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ABSTRACT 
 

Investigating Potential Sources of Variation in Residual Feed Intake in 
Beef Cattle 

 
Kevin S. Shaffer 

 
 

Residual feed intake (RFI) class differences in gut function and grazing intake 
were evaluated using 14 crossbred steer progeny of first parity dams with known RFI 
phenotypes and a commercially available Angus sire.  Steers were housed in a drylot 
facility and fed a forage based complete feed ad libitum, a forage diet at maintenance 
(1.5% BW as fed), and a concentrate diet at maintenance in Exp. 1, 4, and 5 respectively.  
Voluntary DMI and solid and liquid passage rate were evaluated while grazing (Exp. 2 
and 3, respectively).  Plasma concentrations of albumin (ALB), urea nitrogen (UN), 
cholesterol (CHOL), glucose (GLU), triglycerides (TG), and VFA were assessed 
immediately pre- and at 3 h intervals for 12 h post-feeding as indicators of nutrient 
absorption in Exp. 1, 4, and 5 respectively.  Rumen pH, ammonia (NH4), and VFA were 
evaluated 12 h post-feeding.  Steers were classified as either positive (POS; n = 8) or 
negative (NEG; n = 6) according to dam RFI (mean 0.46 kg TND/d; range -4.27 to 5.70 
kg TDN/d).  Rumen pH, ammonia, and VFA’s did not differ based on RFI classification 
(P > 0.05) in any of the experiments.  Plasma metabolite and VFA concentrations did not 
differ between RFI classes in Experiment 1 (P > 0.05); however, UN was greater in POS 
(12.80 vs. 12.14 mg/dL; P = 0.02) steers when fed a forage diet at maintenance (Exp. 4) 
and greater in NEG (16.74 vs. 15.42 mg/dL; P = 0.01) steers when fed a concentrate diet 
at maintenance (Exp 5).  Plasma valerate and butyrate (P = 0.02 and 0.02, respectively) 
were greater in NEG steers in Exp. 1 and 5, respectively.  Evaluation of RFI group 
differences by collection time revealed a significant (P = 0.04) interaction of RFI and 
Time for TG and plasma isobutyric acid in Exp. 1.  Concentrations of TG were greater (P 
= 0.04) in NEG steers at 3 hours after feeding but did not differ at any other time points.  
Plasma isobutyric acid concentrations rarely differed from zero but were greater in POS 
steers 6 hours post-feeding.  The opposite was true at 12 hours post-feeding.  No other 
interactions between RFI and collection time were significant.  Negative RFI steers 
consumed numerically 8.9% less DM per day while grazing than POS steers but did not 
differ in voluntary DMI (P = 0.74).  Liquid passage rate was greater in NEG (7.16 vs. 
6.32 % marker/hour; P = 0.04) steers but solid passage rate was not different (P = 0.88).  
These data indicate that RFI classification may be associated with variation in the 
regulation and absorptive capacity of the gastrointestinal tract. 
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INTRODUCTION 
 

 

Although the current state of the national and global economy is somewhat 

tumultuous, recent political and environmental conditions have created a pricing structure 

like that never before seen in the U.S. beef industry.  With the nation’s cow herd 

shrinking to 29.9 million (USDA NASS, 2012), a 50-year low, and the recent signing of 

several free trade agreements, national and international demand for beef is growing 

rapidly while supply remains relatively low.  Thus, it would seem the opportunity for 

profit is tremendous, yet margins remain relatively tight, particularly in the cattle feeding 

sector, as input costs continue to be extremely high. 

According to the National Cattlemen’s Beef Association (Beef Industry Statistics, 

2011), feedlot cost of gain has nearly doubled from an average of $261/head from 1990-

2003 to $494/head over the last four years.  In all, livestock producers are spending $45.2 

billion more on inputs in 2010 than they were in 2003 (USDA NASS, 2011), which can 

be primarily attributed to increased expenditures on feed and fuel.  Of the $1.7 billion 

increase in livestock production costs from 2009 to 2010, feed accounted for 41% while 

fuel was responsible for 44%.  Thus, logic dictates a continued focus on managing and 

reducing input costs, particularly with respect to feed and fuel.   

In modern beef production systems, approximately 70% of the total cost of beef 

production is directly related to feed costs (Herd et al., 1998; Liu et al., 2000).  When 

considering breeding age females, around 70% of consumed feed energy is used solely 

for maintenance functions (Gregory, 1972; Ferrell and Jenkins, 1985a), indicating that 

around 50% of the total cost of production could be directly attributable to maintenance 
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requirements.  Therefore, reducing feed requirements, particularly those utilized for 

maintenance, becomes a necessary objective in developing a more profitable beef 

industry. 

Fortunately, a growing body of literature provides evidence that residual feed 

intake (RFI), a measure of feed utilization efficiency, has the potential to reduce overall 

feed as well as maintenance requirements.  Residual feed intake accounts for both 

maintenance and growth requirements and is widely accepted as the most useful measure 

of feed utilization efficiency.  Due to the nature of RFI calculation, RFI should be 

indicative of individual differences in maintenance requirements; however, our long-term 

understanding of RFI remains somewhat limited and a large portion of the variation in 

RFI has yet to be explained (Richardson and Herd, 2004; Herd and Arthur, 2009).  Thus, 

the focus of this literature review will be on our current knowledge of RFI, emphasizing 

relationships among production traits and known sources of variation in RFI.                 
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LITERATURE REVIEW 
 

MEASURES OF EFFICIENCY: A BRIEF OVERVIEW 

 
 

Livestock producers and researchers have long understood the overwhelming 

importance of production efficiency and have sought to identify ways by which 

efficiency could be measured and effectively improved through selective mating.  

Although production efficiency and overall profitability can be affected by a multitude of 

factors beyond reproduction and feed use, these factors have received the greatest 

research interest.  In particular, feed use efficiency is of primary importance as over 70% 

of the total cost of production is directly related to feed costs (Herd et al., 1998; Liu et al., 

2000).   As a result, multiple methods for evaluation of efficiency have been developed 

and assessed as potential traits for selection.    

As early as 1909, Kellner described feed use efficiency in livestock as the partial 

efficiency of growth (PEG), or the energetic efficiency of weight gain.  Later, researchers 

revisited the concept while investigating ruminant energy metabolism and requirements 

for maintenance.  Prominent researchers Klieber (1947) and Brody (1945) both 

developed independent measures of feed efficiency, namely Klieber ratio (KR) and feed 

conversion ratio (FCR).  More recently, investigations by Koch et al. (1963) and 

Fitzhugh and Taylor (1971) reported alternative methods for evaluating the efficiency of 

feed use known as net feed efficiency or RFI and relative growth rate (RGR), 

respectively.  Although each distinct method sought to more correctly evaluate feed use 

efficiency, industry adoption of a primary method for efficiency evaluation and selection 
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was largely due to the ease of data collection and calculation.  Consequently, FCR 

became the primary measure of feed utilization efficiency in ruminant livestock 

industries and in particular beef cattle.   

Feed conversion ratio is calculated simply as feed consumed per pound of body 

weight gain (Brody, 1945); however, albeit simplistic in nature, there is error associated 

with both calculation and selection for FCR.  Often, calculation of FCR is based upon an 

average or predicted feed intake value and does not account for individual animal 

variation in feed intake.  More importantly, FCR does not account for differences in 

maintenance requirements and is influenced by variation in growth and maturity patterns 

(Archer et al., 1999).  Furthermore, selection for ratio traits results in phenotypic change 

that is biased toward the denominator trait (Gunsett, 1984) and is evidenced in reports by 

Archer et al. (1999) and Herd and Bishop (2000) that indicate selection for FCR can 

result in increased growth rate and mature size of breeding females.  Together, these 

factors indicate that selection for FCR may actually increase maintenance requirements 

of the cow herd.  As a result, researchers have sought to re-evaluate other available 

measures of feed utilization efficiency. 

Unlike PEG and FCR, KR, RGR, and RFI account for differences in maintenance 

requirements by taking into account either body weight (BW) or metabolic body weight 

(BW0.75); however, direct comparison of the validity of these measures of feed efficiency 

as selection criteria has only recently been investigated.  In 2001, Arthur et al. compared 

all the aforementioned measures of efficiency to BW and gain performance in a post-

weaning performance test comprised of over 700 Charolais bulls.  Residual feed intake 

was independent of BW and ADG while strong positive genetic and phenotypic 
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correlations existed between ADG and both KR (r = 0.82 and 0.83, respectively) and 

RGR (r = 0.71 and 0.68, respectively).  Conversely, FCR exhibited a negative phenotypic 

and genetic relationship with ADG (r = -0.54 and -0.46, respectively) while PEG only 

exhibited a phenotypic correlation with ADG (r = -0.14).  Phenotypic correlations 

between BW and PEG, FCR, KR, and RGR were all significant but near zero.  In a 

similar study utilizing hybrid steers and bulls, Nkrumah et al. (2004) reported comparable 

phenotypic correlations between ADG and all four measures of efficiency.  Similar 

relationships were reported in populations of Angus, Charolais, Hereford, Limousin, and 

Simmental bulls (Berry and Crowley, 2012; Crowley et al., 2010) and in Limousin x 

Holstein heifers (Kelly et al., 2010a).  Interestingly, Nkrumah and coworkers (2004) also 

reported that RFI, PEG, and FCR indicated that bulls were more efficient than steers 

while KR and RGR did not.  Ultimately, the authors concluded that their findings may 

mean that KR and RGR, which account for differences in maintenance requirements, are 

unable to detect true differences in energetic efficiency.  In conclusion, Nkrumah et al. 

(2004) indicated that RFI was the only measure of efficiency phenotypically independent 

of its component traits and unaffected by pretest environment.  An analogous conclusion 

was made by Hoque and others (2009a) when comparing feed efficiency measures using 

22,000 progeny records of Japanese Black cattle.  Although genetic values were 

estimated for the traits listed, RFI was preferred over other measures of efficiency.   
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RESIDUAL FEED INTAKE 
 

 

Overview: The Potential for Change 

In 1963, Koch et al. introduced the concept of net feed efficiency or RFI, an index 

of energetic efficiency combining estimates of both maintenance and growth 

requirements in the prediction of individual animal feed intake.  The calculated or 

expected feed intake is compared to actual intake and efficiency is measured as the 

residual with negative values being more desirable.  By definition, RFI is phenotypically 

and genetically (Arthur et al. 2001; Crowley et al., 2010) independent of its component 

traits (ADG and BW), so it allows comparison of individuals differing in level of 

production or gain.  As such, RFI, being a residual, may represent inherent variation in 

basic metabolic processes (Herd and Arthur, 2009).   

As an illustration, consider the estimate of maintenance requirements utilized in 

calculating RFI, metabolic body weight or BW0.75.  This is a standard conversion applied 

to all animals in the test population and is the mean estimate of the collective works of 

Brody (1945), which was slightly different from that of Klieber (1947), who provided an 

estimate of BW0.73.  An estimate of RFI accounts for observed differences in gain 

performance, so it is believed that RFI may actually represent individual animal variation 

in maintenance requirements relative to the standardized estimate.  Based upon the 

reports of Brody (1945) and Klieber (1947), it is obvious that variation does exist around 

these conversion estimates of maintenance needs.  In fact, Herd and Bishop (2000) 

observed that genetic variation in RFI was closely related (r = 0.93) to genetic variation 

in maintenance energy requirements per kilogram of metabolic body weight in Hereford 
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bulls.  Similarly, Luiting et al. (1991) reported that variation in maintenance energy 

expenditures were a major contributor to variation in RFI in laying hens.  Since 70 – 75% 

of total metabolizable energy requirements for beef production are consumed solely for 

maintenance functions (Ferrel and Jenkins, 1985), the potential of RFI to identify animals 

that require less energy for maintenance and subsequently consume less feed is of 

significant economic importance.      

