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ABSTRACT 
 

Measuring Chemotaxis in Borrelia burgdorferi the Lyme Disease Spriochete 
 

Richard Gerrit Bakker 
 

Borrelia burgdorferi is the spirochete causative agent of Lyme disease.  The 

chemotaxis and motility systems of these bacteria are far less well described 

than that of Escherichia coli or Salmonella enterica.  This dissertation explores 

the role of the CheA proteins in the chemotactic response and describes the first 

defined attractants for B. burgdorferi.   

 

In order to test hypotheses, we developed or optimized three protocols.  To 

characterize the motion of cells, two motion tracking systems were optimized.  

The Hobson BacTracker allowed for tracking cell motions in real time.   This 

hardware/software chimera, while powerful for the specific application, utilizes a 

cumbersome interface.  Therefore, the software package Volocity was adopted.  

While the tracking itself is somewhat slower, the interface greatly facilitates data 

collection, organization, and presentation, making it much faster.  To assay 

chemotaxis with the capillary tube assay, one must enumerate cells.   This was 

previously difficult because cell enumeration was slow, laborious, and ineffectual 

at low concentrations. We overcame these limitations by initially developing a 

protocol for enumerating cells by flow cytometry.  Once this enumeration method 

was validated with direct comparisons to Petroff-Hausser counting chamber data, 

we were able to screen for attractants using a modified capillary tube assay. 

 

We found that B. burgdorferi mutants in cheA2 were non-chemotactic to defined 

attractants.  Complementation of cheA2 restored the wild-type phenotype.  

Mutants in cheA1 failed to show any discernable phenotype.  The modified 

capillary tube chemotaxis assay was used to screen for chemoattractants.  To 

date serine, glycine, N-n-diacetyl-chitobiose, glucose, glutamate, putricine, 

spermidine, rabbit serum, and glucosamine, have been tested, the latter five had 



 

at least some chemoattractant ability.  Finally, this is the first work to correlate the 

ability of the cells to reverse with chemotaxis. 

 

In conclusion, this work developed techniques to track the motion of B. 

burgdorferi and measure the chemotactic response with a high throughput assay.  

These tools are being used in a screen of compounds which has already found 5 

specific compounds that act as chemoattractants.  The techniques developed will 

be useful not only for B. burgdorferi, but will facilitate measuring the chemotactic 

response in other slow growing prokaryotic species. 
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Chapter 1 : Introduction 
 
Motility was the genesis of microbiology. Antonie van Leeuwenhoek first 

observed swimming bacteria in water samples in the late 1600’s.  It is doubtful 

Leeuwenhoek would have realized that they were alive had they not swam in a 

purposeful fashion (10).  Borrelia burgdorferi is the spirochete that causes Lyme 

disease, the most prevalent vector borne disease in the United States (249).  The 

long-term aim of our work is to relate chemotaxis and motility to the pathogenesis 

of B. burgdorferi.  This dissertation focuses on measuring and understanding the 

chemotactic response of B. burgdorferi.  

 

As a primer to presentation of data in Chapters 2 and 3, the Introduction Section 

will briefly review the literature in relation to: 

a. The history of Lyme disease and classification of Borrelia species. 

b. The structure and motility of B. burgdorferi and Escherichia coli. 

c. The clinical manifestations of Lyme disease. 

d. Chemotaxis and motility as bacterial virulence factors. 

e. The B. burgdorferi life cycle and gene expression profiles. 

f. Genetic manipulation of B. burgdorferi. 

g. The structure and function of methyl accepting chemotaxis proteins 

(Mcps). 

h. The structure and function of chemotaxis protein A (CheA). 

i. The capillary tube assay and flow cytometric enumeration of B. 

burgdorferi. 

j. Cell motility tracking procedures. 

Section headings are bold face and underlined while subsection headings 
are found in bold.  Following the Introduction, two manuscripts containing 

published or in preparation work are included, concluding with a discussion. 
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A.  History of Lyme Disease and Classification of Borrelia species 
 
Borrelia burgdorferi is the causative agent of Lyme disease.  The disease is 

named for Old Lyme Connecticut where it caused a cluster of apparent juvenile 

rheumatoid arthritis beginning in 1972.  The arthritis was geographically and 

temporally clustered in residents of Old Lyme and surrounding communities in 

the summer season.  Dr. Alan Steere, M.D., of Yale University, first studied the 

outbreak of unusual symptoms (253, 255, 256).  A migratory rash that sometimes 

exhibited central clearing often preceded symptoms.  Concomitant with this 

peculiar rash, headache, stiff neck, fever, myalgias, arthralgias, malaise, fatigue, 

and / or lymphadenopathy were often observed.  Later, meningoencephalitis, 

cranial or peripheral neuropathies, myocarditis, cranial or peripheral 

neuropathies, or atrioventricular-node block could occur.   After experiencing 

these symptoms, patients could relapse and/or develop arthritis.  It was noted 

that penicillin or tetracycline shortened the duration of the skin lesions and often 

prevented the subsequent symptomatology (253, 256). 

 

The spirochetal etiology of these symptoms, as well as the Ixodes dammini 

arthropod transmission vector, was postulated early in the outbreak.  Patients 

developed a delayed immune response to the organism and cells with typical 

spirochetal morphology were recovered from skin biopsies (253).   In 1981 while 

surveying for rickettsia in ticks captured on Shelter Island, New York, Dr. Willy 

Burgdorfer, of the Rocky Mountain Laboratories section of the National Institutes 

of Health, identified and described a species of spirochete found in tick guts 

(Ixodes dammini, now I. scapularis).  The localization of spirochetes in an 

arthropod vector from an endemic area for Lyme disease raised a high index of 

suspicion (22, 38, 253, 255, 256).  Subsequently, the spirochete was classified 

as a Borrelia species and named for Dr. Burgdorfer (117).   
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In 1883, Alfred Buchwald in Germany first published a description of skin lesions 

similar to those described by Steere.  Arvid Afzelius reported similar lesions at a 

1909 meeting in Stockholm and his suspicion the lesions were caused by a tick 

bite (190).   While these lesions were described, no anti-microbial therapy was 

available.  These lesions were likely the classic erythema migrans lesions or 

acrodermatitis chronica atrophicans lesions which are discussed in the section 

on medical implications of Lyme borreliosis. 

 
Classification of Borrelia burgdorferi. 

Spirochetes are one of 40 major bacterial phyla and the only one that can be 

determined by microscopy alone.   They are separated into 9 genera: Borrelia, 

Brevinema, Brachyspira, Cristispira, Leptospira, Leptomena, Spirocheata, 

Spironema and Treponema (197).  All are helical or wave shaped organisms with 

periplasmic flagella used for locomotion.  These flagella are sandwiched between 

an outer membrane sheath and the cell cylinder.  They extend down the cylinder, 

and depending on the species may overlap in the center.  Almost all known 

Borrelia are thought to be pathogens or parasites, host associated, and 

microaerophilic (89, 91, 197).  However, all of the above characteristics are not 

documented for every Borrelia. 

 

A number of pathogenic Borrelia family members cause Lyme borreliosis 

symptoms. This family is known as Borrelia burgdorferi sensu lato.  The 

members of this family to date are Borrelia burgdorferi sensu stricto, B. garinii, B. 

afzelii, B. japonica, B. valaisiana, B. lusitaniae, B. bissetti, B, andersonii, B. 

tanukii, B. turdi, and B. sincia (41, 165, 284, 285 and references within).   While 

all are thought to be parasitic to mammals, only B. burgdorferi s.s., B. garinii, B. 

afzelii (285), B. lusitaniae (55, 138), and B. bissettii (185, 202, 208) have been 

shown to be pathogens in humans.  B. valaisiana is likely pathogenic as DNA 

from this species has been PCR amplified from patients  (41, 165).  The 

symptomatology caused by this group is not uniform.  This diversity leads to 

difficulty in diagnosis and proper treatment.  
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B. Structure and Motility of B. burgdorferi and Escherichia coli. 
 
Spirochete Structure and Motility 
Spirochetes are Gram-negative bacteria with a peptidoglycan layer on the 

surface of a protoplasmic cell cylinder.  This cylinder lies within an outer 

membrane sheath.  Sandwiched between the cell cylinder and the sheath are the 

flagella, earning them the name periplasmic flagella (PFs) (Figure 1.1) (91, 107).  

While the structures of spirochetes are similar, they translate either in a helical 

manner or a flat wave depending on species (49, 50, 89, 125, 229, 281).  This 

method of locomotion is ideal for translation in viscous gel-like media (25, 131, 

201, 218).  Spirochete motility is postulated to be an important virulence factor 

(118).  Because spirochetes are generally fastidious, slow growing organisms, 

with many genetic tools still new or in development, the description of their 

motility and chemotaxis apparatuses has lagged behind other species (118 and 

references within). 

 
Figure 1.1:  B. 
burgdorferi 
longitudinally and in 
cross section.  
The bar in the lower 
right hand corner of the 
micrograph on the left is 
0.1µm long, and is valid 
only for that micrograph. 
 
 

 
B. burgdorferi translates (swims) as a flat wave (sine wave on the XY axis) using 

bundles of 7 to 11 PFs inserted subterminally at each cell pole (91).  Aflagellar 

mutants are rod-shaped and non-motile indicating that flagella play a structural 

as well as functional role (176, 219). The following model seeks to explain the 

generation of the backward propagating flat wave that leads to cell translation.  

The model is based on three observations and two definitions: 1) mutants without 

PFs are rod shaped, 2) isolated PFs are left-handed, and 3) the helix pitch of the 
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PFs is equivalent to the wavelength of the cell.  A left-handed helix is defined as 

a helix that moves in a counter-clockwise (CCW) direction going away from the 

observer, whereas a right-handed helix moves in a clockwise (CW) direction. 

Direction of motor rotation is defined by looking along the PF toward the flagellar 

motor.  Goldstein et. al. (1994) proposed a flexible rod (cell cylinder) wrapped in 

a right-handed fashion, around a left-handed helix (flagella), would result in a flat 

wave. The model states that rotations of the PFs must be coordinated for 

translation to occur.  When PFs rotate in the same direction, the waves 

generated at the poles are out of phase.  When out of phase waves collide, the 

cell cylinder often bends. Bending actions, which are non-translational, are 

known as flexes (89, 91, 144).  In order for translation to take place, the motors 

at each cell pole must rotate in opposite directions as is demonstrated in Figure 

1.2.  A discussion of the possible roles for the chemotaxis system in this 

asymmetry is contained in the discussion of CheA.  

Figure 1.2: Possible 
models of swimming B. 
burgdorferi.   
The arrows and the 
abbreviations at the end 
of the cell indicate the 
directions the motors are 
running.  The top two 
models would result in 
translation and are 
labeled “Running 
modes”.   The two 

models on the bottom would result in the cell bending and are labeled “Flexing 
modes”.  This diagram assumes that all motors run at the same speed. 
 
 
Escherichia coli Motility and Chemotaxis 
Escherichia coli running is correlated with CCW rotation of the flagella, and 

tumbling is associated with CW rotation.  E. coli  chemotaxis and motility are 

discussed as a classic model and illustrated in Figure 1.3.  In the molecular 

description of chemotaxis, a “memory” characteristic was noted.  It appeared that 

if an E. coli cell was stimulated by an attractant, it eventually stopped responding 
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to this attractant and could not be re-stimulated for several seconds (35, 159).  

Additionally this chemotactic response was found to be dependant upon 

methionine (134).  It was then noted that proteins in the membrane fraction 

underwent methylation following cell exposure to attractants (59, 122, 134).   

These methylated proteins became known as methyl accepting chemotaxis 

proteins (Mcp) and in large part control the chemotactic abilities of the cell.  The 

Mcps are integral membrane proteins, which exist in a complex with the internal 

chemotaxis proteins CheA and CheW.  If an attractant is bound to the 

extracytoplasmic domain of the Mcp, there is a conformational change that 

increases the probability the cytoplasmic domain will be methylated. S-adenosyl-

L-methionine donates the methyl group through the enzymatic action of CheR.  

