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ABSTRACT 

GENETIC, METABOLIC, AND HISTOPATHOLOGICAL STUDIES OF 

PARTICLE-ASSOCIATED RESPIRATORY ALTERATIONS 

Mohamed Mohamedy Ghanem 

Cytochrome P450s (CYPs) form a superfamily of enzymes crucial for the 
oxidative metabolism of a wide variety of endogenous and exogenous (xenobiotic) 
compounds. Cytochrome P4501A1 (CYP1A1) is a member of the CYP1A subfamily that 
is involved in pulmonary carcinogenesis. CYP1A1 metabolizes polycyclic aromatic 
hydrocarbons (PAH), such as benzo[a]pyrene in cigarette smoke into DNA-binding 
reactive metabolites resulting in gene mutation and carcinogenesis. Silicosis and coal 
workers’ pneumoconiosis (CWP) are two pulmonary diseases associated with 
occupational exposure to silica and coal dust (CD), respectively. Most coal miners are 
smokers or ex-smokers and epidemiologic studies of coal dust carcinogenesis are 
confounded by the presence of both cigarette smoke and respirable particles. To clarify 
the nature of this interaction, we investigated the hypotheses that (1) CYP1A1 induction 
and activity (EROD) are inhibited by CD and silica. (2) CYP1A1 inhibition by particle 
exposure is associated with changes in the cellular populations in the exposed lung. 
Western blot analysis, immunofluorescent-labeling, bronchoalveolar lavage fluid 
analysis, biochemical assays, and histopathology were used to evaluate our hypotheses. 
Because of a current debate about using the rat to extrapolate particle-induced pulmonary 
alterations to humans, the rabbit silicosis and sheep CWP model, were also used. The 
results indicate that (1) CYP1A1 induction and its metabolic activity (EROD) were 
suppressed by CD exposure in rats and sheep; and by silica in rabbits (2) CYP1A1 
expression was reduced in alveolar epithelial cells by CD or silica exposure (3) silica and 
CD increased the size (hypertrophy) and number (hyperplasia) of alveolar type II cell 
with reduction of CYP1A1 expression in these cells (4) CD particles induced dose-
dependent pulmonary inflammation, manifested by recruitment of alveolar macrophages 
and polymorphonuclear leucocytes (5) CD particles induced the preapoptotic Bax protein 
expression in alveolar epithelial cells and triggered apoptosis (6) inhibition of apoptosis 
and Bax by the caspase inhibitor, Q-VD-OPH, did not alter CYP1A1 induction (7) 
suppression of CYP1A1 induction was associated with pulmonary inflammation. These 
findings are consistent with the hypothesis that CYP1A1 induction and its metabolic 
activity are inhibited by particle exposure and associated with pulmonary inflammation. 
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CHAPTER 1 

GENETIC, METABOLIC, AND HISTOPATHOLOGICAL STUDIES OF 

PARTICLE-ASSOCIATED RESPIRATORY ALTERATIONS 

INTRODUCTION 

 One of the most biologically important enzymatic systems involved in the 

metabolism of xenobiotics in the lung is cytochrome P450. Cytochrome P450s (CYPs) 

are monooxygenases that activate molecular oxygen necessary for oxidative metabolism 

of different internal or external lipophilic xenobiotics (Barker et al, 1992; Hasler et al, 

1999) producing less lipophilic substances,  thus facilitating their excretion (Mucci et al, 

2001). Some CYP members, such as CYP1A1 are induced by substrates, such as 

polycyclic aromatic hydrocarbons (PAHs). Unfortunately the induced CYP1A1 may 

metabolize the PAH into highly reactive intermediates. For example, a CYP1A1-

dependent enzymatic process can metabolize the PAH benzo(a)pyrene in cigarette smoke 

into the highly carcinogenic metabolite, benzo(a)pyrene diol epoxide (BPDE) (Bjelogrlic 

et al, 1993). This reactive intermediate covalently interacts with DNA nucleotide bases, 

particularly guanine and adenine, producing DNA adducts with potential ensuing 

mutations of important genes. Cells with damaged DNA may be removed by apoptosis 

(programmed cell death) (Venkatachalam et al, 1993). Alternatively, if a permanent 

mutation occurs in a critical region, an oncogene may be activated, or a tumor suppressor 

gene, such as p53 may be inactivated (Wang et al, 1995).  The excessive presence of such 

mutational events leads to aberrant cells with loss of normal growth control and, 

ultimately, to cancer (Liang et al, 2003).  

Pulmonary xenobiotic metabolism is currently a subject of extensive research 

from the standpoints of genetic and metabolic aspects because of our increasing 

exposures to foreign respirable compounds that may alter and modify the metabolic 

activity and expression of pulmonary enzymatic systems. The lung, being exposed to air 

is a target organ frequently exposed to xenobiotics via inhalation (Pairon et al, 1994). 

Examples of lung diseases associated with respirable foreign particulate inhalation are 

coal workers’ pneumoconiosis (CWP), bronchitis, emphysema, and silicosis (Green and 

Vallyathan, 1998; Kleinerman et al, 1979). CWP is an occupational lung disease 

associated with inhalation of poorly soluble respirable dust (Schins and Borm, 1999). It 



 

 

2

may occur as a simple form or a complicated form known as progressive massive fibrosis 

(PMF) (Yeoh and Yang, 2002). In the simple form, only macules (<0.5 cm in diameter) 

appear in the lung and these consist mainly of dust-laden macrophages (Castranova, 

2000). In the complicated form, PMF, the lesion is irregular coal dust-laden, fibrotic 

masses with haphazardly arranged collagen fibers associated with compromised lung 

functions (Castranova and Vallyathan, 2000). 

At least one epidemiological study stated that lung cancer risk in smoking miners 

is not statistically different from, or even less than, other smoking populations (Costello 

et al, 1974). Although silica has been classified as carcinogenic by the International 

Agency for Research in Cancer (IARC, 1997), lung cancer was almost absent in lungs 

concomitantly exposed to silica and chemical carcinogens, such as PAH (Cocco et al, 

2001).  Attempts to determine the carcinogenic effect of coal dust and silica exposure in 

miners may be invalid because smoking miners are exposed to a mixture of the 

carcinogenic PAHs in cigarette smoke and the respirable insoluble particles that may 

modify chemical carcinogenesis. If respirable particles modify chemical carcinogen 

metabolism in the lung, epidemiologic studies of respirable particles in smoking miners 

may need to control respirable particles and smoking as modifiers rather than covariables.  

Extrapolating from a rat model to determine the human response to inhaled 

particles is controversial (Mauderly, 1997), particularly when Nikula et al (1997) showed 

a difference in particle retention and pulmonary response to inhaled respirable 

particulates between rats and primates.  

In this study, we investigated the hypothesis that pulmonary CYP1A1 induction 

by the model PAH, beta-naphthoflavone, is inhibited by respirable coal dust and silica. 

To overcome limitations of any specific animal model, we have investigated this 

hypothesis in rats, rabbits, and lambs. In addition, we have investigated changes in lung 

cell populations and their changing CYP1A1 expression after particle exposure. Finally, 

we investigated the association between altered CYP1A1 expression and particle 

associated apoptosis, caspase inhibition, Bax expression and inflammation. 

 
 

 



 

 

3

OBJECTIVES 

The objectives of this study were to: 

1- Establish a relationship between coal dust or silica inhalation and deposition in 

the lung and CYP1A1 induction. 

2- Establish a relationship between particle exposure and histopathological changes 

associated with deposition of these particles in lung alveoli, such as alveolar type 

II cell hyperplasia and hypertrophy and pulmonary inflammation. 

3- Establish a relationship between particle-associated pulmonary changes and the 

pattern of CYP1A1 expression in lung alveolar cells. 

4- Investigate these relationships in different animal models including rats, rabbits, 

and lambs. 

5- Investigate the association of apoptosis, caspase inhibition, Bax expression, and 

inflammation with regulation of CYP1A1 expression by pulmonary exposure to 

respirable particles. 
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CHAPTER 2 

REVIEW OF LITERATURE 

1-Cytochrome P450s (CYPs) 

1.A. Introduction  

CYPs are membrane-bound heme-containing proteins (hemeproteins) resulting 

from expression of a gene superfamily containing about 1000 members that is found in 

all species ranging from prokaryotes to plants and animals (Hasler et al, 1999, Mckinnon, 

2000).  The letter P means a pigment that produces a broad absorption band with a peak 

of 450 nm (Omura and Sato, 1964; Remmer and Merker, 1965).  Although the name 

cytochrome is a misnomer, because these are enzymes and not pigments, it has been 

established as a nomenclature for these proteins (Mckinnon, 2000).  These proteins 

comprise a class of monooxygenases or mixed function oxidases, which activate 

molecular oxygen necessary for oxidative metabolism of a diversity of lipophilic organic 

materials (Barker et al, 1992; Hasler et al, 1999).  

CYPs play vital roles in catalyzing biological reactions involved in drug and 

xenobiotic metabolism, steroid hormone biosynthesis, oxidation and metabolism of 

unsaturated fatty acids (Kawajiri and Fujii-Kriyama, 1991; Hasler et al, 1999, Petersen et 

al, 1991). The human CYP1A subfamily, which is the most extensively studied of these 

enzyme systems, consists of 2 functional genes: CYP1A1, which is involved in the 

metabolism of PAHs, and CYP1A2, which is involved in the metabolism of arylamine 

(Peterson et al, 1991). 

1.B. History and Background 

The first experimental evidence relating to CYP was documented in 1955 by 

Axelrod and Brodie et al, who identified an enzyme system in the endoplasmic reticulum 

of the liver that was able to oxidize xenobiotic compounds. In 1958, Garfinkel detected a 

carbon monoxide binding pigment in liver microsomes which had an absorption 

maximum at 450nm (Figure 1) during their spectrophotometric studies. This 

characteristic absorbance peak has been used since then as the signature of P450 proteins;  

i.e. the name P450 was derived from this property of the pigment. Because this 

absorbance was unique to CYPs among all hemeproteins (except nitric oxide synthase), it 

was used for specrtophotometric identification and quantification of CYPs activity. CYPs 
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remained a spectrophotometric puzzle until they were unveiled by Omura and Sato 

(1962, 1964) who identified the pigment as a hemeprotein. Soon after that, Estabrook et 

al (1963) demonstrated the role of adrenal cortex P450 hydroxylation of progesterone 

using the classic photochemical action spectrum technique developed by Otto Warburg 

(1949). By using the same methods, Cooper et al (1965) confirmed that P450s occurring 

in liver microsomes metabolize drugs and other xenobiotics. 

 
Figure 1. Absorbance spectrum of reduced form of CYP showing the maximum peak at 

450 nm (Adapted from Thomas and Gillham, 1989). 

CYPs enzymes have a wide tissue distribution as they have been isolated from 

many different mammalian tissues, including liver, kidney, lung, intestine, and adrenal 

cortex (Hasler et al, 1999). The amount of microsomal CYP in a human liver is 

comparatively high (e.g., ~7500 nmoles in a 1.5-kg liver). CYPs have also been isolated 

from insects, plants, yeast, and bacteria (Mckinnon, 2000). While CYPs are distributed in 

almost every organ, the types of CYPs in a tissue appear to be specific (Hasler et al, 

1999). Ten families and 16 subfamilies of human CYPs have been identified, and their 

structure, function and regulation have been investigated. The contribution of each 

individual isoform of human CYPs to the metabolism and bioactivation of different 

carcinogens has been extensively studied by using gene- or cDNA-directed expression of 

CYPs and human liver microsomes in conjunction with specific antibodies (Kawajiri and 

Fujii-Kriyama, 1991).  

1.C. Structure of CYPs 

CYPs are hemeproteins that consist of a protein (the apoprotein or apoenzyme) 

and a heme moiety, called iron-protoporphyrin IX (Testa, 1995). This porphyrin is not 

only present in all CYP enzymes, but also in other hemeproteins -and enzymes such as 
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hemoglobin, myoglobin, catalase and most peroxidases. The protein component of the 

enzyme varies greatly from one enzyme/isozyme to the other.  Therefore, differences in 

isozyme properties, such as molecular weight (approximate range 45 to 60 kDa), 

substrate and product specificities, and sensitivity to inhibitors could be attributable to 

this variation in protein.  

The structure of the prosthetic heme of CYP is portrayed in Figure 2 (Testa et al, 

1995). An iron cation is bound to the four pyrrole nitrogens.  Two additional non-

porphyrin ligands in axial positions, the fifth ligand X and the sixth ligand Y, are also 

shown. The X is the thiolate ligand, the chiral orientation of the heme shown in the 

Figure 1 is that found in CYP. The detailed structure of protoporphyrin IX has been 

revealed by X-ray crystallographic studies (Caughey and Ibers, 1977).  Cytochrome 

P450cam, a soluble bacterial enzyme, showed comparable results by crystallographic 

examination (Poulos, 1988 and 1991; Poulos and Raag, 1992, Poulus et al 1986).  

 
Figure 2. The structure of iron-protoporphyrin IX, the prosthetic heme of CYPs (Adapted 

from Pasta, 1995). 

The fifth ligand to the iron cation (X) is a thiolate group that occurs near the 

carboxyl end of the protein from an essential cysteine.  This ligand binds to the central 

heme by an extraordinary strong iron-sulfur bond, which is indispensible for the catalytic 

activity of CYPs (Black and Coon, 1985; Collman et al, 1976; Poulos and Raag, 1992; 

Silver and Lukas, 1982; Ruf et al, 1979.  

The composition of the sixth ligand (Y) is controversial. Some years ago, a 

number of investigators demonstrated that this ligand was not a strong nitrogen-

containing ligand, but a weaker, oxygen-containing one (Dawson et al, 1982; White and 
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Coon, 1982).  This decision was based on the observation of a hydroxyl group, either 

from an adjacent amino acid residue or a water molecule (Kumaki and Nebert, 1978). 

Recently, the sixth ligand has been described as a hydroxyl group related to a tyrosinyl 

residue located near the heme, while in cytochrome P450cam (bacterial enzyme) it 

appears to be a water molecule (Janig et al, 1984; Poulos and Raag, 1992; Poulos et al, 

1986).  

The significance of the liganded heme in CYPs structure is extremely important. 

It can exist in different electronic states (either ferric or ferrous oxidation state) which are 

responsible for many of the properties of CYP, most significantly for the binding of 

ligands and the activation of molecular oxygen (Testa, 1995).  

1.D. Nomenclature of CYP Genes and Proteins 

It has been recommended that CYP genes be named according to the following 

rules (McKinnon, 2000; Nelson et al, 1996): 

-The root symbol CYP for cytochrome P450 

-An Arabic number for the cytochrome P450 family 

-A capital letter for the subfamily; and 

-An Arabic number for the individual gene 

-When describing a CYP gene, all letters and numbers should be written in italics 

-When describing a CYP protein, all letters and numbers should be in non-italicized 

form. 

For example, CYP1A1 is the gene encoding CYP1A1 where: 

CYP: is the cytochrome P450 

1: is the CYP family, 

A: is the subfamily (expression of this particular subfamily is induced by aromatic 

hydrocarbons) 

1: is the individual gene. 

 It is estimated that the various CYP families diverged from one another  more 

than 1.2 billion years ago (McKinnon, 2000); consequently, any enzyme in a particular 

CYP family is less than 40% similar to any enzyme from another CYP family at the 

amino acid level (Nebert et al, 1987). In addition, the subfamilies diverged from one 
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another about 400 million years ago. Any 2 enzymes within the same subfamily generally 

share more than 55% amino acid similarity (Nebert et al, 1987). It is noteworthy that the 

nomenclature system was based upon the evolutionary relationships among CYP 

enzymes and not on substrate profiles because some CYPs from the same family have 

different substrate profiles or physiological functions (McKinnon, 2000). 

1.E. Functions and Mechanism of Actions of CYPs 

CYPs are known to catalyze reactions such as epoxidations, hydroxylations, N-, 

S-, and O- dealkylation, sulfoxidations, dehalogenations, N-oxidations, and many other 

reactions (Groves, 1985). The iron protoporphyrin IX center is the primary reactive site 

for these reactions. Seven sequential catalytic steps have been associated with CYPs-

catalyzed reactions, which can be summarized as follows: (1) Substrate binding, (2) 

Reduction of the CYP from resting (ferric) to the ferrous state, (3) Formation of a ferrous 

CYP-dioxygen complex by binding of molecular oxygen, (4) Transfer of a second 

electron to the complex producing a peroxoiron (III) complex, (5) Protonation and 

cleavage of the O-O bond with the formation of reactive iron-oxo species, (6) Oxygen 

atom transfer from this oxo complex to the bound substrate, (7) Dissociation of the 

product. Therefore, CYPs function as monooxygenases  (Hayaishi, 1962) or mixed 

function oxidases (Mason, 1957) by incorporating one of the two oxygen atoms of an O2 

molecule into a wide variety of lipophilic substrates with concomitant reduction of the 

other oxygen atom by two electrons to H2O (Hasler et al 1999) as shown in the following 

CYP-dependent oxygenation reaction: 

NADPH + O2 + AH2 + H+               NADP+ + AHOH + H2O 

Ortiz de Montellano (1995) reported that some extrahepatic human CYPs have 

key roles in maintaining homeostasis and signal transduction as well as drug metabolism. 

For example, lungs and nasal tissues contain a considerable amount of CYP, and these 

sites may be important in the oxidation of xenobiotics entering the respiratory system. 

Renal CYPs may have a significant role in processing compounds generated in the 

kidneys or transported there from the liver. Moreover, one of the extrahepatic tissues with 

an important CYP activity is the small intestine (Orton and Parker, 1982) where CYP3A4 

is abundant (Tamburini et al, 1984). It plays a major role in the metabolism of many 

orally administered drugs (Hardwick et al, 1987; Reddy et al, 1986). As a consequence, it 



                                                                            9

may considerably inactivate these drugs and reduce their bioavailability. The functions of 

CYPs in different human subfamilies are shown in Table 1 (Hasler et al, 1999). 

CYP isoform Metabolic functions 

CYP1A and B Polycyclic hydrocarbons. Nitrosamines  

CYP2A Drugs. Alcohols. Steroids 

CYP3A Drugs. Antibiotics. Flavenoids 

CYP4 ω-oxidation fatty acids 

CYP5 Thromboxane synthase 

CYP7A 7α-Hydroxylase. Bile Acids 

CYP8A and B Prostacyclin Synthase. Bile Acids 

*CYP11A and B Cholesterol side-chain cleavage. Aldosterone synthesis 

CYP51 Cholesterol Biosynthesis. 14-demthylase 

*CYP40 Vitamin D3- 1α Hydroxylase 

*CYP27 Bile Acid Synthesis 

CYP26 Retinoic Acid Hydroxylase 

*CYP24 Vitamin D degradation 

CYP21 Progesterone 21-Hydroxylase 

CYP19 Estrogen Biosyhthesis. Aromatase 

CYP17 Steroid 17 α-Hydroxylase. Steroid C17/21 Lyase 

Table 1: The human CYP subfamilies and their metabolic functions. An asterisk 

next to an isoform indicates mitochondrial enzymes. (Adapted from Hasler et al, 1999). 

1.F. Biological Importance of CYPs and Their Role in Carcinogenesis 

CYPs are important in the metabolism of xenobiotics and in the critical steps of 

steroid hormone biosynthesis.  Because of these important roles, the regulation and 

mechanism of these enzymes have occupied a central place in the interests of 

pharmacologists and toxicologists.  Accordingly, it was not surprising that when 

recombinant DNA technology emerged, CYPs were one of the first classes of enzymes to 

be cloned.  The CYP1A1 cDNA (Kawajiri et al, 1986) and gene (Jaiswal et al, 1985a, 

1985b; Kawajiri et al, 1986) have been cloned, sequenced, and localized on chromosome 

15 near the MPI locus (Hildebrand et al, 1985).  
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Carcinogens that enter the body by different routes are metabolized by two major 

enzymatic systems: phase I and phase II enzymes (Mucci et al, 2001). Generally, phase I 

enzymes function by attaching specific groups to the compound thereby producing 

intermediate metabolites that are usually more reactive and carcinogenic than the original 

compound. Phase II enzymes also act to attach additional groups.  These modifications 

detoxify or inactivate the reactive intermediate and prepare them for breakdown or 

excretion in a less lipophilic form (Mucci et al, 2001). 

Human lung cancer often involves exposure to procarcinogens mainly contained 

in cigarette smoke, although the association of cigarette smoking with lung cancer differs 

by histological types. Most chemical procarcinogens require activation by Phase I 

enzymes, CYPs, to become reactive electrophilic forms that exert toxic or carcinogenic 

effects. Thus, CYPs are the key enzymes responsible for the initial metabolism of various 

procarcinogens present in our environment. Although several species of CYPs have been 

linked to lung carcinogenesis, CYP1A1 is one of the most important.  It is expressed in 

human lung tissue and can metabolize PAHs in cigarette smoke such as benzo[a]pyrene 

(Hasler et al, 1999). In addition to its role in the production of electrophilic intermediate 

metabolites, CYP1A1 is also involved in the formation of highly reactive oxygen free 

radical species, such as hydroxyl radicals or superoxides as byproducts. These alterations 

may result in toxic responses or cellular damage and eventual carcinogenesis (Hasler et 

al, 1995). 

1.G. The Inducibility of CYPs 

 Some of the CYP enzymes can be induced by substrate binding, thereby allowing 

the cells to adapt to changes in their chemical environment and maintain homeostasis 

(Denison and Whitlock, 1995). Drug and xenobiotic metabolism can be altered by 

induction of CYPs and other metabolizing enzymes. For example, the tolerance to 

barbiturates is a common body reaction associated with induction of drug metabolizing 

enzymes (James and Whitlock, 1999). Similarly, chemical carcinogenesis may be 

attenuated or inhibited by enzyme induction that increases the rate of detoxification 

(James and Whitlock, 1999). Consequently, enzyme induction can be a protective 

mechanism by which the cells metabolize the lipophilic compounds; otherwise they will 

accumulate to deleterious levels that overcome the defense mechanisms. By contrast, 
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induction can be disadvantageous in some instances. The enzyme induced by one 

substrate may increase the metabolism of a drug leading to attenuation of drug effects 

(Guengerich, 1997). Moreover, CYPs induction may lead to toxicity or neoplasia as a 

result of the oxygenation of PAHs (PAHs), present in cigarette smoke and other 

combustion products, producing highly reactive electrophiles called arene oxides that 

bind covalently to the cellular macromolecules resulting in carcinogenesis (Conney, 

1982; Miller and Miller; 1981; Phillips, 1983)  

2-Cytochrome P450 1A1 (CYP1A1) 

(Family 1, subfamily A, polypeptide 1) 

2.A. Introduction 

CYP1A1, an inducible CYP (Hasler et al, 1995), is a member of the human 

P4501A subfamily which includes only 2 members, CYP1A1 and CYP1A2 (Ortiz de 

Montellano, 1995). These 2 isoforms have 70% similarity in their amino acid sequence 

(Ortiz de Montellano, 1995). In addition to liver (Whitlock, 1986; Issemann and Green, 

1990; Gottlicher et al. 1992), CYP1A1 has also been detected in lungs (Antilla et al, 

1991), placenta (Song et al, 1985), brain (Yun et al, 1998), and lymphocytes (Jaiswal et 

al, 1985b). CYP1A1 enzyme is involved in the metabolism of PAHs, whereas CYP1A2 

is involved in the metabolism of arylamines (Peterson et al, 1991). It has been 

demonstrated that high inducibility of CYP1A1 is considered a risk factor for lung cancer 

in tobacco smokers (Anttila et al, 2001; Ishibe et al, 2001).  Because smokers are 

exposed to carcinogenic PAHs, their CYP1A1 expression is induced (Willey et al, 1997).  

2.B. Genetic Polymorphisms of CYP1A1 

Since CYP1A1 participates in the biochemical activation of PAHs to produce 

mutagenic and carcinogenic derivatives, genetic polymorphism in CYP1A1 activity may 

alter susceptibility to PAH-associated diseases, such as lung cancer in smokers (James 

and Whitlock, 1999).  Phenotypic polymorphism in the inducibility of CYP1A1 was 

originally described by Kellermann et al (1973) when he found that 10 % of Caucasians 

showed much higher lymphocytic CYP1A1 activity after exposure to an inducer than the 

rest of the group. In genotyping studies, two closely linked polymorphisms of the 

CYP1Al gene have been demonstrated in Caucasian and Oriental populations (Hasler et 

al, 1995). These include a 3'-flanking region Msp1 site (also called m2 allele) and the 
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exon 7 Ile-Val substitution (Val allele). The m2 allele has been associated with increased 

CYP1A1 inducibility in some studies whereas the Val allele is associated with enhanced 

enzyme activity in vitro (Hayashi et al., 1991, 1992). A new CYP1A1 polymorphism has 

been observed among black populations called Msp I AA (Kawajiri, 1999) and has a 

striking association with breast cancer risk (Taioli et al, 1995; Taioli et al, 1999).  

2.C. Induction of CYP1A1 

 CYP1A1 induction was first discovered because it was observed that PAHs 

mediate their own metabolism. The studying of its induction mechanism was facilitated 

by several important observations (James and Whitlock, 1999). First, its induction is 

strong and evident compared to the background level. Second, the induction is affected 

by genetic polymorphisms, which made the genetic analysis possible. Third, CYP1A1 

induction has been demonstrated in cell cultures, which facilitates the gene transfer 

experiments. Experiments involving induction-defective mouse hepatoma cells 

demonstrated various groups of genes that synergistically contributed to the induction 

mechanism (Hankinson, 1995; Whitlock et al, 1996). It has been demonstrated that 

inducer binding was reduced in one mutant associated with low levels of aromatic (aryl) 

hydrocarbon receptor (AhR), which is an intracellular protein essential for the initiation 

of the induction process (Gonzalez et al, 1996; Okey, 1994). Another mutant defective in 

a protein called Ah receptor nuclear translocator (Arnt) showed disturbance of nuclear 

localization of liganded AhR (Whitlock et al, 1996). The studying of these mutants 

highlighted the possible role of different proteins in the mechanism of CYP1A1 induction 

(Hankinson, 1995; Whitlock et al, 1996).  

2.D. Mechanism of CYP1A1 Induction 

 It is well known that genomic DNA is associated with histones and other DNA-

binding proteins to form chromatin, whose basic units are called nucleosomes. Chromatin 

configuration plays a key role in gene expression in that the presence of nucleosomes 

represses transcription (Grunstein, 1997; Wu, 1997; Kadonaga, 1998; Struhl, 1998; 

Gregory and Horz, 1998). It is important that transcription factors such as AhR and Arnt 

gain access to their cognate recognition sites on the chromatin to overcome the repressive 

effect of nucleosomes on gene expression (James and Whitlock, 1999). In uninduced 

cells, the CYP1A1 enhancer/promoter region been suggested to be bound by nucleosome 
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according to indirect end-labeling analysis in mouse hepatoma cells (Morgan and 

Whitlock, 1992). The apparent cause of the low levels of CYP1A1 in uninduced cells is 

that the enhancer/promoter region is not accessible to transcription factors, particularly 

when the DNA binding sites are facing inward toward the histone (James and Whitlock, 

1999). The induction process is initiated by binding of the inducer, such as PAHs to the 

AhR, which is usually located in the cytoplasm complexed with hsp90 and the AhR-

interacting protein (AIP) (Ma and Whitlock, 1997). This binding results in the 

dissociation of the hsp90 and AIP followed by translocation of the AhR to the nucleus 

where it is conjugated with Arnt forming a heterodimer complex. The process of 

heterodimerization may be enhanced by phosphorylation at particular sites most probably 

on AhR (Career et al, 1992). The AhR/Arnt heterodimer binds to the xenobiotic 

responsive element (XRE) on the CYP1A1 enhancer region resulting in gene transcription 

(Figure 3) 
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Figure 3. CYP1A1 induction mechanism (Adapted from James and Whitlock, 1999). The binding of ligand to the AhR results in 

dissociation of the AhR-associated cytoplasmic proteins (Hsp90 and AIP) followed by translocation of AhR to the nucleus where it 

dimerizes with Arnt. AhR/Arnt heterodimer binds to the xenobiotic responsive element (XRE) at the enhancer region of CYP1A1 gene 

stimulating chromatin changes, binding of initiating complex and CYP1A1 induction. 
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2.E. The CYP1A1 Inducers 

Constitutive (background) expression of CYP1A1 is very low in contrast to the 

inducible expression which is extremely robust. Most CYP1A1 inducers are also 

substrates metabolized by that enzyme which suggest that the induction process is an 

adaptive reaction of the body to enhance the detoxification process, particularly with the 

low concentrations of the inducers (James and Whitlock, 1999). Inducers for CYP1A1 

are also ligands for the AhR, since most of the inducers, such as 2,3,7,8- 

tetrachlorodibenzo-p-dioxin (TCDD) have an extraordinary affinity for the AhR (Poland 

et al, 1986). Based on studies of structure-activity relationships, it was suggested that the 

AhR ligands are planar and interact with a hydrophobic pocket in AhR (Poland and 

Knotson, 1982). However, it was found that CYP1A1 expression can be mediated by the 

binding of compounds of different structure and lipophility to the AhR (Denison et al, 

1998). Ligands for AhR may include specific indoles and other compounds from ingested 

food which suggests a relationship between diet and cancer prevention because ingestion 

of inducer-containing food may enhance the detoxification or activation of other potential 

chemical carcinogens (Bjeldanes et al, 1991; Fahey et al, 1997).  Ligands for AhR also 

include PAHs, such as 3-methylcholanthrene, benzo(a)pyrene, polyhalogenated aromatic 

hydrocarbons, such as the 2,3,7,8-tetrachlorodibenzo p-dioxin (TCDD), and certain 

congeners of polyhalogenated biphenyls (Ke et al, 2001). 

2.F. The role of CYP1A1 in carcinogenesis 

The most commonly described mechanism of CYP1A1-mediated carcinogenesis 

involves the oxidation of benzo(a)pyrene (in cigarette smoke)  into the intermediate 

reactive metabolite, benzo[a]pyrene diol epoxide (BPDE) (Bjelogrlic et al, 1993; Liang et 

al, 2003). This unstable epoxide is able bind to the DNA nucleotide bases, mainly 

adenine and guanine, producing stable adducts (Figure 4) that result in DNA mutations 

(Szeliga and Dipple, 1998). When such a mutation involves a critical gene, such as p53, it 

can lead to lung cancer (Vogelstein and Kinzler, 1992; Denissenko et al, 1996; Wang et 

al, 1995). A positive correlation has been established between DNA adducts and human 

lung cancer (Denissenko et al, 1996). Denissenko and his co-workers demonstrated that 

the DNA adducts caused by BPDE are distributed along exons of the P53 gene in Hela 

cells and bronchial epithelial cells, particularly at guanine positions in codons 157, 248, 
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ad 273. These positions are the same main mutational hotspots observed in human lung 

cancer (Denissenko et al, 1996). 

 
Figure 4: Mechanism of carcinogenesis induced by CYP1A1-catalyzed reaction (Adapted 

from: Geacintov, NE: http://www.nyu.edu/projects/geacintov/images/WEB_Figures/WEB_PAH3.htm).  

2.G. Modification of CYP1A1 induction  

2.G.1. Effect of Nuclear Factor Kappa B (NF- κB) and Tumor Necrosis Factor- α  

(TNF- α) 

NF-κB is a pleiotropic transcription factor that plays important roles in the 

regulation of diverse physiological processes, such as inflammatory reactions, immune 

responses, cell proliferation, apoptosis, and developmental processes (Ke et al, 2001; 

Baldwin, 1996). NF-κB is a heterodimer which basically consists of a p65 (RelA) and a 

p50 (NF-κB -1) subunit, with RelA being the subunit conferring robust transcription 

activity. Some recent studies indicate a reciprocal inhibitory interaction between the AhR 

and NF-κB signaling pathways (Tian et al, 1999) which suggests that the NF-κB plays a 

key role in suppression of CYP1A1 expression by inflammatory responses associated 

with exposure to different agents. 

Four different mechanisms have used to describe the regulation of CYP1A1 

induction by NF-κB and TNF-α: (A) the interaction between NF-κB and the AhR 

repressor (AhRR), (B) the interaction between NF-κB and AhR itself, (C) the inhibition 

of histone acetylation of CYP1A1 promoter by NF-κB, and (D) the suppression of 

CYP1A1 transcriptional elongation by NF-κB. 
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2.G.1.a. Effect of NF-κB on aryl hydrocarbon receptor repressor (AhRR) 

 AhRR is a member of the bHLH/PAS superfamily of transcription factors that is 

associated with the repression of AhR function (Baba et al, 2001, Mimura et al, 1999). 

This polypeptide (AhRR) represses AhR’s function as a transcription factor by  

competing with it in forming a heterodimer complex with Arnt capable of binding to the 

XRE sequence. In addition, the expression of AhRR is induced by the AhR/Arnt 

heterodimer binding to an upstream XRE enhancer sequence; consequently regulation of 

AhR function is mediated by feedback inhibition of AhRR (Mimura et al, 1999). The 

AhRR gene has been localized to mouse chromosome 13C2, rat chromosome 1p11.2, and 

human chromosome 5p15.3 by fluorescence in situ hybridization analysis (Baba et al, 

2001). Screening of the promoter sequence of the AhRR revealed multiple enhancer DNA 

elements: three XRE sequences (at the -45, -388, and -1296 position), three GC box 

sequences (at -36, -53, and -58), and one NF-κB binding site (at -28) (Baba et al, 2001). 

Since the binding of NF-κB to its cognate enhancer sequence of the AhRR gene 

upregulates AhRR expression, it was suggested that NF-κB downregulates CYP1A1 

induction via repression of the AhR functional activity (Baba et al, 2001). This 

suggestion was supported by the suppressive effect of different cytokines, such as TNF-α, 

interleukin-1β, and interferon-γ on CYP1A1 induction (Barker et al, 1992, Calleja et al, 

1997) since NF-κB is an upstream regulator of these cytokines (Scheidereit, 1998).  

2.G.1.b. Direct Effect of NF-κB on AhR 

 Physical association between the RelA subunit of NF-κB and AhR has been 

demonstrated by an immunoprecipitation study (Tian et al, 1999). It was suggested that 

the non-activated AhR and NF-κB are retained in the cytoplasm and are kept apart by 

their association to their respective regulatory proteins [hsp90 associates with AhR 

(James and Whitlock, 1999) and IκB associates with RelA (Zhong et al, 1997)] resulting 

in compartmentalization.  Upon extracellular activation signals, such as TCDD or BNF 

for AhR, and TNF for NF-κB, the AhR and NF-κB subunits dissociate from their 

respective regulatory proteins and interact with each other by physical association (Tian 

et al, 1999) producing an inactive complex that prevents AhR from binding to the 

enhancer sequences of CYP1A1 (Ke et al, 2001).  This physical association could explain 

the downregulation of CYP1A1 induction by the activated NF-κB. 
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2.G.1.c. Effect NF-κB on Histone Acetylation at the CYP1A1 Promoter. 

 NF-κB has been demonstrated to inhibit the ligand-induced acetylation of histone 

H4 at the CYP1A1 promoter, especially around the TATA box region.  This prevents the 

AhR/Arnt heterodimer from binding to the XRE and results in downregulation of 

CYP1A1 expression (Tian et al, 2002).  This mechanism was illustrated by using the 

chromatin imunoprecipitation assay (Ke et al, 2001). Histone acetylation is known to 

enhance transcriptional activation (Strahl and Allis, 2002) which is brought about by 

assembly of the initiation complex (Ke et al, 2001). Silencing of gene expression has 

been associated with hypoacetylation.  Therefore, NF-κB-induced suppression of histone 

acetylation is associated with silencing of CYP1A1 gene expression. It has been 

suggested that the acetylation state of a histone is the result of 2 different intracellular 

processes; acetylation and deacetylation (Ke et al, 2001).  Accordingly, the inhibition of 

the acetylation of histone H4 at the CYP1A1 promoter could be attributed to either 

decreased histone acetyl transferase (HAT) activity or increased deacetylation by the 

histone deacetylase (Ke et al, 2001). 

2.G.1.d. TNF-α Suppresses CYP1A1 Transcriptional Elongation 

 Treatment of mouse Hepatoma (Hepa1c1c7) cells with dioxin resulted in an 

increase in the phosphorylation of the C-terminal domain of RNA polymerase II (Tian et 

al, 2003).  This phosphorylation is essential for CYP1A1 elongation. Treatment of the 

same cell line with TNF-α suppressed the phosphorylation of the C-terminus of RNA 

polymerase II, particularly at serine 2, resulting in interference with CYP1A1 elongation 

(Tian et al, 2003). 

2.G.2. Effect of Inflammation on CYP1A1 Induction 

 The effect of inflammation on CYPs has been extensively studied in rat 

hepatocytes (Morgan, 1997) which reflect responses detected in vivo in most cases 

(Morgan, 2001).  The response of the body to infection or inflammation has been 

associated in most cases with suppression of CYPs, particularly in liver (Morgan, 1997).  

It was suggested that the suppression of CYPs expression during inflammation is not an 

adaptive or homeostatic response, rather the priority of the liver to assign its 

transcriptional machinery for synthesis of specific proteins necessary for controlling the 
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systemic inflammatory response (Morgan, 1989).  However, different CYPs isoforms are 

regulated by different mechanisms and different cytokines (Morgan, 1997).  In 

extrahepatic tissues, the CYPs are preferentially regulated by different inflammatory 

stimuli (Morgan, 2001). For instance, CYP1A1 is downregulated in brain inflammation 

whereas CYP2E1 is upregulated in astrocytes (Tindberg et al, 1996).  Also the 

intracerebroventricular injection of bacterial lipopolysaccharides (LPS) suppresses 

CYP1A functional activity (Renton and Nicholson, 2000).  

2.G.2.a. Effect of the Reactive Oxygen Species 

 It has been demonstrated that incubation of human hepatocytes with human serum 

obtained during the acute phase of infection and inflammation or with rabbit serum from 

turpentine-injected rabbits decreased the CYP2A1-associated theophylline metabolism 

without a reduction in CYP1A1 and CYP2A1 protein level (El-Kadi, 2000). Such a 

reduction in the catalytic activity of these CYPs was partially prevented by addition of 

antioxidant and exacerbated by antioxidant inhibitors (El-Kadi, 2000). The 

downregulation of CYPs associated with oxidant injury is a response of the body to 

prevent further generation of reactive oxygen species and minimize tissue damage 

(Morgan, 2001). Reactive oxygen intermediates (ROI), such a H2O2 (hydrogen peroxide), 

that are generated during some inflammatory processes might interact with the CYP1A1-

associated Fe2+ resulting in heme destruction and enzyme inactivation (Karuzina and 

Archakov, 1994; Archakov et al, 1998). An alternative mechanism of CYP1A1-

downregulation by reactive oxygen intermediates is mediated via direct phosphorylation 

of the isoform by kinases resulting in inactivation of the CYPs (Rhee, 1999).  ROI, 

particularly oxygen radicals and hydrogen peroxides, stimulate protein kinase A (Suzuki 

et al, 1997), protein tyrosine kinase (Bae et al, 1997; Lowe et al, 1998), protein kinase C 

(Boyer et al, 1995), and mitogen-activated protein kinases (Goldstone and Hunt, 1997). 

The mechanism of the CYP1A1 inactivation by phosphorylation is not yet understood, 

although phosphorylation enhances the uncoupling of CYP1A1 from NADPH-dependent 

hydroxylation during xenobiotic metabolism (Mkrtchian and Andersson, 1990).  

2.G.2.b. Effect of Reactive Nitrogen Species 

 Nitric oxide is produced by the inducible NO synthase (iNOS) during 

inflammatory responses (Morgan, 1997b). Evidence of involvement of NO in regulating 
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phenobarbital-induced CYP2B1 has been provided by Khatsenko et al (1997) when he 

showed that the administration of the NG-nitro-L-arginine methyl ester (L-NAME), a 

nitric oxide synthase inhibitor, to rats simultaneously treated with Phenobarbital 

(CYP2B1 inducer) and lipopolysaccharide (LPS) prevented the down-regulation of 

CYP2B1 and CYP2B2 activity, mRNA, and protein. This relationship was further 

supported by Roberts et al (1998) who found that the in vitro incubation of CYP2B1 and 

peroxynitrite resulted in the nitration of tyrosines at either residue 190 or 203 or at both 

residues of CYP2B1 which coincided with a loss of 2B1-dependent activity. In addition, 

it has been demonstrated that the addition of nitric oxide to the V79-derived cell lines, 

which are known to constitutively express rat and human CYP1A1 and CYP1A2, 

inhibited the CYP1A1 activity in a dose-dependent manner (Stadler et al, 1994). 

 Different mechanisms of NO-associated CYP1A1 downregulation have been 

proposed. The most commonly accepted one is that nitric oxide binds to the heme moiety 

of the CYP1A1 forming an iron-nitrosyl complex in rat hepatic cells in a reversible 

phase, subsequently preventing the binding of oxygen which normally occurs at the 

catalytic site, and suppression of  CYP1A1 functional activity (Wink et al, 1993). The 

same study also showed irreversible inhibition of CYP1A1 and CYP2B1 activity due to 

destruction of the integrity of the primary structure of hemeprotein, resulting from the 

action of nitrogen oxides produced from the oxidation of nitric oxide by oxygen. Not 

only does nitric oxide inhibit the CYP1A1 activity, but also downregulates the CYP1A1 

expression by inhibition of CYP1A1 promoter activity as reported by studies on Hepa I 

cells (Kim and Sheen, 2002). 

2.G.2.c. Effect of Inflammatory Mediators on CYP1A1 Expression 

 The inflammatory mediators or cytokines that are released in inflammatory 

conditions play an important role in the suppression of CYPs and their mRNAs (Bleau et 

al, 2001). For example, interleukin-6 (IL-6) suppresses CYP1A1, 1A2, 2D, 3A4, and 

4A1, and IL-1β depresses 1A2, 2C11, 2D6, 2E1 and 3A in vitro (Fukuda et al, 1992; 

Trautwein et al, 1992; Donato et al, 1997; Parmentier et al, 1997). Moreover, TNF-α 

downregulates CYP1A1 by inhibiting its transcriptional elongation in mouse Hepatoma 

cells (Tian et al, 2002). 
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Therefore, in a broad sense, inflammation is mostly associated with 

downregulation of CYPs by changing the activity and expression levels of different 

isoforms.  

3-Anatomy, Histology and Physiology of Lung  

3.A. Anatomy of Lung 

 Lungs are paired organs that occupy a large space in the thoracic cavity. Each 

lung is encapsulated by a thin-film membrane called pleura where it is free to move 

within this pleural sac (Getty, 1975).  Generally, the lung has 2 lobes, the right and left, 

each one receives one of the major bronchi. It consists of a bronchial tree that starts with 

the major bronchi and ends in the terminal bronchioles (minute bronchi). Following the 

terminal bronchioles are the lung alveoli, which are sac-like structures (Figure 5) lined by 

respiratory epithelial cells and capillary endothelial cells. Lung alveoli are the major sites 

of gas exchange, where most of the blood capillaries are located.  

 
Figure 5: Schematic diagram showing the anatomical structure of lungs. The trachea 

bifurcates into right and left bronchi. Each major bronchus branches into smaller bronchi 

until ended by the terminal bronchioles.  The terminal bronchioles open into the alveolar 

duct which leads to the alveoli. The alveoli are sac-like structures consisting of an 

alveolar wall that encloses the alveolar lumen. The alveolar wall is lined by alveolar 

epithelium.  