Accordingly, considerable variation in feed intake above and below that predicted 

based on body weight and weight gain has been reported in mice (Archer et al., 1998), 

poultry (Byerly, 1941; Luiting and Urff, 1991), pigs (Foster et al., 1993; Gilbert et al., 

2007; Hoque et al., 2007), and cattle (Archer et al., 1999).  A genetic basis for this 

variation exists with estimates of the heritability of RFI ranging from 0.16 (Herd and 

Bishop, 2000) to 0.52 (Rolfe et al., 2011) with most falling in the range of 0.30 to 0.40.  

Although a substantial portion of the additive genetic variation in RFI can be accounted 

for by phenotypic measurement and potentially even breed differences (Schenkel et al., 

2004; Elzo et al., 2009; Rolfe et al., 2011), an even larger portion is due to other factors 

like qualitative genetic interactions, heterosis (Rolfe et al., 2011), and/or potentially 

genotype x environment interactions (i.e. non-additive genetic effects).  Thus, selection 

for RFI to reduce feed intake and energetic requirements of livestock may result in less 

true genetic change than desired and animals that may actually gain weight less rapidly 

(Crowley et al., 2012).   

Consequently, Crowley et al. (2012) has proposed utilizing RFI in combination 

with residual BW gain (RG) in an additive method or as components of a linear selection 

index for efficiency.  By doing so, the authors suggest that only those animals that have 
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increased performance with less than average feed intake will be identified as efficient.  

In a preliminary study of multiple breeds of beef bulls, the resulting heritability estimate 

(0.36) of the trait known as residual intake and BW gain (RIG) was equivalent to that of 

RFI itself, however, RIG was not independent (r = 0.41) of ADG (Crowley et al., 2012).   

Similarly, Rolfe et al. (2011) reported that selection for a linear index combining RFI and 

BW gain would result in the most positive economic outcome for growth and feed intake.  

Nonetheless, the collection of individual animal feed intake and RFI calculation is still 

necessary.   

Although it is not without flaws, RFI is the most commonly used measure of feed 

efficiency in beef cattle performance tests today (Berry and Crowley, 2012), being 

independent of its component traits (Arthur et al., 2001a; Crowley et al., 2010) as well as 

mature size (Crews, 2005).  When used as a component of a balanced trait selection 

program, it is believed that RFI has tremendous potential to reduce feed requirements of 

the beef herd without indirect selection effects on body composition, maturity, or fertility 

(Shaffer et al., 2011).  Additionally, widespread adoption and utilization of RFI data by 

cattle producers, which seemed initially very slow, appears to be growing.  A recent 

study by Wulfhorst et al. (2010) indicated that 49.1% of commercial producers were 

willing to select bulls on RFI and 43.6% of seedstock producers were willing to begin 

collecting RFI data.  Furthermore, it is estimated that over 30,000 bulls will be offered for 

sale in 2012 with RFI data (Allison Sunstrum, GrowSafe Systesm, Ltd., personal 

communication).  Nonetheless, long term selection effects and those factors responsible 

for variation in RFI are not yet well understood either practically or physiologically.   
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Potential Problems:  Test Environment 

Our current knowledge of RFI is, at best, in its adolescence.  It would be illogical 

to begin selecting for an index of efficiency containing a component trait that is not better 

understood and may not be acceptably repeatable across tests or diets.  For example, 

Durunna et al. (2011a) compared growing steers over two consecutive 10-week feed-

intake trials with three dietary treatments.  Steers were fed either a grower diet for both 

10-week trials, a finisher diet for both 10-week trials, or a grower for the first 10 weeks 

and then switched to a finisher diet for the remaining 10 weeks.  Comparing individual 

animal FCR, KR, and RFI classification (< 0.5 SD below the mean, ± 0.5 SD around the 

mean, and > 0.5 SD above the mean) across the trials and diets, the authors reported that 

> 50% of steers changed RFI group across all dietary treatments with those animals that 

changed from the grower to finisher diet exhibiting the greatest amount (58%) of re-

ranking.  Even so, FCR and KR exhibited a greater amount of re-ranking from one 

feeding regimen to another while RFI maintained a similar proportion across all feeding 

regimens.  Similar results were obtained in growing heifers receiving the same diet over 

two consecutive tests (Durunna et al., 2012).   

Although not directly related to re-ranking potential, the data of Goonewardene et 

al. (2004), who evaluated optimum test duration for accurate RFI calculation over a 

variety of diets, reported that a shorter test duration was required (63 days) when feeding 

a 100% forage diet, based upon correlations with RFI during shortened test periods with 

that of the whole (105 days).  In contrast, when the diet consisted of 15% barley grain, 

minimum test duration reached 84 days, indicating test duration may be dependent upon 

diet (Goonewardene et al., 2004).  However, there is a larger body of evidence that test 
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diet or environment (geographic or seasonal) is unlikely to affect test duration or 

accuracy (Archer et al., 1997; Archer and Bergh, 2000; Wang et al., 2005; Wang et al., 

2006).  Even though seasonal effects on RFI have been reported (Mujibi et al., 2010), 

they cannot be separated from age associated physiological changes in metabolism.  

Ultimately test duration is limited by the accurate assessment of weight gain (Shaffer, 

2010), and it would be logical to assume that dietary effects on rate of weight gain may 

be partially responsible for the observations by Durunna et al. (2011a; 2012)  

Potential Problems:  Test Timing 

To determine the optimum physiological time point for RFI testing to minimize 

the potential for feed efficiency re-ranking, researchers have utilized part-whole 

correlations to identify the strength of the relationship between measures obtained during 

one feeding period to the overall feed efficiency measure for the entire trial.  Pearson 

correlation coefficients were significantly greater between the second period RFI and 

overall RFI than between the first period RFI and overall RFI in steers fed a grower 

ration (r = 0.87 vs 0.72, respectively) or steers fed a grower ration followed by a finisher 

ration (r = 0.83 vs 0.74, respectively) (Durunna et al., 2011a).  No differences were 

reported in the group receiving the finisher diet.  Similarly, Durunna et al. (2012) 

reported a numerically greater correlation between the second period RFI and overall RFI 

in growing heifers than between the first period RFI and overall RFI (r = 0.77 vs 0.84).  

These data are in agreement with Goonewardeene et al. (2004) and indicate that greater 

repeatability and accuracy of feed efficiency measures is achieved when animals are 

closer to maturity.  Generally speaking, these data indicate a lower proportion of re-

ranking with less energy dense diets, leading the authors to suggest the use of grower 



 11 

type rations for more accurate feed efficiency evaluation of breeding stock (Duranna et 

al., 2011a; Durunna et al., 2012). 

Other authors have looked at the repeatability of RFI or correlation between test 

periods on the same population of animals without evaluating the potential for re-ranking.  

Arthur et al. (2001a) reported that RFI was highly correlated phenotypically (r = 0.85) 

and genetically (r = 0.95) when measured at 15 months of age and again at 19 months of 

age in Charolais bulls.  Similarly, a strong phenotypic relationship (r = 0.74) was reported 

between post-weaning RFI and feed intake of the same cows measured at four years of 

age (Arthur et al., 2004).  In contrast to these data and that discussed previously, Archer 

et al. (2002) reported only a moderate phenotypic correlation (r = 0.40) between post-

weaning and mature RFI.  In partial agreement with this report, Herd et al. (2006) 

reported that repeatability of RFI from post-weaning to maturity was 0.39.  On the 

contrary, within animal repeatability has been reported to be greater (0.65) (Kelly et al., 

2010b). It is important to note, however, that these measures were calculated during 

drastically different physiological states and physiological state is a major source of 

variation in maintenance energy requirements.   

Potential Problems:  Selection                

Recent investigations relative to RFI and its potential relationships to other 

economically important traits in beef production have yielded some very interesting 

discoveries.  From early on it became apparent that RFI was related to body composition 

in young growing cattle.  In studies with ultrasonographic measures of body composition, 

there was almost always a significant yet moderate positive correlation between RFI and 

ultrasonographic back fat (UBF) regardless of sex (Richardson et al., 2001; Basarab et 
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al., 2003; Schenkel et al., 2004; Nkrumah et al., 2007c; Lancaster et al., 2009a; Lancaster 

et al., 2009b; Kelly et al., 2010a; Shaffer et al., 2011).  This relationship has been highly 

recognized in swine (Johnson et al., 1999; Nguyen et al., 2005; Hoque et al., 2007; 

Gilbert et al., 2007; Hoque et al., 2009b; Boddicker et al., 2011; Smith et al., 2011).  Less 

frequently, RFI was related to lean tissue mass in cattle with the relationship sometimes 

being positive (Lancaster et al., 2009a; Lancaster et al., 2009b) and sometimes negative 

(Shaffer et al., 2011).  In swine, it appears that this relationship is negative and observed 

more frequently (Johnson et al., 1999; Nguyen et al., 2005; Hoque et al., 2007; Hoque et 

al., 2009b; Smith et al., 2011).  As a result, many authors have suggested including one or 

more measures of body composition, primarily UBF, into the model for calculating RFI 

and thereby forcing independence from these traits and making RFI a more robust 

measure of efficiency; however, widespread adoption of this methodology has not yet 

occurred (Richardson et al., 2001; Basarab et al., 2003; Schenkel et al., 2004; Nkrumah et 

al., 2007c; Cai et al., 2008; Arthur et al., 2009; Lancaster et al., 2009a; Lancaster et al., 

2009b; Kelly et al., 2010a; Shaffer et al., 2011).  This concept has been reviewed in 

greater detail by Shaffer (2010).   

Other production traits such as hip height and scrotal circumference are not 

related to RFI (Arthur et al., 2001b; Basarab et al., 2003; Schenkel et al., 2004; Kelly et 

al., 2010a); however, initial anecdotal evidence of a relationship with age at puberty in 

first parity cows (Arthur et al., 2005; Basarab et al., 2007) and yearling heifers 

(Donoghue et al., 2011) has been observed.  Upon further investigation, a relationship 

with age at puberty in yearling heifers was identified (Basarab et al., 2011; Shaffer et al., 

2011).   Negative RFI heifers were reported to reach puberty approximately two weeks 
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later than their positive RFI contemporaries; however, no differences in overall 

conception rates were observed in either study.  Interestingly, a greater percentage of 

positive RFI heifers (76 vs 62 %; P = 0.04) became pregnant during the first 21 days of 

the breeding season in the study by Basarab et al. (2011).  Similar to the results in cattle, 

Gilbert et al. (2012) did not observe any differences in rebreeding performance of sows 

after seven generations of divergent selection for RFI.  In a more detailed evaluation of 

the relationship between luteal function and RFI, Lents et al. (2011) did not observe a 

relationship between RFI and ovulatory response to luteal regression by injection of 

prostaglandin F2α.  Together these data indicate that long term selection for lesser RFI 

may result in increasing age of sexual maturity, which could result in subsequent 

infertility during a defined breeding season.  However, the physiological explanation for 

this relationship between RFI and sexual maturity has yet to be examined.   

 

 FACTORS AFFECTING RESIDUAL FEED INTAKE 
 
 

Herd et al. (2004), Richardson and Herd (2004), and Herd and Arthur (2009) have 

previously reviewed and proposed five major processes by which variation in feed 

efficiency can arise.  Feed intake, digestion, metabolism, activity, and thermoregulation 

were identified.  After reviewing the available data, the authors identified six specific 

biological mechanisms and the proportion of variation in RFI for which each was 

responsible. These mechanisms and their respective proportion of variation in RFI are 

presented in Figure 1.   Even after such a thorough review, a large proportion of the 

variation in RFI (27%) has yet to be elucidated, serving as the basis for future inquiry.  It 
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is important to note that a significant portion of the data used to identify these proposed 

mechanisms was generated in non-ruminant species.  As such, the data may indicate 

areas of interest, but may not be entirely accurate in their interpretation and/or 

application.   