There are eight conserved glutamate residues on the cytoplasmic domain of the 

Mcp where methylation takes place (30).  As these eight sites are filled, tumbling 

is suppressed by reduced auto-phosphorylation of CheA.  Once the cytoplasmic 

tails of the Mcp are fully methylated, CheA auto-phosphorylation is no longer 

suppressed and the probability of tumbling is increased.  The process of 

suppressing tumbling activity by squelching CheA autophosphorylation is known 

as excitation (7, 247). The process of turning off suppression of CheA 

autophosphorylation is known as adaptation (11).  CheB is a methylesterase 

that demethylates the cytoplasmic tails of the Mcp, to return them to a ground 

state.  CheB activity is increased approximately 10 times by phosphorylation via 

CheA in a reaction that occurs more slowly than CheA phosphorylating CheY 

(32, 195).  CheA autophosphorylation provides the energy to signal a motor 

direction switch.  Phosphorylated CheA passes the phosphoryl group onto the 

response regulator CheY.  Phosphorylated CheY interacts with the motor switch 

protein, FliM, to increase the probably of CW rotation which will lead to tumbling 

in E. coli. CheZ de-phosphorylates CheY decreasing the affinity of CheY for FliM 

(8, 10, 24, 31, 134, 137, 152, 244).  Detailed descriptions of CheA and the Mcps 

are found later in the Introduction. 
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Figure 1.3: The signal cascade controlling direction of rotation in E. coli.  
Che is the designation for chemotaxis protein and MCP is the designation for 
Methyl Accepting Chemotaxis Protein.  The CheA (starburst) 
autophosphorylation activity allows it to phosphorylate CheY (lighting bolt).  CheY 
phosphate then interacts with the flagellar motor protein FliM protein to 
destabilize counter-clockwise rotation, leading to clockwise rotation.  Binding of 
chemoattractants to the Mcps in the periplasmic space leads to methylation of 
the cytoplasmic portion of the molecule by the action of CheR.   Demethylation 
occurs much more slowly and is catalyzed by CheB.   Binding of  attractants to 
Mcps occurs concomitantly with a reduction in CheA autophosphorylation 
activity.  Adapted from  (32). 
 

This molecular switch mechanism leads to a translational function up a gradient 

known as a biased random walk (23).  Because E. coli cannot turn toward an 

attractant it must re-orient itself in a tumble.  While this reorientation is nearly 

random, cells with fewer than four flagella are more likely to make smaller 

directional changes between runs, and buffeting by Brownian motion can effect 

the direction of swimming (280).  Upon reorientation the cell swims in a vector 

pattern (Figure 1.4) and temporally samples attractant concentration in the new 

location.   Thus, E. coli uses a temporal gradient when undergoing chemotaxis. 

By increasing run length, cells translate farther from origin in a given time even if 

the directional changes are the same.  This is illustrated in Figure 1.4 (adapted 
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from (10, 23)).  This mode of translation contrasts to B. burgdorferi that is unable 

to tumble due to cell length.  B. burgdorferi can flex and reverse, sometimes re-

orienting itself, but it is also able to translate in a curved pattern (Figure 1.5).  B. 

burgdorferi modes of translation are demonstrated in Figure 1.2.  

 
 
Figure 1.4: Biased Random Walk.  
Two idealized E. coli 
translational trajectories are 
diagrammed.  
(A) characterizes movements in the 
absence of an attractant.  (B) 
characterizes movements in the 
presence of an attractant.  If runs 
become longer due to Mcp 
mediated attractant suppression of 
CheA activity, the direction of cell 
reorientation does not affect how 

far the cell will move from the origin. Adapted from (10, 23). 
 
 

 
Figure 1.5:  A 
swimming 
track of B. 
burgdorferi 
generated 
with the 
tracking 
function of 
Volocity.   
A swimming 
track of B. 
burgdorferi 
generated 

with the tracking function of Volocity. Each dot represents the location of the 
center of the cell in each frame of the video.  The tracks demonstrate B. 
burgdorferi is able to translate in curves (arrows).  E. coli predominately 
translates in straight lines (figure 1.9).  The tracked cell swam for 147.5 seconds 
and reversed 25 times.  Two tracks were generated when the cell went out of 
focus and then returned to the same focal plain.  Returning to the focal plane 
caused the cell to be read as a new object.  See Introduction section J for an 
explanation of how this figure was generated.  
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Similarities and Differences between E. coli and B. burgdorferi 
There are contrasts between the motility and chemotaxis apparatuses in E. coli 

and B. burgdorferi.  B. burgdorferi has multiple copies of several chemotaxis and 

motility genes that are constitutively expressed under the control of σ70 like 

promoters (79, 103, 146).   In contrast, E. coli have most motility genes under 

cascade control of σ28 -like promoters (120).  The exceptions are the early motility 

genes, flhC and flhD that are expressed under the control of several regulatory 

signals including catabolite repression (6 and references within).   Expression of 

these genes then allows for expression of downstream elements (52).  Given 

these differences, it is significant that the phenotypes of mutants in genes having 

high identity are often the same between the species, suggesting an overall 

conservation of function (40, 47).  

 
How B. burgdorferi changes direction is not entirely understood.  After flexing, the 

cells are sometimes reoriented in space so it seems that this translational mode 

takes the place of the E. coli tumble.  However, tracking data shows that a long 

straight swimming track is the exception rather than the rule for B. burgdorferi in 

the absence of an attractant (Figure 1.5).  Mathematical modeling and swimming 

patterns of specific species have suggested that spatial sensing of 

chemoattractants is possible (65, 269).  Spatial sensing would require two sensor 

patches, at opposite cell-poles.  Theoretically, cells as short as 1 µm could use 

this mechanism, but it seems unlikely that any do (65).  Longer cells are better 

suited to utilize spatial sensing in a gradient, because the concentration 

differences between cell poles are greater.  A description of a 6 µm long marine 

Vibrio that likely utilizes this mechanism was recently published (269).   Here it is 

hypothesized that two polar sensor patches located adjacent to flagellar motors 

control the rotational speed of the adjacent polar flagellum.  By slowing one pole, 

the other pole travels farther per unit time resulting in reorientation of the cell in 

space.  This mode of taxis is known as tropotaxis and leads to arching 

translational tracks (269).  A similar mode of taxis in theory is possible in B. 
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burgdorferi.  There are polar flagellar motors (47), the cells swim in curves as 

well as straight lines (Figure 1.5), and there are likely receptor patches at each 

pole (87).   While a molecular mechanism for such a system is not described, 

analysis of bacterial swimming behavior suggests it is possible 

 

C. Clinical manifestations of Lyme Borreliosis 
 

Lyme borreliosis is the most common vector borne disease in North America and 

Europe.  The proven causative agents are 3 of the 11 species in the Borrelia 

burgdorferi sensu lato complex: Borrelia burgdorferi sensu stricto (s.s.), B. garinii, 

and B. afzelii.  All are responsible for symptomatology in Europe and Asia while 

in North America Borrelia burgdorferi s.s., is the species responsible for Lyme 

disease (249).  While human infections with B. lusitaniae (55, 138) and B. bissetti 

(185, 202, 208) are documented they are rare and cause symptoms similar to 

those of B. burgdorferi s.l.  All species are transmitted by the bite of 

haematophagous arthropods of the Ixodes ricinus complex.  Clinical 

manifestations are varied and perhaps dependent on the infecting species (249). 

 

Disease Staging 
B. burgdorferi infection leads to a three-stage constellation of symptomatology. 

The first stage is demonstrated by 60 to 80% of patients and is 
characterized by erythema migrans (EM) lesions at the site of the tick bite.  
These are flat red lesions that begin as small macula or papule.  These lesions, 

which often show central clearing, tend to migrate, thus the name erythema 

migrans.   B. burgdorferi spreads laterally in the skin from the site of the tick bite, 

as evidenced by lesion spread and culture (140).  Spirochete culture from these 

lesions is the gold standard for diagnosis and is approximately 90% sensitive 

(249, 251).  Inflammatory mediators of the innate immune response commonly 

cause fever, chills, and malaise.  Without treatment, lesions often regress but can 

return.  If the infection goes untreated, manifestations of the second and third 

stages are seen (249, 251, 252). 



Chapter 1: Introduction 11

 

The second stage is characterized by dissemination of the organisms.  B. 

burgdorferi have been cultured from blood, myocardium, retina, muscle, bone, 

synovium, spleen, liver, meninges and brain.  Although these sites are 

documented, skin is the predominate site of sequestration.  Symptoms include 

migratory musculoskeletal pain, stiff neck, headaches, debilitating malaise, 

fatigue, and some degree of vascular damage are common.  The most serious 

complication at this stage is hypercellular occlusion of vasculature (251 and 

references within).  The knee is the most commonly affected musculoskeletal 

component followed by the elbow, ankle, shoulder, hip and temporomandibular 

joint.  Up to 50% of untreated patients develop arthritis within two years of the 

EM lesion.  Synovial fluid can show B. burgdorferi, B. burgdorferi DNA by 

polymerase chain reaction (PCR), elevated protein, and/or the presence of 

lymphocytes (179, 209, 249, 251).  Of untreated patients, 15 to 20% develop 

neurologic symptoms and 4 to 8% cardiac symptoms.  Early neurologic 

symptoms include aseptic meningitis, and palsies of the cranial and peripheral 

nerves.  Cranial nerve VII is the most commonly effected, leading to a Bell’s 

palsy.  Any peripheral neuritis is asymmetrical and can be motor and/or sensory 

related.  Electrophysiologic studies suggest a demyelinating process.  

Histologically, axonal injury is due to vascular injury of the nerve blood supply.  

Encephalitic symptoms, usually occurring later in infection, are often 

somnolence, poor memory, mood change and/or hallucinations.  Musical 

hallucinations with patriotic or operatic overtones are reported (262).  Neurologic 

symptoms can present at any time during the infection and will tend to have a 

relapsing and remitting course.  Cardiac involvement in the form of 

atrioventricular heart block occurs in 1 to 4% of patients in North America, 

suggesting it is a B. burgdorferi s.s. disease manifestation.  Acute 

myopericarditis, left ventricular dysfunction, or cardiomegaly can also result.  

Cardiac symptoms are usually transient and have a 3:1 female predominance 

(179, 251).  
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The third stage of the disease is likely due to an autoimmune response 
triggered by B. burgdorferi (173).  This phase is characterized by chronic joint 

inflammation, often the knee, which does not respond to antibiotic treatment.  

Synovial exploration reveals villous hypertrophy with fibrin deposition and PMN 

infiltration.  In severe cases, the inflammatory response will lead to bone and joint 

erosion.  Several inflammatory mediators are released, including Ifn-γ, IL-13, IL-1 

and PGE2.  These inflammatory mediators activate collagenase and lead to 

proliferation of polymorphic neutrophils (PMNs), which can react to host antigens.  

Neurologic Lyme disease in the third stage is difficult to diagnose, as symptoms 

are subtle, appear after the more classic symptoms have disappeared, and 

antibody production in the CSF has ceased.  Late neurologic symptoms are often 

paresthesias, spastic parapareses, bladder dysfunction, ataxia, and less 

commonly, radicular pain and/ or cognitive impairment (173, 179, 191, 210, 239 , 

251).  The best described mechanism for autoreactivity comes from T cell 

hybrids derived from individuals homozygous at HLA DRB1*0401.  Using MHC 

class II tetramers, 10% of the population secreted inflammatory cytokines INF-γ 

and IL-13 in response not only to B. burgdorferi outer surface protein A (OspA) 

but to leukocyte focal adhesion molecule 1α (LFA-1α) (173, 254, 276).  If the in 

vivo situation mirrors in vitro T-cell hybrid experiments, it would provide a 

mechanism for immune mediated Lyme arthritis.  The current working hypothesis 

suggests that this is likely one of a number of autoreactive loci that plays a role.  

Knowledge of these loci are very important in vaccine development, as 

vaccination with an antigen that facilitates auto-reactivity is problematic. 

 

Immune Response 
The immune response to B. burgdorferi is humoral and cellular in nature.  Early 

in the description of Lyme disease, a humoral response was noted and an “anti - 

Ixodes spirochete” sera used as an investigational tool.  It was noted that in the 

first 2 to 3 weeks post infection the humoral response produced IgM.  After this 

point, an IgG response began to develop (253, 256).  This early humoral 

response was to outer surface protein (Osp) C.  OspC is one of a number of 
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surface exposed proteins and is discussed in the section on gene expression.  

During Stage I, 20 to 50 % of patients will mount a humoral response to B. 

burgdorferi antigens.  During Stages II and III, this number is 70 to 90% or 90 to 

100% depending on the patient population, respectively.  As expected, OspC 

elicited not only a humoral response, but a cell mediated response (175 and 

references within, 205).  Further investigation found the cell-mediated response 

to be CD4+ T helper 1, with little response from CD8+ T cells, the CD4+ T helper 

2 response, or macrophages (63).    