(Adapted from: http://www.schoolscience.co.uk/content/4/biology/glaxo/pm3ast1.html) 
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3.B. Histology of Pulmonary Alveoli 

Lung parenchyma is composed of many different cell types (Figure 6) with 

different pulmonary functions (Sorokin, 1970). The alveolar epithelium consists of 2 

morphologically distinct cell types called alveolar type I cells (membranous 

pneumocytes) and alveolar type II cells (granular pneumocytes), which rest on a 

basement membrane (Dobbs, 1990, Castranova, 1988). The alveolar epithelial cells have 

tight intercellular junctions (Schneeberger, 1978). Alveolar type I cells appear long 

(squamous) with thin cytoplasmic extensions as indicated by transmission electron 

microscopy (Castranova et al, 1988). Alveolar type I cells comprise 96% of the epithelial 

surface area (Castranova et al 1988; Crapo et al, 1978) and 8-10 % of all lung cells 

(Crapo et al, 1978). These cells, being thin, facilitate and maximize gas exchange as they 

reduce the space between the air in alveolar spaces and the pulmonary blood capillaries 

(Castranova, 1988). On the other hand, AT-II cells are spherical (cuboidal) cells which 

are about 9 µm in diameter (Jones et al, 1982, Haies et al, 1981). This size is an 

intermediate size between the smaller endothelial cells and the larger macrophage and 

alveolar type I cells (Grapo et al, 1982; Crapo et al, 1978; Haies et al, 1981). These 

pneumocytes constitute 15 % of all lung cells (Dubbs, 1990) but cover less than 5 % of 

the alveolar surface (Dobbs, 1990, Castranova, 1988). Clara cells are a third type of 

epithelial cells present in lungs and are located at the end of the conducting airways near 

the alveolus and have important nonrespiratory functions (Devereux et al,, 1982). These 

cells are non-ciliated terminal bronchiolar epithelial cells containing extensive 

endoplasmic reticulum, abundant mitochondria and osmiophilic granules that distinguish 

them from other epithelial cells (Devereux, 1984; Plopper et al, 1980). The Clara cells 

have extremely high levels of xenobiotic metabolizing enzymes (Boyd, 1977). 

Other cells with important biological functions are the alveolar macrophages 

(AMs). They are considered as part of the innate immunological defense system because 

they migrate and attack inhaled particles shortly after exposure (Kleinman et al, 2003). 

AMs are free migrating cells localized on the surface of the small airways and alveoli 

(Weibel, 1973). The reaction of AMs to the inhaled particles consists of progressive 

attacking steps. Following recognition, the AMs phagocytize these foreign particles in 

phagolysosomes and try to digest them by releasing lysosomal enzymes into phagocytic 
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vacuoles (Myrvik and Evan, 1967). Eventually, the digested foreign substances are 

excreted to the outside medium. Contact of AMs with the inhaled foreign particles or 

bacteria, results in a release of superoxide anions (Sweeney et al, 1981), which can be 

monitored by the measurement of AM chemiluminescence (Miles et al, 1978; Castranova 

et al, 1980). 

 
Figure 6: Schematic diagram showing that cells of alveolar wall include AT-II, alveolar 

type I, fibroblast, macrophages and capillary endothelial cells (Adapted from: 

http://www.biology.arizona.edu/chh/problem_sets/lung_toxicology/02t.html.) 

3.C. Functions of Alveolar Epithelial Cells 

The alveolar type I and AT-II cells enclose a space called the alveolar space 

(Castranova, 1988). Alveolar type I cells, which constitute the majority of alveolar 

surface help the gas exchange between the pulmonary blood capillaries and the alveolar 

spaces. The AT-II epithelial cells are multifunctional pneumocytes (Castranova, 1988).  

One important function of AT-II cells, is to synthesize and secrete surfactant, 

which is a mucoid film surrounding the alveolar epithelium (Macklin, 1954). The 

alveolar lining material (surfactant) is composed of phospholipids, proteins, and 

carbohydrates (Dobbs and Mason, 1979; Brown and Longmore, 1981) and its major 

function is to reduce surface tension (Pattle, 1961).  A reduction of surface tension is 

biologically important because it reduces the work required for lung inflation, maintains 

alveolar stability and prevents alveolar edema (Clements et al, 1959; Stub, 1966). AT-II-

associated surfactant has been demonstrated to enhance phagocytosis and killing of 
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bacteria by alveolar macrophage (LaForce et al, 1973; Juers et al 1976). It also protects 

the lungs from potentially toxic inhaled particles (Wallace et al, 1985). 

A second prominent function of AT-II cells occurs during the recovery of lungs 

from oxidant injury (Castranova, 1988).  In contrast to type I cells, which are susceptible 

to oxidant injury, AT-II cells are resistant to oxidants and physical injuries (Cross, 1974; 

Crapo et al, 1982). Alveolar type I cells seem to be highly sensitive to the pulmonary 

toxicants because they were damaged first at a cellular level following pulmonary 

exposure to foreign toxicant (Weibel, 1974). This could be attributed to their relatively 

large surface area, which may approach 4500 µm2 (Haies et al 1981) and their attenuated 

cytoplasm (Miller and Hook, 1990). Following injury of alveolar type I cells, AT-II cells 

proliferate (hyperplasia) (Stanley et al, 1992) and differentiate into type I cells in order to 

repair the alveolar epithelium and maintain the alveolar architecture (Melloni et al, 1995; 

Adamson et al, 1988; Thet et al, 1984) as shown by pulse label experiments (Castranova 

1988). This is necessary because alveolar type I cells are incapable of dividing (Weibel, 

1974), and because they are terminally differentiated cells.  The process of differentiation 

of AT-II into type I cells occurs within 2 days of injury (Evans et al, 1973).  The 

resistance of AT-II cells to the oxidant injury is attributed to the transport of vitamin C 

(an antioxidant) into these cells.  Castranova et al (1983) demonstrated that AT-II cells 

contained a sodium-ascorbate cotransport system that allows the accumulation of the 

antioxidant ascorbate in AT-II cells, therefore increasing their resistance to oxidant 

injury. 

In addition to the aforementioned functions, AT-II cells also play an important 

role in the metabolism of foreign compounds (xenobiotics) such as drugs and 

environmental pollutants because of their content of CYP monooxygenase system 

(Devereux et al, 1979; Jones et al, 1983; Raboveskey et al, 1986; Baron and Kawabata, 

1983). They are rich in endoplasmic reticulum and sensitive to the exposure of toxic 

agents (Baron and Kawabata, 1983). Xenobiotic metabolism by AT-II cells is not 

restricted to inhaled foreign compounds but also includes circulating xenobiotics since 

these cells are in close proximity to capillary blood supply (Castranova, 1988). 
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Alveolar macrophages are migratory phagocytic cells located on the surface of the 

small airways and the alveoli (Weibel, 1973). These cells act as the lung’s first line of 

defense against the toxic effects of inhaled particles, as they play a major role in the 

protection of lung against these particles. The reaction of alveolar macrophages to the 

inhaled particles is complex. Upon contact with the particles, AMs release superoxide 

anion (Sweeney et al., 1981), which could be monitored by measurement of 

chemiluminescence (Miles et al, 1978; Castranova et al, 1980). Eventually, AMs engulf 

these foreign particles and attempt to digest them by releasing lysosomal enzymes into 

phagocytic vacuoles (Myrvik and Evan, 1967). 

4-Distribution and Localization of CYP1A1 and Other Isoforms in Pulmonary 

Alveoli of Different Animal Species 

4.A. Human 

In humans, CYP1A1 is constitutively expressed in very low level and the 

intensity of expression varies within different pulmonary cells (Antilla et al, 1991). By 

immunohistochemistry, CYP1A1 is mainly localized in the epithelium of the peripheral 

airways, the ciliated columnar epithelium of the bronchioles and the cuboidal and 

columnar cells of the terminal bronchioles (Antilla et al, 1991). Immunohistochemical 

staining was also observed in AT-II cells and in a few cases, within type I cells (Antilla et 

al, 1991). Pulmonary vascular endothelium infrequently showed CYP1A1 

immunopositive staining but the alveolar macrophages were always negative (Antilla et 

al, 1991).  Another important CYP isoform in humans is CYP1B1. CYP1B1 is regulated 

through the AhR and its mRNA was detected in liver, lymphocytes, cells of 

bronchoalveolar lavage and endometrium, but not in lung (Hakkola et al, 1997). 

However, by immunohistochemistry, CYP1B1 was localized only in a range of malignant 

tumors, such as tumors of the breast, colon, lung, esophagus, skin, lymph node, brain, and 

testis and there was no detectable immunostaining for CYP1B1 in normal tissues (Murray 

et al, 1997). Therefore, CYP1B1 seems to be constitutively expressed in tumors (tumor 

specific) but undetectable in most normal tissue although CYP1B1 mRNA is present 

(McFadyen et al, 2003). Other isoforms, such as CYP2B6, CYP2E1, CYP2J2, and 

CYP3A5 proteins are expressed in human lung (Hukkanen et al, 2002). 
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4.B. Rodents 

In rodents, the CYP activity of the lung has been demonstrated mostly in 

epithelial and endothelial cells (Pairon et al, 1994).  CYP protein expression and activity 

has been identified in three main types of cells: Clara (terminal non-ciliated) cells in the 

bronchiolar epithelium, AT-II cells in the alveolar spaces, and endothelial cells in the 

vascular compartment (Serabjit-Singh et al, 1980; 1988; Plopper et al, 1987; Lacy et al, 

1992; Jones et al, 1983; Kheith et al, 1987; Overby et al, 1992). Various materials of the 

lungs have been used to demonstrate the protein expression and activity of CYP isoforms 

in the lungs of rodents, such as the microsomes (Domin et al, 1986; Keith et al, 1987; 

Guengerich et al, 1982; Vanderslice et al, 1987; Tindberg and Ingelman-sundberg, 1989; 

Sesardic et al, 1990; Carlson and Day, 1992), isolated lung cell fractions of untreated or 

pretreated animals (Devereux et al, 1982; Lacy et al, 1992; Jones et al, 1983; Chichester 

et al, 1991), and tissue preparation for ultrastructural analysis (Serabjit-Singh et al, 1988; 

Overby et al, 1992; Aida et al, 1992). The predominant form of CYP in the uninduced rat 

lung is CYB2B1 (Guengerich et al, 1982), which is mainly localized in Clara cells and to 

a lesser extent in AT-II cells (Baron and Voigt, 1990; Kheith et al, 1987). In contrast to 

lung, the hepatic CYP2B1 is induced by Phenobarbital (Kim and Kemper 1997). Other 

CYP isoforms, such as 1A1 (Pairon et al, 1994), 2A3, 3A2, and 4B1, are also expressed 

in lung but in very small quantities (Foster et al, 1986; Voigt et al, 1990; Kimura et al, 

1989; Keith et al, 1987; Vanderslice et al, 1987). The CYP2E1 protein is another isoform 

expressed only in rat lungs after being induced by substrates such as acetone or ethanol 

(Tindberg and Ingelman-Sundberg, 1989; Carlson and Day, 1992). 

By immunohistochemistry and in situ hybridization techniques, 3-

methylchlolantherene (3MC) - induced rat CYP1A1 was localized primarily in Clara 

cells and AT-II cells, with some labeling observed in other alveolar wall cells. These cells 

could not be specifically identified microscopically and were believed to be either 

alveolar type I cells or capillary endothelial cells (Pairon et al, 1994). In humans, similar 

results have been demonstrated without detection of any activity in the endothelial cells 

(Marcus et al, 1990). 
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4.C. Rabbits 

In rabbits, the pulmonary CYP monooxygenase system includes three main 

isoforms of CYPs; 2B4, 4B1 and 1A1, which were previously classified as forms 2, 5 and 

6, respectively (Daniels and Massey, 1992). CYP1A1 was demonstrated by 

immunohistochemistry in rabbits induced by TCDD using a polyclonal goat anti-rabbit 

CYP1A1 antibody and was localized mainly in the endothelial cells of the interalveolar 

septa (Overby et al, 1992).  Within the endothelial cells, only the perinuclear area 

associated with endoplasmic reticulum was labeled with the antibody, and no labeling of 

the plasma membrane was detected (Overby et al, 1992).  Minimal CYP1A1 labeling was 

detected in alveolar type I and AT-II cells with absence of macrophage immune reactivity 

(Overby et al, 1992). A dense CYP1A1 staining has been observed in the terminal non-

ciliated bronchiolar epithelial (Clara) cells which are considered the primary pulmonary 

site of cytochrome P-450-dependent monooxygenase activity (Domin et al, 1986; 

Plopper et al, 1987; Serabjit-Singh et al, 1980).  This could be attributed to the 

enrichment of the Clara cells with large amount of agranular (smooth) endoplasmic 

reticulum to which the CYPs are associated (Plopper, 1983). Although the CYP1A1 was 

not detected in the alveolar macrophages of TCDD-induced rabbit by 

immunohistochemistry (Overby et al, 1992), it was detected in the microsomal fraction of 

alveolar macrophages from rabbits administered with TCDD (Domin et al, 1986). While 

the major constitutive isoform of CYPs in rabbit lung is CYP2B4, this isozyme is present 

in very low concentrations in the liver of this animal species (Williams et al, 1991). 

However, treatment of rabbits with phenobarbital induces CYP2B4 in liver but has no 

effect on the levels in lungs (Williams et al, 1991). In contrast to CYP2B4, CYP1A1 can 

be induced in rabbit lungs by beta-naphthoflavone) using a dose of 80 mg/kg by 

intraperitoneal injection (Daniels and Massey, 1992).  

4.D. Food Producing Animals 

In food-producing animals, such as sheep and cattle, CYP1A1 is rarely 

investigated and little information is available about its expression and localization in 

pulmonary tissue (van't Klooster et al, 1993a).  Knowledge about the CYP 

monooxygenase system in agricultural species is not only useful for describing the 

xenobiotic metabolism comparable to humans, but also extremely important for the risk 
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assessment of the applied veterinary pharmacotherapy and public health concern, 

particularly when these animals are considered as a main source of many foods (van't 

Klooster et al, 1993a; 1993b). This is particularly crucial because of the presence of drug 

residues and/or their metabolites in the foods of animal origin (van't Klooster et al, 

1993b; Juskevich, 1987). The induction of CYP1A has been observed in cattle treated 

with pentachlorophenol (PCP), particularly in the liver and lung microsomes of the new 

born calves which were more responsive to induction than adults (Shull et al, 1986). The 

first CYP isoform purified from sheep lungs was the CYP2B, which was the most 

abundant form constitutively expressed in sheep lungs (constituting 75 % of the total 

CYPs) (Williams et al, 1991). Moreover, CYP1A1 and CYP2B1 have been induced in 

sheep hepatic microsomes after a single dose of ivermectin, a common antiparasitic drug 

in Veterinary Medicine (Skalova et al, 2001).  In goats, the subcutaneous injection of 

beta-naphthoflavone (BNF) significantly induced CYP1A1 and CYP2B1 in liver 

microsomes as assessed by measurement of  7-ethoxyresorufin deethylase (EROD) and 

7-pentoxyresorufin deethylase (PROD), respectively (van't Klooster et al, 1993b). BNF 

induces CYP1A1 in cultured hepatocytes isolated from sheep, goat, and cattle (van't 

Klooster et al, 1993b). 

5-Pathological Alterations Associated with Respirable Particle Exposure  

 Lungs, being at the interface between the body and the environment, are major 

targets of many chemicals. They are exposed to xenobiotics carried by the inspiratory air 

and the blood (Pairon et al, 1994).  The response of different alveolar cells to respirable 

particles is a complex process. Exposure to coal dust, silica, and/or other related 

inorganic particulates can activate alveolar macrophages to secrete cytokines, such as 

TNF-α and interleukin-1 (Kelley, 1990), fibronectin (Davies and Erdogdu, 1989), and 

other soluble mediators that act in situ (Kelley, 1990)  producing acute cellular injury and 

initiating lung fibrosis (Davis, 1986).  TNF-α plays a key role in the cellular response to 

particulate inhalation as it enhances the synthesis of other chemokines, such as 

interleukin-8 (IL-8), macrophage inflammatory protein 2 (MIP-2), MIP-1, and monocyte 

chemotactic protein 1α (MCP-1α) by alveolar macrophages, epithelial cells, endothelial 

cells and fibroblasts. In addition, TNF-α stimulates the endothelial expression of the 

adhesion molecules, such as vascular cell adhesion molecule 1 (VCAM-1), intercellular 
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adhesion molecule 1 (ICAM-1), and E-selectin. The intravascular inflammatory cells are 

recruited into the lung interstitium and alveolar spaces by interaction with the endothelial 

adhesion molecules and chemotactic gradients (Driscoll, 1996) (Figure 7). 

 
Figure 7. Proposed mechanism of pulmonary inflammation following exposure to 

respirable particles (Adapted from Driscoll, 1996).  

Alveolar type I cells are more vulnerable to toxic and physical injury than AT-II 

cells (Lee et al, 1994). The damage of these cells usually leads to denudation of the 

subepithelial basement membrane (Evans et al, 1973; Adamson et al, 1974) with 

subsequent leakage of the plasma constituents, such as albumin, from the pulmonary 

vasculature to the alveolar spaces (Crouch, 1990). 

AT-II cells generally respond to exposures of respirable particles, such as silica 

and coal dust, by increasing their number (hyperplasia) and size (hypertrophy) (Panos et 

al, 1990). The mechanism of cellular proliferation in response to particle exposure is 

unclear. Interestingly, carbon black, which has a minimum cellular toxicity, has been 

shown to produce a persistent AT-II cellular hyperplasia and neutophilic inflammation in 

rats (Harkema et al, 2003). A possible role of the extracellular signal-regulated kinases 

(ERKs) was suggested by Albrecht et al (2001) when they found a chronic activation of 

phosphorylated ERKs in immunohistochemical examination of lung sections of coal dust-

exposed rats.  The release of alveolar macrophage-produced mitogenic factor by activated 

macrophages is another possible role that enhances the cell cycle proliferation and DNA 

synthesis in rabbit AT-II cells (Brandes and Finkelstein, 1989). However, other factors in 
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the bronchoalveolar lavage (BAL) of normal rats have been shown to stimulate the DNA 

synthesis in the primary culture of rat AT-II cells (Leslie et al, 1989). This discrepancy 

was solved by Panos et al (1990) by demonstrating a similar mitogenic effect of BAL 

fluid collected from normal and silica-treated rats suggesting that other factors may be 

involved in the silica-associated AT-II hyperplasia.  The AT-II hypertrophy associated 

with particle exposure could be attributed to cellular enlargement during cell division 

(Miller et al, 1986), an increase in cytoplasm during preparatory stage of differentiation 

and transition from AT-II to type I cells, or edema and degeneration associated with cell 

death (Miller et al, 1986; Baserga, 1985).  It is well known that the cell size is increased 

during DNA synthesis and mitosis (Baserga, 1985) and the cell component should be 

duplicated during each cell cycle to maintain a uniform cell size between generations 

(Fraser and Nurse, 1978; Killander and Zetterberg, 1965).  Furthermore, during lung 

injury and particle exposure, the AT-II cells can differentiate into type I cells, which have 

a volume of 2-5 fold greater than that of AT-II cells but are not considered hypertrophied 

AT-II cells (Crapo et al, 1983). 

6-Respirable Particles Affecting Lung 

6.A. Coal Dust Particles 

6.A.1. Origin and Composition  

Coal is produced by progressive coalification of swampy vegetation throughout 

the world. Although coal is composed mainly of carbon, coal mine dust also contains 

oxygen, hydrogen, nitrogen, trace elements and inorganic minerals and crystalline silica. 

Trace elements include copper, cadmium, boron, nickel, antimony, iron, lead, and zinc 

(Castranova and Ducatman, 1997). Some of these trace elements can be cytotoxic and 

carcinogenic in experimental models (Castranova and Vallyathan, 2000). The mineral 

contaminants may include kaolin, quartz, mica, calcite and pyrite. The rank of coal varies 

according to its carbon contents.  As rank increases, the ratio of carbon to other mineral 

and chemical contaminants increases.  Generally, higher rates of pneumoconiosis have 

been associated with anthracite coal mining than that found in bituminous miners. 

(Ortmeyer et al, 1973; Bunnet et al, 1979).  This was attributed to the higher surface free 

radicals in anthracite than bituminous coal (Dalal et al, 1990; 1991; and 1995).  
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Moreover, anthracite has higher crystalline silica than bituminous coal (Wallace et al, 

1994).  

6.A.2. Exposure Conditions 

There are two principal types of exposures in mining, surface and underground, 

that result in pulmonary exposure. Surface exposure usually occurs outdoors with 

inhalation of low levels of coal mine dust.  Underground exposure is more frequently 

associated with inhalation of a significant amount of coal dust and development of 

pneumoconiosis. (Castranova and Ducatman, 1997). Mixed exposures are common in 

underground coal mining. For example, the pulmonary exposure to silica in roof bolters 

occurs during drilling processes into the noncoal ceiling of mines. Moreover, diesel 

equipment in coal mines produces mixed exposures to coal dust and diesel particulates 

(Castranova and Ducatman, 1997). 

6.A.3. Pathological Reaction to Coal Mine Dust Exposure 

 Inhalation of coal mine dust is associated with several diseases in humans such as 

coal workers’ pneumoconiosis (CWP), bronchitis, emphysema, Caplan disease and 

silicosis (Kleinerman et al, 1979; Green and Vallyathan, 1998).  

6.A.4. Coal Workers’ Pneumoconiosis (CWP) 

6.A.4.i. Forms of CWP 

CWP is classified according to severity into simple and complicated CWP. 

Simple CWP is characterized by black dust macules which are usually concentrated in 

the upper lung lobes. Coal nodules consist of coal dust and dust-laden macrophages 

usually localized at the bifurcations of respiratory bronchioles. These nodules can be 

palpable and have a diameter of 2-5 mm. This syndrome can progress to complicated 

CWP. With increasing time and dust exposure complicated CWP develops, that is, 

progressive massive fibrosis (PMF). In PMF, the lesions are bigger (1 cm diameter), 

more numerous, and usually localized in upper and posterior portions of the lungs. These 

lesions mainly contain increased collagen, coal dust, and inflammatory cells. The Federal 

Coal Mine Health and Safety Act of 1969 legislatively defined "black lung disease" to 

include not only CWP but also other chronic pulmonary diseases affecting coal miners, 
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such as chronic bronchitis and other obstructive pulmonary diseases (Castranova and 

Ducatman, 1997).  

6.A..4.ii. Radiographic Picture of CWP 

 Simple pneumoconiosis is not always reflected in radiographic changes 

(Kleinerman et al, 1979).  The sensitivity of the chest radiograph is affected by many 

factors, such as the lesion size, background density, contrast effect and thickening of the 

chest wall (Parkes, 1982; Morgan, 1984).  When radiographic changes are present, 

radiographic opacities 0.001-l.0 cm in diameter may appear and are most frequently 

round opacities. With progression of CWP, the distribution of the opacities increases. As 

the PMF develops, there is an increase in the number of irregular opacities as well as an 

increase in nodular size to exceed 1.0 cm in diameter (Castranova and Ducatman, 1997; 

Rossiter et al, 1967). Chest radiographs are ranked by the size, shape, and profusion of 

the opacities. In simple CWP, rounded opacities are ranked by increasing size as p, q, and 

r. A scale of s, t, and u is used to rank irregular opacities. Distribution of lesions is 

designated as upper, middle, and/or lower lung zones. Profusion, which means increased 

density of opacities, has a rank of 0, 1, 2, or 3 (Vallyathan et al, 1996; Castranova and 

Ducatman, 1997).  It has been demonstrated that profusion category has a direct 

relationship to dust burden in the lungs.  PMF is categorized radiographically as A, B, or 

C as opacities progressively increased (Castranova and Ducatman, 1997).  

6.A.4.iii. Pathology of CWP 

 The pulmonary pathological changes of CWP range from simple dust 

accumulation to fibrosis of varying degrees (Green and Vallyathan, 1998). Early coal 

dust exposure is manifested by aggregation of particles within the cytoplasm of intra-

alveolar macrophages and is a marker of recent exposure. With time, the dust is localized 

around the walls of bronchi, lymphatics, and pulmonary vessels, and in the walls of 

respiratory bronchioles, without detectable fibrosis. The first distinctive lesion of CWP is 

the appearance of coal macules that are typically found in the walls of respiratory 

bronchioles, particularly at bifurcations.  The coal dust macule is defined as an 

aggregation of coal dust-laden alveolar macrophages, in a size that range from 0.5 to 6 

mm within the wall of respiratory bronchioles and adjacent alveoli (Vallyathan et al, 

1996).  Coal dust accumulation is accompanied by a variable degree of collagen 
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deposition. However, at this stage, the macule cannot be palpated (Castranova and 

Ducatman, 1997). With extended exposure, the fibrotic nodules can develop. As with 

macules, varying degrees of fibrosis and pigmentation can be found. When there is a 

central zone of concentric collagen fibers (rather than interlacing bundles of collagen), 

the nodules should be classified as silicotic nodules.  The nodules are defined as an area 

of fibrosis and are firm when palpated. The nodules are usually located in a background 

of coal dust macules, however they can be an isolated finding. Nodules can be found in 

subpleural and peribronchial connective tissues as well as respiratory bronchioles.  Focal 

emphysema is a specific form of emphysema seen in coal miners which is associated with 

distention and over expansion of alveolar spaces near fibrotic respiratory bronchioles 

(Castranova and Ducatman, 1997). 

6.A.4.iv. Epidemiology of CWP 

 Epidemiological data suggests a direct relationship between the mass of 

respirable coal dust and the incidence of CWP in miners (Walton et al, 1977). A 

sequence of events has been supported by the epidemiological data during initiation and 

progression of CWP, which includes the following steps (Castranova and Ducatman 

1997): 

i) Coal dust is inhaled and deposited at the bifurcations of the respiratory bronchioles; 

(ii) Localized inflammation begins and alveolar macrophages engulf coal dust particle to 

become dust laden. Aggregation of dust-laden macrophages forms a coal macule; 

(iii) Coal macules enlarge and congregate to form coal nodules with further dust 

deposition and inflammation; 

(iv) Pulmonary emphysema may follow when the lesions contract, tearing surrounding 

tissue; and 

(v) Progressive massive fibrosis is the result of subsequent collagen deposition at sites of 

coal deposition. 

6.A.4.v. Progressive Massive Fibrosis (PMF) 

PMF is defined as a zone of fibrosis that has a diameter of greater than 1 cm, and 

can appear as single or multiple lesions (Vallyathan et al, 1998). Grossly, PMF lesions 

appear as hard, black masses which may be round, oval, or irregular but generally with a 

fairly sharp demarcation from the surrounding parenchyma. PMF often demonstrates 
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central cavitation that could be detected during sectioning. Microscopically, PMF is 

recognized either as an amorphous zone of collagen or aggregation of multiple nodules, 

which commonly co-occur with silicosis. The lesions usually contain a large quantity of 

coal pigment, cholesterol crystals and debris. PMF is a destructive and progressive lesion 

that distorts and obliterates functional lung tissue (Castranova and Ducatman, 1997). The 

PMF-induced distortion of the lung parenchyma is usually accompanied by compensatory 

emphysema (Vallyathan et al, 1996). 

6.A.4.vi.  Relationship between Coal Dust Exposure and Lung Cancer 

 Exposure to coal mine dust and the development of CWP has not been associated 

with lung cancer (Rooke et al, 1979). On the contrary, an epidemiologic study of US coal 

miners suggests that they have a lower than normal risk of lung cancer (Costello et al, 

1974). Moreover, no relationship has been found between coal dust exposure and lung 

cancer type (Vallyathan et al, 1985). On the other hand, a higher than normal incidence 

of stomach cancer has been associated with coal dust exposure (Enterline, 1964). Ong et 

al, (1985) proposed a particular mechanism for developing stomach cancer associated 

with coal dust exposure. Initially, after the coal dust is swallowed and reaches the 

stomach, it intermixes with nitrite content of the food.  The coal-associated organic 

material then undergoes a nitrosation under the acidic condition in the stomach. This 

nitrosation product has been demonstrated to induce the neoplastic transformation of a 

mammalian cell line (Wu et al, 1990). 

6.A.4.vii. Mechanisms of Coal Dust-Induced Cellular Toxicity 

Four main mechanisms of toxicity were proposed for initiation and progression of 

CWP (Castranova 2000). The first is the direct cytotoxicity of coal dust resulting in cell 

damage with subsequent release of proteases and lipases. The second mechanism 

includes over-production of oxidants by alveolar phagocytes, such as macrophages with a 

rate overwhelming the antioxidant defenses resulting in protein nitrosation and tissue 

injury. The third mechanism involves the activation of cytokines (chemical mediators) 

from alveolar epithelium and alveolar macrophages. These mediators recruit excessive 

numbers of polymorphonuclear leukocytes (PMN) and macrophages into the alveolar 

spaces with production of more oxidant, enhancing the pulmonary oxidant stress.  The 

fourth mechanism is associated with fibroblast proliferation, enhancement of collagen 
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synthesis, and induction of pulmonary fibrosis upon stimulation by the growth and 

fibrogenic factors secreted from alveolar macrophages and alveolar epithelial cells in 

response to coal dust exposure 

6.A.4.vii.a. Direct Cytotoxicity: 

Coal dust has been shown by in vitro and animal studies to cause hemolysis (red 

blood cell lysis) and release of lactate dehydrogenase (LDH) from alveolar macrophages 

(Harrington 1972, and Amadis and Timilar, 1978).  The direct cytotoxic effect of coal 

dust is affected by its metal content, such as nickel (Christian and Nelson, 1978) and iron 

(Dalal et al, 1995). Moreover, coal dust fracturing has been associated with the 

generation of surface radicals that can injure the biological membranes. However, these 

radicals are less bioactive that those generated during fracturing of silica (Vallyathan et 

al, 1995). 

6.A.4.vii.b. Alveolar Macrophages-Stimulated Oxidant Production 

 A relationship has been established between the pathogenicity of the coal dust, 

pulmonary damage, and the ability to enhance oxidant production (Backford et al, 1997). 

Coal mine dust has been demonstrated to stimulate alveolar macrophages to increase the 

synthesis of reactive oxygen and nitrogen species such as superoxide, hydrogen peroxide, 

and nitric oxide (Castranova, 2000). These reactive oxygen species (ROS) induce cellular 

damage and injury (Weiss and Buglo, 1982). Moreover, coal dust may contain stable 

radicals that can produce ROS in the biological fluids resulting in direct oxidative 

damage in a non-cellular mechanism (Schins and Borm, 1999).  

6.A.4.vii.c. Stimulation of the Proinflammatory Mediators Release 

 Coal dust exposure in animals elicits pulmonary inflammation that is 

characterized as infiltration of alveolar macrophages (AM) and polymorphonuclear 

leucocytes (PMN) in the alveolar spaces (Castranova et al, 1985, Bowden and Adamson, 

1978). Once the phagocytic cells are recruited into the alveolar spaces, they stimulate the 

production of chemotactic cytokines and chemokines by AM and AT-II epithelial cells 

(Driscoll et al, 1993). The most common chemotaxins for PMNs are Leukotriene B4, 

platelet-activating factor (PAF), and interleukin (IL)-1 (Driscoll, 1997). Tumor necrosis 

factor alpha (TNF-α) may not have a direct chemoattractant effect. However, it is a 
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potent chemokine stimulant, with effects on macrophage inflammatory protein (MIP-1 or 

MIP-2) and cytokine-induced neutrophil chemoattractant (Driscoll et al, 1995).  

 When the PMN are recruited into the alveolar spaces, they are stimulated by 

several inflammatory cytokines, such as TNF-α, PAF, and IL-1, to increase oxidant 

production resulting in excessive oxidant burden in the lung. The accumulation of 

oxidant may overwhelm the antioxidant defenses resulting in lung injury, scarring and 

fibrosis (Castranova 2000). In oxidative stress, The NF-κB is activated (Shukla et al, 

2000), and upregulates the proinflammatory cytokines such as TNF- α (Kim et al, 2003) 

that aggravate the inflammatory process. Moreover, the released TNF- α activates the 

NF-κB by enhancing the phosphorylation and degradation of the inhibitor IκB as 

previously mentioned. Although there is little data on NF-κB in coal dust exposure, the 

NF-κB is activated by TNF- α in silicosis as shown by increasing of its DNA binding 

activity (Vallyathan et al, 1998).  

6.A.4.vii.d. Stimulation of Growth and Fibrogenic Factors Production by AM 

 The fibrogenic factors produced by the alveolar macrophages and pneumocytes 

under the effect of coal mine dust exposure were detected in the bronchoalveolar lavage 

(BAL) of miners affected with CWP (Castranova, 2000). The most important of these 

growth and fibrogenic mediators that promote the lung response to fibrosis was the TNF-

α, which has direct proliferative effects and enhances the secretion of platelet derived 

growth factor (PDGF) (Hajjar et al, 1987). Other mediators, such as transforming growth 

factor (TGF) α and β, and insulin-like growth factor (IGF) are released from AM and 

epithelial cells, and were found to stimulate the proliferation of mesenchymal cells 

(Bonner et al, 1991; Madtes et al, 1988; Moses et al, 1990; Rom et al, 1988). The 

glycoprotein, fibronectin, can stimulate fibroblast proliferation and greatly contribute to 

particle-associated pulmonary fibrosis (Rennard et al, 1981; Bitterman et al, 1983).  

6.B. Crystalline Silica Particles 

 Exposure to crystalline silica, the crystalline form of silicon dioxide causes severe 

occupational lung disease in coal miners called silicosis (Castranova and Ducatman, 

1997). Silicosis is a chronic inflammatory fibrotic lung disease (Miles et al, 1993) that is 

characterized by the development of silicotic nodules, chronic debilitation, and eventual 
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death in some cases (Driscoll and Guthrie, 1997). Crystalline silica has several 

polymorphs; those commonly investigated are the quartz, cristobalite, tridymite, coesite, 

and stishovite. The most toxic forms of crystalline silica are tridymite and cristobalite 

followed by quartz (Seaton, 1984). Chemically, silica is composed mainly of silicon 

dioxide (SiO2) and some other cations may occur in trace amounts, such as aluminium, 

iron, and titanium. The iron content of silica may be involved in the production of 

reactive oxygen radicals through a Fenton-type reaction (Goodglick and Kane, 1986; 

Mossman and March, 1989) (Fe 3+              Fe 2+ + e-) that may greatly contribute to silica 

cytotoxicity (Razzaboni and Bolsaitis, 1990).  

6.B.1. Mechanisms of Silica-Induced Cytotoxicity and Fibrosis 

 The cytotoxic effect of the silica is attributable to 4 major mechanisms. These 

mechanisms have been discussed in detail under the coal dust effect. However, in 

silicosis, the cytotoxic effect is more robust than coal dust for the following reasons: 

1- The silanol group (SiOH), which is uniquely present on the surface of silica 

particulate, acts as an H donor. Therefore, it interacts with the biological 

membranes by forming a hydrogen bond resulting in injuries of these membranes 

(Nash et al, 1966). This was suggested because the polyvinylpyrilidine-N-oxide 

was found to reduce the silica toxicity by acting as proton acceptor, consequently 

protecting the biological membranes from the surface SiOH group. 

2- The presence of the negative surface charge of the SiO- group is crucial for silica-

induced cytotoxicity (Nolan et al, 1999; Castranova and Vallyathan, 2000). This 

negative group could enhance the interaction of silica with the scavenger 

receptors on the surface of alveolar macrophages (Nolan et al, 1981; Kobzek, 

1985).  

3- Silica radicals, such as Si. and SiO., are usually produced at the fracture planes 

during fracturing of silica (Vallyathan et al, 1988). These radicals may participate 

in induction of oxidative stress, particularly when they come in contact with 

aqueous medium that results in the production of hydroxyl radicals (Vallyathan et 

al, 1988). It has been demonstrated that lipid peroxidation has a direct relationship 

with the hydroxyl radicals produced by silica in vitro (Vallyathan et al, 1988; 

Dalal et al, 1991) and in vivo (Castranova et al, 1996; Vallyathan, 1995). 
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4- The presence of surface iron in silica augments the production of hydroxyl 

radicals by silica exposure and enhances the cytotoxicity in vivo and in vitro 

(Vallyathan et al, 1988; Castranova et al, 1997). 

6.B.2. Pathological and Inflammatory Responses to Silica Exposure 

 Pulmonary cytotoxicity in silicosis has been demonstrated on a large scale in 

animals and humans (Holland, 1990; Saffioti and Stinson, 1988, Green and Vallyathan, 

1995). Different clinical types of silicosis have been identified based upon the intensity 

and the period of exposure or upon the chest radiographic picture (Driscoll and Guthrie, 

1997; Green and Vallyathan, 1995, Ziskind et al, 1986; Seaton, 1984).  

Radiologically, simple silicosis and progressive massive fibrosis can be identified. 

Simple silicosis is characterized by the presence of small opacities (silicotic nodules) 

(Ziskind et al., 1986; and Seaton, 1984) with a diameter of less than 10 mm (Weissman 

and Wagner, 2002) without respiratory impairment unless accompanied by tuberculosis 

(Snider, 1978 and Craighead et al., 1988). Simple silicosis may develop into progressive 

massive fibrosis (PMF) when congregation of these silicotic nodules occurs followed by 

destruction of lung tissue and a significant disturbance in lung function (Snider, 1978). 

Until now, 3 different types of silicosis are recognized: chronic, accelerated, and acute 

(Weissman and Wagner, 2002). The occurrence and development of these forms is 

determined by the amount of exposure and the total cumulative silica inhalation (Green 

and Vallyathan, 1995; Ziskind et al, 1986; Seaton, 1984). Chronic silicosis is 

characterized by the appearance of simple silicotic nodules 10-30 years post exposure 

(Weissman and Wagner, 2002) because it usually progresses very slowly. However, in 

some cases, nodules may congregate to form PMF (Weissman and Wagner, 2002). 

Accelerated silicosis, which develops in less than 10 years after exposure to silica 

(Weissman and Wagner, 2002), is accompanied by a rapid progression to PMF, severe 

lung dysfunction, and is life threatening (Ziskind, 1986; Seaton, 1984). Acute silicosis, 

on the other hand, is the form that develops very rapidly [(a few weeks to 5 years post 

exposure (Weissman and Wagner, 2002)] after exposure to high concentrations of silica 

(Banks et al, 19981; Suratt et al, 1977; Xipell, 1977) and is associated with severe 

alveolar and interstitial inflammation, alveolar proteinosis, and rapid respiratory failure 

(Driscoll and Guthrie, 1997). 
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7-Difference between CWP and Silicosis 

 CWP was originally thought to be a variant form of silicosis because of the 

similarity of chest radiographs of coal miners and silicotic people. A differentiation 

between CWP and silicosis was first proposed by Collis and Gilchrist (1928). They 

reported that Welsh stevedores who trimmed coal in the holds of ships developed nodules 

in the chest which were indistinguishable from those of underground coal miners. 

Histological examination of autopsied lungs from these coal trimmers showed lung 

lesions distinct from the characteristic whorled nodules of silicosis (Gouph, 1940). In 

1947, Heppleston demonstrated that the histological pulmonary lesions in coal trimmers 

were similar to those in underground coal miners. In 1954, he showed that, these 

pulmonary lesions, in contrast to silicosis, consisted of black stellate dust macules 

surrounded by dilated respiratory bronchioles. In general, silicosis is more progressive 

than CWP and may initiate, develop and progress more rapidly (Scarisbrick, 2002). 

8-Interaction  Between PAH, AhR and Apoptotic Pathways  

8.A. Role of AhR in Cellular Apoptosis 

Apoptosis, or programmed cell death is a genetically-controlled process that 

occurs as a response of the cell to environmental (such as radiation) and developmental 

(e.g. embryogenesis) stimuli ending by programmed death of the cells (Wylie, 1980; 

Orren et al, 1997). Therefore, apoptosis is a negative selection mechanism by which the 

organism gets rid of damaged or unneeded cells (Buckley, 1998). Apoptosis plays an 

important role in tissue remodeling (Stanley et al, 1992) and eliminating cells that are 

excessively developed, improperly developed, or genetically damaged (Thompson, 

1995). For example, the remodeling of certain epithelial cells, such as AT-II cells 

(Bardales et al, 1996) during the repair process following acute lung injury was attributed 

solely to the occurrence of apoptosis in these cells (Polunovsky et al, 1993). 

Cellular death by apoptosis has characteristic hallmarks that start with 

condensation of the cytoplasm, loss of the plasma membrane microvilli, and nuclear 

condensation followed by fragmentation (Buckley, 1998). Apoptosis can be differentiated 

from necrosis by the presence of activated endogenous proteases, disruption of the 

cytoskeleton, cell shrinkage and formation of membrane blebbing, condensation of the 
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nucleus with DNA fragmentation forming oligonucleosomes, and elimination of the 

damaged cells without any inflammatory response (Thompson, 1995).  

Apoptotic pathways initiate via different entry sites, such as death receptor 

(receptor pathway) or mitochondria (mitochondrial pathway) (Fulda, and Debtain, 2002).  

Both pathways result in the activation of effector caspases (cysteine aspartate proteases) 

(Kaufmann and Earshaw, 2000). The receptor pathway is associated  with stimulation of 

death receptors of the tumor necrosis factor (TNF) receptor (TNFR) superfamily such as 

CD95 (APO1/Fas) resulting in receptor aggregation and recruitment of the adaptor 

molecule Fas-associated death domain (FADD) and caspase-8 (Sprick et al, 2000). The 

end result is the activation of caspase-8 that initiates apoptosis by direct cleavage of 

downstream effector caspases (Peter and Krammer, 1989). In the mitochondrial pathway, 

apoptogenic factors such as apoptosis inducing factor (AIF), cytochrome c, and  caspase-

2 or caspase-9 are released from mitochondria into the cytoplasm to activate  caspase-3 

by the formation of apoptosome complex (cytochrome c/Apaf-1/caspase-9) (Kroemer and 

Reed, 2000). This is followed by a downstream mitochondrial activation of caspase-8 

resulting in further cleavage of effector caspases and apoptosis (Fulda, and Debtain, 

2002) (Figure 8). Bax is a member of Bcl-2 family that comprises different proteins 

involved in controlling apoptosis and induced by a variety of stimuli (Desagher et al, 

1999). Bax interacts with Bid, another preapoptotic protein belonging to Bcl-2 family 

resulting in conformational changes that drive Bax to translocate from cytosol to the 

mitochondria, increasing the release of cytochrome c and initiating apoptosis (Aiba-

Masago et al, 2002) (Figure 8). However, Bax may be expressed in many tissues without 

demonstration of any apoptotic features (Olive and Ferrer, 1999, Penault-Llorca et al, 

1998) suggesting that Bax has other cell functions (Aiba-Masago at al, 2002). Peptide 

caspase inhibitors Z-Asp-Chz-DCB and zVAD-fmk have been shown to inhibit apoptosis 

induced by overexpression of Bax in COS-7 cells suggesting that Bax induces apoptosis 

in a caspase-dependent mechanism (Kitanaka et al, 1997). 