 

 

 

 

 

 

 

Feeding 
patterns

(2%)

Body 
composition

(5%)

Protein 
turnover, tissue 
metabolism and 

stress
(37%)

Other
(27%)

Activity
(10%)

Digestibility
(10%)

Heat increment 
of fermentation

(9%)

Figure 1.  Contributions of biological mechanisms to variation in residual feed 
intake as determined from experiments on divergently selected cattle. Adapted 
from Richardson and Herd (2004). 
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Feeding Patterns  

 Eating rate and meal duration are key factors in determining the energy cost of 

eating in cattle (Adam et al., 1984), and are moderate to highly heritable across growing 

and finishing diets (Durunna et al., 2011b).  In a report by Nkrumah et al. (2007b), high 

RFI steers fed more frequently (31.50 events/d) than low RFI steers (27.24 events/d) with 

medium RFI steers being intermediate (30.36 events/d).  Additionally, RFI was positively 

correlated (r = 0.49) with feeding duration.  When evaluating growing heifers over two 

consecutive test periods, Durunna et al. (2012) reported that medium and low RFI heifers 

fed less frequently than high RFI heifers (98.03 and 96.36 events/d vs 110.09 events/d).  

This was true in a similar study using steers in a post-weaning test (Durunna et al., 

2011b).  Other reports indicate that this is also true in swine (Berea et al., 2010).  In 

contrast, Bingham et al. (2009) did not report any association between RFI and feeding 

duration or frequency in Brangus heifers.  However, high RFI heifers ate at a faster rate 

than their more efficient contemporaries (101.6 vs 62.4 g/min, respectively). Similarly, 

Kelly et al. (2010a) reported a positive correlation between RFI and both eating rate (r = 

0.26) and feeding events (r = 0.45) in Limousin X Holstein heifers.  Although not 

statistically significant, a similar trend in feeding frequency was observed by Robinson 

and Oddy (2004) in both steers and heifers.   

 From synthesis of these reports, one could suggest that high RFI animals consume 

more feed by eating more frequently or at a faster rate when compared to low RFI 

animals; however, there is evidence that other factors may be involved.  Spectral analysis 

of feeding patterns in Angus steers revealed that high RFI animals have a more variable 

temporal pattern of feed intake early during the test period, while low RFI steers quickly 
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acclimated to a regular feed-intake cycle (Dobos and Herd, 2008).  Nonetheless, the 

mechanisms controlling variation in feeding patterns are difficult to isolate (Richardson 

and Herd, 2004).  The latter authors hypothesized, based on a review of the literature on 

voluntary intake, that animals do not consume feed at an amount or rate to meet the 

demands of genetically maximum production.  In contrast, the reviewers believed that 

feed consumption is controlled by net energy requirements and that the concomitant 

consumption of oxygen is the cost of feed consumption, because the use of oxygen in 

metabolism indirectly causes damage to cell structures.  Furthermore, the authors 

theorized that the effect of oxygen consumption and the resulting ‘metabolic acid’ load 

are regulated by optimizing the rate of lipid synthesis in adipose tissue.  It is well 

established that high RFI animals have a larger volume of adipose tissue, so this would 

assist them in reducing the greater metabolic acid load associated with their greater feed 

intake.  Although this may indicate a link between feeding patterns and body composition 

related to RFI, differences in feeding patterns account for only 2% of the known variation 

in RFI at present (Richardson and Herd, 2004).  

 Body Composition 

  The relationship between RFI and body composition in cattle has been reviewed 

(Richardson and Herd, 2004; Herd and Arthur, 2009) and is well established.  In general, 

reports indicate that low RFI animals possess less fat and equal or more lean tissue mass 

than high RFI animals.  Similar results have been obtained in swine (Herd and Arthur, 

2009), in which backfat thickness was associated positively (r = 0.44) with genetic 

variation in RFI (Gilbert et al., 2007).  In poultry, reports relating body composition to 

variation in RFI are quite variable.  In a summary of genetic and phenotypic associations 
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between measures of body fat and RFI in poultry, Luiting (1990) reported a range from    

-0.40 to 0.45.  Later, various reports on selection in poultry indicated that low RFI lines 

contained more fat than high RFI lines (Herd and Arthur, 2009). This trend, opposite to 

that observed in cattle and swine, also was reported in mice (Archer et al., 1998).  Even 

so, no matter the direction of the relationship, body composition never accounted for 

more than 5% of the variation in RFI (Herd and Arthur, 2009).  

 Although body composition typically references differences in lean, fat, and bone, 

differences in tissues as components or whole organ systems can affect maintenance 

requirements of livestock.  For example, tissues of the splanchnic bed comprise around 

15 to 20% of the total body mass in ruminants (Seal and Parker, 2000) and account for 35 

to 60% of total oxygen consumption (Seal and Reynolds, 1993).  Approximately 20% of 

consumed oxygen is utilized by the gastrointestinal tract (GIT) (Cant et al., 1996) with 

another 20.5% being used by the liver (Eisemann and Nienaber, 1990).  When comparing 

visceral organ mass and heat production of Angus steers divergently selected for RFI, 

Richardson et al. (2001) did not report an association with variation in RFI even though 

maintenance requirements are associated with visceral organ mass in beef cattle 

(Montano-Bermudez et al., 1990).  In contrast, Nkrumah et al. (2006) reported that RFI 

was associated positively with methane and heat production (r = 0.44 and 0.68, 

respectively) and negatively with retained energy (r = -0.67), indicating that differences 

in visceral organ mass may exist.  Similar indirect evidence is available in swine in which 

low RFI pigs exhibited less fasting heat production than high RFI pigs (771 vs 846 kJ/kg 

of BW0.60/d) (Berea et al., 2010).  However, reports by Mader et al. (2009) and Cruz et al. 

(2010) found no differences in visceral organ mass due to RFI classification in cattle.  
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Visceral tissues are enormous energy sinks, so the indirect evidence of associations with 

RFI cited above may be indicative of individual variation in the efficiency of the 

processes of energy metabolism rather than the capacity of the tissue for energy 

metabolism.   

Heat Increment of Fermentation     

 Energy in feedstuffs can be broken down into several categories based on the type 

and specific form in which energy components are consumed throughout the processes of 

digestion and metabolism; nonetheless, in order to be utilized, feed energy must be 

changed into a form usable by the animal.  Lofgreen and Garrett (1968) described the 

feed energy that is usable by the animal as net energy, which can be used either for 

maintenance (NEm) or any productive process above maintenance (NEg) (i.e. gain).  

Analogous to a financial analysis of profit, net energy is the available energy (i.e. profit) 

after the cost of changing the gross feed energy into a form usable by the animal.  Thus, it 

follows that the difference between net energy and gross energy was lost during the 

process of transformation.  According to the First Law of Thermodynamics energy can 

neither be created nor destroyed, so logically the energy ‘lost’ in transformation must 

have changed form.   

 In ruminants, fermentation by rumenal bacteria of the energy yielding 

components of feed produce several products that can be utilized further by the host 

animal for energy (i.e. ammonia, bacterial cells, and volatile fatty acids) and some that 

cannot (heat, methane, carbon dioxide) (Blaxter, 1962).  These byproducts of rumen 

fermentation not usable by the animal represent the energy forms lost in transformation.  

Of those, the heat of fermentation characterizes anywhere from 3 to 12% of the gross 
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energy of the feedstuff (Blaxter, 1962), yet few studies have evaluated the relationship of 

RFI to energy losses as the result of fermentation.  

 In Angus steers with over 2 generations of divergent selection for RFI, high RFI 

steers produced 33.7% more methane per day than their low RFI contemporaries 

(Hegarty et al., 2006).  An earlier study by Okine et al. (2001) reported that low RFI 

cattle produced 21% less methane and 15% less manure on a yearly basis than high RFI 

groups.  A similar comparison of enteric methane production by Herd et al. (2002) 

indicated that low RFI animals produced 15% less methane per day than similar high RFI 

animals.  Most recently, Muro-Reyes et al. (2011) evaluated RFI as a method to reduce 

methane production in sheep.  Based on DMI in Rambouillet ewes and rams, low and 

medium RFI sheep produced significantly less methane per day than high RFI sheep 

(0.028 and 0.029 kg/d vs. 0.033 kg/d, respectively; P < 0.01).  These data are in partial 

agreement with the study of Nkrumah et al. (2006), who used three RFI classifications 

while evaluating methane production in crossbred steers.  In this study, low RFI steers 

produced significantly less methane than both the medium and high RFI groups (1.28 

L/kg BW0.75 vs. 1.68 and 1.71 L/kg BW0.75, respectively; P = 0.04).  Unlike the previous 

studies, Nkrumah et al. (2006) reported a positive correlation (r = 0.44) between RFI and 

daily methane production. 

 Reports in the literature relating RFI to heat production and energy loss during 

fermentation and digestion are difficult to find.  To date, only one attempt to detail the 

relationship between differing RFI phenotypes and the heat increment of fermentation 

has been reported.  In the same group of crossbred steers evaluated for methane 

emissions, Nkrumah et al. (2006) measured daily dietary energy flow.  In this study, low 



 20 

RFI steers had significantly (P = 0.02) more metabolizable energy (ME = [(gross energy 

– fecal energy) - urine/gas) than high RFI steers (265.73 vs. 238.54 kcal/kg of BW0.75) 

with the medium RFI group being intermediate (248.73 kcal/kg of BW0.75).  Trending in 

the opposite direction, overall heat production was lowest (P < 0.001) in low RFI steers 

and highest in the high RFI group.  While not significant (P = 0.58), low RFI steers 

exhibited a numerically lower heat increment of feeding than medium or high RFI groups 

(36.08 kcal/kcal of ME vs. 53.18 and 53.60 kcal/kcal of ME).  Interestingly, urine and 

fecal energy loss or the ratio of ME to digestible energy (DE) as a percent of gross 

energy did not differ among RFI classifications, indicating that the ability to digest and 

absorb the diet was similar.  However, methane energy loss as a percentage of gross 

energy differed based on RFI classification.  In this case, low RFI steers lost significantly 

less energy to methane than the medium and high RFI classes (3.19% vs. 4.25 and 4.28%, 

respectively; P = 0.04) indicating that the different RFI classes may in fact have differing 

rumenal bacterial populations and efficiencies.  This has been shown to be the case in 

lines of mice selected for low and high heat loss and differing in feed intake (Nielsen et 

al., 2009), but has yet to be reported in cattle relative to RFI.                        

Activity 

 Energy requirements of livestock are generally broken into the categories of 

maintenance and growth, but variation in energy requirements can be due to differing 

levels of activity.  As RFI accounts for differences in maintenance and growth 

requirements, the energy required for general activity may represent an unaccounted for 

source of variation in the trait.  To date, studies evaluating the effect of activity level on 
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RFI have primarily focused on monogastric species with more recent evaluations 

utilizing ruminants. 

 Total daily feeding time and number of visits to a feeding station were positively 

correlated (r = 0.64 and 0.51, respectively) with RFI in swine (de Haer et al., 1993).  

After 5 generations of selection in Yorkshire swine, Young et al. (2011) reported that low 

RFI pigs spent less time eating but ate faster.  In a similar population of gilts, the low RFI 

line spent less time standing (13.72 vs. 15.21 % of total time), more time sitting (2.50 vs. 

2.12 % of total time) and were less active overall (16.88 vs. 18.50 % of total time) than 

the high RFI group (Sadler et al., 2011).  When selecting Large White swine for RFI, 

Barea et al. (2010) concluded that positive RFI pigs were energetically less efficient, in 

part because of greater physical activity.   

Activity contributes a substantial proportion of the variation in RFI in poultry as 

well (Braastad and Katle, 1989; Katle, 1991; Luiting et al., 1991b).  It has been reported 

that 80% of the genetic difference in RFI in divergent lines could be attributed to physical 

activity (Luiting et al., 1991b).  Further evidence of this relationship has been reported in 

mice (Bunger et al., 1998; Mousel et al., 2001), in which lines selected for divergence in 

feed intake or heat loss (high vs. low) exhibited different levels of activity.  In ruminants, 

the relationship between activity and RFI has not been studied thoroughly, although 

Richardson et al. (1999) reported that RFI was correlated positively with a pedometer 

count, and that activity accounted for around 10% of the variation in RFI (Richardson 

and Herd, 2004).  
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Digestibility 

 It is estimated that differences in digestibility are responsible for approximately 

10% of the observed variation in RFI in ruminants (Richardson and Herd, 2004); 

however, digestibility was not an important source of variation in RFI in monogastrics 

[poultry (Luiting et al., 1994), pigs (de Haer et al., 1993), and mice (Bunger et al., 1998)].  