 

In addition to the adaptive immune response, the innate immune response is now 

recognized as important to host control of the infection as well as initial 

symptomatology.  Toll-Like Receptor (TLR) 2 appears to be instrumental in the 

initial innate response to bacterial lipoproteins.  TLR2-/- mice have normal 

humoral and cellular immune responses, yet have spirochete burdens 100 times 

that of TLR2+/+ littermates.  Lipoprotein free fractions of sonicated spirochetes fail 

to cause signaling through TLR2, suggesting that a different surface associated 

molecule has some interaction with the receptor (174).  Why TLR2-/- mice have a 

deficient innate immune response is not well described, but failure to secrete 

matrix metalloproteinases in the absence of TLR2, or the general failure of 

polymorphonuclear leukocytes to recognize unopsoniated spirochetes has been 

suggested (84, 291).  The abilities of the immune response are blunted by B. 

burgdorferi immune evasion mechanisms.  Immune evasion ranges from 

antigenic variation to inducing host antigen presenting cells to stop expressing 

major histocompatabilty proteins (15, 149, 150, 241).  Antigenic variation is 

discussed in the section on gene expression.  The ability of B. burgdorferi to 

persist in tissues for long periods suggests that while the immune response 

keeps the infection controlled, it is not cleared (12).  

 

Serologic Diagnosis 
Reliable serologic diagnosis of Lyme disease was sought for more than a 

decade.  As the body of data increased, the serologic response to B. burgdorferi 
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became well characterized.  Retrospectively, it was found that requiring 2 of the 8 

most frequent IgM bands visualized on Western blot in early disease (18, 21, 28, 

37, 41, 45, 58, and 93 kDa) and 5 of the 10 most frequent IgG bands (18, 21, 28, 

30, 39, 41, 45, 58, 66, and 93 kDa) later in infection, enabled reliable serologic 

diagnosis of Lyme borreliosis.  The IgM blot was 32% sensitive and 100% 

specific and the IgG blot was 83% sensitive and 95% specific (64).  These results 

lead to a two-stage serologic diagnosis protocol.  Any positive or equivocal 

primary ELISA (115) to a surface protein is sent for Western blotting where a 

positive reaction to 5 of 8 bands qualified as a diagnosis of Lyme borreliosis.  

Circulating immune complexes, rheumatoid factor, and anticardiolipin antibodies 

are also described (179, 249, 251).  Recently, recombinant variable major 

protein-like sequence expressed (VlsE) loci were described for diagnostic use.  

The VlsE proteins are usually described in relation to antigenic variation.  

However, a conserved portion of this molecule has proven as competent as the 

traditional two-step test for diagnostic purposes in an ELISA reaction.  The 

epitope known as the C6 peptide is derived from the sequence of B. garinii.   

However this sequence is conserved across all borrelial species (15, 149).  

Conservation across species allows for diagnosis irrespective of where the 

infection was acquired, but does makes diagnosis less clear in patients with a 

history of infection with other Borrelia species.  

 

European and Asian Manifestations of Disease 
Borrelia garinii and B. afzelii are European and Asian isolates, the dermal 

manifestations of which are most commonly lymphocytoma cutis benigna or 

acrodermatitis chronica atrophicans (ACA), respectively.  Interestingly, neither 

chronic articular manifestations nor the AV node cardiac conduction block are as 

common outside of the North America as within.  This suggests differences in the 

disease caused by B. burgdorferi s.s. and those species found outside North 

America.  The lymphocytoma is a soft nodule consisting of a dense polyclonal B 

lymphocyte population of a few centimeters with diffuse borders generally in the 

pre-auricular, nipple or scrotum area.  The lymphocytoma contrasts with ACA in 
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that it spontaneously resolves.   Acrodermatitis chronica atrophicans (ACA) is a 

bluish-red discoloration of the skin on the extensor surfaces of the hands and 

feet.   Patient history is remarkable for the absence of prior history of symptoms.  

ACA has a characteristic slow progressive course with discoloration leading to 

atrophy of the skin.  Organisms can be cultured from these lesions up to a 

decade after the onset of symptoms (12, 55).  Radicular pain is more common in 

European and Asian patients, often in the abdomen or thoracic regions, as well 

as a disseminated encephalomyelitis that can be mistaken for multiple sclerosis 

(249 and references within).  In sum, while the clinical pictures are similar in 

some ways between patients in North America and elsewhere, symptomology 

likely depends on infecting species.  In the absence of an accessible animal 

model, it is difficult to show that different B. burgdorferi species cause unique 

symptoms unequivocally.   

 

Treatment and Vaccine 
Protective vaccines were developed that generated a humoral response to  

OspA, which is expressed by the majority of B. burgdorferi while in the tick gut. 

Blood containing an anti-OspA antibody can then opsonize B. burgdorferi in the 

tick gut preventing transmission.  After three booster vaccinations of recombinant 

OspA, vaccinated adults were 92% less likely to become infected than the 

placebo group (240).  The vaccine proved cost effective in populations where the 

incidence of Lyme disease was 1% a year or greater (206).   However, when 

case reports of vaccinated individuals developing chronic arthritis began to 

appear, the vaccine was removed from the market for this and other reasons.  A 

molecular mechanism to explain this vaccine side effect was described in the 

molecular mimicry of LFA-1α and OspA (173, 254, 276). 

 

Standard treatment for Lyme borreliosis is doxycycline or amoxicillin for a period 

of 10 to 21 days.  Lyme carditis and meningitis are often treated with ceftriaxone 

at 2 g per day for 10 to 21 days.  Prophylaxis with 200 mg of doxycycline within 

72 hours of Ixodes tick removal is 87% effective at preventing Lyme disease 
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(178).  There has been a question about treating the chronic arthritis with 

continued antibiotic therapy.  Randomized control trials have shown this not to be 

effective (133), further suggesting later stages of disease are immune mediated.  

It is important that treatment address not only B. burgdorferi, but also other 

organisms that are often tick-borne.  Doxycycline is the preferred method of 

treatment for non-pregnant women because it also treats Ehrlichia chaffeensis or 

Anaplasma phagocytophila, the causative agents of ehrlichiosis, Coxiella burnetii 

the causative agent of Q fever, and Rickettsia rickettsii the causative agent of 

Rocky Mountain Spotted Fever.  These are important because they can have 

grave clinical consequences and have some symptoms in common with Lyme 

disease.  In the case of Ehrlichia chaffeensis, these organisms are known to co-

infect ticks with B. burgdorferi (62, 257).  Babesia microti also co-infects Ixodes 

ticks, but usually this red blood cell parasite does not cause as severe a disease.  

If treatment is necessary, atovaquone-azithromycin combination therapy is 

effective (257).  In sum, while early Lyme disease is easily treatable, diagnosis 

can be difficult and the sequelae of a missed diagnosis can be serious.  

 

D. Chemotaxis and Motility as Virulence Factors 
 

Chemotaxis and motility are hypothesized to be involved in the pathogenesis of a 

number of prokaryotes.  Their exact roles in pathogenesis are becoming more 

rigorously described with new data.  Flagellar structures, used for motility, often 

bind host tissues, and are major immunogens.  Chemotaxis structures are largely 

intercellular or periplasmic, making their study less straightforward.  

Pathogenicity studies utilize animal models, tissue explants, microscopy, 

recombination based in vivo expression technology (RIVET), in vivo-induced 

antigen technology (IVIAT), and DNA microarrary to profile protein expression 

during different stages of infection in a wide variety of prokaryotes (100, 118, 

141) 
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Chemotaxis and Motility as Virulence Factors in B. burgdorferi 
B. burgdorferi protein expression analysis and ecology suggest motility and 

chemotaxis are vital to the life cycle of B. burgdorferi.  This pathogen must move 

from an array of tissues to the skin in order to infect a feeding tick and then back 

into a mammal upon the second feeding almost a year later (19, 38, 116, 143).  It 

is doubtful these transitions that are required for pathogenesis could be made 

without a well functioning chemotaxis and motility system.  B. burgdorferi motility 

and chemotaxis differ from the E. coli model genetically and structurally as 

described in a previous section.  For an organism with a relatively low genetic 

capacity to maintain duplicates of chemotaxis and motility genes that are then 

constitutively expressed indicates the importance of motility and chemotaxis to 

the B. burgdorferi life cycle. 

 

Motility almost certainly plays a role in the pathogenesis of this organism.  While 

confirmatory experiments are not documented, non-motile mutants are likely non-

pathogenic (219).   Assays measuring the invasiveness of the organism 

demonstrate that B. burgdorferi binds to the extracellular matrix and can 

penetrate epithelial cell layers (54, 83, 238, 265).  Similar assays using 

chemotaxis mutants await.  The structure of a spirochete, as discussed in the 

structure and motility section, is well suited to swimming in viscous gel like media 

such as connective tissue.  This observation correlates clinically to the ability of 

B. burgdorferi to spread through the dermis and to internal organs (250, 265).  As 

discussed later in the introduction, genetic evidence, as well as data collected in 

vivo and in vitro, indicates that motility and chemotaxis are vital to the life cycle 

and pathogenesis of this organism. 

 

Chemotaxis and Motility as Virulence Factors in Other Species 
Vibrio cholerae pathogenesis has perhaps the best-described link to chemotaxis 

and motility.  Because motility structures are antigenic and expressed in vivo, 

they are of interest as possible vaccine candidates.   Additionally, chemotaxis 
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and motility genes of Vibrio cholerae are linked with co-expression to toxin 

genes. Genetic studies reveal associations between the expression of toxin 

genes and chemotaxis associated genes.  In motility mutants, toxin gene 

expression is aberrant (141).  Genomic studies using DNA microarray show that 

chemotaxis genes are down regulated in stool derived cultures, suggesting that 

dissemination from the host requires or is promoted when chemotaxis is 

repressed (170).  Studies looking at stool cultures are important because 

humans are the only natural hosts for V. cholerae.  IVIAT data demonstrates that 

the hosts generate antibodies to pili proteins, Mcps, quorum sensing genes, and 

chemotaxis proteins, suggesting these proteins are expressed at some point 

during infection (100).  RIVET in an animal model demonstrated chemotaxis 

mutants were better able to attach to small intestinal cells than the wild type (2.2 

– 5.3 x), while flagellar motor mutants were less than 1/10 as infective as the wild 

type (141).   These results suggest that chemosensory structures are likely used 

outside the mammalian host while flagella are used in vivo for attachment.  Data 

suggest chemotaxis and motility are necessary for various phases of the V. 

cholerae life cycle, but tight regulation of component expression is necessary for 

a fully pathogenic phenotype. 

 

Helicobacter pylori is the causative agent of the majority of peptic and duodenal 

ulcers and infects more than 50% of the worlds population.  Non-motile H. pylori 

cells are less likely to colonize host gastric tissues and are unable to establish 

long-term infections.  Mcp mutants or other signal transduction cascade 

components are variably pathogenic in a mouse model.  Co-infection studies 

reveal that wild type cells out-compete chemotaxis mutants in establishing 

infections, demonstrating the importance of chemotaxis in H. pylori infection (9 

and references within).  Pharmacologic evidence suggests that motility plays a 

role in H. pylori infections in humans.  Gastric ulcers are often treated with proton 

pump inhibitors like lansoprazole or rabeprazole to decrease acid production in 

the stomach aiding in the healing of the ulcer.  Additionally, they inhibit the 

motility of H. pylori at lower concentrations than is required to inhibit growth 
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(279).  By inhibiting motility, these drugs likely lower microbial burdens by 

allowing for washout of H. pylori.  While understanding of this model is still 

developing, data suggests that chemotaxis  and motility are vital to this gastric 

pathogen. 

 

Chemotaxis and Motility as Virulence Factors in other Spirochete Species 
The invasive tissue penetrating nature of spirochetes has lead to conjecture that 

chemotaxis and motility are virulence factors.  However, due to difficulty 

manipulating these organisms they are less well described in comparison to 

other bacteria.  Nearly half a century ago Leptospira icterohemorrhagiae motility 

was implicated in the spread of organisms from guinea pig dermal sites to 

internal organs (250).  Later work found pathogenic Leptospires chemotactic 

toward hemoglobin while an avirulent line of the same strain was non-

chemotactic toward hemoglobin (295).  The invasive oral spirochete Treponema 

denticola  is  implicated as the causative agent of gingivitis.  Mcp and CheA 

mutants of T. denticola show markedly reduced tissue layer penetration in vitro.  

Aflagellate mutants demonstrate no tissue invasion (153) (156).  While data from 

similar tissue penetration experiments with B. burgdorferi are not available, 

preliminary data suggested chemotaxis attenuated mutants would be less able to 

penetrate monolayers.  

