.6 RD field ... 102

 vii

C.6.1 No NV-DNS... 102
C.6.2 NV-DNS .. 102

C.7 RA field ... 102
C.7.1 No NV-DNS... 102
C.7.2 NV-DNS .. 102

C.8 Z field .. 102
C.8.1 No NV-DNS... 102
C.8.2 NV-DNS .. 102

C.9 RCODE field ... 102
C.9.1 No NV-DNS... 102
C.9.2 NV-DNS .. 102

C.10 QDCOUNT field.. 102
C.10.1 No NV-DNS... 102
C.10.2 NV-DNS .. 102

C.11 ANCOUNT field.. 103
C.11.1 No NV-DNS... 103
C.11.2 NV-DNS .. 103

C.12 NSCOUNT field .. 103
C.12.1 No NV-DNS... 103
C.12.2 NV-DNS .. 103

C.13 ARCOUNT field.. 103
C.13.1 No NV-DNS... 103
C.13.2 NV-DNS .. 103

 viii

List of figures

Figure 3-1 DNS Packet Sections Overview .. 26
Figure 3-2 Packet Header ... 26
Figure 3-3 Question Format ... 28
Figure 3-4 Resource Record Format ... 29
Figure 3-5 Type A Resource Record Format .. 30
Figure 3-6 Type NS Resource Record Format .. 30
Figure 3-7 Type MD Resource Record Format ... 31
Figure 3-8 Type MF Resource Record Format.. 31
Figure 3-9 Type CNAME Resource Record Format ... 31
Figure 3-10 Type SOA Resource Record Format.. 32
Figure 3-11 Type MB Resource Record Format ... 33
Figure 3-12 Type MG Resource Record Format ... 33
Figure 3-13 Type MR Resource Record Format ... 33
Figure 3-14 Type NULL Resource Record Format ... 34
Figure 3-15 Type WKS Resource Record Format... 34
Figure 3-16 Type PTR Resource Record Format .. 34
Figure 3-17 Type HINFO Resource Record Format ... 35
Figure 3-18 Type MINFO Resource Record Format... 35
Figure 3-19 Type MX Resource Record Format ... 35
Figure 3-20 Type TXT Resource Record Format.. 36
Figure 3-21 Message Compression Example .. 38
Figure 3-22 Multiple Inline Pointers... 39
Figure 3-23 Example Network Layout.. 43
Figure 4-1 NV-DNS Flowchart .. 56

 ix

List of tables

Table 3.1 DNS Packet Sections Description ... 26
Table 3.2 Packet Header Field Definitions.. 27
Table 3.3 Question Field Definitions .. 28
Table 3.4 Resource Record Field Definitions.. 29
Table 3.5 Resource Record Types .. 29
Table 3.6 Resource Record Classes .. 30
Table 3.7 Type A Resource Record Field Definitions... 30
Table 3.8 Type NS Resource Record Field Definitions... 30
Table 3.9 Type MD Resource Record Field Definitions.. 31
Table 3.10 Type MF Resource Record Field Definitions .. 31
Table 3.11 Type CNAME Resource Record Field Definitions...................................... 31
Table 3.12 Type SOA Resource Record Field Definitions .. 32
Table 3.13 Type MB Resource Record Field Definitions.. 33
Table 3.14 Type MG Resource Record Field Definitions.. 33
Table 3.15 Type MR Resource Record Field Definitions.. 33
Table 3.16 Type NULL Resource Record Field Definitions ... 34
Table 3.17 Type WKS Resource Record Field Definitions ... 34
Table 3.18 Type PTR Resource Record Field Definitions... 34
Table 3.19 Type HINFO Resource Record Field Definitions .. 35
Table 3.20 Type MINFO Resource Record Field Definitions 35
Table 3.21 Type MX Resource Record Field Definitions.. 36
Table 3.22 Type TXT Resource Record Field Definitions .. 36
Table 3.23 Message Syntax Definition ... 37
Table 3.24 Packet Type Breakdown ... 40
Table 3.25 Required Strong and Weak Fields ... 41
Table 3.26 Optional Weak Fields ... 42
Table 3.27 Client-Only Expected Field Values ... 45
Table 3.28 Client-Only Expected RR Values.. 46
Table 3.29 Server-Only Expected Field Values .. 47
Table 3.30 Server-Only Expected RR Values ... 48

 1

Chapter 1
1 Introduction

 Running a business in the 21st century is different from any other time in history.

Years ago, merchants and vendors could assure themselves a piece of the market share by

simply carrying a wanted product that no other vendor carried. Few businesses anymore

have the fortune to be the only vendor marketing a unique product to the public as

imitators and competing products are introduced to the masses through various

advertising venues, hauled to a local shopping mall, or shipped directly to the consumer’s

home. Regardless of a business’ financial classification or products, competing vendors,

manufacturers, and even charities would all love to have something from their

competition that is more valuable than a single product: intellectual property. [1]

 Intellectual property is a major portion of the foundation on which every business

grows and develops. Every business has some form of intellectual property, be it

customer information lists, purchasing prices, diagrams for a new piece of equipment

under development, or a new manufacturing process. Intellectual property therefore

becomes the advantage that a particular business has over its competitors in order to

continue to exist in the business place. Thus the largest threat to a company’s competitive

edge and existence is the loss or leakage of their intellectual property to a competitor.

Internet access is available in nearly every business location and is used in daily

operations of a business. While beneficial to the operation and expansion of a company,

the speed and stability of the communications afforded by internet access also allows a

malicious employee to send a company’s intellectual property with relative ease to

 2

someone external to the company without dealing with some type of physical security

mechanism. [2]

 E-mail, FTP, HTTP, and instant messaging programs are the easiest and most

common methods of transferring large amounts of data across the Internet. E-mail

accounts are typically given all company employees for company use and nearly every e-

mail program available has the ability to send file attachments of any size, hampered only

by the recipient’s e-mail file size. FTP communications provide a direct means of

efficiently transferring files of any size from client to server or vice versa and does not

suffer from the size limitations e-mail is potentially subject to, but requires a valid IP

address or domain name in order to successfully initiate communications.

 HTTP communications allow for the same possibilities as FTP and E-mail and is

commonly known as “web surfing.” The newest communication class proliferating on

network channels is instant messaging programs such as AOL Instant Messenger, MSN

Messenger, and Yahoo Messenger, just to name a few. The basic function of these

programs is to send and receive text messages from one username to another. Early

versions of the messaging programs lacked file transfer and encryption capabilities, but

recent revisions of the software have incorporated these features as well as video and

audio capabilities. Spin-offs and clones of these software programs have similar

capabilities.

 E-mail, FTP, and HTTP traffic are the most commonly used methods of

transferring data and are also the most commonly logged actions on a company network.

User’s e-mails are typically stored on the main e-mail server and archived for later

retrieval or restoration. Employees sending out attachments of private company data

 3

through e-mail can quickly be traced through a combination of username and Internet

Protocol (IP) address tracing. Unauthorized FTP connections and traffic pushing data out

of the company network can easily be traced through the router logs or denied in the

router settings, thus limiting the effectiveness of FTP as a means of transferring files.

HTTP connection pushing out large amounts of data from non-server computers raise

their own questions, and are subject to the same requirements that FTP traffic falls under.

Instant messaging programs are slightly more difficult to block or protect against, but

most programs send messages and files without encryption over the network and can be

reconstructed using packet sniffing software.

 Routers and firewalls are typically the main defensive lines any network

administrator utilizes to help minimize an intruder’s foray into the business’ LAN. Basic

firewalls and routers can easily be set to forward, allow, or deny access to any

combination of thousands of ports and many guides, websites, and other articles are

available to help customize these settings based on the business’ network topography.

Advanced networking equipment and software can further enhance and extend the basic

permit and deny rules using technologies like Stateful Packet Inspection, bandwidth

throttling, and intrusion detection systems at an often significant financial investment for

more capable hardware and software. Despite the range of technologies available to

combat external intruders and malicious internal users, there is a basic and integral

service of the Internet that is typically unmonitored by businesses and security

professionals alike.

 DNS, or domain name service, is an integral part of the workings of the internet.

Every time a user attempts to connect to a site, be it google.com, wvu.edu, or any other of

 4

a number of sites, a query is sent upwards through a hierarchy of computers and routers

to try and find the IP address to which a specific domain name is mapped. Without DNS,

users would be forced to remember a series of numbers for each site they wanted to visit.

Attempts to remember Google (64.233.167.99), WVU (157.182.140.235), and ZDNet

(216.239.115.140) would quickly devolve into random number guessing and make

Internet connectivity little more than a passing interest, especially should the IP address

of the domain change.

 As a necessary service for the Internet to work, the DNS protocol specification, as

approved by the Internet Engineering Task Force (IETF), uses an iterative hierarchical

model to process domain name to IP address queries. DNS takes a domain name as an

alphanumeric string and iteratively queries DNS name servers, returning a valid IP

address of the form x.x.x.x, where x is a number from 0 to 255 when the DNS server

returns a positive response. The protocol’s specification answered a large number of

questions concerning the handling of future growth of the Internet, but designers knew

they could not foresee all the potential possibilities of DNS. With this in mind, designers

chose to leave room for future revisions and additions to the protocol in the form of

undefined or reserved bits, bytes, ranges, and experimental options. [3]

 The protocol’s specification calls for these unused bits and bytes to all be set to

zero, but failure to properly set these bits will not result in failed responses as systems

receiving DNS queries and responses ignore the undefined portions of the DNS packet.

The unspecified bits coupled with an un-enforced request allows for data-stuffed packets

to be created and sent on without disturbing the packet’s validity as seen by the routers

and DNS servers. A crafty employee could utilize these gaps in the protocol to send out

 5

seemingly innocent DNS requests while simultaneously sending off bits and pieces of

company data. The practice of hiding a communication within a medium is known as

creating a covert channel.

 The focus of this research is on the detection and logging of covert channels in

DNS to aid security professionals and software development personnel faced with the

daunting task of controlling unauthorized communications through design and

application. This research is also being done in response to an article reported on August

2nd 2004 concerning the ability of DNS to contain covert channels and the lack of

monitoring of this particular protocol. [4]

1.1 Definitions of Steganography and Covert Channels

1.1.1 Steganography

 Steganography is the art of inconspicuously hiding data within data, literally

meaning “covered writing”. [5] The overall goal of steganography is to hide the message

within the data well enough such that unintended recipients do not suspect a hidden

message exists. [6] A simple text message using steganography to hide a message may be

as follows:

 Prepare and shutdown system workstations or remote

datalinks : Storms will offline realtime data feeds.

Interrupted several hours.

 The body of the text hides the message “password : swordfish” using the first

character of the initial word and the first character following a space. The steganography

method is simple and for the most part, so is its detection. [6] notes that an important part

 6

of steganography’s success is the naïve attitude of human beings by not accepting the

possibility that there is more than meets the eye occurring. Several other simple text-

based steganography techniques include word spacing and invisible characters. Images,

audio clips, and movies employ steganographic techniques such as least significant bit

(LSB) alterations, color palette modifications, and manipulation of the compression

algorithms. [5]

 [5] states that “information hiding within electronic media requires alterations”

that introduces degradation or unusual characteristics. These anomalies in the media can

be viewed as signatures broadcasting a hidden message’s existence within a

communication; a point directly countering the goal of steganography. Steganalysis can

be defined as “attacks and analysis on hidden information” and is the counter to

steganography. The goal of steganalysis is to examine an image, message, or other

medium that could potentially contain a hidden message, determine if a message exists,

extract the message if possible, or disable or remove the hidden data. To determine if a

hidden message exists, steganalysis relies heavily on statistical analysis of the medium’s

properties to determine if any anomalies exist and if these anomalies are naturally

occurring or the result of tampering. [5]

 Steganography is similar in nature to cryptography in several ways, but the two

methods are exclusive. Both methods are concerned with passing a message from party

A to party B without party C being able to understand the message, but the means by

which the messages are passed is where the difference lies. Steganography’s means of

communication relies on stealth and naivety for all non-intended recipients to ensure the

security of a private message. Cryptography’s means of communication relies on the

 7

strength of the encryption algorithm and key management to secure the message and

makes no attempt to hide the existence of the communication.

 Beyond that main difference, steganography and cryptography follow an

algorithm and “key” to encode and later decode the data. For cryptographic messages,

the key is the password, while steganography’s key is the location of the hidden data.

Cryptographic techniques are beyond the scope of this document and will not be

discussed.

1.1.2 Covert Channels

 Covert channels are the application of steganographic techniques to

communications mediums. Digital communications protocols used on the Internet are

filled with unused and reserved bit, bytes, open-ended options, and devoid of any type of

validation mechanism to verify the correctness of these communications. Thus, a

steganographer can piggyback their communications onto a valid communications

protocol piece by piece and slowly cart off bits and pieces of data without much worry of

being detected at all. The ease with which a steganographer can piggyback their message

onto an existing protocol depends primarily upon the protocol’s syntax and usage. This

document discusses the DNS protocol and some network topology, making general

references to the protocols upon which DNS traffic operates, TCP and UDP.

 The Domain Name Service, or DNS, is an Internet Protocol (IP) utilizing the

Transmission Control Protocol (TCP) and/or User Datagram Protocol (UDP) for sending

and receiving domain name translation requests. TCP is a “connection-oriented”

protocol, designed to ensure the delivery and ordering of transmitted packets from sender

to receiver. [7] UDP is a “connectionless” protocol that predates TCP and does not

 8

ensure the delivery of packets or ordered reception of received packets. [8] UDP is the

protocol primarily used to transmit DNS messages as UDP does not require the overhead

setup that TCP uses to setup the reliable connection. TCP is used in zone and domain

transfers where a large amount of data is passing from server to server and the data must

be carefully preserved. [3], [9]

1.2 Statement of Problem

 The goal of this research is to show the weaknesses in the DNS protocol and

provide a methodology for protecting this and future communications protocols from

subversion for use with unauthorized communications.

1.3 Organization

The remainder of this thesis will be organized as follows:

• Chapter 2 will be a literature review that will form the background for this

research. The concepts of steganalysis, protocol validation, and real-time network

analysis will be discussed regarding current research in the fields.

• Chapter 3 will discuss the application of steganalysis and protocol validation to

the Domain Name Service and other per-packet protocols on a network.

• Chapter 4 will provide a description of the architecture of NV-DNS and its usage

on a network segment.

• Chapter 5 will discuss the results of NV-DNS as applied to several example

problems.

 9

• Chapter 6 will be a final discussion and conclusion of this particular work and

will include suggestions and extensions for the future to be even more flexible

and usable in the real world.

 10

Chapter 2
2 Literature Review

 This chapter provides a review of previous research in the fields of

steganographic detection, protocol validation, and real-time network analysis, which form

the foundation for the work conducted in this thesis. This chapter’s goal is to provide the

reader with a basic understanding and background of each area by discussing several

concepts related to each field.

2.1 Steganography

 This section will provide a brief description of the current research in the area of

steganography and its detection.

2.1.1 Steganography Overview

 Individuals have long been concerned with keeping messages and other

communications from prying eyes. This desire to secure communications fueled two

different means of achieving the same end. One method commonly used to secure digital

communications and data is encryption. With encryption, a private message is scrambled

using some type of algorithm with a sequence of bits known as a key that serves to

configure the algorithm. This methodology of securing a message hopes to guarantee

privacy by the strength of the encryption algorithm and key complexity.

 Steganography pursues a different means to achieve the goal of private

communications. Message security in a steganographic model is achieved by hiding the

existence of the message in the first place. [6] defines steganography as “the art of

inconspicuously hiding data within data” such that unintended recipients do not suspect

 11

the existence of hidden data. The exact process of hiding the information varies from

medium to medium and type to type, but the basic steganographic process requires three

items: cover medium, hidden message, and embedding algorithm. An optional fourth

item required is a key.

 The cover medium in the digital realm is some type of object, be it an image,

audio, video, text file, data packet, or other file or grouped item or element. A hidden

message can be text, a file, or any other data type, including single bits. The embedding

algorithm is typically a cover medium-specific algorithm designed to take advantages of

redundancies and unused bits and bytes specialized to that particular piece of data. The

optional key can be used to encrypt the data, configure the embedding algorithm, or both.

 The exact process of hiding the information varies from medium to medium, but

the basic design starts with an analysis of the cover medium. The process finds the bits

unnecessary to maintain the medium’s integrity, named the redundant bits, and then the

embedding process replaces the redundant bits with bits from the hidden message. [10]

Based on the cover medium, this embedding process varies in its usage, analysis, and

replacement.

 The cover medium is also known as the carrier type, as it is the item which

“carries” the steganographic message. The carrier type can literally be anything physical

(wax on wood tablets) or intangible (bits of data in data communications). History tells

of early steganography attempts by prisoners that hid messages on the wood of the wax-

covered tablets they were given. Another account tells of how a Roman general shaved a

slave’s head, tattooed a message, and then sent him to deliver the message after the

slave’s hair had grown back. Suggested recent physical uses of steganography were

 12

used in the quilts hanging outside the homes of those aiding slaves in the Underground

Railroad, giving them directions and instructions in plain view while keeping their

existence hidden from those unaware of the messages. [11]

 Steganography has taken on a new dimension with the explosion of computing

technology and the plethora of digital carrier types the computing growth has created.

Digital cover mediums span a variety of categories and are continually expanding.

Common carries of steganographic messages include the following types listed below.

• Images – Gifs, JPEGs, and other image file formats typically have some type of

redundancy. Manipulation of these images relies on minute shifts that do not

drastically alter the image.

• Audio – While images are effective for steganography, the human ear can be less

discernable, especially when trying to listen to quiet background noises under a

loud foreground sound.