The DNA fragmentation associated with apoptosis was demonstrated by agarose 

gel electrophoresis that showed a ladder appearance at 200 base-pair intervals (Compton, 

1992). More recently, Gavrieli et al, (1992) were able to localize the DNA fragmentation 

by visualization of apoptosis in situ using routine immunohistochemistry of paraffin 
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embedded tissue sections. This in situ apoptosis assay (ISAA) depends upon the binding 

of the terminal deoxynucleotide transferase to the 3/-OH end of the fragmented DNA and 

incorporating biotinylated deoxyuridine at the sites of DNA breaks. The localization of 

apoptosis was then visualized by binding of fluorescein- or peroxidase labeled avidine 

(Bardales, 1996; Gouchuico et al, 1997). The ISAA, which is also described as terminal 

deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) proved more 

sensitive than the laddering assay in detecting apoptosis in different cells (Hagimoto et al, 

1997). 

Exposure of female mice to PAHs enhanced the expression of Bax in the oocyte, 

which was accompanied by induction of apoptosis. This was confirmed by the prevention 

of PAHs-mediated ovarian damage by selectively antagonizing the AhR by α-

naphthoflavone (Shiromizu and Mattison, 1985; Mattison and Nightingale, 1980) or 

inactivation of Bax (Matikainen et al, 2001).  

Apoptosis is considered the main cellular mechanism through which oocyte 

depletion is induced under both physiological and pathological conditions (Morita and 

Tilly, 1999; Perez et al 1997; 1999; Morita et al 2000; Pru and Tilly, 2001). Computer-

based scanning of the promoter sequences of a number of  regulatory genes involved in 

apoptosis showed that mouse Bax promoter has two core AhR response elements 

(AhRE1 and AhRE2) (Matikainen et al, 2001). In addition,  increasing Bax mRNA levels 

and accumulation of its protein in quiescent (primordial) and early growing (primary) 

oocytes followed a single intraperitoneal injection of 9,10-dimethylbenz[a]anthracene 

(DMBA), a prototypical PAH (Matikainen et al, 2001). It is possible that Bax expression 

is directly regulated by the PAH-activated AhR which is indicated by the simultaneous 

expression of both AhR and Arnt in oocytes (Matikainen et al, 2001).  
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Figure 8. Diagram showing the apoptotic pathway through receptor dependent and 

mitochondrial dependent mechanisms (adapted from Fulda and Debtain, 2002; Spickle et 

al, 2000; Kroemer and Reed, 2000). 

Although apoptosis remained detectable in Hepa-1 cells after blocking the 

CYP1A1 activity by 1-aminobenzotriazole (Mann et al, 1999), the MCF-7 human breast 

cancer cells are resistant to the dimethylbenz(a)anthracene-induced apoptosis due to 

reduction of CYP1A1 expression (Ciolino et al, 2002). The role of CYP1A1 in induction 

of dimethylbenz(a)anthracene-induced apoptosis in MCF-7 was attributed to its 

metabolization of this compound into a genotoxic forms that are able to bind to DNA 

leading to apoptosis (Ciolino et al, 2002).  

8.B. Role of AhR in Cellular Proliferation 

 Interestingly, the AhR increases cellular proliferation (hyperplasia) by stimulating 

c-myc expression (Kim et al, 2000). The proposed mechanism involves the association of 

the AhR with the Rel A subunit of the NF-κB producing a complex that was able to 

cotransactivate the c-myc expression in non-malignant MCF-10F breast epithelial and 

malignant Hs578T breast cancer cells (Kim et al, 2000).  
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9-Role of AT-II Cell Apoptosis in Remodeling of Lung Parenchyma 

 Apoptosis or programmed cell death is known to play a role in tissue remodeling, 

as shown by remodeling of lung mesenchymal cells during the reparative phase of acute 

lung injury in humans (Polunovsky et al, 1993). Apoptosis is responsible for resolution of 

AT-II cell hyperplasia in patients with acute lung injury (Bardales et al, 1996).  AT-II 

cell proliferation can be induced in different animal models by exposure to oxygen, 

ozone, asbestos, LPS (Ulich et al, 1994) silica (Albrecht et al, 2001; Friemann et al, 

1999; Williams et al, 1993; Panos et al, 1990), coal dust (Friemann et al, 1999) and 

carbon black (Harkema et al, 2003). Recently, apoptosis has been demonstrated in the 

human epithelial cell line A459 and primary rat AT-II cells following exposure to 

ambient air particles of different sizes (Hetland et al, 2003). 

10- Modification of CYP1A1-Induced Carcinogenesis by Exposure to Particles 

 The effect of respirable particles, such as silica and coal dust, on CYP1A1 

induction has been studied to improve risk assessment for lung cancers in smoking coal 

miners. In one epidemiological study, the lung cancer risk in smoking miners was not 

significantly different or even less than other smoking populations (Costello et al, 1974). 

Recent epidemiologic studies have suggested that lung cancer in coal mine workers may 

not be detected because of the healthy worker-survivor effect (Albrecht et al, 2002). 

 The International Agency for Research in Cancer (IARC), has classified 

crystalline silica, in the form of quartz or cristobalite, as a carcinogen (IARC, 1997). Nine 

of the studies done by the IARC showed a higher risk of human lung cancer associated 

with silicosis (Castranova and Vallyathan, 2000). Previous findings were suspicious 

about the carcinogenicity of silica because of the limited evidence of carcinogenicity in 

humans, although there was sufficient evidence for carcinogenicity in animals (Holland, 

1990).  

 It has been demonstrated that intratracheal exposure to silica alone without 

exposure to CYP1A1 inducers enhances the CYP1A1-dependent enzymatic activity (7-

ethoxyresorufin-o-deethylase, EROD) in rat lung microsomal fraction (Miles et al, 1993). 

A recent case control study showed that occupational exposure to coal dust significantly 

enhanced the lung cancer risk in women (Rachtan, 2002). However, lung cancer was 
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mostly absent in people exposed concomitantly to silica and other lung carcinogens, such 

as PAH of cigarette smoke (Cocco et al, 2002). Based upon abundant epidemiological 

studies, Chechoway and Franzblau (2000) came up with the conclusion that risk 

assessment should interpret and manipulate silicosis and lung cancer as distinct entities 

whose cause/effect relationships are not necessarily associated. 

 The CYP1A1 induction is sometimes modified in mixed exposures relative to 

single exposures. For example, exposure to kerosene soot significantly increased the 

induction of CYP in rat lung; however, the co-exposure of the kerosene and chrysolite 

(asbestos) simultaneously significantly depleted the microsomal content of CYPs (Arif et 

al, 1994). Also, exposure to occupational crystalline silica dust decreased the activity of 

the CYP1A1-dependent enzymatic process, 7-ethoxyresorufin-O-dethylase (EROD), in 

rat lungs (Battelli et al, 1999) and rabbit lungs (Ghanem et al, 2003) exposed to a potent 

CYP1A1 inducer, beta-naphthoflavone. Furthermore, EROD activity was suppressed in a 

dose-dependent manner by intratracheal exposure to respirable, poorly soluble, coal dust 

particles in rats (Ghanem et al, 2003). 

11-Pattern of CYP1A1 Expression in Cellular Proliferation 

The CYP1A1-dependent enzymatic activity, EROD, was undetectable in 

proliferating cultures of mouse lung epithelial cells, but the level became detectable once 

cultures were confluent (Reiners et al, 1992). It was suggested that EROD expression 

was regulated as a function of the proliferative process of the cell culture. An inverse 

relationship between cellular proliferation and CYP expression was suggested by the 

observation that proliferative regeneration of hepatic cells following partial hepatectomy 

was associated with lower CYP protein levels and activities than normal liver (Hino et al, 

1974; Presta et al, 1980; Klinger and Karge, 1987; Ronis et al, 1992).  It seems that 

hepatic cells are allocated to replication, rather than transcription, with a main function of 

DNA being proliferate and regenerate the cells after hepatectomy (Liddle et al, 1989; 

Waxman, 1989; Morgan et al; 1985; Steer, 1995). Moreover, an inverse relationship 

exists between another form of CYP, CYP2B1 apoenzyme, and the proliferation level of 

AT-II cells, as previously concluded (Lag et al, 1996). The CY2B1 apoenzyme was 

lowest in AT-II cell culture during the most active proliferative stage, which coincided 
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with presence of largest number of cells in S-phase and highest proliferating cell nuclear 

antigen (PCNA) expression (Lag et al, 1996).    
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CHAPTER 3 

RESPIRABLE COAL DUST PARTICLES MODIFY CYTOCHROME P4501A1 

(CYP1A1) EXPRESSION IN RAT ALVEOLI  

ABSTRACT 

Cytochrome P450 1A1 (CYP1A1) plays a critical role in the metabolism of 

cigarette smoke-containing organic compounds, such as polycyclic aromatic 

hydrocarbons (PAHs), producing highly reactive intermediates that bind to cellular DNA 

and trigger lung tumors. Epidemiological studies report that coal miners, most of whom 

are smokers, have a lower risk of developing lung cancer than non-miner smokers 

(Costello et al, 1974). Therefore, we hypothesized that exposure to coal mine dust (CD) 

might be a modifying factor for development of pulmonary carcinogenesis by altering 

cell-specific CYP1A1 induction.   To investigate this hypothesis, we evaluated the ability 

of CD particles (less than 5 microns) to prevent induction and activity of pulmonary 

CYP1A1. For that purpose,   male, Sprague Dawley rats (220-270g) were intratracheally 

instilled with 0, 2.5, 10, 20, 40 mg coal dust/rat or vehicle (saline).   Eleven days later, 

the pulmonary CYP1A1 was induced in all rats by intraperitoneal (IP) injection of β-

naphthoflavone (BNF: 50mg/kg IP), as a well-known potent CYP1A1 inducer.  After 3 

days, rats were sacrificed and the metabolic activity of CYP1A1 was measured as 7-

ethoxyresorufin-O-deethylase (EROD) activity in fresh lung microsomes.  The amount of 

CYP1A1 protein in lung microsomes was quantified by Western blot using a polyclonal 

rabbit anti-rat CYP1A1 antibody. Cell-specific expression of CYP1A1 was quantified by 

dual immunofluorescent staining of CYP1A1 and cytokeratins 8/18, cytoskeletal proteins 

highly expressed in alveolar type II (AT-II) cells. Our data showed a dose-dependent 

suppression of EROD activity by CD exposure (r2= 0.399, p=0.0028).  Western blot 

CYP1A1 protein was significantly lower in rats exposed to the highest dose (40 mg/rat) 

of CD and BNF than rats treated with BNF alone (p=0.031). Immunoflourescent 

examination showed a significant reduction of CYP1A1 area colocalized in AT-II cells in 

rats exposed to CD 20 and 40 mg and BNF compared to rats treated with BNF alone.   

These findings suggest that CD exposure modifies BNF-mediated CYP1A1 induction by 

altering its cell specific localization in pulmonary alveoli and interferes with CYP1A1 

metabolic activity.  
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INTRODUCTION 

Studies of CYPs have recently received a great interest because these enzymes 

play critical roles in metabolism of drugs, carcinogens, dietary xenobiotics and steroid 

hormones (James and Whitlock 1999).  The CYP proteins are heme-containing proteins, 

which are members of a gene super-family that contains almost 1000 members in species 

ranging from bacteria to plants and animals (Hasler et al, 1999).  Cytochrome P4501A1 

(CYP1A1) has garnered particular interest because of its involvement in the conversion 

of organic compounds, like polycyclic aromatic hydrocarbons (PAH) in cigarette smoke, 

into carcinogenic intermediate species (Crespi et al, 1989; Shimada et al, 1989; Eaton et 

al, 1995) that can initiate lung cancer development.  Moreover, the expression of 

CYP1A1 can be induced at the transcriptional level by its substrates.  The transcriptional 

regulation of the CYP1A1 gene by polycyclic aromatic hydrocarbons (PAH) is mediated 

through ligand-dependent activation of the aryl hydrocarbon receptor (AhR), which 

translocates to the nucleus upon activation, dimerizes to the aryl hydrocarbon receptor 

nuclear translocator (Arnt) protein and binds to the xenobiotic responsive element (XRE) 

in the regulatory region of the CYP1A1 gene (Ma and Whitlock 1997; Tian et al, 1999,)    

Coal is a fossil fuel mined all over the world.  Coal mine dust generated during 

underground coal mining results in significant respiratory exposure to coal miners.   In 

addition to the carbon, which is the main component of coal, it also contains oxygen, 

nitrogen, hydrogen, and trace elements, including non-coal minerals.  The trace elements 

may include copper, nickel, cadmium, boron, antimony iron, lead, and zinc (Sorenson et 

al, 1974).  Some of these trace elements can be cytotoxic and carcinogenic in 

experimental models (Castranova 2000).  Mineral contaminants include quartz, kaolin, 

mica, pyrite and calcite (Parkes, 1994).  Coal dust inhalation is associated with 

development of a respiratory disease of coal miners called coal workers’ pneumoconiosis 

(CWP). CWP is categorized according to severity into simple and complicated CWP.  In 

the simple form, black dust macules appear and consist of dust-laden macrophages 

concentrated near respiratory bronchioles.  In complicated CWP, also described as 

progressive massive fibrosis (PMF), the nodules are larger (exceeding 1 cm diameter), 

and more numerous.  These nodules contain increased amount of collagen, coal dust, and 

inflammatory cells (Castranova, 2000).   
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Epidemiological studies demonstrated that lung cancer in coal miners occurs less 

frequently than in general population after adjustment for age and smoking (Meijers et al, 

1991; Kuempel, 1995).  Instead, coal dust exposure is associated with lung scarring 

(pulmonary fibrosis) and accumulation of particles in dust-laden alveolar macrophages 

(Castranova, 2000).  Most of the studies of lung cancer in coal miners are difficult to 

interpret because most of the miners are smokers.  This means that they are exposed to a 

mixed exposure of the coal dust particles and the carcinogenic compounds of cigarette 

smoke.  Recent studies from our laboratory suggest that exposure to another occupational 

dust, crystalline silica, decreases the activity of the CYP1A1-dependent enzymatic 

process, 7-ethoxyresorufin-O-dethylase (EROD), in rat lungs exposed to a potent 

CYP1A1 inducer, beta-naphthoflavone (Battelli et al, 1999).  Silicosis in rats is also 

associated with the appearance of new population of alveolar epithelial cells without 

detectable expression of CYP1A1 or CYP2B1, even after exposure to inducers of 

CYP1A1 (Battelli et al, 1999; Levy et al, 1997).  If other fibrogenic inhaled particulates, 

such as coal dust, also reduce the activity of carcinogen-activating CYP1A1-dependent 

enzymatic processes, the expected result would be a reduction in the lung cancer 

attributable to chemical carcinogens activated by CYP1A1, such as the PAH in cigarette 

smoke.  Therefore, we investigated the effect of coal dust inhalation on the metabolism of 

chemical carcinogens in lungs of rats.  These studies will help determine if the effect of 

silica on CYP1A1 is a unique feature of silica dust or is a characteristic of pulmonary 

exposure to other respirable particles, which cause alveolar epithelial cell hypertrophy 

and hyperplasia, such as coal dust.  For that purpose, we designed a dose response 

experiment in rats to investigate the dose-dependent effect of CD. We injected beta-

naphthoflavone (BNF) of the PAH family, as a potent and specific CYP1A1 inducer (Lee 

et al, 1998). The study utilized the immunofluorescent localization of critical proteins and 

morphometric analysis of immunofluorescent-stained tissue to investigate the effect of 

coal dust on the expression of CYP1A1 in the deep lung.  We also determined the 

CYP1A1-dependent enzymatic activity in lung microsomes.  Lungs from the same rats 

were microscopically examined to determine histopathological alterations associated with 

changes in cell specific protein expression.  The amount of CYP1A1 protein in the lung 

microsomes of control and exposed rats was determined by Western blot analysis using 
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polyclonal rabbit anti-rat CYP1A1 antibodies.  To our knowledge, we demonstrated for 

the first time that CD exposure inhibits the PAH-induced CYP1A1-dependent enzymatic 

activity in a dose responsive fashion. This suppression was also observed in pulmonary 

alveoli of CD exposed rats in immunofluorescent-stained section. In addition, the amount 

of CYP1A1 detected by western blot in lung microsomes was also diminished.  

MATERIALS AND METHODS 

Animals 

Male Sprague-Dawley rats (~220-270g) were purchased from Hilltop Labs 

(Scottsdale, PA).  Upon arrival, the rats were kept in an AAALAC-approved barrier 

animal facility at NIOSH.  Food and water were supplied ad libitum. Rats were housed in 

Shoebox cages on autoclaved hardwood and cellulose (Alpha-Dri) bedding in HEPA 

filtered laminar-flow, ventilated cage racks (Thoren). Rats were allowed to acclimatize in 

their cages for at least 7 days before the experiment. 

Experimental Design 

By using a research randomizer program (www.randomizer.org), rats were 

randomized into five groups, of 4 rats each. Each group was intratracheally (IT) instilled 

with 0, 2.5, 10, 20, or 40 mg CD /rat (~ 0, 1, 4, 8, and 16 mg/100 gm BW) suspended in 

sterile saline. Eleven days later, rats were intraperitoneally (IP) injected with the 

CYP1A1 inducer beta-naphthoflavone (BNF) (50 mg/kg BW) suspended in filtered corn 

oil. Three days after BNF injection, rats were euthanized and the right lung lobes were 

homogenized for collecting the lung microsomes whereas the left lungs were inflated 

with 10% neutral buffer formalin for histopathology.  

Coal Dust Particles:  

       The size of these particles was less than 5 microns with surface area 7.4 m2/g.  The 

particles contained 0.34 % total iron of which 0.119 % is surface iron.  The particles were 

weighed, placed in a scintillation vial, covered with foil and heat sterilized in an oven at 

160 ºC for 2 hours.  Coal dust suspensions were prepared from heat-sterilized samples 

using non-pyrogenic sterile saline (Abbott Laboratories, North Chicago).   
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Intratracheal Instillation 

 The coal dust particles were suspended in sterile saline at a concentration of 8.3, 

33.3, 66.6, and 133.3 mg/ml.  Rats received either 0.3 ml of this suspension (~2.5, 10, 20, 

and 40 mg/rat) or equivalent dose of saline (vehicle). The rats were anesthetized by 

intraperitoneal (IP) injection of sodium methohexital (Brevital, Eli Lilly Indianapolis, IN) 

and were intratracheally instilled using a 20-gauge, 4-inch ball-tipped animal feeding 

needle as previously described ( Porter et al, 2002) 

Beta-Naphthoflavone (BNF) Preparation 

       Solutions of 5 % BNF (Sigma, St. Louis, MO) in corn oil (50 mg/ml) were prepared 

one day before intraperitoneal (IP) injection.  Prior to use, the corn oil was filtered with 

non-pyrogenic Acrodisc 25 mm syringe filter (0.2 µm in diameter) (Pall Gelman 

sciences, Ann Arbor, MI) to assure sterility.   The solution suspension was vortexed until 

the particles were evenly suspended and then sonicated in Ultronics sonicator (Mahwa, 

NJ) for 15 minutes before injection.  BNF solutions were injected once, IP, at a dose of 

50 mg/kg 3 days before sacrifice. 

Euthanasia 

Euthanasia was induced by IP injection of 0.5 ml 26% sodium pentobarbital 

(Sleepaway®, Fort Dodge Animal Health, Fort Dodge, IA) 2 weeks after CD exposure. 

Necropsy 

The lungs and attached organs including tracheobronchial lymph node, thymus, 

heart, aorta, and esophagus were removed.  The right lung lobes were collected and 

weighed at necropsy for microsomal preparation while the left lung lobe was inflated 

with 3 cc of 10% neutral buffered formalin (NBF).  Tracheobronchial lymph nodes, liver, 

spleen, and right and left kidneys were also fixed in 10 % NBF.  Fixed tissues were 

trimmed the same day, routinely processed in a tissue processor and embedded in paraffin 

the following morning. Tissue sections of left lung were stained with Hemotoxylin and 

Eosin (H&E). Additional 5-micrometer sections were used for immunofluorescence. 
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Microsomal Preparation 

Lung microsomes were prepared for determination of EROD activity as an 

indicator of the CYP1A1-dependent enzymatic activity, 7-pentoxyresorufin-O-deethylase 

(PROD) activity as an indicator of the CYP2B1-dependent enzymatic activity, and for 

Western blot analysis of CYP1A1 and CYP2B1 proteins.  Microsomes were prepared as 

previously described (Flowers and Miles, 1991; Ma et al, 2002). At the necropsy, the 

right lung lobes were weighed and chopped 4 times with a Mc1Iwain tissue chopper 

(Mickle Engineering Co., Gomshall, Surrey, UK) set at slice thickness of 0.5 mm.  Then, 

the chopped lung tissues were suspended in ice-cold incubation medium (145 mM KCL, 

1.9 mM KH2PO4, 8.1 mM K2HPO4, 30 mM Tris-HCL, and 3 mM Mg Cl2; pH 7.4) at a 

ratio of 1gm lung to 4 ml incubation medium.  The suspended solution was homogenized 

using a Teflon-glass Potter-Elvejhem Homogenizer (Emerson, NJ) through 16 complete 

passes.  The cell nuclei and debris were removed by centrifugation of the homogenate at 

2500 rpm for 10 minutes in a Sorvall Model RC2-B refrigerated centrifuge (Ivan Sorvall 

Co., Northwalk, CT).  Mitochondria were slowly deposited by three sequential 

centrifugations for 20 minutes each at 5,000, 9,000, and 13,000 rpm to reduce the 

mitochondrial contamination of the microsomes.  The resulting supernatant was ultra-

centrifuged at 40,000 rpm for 75 minutes in a Beckman Model L5-50 Ultracentrifuge 

(Beckman Instruments, Palo Alto, CA) to get the microsomal fraction (Figure 1).  The 

pellet was re-suspended in the incubation medium in a ratio equal to the original lung 

weight (i.e. 1gm lung/ 1ml medium) and frozen at -80C until assayed. 

 

 

 

 



                                                        

 

52

 
Figure 1. Four main steps involved in the microsomal preparation of rat lungs. The 

process included (1) Collecting the right lung lobes, (2) Chopping the lungs, (3) 

Homogenizing lungs, and (4) Centrifugation of lung homogenate to remove the cellular 

and nuclear debris and to reduce the mitochondrial contamination of the microsomal 

fraction 
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Determination of the Total Lung Proteins  

The protein content of lung microsomes was measured by the bicinchoninic acid 

(BCA) method as previously described (Smith et al, 1985, Ma et al, 2002) using the BCA 

protein assay kit (Pierce, Rockford, IL) in a spectra Max 250 Spectrophotometer 

(Molecular Devices Corporation, Sunnyvale, California). Bovine serum albumin was 

used as the standard. 

Measurement of EROD and PROD activities 

  EROD and PROD activities were measured as previously described (Burke et al, 

1985 and Ma et al, 2002) using a luminescence spectrometer model LS-50 (Perkin-

Elmer, Norwalk, CT). A 10 µM concentration of 7-ethoxyresorufin (Sigma, St. Louis, 

MO) solution prepared from 2.35 µg 7-ethoxyresorufin in 1 ml DMSO was used for the 

standard curve following each run.  EROD and PROD activities were expressed as 

picomoles of the produced resorufin per minute per milligram microsomal protein 

(pmol/min/mg protein). 

Western Blot Analysis 

Western Blot analysis of lung microsomes was conducted as previously described 

(Ma et al, 2002). Each gel received 75 µg of microsomal protein for CYP1A1 and 20 µg 

for CYP2B1.  The nitrocellulose membrane was probed using a polyclonal rabbit anti-rat 

CYP1A1 antibody (Xenotech, Kansas city, KS) or a monoclonal mouse anti-rat CYP2B1 

antibody (Xenotech) at 4ºC overnight. Blocking of non-specific binding was made by 

incubating the membrane with a solution of 1% dry milk in tris-buffered saline/tween 

(TBS/T) for 1 hour at room temperature with rocking. The membranes were then 

incubated for 1 hour at room temperature with a goat anti-rabbit antibody (Santa Cruz 

Biotech. Inc., Santa Cruz, CA) for CYP1A1 or goat anti-mouse antibody (Santa Cruz 

Biotech. Inc., Santa Cruz, CA) for CYP2B1. For positive control, liver microsomes of 

BNF-treated rat (Xenotech) were used for CYP1A1 or liver microsomes of 

phenobarbital-treated rats (Amersham, Piscataway, NJ) for CYP2B1.  The CYP1A1 and 

CYP2B1 proteins were detected by enhanced chemiluminescence (ECL) reagent kit 

(Amersham).  The x-ray films (Fuji Film Corp., LTD., Tokyo, Japan) containing protein 

bands were scanned by the Eagle Eye II scanner (Stratagene, La Jolla, California 92037) 
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with Eagle Sight software. The scanned images were quantified by ImageQuant software 

version 5.1 (Molecular Dynamics, Sunnyvale, CA). The quantification of western blot by 

this software calculates the volume under the surface area created by a 3-D plot of the 

pixel locations and pixel intensities.  Each sample was quantified three times, and then 

the averages of the values were used to calculate the individual measurement. The data 

were expressed as a percentage of the CYP1A1 or CYP2B1 positive controls. 

Dual Immunofluorescence Technique  

Paraffin-embedded, formalin-fixed sections from the left lung lobe were used for 

immunofluorescent detection of CYP1A1 and cytokeratins 8/18, which are cytoskeletal 

proteins used as markers of AT-II cells (Kasper et al, 1993).  Briefly, 

immunofluorescence was a two-day procedure (Figure 2) where in the first day the slides 

were first heated in the oven at 60 ºC for 10 to 20 minutes. The slides were deparaffinized 

and rehydrated in xylene in 3 sequential 6 minute immersions, a 3 minute immersion in 

100 % alcohol, 3 minutes in 90 % alcohol, 3 minutes in 80 % alcohol, and 5 minutes in 

distilled water.  The antigenicity of hidden epitopes was retrieved using 0.01M disodium 

ethylenediamine tetraacetate (Fischer Scientific, Fair Lawn, New Jersey), pH 8 in a 

microwave heating procedure. Specifically, slides in the EDTA solution were heated for 

1 minute and 45 seconds in the microwave on high and then for 6 minutes on defrost.  

EDTA solution was then added to replenish the solution which had been evaporated and 

the slides were reheated for 6 additional minutes on defrost.  To avoid the non-specific 

binding of the primary antibodies, the slides were blocked with 5 % BSA in PBS (IgG 

free) (Sigma) for 10 minutes at room temperature (RT).  Then the slides were rinsed with 

distilled water and blocked with 5% pig serum in PBS (Biomeda Corporation, Foster city, 

CA) for 10 minutes at RT.  The slides were then rinsed with distilled water and primary 

antibodies were applied.  We used a polyclonal Guinea pig anti-cytokeratins 8/18 

antibody (RDI, Flanders, NJ) for staining of cytokeratins 8/18 at a 1:50 dilution in PBS.  

For CYP 1A1 staining, a polyclonal, affinity purified, highly cross-absorbed rabbit anti-

rat CYP1A1 antibody (Xenotech,) was used at a 1:5 dilution.  Both primary antibodies 

were applied by utilizing the capillarity generated between each pair of slides in a 

microprobe holder (Fischer Scientific).  The slides were kept at room temperature 

overnight during which the primary antibodies were allowed to bind to the antigen 
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(CYP1A1 and cytokeratins 8/18).  On the second day, the slides were incubated in the 

oven at 37 ºC for 2 hours after which they were thoroughly rinsed with distilled water and 

the secondary antibodies were dropped onto the slides.  A FITC-labeled, donkey anti-

Guinea pig IgG (Research Diagnostic Inc., Flanders, NJ) was used to detect cytokeratins 

8/18 at a 1:50 dilution with PBS.  For CYP1A1 detection, Alexa 594-conjugated goat 

anti-rabbit antibody (Molecular probes, Eugene, Oregon) was applied at a dilution of 1:20 

with PBS. The secondary antibodies were allowed to bind to the primary antibodies for 2 

hours in the dark. For the negative control, the primary antibodies were omitted and 

replaced by rabbit serum.  Slides were rinsed with distilled water, cover slips were 

applied using gel mount (Biomeda Corp., Foster City, CA), and the slides were allowed 

to dry for 2 hours. Ten images were captured using a digital camera (Quantix 

Photometrics, Roper Scientific Inc, Trenton, NJ ) fitted on an Olympus photomicroscope 

(OlympusAX70, Olympus American Inc., Lake Success, NY)  by a researcher blinded to 

the exposure status. For each slide, 5 images were captured from proximal alveolar 

regions (PAR) where most of the dust particles tend to accumulate (Nikula et al, 1997). 

Another 5 images were obtained from random alveolar (RA) regions, which were not 

located near visible alveolar ducts.  The aim of selecting those 2 areas is to assure 

sampling of the alveolar regions representative of the site of coal dust particle deposition. 

Five images were also captured from the terminal bronchiolar region to count the number 

of CYP1A1-positive bronchiolar epithelial cells. The digital camera settings for contrast, 

brightness, and gamma were held constant for all slides. The staining was described as 

being specific due to the absence of background staining, distinct cellular localization of 

CYP1A1 and cytokeratins 8/18, and absence of the staining in the negative control slides 

where rabbit serum was applied instead of the primary antibodies. 
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Figure 2. Immunofluorescent technique for staining tissue sections. The procedure 

included: 

1- Preparation of tissue section of 4 µm thickness from paraffin embedded tissue. 

2- Deparafinization and rehydration of tissue sections by emersion in xylene and 

alcohol. 

3- Retrieval of protein epitopes by using EDTA and microwave heating. 

4- Blocking the non-specific antibody binding by pig serum and bovine serum 

albumin. 

5- Addition of the primary antibody to allow binding to the antigen then labeling the 

primary antibody with fluorescent-conjugated secondary antibody. 

6- Examination of the fluorescent emission from the secondary antibody under 

fluorescent microscope at standard settings. 
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 Quantification of CYP1A1 and Cytokeratins 8/18 by Morphometric Analysis  

The lung area occupied by red fluorescence (representing CYP1A1 expression), 

green fluorescence [representing cytokeratins 8/18, which are cytoskeletal proteins highly 

expressed in primitive epithelia such as the cuboidal AT-II cells (Kasper et al, 1993)], 

and colocalized (concomitantly occurring) red and green fluorescence were quantified by 

using commercial morphometry software (Metamorph Universal Image Corp.). The area 

of CYP1A1 colocalized with cytokeratins 8/18 in AT-II cells was obtained by the 

following formula:  

                     C = R x T where; 

C stands for the area of CYP1A1 that co-expressed (colocalized) with 

cytokeratins 8/18 in AT-II cells, 

R stands for the percent of CYP1A1 expressed in AT-II cells measured by the 

Metamorph software, and 

T stands for the total CYP1A1 area expressed in the whole alveolar septum 

(including AT-II and alveolar non-type II cells) measured by the Metamorph software. 

Moreover, the proportional CYP1A1 expression in AT-II cells, which is the 

relative area of CYP1A1 to cytokeratins 8/18 expression, was calculated from the 

following formula:  

                                        P =   R x T where; 
                                                                G 

C, R, and T as defined above and,  

G is the total green area of cytokeratins 8/18 expressed in AT-II cells.  

P is the proportional CYP1A1 expression within areas occupied by the AT-II marker, and 

adjusts for increases associated with AT-II hyperplasia. 

By this method, we were able to analyze the expression pattern in AT-II cells. 

Moreover, the hyperplasia of AT-II cells was also determined by measuring the area 

containing the FITC expression (green area), which represents the expression of 

cytoskeletal proteins 8/18 by AT-II cells. The threshold ranges for red and green colors 

were held constant during morphometric analysis of all images.  
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Histopathology: 

Slides were interpreted by a board-certified veterinary pathologist blinded to the 

exposure status of the individual slides. Changes assessed in each slide included: AT-II 

cell hyperplasia and hypertrophy, alveolitis (inflammation), and hyperplasia of bronchus-

associated lymph tissue. Histopathologic changes were scored for severity and 

distribution from zero to five as previously described (Hubbs et al, 1997). Briefly, 

severity was scored as none (0), minimal (1), mild (2), moderate (3), marked (4), or 

severe (5). Distribution was scored as none (0), focal (1), locally extensive (2), multifocal 

(3), multifocal and coalescent (4), or severe (5). The pathology score is the sum of the 

severity and distribution score. 

Statistical Analyses 

The dose responsive effects of coal dust instillation on EROD, PROD, and 

Western blot for CYP1A1 and CYP2B1 were assessed using linear regression analysis. 

Pairwise comparisons of each dose to the control group were analyzed using one-way 

analysis of variance followed by Dunnett’s test. AT-II hyperplasia and hypertrophy based 

on immunofluorescence were analyzed using one-way analysis of variance followed by 

Dunnett’s test to compare each dose to the control group. Pathology scores were analyzed 

using the nonparametric Kruskal-Wallis test followed by the Wilcoxon Rank-sum test for 

pairwise comparisons. All differences were considered statistically significant at P<0.05. 
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RESULTS 
 
Effect of Coal Dust Exposure on EROD and PROD 

The IT instillation of coal dust suppressed the CYP1A1-dependent enzymatic 

activity (EROD) in a dose-dependent fashion (r2=0.399, p=0.0028) (Figure 3). Rats 

exposed to 40 mg/rat CD with BNF had a significant lower EROD activity than those 

exposed to control saline with BNF (p=0.036). Similarly, CYB2B1-dependent enzymatic 

activity (PROD), the major CYP isoform in rat lungs, showed a dose-dependent reduction 

by CD exposure using linear regression (r2= 0.458, P=0.001). PROD was significantly 

reduced in rats exposed to 20 and 40 mg/rat CD with BNF compared to control, saline 

with BNF (p 0.017) (Figure 4).  
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Figure 3. BNF-induced CYP1A1-dependent enzymatic activity (EROD) is suppressed in 
a dose dependent fashion by intratracheal exposure of rats to 0, 2.5, 10, 20, or 40 mg coal 
dust suspended in the vehicle (saline). EROD activity is significantly reduced at 40 
mg/rat CD exposure comparing to the control saline. Values are means and standard error 
of 4 rats /group. EROD was measured as pmol/min/mg microsomal protein. All rats 
received 50 mg/kg BNF IP 3 days before sacrifice. The linear regression best fit curve 
showing the reduction of EROD activity with increasing CD exposure. * Significantly 
different from control at p<0.05.  
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Figure 4. Lung microsomal CYP2B1-dependent enzymatic activity (PROD) is reduced in 
a dose-dependent manner by CD exposure.  Values are means and standard error of 4 rats 
/group. PROD was measured as pmol/min/mg microsomal protein. All rats also received 
IP BNF (50mg/kg) 3 days prior to sacrifice.  The linear regression best fit curve showing 
the reduction of PROD activity with increasing CD exposure. * Significantly different 
from control at p<0.05.  
 
Western Blot Analysis 

CYP1A1 

A representative Western blot of the pulmonary microsomal preparations is 

shown in Figure 5A. The results were expressed as the percentage of the CYP1A1 

positive control. The amount of CYP1A1 quantified by Western blot in CD and BNF-

exposed was less than in rats exposed to BNF without CD. Groups treated with the 

highest dose of CD (40mg/rat) showed a significant reduction of CYP1A1 protein 

compared to control (p=0.03) (Figure 5A and B). 
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Figure 5. In A, a sample of Western blot showing significant repression of CYP1A1 
protein in lung microsomes by coal dust exposure (p=0.029) at high dose of CD 
(40mg/rat) analyzed by linear regression.  Microsomal protein (75 µg) from a positive 
control (liver microsomes of BNF-treated rats) (lane 1), pulmonary microsomes from 
BNF-treated rats (lane 2 & 4) and CD and BNF-exposed rats (2.5mg CD lane 3, 10mg 
CD lane 5, 20mg CD lanes 6 &7, and 40 mg CD lane 8) were subjected to SDS gel 
electrophoresis using Tris-glycine SDS running buffer and blotted to nitrocellulose 
membranes.  The membranes were probed with rabbit anti-rat CYP1A1 antibody 
overnight at 4ºC then goat anti-rabbit antibody as described in the materials and methods.  
Lane 9 is the molecular weight standard. In B, the data from multiple Western blots is 
expressed as the percentage of CYP1A1 positive control from quantification of four 
different samples from each exposure group. The values represent means ± SE, n=4. 
*significantly different from control group at P < 0.05. 
 
CYP2B1 

The CYP2B1 protein, the major isoform of CYP subfamily in the rat lung, was 

measured in the lung microsomes.  CYB2B1 is not inducible by BNF in rat lungs but can 

be induced in liver by phenobarbitals. The amount of lung CYP2B1 detected by Western 

blot was numerically, but not significantly, less in CD-exposed rats than control rats (6A 

and B). The results were expressed as the percentage of CYP2B1 positive control. 
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Figure 6. The effect of coal dust on CYP2B1 in the lungs of BNF-exposed rats assessed 
by Western blot using linear regression analysis. Microsomal protein (20 µg) from 
control rats (saline and BNF) and exposed (CD and BNF) rats were subjected to SDS gel 
electrophoresis using Tris-glycine SDS running buffer and blotted against nitrocellulose 
membrane. The membranes were probed with mouse anti-rat CYP2B1 antibody 
overnight at 4ºC then goat anti-mouse antibody as described in the materials and 
methods. The amount of lung CYP2B1 detected by Western blot is decreased, although 
not significantly, by coal dust exposure. In A, the first lane (c) is the positive CYP2B1 
control (liver microsomes of Phenobarbital-treated rats), the last lane is the molecular 
weight standard, while all other treatments are indicated above the lanes. In B, 4 different 
samples for each treatment were quantified and the data expressed as a percentage of 
positive CYB2B1 control. Values are means ± SE, n=4. 
 
Effect of CD Exposure on Histopathological Changes of Lung Alveoli 

 AT-II cell hyperplasia (increased cell number) and hypertrophy (increased cell 

size), alveolitis (alveolar inflammation), and lymphoid hyperplasia of tracheobronchial 

lymph node were the major histopathological changes assessed in sections stained by H 

and E. Accumulation of dust-laden macrophages in the alveolar spaces was a noteworthy 

finding in coal dust exposed alveoli (Figure 7). Rats exposed to CD (2.5, 10, 20, and 

40mg/rat) showed significant hyperplasia and hypertrophy of AT-II cells compared to 

control (p<0.001 in all treatment doses); Figure 8. In addition, alveolitis (alveolar 

inflammation) was significantly increased in rats exposed to 2.5, 10, 20, and 40mg/rat 

CD (p=0.01, p=0.006, p=0.002, p=0.002, respectively) (Figure 8) 
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Figure 7. Microphotograph of tissue section stained with H & E showing AT-II cellular 
hyperplasia and hypertrophy. Dust-laden macrophages are also shown as dark spots in the 
alveolar spaces. These histopathological changes are absent in control (B). The bar is 20 
µm. 
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Figure 8: Histopathological changes in rat lungs after intratracheal exposure to coal dust. 
Changes were scored for severity and distribution of alveolitis and AT-II hyperplasia and 
hypertrophy as described in the material and methods. * indicates that alveolitis is 
significantly higher than control (saline/BNF) at p < 0.05. + indicates that AT-II 
hyperplasia and hypertrophy are significantly higher than control (saline/BNF) at p < 
0.05. Data were analyzed by the non-parametric Kruskal-Wallis test followed by 
Wilcoxon Rank-Sum test for pairwise comparisons. Values are means ± SE, n=4. 
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Results of dual Immunofluorescence: 

The result of immunofluorescent changes by CD exposure is summarized in Table 

1. 

I-Pattern of CYP1A1 Expression in Alveolar Region of the Lung 

A specific pattern of rat CYP1A1 expression was observed in the alveolar region 

of the lung by immunofluorescence examination.  In rats exposed to BNF alone (control 

rats), the CYP1A1 expression (red-labeled area in Figure 9) was mostly localized to the 

endothelium of the pulmonary vasculature and in cells of the alveolar septum.  

Statistically, areas of CYP1A1 expression were significantly smaller in AT-II cells than 

in other cells (NT-II cells) of the alveolar septum (p=0.003) (Figure 9B and C).   

II-Pattern of Cytokeratins 8/18 Expression in the Alveolar Region of the Lung 

 The green fluorescent Cytokeratins 8/18 were clearly expressed in the cytoplasm 

of cuboidal cells that were mainly localized on the corners of the alveolar septum (Figure 

9A). These cells have the plump morphology characteristic of AT-II cells of the alveolar 

septa. No green fluorescence was visualized in the other types of cells of the alveolar 

septum, which were then designated as alveolar NT-II cells (Figure 9A). 
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III-Effect of CD on AT-II Cell Proliferation by Immunofluorescent Examination 

 The area of expression of cytoskeletal proteins (cytokeratins 8/18), which are 

highly expressed in the cytoplasm of AT-II was quantified morphometrically and 

expressed as square micrometer. In the proximal alveolar (PA) regions, this area was 

significantly larger in rats exposed to 20 and 40 mg CD/rat and BNF than control (Figure 

10A), indicating hyperplasia and hypertrophy of AT-II cells ( p= 0.027 and p=0.02, 

respectively) (Figure 10 A and 11B). On the contrary, no significant change of AT-II 

hyperplasia and hypertrophy was detected in the random alveolar (RA) regions of CD-

exposed rats compared to control (Figure 10B and Figure 12B,). 
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Figure 10. Morphometric quantification of area of cytokeratins 8/18 expression in AT-II 
cells. In A, the area was quantified in the PA regions and showed a significant increase of 
cytokeratins 8/18 expression in rats exposed to 20 and 40 mg/rat coal dust and BNF 
compared to control. In B, no significant change was detected in cytokeratins 8/18 
expression of the RA regions of rats exposed to CD vs. control. Data were analyzed by 
one way analysis of variance followed by Dunnett’s test. * indicates significant 
difference from control at p<0.05. Values are means ± SE, n=4. 
 

IV-Effect of CD exposure on CYP1A1 Expression by Alveolar Non-Type II (NT-II) 

Cells  

1-CYP1A1 Expression by Alveolar NT-II Cells in Saline vs. Coal Dust Exposed Rats: 

A- In proximal Alveolar (PA) Regions  

The area of expression of CYP1A1 (measured in square micrometer) by alveolar 

NT-II cells (all cells in the alveolar septum except for AT-II cells) of PA regions (regions 

of coal dust accumulation) was significantly lowered in groups exposed to 20 mg and 40 
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mg/rat CD and BNF compared to BNF control group (p=0.007, p=0.008, respectively) 

(Figure 11A). This was indicated by the reduction of the red-labeled area that is not co-

expressed with green-labeled area (NT-II cells stained red only for CYP1A1) as shown in 

Figures 12A and B. 