 

Brachyspira (Serpulina) hyodysenteriae is the spirochete species where the 

relationship between chemotaxis and pathogenesis is best described.  It is of 

veterinary significance as the causative agent of swine dysentery.  Predictably, it 

resides in the gastrointestinal tract and leads to bloody diarrhea.  While it does 

colonize humans, infection is often sub-clinical and non-invasive (114, 127).  

Cells are specifically chemotactic toward hog gastric mucin, while gastric mucin 

of other species does not act as a chemoattractant.  Single flagellar protein 

mutants, those in flaA and flaB1, while motile, only transiently colonize the 

mucosal surface.  This transient colonization was likely due to flow through the 

porcine GI tract and not actual binding.   A double mutant in flaA and flaB1 
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showed limited motility and very limited colonization.  These data support the 

hypothesis that motility-attenuated strains are less virulent than non-chemotactic 

strains (125, 216).  In sum, data generated with spirochete species support the 

notion that motility and chemotaxis are vital to completing a cycle of infection by 

allowing for transmission from vector to host, entry and establishment of a niche, 

and spread to new tissues and hosts.  

 

E. Borrelia burgdorferi Life Cycle and Gene Expression 
 

Life Cycle and Vectors  
As already stated, the ticks that transmit the B. burgdorferi sensu lato family are 

all part of the same complex.  The deer tick of the Ixodes ricinus complex 

transmits B. burgdorferi s.l. In North America Ixodes scapularis (previously 

Ixodes dammini) is the predominate vector in the Midwest and the Northeast.  

Ixodes pacificus is the major vector in the West.  In Europe, B. burgdorferi s.l. are 

usually transmitted by Ixodes ricinus, and in Asia Ixodes persulcatus is the major 

vector (249 and references within).  These ticks provide the basis for 

transmission to humans. 

 

The life cycle of I. scapularis is divided into the larvae, nymph, and adult stages.  

The small ground dwelling larvae rarely feed on larger mammals, restricting 

themselves to the accessible white-footed mouse (Peromyscus leucopus).  The 

nymph stage is largely responsible for transmission to humans.  The nymph’s 

small size allows it often to go unnoticed, while feeding for the required 48 to 72 

hours.  The long feeding time is required for transmission from infected mouse to 

the tick to take place.  Infected nymphs that fed on infected mice as larvae 

transmit the infection to larger mammals during feeding (167, 290).  Adults feed 

on deer (Odocoileus virginianus) that are incompetent B. burgdorferi hosts.  

However, deer are the main food source for adult Ixodes ricinus ticks and 

necessary for the maintenance of the tick population (267 and sources within).  
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In western North America, I. pacificus feeds on lizards that are incompetent hosts 

for B. burgdorferi.  Infection is maintained by horizontal transmission of the 

infection through the dusky-footed woodrat (Neotoma fuscipess) and Ixodes 

neotomae, which does not feed on humans.  It is when an errant I. pacificus feed 

on a woodrat infected by a I.neotomae bite does the possibility of human 

transmission occur.  This horizontal route of infection keeps infection rates in 

western North America to 3% of what they are in the Northeast (36, 162, 167, 

290).  It is the best defined, but not unique, horizontal transmission route that 

maintains the infection in nature. 

 

Maintenance of B. burgdorferi in nature requires a number of infection paths. 

Horizontal infection of small mammals by tick species is necessary to maintain B. 

burgdorferi in many environments.  These horizontal transmission paths are 

important not only to the maintenance of B. burgdorferi in the environment but for 

the dissemination of B. burgdorferi sensu lato to new environments.  B. 

burgdorferi s.l. have managed to spread over the Northern hemisphere and to 

select locations in the southern hemisphere, likely while residing in the digestive 

tracts of Ixodes uriae, an ectoparasite of seabirds.  Once on board a seabird, B. 

burgdorferi can be disseminated transcontinentally.  Very few Ixodes species 

engorge on mammalian hosts for the required 48 to 72 hours for human 

transmission (203).  However, many are competent B. burgdorferi hosts.  

Therefore, it is the spread of tick species that are not competent for human 

transmission that often introduce B. burgdorferi into new areas.  Once native 

ticks feed off small mammals infected by traveling tick species, transmission to 

humans is possible.  This enzootic infection cycle of sea birds is recognized as 

an important route of B. burgdorferi spread.   Enzootic cycles are now recognized 

as relevant to human infection in many environments (86, 166, 185-188). 

 

Gene Expression 
B. burgdorferi  demonstrates differential gene expression.  Expression of surface 

exposed proteins are well-understood and intensely studied due to their potential 
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as vaccine candidates.  These proteins also play a role in transmission of the 

spirochetes.  The outer surface lipoproteins (Osp) A through E are exposed on 

the surface of B. burgdorferi and have a number of postulated uses.  Osp A and 

D are postulated to be used in host cell binding, OspB for phenotypic variation for 

host immune evasion, OspC for expression for host immune evasion, and OspE 

binds complement regulator factor H for prevention of killing (66, 101, 102, 192, 

238, 288).   Other common surface expressed proteins include VlsE (variable 

major protein like sequence expression site), decorin binding proteins (DbpA), 

and p83.  These latter proteins are antigenically variable for immune evasion, 

used to bind host tissues, or of unknown function but stably expressed so they 

are useful in diagnosis, respectively (101, 108, 111, 169, 196, 217, 283, 296, 

297).  During tick feeding, a majority of B. burgdorferi in the tick gut stop 

expressing OspA and begin expressing OspC.  Hypothetically, this transition in 

protein expression allows the B. burgdorferi to detach from the tick gut, move to 

the salivary glands, and into the site of the tick bite.  Expression of DbpA then 

likely allows binding of the spirochetes to decorin proteins on host collagen.  

Antigenic variation of the vslE loci then aid in evading the host immune response 

as the spirochetes spread.   Protein expression changes are hypothesized to be 

triggered by contact with host cell proteins, temperature, pH, and the presence of 

fatty acids (34, 58, 88, 109, 183, 184, 213, 214, 227).  Several mechanisms of 

gene expression control are utilized by B. burgdorferi including LuxS-mediated 

quorum sensing, ggGpp / RpoS-RpoN stringent responses, and Rrp2 response 

regulator which governs gene expression.  Sigma factor control is limited due to 

the presence of apparently only two major sigma factors, σ54 and σ70 (37, 58, 79, 

108, 258, 259, 294).  By controlling gene expression, B. burgdorferi is not only 

able to adapt to host environments, it is able to facilitate transmission.  However, 

tight control over surface expressed proteins is unlikely to be sufficient for 

transmission.  We hypothesize transmission requires competent chemotaxis and 

motility systems. 
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To identify B. burgdorferi virulence factors, DNA microarrays were performed to 

broadly profile gene expression in the tick and host adapted states.  The 

variables that change in this transition are temperature, pH, and contact with 

host-adapted proteins.  The host-adapted state is modeled by placing cells in a 

dialysis membrane chamber (DMC) implanted in abdominal cavity of a rat.  

Unfed and fed tick states are modeled by culturing cells at 23°C, pH 7.5, or 37°C 

pH 6.8, while groups looking at a temperature shift alone will change the culture 

temperature from 23°C to 35°C.  Data pertinent to chemotaxis and motility genes 

show that cells from DMCs or a fed tick state show increased expression of 

certain chemotaxis and flagellar genes. Temperature increases alone do not lead 

to a similar increase (34, 184, 213).  Genomic analysis reveals that many of 

these genes share homology in an up-stream promoter region, suggesting that 

there is a concerted host adaptation response.   Induction for chemotaxis genes 

is a modest 1.5 to 3.5 fold depending on the gene and the study.  This is 

expected, given that many of these genes are expressed under the control of a 

constitutively active σ70-like promoter (76, 79, 82).  In sum, the environmental 

signals play a pivotal role in gene expression however, the constitutive 

expression of many chemotaxis and motility genes suggests that these functions 

are so vital to the B. burgdorferi life cycle that these structures are maintained 

irrespective of the environment. 

 

F. Genetic Manipulation of B. burgdorferi 
 

Knowledge of B. burgdorferi genetics is advancing rapidly.  The development of 

genetic tools was hindered in large part to B. burgdorferi’s slow growth in culture.  

Advances in this area have occurred on five principle fronts: understanding the 

sequence and chromosome make-up, defining the mechanism of chromosomal 

replication, manipulation using insertional mutagenesis, construction of shuttle 

vectors for complementation, and lateral gene transfer through transposon and 

phage activity.   



Chapter 1: Introduction 24

 

Chromosome Structure and Replication 

The B. burgdorferi complete genomic sequence became partially available in 

1997 and was completed in 2000.  It is one of three known bacterial species that 

have a linear chromosome and/or linear plasmids.  The chromosome itself is 

910,725 bases in length with a significant plasmid content (12 linear and 9 

circular) of 611,000 bases and is diagramed in Figure 1.6 (45, 76).  

 

 

Figure 1.6:  
Diagrammatic 
representation of the 
plasmid component of 
the B. burgdorferi 
genome.   
Circular plasmids are 
designated cp followed 

by the number of kilobases.  Linear plasmids are designated lp.  Adapted from 
(45). 
 
The E. coli genome is about 4 times larger than B. burgdorferi’s suggesting 

greater significance of multiple copies of chemotaxis and motility genes (2 cheA, 

3 cheW, 3 cheY, 2 cheB, and 2 cheR) (47).  Replication of these linear structures 

was resolved when it was shown that a 140 bp region contained a site-specific 

DNA breakage locus that would convert a circular replicating form into a linear 

structure with closed hairpin ends (275). 

 

Genetic Manipulation 
Manipulating this genome proved difficult.  The first selectable marker was gyrBr 

that encodes a mutated form of the B subunit of the DNA gyrase gene that 

conferred resistance to coumermycin A1. (215, 220).   High frequency 

recombination with the endogenous gyrB gene limited the utility of this marker.  

More recently, kanamycin, erythromycin, streptomycin, and gentamycin 

resistance cassettes have become available, providing selectivity to high 

concentrations of antibiotics (27, 75 and references within, 223, 268).  The 
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development of resistance markers is limited to compounds that are not used 

clinically to treat Lyme borreliosis.  With the recent development of these tools, 

our laboratory has inactivated most B. burgdorferi chemotaxis and motility genes 

(47).  

 

Shuttle Vectors and Complementation 
Recently, several B. burgdorferi shuttle vectors have been developed.  Sartakova 

et. al. (2000) found that pGK12, derived from Staphylococcus aureus plasmids 

pE194 and pC194, containing erythromycin markers,  with the replication 

functions from the Lactococcus lactis pWV01 plasmid, could propagate extra-

chromosomally in B. burgdorferi and support expression of green fluorescent 

protein (GFP) (221).  Moreover, the pGK12 derivative successfully 

complemented a B. burgdorferi motility mutant in cis (222). This kanR -containing 

shuttle vector is consistently propagated in B. burgdorferi.  Because many 

mutants are constructed with the kanR cassette, complementation requires a 

second reliable resistance marker.  Samuels et. al. constructed the pFKSS1 

shuttle vector that contains a hybrid spectinomycin / streptomycin resistance 

cassette in a pBSV2 backbone (75, 260).  This hybrid resistance cassette allows 

for efficient selection in both E. coli and B. burgdorferi.  Data in Chapter 3 

demonstrate that pFKSS1 complements B. burgdorferi mutants constructed with 

the kanR selection marker in trans.  

 

Lateral Gene Transfer: Transposons and Phages 
Lateral gene transfer is hypothesized to take place in B. burgdorferi.   Hayes et. 

al. (1986) described particles found on electron microscopy consistent in size 

and shape to that of a phage (20).  More recent work demonstrated a cell-free 

chloroform-resistant fraction was able to package and transduce DNA.  Further 

study demonstrated that this was a temperate phage likely derived from one of 

the cp32s and was visualized microscopically (69).  More controlled experiments 

demonstrated that φBB-1, a bacteriophage of B. burgdorferi, was able to package 

cp32 and transmit kanR to newly infected cells.  This observation is likely of 
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evolutionary importance because cp32 infects many different Borrelial species 

(39, 68).  While there is little to no evidence of whole plasmid exchange, there is 

evidence of small fragment, less than 1 kb, horizontal genetic exchange (66). 

These studies indicated that lateral gene transfer in B. burgdorferi is possible and 

likely a significant source of new genetic material in nature.  Recently, Rosa et. 

al. generated a library of mutations through use of a transposon derived from a 

eukaryotic cell (unpublished data).  

