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ABSTRACT 

This study was initiated to assist the WV Diesel Equipment Commission in its 

promulgation of initial rules, requirements, and standards governing the operation of 

diesel-powered equipment in underground coal mines.  Four different engines and 

various exhaust aftertreatment devices that represent current levels of in-use technology 

were selected for performance evaluation.  Both eddy-current and water-brake 

dynamometers were used to load the engines according to an ISO 8-Mode test cycle.  

Experimental emissions data, sampled from a full-flow dilution tunnel, suggests that 

particulate traps can reduce the mass emission rates of particulate matter (DPM) by 

nearly 90%, while reductions in fuel sulfur content (0.04% compared to 0.37% by mass) 

can reduce DPM mass emissions by as much as 22%.  The study concluded that the 

singular usage of catalytic converters is not recommended for the confined spaces of a 

mining environment, due to their tendency to enhance particulate matter sulfate 

production and possibly increase overall exhaust toxicity.   
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CHAPTER 1 – INTRODUCTION 

1.1  Introduction 
 

Historically, the vast majority of regulatory diesel emissions legislation has focused 

on pollution contributions associated with engines operating in the on-highway sector.  

However, trends suggest that future legislation will be ever more scrutinizing of the 

performance of diesel engines used in the off-road arena.  Federal regulation agencies are 

working to improve awareness and the information database associated with the use of 

diesel engines operating in the confined environments of coal mines.  More specifically, 

the Mine Safety and Health Administration (MSHA) is presently involved with the 

monumental task of assessing regulatory limits for the emissions levels that are produced 

by diesel-powered equipment operating in underground mines - with the paramount issue 

being the initiation of a federal restriction regarding diesel particulate matter production 

levels.  To date, federal regulations have merely governed the amounts of gaseous 

emissions permissible in underground mines, with the responsibility of DPM regulation 

falling upon state bodies.  However, due to the growing awareness of the probable 

carcinogenic nature of diesel particulate matter, measures are being taken to effect 

national standards. 

In addition to face haulage, diesel equipment plays an equally important role in 

other vital functions, such as material haulage, personnel transportation, and support 

operations. Other underground coal mine equipment that may be powered by diesel 

engines include shuttle cars, compressors, hydraulic pumps, generators, scoops and roof 

bolters.  The versatility, maneuverability, and mobility of diesel power equipment make it 

an efficient alternative to electrically powered equipment.  In addition, the use of diesel-

powered equipment eliminates some of the electrical safety hazards that are associated 

with their electrically-powered counterparts, such as electrical shock and electrical spark-

generated mine fires (particularly a risk in the deep methane environments common to 

WV coal mines). 

      

 



 

 

  

2 
 

1.2  Objectives 
 

The global objective of this study was to evaluate mass emission rates of exhaust 

emissions from diesel engines typically involved with mining operations.  The West 

Virginia Diesel Equipment Commission procured four test engines and various 

aftertreatment devices so that an experimental assessment of “available” exhaust 

curtailment technology could be performed.  The experimental data generated by this 

study will be utilized by the WV Diesel Equipment Commission to promulgate initial 

rules, requirements, and standards governing the operation of diesel equipment in 

underground coal mines.  

Since gaseous emissions are currently regulated and most of the current emphasis 

on the control of diesel emissions in underground mines focuses on particulate matter, the 

results of this study will focus on the findings associated with the particulate reduction 

performance of the aftertreatment devices tested.  Nonetheless, complete emissions 

records of both gaseous phase and particulate matter are included in the appendices.  This 

report presents the details on the test equipment, procedures, results, and conclusions and 

recommendations.  A list of specific activities included in this study are:  

 
1. MWM D916-6 engine using high sulfur diesel fuel (0.36% S). 
2. MWM D916-6 engine using low sulfur diesel fuel (0.05% S).  
3. Lister-Petter LPU-2 engine (baseline).  
4. Lister-Petter LPU-2 engine with a catalyzed trap with a catalytic converter - trap 

failed.  
5. Lister-Petter LPU-2 engine with a catalyzed trap with a catalytic converter - retested 

with new trap.  
6. Lister-Petter LPU-2 engine with a catalytic converter.  
7. Isuzu C240 engine with a catalyzed trap followed by a catalytic converter.  
8. Isuzu C240 engine with a catalytic converter.  
9. Isuzu C240 engine with a catalytic converter followed by a catalyzed trap.  
10. Caterpillar 3306 engine (baseline).  
11. Caterpillar 3306 engine with catalyzed trap.  
12. Caterpillar 3306 engine with a dry scrubber system.  
13. Caterpillar 3306 engine with dry scrubber system - retest with the repaired heat 

exchanger.  
14. Preliminary development and testing of high temperature trap for use with catalytic 

converter/trap combination and for other engines.   
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CHAPTER 2 – REVIEW OF LITERATURE  

2.1  Introduction 
 

The utilization of permissible diesel-powered equipment poses less potential for 

dust or methane ignitions than do comparable electrically-powered equipment.  By 

replacing electrically-powered units with diesel-powered units, the risk of injury to coal 

miners, such as electrocution due to electric cables and open trolley wires, is reduced.  

Current trolley wire systems consistently expose miners to bare 300-volt DC conductors, 

while batteries and battery overcharging present several hazards to coal miners. 

Additionally, electric sparks are significant sources of ignition in dust- and methane-filled 

environments.  An additional advantage of diesel-powered equipment is the potential for 

safe and rapid evacuation of personnel in the event of a power failure.  Considering 

higher productivity, which can be obtained by using diesel equipment, on a per-ton basis, 

there is less human exposure to the known health and safety hazards associated with 

underground coal mining [31].  As the amount of exposure necessary to mine a given 

quantity of coal is reduced, subsequent frequency of accidents will also diminish.  Thus, 

the use of diesel-powered equipment with appropriate exhaust emissions controls in 

mining operations may improve the overall safety. 

Because of its relationship with health problems, the exhaust from diesel engines 

operated in the closed confines of underground mines has been a subject of concern.  

MSHA has recently proposed a rule that would establish new health standards for 

underground coal mines that use diesel engine powered equipment.  Their proposal 

requires installation of high-efficiency filters on diesel-powered inby equipment 

(equipment that is used at the mine face).  Within 30 months, heavy-duty outby 

equipment (equipment that is not used at the mine face) will also have to be equipped 

with such high-efficiency filters.  Whole diesel exhaust is considered to be a probable 

human carcinogen and the National Institute for Occupational Safety and Health 

(NIOSH) considers it a potential occupational carcinogen [13,25].  Cohen and Higgins 

suggested a small to moderate excess relative risk of lung cancer in workers who were 

exposed to emissions from older, mechanically-injected diesel engines.  This finding is 
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particularly relevant to mining applications because the majority of engines in use are 

older designs with mechanical injection, similar to those discussed by Cohen and Higgins 

[7].  It is understood that, to date, no epidemiological study has presented quantitative 

evidence of the past exposures of the study subjects and, hence, the use of this data to 

estimate the magnitude of cancer risk is limited.  Heavy-duty diesel vehicle exhaust 

particulate is of concern because long-term exposure to particulate matter has been 

associated with excess lung cancer rates in laboratory animals [15,19,24].  Several other 

toxicological and epidemiological studies have also investigated the relationship between 

diesel emissions and the development of cancer and other diseases [5,7,35].  These 

studies have shown that long-term exposures to very high concentrations of diesel 

emissions produce lung tumors in rats and that soot (carbonaceous core DPM), not the 

adsorbed chemicals, is the likely cause of tumors in this species.  The intent of this 

discussion is not to debate the relevance of the current rat model for risk assessments.  

Rather, to show that these recent findings confirm WVU’s earlier findings that diesel soot 

particles can express in vitro genotoxic activity without extraction, as simple dispersions 

in surrogate pulmonary surfactant [40,41].   

Diesel engines, in general, emit solid particulates in the range of 0.1 µm (100 nm) 

diameters at concentrations above 1x105 particles/cm3 depending on the engine type and 

operation. While Cohen and Higgins focused on older engines, other reports indicate that 

fine diesel soot below one micron in size is produced in high number counts by modern 

engines running low sulfur fuel, high-pressure injection and late injection timing 

(strategies designed to reduce the regulated emission inventory) [7].  It should be noted 

that most of the engines studied were turbocharged.  Details of those studies have been 

given in a paper by Pataky et al. and a Health Effects Institute report [2,28].  Associations 

between suspended particulate matter and lung function parameters, respiratory 

symptoms, and mortality have been reported by Monn et al., Braun et al., Pope and 

Dockery, and Dockery et al. [4,8,25,30].  The respiratory health effects have been found 

to be associated with particulate matter with diameters less than 10 µm.  These particles 

constitute the respirable range, that is, particles that penetrate the alveolated regions of 

the lung.  In addition to the particle size, the number of inhaled particles could be of great 

relevance.  A change of the median particle diameter from 1 µm to 0.1 µm increases the 
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number of particles by more than a factor of a thousand for a constant total particulate 

mass [25].  This causes problems in the macrophage clearing mechanism.  Kreyling has 

suggested that macrophage clearing is more efficient for a smaller number of larger 

particles than for a very high number of fine particles [18].  Recent studies have 

suggested that the very smallest particles, smaller than 0.1 µm in diameter, are toxic by 

virtue of their size and cause stress of lung cell lining, leading to irritation and 

inflammation in some areas [10].  Size related toxicity, rather than chemical composition 

alone, might be of greater concern because chemical composition has been shown to be 

highly variable [16].  Diesel particulate impact on human health has been highlighted in 

recent reports [7,27].  The International Agency for Research on Cancer (IARC) 

conducted an extensive evaluation that concluded that there is sufficient evidence for the 

carcinogenicity in experimental animals of whole diesel engine exhaust.  IARC reported 

that there is inadequate evidence for the carcinogenicity in experimental animals of gas 

phase diesel engine exhaust (particulate-filtered), but there is sufficient evidence for the 

carcinogenicity in experimental animals of extracts of diesel engine exhaust particles.  

Moreover, IARC reported that there is limited evidence for the carcinogenicity in humans 

of diesel engine exhaust.  IARC’s conclusions were reached based heavily on the 

evidence provided by several human epidemiological studies of railroad workers, bus 

company workers, and  “dockers” [43]. 

Data suggesting the health risks associated with the use of diesel-powered 

equipment has lead to increased investigation efforts.  It is proposed that the reduction of 

the engine emissions produced by off-road engines can be accomplished by integrating 

three focus areas in order to develop an effective emission reduction strategy:  engine 

design enhancement, exhaust aftertreatment devices, and advanced fuel 

formulation/additives.  Due to economic and practical constraints, the mining community 

cannot directly implement all of these methods.  However, a review of current research 

practices is included for completeness. 
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2.2  Engine Design Enhancement 
 

The majority of diesel engines that are currently being utilized in underground 

mining applications are of the mechanically injected variety.  Due to low unit demands 

and economic concerns, electronic control strategies have, for the most part, not been 

implemented into the underground mining environment.  As the average level of 

electronic control increases in the diesel engine industry, governed mostly by the cost 

effectiveness of offering such advanced operation strategies, adaptation of such units to 

the mining arena will logically follow.   

Abdul-Khalek et al., Bagley et al., and several supporting references suggest that 

advanced diesel engines yield a high number count of ultra-fine particles and that these 

particles may pose a significant human health risk [1, 2].  A recent joint European study 

evaluated the exhaust emissions from diesel engines employed in the large tunnel 

construction projects in Austria, Germany and Switzerland [37]. The exclusive 

motivation was to minimize the effect of nanometer particles on occupational health.  The 

study evaluated several particulate trap systems, catalytic converters, and fuel types with 

the objective of reducing emissions of nanometer particles.  The report indicates that only 

particulate traps can curtail the total solid particulate count, in the fine particulate range 

below 50 nm, by more than two orders of magnitude.  The VERT study neither addressed 

the regeneration of traps nor assessed the genotoxic potential of the DPM emitted from 

engines equipped with the after-treatment devices. 

Current diesel engine designs typically emit 90% less particulate matter by mass 

than comparable designs of 15-20 years ago.  Optimization of piston bowls, enhanced 

injection pressures, and spray patterns, as well as improved boosting practices, have 

significantly curtailed the production of large-scale agglomerates and overall opacity.  

However, Mayer reports that, although a 1996 US-certified engine produced half the 

oxides of nitrogen emissions and exhibited better fuel economy and improved power as 

compared to an earlier design from the same family, no improvement was made on the 

emissions of ultra-fine nano-particles.  In fact, Mayer found that new low-emission 

engines emit more ultra-fine particles at all load points [21]. 
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2.3  Exhaust Aftertreatment Devices 
 

Various aftertreatment systems are currently being evaluated throughout the world.  

An important concern with any control device/system is whether the potential health 

hazard is reduced or whether more harmful contaminants are produced.  One must be 

very careful not to overlook detrimental by-products while assessing the gleaming 

positive attributes. 

Some commercial systems integrate various components, and the design specifics 

of all (chemical treatments, component materials, etc.) are quite proprietary in nature.  

However, the basic components of any system can typically be represented by catalytic 

(oxidation) converters and particulate traps.  Therefore, this section will be divided to 

discuss these technologies separately. 

 

 2.3.1  Particulate Traps 
 

The concern about diesel particulate matter (DPM) has resulted in the development 

and application of a number of new on-board control systems that limit the quantities of 

DPM produced by the engine, collect the DPM, or convert it to a potentially less harmful 

form.  Both ceramic and paper filters have been designed for use in underground mines, 

with limitations inherent in each.  Paper filters must be replaced often, which has a 

significant impact on its acceptability.  Two entirely different temperature-related 

problems occur with ceramic filters.  One is the result of the regulated limits on 

equipment surface temperatures (302°F) that exist for U.S. underground coal mines.  The 

other problem arises as PM builds up in a ceramic filter in the diesel’s exhaust system.  

The engine backpressure increases to such a high level the level that the DPM must be 

removed (a process called regeneration) or else the engine may be damaged.  Combusting 

these particles to less harmful gases during normal operations (on-board regeneration) is 

essential if the filter’s use is to be continued for more than a few shifts without a special 

regeneration process.   

Catalyzed traps have also been employed to not only trap the soot but also achieve 

regeneration at lower exhaust temperatures under normal engine operating conditions.  

These traps drastically reduce the DPM emissions, but the utilization of precious metal 
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washcoats to achieve regeneration often results in excessively high mass emissions rates 

of sulfates.   

Mayer presented data at the culmination of an 18-month study that concluded that 

“drastic curtailment of pulmonary intruding particulates is not feasible by further 

development of the engine combustion, nor by reformulation of fuels, nor by deployment 

of oxidation catalytic converters” [21].  However, the use of particulate traps did have a 

significant effect on the reduction of DPM levels - reducing the fine particulate range 

below 50 nm by more than two orders of magnitude.  Mayer also indicates that current 

gravimetric analysis standards of particulate matter production deliver “no toxically 

relevant information,” and that number count seems to be a much more significant 

criterion.  Moreover, traps exhibited reductions in the polycyclic aromatic hydrocarbon 

(PAH) sum, which are at least partially carcinogenic, likely by adsorption onto the trap 

surface area and subsequent conversion reactions during regeneration periods [21].    

