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ABSTRACT 

 
Acoustical and Flow Characteristics of a Cough as an Index of 

Pulmonary Function in the Guinea Pig 
 
 

Joshua W. Day 
 
 

Human studies have shown that cough sound and flow analysis may be useful 
for diagnosing pulmonary abnormalities.  The purpose of this study was to evaluate 
an animal model for cough sound and flow analysis.  A system was designed to 
expose guinea pigs to aerosols of citric acid (0.39M) and record resulting coughs at 
different stages of chemically induced specific airway resistance (sRAW).  sRAW 
changes were determined by comparing the phase differences in the nasal and thorax 
flows during breathing cycles using dual chamber plethysmography.  Coughs were 
divided into three categories (low sRAW, n=113; moderate sRAW, n=143; high sRAW, 
n=93).  124 cough sound parameters were derived from the analysis of the sound 
pressure waves recorded during the cough.  The signal analysis included filter octave 
analysis, frequency power analysis, and time dependent spectral analysis.  
Unacceptable coughs were defined as those having 10% or more parameters 
exceeding two standard deviations from the mean and were eliminated from each 
group.  A principal component analysis was performed on all of the data, and 
components describing 99% of the variability in the parameters were chosen to train a 
single neuron feed-forward back propagation neural network with a bipolar sigmoid 
output transfer function.  The classification system was able to correctly discriminate 
between members of the high and low airway constriction groups with an accuracy of 
0.946 and a sensitivity and specificity of 0.893. 
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Chapter 1 - Introduction 

 
 Cough is a natural respiratory defense mechanism and one of the most 

common symptoms of respiratory disease [1].  It is often the foremost indicator of 

many fatal diseases.  The United States alone spends nearly $600 million annually on 

over-the-counter cough and prescription medications for cough [30].  In a United 

Kingdom primary care report, approximately four and a half million consultations per 

year claimed cough to be their main complaint [2].  This ranks cough fifth in the most 

common disorders for which patients seek medical advice, constituting a total of 30 

million office visits per year in the US [28].    

There is a need for quickly and accurately diagnosing potential pulmonary 

disease in patients suffering from cough.  Many cough studies focus on the 

anatomical and physiological mechanisms responsible for cough.  Since cough can be 

readily observed and measured in a variety of fashions, it would be beneficial to 

diagnose possible respiratory illness directly from cough sound and flow 

characteristics [3].  Many studies include measuring the number of coughs provoked 

by chemical aerosols to gain further insight into what triggers the cough response and 

airway constriction.  Ongoing cough research conducted at the National Institute for 

Occupational Safety and Health (NIOSH) aims to characterize both the acoustical and 

flow properties found in the human cough [4-8].  Findings from this research indicate 

that it is possible to determine whether humans studied exhibit normal pulmonary 

function or suffer from some form of pulmonary disease.  The capability of 

distinguishing pulmonary disorders using a cough provides a repeatable and reliable 

way of diagnosing respiratory illnesses.   
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In a variety of occupations, workers are exposed to many types of aerosol 

contaminants that deposit in the respiratory tract.  For many occupational pollutants, 

the deposition of these aerosols has been studied in considerable detail.  However, 

experiments are rarely conducted with readily available volunteers to draw immediate 

conclusion as to how the aerosols are affecting the respiratory tract during different 

levels of exposure.  This is due primarily to the health risks associated with such 

exposures.  It would be beneficial to the ongoing development of this research to use 

an animal model to conduct more elaborate, time-dependent, and controlled studies of 

the effects of occupational aerosols.   Using an animal model to examine resulting 

coughs after an exposure to a common occupational aerosol would allow the resulting 

changes in pulmonary activity to be contrasted to the characteristics of a pre-exposure 

induced cough.  By studying how changes in normal pulmonary function due to 

inhaled aerosols change cough characteristics, these tests may provide a correlation to 

the expected responses of humans and a deeper understanding of the relationship 

between cough characteristics and respiratory function. 

1.1  Problem Statement and Thesis Objective 

1.1.1 Problem Statement 
 

In the past, guinea pigs have been used to evaluate the effectiveness of drugs 

in reducing their cough response to chemical agents that induce airway constriction.  

Most studies have primarily focused on determining the number of coughs.  The 

airflow and acoustical characteristics of a guinea pig cough have not been studied in 

detail.   
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1.1.2 Thesis Objective 
 
 The primary objective of this work is to design and construct an exposure 

system that can be used to collect flow and acoustical information within a guinea pig 

cough.  Frequency power analysis, filter octave analysis, and time dependent spectral 

analysis will be applied to the acoustical cough signal to derive cough sound 

parameters.  Peak flow, average flow, total volume, and peak acceleratory flow will 

be calculated from the cough flow signal.  The acoustical and flow parameters 

obtained from the cough will be used to depict changes in the acoustical and flow 

properties at low and high levels of chemically induced airway resistance. 
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Chapter 2 – Review of Relevant Literature 

 

2.1  The Cough Reflex 
 

Cough is predominantly a reflex characteristic triggered by a peripheral 

stimulation.  The reflex can be broken down and generalized into five simple links: 

receptors, an afferent pathway, a central processor, an efferent pathway, and effectors.  

Lung irritant receptors, pulmonary and airway stretch receptors, and laryngeal 

receptors are some of the many receptors associated with the cough reflex.  Receptors 

mediating cough are found throughout the airways at epithelial nerve endings, 

primarily localized at sites of bifurcation or of sudden changes in the caliber of the 

airways.  These receptors, known as rapidly adapting receptors (RARs), are the 

endings of myelinated fibers of the vagus nerve [1]. In addition to these receptors, 

some recent studies indicate that adapting stretch receptors (SARs) and C-fiber 

stimulation may also be involved in the cough reflex [9,10].  The afferent pathway is 

composed of branches of the vagus and the glossopharyngeal nerves through which 

the afferent inputs from the airway receptors travel [1]. This information is then 

passed to a portion of the central nervous system associated with respiratory reflexes, 

which is thought to be located in a diffuse area of the medulla and lower pons close to 

the nucleus solitarius [11,12].  Upon processing the information gathered and 

transported from the receptors, responses from the central processor are carried to the 

effectors by the way of the phrenic, intercostals, lumbar and vagal nerves.  The 

effectors are the muscles responsible for retraction and enforcement of the vocal 

cords, the cross-striated muscles of respiration, the smooth muscles of the respiratory 
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system and the glands of the respiratory tract [1].  These five links work together to 

process information and carry out the cough reflex.  

 The physical cough maneuver consists of a complex sequence of inspiratory 

and expiratory efforts.  The first phase is a preliminary inspiration of gas usually 

larger than the normal breath [13].  At the end of the inspiration, the glottal adductors 

close, the diaphragm relaxes, expiratory muscles contract, and the gas within the 

lungs is compressed [14].  As the glottis reopens and an excitation of the 

thoracoabdominal expiratory muscles occurs, the compressed air rushes from the 

lungs periphery at a maximal flow rate [14,15].   In the final phase, known as the 

cessation phase, muscle activity minimizes and airflow decreases to zero [16]. 

2.2  Human Cough Research  

2.2.1 Sound Generation during Cough 
 

Physicians have used pulmonary acoustics of various respiratory maneuvers to 

help with the diagnosis of lung disease for many years.  Although cough is often 

considered to be a complication more so than a diagnostic tool, cough can also be 

used in diagnoses [6,16].  It is important to understand the changes in cough sounds 

due to lung disease.  Cough sound is initiated by the flow of air through the large 

airways of the lungs.  The sound then travels through the upper respiratory tract, 

through the oral cavity producing a broadband frequency signal, and out through the 

lips.  The sound that is produced provides important information regarding the sound 

source and the filtering effects of the airways [8] 
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2.2.2 Cough Sound and Flow Studies 

The researchers and engineers at the National Institute for Occupational 

Safety and Health (NIOSH) have been successful in designing a system capable of 

recording high fidelity cough sound measurements.  The system measures the sound 

pressure waves propagated through the mouth during cough.  The basic construction 

consists of a cylindrical mouthpiece attached to a 1” diameter metal tube where a 

microphone is mounted inside the metal tube tangent to the inner surface.  A section 

of 1” diameter flexible tubing is attached to the metal tube opposite the mouthpiece, 

and an exponential horn is mounted to the opposite end of the flexible tubing to 

minimize acoustical reflections.   

 

Figure 2-1 System Used to Acquire Voluntary Human Cough Sound and Flow measurements [8] 
 

Cough sounds were digitized at 65536 Hz using a 14 bit A/D converter and 

saved for later analysis.  The goal of the design was to have a system that can be used 

to examine acoustical characteristics in coughs from subjects with respiratory disease 

[6,8]. 
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Upon further investigation of the digitized signals obtained from the system in 

Figure 2-1, distinct cough parameters were established.  In one of the studies, a power 

spectrum created from the cough waveforms showed that the cough waveform 

exhibits a 1/fß relationship.  By using a least square analysis to apply the closest 

straight-line approximation of a log-log scale power spectrum, the exponent ß was 

approximated to be equal to the slope of the straight line.  Results show that there are 

differences in ß between genders.  This may be in part due to the differences in the 

caliber or arrangement of airways between men and women [8].  Another useful 

approach for analyzing cough waveforms is to view spectral information with respect 

to time.  A spectrogram visually displays frequency components by plotting 

individual joint time-frequency color intensity blocks on a frequency versus time plot.  

Wheezes, continuous or slowly changing tones, are visually evident by horizontal 

bands of high intensity frequency components present in the spectrogram.  Temporal 

locations, frequency levels, and duration of the wheeze can be used to characterize 

and diagnose different lung diseases [17].   

Other studies focus on acoustic modeling theories to extrapolate information 

from the free field measurement of a cough sound.  Many of the theories are similar 

to those applied in speech processing [5,18].  Van Hirtum et al used an auto-

regressive acoustical model, in which the current sample, ( )ty , is based on a finite 

number, , of past samples an

( ) ( )ktyaty
an

k
kp −−= ∑

=1

ˆ  

where  is the predicted signal sample. ( )ty pˆ
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The focus of this research was to determine frequency and bandwidths of 

peaks in the spectra for human and animal coughs.  Model order determination is 

discussed and the ability to depict resonances within the cough is also explained [19].  

Similar models, also based on speech processing algorithms, represent the respiratory 

tract as a transfer function to model changing airway sizes as time varying diameter 

changes in lossless tubes.  Findings from this research indicate that it may be possible 

to determine whether the cough sound can be used to reconstruct the respiratory tract 

areas and distinguish between healthy individuals and those with chronic pulmonary 

disease [5].  

Cough flow characteristics have also been productive in determining 

differences between healthy individuals and those suffering from obstructive lung 

disease.  Decreased peak flow, average flow, and peak acceleratory flow during 

cough are indicators of obstructive lung disease.  It has also been shown that men and 

women exhibit different flow characteristics due in part to the arrangement and size 

of their airways, further supporting the notion that flow characteristics provide insight 

to actual construction of the airways [16].  By examining cough flow in conjunction 

with acoustical properties, the intensity and duration of the cough can more 

accurately be determined [7]. 

2.3  Guinea Pig Cough Research 
 
 Cough spectral analysis, cough sound models, and flow characteristics 

demonstrate great potential in obtaining distinct cough parameters in humans.  

Despite significant progress in human cough research, research is limited by the 

ability to conduct human exposures to certain occupational aerosols due to the 
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potential health hazards.  For this reason, it is important to find an appropriate animal 

substitute that exhibits many of the same responses to a wide variety of aerosols.  

Animal studies have been conducted to estimate human pulmonary physiology for 

quite some time.   For the validity of this research it is important to show human and 

guinea pig respiratory correlations.  Using an animal with similar pulmonary 

responses to humans is the first step in creating an accurate animal cough model. 