 

G.  The Structure and Function of Methyl Accepting Chemotaxis Proteins 
 
Methyl accepting chemotaxis proteins (Mcps) are the sensor molecules that 

control flagellar rotation and therefore chemotaxis (Figure 1.3).  These proteins 

form membrane bound clusters, or are free in the cytoplasm, and are associated 

with the chemotaxis proteins CheW and CheA.  Mcps function by sensing soluble 

molecules or light and facilitating taxis toward favorable environments (10).  The 

binding of attractants to Mcps results in a conformational change of the molecule 

as well as leading to a subsequent decrease in autophosphorylation activity of 

the CheA.  

 

Mcp Structure and Function 
Mcps vary in number, cellular location, and ligand sensitivity depending on 

species.  B. burgdorferi has five classical Mcps and one cytoplasmic Mcp (45, 

76).  E. coli has 4 classic membrane bound Mcps whereas Rhodobacter 

spheroides has 13 (157, 282).  Cytoplasmic Mcps lack transmembane domains 

and are hypothesized to sense cytoplasmic chemistry or light, while membrane 

bound Mcps sample attractants in the external environment (10).  

 

The ability of Mcps to sense chemoattractants astounded early observers.  A 2 

µM long E. coli would find a difference of 1 part in 10,000 between its nose and 

tail in an exponential gradient with a decay distance of 20 mm.  Furthermore, it 

can act on this difference in less than 2/10ths of a second.  This calculation was 
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the basis for experiments that showed E. coli chemotaxis is dependant upon 

temporal and not spatial gradient sensing (159).  The previously mentioned 

exception is a 6 µm long marine Vibrio with bipolar flagella that appears to sense 

oxygen gradients spatially (269).  

 

The structure of the Mcps directly relate to their function.  The function of the 

Mcps is discussed in section B of this Introduction.  Mcps are stable homodimeric 

helical structures that are inserted perpendicular to the membrane.  Two sets of 

symmetric four helix domains sit outside the membrane, while two of the four 

domains span the membrane.  On the cytoplasmic side, one helix from each 

member of the homodimer forms a hairpin.  Ligands bind on the periplasmic side 

of the membrane in one of two sites formed by the interface of the homodimers.  

Currently, it is theorized that upon ligand binding there is a 1.6 Å 5° piston-like 

shift of the Mcp in the membrane that then interacts with the bound histidine 

kinase, CheA, to inhibit autophosphorylation activity (7, 72).  This interaction 

stabilizes CCW flagellar rotation as outlined in the chemotaxis and motility 

section. 

 

Mcp Clustering and Amplification 
The location and spatial distribution of Mcps play a key role in their function. 

Membrane bound Mcps are located at the poles in most studied species of 

bacteria including Spirochaeta aurantia (87).  Stoichiometrically abundant 

receptors (major Mcps) cluster with less abundant (minor Mcps) receptors at the 

poles.  While less abundant receptors are polarly located they do not cluster in 

the absence of the abundant receptor species.  These receptor clusters form 

patches in the range of 0.2 to 0.6 µM in diameter; quite significant in a 2 µM long 

E. coli (72, 142, 157, 158, 199, 237).  This clustering occurs independently of 

CheW or CheA.  In the absence of the Mcps, CheA and CheW proteins are found 

free in the cytoplasm (157, 164).  The stoichiometry of Mcps, CheWs, and CheAs 

in these clusters is not well established.  Workers have arrived at ratios from 

1:1:1 to 7:2:1.  A widely accepted model uses the ratio of 2:1:1.  A 2:1:1 ratio 
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mathematically allows for tight packing of receptor clusters  (28 and references 

within, 237).  In mutants of minor Mcps, the cell is still chemotactic toward 

compounds detected by the major Mcps.  If a gene encoding a major Mcp is 

mutated, then no signaling occurs from the minor Mcps or the major mutated 

Mcp (8).  This suggests a model where an attractant binds to a few Mcps that 

leads to signaling through many Mcps.  This amplification of attractant signals 

explains the high gain seen in chemotactic responses (245).  

 

A second line of evidence for Mcp clustering and amplification comes from 

enzyme kinetics.  The speed in which bacteria are able to sense and adapt to 

their environment is difficult to explain if only enzyme kinetics are examined.  As 

polar clustering and the molecular structures of the proteins become better 

understood, a model is emerging to unify the empiric results.  As receptors 

cluster in the membrane, their cytoplasmic tails act as inverted molecular tree 

trunks while CheW’s and the bound CheA’s form the canopy.  In the space 

between the membrane and the canopy, the “adaptation compartment”, CheR 

and CheB can function in close proximity to their substrates making them more 

effective than they would be free in the cytoplasm (Figure 1.7) (237).  

 

 
Figure 1.7: The Adaptation 
Compartment.  
CheR and CheW are 
hypotheized to exist in the 
space created by the plasma 
membrane and the bound 
CheA-CheW clusters.  The 
close proximity of CheR and 
CheW to the Mcp 
methylation sites would 
speed methylation and 
demethylation reactions.   

CheR is likely a brachiating molecule (142), traveling from one Mcp to another, 
amplifying the chemotaxis signal.  Adapted from (237). 
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Supporting evidence for this model was initially obtained from mutation studies.  

Mutants in CheR or CheB are not able undergo signal amplification.  

Furthermore, the approximately 850 copies of CheR per cell would have to 

methylate several clusters given there are approximately 4000 CheA and CheW 

molecules in the same cell (72 and references within). Structural analysis of 

CheR lead to the hypothesis that molecular brachiation allows CheR to move 

rapidly through a cluster, methylating the tails of the Mcps irrespective of their 

ligand specificity.  The model incorporates signal amplification, the paradoxical 

data seen with mutants of major and minor Mcps, and the stoichiometry of 

signaling components.  In silico testing of this model generated activation and 

adaptation data very similar to that published using cells (72 , 130, 142, 237).  

Data generated using fluorescence resonance energy transfer (FRET) 

demonstrates the change in kinase activity (CheA) is approximately 35 times 

larger than the change in the number of attractant bound Mcps.  Because FRET 

is able to measure protein-protein interaction in real time in vivo, it provides the 

most conclusive evidence to date that signal amplification at the level of the Mcps 

provides the gain observed in the chemotactic response (245). 

 

Mcp Response to Repellants 
Mcp activity toward repellants is not well understood but long observed.  Pfeffer’s 

original chemotaxis work in the 1860’s included a description of positive and 

negative taxis (277).  Negative chemotaxis, which occurs with sensitivities of 100 

to 10,000 fold less than positive taxis, appears mediated by Mcps (277).  Mcp 

null mutants are non-chemotactic both positively and negatively to specific 

stimuli.   Mutants in the Mcp tsr (taxis toward serine) gene show impaired positive 

taxis to serine, yet also show impaired negative taxis to acetate, indole and L-

leucine.  Salmonella typhi and E. coli are very similar organisms, however, 

phenol is an attractant to the former and a repellant to the latter, yet toxic to both.  

This observation suggests repellant activity is not necessarily related to cell 

damage.  Chemically, repellants cause the inverse of the attractant response.  

Repellants lead to a demethylation of the Mcps and possible increased 
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autophosphorylation activity of CheA (94, 242).  Because Ca++ concentrations 

play a key role in many prokaryotic and eukaryotic signaling systems, free-Ca++ 

concentrations were studied in relation to chemotaxis.  The free Ca++ 

concentration was found to be inversely proportional to Mcp methylation.  

Attractants cause a drop in free-Ca++ concentrations, while repellants cause an 

increase (274).  How or if cytoplasmic free-Ca++ concentrations effects rotational 

states the flagellar motors is unknown.  Additionally, the change in configuration 

of the Mcps while a repellant is bound is undescribed.  Receptors that sense 

solely repellants are not genome encoded.  A chimera of a nitrate/nitrite receptor 

attached to the signaling domains of Tar (the aspartate sensing Mcp), generated 

a repellant signal demonstrating that a membrane bound receptor is able to 

transmit such a signal (286).  While negative taxis occurs, likely through 

mechanisms shared or similar to that of positive taxis, the response is not well 

described. 

 

H. The Structure and Function of Chemotaxis Protein A (CheA) 
 
CheA is a homodimeric autophosphorylating histidine kinase.  CheA is 

responsible for phosphorylating CheY leading to its interaction with flagellar 

motors to determine rotational direction (Figure 1.3 – starbursts).  CheA exists in 

a long (CheAL) and short (CheAs) form as a consequence of an alternate internal 

initiation sequence.  Usually these forms are found in a 1:1 ratio in the cell and 

null mutants in CheAs are phenotypically wild type.  However, CheAs is required 

for the normal subpolar localization of CheZ and therefore possibly other proteins 

as well.  CheAL is not able to substitute for CheAs in respect to this function (32, 

43 and references within).  CheA is well described, because genetic and 

functional evidence indicated it is a regulator of chemotaxis.  Further description 

found its role fairly circumspect with phosphorylation of CheY and CheB as the 

major functions. 
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CheA Activation 
While activation of CheA awaits a detailed biochemical mechanism, much is 

known about its function.  Activation occurs through a slight conformational 

change in the ternary complex, not association as the homodimeric structure 

might suggest.  Binding of an attractant to a Mcp leads to suppression of this 

conformational change and therefore a decrease in activation (85, 104).  The 

signal that leads to suppressed CheA autophosphorylation is integrated from 

several Mcps and amplified before it reaches the CheA.  This integration includes 

an averaging of positive and negative stimuli from several Mcps and amplification 

at the level of CheR/B methylation/demethylation of the Mcp cytoplasmic tails. (8, 

123, 130 and references within, 142, 245).   

 

CheA structure is well described and is separated into 5 functional groups P1 

through P5 (Figure 1.8).  These groups are responsible for phosphorylation, 

CheY / CheB binding, dimer formation, ATP binding / catalysis, and CheW 

binding, respectively.  These divisions have been further subdivided to study 

effects of specific residues on function.  

Figure 1.8: Diagrammatic representation of the functional sites in the CheA. 
adapted from Hirschman  (104). 
 
 
The P1 domain contains a histidine residue at position 48 that accepts the γ 

phosphate from an ATP molecule held by the P4 subunit to become 

phosphorylated.  This action is inhibited by the conformational change induced 

by attractant binding.   P2 mediates the binding of CheY and CheB that are 
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responsible for interacting with the flagellar motor to destabilize CCW default 

rotation, or returning CheA to the ground state respectively.  P3 is responsible for 

holding the dimer of CheA together.  The dimers likely cross phosphorylate 

making dimerization central to function.  P5 binds CheW thus holding the CheA 

dimer in place.  Without binding to CheW, CheA floats free in the cytoplasm, 

binding CheY at will and thus competing with receptor bound CheAs.  This 

competition is so successful that CheW mutants and strains that over-express 

CheA are non-chemotactic (85 and references within, 104, 181, 264). 

 
CheA in B. burgdorferi 
CheA species in B. burgdorferi are unique in that, there are two copies of the 

cheA gene widely spaced on the chromosome.  These cheA genes likely evolved 

from different phylogenetic derivations.  CheA1 and CheA2 show extensive 

homology to other CheA proteins with the P2 region (CheY / CheB binding) being 

less similar.  Teleologically, this is expected because B. burgdorferi does not 

have a CheZ homolog but it has three CheY species.   CheA2 shares 35% 

identity to CheA of Rhodobacter sphaeroides and is quite conserved among 

spirochetes.  CheA1 shares 35% identity with the CheA of Vibrio cholerae 

suggesting it is a more recent acquisition.  CheA1 mutants are able to reverse, in 

contrast to CheA2 mutants that constantly run and are non-chemotactic (144).   

 

The presence of two cheA genes in B. burgdorferi is significant because of cell 

structure.   As discussed in Introduction section B the sub-terminal polar 

motors of B. burgdorferi must rotate in opposite directions for translation to take 

place (47, 89, 90).  Therefore, it was possible that CheA1 and CheA2 localized to 

opposite poles playing a role in generating rotational asymmetry.   However, B. 

burgdorferi cheA2::ermc and cheA2::ermc-cheA1::kan mutants constantly run, 

while cheA1::kan appears very similar to wild type (144).  These results suggest 

an intrinsic polarity to the motors leads to different default rotational states of the 

bacterial motors and not the action of localized CheA species.  
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I. Capillary Tube Assay and Flow Cytometric Enumeration of B. burgdorferi  
 
The capillary tube chemotaxis assay was developed over a century ago (2, 4, 

172).  It has been adapted to a wide range of prokaryotic species, and modified 

by different workers (124, 126, 177, 216, 234, 236).  Our assay is based upon 

this prior work.   This section will review the mechanics of the assay, basic 

chemotaxis principles, data reporting, and modifications made to measure the 

chemotaxis of B. burgdorferi. 