Mayer et al., in a later study, investigated the particle size distribution of particulate 

sample measurements taken downstream of different particulate trap systems [22].  The 

study culminated by comparing the size distribution of the two extremes of common trap 

designs.  Surface-impaction filters, exemplified by those of the ceramic monolith 

(Cordierite wall-flow type) design, produce similar gravimetric particulate trapping 

efficiencies as the deep-bed filters of the knitted fiber (high temperature glass) variety.  

However, evaluation on the basis of particle count indicates that the efficiency of the 

surface filter drops below 70%, whereas those of the deep-bed filter increases.  Spectral 

analysis of distinct solid particulates resulted in conclusions regarding the size-sensitive 

nature of the filtration efficiencies of the two types of traps.  Deep-bed filters have a very 

uniform filtration rate down to primary particulates of 20 nm.  In contrast, surface filters 

are only acceptable for particulates greater than 100 nm.  The tests performed during this 

study were made exclusively on new traps, and the researchers held that observations 

might differ for filters that had aged and had subsequently been exposed to regeneration 

cycles [22].   

In a study investigating the effect of a ceramic particulate trap on the DPM and 

vapor phase emissions of a Cummins LTA10 heavy-duty diesel engine, researchers 

reported that ceramic particulate traps significantly reduced the levels of total particulate 
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matter, soluble organic fractions, and solid carbon matter (TPM-[SOF+SO4
2-]).  This is 

particularly important because the polynuclear aromatic hydrocarbon and nitro-PAH 

components of diesel exhaust are known carcinogens. However, results did indicate an 

increase in particles in the 0.0075-0.056 µm range (+~30%) while particles in the 0.056-

1.0 µm range were significantly reduced (over 90%) [11]. 

The use of a paper-like pleated media filter has some problems that need to be 

resolved before these filters can be accepted in mines.  The exhaust temperature for these 

systems must be controlled to prevent the filter media from igniting.  This has been 

accomplished by using a wet scrubber system.  These wet scrubbers require significant 

maintenance, a foolproof system to insure proper water level, and a considerable space 

within the equipment.  Wet scrubbers have been known to run out of water during 

operation.  In the past, the wet scrubbers have added excess moisture to the exhaust, 

while lowering its temperature.  In addition, wet exhaust can lead to unexpected and/or 

premature failure of the pleated paper filters.   

A dry exhaust system that cools the exhaust to an acceptable level for the pleated-

media would seem to resolve several of the shortcomings of the wet scrubber systems.  

West Virginia University (WVU) has investigated two designs of the dry scrubber 

systems for two different engines. The first system, the DST Management System for an 

MWM-D916-6 engine, was studied under a grant from the Generic Technology Center 

for Respirable Dust (U.S. Bureau of Mines).  The test plan was drawn up in consultation 

with the industry, miners and MSHA.  Both transient and steady-state testing with a high 

sulfur diesel no. 2 (0.37% S - the specified fuel at the time of the study) yielded DPM 

emission reductions in excess of 95%.  The management system is an emissions control 

system that may or may not utilize an oxidation catalyst.  It employs dry cooling of the 

exhaust gases and a disposable paper filter to reduce both gaseous and particulate 

emissions.  Another dry scrubber system designed for the Caterpillar 3306 was evaluated 

under the current WV Diesel Study.  

 
2.3.2  Oxidation Catalysts 

 
Oxidation catalytic converters have been utilized with diesel engines far more 

regularly than any other form of exhaust aftertreatment device.  Catalytic converters are 
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known to reduce the soluble organic fraction by 20% to 45%.  However, the undesirable 

aspect of the catalytic converters is the promotion of reactions that lead to sulfate 

formation at temperatures above 350oC.  In addition, the VERT report indicates that 

catalytic converters may have an effect of converting up to 40% of the NO to NO2 and 

increase the NOx toxicity.  The VERT report suggested that the negative effects of 

catalytic converters outweigh the potential advantages [37].  This is similarly supported 

by other researchers.  Walsh reports that the tendency of the precious metal catalyst to 

convert SO2 to particulate sulfates requires the use of low sulfur fuel:  otherwise, this 

increase in sulfate emissions would more than counterbalance the decrease in SOF [42].  

Results from the present study support Walsh’s report [42].  

Oxidation catalysts were reported to have no effect on the reduction of combustion 

particulates (soot), and, moreover, produced additional DPM material by way of sulfate 

particulates.  In addition, the unfavorable oxidation reactions associated with NO and SO2 

produced diesel exhaust with higher levels of toxicity [21]. 

Researchers at Southwest Research Institute investigated the feasibility, developed, 

and assessed the performance of a catalytic converter on a 1994 heavy-duty diesel engine.  

Results indicated that careful formulation of the catalyst can lead to good VOG reduction 

without excessive sulfate emissions.  Fuel sulfur levels were obviously directly related to 

overall sulfate production levels.  Moreover, low temperature aging using high sulfur fuel 

(0.3% by mass) lead to catalyst deactivation (poisoning) and increased particulate levels.  

This deactivation appeared to be somewhat reversible by exposing the catalyst to an 

exhaust stream resulting from an engine operating on low sulfur (0.04%) fuel.  

Conclusions were also established regarding the effect of washcoat materials.  Catalytic 

systems with silica-based washcoats and palladium noble metals exhibited superior 

sulfate control, whereas those containing alumina based washcoats and platinum noble 

metals exhibited high VOF, HC, and CO reduction but only at the expense of high sulfate 

emissions [17]. 
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2.4  Advanced Fuel Formulations/Additives 
 

Diesel fuel specification is also of relevance in the development of methodologies 

for particulate matter control. Diesel no. 2, that meets the requirements of the Code of 

Federal Regulations (CFR) 30, Part 7, does have a lower sulfur content compared to the 

fuel from a few years ago, but it is still not low enough to prevent the high rates of sulfate 

emissions.  If the fuel sulfur content could be lowered to a few ppm, the aromatic content 

of the fuel be reduced to below 10 ppm and the cetane number increased well beyond 50, 

then the catalyzed traps or combinations of catalytic converters and traps could readily 

yield extremely high DPM reductions.  These reductions would be realized even during 

high speed/high load conditions and also during regeneration modes that may or may not 

need an external energy source.  In addition, the reduction of fuel sulfur directly reduces 

the production of sulfur dioxide during the combustion process, and, perhaps more 

importantly, limits the formation of sulfates in the atmosphere, which are known 

contributors to acid rain. 

Fischer-Tropsch (F-T) diesel fuel is one of the two types of fuels that were 

discussed during this study.  F-T liquid fuels produced from synthesis gas (a mixture of 

carbon monoxide and hydrogen) are straight chain aliphatic hydrocarbons containing 

virtually no aromatic compounds or sulfur species.  F-T diesels are currently being 

processed from methane (coal bed methane could be a potential source) and/or coal.  The 

cetane number could be higher than 70, thus making it an excellent compression ignition 

fuel.  F-T liquid fuels offer such significantly different chemistry that, when compared to 

typical petroleum based diesel fuels, a new DPM versus NOx variable emerges.  F-T 

diesel, with virtually zero sulfur content, would be an excellent candidate for engines 

equipped with exhaust treatment devices, such as catalyzed traps.  Regeneration of the 

traps to temperatures beyond 350oC would not lead to high sulfate emission levels and by 

the virtue of the low aromatic content and the high cetane number; NOx emissions could 

be simultaneously reduced.  It is understood that NOx remains the hardest of all regulated 

emissions to alter by fuel reformulation.  Shell Oil operates a gas-based middle distillate 

synthesis plant that supplies F-T liquid fuel as a blending stock to California.  The 

California Air Resources Board (CARB) has mandated a maximum fuel aromatics 
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content of 10% (poly-aromatics <1.4%) and a minimum cetane number of 48.  Blends of 

diesel no. 2 and F-T diesel (synthesized from natural gas) meet the tough emissions 

standards imposed by CARB. 

Mayer suggests that current data indicates that fuel reformulation and the 

subsequent diminished sulfur content, decreased aromatic components, and increased 

Cetane index can effect a total DPM reduction from 5 – 15%.  Results from the VERT 

study indicated that zero sulfur and bound nitrogen fuel produced a 10% reduction of 

DPM emissions but did not effect any improvement in diminishing nano-particulate 

emissions. The VERT study concluded that reformulated fuel could not singularly offer 

significant reductions in particulate matter emission levels.  However, the addition of iron 

and cerium based fuel additives did enhance particulate trap technology [21].  The 

additives (other than copper-based additives) serve to curtail raw emissions and do not 

form secondary (ash) emissions or dioxins and furanes when used in conjunction with 

trap technology.  The use of fuel additives has provided a relatively predictable means of 

catalyzing particulate trap regeneration processes.  Regeneration of a bare ceramic trap 

requires temperatures in excess of 550°C, while implementation of fuel additives reduces 

this temperature requirement to below 450°C, without the associated sulfate production 

or poisoning problems inherent to catalyzed systems [9]. 

Baranescu reported that for an increase of 0.1% (wt.) in fuel sulfur, brake specific 

particulates increased by about 0.025 g/bhp-hr, due to the addition of soluble sulfates and 

bound water [3].  Moreover, combustion systems, engine type, cycle loading, and 

particulate makeup had only a weak contribution to the brake specific sulfate variation.  

Conversion rates of fuel sulfur to sulfates on particulates were in the range of one to three 

percent. 

Van Beckhoven reported that IDI engine vehicles on average responded minimally 

(3%) to a change in sulfur content of 0.30% to 0.05% by mass.  On the other hand, IDI 

engines responded to such fuel sulfur variations by emitting 15% less particulates under 

the European 13-mode tests and 30% less under the US transient test conditions [36]. 
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CHAPTER 3 – EXPERIMENTAL EQUIPMENT AND PROCEDURES 

3.1  Equipment and Procedures 
 

This section discusses the experimental equipment and procedures that were used to 

evaluate the performance of the various engine-exhaust aftertreatment system 

combinations.  All testing for this study was performed at the Engine and Emissions  

Research Laboratory (EERL) at WVU.  This facility has been in full-time operation since 

1993 and operates according to the procedures set forth by the CFR 40, Part 86, Subpart 

N.  The design of the facility also permits compliance with the standards set forth by CFR 

30, Part 7, and ISO/CD 8178-1.  During this study, the requirements prescribed by the 

CFR 40, Part 86, Subpart N, for the measurements of dilute diesel exhaust emissions, 

were followed as closely as possible, while the engine operations (test modes) were taken 

from ISO/DIS 8178-4 standards.  All engines and exhaust aftertreatment devices tested 

under this study were provided by the private sector and were tested as received, with no 

confirmations made as to their mechanical status.  For this reason no claims will be made 

regarding the representative nature of such devices to other units provided by the 

respective companies.  A detailed description of the engines, aftertreatment devices, test 

cycles, test fuels, laboratory equipment, and methods of operation follows. 

 
3.2  Test Engines and Exhaust Aftertreatment Devices 
 

The West Virginia Diesel Equipment Commission provided four different engines 

that serve to representatively span the power density spectrum currently utilized for coal 

mining operations.  The Commission likewise secured various aftertreatment devices that 

exemplify currently available exhaust emissions curtailment technology. Table 1 lists 

basic technical specifications of the engines, while Table 2 includes a summary of the 

exhaust aftertreatment systems tested, by engine make. 

Due to space limitations and program scheduling at the EERL, the dynamometer 

test beds for each engine-exhaust aftertreatment device had to be designed in a modular 

fashion.  Extensive modifications had to be made to the engine mounting assemblies and 
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dynamometer skids.  Details of the design and fabrication of the various assemblies are 

not included in this thesis.   

 
3.2.1  MWM D-916-6 
  

A naturally aspirated, pre-chamber, in-line six-cylinder MWM D-916 engine was 

used for the portion of the study that compared and contrasted the exhaust emissions 

produced by high (0.25%) sulfur and low (0.05%) sulfur fuel.  Fuel analysis revealed that 

the actual sulfur content was 0.37% and 0.04% for the high and low-sulfur fuels, 

respectively.  The experimental setup is shown in Figure 2.   

 
3.2.2  Lister Petter LPU-2 
 

A naturally aspirated, pre-chamber, in-line two-cylinder Lister Petter LPU-2 engine 

was tested with various combinations of a DCL/Rohmac exhaust aftertreatment system.  

Figure 3 illustrates the engine-aftertreatment system and the eddy-current test bed that 

was utilized for evaluation.  The combinations of the oxidation catalyst, catalyzed soot 

filter, and high-temperature paper filter that were used during the experiments are 

outlined in Table 2. 

 

3.2.3  Isuzu C240 
 

An Isuzu C240, pre-chamber, in-line four-cylinder engine was also tested with 

various combinations of a DCL/Rohmac exhaust aftertreatment system.  An illustration 

of the engine-aftertreatment system and the eddy-current dynamometer test bed is 

included as Figure 4.   Table 2 outlines the specific aftertreatment device combinations 

tested during this study. 

 

3.2.4  Caterpillar 3306 
 

A Caterpillar 3306, in-line, direct-injection six-cylinder engine was tested with both 

a Dry Systems Technologies and a Clean-Air Systems aftertreatment device.  The 3306-

DST system is illustrated in Figure 5, while the 3306-Clean Air System setup is presented 

in Figure 6.  Since space constraints prevented the Clean Air trap from being mounted 
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directly to the engine exhaust manifold, an elbow adapter pipe was fabricated, and then 

the entire assembly was double insulated.  The resultant setup provided substantial 

clearance with negligible temperature differences between the exhaust manifold exit and 

trap entrance.  Two 8-Mode tests had to be performed on the DST system due to 

manufacturing flaws, which necessitated repair by the supplier, Goodman Equipment 

Corporation.  While details of all of the problems that were encountered with the CAT 

3306-DST systems are spared, a brief documentation of the repair procedures and 

supporting illustrations are included in the Chapter 4.  The engine specifications for the 

3306 are given in Table 1, while the exhaust aftertreatment configuration is presented in 

Table 2. 

 
 
 

Table 1  Test Engine Specifications. 

Engine MWM  
D-916-6 

Lister Petter 
LPU-2 

Isuzu 
C240 

Caterpillar 
 3306 

Injection Indirect Indirect Indirect Direct 
Cylinders 6 – inline 2 – inline 4 – inline 6 – inline 

Bore × Stroke 
(inches) 4.13 × 4.72 3.38 x 3.15 3.39 x 4.02 4.75 x 6.0 

Displacement 379 CID 
(6.234 L) 

56.5 CID 
(0.93 L) 

144 CID 
(2.369 L) 

638 CID 
(10.46 L) 

Compression Ratio 22:1 22:1 20:1 21:1 
Peak Torque (ft-lbs.) 211 

@ 1500 rpm 
33.5 

@ 2150 rpm 
98 

@1960 rpm 
375 

@ 1320 rpm 
Rated Power (Hp.) 82 

@ 2100 rpm 
20.7 

@ 3100 rpm 
47.4 

@ 3000 rpm 
123 

@ 2200 rpm 
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Table 2  Engines and Associated Exhaust Aftertreatment Devices. 