• Video – The sheer size of video files as well as the encoding methods used

permits a much larger amount of data to be stored.

• Text – Fonts, spacing, and even word and line ordering can hide a message.

• Network Communications – Many network protocols have unused bits and bytes

reserved for future use and rely on honest implementation and “best practices”

The focus of this research is on network communications, but it is important to be aware

of the other applications of steganography in a digital medium.

 Regardless of the medium used, some type of encoding schema must be used to

integrate the hidden data and the cover medium. There are a variety of encoding schemes

available and discussed in the academic community, some of which are applicable to

 13

multiple carriers, many of which are limited to a specific carrier type. Common

steganographic encoding methods for images, audio, and video include Least Significant

Bit (LSB) and wavelets.

 The simplest of these methods is Least Significant Bit substitution where the low-

order bit in all or some bytes is replaced by bits from the hidden or secret message. Since

the human eyes and ears are only so discerning and sensitive, the least significant bits of

the object can typically be modified without worry of a person being able to detect it

visually or audibly. However, a computer program can look directly at these bits and

reconstruct them to form a message or file quickly and easily.

 The most complex and potentially rewarding method of steganography lies in a

mathematical modeling concept known as a wavelet. Wavelets are functions satisfying

specific mathematical requirements and are used in the representation of functions as well

as other data. [12] discusses the foundations of wavelets and their ability to see “the

forest and the trees.” He also mentions the ability to choose a wavelet best suited for a

particular data set or truncating the coefficients below a specific threshold to achieve data

compression. Research by [13] shows that wavelet manipulation can compress an object

to a maximum compression without threatening a single bit of the hidden message. This

capability of wavelets is an important characteristic which will be discussed shortly.

 Data masking and filtering techniques are not discussed here as these techniques

extend data over a cover medium. These are commonly used as a form of digital

watermarking and do hide information, but technically are not considered forms of

steganography. They will not be discussed further in this document.

 14

 Medium- and format-specific steganographic algorithms are the most common

techniques available used to encode data. GIF image files commonly have their color

palette modified or reordered to hold hidden data. JPEG images can have hidden

messages intertwined in the data coefficients describing the image pixels. MP3s and

WAV files are susceptible to hidden messages being encoded quietly during loud

portions of a musical crescendo or other loud noise. Text documents can hide

steganographic data through line spacing, character fonts, text positioning, and even letter

arrangements. Data packets and protocols with loosely defined or undefined bits and

bytes can transmit information untouched by routers or end systems relaying the

information. The list of steganographic mediums and algorithms continues on and on,

including things such as redundant instruction sets in program executables and even file

system tables and definitions.

 Regardless of the medium chosen, steganographic techniques can usually be

applied to the medium to encode a message within. While steganography itself is a

powerful means of securing a message, it can be strengthened. Encryption algorithms

can be used in conjunction with steganography methods to further scramble and more

effectively hide the embedded message. Prior to the embedding the hidden data in the

cover medium, the encryption algorithm of choice is run on the hidden message to

encrypt its contents. Once encryption is complete, the scrambled message is embedded

in the cover medium using the algorithm for the specific medium. Some encryption

algorithms used include DES, 3DES, and AES.

 The innocuous nature of steganography is also its main weakness. Embedded

data in a cover medium is extremely fragile and is usually threatened or even destroyed

 15

by any modifications to the cover medium. Text documents and GIF images are often

irreparably altered simply by viewing the file and then saving it without making even a

single edit. [5] Though there are some encoding methods which provide reliable

robustness against destruction of the hidden message, many techniques are highly

susceptible to attacks on message integrity. Despite this weakness, these mediums and

others are still used to try and pass hidden messages.

2.1.2 Network Covert Channels

 Covert channels encompass all types of communications, such as inter-process,

input and output, and even hardware communications. Network covert channels are a

specific focus area in steganography and covert channels using communications protocols

as the medium for sending covert messages. Network and Internet communications are

not the only types of covert channels available, though many of the same theories apply.

For the purpose of this research, network covert channels will be the main type of covert

channels discussed.

 [14] defines network covert channels as exploits “by the manipulation of

communications resources or transmission characteristics” of a communication protocol.

Manipulation of the communications resources includes modification of any of the fields

or values defined in the protocol specification to something other than the expected

usage. Transmission characteristics include miniscule items such as timing between

packet transmissions and the size of the packets being transmitted.

 Most of the research found concerning covert channels was concerned with

detecting and disrupting the timing of communications as a means to combat time-based

communications. [14], [15], and [16] all discuss timing as the methodology of choice to

 16

secretly transmit data. [17] briefly mentions a second means of secretly encoding data by

placing it in network headers, one of the early examples of network covert channels.

 The paper continues with a breakdown of covert channel research into four

disciplines: Explanation, Identification, Measurement, and Mitigation. [14] also

provides some methods of measuring a channel’s capacity and provides a concept useful

in combating not only timing channels, but a time-independent item as well: the

introduction of noise into a channel.

2.1.3 Steganalysis

 Directly countering the art and science of steganography is steganalysis. The goal

of steganalysis is to detect, extract, or disable steganography in any type of medium.

Regardless of how good the steganography method is, [10] says all steganographic

methods are invasive and therefore leave evidence of their actions. The most difficult

portion of steganalysis is reliably and accurately detecting an embedded message. There

are two different theories driving steganalysis detection: statistical review and

information theory.

 Based on the medium, there are a number of characteristics that can be gleaned

from analysis of said medium to create a statistical template. Some characteristics used

in image analysis include luminance, coefficient values, and even image continuity.

These characteristics are then compared to values and tolerances previously generated,

and any values or characteristics exceeding the threshold are flagged and dealt with

accordingly. [10] Depending on the threshold and characteristic values chosen, the

number of erroneous responses (false negatives and false positives) may lead analysts on

a wild goose chase or may keep them from analyzing objects containing hidden data.

 17

 Information theory was pioneered by a researcher named Shannon beginning in

the 1940s. This area of research relates to message sources, communication channels,

and theorems relating entropy to channel capacity. The fundamental concept of

information theory is that information is regarded as only those symbols uncertain to the

receiver in his body of knowledge. A message is analyzed using information theory, the

redundancies and predictabilities are removed, and the resulting message is sent,

minimizing the message’s size while maximizing the number of simultaneous messages

that can be transmitted. [18]

 For example, the message “We have a large database to transmit containing secret

agent records” could be minimized to “We hve lrg db 2 trnsmt cntaing scrt agt recs.”

While a simplistic example, it helps illustrate the broader uses of information theory

when transmitting real-time video for streaming internet or cable or satellite TV, or real-

time audio over cellular phones and landlines. Transmitting a studio-quality full-motion

video TV signal to a home requires 70,000,000 bits per second, a rate which is

economically impractical even using high bandwidth fiber optics connection. Using

information theory, this rate can be compressed to 368, 192, or even 56 kilobytes per

second. The same idea follows for phones, where voice data is compressed down as low

as 64 kilobits per second, if not lower. [18]

 Information theory plays a role in steganalysis because of its reducing and

compressing nature. Using information theory, analysts can determine the object’s

capacity to store extra data or determine whether or not the object has redundancies that

should have been removed during the original encoding process. By examining the

results from each of these processes, analysts can more accurately predict the probability

 18

that the object has information embedded in it. Information theory can be applied to all

carrier types and cover mediums with algorithms specific to the type and medium

structure or format. For communications protocols, information theory can be used to

determine the protocol’s capacity to hold hidden data and whether or not the protocol is

being used to send extra data. [19]

2.2 Real-time Network Analysis

 This section will review research regarding real-time network analysis and

supporting areas.

2.2.1 Real-time Network Analysis

 Humans have long had questions about the truth of what is really happening

during an event. We may think that we know what is happening, but we still want proof

that what we think is occurring is truly occurring. Ask any network administrator and he

will tell you that one of the things that he wants to know and be sure of is that what he

thinks is happening on his network IS happening on his network is happening RIGHT

NOW. Like anyone responsible for safeguarding a location, item, or person, finding out

that someone was trying to break into the network or was engaging in a denial-of-service

attack even as few as five minutes ago is often unacceptable.

 This is where real-time network analysis has its stake. The ideal of real-time

network analysis is to examine every packet passing through a particular network

segment to determine anomalies, show traffic patterns, and respond to changes or

unauthorized behavior or traffic accordingly. On small, slow, and rarely-used home

networks, this goal may be easily attained; large, fast and busy networks can end up

 19

overwhelming a single system, causing a bottleneck and degrading network

responsiveness, throughput, and productivity. The goals of real-time network analysis

are to provide as clear a picture of the network and its utilization as possible without

having a detrimental affect on any of the network’s services, usage, or throughput.

 [20] discusses a simple, efficient, and effective real-time network analysis

strategy based on a queue structure that samples incoming packets for analysis. By

examining packet frequencies, end points, and end ports, a clearer view of how the

network is utilized is created at that instant. His simple model shows how a large

network can quickly be analyzed for anomalies such as abnormally high traffic patterns

or unexpected traffic types between systems. [20]’s case studies were performed on a

network gateway with a bandwidth of 7 MB and an average of 1000 to 4000 packets

passing through it per second.

 Research by [21] on an OC-3 network running at 155 MB was published in 1997.

This group’s work gathered varying statistics from the network such as average packet

size, source information, destination information, and the protocols used to transfer the

information over IP. This statistical sampling was again a rather simple analysis of

network traffic again centered on the basic information gleaned from the header

information on each packet.

 The largest hurdle of real-time network analysis is being able to perform an

intensive analysis of every packet in real time without degrading the usability of the

network. [20]’s research showed a node processing 1000 to 4000 packets per second on

average, which translates into an average processing time of 0.00025 to 0.001 seconds to

analyze a packet. When gathering statistics on a network, this limitation can be easily

 20

met by a few lines of code and a few conditional statements, all of which can be

optimized. The processing time complexity of such a statistical algorithm is low.

Performing an in-depth analysis of the packets based on source, destination, protocol, and

content validity and integrity has a much larger processing time complexity and can

quickly lead to dropped packets and inefficient usage of network resources.

 Optimizing analysis code and providing faster support hardware to execute the

analysis code are two common methods for overcoming this boundary, but each has their

own drawbacks. Optimized code is typically limited to the system architecture it is

written for, and faster supporting hardware is often financially burdensome. It is also

difficult to analyze gigabit plus data rates used in inter-backbone communications

reliably.

 The next theory is to split the analysis processing into smaller, more manageable

sections such as network segments. While analysis of these smaller, slower segments can

be done with older equipment, this benefit is offset by the necessity of the amount of

equipment required to monitor an entire network. Instead of a single high-performance

system at the entry point to an entire network, there would be multiple inexpensive

systems utilized on the network.

 [22] reports that network packet analysis requires too much human and hardware

resources to be used on anything than a small network segment. Requirements for simply

recording all of the traffic without loss of packet data through network saturation or

storage delay are difficult enough to reliably achieve. This group’s body of work

suggests that data analysis post-event allows for a less time-restricted decision to be

 21

rendered. This also gives the analyst a potentially large body of data to support and

justify any claims made.

2.2.2 Application of Real-time Network Analysis

 The applications of real-time network analysis to the problem of network

steganography on the DNS protocol are straightforward. First, we are performing a real-

time analysis of the network traffic and attempting to gather usage and packet

characteristics. Our particular problem domain is a subset of the traffic monitored by a

typical network monitor, traffic running to or from port 53. This is the port the Domain

Name Service is commonly available on.

 Traffic analysis will look at all packets with a source or destination port of 53 and

perform an in-depth review of these packets to validate packet structure based on the

protocol specifications and network topology. Here we are first concerned with whether

or not the protocol is being utilized properly based on the protocol’s specification.

Traffic failing to conform to the standard or using undefined options are subject to

review. Secondly we are concerned with the traffic’s flow with regards to network

topology based on services available on a specific network segment. There should not be

any DNS requests going to or DNS responses coming from a network segment that does

not have a DNS server. Evidence of the failures is likely to show an improperly

configured machine, incorrect implementations of the DNS protocol, or rogue

applications and servers.

 The final application of network analysis to this problem area is a hands-on

approach that modifies packet data. This intensive approach permits rogue packets to be

caught and hopefully rendered inert as they are forwarded on. Unfortunately this

 22

particular process is extremely invasive, but executed properly results in an entirely

transparent process to honest users. Since our goal is to minimize, if not eliminate covert

communications over DNS, modification of any weak or easily manipulated fields is an

essential portion of our analysis that must be done in real-time.

2.3 Summary

 The review of literature provided in this chapter has shown some of the more

recent and prominent research regarding steganography, steganalysis, covert channels,

and real-time network analysis. This body of work will attempt to unify these areas into a

networking tool that will provide a contribution to the field of computer security. It has

become apparent from the research described previously that there is very little attention

paid to covert channels within network communications. Most research for

steganography or covert channels returns some information on network-related fields, but

little information was available beyond the basics concerning specific algorithms or

communications. With the integral parts that communications protocols play in basic

Internet usage, it is disturbing to see that very little research is available to counter the

weaknesses inherent in many protocols. Malicious and rogue users are quick to employ

and utilize such weaknesses to achieve their own goals, yet very little is done to minimize

this risk.

 It was also observed that there is a great deal of potential for continuing research

and application of current real-time analysis work with regards to security. The current

trends of analysis rely heavily on gathering basic statistics from network packets to gain a

clearer view of network utilization. It has been shown that analysis can detect unusual

 23

behaviors such as port scanning [20], but little work is listed about the network

responding to anomalies such as this by bandwidth throttling, packet dropping, or other

techniques. Since we can see the activities occurring in real-time, we should also be able

to respond to them in real-time as well.

 The remainder of this thesis will be focused on describing a specific algorithm for

minimizing the capability of covert channels in DNS as well as a generic algorithm for

the achieving the same goal on other protocols. This includes the Network Validated

DNS tool, a tool implemented from this algorithm and drawing its inspiration from

research discussing the capabilities and bandwidth of covert channels.

 24

Chapter 3

3 Limiting DNS Covert Channels

 In chapters 1 and 2 it was observed that there was very little formal research done

to minimize the potential for covert channels in networked systems. Most of the research

provided means of detection, if possible, and does not provide any methods of disabling

or attacking the hidden data. In this chapter, several methods of detection and disabling

are discussed with regards to the DNS protocol. This chapter will form the basis for tools

applying this methodology that will be described in chapter 4.

3.1 Understanding the DNS protocol

 The DNS protocol is an integral service of the internet responsible for translating

domain name requests, such as www.wvu.edu, into their corresponding IP addresses

(157.182.140.235). Without DNS, users would be forced to remember a series of

numbers for each site they wanted to visit. Attempts to remember Google

(64.233.167.99), WVU (157.182.140.235), and ZDNet (216.239.115.140) would quickly

devolve into random number guessing and make Internet connectivity little more than a

passing interest, especially should the IP address of the domain change. In chapter 1, it

was mentioned that rogue users could subvert the DNS protocol to use it as a

communications channel. Understanding how the protocol works is essential to all other

aspects of our attempt to control covert channels within it. The following definitions

come from [3] and [9], with definitions from other RFCs included.

 25

3.1.1 Historical Perspective

 Beginning in the 1960s with ARPAnet, hostname to IP address name mappings

were collected, updated and distributed via FTP from the Network Information Center, a

single location on ARPANET. This scheme originally worked well as there were few

hosts and few changes to the network addresses. In the years prior to 1983, the number

of hosts on the Internet had increased dramatically and threatened an explosion of

growth, creating a need for a more efficient and dynamic method of performing domain

name translations. The resulting proposals centered on the concept of a distributed

hierarchical model roughly corresponding to the organizational structure of the domain

names. The basic structure and operation of DNS was implemented in 1983 and was

proposed as an RFC in 1987. [3]

 DNS is designed to be as flexible as possible to allow a more general-purpose tool

that can be used across multiple network types with varying domain name structures. It

also is designed to be able to locate data beyond simple IP address mappings, thus

requiring greater flexibility. This flexibility and expansive approach allows for a large

amount of maneuvering room, enough to permit the subversion of the protocol.

 The protocol runs primarily over UDP/IP to minimize connection overhead, but

TCP/IP can also be used when data ordering is important or while transferring a large

amount of data. Further historical information can be found in [3] and the following

sections assume that the reader is somewhat familiar with [3] and [9], as well as network

technologies and concepts. Figure 3.1 shows a high-level overview of a DNS packet.

Each section of the DNS packet will be discussed in detail in the following subsections.

 26

Figure 3-1 DNS Packet Sections Overview

Table 3.1 DNS Packet Sections Description

Field Description
Header Contains processing information and protocol-

specific options
Questions Contains the request for an unresolved domain

name or Internet Address
Resource Records Contains response information for the question

3.1.2 Header Definition

 Each DNS packet sent and received is composed of a fixed-length header section,

an optional question section, and a variable number of variable length resource records.

The question section is described in section 3.1.3 and the resource records are described

in section 3.1.4.

 The header of each DNS packet is a fixed 12 byte length, beginning at the zero

offset of the data section of packet payload. The header is show in figure 3.2 and a brief

description of each field is listed in table 3.2.