 

The Capillary Tube Assay 
The capillary tube assay measures how many bacteria swim into a capillary tube 

filled with a solution.  This solution can be buffer alone or buffer plus a putative 

attractant or repellant.  The number of cells that swim into attractant filled tubes is 

compared to the number of cells that swim into buffer filled control tubes at the 

termination of the assay.  Data are reported as raw colony forming units (CFUs) 

per ml or as a factor of the number of cells entering buffer filled tubes.  

Traditionally, cell pools were made by placing U tubes on glass plates (22 x 28 

cm) and the bottom of the U’s covered by 22 x 22 mm coverslips.  U tubes were 

formed from capillary tubes (1.10 x 100 mm) held with a hemostat over a Bunsen 

burner.  Molten glass on either side of the hemostat fell, forming a U.  1 µl 

microcapillary tubes fire polished at one end contained the solutions.  The open 

end of the microcapillary tube was inserted into the cell pool and incubated for 30 

minutes.  The contents of these tubes were then added to molten LB agar and 

viable counts on pour plates performed (1, 171).  This basic experimental design 

is adapted widely in the literature as noted above. 

 

The capillary tube assay gave early insight into the nature of chemotaxis.  

Primarily, it demonstrated that chemotaxis is gradient dependent.  The 
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mechanism and rationale for this are outlined in the chemotaxis and motility 

section.  Additionally, it provided an early measure of bacterial sensory 

capabilities.  By testing the chemotactic response to increasing concentrations of 

attractant, it was shown that bacterial chemotaxis follows Weber’s law.  That is, 

that it takes a two-fold increase in concentration to elicit a response (171).  This 

early observation was the basis for an important chemotaxis assay control.  

Although the cell senses an attractant, if there is no gradient of this attractant no 

chemotaxis will take place.  Therefore, if a compound is truly a chemoattractant, 

the attractant response will be dose dependent.  Assays with the same 

concentration of attractant in the cell pools as well as the tubes (the no gradient 

control), control not only for chemotaxis but also for a possible increase in 

swimming speed.  If cells simply increased swimming speed in the presence of 

an attractant, more cells would be found in no gradient controls than in the buffer 

filled tubes.  This scenario would lead to the recording of a false chemotactic 

response if data are reported as a factor over the buffer control (124).   

 
Modifications of the Capillary Tube Assay 
The capillary tube assay is widely adaptable.   A number of modifications were 

made to the capillary tube assay for optimization.  These included placing 

attractants in a viscous to semi-gel-like medium allows for attractants to diffuse 

out, and speeds or slows bacteria depending on the species.  These assays can 

provide a qualitative measure of chemotaxis, or if the organisms are invasive, the 

organisms actually bore into a semi-solid substrate (97, 236).  Other assay 

modifications have included chambers made of drilled Lucite blocks, 200 µl 

pipette tips, 96 well plates, and in the case of B. burgdorferi, 2 ml centrifuge 

tubes.  Various sizes of capillary tubes and tuberculin needles have been used to 

contain buffer or attractant solutions (59, 95, 124, 168, 177, 281).  Cells 

swimming into these tubes must be enumerated.  For fast growing species, 

viable counts by plate count allow for quantification of live cells.  A growth-based 

approach flushes cells into media filled 96 well plates and measures OD600 over 
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a period of time.  Comparison to known growth curves provides quantitative and 

easily automatable data collection (16).  

 

Fastidious, slow growing organisms must be directly counted.  The simplest 

method is Petroff-Hausser counting with a microscope counting chamber.  

However, this method is labor intensive, requires high cell densities for statistical 

reliability, does not easily differentiate live from dead cells, and suffers from inter 

observer bias.  The approach used to enumerate B. burgdorferi in Chapter 3 is 

flow cytometry.  Flow cytometry provides a high-throughput automated method 

for enumerating cells from capillary tube assays and  provides data with a high 

degree of concordance to direct Petroff Hausser counts (42, 98, 139, 148, 243, 

270).  

 

Enumeration of B. burgdorferi using Flow cytometry.  
Fluorescence Activated Cell Sorting (FACS) and flow cytometry refer to similar 

technologies.  An excellent explanation of the function and history of these 

technologies is given in Davey and Kell 1996 (61).  FACS demonstrates the 

ability to physically separate cell populations, whereas flow cytometry 

demonstrates only the ability to count and visualize populations.  Both 

technologies are able to resolve organisms based on light scattering and 

fluorescent characteristics.  This technology was developed for clinical 

laboratories and proved quite capable of measuring cells in the 5 to 15 µm 

diameter range.  A few machines were developed for small particles, yet failed to 

find a market and are no longer produced (Bio-Rad Bryte HS, Hercules, CA; 

Skatron, Oslo, Norway).   These machines were able to enumerate and even 

delineate different bacterial species based solely on light scattering 

characteristics (243).  As sensitivities of detectors improved, measuring smaller 

particles, like bacteria, on clinically oriented commercially available flow 

cytometers became possible using selective dyes (61, 98, 106, 110, 139, 148, 

230, 243, 266, 270).  Green fluorescent protein (GFP) expression in B. 

burgdorferi has been shown with flow cytometry but no direct enumeration or 
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comparison to a known standard was performed (67).   Chapter 3 remains the 

only report of flow cytometric enumeration of spirochetes.   

 

To adapt ordinary flow cytometers to enumerate bacteria, procedural 

modifications are required.  Scrupulous cleaning, calibration, and 0.2 µm or 

smaller filtering of all solutions are necessary to minimize machine noise and 

background debris.  For enumeration, most workers add nucleic acid dyes to 

delineate cells from debris.  Some advocate the addition of polystyrene beads of 

a known size and concentration.  This bead population will segregate distinctly 

from the cell population on flow cytometric analysis.  This bead population can 

then be enumerated on a second gate acting as a control for flow rate (42).  Our 

experience has suggested that while this might be a useful control, it is best not 

to gate absolute flow rate on bead parameters, due to bead clumping and other 

variables.  Additionally, we found that 0.1 µm filtering of all solutions and media 

was necessary to obtain the most reliable data. 

 

Flow Cytometric Enumeration of B. burgdorferi.   
Samples are prepared by diluting samples in 0.01M HEPES, 0.15M NaCl, pH 

7.4, containing 10ηM fresh Syto-61 and 3-5x103 6µM-diameter quantitative 

polystyrene beads/ml.  The addition of beads as an internal control was not 

always used.  It gave very consistent results, but was plagued by quality control 

problems from suppliers.  Because the bead control, when working, gave 

consistent results we believe the machine was consistently assaying the same 

volume of sample.  Therefore, we chose to gate on flow rate.  Syto61 is a 

membrane permeable nucleic acid dye giving a fluorescent signal readable on 

channel FL4 (139).  Bead enumeration acted as an internal control to ensure that 

the volume enumerated was consistent for each sample.  Samples were run at a 

rate of 12 µl / minute for 60 seconds.  A Becton-Dickinson FACScalibur with 

15mW air-cooled argon and red diode lasers operating at 488 ηm and 635 ηm 

respectively was used for all counting procedures.  No compensation was 

necessary, as there was no spectral overlap between detectors (42).  
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Representative machine settings can be found in Chapter 3.  Using this 

technique, cell enumeration data statistically identical to that found with direct 

Petroff-Hausser counting were generated (Chapter 3). 

 

Flow cytometry is rapid, allows for many parameters to be measured from a 

single sample, examines individual cells, and does not rely upon cells being 

culturable. Because of these capabilities, flow cytometry is widely applicable in 

microbiology.  Species identification based on staining characteristics is the most 

published application.  Specific stains can measure membrane integrity, 

membrane potential, enzymatic capabilities, or the presence of respiration.  

These parameters give information regarding cell viability, cell division state, 

effects of antibiotics, or the success of gene transfer if the protein of interest is 

fluorescently tagged (61).  Specific species in mixed populations can be identified 

with a high degree of specificity with fluorescent in situ hybridization (FISH) 

probes (61, 148, 230 and references within, 243, 270).  These capabilities and 

characteristics are leading flow cytometry to be applied more broadly in 

bacteriology. 

 

Enumeration of bacteria using flow cytometry is a very recent development.  Data 

showing concordance with traditional counting techniques like Petroff-Hausser 

counter or plating are beginning to be published.  Whereas most studies rely 

upon plating for the comparison study, we utilized Petroff-Hausser counting due 

to the 20-day incubation time to get viable counts of B. burgdorferi.  Viable 

counts with rapidly growing species show nearly identical results to flow 

cytometric counts demonstrating a high percent of chemotactic cells were alive 

(61, 98, 106, 139, 148, 230, 270).  Due to the high throughput of the flow 

cytometry protocol, and the agreement with direct Petroff-Hausser counting data, 

flow cytometry was used as our primary enumeration method. 
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J. Cell Motility Tracking Procedures  
 
The study of motility requires methods to track the movement of cells.  Several 

tracking methods are documented, none ideal for all tracking of all 

microorganisms.  Early methods used variations on multiple film exposures using 

stroboscopic lamps (24, 90, 248).  Once video equipment became available for 

microscope use, hand tracing of longer tracks became possible (46, 90).  Most 

recently, the use of computerized tracking systems have allowed for higher 

throughput and decreased intraobserver bias (119, 144).   

 

Film Based Tracking 
The earliest systems were developed in the 1970’s (24, 248).  These systems 

measured speed, tumble length (twiddles) and direction.  They were able to track 

E. coli for approximately 30 seconds.   Based on photographic film, a long 

exposure time was used with a stroboscopic lamp illuminating the microscope 

field.  As cells swam and were incrementally illuminated, they formed dashed 

lines on the film while swimming and spots during a tumble (248) (Figure 1.9).  

By using a stage micrometer, and knowing the flash frequency of the lamp, one 

was able to count the dashes and calculate the length of swims and tumbles on 

photographic prints.  

Figure 1.9: Examples of tracks of Leptospira illini (left) and E. coli 
 (right).  Both micrographs were taken using a long shutter time.  L. Illini formed 
this pattern on film due to the screwing action of the spirochete swimming 
modality through methylcellulose under constant illumination.   E. coli formed 
these tracks under stroboscopic illumination.  Reproduced with permission from 
references. (90, 248).  
 
The advantages to this system are that it requires little specialized equipment, 

allows tracking of many cells in a field, and is very sensitive for spotting changes 

in translational mode (i.e. runs to tumbles).  It is problematic in that the length of 

tracks are limited by the number of exposures the photographic film will absorb, 
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requires final measurements be done by hand, and works only for cells that move 

at least one cell length between exposures.  The latter makes this approach 

difficult for use in spirochetes.  Alternatively, using an automated camera to 

advance the film, a 4 second shutter time, and constant illumination this 

approach was used track Leptospira illini  (Figure 1.9) (90).  This micrograph 

shows that L. illini translated through a viscous gel-like media with little slippage, 

literally screwing through the methylcellulose.  A similar method was adapted for 

use with video (235).  These early methods allowed for the rigorous description 

of E. coli motility in the presence and absence of attractants. 

 

Due to spirochetes elongated morphology photo based systems were less than 

ideal.  The stroboscopic approach is not suited to a run-reverse-flex mode of 

translation.  Because the cell moves over the same area many times, all tracks 

would form irregular spots.  Additionally, data regarding reversal or stop 

frequency would be difficult or impossible to collect.  These limitations lead to 

tracking spirochete motility by hand.  With the marketing of video-microscopy 

equipment, cells could be taped.  Video could then be analyzed frame-by-frame, 

tracing the cell path by marking on a piece of transparency film taped to the 

television monitor.  While this approach was time consuming and labor intensive, 

it generated original data on the motility of  spirochetes (46, 51, 95, 131, 218).   

 

Computerized Tracking 
Due to the time consuming nature of hand tracking spirochetes, computerized 

methods were developed.  These methods used commercial cell tracking 

systems in conjunction with software written especially to track video of 

swimming cells.  This method allowed for greater throughput (100-200 tracks per 

experiment), was able to calculate reversal frequency, flexing frequency, and 

swimming velocity.   Unfortunately, trackable film segments were limited to 15 

seconds and were often as short 5 seconds, the software never became 

commercially available, and reversal frequency had to be verified by hand (74).  