B- In Random Alveolar (RA) Regions  

No significant change was detected in the area of CYP1A1 expression by alveolar 

NT-II cells of RA regions (regions of minimum particle aggregation) of groups exposed 

to CD and BNF compared to control group. This result was illustrated by morphometric 

quantification of CYP1A1 expression in alveolar NT-II cells where none of the 

cytokeratins 8/18 were localized with CYP1A1 (Figure 11B and Figure13A and B). 
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Figure 11. Morphometric quantification of immunofluorescent-stained sections for 
CYP1A1 and cytokeratins 8/18 of NT-II cells of the PA and RA regions of control and 
CD-exposed rats. In A, the CYP1A1 expression area in alveolar NT-II cells is 
significantly reduced in groups exposed to 20 and 40 mg/kg CD and BNF compared to 
that exposed to BNF alone. However in B, no significant changes in the area of CYP1A1 
expression in NT-II cells of the RA regions of CD-exposed rats compared to control. 
Values are means ± SE, n=4. * Significantly different from control at p<0.05.  
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2-CYP1A1 Expression by Alveolar NT-II Cells in PA Regions vs. RA Regions of CD-

Exposed Rats: 

 CYP1A1 expression by alveolar NT-II cells was compared in 2 different alveolar 

regions, the proximal versus random alveolar regions. The area of CYP1A1 expression 

measured in alveolar NT-II cells of PA regions was significantly reduced compared to the 

RA region in rats exposed to 20 and 40 mg/kg CD and BNF (p=0.048, p=0.022, 

respectively) (Figure14 ).  
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Figure 14. Morphometric quantification of CYP1A1 expression in NT-II cells of PA 
regions vs. RA regions. The area was measured in square micrometer. * indicates that 
CYP1A1 expression is significantly lower in NT-II cells of PA regions compared to RA 
regions in rats exposed to 20 mg/rat CD and BNF at p<0.05.    indicates that CYP1A1 
expression is significantly lower in NT-II cells of PA regions compared to RA regions in 
rats exposed to 40 mg/rat CD and BNF at p<0.05. Values are means ± SE, n=4.  
 

V-Effect of CD Exposure on CYP1A1 Expression by AT-II Cells 

1-CYP1A1 Expression by AT-II Cells in CD-Exposed Rats vs. Control in the PA 

Regions 

A- Relative Area (proportion) of CYP1A1 Expression in green AT-II Cells 

The relative area of red fluorescent CYP1A1 expression to the green fluorescent 

area of cytokeratins 8/18 expression was calculated by the formula described in the 

materials and methods section, and was designated as proportional CYP1A1 expression, 
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which determines the amount of CYP1A1 expression within AT-II cells with correction 

for changes in AT-II cell number.  The proportional CYP1A1 expression in AT-II cells of 

PA regions was significantly reduced in rats exposed to 20 mg (p=0.005) and 40 mg 

(p=0.003) CD and BNF compared to control (Figure 15A). 

B- Area of CYP1A1 Colocalized with Cytokeratins 8/18 in AT-II Cells 

The expression of CYP1A1 in AT-II cells is visualized as a yellow fluorescence 

due to concomitant expression of the red-fluorescent CYP1A1 and green-fluorescent 

cytokeratins 8/18 (Figure 9C).  The expression (co-localization) of CYP1A1 in AT- II 

cells of the PA regions measured in µm2 was significantly lowered in rats exposed to 20 

mg/rat (p=0.007) and 40 mg/rat (p=0.002) CD and BNF compared to control (Figure 

15B). This was indicated by the reduction of the red areas that colocalized (co-expressed) 

with green areas in rats receiving higher exposures of CD (Figure12B). 
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Figure 15. Morphometric quantification of proportional CYP1A1 expression (A) and 
colocalization area (B) in AT-II cells. In A, * indicates significant reduction of fractional 
CYP1A1 expression in AT-II cells in the PA regions of rats exposed to 20 and 40 mg/rat 
CD with BNF compared to the PA region of BNF-treated rats at p<0.05. in B, * indicates 
significant reduction of area of CYP1A1 expression in AT-II cells (colocalization area) in 
PA region exposed to 20 and 40 mg/rat CD with BNF compared to control at p<0.05. 
 

2-CYP1A1 Expression by AT-II cells in CD-Exposed Rats vs. Control in RA Regions 

The expression of CYP1A1 in AT-II cells (either the co-localization or the 

proportional expression) was not significantly affected by CD exposure in RA regions 

(data not shown). 
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3-CYP1A1 Expression by AT-II Cells in PA Regions vs. RA Regions of CD-Exposed 

Rats: 

 The area of CYP1A1 expression measured in AT-II cells showed no significant 

changes in PA regions when compared to RA regions in CD-exposed groups compared 

with BNF-exposed groups (data not shown) 

IV-Effect of CD Exposure on CYP1A1 Expression in the Whole Alveolar septum: 

The area of CYP1A1 expression was measured in the alveolar septum as a total 

red area, which represent the expression by all different types of cells at the septum.  A 

significant reduction was detected with 20 and 40 mg/rat CD in PA regions (Figure 16A). 

However, there was no change observed in RA regions (Figure 16B). In addition, in rats 

exposed to 20 and 40 mg of CD, CYP1A1 expression in RA regions was significantly 

less than in PA regions (Figure 17). 
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Figure 16. Morphometric analysis of area of CYP1A1 expression in the whole alveolar 
septal cells of the PA (A) and RA (B) regions. In A, the total CYP1A1 area localized in 
PA regions lung alveoli of rats exposed to 20 and 40 mg CD and BNF is significantly 
lower than BNF-exposed . In B, however, no significant change is observed Values 
represent means ± SE (n=4).  *Significantly different from control saline/BNF at P<0.05. 
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Figure 17: Quantitative analysis of the total alveolar area expressing CYP1A1 in PA 
regions vs. RA regions. The total CYP1A1 area expressed in all alveolar cells of PA 
regions is significantly decreased in rats exposed to 20 and 40 mg CD and BNF 
compared to that of the RA regions. The letter a above the bar indicates a significant 
difference from RA regions of rats exposed to 20 mg CD and BNF at p<0.05. the letter b 
above the bar indicates a significant difference from RA regions of rats exposed to 40 mg 
CD and BNF at p<0.05. Values represent means ± SE (n=4). 
 

IIV-Effect of CD on CYP1A1 Expression by the Non-Ciliated Bronchiolar Epithelial 

(Clara) Cells  

 The number of the CYP1A1-positive non-ciliated bronchiolar epithelial cells was 

counted per micrometer of the basement membrane. No significant change in the number 

of CYP1A1-positively stained cells was observed in BNF and CD-exposed rats compared 

to BNF-exposed rats (Figure 18 and 19). 
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Figure 18. Effect of CD exposure on CYP1A1 expression by terminal non-ciliated 
bronchiolar (Clara) cells. The number of Clara cells positive for the CYP1A1 
immunofluorescent signal per µm of basement membrane showing no significant 
difference between CD exposed rats and control. Values represent means ± SE (n=4).  
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Table 1. Summary of morphometric quantification of immunofluorescent-stained sections 

against CYP1A1 and cytokeratins 8/18 in rat lungs exposed to coal dust. 
 

 saline CD 2.5 mg CD 10 mg CD 20 mg CD 40 mg 

                Region  

parameter 

PA RA PA RA PA RA PA RA PA RA 

Cytokeratins 8/18 
expression 

471.1 
± 

152.6 

509.1 
± 

133.7 

236.7 
± 

152.6 

44.8 
± 

133.7 

907.2 
± 

152.6 

421.2 
± 

133.7 

829.5* 

± 152.6 
462.4 

± 
133.7 

1160* ± 
152.6 

512.8 

± 
133.7 

Area of CYP1A1 in 
AT-II cells (µm2) 

124.5 
±  

40.4 

79.2  
±  

54.5 

75.5 
±  

40.4 

67.7  
±  

54.5 

129.9 
±  

40.4 

57.3 
±  

54.5 

35.4  
±  

40.4 

87.8 
±  

54.5 

24.0  ±  
40.4 

181.9 
±  

54.5 
proportional CYP1A1 
expression in AT-II 
cells  

0.274 
± 

0.043 

0.260 0.319 
± 

0.043 

0.163 0.141 
± 

0.043 

0.175 0.039* 

± 0.043 
0.187 0018* ± 

0.043 
0.275 

Area of CYP1A1 in 
NT-II cells (µm2) 

540.9 
± 

76.86 

711.5 
±  

127 

471.2 
± 

76.86 

328.8 
±  

127 

372.1 
± 

76.86 

353.9 
±  

127 

136.1*☼ 
±  

76.86 

328.9 
±  

127 

144.2*☼ 
±  

76.86 

537.2 
±  

127 

Area of CYP1A1 in 
all alveolar cells 
(µm2) 

665.4  
± 

103.0 

575.0 
± 

173.6 

546.8 
± 

103.0 

396.4 
± 

173.6 

498.7 
± 

103.0 

411.3 
± 

173.6 

171.4 *☼ 

± 103.0 
416.8 

± 
173.6 

168.2*☼  
± 103.0 

719.2 
± 

173.6 
CYP1A1 positive 
Clara cells/µm  

0.0482 ± 
0.0062 

0.0446 ± 
0.00482 

0.0525 ± 
0.0018 

0.0513 ± 
0.00784 

0.0317 ± 
0.00785 

 

The values presented are means ± SE, n=4. * means significant difference from the 

control (saline) regarding the same region. ☼ indicates significant difference of PA 

regions from RA regions of the same treatment group. 
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DISCUSSION 

Some epidemiological studies report that coal miners, primarily smokers, have a 

lower risk of developing lung cancer compared with control non-miners (Costello et al, 

1974). Moreover, lung cancer risk in workers exposed to the more toxic particles, such as 

silica, was mostly absent when workers were concurrently exposed to other workplace 

lung carcinogens, such as polycyclic aromatic hydrocarbons (PAHs) (Cocco et al, 2001).  

Such data concerning lung cancer in miners are difficult to interpret because miners are 

exposed to a mixture of environmental pollutants; such as the coal dust particles and the 

PAH in cigarette smoke 

Using rats with induced CYP1A1, as it is in cigarette smokers, our EROD data 

showed that coal dust exposure suppressed induced CYP1A1 activity in a dose-dependent 

fashion (Figure 3). Previous studies in our laboratory showed that IT exposure of rat 

lungs to crystalline silica (20mg/rat) significantly suppressed induced EROD activity 

(Battelli et al, 1999). Although coal dust is less cytotoxic than silica (Castranova, 2000), 

it is able to inhibit the CYP1A1-dependent enzymatic activity (EROD) in a dose 

responsive manner suggesting that CD particles are among the toxic respirable 

compounds, that include silica, that interfere with CYP1A1 metabolic activity in rat 

lungs.  Western blot analysis was performed using a polyclonal rabbit anti-rat CYP1A1 

antibody to detect CYP1A1 protein expression in the lung microsomes. The amount of 

CYP1A1 protein in the gel was reduced at all doses of CD treatment, but was significant 

only in the highest dose (40 mg/rat) (Figure 5A and B).  This suggested that the reduction 

in the CYP1A1 activity upon exposure to CD is partly attributed to the reduction of 

CYP1A1 expression and protein synthesis by different pulmonary cells.  

The activity of CYP2B1, measured in lung microsomes as PROD activity, 

showed a dose-dependent reduction by exposure to coal dust (Figure 4).  CYP2B1 is the 

major constitutive isoform of cytochrome P450s in rat lungs (Martin et al, 1993; 

Guengerich et al, 1982).  CYP2B1 expression is not inducible in the rat lung (Guengerich 

et al, 1982).  BNF, a specific CYP1A1 inducer, significantly up-regulates CYP1A1 

expression in the lung parenchyma (Lee et al, 1998, Jones et al, 1983, and Sesardic et al, 

1990). Western blot analysis for CYP2B1 showed a reduction of the protein, albeit not 
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significant, in BNF and CD-exposed rats compared to rats receiving BNF alone. This 

suggested that CD exposure modified not only the CYP1A1 expression and activity but 

also the activity of CYP2B1 in the rat lung.  

Cell-specific expression and localization of CYP1A1 were studied by 

immunofluorescence followed by quantification using morphometric analysis. 

Immunofluorescence was employed in this study because preliminary studies indicated 

that it was more sensitive than enzymatic immunohistochemistry and useful for localizing 

the sites of pulmonary CYP1A1 through double labeling (Battelli et al, 2001).  

Morphometric analysis of immunofluorescent-stained sections for CYP1A1 demonstrated 

that within the alveolar septum, CYP1A1 expression area was generally localized to 

flattened cells morphologically suggestive of alveolar type I cells (Figure 9D). By using 

colocalization to sites of cytokeratins 8/18 expression to determine AT-II CYP1A1 

expression, it was demonstrated that most of the alveolar area expressing CYP1A1 is not 

occupied by AT-II cells.  This was not surprising because alveolar type I epithelial cells 

cover greater than 90% of the internal surface area of the lungs (Wang et al, 2002; 

Gonzalez and Dobbs, 1998) whereas type II epithelial cells account for less than 10% 

(Castranova et al, 1988). Moreover, it has been observed by in situ hybridization in the 

lungs of 3-methylcholanthere-induced rats that CYP1A1 labeling was visualized in other 

alveolar wall cells that could be either capillary endothelial cells or alveolar type I 

pneumocytes (Pairon et al, 1994).  An overall reduction of CYP1A1 expression within 

the alveolar septum was observed in BNF-induced rats exposed to 20 mg and 40 mg 

CD/rat compared to those exposed to BNF induction and saline. These results were 

consistent with EROD activity, suggesting that both CYP1A1 protein expression in the 

alveolus and its metabolic function throughout the lung are suppressed by CD exposure. 

Localization of CYP1A1 in terminal non-ciliated bronchiolar epithelial (Clara) cells was 

also investigated because Clara cells are considered the major area of CYP1A1 

expression in lungs since they are rich in agranular endoplasmic reticulum (Plopper, 

1983) where CYP1A1 is localized. The number of CYP1A1-positive cells was counted 

per micrometer of the basement membrane. This number did show a significant change in 

rats exposed to CD and BNF compared to the control. This result suggested that CD 

modified CYP1A1 expression at the alveolar rather than the bronchiolar level, 
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presumably because the CD particles tend to aggregate in alveolar regions adjacent to the 

alveolar duct.  

Previous morphometric studies demonstrated that the alveolar tissue represents 

87% of the total lung volume in rats where the volume of alveolar type I cells is more 

than twice that of alveolar type II cells (Carpo et al, 1983 and Perkinton, et al, 1982). 

Following lung injury at the alveolar level, the damage of type I pneumocytes is repaired 

by progenitor alveolar type II cells that can proliferate and regenerate the damaged 

alveolar surface and may differentiate into type I cells, thus reconstituting the alveolar 

architecture (Melloni et al, 1995; Wang et al, 2002). The hypertrophy and hyperplasia of 

AT-II cells were obvious in immunofluorescence (Figure 12B) and histopathology 

(Figure 7A). Despite the increasing numbers (hyperplasia) and size (hypertrophy) of AT-

II cells, AT-II cell-specific CYP1A1 expression decreased as many of these cells were 

devoid of detectable CYP1A1 (Figure 12B). This suggested that coal dust exposure was 

associated with the appearance of new populations of AT-II cells but that many of these 

cells did not contain detectable amounts of CYP1A1. A number of investigators have 

reported that CYP activities and the level of CYP apoproteins decreased after partial 

hepatectomy and regeneration of hepatic cells (Hino et al, 1974; Presta et al, 1980; 

Klinger and Karge, 1987; Ronis et al, 1992). The priority of hepatic cell function during 

regeneration is the key factor where the replication, but not the transcription, is the main 

function of DNA regenerating the cells (Liddle et al, 1989, Waxman, 1989, Morgan et al, 

1985, and Steer, 1995).  One possible explanation for our findings may be that like 

regenerating hepatocytes, AT-II cells during the hyperplasia and hypertrophy, are mainly 

devoted to proliferation and not to expressing CYP1A1. Consistent with that were the 

higher levels of CYP2B1 protein expression and mRNA in freshly isolated AT-II cells, 

but these levels diminished in the cell culture (Lag et al, 1996).  

 Histopathological changes assessed in stained sections showed that CD exposure 

enhanced the pulmonary inflammatory response (Figure 7B and 8). Lung inflammation 

was characterized by intra-alveolar and interstitial accumulation of macrophages and rare 

neutrophils. The dust-laden macrophages were enlarged and often aggregated in clumps 

of two or more cells. The alveolar inflammation was often centered around alveolar ducts 

where CD particles were deposited. These findings were consistent to those described by 
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Nikula et al, (1997). It has been demonstrated that the ability of the liver to metabolize 

drugs in rodents is impaired following inflammatory stimuli that are accompanied by a 

depletion of total hepatic CYP content and a declined microsomal metabolism of drug 

substrates (Ghezzi et al, 1986; Bissell and Hammaker, 1976). In other similar studies, the 

experimentally-induced inflammatory reactions resulted in a reduction of the microsomal 

CYP concentration and their metabolizing activity in the liver (Beck and whitehouse, 

1974; Mahu and Feldman 1984; Endo et al, 1981; Baer and Green, 1981). In addition, 

exposure of cultured hepatocytes to inflammatory stimuli decreased the total microsomal 

CYP, CYP-catalyzed enzyme activities, and levels of CYP proteins and mRNAs 

(Morgan, 1997). Although relatively little data describes the effect of inflammation on 

extrahepatic CYP expression and some evidence suggests that extrahepatic CYPs are 

likely to be differentially regulated by different inflammatory stimuli  (Morgan, 2001). 

The CD-induced pulmonary inflammation shown in our experiment was associated with 

suppression of pulmonary CYP1A1 induction and CYP2B1expression and activity in the 

rats. Studies of possible roles of pro-inflammatory mediators are underway. 

In conclusion, our data showed for the first time that CD exposure had a 

modifying effect on the BNF-induced CYP1A1 expression via altering its cell specific 

localization in rat lung. CD was able to suppress the activity and expression of CYP1A1 

as demonstrated by the dose-dependent reduction of EROD activity and diminution of 

CYP1A1 apoprotein measured by Western blot analysis. Not only was CYP1A1 

induction modified by CD exposure, but the activity of another CYP isoform, CYP2B1, 

was suppressed in a dose-dependent fashion. The overall results suggested that coal dust 

exposure was a complex modifier of the CYP1A1 induction in rat lungs and had the 

ability to trigger pulmonary inflammation and reduction of CYP1A1 induction and 

activity.  
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CHAPTER 4 

SUPPRESSION OF RABBIT PULMONARY CYP1A1 INDUCTION BY 

RESPIRABLE CRYSTALLINE SILICA 

ABSTRACT 

Silicosis is an inflammatory and fibrosing occupational lung disease which is also 

associated with increased risk of developing lung cancer. However, inflammation 

interferes with the biological activation of polycyclic aromatic hydrocarbon (PAH) 

procarcinogens to ultimate carcinogens by cytochrome P450 1A1 (CYP1A1). In addition, 

the carcinogenic effects of crystalline silica and cigarette smoke, which contains PAHs, 

are subadditive in some epidemiologic studies. Investigating the modifying effect of 

silicosis on PAH metabolism will facilitate interpretation of epidemiologic studies of 

mixed exposures to cigarette smoke and crystalline silica. We have, therefore, 

investigated the hypothesis that acute and chronic silicosis can modify PAH-induced 

pulmonary carcinogenesis by altering cell specific induction of pulmonary CYP1A1. 

Acute or chronic silicosis were induced in male New Zealand White rabbits by 

intratracheal instillation of 300 mg respirable crystalline silica 2 weeks or 1 year prior to 

sacrifice, respectively. Chronic silicosis was principally localized to one side of the lung 

to minimize the signs of respiratory diseases. Control rabbits received intratracheal 

instillation of saline. CYP1A1 was induced in all exposure groups by intraperitoneal 

injection of beta-naphthofalvone (BNF, 80mg/kg IP) 2 and 3 days prior to sacrifice. 

CYP1A1 function as assessed by 7-ethoxyresorufin-O-deethylase (EROD) activity was 

significantly lower in BNF-exposed rabbits with acute (p=0.01) or chronic (p=0.02) 

silicosis than in rabbits receiving BNF alone. By Western blot, CYP1A1 protein was 

significantly reduced in acute (p=0.02) but not chronic silicosis. Cell specific expression 

of CYP1A1 was assessed in sections of lung by immunofluorescent double labeling for 

CYP1A1 and cytokeratins 8/18, cytoskeletal proteins expressed in Alveolar type II (AT-

II) and airway epithelial cells. In the alveolus, total septal expression of CYP1A1 per unit 

area was decreased in both acute and chronic silicosis. In terminal bronchioles, both acute 

and chronic silicosis resulted in a decrease in the number of Clara cells expressing 

CYP1A1 per mm basement membrane. These results suggest that silicosis suppresses the 
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induction of CYP1A1 activity and alters the alveolar and bronchiolar cellular expression 

of CYP1A1 in rabbits. 

INTRODUCTION 

 CYP1A1 is the microsomal enzyme responsible for the bioactivation of pro-

carcinogenic compounds such as benzo[a]pyerene, producing biologically active 

intermediates that bind to the DNA to produce adducts and lung cancer (Gelboin, 1980; 

Crepsi et al, 1989; Shimada et al, 1989; Anttila et al, 1991; Eaton et al, 1995). CYP1A1 

is associated with the endoplasmic reticulum of many cells, particularly those of 

xenobiotic-metabolizing organs such as liver and lungs (Anttila et al, 1991). It is well 

known that CYP1A1 is induced via an aryl hydrocarbon receptor (AhR)-ligand binding 

mechanism. The binding of a ligand, such as a PAH, causes dissociation of a 90-KDa 

heat-shock protein (Hsp90) and other cytoplasmic factors such as the AhR-interacting 

protein (AIP) (Ma and Whitlock, 1997) from the AhR in the cytoplasm, which leads to 

translocation of the AhR to the nucleus where it dimerizes with another structurally 

related protein, AhR nuclear translocator (Arnt). This heterodimer binds to the xenobiotic 

responsive element (XRE) in the regulatory region of the CYP1A1 gene initiating its 

expression and induction (Takahashi et al, 1996; Abbot et al, 1999; Ke et al, 2001; 

Hayashi et a., 1994).  The promoter region of CYP1A1 assumes a particular nucleosomal 

configuration in un-induced cells that could explain its barely detectable constitutive 

expression (Morgan and Whitlock, 1992; Whitlock, 1999). Upon induction, the CYP1A1 

promoter undergoes a change in chromatin structure and loss of the nucleosomal 

configuration that facilitates the attachment of promoter-binding proteins (Wu and 

Whitlock, 1992).  The changes in the chromatin structure and configuration at the 

CYP1A1 promoter area are AhR-dependent and Arnt-dependent processes (Whitlock, 

1999).          

 Silicosis is an occupational lung disease resulting from exposure to the crystalline 

form of the mineral silicon dioxide or silica (Driscoll and Guthrie, 1997). Silicosis is 

characterized by inflammation and fibrosis in the lower respiratory tract. Because silica is 

one of the most abundant minerals in the earth’s crust, there are significant opportunities 

for exposure particularly in occupations or activities involving cutting, shaping, or 

polishing of rock. The increase in silicosis during the past years is mainly attributed to the 
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development of tools and processes that generate high concentrations of fine particles 

(<10µm in diameter), which are able to penetrate into the deep lung tissues, and elicit 

their toxic effects (Craighead et al, 1998; Castranova et al, 1996; Peters 1986). 

Crystalline silica is toxic to a wide range of animal species including humans (Holland, 

1990; Saffiotti and Stinson, 1988; Green and Vallyathan, 1995). In humans, there are 

different forms of silica-induced lung disease differentiated according to the nature and 

progression of the lung pathology (Driscoll and Guthrie, 1997).  Radiologically, simple 

and progressive massive fibrosis can be identified. Simple silicosis is characterized by the 

presence of small opacities (silicotic nodules) (Ziskind et al, 1986; Seaton, 1984) with a 

diameter of less than 10 mm (Weissman and Wagner, 2001) without respiratory 

impairment unless accompanied by tuberculosis (Snider, 1978; Craighead et al, 1988). 

Simple silicosis may develop into progressive massive fibrosis (PMF) when congregation 

of these silicotic nodules occurs followed by destruction of lung tissue and a significant 

disturbance in lung function (Snider, 1978). Different types of silicosis are recognized; 

chronic, accelerated, and acute silicosis (Weissman and Wagner, 2002). The occurrence 

and development of these forms is determined by the amount of exposure and the total 

cumulative silica inhalation (Green and Vallyathan, 1995; Ziskind et al, 1986; Seaton, 

1984). Chronic silicosis is characterized by the appearance of simple silicotic nodules 10-

30 years post exposure (Weissman and Wagner, 2002) because it usually progresses very 

slowly. However, in some cases, nodules may congregate to form PMF (Weissman and 

Wagner, 2001). Accelerated silicosis, which develops in less than 10 years after exposure 

to silica (Weissman and Wagner, 2002), is accompanied by a rapid progression to PMF, 

severe lung dysfunction, and is life threatening (Ziskind, 1986; Seaton, 1984). Acute 

silicosis, on the other hand, is the form that develops very rapidly [a few weeks to 5 years 

post exposure (Weissman and Wagner, 2002)] after exposure to high concentrations of 

silica and is associated with severe alveolar and interstitial inflammation, alveolar 

proteinosis, and rapid respiratory failure (Driscoll and Guthrie, 1997).  

 In a recent study by Cocco and co-workers, (Cocco et al, 2001) who worked with 

modifications of silica-associated lung cancer by other workplace lung carcinogens, lung 

cancer risk in miners exposed to respirable silica alone was higher than those exposed to 

silica and PAH. The effect of crystalline silica exposure on the CYP1A1- mediated 



 

 
 

83

metabolism of pulmonary chemical carcinogens, such as those in cigarette smoke is 

unclear.  Addressing this effect is biologically important because many chemical 

carcinogens, such as PAHs in cigarette smoke are metabolized in the lung by CYP1A1 

enzyme systems to produce more active carcinogens (Crepsi et al, 1989; Shimada et al, 

1989; Eaton et al, 1995) that may result in an increased risk of developing lung cancer.  

Recent studies from our laboratory suggest that silicosis decreases the activity of 

CYP1A1-dependent enzymatic activity, 7-ethoxyresorufin-O-deethylase (EROD), in the 

lungs of rats exposed to a potent CYP1A1 inducer, beta-naphthoflavone (Battelli et al., 

1999). Cell specific studies on CYP1A1 expression and localization showed that silicosis 

led to the appearance of a new population of hypertrophied and hyperplastic alveolar 

epithelial cells without immunohistochemically detectable CYP1A1 or CYP2B1 (Levy et 

al, 1995; Battelli et al, 1999).  

 However, a debate concerning the species differences between rats and humans 

regarding their response to inhaled particles has emerged (Mauderly, 1997). Moreover, 

the pattern of particle retention as well as the lung tissue response to respirable particles 

in rats may not be predictive of those of primates who are exposed to poorly soluble 

particles particularly at high occupational exposures (Nikula et al, 1997). Such debates 

necessitate the need for investigating the effect of respirable crystalline silica on the 

induction of the carcinogen-activating system, CYP1A1, in the lung by conducting a 

study on a non-rodent model. Rabbits were used to investigate our hypothesis because a 

model of rabbit silicosis has been previously established (Dale, 1973a; 1973b; Wallace et 

al, 2002). Moreover, a high degree of homology between rabbits and human has been 

reported regarding the critical proteins involved in CYP1A1 induction process, such as 

the AhR and Arnt. (Takahashi et al, 1996).  Based upon the homology studies of AhR 

and Arnt between rabbit and human, and the existence of a rabbit model of silicosis, the 

rabbits were a suitable non-rodent model to illustrate the effect of silicosis on the 

carcinogen-metabolizing enzymatic activity of CYP1A1.                                                                                  

In this study, we have investigated the hypothesis that acute and chronic silicosis 

can alter cell-specific induction of CYP1A1 in the lung, thus modifying the metabolism 

of carcinogenic polycyclic aromatic hydrocarbons in the lung. To avoid concerns about 

differences between human and rodent pulmonary responses to respirable particles, we 
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have investigated this hypothesis using a well-established rabbit model of silicosis 

Wallace et al, 2002). In this model, silicosis progresses with time to produce a fibrosing 

lung disease which occasionally includes silicotic nodules which are remarkably similar 

to the human silicotic nodules, the pathognomonic lesion of silicosis in man. By using a 

partially localized model of chronic silicosis, clinical disease was prevented which 

permitted maintenance of these rabbits for a year. A more generalized model of silicosis 

was used to model acute silicosis and was directly comparable to our previous rat 

studies. Because constitutive CYP1A1 expression is extremely low in both animals and 

man and because CYP1A1 activity is induced in people who smoke, CYP1A1 activity 

was induced in all rabbits in the study using the model polycyclic aromatic hydrocarbon, 

BNF. We have used antibodies to cytokeratins 8/18, proteins which are highly expressed 

in airway epithelium and AT-II cells to help localize sites of expression of CYPIA1 

within the deep lung by immunofluorescence and have found that alveolar expression of 

CYP1A1 is principally localized in cells that are not AT-II cells, that the area of cells 

expressing CYP1Al in the alveolus is reduced in both acute and chronic silicosis and 

that the number of CYP1A1 expressing Clara cells per mm basement membrane is 

reduced in both acute and chronic silicosis. Acute, but not chronic, silicosis caused 

statistically significant reductions in the amount of induced CYPIA1 as determined by 

Western blot. However, CYP1A1-dependent EROD activity induction was reduced by 

both acute and chronic silicosis. Our findings support the hypothesis that acute and 

chronic silicosis decrease CYP1Al induction and modify the cell-specific expression of 

CYP1A1 in the rabbit lung. 

MATERIALS AND METHODS 

Rabbit Treatment and Experimental Procedure 

Male New Zealand White rabbits (3-5 kg) were housed in the AAALAC-

approved Laboratory animal facility of Health Sciences Center of West Virginia 

University. They were fed commercial rabbit pellets and provided water ad libitum. All 

procedures were approved by WVU-ACUC under protocol number 9911-06. Ten of these 

rabbits were designated for chronic exposure and were exposed to a single dose of silica 

or saline using a predominantly unilateral model with lesser distribution to additional 

lobes according to a previously published procedure (Wallace et al, 2002). A year later, 7 
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additional rabbits were randomized into 2 groups, which were intratracheally exposed to 

silica or saline and kept for 2 weeks as a model of acute exposure (i.e. in the chronic 

model, rabbits were exposed once and kept for 380 days, while in the acute model, they 

were kept for only 2 weeks). In the acute model, both lung lobes (right and left) were 

diffusely exposed to silica to be comparable to previous rat studies.   All rabbits, in both 

acute and chronic models, were exposed to a single dose of crystalline silica suspension 

(300 mg/rabbit in saline). CYP1A1 was induced in all rabbits by intraperitoneal (IP) 

administration of 2 doses of BNF of 80mg/kg each suspended in sterile filtered corn oil 3 

and 2 days before sacrificing. 

Preparation of Silica for IT Instillation 

Silica particles (< 5 microns) were weighed into scintillation vials, autoclaved at 

23 PSI, 250 ºF, for 30 minutes on the dry cycle. Rabbits exposed to silica received 300 

milligrams of heat-sterilized silica particles suspended in 3.0 ml non-pyrogenic saline 

(0.9% sodium chloride, Abbott Laboratories, North Chicago, IL) and vortexed to achieve 

a uniformly distributed suspension before IT instillation. The silica suspension used in 

the study was endotoxin-free as shown by endotoxin analysis using the Limulus 

Amebocyte Lysate assay (BioWhittaker; Walkersville, MD) as previously described 

(Olenchock and Stephen, 1990; Porter et al, 1999). 

Intratracheal Instillation (IT) in Rabbits 

Rabbits were first weighed and anesthesized by intramuscular (IM) administration 

of ketamine hydrochloride (Ketaset, Fort Dodge, IA) 5 mg/kg and xylazine hydrochloride 

(Rompun, Bayer Pharma, West Haven, CT) 100 mg/kg. After induction of anesthesia, 

which was marked by absence of palpebral reflex, an endotracheal tube of 3.0 mm 

external diameter was placed into the trachea under the guidance of a laryngoscope 

(Anesthesia Medical Specialties, Inc., Santa Fe Spring, CA) that was inserted through the 

mouth until the arytenoid cartilages were visualized. The presence of the endotracheal 

tube in the trachea was verified by feeling the expiratory air expelled out of its proximal 

tip.  A long polyethylene cannula with a 1.44 mm outer diameter (Becton Dickinson and 

Company, Sparks, MD) was passed through the lumen of the endotracheal tube into the 

trachea. A syringe containing saline or silica suspension was attached to the cannula and 

the plunger was slowly pressed down. For acute silicosis, the cannula was inserted to the 
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level of trachea and the rabbit was kept upright on the sternum. In chronic silicosis, the 

model was predominantly unilateral where the intubated rabbit was placed on its right 

side, the cannula was blindly inserted until it lodged in a bronchus, and then exposed 

(Wallace et al, 2002). The acute exposure method was directly comparable to rat 

intratracheal instillation. The chronic exposure method exposed both sides of the lung 

(Wallace et al, 2002), but because severe lesions were limited to one side of the lung, 

long-term humane maintenance of these rabbits was possible.  Because the technique for 

chronic exposure involves the blind passage of a cannula, the most affected lobes will not 

always be in the same site.  The advantage over bronchoscopy is less trauma, more rapid 

recovery from anesthesia, and involvement of many lobes in mild disease with the more 

severe lesions localized so that the rabbits remain healthy throughout the study but the 

disadvantage is that the localization of the more severe silicotic lesions varies. 

Necropsy 

Rabbits were humanely killed by intravenous injection of pentobarbital 

(Pentobarbital Sodium, Med-Pharmex, Inc., Pomona, CA) 1.5 ml/rabbit, followed 

exsanguination via the abdominal aorta.  The lungs and attached organs including 

tracheobronchial lymph nodes, thymus, heart, aorta, and esophagus were removed.  At 

necropsy, the right lung lobes were tied off, removed, and placed on ice for microsome 

preparation. The left lung lobes were inflated with 30 ml of 10% neutral buffer formalin 

(NBF) to prepare formalin fixed tissues for histopathology and immunofluorescence.  

The fixed tissues were trimmed later the same day, and processed on a Hypercenter XP 

tissue processor (Thermo Shandon, Pittsburgh, PA) over night.  The processed tissues 

were embedded in paraffin the following morning. Sections were routinely stained with 

hematoxylin and eosin (H&E) and with trichrome stain. In addition, five-micrometer-

thick sections were placed on Probe On PlusTm slides (Fischer Scientific, Pittsburgh, PA) 

for immunofluorescent double-labeling. In all rabbits, sampling for histopathology 

involves areas with obvious gross lesions. Due to the presence of silicotic nodules in the 

right lung lobes of two rabbits from the chronic silica-exposed group, the right lung lobes 

from these two rabbits containing the gross morphologic changes of silicosis were used 

for histopathologic examination, while the left lung lobes were used for microsome 

preparation. 
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Microsome Isolation 

All steps of microsomal preparation were carried out at -4ºC to avoid possible loss 

of microsomal activity.  Microsomes were prepared as previously described (Ma et al, 

2001; Flowers and Miles, 1991). Briefly, after necropsy, the right lung lobes (except for 

the 2 rabbits in the chronic exposure group where the left lung lobes were used) were 

weighed and chopped 4 times with a MacIlwain tissue chopper (Mickle Engineering Co., 

Gomshall, Surrey, UK) set at slice thickness of 0.5 mm.  The minced lung tissues were 

suspended in 4 times the lung weight of ice-cold incubation medium(1.9 mM 

KH2PO4,145 mM KCL, 30 mM Tris-HCL, 8.1 mM K2HPO4, and 3 mM Mg Cl2; pH 7.4) 

and homogenized by using a Teflon-glass Potter-Elvejhem homogenizer (Emerson, NJ) 

through 16 complete passes.  Differential centrifugation of the homogenate was used to 

obtain the microsomal pellets. First, the cell nuclei and debris were sedimented by 

centrifugation at 2500 rpm for 10 minutes in a Sorvall Model RC2-B refrigerated 

centrifuge (Ivan Sorvall Co., Northwalk, CT).  To reduce the mitochondrial 

contamination of the microsomes, Mitochondria were slowly sedimented by three 

sequential centrifugations at 5,000, 9,000, and 13,000 rpm for 20 minutes each.  To 

collect the microsomal pellets, the supernatant was ultra-centrifuged for 75 minutes at 

40,000 rpm in a Beckman Model L5-50 Ultracentrifuge (Beckman Instruments, Palo 

Alto, CA). The microsomal pellets were re-suspended in the incubation medium at a ratio 

equal to the original lung weight (1gm lung/ 1ml medium) and frozen at -80 ºC until use. 

Determination of the Total Lung Proteins 

The BCA (bicinchoninic acid) method was used to determine the protein content 

of lung microsomes as previously described (Ma et al, 2002; Smith et al, 1985) using the 

BCA protein assay kit (Pierce, Rockford, IL) and a spectra Max 250 Spectrophotometer 

(Molecular Devices Corporation, Sunnyvale, California). Bovine serum albumin 

was used as the standard. 

Western Blot Analysis 

The CYP1A1 protein in lung microsomes was determined by Western blot 

analysis as previously described (Ma et al, 2002). Briefly, 60 µg of the lung microsomal 

proteins, as measured by BCA method, were subjected to polyacrylamide gel 
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electrophoresis followed by electroblotting of the gel to a nitrocellulose membrane based 

on the manufacturer’s instruction (Invitrogen Corporation, Carlsbad, CA). The protein 

transferred to the nitrocellulose membrane was detected by overnight incubation with a 

polyclonal goat anti-rabbit CYP1A1 antibody (Oxford, Oxford, MI) at 4 ºC.  The 

membrane was then incubated with a donkey anti-goat IgG-HRP (horse radish 

peroxidase) conjugated secondary antibody (Santa Cruz Biotech. Inc., Santa Cruz, CA) 

for 1 hour at room temperature. Liver microsomes of a BNF-treated rat (Xenotech, 

Kansas city, KS) were used for a CYP1A1 positive control.  The ECL MW (molecular 

weight) marker (Invitrogen Life Technology, Carlsbad, CA) was used to determine the 

size of the CYP1A1 band. CYP1A1 protein bound to the membrane was detected by the 

enhanced chemiluminescence (ECL) method using the ECL detection reagent kit 

(Amersham, Piscataway, NJ). Super RX Fuji Medical X-ray film (Fuji Film Corp., LTD., 

Tokyo, Japan) was then exposed at room temperature to the membrane. The intensity of 

the bands on the X ray film was measured by the Strategen Eagle Eye II scanner (La 

Jolla, California) with Eagle Sight software. The density on the scanned images was 

measured using ImageQuant software version 5.1 (Molecular Dynamics, Sunnyvale, 

CA). Each sample was quantified three times to get the averages of the individual 

measurement, then the averages were used for statistical analyses. The Western blot 

results were expressed as a percentage of the CYP1A1 positive control. 

Measurement of the CYP1A1- and CYP2B4-Dependent Enzymatic Activities (EROD 

and PROD) 

Measurement of EROD and 7-pentoxyresorufin-O-deethylase (PROD) activities 

were conducted as previously described, using 150 and 300 µl of microsomal suspension 

(Ma, et al, 2002; Burke et al, 1985), respectively (suspension was prepared by adding an 

amount of buffer equal to original lung weight). PROD is a measure of CYP2B4 activity 

(Cawley et al, 2001). The CYP2B4 in rabbits is analogous to rat CYP2B1 (Oesch-

Bartlomowicz and Oesch, 2003). It is the major constitutively expressed CYP in rabbit 

lung but is present in very minute quantities in liver (Serabjit-Singh et al, 1979; 

Parandoosh et al, 1987).  A standard curve was made after each assay by using a standard 

solution of 2.35 µg of 7-ethoxyresorufin dissolved in 1 ml DMSO to get a 10 mM 

concentration. EROD and PROD activities were measured by a luminescence 
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spectrometer model LS-50 (Perkin-Elmer, Norwalk, CT) that measures the formation of 

fluorescent resorufin catalyzed by CYP1A1 or CYP2B4 activities. EROD and PROD 

activities were expressed as picomoles of the produced resorufin per minute per 

milligram microsomal protein (pmol/min/mg protein).   

Dual Immunofluorescence Technique for CYP1A1 and Cytokeratins 8/18 

The formalin-fixed paraffin-embedded sections of left lung lobe were used for 

double-label immunofluorescence.  Immunofluorescence was conducted to localize the 

CYP1A1 protein within alveolar and terminal non-ciliated bronchiolar cells (Clara). In 

addition, immunofluorescence identified alveolar type II (AT-II) cells by localizing the 

cytokeratins 8/18, which are cytoskeletal proteins expressed mainly in primitive epithelial 

cells such as AT-II  cells and airway epithelium.  The double-label Immunofluorescence 

was a two-day procedure. During the first day, the slides were heated and routinely 

deparaffinized in xylene and rehydrated in alcohol as previously described (Dey et al, 

1999). To maximize the antibody binding, the antigen was retrieved by using 0.01M 

disodium ethylenediamine tetraacetate (EDTA) (Fischer Scientific, Fair Lawn, New 

Jersey), pH 8.0.  Slides immersed in EDTA solution were heated for one minute and 45 

seconds on high in a microwave followed by 2 defrosting cycles of 6 minutes each.  

Tissue slides were blocked with a filtered [(Acrodisc syringe filter with 0.2 µm pore 

diameter (Pall Corporation, Ann Arbor, MI)], freshly prepared solution of 5 %  BSA (IgG 

free) (Sigma, St Louis, MO) in PBS (Ca++ and Mg++ free) (Sigma, St Louis, MO)  for 10 

minutes at room temperature (RT) to minimize the non-specific binding of the primary 

antibodies. Additional blocking was applied by dropping of 5% fresh pig serum 

(Biomeda Corporation, Foster City, CA) in PBS on slides for 10 minutes at RT.  The 

slides were then rinsed and incubated with a primary antibody mixture with a final 

dilution of 1:50 of the polyclonal Guinea pig anti-cytokeratins 8/18 antibody (Research 

Diagnostic Inc., Flanders, NJ) and the polyclonal goat anti-rabbit CYP1A1 antibody 

(Oxford biomedical Research, Inc., Oxford, MI).  The primary antibody mixture was 

applied by holding the slides in pairs in a microprobe holder (Fischer Scientific, Fair 

Lawn, NJ) and allowing the capillary action between each pair to pull the mixture onto 

the slides. The microprobe holder carrying slides was placed in a humidity chamber and 

incubated overnight at room temperature to allow binding of the primary antibodies to the 
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antigen (CYP1A1 and Cytokeratins 8/18).  On the second day, the humidity chamber 

containing the microprobe holder was incubated in the oven at 37 ºC for 2 hours. The 

excess and unconjugated primary antibodies were washed off by thorough rinsing with 

distilled water. Then, a mixture of the secondary antibodies was applied by dropping on 

the slides. The mixture was produced by equal volumes of  a polyclonal FITC-conjugated 

donkey anti-Guinea pig antibody (Research Diagnostic Inc.) at a dilution of 1:50 with 

PBS, and Alexa 594-conjugated rabbit anti-goat antibody (Molecular probes, Eugene, 

OR) for CYP1A1, diluted 1:20 with PBS. Before application, the mixture was 

centrifuged for 5 minutes at 2000 rpm and the supernatant dropped onto the slides, and 

the slides were incubated for 2 hours at RT in the dark.  After rinsing the slides, cover 

slips were applied using gel mount (Biomeda Corp., Foster City, CA) and slides were 

allowed to dry for 2 hours. For the negative control, the same procedure was applied 

except that the primary antibodies were replaced by rabbit serum (BioGenex, San Ramon, 

CA). 

Slides were examined using a fluorescent photomicroscope (OlympusAX70, 

Olympus American Inc., Lake Success, NY) and images were captured using the 40x 

objective and a Quantix cooled digital camera (Photometrics, Tucson, AZ) with QED 

camera plugin software (QED Imaging, Inc., Pittsburgh, PA). Fifteen images were 

captured per slide; five of which were taken from proximal alveolar (PA) regions located 

adjacent to the alveolar duct where most of the silica particles tend to accumulate 

(Warheit, 1989). The purpose of these samples was to assure that images were captured 

from representative alveolar regions with silica deposition. Another five images were 

obtained from random alveolar (RA) regions where no visible alveolar ducts are located. 