2.3.1 Occupational Irritants 

 In many different occupational environments, gasses, vapors, and particles can 

act as respiratory irritants [30].  These irritants can be classified as either sensory or 

pulmonary irritants.   Sensory irritants stimulate the unmyelinated C-fibers of the 

trigeminal nerve endings located in the nasal mucosa [31,32].  In contrast, the 

pulmonary irritants stimulate the vagal afferents either directly or through 

inflammation in the conducting airways and alveoli.  In guinea pigs and humans, 

pulmonary irritants cause a decrease in tidal volume resulting in an increase in 

breathing rate [20].  The effects of occupational irritants in test animals versus 

humans reflect correlations between pulmonary inflammation responses and evidence 

to the appropriate animal for this model.  Table 2-1 is a collection of exposure results 

illustrating the amount of pulmonary inflammation to a variety of occupational 

irritants. 
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Table 2-1 Pulmonary Inflammation in Response to Inhalation of Various Gases, Vapors and 
Particles [20] 
 

Agent Exposure Species PMN 
Cotton Dust 0 guinea pig 0.46±0.04 x 107 cells/gp 
 35 mg/m3; 2h guinea pig 4.00±1.23 x 107 cells/gp 
 0 rat 0.08±0.01 x 106 cells/rat 
 35 mg/m3; 6h rat 4.47±1.00 x 106 cells/rat 
Burnt hay 0 guinea pig 0.10±0.01 x 107 cells/gp 
 11 mg/m3; 6h guinea pig 1.50±0.50 x 107 cells/gp 
Chopped hay 0 guinea pig 0.33±0.03 x 107 cells/gp 
 6 mg/m3; 6h guinea pig 2.66±0.60 x 107 cells/gp 
Silage 0 guinea pig 0.20±0.02 x 107 cells/gp 
 8 mg/m3; 6h guinea pig 4.33±0.66 x 107 cells/gp 
Leaf/Wood Compost 0 guinea pig 0.42±0.10 x 107 cells/gp 
 30 mg/m3; 4h guinea pig 5.59±0.84 x 107 cells/gp 
Endotoxin 0 guinea pig 0.08±0.03 x 107 cells/gp 
 4x104 EU/m3; 3h guinea pig 3.31±0.69 x 107 cells/gp 
FMLP 0 guinea pig 0.15±0.01 x 107 cells/gp 
 1 mg/m3; 4h guinea pig 1.38±0.35 x 107 cells/gp 
3-Glucan 0 guinea pig 0.30±0.02 x 107 cells/gp 
 23 mg/m3; 4h guinea pig 3.72±0.57 x 107 cells/gp 
Leather conditioner 0 guinea pig 0.17±0.06 x 107 cells/gp 
 2.5 mg/m3; 4h guinea pig 0.92±0.39 x 107 cells/gp 
Asphalt fume 0 rat 1.25±0.01 x 106 cells/rat 
 20 mg/m3; 4h rat 0.79±0.06 x 106 cells/rat 
Ozone 0 rat 0.40±0.04 x 105 cells/rat 
 2ppm; 3h rat 3.30±1.10 x 105 cells/rat 

 
 
In guinea pigs, the polymorphonuclear leukocytes (PMN) obtained by 

bronchoalveolar lavage peaks between 12 and 18 hours after the exposure.  Similarly, 

workers exposed to these aerosols exhibited a similar time course of inflammation 

[20]. 

2.3.2 Citric Acid Cough Studies 

 Citric acid has been widely used to chemically induce cough in both humans 

and other animals [21].  The cough reflex in the rat and mouse are less documented; 

only chemical stimulation can induce the cough reflex, and the resulting coughs are 

neither reproducible nor stable [1].  In a study conducted by Tartar and Pecova, the 
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sensitivity of the cough reflex in laboratory animals was tested.  They found that 

citric acid induced cough in 42.9% of unanethesized rats, 61.1% of rabbits, and 100% 

of the guinea pigs [22].  While examining the role of partial laryngeal denervation on 

the cough reflex in laboratory animals, results indicated that all guinea pigs tested, 

50% of the rats, and 50% of rabbits coughed.  Multiple studies by others have 

produced similar results confirming that guinea pigs have a more sensitive cough 

reflex than other laboratory animals [23].   

The citric acid cough response in guinea pigs has also been proven similar to 

that of humans.  In a comparative study of a cough challenge with humans and guinea 

pigs, both species exhibited similar dose dependant response curves.   

 

Figure 2-2 Guinea Pig Log-dose-response Curves for Citric Acid and Capsaicin [21] 
 

 
 

Figure 2-3 Human Log-dose-response Curves for Citric Acid and Capsaicin [21] 
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In Figures 2-2 and 2-3, the citric acid (-x-) and capsaicin (-●-) dose response 

curves are plotted for guinea pigs and humans.  The points show mean (±SEM) cough 

frequency for each particular dose.  The concentration-response relationship is 

comparable in both subjects [21].  

2.3.3 Methods of Recording Coughs in Guinea Pigs 

 A variety of methods have been used to record cough in guinea pigs.  In most 

studies, the intent was not to examine the contents of the cough sound but as a way to 

ensure that coughs were being counted accurately.  Scientists have mainly focused 

their studies on the receptors and afferent pathways responsible for inducing cough 

using a variety of cough inducing agents [1,24,33,34].  Counting coughs accurately 

with a high certainty is a fundamental component in their research.  Visually 

observing coughs proved to be subjective and provided controversial information.  

Using a microphone either built into the cage or attached to the animal provided a 

more concrete basis for counting coughs.  Despite these early efforts to quantify the 

cough response, visual conformation of cough attempts proved essential to 

differentiate coughs from sneezes or growls.  Other methods involved measuring 

changes in interpleural and tracheal pressure.  This approach seemed to provide the 

best evaluation of quality and quantity of cough [1]. 

2.3.4 Cough and Bronchoconstriction 
 
 In recent studies, a common experimental protocol has been adopted for 

guinea pig cough challenges.  Forsberg uses this protocol in a study focusing on 

cough and bronchoconstriction mediated by capsaicin-sensitive sensory neurons [24].  
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Initially, guinea pigs were placed individually in a Perspex chamber.  They were then 

exposed to nebulized citric acid, nicotine, and capsaicin for up to 7 minutes in 

individual trials.  Aerosols were produced by an ultrasonic nebulizer at a rate of 

0.5mL/min, and two trained observers watched the animals and listened to amplified 

sounds in order to accurately denote coughs.  The two observers reported 0.39M citric 

acid produced 6±3 and 5.8±3 coughs respectively in the first 3 minutes.  The 

bronchoconstriction reflex was defined as the development of a slow labored 

breathing with exaggerated abdominal movements.  The onset of bronchoconstriction 

correlated in time with greatly altered breathing patterns, recorded on a Grass 

polygraph, and a pronounced wheeze.  The two observers reported the onset occurred 

after 199±59 seconds and 199±57 seconds respectively.  Figure 2-4 denotes the dose-

dependent response curves of citric acid in guinea pigs.  

 

Figure 2-4 Guinea Pig Cough and Bronchoconstriction Dose Dependent Plots [24] 

In this study, the onset of bronchoconstriction appeared to be independent of 

the cough response.  It was noted that during some cough challenges, coughs 
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occurred before bronchoconstriction and in others bronchoconstriction occurred prior 

to coughs [24].  Based on these findings, the afferent pathways triggering broncho-

constriction seem to be different than those that trigger cough [25].  These results, and 

other similar studies, have shown that citric acid induces cough and increases overall 

lung resistance in anaesthetized guinea pigs [26,27]. 

To summarize, citric acid had similar effects in humans and guinea pigs.  Its 

provoked response seems to involve many of the same receptors and produce a 

similar cough response.  Citric acid has been shown to cause bronchoconstriction and 

that the onset is unrelated to the cough response.  This characteristic makes it possible 

to monitor the specific airway resistance created by reflex bronchoconstriction and to 

compare changes in the acoustical and flow characteristics at different stages of 

bronchoconstriction.  Measuring the constrictive effects of citric acid on the airways 

while recording cough sounds will give insight into how the airway alterations change 

cough characteristics in guinea pigs.  Findings in this data may indicate that coughs 

occurring after exposures to various occupational irritants can be measured and 

characterized in a similar fashion. 
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Chapter 3 – Materials and Methods 

 
The development of an animal model for studying cough sound and flow 

measurements must meet several essential requirements.  First and foremost, an 

appropriate animal must be chosen for the cough challenges.  In addition, an exposure 

system must be developed to generate cough-inducing aerosols in a controllable 

fashion.  Following an exposure, the system must also be capable of simultaneously 

recording cough sound and cough airflow measurements.  Breathing pattern 

measurements must also be saved to calculate specific airway resistance at the time of 

the cough.  It is essential that all data be saved so that synchronized measurements 

can be obtained during an experiment.   

3.1  Animal Considerations 
 

Based on previous studies, guinea pigs appear to be a suitable choice for an 

animal model.  They are known to cough in response to irritants such as citric acid 

and capsaicin.  They provide more consistent and reproducible coughs than rats and 

mice, and they have the advantage that they been used in many respiratory studies to 

approximate human respiratory system responses.  Furthermore, they exhibit a cough 

response similar to that of humans. 

The following protocol was used prior to exposing animals to conduct a cough 

challenge.  Male Hartley guinea pigs were allowed to acclimate to their new 

environment for one week.  After acclimation, they were loaded into the dual 

chamber plythesmograph used during the exposures for a minimum of three 

consecutive days to further acclimate them to the test environment.  Once the smallest 
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guinea pig reached 300 grams, exposures began.  This would allow approximately 10-

12 days for testing before the animal grew too large for the plythesmograph.   

3.2   System Hardware 
 

The animal cough system is a multifunction apparatus.  It is used both to 

expose the guinea pig to citric acid aerosols and record all cough sound and flow 

measurements after the exposure.  A diagram of the complete system is shown in 

Figure 3-1. 

 
 

Figure 3-1 Block Diagram of Exposure and Cough Recording System 
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3.2.1 Citric Acid Exposure Components 

Citric acid aerosols were created using a Devilbiss Ultra-Neb 99 nebulizer.  In 

order to estimate the size and amount of aerosols present during the exposure, 

preliminary aerosol diameter and concentration measurements were obtained using a 

TSI model 3320 Aerodynamic Particle Sizer (APS) in the configuration shown in 

Figure 3-2.  The APS measurements are taken from the aerosols present within the 

collection flask.  The flask had a similar volume to that of the head chamber and was 

used to simulate the space present within the head chamber.   

 

Figure 3-2 Diagram of System Used to Measure Nebulizer Aerosol Size Distribution 

 
The APS draws a constant flow of 5L/min through the system.  A flow 

calibrator (BIOS DryCal DC-Lite) was connected inline between the HEPA filter and 

nebulizer to accurately measure the nebulized airflow.  By adjusting the valve 

between the intersection of the nebulized airflow and dilutant airflow and the lower 

HEPA filter, the nebulized airflow could be altered.  Figure 3-3 is a plot of the 

measurements taken in a 30 second test period with a nebulized airflow of 0.35L/min.  

Based on the obtained data, 67% of the citric acid aerosols were less than 2.5um and 

95% of the aerosols are less than 10um in size.   
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Figure 3-3 Aerosol Generation for the Devilbiss Ultra-Neb 99 Nebulizer 

When animals were exposed, the aerosols were delivered to the head chamber 

by flowing air through the nebulizer cup using a 0-5L/min Aalborg mass flow 

controller.  A controllable dilutant air source was provided by a 0-10L/min Aalborg 

mass flow controller.  Using both mass flow controllers, the aerosol concentration 

within the chamber can be increased or decreased rapidly at any time by remotely 

adjusting the flow rates using the developed software.  Each mass flow controller is 

equipped with a 0-5V analog output indicating the flow rate and a 0-5V analog input 

used to set the desired flow rate.  Flow rates are determined based on a linear 

relationship between voltage and flow.  Hence, a 0V input results in no flow and 5V 

input corresponds to the maximum flow rate for the particular flow controller.  