Figure 3-2 Packet Header

 27

Table 3.2 Packet Header Field Definitions

Field Type Valid Values Description
ID 16 bit unsigned int 0 - 2^16-1 ID assigned by program generating DNS query
QR 1 bit 0 - 1 Query (0) or Response (1)
Opcode 4 bit unsigned int 0 - 2 Describes the type of query
AA 1 bit 0 - 1 Authoritative Answer
TC 1 bit 0 - 1 TrunCated message indicator
RD 1 bit 0 - 1 Recursion Desired
RA 1 bit 0 - 1 Recursion Available
Z 3 bits 0 Reserved
Rcode 4 bit unsigned int 0 – 5 Response Code
QDCount 16 bit unsigned int 0 - 2^16-1 Number of questions encoded
ANCount 16 bit unsigned int 0 - 2^16-1 Number of answers encoded
NSCount 16 bit unsigned int 0 - 2^16-1 Number of Nameservers encoded
ARCount 16 bit unsigned int 0 - 2^16-1 Number of Additional Records encoded

 The field definitions listed above are fairly straightforward and simple to

understand, just as the values for each field based on a condition set are simple to

understand. The definition of the header field includes a number of specific conditions

that must be met for the values in each field to be valid. These specifics will be discussed

further in sections 3.2 and 3.3.

3.1.3 Question Section Definition

 Every DNS packet typically has a question included in its contents. Questions

form the basis of the client aspect of the client-server relationship DNS functions. The

question section of the DNS protocol is a variable length field followed by two fixed-

length fields. Figure 3.3 shows the layout of the question section and table 3.3 contain

descriptions of the field types and the values permitted for each field.

 28

Figure 3-3 Question Format

Table 3.3 Question Field Definitions

Field Type Valid Values Description
Qname <Domain-name> See syntax table Domain Name of the question
Qtype 16 bit unsigned int 1-16, 252-255 Type of query requested
Qclass 16 bit unsigned int 1-4 Query class format

3.1.4 Resource Record Definitions

 Each DNS packet optionally contains one or more variable length and structure

items known as resource records. Resource records contain varying types of data such as

IP addresses, start of authority records, and mailbox information. By far, this portion of

the packet is the most important portion of the packet being transmitted as it handles

numerous data types. Regardless of the data types being passed, each resource record has

a header specifying the record’s name, type, class, time to live, and data length. The data

portion of the record immediately follows the data length field and is formatted according

to the type and class fields specified. Figure 3.4 describes the resource record format

while table 3.4 describes the field names and types.

 29

Figure 3-4 Resource Record Format

Table 3.4 Resource Record Field Definitions

Field Type Valid Values Description
Name <Domain-name> See syntax table Node to which this resource record pertains
Type 16 bit unsigned int 1 - 16 Type code determining structure of the Rdata
Class 16 bit unsigned int 1 – 4 Class code for determining format of the Rdata
TTL 32 bit unsigned int 0-(2^32)-1 Time To Live
RDLength 16 bit unsigned int 0-(2^16)-1 Size of the Rdata structure
Rdata Varies by Type See Type table Data of the Resource Record, determined by type code

 The type field is responsible for determining the structure of the data portion of

the resource record. The class field is primarily used to specify the data format based on

the addressing format used: Internet, CSNet, CHAOS, or Hesiod. Tables 3.5 and 3.6 list

the valid types and classes per [3] and [9]. The following subsections will explain the

structure of the resource record for each type value.

Table 3.5 Resource Record Types

Name Value Description
A 1 Answer
NS 2 Authoritative Name Server
MD 3 Mail Destination
MF 4 Mail Forwarder
CNAME 5 Canonical name for alias
SOA 6 Start of Zone Authority
MB 7 Mailbox domain name
MG 8 Mail group domain name
MR 9 Mail rename domain name
NULL 10 Any data valid

 30

WKS 11 Well-Known Service
PTR 12 Domain Name Pointer
HINFO 13 Host Information
MINFO 14 Mailbox/Mail list information
MX 15 Mail Exchange
TXT 16 Text Strings
AFXR 252 Entire Zone Transfer
MAILB 253 Request for Mailbox-related records
MAILA 254 Request for all mail agents
* 255 Request for all records

Table 3.6 Resource Record Classes

Name Value Description
IN 1 Internet
CS 2 CSNet
CH 3 CHAOS Net
HS 4 Hesiod

3.1.3.1 – Type A

Figure 3-5 Type A Resource Record Format

Table 3.7 Type A Resource Record Field Definitions

Field Type Valid Values Description
ADDRESS 32 bit IP Address 0-(2^32)-1 IP Address

3.1.3.2 – Type NS

Figure 3-6 Type NS Resource Record Format

Table 3.8 Type NS Resource Record Field Definitions

Field Type Valid Values Description
NSDNAME <Domain-name> See syntax table Authoritative Nameserver

 31

3.1.3.3 – Type MD

Figure 3-7 Type MD Resource Record Format

Table 3.9 Type MD Resource Record Field Definitions

Field Type Valid Values Description Notes
MADNAME <Domain-name> See syntax table Mail Destination Obsolete

3.1.3.4 – Type MF

Figure 3-8 Type MF Resource Record Format

Table 3.10 Type MF Resource Record Field Definitions

Field Type Valid Values Description Notes
MFRDATA <Domain-name> See syntax table Mail Forwarder Obsolete

3.1.3.5 – Type CName

Figure 3-9 Type CNAME Resource Record Format

Table 3.11 Type CNAME Resource Record Field Definitions

Field Type Valid Values Description
CNAME <Domain-name> See syntax table Canonical name for an alias

 32

3.1.3.6 – Type SOA

Figure 3-10 Type SOA Resource Record Format

Table 3.12 Type SOA Resource Record Field Definitions

Field Type Valid Values Description
MNAME <Domain-name> See syntax table Primary nameserver for

zone data
RNAME <Domain-name> See syntax table Zone administrator's

Mailbox
SERIAL 32 bit unsigned int 0 - (2^32)-1 Original version number of

zone
REFRESH 32 bit unsigned int 0 - (2^32)-1 Time interval before zone

refresh
RETRY 32 bit unsigned int 0 - (2^32)-1 Time interval before zone

refresh on failed
EXPIRE 32 bit unsigned int 0 - (2^32)-1 Time limit before zone no

longer authoritative
MINIMUM 32 bit unsigned int 0 - (2^32)-1 Minimum TTL field exported

from this zone

 33

3.1.3.7 – Type MB

Figure 3-11 Type MB Resource Record Format

Table 3.13 Type MB Resource Record Field Definitions

Field Type Valid Values Description Notes
MADNAME <Domain-name> See syntax table Host containing the

specified mailbox
Experimental

3.1.3.8 – Type MG

Figure 3-12 Type MG Resource Record Format

Table 3.14 Type MG Resource Record Field Definitions

Field Type Valid Values Description Notes
MGMNAME <Domain-name> See syntax table Specifies member mailbox

of mail group specified by
domain

Experimental

3.1.3.9 – Type MR

Figure 3-13 Type MR Resource Record Format

Table 3.15 Type MR Resource Record Field Definitions

Field Type Valid Values Description Notes
NEWNAME <Domain-name> See syntax table Specifies mailbox which is

the proper rename of
specified mailbox

Experimental

 34

3.1.3.10 – Type NULL

Figure 3-14 Type NULL Resource Record Format

Table 3.16 Type NULL Resource Record Field Definitions

Field Type Valid Values Description Notes
<ANYTHING> <8 bit unsigned int> Any value Field permitting any kinds of

values to be input. Used for
testing.

Experimental

3.1.3.11 – Type WKS

Figure 3-15 Type WKS Resource Record Format

Table 3.17 Type WKS Resource Record Field Definitions

Field Type Valid Values Description
ADDRESS 32 bit IP Address 0 - (2^32)-1 IP Address
Protocol 8 bit unsigned int 6 (TCP), 17(UDP) Protocol number as

determined by IANA for IP
<BIT-MAP> 8 bit unsigned int 0 - 255 Bitmap showing available

service ports on the
specified IP Address

3.1.3.12 – Type PTR

Figure 3-16 Type PTR Resource Record Format

Table 3.18 Type PTR Resource Record Field Definitions

Field Type Valid Values Description
PTRDNAME <Domain-name> See syntax table Pointer to some location in

the domain name space

 35

3.1.3.13 – Type HINFO

Figure 3-17 Type HINFO Resource Record Format

Table 3.19 Type HINFO Resource Record Field Definitions

Field Type Valid Values Description Notes
CPU <character-string> See syntax table Specifies host CPU type 40 char max
OS <character-string> See syntax table Specifies host OS 40 char max

3.1.3.14 – Type MINFO

Figure 3-18 Type MINFO Resource Record Format

Table 3.20 Type MINFO Resource Record Field Definitions

Field Type Valid Values Description
RMAILBOX <Domain-name> See syntax table Specifies mailbox

responsible for mailing list
or mailbox

EMAILBOX <Domain-name> See syntax table Specifies mailbox to receive
error messages

3.1.3.15 – Type MX

Figure 3-19 Type MX Resource Record Format

 36

Table 3.21 Type MX Resource Record Field Definitions

Field Type Valid Values Description
PREFERENCE 16 bit unsigned int 0 - (2^16)-1 Specifies mailbox

responsible for mailing list
or mailbox

EXCHANGE <Domain-name> See syntax table Specifies mailbox to receive
error messages

3.1.3.16 – Type TXT

Figure 3-20 Type TXT Resource Record Format

Table 3.22 Type TXT Resource Record Field Definitions

Field Type Valid Values Description
TXT-DATA <character-string> See syntax table Holds descriptive text

 Table 3.6 listed the legal class values permitted and defined in [3] and [9]. The

most prevalent class value in use is class 1, Internet, but the protocol’s designers wanted

DNS to be a flexible service, so the values for CSNet, CHAOS, and Hesiod were

included to allow for cross-addressing protocol communications. For the purpose of this

research, non-Internet protocols were included, but specifics of the varying class types

will not be discussed in the paper.

3.1.5 Syntax and Compression

 There are two further pieces of information that must be understood to fully

understand the DNS protocol: syntax and message compression.

3.1.5.1 Message Syntax

 Throughout the definitions of the resource records, references were made to a data

type known as <Domain-name>. Table 3.23 breaks this data type into its atomic pieces

and defines the valid values.

 37

Table 3.23 Message Syntax Definition

Field Definition
<Domain-name> <subdomain> | " "
<subdomain> <label> | <subdomain> "." <label>
<label> <let-dig>[[<ldh-str>]<let-dig>]
<ldh-str> <let-dig-hyp> | <let-dig-hyp> <ldh-str>
<let-dig-hyp> <let-dig> | "-"
<let-dig> <letter> | <digit>
<letter> A - Z, a – z
<digit> 0 – 9

 Each label begins with an octet defining the length of the following label, and a

series of labels is always terminated by a zero or null octet. In addition to the syntax

listed above, there are several length requirements that must be met. The first is each

label’s length is limited to 63 bytes at a maximum. The reason for this limit will be

discussed under message compression. The final requirement for a series of labels is that

the maximum length of all of the labels, including the label length octets, is 255 octets.

 IP addresses can also be encoded as part of a DNS request, but their format seems

opposite that of a standard domain name. A request for 64.233.167.99 would be encoded

as 99.167.233.64.IN-ADDR.ARPA.

 The resource record definitions also made reference to a data type listed as

<character-string>. Unless otherwise specified, this data type is characterized by a single

label length octet followed by that number of characters, making the maximum permitted

length of the character data and the length octet 256 characters. The information in the

data type is treated as binary information. <Character-string> can be expressed in two

ways: as a set of contiguous characters lacking spaces, or as a string encapsulated within

a pair of quotation marks (“). Strings encapsulated within quotation marks containing

quotation marks themselves must be quoted using the backslash.

 38

3.1.5.2 Message Compression

 In order to minimize the size of a message by removing redundant information,

inline message pointers were implemented in the body of the DNS packet for the Name

data type of the resource record, allowing data from one record to be utilized in another

record. This concept is illustrated in figure 3.21 below. The top line is the offset value

from the packet start, boldface characters are ASCII values, and regular characters are

integer values.

Figure 3-21 Message Compression Example

 As we can see, ns1.nameserversite.com becomes the only fully domain name used

in the entire packet, even though there are eight nameservers listed. Records ns2 through

ns8 point to the offset in the packet where .nameserver.com originate, saving a significant

amount of data per resource record. Message Compression is indicated by setting the

first two high-order bits of a label length octet to 1. The remaining 6 bits of that octet and

the following octet form the offset from the start of the packet where the next portion of

the domain name can be found. It is possible for a single domain name to have multiple

pointers, such as the described in figure 3-22.

 39

Figure 3-22 Multiple Inline Pointers

 Thus, we see that the resource record for www.lcsee.cemr.wvu.edu has two

pointers for message compression. Pointers can also be used to start a domain name, as

shown by the last entry in figure 3.22. Here we have a record that is part of the

www.wvu.edu record, and to compress the record data, the record begins with a pointer

to the original www.wvu.edu record. These are slightly simplistic examples, but we can

see how message compression can be utilized to minimize the size of a DNS packet.

3.1.6 Summary

 This subsection was intended to be an informational overview describing the DNS

protocol at a slightly higher-level while maintaining enough technical content to allow a

proper analysis of the protocol definition in section 3.2. In this subsection, all valid

syntax and values were defined for each of the fields and a number of condition sets were

created, all of which will be used in aiding our analysis and response.

 40

3.2 Identification of Fields

 In order for a protocol to be subverted and remain inconspicuous and valid to

anyone weakly monitoring the data, a certain amount of weakness must be present in the

protocol’s definition. In this section, the protocol definitions are broken into several

categories based on their requirements as part of the packet and whether the legal values

are completely set. The four resulting categories are as follows:

• Required strong fields – Fields that must be present and must have a set value to

be valid

• Required weak fields – Fields that must be present but do not require a specific

value to function

• Optional strong fields – Fields that may be present and must have a set value to be

valid

• Optional weak fields – Fields that may be present but do not require a specific

value to function

 The reason we are breaking these down is these fields all take up a certain portion

of the transmission channel bandwidth and therefore affect the amount of data that can be

transmitted in each packet. Table 3.24 below shows a breakdown of the four fields as

each relates to the packet bandwidth.

Table 3.24 Packet Type Breakdown

Type Values Bits per Packet
Required Strong RS
 Weak RW
Optional Strong OS
 Weak OW
 RS+RW+OS+OW=Packet size

 41

However, as this relates to covert channels, the weak fields represent the maximum bits

per packet that can supposedly be transmitted without affecting the operation of the

protocol. In effect, this value is lower as there are still some requirements placed on the

syntax and format of the data.

3.2.1 Required fields

 Research and understanding of the DNS protocol leads to the conclusion that the

only required portion of the protocol that was to be present in every packet is the header

section. From here, review of the fields within the header revealed that only one field

with a required value: the Z field where all bits within this field must be zero. The rest of

the fields were set according to direction and packet information and were therefore

classified as required weak fields. Table 3.25 contains a full list of the findings.

Table 3.25 Required Strong and Weak Fields

Strong Fields Value Weak Fields
Z 0 ID OPCODE
 QR RCODE
 AA QDCOUNT
 TC ANCOUNT
 RD NSCOUNT
 RA ARCOUNT

3.2.2 Optional fields

 The question section and resource records were determined to be optional sections

as they were not required in every packet like the header. The fields of the question and

record portion of the protocol were found to be composed entirely of weak fields and

were classified as such. Resource record structures based on class type were also

examined for weak and strong fields. Table 3.26 contains a comprehensive list of the

 42

varying type value structures and their definitions. Review of these fields show that no

field has any strong fields, so all of the type value definitions were classified as optional

weak fields since their parent, the resource record, is optional.

Table 3.26 Optional Weak Fields

Weak Fields
QNAME TTL CNAME EXPIRE <BIT-MAP>
QTYPE RDLENGTH MNAME MINIMUM PTRDNAME
QCLASS RDATA RNAME MGMNAME CPU
NAME ADDRESS SERIAL NEWNAME OS
TYPE NSDNAME REFRESH <ANYTHING> RMAILBOX
CLASS MADNAME RETRY PROTOCOL EMAILBOX
PREFERENCE EXCHANGE TXT-DATA

3.3 Network Topology Awareness

 While format requirements and valid data ranges can help minimize the

subversion of the protocol, the direction and types of traffic transmitted across the

network can impact the usage of covert channels. DNS is a client-server protocol where

a request is made to a server and the server responds with an answer. It is common for

the DNS server for one client to itself become a client to another DNS server in order to

resolve a particular request. The hierarchical nature of DNS paints a portrait of a network

designed as shown in figure 3.23.

 43

Figure 3-23 Example Network Layout

 It is from the network’s topology that we further pare down the permissible

options and fields to a subset of valid options based on the network structure. For

example, DNS traffic coming from the 157.182.213.X network does not have a DNS

server in that particular collision domain, so we can effectively rule out specific values

and options in a number of weak fields due to the expected types of traffic coming from a

particular network segment. Due to the client-server nature of DNS, a second

categorization of the fields into client and server functionality occurred.

 44

 It was noted that since servers could also act as clients, the categories would be

divided into server-only, client-server, and client-only, where the client-only fields were

for machines that were strictly end-systems, while servers potentially utilized the whole

set of DNS fields and functionality. Server-only categories of functionality are intended

for DNS servers on the absolute root of the domain hierarchy, such as .com, .org, and .net

servers. However, due to the nature of the protocol, this server-only division is not

guaranteed. It has been included as a category as theoretically it is possible to have a

system that behaves as a pure server.

 By being aware of the network’s topology and of the expected services

permissible in a segment, we can further reduce the capabilities of covert channels in

DNS. Tables 3.27 and 3.28 contain a list of client-only fields and valid values for both

incoming and outgoing traffic. Tables 3.29 and 3.30 contain a listing of server-only

fields and the valid values for incoming and outgoing traffic. Certain inbound and

outbound types have been excluded as the resource record definitions for those types are

not permitted.