An additional five images were obtained from the terminal bronchioles which are lined 

by non-ciliated bronchiolar epithelial (Clara) cells. Since normal alveolar structure 

granulomas and nodular fibrosis, areas showing granulomas and nodular fibrosis were 

avoided during capture of images. The exposure settings of the digital camera were held 

constant for during capture of images from all slides.  For green fluorescence, a FITC 

filter cube with an excitation wave length of 460-500nm was used. For red fluorescence, 

a Texas Red filter cube with an  excitation wave length of 432.5-487.5nm was used. 
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Morphometric Analysis 

A specific software program (MetaMorph Universal Imaging Corp., 

Downingtown, PA) was employed to quantify and measure the area in µm2 of the red 

fluorescence that represents CYP1A1 protein and the green fluorescence that represents 

cytokeratins 8/18. Morphometric analysis was conducted on digital images captured 

using a 40x objective producing a microscopic field with an area of 34466.1 µm2.  The 

threshold range for positive red or green fluorescence was constant throughout the 

analysis process of all images.  These thresholds were selected to measure the area 

occupied by cells expressing green fluorescence in the cytoplasm (which in the alveolus 

indicates AT-II cells), the area of cells demonstrating red fluorescent labeling of 

CYP1A1 in the alveolar septum, and the co-localization of these proteins.  The 

morphometric analysis quantified the following: 

A-Quantification of CYP1A1 Expression in Alveolar Cells that are not AT-II Cells: 

We have designated the alveolar cells without cytokeratins 8/18 expression as 

alveolar non-type II (NT-II) cells. These cells are identified by their low affinity for 

cytokeratins 8/18 staining, which is specific for primitive epithelial cells such as airway 

epithelium and AT-II cells (Kasper, 1993). In the double labeled sections, cells 

expressing CYP1A1 fluoresce red. By morphometric analysis, the percent of CYP1A1 

that is not concomitantly stained with cytokeratins 8/18; that is the percent of area of 

CYP1A1 expression in NT-II cells was estimated. To calculate the area of CYP1A1 

expressed within NT-II cells, we multiplied this percent by the total red (CYP1A1) area 

within alveolar septum.  The resulting area was expressed in µm2. 

B-Quantification of CYP1A1 Expression in AT-II: 

By the aid of morphometric analysis, the CYP1A1 co-expression (co-localization) 

in AT-II was quantified. Colocalization means concomitant expression of CYP1A1 and 

cytokeratins 8/18 in AT-II. Two estimates were obtained to express this co-localization in 

AT-II cells: 

 

 

 



 

 
 

92

1-The Area of CYP1A1 Colocalized to Cytokeratins 8/18:   

This area was estimated, in a similar way as in alveolar non-type (NT-II) cells, by 

multiplying the percentage of CYP1A1 that concurrently stained with cytokeratins 8/18 

by the total septal expression of CYP1A1. This area was expressed in µm2. 

2- The Proportional CYP1A1 Expression in AT-II Cells 

Proportional CYP1A1 expression is a ratio of the area of CYP1A1 expressed in 

AT-II to the total area of AT-II cells. This calculation was necessary because respirable 

particles often cause AT-II cell hyperplasia in the lung. Thus the proportional CYP1A1 

expression in AT-II cells corrects for increases in CYP1A1 in AT-II cells resulting from 

simple increase in the number and area of lung occupied by AT-II cells. This fraction was 

calculated from the following formula: 

                                           F = P x R  where; 
                                                     G  
F= proportional CYP1A1 expression in AT-II 

P= percentage of CYP1A1 colocalized to cytokeratins 8/18 (estimated by morphometry) 

R= red area (total) of CYP1A1 in alveolar septum (measured by morphometry) 

G= green area (total) of AT-II in alveolar septum (quantified by morphometry) 

C-Determination of AT-II Cell Hypertrophy and Hyperplasia: 

AT-II cell hypertrophy and hyperplasia were quantified by measuring the total 

area of green fluorescence in the alveolar septum expressed in each 40x field (34466.1 

µm2).  

D-Determination of CYP1A1 Pattern of Expression in Clara Cells 

The non-ciliated terminal bronchiolar (Clara) cells that stained positively for 

CYP1A1 (red) were counted per micrometer of the basement membrane. Morphometric 

settings helped standardize detection of positive cells consistently to avoid false positive 

or false negative results.  Therefore, this morphometric analysis provided a direct way to 

determine the effect of silica particle exposure on the expression pattern of CYP1A1 in 

AT-II cells, non-AT-II, and Clara cells. 

 Immunofluorescence analysis was used to compare the cell-specific localization 

of CYP1A1 in silica and BNF-exposed groups versus the control (BNF only) group.  
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Within the alveolus, cell-specific CYP1A1 has been compared in the PA regions (which 

are exposed to more silica) and the RA regions (which are random alveolar samples, and 

thus receive variable and lower silica exposure).  

Histopathology: 

Tissue sections from control and silica-exposed lungs were routinely stained with 

hemotoxylin and eosin (H&E) for histopathology. The stained slides were examined and 

interpreted by a board-certified veterinary pathologist while blinded to the exposure 

status of the individual rabbit. The changes of interest to be evaluated were: alveolitis 

(inflammation), AT-II cells hyperplasia and hypertrophy, and hyperplasia of bronchus 

associated lymph tissue. The histopathologic changes were converted to quantitative 

scores based upon the severity and distribution of the morphologic changes as previously 

described (Hubbs et al, 1997). The pathology score for each slide is the sum of the 

severity and distribution scores and the pathology score for each lung is the mean 

pathology score for each slide from that lung (Table 1). 

Table 1. Scoring system for histopathological changes caused by exposure of rabbit lungs 

to silica. 

Score Severity Distribution 

0 None None 

1 Minimal Focal 

2 Mild Locally extensive 

3 Moderate Multifocal 

4 Marked Multifocal and coalescent 

5 Severe Severe 

 

Statistical Analyses 

All analyses were performed with SAS version 8.2 and using Proc Mixed.  

Comparisons between saline treated and silica treated rabbits were performed using one-

way analyses of variance.  Comparisons of CYP1A1 immunostaining between cell types, 

and comparisons between compartments within the alveoli were performed using a 2 

factor repeated measures analysis of variance (treatment by cell type and treatment by 
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compartment).  All pairwise comparisons were performed with Fisher’s LSD.  All results 

were considered statistically significant at p<0.05. 

RESULTS 

 Activities of CYP1A1 and CYP2B4 

EROD (indicator of CYP1A1-dependent enzymatic activity) measured as 

pmol/min/mg of microsomal proteins was significantly reduced in rabbits with acute 

(p=0.011) and chronic silicosis (p=0.0453) exposed to BNF compared to rabbits exposed 

to BNF alone (Figure 1A and B, respectively). Acute exposure to silica particulates 

significantly lowered (p=0.0099) the PROD activity (Figure1C) while chronic exposure 

failed to induce any effect on the CYP2B4-dependent enzymatic activity (Figure 1D). 
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Figure 1. Effect of silicosis on EROD and PROD activities. EROD and PROD activities 
are expressed as pmol/min/mg protein. Acute silicosis significantly suppresses the BNF-
induced-EROD (A) and PROD (C) activity. Chronic silicosis inhibits EROD activity (B) 
and does not have any effect on PROD activity (D). * indicates significant difference 
from control (rabbits received BNF alone) at p<0.05. 
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Western Blot Analysis 

Western blot analysis demonstrated a reduction, albeit not significant, in CYP1A1 

protein in the lungs of BNF-treated rabbits with acute silicosis when compared to the 

lungs of rabbits exposed to BNF alone (Figure 2A and B). In chronic silicosis, no change 

was observed (Figure 3A and B). 
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Figure 2. Western blot analysis of CYP1A1 in lung microsomes of rabbits with acute 
silicosis. 60 µg of microsomal protein were subjected to SDS gel electrophoresis using 
Tris-glycine SDS running buffer and blotted to nitrocellulose membrane.  The 
membranes were probed with goat anti-rabbit CYP1A1 antibody overnight at 4 ºC. then 
donkey anti-goat IgG-HRP was used to visualize the bands. In A, Lane 1 is a positive 
control, while lane 12 is the molecular weight standard. Lanes 3, 4, and 5 are controls 
(acute saline/BNF), whereas lanes 7, 8, 9 and 10 are acute silica/BNF. Lanes 2 and 6 are 
empty. In B, the data expressed as the percentage of positive CYP1A1 control resulted 
from quantifying of western blot of control and silica treated rabbits.  
A                               B                                       

                                                                                      
 
Figure 3. Western blot analysis of CYP1A1 in lung microsomes of rabbits exposed to 
chronic silicosis.  Lane 1 is a positive control, while lane 14 is the molecular weight 
(MW) standard. Lanes 3, 4, 5, 6, 7 are control (chronic saline/BNF), while lanes 9, 10, 
11, 12, and 13 are chronic silica/BNF. Lanes 2 and 8 are empty. In B, the Western 
analysis data were quantified and expressed as the percentage of positive CYP1A1 
control. No significant change of CYP1A1 protein expression was observed in chronic 
silicosis (silica/BNF) exposure versus control (saline/BNF). 
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Dual Immunofluorescence for CYP1A1 and Cytokeratins 8/18 

A- General Distribution of CYP1A1 in the Rabbit Alveolus 

 AT-II (AT-II) cells were identified as green fluorescent (due to the markers, 

cytokeratins 8/18) plump cells localized at the corners of the alveoli, whereas NT-II cells 

were visualized as flattened cells without green fluorescence occupying the majority of 

alveolar septum using immunofluorescence visualization and a narrow beam FITC filter 

cube for excitation. Cells expressing CYP1A1 fluoresced red using a Texas Red filter 

cube for excitation. Superimposition of the red and green fluorescent images permitted 

determination of where CYP1A1 was expressed in the same sites as cytokeratins 8/18 

(Figure 4).  
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Quantification of CYP1A1 by morphometric analysis of proximal alveolar (PA) 

regions revealed its cell specific expression and localization within the alveolus. The area 

of CYP1A1 expression within AT-II cells was significantly lower than that of NT-II cells 

in all groups (acute saline/BNF, acute silica/BNF, chronic saline/BNF, and chronic 

silica/BNF groups) with p values 0.0001, <0.0001, 0.0006, and 0.0171, respectively 

(Figure 5A and C and Figure 6A and C, respectively). A similar pattern of expression has 

been found in random alveolar (RA) regions  where area of AT-II cells expressing 

CYP1A1 is significantly lower than NT-II cells in all groups with p values 0.0097, < 

0.0001, 0.0045, and <0.0001, respectively (Figure 5B and D and Figure 6A and D).  
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Figure 5. Morphometric quantification analysis of CYP1A1 immunofluorecence in AT-II 
cells versus NT-II cells of PA and RA regions BNF-treated rabbits acutely exposed to 
saline or silica. The area of CYP1A1 expression within these cells is expressed in square 
micrometer. * indicates significant difference from area of CYP1A1 expression in NT-II 
cells at P<0.05. 
 
 
 
 



 

 
 

99

 
A                                                                     B 

A
re

a 
of

 C
YP

1A
1 

ex
pr

es
si

on
 (s

qu
ar

e 
m

ic
ro

m
et

er
)

0

100

200

300

400

500

600

*
NT-II cells AT-II cells

Chronic saline/BNF- PA regions

      A
re

a 
of

 C
YP

1A
1 

ex
pr

es
si

on
 (s

qu
ar

e 
m

ic
ro

m
et

er
)

0

100

200

300

400

*

Chronic saline/BNF- RA regions

NT-II cells AT-II cells  
C      D 

A
re

 o
f C

YP
1A

1 
ex

pr
es

si
on

 (s
qu

ar
e 

m
ic

ro
ns

)

0

20

40

60

80

100

120

*
NT-II cells AT-II cells

Chronic silica/BNF - PA regions

   

A
re

a 
of

 C
YP

1A
1 

ex
pr

es
si

on
 (s

qu
ar

e 
m

ic
ro

m
et

er
)

0

100

200

300

400

500

*
NT-II cells AT-II cells

Chronic silica/BNF - RA regions

 
Figure 6. Morphometric quantification analysis of CYP1A1 immunofluorescence in AT-
II cells versus NT-II cells of PA and RA regions BNF-treated rabbits chronically exposed 
to saline or silica. The area of CYP1A1 expression within these cells is expressed in 
square micrometer. * indicates significant difference from area of CYP1A1 expression in 
NT-II cells at P<0.05. 
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B- Effect of Acute and Chronic Silicosis on CYP1A1 Expression by NT-II Cells in PA 

and RA Regions.  

In immunofluorescent-stained slides, the area of CYP1A1 expression quantified 

by morphometric analysis within NT-II cells of the PA regions was significantly reduced 

in rabbits acutely exposed to silica and BNF when compared to the control saline/BNF 

(p=0.0005). The area of CYP1A1 expression within NT-II cells of RA regions of rabbits 

acutely exposed to silica and BNF did not show a significant change compared to the 

control saline/BNF (Figure 7A).  A comparison of CYP1A1 expression within NT-II 

cells in the PA versus the RA regions indicated a significant reduction in the PA regions 

of  rabbits acutely exposed to silica and BNF compared to the RA regions (p=0.0006) 

(Figure 7A). 

In rabbits with chronic silicosis and BNF, the area of CYP1A1 expression 

quantified by morphometric analysis within NT-II cells of the PA regions was 

significantly reduced when compared to control saline/BNF (p=0.0066) (Figure 7B). 

However, the area of CYP1A1 expression within NT-II cells of RA regions of rabbits 

chronically exposed to silica and BNF did not show a significant change compared to the 

control saline/BNF. A comparison of CYP1A1 expression within NT-II cells in the PA 

versus the RA regions indicated a significant reduction in the PA regions of rabbits 

chronically exposed to silica and BNF compared to RA regions (p=0.0243) (Figure 7B). 

Results of CYP1A1 expression in NT-II cells are summarized in Table 2. 
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Figure 7. Morphometric quantification analysis of area of CYP1A1 expression measured 
in µm2 within NT-II cells of the PA regions and RA regions in acute and chronic 
silicosis. In A, the area of CYP1A1 expression within NT-II cells of the PA regions is 
significantly lower in rabbits acutely exposed to silica and BNF than the control 
saline/BNF (indicated by a above the bar). Also, the area of CYP1A1 expression within 
NT-II cells of the PA regions is significantly lower than the RA regions in rabbits acutely 
exposed to silica and BNF (indicated by b above the bar).  In B, the area of CYP1A1 
expression within NT-II cells of the PA regions is significantly lower in rabbits 
chronically exposed to silica and BNF than the control saline/BNF (indicated by c above 
the bar). Also, the area of CYP1A1 expression within NT-II cells of the PA regions is 
significantly lower than the RA regions in rabbits chronically exposed to silica and BNF 
(indicated by d above the bar). In RA regions, no significant change is observed between 
acute and chronic silica with BNF compared to the control (saline/BNF). The letters a, b, 
c, and d indicate significant difference at <0.05. 
 
Table 2. Effect of silica exposure on CYP1A1 expression in NT-II cells of rabbit 
alveoli.  
 
Exposure    PA regions (µm2) RA regions (µm2) 
Acute saline with BNF 327.068 ± 42.257  359.223 ± 110.968 
Acute silica with BNF 44.417   ± 5.212a,b 454.661 ± 45.39 
Chronic saline with BNF 528.445 ± 121.904 261.624 ± 76.238 
Chronic silica with BNF 74.385   ± 26.452c,d 382.002 ± 61.984 
 
Values represent means ± SE, (n=3-5).  
Superscript a indicates significant difference from acute saline with BNF of PA regions at 
p<0.05. 
Superscript b indicates significant difference from acute silica with BNF of RA regions at 
p<0.05. 
Superscript c indicates significant difference from chronic saline with BNF of PA regions 
at p<0.05. 
Superscript d indicates significant difference from chronic silica with BNF of RA regions 
at p<0.05. 
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C- Effect of Silica Exposure on CYP1A1 Expression in AT-II  

1- Proportional CYP1A1 Expression in AT-II Cells 

The proportional expression of CYP1A1 in AT-II cells was calculated by a 

formula described in the Materials and Methods and measures expression of CYP1A1 in 

AT-II cells corrected for increases in AT-II area. In acute silicosis with BNF, the 

proportional CYP1A1 expression in AT-II cells of PA regions was significantly lower 

(p=0.0293) than control saline with BNF (Figure 9A). Although, in rabbits exposed to 

acute silica and BNF, the proportional CYP1A1 expression in AT-II cells of PA regions 

was lower than that of RA regions (Figure 9A, Table 3), this reduction was not 

statistically significant.   

 In chronic silicosis (chronic silica/BNF), by contrast, the proportional CYP1A1 

expression in AT-II cells of the PA regions was not statistically distinguishable from 

expression in the PA regions of the control saline/BNF but significantly lower than 

expression in the RA regions of chronic silicosis/BNF (Figures 9B, Table 3). 
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Figure 9. Morphometric analysis of proportional CYP1A1 expression in AT-II cells in 
immunofluorescent-stained sections of rabbit lungs with acute and chronic silicosis. In A, 
the proportional CYP1A1 expression within AT-II cells of PA regions is significantly 
reduced in acute silicosis/BNF compared to control saline/BNF (as designated by the 
letter a above the bar). In B, the proportional CYP1A1 expression within AT-II cells of 
PA regions of chronic silicosis/BNF is significantly reduced compared to RA regions (as 
designated by the letter b above the bar), but no significant change is observed when 
compared to control saline/BNF. Values are means ± SE. The letters a and b indicate 
significant difference at <0.05. 
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Table 3. Effect of acute and chronic silicosis on proportional CYP1A1 expression in 
AT-II cells of rabbit alveoli. 
 
Exposure    PA regions RA regions 
Acute saline with BNF 0.0295±  0.0100 0.0148   ± 0.00622 
Acute silica with BNF 0.00399 ±  0.000888a 0.0583   ± 0.0292 
Chronic saline with BNF 0.208     ±  0.19 0.0392   ± 0.0241 
Chronic silica with BNF 0.00618 ±  0.00285b 0.0524   ± 0.0193 
 
Values are presented as means and SE 
a indicates significant difference from acute saline with BNF in PA regions at p<0.05. 
b indicates significant difference from chronic silicosis with BNF in the RA regions at 
p<0.05 
 
2- Area of CYP1A1 Colocalized (Co-Expressed) to Cytokeratins 8/18 

The area of CYP1A1 concomitantly expressed (colocalized) with cytokeratins 

8/18 per unit area of AT-II cells of PA regions was decreased and bordered ion statistical 

significance (p=0.0507) in rabbits acutely exposed to silica and BNF compared to control 

rabbits (acute saline/BNF exposure) (Figures 10A and 11, Table 4). This area was 

significantly reduced when compared to RA regions of rabbits exposed to acute silica and 

BNF (p=0.0475) (Figure 10A, Table 4). In chronic silicosis with BNF, the area of 

CYP1A1 expression colocalized in AT-II cells was significantly decreased in the PA 

region and compared to the RA regions and was reduced, albeit not significantly 

compared to the control saline/BNF (Figure 10B, Table 4). In areas where granulomatous 

inflammation and silicotic nodules were localized, the positive CYP1A1 cells were 

completely absent (Figure 11C). These regions were not included in the morphometric 

quantification. 
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Figure 10. Morphometric quantification of area of CYP1A1 expression colocalized to 
cytokeratins 8/18 in BNF-induced rabbits affected with acute and chronic silicosis. In A, 
the letter a above the bar indicates that acute silicosis/BNF significantly reduced 
CYP1A1 co-localization area in the PA regions compared to that in the RA regions. In B, 
the letter b above the bar designates a significant reduction of CYP1A1 co-localization 
area in PA regions compared to RA regions in rabbit alveoli with chronic silicosis/BNF.  
a, b, and c indicate significant difference at p<0.05. 
 
Table 4. Effect of silicosis on CYP1A1 colocalization in AT-II cells. 
  
Exposure    PA regions (µm2) RA regions (µm2) 
Acute saline with BNF 9.8515± 3.5771 5.362   ±  4.558 
Acute silica with BNF 1.7618 ± 0.4897a 15.091 ± 5.002 
Chronic saline with BNF 7.578 ± 3.264 9.83     ± 4.569 
Chronic silica with BNF 3.776 ± 2.066b 18.733 ±  6.995 
 
Values represent means ± SE, (n=3-5).  
a indicates significant difference from acute silica with BNF of RA regions at p<0.05. 
b indicates significant difference from chronic silica with BNF of RA regions at p<0.05. 
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D-Effect of Silicosis on Total CYP1A1 Expression in the Alveolar Septum 

The total red-labeled area of CYP1A1 expression in the alveolar septum (both 

AT-II and NT-II cells) of PA regions showed a significant reduction in both acute and 

chronic silicosis compared to the control saline (p=0.0007; 0.0069, respectively) and that 

of the RA regions (p=0.0006; p=0.0219, respectively) (Figure 12A and B, Table 4).  
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Figure 12. Morphometric assessment of the total area of CYP1A1 expressed in all cells of 
the alveolar septum. In A, the letter a above the bar indicates that the area of CYP1A1 
expression in the alveolar septum of PA regions in acute silicosis/BNF is significantly 
lower than control (acute) saline/BNF. A b above the bar indicates that the area of 
CYP1A1 expression in the alveolar septum of PA regions in acute silicosis/BNF is 
significantly lower than that of RA regions. In B, the letter c above the bar indicates that 
the area of CYP1A1 expression in the alveolar septum of PA regions in chronic 
silicosis/BNF is significantly lower than control (chronic saline/BNF). A d above the bar 
indicates that the area of CYP1A1 expression in the alveolar septum of PA regions in 
chronic silicosis/BNF is significantly lower than that of RA regions. Values are means ± 
SE and significance level was set at p<0.05. 
 
Table 5. Effect of acute and chronic silicosis on total CYP1A1 expression in alveolar 
septal cells 
 
Exposure    PA regions ( Random alveolar regions 
Acute saline with BNF 336.92 ± 45.818 364.584 ± 111.134 
Acute silica with BNF 46.353 ± 5.466a,b 469.752 ± 49.67 
Chronic saline with BNF 536.023 ± 123.951 271.453 ± 80.366 
Chronic silica with BNF 78.161 ± 27.931c,d 400.735 ± 64.027 
 
Values are the means of expression area (µm2) ± SE (n=3-5) 
a indicates significant difference from PA regions of acute saline with BNF of at p<0.05. 
b indicate significant difference from RA regions of acute silica with BNF at p<0.05. 
c indicates significant difference from PA regions of chronic saline with BNF at p<0.05. 
d indicates significant difference from RA regions of chronic silica with BNF at p<0.05. 
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E- Silica Exposure Produced AT-II Cell Hypertrophy and Hyperplasia 

 Rabbit silicosis caused AT-II cell hyperplasia and hypertrophy, which was 

significant in chronic silicosis/BNF compared to control saline/BNF (p=0.046) (Figure 

13A and B). Since cytokeratins 8/18 was indicated by green immunofluorescence, AT-II 

hypertrophy and hyperplasia was indirectly calculated from the measurement of the total 

green fluorescent areas in the alveolar septum (Figure 11).  
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Figure 13. Morphometric analysis of immunofluorescent-stained sections showing the 
effect of rabbit silicosis on hypertrophy and hyperplasia of AT-II cells. The area of 
cytokeratins 8/18 is measured in square micrometer as indicator of type AT-II cell 
hyperplasia and hypertrophy. Values are means ± SE. * significantly different from 
chronic saline/BNF at p<0.05. 
 

F-Acute and Chronic Silicosis Significantly Decreased CYP1A1 Expression in the 

Terminal Non-Ciliated Bronchiolar (Clara) Cells: 

The number of CYP1A1 immunoreactive Clara cells exceeding the red 

fluorescent threshold for 1A1 expression was counted and standardized per micrometer 

of the basement membrane. Clara cells were identified as a group of adjacent columnar 

non-ciliated airway epithelial cells resting on the basement membrane of the terminal 

bronchioles which stain green with cytokeratins 8/18 (Figure 14). They were 

differentiated from the cuboidal AT-II cells, which are usually found in the alveolar 

septa, by their morphology and location. Both acute and chronic exposure of rabbits to 

silica resulted in a highly significant reduction of CYP1A1 positive Clara cells per µm 

basement membrane compared to control (p=0.0005, p=0.00057, respectively) (Figures 

14, 15).  
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Figure 14: Effect of silicosis on CYP1A1 expression in rabbit non-ciliated terminal 
bronchiolar (Clara) cells. In A, ** indicates a highly significant reduction of the number 
of CYP1A1-positive Clara cells in acute silicosis and BNF than the control saline and 
BNF (p<0.001). In B, ** indicates a highly significant reduction of the number of 
CYP1A1-positive Clara cells in chronic silicosis and BNF compared to the control saline 
and BNF (p<0.001). Values presented as mean ± SE. the significance level is set at 
p<0.001 
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Histopathological Changes  

 Tissue sections from control and silica-exposed rabbits were stained with 

hematoxylin and eosin (H & E) and the histopathological changes were assessed and 

scored (Figure 16). Histopathological changes include AT-II hyperplasia and 

hypertrophy, pulmonary inflammation which was mostly histiocytic and suppurative to 

necrogranulomatous bronchointerstitial pneumonia with thickening of the alveolar wall 

(Figure 17). Alveolar lipoproteinosis was one of the common findings in silica-exposed 

rabbit alveoli. In some rabbit lungs with silicosis, silicotic nodules appear as centrically 

arranged collagen fibers surrounding necrotic foci (Figure 17B). These histopathological 

changes were absent in the control rabbits (Figure 17 C). 
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Figure 16: Alveolitis and AT-II cell hyperplasia and hypertrophy scored in H & E-stained 
tissue sections. Both alveolitis and AT-II changes were significantly higher in rabbit 
alveoli acutely and chronically exposed to silica particulate compared to control. * and _           
indicate that in rabbits exposed to acute silicosis and BNF, alveolitis and AT-II changes 
are significantly different  from control (acute saline/BNF), respectively. a and b indicate 
that in rabbits exposed to chronic silicosis and BNF, alveolitis and AT-II changes are 
significantly different  from control (chronic saline/BNF), respectively. Results represent 
mean ± SE. All results are statistically significant at p<0.05.  
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A B

C Figure 17: Photomicrograph showing the 
histopathological changes in rabbit 
silicosis. In A, AT-II cell hyperplasia and 
thickening of the alveolar septum is 
significant compared to the control (C). 
In B, the silicotic nodule contains
concentrically arranged hyalinized 
collagen (black arrows) around an area of 
necrosis.  A and C are sections stained 
with hematoxylin and eosin (H & E). In 
B, sections are stained by trichrome stain.

Alveolar  
Macrophages 
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DISCUSSION 

This study investigates the modifying effect of silicosis on the polycyclic 

aromatic hydrocarbon-associated induction and cell-specific localization of CYP1A1 in 

the rabbit lung by exposure to silica.  The use of the rabbit as a non-rodent model for this 

particular study has several advantages.  First, rabbit and human AhR and Arnt, which 

are the 2 main proteins involved in CYP1A1 induction and gene expression, are highly 

conserved between these two species (Takahashi et al, 1996). Moreover, a recent study 

suggests that rabbit, as well as mouse,  are among the species with CYP1A1 that is 

comparable to human as determined by the inhibition of EROD activity in the lung 

microsomes of these species by the antiserum to human CYP1A (Bogaards, et al, 2000).  

Therefore, this suggests that the results of rabbit studies, particularly those investigating 

the modification and alteration of CYP1A1 expression by exposure to environmental 

toxicants could be comparable to the human response to these compounds. Second, the 

rabbit as a non-rodent model helps resolve the debate concerning the use of the rat, to 

investigate genetic and histopathological changes associated with particle exposures in 

human lungs.  Third, CYP1A1 is one of the major isoforms of CYP present in the lungs 

of rabbit (Daniels and Massey, 1992). Fourth, CYP1A1 occurs in an amount of 1 to 3% 

of total CYP in pulmonary microsomes prepared from untreated rabbits. However, 

intraperitoneal injection of BNF produces a several fold induction of the CYP1A1 with 

associated induction of EROD activity in rabbits (Serabjit-Sinh et al, 1983; Philpot et al, 

1985). For all these reasons, rabbits were selected to fulfill the objectives of our study. In 

our experiment, CYP1A1 was induced in rabbits by intraperitoneal (IP) injection of a 

representative polycyclic aromatic hydrocarbon, BNF, (80 mg/kg) in corn oil as 

previously determined (Mathews et al, 1985; Daniels and Massey 1992).  BNF induces 

CYP1A1 through a mechanism identical to the benzo(a)pyrene in cigarette smoke by 

binding the aryl hydrocarbon receptors (AhR) (Ma and Whitlock, 1997) resulting several 

fold increase in CYP1A1 content and EROD activity (Serabijt-Singh et al 1983; Philpot 

et al, 1985). 

Exposure to silica alone, without exposure to CYP1A1 inducers (such as BNF) 

has been associated with increased CYP1A1-metabolic activity, EROD, in rats (Miles et 

al, 1993, 1994). However, the effect of mixed exposure was not investigated in the 
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previous study. At least one epidemiological study of mixed exposure to silica and PAH 

concluded that lung cancer risk was higher among people exposed to silica than those 

exposed to silica and other lung carcinogens, such as PAH (Cocco et al, 2001).  This 

suggests that silicosis may modify PAH-associated carcinogenesis. Because, CYP1A1 

activity is associated with an increased risk of lung cancer in smokers (Anttila et al, 

2001) and because smokers have induced CYP1A1 (Alexandrov et al, 2002; Willey et al, 

1997), the effect of silicosis on CYP1A1 induction is important.  EROD is a reaction 

catalyzed in rabbits by CYP1A1 (Serabjit-Singh et al, 1979; Devereux et al, 1989).  Our 

data showed that CYP1A1-dependent EROD activity induction by BNF was significantly 

suppressed by acute and chronic silicosis (Figure 1A and B). 

To further investigate the effect of silica on BNF-induced CYP1A1 apoprotein 

induction in rabbit lungs, Western blot analysis of lung microsomes was conducted using 

goat anti-rabbit CYP1A1 antibody. We found a reduction of CYP1A1 protein in acute 

silicosis compared to control (Figure 2A and B). This result supports downregulation of 

the protein as well as activity by exposure to silica. In chronic silicosis, Western blot did 

not show any change in the CYP1A1 protein compared to control (Figure 3A and B) 

although the EROD activity was significantly reduced (Figure 1B). This observation 

suggests that silica exposure in rabbits downregulates the induced pulmonary CYP1A1 in 

a posttranscriptional process in which the enzyme protein is expressed, as shown in the 

Western blot, but not active as shown in the suppressed EROD activity. A similar result 

was obtained by Paton and Renton (1998) when they had a significant reduction of 

EROD activity of Hepa 1 cells upon addition of tumor necrosis factor alpha directly to 

the cell, while the Western blot CYP1A1 protein showed no change. It is also possible 

that EROD activity is more sensitive indicator of changes of changes in CYP1A1 than 

western blot. It is noteworthy to mention that chronic silicosis models was induced in 

rabbits by a more localized exposure procedure to prevent respiratory impairment, and 

accordingly, the acute and chronic models can not be compared to each other but each 

one can be compared to its control. However, taken together, these results suggest that 

exposure of rabbits to crystalline silica suppresses BNF-induced CYP1A1 activity. 

PROD activity was also measured as an indicator of CYP2B4 activity in the 

lungs. PROD is a specific indicator of the CYP2B4 activity (Cawley et al, 2001). The 
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CYP2B4 in rabbits is the analog of rat CYP2B1 (Oesch-Bartlomowicz and Oesch, 2003) 

which is the major isoform of CYP in rodents (Martin et al, 1993). Similar to rat 

CYP2B1, rabbit CY2B4 is constitutively expressed in lung tissue in high levels and 

considered the major CYP isoform in rabbit lung, but present in very minute quantity in 

liver (Serabjit-Singh et al, 1979; Parandoosh et al, 1987). Statistically, PROD was 

significantly lowered in rabbits with acute silicosis and BNF compared to the control 

(Figure 1C). However, no significant change in PROD activity was observed in lung 

microsomes from chronic silicotic rabbits (Figure 1D) compared to control. The 

significant reduction of PROD activity in acute silicosis suggests that downregulation of 

CYP activity in acute silicosis involves multiple isoforms. 

In order to determine the pattern of CYP1A1 expression by different alveolar cells 

upon acute and chronic exposure to crystalline silica, cell-specific localization of 

CYP1A1 protein has been analyzed by double-labeling immunofluorescence.  The dual 

immunofluorescence includes a double staining of the CYP1A1 protein and cytokeratins 

8/18 proteins, which are cytoskeletal proteins expressed in primitive epithelial cells of the 

lungs, such as alveolar AT-II cells and used as markers for these cells (Kasper et al, 

1993). A characteristic pattern of CYP1A1 expression has been detected by 

morphometric analysis of immunofluorescence in rabbit alveoli. Apparently, the NT-II 

cells (all alveolar cells except type II) in PA regions and RA regions, which were 

identified as cytokeratins 8/18 negative alveolar cells, significantly express CYP1A1 

protein more than AT-II cells, which were identified by their plump shape, and protrusion 

into alveolar lumen and positive immunofluorescence for cytokeratins 8/18 (Figure 

4A&B, 5, and 6). That observation suggests that alveolar AT-II cells are not the major 

cell types involved in CYP1A1 expression in rabbit alveolus; other alveolar septal cells 

are responsible for more area of CYP1A1 protein expression. Our findings are consistent 

with those of Domin et al, 1986 who demonstrated that the majority of pulmonary 

CYP1A1 (isoform 6) in rabbit lungs is localized in cells other than AT-II cells, Clara 

cells, or the alveolar macrophage. In rabbits exposed to 2,3,7,8- tetrachlorodibenzo-p-

dioxin (TCDD), an inducer of CYP1A1, the immunopositive areas of CYP1A1 

expression in the interalveolar septa were the capillary endothelium, with a minimum 

labeling of type I and AT-II cells (Overby et al, 1992). On the contrary, rat CYP2B1 



 

 
 

116

isoform has been localized and concentrated mainly within alveolar type I cells because 

the selective destruction of these cells by trialkylphosphothiolates resulted in a marked 

loss of the enzyme (Dinsdale and Verschoyle, 2001). 

Hyperplasia and hypertrophy of AT-II cells were evident in acute and chronic 

exposures, compared to control as shown by the increase in the area of green 

fluorescence for cytokeratins 8/18 per alveolar microscopic field in AT-II cells of the 

alveolar septum (Figure 13) and by the histopathological examination. These findings are 

in agreement with those of Miller et al (1990), who demonstrated approximately two fold 

increase in the number of AT-II cells following silica exposure. The increased number 

(hyperplasia) and size (hypertrophy) of alveolar AT-II cells were not associated with a 

parallel increase of CYP1A1 expression in these cells. Indeed, per unit area of alveolar 

AT-II cells, CYP1A1 expression (proportional CYP1A1 expression) was significantly 

decreased in acute silicosis compared to control saline (Figure 9).  This observation 

suggests that many of the hyperplastic and hypertrophic alveolar AT-II cells appearing in 

rabbit lungs following exposure to silica do not express detectable levels of CYP1A1. 

This result is consistent with a previous rat study in our laboratory, which demonstrated 

that intrapulmonary exposure to silica lead to appearance of new population of AT-II 

cells without a detectable amount of CYP1A1 protein expression (Battelli et al, 1999). 

The response of alveolar AT-II cells to silica exposure has been extensively studied 

because these cells perform many vital functions in the lungs and increase in response to 

dust exposure (Miles et al, 1993). AT-II cells play an important role in synthesis and 

secretion of surfactant (Castranova, 1988) which increases surface tension (Pattle, 1955; 

Clements, 1957) and protects lungs from potentially toxic respirable particles 

(Castranova et al, 1988, Wallace et al, 1985) while contributory to the pathogenicity of 

acute silicosis (Lesur et al, 1995). AT-II cells are also involved in repairing alveolar 

epithelium by their differentiation into alveolar type I cells (Miller et al, 1990; 

Castranova et al, 1988). The alveolar AT-II cell population of the lung has been found to 

be very sensitive to the deposition of toxicants in the distal lung, and respond in two 

major ways upon exposure. Damage to the type I alveolar epithelial cells stimulates AT-

II cell proliferation, which subsequently differentiate to repopulate the injured type I cells 

and reconstitute the alveolar architecture (Miller and Hook, 1990; Melloni et al, 1995; 
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Wang et al, 2002; Sutherland et al, 2001). The second portion of the AT-II cell 

population may become enlarged in size (hypertrophic) (Miller and Hook, 1990).  

Moreover, AT-II cells, being rich in endoplasmic reticulum (Baron and Kawabata, 1983) 

and CYP monooxygenase system, are generally believed to be involved in metabolism of 

foreign compounds (xenobiotics) (Devereux et al, 1979; Jones et al, 1983; Baron and 

Kawabata, 1983; Rabovsky et al, 1986). However in our study, we found that the major 

area of the alveolus containing induced CYP1A1 was not the AT-II cells. In our study, 

we found that these hypertrophied and hyperplastic AT-II cells are frequently devoid of 

detectable CYP1A1. In addition, in acute silicosis the proportional expression of 

CYP1A1 in AT-II cells is reduced.  

The mechanisms involved in the reduction of CYP1A1 expression in AT-II cells 

following silica-induced proliferation are incompletely investigated. However, the 

inverse relationship between AT-II cell hyperplasia and CYP expression that we have 

observed in vivo is consistent with in vitro findings from previous studies.  Lag et al 

(1996) concluded that an inverse relationship could exist between CYP2B1 apoenzyme 

expression and the proliferation level of AT-II cells. That conclusion was based upon the 

observation that CYP2B1 apoenzyme was lowest in alveolar AT-II cell cultures during 

the most active proliferative stage, which coincided with presence of largest proportions 

of cells in S-phase and highest proliferating cell nuclear antigen (PCNA) expression. 

Similarly, the CYP1A1-dependent enzymatic activity, EROD, was undetectable in 

proliferating cultures of mouse lung epithelial cells, but the level became detectable once 

cultures were confluent (Reiners et al, 1992). It was suggested that EROD expression 

was regulated as a function of the proliferative process of the cell culture. An inverse 

relationship between cellular proliferation and CYP expression was also suggested by the 

observation that proliferative regeneration of hepatic cells following partial hepatectomy 

was associated with lower P450s protein levels and activities than normal liver (Hino et 

al, 1974; Presta et al, 1980; Klinger and Karge, 1987; and Ronis et al, 1992).  It seems 

that hepatic cells are allocated to replication, rather than transcription, as a main function 

of DNA to proliferate and regenerate the cells after hepatectomy (Liddle et al, 1989, 

Waxman, 1989; Morgan et al, 1985; Steer, T.C. (1995). Similarly, alveolar AT-II cells 
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may repair the damaged alveolar epithelium by proliferating and regenerating the injured 

alveolar wall instead of expressing CYP1A1. 

A more detailed cell-specific localization and morphometric quantification 

demonstrated that the area of alveolar NT-II cells expressing CYP1A1 was significantly 

decreased in both acute and chronic silicosis compared to control and compared to the 

internal control regions (RA regions) where few silica particles deposited (Figure 7, 

Table 2). This finding suggested that silica exposure not only altered the induction of 

CYP1A1 expression in AT-II cells, but also affected the alveolar NT-II cells. The overall 

effect for the alveolus was significant reduction of the alveolar area expressing CYP1A1 

in the whole alveolar septum in acute and chronic silicosis in PA regions compared to 

control and to RA regions (Figure 12, Table 4).  

Clara cells are considered the predominant nonciliated cell type at the terminal 

bronchiolar epithelium (Widdicombe and Pack, 1982; Plopper, 1983). They serve as an 

important site for xenobiotic metabolism in the distal lung (Boyd, 1977; Boyd et al, 1978; 

Boyd et al, 1980).  For this reason, we counted the number of CYP1A1 positive staining 

cells and standardized that number per micrometer of the basement membrane. Rabbit 

silicosis, either acute or chronic, in BNF-treated rabbits significantly reduced the number 

of CYP1A1 immunoreactive Clara cells in the terminal bronchiolar regions compared to 

BNF treatment alone (Figure 14 and 15). This may contribute to the reduction in EROD 

activity in silicosis. 

The inflammatory effects of silica on rabbit alveoli have been demonstrated by 

assessing the histopathological changes. Both acute and chronic silicosis produced a 

significant pulmonary inflammation and AT-II hyperplasia and hypertrophy as shown in 

Figure 16. Previous studies on rat showed that the pulmonary reaction to the inhalation of 

crystalline silica resulted in lung damage, inflammation, and hypertrophy and hyperplasia 

of AT-II cells (Miller et al, 1986; Miller et al, 1990; Castranova et al, 2002). In our study, 

the positive CYP1A1 immunoreactive cells completely disappeared in areas with 

granulomatous inflammation associated with rabbit silicosis (Figure 11C). Although 

these regions were not quantified morphometrically because of the absence of normal 
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alveolar cell populations, they may also contribute to the total reduction of the CYP1A1 

activity measured by EROD assay by replacing normal parenchyma.  

A number of investigators studying the effect of the inflammatory response on 

hepatic CYP metabolic activity concluded that the acute inflammatory reaction caused by 

subcutaneous injection of turpentine (Kobusch et al, 1986), bacterial lipopolysaccharide 

(LPS) (Morgan, 1989) and viral and bacterial infection (El-Kadi and Du Souich, 1998) 

depressed the constitutive hepatic CYP. It was also suggested that the inhibition in the 

metabolism was attributed to the inflammation itself (or to its consequences) and not to 

the inflammatory agents (Parent et al, 1992). Previous studies by Ke and co-investigators 

(Ke et al, 2001) have demonstrated that the proinflammatory mediators, such as tumor 

necrosis factor-α (TNF-α) that were released in response to lipopolysaccharide exposure 

downregulated the CYP1A1 in vitro. Their results showed that TNF-α inhibited the 

ligand-induced acetylation of histone H4 at the promoter region of CYP1A1 gene and 

consequently prevented CYP1A1 induction in Hepa1c1c7 cells. In addition, they 

demonstrated that nuclear factor kappa B (NF-κB) interacted with AhR and thus interfere 

with AhR-mediated CYP1A1 induction.  The effect of the mixed exposure to crystalline 

silica and CYP1A1-inducers, such as BNF on CYP1A1 expression and activity has been 

investigated only in our laboratory (Battelli et al, 1999). Our previous findings in rats 

indicated that silica produced a significant reduction of the induced CYP1A1 enzymatic 

activity (EROD).  The current study indicated that such findings were not unique to the 

rat. In rabbit with acute and chronic silicosis, the induction of CYP1A1 activity by BNF 

was inhibited. Our study suggested that AT-II cells and Clara cells in silicotic rabbits 

expressed CYP1A1 less frequently than did controls. Thus, one mechanism of modifying 

CYP1A1 induction in silicosis, appeared to be decreased CYP1A1 expression in both 

cells of the terminal bronchiolar and alveolar septum.  