This work demonstrated that automated tracking of spirochetes was possible and 
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generated original data on the translational behavior of Spirochaeta aurantia 

(74).  

 

Computerized tracking of cells underwent advances in the 1990’s.  Dr. Geoffery 

Hobson an engineering professor in Great Britain, developed a 

hardware/software package capable of tracking cars from video of busy 

intersections.  This package quickly found an application with sperm motility 

researchers.  From the sperm community, the prokaryotic motility community 

began to adopt this instrument.  It is capable of tracking cells, stops, runs, stop 

time, stop frequency, curvilinear velocity, straight line velocity, track linearity, and 

curvature rate for hundreds of non-intersecting cells per field as running 

averages.  More remarkable than the amount of data collected is its capability of 

making these measurements in real time.  This instrument is utilized by a number 

of laboratories worldwide for prokaryotic cell tracking (99, 105, 119, 224, 292, 

293).  The Hobson system, with modification to data collection procedures, was 

able to track B. burgdorferi (Chapter 2) (144).  The protocol is labor intensive, 

requires a spirochete to be alone in a field, translating quickly, and appear very 

bright on a very dark background.  This system was only able to suggest where 

reversals took place, would only work with analogue images at 30 frames per 

second, and was less than user friendly.  These limitations led to continued 

interest in new automated tracking instruments. 

 

Recently, a software package made by Improvision Inc. has been able to track 

spirochetes with a much more user-friendly interface (Figure 1.5).  Background 

movement is easily removed by cropping video images, and automated selection 

of moving objects.  This makes almost any film suitable for tracking, and it 

decreases selection bias in the tracking of cells.  Multiple spirochetes can be 

tracked in the same field, and data are reported on individual cells.  The system 

is relatively inexpensive, and has an intuitive, easy to use, interface.  However, 

this system is not able to track in real time, reversals must be verified by hand, 

the calculation period can last hours, requires a huge amount of RAM, and 
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requires that files be in a proprietary .LIFF format.  While no prokaryotic tracking 

is published using this software, our lab has found it easy to use, thus allowing 

several members of the lab to become proficient in tracking. 

 

Prokaryotic Translational Velocity 
A number of factors affect the speed of bacterial motility.  Temperature, media 

viscosity, cell size, nutrient availability, and number of expressed flagella all 

correlate to changes in bacterial translational velocity.  Table 1.1 gives an 

overview of the range of reported velocities of different bacterial species. 

Species 

Reported 
low 
velocity 
(µµµµM/sec) 

Reported 
high 
velocity 
(µµµµM/sec) 

Reported 
average 
speed 
(µµµµM/sec) Reference(s) 

Azospirillum brasilense 13 23  (298) 
Bdellovibrio bacteriovorus   ~200∇ (212, 261, 271) 

Borrelia burgdorferi * 4.2 35  
(91, 131, 144) 
This work 

Campylobacter jejuni 29.08 52.82 38.76 (119) 
Escherichia coli 8.2 18.04 12.73 (24, 119) 
Helicobacter pylori 12.07 29.07 25.03 (119) 
Leptospira interrogans*   30 (96) 
Proteus mirabilis 10 45  (226) 
Pseudomonas aeruginosa  51.4 +/- 8.4 (235) 
Pseudomonas fluorescens 30 200  (226) 
Rhizobium lupini   37.9 +/- 5.4 (224) 
Salmonella typhimurium   55 (160) 
Spirillum serpens 22 38.5  (40) 
Spirochaeta aurantia * 23 30 26 (95) 
Treponema denticola * 11.82 28.1 19.31 (218) 
Vibrio alginolyticus 20 40  (13) 
Vibrio cholerae   75.4 +/- 9.4 (235) 

 

Table 1.1: A summary of published translational velocities for selected 
prokaryotes.  
* indicates spirochete species. ∇ This velocity is based on a 2 µm cell traveling at 
100 cell lengths per second. 
 



Chapter 1: Introduction 42

While some spirochetes have slower translational velocities than many species, 

they are able to swim in environments that slow or stop most externally 

flagellated organisms.  The spirochetes’ helical or flat wave morphology generally 

increases translation speed in viscous media  (40, 90, 91, 131, 218).  Therefore, 

the range of translational speeds is dependant upon media conditions.  There are 

two types of viscosity, macro and microscopic.  Gels are macroscopically viscous 

indicating that a molecular mesh forms allowing cells to push against this mesh 

as it moves.  Methylcellulose or gelatins are the classic examples of media 

additives that increase the macroscopic viscosity.  Increasing both the 

microscopic and macroscopic viscosity can be done with the addition of 

compounds like Ficoll.  It is suggested that viscosity alone can lead to a positive 

chemotactic response, but this has not been definitively shown (201), and is 

required for the motility of some species (218).  While bacterial translation 

speeds vary widely, spirochetes are especially suited for motility in environments 

that slow or stop most species. 
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Abstract         

The histidine kinase CheA is an essential component in the signaling pathway for 

bacterial chemotaxis. Mutants of cheA in flagellated bacteria continually rotate 

their flagella in one direction. In the Lyme disease spirochete Borrelia burgdorferi, 

bundles of periplasmic flagella are subpolarly located at each cell end. In this 

paper, we present evidence that cheA mutants of B. burgdorferi asymmetrically 

rotate their bundles of periplasmic flagella. B. burgdorferi has two copies of cheA 

designated cheA1 and cheA2. We found that both genes were expressed, and 

part of operons initiated by σ70 promoters. These results further support the 

conclusion that B. burgdorferi is unique as it lacks a specific sigma factor to 

control motility gene expression. To understand the function of the two cheA 

genes, each was targeted by mutagenesis. cheA1::kan had no obvious 

phenotypic differences compared to the wild type. However, cheA2::kan swam 

only in one direction and was deficient in chemotaxis. We completely blocked the 

signaling pathway by constructing a double mutant cheA1::kan cheA2::ermC. 

This double mutant had the identical phenotype as the cheA2::kan mutant, and 

video microscopy of tethered cells revealed that the periplasmic flagella rotated 

at each cell end. The results indicate that the double mutant resembles cheA 

mutants in other bacteria by its constantly running phenotype. However, it differs 

with respect to flagellar rotation, as its default mode is rotation of the periplasmic 

flagella bundles in opposite directions. The results indicate an asymmetry with 

respect to flagellar rotation in spirochetes.  
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Introduction 
 

Bacterial chemotaxis is a complex sensory transduction pathway that enables 

cells to respond to environmental stimuli. Cells swim toward a favorable medium, 

or away from one that is toxic. A two-component phosphorelay system plays an 

essential role for this response. The most well studied systems are Escherichia 

coli and Salmonella enterica serovar Typhimurium. A family of chemoreceptor 

proteins regulates the autophosphorylation of the sensor histidine kinase CheA. 

Activated CheA phosphorylates the response regulator CheY, which then 

interacts with the switch complex at the flagellar motor to change direction of 

flagellar rotation from counterclockwise (CCW) to clockwise (CW). CCW rotation 

results in smooth swimming cells, and CW rotation results in tumbling. Null 

mutants in cheY or cheA continuously rotate their flagella CCW and 

consequently fail to tumble (194).  Cells showing a positive chemotactic response 

have longer runs and suppress the time spent tumbling (10, 32, 71, 264). 

 

Spirochetes are a structurally unique group of bacteria. The organelles for 

motility, the periplasmic flagella (PFs), reside between the outer membrane 

sheath and cell cylinder. These PFs are subterminally attached at each end of 

the cell cylinder and propel the spirochetes by rotation (48, 91, 146). In the Lyme 

disease spirochete B. burgdorferi, 7-11 PFs are subterminally attached at the cell 

poles and form a bundle. These PFs overlap in the center of the cell and form a 

continuous ridge from one cell end to the other (89). During swimming, these 

organisms run, pause, and run again either in the same or opposite direction. 

They also reverse direction without any detectable pausing (91, 234).  Pausing is 

accompanied with a major change in shape, often bending at the cell center, and 

is referred to as a flex (91). Recent models of B. burgdorferi motility indicate that 
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in translating cells, the anterior PFs rotate CCW, and the posterior PFs rotate 

CW as viewed from the end of the PF filaments along their shaft (89, 146) 

(Figure 1).  

 
Figure 2.1: Swimming cells of B. 
burgdorferi as a function of 
direction of rotation of the 
periplasmic flagella.  
Black arrows indicate direction of 
swimming. Dotted lines represent 
the outer membrane sheath. Grey 
arrows indicate direction of rotation of 
the periplasmic flagella (thin lines). 
For simplification, only one 
periplasmic flagellum is shown 
attached at each end of the cell 

cylinder. In B. burgdorferi, there are between 7-11. The top two diagram 
translation forms, and the bottom two diagram non-translational forms leading to 
a flex. 

 

Interaction of the rotating PFs with the cell cylinder cause backward propagating 

waves to be generated along the entire length of cell. Flexes result from the 

bundles of PFs rotating in the same direction (89, 91, 146).  

 

We know very little about the chemotaxis of spirochetes. In contrast to the 

chemotaxis system of other bacteria, a membrane potential mediates the 

chemotactic response in Spirochaeta aurantia (93). Several compounds and 

media components have been shown to serve as attractants and repellents for S. 

aurantia (95), and to a lesser degree for Treponema denticola (121, 147) and B. 

burgdorferi (234).  Disruption of the cheA and chemoreceptor genes dmcA and 

dmcB in T. denticola results in cells that fail to penetrate monolayers of 

eukaryotic cells (153, 154).  Genomic and transcriptional analysis of B. 

burgdorferi indicate that it has several clusters of motility and chemotaxis genes, 
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some of which function as operons (76, 79, 146).  Multiple copies of chemotaxis 

genes are present including two copies of cheA, cheB, cheR, and three copies of 

cheW and cheY. Most of the chemotaxis genes are located within two clusters 

that map far from one another. In addition, within these gene clusters there are 

several open reading frames that show no homology to motility and chemotaxis 

genes of other bacteria. One well-studied cluster is referred to as the flaA 

operon, which consists of flaA, cheA2, cheW3, cheX, and cheY3 (Figure 2a) (78, 

80, 81). Primer extension and RT-PCR analysis indicates that this cluster 

comprises an operon and is initiated with a σ70–like promoter sequence. These 

results are consistent with other transcriptional and genomic analyses that 

indicate that B. burgdorferi is unique in its control of motility and chemotaxis 

genes; the four motility and chemotaxis operons characterized to date are under 

σ70 control (79, 80).  The other less studied group of chemotaxis genes is the 

cheW2 cluster (Figure 2b). It consists of cheW2, orf566, cheA1, cheB2, orf569, 

and cheY2. In this communication, we carried out transcriptional start site and 

RT-PCR analyses of the cheW2 gene cluster. The results obtained indicate that 

this gene cluster also comprises a σ70–like initiated operon.  

 

Recent improvements in the genetic manipulation of spirochetes have allowed for 

targeted mutagenesis (27, 221, 272). We have shown that targeting the major 

flagellar filament gene flaB results in cells that lack PFs, are non-motile, are no 

longer wave-like but rod-shaped (176). To further understand the function of 

individual chemotaxis and motility genes in this species, we isolated single 

deletion mutants in the cheA1 and cheA2 genes, and a double deletion 

cheA1cheA2 mutant. The results indicate the cheA2 mutant and the double 

mutant behave like cheA mutants of other bacteria in that they constantly run in 

one direction. For this to occur, we propose there is a departure from the 
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established chemotaxis paradigm whereby the flagella rotate in the same CCW 

direction in the absence of CheA. In B. burgdorferi that lack CheA, the PF 

bundles at each end of the cell rotate in opposite directions relative to one 

another.      

 
Materials and Methods 

 

Bacterial strains, growth and chemotaxis assay conditions, and plasmids. 

A single clone of avirulent B31, referred to as B31-A, was used for all gene 

transfer experiments and served as the reference wild-type strain (27). The non-

motile PF- mutant MC-1, liquid BSK-II medium, agarose plates, growth 

conditions, and swarm agar plates have been previously described (176). 

Capillary tube chemotaxis assays were carried out similar to the method 

described by Shi et al. for B. burgdorferi (234). Assays were done using 50 µl 

capillary tubes incubated for 2 hr at 34°C in 3% CO2 atmosphere.  E. coli strains 

were grown in Luria-Bertani broth.  
 
 
 
 



Chapter 2: Asymmetrical flagellar rotation 49

Table 2.1 Plasmids and sequences of primers.  
This table contains the sources of plasmids and the sequences of primers used 
in these studies.  bold italics indicates sites of engineered restriction cut sites. 
 