 45

Table 3.27 Client-Only Expected Field Values

Field Name Outbound Inbound
ID Any Matches previous outbound
QR 0 1
OPCODE 0 - 2 0-2
AA 0 0,1
TC 0 Usually 0
RD 0,1 0
RA 0 0,1
Z 000 000
RCODE 0 0-5
QDCOUNT 1 1
ANCOUNT 0 0 - (2^16)-1
NSCOUNT 0 0 - (2^16)-1
ARCOUNT 0 0 - (2^16)-1
QNAME <Domain-name> Matches previous outbound
QTYPE 1-16, 252-255 Matches previous outbound
QCLASS 1-4 Matches previous outbound
NAME - <Domain-name>
TYPE - 1 - 16
CLASS - 1 - 4
TTL - 0 - (2^32)-1
RDLENGTH - 0 - (2^16)-1
RDATA - See Client RR table

 46

Table 3.28 Client-Only Expected RR Values

RR Type Field Inbound
A ADDRESS 32 bit IP address - Some exceptions
NS NSDNAME <Domain-name>
MD MADNAME <Domain-name>
MF MADNAME <Domain-name>
CN CNAME <Domain-name>
SOA MNAME <Domain-name>
 RNAME <Domain-name>
 SERIAL 0 - (2^32)-1
 REFRESTH 0 - (2^32)-1
 RETRY 0 - (2^32)-1
 EXPIRE 0 - (2^32)-1
 MINIMUM 0 - (2^32)-1
MB MADNAME <Domain-name>
MG MGMNAME <Domain-name>
MR NEWNAME <Domain-name>
NULL <ANYTHING> Anything
WKS ADDRESS 32 bit IP address - Some exceptions
 PROTOCOL 6 (TCP), 17 (UDP)
 <BIT-MAP> 0 - 255
PTR PTRDNAME <Domain-name>
HINFO CPU <character-string>
 OS <character-string>
MINFO RMAILBOX <Domain-name>
 EMAILBOX <Domain-name>
MX PREFERENCE 0 - (2^16)-1
 EXCHANGE <Domain-name>
TXT TXT-DATA <character-string>[<character-string>]

 47

Table 3.29 Server-Only Expected Field Values

Field Name Outbound Inbound
ID Matches previous inbound Any
QR 1 0
OPCODE 0-2 0 - 2
AA 0,1 0
TC Usually 0 0
RD 0 0,1
RA 0,1 0
Z 000 000
RCODE 0-5 0
QDCOUNT 1 1
ANCOUNT 0 - (2^16)-1 0
NSCOUNT 0 - (2^16)-1 0
ARCOUNT 0 - (2^16)-1 0
QNAME Matches previous inbound <Domain-name>
QTYPE Matches previous inbound 1-16, 252-255
QCLASS Matches previous inbound 1-4
NAME <Domain-name> -
TYPE 1 - 16 -
CLASS 1 - 4 -
TTL 0 - (2^32)-1 -
RDLENGTH 0 - (2^16)-1 -
RDATA See Server RR table -

 48

Table 3.30 Server-Only Expected RR Values

RR Type Field Outbound
A ADDRESS 32 bit IP address - Some exceptions
NS NSDNAME <Domain-name>
MD MADNAME <Domain-name>
MF MADNAME <Domain-name>
CN CNAME <Domain-name>
SOA MNAME <Domain-name>
 RNAME <Domain-name>
 SERIAL 0 - (2^32)-1
 REFRESTH 0 - (2^32)-1
 RETRY 0 - (2^32)-1
 EXPIRE 0 - (2^32)-1
 MINIMUM 0 - (2^32)-1
MB MADNAME <Domain-name>
MG MGMNAME <Domain-name>
MR NEWNAME <Domain-name>
NULL <ANYTHING> Anything
WKS ADDRESS 32 bit IP address - Some exceptions
 PROTOCOL 6 (TCP), 17 (UDP)
 <BIT-MAP> 0 - 255
PTR PTRDNAME <Domain-name>
HINFO CPU <character-string>
 OS <character-string>
MINFO RMAILBOX <Domain-name>
 EMAILBOX <Domain-name>
MX PREFERENCE 0 - (2^16)-1
 EXCHANGE <Domain-name>
TXT TXT-DATA <character-string>[<character-string>]

3.4 Identifying and Limiting Covert Channels

 In sections 3.2 and 3.3, we identified a number of protocol- and network-specific

constraints that were to be followed in order to maintain compliance with the protocol’s

standards. With these constraints in mind, a series of permitted operations based on the

protocol and network layout from our lists can be derived. We can generate rule listings

based on tables 3.27, 3.28, 3.29, and 3.30 that were in turn derived from the protocol and

network definitions.

 49

 From tables 3.27 and 3.28, we can see that the rule set for the client side is fairly

simple, depending on the functionality we want to permit on the network segment.

However, the question of how we detect covert channels remains. The most obvious way

to detect them is to see which, if any, of the rules a packet fails and then paying special

attention to that packet. This is the most obvious way to detect covert channels, but does

not mean that the other packets do not have covert transmissions hidden within.

 Since we are not able to fully detect all types of covert communications, the

option we have is to manage all fields not requiring an explicit value to function, such as

the ID field. Limiting the potential for covert communications can be achieved by

placing a layer of abstraction between the user’s computer and the outgoing network

interface from a segment. In this model, when a packet is received, all fields except the

data payload field are rewritten or regenerated, and then the query is passed on to the

DNS server. The ID field, which may previously have had a value of 1042, may now

have a value of 249 courtesy of a random number generator. The response from the

server is processed in a similar manner, removing any invalid response options, and the

original field data with a reply is returned to the user. Regular users see nothing amiss

while rogue users may be forced to utilize another method to transmit their data.

3.5 Response Options

 Once identification of a covert channel has occurred, the question of how to

respond to the channel remains. From the steganography model, there are three options

we can glean from the portrayal of Alice, Bob, and the warden: Permit, Drop, and

Reprocess.

 50

 The option to respond by permitting all traffic is a response that trusts the packets

passing through without any question. Packets failing the filtering rule are permitted to

continue on without any modifications or other response. Any type of network

implementing this choice long-term does not require any type of validation service unless

looking for unexpected services or monitoring traffic.

 Choosing to drop any packets failing the filtering rules is the second of the three

options derived from the warden’s portrayal. With this choice, packets failing any of the

filters are simply discarded as though they were dropped somewhere along the line by the

network. This implementation choice can cause a buildup of DNS traffic on the segment

as the protocol’s definition suggests a number of times to retry a request following the

lack of a response within an allotted time period. Small network segments without a

large amount of DNS traffic can utilize this measure with little impact on network

responsiveness.

 Reprocessing a message is the equivalent of the active warden model, where the

warden takes a message from Alice, types it up on the typewriter and performs some

other analysis on it, and then gives it to Bob. The application of this model to the

problem of DNS covert channels involves rewriting as much of the packet as possible

without losing the meaning of the message being passed. In this application,

reprocessing would entail overwriting every field failing the filtering rules and other

fields whose modification does not impact the packet integrity.

 The response options given by steganalysis are simple concepts that can be used

to disrupt and combat steganography attempts in general. Covert channels are a specific

field within steganography, but are still susceptible to these response techniques, albeit

 51

varying from those of images or video. The difficulty with covert channels lies in the

fact that the communications are not typically stored to disk like images and video. With

covert communications, a decision must be rendered nearly instantaneously on a limited

amount of data.

3.6 Additional Considerations

 Minimizing and eliminating the capabilities of covert channels is a difficult

process as there are many ways to hide data within legitimate communications. With this

in mind, there are several additional considerations that must be taken by one attempting

to limit covert channels.

3.6.1 Standard Revisions

 The internet and its communication protocols are constantly evolving, adding new

features, making others obsolete, and competing with other protocols for implementation.

This document and its content used [3] and [9] to generate the rule listings and tables

found within. There have been a number of proposed and accepted updates to these

documents that add additional features like DNSSEC. Other revisions and clarifications

are sure to follow in the future as demand for additional functionality from the protocol

increases. Each new revision will require analysis, verification, and some means of

permitting backwards compatibility to older protocol definitions.

3.6.2 Covert Channel Logging

 A facet of communications protocols that is often overlooked is the packaging

that holds the specific data desired. The packaging explains a number of things about the

data encoded within, but is discarded once the packet reaches its endpoint and is decoded.

 52

The choice to discard all of the communications except the specific data is potentially

limiting as we cannot later review all the data in the packet should a new method of

analysis become available. Consciously copying all of the original data on its way from

the client and from the outside server allows for later review of the data and its packaging

for covert transmissions. This storage of the whole packet allows for a thorough, long-

term analysis of packet data for covert messages.

3.6.3 Network Issues

 Two issues arise from the network structure that must be addressed to ensure

validation of all DNS traffic: deployment location and packet routing.

 The goal is to analyze all DNS packets coming and going through a particular

network segment, so the most logical placement of a device to handle this task would be

on the gateway. Here all traffic entering and leaving the segment would be forced to go

through the single location leading to the next level of the network. This location

presents a somewhat unexpected problem in that packets leaving the segment are

monitored, but packets remaining in the segment that never attempt leave the segment fail

to go through the gateway and therefore are not processed.

 The second routing problem theoretically results from deviation from the

expected routing structure of the DNS hierarchy. DNS queries are supposed go through a

specific hierarchy of name servers to obtain a response. Typically, addresses for name

servers are determined by DHCP or are set by a network administrator. In a typical

model, queries would go to these servers first and then head out of the network. A rogue

user specifying a DNS request to a name server outside of the network can avoid the

hierarchy and theoretically validation as well.

 53

 With these problems in mind, we would want to ensure all traffic leaving or

staying in the segment is validated. This suggests a means of forwarding all DNS packets

received on a segment to first go through the validation mechanism prior to being sent to

their intended destination.

 54

Chapter 4
4 NV-DNS

 NV-DNS is a Domain Name Service packet processor that checks and validates

DNS packets for correctness, validity, and other implementation errors. The intent of this

program is to evaluate DNS communications for hidden or covert channels within the

contents of the packet. In addition, NV-DNS will aid security professionals and software

designers in providing a more secure networked computing environment. Inspiration

from this program came from the concept of real-time network analysis, where packets

are examined and recorded for usage statistics.

 NV-DNS processes incoming UDP-based DNS packets based on the specification

of the Domain Name Service in RFC 1034 and RFC 1035. [3], [9] it utilizes a

configuration file to determine the permissible DNS options and classes on a particular

network segment. Based on this configuration, the program also executes a set of desired

actions to perform on packets failing configuration rules. Ideally NV-DNS is a

monitoring tool set on network gateways to determine the validity of the communications

passing through. It can also be used to push software designers towards network-

validating software to minimize the possibility of rogue programs subverting protocols

for unauthorized use.

 55

4.1 Architectural Overview

 NV-DNS is composed of three main components:

• The Packet Parser

• The Validation Module

• The Packet Crafter

 The Packet Parser is responsible for parsing DNS packets into its various fields to

allow for simpler validation. The Validation Module processes the packet based on a rule

filter to check for invalid values and fields, determining if the packet is a candidate for

any type of covert communications. The Packet Crafter repackages the packet based on

the rule filter and overwrites some fields based on the necessity of the field data, like the

ID field.

 The design of NV-DNS is intended to allow for a high degree of flexibility and

maintainability. With these aspects of development in mind, the components of this tool

were implemented in a modular fashion that permits simple upkeep of the current

modules or replacement of the modules with their own without affecting program

functionality. Figure 4.1 shows a simple diagram describing the flow of NV-DNS and

will be used as the foundation for describing the tool’s functionality.

 56

Figure 4-1 NV-DNS Flowchart

 57

 Connections for incoming DNS requests are received and the packet is fed into

the Packet Parser, which simply breaks the packet into specific fields to allow for easier

validation. Once the packet has been parsed, the Validation Module tests the packet

structure based on the packet’s direction, network topology of the segment, and

adherence to protocol specifications. The validation rules are loaded from a

configuration file previously generated by a network administrator. The resulting

validation response is fed into the Packet Crafter and a new packet is crafted with valid

data and sent off to the next-level DNS server. The program awaits a response and

processes the response in the same way that the request was processed. The original

request and response are also stored to disk with packet header information.

4.1.1 The Packet Parser

 The Packet Parser is responsible for breaking the DNS packet into the varying

fields to assist in analysis of the packet data. This includes pulling the specific bit fields

out of the header and converting bits into numbers. The methodology chosen to create a

structure suitable for validation is not intended to be the fastest or most efficient means of

validation, but the simplest. Memory is allocated for a structure that contains the DNS

fields and their values, and the data is parsed into the allocated fields. During this

parsing, data is converted, packed, or unpacked into its respective fields before being

returned to the calling routine. The newly allocated structure is then passed on to the

validation module that performs the tedious task of reviewing the values in each of the

fields.

 58

4.1.2 The Validation Module

 The Validation Module is the second major component of NV-DNS and is easily

the most complex module of the system. It is also by far the most important component

of NV-DNS. This particular module must validate all portions of the DNS protocol

specification and must also account for network location rules. The concept of having

some type of off-system validation mechanism was influenced heavily by the RFCs

trusting implementation and utilization in “good faith” to the programmers. Secondary

influences for off-system validation are found littered throughout research papers and

articles on steganalysis and covert channels.

 Validation of all aspects of a protocol based on its definition is a potentially

difficult task. Every valid combination of the protocol definition must be processed as

valid while any invalid combinations or definitions must be appropriately labeled as such.

Implementing code to properly analyze and validate the protocol is the most difficult

portion of the NV-DNS program. The validation of the protocol based on traffic

direction is a much simpler validation to make in terms of complexity as there are only

two directions to traffic. Most of the functions can be grouped into a few basic rule sets

on either direction, thus minimizing the complexity of this type of validation. Once

validation is complete and a response code has been generated by the module, the

response code and packet are passed on to the final module.

4.1.3 The Packet Crafter

 The last module being discussed is the Packet Crafter, which can be an optional

module in the system. The purpose of the module is evident from its name, but for some

reasons which may not be fully obvious at first glance. As the name implies, this

 59

particular module crafts a new DNS request or response from the input it receives from

the Validation Module and originally the Packet Parser. The main reason for crafting a

new packet is to minimize the chance an undetected covert channel could survive intact.

By removing and potentially restructuring the packet, we can further attack any potential

covert channels by scrambling the data ordering of a query or reply.

4.2 Further Considerations

 In this section, the components of NV-DNS were outlined and a reasonable scope

of the prototype’s functionality was described. There are a number of other challenges

associated with this tool that are beyond the scope of this research. However, it is

anticipated that the work done here will provide a foundation for future covert channel

work.

 In the next chapter, we discuss the implementation of NV-DNS and several case

studies conducted to determine how reasonable the prototype is.

 60

Chapter 5
5 Applications of NV-DNS

 This chapter will discuss a rudimentary implementation of Network-Validated

Domain Name Service (NV-DNS) designed with the purpose of applying steganalysis

techniques of covert channels and real-time network analysis to the problem of

identifying and limiting covert channels in the DNS protocol and being able to respond to

these known and potentially unknown channels in real-time.

 In the previous chapter, the architecture of NV-DNS was discussed in detail. The

version of NV-DNS presented here is in no way intended to be complete and is only

capable of handling a small amount of DNS traffic at a time. Further, only simple

versions of the Packet Parser, Validation Module, and Packet Crafter are implemented.

5.1 Implementation Language

 C was chosen as the implementation language due to the high level of control

capabilities afforded by the language and a mostly standard implementation across

platforms. The complete listing for the source code along with a user’s guide is presented

in Appendix A.

5.2 Caveats

 NV-DNS is in no way a completely stand-alone protection method against covert

channels in the DNS protocol. Some of the major problems encountered with

implementing the tool are:

• NV-DNS must be able to recover from all errors without any side effects as a

failure to recover results in inaccessibility of service to end hosts.

 61

• The current implementation of NV-DNS is not time or usage sensitive and does

not use a modified version of [20]’s analysis model to analyze the frequency of

the requests.

• The current implementation is not meant for any type of high-performance

analysis.

• The current implementation does not keep a cache of requests and replies to

improve response time and localize covert channel communications.

• NV-DNS in its current implementation does not handle TCP-based DNS or most

server communications.

• The current implementation is not multi-threaded and does not write data to the

network.

5.3 Applying NV-DNS

 Once NV-DNS was successfully able to continually run transparently and without

error, the next step was to determine how well the program responded to a mixed group

of valid and invalid DNS requests. A covert channel packet encoder/decoder was created

to test the full capabilities of NV-DNS. A small text file was used as the data feed for the

covert channel. The source code listing for the program is in Appendix B. User’s guides

for the programs are also available in their respective appendices. The results from the

program are shown in Appendix C.

 62

5.4 Summary

 This chapter discussed the implementation of a very rudimentary version of

Network-Validated Domain Name Service that was capable, to a degree, of identifying

and limiting covert channels on a client-only network segment. The data generated by

NV-DNS is a copy of the original request and reply received by the program that can be

reviewed in the future to permit the application of future analysis techniques on the

protocol.

 63

Chapter 6
6 Summary and Conclusion

6.1 Summary and Conclusion

 The research conducted for this thesis resulted in the design of a potentially useful

framework for providing security professionals, network administrators, and developers

with a means of effectively limiting the capability of covert channels within DNS

communications.

 The major drawback of the goal of limiting covert channels within DNS

communications lies in the required functionality of the protocol. There is only so much

information that can be specified independently of the user before some input from the

user is required for the protocol to work. This leaves the potential for validated requests

that contain some type of covert channel to be assembled at another location without any

trouble. However, the work provided within this document is surely a significant step

towards limiting covert channels within a protocol.