 In conclusion, our data strongly suggests that rabbit silicosis is a modifying factor 

for CYP1A1 induction in rabbits. Factors associated with downregulation of CYP1A1 

induction in vivo include altering the cell specific localization of the apoprotein in the 

alveolus and terminal bronchioles. Silicosis, both acute and chronic, inhibited the 

induced-CYP1A1 enzymatic activity (EROD). This inhibitory effect on cytochrome P450 

isoforms is not limited to CYP1A1 induction. PROD activity which is associated with 
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CYP2B4, is also decreased with silica exposure. Suppression of CYP1A1 induction is 

associated with reduction of protein expressed in Clara cells, AT-II cells, and other cells 

of the alveolar septum, as assessed by quantitative immunofluorescence microscopy. 

CYP1A1 was not the only CYP isoform modified by exposure to crystalline silica, but at 

least one other CYP isoform, CYP2B4, also underwent suppression.  
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CHAPTER 5 

SUPPRESSION OF SHEEP PULMONARY CYP1A1 INDUCTION BY 

INTRATRACHEAL EXPOSURE TO RESPIRABLE COAL DUST PARTICLES 

ABSTRACT 

A non-rodent model was used to investigate the effect of coal dust (CD) exposure 

on CYP1A1 induction and localization in the lung. Since pulmonary effects of silica are 

similar in sheep and humans (Larivee et al, 1990), lambs were used in this study. 

Therefore, we investigated the hypothesis that CD exposure in sheep modifies CYP1A1 

metabolic activity and localization in pulmonary cells. To investigate this hypothesis, the 

right apical lobes of 9 Katahdin crossbred lambs were instilled with 500 mg coal dust (<5 

microns) using a flexible fiberoptic bronchoscope. Lambs were sacrificed 8 weeks after 

exposure. All lambs received 50mg/kg of the CYP1A1 inducer, BNF, suspended in corn 

oil or corn oil by intraperitoneal injection, 2 and 3 days prior to sacrifice. 

Bronchoalveolar lavage (BAL) fluid, microsomes and formalin-fixed lung tissue were 

collected from the instilled right tracheal bronchial lobes and the uninstalled left apical 

lobes. CYP1A1-dependent EROD activity and CYP2B-dependent PROD activity were 

significantly reduced in the microsomes of CD-exposed tracheal bronchial lobes relative 

to the uninstalled left lobes or the right tracheal bronchial lobes of sheep receiving BNF 

alone.  In addition, the cellular expression of CYP1A1 in alveolar type II cells, non-type 

II cells, and whole alveolar septum was significantly reduced in sheep exposed to CD and 

BNF compared to those receiving BNF alone. These results further support our 

hypothesis that CD exposure modifies the induction and cellular localization of CYP1A1 

protein. 

INTRODUCTION 

In the previous 2 chapters, we have demonstrated suppression of CYP1A1 

induction and its dependent enzymatic activity (EROD) by pulmonary exposures to 

respirable coal dust (in rats) and crystalline silica (in rabbits).  In addition, coal dust and 

silica particles respectively suppressed the enzymatic activity (PROD) of the CYP2B 

isoforms in rat and rabbit lungs. However, there is a scientific debate concerning the 

comparability of rat and human pulmonary responses to respirable particles of low 

toxicity, such as coal dust (International Life Science Institute (ILSI) Risk Science 
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Institute Workshop Participants, 2000). In this study, we used the lamb as a non-rodent 

model to establish the relationship between pneumoconiosis, caused by coal dust 

deposition in sheep lungs, and alteration in xenobiotic metabolism. Specifically, we have 

examined the activity, quantity, and localization of CYP1A1, the CYP isoform which 

activates some polycyclic aromatic hydrocarbons, such as those in cigarette smoke. In 

addition, we have studied the activity of CYP2B. CYP2B is the major constitutively 

expressed CYP member in sheep lung, which is analogous to CYP2B1 and CYP2B4 in 

rats and rabbits, respectively (Williams et al, 1991). Sheep were selected as a model 

because their pulmonary response to respirable crystalline silica, another cause of 

pneumoconiosis, is similar to that observed in humans (Begin et al, 1989, Larivee et al, 

1990). Sheep lungs are larger, which permits directed exposure and the use of internal 

control lobes, an important advantages in an outbred species.  

A literature search dealing with the effect of environmental toxicants, such as 

PAHs, on sheep CYP1A1 did not reveal any studies. However, some studies have 

investigated the effect of commonly used veterinary pharmaceuticals, such as ivermectin, 

on CYP1A1, 1A2, 2B and 3A because of the role of these isoforms in drug metabolism in 

farm and cloven-hoofed animals (Skalova et al, 2001). The sheep cDNA coding region of 

CYP1A1 has an 85 % homology to human CYP1A1 (Hazinski et al, 1995). Therefore, 

sheep appear to be an appropriate model to studying the effect of xenobiotics, such as 

PAHs, on CYP1A1-associated carcinogenic pathways. Our results showed a reduction of 

the CYP1A1-dependent (EROD) and CYP2B-dependent (PROD) enzymatic activities in 

lung microsomes of sheep exposed to a CD particle suspension and BNF (CYP1A1 

inducer). These results were further supported by Western blot analysis for CYP1A1 

protein and immunofluorescence examination of tissue sections stained for CYP1A1 and 

cytokeratins 8/18 (AT-II markers). 

MATERIALS AND METHODS 

Sheep 

Eleven Katahdin crossbred castrated male lambs weighing 17-30 kg at the start of 

the study were used. The lambs were housed in the Food Animal Research Facility 

(FARF) of West Virginia University. Lambs were fed Alfagreen Supreme Dehydrated 

alfalfa pellets (containing 17% crude  protein, 1.5% crude fat and 30% crude fibers), with  
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ad libitum supply of water. The lambs were kept in pens for 3 weeks prior to exposure for 

acclimatization. During this period, they were examined physically for pulse and 

respiratory rates. In addition, the body temperature and capillary refill time were 

examined and all parameters were within normal range.  To assure parasite-free lambs, 

ivermectin was injected subcutaneously 3 weeks before instillation. Lungs were 

examined by auscultation to assure normal lung sounds before coal dust instillations. 

Complete blood counts were taken from each lamb and were within normal limits. 

Experimental Design: 

Lambs were randomized into a coal-dust exposed and a control group using a 

randomizing program (www.randomized.com). The right apical lobe of each lung was 

instilled with CD or saline and the left apical lobes served as internal controls. The lambs 

were exposed in groups of two to three each day over an eight day period. The lambs 

were sacrificed eight weeks after exposure based upon the results of a preliminary coal 

dust instillation experiment. All lambs were subcutaneously injected with 10 mg/kg 

Tilmicosin antibiotic (Mycotil, Eli Lilly, Indianapolis, IN) one day after instillation of the 

final lamb as a prophylaxis against pulmonary infections. Three and two days before 

sacrifice, lambs were intraperitoneally (IP) injected with 50 mg/kg beta-naphthoflavone 

(BNF), to induce pulmonary CYP1A1.  

Preparation of Particle Suspension 

 Coal dust particles (< 5 micrometer in diameter, 500 mg/lamb) were heat 

sterilized for 2 h at 160 ºC. The particles used in this study contained 0.34 % total iron of 

which 0.119 % was surface iron. The coal dust suspension was prepared by addition of 

15 ml sterilized saline to 500 mg coal dust and vortexed. The suspension was drawn into 

a sterile syringe attached to a 1 mm diameter polyethylene tube and inserted into an 

endoscope (Jorgensen Laboratories Inc., Loveland, CO).  The whole amount was instilled 

in the right tracheal bronchial lobe. In the control group, only 15 ml of the sterile saline 

was instilled into the same lobe under the guidance of the fiberoptic bronchoscope. 

Intratracheal Instillation of Particles Using Flexible Fiberoptic Bronchoscope 

 Lambs were anesthetized by intramuscular injection of a combination of ketamine 

hydrochloride (Keta-ject, Phoenix Laboratories Inc., St. Joseph, MO 64503) 11 - 15 
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mg/kg and xylazine hydrochloride (Xyla-ject. Phoenix Laboratories Inc., St. Joseph, MO) 

0.22 mg/kg. When the lambs were in surgical plane anesthesia (manifested by absence of 

the palpebral reflex), they were placed in a dorsal recumbency with the head extended 

down the surgical table to facilitate the passage of the bronchoscope tube into the trachea. 

A mouth speculum (Ideal Instruments, Detroit, IL) was modified by cutting into 2 halves 

and one half was inserted and fixed in situ by a piece of gauze to avoid damage to the 

bronchoscope tube. Cetacaine spray (Cetylite Industries, Inc., Pennsauken, NJ) was 

spayed in the pharynx to minimize pain and the swallowing reflex.  An alcohol-sterilized 

flexible fiberoptic bronchoscope (Jorgensen Laboratories Inc., Loveland, CO) with a 5-

mm external diameter was inserted though the speculum into the trachea by passage into 

the laryngeal orifice. Positioning was confirmed by visualization of the tracheal rings and 

a cough reflex. Once the bronchoscope was in the trachea, the lambs were turned into 

sternal recumbency followed by further insertion of the endoscopic tube until the orifice 

of the right tracheal bronchus appeared (just before the major bifurcation). At this point, 

the distal tip of the endoscope was tilted toward the orifice, and a 1-mm diameter 

polyethylene cannula (Becton Dickinson and Company, Sparks, MD) was inserted 

through the working channel of the endoscope directly into the right tracheal bronchus 

orifice through which the coal dust suspension was instilled into the lumen of the 

mainstem bronchus of the right apical lobe. After the coal dust suspension instillation, 5-

10 cc of air was instilled into the mainstem bronchus. Importantly, in sheep, the right 

apical lobe is divided into 2 segments, the cranial segment and the caudal segment, each 

one receives a separate bronchus from the mainstem right tracheal bronchus (Getty, 

1975). In our instillation procedure, the CD was instilled in the mainstem tracheal 

bronchus so that both segments were exposed.  Post instillation, lambs were kept on the 

right side to allow settling of particle suspension within the instilled lobe. To facilitate 

anesthetic recovery, yohimbine hydrochloride (Yobine, LLOYD Laboratories, 

Shenandoah, OH) was injected IV (0.2-0.4 mg/kg) after the lambs were placed in the 

recovery stall.  
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Figure 1: The flexible fiberoptic bronchoscope (JorVet 569) used in the study attached to 

the light source (Jorgensen Laboratories Inc., Loveland, CO) 

Lamb Necropsy  

Lambs were euthanized by intravenous injection of Sodium pentobarbital 

(Sleepaway®, Fort Dodge Animal Health, Fort Dodge, Iowa) 26 mg/lb. Under deep 

surgical plane anesthesia, the abdomen was incised along the midline and the abdominal 

aorta was transected to assure exsanguination. The entire lung was weighed and the right 

tracheal bronchial lobe and the left apical lobe were separately weighed. Both lobes were 

lavaged with PBS solution to collect the bronchoalveolar lavage fluid (BALF) as 

described later. Following lavage, 10 % of each lobe, by weight was excised for 

microsome preparation and the other 90 % was fixed by airway perfusion with a volume 

of 3 ml/gm of 10 % neutral buffered formalin (NBF). The amount of NBF used was 

calculated form the following formula: 

Wt of lavaged lobe portion for histopathology x wt of the unlavaged lobe x 3 = mls of NBF 
Wt of the total lavaged lobe 

 

The formalin fixed tissues were trimmed later that day to prepare 4µm-thick 

tissue sections for histopathology and immunofluorescence.  

Certain criteria were set to include a lamb in the study. Any lamb that did not 

meet any one of these criteria was excluded. These criteria were: 

1- Absence of pulmonary infections.  

2- Presence of coal dust particles in the instilled lobe. 
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3- Absence of technical difficulties that may result in partial instillation of the 

designated amount of CD 

Two lambs were intended to be in the study but, due to failure to meet with the 

previous inclusion criteria, they were excluded. One of the lambs instilled with saline 

showed a bacterial pneumonia associated with translocation of bacteria and plant material 

from the esophagus/pharynx to the right apical lobe. Another lamb (supposed to be 

instilled with coal dust) was excluded because it showed no coal dust deposition by gross 

examination of lung tissue, inspection of tissue sediments during microsomal preparation, 

and microscopic examination of BAL and had minimal deposition noted histologically. 

That lamb had coughed powerfully during instillation, dislodging the bronchoscope. 

Therefore, that lamb was excluded.  All the lambs were castrated males but a single 

testicle was identified in one lamb that was determined histologically to be immature, as 

it contained no spermatogonia. The lamb with the single immature testicle was included 

in the experiment due to the internal control incorporated in the design. 

Preparation of Sheep Lung Microsomes  

 The microsomal fraction of lung homogenate was obtained by differential 

centrifugation method as previously described (Flowers and Miles, 1991; Ma et al, 2002). 

These microsomes were used for measuring the CYP1A1 and CYP2B1-dependent 

enzymatic activities (EROD and PROD, respectively). In addition, lung microsomes were 

subjected to electrophoresis to determine the CYP1A1 protein by western blot analysis. 

Determination of the Total Lung Proteins  

The total amount of protein content of lungs was measured in the microsomal 

suspension spectrophotometrically using the bicinchoninic acid (BCA) method as 

previously described (Smith et al, 1985; Ma et al, 2002) according to the direction of the 

BCA protein assay kit (Pierce, Rockford, IL) in a spectra Max 250 Spectrophotometer 

(Molecular Devices Corporation, Sunnyvale, California). Bovine serum albumin was 

used for the standard curve. Protein was measured as mg/ml. 
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Determination of CYP1A1- and CYP2B-Dependent Enzymatic Activities (EROD and 

PROD) 

  Spectrophotometric assays for measuring EROD and PROD metabolic activities 

were performed as previously described (Burke et al, 1985 and Ma et al, 2002) using a 

luminescence spectrometer model LS-50 (Perkin-Elmer, Norwalk, CT) and 7-

ethoxyresorufin (7-ER) (Sigma, St. Louis, MO)  as the standard. The 7-ER was used at a 

concentration of 10 µM that was prepared by dissolving 2.35 µg 7-ER in 1 ml DMSO.  

EROD and PROD activities were expressed as picomoles of the produced resorufin per 

minute per milligram microsomal protein (pmol/min/mg protein) as previously described 

(Ma et al, 2002).  

Immunofluorescence Double Labeling 

The tissue sections were stained to identify CYP1A1 and cytokeratins 8/18. The 

technique was basically the same as in rats (chapter 2). However, the tissue sections were 

incubated with the primary antibodies for 48 h instead of overnight in rat 

immunofluorescence. The primary antibodies were a polyclonal rabbit anti-rat CYP1A1 

(Xenotech) diluted 1:5 with PBS and a polyclonal Guinea pig anti-cytokeratins 8/18 

(RDI) diluted 1:50 with PBS. Rabbit serum was applied as a negative control, and the 

primary antibodies were omitted. After 48 h incubation at room temperature, the slides 

were incubated for additional 2 h at 37 ºC. The slides were then thoroughly washed to 

remove un-conjugated primary antibodies and then the secondary antibodies were 

dropped onto the slides. The secondary antibodies were a mixture of a FITC-labeled, 

donkey anti-Guinea pig IgG (Research Diagnostic Inc., Flanders, NJ) diluted 1:50 with 

PBS and Alexa 594-conjugated goat anti-rabbit antibody (Molecular probes, Eugene, 

Oregon) diluted 1:20 with PBS. The slides were incubated with the secondary antibodies 

for two h in the dark at room temperature. The slides were visualized using a fluorescent 

photomicroscope (OlympusAX70, Olympus American Inc., Lake Success, NY) and 

images were captured using the 40x objective and a Quantix cooled digital camera 

(Photometrics, Tucson, AZ) with QED camera plugin software (QED Imaging, Inc., 

Pittsburgh, PA). Five images were captured per slide from the proximal alveolar (PA) 



 

 

128

regions, where most of the CD particle tend to localize near the terminal bronchioles and 

alveolar ducts.  

Mophometry 

Immunofluorescence morphometric analysis using Metamorph software 

(MetaMorph, Universal Imaging Corp., Downingtown, PA) was conducted on images 

captured from the proximal alveolar (PA) regions where CD accumulation was observed 

and from the same areas in control sheep.  A representative slide from each lobe, where 

most of CD was grossly observed, was stained for immunofluorescence.  Five images 

were captured per slide from completely perfused areas of the lung, where the alveoli 

were fully distended. The digital images were captured using a 40x objective producing a 

microscopic field with an area of 34466.1 µm2.  The captured images were quantified as 

previously described in chapters 3 and 4 to assess the localization of CYP1A1 in different 

alveolar epithelial cells. Briefly, the area of CYP1A1 expression was quantified in AT-II 

cells, NT-II cells, and the entire alveolar septum. The proportional CYP1A1 expression 

in AT-II cells was calculated as previously described in chapter 3.  AT-II cell hyperplasia 

and hypertrophy were assessed by measuring the area of cytokeratins 8/18 expression. 

Western Blot Analysis  

The amount of CYP1A1 apoprotein in lung microsomes was determined by 

Western blot as previously described (Ma et al, 2002) with minor adaptation. A Novex 

Tris glycine gel with 15 small wells, (Invitrogen Corporation, Carlsbad, CA), and 30 µg 

of microsomal proteins were subjected to SDS gel electrophoresis for 90 min at 120 volts 

followed by transfer to a nitrocellulose membrane (blotting) for another 90 minutes at 25 

volts. Liver microsomes of BNF-treated rat (Xenotech, Kansas city, KS) were used as a 

positive control. The membranes containing protein bands were identified by using a 

primary polyclonal rabbit anti- rat CYP1A1 antibody (Xenotech, Kansas city, KS) for 

overnight incubation at 4 ºC. Then, the membranes were washed and blocked for 1 h at 

room temperature with rocking with a 5% solution of dry milk in tris-buffered 

saline/tween (TBS/tween).  After blocking, the membranes were washed and incubated 

for 1 h with a HRP (horse radish peroxidase)-conjugated goat anti-rabbit IgG (Santa Cruz 

Biotech. Inc., Santa Cruz, CA) at room temperature. Super RX Fuji Medical X-ray film 

was then exposed to the membranes at room temperature. Band intensity developed on 
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the X ray film was measured by the Eagle Eye II scanner with Eagle Sight software 

(Strategene, La Jolla, California).  The density on the scanned images was measured 

using ImageQuant software version 5.1 (Molecular Dynamics, Sunnyvale, CA). Each 

image was quantified three times, the average of which was used for statistical analysis. 

After quantification, the data were presented as a percentage of the CYP1A1 positive 

control. 

Bronchoalveolar Lavage Fluid (BALF) Analysis 

 Both the right apical (exposed) and left apical (internal control) lobes were 

lavaged using ice-cold PBS (Ca++ and Mg++ free). Three consecutive lung lavages were 

performed in which the first lavage was collected by using 2 ml/gm lung while the 

subsequent 2 lavages were conducted by using 2.7 ml/gm lung weight. In the last 2 

lavages, the PBS fluid was flushed in and out of the lobes through a cannula and a 60-ml 

plastic syringe. The lobes were excised from the rest of lung and the incision site was 

clamped off by digital pressure during BAL collection process. Nevertheless, some of the 

lavage fluid was lost due to incision of the lung tissue which reduced the recovery of the 

fluid. Therefore, the BAL differential is considered more accurate that the total BAL cell 

yield. 

The BALF analysis was conducted as previously described (Porter et al, 1999). 

Briefly, the first BAL fluid was kept separate from the subsequent lavages and 

centrifuged at 500 x g for 10 min at 4 ºC to collect the BAL cells. The acellular 

supernatant was decanted and used for analysis as BAL fluid (BALF). Cells of the 

subsequent BAL were collected by centrifugation and the acellular supernatant lavages 

were decanted and discarded. BAL cells from the first and second lavages were 

combined, re-suspended in HEPES buffer (145 mM KCL, 1.0 mM CaCl2, 5.5 mM D-

glucose, 10 mM N-2-hydroxyethylepiperazine-N-2-ethanesulfonic acid:  pH 7.4), 

centrifuged at 500 x g for 10 min at 4 ºC, and the supernatant was discarded. The cell 

pellet was resuspended in HEPES buffer and kept in ice.  

BAL Cell Count and Differential Count 

 To assess pulmonary inflammation associated with coal dust instillation, the 

alveolar macrophages (AM) and the polymorphonuclear leucocytes (PMN) were counted 
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by using a coulter multisizer II and AccuComp software (coulter Electronics, Hialeah, Fl) 

as previously described (Castranova et al, 1990). Cytospin preparations of BAL cells of 1 

x 105 total phagocytes (AM and PMN) suspended in 200 µl HEPES-buffered solution 

were prepared by using a Shandon Elliot cytocentrifuge (800 rpm for 5 minutes). The 

cytospin preparations were stained with modified Wright-Giemsa stain as previously 

described, and cell differentials were determined by light microscopy (Porter et al, 

2002a). To calculate the differential cell counts, the total cell count (PM-PMN) obtained 

from Coulter Counter was multiplied by the cell percentage differentials from the 

cytospin preparations. In addition, the percentage of alveolar macrophages containing 

phagocytized coal dust particles was determined for each lamb.  

BALF Albumin Concentration 

 The albumin concentrations in the BALF reflect the integrity of the blood-

pulmonary epithelial cell barrier. The BALF albumin was measured as previously 

described (Porter et al, 2002a) by using a Cobas Fara II analyzer (Roche Diagnostic 

systems, Montclair, NJ). The albumin was determined colorimetrically, based upon its 

binding to bromocresol green (Doumas et al, 1971), at 658 nm using a commercial assay 

kit (albumin BCG diagnostic kit, Sigma Chemical Company, St Louis, MO). 

BALF Lactate Dehyrogenase (LDH) 

Lactate dehydrogenase activity was measured in the BALF as an indicator of 

cytotoxicity, by detection of the reduction of NAD+ associated with LDH catalyzed 

oxidation of lactate to pyruvate at 340 nm (Gay et al, 1969) using a commercial assay kit 

(Roche Diagnostics Systems, Montclair, NJ) as previously described (Porter et al, 

2002a).  

Alveolar Macrophage (AM) Chemiluminescence (CL) 

 AM chemiluminescence (AM CL) is a marker of increased production of reactive 

oxygen and nitrogen species by AM. In this assay, the use of unopsonized zymosan 

permits the measurement of chemiluminescence emitted from stimulated AM only 

(Castranova, 1987) and not PMN chemiluminescence (Hill, 1977; Allen, 1977). The 

assay was conducted in a total volume of 0.25 ml of HEPES-buffered medium as 

previously described (Porter et al, 2002a). 
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Nitric Oxide Dependent AM CL 

To determine the NO-dependent chemiluminesecence released from AM in 

response to particle exposure, the zymosan-stimulated chemiluminescence from cells 

preincubated with 1 mM nitro-L-arginine methyl ester (L-NAME, a nonselective NOS 

inhibitor (Vaughan et al, 2003)) was subtracted from zymozan-stimulated 

chemiluminescence from cells without nitro-L-arginine methyl ester as previously 

described (Porter et al, 2002b). 

Differential Blood Count 

 Blood samples were collected from all sheep to monitor the changes in blood 

status before and after CD instillation until sacrifice. Blood collection was conducted 

once after sheep arrival at the pens, 1 day before instillation, and  1, 3, 5, 7, 14, 28, 42, 

and 56 days after instillation.  Differential blood count was performed using a Cell-

DYN® 3500 R (Abbot Diagnostics, Santa Clara, California). Hematocrit values were 

measured by using microhematocrit tubes and microhematocrit centrifuge. 

Statistical Analyses 

 All analyses were performed with SAS version 8.2 and using Proc Mixed. In the 

comparison between CYP1A1 localization between AT-II cells and NT-II cells, in sheep 

exposed to BNF only, the model was the two factor repeated measures analysis of 

variance. In all other cases, where data of right exposed lobe were compared to the 

control and to the left unexposed lobes, the model was single factor repeated measures 

analysis of variance. All pairwise comparisons were performed using a pooled variance 

estimate and Fisher’s LSD (Least Significant Difference). All results were considered 

statistically significant at p<0.05. 
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RESULTS 

 The coal dust deposition was observed in the right apical lobe as black spots 

(Figure 2A) indicating a successful instillation.  

A                                                                             B 

  
Figure 2: Photographs of sheep lung showing (A) the deposition of coal dust particles in 

the caudal segment of the right apical lobe and the cranial segment of the left apical lobe 

as an internal control. In B, the orifice of the tracheal bronchus where the endoscope was 

inserted is shown. 

1- 7-Ethoxyyresorufin-O-Deethylase (EROD) Activity  

 The CYP1A1-dependent enzymatic activity (EROD), measured per mg 

microsomal protein was significantly reduced (p=0.0166) in lambs exposed to CD and 

BNF compared to those exposed to BNF alone. Moreover, EROD was significantly 

reduced (p=0.0265) in microsomes prepared from the CD-instilled lobe (right lobe) 

compared to the un-instilled lobe (left lobe) (Figure 3B).  
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Figure 3. Effect of CD exposure on pulmonary EROD activity in lambs. In A, EROD is 
significantly reduced in lambs exposed to CD and BNF compared to lambs with BNF 
alone. In B, EROD activity is significantly reduced in CD-exposed lobes compared to the 
control unexposed lobes. * Significantly different at p<0.05.  
 
2- 7-Pentoxyresorufin-O-Deethylase (PROD) Activity  

 The CYP2B-dependent enzymatic activity (PROD) was significantly lowered 

(p=0.042) in CD-exposed lambs with BNF compared to control (Figure 4A). Compared 

to the non-instilled lobe, PROD activity was reduced to less than 50 % in the CD-exposed 

lobe (Figure 4B) but did not reach a statistically significant difference. 
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Figure 3. Effect of CD exposure on pulmonary PROD activity in lambs. In A, PROD is 
significantly reduced in lambs exposed to CD and BNF compared to lambs with BNF 
alone. In B, PROD activity is reduced 50 % in CD-exposed lobes compared to the control 
unexposed lobes. * Significantly different at p<0.05.  
 
3-Western Blot Analysis 

CYP1A1 protein bands of right exposed lobes (Figure 5A) and left unexposed 

lobes (Figure 5B) were quantified and expressed as percentage of positive CYP1A1 

control. The CYP1A1 apoprotein measured in lung microsomes by Western blot was not 

significantly reduced in lambs exposed to CD and BNF compared to control (p=0.2) 
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(Figure 5C) and in the CD-exposed lobes compared to the control unexposed lobes 

(p=0.5) (Figure 5D). 
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Figure 5.  Effect of CD exposure on CYP1A1 protein measured by Western blot. 30 µg 
microsomal proteins were subjected to SDS-PAGE and electroblotted to a nitrocellulose 
membrane. The membrane was primed by a polyclonal rabbit CYP1A1 as described in 
the materials and methods. The results are expressed as a percentage of CYP1A1 positive 
control. CYP1A1 protein is lower in lambs exposed to CD and BNF than control (C). The 
CD-exposed lobes have a lower amount of CYP1A1 protein compared to the unexposed 
lobes (D). In A, lanes 1-5 are for right lobes of control (exposed to saline) and lanes 6-10 
are for right lobes of CD-exposed lambs. In B, lanes 1-5 are for left unexposed lobes of 
the control and 6-10 are for the left unexposed lobes of the CD group. C is the positive 
CYP1A1 control and MW is the molecular weight standard. 
 

4-Immunofluorescence Double Labeling for CYP1A1 and Cytokeratins 8/18 

A- Distribution of CYP1A1 in BNF-Induced Sheep. 

 Sheep CYP1A1 was visualized as red fluorescence in alveolar type II cells, non-

type II cells, and endothelial cells of the alveolar septum (Figure 7). However, the area of 

CYP1A1 quantified in alveolar non-type II (NT-II) cells is significantly greater than that 

in alveolar type II (AT-II) cells of the left (p=0.009) (Figure 6A) and right (p<0.001) 

(Figure 6B) apical lobes of the BNF-induced sheep. 
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Figure 6. Morphometric analysis showing the distribution of CYP1A1 in sheep lung. In 
A, the area of CYP1A1 expression in non-type II cells is significantly larger compared to 
CYP1A1 area in type II cells of the alveolus of left lung lobes. In B, the area of CYP1A1 
expression in non-type II cells is significantly larger, compared to CYP1A1 area in type 
II cells of the alveolus of left lung lobes. * Significantly different at p<0.05. Data are 
means ± SE, n=5 in the saline exposed group and 4 in the CD-exposed group. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





 

 

137

B- CYP1A1 Induction is Suppressed in the Alveolus of CD-Instilled Sheep 

 Morphometric quantification of the CYP1A1 area of expression in lamb alveolus 

has been conducted in the CD-exposed and control sheep to assess the effect of CD 

instillation on the CYP1A1 induction. CYP1A1 area was quantified in alveolar type II 

cells, non-type II cells, and the entire alveolar septum.  

a- In Alveolar Type II (AT-II) Cells 

 The proportional CYP1A1 expression in AT-II cells, which adjusted for the 

increased area of AT-II cell, showed a highly significant reduction (p<0.001) in sheep 

exposed to CD and BNF compared to those receiving BNF alone (Figure 8A).  When 

compared to the left unexposed (internal control) lobes, the right lobes exposed to CD 

also showed a significant diminution (p=0.01) of proportional CYP1A1 expression in 

AT-II cells (Figure 8B). In addition, the area of CYP1A1 co-localized (co-expressed) 

with cytokeratins 8/18 marker in AT-II cells was smaller, albeit not significantly, in 

sheep exposed to CD and BNF than BNF alone (Figure 8C). Furthermore, the area of 

CYP1A1 that co-localized with cytokeratins 8/18 was also smaller in the CD-exposed 

right lobes compared to the unexposed left lobes (Figure 8D), but these differences were 

also not significantly different. 
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Figure 8. Morphometric quantification of CYP1A1 expression in AT- II cells. In A, there 
is a highly significant reduction of the proportional CYP1A1 expression in AT-II cells of 
CD-exposed lambs with BNF compared BNF alone. In B, the proportional CYP1A1 
expression in AT-II cells of the CD-exposed lobes is highly significantly decreased 
compared to the left unexposed lobes. In C the proportional CYP1A1 expression is 
reduced in CD-exposed sheep with BNF compared to BNF alone. In D, the proportional 
CYP1A1 expression is reduced in CD-exposed lobes compared the left unexposed lobes. 
** significantly different at p<0.001.  
 
b- Alveolar Non-Type II (NT-II) Cells 

 Cells in the alveolar septum that do not express cytokeratins 8/18 (AT-II makers) 

are not type II cells and are designated here as alveolar non-type II (NT-II) cells. These 

cells are usually thin, elongated and often contain immunofluorescence CYP1A1. The 

area of CYP1A1 expression in these cells is significantly diminished in alveolar septum 

of sheep exposed to CD and BNF compared to BNF alone (p=0.0015) (Figure 9A). In 

addition, the area of CYP1A1 expression in NT-II cells is significantly reduced in 

alveolar septum right lobes exposed to CD compared to the left unexposed lobes of the 

CD-exposed sheep (p<0.0299) (Figure 9B). 
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Figure 9. Morphometric quantification of the area of CYP1A1 expression in NT-II cells. 
In A, the area of CYP1A1 expression, measure in µm2 is significantly reduced in CD-
exposed sheep with BNF compared to BNF alone. In B, the area of CYP1A1 expression 
in NT-II cells of the CD and BNF-exposed right lobes is significantly lower than the left 
unexposed lobes exposed to BNF alone.* significantly different at p<0.05.  
 

c- Total CYP1A1 Expression in the Whole Alveolar Septum of Sheep 

 The total area of CYP1A1 expression in alveolar septum includes expression in 

AT-II cells and NT-II cells. This area showed significant reduction in sheep exposed to 

CD and BNF compared to sheep that received BNF alone (p=0.006) (Figures 10A and 

11). Moreover, in BNF-treated sheep, the area of CYP1A1 expression in the alveolar 

septal cells of the right lobes exposed to CD is reduced by 65.3 % compared to the left 

unexposed lobes of the CD-exposed sheep (Figure 10B). 

A                                                                        B 

To
ta

l a
re

a 
of

 C
YP

1A
1 

ex
pr

es
si

on
 in

 a
lv

eo
la

r s
ep

tu
m

(s
qu

ar
e 

m
ic

ro
m

et
er

)

0

100

200

300

400

500

600

Saline/BNF CD/BNF

*

Right CD-exposed lobes

              To
ta

l a
re

a 
of

 C
YP

1A
1 

ex
pr

es
si

on
 in

 a
lv

eo
la

r s
ep

tu
m

(s
qu

ar
e 

m
ic

ro
m

et
er

)

0

100

200

300

400

500

Left unexposed lobes Right CD-exposed lobed

Left vs. right lobes of CD-exposed sheep

 
Figure 10. Morphometric quantification of the total CYP1A1 expression in alveolar 
septum. In A, the total area of CYP1A1 expression in the alveolus, expressed as µm2 of 
CD-exposed sheep with BNF is significantly lower than BNF alone. In B, the area of 
CYP1A1 expression in the alveolus of right CD-exposed lobes is reduced by 65.3 % 
compared to the left unexposed lobes of CD-exposed sheep. * significantly different at 
p<0.05. 
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C-Effect of CD Exposure on Alveolar Type II (AT-II) Cell Hyperplasia in Sheep 

 The area of AT-II cells, as indicated by lung area with green fluorescence due to 

cytokeratins 8/18 expression, was quantified morphometrically. The area of AT-II cells 

was increased in the alveolus of sheep exposed to CD and BNF compared to BNF alone, 

albeit not significantly. The area of cytokeratins 8/18 expression in the alveolus of the 

right CD-exposed lobe was also numerically, but not significantly, increased relative to 

the left unexposed lobe (Figure 12). AT-II cell hyperplasia and hypertrophy were 

visualized in fluorescent-stained sections of CD exposed sheep (Figure 12). 
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Figure 12. Morphometric quantification of the cytokeratins 8/18 expression in alveoli of 
CD exposed and control sheep. In A, the area of cytokeratins 8/18 expression is 
numerically higher in CD-exposed sheep with BNF compared to control. In B, the area of 
cytokeratins 8/18 expression is numerically, but not significantly increased in CD 
exposed right lobes compared to the left unexposed lobes. Results represent means ± SE, 
n=5 in the saline exposed group and 4 in the CD-exposed group. 
 

4-Results of BAL Fluid Analysis 

A- BAL Cell Differentials 

a- Alveolar Macrophages (AM) 

 The number of BAL AMs was not significantly increased in the CD-instilled right 

lobe compared to the left lobes instilled with saline (Figure 13A) or the uninstalled left 

lobes (Figure 13C).  Cell differentials of cytospin preparation showed a significant 

increase in the percentage of AM in CD-exposed right lobes compared to the right lobes 

instilled with saline (p= 0.0008) (Figure 13B) or the unexposed left lobes (p=0.0318) 

(Figure 13D).  While no CD-laden AM was observed in saline exposed groups or the left 
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unexposed lobes, an average of 44.5% of the AM counted in the BAL of CD-exposed 

sheep contained coal dust particles (range 23 to 73 %). 
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Figure 13. Differential count of BAL cells. The AM yield is higher in CD-exposed right 
apical lobe than saline-exposed lobe (A) or left uninstilled (unexposed lobes) (C). The 
percentage of AM is significantly higher in CD-exposed right apical lobe than saline-
exposed lobe (B) or left uninstilled (unexposed lobes) (D). Results represent means ± SE, 
n=5 in the saline exposed group and 4 in the CD-exposed group. 
 
b- Polymorphonuclear Leucocytes (PMN) 

 The PMN yield in CD-exposed right lobes was not significantly higher than the 

right lobes exposed to saline (Figure 14A) or the uninstilled left lobes (Figure 14C).  Cell 

differentials of cytospin preparation exhibited a significant increase in the percentage of 

AM in CD-exposed right lobes compared to the right lobes instilled with saline (p=0.047) 

(Figure 14B) or the uninstalled left lobes (p=0.04) (Figure 14D).  These results suggest 

that the CD-exposed lobes exhibit higher phagocytic cell percentage. 

        
 



 

 

143

        A                                                                    B 
PM

N
 Y

ie
ld

 (x
10

6  
ce

lls
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Saline/BNF CD/BNF

PMN count-Instilled right lobes

     

Pe
rc

en
ta

ge
 o

f P
M

N
 in

 A
M

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

*

Saline/BNF CD/BNF

PMN % in BAL
right tracheal bronchial lobes

 
C                                                                      D 

PM
N

 Y
ie

ld
 (x

 1
06

 c
el

ls
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

left unexposed lobes Right CD-exposed lobes

PMN count
Left vs. right lobes

of CD exposed sheep

 

Pe
rc

en
ta

ge
 o

f P
M

N
 in

 B
A

L

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Left unexposed lobes Right CD-exposed lobes

PMN % in BAL
left  vs. right lobes 
CD-exposed sheep *

 
Figure 14. Differential cell count of the BAL. The PMN yield is non-significantly higher 
in CD-exposed tracheal bronchial lobe than saline-exposed lobe (A) and left uninstilled 
(unexposed lobes) (C). The percentage of PMN is significantly higher in CD-exposed 
tracheal bronchial lobe than saline-exposed lobe (B) or left uninstilled (unexposed lobes) 
(D). Results represent means ± SE, n=5 in the saline exposed group and 4 in the CD-
exposed group. 
 

B- BAL Fluid Albumin 

 The albumin measured in the BAL fluid was not significantly increased in CD-

exposed right lobes compared to the saline-exposed right lobes (Figure 15A) and to the 

left uninstilled lobes (Figure 15B). 
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Figure 15. Albumin levels in BAL of CD-exposed lobes are not significantly increased 
compared to saline exposed (A) or left unexposed lobes (B).  Results are means ± SE, n= 
5 in the saline exposed group and 4 in the CD-exposed group. 
 
C- LDH in BAL Fluid 

 The LDH concentration in BAL of CD-exposed tracheal bronchial lobes was not 

significantly higher than saline-exposed lobes (Figure 16A) or left uninstilled lobes 

(Figure 16B). 
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Figure 16. BAL fluid LDH levels are not significantly increased in right tracheal 
bronchial lobes exposed to CD compared to the right lobes exposed to saline (A) or left 
unexposed lobes (B). Data shown are means ± SE, n= 5 in the saline exposed group and 4 
in the CD-exposed group. 
 

D-AM-Dependent (CL) and NO-Dependent AM (CL) 

 No change was seen in AM-dependent CL and NO-dependent AM CL in BAL 

samples of CD-exposed lambs compared to the controls (data not shown). 
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5- Differential Blood Count (Total Leucocytic Count) 

 The neutrophil, monocyte, and total leucocyte counts for both CD-exposed and 

control sheep were temporarily increased the day after the instillation and then gradually 

decreased the following days to reach almost the resting stage on the day of sacrifice 

(Figure 17A, B, and C, respectively). In addition, the hematocrit values do not show 

significant difference between CD-exposed sheep and controls (data not shown) at any 

time period (data not shown). 
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Figure 17. The total leucocyte count (A), neutrophil count (B), or monocyte count (C) 
exhibits a brief increase one day after instillation then reduced gradually to resting levels 
at the time of sacrifice for both CD-exposed and control group. Data shown are means ± 
SE, n= 5 in the saline exposed group and 4 in the CD-exposed group. 
 
6- Histopathological Changes 

 Histopathological changes of CD-exposed lung lobes included bronchointerstitial 

pneumonia with accumulation of dust-laden alveolar macrophages, mainly in the 

interstitial tissue with only occasional foci of alveolar histiocytosis, a finding expected in 

a lavaged lung. These changes were irregularly distributed but consistently present in the 

instilled right apical lobes. Thus, bronchointerstitial pneumonia with particle-laden 

interstitial macrophages was observed in the right apical lobe of all instilled lambs but 

was not present in all sections of this lobe in the instilled lambs. Bronchointerstitial 

pneumonia was not seen in the control lambs (Figure 18 C and D). AT-II cell hyperplasia 

and hypertrophy was also observed in CD-exposed lobes (Figure 18A and B). 

 

 

 

 





 

 

147

DISCUSSION 

In this study, we investigated the modifying effect of respirable coal dust particles 

on CYP1A1 induction in BNF-exposed sheep. The response of sheep lung to CD 

particles, in regard to CYP1A1 expression, was similar to that of the other 2 species, rats 

and rabbits that have been investigated in the previous chapters. The model of CWP in 

sheep was based upon a previous model of sheep silicosis (Begin et al, 1989). However, 

the CD suspension was instilled only one time and the sheep were kept for eight weeks 

before sacrifice. The response of sheep lung to respirable particles, such as quartz, is 

similar to the human response, particularly in cellular cytotoxicity (Larivee et al, 1990).  

The results indicated that the intratracheal instillation of CD significantly 

inhibited the CYP1A1-dependent metabolic activity (EROD) lung microsomes (Figure 

1). This effect was localized only in the lobes that were instilled with CD (right lobes). 

However, in the left lobes, which were not exposed to CD particle suspension, there was 

no change in the activity, suggesting that the CD exposure inhibited the CYP1A1 

metabolic activity locally and the effect did not extend to include the neighboring lung 

lobes. Along with CYP1A1 activity, another CYP isoform, CYP2B, was measured. 

CYP2B is the major constitutive isoform of CYP family in sheep lungs (Williams et al, 

1991). The CYP2B-dependent enzymatic activity (PROD) showed a significant 

diminution in lung microsomes prepared from lung of sheep exposed to CD and BNF 

compared to BNF alone (Figure 2). This result suggested that, CD not only inhibited the 

activity of BNF-induced CYP1A1 in sheep lung, but the inhibitory effect also included 

another CYP isoform, constitutively expressed in sheep lungs. 

To assess the effect of CD exposure on CYP1A1 induction, the CYP1A1 protein 

was measured by Western blot. The amount of CYP1A1 protein measured by Western 

blot was reduced, albeit not significantly, in the CD-exposed lobes compared to 

unexposed lobes (Figure 3). Although the reduction was not significant, the general trend 

seemed to be suppressive as shown in Figure B.  

The suppressive effect of the CD on CYP1A1 induction in sheep lungs was 

further demonstrated by immunofluorescence double labeling. By using this technique, 

the CYP1A1 expression in different pulmonary epithelial cells was investigated. We used 
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cytokeratins 8/18, which are cytoskeletal proteins highly expressed in primitive epithelial 

cells, to recognize the AT-II cells (Kasper et al, 1993) in the lung alveolus. Accordingly, 

the cellular components of the stained lung tissue section were divided into 2 distinct 

populations using indirect immunofluorescence with a primary anti-cytokeratins 8/18 

antibody and a green FITC-labeled secondary antibody. One population stained 

distinctively green and those were AT-II cells (Figure 5A). The others did not stain green 

and were designated as NT-II cells. The CYP1A1 has been visualized in alveolar type II 

cells and NT-II cells. However, by morphometry, the area of CYP1A1 expression 

measured in NT-II cells, where no green fluorescence was visualized, was significantly 

higher than that area in AT-II cells. This result suggests that in the alveolus, AT-II cells 

are not the major sites of CYP1A1 induction and NT- II cells are important sites of 

CYP1A1 induction. In addition, there is a general deficit in the literature regarding the 

localization of inducible CYP1A1 in ruminant lungs. The majority of literature in 

ruminant CYPs concentrates on the inducibility of CYP1A1 in the liver of goat (van’t 

Klooster et al, 1993), or cattle (Shull et al, 1986) and this study is the first, to our 

knowledge to report the distribution pattern of CYP1A1 in sheep lungs. 