This relationship in ruminants may be associated with rate of passage, as it is known that 

passage rate increases and digestibility decreases as level of feed intake relative to 

maintenance increases; however, there is genetic variation in total tract digestion of feed 

over and above the systematic variation due to intake (Richardson and Herd, 2004).   

 In steers that were individually fed a concentrate-based diet under controlled 

environmental conditions, digestibility was correlated negatively (r = -0.44) with RFI 

(Richardson et al., 2004), indicating that low RFI was associated with greater digestibility 

(Richardson and Herd, 2004).  In this study, digestibility accounted for 19% of the 

variation in RFI; however, an earlier study by Richardson et al. (1996) reported that 

digestibility differed by only 1% (P < 0.10) between RFI classifications in Angus bulls 

and heifers, while digestibility accounted for 14% of the observed variation in intake.  In 

hybrid steers, apparent DM digestibility was greatest in the low RFI group (75.33%) and 

tended (P = 0.10) to differ from high RFI steers (70.87%), but was similar to the 

intermediate RFI group (73.40%) (Nkrumah et al., 2006).  Although it is likely that 

digestibility contributes to variation in RFI, precise measurement of small differences in 

digestibility is difficult and conclusive evidence is not yet available.  
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Protein Turnover, Tissue Metabolism and Stress  

 The general processes of metabolism are responsible for a large proportion of an 

animal’s maintenance requirements.  Thus it is logical to predict that a measure of feed 

utilization efficiency like RFI would be related to or influenced by measureable 

indicators of metabolic status.  In fact, differences have been reported between RFI 

classes with respect to serum concentrations of glucose (Richardson et al., 2004 and 

Kolath et al., 2006a), insulin (Richardson et al., 2004 and Kelly et al., 2010b), non-

esterified fatty acids (NEFA) (Kelly et al., 2010a), β-hydroxybutyrate (Richardson et al., 

2004; Kelly et al., 2010a; Kelly et al., 2010b), and urea (Kelly et al., 2010b) in young 

growing cattle.  In the previous reports, high RFI was associated with greater circulating 

concentrations of serum metabolites indicating a greater rate of catabolic activity in less 

efficient animals.  Interestingly, when evaluating similar indicators of metabolism in 

gestating heifers, Lawrence et al. (2011) reported no differences among high, medium, or 

low RFI classes with respect to albumin, glucose, NEFA, triglycerides, or urea.  High 

RFI heifers, however, tended (P = 0.07) to have greater β-hydroxybutyrate concentrations 

while having significantly lower plasma creatinine (174.63 vs. 187.19 umol/L) than low 

RFI heifers, confirming that physiological state of production influences maintenance 

metabolism and may potentially impact RFI.   

 Castro Bulle et al. (2007) noted that maintenance energy requirements of 

crossbred steers increased 0.0166 Mcal/BW0.75/day for each one percent increase in 

fractional protein degradation rate, although no relationship existed between RFI and 

protein synthesis or degradation.  Conversely, Richardson et al. (2004) reported that RFI 

was correlated positively with aspartate aminotransferase and both plasma urea and 
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protein and negatively correlated with plasma creatinine (r = -0.45).  Further evidence 

that circulating aspartate aminotransferase and creatinine differ between RFI classes in 

cattle were reported by Lawrence et al. (2011), indicating a greater rate of protein 

turnover in high RFI animals.  Similar results have been obtained in poultry (Bottje and 

Carstens, 2009).  It has been hypothesized that the observed increase in protein turnover 

was due to the uncoupling of oxidative phosphorylation from electron transport, which 

results in the production of reactive oxygen species and increased protein oxidation.  

However, the observations of Kolath et al. (2006a) with respect to mitochondrial electron 

leakage in high and low RFI steers do not support this hypothesis.  Still, Kolath et al. 

(2006a) reported that electron transfer was more efficient in low RFI steers due to a 

greater coupling of oxidative phosphorylation and respiration.  Additional circumstantial 

evidence supporting the hypothesis of the inefficiency of electron transport can be found 

in the report by Richardson et al. (2002), who noted that high RFI cattle have larger red 

blood cells, more hemoglobin, and as a result, a greater oxygen carrying capacity and 

requirement. Logically, later authors evaluated mitochondrial uncoupling protein 

expression in differing RFI classes of cattle (Kolath et al., 2006b and Sherman et al., 

2008) and swine (Lefaucheur et al., 2011) and observed no differences due to RFI 

classification.  In contrast, Sharifabadi et al. (2012) reported that RFI was strongly related 

to mitochondrial respiratory chain complex activity (r ≤ -0.87 for all five complexes; P < 

0.001).  Additionally, mitochondrial respiratory chain complex activity was significantly 

greater (P < 0.001) for all five complexes in low compared to high RFI lambs, indicating 

that mitochondrial function, efficiency, and genetics may play major roles in determining 

efficiency phenotype; however, it still seems logical that observed differences in RFI are 
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likely due, in part, to differences in protein turnover and potentially to differences in the 

efficiency of the liver to produce gluconeogenic substrates.  

 Although stress response is not often considered in evaluating animals for feed 

efficiency, physiological responses to stress include an increase in metabolic rate and 

energy consumption coupled with increases in catabolic processes such as increased 

lipolysis and protein degradation (Knott et al., 2008).  As such, stress response or rather 

basal stress levels should be considered as potential sources of variation in feed 

efficiency of livestock, but have received only limited evaluation to date.  Richardson et 

al. (2004) reported that plasma cortisol was positively associated (r = 0.40) with RFI in 

Angus steers, which is in agreement with reports in poultry (Luiting et al., 1994) and 

sheep (Knott et al., 2008).  Conversely, Lefaucheur et al. (2011) reported that low RFI 

boars tended to have greater circulating concentrations of cortisol (64.9 vs. 51.2 ng/mL; P 

= 0.08) than high RFI groups after 4 generations of selection for RFI.  Across species 

these results are inconclusive, but may mean that high RFI ruminants have greater basal 

concentrations of cortisol, a larger stress load and thus an increased metabolic rate.  

Previous reviews have indicated that the combination of stress, protein turnover, and 

tissue metabolism is responsible for 37% of the variation in RFI (Richardson and Herd, 

2004; Herd and Arthur, 2009).       
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INTEGRATION OF BIOLOGICAL MECHANISMS 

 

 Our current knowledge of the complexity of the processes of metabolism and 

energy partitioning should be an indicator that no single mechanism is likely to be 

responsible for observed differences in feed efficiency phenotypes.  In fact, this is true 

even for traits that are much simpler to measure (i.e. growth rate and wool production) 

than RFI (Oddy, 1999).  As RFI is a moderately heritable trait, phenotypic RFI accounts 

for around 40% of the additive genetic variation in the trait; however, the diversity of the 

biological mechanisms described previously that impact RFI are likely influenced by 

non-additive genetic effects as well.  Thus, it is expected that RFI is influenced not only 

by a variety of those mechanisms discussed above but also by their interactions.  Even so, 

the majority of the variation in RFI that has been identified is based largely on 

circumstantial evidence and at least 27% of the variation in RFI remains unaccounted for 

(Herd and Arthur, 2009).   

Summary of the available evidence indicates that low RFI (more efficient) 

animals are leaner, less active, and eat less but in a more defined pattern.  Logically, this 

makes sense because it takes more energy to build adipose tissue and greater activity 

results in greater basal energy expenditure and thus the need for greater feed intake.  

Specifically in the case of ruminants, more efficient animals have reduced energy loss 

during fermentation and greater apparent GIT digestibility, indicating that genotype 

and/or genotype x environment interactions actually influence not only rumen and GIT 

physiology but also the development of a symbiotic relationship with more efficient 

microbial species.  It is possible that passage rate differences may exist between RFI 
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phenotypes, but this has not yet been investigated.  Perhaps most important are the 

reported differences in RFI phenotypes at the cellular level.  From these reports, it is 

apparent that there are marked differences in the rates of protein turnover and energy 

generation among RFI groups.  Much of this evidence is reportedly associated with 

mitochondrial functions stemming from mitochondrial DNA, so it seems logical to 

assume that evaluating those factors responsible for sex differences in metabolism and 

efficiency may be important to improving our understanding of RFI.  In effect, female 

livestock, who are responsible for the transfer of mitochondrial DNA, may have a much 

greater impact on the future of RFI research and selection than males.   
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STATEMENT OF PROBLEM AND OBJECTIVES 

  

Even though beef prices are an all-time high, input costs continue to rise, and beef 

producers must seek out ways in which to remain not only profitable but economically 

sustainable.  In the beef industry, producers can increase income only by increasing unit 

production levels or expansion.  With a large portion of the country experiencing 

extremes in weather and calf prices predicted to remain high through 2014, it is unlikely 

that expansion will serve as a means for producer’s to increase economic return for the 

next several years.  As well, increasing levels of production is associated with greater 

costs and is subject to the law of diminishing returns.  Given that profit is equal to income 

minus costs, it seems logical that producers should consider reducing input costs while 

maintaining or selecting for optimum production.     

 Approximately 70% of the total cost of beef production is related directly to feed 

consumption (Herd et al., 1998; Liu et al., 2000).  Around 70% of feed costs are 

attributable to maintenance functions of mature females (Gregory, 1972; Ferrell and 

Jenkins, 1985; Montano-Bermudez et al., 1990).  As such, logic dictates that identifying 

animals that consume less feed for equal or optimal production will serve to increase 

profitability and ensure economic stability.  By comparing an animal’s actual feed intake 

to a predicted intake based on its requirements for maintenance and performance, RFI 

provides beef producers with the means to do just that (Koch et al., 1963); however, RFI 

is a complex trait that requires the measurement of individual animal feed intake.  As a 

result, researchers have only recently been able to investigate the potential of RFI as an 

economically important trait in selection programs.        
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 To date, most investigations involving RFI have focused on the possibility for 

indirect selection effects by evaluating the potential for phenotypic and genetic 

relationships with other economically important traits.  However, few studies have 

evaluated those factors that are responsible for the variation observed in RFI-tested 

populations.  Even though a number of factors have been identified (Figure 1), a large 

portion of the variation in RFI remains unaccounted for (Herd and Arthur, 2009).  Thus, 

the primary objective of the present study was to evaluate several previously untested 

factors as potential sources of variation in RFI.  Reports indicate that RFI is related to 

diet digestibility (Richardson et al., 2004; Nkrumah et al., 2006), fermentation products 

(Nkrumah et al., 2006), and feed intake (Arthur et al., 2001), so the primary objectives 

were to evaluate differences in nutrient absorption, digesta rate of passage, and rumen 

environment and fermentation products between RFI classes and across different diets 

and feeding levels.  Additionally, the relationship between previously determined RFI 

and grazing forage intake was evaluated.    
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MATERIALS AND METHODS 

 

Studies were conducted over a 1.5 year period from September, 2009 to March, 

2011 and included 5 separate experiments for which data will be presented.  All studies 

were conducted at the West Virginia University Animal Science Farm in Morgantown, 

WV.     

Animals and Management 

The data were collected using 14 crossbred steer progeny of first parity, British 

breed type dams with known RFI phenotypes.  Steers originated from the WVU 

Reedsville (n = 7) and the WVU Reymann Memorial Farm (n = 7) Experiment Stations 

and were sired by a commercially available Angus sire via artificial insemination.  As a 

result, all steers were > 50% Angus and were born in March and April of 2009 and 

subsequently weaned in early September of the same year.  Details on the breeding 

procedures and determination of dam RFI have been described previously by Shaffer et 

al. (2011).           

 Due to varying procedures between farm units, calves from the WVU Reymann 

Memorial Farm remained intact males until after weaning.  Approximately two weeks 

post weaning, calves were castrated by first using a bander (EZE Castrator Model T-1, 

Wadsworth Manufacturing, St. Ignatious, MT) and then removing the necrotic scrotal 

tissue with a scalpel approximately seven days later.  Steers from the WVU Reedsville 

Farm were castrated at birth.           