 This research also focused on the construction of a rudimentary validation tool

known as NV-DNS inspired by research in real-time network analysis to apply some type

of real-time network validation of a packet’s structure and information. NV-DNS as

implemented and described in this work is only capable of handling a minimal number of

concurrent DNS requests and replies. The tool could be used to identify and limit a

number of covert channel requests but due to the simplicity of the detection algorithms,

was unable to discover a broader range of covert channel attempts without further

implementation.

 64

6.2 Future Work

The following work may be considered as a future project:

• Providing full standard compliance for the DNS protocol.

• Implementing additional detection and response features, such as those suggested

by [20].

• Development of a more efficient, multithreaded version of NV-DNS.

• Implementation of NV-DNS with a DNS server.

• Implementation of an analysis tool to review saved packets.

 65

Appendix A
NV-DNS

 66

A.1 Overview

 This appendix provides a listing of the NV-DNS tool discussed in Chapters 4 and

5. C was the chosen implementation language for the tool due to its high level of control

and mostly standard implementation across platforms.

A.2 Usage

 To utilize NV-DNS, issue the command: nvdns IP filename. The IP argument

indicates the DNS server or resolver for the current network segment. The argument

filename indicates to the program the name of the file that the received packets should be

written to. This represents the path and name of the file to be written.

A.3 Source Code Listing

A.3.1 defines.h
/**/
/* NV-DNS */
/* Author : Rex McCracken */
/* Date Created : September 24 2004 */
/* Last Modified : December 1 2004 */
/* Description : Program to remove covert */
/* channels in DNS packets */
/**/
/*

 DNS-specific definitions

 Per RFCs 1034 and 1035

 Type values
 Class values
 Error codes

 */

/* General defines */
#define MAX_UDP_SIZE 512
#define DNS_PORT 53

/* Network error defines */
#define ERROR_SOCKET_UNBOUND -100
#define ERROR_BIND_ERROR -101

/* DNS Header offsets */
#define HEADER_QR 0x80

 67

#define HEADER_OPCODE 0x78
#define HEADER_AA 0x04
#define HEADER_TC 0x02
#define HEADER_RD 0x01
#define HEADER_RA 0x80
#define HEADER_Z 0x70;
#define HEADER_RCODE 0x0F
/* End DNS Header offsets */

/* Error Codes */
#define INVALID_QR 0x80000001
#define INVALID_OPCODE 0x80000002
#define INVALID_AA 0x80000004
#define INVALID_TC 0x80000008
#define INVALID_RD 0x80000010
#define INVALID_RA 0x80000020
#define INVALID_Z 0x80000040
#define INVALID_RCODE 0x80000080
#define INVALID_QDCOUNT 0x80000100
#define INVALID_ANCOUNT 0x80000200
#define INVALID_NSCOUNT 0x80000400
#define INVALID_ARCOUNT 0x80000800
#define INVALID_QTYPE 0x80001000
#define INVALID_QCLASS 0x80002000
#define INVALID_TYPE 0x80004000
#define INVALID_CLASS 0x80008000
#define INVALID_ADDRESS 0x80010000
#define INVALID_PROTOCOL 0x80020000
#define INVALID_DOMAIN 0x80040000
#define INVALID_POINTER 0x80080000
#define INVALID_STRING 0x80100000
#define INVALID_PARSING 0x80200000

A.3.2 dnstype.h
/**/
/* NV-DNS */
/* Author : Rex McCracken */
/* Date Created : September 24 2004 */
/* Last Modified : December 1 2004 */
/* Description : Program to remove covert */
/* channels in DNS packets */
/**/

#include "defines.h"
/* DNS type function prototypes */

#define INBOUND 1
#define OUTBOUND 0

typedef struct dns_def_type {
 short unsigned int pid;
 char qr;
 short unsigned int opcode;
 char aa;
 char tc;
 char rd;
 char ra;
 char z;
 short unsigned int rcode;
 short unsigned int qdcount;

 68

 short unsigned int ancount;
 short unsigned int nscount;
 short unsigned int arcount;
 char data[MAX_UDP_SIZE];
 int data_len;
} dns_def;

/* DNS Parse
 Inputs:
 data character pointer to the packet received

 Outputs:
 dns_def* Pointer to allocated memory structure
*/
dns_def *dnsparse(char *data);

/* Process Packet
 Inputs:
 dns Pointer to the parsed DNS packet
 direction Traffic flow direction

 Outputs:
 int Error code
*/
int process_packet(dns_def *dns, int direction);

/* Packet Crafter
 Inputs:
 dns Pointer to dns_def struct holding the DNS packet
 ndata Pointer to new packet buffer
 idbuffer Pointer to stored ID header
 fields Error code for the fields that need overwritten
 direction Direction of the traffic flow

 Outputs:
 int Number of characters the ndata buffer is
*/
int packet_crafter(dns_def *dns, char *ndata, char *idbuffer, int fields, int
direction);

/* Display Errors
 Inputs:
 error Error codes
 direction Traffic direction
 dns Pointer to dns_def holding data
*/
void display_errors(int error, int direction, dns_def *dns);

/* STRing All CoPY
 Inputs:
 dest Pointer to destination buffer
 src Pointer to source buffer
 len Number of characters to overwrite

 Outputs:
 int Number of characters written
*/
int stracpy(char *dest, const char *src, int len);

 69

A.3.3 dnstype.c
/**/
/* NV-DNS */
/* Author : Rex McCracken */
/* Date Created : September 24 2004 */
/* Last Modified : December 1 2004 */
/* Description : Program to remove covert */
/* channels in DNS packets */
/**/

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "defines.h"
#include "dnstype.h"
#include <string.h>

/* STRing All CoPY
 Inputs:
 dest Pointer to destination buffer
 src Pointer to source buffer
 len Number of characters to overwrite

 Outputs:
 int Number of characters written
*/
int stracpy(char *dest, const char *src, int len) {
 int i;
 for (i=0; i<len; i++) {
 dest[i]=src[i];
 }
 return i;
}

/* Validate header
 Inputs:
 dns Pointer to dns_def holding the packet data
 direction Traffic flow direction

 Outputs:
 int Error code
*/
int validate_header(dns_def *dns, int direction) {
 int error=0;
 if (dns->opcode>2)
 error=error|INVALID_OPCODE;
 if (dns->z>0)
 error=error|INVALID_Z;
 if (dns->qdcount==0)
 error=error|INVALID_QDCOUNT;
 if ((dns->data_len<MAX_UDP_SIZE)&&(dns->tc)==1){
 error=error|INVALID_TC;
 }
 if (direction==OUTBOUND) {
 if (dns->qr==1)
 error=error|INVALID_QR;
 if (dns->aa==1)
 error=error|INVALID_AA;
 if (dns->rd==1)
 error=error|INVALID_RD;
 if (dns->ra==1)
 error=error|INVALID_RA;
 if (dns->rcode>0)

 70

 error=error|INVALID_RCODE;
 if (dns->ancount>0)
 error=error|INVALID_ANCOUNT;
 if (dns->nscount>0)
 error=error|INVALID_NSCOUNT;
 if (dns->arcount>0)
 error=error|INVALID_ARCOUNT;
 }
 if (direction==INBOUND) {
 if (dns->qr==0)
 error=error|INVALID_QR;
 if (dns->rcode>5)
 error=error|INVALID_RCODE;
 }
 return error;
}

/* DNS Parse
 Inputs:
 data character pointer to the packet received

 Outputs:
 dns_def* Pointer to allocated memory structure
*/
dns_def* dnsparse(char *data) {
 dns_def *dns_packet;
 //Load packet header into memory
 dns_packet=(dns_def *)malloc(sizeof(dns_def));
 dns_packet->pid=data[0];
 dns_packet->pid=dns_packet->pid<<8;
 dns_packet->pid=dns_packet->pid|data[1];
 dns_packet->qr=data[2]&HEADER_QR;
 dns_packet->qr=dns_packet->qr>>7;
 dns_packet->qr=dns_packet->qr&0x01;
 dns_packet->opcode=data[2]&HEADER_OPCODE;
 dns_packet->opcode=dns_packet->opcode>>3;
 dns_packet->aa=data[2]&HEADER_AA;
 dns_packet->aa=dns_packet->aa>>2;
 dns_packet->tc=data[2]&HEADER_TC;
 dns_packet->tc=dns_packet->tc>>1;
 dns_packet->rd=data[2]&HEADER_RD;
 dns_packet->ra=data[3]&HEADER_RA;
 dns_packet->ra=dns_packet->ra>>7;
 dns_packet->ra=dns_packet->ra&0x01;
 dns_packet->z=data[3]&HEADER_Z;
 dns_packet->z=dns_packet->z>>4;
 dns_packet->rcode=data[3]&HEADER_RCODE;
 dns_packet->qdcount=data[4];
 dns_packet->qdcount=dns_packet->qdcount<<8;
 dns_packet->qdcount=dns_packet->qdcount|data[5];
 dns_packet->ancount=data[6];
 dns_packet->ancount=dns_packet->ancount<<8;
 dns_packet->ancount=dns_packet->ancount|data[7];
 dns_packet->nscount=data[8];
 dns_packet->nscount=dns_packet->nscount<<8;
 dns_packet->nscount=dns_packet->nscount|data[9];
 dns_packet->arcount=data[10];
 dns_packet->arcount=dns_packet->arcount<<8;
 dns_packet->arcount=dns_packet->arcount|data[11];
 return dns_packet;
}

 71

/* Process Packet
 Inputs:
 dns Pointer to the parsed DNS packet
 direction Traffic flow direction

 Outputs:
 int Error code
*/

int process_packet(dns_def *dns, int direction) {
 char *s;
 int current;
 int err_code=0, temp=0;

 /* Validate the header */
 temp=validate_header(dns, direction);
 err_code=err_code|temp; //Add the error code

 s=dns->data; //Get start of data
 current=12;//Jump to end of data
 //Check the count size to the packet size
 if ((dns->qdcount*6)+(dns->ancount*12)+(dns->nscount*12)+(dns-
>arcount*12)+current>=dns->data_len){

 err_code=err_code|INVALID_QDCOUNT|INVALID_ANCOUNT|INVALID_NSCOUNT|INVALID_AR
COUNT;
 }
 /* Parse the Question section */
 if (direction==OUTBOUND){
 if (dns->qdcount>1)
 err_code=err_code|INVALID_QDCOUNT;
 if (dns->ancount>0)
 err_code=err_code|INVALID_ANCOUNT;
 if (dns->nscount>0)
 err_code=err_code|INVALID_NSCOUNT;
 if (dns->arcount>0)
 err_code=err_code|INVALID_ARCOUNT;
 }

 return err_code;
}

/* Display Errors
 Inputs:
 error Error codes
 direction Traffic direction
 dns Pointer to dns_def holding data
*/

void display_errors(int error, int direction, dns_def *dns) {
 int start=0x00000001;
 int val=0, i;
 if (error<0) {
 if (direction==OUTBOUND)
 printf("Client mode errors:\n");
 else
 printf("Server mode errors:\n");
 for (i=0; i<32; i++) {
 val=error&start;
 val=val|0x80000000;
 switch(val) {
 case INVALID_QR:
 printf(" Query - %d\n", dns->qr);

 72

 break;
 case INVALID_OPCODE:
 printf(" Opcode - %d\n", dns->opcode);
 break;
 case INVALID_AA:
 printf(" AA - %d\n", dns->aa);
 break;
 case INVALID_TC:
 printf(" TC - %d\n", dns->tc);
 break;
 case INVALID_RD:
 printf(" RD - %d\n", dns->rd);
 break;
 case INVALID_RA:
 printf(" RA - %d\n", dns->ra);
 break;
 case INVALID_Z:
 printf(" Z - %d\n", dns->z);
 break;
 case INVALID_RCODE:
 printf(" Rcode - %d\n", dns->rcode);
 break;
 case INVALID_QDCOUNT:
 printf(" QDcount - %d\n", dns->qdcount);
 break;
 case INVALID_ANCOUNT:
 printf(" ANcount - %d\n", dns->ancount);
 break;
 case INVALID_NSCOUNT:
 printf(" NScount - %d\n", dns->nscount);
 break;
 case INVALID_ARCOUNT:
 printf(" Arcount - %d\n", dns->arcount);
 break;
 default:
 ;
 }
 start=start<<1;
 }
 }
}

/* Packet Crafter
 Inputs:
 dns Pointer to dns_def struct holding the DNS packet
 ndata Pointer to new packet buffer
 idbuffer Pointer to stored ID header
 fields Error code for the fields that need overwritten
 direction Direction of the traffic flow

 Outputs:
 int Number of characters the ndata buffer is
*/

int packet_crafter(dns_def *dns, char *ndata, char *idbuffer, int fields, int
direction) {
 int idnew=0;
 int code=0;

 stracpy(ndata, dns->data, dns->data_len);
 //Handle ID
 if (direction==OUTBOUND) { //Extract & save original request

 73

 //ID field
 idnew=dns->pid;
 idbuffer[1]=(char)idnew;
 idbuffer[0]=(char)(idnew>>8);
 idnew=rand()%256;
 ndata[0]=idnew&0x0000ff00; //Put new data into packet
 ndata[1]=idnew&0x000000ff;
 code=fields&0x7fffffff;

 if ((code&INVALID_QR)>0){ //Invalid QR type
 ndata[2]=ndata[2]&0x7f; //Clear bit
 }
 if ((code&INVALID_OPCODE)>0){
 ndata[2]=ndata[2]&0x87; //Clear 4 bits
 }
 if ((code&INVALID_AA)>0){
 ndata[2]=ndata[2]&0xfb; //Clear 1 bit
 }
 if ((code&INVALID_TC)>0){
 ndata[2]=ndata[2]&0xfd; //Clear bit 2
 }
 if ((code&INVALID_RD)>0) {
 ndata[2]=ndata[2]&0xfe;//For always desired, |0x01;
 }
 if ((code&INVALID_RA)>0){
 ndata[3]=ndata[3]&0x7f;
 }
 if ((code&INVALID_Z)>0){
 ndata[3]=ndata[3]&0x8f;
 }
 if ((code&INVALID_RCODE)>0){
 ndata[3]=ndata[3]&0xf0;
 }
 if ((code&INVALID_QDCOUNT)>0){
 ndata[4]=0;
 ndata[5]=1;
 }
 if ((code&INVALID_ANCOUNT)>0){
 ndata[6]=0;
 ndata[7]=0;
 }
 if ((code&INVALID_NSCOUNT)>0){
 ndata[8]=0;
 ndata[9]=0;
 }
 if ((code&INVALID_ARCOUNT)>0){
 ndata[10]=0;
 ndata[11]=0;
 }
 }
 else { //Revert original request
 ndata[0]=idbuffer[0];
 ndata[1]=idbuffer[1];
 }
 return dns->data_len;
}

 74

A.3.4 nvdns.c
/**/
/* NV-DNS */
/* Author : Rex McCracken */
/* Date Created : September 24 2004 */
/* Last Modified : December 1 2004 */
/* Description : Program to remove covert */
/* channels in DNS packets */
/**/

#include <winsock.h>
#include <memory.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <time.h>

//Local includes
#include "defines.h"
#include "dnstype.h"

/* Write packet
 Inputs:
 o File pointer to output data to
 data Char pointer to data to write
 size Size of the data buffer
 direction Direction of the data flow
 error Error code from the packet processor

 Outputs:
 int Number of characters written from packet
*/
int write_packet(FILE *o, char *data, int size, int direction, int error) {
 int i;
 if (direction==OUTBOUND)
 fprintf(o, "Outbound ");
 else
 fprintf(o, "Inbound ");
 fprintf(o, "%d %d\n", error, size);
 for (i=0; i<size; i++) {
 fprintf(o, "%c", data[i]);
 }
 fprintf(o, "\n\n");
 return i;
}

void usage(char *name){
 printf("Usage: %s server filename\n", name);
 printf("\n Server \tIP address of the next level DNS server - x.x.x.x\n");
 printf("\n Filename\tName of the file to store received DNS packets to\n");
}

int main(int argc, char *argv[]) {

 //Network functionality
 struct sockaddr_in server_sin, client_sin, dns_server;
 int server_size, dns_size, client_size;
 SOCKET server_socket, dns_socket;
 WSADATA wsa_data;
 int status;

 75

 int client_len, len, i, valid;
 unsigned int d;
 struct timeval timeout;
 fd_set sockets, readable;
 int fdmax, retry, poll;
 int out_bx=0, in_bx=0;
 int out_rq=0, in_rq=0;
 int error;

 char data[MAX_UDP_SIZE], crafted[MAX_UDP_SIZE], idbuf[2];
 FILE *f=NULL;
 dns_def *dns_data_ptr;

 if (argc==1){
 usage(argv[0]);
 exit(1);
 }
 if ((argc>=2)&& (argc<4)){
 if (strcmp(argv[1], "/?")==0){
 usage(argv[0]);
 exit(0);
 }
 else {
 d=inet_addr(argv[1]);
 if (d==INADDR_NONE){
 usage(argv[0]);
 exit(1);
 }
 f=NULL;
 if (argc==3) {
 if ((f=fopen(argv[1], "w"))==NULL){
 printf("Error creating the file. Check permissions!\n");
 exit(11);
 }
 }
 }
 }

 //Startup communications
 if ((status = WSAStartup(MAKEWORD(1,1),&wsa_data)) != 0) {
 fprintf(stderr,"%d is the WSA startup error\n",status);
 exit(1);
 }
 timeout.tv_sec=0;
 timeout.tv_usec=500000;
 FD_ZERO(&sockets);
 FD_ZERO(&readable);