Complete specifications for the mass flow controllers can be found in Appendix A.  

Lastly, to insure proper oxygen exchange during all testing procedures, a 0-2.5L/min 

Buxco bias flow vacuum pump was connected to the head chamber using 1/16” inner 

diameter tygon tubing to pull air into the chamber at a constant rate of 1.2L/min. 
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3.2.2 Cough Flow and Sound Measurement Devices 

The dual chamber plythesmograph (Hugo Sachs Elektronik-Harvard 

apparatus) was equipped with screen type pneumotachs in both the head and thorax 

chambers.  See Figure 3-4.  The resistances of the screens remain constant so that 

airflow is directly proportional to chamber pressure, making it possible to measure 

airflow into and out of each chamber.  An in-depth description of how the flow 

measurement was obtained from the pressure changes can be found in section 3.3.2.  

To measure the pressure changes, Setra model 239 differential pressure transducers 

are connected to each chamber.  The pressure range for each transducer was -0.25 to 

+0.25 inches of water.  The output voltage ranges from –2.5 to +2.5V and follows a 

linear relationship to pressure.  See Appendix A for detailed specifications of the 

pressure transducers.   

 

PNEUMOTACHS 

MIC/PREAMP

PRESSURE 
TRANSDUCERS 

Figure 3-4 Digital Photograph of Dual Chamber Plythesmograph 
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Sound pressure waves were recorded using a Larson Davis audio setup 

consisting of:  a model 2530 pressure and random incidence ¼” microphone, 

PRM910B ¼” preamplifier, and a 2200C dual channel microphone preamp/power 

supply.  The microphone was located in the head chamber approximately ½” from the 

mouth of the guinea pig during the experiment.  See Figure 3-4.  The frequency 

response of the microphone was 4Hz - 80kHz, making it ideal for recording high 

frequency data.  The microphone was matched with the preamp that was optimized 

for use with the precision condenser microphone.  The microphone was powered by a 

2200C dual channel preamp/power supply which offers attenuation and gain settings 

from –40 to +40dB relative to the input signal.  The preamp/power supply furnishes a 

microphone polarization voltage setting of 28Vdc to properly match the microphone 

and conditions where it will be used.  Outputs as high as 10Vrms are attainable for 

frequencies up to 50kHz, and the unit holds a long-term constant calibration level for 

changes in temperature and humidity.  Refer to Appendix A for complete 

specifications of the audio equipment. 

3.2.3 Data Acquisition System Overview 

All devices were controlled by one of two Data Acquisition (DAQ) cards.  A 

schematic of the complete DAQ system is shown in Figure 3-5.  The National 

instruments (NI) 6036E DAQ card is a low cost multifunction DAQ card.  The card 

features 2 analog outputs, 16 analog inputs with 16-bit resolution, and a peak 

sampling rate of 200 kS/s.  Complete channel access is made possible via the NI SC-

2345 signal conditioning box.  The NI PCI-4451 DAQ card was selected for all audio 

acquisition.  The card features 2 16-bit simultaneously sampled analog inputs with 
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sampling rates from 5 to 204.8kS/s, and 2 analog outputs.  The appealing feature 

about this particular card is that all analog inputs have hardware implemented analog 

and digital filters.  Input signals pass through the fixed analog filters to remove 

frequencies greater than the analog to digital converter’s range.  The digitized signal 

then passes through digital antialiasing filters that automatically adjust their cutoff 

frequency to remove frequency components above half the sampling rate.  Complete 

specifications for these cards are located in Appendix A. 

 
Figure 3-5 Electrical System Schematic 

The NI 6036E DAQ is responsible for all data transfer to and from the 

pressure transducers and air flow controllers.  See Figure 3-5.  Pressure transducer 

analog outputs are first sent through a gain and offset adjustment box using a DB-9 

connector.  The gain and offset adjustment box is used to negate any DC offsets 
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found in the pressure signals.  The box is also connected to a 24V battery to provide 

the required excitation voltage for the pressure transducers.  The airflow controllers 

are connected to a junction box that powers both controllers and separates the analog 

input and analog output signals.  The DC zeroed pressure transducer signals and the 

measured mass airflow readings are passed through a 4th order 50Hz low pass 

Butterworth filter (SCC LP02) located within the signal condition box.  The filter 

eliminates any noise readings greater than 50Hz from the signals and prevents 

frequencies greater than the cutoff frequency from being aliased as lower frequencies.  

The air flow controller analog inputs, used to set desired flow rates, are connected to 

analog output channels 0 and 1 of the NI 6036E DAQ card using the feed through 

connectors (SCC FT01) located inside the signal conditioning unit. 

 All sound measurements are recorded using the high fidelity NI PCI-4451 

DAQ card.  This DAQ card is mated to the BNC 4451 for access to the 2 analog 

inputs and 2 analog outputs provided on the card.  The microphone/preamplifier 

combination is connected to the 2200C power supply using a 5-pin Switchcraft 

connector.  The 2200C preamp/power supply amplifies the recorded sound pressure 

voltage from the microphone by 40dB before outputting the signal.  As can be seen in 

Figure 3-5, channel 1 analog input is tied to the head chamber pressure signal.  Since 

analog inputs are read simultaneously, this allows synchronized cough sound and 

flow measurements to be taken.  Head chamber pressure signals recorded on channel 

1 of the PCI-4451 DAQ card can then be correlated to the input from channel 0 of the 

NI 6036E DAQ card.  Thorax pressure recorded using channel 8 of the NI 6036E 

DAQ card can be referenced to the recorded head chamber pressures recorded on 
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channel 0, enabling accurate synchronization of all flow and sound data.  Complete 

specifications for both DAQ cards are located in Appendix A. 

3.3  Development of LabVIEW Data Acquisition Code 
 

National Instrument’s LabVIEW 6i was the chosen software platform to meet 

the data acquisition requirements for the above system.  LabVIEW is a visual 

programming language used to create virtual instruments (VIs) capable of controlling, 

monitoring, and saving all inputs and outputs of the system.  It is compatible with 

both DAQ cards and has a broad range of configurable options.  The following 

sections will discuss the LabVIEW VIs developed for calibration and data 

management. 

3.3.1 Pressure to Flow Calibration Software  
 
 As described previously, pressure transducers are connected to the head and 

thorax chambers of the plythesmograph.  In order to derive flow measurements based 

on pressure signals, a calibration constant was calculated for each chamber and used 

for the remainder of the experimental testing.  Figure 3-6 is a screenshot of the 

calibration front panel.  Among the “SETUP” options are:  input volume, trigger 

level, number of scans to acquire, scan rate, pretrigger scans, and time limit.  The 

input volume is the known air volume that will be injected into the chamber for 

calibration.  Scan rate and time limit (timeout) can be adjusted based on user 

preference, and the number of scans are the total number of scans to acquire including 

the pretrigger scans.   
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Figure 3-6 Calibration Software Virtual Instrument 

 
In the present configuration, an air volume of 10mL is injected into the 

chamber using a 10mL syringe.  The airflow created from the air being added to the 

chamber causes the voltage in the corresponding pressure transducer to increase.  

When the pressure transducer output voltage exceeds 0.1V, the implemented software 

trigger retrieves one second of previous buffered data and an additional four seconds 

after the trigger, insuring the entire pressure signal is captured.  The captured data is 

sent to the conditional box (labeled as True) located in the center of Figure 3-7.  

Twenty pretrigger samples are averaged to calculate the DC offset in the signal.  The 

offset is then subtracted from the original signal before any further calculations are 

made. 
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The calibration constant and flow rate can be solved using Ohm’s law by 

modeling the pressure, flow, and resistance of the calibration screens as a simple 

resistor circuit.  Relating Ohm’s Law to Pressure: 
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where CC is the calibration constant 
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As can be seen in upper right portion of Figure 3-7, equation 8 is used to 

calculate the calibration constant.  In a series of three tests, CC was 50±3 in each 

chamber.  The input volume is divided by the integrated pressure signal (the output 

from the conditional statement).  The flow curve is calculated by taking the product 

of the pressure change and the derived calibration constant.  The volume curve is 

calculated by integrating the pressure signal and multiplying it by the calibration 

constant.  The resulting flow and volume curves after the calibration test are shown in 

Figure 3-8.   

 26



 
 

Figure 3-8 Calibration System Output 

3.3.2 Front Panel Design and Operator Interface Description 
 
 The “Gpig Cough and Flow” VI, shown in Figure 3-9, is the next software 

component in the data acquisition system.  This VI was created to control and 

monitor the citric acid exposure devices and the store relevant breathing, cough 

sound, and cough flow data obtained during the testing procedure.  Before starting the 

software, the initial desired dilutant and nebulized airflows are set to zero.  The head 

and thorax calibration constants, calculated from the calibration VI described earlier, 

are entered into the appropriately labeled text boxes located under the filtered cough 

plot area.  At any time once the VI is started, head and thorax calibration constants 

can be recalculated by pressing the corresponding buttons located on the far left.   
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Figure 3-9 Exposure and Cough Acquisition Front Panel 

 
 After entering the needed inputs, the program can be started by pressing the 

small white arrow below the menu bar.  As soon as the program starts, a dialog box is 

displayed requesting the user to input the date and guinea pig identification number 

used for the current exposure.  See Figure 3-10.  

 
  

Figure 3-10 Directory Setup Dialog Box 
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 Date and guinea pig information is used to create a directory structure and 

assign filenames for the data acquired during the exposure.  Data content within each 

of the saved files is saved in a binary format to conserve disk space.  Using the 

information entered in Figure 3-10, the following files would be created and opened 

for writing within the C:\09-13-03\gpig5\ directory.   

• flowconc.fc5 – This file contains the raw voltage signals from both pressure 
transducers from the start of the exposure until the stop button is pressed.  A 
header is written to the file containing the date, time, and length of the 
exposure.  Also included in the header are the calibration constants, sampling 
rate (4000/S/s), and the text entered in the “FILE COMMENTS” in Figure 3-
9.  

 
• sound.base5 – This file contains a sample baseline sound file of the first 20 

seconds of the exposure while the dilutant and nebulized airflows are turned 
off and the animal is in the chamber.  In the post processing stage, this file 
will be used as a reference noise baseline.  Header file includes date, time, 
sampling rate (98304S/s), and “FILE COMMENTS.” 

 
• cough###.dat – These files are 1 second sound files saved during the exposure 

when a potential cough occurred.  (Cough detection will be explained in 
greater detail later in this section)  The header of these files includes: date, 
time, sampling rate (98304S/s), elapsed time, and the acquisition backlog.  
File numbers begin at 1 and are incremented as potential coughs are recorded. 

 
• flow###.dat – These are the corresponding flow files recorded from the head 

chamber.  They contain the same header information as the sound files and are 
sampled at the same rate. 