 All procedures and facilities used in this study were approved by the West 

Virginia University Animal Care and Use Committee (IACUC # 06-0104). 
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Data Collection and Test Procedures 

Experiment 1:  Drylot—Forage-based Grower Diet (September 2009 – December 2009) 

 Steers were weaned approximately 30 day prior to start of the experiment and 

acclimated to the test diet (Table 1), which was designed to achieve moderate growth 

rates and allow for accurate comparison of feed efficiency rank (NRC, 1996).  A 67-day 

feeding period was utilized in this experiment and steer BW was recorded weekly.  Initial 

and final BW’s were the average of BW measures collected on consecutive days.  

Individual feed intake data were collected using the GrowSafe 6000E  System (GrowSafe 

Systems, Airdrie, Alberta, Canada) to be used in the calculation of RFI.   

 Steers were housed in a drylot facility (14.6 m x 9.1 m under roof) that contained 

6 GrowSafe feeding nodes and were provided fresh feed once daily.  The diet consisted 

of 40% corn silage, 40% ground second cutting grass hay, and 20% protein and energy 

supplement.  Diet and supplement details can be found in Table 1.   

On days 60, 62, and 64, a blood sample was collected via jugular venipuncture at 

0630 immediately prior to feeding.  During this 5-day collection period, feed was 

delivered daily at a rate 11.34 kg of fresh feed/head/day, equivalent to 2.5% of BW in 

DM, and was verified to be consumed entirely within 2 hours by visual observation.  In 

order to achieve consistent consumption, feed was placed in concrete J bunks adjacent to 

the GrowSafe feeding nodes so that 0.61 m of bunk space was allocated for each steer.  

Additional blood samples were collected every 3 hours for the next 12 hours.  Samples 

were refrigerated overnight, at which time plasma was harvested, split into two samples 

for individual assay, and stored at -200C until blood metabolites (volatile fatty acids 
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(VFA’s), glucose, cholesterol, triglycerides, albumin, and urea nitrogen) were quantified.  

An illustration of the collection procedures and time points can be found in Figure 2.   

 

After collection of the last blood sample at 1900 h, approximately 100 ml of 

rumen fluid were collected from each steer via an oral lavage using an apparatus similar 

to that described by Lodge-Ivey et al. (2009) inserted through a Frick speculum.  Rumen 

fluid samples were immediately strained through 3 layers of cheesecloth and rumen pH 

was determined using a pH meter (ThermoORION model 310 perpHecT logRmeter, 

Thermo Fisher Scientific, Waltham, MA) by allowing the probe to rest in approx. 100 

mL of rumen fluid for around 10 sec.  Immediately prior to and after recording rumen 

fluid pH, the probe of the pH meter was rinsed with distilled water.  When not in use, the  

Table 1.  Composition and nutrient analysis of diet for Experiment 1 

Ingredients  As Fed % 

Corn Silage                               40.6 

Grass Hay1                               40.5 

Supplement2                               18.9 

Nutrient Analysis DM % 

Dry Matter                                                                  68.21    

Ash                                                                    8.18 

Crude Protein                                                                  10.03 

NDF                                                                  63.03 

ADF                                                                  26.13 

Soluble Protein                                                                  23.18 
1Grass hay was ground to a 2.5 to 5 cm particle length. 
2Supplement was composed of 52.24% soyhulls, 21.11% ground corn, 15.83% 
soybean meal, 8.44% mineral premix3, and 2.37% salt. 
3Southern States 4:1 Beef Mineral, Southern States Cooperative, Richmond, VA. 
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Figure 2. Schematic of experimental procedures.  
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probe was stored in a bath of pH 7 buffer solution (SB107-500, Thermo Fisher Scientific, 

Waltham, MA).  Additionally, 50 mL of rumen fluid was pipetted into a 50 mL conical 

bottom centrifuge tube and acidified by the addition of 1 ml of 0.5 N HCl and frozen until 

further analyzed for ammonia concentration.  Similarly, 2 ml of strained rumen fluid 

were pipetted into a separate 50 ml conical bottom centrifuge tube and immediately 

returned to the lab where VFA’s were extracted.    

Experiment 2:  Summer Pasture Intake Determination (September 2010) 

Prior to Experiment 2, steers were developed as contemporaries post-weaning as 

described in Experiment 1.  Between Experiments 1 and 2, steers were fed a diet 

consisting of cool season grass hay.  Prior to the start of Experiment 2 but after hay 

feeding, steers were grazed on cool season grass pastures for approximately 120 days 

(May to August, 2010) and individual steer body weight was recorded monthly to 

determine grazing ADG.  For Experiment 2, steers were stratified by body weight and 

previous gain performance on forage and allotted to one of three grazing plots where 

individual forage intake data were collected.   

Grazing paddocks (n = 3) were approximately one hectare in size and each 

paddock was divided into 8 approximately equally sized subplots to be grazed 

rotationally.  Each subplot was grazed one day with each paddock containing one group 

(two groups of 5 and one group of 4) of steers.  Forage samples and sward height data 

were collected from each subplot immediately pre- and post-grazing.  Sward height 

measurements were collected using a falling plate meter (Rayburn and Lozier, 2003) 

following similar transects of the grazing plots pre and post-grazing.  Approximately 20-

25 height measurements were collected from each subplot by taking a measurement at 2 
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m intervals along two transects perpendicular to the shortest side of each triangular 

shaped subplot and one transect perpendicular to the first two at the midpoint of the plot.  

A schematic of the forage plots is presented in Figure 3.  Forage samples were collected 

from three random points along the height measurement transects in each subplot by hand 

clipping the forage to a height of approximately 3 cm.  Forage samples were dried in a 

forced air oven at 55° C for 48 h, and ground through a 1 mm screen using a Wiley mill.  

Samples were then analyzed for ADF, NDF, total CP and DM (Table 2).  Grazed forages 

were predominately mixed cool season grasses and legumes consisting of Kentucky 

bluegrass (Poa pratensis L.), orchardgrass (Dactylis glomerata L.), tall fescue (Festuca 

arundinacea L.), red clover (trifolium pretense L.), and white clover (Trifolium repens 

L.).   

Approximately 1 month prior to initiation of the experiment, steers were allocated 

to grazing groups and placed in subplot 1 of each respective grazing paddock.  Steers 

were allowed to graze the subplot for 1 day and then rotated in sequence through all 8 

subplots, grazing each for a period of 1 day.  Standing forage was removed in 

experimental sequence such that time of regrowth and forage quality variation would be 

equalized for each sublot during the experimental period.  Sward height estimates of 

subplot forage mass were used to determine when forage availability would not be 

limiting to voluntary forage intake.  Due to dry conditions, sufficient forage regrowth was 

not available until approximately 6 weeks after subplot preparation.  Estimated available 

forage mass was 22.7, 26.4, and 22.2 kg DM/head/day for grazing plots 1, 2, and 3, 

respectively, based upon the falling plate meter calibration factor of 77 kg of DM per 

centimeter of height for cool season mixed grass pastures (Rayburn and Lozier, 2003).  
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After grazing, remaining forage mass was estimated to be 17.3, 20.5, and 16.4 

DM/head/day for plots 1, 2, and 3, respectively, indicating that forage mass was not 

limiting to intake.   

During the grazing period preceding intake measurement (May to August, 2010), 

forage growth rate exceeded grazing consumption and forages matured.  Mature forage 

was removed mid-summer by mechanically clipping paddocks to a height of 

approximately 15 - 20 cm using a tractor and brush hog.  The remaining forage was 

removed by grazing.  As a result, forage consumed during the intake measurement and 

plot preparation periods was vegetative regrowth. 

 
 

 

Figure 3.  Schematic representation of the grazing plots used in determination of grazing 
forage intake.  Each triangular shaped portion represents a subplot, or the grazing 
allotment for one day.  Sward height measurements were taken following transects 
represented by the dashed lines.   
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On day 0 of the experiment all groups were placed in subplot 1 of their respective 

grazing paddock.  Steers were allowed to graze ad libitum and had constant access to 

water and trace mineralized salt.  Steers were removed from the plots twice daily for 

marker dosing and fecal collection.  On days 1 to 7, steers were dosed orally at 0800 h 

and at 2000 h with a gelatin capsule (Size 10, Torpac, Inc., Fairfield, NJ) containing 10 g 

chromic oxide (CrO3: 67% Cr).  Fecal grab samples were collected twice daily at 0800 

and 2000 h from each steer on days 5 through 8.  Fecal samples were collected in sealed 

plastic containers and stored under refrigeration until dried.  Samples were dried at 55° C 

in a forced air oven and then ground through a 2 mm screen using a Wiley mill.  

Chromium was then extracted from dried feces using sodium hypochlorite (chlorine 

bleach) and 1 M HCl according to the procedures of Suzuki and Early (1991).  Fecal 

samples were then analyzed for chromium concentration using inductively coupled 

plasma mass spectroscopy (ICP-MS) (Dionex ICS-3000, ThermoScientific, Sunnyvale, 

CA). 

Table 2.  Nutrient analysis of grazed forage for Experiments 2 and 3. 

Nutrient Analysis % DM  

Dry Matter                                                                   36.51 

Ash                                                                     8.70     

Crude Protein                                                                   13.43 

NDF                                                                   62.34  

ADF                                                                   30.33 

Soluble Protein                                                                   71.09 
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Voluntary forage dry matter intake on pasture was estimated by the equation DMI 

= FO/[1 – (diet digestibility/100)] where FO = fecal output.  Fecal output (kg/day) was 

estimated based on the ratio of the marker (Cr) dosed to the animal (mg) to its 

concentration in the feces (mg/g).  Apparent dry matter digestibility was calculated as the 

percentage of forage dry matter found in feces (kg/d) less 100.  Forage dry matter (g/d) 

was calculated by first multiplying FO by the observed percentage of ash in feces less 

that of the marker to estimate fecal output of ash per day.  This value was then divided by 

the observed percentage of ash in the pre-grazed forage samples to estimate forage DM 

(g/d).  Pre-grazed forage ash values were the average of the 8 subplots within each 

grazing paddock and were used with the steers that grazed only that particular paddock.   

Experiment 3:  Fall Pasture—Passage Rate (October 2010) 

Prior to the beginning of the trial, steers were comingled and allowed to graze fall 

regrowth on cool season grass pastures equivalent to that described in Experiment 2 for 

approximately 1 month.  Fecal grab samples were collected at random time points for 

each steer during this time.  Undigested fecal fiber was collected from these samples by 

rinsing the wet feces (approximately 2 kg/ steer) over a 3 mm sieve under flowing water.  

Undigested fecal fiber samples were then dried at 50° C in a forced air oven.  Dried fecal 

fiber samples were then labeled with ytterbium chloride using the methods of Varga and 

Prigge (1982) and used as a solid phase marker in the determination of solids passage 

rate.  Liquid phase passage rate was determined using Co-EDTA prepared by the 

methods of Uden et al. (1980). 

At 1800 h on day 0 of the trial, each steer received  a single oral dose of cobalt-

EDTA crystals (25 g) contained in a gelatin capsule and 50 g of ytterbium chloride 
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labeled fecal fiber, which was thoroughly mixed with approximately 1 kg of soybean hull 

pellets and fed to the steers in individual feeding stalls.  Each steer consumed the 

ytterbium chloride labeled fecal fiber recovered from their respective fecal grab samples.   

Immediately following dosing, steers were placed in a one hectare paddock and 

allowed to graze freely for the remainder of the trial except when removed for fecal 

collection.  Steers were removed from the paddock twice daily at 12-hour intervals from 

dosing for collection of fecal grab samples.  A total of 8 fecal grab samples were 

collected per steer post-dosing over a 4-day period.  Samples were collected in sealed 

plastic containers and stored under refrigeration until dried.  Samples were dried at 55° C 

in a forced air oven and then ground through a 2 mm screen using a Wiley mill.  

Ytterbium and cobalt were extracted simultaneously from dried feces using diethylene-

tiraminepentaacetic acid (DTPA) according to the procedures of Karimi et al. (1987).  