 /* Setup the server socket */
 server_socket = socket(PF_INET, SOCK_DGRAM, 0);
 if (server_socket==INVALID_SOCKET) {
 printf("Error, unable to create server socket!\n");
 exit(ERROR_SOCKET_UNBOUND);
 }
 memset((void*)&server_sin, 0, sizeof(server_sin));
 server_sin.sin_family = AF_INET;
 server_sin.sin_port = htons(DNS_PORT);
 server_sin.sin_addr.s_addr = htonl(INADDR_ANY);
 server_size=sizeof(server_sin);
 status=bind(server_socket, (struct sockaddr*)&server_sin, server_size);
 if (status==SOCKET_ERROR) {
 printf("Error binding the server socket... try another port.\n");
 exit(ERROR_BIND_ERROR);

 76

 }
 /* Server socket setup */
 if((f=fopen("packets.txt", "w"))==NULL) {
 printf("error opening file\n");
 exit(2);
 }

 /* Setup the gateway */
 dns_socket = socket(PF_INET, SOCK_DGRAM, 0);
 if (dns_socket==INVALID_SOCKET) {
 printf("Error, unable to bind socket!\n");
 exit(ERROR_SOCKET_UNBOUND);
 }
 memset((void *)&dns_server, 0, sizeof(dns_server));
 dns_server.sin_family = AF_INET;
 dns_server.sin_port = htons(DNS_PORT);
 dns_server.sin_addr.s_addr = d;
 if (dns_server.sin_addr.s_addr == INADDR_NONE) {
 printf("Invalid IP address\n");
 exit(3);
 }
 dns_size=sizeof(dns_server);
 /* Gateway setup */

/* Check for errors (Winsock does this slightly differently) */
/* Clear the structure so that we don't have garbage around */
/* AF means Address Family - same as Protocol Family for now */
/* Fill in port number in address (careful of byte-ordering) */
/* Fill in IP address (careful of byte-ordering) */
/* Bind the sockets for communications */

 FD_SET(dns_socket, &sockets);
 fdmax=dns_socket;
 srand(time(NULL));
 while (1) {
 error=0;
 readable=sockets;
 for (len=0; len<MAX_UDP_SIZE; len++) { //Clear out the data buffer
 data[len]=0;
 }
 client_len=sizeof(client_sin);
 valid=1;
 while (valid) {
 printf("%d packets out: %d bytes\t%d packet in: %d bytes\n",out_rq,
out_bx, in_rq, in_bx);
 if((in_rq>0)&&(out_rq>0)){
 printf("Avg out:%d\tAvg In:%d\t", (int)out_bx/out_rq,
(int)in_bx/in_rq);
 printf("Ratio:%2.2f/%2.2f\n",
((float)out_bx/(float)(out_bx+in_bx))*(float)100,
((float)in_bx/(float)(out_bx+in_bx))*(float)100);
 }
 len=recvfrom(server_socket, data, MAX_UDP_SIZE, 0, (struct
sockaddr*)&client_sin, &client_len);
 if (len>=0){
 break;
 }
 }
 out_rq++; //Update statistics
 out_bx+=len;
 data[len]=0;
 dns_data_ptr=dnsparse(data);
 stracpy(dns_data_ptr->data, data, len);

 77

 dns_data_ptr->data_len=len;
 //Do my processing steps
 error=process_packet(dns_data_ptr, OUTBOUND);
 display_errors(error, OUTBOUND, dns_data_ptr);
 if ((len>0)&&(f!=NULL))
 write_packet(f, data, len, OUTBOUND, error);
 packet_crafter(dns_data_ptr, crafted, idbuf, error, OUTBOUND);
 idbuf[2]=0;
 status=sendto(dns_socket, crafted, len, 0, (struct sockaddr*)&dns_server,
dns_size);
 retry=0;
 do { //Timeout handling
 poll=select(fdmax+1, &readable, NULL, NULL, &timeout);
 for (d=0; d<=(unsigned int)fdmax; d++) {
 if ((FD_ISSET(d, &readable))&&(d==dns_socket)) {
 len=recvfrom(dns_socket, data, MAX_UDP_SIZE, 0, (struct
sockaddr*)&dns_server, &dns_size);
 }
 }
 switch(poll) {
 case 0: //Handling if the packet is dropped
 printf("Timeout... Retransmitting\n");
 status=sendto(dns_socket, crafted, len, 0, (struct
sockaddr*)&dns_server, dns_size);
 if (status==SOCKET_ERROR) {
 closesocket(dns_socket);
 dns_socket=socket(PF_INET, SOCK_DGRAM, 0);
 status=sendto(dns_socket, crafted, len, 0, (struct
sockaddr*)&dns_server, dns_size);
 }
 retry++;
 break;
 case SOCKET_ERROR: //Handling if the socket dies
 printf("Socket error #%d\n", WSAGetLastError());
 i=closesocket(dns_socket);
 printf("closesocket=%d\n", i);
 dns_socket=socket(PF_INET, SOCK_DGRAM, 0);
 status=sendto(dns_socket, crafted, len, 0, (struct
sockaddr*)&dns_server, dns_size);
 break;
 default:
 ;//printf("%d sockets available\n", poll);
 }
 } while ((poll==0)&&(retry<3));

 free((dns_def *)dns_data_ptr);

 data[len]=0;
 in_bx+=len;
 in_rq++;
 dns_data_ptr=dnsparse(data);
 stracpy(dns_data_ptr->data, data, len); //Copy all the data over
 dns_data_ptr->data_len=len;
 client_size=sizeof(client_sin);

 error=process_packet(dns_data_ptr, INBOUND);
 display_errors(error, INBOUND, dns_data_ptr);
 if ((len>0)&&(f!=NULL))
 write_packet(f, data, len, INBOUND, error);
 packet_crafter(dns_data_ptr, crafted, idbuf, error, INBOUND);
 //Send the crafted packet
 status=sendto(server_socket, crafted, len, 0, (struct
sockaddr*)&client_sin, client_size);

 78

 free((dns_def *)dns_data_ptr);
 printf("\n"); //Give us some spacing for the next time
 }
 return -1;
}

 79

Appendix B
Encode/Decode DNS

 80

B.1 Overview

 This appendix provides a listing of the Encode/Decode DNS tool used to test the
effectiveness of the NV-DNS implementation. C was the chosen implementation
language for the tool due to its high level of control and mostly standard implementation
across platforms.

B.2 Usage
 To use Encode/Decode DNS, issue the command: eddns mode field filename [IP].
The argument mode tells the program to run in either client (-c) or server (-s) mode. The
argument field determines the DNS field the program will encode and decode the data
from. filename is the name of the file to be read in client mode or written in server mode.
IP is only valid for the client mode and is the IP address of the computer running the
server portion of Encode/Decode DNS with the same field option. Running eddns by
itself will give a list of all valid options.

B.3 Source Code Listing

B.3.1 defines.h
/**/
/* Encode/Decode DNS */
/* Author : Rex McCracken */
/* Date Created : November 21 2004 */
/* Last Modified : December 1 2004 */
/* Description : Definitions for edDNS */
/* */
/**/

/* Operation Mode definitions */
#define SERVER 1
#define CLIENT 0
#define UNDEFINED -1

/* Encoding Mode definitions */
#define ID 1
#define QR 2
#define OPCODE 3
#define AA 4
#define TC 5
#define RD 6
#define RA 7
#define Z 8
#define RCODE 9
#define QDCOUNT 10
#define ANCOUNT 11
#define NSCOUNT 12
#define ARCOUNT 13
#define QNAME 14
#define QTYPE 15
#define QCLASS 16
#define NAME 17
#define TYPE 18
#define CLASS 19
#define TTL 20
#define RDLENGTH 21

 81

#define RR_A 31
#define RR_NS 32
#define RR_MD 33
#define RR_MF 34
#define RR_CNAME 35
#define RR_SOA 36
#define RR_MB 37
#define RR_MG 38
#define RR_MR 39
#define RR_NULL 40
#define RR_WKS 41
#define RR_PTR 42
#define RR_HINFO 43
#define RR_MINFO 44
#define RR_MX 45
#define RR_TXT 46

#define DOMAIN_NAME 0
#define RR_TYPE 2

B.3.2 setup.h
/**/
/* Encode/Decode DNS */
/* Author : Rex McCracken */
/* Date Created : November 21 2004 */
/* Last Modified : December 1 2004 */
/* Description : Header defining functionality */
/* text over DNS packets */
/**/

/* Operating Mode
 Inputs:
 mode String with the choice of modes

 Outputs:
 int Number designating the operating mode
*/
int operating_mode(char *mode);

/* Encoding Mode
 Inputs:
 mode String with the choice of encoding fields

 Output:
 int Number designating the encoding mode
 */
int encoding_mode(char *mode);

/* Encoding Size
 Input:
 Field Field used for encoding

 Output:
 int Size of the field in bits
*/
int encoding_size(int field);

/*Client mode functions*/

/* File size
 Input:
 in File pointer to file needing size check

 82

 Output:
 int Size of the file
*/
int file_size(FILE *in);

/* Bit Encode
 Inputs:
 Packet Packet to encode the data into
 Size Size of the packet
 Field Field # to encode data into
 Data Data to encode into field
 Start Current bit needed encoding

 Output:
 int Contains the number of bits used in encoding
*/
int bitencode(char packet[], int size, int field, char *data, int start);

/* Generate Packet
 Input:
 packet Pointer to char array to contain the packet
 field Number designator for the field being encoded

 Output
 int Size of the packet generated
*/
int generate_packet(char *packet, int field);

/*Server mode functions*/
/* Bit Decode
 Inputs:
 packet Packet as received
 size Packet size
 field Encoding type
 response Buffer containing current slice
 rsize Size of the response
 used Number of bits used so far in the response

 Outputs:
 char Updated buffer with newest slice
*/
char* bitdecode(char *packet, int size, int field, char *response, int
*bits_found, int used, int *r_size);

/* Generate Response
 Inputs:
 packet Pointer to char array containing the packet

 Outputs:
 int Size of the packet created
*/
int generate_response(char *packet);

 83

B.3.3 setup.c
/**/
/* Encode/Decode DNS */
/* Author : Rex McCracken */
/* Date Created : November 21 2004 */
/* Last Modified : December 1 2004 */
/* Description : Support functions for edDns */
/* */
/**/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "defines.h"
#include "setup.h"

/* Operating Mode
 Inputs:
 mode String with the choice of modes

 Outputs:
 int Number designating the operating mode
*/
int operating_mode(char *mode) {
 int a=UNDEFINED;
 if (strcmp(mode, "-s")==0)
 a=SERVER;
 if (strcmp(mode, "-c")==0)
 a=CLIENT;
 return a;
}

/* Encoding Mode
 Inputs:
 mode String with the choice of encoding fields

 Output:
 int Number designating the encoding mode
 */
int encoding_mode(char *mode) {
 int a=UNDEFINED;
 if (strcmp(mode, "id")==0)
 a=ID;
 if (strcmp(mode, "qr")==0)
 a=QR;
 if (strcmp(mode, "opcode")==0)
 a=OPCODE;
 if (strcmp(mode, "aa")==0)
 a=AA;
 if (strcmp(mode, "tc")==0)
 a=TC;
 if (strcmp(mode, "rd")==0)
 a=RD;
 if (strcmp(mode, "ra")==0)
 a=RA;
 if (strcmp(mode, "z")==0)
 a=Z;
 if (strcmp(mode, "rcode")==0)
 a=RCODE;
 if (strcmp(mode, "qdcount")==0)
 a=QDCOUNT;
 if (strcmp(mode, "ancount")==0)

 84

 a=ANCOUNT;
 if (strcmp(mode, "nscount")==0)
 a=NSCOUNT;
 if (strcmp(mode, "arcount")==0)
 a=ARCOUNT;
 return a;
}

/* Encoding Size
 Input:
 Field Field used for encoding

 Output:
 int Size of the field in bits
*/
int encoding_size(int field) {
 int a=UNDEFINED;
 switch(field) {
 case QR://QR
 case AA://AA
 case TC://TC
 case RD://RD
 case RA://TA
 a=1;
 break;
 case Z://Z
 a=3;
 break;
 case OPCODE://OPCODE
 case RCODE://RCODE
 a=4;
 break;
 case ID://ID
 case QDCOUNT://QDCOUNT
 case ANCOUNT://ANCOUNT
 case NSCOUNT://NSCOUNT
 case ARCOUNT://ARCOUNT
 case QTYPE://QTYPE
 case QCLASS://QCLASS
 case TYPE://TYPE
 case CLASS://CLASS
 case RDLENGTH://RDLENGTH
 a=16;
 break;
 case TTL://TTL
 a=32;
 break;
 case QNAME://QNAME
 case NAME://NAME
 a=DOMAIN_NAME;
 break;
 default://RR_ types
 a=RR_TYPE;
 break;
 }
 return a;
}

//Client-specific functions

/* Generate Packet
 Input:
 packet Pointer to char array to contain the packet

 85

 field Number designator for the field being encoded

 Output
 int Size of the packet generated
*/
int generate_packet(char *packet, int field) {
 int a;
 char name[13]={ 3, 'w', 'w', 'w', 3, 'w', 'v', 'u', 3, 'e', 'd', 'u', 0 };
 char *p;
 for (a=0; a<12; a++) {
 packet[a]=0; //Clear out the packet header for easy viewing
 }
 packet[5]=1; //QDcount
 p=&packet[12]; //Qname start
 strncpy(p, name, 13);
 a+=13;
 packet[25]=0; //Qtype
 packet[26]=1;
 packet[27]=0; //Qclass
 packet[28]=1;
 a=29;
 if (field>16) { //We have resource records
 ;
 }
 return a;
}

/* File size
 Input:
 in File pointer to file needing size check

 Output:
 int Size of the file
*/
int file_size(FILE *in) {
 int a=0;
 char c;
 while (!feof(in)) {
 fscanf(in, "%c", &c);
 a++;
 }
 a--;
 rewind(in); //Move pointer back to file start
 return a;
}

/* Bit Slice
 Inputs:
 Data Data to be encoded
 bit_req Bits requested for slice
 cur_bit Offset from data start to be encoded

 Outputs:
 int Number of bits encoded
 slice Low-bit packed character
*/
int bitslice(char *data, int bit_req, int cur_bit, int *slice) {
 int byte=0, len=0;
 int bit=0, a=0;
 char *b_slice=0, temp=0;
 int val=0;

 len=strlen(data);

 86

 bit=cur_bit%8;
 byte=(cur_bit-bit)/8;
 for (a=0; a<bit_req; a++) {
 /* Pack into temp */
 if (bit==0){
 temp=data[byte]&0x80;
 temp=temp>>7;
 }
 if (bit==1) {
 temp=data[byte]&0x40;
 temp=temp>>6;
 }
 if (bit==2){
 temp=data[byte]&0x20;
 temp=temp>>5;
 }
 if (bit==3){
 temp=data[byte]&0x10;
 temp=temp>>4;
 }
 if (bit==4){
 temp=data[byte]&0x08;
 temp=temp>>3;
 }
 if (bit==5){
 temp=data[byte]&0x04;
 temp=temp>>2;
 }
 if (bit==6){
 temp=data[byte]&0x02;
 temp=temp>>1;
 }
 if (bit==7){
 temp=data[byte]&0x01;
 }
 /*Place into slice*/
 val=val<<1;
 val=val|temp;
 bit++;
 if (bit==8){
 bit=0;
 byte++;
 }
 if (byte>len){
 a++;
 break;
 }
 }
 *slice=val;
 return a;
}

/* Bit Encode
 Inputs:
 Packet Packet to encode the data into
 Size Size of the packet
 Field Field # to encode data into
 Data Data to encode into field
 Start Current bit needed encoding

 Output:
 int Contains the number of bits used in encoding

 87

*/
int bitencode(char *packet, int size, int field, char *data, int start) {
 int enc_size=UNDEFINED, esize=0;
 int bits_returned=0;
 int slice=0;
 int bitcount=start;
 int max_bitlen=0, bitlen=0;

 max_bitlen=strlen(data)*8;
 enc_size=encoding_size(field);
 if (enc_size>7) {
 esize=8;
 }
 else
 esize=enc_size;
 while ((bitcount-start)<enc_size) {
 bits_returned=bitslice(data, esize, bitcount, &slice);
 bitcount+=bits_returned;
 switch(field){
 case ID:
 packet[0]=(char)slice;
 bits_returned=bitslice(data, esize, bitcount, &slice);
 bitcount+=bits_returned;
 packet[1]=(char)slice;
 break;
 case QR://QR
 slice=slice<<7;
 packet[2]=packet[2]|slice;
 break;
 case OPCODE://OPCODE
 slice=slice<<3;
 packet[2]=packet[2]|slice;
 break;
 case AA://AA
 slice=slice<<2;
 packet[2]=packet[2]|slice;
 break;
 case TC://TC
 slice=slice<<1;
 packet[2]=packet[2]|slice;
 break;
 case RD://RD
 packet[2]=packet[2]|slice;
 break;
 case RA://RA
 slice=slice<<7;
 packet[3]=packet[3]|slice;
 break;
 case Z://Z
 slice=slice<<4;
 packet[3]=packet[3]|slice;
 break;
 case RCODE://RCODE
 packet[3]=packet[3]|slice;
 break;
 case QDCOUNT://QDCOUNT
 packet[4]=slice;
 bits_returned=bitslice(data, esize, bitcount, &slice);
 bitcount+=bits_returned;
 packet[5]=slice;
 break;
 case ANCOUNT://ANCOUNT
 packet[6]=slice;