 
After the date and guinea pig information is entered and the user presses the 

“DONE” button, the designated filenames are displayed on the front panel.  Pressure 

signals in the head and thorax chamber are converted to flow rates and updated to the 

front panel approximately every 0.15 seconds.  See Figure 3-11.  Dilutant and 

nebulized airflows can be changed at any time during the exposure by typing in the 

desired flow rates, or by using one of the two buttons located in the lower left 

position of the front panel labeled “FLUSH CHAMBER” and “STOP FLOWS.”  
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Figure 3-11 Exposure and Cough Acquisition Front Panel Displaying Measured Flow Rates 

While the thorax and head flow rates are being displayed and recorded in the 

flowconc.fc# file, data from both channels of the PCI-4451 DAQ card are being 

sampled.  As noted earlier, channel 0 corresponds to the microphone signal and 

channel 1 is the pressure in the head chamber.  Each channel is read using a series of 

prepackaged LabVIEW analog functions.  Analog input functions were configured to 

sample at 98304 S/s and store data into a 196608 sample (2 second) buffer.  All data 

within the buffer is read and cleared by an analog read executed in the main loop of 

the program.  The inputs from both channels (labeled as Sampled data in Figure 3-12) 

are parsed and recorded in separate circular buffers, each 1 second (98304 samples) in 

length. 
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A specialized software trigger was created to examine the sound data to 

determine if a cough occurred.  The trigger is designed to look at the samples located 

in the middle of the sound buffer and determine if frequencies above 5000Hz exceed 

an amplitude of 0.01V.  In Figure 3-12, the position of the first sample of the data to 

be examined is obtained by dividing the buffer in half and subtracting half of the 

number of scans read each time through the loop.  The last sample in the data is the 

position of the first sample plus the number of samples read during a single read 

process.  This segment of buffer is sent to an 8th order 5kHz high pass Butterworth 

filter.  The max value of the output from the filter is compared to the desired 

amplitude.  If the recorded sound exhibits frequency components greater than 5kHz 

and data was not stored from the buffer one read cycle earlier, the conditional 

statements on the far right are executed.  Inside the conditional statements, the entire 

unfiltered sound buffer (labeled as Sound) and the corresponding flow buffer (labeled 

as Flow2) are saved.  The unfiltered data in the cough buffer is then filtered using an 

8th order 300Hz high pass Butterworth filter and the resulting cough waveform is 

plotted in the front panel as shown in Figure 3-13.  The cough and cough flow files 

are incremented and the system is ready to record the next cough. 
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Figure 3-13 Exposure and Cough Acquisition Front Panel Displaying Triggered Cough  

 Once the cough challenge is complete, the user can press the stop button 

located at the top left corner of the front panel.  The flowconc.fc5 file, containing 

pressure transducer outputs, is then closed.  Before the next guinea pig is loaded into 

the chamber, the system can be flushed with dilutant air removing the majority of 

residual aerosols within the head chamber. 

3.3.3 System Testing 
 
  One of the major concerns in the design of the acquisition software was the 

synchronization of the cough sound and flow data.  In order to reliably relate flow and 

sound during the cough, it is important that the microphone and the head pressure 

transducer signals be synchronized.  An experiment was designed to determine the 

accuracy of the designed software and the differences in response time for the 
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microphone and the head chamber pressure transducer.  In order to do this, a small 

inflated balloon was placed in the head chamber and pricked.  The sound and flow 

data were examined to ensure that the sound and flow measurements were in phase.  

In a series of three tests, the pressure transducer had an average delayed response of 

108 samples resulting in a .0011 second slower response time. 

3.4  Experimental Procedure 
 
 Two groups of six guinea pigs were used for the exposures.  Nebulized 

airflows and exposure stopping criteria were determined based on preliminary cough 

challenges.  See Table 3-1.  The goal of the preliminary testing was to generate 

exposure guidelines for triggering coughs at different levels of bronchoconstriction.  

In order to minimize bronchoconstriction and consistently trigger the cough response, 

the nebulized airflows were set between 0.3 and 0.35L/m and the exposure was halted 

immediately after the first cough effort.  By increasing the nebulizer airflow and 

delaying measurements until the second cough, the onset of bronchoconstriction was 

thought to occur earlier with an increased effect, thus producing coughs with 

increased airway resistance.  As indicated in Table 3-1, three of the six guinea pigs in 

each group were exposed to ozone for three hours at a aerosol concentration of 2ppm 

before the third day of the scheduled citric acid exposures.  Ozone has been shown to 

increase airway resistance up to three hours post exposure and to slightly decrease 

airway resistance thereafter [35].  The ozone exposure, in combination with varying 

nebulizer airflow settings and stopping criteria, enabled cough data to be collected 

with an increased variance in airway resistance. 
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Table 3-1 Guinea Pig Exposure Parameters and Stopping Criteria 

     

Days from Initial  Elapsed Time since  Nebulized Airflow  Exposure  
Citric Acid Exposure   Ozone Exposure (L/min) Stopping Criterion 
            
      

0  NE 0.3 - 0.35 First Cough Effort 
(n = 12)     
      

1  NE 0.35 - 0.4 Second Cough Effort or 
(n = 12)    Evident Bronchoconstriction 
      

2  NE 0.3 - 0.35 First Cough Effort 
(n = 6)     
      

2  ~ 15 min 0.3 - 0.35 First Cough Effort 
(n = 6)  (c = 3 hours @ 2ppm)   
      

3  NE 0.3 - 0.35 First Cough Effort 
(n = 6)     
      

3  18 hours 0.3 - 0.35 First Cough Effort 
(n = 6)  (c = 3 hours @ 2ppm)   
      

7  NE 0.35 - 0.4 Second Cough Effort or 
(n = 6)    Evident Bronchoconstriction 
      

7  5 days 0.35 - 0.4 Second Cough Effort or 
(n = 6)  (c = 3 hours @ 2ppm)  Evident Bronchoconstriction 
            
      

c = ozone exposure level    

n = number of animals studied   

NE = not exposed     
 
 

Before conducting each exposure, all airflows were turned off and a 

calibration stopper was placed in the removable cylinder of the plythesmograph to 

provide an airtight seal between the head and thorax chamber.  DC offsets from the 

pressure transducers were zeroed using the gain and adjustment offset box in 

conjunction with the test panel in the NI Measurement and Automation software 

package.  Calibration coefficients for each chamber were determined and any air 

leaks in the system were remedied.    

Upon successful calibration, a prepared 50mL solution of 0.39M citric acid 

was placed into the nebulizer cup, and all test animals were weighed.  Guinea pigs 
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were then loaded individually into the removable slotted tube of the plythesmograph 

and positioned so that the flexible plastic seals fit snugly around the animal’s neck.  

The removable tube and guinea pig were then placed horizontally into the 

plythesmograph.  For the remainder of the experiment, a constant flow of 1 liter/min 

from the Buxco pump was provided to the head chamber.  All valves remained 

closed, and only the holes with the screens were open.  This is the configuration in 

which all acoustical and flow measurements were recorded.   

Once the animal was relaxed inside the chamber, the data acquisition software 

was started.  Initial breathing measurements were taken during the first 20 seconds in 

the current configuration.  After the initial 20 seconds, the system was converted to 

begin delivering citric acid aerosols to the head chamber of the plythesmograph.  The 

nebulizer was turned on, the exhaust valve and the nebulized/dilutant airflow valve 

were opened, and the cap was placed in the head chamber opening to prevent citric 

acid aerosols from leaking out of the head chamber.  The nebulized airflow was set 

based on Table 3-1, and the dilutant airflow was held constant at 1L/min throughout 

the exposure.  The citric acid exposure was stopped based on the criterion in       

Table 3-1.  Once the stopping criterion was met, the plythesmograph was then 

reverted to the measurement phase described earlier with the cap removed from the 

head chamber and all valves closed.  Cough sound and flow data was recorded for up 

to 10 minutes after the exposure.  The guinea pig was then removed from the chamber 

and the head chamber was flushed with dilutant air at a rate of 10L/min for 30 

seconds.   
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Chapter 4 – Data Processing Methods 

 
After acquiring data using LabVIEW and associated hardware, post 

processing was performed in Matlab.  Although LabVIEW is capable of real time 

data processing, all data stored during the data acquisition process was saved in its 

raw format for later analysis.  The following chapter is an in-depth explanation of the 

data extraction process and the methods used to generate the cough parameter 

spreadsheet.  The results from the data processing algorithms in this chapter will be 

presented in Chapter 5.   

4.1 Specific Airway Resistance   
 

There are many methods used to estimate airway resistance [39, 41].  Specific 

airway resistance (sRaw), a commonly used noninvasive airway resistance estimation 

technique, uses dual chamber plythesmography [41].  In this analysis, sRaw (airway 

resistance times thoracic gas volume) estimates airway resistance by assuming the 

thoracic gas volume of the lungs remains fairly consistent throughout the exposure.  

sRaw provides a metric for quantifying the aerosol-induced bronchoconstriction 

present during each cough. 

An efficient method was developed to estimate sRaw near the time of the 

cough by analyzing the pressure changes across the screens in the head and thorax 

chamber during guinea pig respiration.  Using the recorded pressure changes, the 

nasal and thorax flows can be calculated given the flow resistance of the screens in 

each chamber.  The flows entering and exiting the chambers as a result of the drive in 

the thorax can be modeled as an electrical circuit (See Figure 4-1).  Pressure (inches 
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of H2O) is analogous to voltage, current represents the flow of gas in mL/s, and 

resistors are viewed as the resistance to flow in (inches of H2O)/mL/s. 

 
 

Figure 4-1 Electrical Flow Model of Guinea Pig in the Dual Chamber Plythesmograph 

PT and PH are the thorax and head chamber pressure readings recorded in the 

flowconc.fc# file during the exposure.  RST and RSH are the resistance of the screens in 

each of the chambers, and CT and CH are the capacitance or compliance in 

ml/inchH2O due to the volume present within the chambers.  The current source D is 

the flow created by the driving force of the guinea pig’s thorax.  CG is the capacitance 

of the thoracic gas volume present in the lungs, and Raw is the resistance of the 

airways.  By combining the resistance and capacitance in each chamber into a lumped 

impedance, the circuit can be rewritten where ZT and ZH represent the combined 

impedance of the screens and volume in each of the chambers.  See Figure 4-2. 
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Figure 4-2 Simplified Electrical Flow Model of Guinea Pig in the Dual Chamber Plythesmograph 

Using Kirchoff’s Current Law, the currents in the circuit in Figure 4-2 can be 

expressed using the following equations.   
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Taking a Laplace transform of the above equation and expressing PT as the input of 

the system and PH as the output produces the following transfer function.  
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See Appendix B for a complete derivation of the circuit equation and transfer 

function.   
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The goal is to quantify how the change in specific airway resistance changes 

the spectral components of the cough sound.  Since the actual airway resistance is not 

as critical to this analysis as is the change in airway resistance, the system transfer 

function can be simplified based on the following assumptions.  The first assumption 

is that ZT and ZH are equal.  The capacitance (change in volume/pressure) in each 

chamber is assumed to be nearly equal since the chambers have similar volumes and 

the pressure changes within the chamber are minimal.  The resistance of the screens, 

RSH and RST, as defined in Section 3.3.1 is the inverse of the calibration constant CC.  

CC was calculated to be 50±3 mL/s·Volt in both chambers.  The pressure transducer 

voltage resolution is 0.1inchH2O/V.  Therefore, the resistance of the screens can be 

calculated as R in the following equation. 
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By assuming both the capacitance of each chamber and the resistance in each 

chamber are equivalent, then ZT ≈ ZH. 

The second assumption is that the impedance in the head chamber, ZH is very 

small in comparison to the resistance of the airways.  Comparing airway resistance 

measurements obtained by Pennock et al with the chamber airflow resistance 

calculated above supports this assumption.  Pennock found guinea pig airway 

resistances at different stages of bronchoconstriction to range from 0.2 – 1.77 

smL
OinchH

/
2  using a pleural catheter [41].  Since the resistance of the screen accounts 

for <1% of the total resistance, the impedance (RAW + ZH) in the denominator of the 

 40



transfer function can be approximated as RAW. Following these assumptions, the 

transfer function can now be expressed in terms of PT, PH, CG, and RAW.  

1
1

+
=

sCRP
P

GAWT

H  

 Since PT and PH are synchronously recorded, CGRAW was determined in 

Matlab using the least square fit algorithm by rewriting the transfer function in the 

time domain. 

)()()( tP
dt

tdPCRtP T
T

GAWH +⋅=  

RAWCG was calculated by finding the coefficient that produced the least squared error 

in the time domain expression of the transfer function.  To evaluate the fit, the head 

chamber flow (PH x CC), thorax chamber flow (PT x CC), and simulated flow from 

the above equation was plotted as shown in Figure 4-3. 