Ytterbium and cobalt concentrations in feces were then determined by ICP-MS (Dionex 

ICS-3000, ThermoScientific, Sunnyvale, CA) and used in the calculation of solid and 

liquid phase passage rate, respectively.       

Experiment 4:  Maintenance Feeding—Forage (February 2011)  
 

Prior to the start of the experimental period, steers were placed in a drylot facility 

and given access to three pens each measuring 4.9 m x 9.1 m with an area of 4.9 m x 4.9 

m under roof.  Concrete feed bunks fitted with wooden dividers lined the front of the 

pens.   Individual stanchions constructed of 5.1 cm steel pipe and backed by a steel gate 

were placed in front of the bunks to facilitate individual feeding.   Approximately 0.61 m 

of bunk space was allocated to each steer.   
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The experiment consisted of a 10-day adaptation period and a 5-day collection 

period and steer BW was collected daily.  Steers were limit fed at maintenance (1.5% 

BW as fed) a ration containing ground first cutting, cool season grass hay and 0.1 kg per 

day soybean meal to assure adequate rumen nitrogen levels.  Nutrient content of dietary 

ingredients can be found in Table 3.  Feed was delivered at 0700 h daily and steers were 

confined to the stanchions until feed was consumed (approx. 2 h).  Steers had access to 

fresh water and mineral supplement at all other times.  

On days 11, 13, and 15, a blood sample was collected via jugular venipuncture at 

0630 immediately prior to feeding.  Additional samples were collected beginning 3 hours 

post-feeding and subsequently at 3-hour intervals until a total of 5 samples were collected 

or 12 hours post-feeding.  Samples were collected in 10-mL evacuated blood collection 

tubes containing 0.10 mL of 15% EDTA solution (Tyco Healthcare Group, Mansfield, 

MA).  Samples were refrigerated overnight at 4°C, after which plasma was harvested by 

centrifugation (3,000 × g at 4°C for 20 min), split into two samples for individual assay, 

and stored at −20°C.   

After collection of the last blood sample at 1900 h, approximately 100 ml of 

rumen fluid were collected from each steer and processed for rumen pH, ammonia, and 

ruminal VFA’s as described in Experiment 1.  

Experiment 5:  Maintenance Feeding—Concentrate (March 2011) 

Experiment 5 was performed as an exact replicate to Experiment 4 only using a 

concentrate-based diet.  In this experiment, the diet consisted of 10% ground first cutting 

grass hay with the remainder of the diet balanced on an individual animal basis using 

ground corn and soybean meal to deliver equal CP and TDN (New York State TDN 
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Equation-Complete Feed; National Forage Testing Association, 1993) as the diet in 

Experiment 4.   

  

Plasma Samples:  Experiments 1, 4, and 5 

Determination of Plasma Metabolite Concentration  

Concentrations of albumin (ALB), cholesterol (CHO), glucose (GLU), 

triglycerides (TG), and urea nitrogen (UN) were quantified by absorbance on a 

spectrophotometer (Molecular Devices SPECTRAmax PLUS 384, Sunnyvale, CA) using 

commercially available colorimetric assay kits (Stanbio LiquiColor, Kit #’s 0285, 1010, 

1070, and 2100 for ALB, CHO, GLU, and TRI, respectively, and Stanbio Enzymatic 

Urea Nitrogen, Kit #2050, Stanbio Laboratories, Boerne, TX) adapted to flat bottom 96 

well plates and previously used with bovine plasma (Lee et al., 2009).  Plates were run in 

duplicate for each variable and contained samples from an entire collection day (n = 70; 5 

Table 3.  Nutrient analysis of dietary components for Experiments 4 and 5 

Nutrient Analysis 
Ingredients12 

Ground Corn Soybean Meal Grass Hay3 

Dry Matter               89.09               89.46             93.71 

Ash                 1.28                 6.02               5.11 

Crude Protein                 7.96               45.93               7.38  

NDF               17.12               14.53             68.57 

ADF                 1.98                 5.19             40.33 

Soluble Protein               64.88               67.50             69.54 
1Values expressed as % DM. 
2Trace mineral salt was provided free choice through Experiments 4 and 5.  
3Grass hay was ground to a 2.5 to 5 cm particle length. 
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samples per steer x 14 steers).  Mean inter and intra-assay CV’s were 9.86 and 9.37%, 

respectively, and the sensitivity for minimum detection was 0.066 mg/dL for UN with the 

remaining assays being linear from zero.   

Plasma Volatile Fatty Acid Determination 

Volatile fatty acids were extracted from plasma (200 µL) in duplicate using 1 mL 

of 100% ethanol in 1.5 mL snap top microcentrifuge tubes (Thermo Fisher Scientific, 

Waltham, MA).   After vortexing, samples were centrifuged at 12,000 rpm for 15 min 

and 800 µL of supernatant was transferred into similar microcentrifuge tubes containing 

20 µL 0.2 M sodium hydroxide and vortexed.   Supernatant was then evaporated to 

dryness under an air current at 30º C.  The dry residue was reconstituted in 20 μl of 30 

mM oxalic acid and 1 μl of the reconstituted sample was injected onto a 2 m x 2 mm I.D. 

glass column (80/120 Carbopack B-DA/4% Carbowax 20M, Supelco Inc., Bellefonte, 

PA) within a gas chromatograph (Varian 3300, Varian Inc, Walnut Creek, CA; 

Integrator: Varian 4290, Varian Inc, Walnut Creek, CA) to quantify plasma volatile fatty 

acid (PVFA) concentrations (Remesy and Demigne, 1974).   

Rumen Samples:  Experiments 1, 4, and 5  

Rumen Fluid Ammonia Determination 

 Frozen acidified rumen fluid samples were thawed to room temperature, vortexed, 

and 10 g (sample weight) weighed into duplicate Kjeldahl tubes.  Greater than 2.0 g of 

magnesium oxide was added to each tube and dissolved by mixing.  The pH of the rumen 

fluid magnesium oxide solution was verified as basic using litmus paper.  Nitrogen 

content of the solution was then analyzed using a Tecator Kjeltec Auto 1030 Analyzer 
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(FOSS in North America, Eden Prarie, MN).  Sample NH4 concentration (mg/dL) was 

calculated as [(a x b 14.01/(c)] x 100 where: 

 a = mL of titrant acid used 

 b = Normality of acid (0.02) 

 c = sample weight 

Rumen Fluid Volatile Fatty Acid Determination 

 Five ml of fresh strained rumen fluid were pipetted into 50 ml nalgene conical 

bottom centrifuge tubes containing 5 ml of an internal standard solution consisting of 

75.17 µmol/mL acetic acid, 20.09 µmol/mL propionic acid, 18.15 µmol/mL butyric acid, 

5.01 µmol/mL isobutyric acid, 4.97 µmol/mL valeric acid and 5.25 µmol/mL isovaleric 

acid.  After standing for 30 minutes at room temperature, tubes were centrifuged at 

12,000 rpm for 15 min.  Supernatant was then recovered into 1.5 ml snap top 

microcentrifuge tubes labeled in duplicate and stored under refrigeration.  Rumen VFA’s 

concentrations were then analyzed via gas-liquid chromatography (Varian 3300 Gas 

Chromatograph, Varian Inc, Walnut Creek, CA; Integrator: Varian 4290, Varian Inc, 

Walnut Creek, CA) by injecting 1 μl of the sample onto a 2 m x 2 mm I.D. glass column 

(80/120 Carbopack B-DA/4% Carbowax 20M, Supelco Inc., Bellefonte, PA) maintained 

at 175º C and using nitrogen as a carrier gas.  Nitrogen flow rate was 24 cc/minute and 

both the injector and detector were maintained at 200º C.     

Determination of RFI  

 Individual feed intake data were collected for 67-days in Experiment 1; however, 

the data were lost due to computer failure and the calculation of individual RFI was not 

possible.  Luckily, maternal RFI had been determined in a previous post-weaning test 
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(Shaffer et al., 2011).  Knowing that paternal genetic variation in efficiency was 

minimized by all steers being progeny of a single sire, previously determined dam RFI 

should adequately represent individual RFI phenotype.  Therefore, dam RFI value was 

treated as individual RFI for purposes of treatment classification and analysis.   

Statistical Analyses 

 The data were analyzed with steer as the experimental unit, with steers classified 

into groups based upon dam RFI rank.  Differences in rumen pH (PH), rumen ammonia 

(NH4), and rumen volatile fatty acids (RVFA), more specifically acetic (ACE), 

propionic (PRO), butyric (BUT), isobutyric (IBT), valeric (VAL), isovaleric (IVAL), 

total (TVFA), and acetate:propionate ratio (A:P) among steers classified as either high 

(HIGH; n = 8) or low (LOW; n =6) RFI based upon dam RFI were analyzed using the 

general linear model (GLM) of SAS (SAS Instituate; Cary, NC, 2006).  The objective of 

the experiment was to determine the relationships of these values with RFI and 

differences between day of collection were anticipated, therefore collection day and 

collection time relative to feeding were used as covariates in the model.   

Passage rate data were expressed as the detected concentration of the indigestible 

marker per gram of fecal DM.  Marker concentrations were then linearized via a natural 

log transformation and regressed upon collection time post-dosing using the PROC REG 

procedure of SAS (2006).  This resulted in a simple linear equation for each steer with an 

intercept and coefficient for the variable of collection time post-dosing, which is 

equivalent to the rate of appearance of the indigestible marker in the collected, dried 

feces.  This coefficient was used to analyze RFI group differences for liquid (LPR) and 

solid passage rate (SPR) via the GLM procedure of SAS (2006).  The statistical model 



 45 

contained only the fixed effect of RFI group and was used to evaluate differences among 

RFI classifications for voluntary DMI, ultrasonographic measures of body composition, 

and descriptive traits.  

Concentrations of plasma VFA’s and metabolites were treated as a response to 

feeding and were analyzed by the GLM procedure of SAS (2006).  The model used to 

analyze overall mean concentrations and mean concentration post-feeding included 

collection day and collection time as covariates and RFI group as a fixed effect.  In order 

to evaluate differences between RFI groups at each collection time, the interaction of RFI 

group and collection time was included in the model as a fixed effect and means were 

calculated for each combination of the RFI x Collection Time interaction.  Phenotypic 

relationships between RFI and all measured traits were examined using the PROC CORR 

procedure of SAS (2006).  Significance was determined for all analyses at P < 0.05. 
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RESULTS 

 

General 

 Descriptive statistics of steers prior to the start of Experiment 1 are presented in 

Table 4.  Steers weighed an average of 38.4 kg at birth and were weaned at 

approximately 187 days of age.  Mean 205-day adjusted weaning weight (WW) was 

262.6 kg.  Steers were classified as either positive (POS; n = 8) or negative (NEG; n = 6) 

based on dam phenotypic RFI (DRFI) value and further analyses served as a comparison 

of these differing RFI phenotypes.  With the exception of DRFI, no differences were 

observed among RFI classes in pre- and post-weaning production traits (Table 5).  

 

 

Table 4.  Descriptive statistics of steers entering Experiment 1.  

Trait1 Mean SD2 Minimum Maximum 

Dam RFI (kg TDN/d)          0.46          3.28         -4.94         5.70 

Birth Weight (kg)        38.36          3.05        33.57        43.55 

Weaning Weight (kg)      262.57        25.28      222.41     301.44 

Weaning Age (days)      186.86        13.55      158     204 
1RFI = Residual feed intake; TDN = total digestible nutrients 
2SD = Standard deviation. 
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Experiment 1:  Drylot—Forage-based Grower Diet 

 In general, production traits and measured variables did not differ between RFI 

groups for Experiment 1.  Steer gain performance, initial BW, or final BW did not differ 

between RFI groups (Table 5).  No differences were observed in ultrasonographic 

measures of body composition at the initiation of Experiment 1 (Table 6); however, RUF 

was greater in POS steers when compared to NEG steers at trial conclusion (42.23 vs. 

29.63 mm, respectively; P = 0.02).  No other final measures of body composition differed 

based upon RFI class.          