Engine Tested Exhaust Aftertreatment Device 

Rohmac/DCL Catalyzed Trap Followed by Oxidation Catalyst 
Rohmac/DCL Oxidation Catalyst Lister Petter 

LPU-2 Rohmac/DCL Catalyzed Trap Followed by Oxidation Catalyst 
and Pallflex High Temperature Glass Fiber Filter 

Rohmac/DCL Catalyzed Trap Followed by Oxidation Catalyst 
Rohmac/DCL Oxidation Catalyst Isuzu C240 

Rohmac/DCL Oxidation Catalyst Followed by Catalyzed Trap 

Clean Air Systems Catalyzed Trap Caterpillar 3306 
Dry System Technology Dry Scrubber System 

 
 
3.3  Engine Instrumentation 
 

Due to the time constraints imposed by the WV Diesel Study, test bed 

instrumentation was designed in a modular fashion so as to reduce down- time during the 

changeover periods between various test engines.  Exhaust pressure measurements were 

made using Validyne Model P305 pressure transducers.  These transducers were 

calibrated before each emissions test.  Exhaust temperature measurements were made 

using Omega K-type thermocouples, which were calibrated on a regular basis as per 

manufacturer specifications.  These measurements were taken in order to assure 

compliance with all manufacturer specifications on exhaust backpressure limitations.  

Obviously, measured backpressures associated with DPM traps are largely dependent 

upon the amount of particulate loading at the time of testing.  If, during a test, the 

backpressure figures increased to a level near the manufacturer’s threshold, a 

regeneration procedure, outlined in the Chapter 4, was performed.  Similarly, if the DST 

system reached manufacturer’s limits, a clean-up procedure was performed, by injected 

water into the upstream manifold of the DST heat exchanger assembly.      

 
3.3.1  MWM D916-6 

 

The MWM D916-6 was fitted with a pressure tap at the exit of the exhaust manifold 

in order to obtain total exhaust pressure measurements.  However, since no aftertreatment 

devices were tested with this engine, pressure and temperature data were not included. 
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3.3.2  Lister Petter LPU-2 

 

The Lister Petter LPU-2 engine was fitted with exhaust pressure and temperature 

taps at the entrance and exit of the Rohmac/DCL aftertreatment system.  The pressure 

differential across the trap and/or oxidation catalyst was obtained by a comparison of the 

respective aftertreatment configuration data with the baseline backpressure 

measurements.  It should be noted that, due to the over-design of the exhaust-transfer 

tube, bare-engine total exhaust backpressure was minimal.  Lister Petter requires that the 

maximum exhaust backpressure for the LPU-2 be less than 35 inches of water.  Only 

once did the backpressure exceed this value, and that was during the initial regeneration 

cycle (40 inches).  After this test, a Rohmac representative inspected the system and 

performed a pressurized cleaning of the trap and the catalyst substrate. 

 
3.3.3  Isuzu C240 

 

As with the LPU-2, the Isuzu C240 engine was fitted with exhaust pressure and 

temperature taps on the entrance and exit of the Rohmac/DCL aftertreatment.  Again, the 

pressure differential across the trap and/or oxidation catalyst can be obtained by 

comparison of the respective aftertreatment configuration data with the baseline 

backpressure measurements.  Isuzu specified that the maximum engine exhaust 

backpressure could not exceed 40 inches of water.  Values observed while testing never 

exceeded 30 inches of water. 

 

3.3.4  Caterpillar 3306 
 
The Caterpillar 3306 was fitted with exhaust pressure and temperature taps on an 

insulated elbow at the exit of the exhaust manifold.  In addition, for the DST tests a 

thermocouple was also placed at the exit of the paper filter canister.  Caterpillar 

recommends that exhaust system backpressure should be maintained below 34 inches of 

water, and this backpressure limit was never exceeded. 
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3.4  Operating Conditions 
 
All test engines were operated at eight different steady-state modes. The engine 

speed and load factors of the 8-Mode test cycle are shown in Table 3.  The operating 

speeds and loads are taken from the ISO/DIS 8178-4 Section 6.3.1.1  standards,  “Test 

Cycles Type C - Off-Road Vehicles and Industrial Equipment,”  and closely resemble the 

operating set-points prescribed by CFR 30, Part 7.  When overall emission reduction or 

weighted-averages were reported, the associated weighting factors given in Table 3 were 

used.     

 

Table 3  The ISO 8-Mode Test Cycle. 

Mode Number Engine Speed Load Factor 
(Percent Load) 

Weighting 
Factor 

1 Rated 100 0.15 

2 Rated 75 0.15 

3 Rated 50 0.15 

4 Rated 10 0.10 

5 Intermediate 100 0.10 

6 Intermediate 75 0.10 

7 Intermediate 50 0.10 

8 Idle 0 0.15 

 
3.5  Dynamometers 
 

In order to simulate real-world loading operations on an engine in a laboratory 

environment, a dynamometer, or power absorber, is used.  Engine testing is generally 

performed with one of three basic types of dynamometers.  In order to familiarize the 

reader with the basic principles of operation, the following discussion has been included. 

 
3.5.1  Water-brake Dynamometers 
 

Water-brake, or fluid, dynamometers are generally divided into two categories: 

viscous shearing types and agitator types.  Viscous shearing fluid dynamometers absorb 
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engine loads by shearing a fluid between a rotor and a stator (housing).  The amount of 

load is controlled by varying the flow rate of water into the housing.  An agitator fluid 

dynamometer loads an engine by changing the direction of water flow from rotor vanes to 

stator (housing) vanes, i.e. an inward flow to an outward flow.  The associated change in 

momentum results in a reaction force on the stator housing.  In addition, a viscous 

shearing force is superimposed as the rotor cuts through the fluid moving from rotor 

pockets to stator pockets.  Load adjustment for the agitator-type fluid dynamometers is 

accomplished by varying the inlet water flow rate or the restriction of the casing outlet. 

  
3.5.2  Eddy-Current Dynamometers 
 

Air-cooled eddy current dynamometers operate by establishing a magnetic field by 

energizing a set of stationary coils with DC power.  Iron rotors, which are attached to the 

output shaft of the test engine, rotate in the magnetic field and generate eddy currents in 

the rotors, which produce a counter force to the direction of rotational motion.  The 

power absorbed by the dynamometer is then dependent upon the amount of DC power 

applied to the dynamometer and the speed at which it is rotating.  The absorbed energy is 

converted into heat in the two externally located rotors, which are designed with 

curvilinear cooling fins for fast heat dissipation.  The windage losses associated with this 

cooling are compensated for during data reduction. 

 
3.5.3  Electric Dynamometers 
 

Electric dynamometers operate much like electric motors.  In fact, to start the test 

engine, the dynamometer is operated as an electric motor, while the fuel (for 

compression-ignition engines) or ignition (for spark-ignition engines) sources for the test 

engine are disabled.  In such a motoring configuration, the parasitic, or frictional, losses 

of the engine can be measured and simulations of coast-down may be performed.  Once 

the fuel or ignition source for the engine is activated, the dynamometer may be used to 

load the engine by operating in the same manner as a generator.  Torque is developed due 

to the magnetic coupling between the armature and stator.  The engine output is then 

determined from a side-arm load cell that is attached between the stator housing and the 
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dynamometer-mounting frame.  The load applied to the engine is varied by strengthening 

the field voltage or reducing the load resistance. 

 
3.6  Test Dynamometers Specifications 

 
The testing performed for this study utilized both water-brake and eddy-current 

dynamometers.  The WV Diesel Equipment Commission did not request coast-down test 

cycles.  Therefore, no electric dynamometers were used during this study. 

 
3.6.1  Go-Power D-100 (Lister Petter, LPU-2) 
 

At the onset of this study, an operational test bed that could accurately test smaller 

engines, such as the Lister Petter LPU-2, was not available.  Many studies have tested 

comparable engines with large eddy-current dynamometer test beds and reported the 

results.  However, since most of these large eddy-current dynamometers had operating 

windage losses that were larger than the Lister Petter LPU-2 power set-points for the ISO 

8-Mode test cycle, data accuracy could have been suspect.  To reduce such inherent 

errors, a Go-Power D-100 water brake dynamometer head was acquired.  After mounting 

the Go-Power D-100 and Lister Petter LPU-2 on a custom-built test bed, preliminary tests 

indicated that the existing manual dynamometer controls for speed and torque were 

inadequate.  These controls were replaced with automated components from another 

water brake dynamometer setup, and, after system optimization, the engine/dynamometer 

combination was re-evaluated. Results indicated that the automated control system 

provided adequate control of test set-points.  Details regarding the development of the 

Go-Power D-100 dynamometer test bed are not included in this thesis. 

The Go-Power D-100 water-brake dynamometer has a continuous operating range 

of 14,000 rpm and a maximum operation speed of 16,500 rpm.  The dynamometer is 

capable of absorbing 100 hp (75 kW).  It can handle full continuous loading (65 ft-lb; 90 

N-m) at speeds ranging from 4000 rpm through 8000 rpm. 

 
3.6.2  Mustang Dynamometers EC300 (MWM D916-6 and Isuzu C240) 
 

Mustang Dynamometers EC300 eddy current dynamometers were used to control 

the load applied to the MWM D916-6 and Isuzu C240 engines.  The unit is rated for a 
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maximum horsepower of 1100 hp (825kW), under cold conditions, and has a continuous 

rating of 250 hp (188kW).  It can handle a continuous load of 390 ft-lbs (540 N-m) and a 

maximum load of 2170 ft-lbs (3005 N-m), under cold conditions.  

For the MWM D916-6 engine tests, an existing test bed was used to produce 

results.  The MWM engine test cell was outfitted with a Dyne Systems Co. DTC-1 

throttle controller and a Dyne System Co. Dyn-Loc IV dynamometer controller.  For the 

Isuzu test cell, a custom test bed was constructed and the cell was fitted with a manual 

fuel control linkage and a Dyn-Loc IV dynamometer controller.   

 
3.6.3  Mustang Dynamometers K-400 (Caterpillar 3306) 
 

The Caterpillar 3306 engine was mounted on a customized test bed equipped with a 

K-400 Mustang dynamometer.  The dynamometer was rated at 400 hp (300 kW).  Engine 

fueling rate was controlled pneumatically via the Caterpillar air actuator, and a Dyne-Loc 

IV dynamometer controller was used to control speed and load set points.  Engine load 

measurements were made with an Interface SSM-500 load cell, mounted in a side-arm 

arrangement to the dynamometer housing.  Engine speed was measured with an Accu-

Coder Model 220C PU rotary encoder.  

 
3.7  Dynamometer Controls 
 
3.7.1  Water-Brake Controls 
 

For the water-brake test rig, a Mason Eilan Camflex II dynamometer controller was 

used to vary the load applied by the dynamometer.  The system consists of a control unit 

and an electro-pneumatic water control valve.  It is capable of using either torque or 

speed as the controlling parameter.  In the “torque mode,” a torque set point is compared 

to output from the load cell, which is mounted to the dynamometer case.  In the “speed 

mode,” an engine speed set point is compared to output from an angular speed encoder, 

which is mounted on the dynamometer shaft.  In either mode of operation, the controller 

then varies the output voltage to the water control valve, in order to achieve the 

controlling parameter set point. 
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3.7.2  Eddy-Current Controls 
 

For the eddy-current test rigs, Dyne-Loc IV dynamometer controllers were used to 

vary the load applied by the dynamometer. The Dyne-Loc IV is capable of using either 

torque or speed as the controlling parameter.  In the “torque mode,” a torque set point is 

compared to output from a side-arm load cell, which is mounted to the dynamometer 

frame.  In the “speed mode,” an engine speed set point is compared to output from an 

angular speed encoder, which is mounted on the dynamometer shaft.  In either mode of 

operation, the controller then varies the output current to the dynamometers in order to 

achieve the controlling parameter set point.  The control unit is capable of maintaining 

speed and load set points to within ± 2 rpm and ± 2 ft-lbs. (±2.8 N-m), respectively. 

For the portion of the testing where the MWM test rig was used, a Dyne Systems 

DTC-1 throttle controller was used to control the engine fueling-rate.  The DTC-1 

consists of a control unit, which is interfaced with the Dyn-Loc IV dynamometer 

controller, and a throttle actuator, which is mounted on the engine and attached to its fuel 

control linkage.  By comparing an operator-defined set point with test rig output, the 

desired fueling rate, and hence engine speed, is obtained.  The DTC-1 can be operated 

with either torque or speed as the controlling parameter.  

 
3.8  Test Fuels 
 

The testing performed for this study utilized both high- and low-sulfur diesel fuel 

number 2.  The high sulfur fuel was purchased from Ashland Oil, and the low sulfur fuel 

was obtained from BP Oil.  Analysts, Inc. tested representative samples of both fuel 

types.  Test results, presented in Table 4 and Table 5, indicate that the actual sulfur mass 

content was 0.37% and 0.04% for the high- and low-sulfur fuels, respectively.    

According to federal regulations, high sulfur diesel can have a maximum of 0.5 % sulfur 

content by weight, whereas low sulfur can have a maximum of 0.05 %.  A comparative 

study between these two fuels was performed using the MWM D916-6 in order to 

determine the effects of sulfur content on baseline engine exhaust emissions.  For the 

remainder of the study, the low sulfur fuel was used, in accordance with the requirements 

of CFR 30, Part 7.  
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Table 4  Fuel Analysis Results for Low Sulfur Fuel. 

Fuel Properties for Low Sulfur Diesel Fuel No. 2 
Properties Measured Minimum Maximum 

Distillation, °F    
Initial Boiling Point 377   

Recovered –5% 414   
                 -10% 429   
                 -20% 449   
                 -30% 471   
                 -40% 490   
                 -50% 509   
                 -60% 528   
                 -70% 548   
                 -80% 571   
                 -90% 601 540 640 
                 -95% 632   

End Point – FBP 648   
Recovery, % volume 97.6   
Residue, % volume 1.2   

Loss, % volume 1.2   
Viscosity @40°C, cSt 2.6 1.9 4.1 

Sulfur Content, % Weight 0.04  0.05 
Hydrocarbon Types    

Aromatics, % volume 29.1  35 
Olefins, % volume 2.1   

Saturates, % volume 68.8   
API Gravity @60°F 35.6   

Cetane Index (Calculated) 47.9 40  
Cetane Number 

(Measured) 
47.0 40  

Flash Point, °F 148 125  

Analysis Conducted by: 
Analysts Incorporated 

P.O. Box 23200 Oakland, CA 94623 
800-424-0099 (Voice) 

510-536-5994 (Facsimile) 

 

 



 

 

  

24 
 

Table 5  Fuel Analysis Results for High Sulfur Fuel. 