 88

 bits_returned=bitslice(data, esize, bitcount, &slice);
 bitcount+=bits_returned;
 packet[7]=slice;
 break;
 case NSCOUNT://NSCOUNT
 packet[8]=slice;
 bits_returned=bitslice(data, esize, bitcount, &slice);
 bitcount+=bits_returned;
 packet[9]=slice;
 break;
 case ARCOUNT://ARCOUNT
 packet[10]=slice;
 bits_returned=bitslice(data, esize, bitcount, &slice);
 bitcount+=bits_returned;
 packet[11]=slice;
 break;
 case QTYPE://QTYPE
 packet[25]=slice;
 bits_returned=bitslice(data, esize, bitcount, &slice);
 bitcount+=bits_returned;
 packet[26]=slice;
 break;
 case QCLASS://QCLASS
 packet[27]=slice;
 bits_returned=bitslice(data, esize, bitcount, &slice);
 bitcount+=bits_returned;
 packet[28]=slice;
 break;
 case TYPE://TYPE
 packet[42]=slice;
 bits_returned=bitslice(data, esize, bitcount, &slice);
 bitcount+=bits_returned;
 packet[43]=slice;
 break;
 case CLASS://CLASS
 packet[44]=slice;
 bits_returned=bitslice(data, esize, bitcount, &slice);
 bitcount+=bits_returned;
 packet[45]=slice;
 break;
 case TTL://TTL
 packet[46]=slice;
 bits_returned=bitslice(data, esize, bitcount, &slice);
 bitcount+=bits_returned;
 packet[47]=slice;
 bits_returned=bitslice(data, esize, bitcount, &slice);
 bitcount+=bits_returned;
 packet[48]=slice;
 bits_returned=bitslice(data, esize, bitcount, &slice);
 bitcount+=bits_returned;
 packet[49]=slice;
 break;
 case RDLENGTH://RDLENGTH
 packet[50]=slice;
 bits_returned=bitslice(data, esize, bitcount, &slice);
 bitcount+=bits_returned;
 packet[51]=slice;
 break;
 default:
 printf("Shouldn't be here\n");
 bitcount=bitlen;
 break;
 }

 89

 }
 return bitcount;
}

// Server specific functions

/* Generate Response
 Inputs:
 packet Pointer to char array containing the packet

 Outputs:
 int Size of the packet created
*/
int generate_response(char *packet) {
 int a;
 char *p, name[13]={3, 'w', 'w', 'w', 3, 'w', 'v', 'u', 3, 'e', 'd', 'u', 0};

 packet[2]=(char)0x84;
 for (a=3; a<12; a++) {
 packet[a]=0;
 }
 packet[5]=1;
 packet[7]=1;
 p=&packet[26];
 strncpy(p, name, 13);
 a=26+13;
 packet[39]=0;
 packet[40]=1;
 packet[41]=0;
 packet[42]=1;
 a=43;
 return a;
}

/* Bit Offset
 Inputs:
 Field # of the encoding field

 Outputs:
 int Bits from the start of the packet
*/
int bitoffset(int field) {
 int a;
 switch(field){
 case ID:
 a=0;
 break;
 case QR:
 a=16;
 break;
 case OPCODE://OPCODE
 a=17;
 break;
 case AA://AA
 a=21;
 break;
 case TC://TC
 a=22;
 break;
 case RD://RD
 a=23;
 break;

 90

 case RA://RA
 a=24;
 break;
 case Z://Z
 a=25;
 break;
 case RCODE://RCODE
 a=28;
 break;
 case QDCOUNT://QDCOUNT
 a=32;
 break;
 case ANCOUNT://ANCOUNT
 a=48;
 break;
 case NSCOUNT://NSCOUNT
 a=64;
 break;
 case ARCOUNT://ARCOUNT
 a=80;
 break;
 case QTYPE://QTYPE
 a=25*8;
 break;
 case QCLASS://QCLASS
 a=27*8;
 break;
 case TYPE://TYPE
 a=42*8;
 break;
 case CLASS://CLASS
 a=44*8;
 break;
 case TTL://TTL
 a=46*8;
 break;
 case RDLENGTH:
 a=50*8;
 break;
 default:
 printf("Error!\n");
 a=-1;
 break;
 }
 return a;
}

/* Create Mask
 Inputs:
 Field Number designator of the encoding field

 Outputs:
 char Character containing a bitmask for that field
*/
char create_mask(int field) {
 char a;
 switch (field){
 case ID:
 case QDCOUNT:
 case ANCOUNT:
 case NSCOUNT:
 case ARCOUNT:
 case QTYPE:

 91

 case QCLASS:
 case TYPE:
 case CLASS:
 case TTL:
 case RDLENGTH:
 a=(char)0xff;
 break;
 case QR:
 case RA:
 a=(char)0x80;
 break;
 case OPCODE:
 a=0x78;
 break;
 case AA:
 a=0x04;
 break;
 case TC:
 a=0x02;
 break;
 case RD:
 a=0x01;
 break;
 case Z:
 a=0x70;
 break;
 case RCODE:
 a=0x0f;
 break;
 }
 return a;
}

/* BitExtraction
 Inputs:
 Packet Packet with data encoded
 Prev_offset Offset in bits from the last returned octet
 Field Field # containing the encoded data

 Outputs:
 char Low order packed byte containing the extracted data
*/
char bitextract(char *packet, int prev_offset, int field){
 int bit=0, byte=0, a=0;
 char extract=0;
 int esize=-1;
 char mask;
 int offset;

 offset=bitoffset(field);
 mask=create_mask(field);//Returns a mask for the field we're working with
 bit=(offset+prev_offset)%8;
 byte=(offset+prev_offset-bit)/8;
 extract=packet[byte]&mask;
 switch(field){ //Extract Data
 case QR:
 case RA:
 extract=extract>>7; //Slide data to low-order
 extract=extract&0x01; //Clear extra data
 break;
 case OPCODE:
 extract=extract>>3; //Slide data to low-order
 extract=extract&0x0f; //Clear extra data

 92

 break;
 case AA:
 extract=extract>>2; //Slide data to low-order
 extract=extract&0x01; //Clear extra data
 break;
 case TC:
 extract=extract>>1; //Slide data to low-order
 extract=extract&0x01; //Clear extra data
 break;
 case Z:
 extract=extract>>4; //Slide data to low-order
 extract=extract&0x07; //Clear extra data
 break;
 default:
 ;
 }
 return extract;
}

/* Bit Decode
 Inputs:
 packet Packet as received
 size Packet size
 field Encoding type
 response Buffer containing current slice
 rsize Size of the response
 used Number of bits used so far in the response

 Outputs:
 char Updated buffer with newest slice
*/

char* bitdecode(char *packet, int size, int field, char response[], int
*bits_found, int used, int *rsize) {
 int enc_size=0, r_size=0, e_size=0;
 char slice;
 char *alldata=NULL, p=0;
 int bit=0, byte=0, bitcount=0;

 //Response size
 if (response==NULL) { //If we don't have a response size, allocate one
 switch (field){
 case ID://ID
 case QDCOUNT://QDcount
 case ANCOUNT://ANcount
 case NSCOUNT://NScount
 case ARCOUNT://ARcount
 case QTYPE://Qtype
 case QCLASS://Qclass
 case TYPE://Type
 case CLASS://Class
 case RDLENGTH://Rdlength
 case Z://Z - Z overflow
 r_size=2;
 break;
 case TTL://TTL
 r_size=4;
 break;
 default://QR, OPCODE, AA, TC, RD, RA, RCODE
 r_size=1;
 break;
 }
 alldata=(char*)calloc(sizeof(char), r_size);

 93

 }
 else {
 alldata=response;
 r_size=*rsize;
 }
 enc_size=encoding_size(field);
 if (enc_size>7)
 e_size=8; //Max number of bits to get per loop
 else
 e_size=enc_size; //Bits to get per loop
 while (bitcount<enc_size) { //Loop to get large fields & small fields
 slice=bitextract(packet, bitcount, field);//Get the appropriate bits
 bitcount+=e_size; //Add the encoding size to the bits
 if (field==Z) { //Check for overflow - Applies to Z field ONLY
 bitcount+=used;
 if (alldata==NULL){
 printf("ERROR!!!!!!!!!!!!\n\n");
 exit(1);
 }
 if ((bitcount-8)>0){ //Handle 9 & 10 bits
 if ((bitcount-8)==1) { //Handle 2 bits over
 alldata[0]=alldata[0]<<2;
 alldata[0]=alldata[0]|((slice&0x06)>>1); //Mask slice and
align
 alldata[1]=slice&0x01;; //Mask for final bit
 }
 if ((bitcount-8)==2) { //Handle 1 bit over
 alldata[0]=alldata[0]<<1; //Move data over
 alldata[0]=alldata[0]|((slice&0x04)>>2); //Mask slice and
align
 alldata[1]=slice&0x03;; //Mask for 2 bits
 }
 }
 else { //Handle 0-8 bits
 alldata[0]=alldata[0]<<e_size; //Move data over
 alldata[0]=alldata[0]|slice; //Add data
 }
 }
 if ((e_size<8)&&(field!=Z)){ //Handle small fields
 alldata[0]=alldata[0]<<e_size;
 alldata[0]=alldata[0]|slice;
 }
 if (e_size==8) {
 alldata[byte]=slice;
 byte++;
 }
 }
 response=alldata; //Set / return our response
 *bits_found=enc_size; //Return the encoding size
 *rsize=r_size; //Return the buffer size
 return response; //Return the response
}

 94

B.3.4 main.c
/**/
/* Encode/Decode DNS */
/* Author : Rex McCracken */
/* Date Created : November 21 2004 */
/* Last Modified : December 1 2004 */
/* Description : Program to encode and decode */
/* text over DNS packets */
/**/

//Standard Includes
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <winsock.h>

//Local Includes
#include "defines.h"
#include "setup.h"

/* Usage
 Input:
 name Name of this program

 Output:
 None
*/

void disp_header(char *packet) {
 printf("ID: %c%c\n",packet[0], packet[1]);
 printf("QR: %d\n", (packet[2]&0x80)>>7);
 printf("Op: %d\n", (packet[2]&0x78)>>3);
 printf("AA: %d\n", (packet[2]&0x04)>>2);
 printf("TC: %d\n", (packet[2]&0x02)>>1);
 printf("RD: %d\n", (packet[2]&0x01));
 printf("RA: %d\n", (packet[3]&0x80)>>7);
 printf("Z : %d\n", (packet[3]&0x70)>>4);
 printf("Rc: %d\n", (packet[3]&0x0f));
 printf("QD: %c%c\n", packet[4], packet[5]);
 printf("AN: %c%c\n", packet[6], packet[7]);
 printf("NS: %c%c\n", packet[8], packet[9]);
 printf("AR: %c%c\n", packet[10], packet[11]);
}

void usage(char *name) {
 printf("Usage instructions for %s\n\n", name);
 printf("%s (OP_MODE) (ENCODE_MODE) (FILENAME) [IP] \n\n", name);
 printf("Where:\n");
 printf("OP_MODE\n\t -s \tServer mode\n");
 printf("\t -c \tClient mode\n\n");
 printf("ENCODE_MODE\n");
 printf("\t id\n");
 printf("\t opcode\n");
 printf("\t aa\n");
 printf("\t tc\n");
 printf("\t rd\n");
 printf("\t ra\n");
 printf("\t z\n");
 printf("\t rcode\n");
 printf("\t qdcount\n");
 printf("\t ancount\n");
 printf("\t nscount\n");

 95

 printf("\t arcount\n");
 printf("\n");
 printf("FILENAME\n");
 printf("\tName of the file to be read (client) or written (server)\n\n");
 printf("IP\n");
 printf("\tIP address NV-DNS is running on\n");
 printf("\n");
}

int main(int argc, char *argv[]) {
 //Network-related Variables
 struct sockaddr_in comm_sin, client_sin, server_sin;
 int comm_size, client_size, server_size;
 int client_len, packet_cnt=0;
 SOCKET sock;
 WSADATA wsa_data;
 int status, len, valid=1, started=0, resp_size=0;
 char msg[512];
 fd_set sockets, readable;
 struct timeval time;
 int fdmax, poll, retry;

 //Local variables
 FILE *f=NULL;
 char name[20], *p=NULL, *s=NULL;
 char ip[35];
 char *data=NULL;
 int op_mode=UNDEFINED, choice=UNDEFINED, enc_mode=UNDEFINED;
 int enc_size=UNDEFINED, i=0;
 int d_size=-1, bitcnt=0, bits_returned=0;
 char c;

 for (i=0; i<=512; i++) {
 msg[i]=0;
 }
 if ((argc<4)||(argc>5)) {
 p=argv[0];
 usage(p);
 exit(1);
 }

 /* Initialize communications */
 if ((status = WSAStartup(MAKEWORD(1,1),&wsa_data)) != 0) {
 fprintf(stderr,"%d is the WSA startup error\n",status);
 exit(1);
 }
 /* Parse command line */
 s=argv[0];
 p=argv[1];
 op_mode=operating_mode(p);
 if (op_mode==UNDEFINED){
 usage(s);
 exit(1);
 }
 if ((op_mode==CLIENT)&&(argc==4)){
 usage(s);
 exit(1);
 }
 p=argv[2]; //Encoding mode
 enc_mode=encoding_mode(p);
 if (enc_mode==UNDEFINED) {
 usage(s);

 96

 exit(1);
 }
 enc_size=encoding_size(enc_mode); //Determine the encoding scheme size
 strcpy(name, argv[3]);//Filename determination
 if (argc==5) {//Client Destination IP
 if (op_mode==CLIENT) {
 strcpy(ip, argv[4]);
 }
 else {
 usage(s);
 exit(1);
 }
 }
 if (op_mode==SERVER) {//File handling
 if ((f=fopen(name, "w"))==NULL) {
 printf("Error opening file for writing!\n");
 usage(s);
 exit(2);
 }
 }
 else { //Client functions
 if ((f=fopen(name, "r"))==NULL) {
 printf("File not found!\n");
 usage(s);
 exit(2);
 }
 }

 //Polling timeout selection
 if (op_mode==CLIENT) {
 time.tv_sec=(long)1;
 time.tv_usec=(long)0;
 }
 else {
 time.tv_sec=(long)5;
 time.tv_usec=(long)0;
 }

 /* Client specific code */
 if (op_mode==CLIENT) {
 //Set socket /network options
 sock=socket(PF_INET, SOCK_DGRAM, 0);
 if (sock==INVALID_SOCKET) {
 printf("Error! Unable to create a socket!\n");
 exit(10);
 }
 memset((void*)&comm_sin, 0, sizeof(comm_sin));
 comm_sin.sin_family = AF_INET;
 comm_sin.sin_port = htons(53);
 comm_sin.sin_addr.s_addr= inet_addr(ip);
 comm_size=sizeof(comm_sin);

 FD_ZERO(&sockets);
 FD_ZERO(&readable);
 FD_SET(sock, &sockets);
 fdmax=sock;

 printf("Client mode\t");
 printf("Port:%d\tDest:%s:%d\n", sock, inet_ntoa(comm_sin.sin_addr),
htons(comm_sin.sin_port));
 d_size=file_size(f); //Load the file into memory
 if (d_size>0) {
 data=(char*)calloc(sizeof(char), d_size);

 97

 for (i=0; i<d_size; i++) {
 fscanf(f, "%c", &c);
 data[i]=c;
 }
 data[d_size]=0;
 for (i=0; i<d_size; i++) {
 printf("%c", data[i]);
 }
 printf("\n");
 printf("Sending this data will require %d packets\n",
d_size*8/enc_size);
 bitcnt=0;
 while (bitcnt<d_size*8) {
 //Generate packet
 len=generate_packet(msg, enc_mode);
 //Insert data
 i=bitencode(msg, len, enc_mode, data, bitcnt);
 bitcnt+=(i-bitcnt);
 retry=0;
 sendto(sock, msg, len, 0, (struct sockaddr*)&comm_sin, comm_size);
 do {
 readable=sockets;
 poll=select(fdmax+1, &readable, NULL, NULL, &time);
 switch (poll) {
 case 0:
 printf("Packet timeout, resending.\n");
 sendto(sock, msg, len, 0, (struct sockaddr*)&comm_sin,
comm_size);
 retry++;
 break;
 case SOCKET_ERROR:
 printf("Socket Error!\n");
 bitcnt=d_size*8;
 break;
 default:
 ;
 }
 } while ((poll==0)&&(retry<3));
 //If we time out too many times
 if (retry>=3) {
 printf("Server connection unavailable\n");
 bitcnt=d_size*8;
 break;
 }
 len=recvfrom(sock, msg, 512, 0, (struct sockaddr*)&comm_sin,
&comm_size);
 msg[len]=0;
 printf("%s packet %d Received a response\n", argv[2], packet_cnt);
 packet_cnt++;
 }
 }
 else {
 printf("Empty file %s!\n", name);
 exit(3);
 }
 }

 /* Server specific code */
 else {
 //Set socket / network options
 sock=socket(PF_INET, SOCK_DGRAM, 0);
 if (sock==INVALID_SOCKET) {
 printf("Error! Unable to create a socket!\n");

 98

 exit(10);
 }
 memset((void*)&client_sin, 0, sizeof(client_sin));
 memset((void*)&server_sin, 0, sizeof(server_sin));
 server_sin.sin_family = AF_INET;
 server_sin.sin_port = htons(53);
 server_sin.sin_addr.s_addr=htonl(INADDR_ANY);
 server_size=sizeof(server_sin);
 status=bind(sock, (struct sockaddr*)&server_sin, server_size);
 if (status==SOCKET_ERROR) {
 printf("Error binding socket!\n");
 exit(12);
 }
 listen(sock, 10);