 

Figure 4-3 Head Chamber Flow, Thorax Chamber Flow, and Simulated Head Chamber Flow 
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Given that RAWCG = RAW · TGV/PB and sRaw =  RAW · TGV, sRaw and can be 

calculated from RAWCG by multiplying by the barometric pressure PB.  Since the 

change in RAWCG is equivalent to the change in sRaw, the correlation between cough 

characteristics and airway resistance were made using the time constant between the 

nasal and thorax breathing signal, RAWCG.    

4.2 Acoustical Analysis 
 

4.2.1 Data Extraction 
 
 Matlab software was developed to read in all potential coughs saved during 

the data acquisition process.  Before developing cough statistics for each acquired 

potential cough, the saved data was played at 1/6th the sampling rate to discriminate 

between coughs, sneezes, growls, or other noises (animal movement, squeals, etc) 

that may have inadvertently triggered the acquisition.  Growls and noises were easily 

distinguished from coughs and sneezes by playing the cough sound at a reduced 

sampling rate.  In most cases, coughs played at the reduced sampling rate sounded 

similar to human coughs and were distinguishable from sneezes.   Potential coughs 

that could not be distinguished audibly were not included in the dataset.  Ideally, 

coughs would be correlated with known characteristics of a guinea pig cough to 

classify the recorded data.  However, there is no previous referenced work accurately 

characterizing the acoustical waveforms of the guinea pig cough.  

Each cough was saved in an appropriate directory with all other coughs 

obtained during the exposure.  The final step before analyzing the cough was to find 

the beginning and the end of the cough.  Figure 4-4 contains a plot of a cough in its 
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raw format and a filtered version obtained from an 8th order high pass 500Hz 

butterworth filter.  

 

Figure 4-4 Time Domain Representation of Guinea Pig Cough 

Cough start and end points were based on the amplitude of the filtered cough 

as indicated by the vertical red lines in the “Filtered Data” plot.  The start and stop 

times of each cough were saved in appropriately named binary MAT-files and the 

cough length was recorded in the cough parameter spreadsheet.  In the following 

cough sound and flow analysis, the cough files were loaded with the corresponding 

start and stop times, and only the data in the designated timeframe was analyzed. 
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4.2.2  Energy and Average Power  

 Since sound waves travel as waves of compression and rarefaction, sound 

measurements are typically calculated based on the sound pressure level (SPL).  SPL 

is measured on a logarithmic scale in dB because sound pressures of various sounds 

tend to cover large ranges [40].  In this analysis, sound energy and power levels were 

calculated with standard signal processing equations by using the amplified voltage 

signal from the microphone instead of the actual sound pressure level.  Energy was 

calculated from the time domain respresentation of the microphone voltage signal 

using the following equation.   
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The total energy of the signal was then divided by the sampling rate to convert energy 

to a time based energy measurement.  Average power was calculated using the 

following equation [38]. 
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       where N = the number of samples 

           x(n) = time domain cough sound 

 

By calculating energy and power based on standard signal processing 

equations, energy and power can be compared between coughs on a linear scale.  The 

primary reason calculations were made this way was to provide proportionally 

weighted parameters since all other parameters were calculated on linear scales.   
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4.2.3 FFT   
 

The fast Fourier Transform (FFT) is the mathematical basis of many of the 

spectral analysis techniques used to analyze cough sound data.  The primary function 

of the FFT is to transform sampled data from the time domain to the frequency 

domain.   The FFT works on the basis that the signal is composed of a number of 

sinusoidal components of various frequencies, amplitudes, and initial phases.  The 

resulting sinusoids are then summed creating a frequency domain signal.  To analyze 

discrete time signals, a variation of the FFT known as the discrete Fourier Transform 

(DFT) is used.  The defining equation is as follows: 

∑
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)( fG is the frequency domain representation of the time domain signal [36].  

The DFT is the fundamental component in many of the data processing techniques in 

the following sections.  

)( ntg

4.2.4 Power Spectrum 
 

The power spectrum is used to calculate the power as a function of the 

frequency.  Typically, a power spectrum analysis is more applicable to stationary 

signals.  Coughs are better described as non-stationary signals since the frequency 

content changes throughout the cough.  Although cough sounds are more 

characteristic of non-stationary signals, it was assumed that they can be divided into 

short quasi-stationary sections and analyzed as stationary signals [36].  In the analysis 

of the cough sound, Welch’s method and Burg’s method were used to analyze the 
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cough power spectrum.  Welch’s method is one of the more common methods used 

for analyzing the frequency power relationship.  While examining the power spectra 

using Welch’s method, the power in adjacent frequencies appeared to be quite 

oscillatory.  Burg’s method was used to provide a smoother power spectrum and 

capture the major characteristics.  Cough parameters were derived using both power 

spectrums.  

4.2.4.1 Welch’s Method  
 

The first step in Welch's method for estimating the power spectrum is to 

divide the time signal into successive blocks.  The process of sectioning the time 

domain signal into smaller signals is called time windowing.  Sliding the window 

across the time domain signal and calculating spectral intensity for that window in 

essence breaks the cough sound into stationary segments [36].  In the analysis of 

cough sound data, a 256 sample Hanning window was used with an overlap of 128 

samples or half the window size.   

Before calculating the power spectrum from each window, the individual 

windowed time domain signals were zero-padded by adding zeros to the time domain 

signal.  Zero-padding is a technique that is often used to interpolate between 

frequency samples of a fixed length DFT and is effective in producing more 

frequency samples of the periodically replicated signal spectrum.  Since a true 

improvement in spectral resolution can only be achieved using a longer time-duration 

window, zero padding is a somewhat artificial method for improving frequency 

resolution [38].  
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For each zero-padded time domain window, the spectral power using Welch’s 

method was calculated by averaging the squared magnitude DFTs using the following 

equation: 

2
1

0
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k xDFT

M
fPxx ∑
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=

=  

M denotes the number of windowed time samples and  is the time domain signal 

within the current segment.   is the returned power spectrum estimate for the 

complete signal [38].  The power spectrum for a randomly selected cough using 

Welch’s method with a DFT length of 2048 samples is shown in Figure 4-5.  The 

frequency and magnitude corresponding to the highest peak in the cough spectrum 

were recorded in the cough parameter spreadsheet as the dominant frequency and 

peak power. 

mx

)( fPxx

 
Figure 4-5 Welch’s Power Spectrum 
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4.2.4.2 Burg’s Method 
 
 The Burg method calculates the spectral density from the frequency response 

of an all-pole linear filter specified by the autoregressive (AR) linear prediction 

model.  The first step in generating the power spectrum using this method is to 

calculate the coefficients of the following linear prediction model.   

( ) ( )ktyaty
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k
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ˆ  

 
The current sample , is predicted from a linear combination of a finite number of 

past samples ( n ) yielding the predicted signal sample, 

( )ty

( )ty pˆ . is the prediction 

order, and is a vector of calculated model coefficients [19].  Using the least squares 

method, the Burg method calculates the best fit model of the input signal by 

minimizing the mean of the forward prediction error
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The resulting coefficients are constrained to satisfy the Levinson Durbin recursion 

algorithm [38].  From the derived coefficients, the input data is characterized using a 

source based all-pole transfer function, and can be written in the z-domain as  
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where e is the variance estimate of the input to the AR model.   

 The complex frequency response is calculated by evaluating at  

and performing a DFT on the numerator and denominator.  The numerator is divided 

qH )( ωjez =
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point by point by the denominator yielding the complex frequency response vector of 

the prediction filter.  The power spectrum is obtained from the product of the 

estimated AR model variance and the complex frequency response vector.  The 

resulting power spectrum is shown in Figure 4-6 for the same cough as in Figure 4-5. 

 
Figure 4-6 Burg’s Power Spectrum 

 The prediction model order has an important role in the frequency response of 

the prediction filter, and is directly related to the number of poles in the filter transfer 

function.  The peaks in the power spectrum of Figure 4-6 correspond to frequencies 

near the poles of the filter.  In order to capture the main peaks of the power spectrum 

and eliminate the small oscillatory peaks seen using Welch’s method, a 20th order 

Burg model was selected.  As can be seen in Figure 4-7, a 20th order model produces 

a much smoother power spectrum while preserving the major characteristics.   
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Figure 4-7 Comparison between Welch’s Power Spectrum and Burg’s Power Spectrum 

 In order to use the power spectrum as a parameter or group of parameters for 

correlating the cough sound spectrum with airway resistance, the peak power of the 

spectrum was recorded in conjunction with a set of estimated power spectrum 

parameters.  Peak power was obtained from the maximum magnitude of the power 

spectrum, and the estimated power spectrum parameters were calculated by dividing 

the power spectrum into thirty-two 1500Hz non-overlapping frequency blocks and 

averaging the power in each block.  The peak power and the estimated power 

spectrum parameters were saved in the cough parameter spreadsheet for later 

analysis.    
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4.2.4.3 Octave Analyzer 
 

The power spectra of both Welch’s method and Burg’s method were split into 

seven octaves beginning at 500Hz.  For a standard octave analyzer, the upper cutoff 

frequency in each octave is twice the lower cutoff frequency [37].  Figure 4-8 

demonstrates how the power spectrum was split into different octaves using Welch’s 

power spectrum.   

 
Figure 4-8 Octave Breakdown Using Welch’s Method 

The percent power in each octave was calculated by dividing the power in 

each octave by the total power in the signal.  The octave analysis was performed on 

the power spectra generated by both Welch’s and Burg’s power spectrum estimation 

methods.  All octave percent powers for both spectrums were saved in the cough 

parameter spreadsheet. 
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4.2.5 Frequency vs. Time analysis 
 
4.2.5.1 Spectrogram 
 
 A spectrogram is a time-dependent frequency analysis technique used to 

compare the cough spectrum with respect to time.  The spectrogram splits the cough 

sound into overlapping sections specified by the window size and the number of 

samples each window is to overlap adjacent windows.  For the cough sounds, a 

window size of 128 samples with a 96 sample overlap provided the best overall time 

(horizontal) and frequency (vertical) resolution.  To calculate the short-term 

frequency content of the signal, each window was zero-padded to a length 2048 and 

the DFT was performed on each window.  The color intensity in the spectrogram is 

representative of the frequency power during the cough.  See Figure 4-9.   

 
Figure 4-9 Guinea Pig Cough Spectrogram 
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4.2.5.2 Spectrogram Parameters 
 

The Matlab specgram function outputs vectors F and T, and matrix B.  

Vectors F and T contain the range of frequencies and midpoint of the time window at 

which the DFT is computed.  B is a (length of F) x (length of T) matrix composed of 

the frequency magnitude or power at F frequencies at T times.   

To provide a quantitative feel of how the frequency or pitch changes during 

the cough, two methods were developed for characterizing the spectrogram.  The first 

method calculates a weighted frequency average at different times during the cough.  

The output vector T is divided into thirty equally sized time frames.  For each 

timeframe, F was multiplied by the corresponding frequency magnitudes found in B.  

The product of F and B was divided by the total frequency magnitudes in each 

respective timeframe; thus producing weighted average frequencies for all 

timeframes.  The resulting vector is transposed on the spectrogram in Figure 4-10. 

 
Figure 4-10 Average Frequency Vector 
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The next method is similar to the previously described method, except the 

weighted averaging is computed along the time axis.  Instead of separating the cough 

into timeframes, the cough spectrum is broken down into 30 non-overlapping 

frequency bands.  The product of the frequency power in each frequency band and T 

were divided by the respective frequency power obtained from matrix B.  The 

resulting averages define the time at which the midpoint of the power occurs in each 

frequency band during the cough.  See Figure 4-11.  The horizontal lines are the 

frequency band divisions and the vertical lines are the power midpoint for each 

frequency band. 