Fuel Properties for High Sulfur Diesel Fuel No. 2 
Properties Measured Minimum Maximum 

   Distillation, °F 
Initial Boiling Point 374   

Recovered –5% 423   
                 -10% 444   
                 -20% 468   
                 -30% 484   
                 -40% 501   
                 -50% 517   
                 -60% 534   
                 -70% 553   
                 -80% 576   
                 -90% 609 540 640 
                 -95% 640   

End Point – FBP 655   
Recovery, % volume 97.9   
Residue, % volume 1.0   

Loss, % volume 1.2   
Viscosity @40°C, cSt 2.7 1.9 4.1 

Sulfur Content, % Weight 0.37  0.5 
Hydrocarbon Types    

Aromatics, % volume 34.6  35 
Olefins, % volume 3.1   

Saturates, % volume 62.3   
API Gravity @60°F 32.2   

Cetane Index (Calculated) 43.3 40  
Cetane Number 

(Measured) 
46.0 40  

Flash Point, °F 152 125  

Analysis Conducted by: 
Analysts Incorporated 

P.O. Box 23200 Oakland, CA 94623 
800-424-0099 (Voice) 

510-536-5994 (Facsimile) 
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3.9  West Virginia University Engine and Emissions Research Laboratory 
 

This section discusses the experimental equipment and procedures that were used to 

evaluate the performance of the various engines exhaust aftertreatment systems. All 

engine testing was performed at the WVU-EERL in Morgantown, WV.  The total exhaust 

dilution tunnel, gaseous and particulate matter sampling equipment, and testing and 

calibration procedures are presented herein. 

 

3.9.1  Full-Flow Exhaust Dilution Tunnel 
  

The obvious reason for performing exhaust emissions testing is to determine the 

effects of engine exhaust on the environment.  In order to do this, it is necessary to 

simulate the dilution process of tailpipe emissions in a laboratory.  Not only does this 

dilution process account for in-use exhaust-air interactions, but it also serves to quench 

post-cylinder combustion reactions and to lower the exhaust gas dew point in order to 

inhibit condensation.  Exhaust line quenching is necessary in order to prevent 

inconsistent emissions measurements.  The elimination of condensation is paramount, 

since water droplets can absorb certain gaseous components (for example, NO2).  In 

addition, the presence of water in sampling lines would affect certain instruments, such as 

the non-dispersive infrared analyzers, and particulate matter measurements. 

Two main dilution strategies are available for the researcher: full-flow dilution 

tunnels and mini-dilution tunnels.  A full-flow tunnel collects the entire exhaust stream 

from the engine and mixes it with fresh ambient air, whereas a mini-, or partial, dilution 

tunnel samples a portion of an exhaust stream and dilutes this sample quantity.  

According to the CFR, only full-flow tunnels are recognized as a certifiable means of 

sampling engine exhaust emissions.  The WVU-EERL utilizes a full flow dilution tunnel, 

designed and operated according to the specifications outlined in the CFR 40, Part 86, 

Subpart N. 

The WVU full-flow system is based upon the critical flow venturi – constant 

volume sampler (CFV-CVS) concept in which a blower is used to draw diluted engine 

exhaust through critical flow venturis via a stainless steel 18 in. (0.46m) diameter dilution 

tunnel that is approximately 40 feet in length.  The laboratory uses a 75 Hp (56.2 kW) 
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blower in tandem with a single 400 scfm (11.32 m3/min.) and three 1000 scfm  (28.3 

m3/min.) venturis in order to provide total tunnel flow rates ranging from 400-2400 scfm 

(11.32-68 m3/min.), 3400 scfm (96.3 m3/min.) is unavailable due to blower limitations. 

schematic of the test facility is shown in Error! Reference source not found..  At the 

entrance to the tunnel, the entire engine exhaust was injected into an annulus of dilution 

air upstream of a mixing orifice plate.  The orifice plate is eight inches in diameter and is 

located three feet from the beginning of the mixing region.  The two streams are merged 

in the mixing region, and, at a distance of 15 ft. (4.6 m) downstream of the orifice plate, 

sample probes were placed to collect dilute gaseous exhaust samples.  These probes are 

attached to the exhaust gas analyzer bench via electrically heated lines.  At the end of the 

sampling region, diluted exhaust is drawn into a 4 in. (0.10 m) stainless steel secondary 

dilution tunnel by the particulate sampling system.  Additional dilution air can be injected 

into this secondary tunnel in order to increase the dilution ratio (this can be used to ensure 

a soot collection filter face temperatures of less than 125°F (51.7°C).  This sample system 

flow is then routed through the remainder of the particulate sampling system and 

exhausted into the analyzer bench exhaust manifold. 

 

3.9.2  Critical Flow Venturi 
 

In compliance with the CFR 40, Part 86, Subpart N, a constant volume sampler 

(CVS) was used to regulate the flow of diluted exhaust through the dilution tunnel.  A 

constant mass flow rate is maintained in the dilution tunnel once the venturi section 

reaches sonic conditions (state of choked flow), as per the theory of critical flow nozzles 

[34]. 

Under choked conditions, the flow rate of a gas through a critical flow venturi is a 

function of the diameter of the venturi throat and the upstream temperature and pressure. 

A Viatran absolute pressure transducer, Model No. 1042 AC3AAA20, recorded upstream 

pressure and upstream temperature was logged via a Tayco 3-wire resistive temperature 

device, Model No. 68-3839.  The mass flow rate was then calculated as follows: 
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T

P K = Q v  

Equation 1 

where, 

Q = flow rate in standard cubic feet per minute at standard conditions of 20°C,  
  101.3 KPa (68°F, 29.92 in. Hg). 
Kv = calibration coefficient. 
P = absolute pressure at venturi inlet, in KPa, (in. Hg). 
T = absolute temperature at venturi inlet, °K, (°R). 

  

The venturis were calibrated with the use of a subsonic flow venturi traceable to 

standards set forth by the National Institute of Standards and Technology (NIST). The 

CFV-CVS system utilizes a system of three critical venturis installed in-line with a 75 Hp 

(55.9 kW) centrifugal blower [33].  Three of the venturis have a design flow rate of 1000 

scfm (28.3 m3/min.), and the third has a design flow rate of 400 scfm (11.32 m3/min.).  A 

maximum tunnel flow rate of 2400 scfm (67.92 m3/min.) can be achieved by using this 

system, due to blower operation limitations. 

  
3.9.3  Secondary Dilution Tunnel and Particulate Sampling System 
 

The WVU EERL uses a proportional sampling, double dilution method for 

particulate matter collection and analysis.  In such a system, a diluted exhaust sample is 

drawn from the sampling region of the full-flow dilution tunnel into a secondary dilution 

tunnel.  The flow rate into this secondary tunnel is varied throughout an emissions test in 

order to draw a proportional sample from both dilution tunnels.  In the secondary dilution 

tunnel, additional dilution air may be added in order to obtain high dilution ratios and 

filter face temperatures below 125°F (51.7°C).  The sample flow is then drawn across 

DPM collection filters, which enables the determination of the amount of DPM collected 

during a test cycle via gravimetric analysis. DPM consists of elemental carbon, soluble 

organic fractions, sulfates, and bound water.  The DPM sample flow is then exhausted 

into a common sampling-stream exhaust manifold. 

Specifically, the WVU sampling system draws a diluted exhaust sample through a 

0.5 in. (1.3 cm) diameter transfer tube, 7 in. (17.8 cm) in length, located in the sampling 
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zone of the primary dilution tunnel.  The inlet faces upstream and is connected to the 

stainless steel secondary dilution tunnel, which is 3.0 in. (7.62 cm) in diameter and 30 in. 

(76.2 cm) long.  The secondary tunnel provides sufficient residence time for the exhaust 

sample to be mixed with the dilution air, resulting in a sample with a temperature less 

than 125°F (51.7°C). The sample stream is drawn across a stainless steel filter holder, 

which attaches to the end of the secondary dilution tunnel.  The filter holder houses two 

(a primary and a secondary) Pallflex 70 mm fluorocarbon-coated glass fiber filters, 

Model T60A20, upon which the DPM is collected.  Two Sierra 740-L-1 mass flow 

controllers and two Gast 1023-101Q-583X rotary vane pumps control total secondary 

tunnel flow and secondary dilution airflow.  An additional check on flow rates is 

provided by corrected measurements from a roots positive displacement flow meter.  The 

total secondary flow ranges from 0-6 scfm (0-170 lpm), while the secondary dilution 

airflow ranges from 0-3 scfm (0-85 lpm). The mass flow controllers are routinely 

recalibrated by Sierra, and are additionally checked using a Meriam Instruments laminar 

flow element (LFE) Model No. 50MW20 rated at 0-23 scfm (0-6.52 m3/min.). Further 

details of the WVU PM Sampling System are disclosed elsewhere [33]. 

 
3.9.4  Gaseous Emission Sampling System 
 

The WVU EERL’s gaseous emissions sampling system consists of heated sample 

probes, heated transfer lines, and a gas analysis bench. Three heated stainless steel 

sample probes were installed 10 diameters downstream of the mixing zone origin in the 

primary dilution tunnel in order to ensure fully developed turbulent duct flow. The probe 

tips were inserted six inches into the diluted exhaust flow stream and were directed 

toward the tunnel inlet (upstream).  These probes are connected to the gaseous emission-

sampling bench via electrically heated lines.  The hydrocarbon probe and line were 

maintained at a wall temperature of 375°F ±10°F (191°C ± 6°C) by Fuji Model No. 223-

1806 temperature controllers, in order to prevent the higher-molecular weight 

hydrocarbons from condensing out in the sampling stream.   The NOx and CO/CO2 

probes and lines were maintained at 235°F±10°F (113°C ± 6°C) by the temperature 

controllers in order to prevent water condensation and subsequent analyzer measurement 

errors.    
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Figure 1  Schematic of the West Virginia University Engine and Emissions Research Laboratory Emissions Analysis System 
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The gas analysis system consisted of four major components:  CO2 analyzer, CO 

analyzer, NOx analyzer, and HC analyzer.  The gas analysis bench housed Rosemount 

and Beckman analyzers and the sample flow conditioning system.  Low CO and CO2 

emissions were analyzed using Rosemount 868 and 880 Series Non-Dispersive Infrared 

(NDIR) analyzers.  NOx measurements were performed by a Rosemount Model 955 

heated chemiluminescent analyzer.  A Beckman Model 958 NOx efficiency tester was 

included in the bay in order to ensure that the Model 955 operated at above 90% 

converter efficiencies, as per CFR 40, Part 86, Subpart N.  A stand-alone Rosemount 

Model 402 heated flame ionization detector (HFID) was used to measure exhaust 

hydrocarbons. 

 
3.9.5  Exhaust Gas Analyzers 

 
In order to make this document complete, a brief description of the analyzers and 

their theory of operation will be given in this section.  A more thorough presentation of 

the analyzer theory is presented in the Rosemount operation manuals. 

 
3.9.5.1  Hydrocarbon (HC) Analyzer 
 

The hydrocarbon analyzer was a Rosemount Model 402 HFID.  Exhaust 

hydrocarbon levels are measured by counting elemental carbon atoms.  A regulated flow 

of sample gas flows through a flame that is produced by regulated flows of air and pre-

mixed hydrogen/helium fuel gas (FID fuel).  The flame causes ions to be produced, 

which are in turn collected by polarized electrodes.  The ion absorption produces a 

current flow through the associated electronic measuring circuitry that is proportional to 

the rate at which carbon atoms enter the burner [13, 32].  The Model 402 is capable of 

measuring hydrocarbon concentrations up to 250,000 parts per million and produces a 

full-scale linear output. 

 
3.9.5.2  Carbon Monoxide (CO)/Carbon Dioxide (CO2) Analyzers 
 

The CO and CO2 analyzers were Rosemount Model 868 and 880 Non-Dispersive 

Infrared (NDIR) analyzers. The NDIR operates upon the principle of selective 

absorption.  Loosely stated, the infrared energy of a particular band of wavelengths, 
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specific to a certain gas, will be absorbed by that gas, whereas infrared energy of other 

bands will be transmitted.  The NDIR then determines gas concentration by the amount 

of transmitted (or absorbed) energy.  The transmission (or absorption) is directly 

proportional to the concentration of the measured component gas.  The NDIR’s do not 

produce a linear output; therefore it was necessary to generate calibration curves for each 

of the analyzers.  There are two CO analyzers on the gas analysis bench, a high CO 

analyzer and a low CO analyzer.  The high CO analyzer has ranges of 0-2% and 0-10% 

while the low CO analyzer has ranges of 0-1000 ppm and 0-5000 ppm.  The low CO 

analyzer was the only CO analyzer used in this research.  The CO2 analyzer has ranges of 

0-5% and 0-20%. 

 
3.9.5.3  Oxides of Nitrogen (NOx) Analyzer 
 

The NO/NOx analyzer used was a Rosemount Model 955 Chemiluminescent 

Analyzer.  The analyzer can determine the concentration of either NO or NO + NO2 

which together is called NOx.  For the determination of NO, the sample NO is 

quantitatively converted into NO2 by gas-phase oxidation with molecular ozone.  When 

this reaction takes place, approximately 10% of the NO2 molecules are elevated to an 

electronically excited state, followed by immediate reversion to the non-excited state.  

This conversion process produces a photon emission.  A photon detector (multiplier tube) 

is then used to produce an instrument response that is proportional to the NO present in 

the original sample.  The operation for NOx is identical to that of NO except that the gas 

sample stream is first passed through a converter, which converts the NO2 into NO.  In 

this case, the instrument response is proportional to the NO present in the original sample 

plus the NO produced by the dissociation of NO2. 

 
3.9.6  Bag Sampling 
 

Diluted exhaust gas and background dilution air samples were collected in 80-liter 

Tedlar bags during each emissions test.  After each test, the bags were analyzed and then 

evacuated, so as to be available for subsequent testing.  The background dilution air bag 

was analyzed and the concentration levels were used to account for the dilution air 

contribution to emissions levels that were recorded during a given test.  The dilute bag 
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sample, when compared to the integrated sample, served as a quality control/quality 

assurance check. 

 
3.9.7  Instrumentation Control and Data Acquisition 
 

The software used in the study was previously developed and installed in the EERL 

data acquisition and dynamometer control system [6].  The program utilized an RTI-815F 

data acquisition board and rack-mounted signal conditioning boards, comprised of 

Analog Devices 3B series conditioning modules. 

The data acquisition programs acquired the raw data (in the form of ADC codes) 

and a reduction program converted the raw data into proper engineering units [29]. 

 
3.9.8  Fuel and Air Flow Metering 
 

Producing accurate dilution ratios for a full-flow dilution tunnel involves recording 

total tunnel volume flow rates and engine exhaust mass flow rates.   Tunnel flow rates are 

measured using the CFV-CVS system.  However, due to backpressure limitations, 

extreme temperatures, high particulate concentrations, and the general associated 

complexity, engine exhaust flow rates are not directly measured. Instead, an indirect 

approach is used to calculate engine exhaust flow rates, where a summation of engine 

fuel consumption rates and engine airflow rates are used.  

A Max Flow Media 710 Series Fuel Measurement System performs the fuel flow 

rate measurements.  During testing, a transfer pump directs fuel from the storage tank, 

through a filter, and into a vapor eliminator, which is maintained at 30 psi (206.8 kPa).  

Before entering a Model 214 piston-displacement flow meter, excess fuel is routed via a 

pressure regulator through an internal heat exchanger and then back to the storage tank.  