 Rumen pH, NH4, and VFA data were similar for RFI groups (Table 7).  Similarly, 

overall concentrations of ALB, UN, GLU, and TG were similar between RFI classes  

Table 5.  Descriptive statistics of steers classified as POSITIVE or NEGATIVE RFI. 

Trait1 POS2 NEG2 SEM3 P-value 

N 8 6 -- -- 

Age (days) 234.75 230.33         5.73         0.57 

Birth Weight (kg)   38.39   38.33         1.30         0.97 

Weaning Weight (kg) 272.50 249.34         9.48         0.09 

On Test BW4 (kg) 267.54 236.74       15.22         0.15 

Off Test BW4 (kg) 329.99 293.89       17.64         0.15 

ADG (kg)     0.98     0.89         0.05         0.27 
1 RFI = Residual feed intake; TDN = total digestible nutrients; BW = Body weight; ADG 
= average daily gain. 
2 Mean dam RFI values for steers classified as POSITIVE or NEGATIVE were 2.78 and  
-2.64, respectively. 
3 Pooled standard error of treatment means.  
4 Data are for Experiment 1. 
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1RIF = ultrasonographic 12th rib back fat; RUF = ultrasonographic rump fat; REA = ultrasonographic 12th rib ribeye area; IMF 
= intramuscular fat; REAC/CWT = ribeye area per 100kg body weight. 
2Pooled standard error of treatment means. 

 

 

REA/CWT (cm2/100 kg) 

IMF (%) 

REA (cm2) 

RUF  (mm) 

RIF (mm) 

Trait1 

Table 6.  Ultrasonic measures of body composition among POSTIVE and NEGATIVE RFI steers. 

    15.31 

      4.37 

    41.13 

    20.96 

    23.18 

POS 

Initial 

    16.15 

      4.09 

    38.07 

    22.01 

    21.17 

NEG 

    0.67 

    0.38 

    3.04 

    1.96 

    1.85 

SEM2 

 

    0.36 

    0.60 

    0.46 

    0.69 

    0.43 

P-value 

    14.85 

      4.92 

    48.95 

    42.23 

    40.32 
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    15.31 

      4.75 

    45.06 

    29.63 

    32.17 

NEG 

    0.56 

    0.42 

    3.19 

    3.56 

    3.14 
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    0.55 

    0.76 

    0.37 

    0.02 

    0.07 

P-value 
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Table 7.  Rumen pH, ammonia, and volatile fatty acid concentrations among POSITIVE 
and NEGATIVE RFI steers for Experiment 1.  

Trait1 POS NEG  SEM2 P-value 

Rumen pH         7.30        7.37        0.07       0.42 

Rumen ammonia (mg/dL)        0.87        0.79        0.10       0.54 

Acetic acid (mM/L)      44.03      43.83        2.96       0.96 

Propionic acid (mM/L)      10.30        9.84        0.77       0.66 

Butyric acid (mM/L)        6.27        6.24        0.42       0.95 

Isobutyric acid (mM/L)        0.45        0.45        0.03       0.85 

Valeric acid (mM/L)        0.40        0.38         0.04       0.57 

Isovaleric acid (mM/L)        0.28        0.28        0.03       0.86 

Total VFA (mM/L)      61.74      61.02        4.18       0.87 

Acetate:Propionate        4.39        4.51        0.09       0.33 
1 VFA = volatile fatty acid 
2 Pooled standard error of treatment means. 

(Table 8).  Cholesterol and branched VFA’s concentrations tended (P = 0.09 and 0.06, 

respectively) to be greater in plasma of NEG RFI steers which also contained 

significantly greater (P =0.02) concentrations of valeric acid (Table 8).  Differences did 

exist in RFI classes over time for TG and isobutyric acid (Figure 4A and 4B, 

respectively).  Triglyceride concentrations did not differ prior to feeding but were greater 

in NEG steers 3-hours post-feeding (P = 0.04).  In contrast, there was a tendency (P = 

0.08) for POS steers to have greater TRI concentrations at 9-hours post-feeding.  

Residual feed intake classes did not differ at any other time points.   

In general, plasma isobutyric acid concentrations were quite variable and did not 

differ from zero; however, isobutyric acid concentration was greater in NEG steers at 12-
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hours post-feeding (P < 0.01).  Conversely, POS steers tended (P = 0.05) to have greater 

isobutyric acid concentrations at 3-hours post-feeding.  Again, no differences were 

observed between RFI classes prior to feeding or at 6 and 9 hours post-feeding.  As well, 

mean concentrations of plasma variables post-feeding did not differ between RFI classes 

(data not shown). 

Table 8. Overall plasma metabolite and VFA concentrations in POSITIVE and 
NEGATIVE RFI steers for Experiment 1. 

Trait1 POS NEG SEM2 P-value RFI x Time3 

ALB (g/dL)      4.68      4.55     0.08 0.25 0.26 

UN (mg/dL)    11.14    10.48     0.61 0.41 0.85 

CHOL (mg/dL)    79.84    87.26     3.33 0.09 0.60 

GLU (mg/dL)    85.97    85.33     1.20 0.69 0.71 

TG (mg/dL)      7.90     8.36     0.54 0.52 0.04 

Acetic acid (mM/L)      1.684     1.521     0.08 0.13 0.12 

Propionic acid (mM/L)      0.024     0.022      0.001 0.31 0.57 

Butyric acid (mM/L)      0.013     0.010     0.002 0.34 0.51 

Isobutyric acid (mM/L)      0.005     0.005     0.003 0.88 0.02 

Valeric acid (mM/L)      0.142     0.232     0.027 0.02 0.23 

Isovaleric acid (mM/L)      0.011     0.011     0.001 0.96 0.75 

Total VFA’s (mM/L)      1.91     1.84     0.088 0.60 0.18 

Acetate:Propionate    85.29   86.37     8.19 0.92 0.98 

Branched VFA’s (mM/L)      0.17     0.26     0.029 0.06 0.15 
1 ALB = albumin; UN = urea nitrogen; CHOL = cholesterol; GLU = glucose; TG = 
triglycerides. 
2 Pooled standard error of treatment means. 
3 P-Value for RFI x Time interaction.  
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Figure 4. Plasma concentrations of triglycerides (A) and isobutyric acid (B) in steers immediately 
prior to feeding (Time 0) and at 3-hour intervals post-feeding (Times 3, 6, 9, and 12).  Means 
with differing superscripts differ at P < 0.05. 
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Experiments 2 and 3:  Grazing—Dry Matter Intake and Digesta Rate of Passage  

 

Grazing voluntary DMI and DMI%BW did not differ (P = 0.74; Table 9) among 

RFI classifications nor were they phenotypically correlated (P =0.14 and 0.24, 

respectively; Table 10) to DRFI.  Similarly, SPR did not differ (P = 0.88) among RFI 

classifications.  In contrast, LPR was greater in NEG RFI steers (P = 0.04).  Voluntary 

DMI intake and passage rate data and their phenotypic associations with DRFI are 

presented in Tables 9 and 10, respectively.    

 

Table 9.  Digesta rate of passage and voluntary dry matter intake while grazing in 
POSITIVE and NEGATIVE RFI steers. 

Trait1 POS NEG SEM2 P-value 

LPR3 (%/hour)       6.32       7.16       0.0028         0.04 

SPR3 (%/hour)       3.13       3.18       0.0020         0.88 

PR Fecal DM     17.18      17.10       0.21         0.78 

DMI (kg/d)     10.05       9.16       0.84         0.74 

DMI%BW        1.94       1.87       0.15         0.74 

Intake Fecal DM     10.49      11.96       0.51         0.05 
1 LPR = liquid passage rate; SPR = solid passage rate; PR = passage rate; DM = dry 
matter; DMI = dry matter intake; DMI%BW = dry matter intake as a percent of body 
weight. 
2 Pooled standard error of treatment means. 
3 Regression coefficients for marker concentration per gram of dry feces over time.  
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Table 10.  Phenotypic correlations between Dam RFI and measured traits in steer 
progeny for Experiments 2 and 3. 

Trait1 R P-value 

LPR                   0.56 0.04 

SPR                 - 0.02 0.94 

PR Fecal DM                 - 0.06 0.83 

DMI                   0.41 0.14 

DMI%BW                   0.34 0.24 

Intake Fecal DM                 - 0.55 0.04 
1 LPR = liquid passage rate; SPR = solid passage rate; DMI = dry matter intake; 
DMI%BW = intake as a percent of body weight. 

 

 

Experiment 4:  Maintenance Feeding—Forage  

 Rumen pH, NH4, and VFA data for Experiment 4 are presented in Table 11.  No 

differences were observed based on RFI classification.  Although overall plasma TG 

concentrations were greater (P < 0.01) and valeric acid tended (P = 0.09) to be greater in 

NEG steers, POS steers exhibited greater overall urea nitrogen (P = 0.02; Table 12).  

Similarly, UN was greater (P < 0.01) in POS steers post-feeding and TG were greater (P 

= 0.01) in NEG steers post-feeding (data not shown).  No differences were observed in 

any other measured variables either overall or only during the post-feeding period based 

on RFI classification.  The effect of RFI class over time was not significant for any of the 

measured variables.  Overall plasma metabolite and VFA data are presented in Table 12.  
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Table 11.  Rumen pH, ammonia, and volatile fatty acid concentrations among POSITIVE 
and NEGATIVE RFI steers for Experiment 4.  

Trait1 POS NEG  SEM2 P-value 

Rumen pH         6.83        6.83        0.04       0.98 

Rumen Ammonia (mg/dL)        0.81        1.01        0.18       0.29 

Acetic acid (mM/L)      60.32      60.32        2.16       0.99 

Propionic acid (mM/L)      15.03      14.71        0.51       0.54 

Butyric acid (mM/L)        7.43        7.17        0.27       0.36 

Isobutyric acid (mM/L)        0.44        0.43        0.02       0.59 

Valeric acid (mM/L)        0.49        0.46         0.03       0.27 

Isovaleric acid (mM/L)        0.19        0.18        0.02       0.45 

Total VFA (mM/L)      83.90      83.28        2.84       0.83 

Acetate:Propionate        4.02        4.12        0.09       0.27 
1 VFA = volatile fatty acid 
2 Pooled standard error of treatment means. 
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Table 12. Overall plasma metabolite and VFA concentrations in POSITIVE and 
NEGATIVE RFI steers for Experiment 4.   

Trait1 POS NEG SEM2 P-value RFI x Time3 

ALB (g/dL)      4.86      4.93     0.05      0.29 0.08 

UN (mg/dL)    12.80    12.14     0.21      0.02 0.74 

CHOL (mg/dL)    85.22    88.94     1.90      0.14 0.73 

GLU (mg/dL)    69.99    70.45     1.03      0.73 0.68 

TG (mg/dL)    15.02    16.59     0.42   < 0.01 0.36 

Acetic acid (mM/L)      0.909      0.893     0.024      0.62 0.74 

Propionic acid (mM/L)      0.015      0.017     0.001      0.28 0.15 

Butyric acid (mM/L)      0.003      0.003     0.001      0.36 0.66 

Isobutyric acid (mM/L)      0.001      0.001     0.001      0.91 0.93 

Valeric acid (mM/L)      0.036      0.054     0.008      0.09 0.80 

Isovaleric acid (mM/L)      0.023      0.020     0.004      0.59 0.28 

Total VFA’s (mM/L)      0.99      0.99     0.025      0.98 0.92 

Acetate:Propionate    72.44    68.22     4.96      0.52 0.84 

Branched VFA’s (mM/L)      0.06      0.07     0.008      0.16 0.41 
1 ALB = albumin; UN = urea nitrogen; CHOL = cholesterol; GLU = glucose; TG = 
triglycerides. 
2 Pooled standard error of treatment means. 
3 P-Value for RFI x Time interaction.  
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Experiment 5:  Maintenance Feeding—Concentrate  

 Rumen pH, NH4, and VFA data for Experiment 5 are presented in Table 13.  No 

differences were observed based on RFI classification.  Overall UN was greater in NEG 

steers (P = 0.01) but all other plasma metabolites were similar among RFI groups (Table 

14).  A similar difference was observed for post-feeding UN (P = 0.02; data not shown).  