 
Figure 4-11 Power Midpoint in Frequency Bands 
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4.3 Cough Flow Analysis 
 

Peak flow, average flow, peak acceleratory flow, and total expiratory volume 

parameters were calculated for all coughs.  Flows were calculated by multiplying the 

head chamber pressure signal obtained during the cough by the calibration coefficient 

recorded in the header of each flow#.dat file.  The maximum flow recorded during the 

cough was noted as the peak flow.  The average flow was calculated by a point-by-

point addition of all the flow values obtained during the cough divided by the total 

number of points in the cough length.  Peak acceleratory flow (mL/s2) was calculated 

by finding the peak value in the derivative of the flow signal.  The total expiratory 

volume was calculated by integrating the flow signal for the duration of the cough. 

4.4 Cough Characteristics vs. Airway resistance 
 

Given the large number of cough parameters derived from the previously 

described methods, a fast, reliable approach was needed to quantify the relationship 

between the derived cough parameters and the time constant, RAWCG.  The primary 

goal of the analysis is to determine how accurately coughs occurring at a low airway 

resistance can be distinguished from coughs occurring at a high airway resistance.  

The approach taken was a two-step process.  The first step was to re-express the 

cough parameters through principal component analysis (PCA).  The resulting cough 

parameters were then weighted and summed using a single neuron neural network 

thus providing a single output relating the cough sound to airway resistance.   

Before processing the cough parameters, coughs were divided into three 

groups based on the average of the pre-cough and post-cough RAWCG measurements.    

Groups 1, 2, and 3 were categorized of having low, moderate, and high airway 
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resistances respectively.  Outliers within each group where determined by calculating 

the standard deviation of each parameter within the group.  Coughs having 10% or 

more parameters exceeding two standard deviations from the mean of the group were 

considered poor coughs and removed from the dataset.  This resulted in 

approximately 9% of the coughs being removed in each group.  The resulting group 

statistics are in Table 4-1. 

Table 4-1 Cough Group Statistics 

Group # RC range (s) RC avg ± std (s) # of coughs 
1 0.0040 - 0.0060 0.0051±.00053 113 
2 0.0060 - 0.0095 0.0073±0.0010 143 
3 0.0095 - 0.0154 0.0117±0.0016 93 

 

Group divisions were established to force the airway resistance measurements 

of group 3 to be approximately double that of group 1, while maintaining a 

considerable number of coughs in both groups.  Group 2 contains the coughs in the 

transition from the low airway resistance coughs of group 1 to the high airway 

resistance coughs of group 3.  The following chapter will primarily focus on the 

cough characteristics in groups 1 and 3 to discriminate coughs occurring at low and 

high airway resistances.  To properly insure that the proposed analysis focuses on 

changes due to airway resistance and not the differences in cough characteristics of 

the guinea pigs in each group, the number of guinea pigs representing coughs in each 

group including the number of coughs exhibited by those guinea pigs were counted.  

Coughs in groups 1 and 3 were both comprised of coughs from ten guinea pigs.  Eight 

of the ten guinea pigs exhibited a minimum of 73 coughs in both group 1 and group 3. 
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Each group was then subdivided to form train and test datasets.  75% of the 

coughs were used to construct the train dataset and the remaining 25% were used to 

form the test dataset.  Coughs for each dataset were selected so that the specific 

airway resistance measurements for each dataset were statistically equivalent.  See 

Table 4-2. 

Table 4-2 Train and Test Dataset Statistics 

Train Dataset 
Group # RC range (s) RC avg ± std (s) # of coughs 

1 0.0040 – 0.0060 0.0051±.00054 85 
2 0.0060 – 0.0095 0.0073±0.0094 107 
3 0.0095 - 0.0154 0.0117±0.0016 70 

Test Dataset 
Group # RC range (s) RC avg ± std (s) # of coughs 

1 0.0040 – 0.0060 0.0051±.00052 28 
2 0.0060 – 0.0095 0.0074±0.0010 36 
3 0.0095 - 0.0152 0.0116±0.0017 23 

 

The train dataset was used to calculate the principal component vectors and 

input weights for the neural net.   Using the principal components and weights 

obtained from the train dataset, the test data was used to evaluate the accuracy of the 

developed analysis technique. 

4.4.1 Principal Component Analysis 
 

Principal component analysis (PCA) is a non-parametric mathematical method 

for extracting significant information from a complex dataset.  The fundamental 

concept behind PCA is to define a new basis that best represents the variability in the 

initial dataset.   
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Consider X and Y to be m x n matrices related by a linear transformation P.   

YPX =  

X is composed of m cough parameters for n guinea pig coughs.   Y is the new 

representation of the initial dataset X, and the rows of P are the principal components 

that best express X.   

P is defined in a way that minimizes the covariance between cough 

parameters and maximizes the variance within each parameter.  This in essence 

eliminates the redundant information found between parameters and emphasizes the 

correlation within each parameter.  To insure all parameter variances in X are 

considered equally, each cough parameter is divided by its respective mean.  The 

mean of the resulting parameters in X are subtracted so each parameter has a mean of 

zero and an appropriately scaled variance.  The variances and covariances of each 

parameter in X can be calculated with the following covariance matrix equation.   
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The diagonals of  contain the variance within each parameter, and the off-

diagonal terms are the covariance between parameters.   To minimize the covariance, 

would be a diagonal matrix in which the off-diagonal terms would contain zeros.  

For this reason, P is defined to transform X such that the covariance matrix of Y is 

diagonalized.   
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Rewriting  in terms of X and P yields: YS
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In the above equation,  can be diagonalized by solving for P so thatYS TXX is 

diagonalized.   If A is defined as TXXA = , then A is a symmetric matrix and by 

definition it is orthogonally diagonalizable.  This asserts that a diagonal matrix D 

exists such that A can be expressed as the following, 

TEDEA =  

where E is an orthogonal matrix containing columns of orthonormal eigenvectors of 

A.  By setting TEP = , P now contains rows of eigenvectors of A and the following 

substitutions can be made. 
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Since P is orthogonal, P-1 = PT . 
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The diagonal of  contains the variances of the new parameters and the off-diagonal 

covariance terms are now zero. The principal components of X are the rows of P, or 

the eigenvectors of 

YS

TXX .   

 Referring back to the original equation where YPX = , Y can be thought of as 

a projection of X along P.  Since P is orthogonal, the cough parameters in X are 

projected along orthogonal eigenvectors in m-dimensinal space minimizing the 

covariance in X.  The new cough parameters, Y, are essentially the sum of the 

orthogonal eigenvectors multiplied by the cough parameters.  The degree of variance 

explained by each eigenvector corresponds to the diagonal terms of .  The percent 

variance explained by each principal component can be calculated by dividing the 

variance corresponding to the respective principal component along the diagonal of 

 by the sum of all the diagonal components of .   

YS

YS YS

The principal components are ordered so that the first principal component is 

the eigenvector in the direction where the variance in X is maximized, and the last 

principal component is the eigenvector in the direction with the least variance.  The 

actual number of principal components used in the transformation is dependent on the 

degree of explained variance desired by the user [42].   

4.4.2 Neural Network 
 
 After performing a PCA on the training dataset, the resulting cough 

parameters were sent to a single neuron feed-forward back propagation neural 

network created using the Matlab Neural Network Toolbox.  See Figure 4-12. The 
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back propagation algorithm is an iterative gradient descent algorithm designed to 

minimize the mean square error between the actual output and the desired output.  
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Figure 4-12 Cough Analysis Neural Network 

In Figure 4-12, P1 through P62 are the parameter values after PCA for a single cough.  

w1 thourgh w62 make up the weight vector w, and b is a bias component added after  

the summation of the product of the parameter inputs and input weights. The output y 

is obtained from a bipolar sigmoid transfer function F(x) defined as 
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Figure 4-13 Bipolar Sigmoid Transfer Function 
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 Coughs in groups 1, 2, and 3 were trained with target inputs d =  –1, 0, and 1 

respectively.  The adaptation of the neuron weights and bias component are made 

using the following equations.   
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w(k) and b(k) are the present neuron weights and bias, w(k+1) and b(k+1) are the 

updated neuron weights and bias component, α(k) is the learning rate, p(k) is the input 

to the neuron and the gradient is defined as )(
)(
)()( yd

xd
xdFkg −= .  The updates are 

made only after the entire training set has been applied to the network, constituting 

one complete epoch.  The gradients calculated at each training example are added 

together to determine the change in the weights and bias.  Neural network training is 

complete when one or more of the following criteria are met.   

1) 200 training epochs were reached 

2) The desired MSE has been met 

3) The gradient vector is no longer being minimized   

 After training the neural network, the weights and bias component of the 

neural network were saved.  The performance of the trained neural net can be 

evaluated by transforming the test dataset, using the principal component vectors 

obtained from the training set, and comparing the output of the neural network with 

the measured RAWCG for the coughs in the test dataset. 
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Chapter 5 – Results and Discussion 

 

This Chapter contains the results from the processing techniques explained in 

the previous chapter.  The changes in the 128 derived cough parameter values from 

group 1 to group 3 will be used to indicate how the cough changes as the specific 

airway resistance increases by a factor of two.  The completeness in how well the 

cough parameters describe the time and frequency content of the cough will be 

evaluated, and the validity of the model will be examined based on the ability to 

differentiate between coughs belonging to groups 1 and 3.  

5.1 Acoustical Effects of the Head Chamber 
 
 Upon further observation of the results obtained from the cough power spectra 

and spectrograms, there were reasons to believe sound reverberations were present in 

the head chamber.  The abrupt power changes in adjacent frequencies of the power 

spectrum in conjunction with the high-powered horizontal bands of the spectrograms 

may indicate that resonant frequencies of the head chamber were causing select 

frequencies to be amplified and remain present in the recorded cough sound.   

To determine how the head chamber was affecting the cough sound 

properties, coughs were collected after insulating the inside of the chamber with 

sound absorbent foam.  The effectiveness of the sound absorbent foam was evaluated 

by playing a 0 – 20kHz white noise signal into the insulated head chamber.  The 

resulting white noise power spectrum was flat in the specified frequency range.  An 

exposure was then conducted to record coughs inside the sound absorbent head 

chamber in the same fashion as previous cough sounds were obtained.  The resulting 
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cough power spectrum, shown in Figure 5-1, was similar to the previously obtained 

power spectra.  Power oscillations between adjacent frequencies are still evident in 

the spectrum, and three predominant power peaks occur near 2kHz, 8kHz, and 

17kHz.  Similar power spectrum characteristics were found in the previously gathered 

cough sounds.  Unfortunately, direct comparison between the non-sound absorbent 

and sound absorbent head chamber cough spectra could not be made since no two 

coughs have identical power spectra. 

 

Figure 5-1 Cough Power Spectrum from Sound Absorbent Head Chamber 
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5.2 Cough Length 
 
 Cough lengths were fairly consistent between the two groups.  See Table 5-1.  

Ideally, coughs would only be collected after a full inspiration to determine the 

effects of airway resistance on cough length.  Unfortunately this stipulation could not 

be made since there was no way of forcing the animal to follow a developed cough 

maneuver protocol.  With this limitation, cough length could not be considered a 

significant indicator of airway resistance.  The cough length average, standard 

deviation, minimum, and maximum cough lengths support this assumption.    