This internal heat exchanger uses the by-pass supply fuel to cool the engine return fuel.  

The metered fuel supply then passes into a level-controlled tank.  In this tank, it is mixed 

with unused engine return fuel, which has been cooled in the internal heat exchanger.  

The tank volume is maintained at a constant level, so the amount of metered fuel 

recorded during a given test period will necessarily be the quantity of fuel that is used by 

the engine.  The exit to this mixing tank is connected to a secondary fuel pump.  In most 

cases when the system is supplying a high-pressure injection system, this additional 
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pump is used to further increase pressure, so as to minimize the requirements of the 

engine’s original equipment fuel pump.  Before the fuel exits the measurement system, it 

passes through a bubble detector, which controls a solenoid valve that connects the to-

engine and from-engine fuel lines.  Removal of air and fuel vapors prevents poor engine 

performance and flow meter inaccuracies.  After the purge solenoid, the fuel passes 

through an external heat exchanger, where the temperature is controlled via a Fuji Model 

No. 223-1806 temperature controller.  

Meriam Laminar Flow Elements (LFE’s) measure intake airflow rates.  The LFE 

consists of a matrix of tiny capillaries that is used to produce a laminar flow stream from 

the normally turbulent flow found in the intake line.  As the intake air flows through the 

triangular-shaped capillaries, friction creates a pressure drop.  Meriam supplies a 

calibration equation and coefficients for each LFE.  These are obtained through 

calibrations involving a flow meter that is traceable to NIST.  Using the absolute pressure 

and temperature of the inlet flow, as well as the differential pressure across the LFE; the 

volume flow rate of air is obtained from Equation 2,    
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where B and C are the coefficients supplied by Meriam, and µstand and µflow are standard 

and actual flow kinematic viscosities.  The viscosity variations are calculated using 

correction factors expressed in Equation 3 and Equation 4, 
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Specifically, A Meriam Model 50MC2-6 LFE, 6 in. I.D.-1000 cfm  (15.2 cm-28.3 

m3/min.), was used for the MWM D916-6 and Caterpillar 3306 tests, while a Model 

50MC2-4 LFE, 4 in. I.D.-400 cfm (10.2 cm-11.32 m3/min.) was used for the Lister Petter 

LPU-2 and Isuzu C240 tests.  Differential pressures across the LFE was measured using 

an MKS 223 B, while upstream absolute pressures are measured with a Setra Model 

C280E transducer.  LFE inlet temperatures are recorded from Resistive Temperature 

Device (RTD) measurements.  All pressure transducers were calibrated before each 

emissions test.   

 

3.10  Quality Control and Quality Assurance Procedures 
 

The WVU-EERL is committed to a Quality Control/Quality Assurance (QC/QA) 

program that assures data generation and measurement of the highest quality.  The 

procedures adopted are discussed herein. 

 
3.10.1  Emissions Testing 
 

The laboratories are capable of measuring regulated and non-regulated vehicle 

emissions such as carbon monoxide (CO), oxides of nitrogen (NOX), total hydrocarbons 

(THC), total particulate matter (TPM), and carbon dioxide (CO2).  Reliable sampling is 

assured through system design, periodic system inspection, and instrument calibration.  

In order to obtain accurate and repeatable data the procedures presented by CFR 40, 

Parts 86 to 99, Subpart N were adopted and followed as closely as possible. 
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3.10.1.1  Sampling Lines and Probes 
 

The sampling streams use separate sampling probes and lines with their own pumps 

(heated in the case of NOX, THC, and also CO/CO2 to avoid condensation of moisture in 

the lines).  This design feature ensures reliable operation of the THC and NOX analyzers. 

Verification of the operating condition of the emissions measurement equipment is 

performed before commencement of emissions testing.  Prior to performing a test 

schedule, the condition of all dilution tunnel sample probes are verified.  In addition, 

inspections are made to ensure the integrity of the sampling systems.  Before testing, the 

sampling lines are leak checked (by pressurization) and back-flushed with instrument-

grade zero air in order to purge the lines of residual particulate matter.  Heated sampling 

lines and their associated control systems (PID temperature controllers and associated 

thermocouples) are checked to ensure continuity between the controller, heater elements, 

and thermocouples.  The temperature settings also are verified - THC sampling probes 

and lines are maintained at 375oF (190.6°C), while NOX lines and probes are maintained 

at 250oF (121.1°C).  Periodically, sample line temperatures traces are recorded in order to 

verify that all components are functioning properly. 

 
3.10.1.2  Pumps and Blowers 
 

Periodically, the calibration and operation of the secondary dilution air and the 

secondary tunnel PM sample flow mass flow controllers are verified using a Roots-type 

positive displacement meter and a laminar flow element.  The above-mentioned flows are 

also recorded during testing and are compared to corrected data collected from a Roots-

type positive displacement meter. 

 

3.10.1.3  Exhaust Transfer Tube 
 

 The exhaust transfer tube, which routes exhaust from the engine exhaust system 

to the inlet of the primary dilution tunnel, is checked for leaks after assembly. Joints in 

the tube are sealed using a high-temperature aluminum tape and periodically checked to 

ensure integrity.  The exhaust transfer tube is insulated according to CFR 40, Part 86, 

Subpart N with no more than 12 ft. (3.66 m) of uninsulated tube and no more than 20% of 
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the overall tube length consisting of flexible tubing.  Such practices are afforded in an 

attempt to minimize errors in measurement due to thermophoretic effects. 

 
3.10.1.4  Exhaust Analyzer Calibration and Calibration Gases 
 

Calibration procedures utilized by the WVU EERL were in accordance with the 

requirements of CFR 40, Part 86, Subpart N and Part 8a.  The gases used to calibrate the 

exhaust analyzers were certified by the supplier to have an accuracy of 1%, traceable to 

NIST.  No gas cylinder was used if the pressure drops below 200 psig, and the use of NO 

calibration gas cylinders was discontinued when the pressure reached 400 psig.  

Zero reference states for the analyzers were provided by zero gas that did not 

exceed the following impurity concentrations: 1 ppm equivalent carbon response, 1 ppm 

carbon monoxide, 400 ppm carbon dioxide, and 0.1 ppm nitric oxide.  Gases with 

concentrations that were approximately 20% to 30% higher than the measured exhaust 

constituent levels, when available, provided span reference.  All exhaust gas analyzers 

were calibrated using ranges of operation that were in accordance with the engine being 

tested.  These calibrations were performed before each series of tests and after any 

instrument maintenance was been performed.  For the 10-point calibration curve, a 

Horiba SGD-710C gas divider was used.  The divider accurately produced varying 

concentration of component gas in 10% increments by mixing the span gas with a 

balance zero reference gas.  The instrument readings were allowed to stabilize at each 

measurement point and a computer averaged (100 points) reading of the instrument 

response was recorded.  These data points and corresponding gas concentrations were 

fitted to a second-degree (third degree in the case of NDIRs) polynomial and constituted 

that particular analyzer’s calibration data file.  This calibration file superseded any 

previous calibration file for that analyzer in order to prevent the use of incorrect 

calibration files.  The downloaded data disk for each test contained the calibration files 

for each analyzer. 

 
3.10.1.4.1  Hydrocarbon Analyzer 

 
The THC analyzer was subjected to the ‘FID burner peaking process’ to get the 

highest flame ionization detector (FID) response.  This process involved measuring and 
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recording the response of the instrument to 100% span gas and zero air with various 

settings of FID burner fuel and air.  Upon completion of the FID burner peaking process, 

the fuel and air settings of the FID were placed at the setting that produced the highest 

instrument response, and the analyzer was calibrated. 

An HC hang-up check was also performed on the heated FID. If the differences in 

the responses were more than two percent, the sampling probe was back flushed (direct 

injection of zero air into the analyzer and through the ‘overflow’ sampling probe) and 

steps were taken to rectify the problem. 

 
3.10.1.4.2  Oxides of Nitrogen (NOx) Analyzer 

 
Periodically, a NOX efficiency test was performed on the NOX analyzer. This test 

was performed to ensure that the analyzer converter (which converts NO2 to NO) was 

performing satisfactorily. A conversion efficiency of less than 90% was considered a 

failure and maintenance was performed to rectify the situation. Filters in the NOX 

sampling were replaced after each day of testing.  

 
3.10.1.4.3  Carbon Monoxide (CO)/Carbon Dioxide (CO2) Analyzers 
 

Since moisture can affect the operation of the NDIR analyzers used for carbon 

monoxide and carbon dioxide, a water interference check was performed.  In addition, the 

sample flow was passed through a refrigerator dryer in order to condense sample stream 

water vaport before it reached the NDIR. 

 

3.10.1.5  Bag Sampling (Dilute Exhaust and Background) 
 

Two Tedlar bags (2.82 ft.3 – 80 l) were used during each test to collect dilute 

exhaust and background samples for quantitative analysis. This bag analysis of dilute 

exhaust served as a check for the continuous gas measurements.  The background sample 

was used to correct the dilute exhaust reading.   

Prior to each test, the bags were evacuated and the pressures in the bags were noted. 

Leaks in the bag sample system were indicated when the vacuum reading was less than 

26 in. (6 cm) of Hg.  Replacement and zero air purge procedures were performed if bag 

readings appeared erroneous. 
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3.10.1.6  Particulate Sampling 

 
The mass flow controllers that were used to measure and adjust the flow rates of 

both secondary dilution air and dilute exhaust sample were calibrated using corrected 

readings from a Roots-type positive displacement meter as well as a laminar flow 

element.  No conditioning was performed on the primary dilution air, but ambient 

particulate matter contributions are accounted.   

PM collection filters were conditioned prior to, and following each test.  An 

environmental chamber was used to condition the filters at 50% relative humidity (RH) 

and 70°F (21.1°C) for at least one hour, but not more than 80 hours. Reference filters 

were conditioned along with test filters in order to account for the effects of humidity on 

the filter media. If the average weight of the reference filters changed between ± 5% or 

more of the nominal filter loading, then all sample filters in the process of stabilization 

(conditioning) were discarded and the emissions tests were repeated.  If the average 

weight of the reference filters changed by more than -1% but less than -5% of the 

nominal filter loading, then the emissions test was repeated.  If the difference in reference 

filter weights changed by more than 1% but less than 5% of the nominal filter loading, 

then the emissions test was repeated.  If the weight of the reference filters changed by 

less than ± 1%, then the measured sample weight was used.  Dilution air contribution to 

collected PM mass was quantified by sampling across a filter through the secondary 

tunnel with the main dilution tunnel blowers operating.  This method helped to account 

for entrained particles that might have been collected during an actual test and to account 

for the contribution of the dilution air to the test DPM filters (the WVU lab does not filter 

or condition primary dilution air). During the test, the filter face temperature was 

continuously monitored and recorded using a thermocouple.  If the temperature rose 

above 125oF (51.7°C) at any time during a test, that test was voided.  All particulate 

filters, reference, background, and sample, were stored in glass petri dishes (to minimize 

loss of particulate matter via static charge) while conditioning in the environmental 

chamber.  These dishes were covered, but not sealed, to prevent dust from accumulating 

on the filters, while allowing humidity exchange. The total particulate matter (TPM) was 

determined via pre- and post-weighing, using a CAHN 32 microbalance, which had a 
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sensitivity of 0.1 µg. The remote weighing unit of the balance was placed on a vibration 

isolator, and was calibrated using weights traceable to NIST. 

As mentioned earlier, the CFR 30 considers diesel particulate matter to consist of 

elemental carbon, soluble organic fractions, sulfates, and bound water. Wall and 

Hoekman, suggested that at 50% RH, 1.3 grams of water are present for every gram of 

sulfuric acid [39].  In addition, a linear relationship between bound water and sulfuric 

acid was reported to exist up to 60% RH.  The amount of bound water increases rapidly 

beyond 60% RH.  The CFR 30 recommends humidity control in the environmental 

chamber to ensure accurate gravimetric analysis of DPM.  However, when the research 

objective is to determine the filtration efficiency of exhaust aftertreatment DPM control 

devices, sulfate formation can often skew findings and conclusions.  WVU recognized 

the inherent inaccuracies in the DPM measurement guidelines set forth in CFR 40, but 

chose to report all test findings in accordance with these accepted government standards. 

 
3.10.2  Tunnel Injections 
  

Tunnel injections were used as an additional quality assurance procedure to check 

the operation of the whole emissions measurement system including the dilution tunnel, 

sample lines, and analyzers.  These procedures involved the release of a known amount 

of gas into the dilution tunnel and a comparison of amount injected to amount recovered. 

Propane injections were performed regularly in order to ensure that the CFV-CVS 

system was operating within federal guidelines.  The procedure served primarily as a 

check on the total dilute exhaust flow rate through the primary dilution tunnel, but it also 

helped identify HC hang-up in the tunnel, as well as problems in the HC sampling 

system.  Using a calibrated critical orifice and controlled pressure, a known quantity of 

99.5% propane was injected into the tunnel. The heated FID was used to measure the 

continuous concentration of propane in the diluted exhaust sample, as well as the dilute 

and background bag samples.  Quantities reported by the continuous and integrated bag 

samples (minus background) were compared to the known amount of propane injected, in 

order to determine whether the THC sampling system and main dilution tunnel were 

operating correctly.  A difference greater than ±2% between the measured and actual 

injected mass of propane indicated an error in diluted-exhaust mass flow rate 
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measurements.  Testing was validated only when two successive propane injection tests 

reported less than a ±2% difference. 

 

3.10.3  Experimental Uncertainty 
 

The determination of the uncertainty was approached by considering a quantity N, 

where N is function of known variables: 

 

( )n321 u,...,u,u,ufN=  

Equation 5 

The absolute error is given by: 
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However, when the ∆u’s are not considered as absolute limits, but instead as ±3σ 

limits; the method of computing the errors is according to the root-sum square formula. 
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Equation 7 

 
A normal distribution is assumed for the random errors.  The “Z value” for the 

normal distribution for a 95% confidence level is 1.96.  Adding all the bias and random 

errors, the total error was obtained, Z95% = 1.96. 
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The full dilution tunnel particulate mass equation is 
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where 

Pmass = volume corrected particulate mass. 

Vmix = total dilution exhaust volume. 

Vsample = volume of dilute exhaust flow across the primary/secondary filters. 

Pe = particulate mass from the gravimetric analysis. 

Pback = particulate mass from the background filter. 

Vback = volume of background flow across the background filter. 

DF = dilution factor. 

 

and the uncertainty, DPmass is 
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Equation 9 

 

The errors for NOx, CO, CO2, and THC are tabulated in Table 6. 
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Table 6  Errors Involved in Reporting of NOx, CO, CO2, and THC. 

Analyzer % FS Type NOx CO CO2 HC 
Sample ppm   547.415 250.68 11071 376.552 

Background ppm   0.725 67.928 36.597 280.406 
Range ppm   251 250 50400 10.2 

Calibration Gas ± 1 % Bias 10 10 591 3 
Gas Divider Accuracy ± 0.5 % Bias 5 5 295.5 1.5 

Gas Divider Reproducibility ± 0.2 % Random 2 2 118.2 0.6 
Analyzer Repeatability ± 1 % Random 5 10 591 3 

DAS 16 bit ± 0.02 % Random 0.2 0.2 11.82 0.06 
Total error ppm   7.82 7.79 1571.08 0.31 

 

 
Once the uncertainty analysis was completed, the error for particulate matter was 

found to be ± 1.95%. 