The CD instillation in sheep significantly reduced the area of CYP1A1 expression 

in AT-II cells (Figure 6), NT-II cells (Figure 7) and the entire alveolar septum (Figure 9). 

Therefore, one mechanism of suppression of BNF-induced CYP1A1 by CD exposure 

appears to be inhibition of CYP1A1 expression in different alveolar septal cells. These 

results are not surprising and are comparable to those seen in rats exposed to coal dust 

and rabbits exposed to silica. While increased size (hypertrophy) and number 

(hyperplasia) of AT-II cells were not significant in this study, they were increased 

numerically which is consistent with studies in other species. The area of CYP1A1 

expression in AT-II cells, relative to the total area of AT-II cells showed a significant 

reduction suggesting that the new hyperplastic AT-II cells do not express CYP1A1 in 

proportion to their number and size. This result supports our findings in rats that CD 

exposure leads to production of a new population of alveolar type II cells with decreased 

CYP1A1 expression. The mechanism of downregulation of CYP1A1 associated with 

cellular proliferation should be further investigated. However, in the rat liver with 

hyperplastic nodules, induced by diethylnitrosamine and partial hepatectomy, the total 
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amount of microsomal CYP enzymes was reduced 50% compared to the control (Degawa 

et al, 1995). Moreover, the inducibility of CYP1A by inducers decreases slightly in the 

rat liver bearing hyperplastic nodules (Degawa et al, 1995). Consistent with that, the 

inducibility of CYP1A1 by BNF was markedly reduced in early lung hyperplastic foci 

associated with urethane exposure and the lung carcinomas were devoid of expression of 

CYP1A1 protein (Forkert et al, 1998). All of these previous studies suggest that CYP 

protein is downregulated in proliferating cells - - a finding which is consistent with the 

downregulation of CYP1A1 induction and CYP2B in our study of CD-exposed lambs. 

To assess the local inflammatory reaction of sheep lung in response to the inhaled 

CD particles, the AM and PMN were counted in BAL. The percentage of AM and PMN 

showed a modest, but significant increase. This result suggests that an inflammatory 

process accompanied the CD instillation in sheep. Interstitial pneumonia with 

accumulation of dust-laden AM in the interstitial tissue were the hallmarks of 

histopathological changes in lung sections of CD-exposed lobes in sheep.  In spite of the 

local inflammatory reaction, no systemic reaction was observed as there was no 

significant change in the neutrophil count, monocyte count, or total leucocyte count 

between CD-exposed and control sheep. This result suggests that CD instillation into a 

localized region of the lung is not associated with a systemic reaction in lambs at the dose 

instilled (500 mg/sheep). The local inflammatory process was also associated with non-

significant enhancement of LDH (marker of cytotoxicity) and albumin levels (marker of 

pulmonary-blood barrier in the lung) of the CD-exposed group compared to control. This 

suggests that CD exposure in sheep is associated with an inflammatory response, which 

involves the interstitium consistently. 

In conclusion, the general response of sheep lung to the CD-mediated suppression 

of BNF-induced CYP1A1 is similar to that observed in rats. The sheep results are also 

comparable to the CYP1A1-downregulation observed in acute and chronic silicosis in 

rabbits. Therefore, if the suppression of CYP1A1 by particle exposure occurs in 3 animal 

species (rats, rabbits, and sheep), it is also likely to happen in any other species, such as 

the human.  
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CHAPTER 6 

SOME MECHANISTIC INTERACTIONS ASSOCIATED WITH PARTICLE-

MEDIATED SUPPRESSION OF CYP1A1 INDUCTION IN RATS 

ABSTRACT 

CYP1A1 induction was suppressed by pulmonary exposure to coal dust and 

crystalline silica. However, the mechanism of induction suppression was not completely 

elucidated. Therefore, we investigated some of the alterations associated with suppression 

of BNF- induced CYP1A1 in rat lungs. We hypothesize that the inflammatory response 

and induction of apoptotic proteins are two potential mechanisms associated with 

CYP1A1 downregulation. To investigate this hypothesis, male Sprague Dawley (SD) rats 

were intratracheally (IT) exposed to 2.5, 10, 20, and 40 mg/rat coal dust (<5 µm) or 

vehicle (saline). Three days prior to sacrifice, rats were intraperitoneally (IP) injected 

with 50 mg/kg BNF (CYP1A1 inducer). At necropsy, bronchoalveolar lavage (BAL) was 

collected to evaluate pulmonary inflammation by measuring BAL alveolar macrophage 

(AM) and polymorphonuclear (PMN) cell counts, AM chemiluminescence (CL), and 

nitric oxide (NO)-dependent AM CL. Pulmonary cytotoxicity was assessed by measuring 

the BAL lactate dehydrogenase (LDH). In a parallel experiment, immunofluorescence 

triple labeling was conducted to identify the interaction between CYP1A1, cytokeratins 

8/18, and Bax expression. BAL analysis showed a dose-responsive enhancement of PMN 

and LDH by CD exposure (r2=0.661, p<0.0001; r2=0.174, p= 0.0139 respectively), a 

significant increase of AM count in all groups exposed to CD and BNF compared to 

control BNF-treated rats, and a significant enhancement of NO-dependent AM CL in rats 

exposed to the highest dose (40 mg/rat) of CD and BNF compared to rats treated with 

BNF alone (p= 0.004). Immunofluorescence (IF) triple labeling showed an inverse 

relationship between CYP1A1 expression and Bax expression in alveolar type II cells. 

Because Bax is a pre-apoptotic protein, we investigated the role of Bax expression and 

apoptosis on the CD-mediated suppression of CYP1A1 induction. To explore this 

mechanism, male SD rats (50-70 gm) were IT instilled with 40 mg/kg coal dust or vehicle 

(saline). At days 0, 5, 9, 10, 11, 12, 13 post instillation, rats were IP injected with the pan-

caspase inhibitor, Q-VD-OPH (20mg/kg), or vehicle (DMSO). Three days before 

sacrifice, all rats were administered BNF IP (50 mg/kg). EROD and PROD activities 
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were measured in microsomes of the right lobe. Histopathology, IF for CYP1A1, 

cytokeratins 8/18, and Bax, as well as TUNEL assays were conducted on tissue sections 

of the left lobes. EROD and PROD were significantly lower in CD-exposed rats 

compared to control. CD-exposed rats with caspase inhibitor did not show statistical 

difference in PROD and EROD activities compared to DMSO-injected rats. By IF, the 

area of CYP1A1 expression within alveolar septum of CD and BNF exposed rats was 

significantly lower than rats exposed to BNF without CD, but was unaffected by caspase 

inhibition with Q-VD-OPH. In single label IF, Bax expression measured as area (µm2) or 

number of cells/field was significantly lower in CD-exposed rats with Q-VD-OPH than 

CD-exposed rats with DMSO, but significantly higher than saline-exposed rats with Q-

VD-OPH. TUNEL assay showed a significant increase of percentage of apoptotic cells in 

CD-exposed rats with BNF compared to rats receiving BNF alone. CD-exposed rats with 

Q-VD-OPH had a significant reduction of percentage of apoptotic cells compared to the 

CD-exposed rats with DMSO. Taken together, these results suggest that CD exposure 

enhances the pulmonary inflammatory response in a dose-dependent manner, upregulates 

the Bax expression in AT-II cell, and induces apoptosis in lung cells. CYP1A1 induction 

and activity was not significantly affected by the Q-VD-OPH-mediated inhibition of 

caspases but caspase inhibition decreased Bax expression and apoptosis. This suggests 

that CD-associated suppression of CYP1A1 is associated with inflammation and 

associated with, but not caused by, Bax expression. 

INTRODUCTION 

The pathogenesis and mechanisms of suppression of CYP1A1 induction by intra-

pulmonary deposition of respirable particles are important processes in understanding the 

modification of the xenobiotic-associated lung cancer by downregulation of pulmonary 

enzymatic systems. In the previous 3 chapters, we have demonstrated a downregulation 

of CYP1A1 protein expression and its dependent activity, EROD by pulmonary exposure 

to CD and silica.  At the cellular level, the suppression of induction was demonstrated in 

alveolar type II cells, non type II cells, and the entire alveolar septum in three animal 

species, rats, rabbits and sheep. However, the mechanisms associated with this cellular 

behavior in response to particle exposure were not entirely clear. Pulmonary 

inflammation and lipoproteinosis were demonstrated by histopathological examination of 
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particle-exposed lung tissue and were associated with reduced CYP1A1 induction. In this 

study, we investigated the inflammatory response to CD exposure by examining 

bronchoalveolar lavage (BAL) fluid collected from rats exposed to coal dust particles. 

We examined the relationship between increasing levels of inflammation and increased 

suppression of CYP1A1 induction. Since the sensitivity of tissue to apoptosis is increased 

when expression of cell-death regulator proteins, such as Bax is upregulated (Guinee et 

al, 1997), we also investigated the relationship between the upregulation of Bax 

expression and apoptosis induction in alveolar cells and the CD-mediated suppression of 

CYP1A1 induction.  

Apoptosis is programmed cell death that is essential for homeostasis (Wang et al, 

2002) and tissue remodeling (Stanley et al, 1992). Apoptosis helps eliminate cells that 

have improperly developed, have been produced in excess, or have sustained genetic 

damage (Thompson, 1995). Apoptosis is characterized by cell shrinkage, nuclear 

condensation, DNA fragmentation, cytoplasmic blebbing and formation of apoptotic 

bodies (Wyllie et al, 1980). Because the plasma membrane is intact during programmed 

cell death, there is limited tissue injury and inflammation (Savill et al, 1993). Two 

common mechanisms are associated with cellular apoptosis: receptor-dependent and 

mitochondrial-dependent (Mayer and Oberbauer, 2003). The receptor-dependent 

mechanism is mediated through specific receptors, such as tumor necrosis factor 

receptors (TNFR). Stimulation of these receptors by extracellular stimuli, such as 

cytokine release or an inflammatory process, results in recruitment and activation of 

caspase 8. Activated caspase 8 can activate a cascade of downstream caspases that 

eventually produce DNA fragmentation and apoptosis (Peter and Krammer, 1989). In the 

mitochondrial pathway, intrinsic stimuli, such as ischemia and ionizing radiation (Mayer 

and Oberbauer, 2003) enhance the release of apoptotic proteins, such as caspase 9, or 

apoptosis inducing factor (AIF) from the mitochondrial outer membrane. These apoptotic 

factors activate caspase 8 and caspase 3, resulting in apoptosis (Peter and Krammer, 

1989). Some pre-apoptotic proteins, such as Bax, may be activated and translocated from 

cytosol to mitochondria, enhancing the release of cytochrome c and stimulating the 

mitochondrial-induced apoptotic mechanism (Aiba-Masago et al, 2002).  
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In our coal dust response study, we demonstrated a dose-dependent increase of 

Bax expression in alveolar cells by CD exposure. On the other hand, our previous 

experiments showed a reduction of CYP1A1 expression in alveolar cells by CD 

exposure. This suggests an association between increased Bax expression and reduced 

CYP1A1 induction. In addition, the Bax gene has 2 AhR response elements that play a 

role in PAH-mediated apoptosis of ovarian oocytes in mice (Matikainen et al, 2002). 

Since agents triggering pulmonary inflammation, such as silica (Lim et al, 1999; Lyer et 

al, 1996) and bleomycin (Kuwano et al, 2000), can also induce apoptosis of lung cells, 

we investigated the effect of CD, which also triggers lung inflammation, on alveolar cell 

apoptosis. Because apoptosis can be inhibited by specific caspase inhibitors, such as 

zVAD-fmk (Kitamaka et al, 1997) and Q-VD-OPH (Rebbaa et al, 2003), we investigated 

the effect of caspase inhibition on suppression of Bax-associated apoptosis and CYP1A1 

induction. We demonstrated that CD increases the number of apoptotic lung cells, and the 

caspase inhibitor, Q-VD-OPH inhibits both Bax expression and apoptosis. However, the 

suppression of CYP1A1 by CD exposure was not reversed by injection of the caspase 

inhibitor, suggesting that the suppression occurs by a mechanism other than Bax 

expression or apoptosis of pulmonary cells. 

MATERIAL AND METHODS 

Experimental Design 

 In the coal dust dose response experiment, 40 male SD rats (220-270 gm body 

weight at time of exposure) were randomized into 5 groups (8 rats/group) by a 

randomizer program (www.randomizer.org). Rats were exposed to 2.5, 10, 20, or 40 

mg/kg CD suspended in sterile saline or saline by intratracheal instillation (IT). Eleven 

days later, BNF was administered IP as a suspension in sterile corn oil at a dose of 50 

mg/kg for CYP1A1 induction. Three days after the BNF injection, rats were euthanized 

and BAL was collected as described later.  

In the caspase inhibitor (Q-VD-OPH) experiment, 24 male SD rats, (~67-93 gm 

body weight at time of exposure) were randomized into 4 groups (Table 1) using a 

randomizer program (www.randomizer.org). Rats were IT instilled with 40 mg/rat CD 

suspended in 0.3 ml saline or saline. On the day of the exposure, rats were injected with 

the caspase inhibitor, Q-VD-OPD dissolved in dimethylsulfoxide (DMSO) or the vehicle 
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with a dose of 15 mg/kg.  The initial dose of caspase inhibitor or the vehicle was then 

followed by subsequent doses of 10 mg/kg injected at days 5, 9, 10, 11, 12, and 13 post 

exposures. Eleven days post instillation, all rats received 50 mg/kg BNF suspended in 

corn oil as a CYP1A1 inducer by IP administration. Rats were euthanized on day 14. 

Group  Group size (n) CD or saline 

(IT) 

Q-VD-OPH or 

DMSO (IP) 

BNF 

(IP) 

Group 1 6 Saline  DMSO BNF 

Group 2 5 Saline  Q-VD-OPH BNF 

Group 3 7 CD DMSO BNF 

Group 4 6 CD Q-VD-OPH BNF 

 

Table 1.  The treatment groups, group size and type of treatment in the caspase inhibitor 

study. The number of rats per group was selected based upon a power analysis, utilizing 

results of previous experiments. 

Preparation of CD Suspension 

       The CD particulates used in the study are less than 5 microns in diameter with a 

surface area of 7.4 m2/g.  The particles contained 0.34 % total iron of which 0.119 % is 

surface iron.  The particles were heat sterilized in an oven at 160 ºC for 2 h.  Coal dust 

suspensions were made up daily from heat sterilized samples using pyrogen-free, sterile 

0.9% saline (Abbott Laboratories, North Chicago).  Suspensions were vortexed directly 

after preparation and shaken well before instillation. 

Intratracheal Instillation 

The CD particles were suspended in sterile saline at a concentration of 8.3, 33.3, 

66.6, and 133.3 mg/ml.  Rats received either 0.3 ml of this suspension (~2.5, 10, 20, and 

40 mg/rat) or 0.3 ml of saline (vehicle). The IT instillation was conducted as previously 

described (Porter et al, 2002). Briefly, rats in the CD response experiment were 

anesthetized by intraperitoneal (IP) injection of sodium methohexital (Brevital, Eli Lilly 

Indianapolis, IN) and were intratracheally instilled using a 20-gauge, 4-inch ball-tipped 

animal feeding needle. Rats in the caspase experiment were instilled using the same 
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procedure except that an 18 gauge, 1.5 inch animal feeding needle was used for the 

instillation  

Preparation and Injection of Caspase Inhibitor, Q-VD-OPH 

 The Q-VD-OPH (Quinoline-Val-Asp (Ome)-VH2-OPH) (Enzyme Systems 

Products, Inc., Livermore, CA), is a broad spectrum caspase inhibitor with potent 

antiapoptotic properties (Caserta et al, 2003). The mechanism of action depends upon the 

formation of an irreversible thioester bond between the active site cysteine of the caspase 

and the aspartic acid residue in the inhibitor (Melnikov et al, 2003). The Q-VD-OPH was 

injected in rats to block the caspase-dependent apoptosis in pulmonary cells. Solutions of 

2 % of the pan-caspase inhibitor were prepared in endotoxin-free dimethyl sulphoxide 

(DMSO) (Sigma Chemical Co., St. Louis, MO). Rats received 15 mg/kg in the first 

injections (day 0) and 10 mg/kg in the following injections (days 5, 9, 10, 11, 12, and 13 

post exposure) by IP administration. 

 Preparation of BNF 

To prepare BNF suspension, the vehicle (corn oil) was sterilized by filtering with 

non-pyrogenic Acrodisc 25 mm syringe filter (0.2 µm in diameter) (Pall Gelman 

sciences, Ann Arbor, MI). Solutions of 5 % BNF (Sigma, St. Louis, MO) in sterilized 

corn oil (50 mg/ml) were prepared 24 h before injection.  The suspension was vortexed 

and then sonicated 15 minutes in Ultronics sonicator (Mahwa, NJ).  BNF solutions were 

injected IP 72 h before sacrifice. 

Necropsy of Rats 

Rats were euthanized by IP injection of 0.5 ml 26% sodium pentobarbital 

(Sleepaway®, Fort Dodge Animal Health, Fort Dodge, IA).  The abdomen was opened by 

incision in the midline and the lungs and attached organs, including tracheobronchial 

lymph node, thymus, heart, aorta, and esophagus, were removed.  The right mainstem 

bronchus was ligated and the lung lobes were collected and immediately placed in ice for 

isolation of microsomes. The left lung lobe was inflated with 3.0 mls of 10% neutral 

buffered formalin (NBF).  Tracheobronchial lymph nodes, liver, spleen, and right and left 

kidneys were also fixed in 10 % NBF.  Fixed tissues were trimmed the same day, 

routinely processed in a tissue processor and embedded in paraffin the following 
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morning. For histopathoological examination, tissue sections of left lungs were stained 

with hematoxylin and eosin (H&E) for histopathology. Additional 5-micrometer sections 

were used for immunofluorescence. 

Microsome Preparation 

Microsomes were prepared as previously described (Flowers and Miles, 1991; Ma 

et al, 2002). Steps of microsomal preparation in rats are described in chapter 3. 

Determination of the Total Lung Proteins  

The protein content of lung microsomes was measured by the bicinchoninic acid 

(BCA) method as previously described (Smith et al, 1985, Ma et al, 2002) using the BCA 

protein assay kit (Pierce, Rockford, IL) in a spectra Max 250 Spectrophotometer 

(Molecular Devices Corporation, Sunnyvale, California). Bovine serum albumin was 

used as the standard. 

Measurement of EROD and PROD Activities 

  EROD and PROD activities were measured as previously described (Burke et al, 

1985 and Ma et al, 2002) using a luminescence spectrometer model LS-50 (Perkin-

Elmer, Norwalk, CT). A 10 µM concentration of 7-ethoxyresorufin (Sigma, St. Louis, 

MO) solution prepared from 2.35 µg 7-ethoxyresorufin in 1 ml DMSO was used for the 

standard curve following each run.  EROD and PROD activities were expressed as 

picomoles of the resorufin produced during the reaction per minute per milligram 

microsomal protein (pmol/min/mg protein). 

Western Blot Analysis 

Western Blot analysis of lung microsomes was conducted as previously described 

(Ma et al, 2002). Using a 15-well Novex tris glycine gel (Invitrogen Life Technologies, 

Carlsbad, CA), 30 micrograms of microsomal protein were loaded and subjected to a 

SDS gel electrophoresis and blotted against nitrocellulose membrane (Invitrogen Life 

Technologies, Carlsbad, CA). The nitrocellulose membrane was incubated with a 

polyclonal rabbit anti-rat CYP1A1 antibody (Xenotech, Kansas city, KS) or a 

monoclonal mouse anti-rat CYP2B1 antibody (Xenotech) at 4ºC overnight. The non-

specific binding was blocked by addition of 1% dry milk in tris-buffered saline/tween 

(TBS/T) for 1 h at room temperature with rocking. The membranes were then incubated 
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with a goat anti-rabbit antibody (Santa Cruz Biotech. Inc., Santa Cruz, CA) for CYP1A1 

detection or goat anti-mouse antibody (Santa Cruz Biotech. Inc., Santa Cruz, CA) for 

CYP2B1 detection for 1 h at room temperature with rocking. For the positive control, 

liver microsomes of BNF-treated rats (Xenotech) were used for CYP1A1 or liver 

microsomes of phenobarbital-treated rats (Amersham, Piscataway, NJ) for CYP2B1.  The 

CYP1A1 and CYP2B1 proteins were detected by an enhanced chemiluminescence (ECL) 

reagent kit (Amersham).  The X-ray films (Fuji Film Corp., LTD., Tokyo, Japan) 

containing protein bands were scanned by the Eagle Eye II scanner (Stratagene,  La Jolla, 

California) with Eagle Sight software. The scanned images were quantified by 

ImageQuant software version 5.1 (Molecular Dynamics, Sunnyvale, CA). The values 

were expressed as a percentage of the CYP1A1 or CYP2B1 positive controls. 

Immunofluorescence Techniques 

1- Single Label Immunofluorescence for Bax. 

 Single label immunofluorecence for Bax was conducted as described in previous 

chapters with minor modification. Briefly, the slides were heated in the oven at 60 ºC for 

15 minutes. The slides were deparaffinized and rehydrated in xylene in 3 sequential 6-

minute immersions, a 3 minute immersion in 100 % alcohol, 3 minutes in 90 % alcohol, 3 

minutes in 80 % alcohol, and 5 minutes in distilled water.  The antigen was retrieved by 

0.01M disodium ethylenediamine tetraacetate (Fischer Scientific, Fair Lawn, New Jersey 

07410), pH 8.0 in a microwave heating procedure.  Non-specific binding was blocked by 

5 % BSA in PBS (IgG free) (Sigma) for 10 minutes at room temperature (RT) followed 

by 5% pig serum in PBS (Biomeda Corporation Foster City, CA) for 10 minutes at RT.  

The slides were then rinsed with distilled water and a polyclonal affinity purified rabbit 

anti-Bax antibody (Santa Cruz Biotechnology Inc., Santa Cruz, CA) was applied 

overnight at a dilution of 1:20 with phosphate buffer saline (PBS) at room temperature. 

For the negative control, one slide was incubated with non-immune rabbit serum 

(BioGenex, San Ramon, CA). To maximize the antibody binding, slides were incubated 

for 2 h at 37 ºC the following day after which slides were washed and Alexa 594-

conjugated goat anti-rabbit antibody (Molecular probes, Eugene, Oregon) was applied for 

2 h at RT in the dark. 
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2- Double Label Immunofluorescence for CYP1A1 and Cytokeratins 8/18 

 The double-label immunofluorescence was carried out by the same method 

described in chapter one. 

3- Triple Label Immunofluorescence for Bax, CYP1A1 and Cytokeratins 8/18 

 Triple label immunofluorescence for Bax, CYP1A1, and cytokeratins 8/18 was 

conducted to localize the expression of Bax and CYP1A1 in AT-II cells (with 

cytokeratins 8/18 marker) or NT-II cells. The technique was similar to the single label 

and double label procedure. The only difference was the application of three polyclonal 

antibodies for Bax, CYP1A1, and cytokeratins 8/18, which were added to the same slide 

simultaneously. For Bax, a polyclonal affinity purified rabbit Bax antibody (Santa Cruz 

Biotechnology Inc., Santa Cruz, CA) was applied at a dilution of 1: 20 with PBS.  For 

CYP1A1, a polyclonal affinity purified goat antibody (Santa Cruz Biotechnology Inc., 

Santa Cruz, CA) was applied at a dilution of 1:10 with the diluted Bax antibody. For 

cytokeratins 8/18, a polyclonal Guinea pig anti-cytokeratins 8/18 (Research Diagnostic, 

Inc., Flanders, NJ) was applied at a dilution of 1:5 with the diluted mixture of and Bax 

CYP1A1 antibodies. The mixture of the polyclonal antibodies was applied by the aid of 

capillarity between folded slides and kept in the humidity chamber overnight at RT. For 

the negative control, one slide was incubated with rabbit serum (BioGenex, San Ramon, 

CA). On the second day and after 2 h incubation of the slides at 37 ºC, a mixture of 

appropriate secondary antibodies was applied on the slides for 2 h at RT in the dark. This 

mixture contains an Alexa 594-conjugated donkey anti-rabbit (Eugene molecular probe), 

Alexa 350-conjugated donkey anti-goat (Molecular Probes), and FITC-labeled donkey 

anti-G pig (Research Diagnostic, Inc., Flanders, NJ) antibodies for detection of Bax, 

CYP1A1, and cytokeratins 8/18, respectively.  

Morphometry of Immunofluorescence 

In all kinds of immunofluorescence, single, dual, or triple, five images were 

captured from the proximal alveolar (PA) regions, where most of the instilled particles 

were deposited. PA regions are areas of the lung that are located next to visible alveolar 

ducts. PA regions are different from random alveolar (RA) regions, which are areas 

without visible alveolar ducts. We concentrated on immunofluorescence in alveolus 
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rather than airways because we have previously demonstrated that in CD-exposed rats, 

changes in CYP1A1 expression principally occur in the alveolus. The threshold ranges 

for red (Bax), blue (CYP1A1) and green (cytokeratins 8/18) fluorescence were held 

constant throughout the morphometric analysis of all images. The slides were examined 

under a fluorescent photomicroscope (Olympus AX70, Olympus American Inc., Lake 

Success, NY) and images were captured using the 40x objective and a Quantix cooled 

digital camera (Photometrics, Tucson, AZ) with QED camera plugin software (QED 

Imaging, Inc., Pittsburgh, PA). 

1- Morphometry for Immunofluorescence of Bax Alone (Single Label) 

 The area of Bax expression in the alveolar septum was measured by commercial 

morphometry software (Metamorph Universal Image Corp., Downingtown, PA) and 

expressed as µm2. In addition, the number of cells expressing Bax in the tissue sections 

was counted and expressed as number per 40x field. 

2- Morphometry for Double Label Immunofluorescence 

 Morphometry of images captured from slides stained for CYP1A1 and 

cytokeratins 8/18 was conducted by the same method described in the previous chapters. 

3- Morphometry for Triple Label Immunofluorescence 

 The morphometric analysis of immunofluorescence triple labeling for Bax, 

CYP1A1, and cytokeratins 8/18 was mainly intended to investigate the sites of 

localization of CYP1A1 and Bax expression and investigate the effect of caspase 

inhibition on the expression of both proteins.  Quantification of triple-label 

immunofluorescence includes the following: 

A- Quantification of Bax Expression in the Entire alveolar Septum 

The total red area (representing Bax) expressed in the whole alveolar septum 

(including AT-II and NT-II cells) per 40x field was directly quantified by commercial 

morphometry software (Metamorph Universal Image Corp.). The total Bax area was 

expressed in µm2 and designated as Q. 
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B- Quantification of CYP1A1 Expression in the Entire Alveolar Septum 

The total blue area (representing CYP1A1) expressed in the whole alveolar 

septum (including AT-II and NT-II cells) per 40x field was measured directly by the 

commercial morphometry software (Metamorph Universal Image Corp.). The total 

CYP1A1 area was expressed in µm2 and designated as T. 

C- Quantification of Cytokeratins 8/18 Expression in the Entire Alveolar 

Septum 

The total green area (representing cytokeratins 8/18) per 40x field was measured 

as an indicator of AT-II cell hypertrophy and hyperplasia. This area was also measured 

by the commercial morphometry software (Metamorph Universal Image Corp.) and 

expressed in µm2. 

D- Quantification of Bax Expression in AT-II Cells 

 The area of Bax expression in AT-II cells was quantified and expressed as µm2 by 

measuring the red area (representing Bax) colocalized to the green area (representing 

cytokeratins 8/18 in AT-II cells) by the following mathematical formula: 

A = P x Q where; 

A is the area of Bax that co-expressed (colocalized) with cytokeratins 8/18 in 

alveolar type II cells, 

P is the percent of Bax expressed in type II cells measured by the Metamorph 

software, and 

Q is the total Bax area expressed in the whole alveolar septum (including alveolar 

type II and non-type II cells) measured by Metamorph software as in A. 

 In addition to the area measured, the number of type II cells expressing Bax was 

counted per field. 

E-Calculating the Proportional Bax Expression Colocalized Within AT- II Cells 

The proportional colocalization of Bax within type II cells was obtained by the 

following calculation: 

A (The area of Bax colocalized in type II cells as calculated in D, expressed as µm2) 
Total green area of cytokeratins 8/18 expression, expressed as µm2 
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 This calculation helped to investigate the relationship of Bax expression in the 

AT-II cells. Because AT-II cells increased in number and size in CD exposure, this 

estimate was normalized Bax expression per area of AT-II cells. 

F-Quantification of the area of CYP1A1 Colocalized with Bax 

The area of blue color (representing CYP1A1) colocalized (co-expressed) with 

red area (representing Bax) expressed as µm2 was calculated from the following formula:  

M=G x Q where; 

M is the area of CYP1A1 that co-expressed (colocalized) with Bax 

G is the percentage of CYP1A1 expression colocalized with Bax when measured 

by the Metamorph software, and 

Q is the total Bax area expressed in the whole alveolar septum (including alveolar 

type II and non-type II cells) measured by Metamorph software as in A. 

 G- Calculating the Proportional CYP1A1 Colocalized Within Bax Area 

 The proportional CYP1A1 expression within Bax area was calculated by the 

following formula: 

M (the area of CYP1A1 colocalized with Bax as calculated in E, expressed as µm2) 
         Q (the total area of Bax expression, expressed as µm2) 

 

This measurement is very important as it reflects the changes in CYP1A1 

expression relative to Bax expression in CD exposure. 

H-Quantification of CYP1A1 Colocalized with Cytokeratins 8/18 (in AT-II 

Cells). 

The area of CYP1A1 colocalized with cytokeratins 8/18 in AT-II cells (expressed 

as µm2) was obtained by the following formula:  

C = R x T where; 

C is the area of CYP1A1 that co-expressed (colocalized) with cytokeratins 8/18 in 

alveolar type II cells, 

R is the percent of CYP1A1 expressed in type II cells measured by the 

Metamorph software, and 

T is for the total CYP1A1 area expressed in the whole alveolar septum (including 

alveolar type II and non-type II cells) measured by the Metamorph software. 
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I- Proportional CYP1A1 Expression in AT-II Cells 

 The proportional CYP1A1 expression in AT-II cells was calculated as follows. 

C (the area of CYP1A1 colocalized with cytokeratins 8/18, expressed as µm2) 
Total green area of cytokeratins 8/18 expression, expressed as µm2 
 

This measurement reflects the CYP1A1 expression in AT-II cells but adjusts for 

area increases associated with the hypertrophy and hyperplasia of AT-II cells. 

J- Counting AT-II cells with Colocalized CYP1A1 and Bax 

 Since CD exposure was associated with AT-II hyperplasia, the number of AT-II 

cells that concomitantly express both CYP1A1 and Bax was counted per field of triple-

stained sections and the percentage of these cells from the total number of AT-II cells 

was calculated as follows:    

Number of AT-II cells with Bax and CYP1A1  X  100 
  Total number of AT-II cells 

 

This percentage adjusts the number of cells expressing both Bax and CYP1A1 for 

the increased number of AT-II cells associated with CD exposure. 

TUNEL Assay 

 Apoptosis of pulmonary cells was determined by terminal deoxynucleotidyl 

transferase-mediated dUTP nick end-labeling (TUNEL) assay using a TUNEL assay kit 

(Promega, Madison, WI) as previously described (Wang et al, 2002). In this apoptotic 

detection system, the fragmented DNA of apoptotic cells is measured by catalytically 

incorporating fluorescein-12-dUTP at the 3/- OH end of the DNA using the enzyme 

Terminal Deoxynucleotidyl Transferase (TdT) to form a polymeric tail in a TdT-

mediated dUTP Nick-End labeling process as previously described (Gavrieli et al, 1992). 

Briefly, the formalin-fixed, paraffin embedded lung sections were deparaffinized by 3 

sequential immersions in xylene, 3 minute each followed by rehydration with ethanol 

(100%, 95%, and 80%), 3 minutes each. The slides were then incubated with protease 

type 1 (Sigma) diluted with PBS at a concentration of 4%. For a positive control, a 

positive control slide was prepared by incubating the slide with DNase 1 (Sigma Aldrich 
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Co, St. Louis, MO) for 30 minutes at room temperature. All slides were then incubated 

with the equilibration buffer for 10 minutes, during which the reaction mix per slide was 

prepared by addition of 10 µl of the nucleotide mix to 90 µl equilibration buffer and 2µl 

terminal deoxynucleotidyl transferase (TdT) enzyme, according to the manufacturer 

instruction. For negative control, the 2 µl of TdT was replaced by 2 µl distilled water in 

the fluorescein-12-dUTP reaction mix. The slides were then incubated for 1 h at 37 ºC in 

the dark. Propidium iodide (100 µl/slide) (Sigma) was applied for 2 minutes as a counter 

stain, after which slides were rinsed in distilled water and cover slipped using anti-fade 

Gel/Mount (Biomeda, Foster City, CA) and kept at 4 ºC in the dark until examined. The 

slides were examined under a fluorescent photomicroscope (Olympus AX70, Olympus 

American Inc., Lake Success, NY) and images were captured using the 40x objective and 

a Quantix cooled digital camera (Photometrics, Tucson, AZ) with QED camera plugin 

software (QED Imaging, Inc., Pittsburgh, PA). Five images were randomly captured from 

PA regions and another five images were randomly captured from the RA regions. The 

number of positive and negative (normal) cells per field was counted. The results were 

expressed as a percentage of the positive apoptotic cells. 

 Bronchoalveolar Lavage (BAL) and Cell Differentials 

Lungs were lavaged and cells collected as previously described (Hubbs et al, 

2001). To assess pulmonary inflammation, cell counts of alveolar macrophages (AM) and 

polymophonuclear leukocytes (PMN) were obtained using a Coulter Multisizer II 

(Coulter Electronics, Hialeah, FL) as previously described (Castranova et al, 1990) 

BAL Fluid Albumin Concentration 

BAL fluid albumin concentrations were determined as an indicator of the integrity 

of the blood-pulmonary barrier.   BAL fluid albumin was measured colorimetrically at 

628 nm based on albumin binding to bromcresol green (Doumas et al, 1971) using a 

commercial assay kit (Albumin BCG diagnostic kit, Sigma Chemical Company, St.  

Louis, MO) and a COBAS MIRA Analyzer (Roche Diagnostic Systems, Montclair, NJ). 

BAL Fluid Lactate Dehydrogenase Activity 

BAL fluid lactate dehydrogenase (LDH) activities were determined as a marker of 

cytotoxicity, and were determined by monitoring the LDH catalyzed oxidation of lactate 



 164

to pyruvate coupled with the reduction of AAD+ at 340 nm (Gay et  al, 1968) using a 

commercial assay kit (Roche Diagnostics Systems, Montclair, NJ) and a COBAS MIRA 

Analyzer (Roche Diagnostic Systems, Montclair, NJ). 

Zymosan-Stimulated AM Chemiluminescence 

AM chemiluminescence was determined as an indicator of reactive oxygen and 

nitrogen species production by AM.  The use of unopsonized zymosan in the 

chemiluminescence assay allows only AM chemiluminescence to be measured, because 

unopsonized zymosan stimulates AM chemiluminescence (Castranova et al, 1987) but 

not PMN chemiluminescence (Hill, 1977; Allen, 1977).  The assay was conducted in a 

total volume of 0.50 ml HEPES buffer.  Resting AM chemiluminescence was determined 

by incubating 1.0 x 106 AM/ml at 37°C for 20 minutes, followed by the addition of 5-

amino-2,3-dihydro-1,4-phthalazinedione (luminol) to a final concentration of 0.08 µg/ml 

followed by the measurement of chemiluminescence.  To determine zymosan-stimulated 

chemiluminescence, unopsonized zymosan was added to a final concentration of 2 mg/ml 

immediately prior to the measurement of chemiluminescence.   All chemiluminescence 

measurements were made with an automated luminometer (Berthold Autolumat LB 953, 

Gaithersburg, MD) at 390-620 nm for 15 minutes.  The integral of counts per minute 

versus time was calculated.  Zymosan-stimulated (total) chemiluminescence was 

calculated as the cpm in the zymosan-stimulated sample minus the cpm in the resting 

sample.  1400W (N-(3-aminomethyl)benzyl)acetamidine•HCl), an inhibitor of nitric 

oxide synthase, was used to determine the component of zymosan-stimulated (total) 

chemiluminescence that is attributable to reactive nitrogen species.  1400W sensitive 

chemiluminescence was determined by subtracting the zymosan-stimulated 

chemiluminescence from cells pre-incubated with 1 mM 1400W from the zymosan-

stimulated (total) chemiluminescence from AM without 1400W. 

Histopathology 

 Tissue sections from control and CD- exposed lungs were routinely stained with 

hematoxylin and eosin (H&E) to assess histopathological changes. The changes were 

evaluated by a board-certified veterinary pathologist while blinded to the exposure status. 

The changes of interest that have been evaluated were: alveolitis (alveolar inflammation), 
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and AT-II cell hyperplasia and hypertrophy. The histopathologic changes were scored on 

a scale ranging from 0 to 5 for each of the severity and distribution scores to produce a 

sum pathology score of 0 to 10 for each slide, as previously described (Hubbs et al, 

1997).  

Statistical Analyses 

The dose responsive effects of coal dust instillation on quantity of AMs, PMNs, 

levels of albumin, LDH, AM CL, NO-dependent CL for BAL fluid, Bax area and cells 

with Bax/field, we used Proc Reg for the regression analysis.  All analyses were 

performed with SAS version 8.2 and using Proc Mixed or using Proc Reg. In all other CD 

response study comparisons, where we compared between groups, the model was single 

factor repeated measures analysis of variance.  In the case of comparison between PA 

with RA, the model was three factors repeated measures analysis of variance. In all other 

caspase inhibitor study comparisons, where we compared between groups, the model was 

two factors repeated measures analysis of variance. All pairwise comparisons were 

performed using a pooled variance estimate and Fisher’s LSD (Least Significant 

Difference). All results were considered statistically significant at p<0.05. 
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RESULTS 

Effect of CD Exposure on Bronchoalveolar Lavage Fluid (BALF) Analysis  

CD-exposed rats had a dose-dependent increase in polmorphonuclear leucocytes 

(PMN) (r2=0.974, p= 0.002) (Figure 1A).  The alveolar macrophage (AM) count was 

significantly increased in the BALF of all rats exposed to CD and BNF compared to rats 

treated with BNF alone (Figure 1B). AM CL and NO-dependent CL were significantly 

increased in rats exposed to 40 mg CD and BNF compared to rats treated with BNF alone 

(Figures 2A and B, respectively). The intrapulmonary deposition of CD particles 

produced pulmonary cytotoxicity manifested by elevation of LDH activity in a dose-

dependent fashion (r2=0.963, p=0.003) (Figure 3A). The blood barrier in the lung was 

also damaged in CD- exposed groups as shown by elevation of BALF albumin, which 

was statistically significant following exposures to 20 and 40 mg/kg CD and BNF 

compared to BNF alone (Figure 3B).  
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Figure 1. CD exposure increased the BALF PMN count in a dose-dependent manner (A). 
A significant PMN increase is shown in rats exposed to 10, 20, and 40 mg/rat CD and 
BNF compared to control saline and BNF. Alveolar macrophages cell count was 
significantly higher in all groups exposed to CD and BNF compared to the control saline 
with BNF (B). The bars are values of means and SE for each treatment. *Significantly 
different from control group at P < 0.05.  
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Figure 2. In A, AM CL was significantly higher in rats exposed to 40 mg CD and BNF 
compared to control saline and BNF. In B, the NO-dependent AM CL was also 
significantly increased in rats exposed to CD 40 mg and BNF compared to control saline 
and BNF. The bars are values of means and SE for each treatment. *Significantly 
different from control group at P < 0.05. 
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Figure 3. The effect of coal dust exposure on pulmonary cytotoxicity and vascular 
leakage in BNF-exposed rats. In A, CD exposure causes a dose-dependent increase in 
LDH that indicates pulmonary cytotoxicity (r2=0.963, p=0.003). In B, CD increased BAL 
albumin in all CD-exposed rats that was statistically significant in rats exposed to 20mg 
and 40 mg/rat CD compared to control indicating pulmonary vascular damage. 
*Significantly different from control group at P < 0.05.         
 
Effect of CD Exposure on Bax Expression in Lung Cells 

 By using single label immunofluorescence, Bax was mainly localized within cell 

cytoplasm (Figure 5). The area of Bax expression quantified by morphometric analysis 

was increased in a dose-dependent manner by CD exposure in rats (r2= 0.6541, p<0.001). 

In addition, the average number of lung cells expressing Bax counted per field was 

increased in a dose-dependent fashion by the CD exposure (r2= 0.903, p<0.001) (Figure 

4).  
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Figure 4. Bax expression is enhanced in a dose dependent manner by CD exposure in 
rats. In A, the area of Bax expression in lung cells measured in µm2 is increasing in a 
dose responsive fashion by exposure to 2.5, 10, 20, and 40 mg/rat CD. Similarly, the 
number of positive cells for Bax is increased in a dose dependent manner by exposure to 
2.5, 10, 20, and 40 mg/rat CD. * significantly different from saline/BNF at p<0.05. 
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Relationship Between Bax Expression and CYP1A1 Induction 

 To investigate a relationship between Bax expression and the suppression of 

CYP1A1 induction mediated by CD exposure, tissue sections were labeled for Bax, 

CYP1A1 and cytokeratins 8/18 (AT-II markers) (immunofluorescence triple labeling). In 

this procedure, cells containing CYP1A1 fluoresce blue, cells containing Bax fluoresce 

red, and cells containing cytokeratins 8/18 fluoresce green (Figure 7). The proportional 

CYP1A1 expression within Bax area was calculated with the aid of morphometric 

analysis as described in the Materials and Methods. The proportional CYP1A1 

expression within area of Bax expression was gradually reduced by increasing CD 

exposure (Figure 6A) suggesting that the probability that cells concomitantly expressed 

Bax and CYP1A1 decreased with CD exposure. In contrast, the proportional expression 

of Bax colocalized with cytokeratins 8/18 (AT-II cell markers) gradually increased by 

increasing the CD exposure (Figure 6B) suggesting that CD exposure increases Bax 

expression in AT-II cells. In addition, the percentage of AT-II cells that concomitantly 

expressed both Bax and CYP1A1 gradually decreased with increasing the CD exposure 

(Figure 6C) suggesting an inverse relationship between CYP1A1 induction and Bax 

expression in AT-II cells. In contrast, the percentage of AT-II cells expressing Bax only 

gradually increased with the CD exposure (Figure 6D) 
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Figure 6. Graphical representation of morphometric analysis of tissue sections stained for 
CYP1A1, Bax, and cytokeratins 8/18 showing the relationship between CYP1A1 
induction and Bax expression in AT-II cells. In A, the area of CYP1A1 colocalized with 
Bax in AT-II cells is reduced with CD exposure. In B, the area of Bax expression in AT-
II cells is increased by the CD exposure. In C, the percentage of AT-II cells expressing 
both CYP1A1 and Bax is gradually decreased by CD exposure. In D, the percentage of 
AT-II cells expressing Bax alone is gradually increased by CD exposure. 
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Effect of Caspase Inhibitor, Q-VD-OPH on EROD  

 BNF-induced EROD activity was significantly reduced in CD-exposed rats but 

not affected by the caspase inhibitor, Q-VD-OPH (Figure 9).  
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Figure 9. The pan-caspase inhibitor, Q-VD-OPH, did not alter the inhibition of EROD 
activity by CD exposure.  No significant change is observed between rats receiving the 
inhibitor and those receiving the vehicle (DMSO).  CD-exposed rats with DMSO have a 
significant reduction (P=0.03) of EROD activity compared to saline-exposed rats with 
DMSO.  Also, CD-exposed rats with the Q-VD-OPH caspase inhibitor have a significant 
reduction (p=0.001) of EROD activity compared to saline-exposed rats with the inhibitor. 
* and □ mean significant difference at p<0.05 from rats unexposed to CD. 
 