Table 5-1 Cough Length Statistics 

Cough Length Statistics 
Group # Avg ± std (s) Min (s) Max (s) 

1 0.110 ± 0.023 0.048 0.16 
3 0.109 ± 0.048 0.048 0.21 

5.3 Acoustical Energy and Power 

The following energy and power calculations were strictly based on the 

analysis of the electrical signal of the microphone as described in section 4.2.2.  On 

average, there was a 48% decrease in energy and average power from the coughs in 

group 1 to group 3.  See Figures 5-2 and 5-3. 
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Figure 5-2 Energy vs. Cough Group 

 

Average Power vs. Group
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 Figure 5-3 Average Power vs. Cough Group 
 
 As expected, based on the energy and average power measurements, the peak 

power measurements obtained from the power spectrum also indicate a significant 

decrease from group 1 to group 3.  See Figure 5-4. 
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Peak Power vs. Group
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Figure 5-4 Peak Power vs. Group 

 

 In order to provide a reference to the loudness of the guinea pig cough, the 

peak and average sound pressure levels were calculated.  The voltage signal from the 

microphone was attenuated by 40dB since a 40dB voltage gain was applied by the 

2200C preamp/power supply during acquisition.  The adjusted voltage signal was 

converted to microPascals using the 1.3V/106 uPa sensitivity specification of the 

microphone.  The peak and average sound pressures were obtained from the signal to 

calculate the sound pressure level, using the following equation [40]. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

op
pSPL log20 dB re p0

p is the sound pressure measurement, and p0 is the reference pressure of 20 uPa.  For 

coughs in group 1, the peak and average sound pressure levels were 52dB and 

11.1dB.  For coughs in group 3, the peak and average sound pressure levels were 

50.9dB and 7.7dB.  As a qualitative sound reference, 50db is equivalent to the sound 

level of an average home and 10dB is equivalent to the sound level of a rustling leaf. 
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5.4 Acoustical Frequency Characteristics 
 
 119 cough sound parameters were obtained based on the frequency content of 

the cough sound.  The frequency dependent acoustical cough sound parameters were 

derived from the cough sound spectrum and the time dependent cough spectrograms.   

5.4.1 Power Spectrum Analysis 
 

Parameters were derived from the cough sound power spectrum using a 

combination of Welch’s and Burg’s power spectrum estimates.  Since accoustical 

power and energy measurements were independently measured, percent of total 

power within the cough was used for measuring power spectrum parameters instead 

of the actual frequency power.  The objective was to shift the focus from the 

decreased power found in the more restrictive coughs of group 3 and place an 

increased emphasis on how the shape of the power spectra were changing between 

the two groups.  

In Figure 5-5 , the average power spectrum for group1 and group 3 are shown 

based on Burg’s power spectrum estimate.  The power spectrum is only plotted to 

30kHz since 99% of the power is in this range.  The average power spectrum was 

calculated by taking the mean percent power of each of the 32 equally sized 

frequency blocks for all the coughs in each group.   The power spectrum shapes from 

group 1 and group 3 appear very similar.  The discrepancies lie at two general 

locations.  Group 3 cough spectrums appear to decrease from 10% of total power to 

6% at approximately 750Hz and increase slightly in the 6000 – 11000Hz frequency 

band. 
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Figure 5-5 Burg’s Average Percent Power Spectrum  
 
  Figure 5-5 suggests that the dominant frequencies are near 2200Hz for both 

groups.  Dominant frequencies were recorded based on the frequency with the most 

power based on Welch’s and Burg’s power spectrum estimates.  The dominant 

frequencies are shown for each power spectrum in Figures 5-6 and 5-7.   

Dominant Frequency vs. Group using Welch's Method 
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Figure 5-6 Dominant Frequency using Welch’s Power Spectrum 
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Dominant Frequency vs. Group using Burg's Method
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Figure 5-7 Dominant Frequency using Burg’s Power Spectum 

 

 The dominant frequencies appear to be slightly higher than indicated by the 

average power spectrum in Figure 5-5.  This can be attributed to the fact that 12.5% 

of coughs in group 1 and 17% of coughs in group 3 contained dominant frequencies 

greater than 3kHz.  Upon examining the power spectrums and spectrograms in greater 

detail, the coughs having dominant frequencies greater than 3kHz had a pronounced 

wheeze in frequency bands greater than 3kHz causing the shift in dominant 

frequencies. 

  Another common acoustical analysis technique is an octave analyzer.  Since 

an octave analyzer uses a nonlinear frequency scale, the information derived from the 

power spectrum could be more diversified.  The octave analyzer used for analyzing 

the cough sound is defined by Table 5-2. 

Table 5-2 Octave Frequency Breakdown 

Octave 1 2 3 4 5 6 7 
Frequency (kHz) 0.5 – 1 1 – 2 2 – 4 4 – 8 8 – 16 16 – 32 32 - 49
 
14 cough parameters were obtained from the following octave analysis using Welch’s 

and Burg’s power spectrum estimates.  The results are shown in Figures 5-8 and 5-9. 
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Figure 5-8 Octave Analysis using Welch’s Power Spectrum 

 

Octave Analysis using Burgs's Power Spectrum
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 Figure 5-9 Octave Analysis using Welch’s Power Spectrum 
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 The results of the octave analysis are similar for both power spectrum 

estimation techniques.  The percent powers in the first three octaves and the last 

octave are slightly lower in group 3.  The power from these octaves appear to be 

transferred to octaves four through six.  This indicates that coughs occurring during 

high airway resistances exhibit a higher percentage of power in the 4 – 32kHz 

frequency range.  This does not suggest that coughs occurring at higher airway 

resistances have more power at higher frequencies.  To illustrate this point consider 

the power spectra and octave analysis of a cough selected from group 1 and a cough 

selected and group 3.  See Figures 5-10 and 5-11.   

 

Figure 5-10 Power Spectrum Comparison for a Cough from Group 1 and a Cough from Group 3 
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Octave Analysis using Welch's Power Spectrum
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Figure 5-11 Octave Comparison for a Cough from Group 1 and a Cough from Group 3 

 Although the percent power in octaves four through six are higher for the 

cough from group 3, the power spectrum indicates that the total power is less in all 

octaves.  The higher octaves contain a higher percentage of power in the cough from 

group 3 due to the decreased power in the lower octaves, particularly octaves two and 

three.   

5.4.2 Spectrogram Estimate 
 

The parameters derived from the cough sound spectrograms were used to 

quantify the frequency changes at different times within the cough.  Dominant 

frequency, average frequency, and midpoint power in frequency bands represent 70 

parameters obtained from the spectrograms.  Since the cough lengths varied greatly 

within each group, parameters were derived based on time relative to the duration of 

the cough.  In the dominant frequency plot, the cough was divided into ten time 

frames and the frequency containing the maximum power was recorded.  The average 
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values for groups 1 and 3 can be viewed in Figure 5-12.  The dominant frequencies in 

group 3 tend be slightly higher near the beginning of the cough.  After reaching the 

third time division, the dominant frequencies gradually decrease in group 3 while the 

dominant frequencies in group 1 continue to increase slightly.  This suggests that the 

higher frequencies tend to dissipate as time progresses in coughs occurring during 

increased airway constriction.   
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Figure 5-12 Dominant Frequency vs. Time 
 

From the previously discussed power spectrum, the dominant frequency 

appeared to occur between 2 – 3kHz.  The dominant frequencies found in the 

spectrogram are considerably higher.  By studying the dominant frequency as a 

function of time, additional information is provided about the most powerful 

frequencies in the spectrum instead of an overall average approach of the power 

spectrum.   

To further study how frequencies change during the cough, the average 

frequency of the spectrograms were calculated for each group.  See Figure 5-13. 
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Figure 5-13 Average Frequency Comparison vs. Time 
 
 The average frequency vector shows how the shape of the spectrogram is 

changing by splitting the spectrogram horizontally based on the power weighted 

frequency averages.  Interestingly, the shapes of the spectrograms from both groups 

are quite similar.  The differences lie in the overall pitch of the coughs.  During the 

start of the coughs in group 3, the average frequency is slightly higher and drops 

immediately after the initial cough sound.  After the initial drop, the average 

frequencies are lower for coughs in group 3 indicating the power is more compressed 

into the lower frequencies of the group 3 coughs.  To illustrate this point further, 

examine spectrograms in Figures 5-14 and 5-15.  After 0.02 seconds the power in the 

selected group 3 cough is primarily limited to frequencies below 20kHz while 

frequencies up to 30kHz are present throughout the majority of the cough selected 

from group 1. 
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Figure 5-14 Group 1 Cough Spectrogram 

 

 
Figure 5-15 Group 3 Cough Spectrogram 

 
 

 76



  The final group of parameters derived from the spectrogram are obtained from 

the time at which the midpoint power is met in 30 non-overlapping frequency bands. 

See Figure 5-16.  The power midpoint comparison characterizes the horizontal 

changes visible in the spectrogram by finding the time into the cough where the 

midpoint of power is reached in the defined frequency bands.   
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Figure 5-16 Midpoint Power Comparison 

The power midpoint in the cough sounds can be affected by several factors.  

In the cough spectrograms, the cough signal starts predominantly as a broadband 

frequency signal.  After the initial broadband output, certain frequency bands tend to 

remain in the cough.  The frequencies that tend to dissipate first or frequencies 

containing the majority of the power in the beginning of the cough will cause the 

horizontal bars to shorten, while remaining frequencies containing equal power 

throughout the cough will cause the bars to lengthen.  Another scenario is for 
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frequencies to appear at the end the cough that were not present at the beginning, this 

will cause the bars to lengthen as well.  In cough sounds, this final case does not seem 

to be representative of what is actually happening.   

Considering the aforementioned cases and the results illustrated in Figure      

5-16, the following conclusions were made.  Coughs in group 3 tend to have more 

power at the end of the cough in the 800Hz – 10kHz range illustrated by the longer 

midpoint power bars.  In the 10 – 30kHz range, the longer blue bars associated with 

the coughs in group 1 indicate a more consistent power throughout the cough at those 

frequencies.  The blue bars for group 1 coughs are shorter at frequencies greater than 

35kHz since there is more initial power at those frequencies than in group 3 coughs. 

5.5 Flow Analysis  
 

Peak flow, average flow, peak acceleratory flow, and total expiratory volume 

parameters were calculated for all coughs using the methods described in section 4.3.  

The cough flow measurement techniques provided inaccurate flow measurements, 

making it impossible to deduce valuable information for the cough flow data.  

Therefore, they were not included in the analysis.  The majority of the inaccuracy of 

the measurements can be attributed to two causes.  In the time immediately 

proceeding and during the cough, the guinea pigs become increasingly agitated and 

increase their movement inside the plythesmograph.  The increased movement causes 

the neck seal separating the head and thorax chamber to move.  Due to the movement 

in the neck seal, the pressure signals in the chambers oscillate resulting in distorted 

cough flow measurements.  The second cause is due to the flow frequency response 

of the head chamber.  If cough flow is assumed to last the length of the cough sound, 
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then the duration of expired air exiting the mouth of the guinea pig is very short, 

approximately 1/10th of a second.  The short duration of increased flow being expired 

from the mouth of the guinea pig in conjunction with the capacitance created by the 

relatively large volume of the head chamber provided a poor cough flow frequency 

response. 

5.6 Cough Characteristics versus Airway Resistance 
 
 From the results of previously described cough sound and flow analysis, 124 

cough sound parameters were used in classifying coughs.  Cough parameters obtained 

from the training dataset were analyzed using principal component analysis (PCA).  

The number of principal component vectors to be used in the analysis was based on 

the classification accuracy of the neural net.  The best results were obtained using the 

first 62 principal components.  The covariance matrix indicated the selected principal 

components accounted for 99.5% of the variability in the dataset.  PCA enabled the 

cough parameter dimensions to be reduced by half while accounting for over 99% of 

the variability in the measurements.  To obtain the new cough parameters for training 

and test datasets, the original parameters were multiplied by the principal component 

vectors.   

The new cough parameters from the train dataset were then submitted to the 

neural net to appropriately weight the new cough parameters.  A neural net was 

trained with and without the coughs from group 2.  The neural net trained without the 

coughs from group 2 provided excellent results for the training set but decreased 

accuracy in classifying coughs from groups 1 and 3 in the test set.  For this analysis, 
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coughs from group 2 were included in the training to provide the best overall 

separation between groups 1 and 3.  