 

 

 

 

  

Figure 2  MWM D916-6 Installed on an Eddy Current Dynamometer Test Bed.  
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Figure 3  Lister Petter LPU-2 with Rohmac/DCL DPM Control System mounted on a Water-Brake 
Dynamometer Test Bed. 

 
 
 
 
 
 

  

Figure 4  Isuzu C240 Rohmac/DCL DPM Control System Installed on an Eddy-Current 
Dynamometer Test Bed. 

 



 

 

  

44 
 

 

 

Figure 5  Caterpillar 3306 with DST Dry Scrubber System Installed on an Eddy-Current 
Dynamometer Test Bed.  

 

 

 

 

Figure 6  Caterpillar 3306 with Clean Air Systems Catalyzed DPM Trap Installed on an Eddy-
Current Dynamometer Test Bed.  
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CHAPTER 4 – RESULTS AND DISCUSSION 

4.1  Introduction 
 

The objectives of this study were two-fold:  first, to evaluate the mass emissions 

rates of the exhaust from diesel powered equipment, and second, to collect pertinent 

performance data from current technology that is directed toward curtailing exhaust 

emissions from diesel engines earmarked for underground coal mine operations.  The 

engines and the aftertreatment devices were tested in their as-received condition.  

Modification of engines or exhaust aftertreatment devices were performed by the 

manufacturers or with their expressed consent.  The experimental data generated by this 

study will be utilized to assist the WV Diesel Equipment Commission in its promulgation 

of initial rules, requirements and standards governing the operation of diesel equipment 

in underground coal mines.   

At the onset of the investigation it became clear that diesel particulate matter was of 

primary concern, and for that reason particulate matter reductions will be used to form 

any conclusions concerning the performance of the various devices.  In order to present 

the results in an orderly fashion, this chapter has been subdivided according to test 

engines.  All DPM mass emissions test results may be found in tabular form at the 

conclusion of each engine section.  In addition, the recorded mass emission data for the 

entire study, gaseous and DPM, is presented in a tabular fashion in Appendix A (g/bhp-

hr) and Appendix B (g/hr).  For the remainder of this chapter, all discussion will focus the 

results presented on a g/hr basis.  Although brake-specific units are included in the 

appendix, DPM reduction efficiencies will be calculated from a g/hr standpoint.  The 

brake-specific units that typically accompany on-highway test results are not as pertinent 

to applications involving diesels in underground mines.  The inevitable determining 

factor of system performance is the associated contribution to overall PM in the mining 

environment.  The addition of aftertreatment devices alters an engines performance 

figures (generally a decrease in power, due to associated backpressures).  However, since 

most equipment manufacturers oversize their power source, this performance penalty is 
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inherently compensated.  Thus a brake-specific reporting method is not as meaningful as 

in other areas of diesel engine implementation.    

 

4.2  Considerations Involving the Measurement of Diesel Particulate Matter 
 

According to CFR 30, Part 7, Subpart E, diesel particulate matter is considered to 

be any of the following constituents found in a diesel exhaust stream:  elemental carbon, 

soluble organic fractions, engine wear metals, sulfates, and bound water.  Therefore, the 

mass measurements of collected DPM could consist of all of these contributors.  Of 

particular interest is the contribution of sulfates and bound water. Wall and Hoekman 

suggested that, at 50% RH, 1.3 grams of water is present for every gram of sulfuric acid 

[39].  In addition, a linear relationship between bound water and sulfuric acid was 

reported to exist up to 60% RH, with a rapid increase at levels above 60% RH. Such 

bound water would tend to skew reported conclusions, particularly since water is not the 

DPM component that is associated with any known health hazards or targeted for 

reduction.  Increased sulfate production, which results in increased amounts of bound 

water on sample filters, often results from the use of high contents of noble metal 

catalysts, such as platinum, in aftertreatment devices.  Although most manufacturers are 

reluctant to divulge information on their catalyst coatings, it is believed that the high 

sulfate production levels encountered during this study were a direct result of such large 

quantities.  Moreover, the sulfuric acid aerosols formed from such reactions may act as a 

nucleation site for DPM - once again contributing to higher DPM mass emissions figures.  

Nonetheless, in accordance with the requirements of the CFR 30, Part 7, CFR40, Part 86, 

Subpart N, and CFR 40, Part 89, WVU equilibrates the particulate matter filters at 50% 

RH and 70° F in an environmental chamber.  Hindsight, however, might suggest that a 

lower humidity-conditioning environment be used and mandatory sulfate analysis for 

collected DPM filters.  Such methods could eliminate some of the bound water effects 

that tend to make data interpretations more difficult and results more misleading.    
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4.3  MWM D916-6 Results 
 

 An MWM D916-6 was used to compare emissions levels produced by an engine 

operating on diesel fuels of different sulfur content.  Specifically, the study measured the 

combustion products generated during engine operation with high sulfur (0.37 % by 

mass) fuel and low sulfur (0.04 % by mass) fuel.  Analysts, Inc. tested samples of both 

fuels, and the analysis results are included in the Chapter 3 of this thesis.  Table 7 and 

Figure 7 indicate a slight reduction in measured particulate matter, while data included in 

Appendices A and B indicate that gaseous emissions, as expected, were basically 

unaffected by the fuel sulfur content.  The complete test results, averaged over three tests 

per operating mode, are presented in Appendix A (g/bhp-hr) and Appendix B (g/hr).  In 

conclusion, the lower sulfur content produced a weighted 8-mode DPM reduction of 

approximately 22 %.  
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Figure 7  Comparison of Particulate Mass Emissions Rates Associated With the Low- Versus High-

Sulfur Tests Performed on an MWM D916-6. 
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Table 7  Overall DPM Reductions for the MWM D916-6 (g/hr). 

 High-Sulfur (g/hr) Low-Sulfur (g/hr) DPM Reduction (%) 

Mode 1 32.33 23.77 26.46 
Mode 2 25.39 20.5 19.26 
Mode 3 21.11 18.65 11.66 
Mode 4 14.09 10.83 23.14 
Mode 5 29.70 23.03 22.48 
Mode 6 21.87 16.73 23.51 
Mode 7 17.12 14.46 15.51 
Mode 8 5.09 2.18 57.18 

Weighted-Averages 

Eff. Total 20.87 16.27 22.02 

 
 
4.4  Lister Petter LPU-2 Results 
 

A Lister Petter LPU-2 was used to test the emissions reduction performance of a 

Rohmac/DCL exhaust aftertreatment system (see Figure 9) as well as provide preliminary 

feasibility results for a Pallflex high-temperature glass-fiber paper filter.  Emission data is 

presented in tabular form in Table 8 and graphically in Figure 8, while the reduced data 

for all tests is compiled in Appendix A (g/bhp-hr) and Appendix B (g/hr).  

After results were compiled from the first ISO 8-mode test, it was concluded that a 

failure had occurred in the catalyzed particulate filter, due to the characteristically low 

DPM reduction values (see Rohmac/DCL-1 configuration data in Table 8 and Figure 8).  

This failure could have occurred during the limited amount of operation that had 

transpired prior to the tests performed for this study or during regeneration processes that 

were performed prior to the ISO 8-mode test. After recommendations were made, 

Rohmac returned the PM filter to DCL, where backpressures were compared to other 

comparable models.  DCL concluded that the trap had indeed failed and provided a 

replacement.  Once the new particulate trap was installed, preliminary tests indicated that 

the trap was not correctly sized for the engine exhaust emissions rates.  Unusually high 

PM loading was encountered, and passive trap regeneration could not be accomplished.  

While attempting to perform another 8-mode test, engine exhaust backpressures exceeded 
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limitations imposed by Lister Petter.  After consulting Rohmac and DCL, only a limited 

amount of testing was performed with the new trap.  The results of these tests did not 

provide significantly higher PM reductions (see Rohmac/DCL-2 configuration data in 

Table 9 and Figure 8). A limited number of tests (3 modes) were performed using the 

Rohmac/DCL catalytic converter (oxidation catalyst) as the sole aftertreatment device.  

These results are presented as DCL Catalyst Only configuration data in Table 8 and 

Figure 8. Finally, in order to produce preliminary results for the Pallflex high-temperature 

glass-fiber paper filter, a single Mode 7 test was performed.  The results for this test are 

included as the Rohmac/DCL-2 + Pallflex Paper Filter configuration data in Table 9 and 

Figure 8.    

As the data indicates, the particulate reduction for the initial (failed) trap ranged 

from 15% - 87%, with a weighted 8-mode average of 64.4%.  The replacement trap-

catalyst system provided an average reduction of 80% over Modes 6 and 7.  The single 

Mode 7 test performed with the trap-catalyst and paper filter yielded a 95% reduction, 

while the catalyst only modes reduced particulate by an average of 43%.  Total 

hydrocarbon reductions are tabulated in Appendices A and B, with a weighted 8-mode 

average reduction of 97% for the initial trap-catalyst system (Rohmac/DCL-1).  Similar 

results for HC were obtained by the other aftertreatment system configurations.  The 

Rohmac/DCL system provided significant reductions of carbon monoxide (CO), with a 

weighted 8-mode average reduction of 90%.  Similar reductions were obtained for the 

replacement trap tests, as well as the catalyst-only tests.  Gaseous data also suggests that, 

although the system made no provisions for reduction, oxides of nitrogen (NOx) were 

reduced by 28% by the original Rohmac/DCL system (Rohmac/DCL-1), with as much as 

50% reductions being produced by the catalyst only tests.  Such attenuation is attributed 

largely to high fueling rates and, in part, to increased exhaust backpressures.  High 

fueling rates can cause a reducing atmosphere in the exhaust, a reaction that is 

qualitatively given by 

 

(2 + n/2) NO (or NO2) + CyHn  →  (1 +1/4)N2 + yCO2 + n/2 H20 

Equation 10 
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High exhaust backpressures result in internal exhaust gas recirculation, which inhibits the 

in-cylinder formation of NOx by displacing oxygen in the induced intake-air charge.  

Regeneration studies were performed on both aftertreatment systems 

(Rohmac/DCL-1 and Rohmac/DCL-2).  The regeneration process consisted of operating 

the engine at rated power for approximately five minutes, followed by a five minute 

period of operation at high idle (no load at rated speed).  This two-step process first 

elevated the exhaust temperature, in order to achieve trap light-off, and then supplied the 

system with excess oxygen, in order to assist the regenerative combustion process.  Two 

cycles were performed on the original (failed) trap, while only one test could be run on 

the replacement trap, due to manufacturer-imposed backpressure limitations. The 

regeneration tests for the initial trap seemed to exhibit trends that are characteristic of 

normal trap regeneration.   During the first regeneration test on the original trap, 

hydrocarbon (HC), carbon monoxide (CO), and carbon monoxide (CO2) traces all peaked 

during particulate combustion and then decreased as the trap regeneration ceased.  

Similar trends were mimicked by exhaust backpressure measurements.  The second 

regeneration study with the failed trap did not exhibit such characteristic trends.  Since 

the engine did not experience very much operation between the first and second 

regenerative tests, it was hypothesized that low particulate loading levels were the reason 

for the differing results.  It should be noted that the engine was operated at low load 

conditions for at least three hours prior to the first regeneration study.  The low exhaust 

temperatures associated with such operation is not at all conducive to trap light-off, so, 

even in its failed state, the trap would have had a considerable amount of particulate 

loading.   A successful regeneration process could not be accomplished using the second-

generation aftertreatment system (Rohmac/DCL-2).  Unlike the two previous 

regeneration tests, increased PM loading and associated backpressures could not be 

reduced via the regeneration procedure outlined above.  The Rohmac/DCL-2 system was 

obviously undersized for the exhaust emissions levels produced by the Lister Petter LPU-

2.  Unlike the regeneration studies performed on the first generation path, a failure path, 

which served as a pressure relief mechanism, was not present.  Therefore the trap had a 

much higher loading rate – high enough that the particulate reductions afforded by 

regeneration could not keep up with the rate of particulate deposition associated with 



 

 

  

51 
 

continuous operation.  For this reason only a limited number of modes could be run 

before exhaust backpressure levels exceeded Lister Petter’s imposed limitations.  

Included in Figure 10 and Figure 11 are photographs illustrating the inlet face (upstream) 

of the PM trap before and after a regeneration process (Rohmac/DCL-1). 

As a direct result of the testing performed during this study, Rohmac and Lister-

Petter derated the LPU-2 engine within the limits imposed by the MSHA certification 

requirements.  Such a maneuver should decrease baseline engine emissions and provide a 

better scenario for implementation of future exhaust aftertreatment systems.  Further tests 

with the LPU-2 were not performed under this study, but tests have been scheduled as 

part of future research activities.  

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8

Rohmac/DCL - 2

Rohmac/DCL - 2 + Pallflex Paper Filter

Rohmac/DCL - 1

DCL Catalyst Only

Bare Engine

104.07

3.79
3.21 4.10

109.10

21.86

17.12

5.31

63.60

55.25

1.69

36.77

3.22
2.35

0.90

36.33

1.66
0.37

0.07

0.13

1.08
0.65

0

20

40

60

80

100

120

P
M

 (
g/

hr
)

Comparison of Particulate Mass Emission Rates from a Lister Petter LPU-2

 

Figure 8  Comparison of Particulate Mass Emissions Rates Associated With the Various 
Aftertreatment Devices Evaluated on a Lister Petter LPU-2. 
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Table 8  Overall DPM Reductions for the Lister Petter LPU-2 (g/hr). 

 
Bare 
(g/hr) 

Rohmac/DCL-1 
(g/hr) 

DPM 
Reduction  

(%) 

DCL 
Catalyst 

Only 
(g/hr) 

DPM 
Reduction  

(%) 

Mode 1 104.07 36.77 64.70 63.60 38.90 

Mode 2 3.79 3.22 15.00   

Mode 3 3.21 2.35 26.80   

Mode 4 4.10 0.90 78.00   

Mode 5 109.10 36.33 66.70 55.25 49.40 

Mode 6 5.84 1.66 71.60   

Mode 7 2.88 0.37 87.20 1.69 41.30 

Mode 8 0.15 0.07 53.30   

Weighted Averages: 

Eff. Total 28.87 10.28 64.4   

 

 

 

 

Table 9  Overall DPM Reductions for the Lister Petter LPU-2 (g/hr). 

 
Bare 
(g/hr) 

Rohmac/DCL-2 
+ Pallflex Paper 

Filter 
(g/hr) 

DPM 
Reduction 

(%) 

Rohmac/DCL-2 
(g/hr) 

DPM 
Reduction 

(%) 

Mode 1 104.07     
Mode 2 3.79     
Mode 3 3.21     
Mode 4 4.10     
Mode 5 109.10     
Mode 6 5.84   1.08 81.50 
Mode 7 2.88 0.13 95.50 0.65 77.40 
Mode 8 0.15     

Weighted Averages: 

Eff. Total     
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Figure 9  Side View of the Rohmac/DCL DPM Control System.  