 FD_ZERO(&sockets);
 FD_ZERO(&readable);
 FD_SET(sock, &sockets);
 fdmax=sock;

 printf("Server mode: %s:%d\n", inet_ntoa(server_sin.sin_addr),
htons(server_sin.sin_port));
 bitcnt=0;
 client_size=16;
 client_len=0;
 while (valid) {
 if(started) {
 readable=sockets;
 poll=select(fdmax+1, &readable, NULL, NULL, &time);
 switch(poll){
 case 0:
 printf("Data feed ended.\n");
 valid=0;
 break;
 default:
 ;
 }
 }
 if (valid==0)
 break;
 len=recvfrom(sock, msg, 500, 0, (struct sockaddr*)&client_sin,
&client_size);
 msg[len]=0;
 started=1;
 if (len==SOCKET_ERROR) {
 printf("The last error:%d\n",WSAGetLastError());
 exit(1);
 }
 //Recv packet until timeout
 data=bitdecode(msg, len, enc_mode, data, &bits_returned, bitcnt,
&resp_size);
 data[resp_size]=0;
 bitcnt+=bits_returned;
 if (bitcnt>7) { //If we have a full packet
 bits_returned=bitcnt%8;
 if ((bits_returned>0)||(enc_mode==Z))//If we don't have a full
byte - Z field
 bitcnt=resp_size-1; //Limit by one
 else
 bitcnt=resp_size;
 for (i=0; i<bitcnt; i++) {
 fprintf(f, "%c", data[i]); //Write this to file
 }

 99

 if (bits_returned>0) {
 data[0]=data[bitcnt]; //Move the data from unfully used to
start
 i=1;
 }
 else
 i=0;
 for (i; i<resp_size; i++) {
 data[i]=0; //Clear out the rest of the field
 }
 bitcnt=bits_returned; //Reset the used bits field
 printf("\n");
 }
 len=generate_response(msg);
 len=sendto(sock, msg, len, 0, (struct sockaddr*)&client_sin,
client_size);
 packet_cnt++;
 printf("%s packet %d\n", argv[2], packet_cnt);
 //Sleep(250);
 }
 i=0;
 while(data[i]>0) {
 fprintf(f, "%c", data[i]);
 i++;
 }
 }
 fclose(f);

 if (op_mode==SERVER) {
 printf("Retrieved data: ");
 f=fopen(name, "r");
 while(!feof(f)){
 fscanf(f, "%c", &c);
 if (c>0)
 printf("%c", c);
 c=0;
 }
 printf("\n");
 fclose(f);
 }
 return 0;
}

 100

Appendix C
Results from NV-DNS and Encode/Decode DNS

 101

 The file used in the encoding process was a simple text file with the text “i’m just
a long text file that i’m transmitting across myself.” The results of the transmission
between the client and server aspects of Encode/Decode DNS alone and with NV-DNS
are included in the following subsections.

C.1 ID field
C.1.1 No NV-DNS

i'm just a long text file that i'm transmitting across myself.

C.1.1 NV-DNS
 C ¸ ö
 N ¯ 1⁄2 î € Í ‹ R) O & ’ ç Ç } Œ 9 W | 1⁄4 _ ÿ w 7 ð ‹

C.2 QR field
C.2.1 No NV-DNS
i'm just a long text file that i'm transmitting across myself.

C.2.2 NV-DNS
□□□

C.3 OPCODE field
C.3.1 No NV-DNS
i'm just a long text file that i'm transmitting across myself.

C.3.2 NV-DNS
□ □ □□□□ □ □□□□ □□□□ □□□□ □□□□ □ □ □□□□□□□□□□□□ □□□□□□ □□□□□□ □

C.4 AA field
C.4.1 No NV-DNS
i'm just a long text file that i'm transmitting across myself.

C.4.2 NV-DNS
□□ □□□

C.5 TC field
C.5.1 No NV-DNS
i'm just a long text file that i'm transmitting across myself.

C.5.2 NV-DNS
□□□

 102

C.6 RD field
C.6.1 No NV-DNS
i'm just a long text file that i'm transmitting across myself.

C.6.2 NV-DNS
□□□

C.7 RA field
C.7.1 No NV-DNS
i'm just a long text file that i'm transmitting across myself.

C.7.2 NV-DNS
□□□

C.8 Z field
C.8.1 No NV-DNS
i'm just a long text file that i'm transmitting across myself.

C.8.2 NV-DNS
□□□

C.9 RCODE field
C.9.1 No NV-DNS
i'm just a long text file that i'm transmitting across myself.

C.9.2 NV-DNS
□□□

C.10 QDCOUNT field
C.10.1 No NV-DNS
i'm just a long text file that i'm transmitting across myself.

C.10.2 NV-DNS
□□□

 103

C.11 ANCOUNT field
C.11.1 No NV-DNS
i'm just a long text file that i'm transmitting across myself.

C.11.2 NV-DNS
□□□

C.12 NSCOUNT field
C.12.1 No NV-DNS
i'm just a long text file that i'm transmitting across myself.

C.12.2 NV-DNS
□□□

C.13 ARCOUNT field
C.13.1 No NV-DNS
i'm just a long text file that i'm transmitting across myself.

C.13.2 NV-DNS
□□□

 104

Bibliography

[1] Vericept, “Preventing Identity Theft and the Loss of Intellectual Property”, February
2004.
URL:
http://www.vericept.com/Downloads/WhitePapers/Vericept_Fraud_IdentityTheft_WP.pd
f

[2] Anderson, K., “Criminal Threats to Business on the Internet”, February 1, 1999.
URL: http://www.aracnet.com/~kea/Papers/White_Paper.shtml

[3] Mockapetris, P., “Domain Names – Concepts and Facilities”, ISI, November 1987
URL: http://www.ietf.org/rfc/rfc1034.txt?number=1034

 [4] “DNS hack leaves corporate networks wide open”, August 2, 2004.
URL: http://software.silicon.com/security/0,39024655,39122803,00.htm

[5] Johnson, N.F.; Jajodia, S., “Steganalysis: The Investigation of Hidden Information”
Information Technology Conference, 1998. IEEE, Vol., Iss., 1-3 Sep 1998. Pages: 113-
116
URL:
http://ieeexplore.ieee.org/iel4/5774/15421/00713394.pdf?isNumber=15421&prod=STD&
arnumber=713394&arNumber=713394&arSt=113&ared=116&arAuthor=Johnson%2C+
N.F.%3B+Jajodia%2C+S.

[6] Artz, D., “Digital Steganography: Hiding Data Within Data”, Internet Computing,
IEEE, Vol.5, Iss.3, May/Jun 2001. Pages: 75-80
URL:http://ieeexplore.ieee.org/iel5/4236/20242/00935180.pdf?isNumber=20242&prod=
STD&arnumber=935180&arNumber=935180&arSt=75&ared=80&arAuthor=Artz%2C+
D.

[7] “Transmission Control Protocol”, Information Sciences Institute, University of
Southern California, Sep 1981.
URL: http://www.ietf.org/rfc/rfc793.txt?number=793

[8] Postel, J., “User Datagram Protocol”, ISI, 28 Aug 1980
URL: http://www.ietf.org/rfc/rfc768.txt?number=768

 [9] Mockapetris, P., “Domain Names – Implementation and Specification”, ISI,
November 1987
URL: http://www.ietf.org/rfc/rfc1035.txt?number1035

 105

[10] Provos, N.; Honeyman, P., “Hide and Seek: An Introduction to Steganography”
Security & Privacy Magazine, IEEE, Vol.1, Iss.3, May-June 2003 Pages: 32- 44
URL:
http://ieeexplore.ieee.org/iel5/8013/27102/01203220.pdf?isnumber=27102&prod=STD&
arnumber=1203220&arnumber=1203220&arSt=+32&ared=+44&arAuthor=Provos%2C
+N.%3B+Honeyman%2C+P.

[11] Breneman, J., “Underground Railroad Quilts & Abolitionist Fairs”
URL: http://www.womenfolk.com/quilting_history/abolitionist.htm

[12] Graps, A., “An Introduction to Wavelets”, Computational Science and Engineering,
IEEE, Vol.2, Iss.2, Summer 1995 Pages: 50-61
URL: http://ieeexplore.ieee.org/iel4/99/8829/00388960.pdf?isnumber=8829&prod=STD
&arnumber=388960&arnumber=388960&arSt=50&ared=61&arAuthor=Graps%2C+A.

[13] Xu, J.; Sung, A.H.; Shi, P.; Liu, Q., “JPEG Compression Immune Steganography
Using Wavelet Transform”, Information Technology: Coding and Computing, 2004.
Proceedings. ITCC 2004. International Conference on, Vol.2, Iss., 5-7, April 2004 Pages:
704- 708
URL: http://ieeexplore.ieee.org/iel5/9035/28683/01286737.pdf?isnumber=28683&prod=
STD&arnumber=1286737&arnumber=1286737&arSt=+704&ared=+708+Vol.2&arAuth
or=Xu%2C+J.%3B+Sung%2C+A.H.%3B+Shi%2C+P.%3B+Liu%2C+Q.

[14] Venkatraman, B.R.; Newman-Wolfe, R.E., “Capacity estimation and Auditability of
Network Covert Channels”,
Security and Privacy, 1995. Proceedings., 1995 IEEE Symposium on, Vol., Iss., 8-10
May 1995 Pages: 186-198
URL:
http://ieeexplore.ieee.org/iel2/3181/9013/00398932.pdf?isnumber=9013&prod=STD&ar
number=398932&arnumber=398932&arSt=186&ared=198&arAuthor=Venkatraman%2
C+B.R.%3B+Newman-Wolfe%2C+R.E.

[15] Moskowitz, I.S.; Kang, M.H., “Covert channels - Here to Stay?”, Computer
Assurance, 1994. COMPASS '94 'Safety, Reliability, Fault Tolerance, Concurrency and
Real Time, Security'. Proceedings of the Ninth Annual Conference on, Vol., Iss., 27 Jun-
1 Jul 1994 Pages: 235-243,
URL:
http://ieeexplore.ieee.org/iel2/1114/7667/00318449.pdf?isnumber=7667&prod=STD&ar
number=318449&arnumber=318449&arSt=235&ared=243&arAuthor=Moskowitz%2C+
I.S.%3B+Kang%2C+M.H.

 106

[16] Ogurtsov, N.; Orman, H.; Schroeppel, R.; O'Malley, S.; Spatscheck, O.,
“Experimental Results of Covert Channel Limitation in One-way Communication
Systems”, Network and Distributed System Security, 1997. Proceedings., 1997
Symposium on, Vol., Iss., 10-11 Feb 1997 Pages: 2-15
URL:
http://ieeexplore.ieee.org/iel3/4421/12557/00579214.pdf?isnumber=12557&prod=STD&
arnumber=579214&arnumber=579214&arSt=2&ared=15&arAuthor=Ogurtsov%2C+N.
%3B+Orman%2C+H.%3B+Schroeppel%2C+R.%3B+O%27Malley%2C+S.%3B+Spatsc
heck%2C+O.

[17] Millen, J., “20 Years of Covert Channel Modeling and Analysis”, Security and
Privacy, 1999. Proceedings of the 1999 IEEE Symposium on, Vol., Iss., 1999 Pages: 113-
114
URL:
http://ieeexplore.ieee.org/iel5/6220/16605/00766906.pdf?isnumber=16605&prod=STD&
arnumber=766906&arnumber=766906&arSt=113&ared=114&arAuthor=Millen%2C+J.

[18] “Bell Labs Celebrates 50 years of Information Theory: An Overview of Information
Theory”
URL:http://www.lucent.com/minds/infotheory/docs/history.pdf

[19] Pierce, J., “The Early Days of Information Theory”, Information Theory, IEEE
Transactions on, Vol.19, Iss.1, Jan 1973 Pages: 3- 8
URL:
http://ieeexplore.ieee.org/iel5/18/22667/01054955.pdf?isnumber=22667&prod=STD&ar
number=1054955&arnumber=1054955&arSt=+3&ared=+8&arAuthor=+Pierce%2C+J.

[20] Xu Gang; Zhang Hui, “Advanced Methods for Detecting Unusual Behaviors on
Networks in Real-Time”, Communication Technology Proceedings, 2000. WCC - ICCT
2000. International Conference on, Vol.1, Iss., 2000 Pages: 291-295
URL:
http://ieeexplore.ieee.org/iel5/7138/19245/00889216.pdf?isNumber=19245&prod=STD&
arnumber=889216&arNumber=889216&arSt=291&ared=295+vol.1&arAuthor=Xu+Gan
g%3B+Zhang+Hui

[21] Thompson, K.; Miller, G.J.; Wilder, R., “Wide-Area Internet Traffic Patterns and
Characteristics”, Network, IEEE, Vol.11, Iss.6, Nov/Dec 1997 Pages: 10-23
URL:
http://ieeexplore.ieee.org/iel4/65/13911/00642356.pdf?isnumber=13911&prod=STD&ar
number=642356&arnumber=642356&arSt=10&ared=23&arAuthor=Thompson%2C+K.
%3B+Miller%2C+G.J.%3B+Wilder%2C+R.

 107

[22] Corey, V.; Peterman, C.; Shearin, S.; Greenberg, M.S.; Van Bokkelen, J., “Network
Forensics Analysis”, Internet Computing, IEEE, Vol.6, Iss.6, Nov/Dec 2002 Pages: 60 -
66
URL:
http://ieeexplore.ieee.org/iel5/4236/22924/01067738.pdf?isnumber=22924&prod=STD&
arnumber=1067738&arnumber=1067738&arSt=+60&ared=+66&arAuthor=Corey%2C+
V.%3B+Peterman%2C+C.%3B+Shearin%2C+S.%3B+Greenberg%2C+M.S.%3B+Van+
Bokkelen%2C+J.

	Limiting DNS covert channels and network validated DNS
	Recommended Citation

	Chapter 1 1 Introduction
	1.1 Definitions of Steganography and Covert Channels
	1.1.1 Steganography
	1.1.2 Covert Channels

	1.2 Statement of Problem
	1.3 Organization

	Chapter 2 2 Literature Review
	2.1 Steganography
	2.1.1 Steganography Overview
	2.1.2 Network Covert Channels
	2.1.3 Steganalysis

	2.2 Real-time Network Analysis
	2.2.1 Real-time Network Analysis
	2.2.2 Application of Real-time Network Analysis

	2.3 Summary

	Chapter 3 3 Limiting DNS Covert Channels
	3.1 Understanding the DNS protocol
	3.1.1 Historical Perspective
	3.1.2 Header Definition
	3.1.3 Question Section Definition
	3.1.4 Resource Record Definitions
	3.1.5 Syntax and Compression
	3.1.6 Summary

	3.2 Identification of Fields
	3.2.1 Required fields
	3.2.2 Optional fields

	3.3 Network Topology Awareness
	3.4 Identifying and Limiting Covert Channels
	3.5 Response Options
	3.6 Additional Considerations
	3.6.1 Standard Revisions
	3.6.2 Covert Channel Logging
	3.6.3 Network Issues

	Chapter 4 4 NV-DNS
	4.1 Architectural Overview
	4.1.1 The Packet Parser
	4.1.2 The Validation Module
	4.1.3 The Packet Crafter

	4.2 Further Considerations

	Chapter 5 5 Applications of NV-DNS
	5.1 Implementation Language
	5.2 Caveats
	5.3 Applying NV-DNS
	5.4 Summary

	Chapter 6 6 Summary and Conclusion
	6.1 Summary and Conclusion
	6.2 Future Work

	Appendix A NV-DNS
	A.1 Overview
	A.2 Usage
	A.3 Source Code Listing
	A.3.1 defines.h
	A.3.2 dnstype.h
	A.3.3 dnstype.c
	A.3.4 nvdns.c

	Appendix B Encode/Decode DNS
	B.1 Overview
	B.2 Usage
	B.3 Source Code Listing
	B.3.1 defines.h
	B.3.2 setup.h
	B.3.3 setup.c
	B.3.4 main.c

	Appendix C Results from NV-DNS and Encode/Decode DNS
	C.1 ID field
	C.1.1 No NV-DNS
	C.1.1 NV-DNS

	C.2 QR field
	C.2.1 No NV-DNS
	C.2.2 NV-DNS

	C.3 OPCODE field
	C.3.1 No NV-DNS
	C.3.2 NV-DNS

	C.4 AA field
	C.4.1 No NV-DNS
	C.4.2 NV-DNS

	C.5 TC field
	C.5.1 No NV-DNS
	C.5.2 NV-DNS

	C.6 RD field
	C.6.1 No NV-DNS
	C.6.2 NV-DNS

	C.7 RA field
	C.7.1 No NV-DNS
	C.7.2 NV-DNS

	C.8 Z field
	C.8.1 No NV-DNS
	C.8.2 NV-DNS

	C.9 RCODE field
	C.9.1 No NV-DNS
	C.9.2 NV-DNS

	C.10 QDCOUNT field
	C.10.1 No NV-DNS
	C.10.2 NV-DNS

	C.11 ANCOUNT field
	C.11.1 No NV-DNS
	C.11.2 NV-DNS

	C.12 NSCOUNT field
	C.12.1 No NV-DNS
	C.12.2 NV-DNS

	C.13 ARCOUNT field
	C.13.1 No NV-DNS
	C.13.2 NV-DNS

	Bibliography

		2008-07-14T17:08:57-0400
	John H. Hagen
	Document unencrypted 7-14-08; Originally approved 12-17-04.