Effect of Caspase Inhibitor, Q-VD-OPH on PROD  

 CD significantly reduced PROD activity in BNF-treated rats and this effect 

persisted when caspases were inhibited by Q-VD-OPH.  PROD activity in CD-instilled 

rats injected with Q-VD-OPH was not significantly different from CD-exposed rats 

injected with the vehicle (DMSO) (Figure 10). 
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Figure 10. Effect of the caspase inhibitor, Q-VD-OPH on PROD activity. CD-exposed 
rats injected with the inhibitor are not significantly different from CD-exposed rats 
injected with vehicle (DMSO). PROD activity in rats exposed to CD and injected with 
DMSO is significantly (p=0.003) reduced compared to saline-exposed rats and injected 
with DMSO. PROD activity in rats exposed to CD and injected with the caspase inhibitor 
is significantly lower (p=0.001) than that in saline-exposed rats and injected with the 
inhibitor. è and * significantly different from saline/BNF/DMSO and  
saline/BNF/Inhibitor at p<0.05, respectively. 
 
Effect of Caspase inhibitor on CYP1A1 Induction by Western Blot 

 The CYP1A1 apoprotein measured by western blot analysis was not significantly 

changed in Q-VD-OPH-exposed rats. As observed in previous studies, CYP1A1 protein 

was significantly reduced in CD-exposed rats compared to BNF controls 

(Saline/BNF/DMSO). In rats injected with Q-VD-OPH, CD exposure reduced induction 

by BNF, albeit not significantly (Figure 11).  
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Figure 11. Western blot showing the effect of the Q-VD-OPH on CYP1A1 protein. The 
CYP1A1 protein is significantly reduced in CD-exposed rats with DMSO compared to 
saline-exposed rats with DMSO. The CYP1A1 protein is reduced (not significantly) in 
CD-exposed rats with Q-VD-OPH compared to saline-exposed rats with Q-VD-OPH. No 
significant change in CYP1A1 protein in CD-exposed rats with Q-VD-OPH vs. CD-
exposed rats with DMSO. The designation of lanes is described above the blot. C is the 
positive control. MW is the molecular weight marker. * significantly different from 
saline/BNF/DMSO at p<0.05. 

 
Effect of Caspase Inhibitor on CYP2B1 by Western Blot 

 The amount of CYP2B1 was not significantly affected by caspase inhibition with 

Q-VD-OPH. (Figure 12). 
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Figure 12. Western blot analysis of CYP2B1. In A, CD-exposed rats injected with DMSO 
have non significant reduction of CYP2B1 protein compared to saline-exposed rats 
injected with DMSO.  In B, CD-exposed rats injected with caspase inhibitor have non 
significant reduction of CYP2B1 protein compared to saline-exposed rats injected with 
caspase inhibitor. No significant change is observed between CD-exposed rats injected 
with caspase inhibitor and CD-exposed rats injected with DMSO. C. Quantification graph 
of CYP2B1 protein in different treatment groups. The designation of lanes is described 
above the blot. C is the positive control. MW is the molecular weight marker. 
 
Effect of Caspase Inhibitor on CYP1A1 Induction in PA regions by 

Immunofluorescence Double Labeling 

 By using the morphometric analysis of immunofluorescent double stained tissue 

sections for CYP1A1 and cytokeratins 8/18 (Figure 14), the areas of induced CYP1A1 

expression were highly significantly reduced in NT-II cells (p<0.001), the entire alveolar 

septum (p<0.001), but not significantly reduced in AT-II cells by CD in BNF-exposed 

rats with DMSO compared with BNF exposed rats (Figure 13B, C, A). The proportional 

CYP1A1 expression in AT-II cells was significantly reduced (0.0028) by CD in BNF-

exposed rats with DMSO relative to BNF-exposed rats (Figure 13D).   Similar results 

were obtained when caspases were inhibited. In rats treated with both Q-VD-OPH and 

BNF, CD exposure reduced the area of CYP1A1 expression in NT-II cells, the entire 

alveolar septum as well as the proportional CYP1A1 expression in AT-II cells (p<0.001, 

p<0.001, p<0.001, respectively) (Figure 13B, C, and D, respectively), but not 

significantly reduced the area of CYP1A1 expression in AT-II cells (Figure 13A). 

However, the areas of CYP1A1 expression in AT-II cells, NT-II cells, and the entire 
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alveolar septum as well as the proportional CYP1A1 expression were not significantly 

changed in CD-exposed rats with inhibitor compared with CD-exposed rats with DMSO 

(Figure 13A, B, and C, respectively).  

 The injection of caspase inhibitor did not produce significant changes in AT-II 

cell hyperplasia and hypertrophy in CD-exposed rats (data not shown). 

A                                                                              B 

A
re

a 
of

 C
YP

1A
1 

ex
pr

es
si

on
 in

 A
T-

II 
ce

lls
(s

qu
ar

e 
m

ic
ro

m
et

er
)

0.0

0.1

0.2

0.3

0.4

0.5

Saline/BNF/DMSO

CD/BNF/DMSO

Saline/BNF/Inhibitor
CD/BNF/Inhibitor

      

A
re

a 
of

 C
YP

1A
1 

ex
pr

es
si

on
 in

 N
T-

II 
ce

lls
(s

qu
ar

e 
m

ic
ro

m
et

er
)

0

200

400

600

800

1000

Saline/BNF/DMSO

CD/BNF/DMSO

Saline/BNF/Inhibitor
CD/BNF/Inhibitor

** **

 
C                                                                  D                                                           

    

To
ta

l a
re

a 
of

 C
YP

1A
1 

ex
pr

es
si

on
 in

 a
lv

eo
la

r s
ep

tu
m

(s
qu

ar
e 

m
ic

ro
m

et
er

)

0

200

400

600

800

1000

**
Saline/BNF/DMSO

CD/BNF/DMSO

Saline/BNF/Inhibitor

CD/BNF/Inhibitor

**

     

Pr
op

or
tio

na
l C

YP
1A

1 
ex

pr
es

si
on

 in
 A

T-
II 

ce
lls

0.0

0.1

0.2

0.3

0.4

0.5

Saline/BNF/DMSO

CD/BNF/DMSO

Saline/BNF/Inhibitor
CD/BNF/Inhibitor

* **
   

Figure 13. Morphometric analysis of dual immunofluorescence for BNF-induced 
CYP1A1, and cytokeratins 8/18 in the PA regions of rats receiving either the caspase 
inhibitor, Q-VD-OPH or the vehicle (DMSO) and IT CD or vehicle (saline). In A, the 
area of CYP1A1 expression in AT-II cells is not significantly decreased in rats receiving 
CD (CD/BNF/DMSO or CD/BNF/Inhibitor) and not significantly affected by caspase 
inhibition (Saline/BNF/Inhibitor or CD/BNF/Inhibitor). In B, the area of CYP1A1 
expression in NT-II cells is highly significantly decreased in rats receiving CD 
(CD/BNF/DMSO or CD/BNF/Inhibitor) and not significantly affected by caspase 
inhibition (Saline/BNF/Inhibitor or CD/BNF/Inhibitor). In C, the area of CYP1A1 
expression in the entire alveolar septum is highly significantly decreased in rats receiving 
CD (CD/BNF/DMSO or CD/BNF/Inhibitor) and not significantly affected by caspase 
inhibition (Saline/BNF/Inhibitor or CD/BNF/Inhibitor). In D, the proportional CYP1A1 
expression in AT-II cells is highly significantly or significantly decreased in rats receiving 
CD (CD/BNF/DMSO or CD/BNF/Inhibitor, respectively) and not significantly affected 
by caspase inhibition (Saline/BNF/Inhibitor or CD/BNF/Inhibitor). ** indicate highly 
significant change at p<0.001. * indicates significant difference at p<0.001. 
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Effect of the Caspase Inhibitor on Bax Expression in PA regions 

 Single label immunofluorescence for Bax (Figure 16) showed that the injection of 

the caspase inhibitor, Q-VD-OPH in CD-exposed rats highly significantly reduced the 

area of Bax expression (p<0.001) (Figure 15 A) and significantly decreased the number 

of cells expressing Bax (p=0.001) (Figure 15B) compared to CD-exposed rats injected 

with the vehicle (DMSO). However, the CD exposed rats injected with caspase inhibitor 

had a significant increase in the Bax area and highly significant increase in number of 

cells expressing Bax (p=0.005, p< 0.001, respectively) compared to saline-exposed rats 

injected with the inhibitor, suggesting that caspase inhibitor reduced Bax expression but 

not to the level of control values. These results were also confirmed by 

immunofluorescence-triple labeling for Bax, CYP1A1, and cytokeratins 8/18 (data not 

shown). 
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Figure 15. Morphometric analysis of single-labeled immunofluorescence for Bax in the 
PA region of BNF-treated rats after IT exposure to CD or saline with and without caspase 
inhibition with Q-VD-OPH. In A, the letter a above the bar indicates highly significant 
increase in the area of Bax expression in CD/BNF/DMSO group relative to 
saline/BNF/DMSO group. Bax expressed as area (µm2) is highly significantly reduced by 
the caspase inhibitor (letter b above the bar), but still significantly increased relative to 
Saline/BNF/inhibitor group (letter c above the bar). In B, the letter d above the bar 
indicates highly significant increase in the number of cells expressing Bax 
CD/BNF/DMSO group compared to saline/BNF/DMSO group. The number of cells 
expressing Bax is significantly lower in CD/BNF/inhibitor group relative to 
CD/BNF/DMSO group (letter e above the bar), but highly significantly higher than 
Saline/BNF/inhibitor group (letter f above the bar). Letters a, b, d, and f indicate highly 
significant difference at P<0.001. Letters c and e indicate significant difference at 
P<0.05. 
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Effect of the Caspase Inhibitor on CD-Induced Apoptosis.  

 In the TUNEL assay, the apoptotic cells were identified by their green 

fluorescence, while the non-apoptotic nuclei were identified by their red color (Figure 

18). The percentage of apoptotic cells was highly significantly increased (P<0.001) in 

CD-exposed rats in the absence of caspase inhibition with Q-VD-OPH. In addition, the 

percentage of apoptotic cells was significantly increased (P<0.048) in CD-exposed rats 

injected with caspase inhibitor compared to saline-exposed rats injected with caspase 

inhibitor. In the CD-exposed rats, injection of caspase inhibitor significantly decreased 

the percentage of apoptotic cells (p=0.013) (Figure 17). 

 Comparison of the percentage of apoptotic cells in PA regions vs. RA regions 

revealed a significant increase in the PA regions compared to the RA regions in all 

groups including Saline/BNF/DMSO, CD/BNF/DMSO, Saline/BNF/inhibitor, and 

CD/BNF/Inhibitor with p<0.013, <0.001, 0.025, and <0.001, respectively (Figure 17). 
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Figure 17. TUNEL assay results showing the percentage of apoptotic cells in BNF-
treated rats after IT exposure to CD or saline with and without Q-VD-OPH caspase 
inhibitor. The percentage of apoptotic cells is highly significantly increased in rats with 
CD/BNF/DMSO compared rats with saline/BNF/DMSO (letter b above the bar). Rats 
with CD/BNF/inhibitor have a significant lower percentage of apoptotic cells than rats 
with CD/BNF/DMSO (letter f above the bar). Caspase inhibition does not entirely 
abrogate the CD-induced apoptosis and the apoptotic cell percentage in rats with 
CD/BNF/inhibitor is significantly higher that in rats with saline/BNF/inhibitor (letter e 
above the bar). The percentage of apoptotic cells in the PA region is significantly higher 
than that in the RA regions of all groups (letters a, c, d, and g above the bars). Letters a, d 
and e, and f indicate significant difference at p<0.05. Letters b, c, and g indicate highly 
significant difference at p<0.001. 
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Histopathological Changes 

 Histopathological alteration associated with CD exposure included histiocytic and 

suppurative alveolitis with accumulation of dark brown particles within the cytoplasm of 

many alveolar macrophages. No significant difference was observed in CD-exposed rats 

injected with the caspase inhibitor compared to those injected with vehicle (Figure 19) by 

scoring the severity and distribution of these changes. AT-II hyperplasia and hypertrophy 

was demonstrated in CD-exposed rats (Figure 20). No histopathological changes were 

observed in rats exposed to BNF or BNF and the caspase inhibitor, Q-VD-OPH 
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Figure 19. Histopathological score of the severity and distribution of alveolitis and AT-II 
hyperplasia in CD-exposed rats injected with caspase inhibitor or DMSO. No significant 
change is noted between rats with CD/BNF/DMSO and rats with CD/BNF/Inhibitor. 
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DISCUSSION  

In this study, the pathogenesis of suppression of CYP1A1 induction in rat lung by 

coal dust exposure was investigated. Because alteration of pulmonary xenobiotic 

metabolism is an interplay with the inflammation (Ma and Ma, 2002), the inflammatory 

reaction to CD exposure was assessed by examining the BALF. We demonstrated that 

CD exposure enhanced the pulmonary inflammatory reaction in a dose-responsive 

fashion. This inflammatory reaction was illustrated by a significant increase of the AM 

and a dose-dependent recruitment of PMN in the BALF (Figure 1). The inflammatory 

reaction to CD instillation was previously investigated by Blackford and coworkers 

(Blackford et al, 1997) who demonstrated that CD had a less inflammatory effect than 

silica but a more potent effect than carbonyl iron and titanium oxide in inducing 

pulmonary inflammation. Activation of AM by CD exposure was also statistically 

significant in the highest dose (40mg/rat) as shown by measuring the AM CL (Figure 

2A). 

BAL Fluid Analysis: AM 

Alveolar macrophages are free lung cells located on the surface of the small 

airways and the alveoli (Weibel, 1973). These cells act as the lung’s first line of defense 

against the toxic effects of inhaled particles, as they play a major role in the protection of 

lung against these particles. The reaction of alveolar macrophages to the inhaled particles 

is complex. Upon contact with the particles, AM release superoxide anion (Sweeney et 

al, 1981), which can be monitored by the measurement of chemiluminescence (Miles et 

al, 1978; Castranova et al, 1980). Eventually, AM engulf these foreign particles and 

attempt to digest them by releasing lysosomal enzymes into phagocytic vacuoles (Myrvik 

and Evan, 1967). By histopathological examination of CD-exposed rats, dust-laden AM 

were localized in the alveolar spaces and interstitial tissue as a dark brown pigment 

(Figure 20). 

BAL Fluid Analysis: LDH  

LDH is an intracellular enzyme; therefore, its presence in the acellular BALF 

indicates cytotoxicity (Porter et al, 2002). The elevation of LDH, in a dose-dependent 

fashion, with CD exposure (Figure 3A) suggests that the reduction of CYP1A1 
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expression in alveolar septa could partly be attributed to cellular injury and cytotoxicity 

caused by CD exposure. Dinsdale and co-workers (Dinsdale and Verschoyle, 2001) 

showed a reduction of CYP2B1 expression and protein activity in rat lung following 

selective destruction of alveolar type I cells by pneumotoxic and nonpneumotoxic 

trialkylphosphrothiolate. In addition, the significant release of albumin in CD-exposed 

rats (Figure 3B) indicates damage of the blood-pulmonary barrier. Damage of the 

endothelial cells of alveolar septum by CD exposure could contribute to the total 

reduction of the CYP1A1 induction, since these cells are considered as NT-II cells that 

express CYP1A1 (Pairon et al, 1994). 

BAL Fluid Analysis: Nitric Oxide  

Nitric oxide is a short lived inter- and intracellular messenger produced by a 

family of enzymes known as nitric oxide synthases (NOSs) and brings about a number of 

bioregulatory functions (Kim and Sheen, 2002).  The inducible nitric oxide synthase 

(iNOS) gene expression and NO production by BAL cells can be measured indirectly as 

NO-dependent chemiluminescence (John et al., 1997).  The NO-dependent AM CL was 

significantly increased in rats exposed to 40 mg/rat CD with BNF compared to control, 

which suggests that CD induces nitric oxide synthesis by alveolar macrophages. This 

result is consistent with those reported by Blackford et al (1997) who concluded that coal 

mine dust is among the various dusts that induce iNOS by the recruited PMN into the 

alveolar spaces. In addition, Bingham et al, 1977, reported that in vivo exposure of rats to 

coal dust results in an increase in mRNA for the inducible form of nitric oxide synthase 

and elevated nitric oxide production by pulmonary phagocytes. The significant reduction 

of EROD activity and CYP1A1 protein (as shown by western blot) in rats exposed to 

40mg/kg CD with BNF with enhancement of the NO-dependent AM CL of the same 

group suggests a possible relationship between nitric oxide and CYP1A1 expression and 

activity.  Since NO reacts with hemeproteins, CYP1A1, being a heme-containing protein 

may represent a target of NO within the cells (Wink et al., 1993).  Therefore, a number of 

studies have investigated the effect of NO on CYP450s. Nitric oxide binds to the heme 

moiety of the P450s forming an iron-nitrosyl complex in rat hepatic cells in a reversible 

phase, subsequently preventing the binding of oxygen which normally occurs in the 

course of catalytic sites and suppresses CYP1A1 functional activity (Wink et al, 1993). 
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The same study also showed irreversible inhibition of CYP1A1 and CYP2B1 activity due 

to destruction of the integrity of the primary structure of hemeprotein, resulting from the 

action of nitrogen oxides produced from the oxidation of nitric oxide by oxygen. Not 

only does nitric oxide inhibit CYP1A1 activity, but in vitro studies on Hepa I cells (Kim 

and Sheen, 2002) suggest that nitric oxide also down-regulates the CYP1A1 expression 

by inhibition of CYP1A1 promoter activity. 

Bax Expression and CD exposure: Effect of the Caspase Inhibitor 

Our results showed that Bax expression was increased in a dose dependent 

manner by CD exposure (Figures 4 and 5). In single label immunofluorescence, the Bax 

staining was mainly localized in the cytoplasm of cuboidal cells, suggestive to be AT-II 

cells. In triple label immunofluorescence, the proportional Bax expression in AT-II cells 

as well as the percentage of AT-II cells expressing Bax  were gradually increased by 

increasing the exposure to CD particles (Figure 6B and 6D, respectively), suggesting that 

Bax was upregulated in the hyperplastic AT-II cells. These findings were consistent with 

those of Guinee et al (1997) who demonstrated that Bax expression was increased in 

diffused alveolar damage and was confined to hyperplastic AT-II cells. The proportional 

CYP1A1 expression localized in the area of Bax as well as the percentage of cells 

expressing both Bax and CYP1A1 were decreased by CD exposure (Figures 6A and 6C, 

respectively). Thus, by increasing the dose of CD exposure, the Bax expression was 

increased, but the CYP1A1 expression was reduced, suggesting an inverse relationship 

between the expression of both proteins.   

Bax is a pre-apoptotic protein related to BCL-2 family (Oltvai et al, 1993) that 

predisposes cells to apoptosis (Narasimhan et al, 1998). We initially hypothesized that 

the overexpression of Bax in lung cells increased the apoptosis of these cells and was 

etiologically associated with the depression of CYP1A1 induction observed in CD. To 

investigate this relationship, we used the newly developed pan caspase inhibitor, Q-VD-

OPD, which is known to inhibit caspases 1, 3, 8, and 9 to block the apoptotic pathway. 

Apoptosis of lung cells, assessed by TUNEL assay, showed that CD significantly 

increased the percentage of apoptotic cells (Figures 17 and 18) and rats injected with the 

caspase inhibitor had a significantly lower percentage of apoptotic cells. This finding 

indicated that Q-VD-OPH suppressed caspase-dependent apoptosis in pulmonary cells. 



 189

This result coincided with that obtained by Caserta et al, (2003) who demonstrated the 

effectiveness of  the Q-VD-OPH in blocking three different pathways of apoptosis; 

caspase 9/3, caspase 8/10, and caspase 12. Although the caspase inhibitor significantly 

reduced the apoptosis, the percentage of apoptotic cells remained significantly elevated 

by IT CD exposure, suggesting that the caspase inhibitor did not completely inhibit the 

apoptotic pathway. In addition, the caspase inhibitor significantly suppressed the Bax 

expression in lung cells, but the area of Bax expression was significantly higher than the 

control saline, suggesting that the caspase inhibitor down-regulated but did not prevent 

all Bax expression in alveolar cells.  

Although Bax expression and apoptosis in pulmonary cells were significantly 

suppressed by Q-VD-OPH, the BNF-induced CYP1A1-dependent EROD activity, 

CYP2B1-dependent PROD activity, the CYP1A1 and 2B1 proteins measured by Western 

blot, and the CYP1A1 measured by immunofluorescence, were not significantly affected. 

These findings suggested that the CD-associated suppression of CYP1A1 was not caused 

by cellular apoptosis and Bax expression. Moreover, it seemed that Bax expression was a 

feature of hyperplastic alveolar cells and the association of Bax with CYP1A1 expression 

was a simple association.  

Effect of Caspase inhibitor, Q-VD-OPH on Pulmonary Inflammation 

Histopathological alterations, such as alveolitis and AT-II hyperplasia and 

hypertrophy were not significantly different between CD-exposed rats injected with the 

caspase inhibitor and the CD-exposed rats injected with DMSO. This result suggested 

that the caspase inhibitor did not suppress the inflammatory process associated with CD 

exposure. Other pan caspase inhibitors, such as N-benzyloxy-carbonyl-Val-Ala-Asp- (O-

methyl)-fluoromethyl ketone (zVAD-fmk) and BOC-Asp-(O-methyl)-fluoromethyl 

ketone (BOC-Asp-fmk) were reported to reduce the neutrophil accumulation in the lungs 

of silicotic mice by 50 % (Borges et al, 2002). However in our study, the principally 

histiocytic inflammatory reaction in the lungs of CD-exposed rats was not significantly 

suppressed by the injection of Q-VD-OPH. While previous studies have used Q-VD-OPH 

mostly in mice (Borges et al, 2002; Melnikov et al, 2002), our study clearly demonstrated 

inhibition of both Bax and apoptosis, but not pulmonary morphologic changes induced by 

CD. In addition, inhibition of Bax expression and apoptosis by caspase inhibition did not 
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significantly affect downregulation of CYP1A1 induction associated with CD. This 

suggested that neither caspase pathways, Bax, nor apoptosis was the cause of inhibition 

of CYP1A1 induction in alveolar cells.  

Studies from a number of laboratories, principally investigating the liver or using 

in vitro systems, have noted an association between inflammation or inflammatory 

mediators and decreased activity of CYP isoforms including CYP1A, CYP2A, CYP2B, 

CYP2D9, CYP3A, CYP2E1 and CYP4A (Warren et al, 1999; Siewert et al, 2000; Jover 

et al, 2002; Carcillo et al, 2003).  Recent studies suggest that diesel exhaust particles and 

carbon black downregulate CYP2B1 in the rat lung (Rengasamy et al, 2003).  Consistent 

with these findings, we have found that respirable coal dust exposure also downregulated 

CYP2B1 in the rat lung.  In addition, the induction of CYP1A1 was downregulated by 

respirable coal dust exposure in the rat lung.  In our studies, the downregulation of 

CYP2B1 and induced CYP1A1 was positively associated with the severity of 

inflammation.   

Previous studies suggest that during inflammation, some mediators and 

transcription factors, such as tumor necrosis factor alpha (TNF-α), interleukin 6, nitric 

oxide and the nuclear factor kappa B (NF-κB) are upregulated and turned on (Ke et al, 

2001; Baldwin, 1996; Hubbard et al, 2002; Jover et al, 2002) and suppress CYP1A1. A 

physical association between the RelA subunit of the NF-κB and the AhR has been 

demonstrated in vitro by immunoprecipitation (Tian et al, 1999) producing an inactive 

complex that prevents the AhR from binding to the enhancer sequences of CYP1A1 (Ke 

et al, 2001). Moreover, NF-κB has been demonstrated to inhibit the ligand-induced 

acetylation of histone H4 at the CYP1A1 promoter area, especially around the TATA box 

region, thus preventing the AhR/Arnt heterodimer from binding to the XRE at the DNA 

resulting in downregulation of the CYP1A1 expression (Tian et al, 2002). TNF-α 

suppresses the activity of RNA polymerase II, resulting in interference with the CYP1A1 

elongation in Hepa1c1c7 cells (Tian et al, 2003). TNF-α also enhances the FasL-

mediated apoptosis in T lymphocytes (Bonetti et al, 2003), which occurs upstream of Bax 

activation. Another inflammatory mediator released during pulmonary inflammation is 

nitric oxide (Fubini and Hubbard, 2003).  Nitric oxide demonstrated a high binding 
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affinity to the heme moiety of the P450s forming an iron-nitrosyl complex in rat hepatic 

cells suppressing the CYP1A1 metabolic activity (Wink et al, 1993). Nitric oxide is also 

associated with induction of apoptosis in IC-21 macrophage cell line, which was 

inhibited by the nitric oxide synthase inhibitor (Siewert et al, 2000). However, Sutherland 

et al (2001) concluded that the macrophage-derived nitric oxide provides an antiapoptotic 

mechanism that protects AT-II cells from undergoing apoptosis and enhancing the lung 

injury. NF-κB seems to play an important role in protection against apoptosis (Ravi et al, 

2001) because the RelA-/- mouse fibroblasts are highly sensitive to TRAIL [(Tumor 

necrosis factor (TNF)-related apoptosis-inducing ligand)]-induced apoptosis. In addition, 

TRAIL-induced apoptosis of human hepatoma cells by interferon alpha is associated with   

NF-κB inactivation (Shigeno et al, 2003).   However, other studies showed that, 

activation of NF-κB is correlated with the ability of p53 to induce apoptosis in tumor 

cells (Ryan et al, 2000). Based upon these studies, Chen et al (2003) concluded that 

opposite functions of NF-κB are dependent upon the expression of its subunits, where c-

Rel and RelA function as proapoptotic and antiapoptotic proteins, respectively.  

Consequently, the NF-κB may contribute to or inhibit the apoptotic response in different 

conditions (Ryan et al, 2000). However, inflammation-associated suppression of hepatic 

CYP1A activity in vivo appears to be TNF-α independent but IL-6 dependent.  CYP1A 

downregulation occurs in p55/p75 knockout mice that lack TNF-α receptors (Warren et 

al, 1999) but does not occur in interleukin-6 knockout mice (Siewert et al, 2000).   

Our studies extend these findings to associate the in vivo downregulation of 

pulmonary CYP2B1 and induced CYP1A1 with inflammation that results from respirable 

coal dust exposure.  In addition, we have found that the downregulation of pulmonary 

CYP2B1 and induced CYP1A1 appear inversely related to, but not caused by, Bax 

expression in the cytosol.  Because we found that caspase inhibition had no effect on 

downregulation of CYP2B1 or induced CYP1A1 by respirable particle exposure, a 

possible explanation for these findings would be an event or signaling cascade producing 

both Bax activation and the CYP downregulation.  These would include nitric oxide, NF-

κB and/or initiators of alveolar epithelial proliferation.  It is also possible that Bax 

expression and CYP downregulation are independent events which are both observed in 

response to respirable particle exposures. Additional studies will be needed to fully 
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elucidate how CYP2B1 activity and CYP1A1 induction are inhibited in the particle-

exposed lung. 

In conclusion, CD exposure enhanced the inflammatory processes of rat lung in a 

dose-dependent manner by increasing the recruitment of AM and PMN. In addition, CD 

caused significant cytotoxicity of lung cells and damage of the blood-pulmonary barrier 

as demonstrated by elevation of LDH and albumin levels, respectively. CD also enhanced 

the Bax expression and induced apoptosis in lung cells, changes that were inversely 

associated with suppression of CYP1A1 induction by CD exposure.  
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CHAPTER 7 

GENERAL DISCUSSION 

Cytochrome P450s (CYPs) generate continued interest because these enzymes 

play critical roles in the metabolism of drugs, carcinogens, dietary xenobiotics and steroid 

hormones (James and Whitlock 1999).  The CYP proteins are heme-containing proteins, 

which are members of a gene super-family involving almost 1000 members in species 

ranging from bacteria to plants and animals (Hasler et al, 1999).  Cytochrome P4501A1 

(CYP1A1) has garnered particular interest because of its association with cancer.  

CYP1A1 is involved in the conversion of organic compounds, like polycyclic aromatic 

hydrocarbons (PAH) in cigarette smoke, into carcinogenic intermediates (Crepsi et al, 

1989; Shimada et al, 1989; Eaton et al, 1995) that can bind to DNA producing adducts 

and initiate lung cancer.   Moreover, the expression of CYP1A1 can be induced at the 

transcriptional level by its substrates.  The transcriptional regulation of the CYP1A1 gene 

by PAH is mediated through ligand-dependent activation of the aryl hydrocarbon 

receptor (AhR). Upon activation by binding of specific substrates, AhR translocates to 

the nucleus and dimerizes to the aryl hydrocarbon receptor nuclear translocator (Arnt) 

protein.  This heterodimer binds to the xenobiotic responsive element (XRE) in the 

regulatory region of the CYP1A1 gene inducing expression (Ma and Whitlock 1997; Tian 

et al, 1999).  It has been demonstrated that high inducibility of CYP1A1 is considered to 

be a risk factor for lung cancer in tobacco smokers (Anttila et al, 2001; Ishibe et al, 

2001). Since smokers are exposed to carcinogenic PAH, their CYP1A1 expression is 

induced (Willey et al, 1997). Therefore, modification of the induced CYP1A1 is of great 

importance in smoking populations. 

Coal is a fossil fuel mined all over the world.  Coal mine dust generated during 

underground coal mining results in significant respiratory exposure to coal miners.   In 

addition to the carbon, which is the main component of coal, it also contains oxygen, 

nitrogen, hydrogen, and trace elements, including non-coal minerals.  The trace element 

may include copper, nickel, cadmium, boron, antimony iron, lead, and zinc (Sorenson et 

al 1974).  Some of these trace elements can be cytotoxic and carcinogenic in 

experimental models (Castranova, 2000).  Mineral contaminants include quartz, kaolin, 

mica, pyrite and calcite (Parkes, 1994).  Coal dust inhalation is associated with 
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development of a respiratory disease in coal miners called coal workers’ pneumoconiosis 

(CWP). CWP is categorized according to severity into simple and complicated CWP.  In 

the simple form, black dust macules appear and consist of dust-laden macrophages 

concentrated near respiratory bronchioles.  In complicated CWP, also described as 

progressive massive fibrosis (PMF), the nodules are larger (> 1 cm diameter) and more 

numerous.  These nodules contain increased amounts of collagen, coal dust, and 

inflammatory cells (Castranova, 2000). Silicosis is another occupational lung disease 

resulting from exposure to the crystalline form of the mineral silicon dioxide or silica 

(Driscoll and Guthrie, 1997). Silicosis is characterized by inflammation and fibrosis in 

the lower respiratory tract.  

Recently, crystalline silica, but not coal dust, has been classified as a class I 

carcinogen by the International agency for Research on Cancer (IARC, 1997). However, 

epidemiological data demonstrate that lung cancer in coal miners occurs less frequently 

than in the general population after adjustment for age and smoking (Meijers et al, 1991 

and Kuempel, 1995). In addition, lung cancer risk in coal miners exposed to silica and 

PAH was absent or even less than those exposed to silica alone (Cocco et al, 2001). 

Evaluating the lung cancer risk in coal miners is complex because these people are 

usually exposed to a mixture of environmental contaminants, including the particulate 

matter and the PAH in cigarette smoke. In this study, we investigated the hypothesis that 

pulmonary CYP1A1 induction is inhibited by exposure to respirable particles. We also 

investigated whether or not alterations in lung cell populations are associated with 

suppression of CYP1A1 induction. 

Using the rat model alone to investigate these hypotheses was not satisfactory 

because of the existing debate concerning the species differences between rats and 

humans regarding their response to inhaled particles (Mauderly, 1997). Moreover, the 

pattern of particle retention as well as the lung tissue response to respirable particles in 

rats may not be predictive of those of primates who are exposed to poorly soluble 

particles, particularly at high occupational exposures (Nikula et al, 1997). For these 

reasons, we used rabbit and sheep, in addition to rats, to investigate our hypotheses. 

Generally, in any model, the respirable particulate suspension was intratracheally instilled 

by the aid of feeding needle in rats, endotracheal tube and laryngoscope in rabbits, and 
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flexible fiberoptic bronchoscope in sheep. In sheep, the right apical lobes were instilled 

while the left apical lobes were collected as internal controls. Then the CYP1A1 was 

induced in these animals by IP injection of the model PAH, beta-nephthoflavone. 

In general, our results consistently showed that the CYP1A1-dependent EROD 

activity, measured by spectrophotometric assay was significantly lower in BNF-induced 

animals instilled with particles than control animals (receiving BNF alone). The 

suppression of activity was associated with reduction of CYP1A1 protein measured by 

Western blot.  At the cellular level, the amount of CYP1A1 expression quantified by 

immunofluorescence was reduced in AT-II cells, NT-II cells, and the entire alveolar 

septum upon CD and silica exposure. Because particles tend to accumulate in different 

areas of the lung (Nikula et al, 1997), the CYP1A1 expression was compared in areas 

with maximal deposition to areas with minimal deposition. The area with maximum 

deposition was localized in the proximal alveolar regions, near microscopically visible 

alveolar ducts. For comparison, we also selected areas without visible alveolar ducts that 

were designated as random alveolar (RA) regions as internal controls.  We found 

significant reduction of CYP1A1 expression in AT-II cells, NT-II cells and whole 

alveolar septum in the PA regions relative to RA region. This result suggests that the cell-

type specific suppression is localized to areas where the particles aggregate. In addition, 

PROD activity, an indicator of the major constitutive pulmonary CYP which is not 

inducible in lung (CYP2B1, CYB2B4, and CYP2B in rats, rabbits, and sheep, 

respectively) was consistently lower in BNF-exposed animals instilled with particles than 

the controls. 

In our study, the exposure to particles, either CD or silica, produced AT-II 

hyperplasia and hypertrophy. However, the expression of CYPA1 in the hyperplastic and 

hypertrophied AT-II cells was markedly reduced. A number of studies showed that P450 

activities and the level of P450 apoproteins decreased after partial hepatectomy and 

regeneration of hepatic cells (Hino et al, 1974, Presta et al, 1980, Klinger and Karge, 

1987, and Ronis et al, 1992). It was suggested that replication, but not transcription is the 

prioritized activity of DNA to regenerate the cells (Liddle et al, 1989, Waxman, 1989, 

Morgan et al, 1985, and Steer, 1995). In our studies, AT-II cells may behave similarly in 

regenerating other damaged epithelial cells instead of transcripting genes. Consistent with 
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that are the higher levels of CYP2B1 protein expression and mRNA in freshly isolated 

alveolar type II cells, but this level is diminished in cell culture (Lag et al, 1996). 

Moreover, the inducibility of CYP1A decreases slightly in the rat liver bearing 

hyperplastic nodules (Degawa et al, 1995). Consistent with that, the inducibility of 

CYP1A1 by BNF was markedly reduced in early lung hyperplastic foci associated with 

urethane exposure and the lung carcinomas were devoid of CYP1A1 protein expression 

(Forkert et al, 1998). All of these previous studies suggest that CYP protein is 

downregulated in proliferating cells - - a finding which is consistent with the 

downregulation of CYP1A1 induction and CYP2B in our study of CD-exposed rats and 

lambs. 

In rats, CD exposure enhanced the inflammatory reaction in a dose dependent 

fashion by recruiting AM and PMN to the alveolar spaces as demonstrated by BAL fluid 

examination. Cytotoxicity and damage of the pulmonary blood barrier were also 

associated with CD exposure. Alveolitis and accumulation of dust-laden AM in the 

alveolar spaces and interstitial tissue were major findings in histopathological 

examination of CD-exposed sections. These findings were consistent with those 

described by Nikula et al (1997). Kuempel et al (2003) also demonstrated dose-response 

relationships between respirable crystalline silica in BAL collected from coal miners and 

pulmonary inflammation.  AMs become activated after phagocytosis of CD particles and 

release a wide range of mediators including oxidants, cytokines, growth factors, and 

proteases that result in cellular damage or hyperplasia of epithelial cells, such as AT-II 

cells (Schins and Borm, 1999). In vitro exposure of AMs to CD particles elicited a 

significant release of TNF-α and interleukin-6, compared to titanium dioxide that was 

used as a biologically inert control dust (Vanhee et al, 1995). In addition, many other 

mediators such as IL-1, IL-6, TGF-β1, and TGF-β2, and fibronectin are elevated in the 

BALF of miners with radiographically defined CWP (Vallyathan et al, 2000). Our results 

of BALF analysis of rat lung are consistent with the previous studies and support the 

hypothesis that CD triggers inflammatory reactions and changes in cell populations in the 

deep lung in rats. 
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 In sheep, the histopathological changes were comparable to those of rats, although 

relatively modest. Changes were bronchointerstitial pneumonia with accumulation of 

dust-laden alveolar macrophages, mainly in the interstitial tissue with only occasional 

foci of alveolar histiocytosis- - a finding that is consistent with a lavaged lung.  

In rabbit silicosis, pulmonary inflammation varied from histiocytic and 

suppurative to necrogranulomatous bronchointerstitial pneumonia with thickening of the 

alveolar walls. Alveolar lipoproteinosis was a common finding in silica-exposed rabbit 

alveoli. In some rabbit lungs with silicosis, silicotic nodules were demonstrated. 

Consistent with that, previous studies on rats showed that the pulmonary reaction to the 

inhalation of crystalline silica resulted in lung damage, inflammation, and hypertrophy 

and hyperplasia of AT-II cells (Miller et al, 1986; Miller et al, 1990; Castranova et al, 

2002).  

 The association of inflammation with the suppression of cytochrome P450 has 

previously been demonstrated in vitro and in vivo in several model systems. The acute 

inflammatory reaction caused by subcutaneous injection of bacterial lipopolysaccharide 

(LPS) (Morgan, 1989), turpentine (Kobusch et al, 1986), and viral and bacterial infection 

(El-Kadi and Du Souich, 1998) depressed the constitutive hepatic P450 expression. In 

addition, exposure of cultured hepatocytes to inflammatory stimuli decreases total 

microsomal cytochrome P450, P450-catalyzed enzyme activities, and levels of P450 

proteins and mRNAs (Morgan, 1997). A number of proinflammatory mediators may play 

a role in CYP1A1 downregulation during inflammation. For example, TNF-α interferes 

with CYP1A1 elongation during the transcription process by inactivating the RNA 

polymerase II (Tian et al, 2003). In addition, nuclear factor kappa B (NF-κB) interacts 

with AhR and thus interfered with AhR-mediated CYP1A1 induction (Ke et al, 2001). 

NF-κB also inhibited the ligand-induced acetylation of histone H4 at the promoter region 

of CYP1A1 gene and consequently prevented CYP1A1 induction in Hepa1c1c7 cells (Ke 

et al, 2001). Interleukin-6 (IL-6) also depressed multiple hepatic P450 isoforms such as 

CYP1A1, 1A2, 3A4, and 4A1, and IL-1β downregulates 1A2, 2C11, 2D6, 2E1, and 3A 

(Fukuda et al, 1992; Trautwein et al, 1992, Donato et al, 1997, Parmentier et al,  1997). 

In our study, using an in vivo rat model, we demonstrated that CD exposure elicited 
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pulmonary inflammation in a dose-responsive manner and suppressed the CYP1A1-

dependent EROD activity in a dose dependent manner, suggesting an inverse relationship 

between CYP1A1 induction and activity, and pulmonary inflammation. 

 Our data illustrated that CD exposure enhanced the expression of Bax in a dose 

dependent manner suggesting that CYP1A1 suppression of induction was associated with 

upregulation of Bax expression, particularly in hyperplastic AT-II cells. Since Bax is a 

pre-apoptotic protein related to BCL-2 family (Oltvai et al, 1993) that predisposes cells to 

apoptosis (Narasimhan et al, 1998), we investigated whether the suppression of Bax 

expression and cellular apoptosis could ameliorate the suppression of CYP1A1 induction 

by CD exposure. Therefore, the pan-caspase inhibitor, Q-VD-OPH was administered IP 

to inhibit the Bax expression and the caspase-dependent apoptotic cascade. Our data 

showed that although Bax expression and CD-induced apoptosis of pulmonary cells were 

suppressed by the caspase inhibitor, the CD-mediated suppression of CYP2B1 expression 

and CYP1A1 induction was not significantly affected. This suggested that the 

suppression of these CYP isoforms appears to be inversely related to, but not caused by, 

Bax upregulation and apoptosis induction. One possible explanation for this result is that 

an event or signaling pathway initiated by one or more of the inflammatory mediators, 

which such as nitric oxide or NF-κB, produced both Bax expression and CYP 

downregulation. Alternatively, the Bax upregulation and CYP downregulation were 

independent events observed in particle-exposed lung. 
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CONCLUSIONS 

The present study investigated the suppression of CYP1A1 induction by exposure 

to particles and its association with morphological changes in cell populations in the 

particle-exposed lung. To overcome the limitation of using rats alone as a model for 

human, rabbits and sheep were also utilized to explore our hypothesis. Our results 

demonstrated that: 

1- CYP1A1 induction was suppressed by pulmonary exposure to CD and silica.  

2- CYP1A1-dependent EROD activity was inhibited in a dose dependent-manner by CD 

exposure in rats and was significantly suppressed by silica exposure in rabbits and CD 

exposure in sheep. 

3- PROD activity was suppressed in rabbit silicosis and rat and sheep CWP models, 

respectively. PROD activity is dependent upon the major constitutive CYP isoform of the 

lung which are CYP2B1 and its analogs, CYP2B4 and CYP2B in rats, rabbits, and sheep, 

respectively. 

4- CD or silica exposure reduced CYP1A1 expression at sites of alveolar damage with 

reduced expression in alveolar epithelial cells, including AT-II cells and NT-II cells. 

5- Silica and CD increased the size (hypertrophy) and number (hyperplasia) of AT-II 

cells and reduced CYP1A1 expression in these cells.  

6- CD particles induced dose-dependent pulmonary inflammation, manifested by 

recruitment of alveolar macrophages and polymorphonuclear leucocytes.  

7- CD particles upregulated the preapoptotic Bax protein expression in alveolar epithelial 

cells and triggered apoptosis. 

8- Inhibition of cellular apoptosis and Bax expression by the caspase inhibitor, Q-VD-

OPH, did not affect CYP1A1 induction and its suppression by CD exposure 

These findings support the hypothesis that CYP1A1 induction and its metabolic 

activity (EROD) are inhibited by particle exposure and associated with pulmonary 

inflammation.  
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FUTURE STUDIES 

1-Investigating the effect of the nitric oxide produced during particle-associated 

inflammatory processes on CYP1A1 induction by using nitric oxide synthase 

knockout mice. 

2-Investigating the effect of NF-κB and TNF-α on CYP1A1 induction by using 

antisense olignucleotides techniques. 

3- Localization of CYP1A1 expression in different alveolar non-type II cells by using 

makers of alveolar type I cells, endothelial cells, and alveolar macrophages. 
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