A tendency (P =0.06) for GLU to differ between RFI classes over time was observed, 

although the interaction of RFI with collection time was not significant for any of the 

other plasma variables.  Plasma butyric acid and branched chain VFA concentrations 

were greater (P = 0.02 and 0.02, respectively) in NEG steers.  Overall plasma metabolite 

and VFA data are presented in Table 14. 

Table 13.  Rumen pH, ammonia, and volatile fatty acid concentrations among POSITIVE 
and NEGATIVE RFI steers for Experiment 5.  

Trait1 POS NEG  SEM2 P-value 

Rumen pH         6.61        6.72        0.05       0.11 

Rumen Ammonia (mg/dL)        6.92        8.73        0.67       0.44 

Acetic acid (mM/L)      61.24      60.62        2.94       0.88 

Propionic acid (mM/L)      14.30      14.48        0.85       0.88 

Butyric acid (mM/L)       13.23      13.73        1.17       0.76 

Isobutyric acid (mM/L)        0.84        0.91        0.05       0.29 

Valeric acid (mM/L)        0.71        0.67         0.05       0.55 

Isovaleric acid (mM/L)        0.70        0.72        0.04       0.67 

Total VFA (mM/L)      91.03      91.14        4.82       0.99 

Acetate:Propionate        4.33        4.28        0.16       0.79 
1 VFA = volatile fatty acid 
2 Pooled standard error of treatment means. 
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Table 14. Overall plasma metabolite and VFA concentrations in POSITIVE and 
NEGATIVE RFI steers for Experiment 5.   

Trait1 POS NEG SEM2 P-value RFI x Time3 

ALB (g/dL)      5.00      5.05     0.05      0.48 0.11 

UN (mg/dL)    15.42    16.74     0.38      0.01 0.47 

CHOL (mg/dL)    82.19    77.60     1.58      0.64 0.89 

GLU (mg/dL)    83.91    84.31     1.03      0.77 0.06 

TG (mg/dL)    25.13    23.34     1.09      0.23 0.52 

Acetic acid (mM/L)      0.550      0.494       0.043      0.35 0.57 

Propionic acid (mM/L)      0.011      0.005     0.004      0.20 0.85 

Butyric acid (mM/L)      0.008      0.005     0.001      0.02 0.92 

Isobutyric acid (mM/L)      0.001      0.000     0.000      0.07 0.37 

Valeric acid (mM/L)      0.000      0.000     0.000      1.00 1.00 

Isovaleric acid (mM/L)      0.002      0.002     0.001      0.74 0.53 

Total VFA’s (mM/L)      0.573      0.505     0.461      0.29 0.63 

Acetate:Propionate    46.844     96.015   18.624      0.34 0.89 

Branched VFA’s (mM/L)      0.011      0.007     0.001      0.02 0.43 
1 ALB = albumin; UN = urea nitrogen; CHOL = cholesterol; GLU = glucose; TG = 
triglycerides. 
2 Pooled standard error of treatment means. 
3 P-Value for RFI x Time interaction.  
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DISCUSSION 

 

General  

Although dam RFI was used to classify steers as efficient or inefficient in this 

series of experiments, production and body composition traits reported in Experiment 1 

exhibited similar relationships to RFI as would be expected in a population in which 

phenotypic RFI had actually been measured.  Steers did not differ in birth weight, 

weaning weight, age, on-test BW, off-test BW, or ADG based on RFI classification and 

no phenotypic correlations were observed with DRFI.  However, steers classified as POS 

did possess more RUF (42.23 vs. 29.63 mm, respectively; P = 0.02) at the end of 

Experiment 1 than NEG steers.  Although not significant, both RIF and RUF tended to be 

correlated positively with dam RFI (r = 0.47 and 0.51; P = 0.09 and 0.06, respectively) at 

the conclusion of Experiment 1.  These data are in agreement with the literature, which 

indicates that RFI is independent of its component traits and positively related to 

measures of body fat (Arthur et al., 2001; Basarab et al., 2003; Shaffer et al., 2011).  

These data indicate that steers were classified accurately based on efficiency phenotype 

of the dam, even though cow RFI is only moderately related to progeny RFI (r = 0.30; 

Basarab et al., 2007).  The fact that steers were all progeny of the same sire and from 

related dams likely reduced paternal variation in RFI and strengthened the relationship 

between progeny RFI and dam RFI as well.  
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Rumen pH, NH4 and VFAs 

 Although previous reports have indicated that microbial population and ruminal 

efficiency may differ among RFI classifications in cattle (Nkrumah et al., 2006), no 

differences were observed in rumen pH, NH4, or VFA concentrations.  This was true 

whether steers were fed ad libitum or at maintenance with forage or concentrate diets.  In 

agreement with the present experiments, Lawrence et al. (2011) reported that rumen fluid 

pH, total VFA, acetic acid, and butyric acid did not differ among RFI groups of gestating 

yearling heifers classified as either High, Medium, or Low RFI.  Similarly, Kreuger et al. 

(2009) reported that RFI classes did not differ in rumen pH or VFA concentration.  In 

contrast, Lawrence et al. (2011) reported that rumen NH4, propionic acid, and 

acetate:propionate ratio differed based on RFI classification.  Additionally, rumen 

propionate concentration increased as RFI decreased further indicating that rumen 

microbial populations may differ based on RFI classification (Lawrence et al., 2011).  

Although this seems likely and has been reported in mice selected for high and low heat 

loss (Nielsen et al., 2009), the data in the present study do not indicate such an 

association.    

Plasma VFA’s and Metabolites 

 In general, plasma metabolite and VFA concentrations did not differ based on RFI 

classification.  However, valeric acid concentrations were greater (P = 0.02) in NEG 

steers in Experiment 1 and tended (P = 0.06) to be greater when limit fed a forage diet in 

Experiment 4.  No other differences were observed between overall or post-feeding 

plasma VFA concentrations in Experiments 1 and 4.  This was also true for plasma 



 60 

metabolites for Experiment 1.  Lawrence et al. (2011) reported that ALB, GLU, UN, and 

TG did not differ based on RFI classification.  Similarly, Kelly et al. (2010a) reported 

that UN and GLU concentrations did not differ between High, Medium, and Low RFI 

Limousin X Holstein heifers.  However, Kelly et al. (2010b) reported a positive 

correlation (r = 0.38; P < 0.01) between RFI and UN in heifers consuming a corn-silage-

based diet.  In agreement with this relationship, overall and post-feeding UN are greater 

(P = 0.02) in POS RFI steers when steers were limit fed a forage diet; however, when 

limit fed a concentrate diet, UN was greater (P = 0.01) in NEG steers, indicating that UN 

may be influenced by the interaction of RFI with diet type and/or feeding level, as the 

steers in the present experiments were limit fed and the heifers in Kelly et al. (2010a; 

2010b) and Lawrence et al. (2011) were fed ad libitum.     

 Interestingly, there were differences in plasma VFA when steers were limit fed a 

concentrate diet in Experiment 5.  Butyric acid and overall branched chain VFA were 

greater in NEG steers (P = 0.02 and 0.02, respectively) although no differences existed 

for individual branched chain VFA.  Around 90 % of rumen produced butyric acid is 

metabolized by the epithelium of the rumen and omasum where it is converted to 

acetoacetate and β-hydroxybutyrate and utilized for energy (van Houtert, 1993; 

Kristensen et al., 1998).  Greater plasma concentrations of butyric acid in NEG RFI steers 

may indicate a lower energy requirement by the splanchnic tissues but could be the result 

of interactions between VFA during activation.  Ash and Baird (1973) reported that 

propionate can inhibit butyrate activation in rumen epithelium but has a much stronger 

inhibition in the liver ensuring that butyrate is metabolized by the rumen epithelium and 

propionate by the liver.  Still, the greater plasma concentration in NEG steers without a 
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difference in rumen butyric acid concentration indicates that ruminal absorption is greater 

in NEG RFI steers.  In contrast, the difference in branched chain VFA may indicate a 

more efficient microbial fermentation of protein as branched chain VFA are products of 

branched chain amino acid fermentation (Garton, 1977).  Nonetheless, concentrations of 

butyrate and branched chain VFA in both RFI classes were similar to previous reports 

(Krehbeil et al., 1992; Reynolds et al., 1992) and no reports in the literature have 

attempted to relate plasma VFA concentration to RFI class to date.     

 Plasma metabolite and VFA concentrations did not differ significantly with 

respect to collection time when steers were limit fed either forage or concentrate; 

however, there was a tendency for this effect with GLU when steers were fed a 

concentrate diet.  When fed a forage-based diet ad libitum in Experiment 1, the 

interaction between RFI and collection time was significant for both TG and isobutyric 

acid.  Although POS RFI steers had greater concentrations of TG at 3 hours post-feeding, 

they did not differ at any of the other time points. To date, there are no reports to which 

these data can be compared in cattle; nonetheless, these data may indicate a greater lipid 

absorptive capacity or a liver that is more efficient at packaging lipids to be sent to 

peripheral tissues.  However, it is important to note that this effect was not significant for 

cholesterol and it may be just an artifact of an infrequent sampling regimen. 

 Grazing Intake and Passage Rate  

 Low RFI animals consume less feed than High RFI animals in confinement 

(Arthur et al., 2001a) and have been reported to consume numerically smaller amounts of 

forage during grazing (Meyer et al., 2008).  However, due to the difficulty and error 

associated with measuring intake while grazing, there have been no other attempts to 
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measure how RFI relates to grazing intake on pasture.  In the present series of studies, 

grazing forage intake for the 14 steers was estimated in Experiment 2.  Similar to the 

report by Meyer et al. (2008), NEG RFI steers consumed 8.9 % less DM per day than 

their POS RFI contemporaries on a numerical basis, but this difference was not 

significant.  Nonetheless, fecal DM was significantly (P = 0.05) lower in POS steers 

during the intake measurement period indicating that water absorption was deterred most 

likely by a greater rate of passage.  Passage rate is positively associated with feed intake 

(Baile and Della-Fera, 1981), so these data provide anecdotal evidence in agreement with 

the numeric difference in DMI.  Although these data indicate that selection for RFI could 

potentially reduce voluntary DMI while grazing, significance is not likely to be obtained 

with small numbers due to limitations in the methodology for measuring grazing intake.   

 In addition to estimating forage intake, LPR and SPR data were collected while 

grazing fall regrowth, cool season grass pastures.  Solid phase passage rate did not differ 

based on RFI classification while LPR was greater in NEG RFI steers.  These data may 

indicate differences in physiological regulation of GIT contraction.  However, nutrients 

in solution are more readily available to the animal, so it may be possible that NEG RFI 

cattle achieve greater efficiency by increasing the flow of nutrient rich rumen fluid to the 

small intestine rather than having it remain in the rumen where further microbial 

digestion may increase energy and/or nutrient waste.  Evidence supporting this concept 

has been reported by Meng et al. (1999) who indicated that rumen microbial efficiency 

increased as dilution rate increased in vitro.  Similarly, Fu et al. (2001) reported that 

microbial efficiency was greatest at the highest rate of liquid passage in vivo.  Thus, the 

increase in LPR in NEG steers may indicate a more efficient rumen microbial population.   
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CONCLUSION 

 
 Residual feed intake is related positively to liquid phase passage rate in steers 

while grazing, which may indicate differential regulation of GIT physiology by differing 

RFI groups.  Differential regulation of GIT physiology could result in differing 

populations and/or efficiencies of rumen microorganisms between RFI classes.  Although 

the rumen data do not indicate such a difference, the reversal of differences in UN among 

RFI classes when fed different diets indicates that microbial population may indeed differ 

among RFI class or that the absorptive capacity of the GIT varies with diet or with the 

interaction of diet and RFI class.  The lack of pre-feeding differences in plasma VFA’s 

and metabolites further indicates that post-feeding differences may be the result of 

variation in the absorptive capacity of the GIT.  It is likely that a greater portion of the 

variation in RFI is related to the absorptive capacity and/or energy requirements of the 

GIT, which may be dependent upon diet type.    

.   
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