 
 

 

 

 

 

 

Figure 10  Upstream Face of the Rohmac/DCL DPM Control System DPM Trap Prior to 
Regeneration. 
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Figure 11  Upstream Face of the Rohmac/DCL DPM Control System DPM Trap Immediately 
Following Regeneration. 

 
 
4.5  Isuzu C240 Results 

 

An Isuzu C240 was used to evaluate the emission reduction capabilities of a second 

Rohmac/DCL exhaust aftertreatment system. Similar to the LPU-2 system, the C240 

system consisted of a catalyzed particulate filter in series with an oxidation catalyst. With 

the experience afforded by the Lister Petter tests, Rohmac was advised to size the catalyst 

and particulate filters for the Isuzu C240 system after baseline emissions values were 

established.  For the C240 tests, system efficiency was optimized by altering the order of 

the oxidation catalyst and catalyzed particulate filter.  A full 8-mode test was performed 

with the catalyst positioned downstream of the particulate trap, while 4 modes (1, 3, 5, 

and 7) were tested with the catalyst positioned upstream.  In addition, the engine was 

operated for 4 modes (1, 3, 5, and 7) with only an oxidation catalyst.  While performing 

the 8-mode test, the trap-catalyst system did not need to be regenerated.  The final test 

performed on the Isuzu C240 involved the downstream placement of a Pallflex paper 

filter downstream of the Rohmac/DCL-2 system.  A full 8-mode test was performed with 

this configuration.  At the conclusion of the reported emissions tests, informal 

regeneration procedures were performed.  Although time constraints did not permit data 

recording, typical regeneration patterns were observed.  Test results for DPM mass 
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reductions associated with the Isuzu C240 are presented in Table 10, Table 11, and 

Figure 12, while tabulated emissions data for DPM and gaseous constituents are included 

in Appendix A (g/bhp-hr) and Appendix B (g/hr). 

The weighted 8-mode average DPM reduction for the system consisting of the 

particulate trap with a downstream oxidation catalyst was 67.7% (see Table 10).  

Considering, however, that the testing performed for this study was the first of its kind 

for the Rohmac/DCL system, it should be evident that further development work could 

produce enhanced particulate reduction values.  Rohmac independently had the 

particulate sample filters analyzed for sulfate content and verbally disclosed that sulfates 

contributed approximately 50% of the total measured DPM mass.  As the data indicates, 

the DPM reduction for the catalyst-trap (reverse order) tests ranged from 40-99%, with an 

average of 78%.  This configuration was tested in an attempt to gain some insight 

concerning the effects of downstream PM trap placement on the problem of sulfate 

formation associated with oxidation catalysts (catalytic converters).  As hypothesized, the 

contribution to measured PM quantities produced by the formation of sulfates tends to 

exhibit itself at lower temperatures, after condensation of the vapor-phase species.  Trap 

placement has little affect on this contribution, since PM traps are unable to filter vapor 

phase sulfate contributors.  Similar results were obtained for the tests involving 

downstream placement of the Pallflex paper filter (see the Rohmac/DCL + Pallflex paper 

filter configuration data in Table 11 and Figure 12).  The overall weighted 8-mode 

average DPM reduction for this test was 43.4%.  Once again, it is suspected the high-

temperature glass-fiber filter was ineffective at containing vapor phase constituents.  

Moreover, in the instances where a DPM increase was measured, it is hypothesized that 

filter fragments were collected on the sampling media as a result of damage that was 

sustained during fabrication.  No PM filter analysis was performed to confirm this 

suspicion.  It is assumed that the Pallflex design was incapable of trapping substantial 

amounts of DPM that was able to pass through the catalyzed trap of the Rohmac/DCL 

system.  However, the attributes of this prototype may be best realized from stand-alone 

operation.  Regeneration of the prototype was not attempted.  The final test result that 

needs to be highlighted involves the catalyst only test configuration that yielded an 

average 66% higher DPM measurement.  This data is in accordance with findings from 
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other researchers, such as Mayer [21].  Obviously such an increase in DPM production 

indicates a substantial amount of collected sulfates.   

The trap-catalyst system reduced HC by 79% (weighted 8-mode average), but 

Mode 5 produced minimal (27%) reductions.  Increased regeneration activity during 

Mode 5 is likely responsible for such sub-par reductions.  The system produced a 

weighted 8-mode reduction of CO of 95%.  As expected, NOx emissions were relatively 

unaffected by the addition of the system (weighted 8-mode average increase of 6% over 

baseline).  HC reductions for the Rohmac/DCL catalyst-trap (reverse-order) system 

averaged 87%, while CO was reduced by 94%.  NOx emissions were basically unaffected 

by the addition of the reverse-configuration system (6%) reduction.  The catalyst-only 

tests reduced HC by an average of 72% and CO by 93%, while CO2 and NOx emissions 

were relatively unaffected. 
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Figure 12  Comparison of Particulate Mass Emissions Rates Associated With the Various 
Aftertreatment Devices Evaluated on an Isuzu C240. 
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Table 10  Overall DPM Reductions for the Isuzu C240 (g/hr). 

 
Bare 
(g/hr) 

Rohmac/
DCL 
(g/hr) 

 
DPM 

Reduction  
 (%) 

Rohmac/
DCL 

(Reverse 
Order) 
(g/hr) 

 

DPM 
Reduction 

(%) 

 
Catalyst 

Only 
(g/hr) 

DPM 
Reduction 

(%) 
 

Mode 1 11.41 9.58 16.0 6.83 40.1 19.65 -72.2 

Mode 2 10.27 3.86 62.4     

Mode 3 10.27 1.83 82.2 0.77 92.5 5.92 42.3 

Mode 4 11.56 0.09 99.2     

Mode 5 34.73 9.58 72.4 7.12 79.4 55.12 -58.7 

Mode 6 3.83 0.14 96.3     

Mode 7 3.24 0.08 97.5 0.04 98.7 1.78 45.0 

Mode 8 0.24 0.03 87.5     

Weighted Average  

Eff. Total 10.16 3.28 67.7     

 

 

 

Table 11  Overall DPM Reductions for the Isuzu C240 (g/hr). 

 Bare 
(g/hr) 

Rohmac/DCL+Pallflex Paper Filter 
(g/hr) 

 
DPM Reduction  

 (%) 
Mode 1 11.41 11.27 1.2 

Mode 2 10.27 16.39 -59.6 

Mode 3 10.27 1.45 85.9 

Mode 4 11.56 0.12 99.0 

Mode 5 34.73 11.22 67.7 

Mode 6 3.83 2.25 41.3 

Mode 7 3.24 0.15 95.4 

Mode 8 0.24 0.05 79.2 

Weighted Average  

Eff. Total 10.16 5.75 43.4 
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4.6  Caterpillar 3306 Results 

 

Two aftertreatment devices were tested on a Caterpillar 3306.  A Dry Systems 

Technology (DST) dry scrubber system and a Clean Air Systems catalyzed particulate 

trap were evaluated for their exhaust emissions reduction capabilities.  Test results for 

DPM mass reductions associated with the Caterpillar 3306 are presented in Table 12, 

Table 13, and Table 14, while tabulated emissions data for DPM and gaseous constituents 

is included in Appendix A (g/bhp-hr) and Appendix B (g/hr).  Graphical representation of 

DPM reductions are included in Figure 13 and Figure 14. 

Goodman Equipment Corporation supplied for evaluation, a Caterpillar 3306 that 

had been retrofitted with a DST dry scrubber system.  Based upon previous experience 

afforded by an MWM D916-6-DST system and DPM sample filters that were collected 

during the first 8-mode test (DST I), it was hypothesized that a problem existed with the 

system.  Since the aforementioned MWMD916-6 DST system did not contain the same 

oxidation catalyst as this CAT 3306 system, the catalyst was omitted in an attempt to 

isolate the source of the problem.  Results from a 2-Mode test indicated that the catalyst 

was not the cause of high particulate emissions.  Consequently, the system was 

disassembled and inspected for coolant leaks inside of the heat exchanger.  A coolant 

leak, caused by manufacturing flaws, was indeed detected in the heat exchanger of the 

DST system (see Figure 16 , Figure 17, and Figure 18).   In addition, exhaust passage 

leaks were also found in the manifold end of the heat exchanger and the filter canister 

(see Figure 19).  Goodman representatives and Mr. Norbert Paas (inventor of the DST 

system) performed subsequent repairs and inspections.  At the onset of the second test, 

visual inspection of the sample filters for Mode 1 and Mode 2 resulted in the elimination 

of four modes for the remainder of the test (only Modes 1, 2,5, and 7 were tested).  The 

results of this 4-mode test are presented in Table 12 and Figure 13 as DST II.  

Immediately following this four-mode test, Goodman and Mr. Paas were contacted, 

resulting in a scheduled engine checkup by a local Caterpillar maintenance technician and 

various system inspections and clean-up procedures.  The Caterpillar 3306-DST 

combination was tested for a third time, but, once again, the reductions from this system 
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were rather low under high speed/high load (Mode 1, in particular) conditions, as 

presented in Table 13 and Figure 14 (DST III configuration).   

The original DST 8-Mode test indicated a weighted 8-mode average DPM reduction 

of 41.2%.  After the leak was repaired, only 4 Modes were tested, with an average DPM 

reduction of 70%.  However, similar to the results found during the first 8-Mode test, 

Modes 1 and 2 had much lower reductions than Modes 5 and 7.  During the second full 8-

Mode test (DST III) the weighted 8-mode average DPM reduction was 82%, but Mode 1 

only posted an 8% reduction.  

From the DST I results, Mode 8 produced large increases in HC and CO over the 

bare engine values.  Omitting this mode resulted in average reductions of 56% for HC 

and 89% for CO. CO2 and NOx emissions were not substantially affected by the addition 

of the DST system.  The gaseous emissions from the limited 4-mode DST II tests 

indicated reductions of HC and CO emissions of 67% and 92%, respectively.  As with the 

DST I tests, CO2 and NOx emissions were unaffected.  The second complete 8-mode test 

(DST III) produced weighted 8-mode average HC reductions of 70 % and CO reductions 

of 85%.  For these tests, CO2 emissions were reduced by 1% and NOx levels were 

decreased 25%. 

As a final note to be appended to the DST testing, Table 15 and Figure 15 provide 

documentation of the exhaust temperature at the exit of the DST paper filter canister 

(immediately following the flame arrestor).  Data presented in Table 15 was taken from 

the second 8-Mode test (DST III), since there were coolant leaks associated with the first 

set of tests.  The high heat-exchanger outlet temperatures in Modes 1 and 2 could explain 

the low DPM reductions.  At these elevated temperature, filter binding agents could 

deteriorate, thus reducing overall filtration efficiency.  In addition, vapor-phase exhaust 

constituents could pass through the filter media at such temperatures.  Finally, in 

comparison to earlier tests performed on an MWM D916-6 with a DST system, this 

system’s performance figures could be limited by the substitution of water-jacketed 

exhaust manifold with high-performance insulation-wrapped counterparts.  Although the 

similar results were obtained for exhaust manifold surface temperature, the insulated 

manifold could have provided increased temperatures necessary for oxidation catalyst 

sulfate production. Tests of filter efficiency, as a function of stream temperature and flow 
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rates, were not conducted during this study, and time limitations prevented further 

investigation of the temperature effects associated with Modes 1 and 2.    

Clean Air Systems provided for evaluation, a catalyzed particulate filter that had 

been designed for the Caterpillar 3306.  The overall weighted 8-mode average DPM 

reduction of the system was 72%.  The average reductions in HC, CO, and CO2 were 

found to be 88%, 83%, and 21%, respectively. Oxides of Nitrogen (NOx) were not 

substantially reduced by the Clean Air System.  It should be noted that Mode 8 presented 

a significant problem with HC and CO emissions.  As per regulations, Mode 8 testing 

followed Mode 7 after a period of stabilization (generally 10 minutes).  While following 

this standard procedure, HC and CO emissions would increase until both analyzers were 

out of range.  In order to continue testing, the engine had to be shutdown so that the HC 

and CO analyzers could be purged.  After startup, HC and CO emissions were still much 

greater than those obtained from other test modes, but they were measurable.  This 

problem is attributed to a regeneration process that would be quenched during the 

shutdown period. Considering that this study serves as the first and only set of emissions 

tests for this particular system model, there is likely room for improvement.  In addition, 

the particulate sample filters were not analyzed, but based on previous experience, it is 

anticipated that a considerable amount of sulfates were contained on the filters.  Thus, 

further development could minimize sulfate production and, hence, improve overall 

particulate reduction efficiency.  
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Figure 13  Comparison of Particulate Mass Emissions Rates Associated With the Various 
Aftertreatment Devices Evaluated on an MWM D916-6. 
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Figure 14  Comparison of Particulate Mass Emissions Rates Associated With the Final DST 
Configuration Evaluated on a Caterpillar 3306. 

RELATIONSHIP BETWEEN PM REDUCTION AND DST EXHAUST TEMPERATURE 
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Figure 15  Exhaust Temperatures Measured at the Entrance to the Filter Canister of the DST System 
During the Final DST Evaluation Test on a Caterpillar 3306. 
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Table 12  Overall DPM Reductions for the Caterpillar 3306 – DST I and DST II 
(g/hr). 

 Bare  
(g/hr) 

DST I  
(g/hr) 

DPM 
Reduction 

(%) 

DST II (g/hr) DPM 
Reduction 

(%) 

Mode 1 35.45 87.08 -145.6 31.10 12.3 

Mode 2 55.1 57.05 -3.5 12.55 77.2 

Mode 3 71.51 25.64 64.1   

Mode 4 85.87 4.11 95.2   

Mode 5 90.66 5.69 93.7 3.02 96.7 

Mode 6 17.12 4.59 73.2   

Mode 7 20.71 2.26 89.1 0.97 95.3 

Mode 8 3.27 0.23 93.0   

Weighted-Averages 

Eff. Total 46.23 27.16 41.2   

 

 

 

Table 13  Overall DPM Reductions for the Caterpillar 3306 - DST III (g/hr). 

 Bare 
(After 

Engine/DST 
Inspection & 

Repair 
(g/hr) 

DST III 
(After Inspection 

& Repair) 
(g/hr) 

DPM 
Reduction 

(%) 

Mode 1 33.38 30.68 8.1 
Mode 2 47.64 5.88 87.7 
Mode 3 60.29 3.03 95.0 
Mode 4 68.22 1.41 97.9 
Mode 5 39.38 3.06 92.2 
Mode 6 15.05 1.38 90.8 
Mode 7 24.26 0.56 97.7 
Mode 8 1.93 0.06 96.9 

Weighted-Averages 

Eff. Total 6.589 6.59 81.8 
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Table 14  Overall DPM Reductions for the Caterpillar 3306 – Clean Air System 
(g/hr). 