Coughs from groups 1, 2, and 3 were trained with target outputs of –1, 0, and 

1 respectively.  The training results are represented in Figure 5-17 as a cumulative 

distribution plot.  The cumulative distribution plot tells the probability of having a 

cough in any group below a selected neural net output.  It also provides a visual index 

to how well the neural net separated the coughs. 
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Figure 5-17 Cumulative Distribution Plot for Train Dataset 

 
 Using the principal component vectors and the neural net weights generated 

from the train dataset, the following results were obtained for the test dataset.  See 

Figure 5-18. 
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Figure 5-18 Cumulative Distribution for Test Dataset 

 

 The cumulative distributions for the train and test datasets show significant 

separation in coughs occurring in groups 1 and 3.  The transition group, group 2, 

spans the range of the neuron output.  This was expected given that group 2 

represents coughs occurring between the airway resistance ranges specified by groups 

1 and 3.   

Since the focus of this analysis is to design a classification system capable of 

distinguishing coughs occurring during times of low airway resistance from coughs 

occurring during high airway resistances, a Receiver Operating Characteristic (ROC) 

curve was created to determine the accuracy and cutoff for separating the two groups.  

An ROC analysis provides a more comprehensive evaluation of the neural network 
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output and illustrates the cost/benefit relationship as a result of choosing different 

decision making criteria.  See Figure 5-19. 
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Figure 5-19 Group 1 and Group 3 ROC Curve for Test Dataset 

 
P(True Group 1) is the probability of accurately classifying a cough into group 

1, and P(False Group 1) is the probability of classifying a cough as group 1 when the 

cough belongs in group 3.  An ROC curve can be described by three parameters.  The 

first parameter is accuracy or the area under the curve.  The area under the curve is 

the overall ability of the cough analysis to correctly classify coughs into group 1 and 

group 3.  The second parameter is sensitivity, which measures the percent of accurate 

group 1 classifications.  The final parameter, specificity, measures the percent of 

accurate group 3 classifications.  Sensitivity and specificity are inversely related and 

the decision threshold can be adjusted to favor sensitivity or specificity.  The 

accuracy of the ROC curve is 0.946 with equal sensitivity and specificity at 0.893.   
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Chapter 6 – Conclusions and Future Recommendations 

 

6.1 Conclusions 
 

This thesis has displayed the engineering process involved in this area of 

research up to this point; including the primary concept and motivation, through the 

equipment selection and calibration, the signal processing of the acquired cough 

sounds, to the cough classification algorithm.  The goal of designing an exposure 

system that can be used to collect acoustical information within a guinea pig cough 

and depict changes in the acoustical properties at low and high levels of chemically 

induced airway resistance has been accomplished.  Flow measurements and analysis 

are still unrefined. 

A large number of parameters were developed for the acoustical cough 

characterization due to the variability in cough length, differences in cough sounds 

between guinea pigs, and the lack of initial knowledge as to how the cough sound 

would change with respect to airway resistance.  Based on the results of the analysis, 

the developed cough parameters appear to provide significant information to how the 

cough sound changed from low to high levels of chemically induced airway 

resistance.  Since many cough parameters may reflect similar information about the 

cough, principal component analysis provided a way to effectively reduce the 

redundancy in the parameters.    

The animal cough model shows that changes in the acoustical characteristics 

of the guinea pig cough can be used to reflect alterations in pulmonary function.  

Accurately characterizing the cough sound and diagnosing guinea pigs with 
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significantly increased airway resistance is the first step in analyzing the effects of 

other pulmonary irritants on cough sound. 

6.2 Future Recommendations 
 
 While the present work on this project has provided valuable results, there are 

a number of methods considered paramount to the success of future iterations of this 

design and process.  Numerous other signal processing techniques can be applied to 

extract more information from the cough sound and form new cough parameters.  

Sound reverberations present in the head chamber need to be addressed from a signal 

processing standpoint or through a redesign of the head chamber.  From a 

comparative perspective, reverberations caused by the head chamber are negligible.  

In order to accurately characterize the cough sound, reverberations must be 

attenuated.   

  A more accurate way to measure cough flow is also needed.  Reducing the 

volume of the head chamber may help with the inadequate flow frequency response, 

but animal movement during the cough would also need to be considered.  The head 

chamber could be modified in a way to restrain head movement during the cough.   

 Upon addressing the aforementioned issues, additional exposures are needed 

to validate the findings supported in this thesis.  The use of bronchodilating chemicals 

to induce cough would extend the range of airway measurements and further enhance 

the study.  It would also be interesting to conduct and compare the results from a 

similar study based on the coughs from a single animal, providing enough coughs 

with varying airway resistances could be gathered. 

 84



 The next phase of research would be to compare cough flow and acoustical 

characteristics before and after exposures to common occupational pulmonary 

irritants.  Changes in guinea pig cough characteristics could then be compared to 

known changes found in human cough characteristics.  The validity of the animal 

cough model could then be examined in more detail. 
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Appendix A – Complete Hardware Specifications 

 
MASS AIRFLOW CONTROLLERS 
 

Use Nebulized Airflow Controller Dilutant Airflow Controller 

Part No. GFC1735 G20589C 

Flow 
Range 

0 – 5 L/min 0 – 10 L/m 

Max Input 
Pressure 

500 psig (34.5 bars) 500 psig (34.5 bars) 

Leak 
Integrity 

1 x 10-7 of helium 1 x 10-7 of helium 

Setpoint 
Control 

Local or remote Local or remote 

Analog out 0-5 Vdc and 4-20 mA 0-5 Vdc and 4-20 mA 

Other 
Specs. 

• NIST traceable certification  
• circuit protection  
• totalizer option 
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SETRA PRESSURE TRANSDUCER SPECIFICATIONS 

Full Scale Pressure 
Output

Model 239 (Voltage): 
Bi-directional: 
±2.5 VDC 

Zero Pressure 
Output

0 VDC 

Accuracy 
(RSS Method)

±0.14% Full Scale 

Type of Pressure Differential 
Pressure Ranges Bi-directional: 0 to ±0.25 in. WC  
Thermal Effects Compensated Range °F (°C):  

30 to 150 (-1 to 65)  
%FS/100°F(100°C)max.zero:  

±1.0 (±1.8)  
%FS/100°F(100°C)max.span:  

±1.0 (±1.8) 
Media Positive Pressure: Gases or liquid compatible with 

stainless steel, hard anodized 6061 aluminum (Buna N 
"O" Ring).  

Reference Pressure: Clean dry air or other gases (Non-
corrosive, non-condensable). 

Excitation Voltage 22-30V DC 
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AUDIO SPECIFICATIONS 

Microphone 

Model Number  2530  

Nominal Diameter (inches)  1/4  

Directive Characteristics  Random incidence & pressure  
Frequency Response 4 Hz to 80 kHz  

mV/Pa  1.3  Nominal Open 
Circuit 
Sensitivity  

dB rel. 1V/Pa  -57.7  

Lower Limiting Frequency (Hz)  0.2 to 2  
Open Circuit Distortion Limit 3%   
(dB rel. 20 µPa) 

>172  

Nominal Cartridge Thermal Noise 
[dB(A)]  

31  

Resonant Freq. (kHz)  80  
Polarization Voltage (Vdc)  200 

 
Preamplifier 
 

Model PRM910B 
ICP Preamplifier PRM422 
Size 1/4 in 
Power Dual ± 10 to ± 18 V 

Single 20 to 35 V 
Output Connector 5-pin Switchcraft® 
Cable 6 ft, Integral cable 
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AUDIO SPECIFICATIONS (CONT.) 
 
Power Supply  
 
Bandwidth/Response 
Lower limiting frequency as function of gain setting 
Gain (dB) -3 dB Point (Hz) -2 dB Point (Hz) 
0 0.2 1.0 
10 0.4 2.0 
20 1.6 81.0 
 
Upper limiting frequency as function of output voltage (flat output) 
Output Voltage RMS -3 dB Point (Hz) 
10.0 50K 
5.0 100K 
2.0 250K 
1.0 500K 
0.5 1M 
 
Signal Input (each channel) 
Gain 0 to 40 dB in 10 dB steps 

Attenuation 0 to 30 dB in 10 dB steps plus 22-turn vernier attenuator 
providing 0 to 10.4 dB continuous range. 

Bias Voltage 0, 28, 100, 200 Vdc, ±0.5% stability 
Input 
Impedance 20 kOhms @ 0 dB attenuation 70 kOhms @ 10 dB attenduation 

Crosstalk 80 dB to 20 kHz 
60 dB to 200 kHz 

Connector 
Type 

Switchcraft miniature XLR 5-pin (part no. TB4M) 
Cable requires TA5F connector 

Overload 10 V rms 
Signal Output (each channel)  
Impedance 50 Ohms 
Output Noise (dB reference 1 µV) 

Gain (dB) Flat (dB) (1 Hz - 20 
kKz) A-weight (dB) C-Weight (dB) 

0 8.3 (2.6 µV) 0 (1 µV) 3.4 (1.5 µV) 
40 35.3 (58.2 µV) 32.2 (40.7 µV) 30.9 (35.2 µV) 
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DAQ SYSTEM SPECIFICATIONS 
 
NI 6036E DAQ Card 
 

Analog Input 16 SE/8 DI 
Input Resolution 16 bits 
Max Sampling Rate 200 kS/s 
Input Range ±0.05 to ±10 V 
Analog Outputs 2 
Output Resolution 16 bits  
Output Rate 10 kS/s 
Output Range ±10 V 
Digital I/O 8 
Counter/Timers 2, 24-bit 
Triggers Digital 
Measurement Sensitivity (mV) 0.0036 
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DAQ SYSTEM SPECIFICATIONS (CONT.) 
 
SCC 2345 Signal Conditioning Box 
 

GENERAL SPECIFICATIONS 
16 analog inputs Measurement type and connectivity 

selectable on a per-channel basis 
8 digital I/O lines Low-profile carriers for portable, rack-

mount, and desktop applications 
2 unconditioned counter/timers Low-profile carriers for portable, rack-

mount, and desktop applications 
NI-DAQ driver software simplifies 
configuration, measurement, and 
scaling 

 

SENSOR/SIGNALS 
Thermocouples Frequency input 
RTDs Lowpass filtering 
Strain gauges Isolated voltage/current output 
Force/load/torque/pressure sensors Isolated digital I/O 
IEPE accelerometers Relay switching 
Isolated voltage/current input  
CONNECTIVITY OPTIONS 
BNC SMB 
Minithermocouple Momentary pushbutton switch 
Thermocouple Rocker switch 
LEMO (B-series) Toggle switch 
MIL-Spec LED 
9-pin D-Sub Potentiometer 
Banana jack Strain relief 
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NI PCI-4451 DAQ Card 
 

GENERAL SPECIFICATIONS 
Analog Input 2 
Input Resolution 16 bits 
Max Sampling Rate 204.8 kS/s 
Input Range ±10mV to ±42.4 V 
Analog Outputs 2 
Output Resolution 16 bits  
Output Rate 51.2 kS/s 
Output Range ±10mV to 10V 
Digital I/O 8 
Triggering Analog/Digital 
DYNAMIC CHARACTERISTICS 
Alias-free Bandwidth DC to 0.464 fs 
Alias Rejection 80 dB, 0.536 ƒs < ƒin < 63.464 ƒs 
Spurious-free Dynamic Range 90 dB 
THD -80 dB; -90 dB for ƒin < 20 kHz 
IMD -100 dB (CCIF 14 kHz + 15 kHz) 
Crosstalk (Channel Seperation) -100 dB, DC to 100 kHz 
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Appendix B – Airway Resistance Circuit Analysis 
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The circuit can then be simplified and rewritten as  
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substituting equations 14 and 15 into equation 13 yields 
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