 Bare  
(g/hr) 

Clean Air Cat- 
Trap   
(g/hr) 

DPM 
Reduction 

(%) 

Mode 1 35.45 17.42 50.9 

Mode 2 55.1 23.32 57.7 

Mode 3 71.51 19.35 72.9 

Mode 4 85.87 0.99 98.8 

Mode 5 90.66 22.5 75.2 

Mode 6 17.12 13.48 21.3 

Mode 7 20.71 0.89 95.7 

Mode 8 3.27 0.57 82.6 

Weighted-Averages 

Eff. Total 46.23 12.88 72.1 

 

 

 

 

 

Table 15  Observed Exhaust Temperatures  (°F) After the DST Flame Arrestor 
During the Final 8-Mode Test - DST III. 

 
Observed Exhaust Temperatures after DST Flame Arrestor (°F) 

 Mode 
1 

Mode 
2 

Mode 
3 

Mode 
4 

Mode 
5 

Mode 
6 

Mode 
7 

Mode 
8 

Downstream 
Temperature 

300 265.5 244 215 221 215 197.5 158.5 
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Figure 16  DST Filter Canister with Signs of Coolant Leakage. 

 

 

 

 

 

  

Figure 17  Evidence of Leak at Manifold Section of the DST Heat Exchanger. 
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Figure 18  Manifold Section of the DST Heat Exchanger System Prior to Repair. 

 

 

 

 

 

 

 

Figure 19  Evidence of DPM Leakage at the Manifold Section of the DST Heat Exchanger System 
Prior to Repair. 
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CHAPTER 5 – CONCLUSIONS AND RECOMMENDATIONS 

5.1  Overview 
 

The curtailment of diesel exhaust emissions is a relatively complex procedure.  

Diesel control technology in underground coal mines is an even more difficult task due to 

the need for maintaining permissible conditions, which are mandated by safety 

regulations.  Although there are systems currently operating in underground mines, in 

general, there has been very little activity in this specialized field of engine emissions.  

Primary on-highway control technologies such as ceramic filters may not be as readily 

applicable in coal mines.  The temperatures necessary for on-line regeneration do not 

coincide well with the imposed regulations regarding surface temperatures.  Off-line 

regeneration techniques or advanced regeneration concepts (e.g. microwave regeneration) 

could be employed, but these development issues were not included in the scope of this 

project.  Pleated-media filters are being scrutinized very closely as a possible DPM 

control technology for coal mine face applications. 

 The results of this study were intended to be specific evaluations of the engine-

exhaust aftertreatment sytems that were tested.  No generalizations should be made 

regarding the performance of similar devices or engines.  Moreover, it should be noted 

that all performance figures were derived in a laboratory setting, and that in-field 

performance may vary substantially.  In addition, due to the limited time constraints 

imposed by this study, no long-term testing was performed in order to provide a basis for 

establishing performance degradation characteristics for any of the devices.  As a final 

note, this study does not intend to endorse or undermine any of the commercial products 

that were used throughout the course of the investigation.  

 

5.2  Conclusions 
 

 The emissions tests performed under this study have provided a solid starting 

point for the development and evaluation of diesel engine aftertreatment devices used in 

mining applications.  The data produced by this study will be utilized by the WV Diesel 
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Equipment Commission to promulgate initial rules, requirements, and standards 

governing the operation of diesel equipment in underground coal mines. 

With the exception of the DST system, the emissions tests performed on the exhaust 

aftertreatment devices associated with this study were the first of their kind.  It would be 

very misleading to form lasting conclusions concerning the performance of any 

aftertreatment device based solely on initial results.  The “first-round” performance of 

systems was very promising, and the participating manufacturers of this study deserve a 

great deal of commendation.  However, further testing and refinement is obviously 

necessary in order to maximize each system’s potential. 

The experimental data generated by this study suggests that particulate traps can 

reduce the mass emission rates of particulate matter by nearly 90%.  This data is in 

agreement with that derived from previous studies, such as those presented by Mayer in 

the VERT study [21].  These results, however, should be qualified as being trap-coating 

dependent.  If a high content of noble metals are contained in the washcoat, regenerations 

will be promoted, but likely at the cost of increased sulfate production.  Therefore, 

refinement of washcoat practices, and long-term regeneration studies are definitely 

warranted if a reliable design is to be achieved. 

Results from this study also indicate that fuel sulfur reductions from 0.3% to 0.04%, 

result in DPM mass emission reductions of 22%.  This is in good agreement with Van 

Beckhoven’s findings of 15-30% curtailment of DPM emissions resulting from fuel 

sulfur mass content being reduced from 0.3% to 0.05% [36].  In addition, Baranescu 

reported that for an increase of 0.1% (by mass) in fuel sulfur, brake specific particulate 

emissions increased by about 0.025 g/bhp-hr [3].  MWM D916-6 results indicate that for 

the 0.33% by mass increase in fuel sulfur resulted in a 0.799 g/bhp-hr increase, or 0.24 

g/bhp-hr increase per every 0.1% increase in fuel sulfur mass levels.  The inconsistencies 

could be attributed to a mechanical problem, although Baranescu reported that 

combustion system, engine type, and emission levels were not significant factors 

affecting the emissions of sulfates [3].  However, Baranescu also indicated that load 

factor increases sulfate contributions to total mass DPM, so higher cycle load factors 

could be involved.     
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This study further concludes that, although oxidation catalysts work well to reduce 

the production levels of carbon monoxide and hydrocarbons, their singular usage is not 

recommended in the confined spaces of a mining environment.  Whereas for spark 

ignition engines, there is very little to gain from the use of oxidation catalysts with diesel 

engines – the levels of CO and HC are so small, even from non-aftertreatment fitted 

engines.  There are, however, negative effects encountered from the use of catalytic 

converters, e.g. the oxidation of NO and SO2.  NO2 is more toxic than NO, and SO3 

contributes to the formation of sulfate particulates and to aerosols of sulfuric acid.  The 

use of washcoat catalysts similar to those found on both the converters and self-

regenerating particulate traps that were evaluated during this study tend to enhance 

particulate matter sulfate production and can, furthermore, increase the toxicity of the 

diesel exhaust emissions.  This problem is only magnified in the confined spaces of a coal 

mine. 

  The preliminary investigation of a novel high-temperature filter media that was 

provided under this study indicates that this technology is worthy of future research and 

development.  A DPM trap, using the high temperature filter, was designed, fabricated, 

and tested on both the Lister Petter LPU-2 and Isuzu C240.  The filter material employed 

by these devices can withstand temperatures as high as 2400oF, well beyond the required 

temperatures that are necessary for passive regeneration of catalyzed PM traps.  This 

prototype-design trap was located downstream of a Rohmac/DCL aftertreatment systems, 

and resulted in a 96% reduction in DPM for a single Mode 7 test on a Lister Petter LPU-2 

engine.  Performance figures associated with the Isuzu C240 test provided similar results, 

but little or no enhancement over standard Rohmac/DCL system results.  It is assumed 

that the filter media was incapable of trapping substantial amounts of DPM that was able 

to pass through the catalyzed trap of the Rohmac/DCL system.  However, standalone 

performance may best exhibit the attributes of such a novel design.  These tests, 

unfortunately, were not completed under this investigation.  In addition, no regeneration 

studies were considered involving the prototype Pallflex filter.       
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5.3  Recommendations 
 

Looking forward, continued testing and development of emission-reduction 

strategies specifically aimed at mining applications is highly recommended.  It is 

anticipated that an integration of key industry factions (industry, labor, and regulatory 

agencies) will not only result in improved system designs, but an evolutionary pattern in 

the development of both state and federal emissions standards.  Additional research will 

generate interest, improve the demand for high-efficiency aftertreatment systems, and 

provide significant contributions to the existing database for mining-engine emissions.   

In addition future efforts can provide assistance in the development and improvement of 

test protocols and procedures.  The future efforts suggested by this study have been 

divided into two categories:  the first will be related to the scope of future work and the 

latter will involve refinement of test procedures.   

 

5.3.1  Future Research 
 

Further improvement in emissions reductions can be accomplished through 

increased research efforts.  Advancements in catalyst formulation, improvements in trap 

selection and sizing, and reduction of base engine emissions should all be explored in 

order to optimize aftertreatment system performance. To date, the majority of the 

aftertreatment industry has not responded to the need for systems that accommodate the 

unique needs of mining-engines.  Due to special design constraints and the limited 

demand in the current market, there are very few commercially available systems.  

Extensive testing is also required to both perfect current designs and provide additional 

insight for future systems.  Development of oxidation catalysts and PM traps that tailor to 

the needs of mining-engine applications will obviously improve performance.  It was 

apparent that the manufacturers of the catalyzed trap systems, employed in this study, had 

not carried out any development work on these systems.  Hence, there is room for 

considerable improvement in catalyst formulation, trap selection and sizing and in the 

optimization of the complete packages. 

In addition to aftertreatment component enhancements, efforts must be made to 

improve the quality of engines used in underground mines.  Until recently, manufacturers 
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of in-mine engines did not have to comply with any well-defined emissions standards.  

This study has highlighted this critical area, and has raised points of interest that need to 

be addressed.  Derating the LPU-2 engine, which was a direct result of this study, is a 

good example of what manufacturers can do to improve in-mine environments.  

Combined efforts by MSHA and engine manufacturers to improve current designs, while 

developing new ones, would provide the mining industry with a larger variety of 

certified, high-quality, low-emission engines. 

In addition to these industry-specific contributions, limited deregulation could also 

improve the level of system performance.  Relaxation of the 300º F surface-temperature 

requirement would increase the available options for trap regeneration.  In doing so, the 

current trends involving use of noble metal-rich catalyst formulations, which lead to high 

sulfate formation at elevated temperatures, could be avoided.  Alternative regeneration 

techniques could lower system costs, improve reliability, and eliminate sources of 

additional health concerns. 

During this investigation it became painfully evident that there is a dire need for 

extensive test cycle optimization.  The ISO 8-Mode test cycle is not at all representative 

of current in-use duty cycles.  Most engines operating in the off-highway sector, 

particularly the smaller-displacement units used by the mining community, rarely operate 

at more than two or three different set points.  It is recommended that in-use (in-mine) 

diesel equipment be instrumented to collect data such as exhaust temperatures, speed 

(engine and vehicle), load, and the overall duty cycle.  These parameters are crucial to the 

development of duty cycles and test procedures that are used in laboratory testing [2, 4, 

5].  Such data is also paramount to the overall system optimization process, that can 

result in increased levels of emissions reductions. 

An investigation focusing on the refinement of lubricating oil and the subsequent 

control of the lubricant contribution to combustion products should be investigated for 

off-road engines operating in mining environments.  Engine oil contributes from 50 to 

280 times as much material to the particulate emissions as does an equal amount of 

consumed fuel.  Obviously fuel consumption quantities far outweigh those of the 

lubricating oil, nonetheless Mayer, et al. concluded that lubricating oil can still have a 

significant effect on particulate emissions [23]. 
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 Increased information regarding the design and washcoat material of 

aftertreatment components should accompany any future testing.  Without such 

information, conclusions are difficult to establish.  Moreover, such information is 

paramount to the overall system optimization.  

 
 
5.3.2  Refinement of Test Procedures 
 

Mayer reported that when gravimetric analysis indicated that DPM traps exhibited 

reductions of 80-85%, particulate count methods would yield results in excess of 90% 

[21].  These findings should not be considered surprising when one considers that 

gravimetric methods will be influenced by bound water and subsequent deposition of 

constituents that passed through the substrate media in gaseous states.  More specialized 

particulate filter conditioning practices need to be developed, particularly when testing 

involving aftertreatment devices is performed.  Perhaps alteration of humidity to lower 

levels or accurate measurement of conditioning environment (vapor pressures, convective 

air disturbances, etc.) is in order.  It is also suggested that procedures for gravimetric 

analysis, currently required by the various regulatory bodies, be altered to accommodate 

exhaust aftertreatment-equipped engines.   

Further investigation should be directed toward characterizing the effects of various 

fuel properties on mass emissions levels.  This study has addressed a primary concern of 

fuel sulfur mass levels, but the effects of other fuel properties were not explored.  Van 

Beckhoven reported that cetane number and volatility can exhibit effects on emissions of 

the same order as those attributed to fuel sulfur content.  For DI engines operating on 

European 13-mode cycles a 15 to 20% increase in particulate and hydrocarbon emissions 

could be caused by a 30°C increase in boiling range.  For IDI engines, a decrease of 

cetane number or cetane index of six points exhibited an increase in emissions by 45% 

[36].  

Increased emphasis should be given to DPM measurement techniques.  Tighter 

controls should be imposed on the particulate collection filter face temperature.  Instead 

of merely complying with the federal regulation of less than 125°F, maintaining the filter 

at a predetermined temperature could be a substituted practice.  Waldenmaier, et al. 
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indicates that maintaining a constant filter face temperature improved the precision of 

mass collection from a dilution tunnel [38].  Longer sampling times should also be 

utilized – a practice that would be easily afforded through the reduction of the number of 

required engine operation test modes.     Due to the low particulate emission qualities of 

the test engines outfitted with aftertreatment devices, higher flow rates were required to 

increase filter loading to substantially measurable levels.  For quite some time, the 

possibility of stripping volatile organic compounds at high filter face velocities was 

questioned by some researchers.  Guerrieri et al. reported findings from a rather extensive 

study that such high face velocities do not affect the collection of particulate matter [12].  

However, high velocities could result in filter material deterioration.  No visible signs of 

such deterioration were evident during this study, but such issues do tend to warrant the 

re-evaluation of current particulate measurement standards.  In fact, the low level of 

current engine production, coupled with the use of advanced fuels and aftertreatment 

devices should promote at least secondary particulate comparison criteria, such as 

number count or size distribution. 

During the investigation, neither the intake charge air nor the dilution air was 

accurately conditioned.  Intake charge air has a substantial effect on NOx emissions, but 

this constituent was assigned a lower priority.  Dilution air conditioning could provide 

more accurate and more repeatable particulate information.  Perhaps such conditioning 

would not exhibit itself in gross measurements of the gravimetric nature, but speciation 

and size distribution information could benefit from such practices.  

Although not requested for this study, hydrocarbon speciation could be 

implemented in order to help characterize and qualify the effects of exhaust 

aftertreatment components.  This information, in conjunction with improved details 

regarding washcoat materials, could provide insight and data necessary for overall system 

refinement. 

Although the bag sampling procedures that were practiced for this study are in 

agreement with the procedures outlined in CFR 40, Part 86, Subpart N, the bag sample 

results from the test are invariably lower than those of the continuous analyzer integrated 

results.  Cold sampling of the dilute exhaust stream will obviously never produce similar 

measurements to the hot/wet analysis of the laboratory analyzers.  A better practice 
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would be to heat the sample streams and collect the contents in a heated stainless cylinder 

throughout the test.  This procedure should provide closer agreement between dilute bag 

measurements and the integrated analyzer responses.  For background bag collection, the 

heated sample stream would not be as necessary, but since the primary dilution air is not 

conditioned, a larger sample quantity should be used in order to minimize contaminant 

plume bias.  
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APPENDIX A – EXHAUST MASS EMISSIONS DATA (G/BHP-HR) 
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APPENDIX B – EXHAUST MASS EMISSIONS DATA (G/HR) 
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