DNA manipulation, PCR conditions, and primers. Restriction mapping, 

enzyme modification, and transformation were carried by standard procedures 

(14).  For amplification of target genes, primers sequences and plasmids are 

listed in Table 1. Amplified products were purified using Qiagen PCR purification 

kits or gel removing kits.  The resulting products were cloned into the respective 

plasmids for further manipulation.  Alignment and DNA analysis was done using 

Peptool, GCG, and DNAasis.  
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Construction of plasmids, pGA1kan, pGA2kan and pGA2ery, and targeted 

mutagenesis. cheA1 and cheA2 were amplified by PCR from chromosomal 

DNA, and the resultant products were cloned into pGEM-T Easy vector 

(Promega). HindIII was used to generate an internal deletion in each cheA gene. 

The 393 bp deletion in cheA1 and the 1,326 bp deletion in cheA2 were each 

replaced with a 1.3 kb flgB-kanamycin resistance cassette (176). The plasmids 

obtained, pGA1kan and pGA2kan, were used as the source of DNA for targeted 

mutagenesis. To construct the plasmid pGA2ery, the HindIII generated deletion 

in cheA2 was replaced by the amplified erythromycin resistance cassette ermC 

(221).  Restriction digest mapping indicated that the deduced direction of 

transcription of kan or ermC was in the same as that of cheA1 or cheA2. 

Preparation of competent B. burgdorferi, electroporation, and plating of 

transformants were done as previously described (27, 176).  Approximately 2 µg 

of amplified input DNA were used for electroporation. Growth media were 

supplemented with 350 µg/ml kanamycin, 0.05 µg/ml erythromycin, or as 

needed.  

 

RNA preparation, RT-PCR, primer extension, and construction of 

recombinant proteins. Total RNA was prepared for both RT-PCR and primer 

extension analysis as previously described (78).  RT-PCR was carried out by 

using the One Step RT-PCR kit (Qiagen).  Primer extension was done using the 

AMV reverse transcriptase Primer Extension System (Promega) (79).  B. 

burgdorferi CheA1 was over-expressed as a His-tagged fusion protein.  The 

complete gene was amplified and cloned into pQE31 vector (Qiagen) at 

BamHI/PstI sites, resulting in pQE-CheA1.  This construct was transformed into 

host cell M15 (pREP4) (Qiagen).  Cells readily overproduced CheA1 after 

induction with IPTG.  The overproduced protein was purified with ProBond 
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Purification System (Invitrogen) according to the manufacturer’s instructions. 

Approximately 350 µg of recombinant CheA1 protein were used to immunize rats 

to produce specific antiserum. Antiserum to recombinant CheY3 was made in a 

similar manner and will be described elsewhere (M. Motaleb, R. Bakker, C. Li, N. 

Charon, unpublished). 

 

Gel electrophoresis and western-blotting. Sodium dodecyl sulfate- 

polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting with the 

ECL detection method (Amersham Pharmacia) were carried out as previously 

reported (78, 145).  Rabbit antiserum to E. coli CheA was generously provided by 

P. Matsumura.  Monoclonal antibodies to FlaA, FlaB, and DnaK were kindly 

provided to B. Johnson, A. Barbour, and G. Benach, respectively.   

 

Electron and light microscopy, and computer assisted motion analysis. 

Standard methods for electron microscopy and negative staining were used to 

view spirochetes with attached periplasmic flagella (33). Live cells were observed 

by dark-field or phase microscopy using Zeiss optics with cells held at 34°C using 

a Physitemp temperature controlled stage (176).  Video-recording of images was 

carried out as previously described (91).  The Hobson BacTracker was used to 

track the motion of individual swimming cells (119).  Cells were suspended in 

BSK II media a final concentration of 1% methylcellulose (91).  Because of the 

large size of B. burgdorferi relative to its slow velocity, modifications were made 

for data analysis.  Cells were videotaped using dark-field illumination at 200X for 

at least one minute.  We used the XY module of the tracking system whereby the 

position of the center of a cell was determined every 1/60th sec.  In order to 

obtain specific data on velocity and reversing, we averaged every 12 data points 

(0.2 sec).  The distance the centroid traveled between these averages were 
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graphed as a 2-dimensional track and a bar chart of distance vs. time.  In 

addition, the video was digitized allowing for frame-by-frame verification of run 

and reversal intervals.  At least three cells were tracked for a given strain, and 

the results are expressed as mean ± S.D. To analyze tethered cells, cells in 

BSK-II (without methylcellulose) that adhered to the glass in the central part of 

the cell were video-recorded by phase microscopy at 2500 x g (91).  

 
Results 

Transcriptional analysis of cheW2 operon. In our initial sequence analysis of 

motility gene clusters of B. burgdorferi, we hypothesized that most of the motility 

and chemotaxis genes in B. burgdorferi were identified and mapped (Figure 2.2) 

(91).  We also found that many of these genes resided in operons that were 

initiated by σ70 promoter sequences (146). However, the recent determination of 

the entire genome revealed the presence of multiple copies of chemotaxis gene 

homologs such as cheA, cheW and cheY. Many of these newly identified 

chemotaxis genes  mapped within the cheW2 gene cluster that consists of 

cheW2, orf566, cheA1, cheB2, orf569, and cheY2 (Figure 2.2b) (76).  
 

Figure 2.2: Genetic map of the 
flaA and (b) cheW2 clusters. 
Wide arrows indicate direction of 
transcription.  
(c) RT-PCR results using primer 
pairs designated below map of 
cheW2 cluster.  
orf =open reading frame 
che = chemotaxis gene  
fla = flagellar gene 
 
 

 

Analysis of this cluster revealed that there is little intergenic space between 

genes (range 5-68 bp) with no obvious promoters within and between the genes. 
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RT-PCR analysis suggested that all six genes were co-transcribed as a 

polycistronic mRNA (Figure 2.2c).  Primer extension analysis revealed a σ70–like 

recognition sequence directly upstream of cheW2 (Figure 2.3a).  This promoter 

was highly conserved at both the -10 and -35 regions with other motility and 

chemotaxis operons (79, 80) (Figure 2.3b).  

 
Figure 2.3 (a) Primer extension 
results of cheW2 cluster show a 
σσσσ70 -like recognition sequence. 
 (b) Similarity of σ70–like promoter 
sequence of cheW2 to those of 
other motility and chemotaxis 
operons. 

The -10 region (TAAATT) was 

identical to the previously described flaA chemotaxis operon. These results 

indicate that the cheW2 cluster is initiated by a σ70–like promoter similar to the 

other four motility operons. 

 

Structure and alignment of CheA1 and CheA2. To gain insight into the 

function of CheA1 and CheA2, we compared their deduced amino acid 

sequences to each other and to their counterparts of other bacteria. The two 

cheA genes map far from each other on the linear B. burgdorferi chromosome: 

cheA1 at nucleotides 578277-580418, and cheA2 at nucleotides 706673-709264. 

The CheA amino acid sequences are 33 per cent identical. CheA1 and CheA2 

have 33 and 34 per cent identity to E. coli CheA, respectively.  Both B. 

burgdorferi CheA1 (79.4 kDa predicted size) and CheA2 (98.4 kDa predicted 

size) are larger than CheA of E. coli (71 kDa).  CheA from several bacterial are 

shown to consist of 5 functional domains (P1→P5) joined by linker regions, as 

discussed in the Introduction (26, 71, 264).  We found that CheA1 and CheA2 
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had extensive homology in each of these five domains, with less conservation in 

the region corresponding to P2.  Alignment analysis indicated that B. burgdorferi 

CheA2 is most similar to CheA proteins of the spirochetes Treponema pallidum 

(40 per cent identity) and T. denticola (42 per cent identity) (77, 231).  In addition, 

B. burgdorferi CheA2 and T. pallidum CheA share two large unique regions 

located at the putative P2 (323-339aa) and T domains (454-517aa).  In contrast, 

B. burgdorferi CheA1 had its highest homology to that of Rhodobacter 

sphaeroides CheA2 (35% identity) and Vibrio cholerae CheA1 (35% identity) (45, 

76). These results suggest that CheA1 is likely to be a recent acquisition from the 

Proteobacteria, whereas CheA2 is well conserved among the spirochete species.  

The Leptospira intrerrogans genome sequence recently became available, but 

has not been carefully analyzed from a genetic perspective (211). 

       

Construction and analysis of LC-A1 and LC-A2 mutants. To examine the 

function of the cheA genes, we targeted each by allelic exchange mutagenesis 

with accompanying deletion formation.  After electroporation and selection, PCR 

analysis indicated that the cheA1 (LC-A1) and the cheA2 (LC-A2) mutants each 

contained the kan insert. These inserts were transcribed in the same direction as 

cheA1 or cheA2. Western blot analysis was used to test for synthesis of both 

CheA1 and CheA2.  Two different sources of antibodies were used in the 

analysis. First, an antiserum directed to E. coli CheA was found to react with a 

band corresponding to CheA2 in wild-type cells (Figure 4a).  
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Figure 2.4 Western blot analysis 
using different antisera reacted 
against whole cell lysates of Wild 
Type and cheA mutants.   
Lysate is noted across the top, anti-
sera down the side.  Anti-DnaK was 
used as an internal loading control.  
Down regulation of CheY3 in the 

double cheA1A2 mutant indicates there are polar effects on translation.  FlaB is 
the major, and FlaA the minor periplasmic flagella filament proteins (21). 

 

The reacting CheA2 protein migrated at approximately 98 kDa on SDS-PAGE.  In 

addition, a similar reaction was detected in lysates of LC-A1, but not in LC-A2 

lysates. No reactivity was detected to a band corresponding to CheA1. These 

results indicate that CheA2 is expressed in wild-type cells, and that LC-A2 

suffered a mutation in the cheA2 gene encoding that protein. To test for CheA1 

expression, we raised an antiserum to recombinant CheA1. The resulting 

antiserum reacted strongly with purified recombinant CheA1, but not to 

recombinant CheA2 (not shown).  Using this antiserum, we found strong 

reactivity when tested against both wild type and LC-A2 cell lysates at a band 

corresponding to CheA1 (79 kDa) (Figure 4b). No reactivity was detected in LC-

A1 lysates.  These results indicate that both CheA1 and CheA2 were expressed 

in wild-type cells, and that mutants in the respective cheA genes were deficient in 

the proteins that these genes encode.       

 

Several lines of evidence indicate that kan insertion into cheA1 or cheA2 did not 

markedly alter downstream transcription within their respective operons.  For 

relative gene orientation please refer to Figure 2.  First, RT-PCR analysis 
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indicated all the genes downstream of both the cheA1::kan and cheA2::kan 

mutations were still transcribed (not shown). Second, although insertion of kan in 

cheA1 had no obvious phenotype (see below), mutations in the downstream 

gene orf569 resulted in cells that fail to reverse (Li and Charon, unpublished). 

Thus, the mutation in cheA1 did not negatively impact the expression of orf569. 

Third, because cheY3 is downstream of cheA2, we directly tested for CheY3 

expression in mutant LC-A2 by Western analysis (Figure 2.4c). Using an 

antiserum directed to the recombinant protein, CheY3 was found to be expressed 

at approximately the same level in mutant LC-A2 as the wild type. In sum, results 

suggest that there was no inhibition of CheY3 synthesis by the kan insert.  

Finally, mutations in cheX, which is immediately downstream of cheA2, result in 

cells that constantly flex (M. Motaleb and N. Charon, in preparation). Because 

the cheA2::kan mutant had such a markedly different phenotype than cheX::kan 

(see below), these results suggest that cheX is still expressed in the cheA::kan 

mutant. As a corollary, we tested whether transcription initiated at the flgB-kan 

promoter was responsible for transcription of the downstream genes by RT-PCR 

in mutant LC-A2. 
 
 
 
 
Figure 2.5 RT-PCR results indicating 
that transcription initiating within kan 
allows for downstream transcription 
of truncated cheA2 and cheW3. 

 

 

Using primers complementary to kan and the downstream regions encoding the 

C terminal end of cheA2 or cheW3, we obtained products of the predicted size 

(Figure 2.5). These results suggest that transcription initiated within the kan gene 
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is in part responsible for downstream transcription.  The crux of these findings 

indicates that the observed phenotype is due to inactivation of the intended 

genes not polar effects.  However to confirm these results complementation was 

performed as discussed in Chapter 3. 

 

We analyzed the behavior of both LC-A1 and LC-A2 by tracking individual cells 

for at least one minute with the Hobson BacTracker.  Cell velocity and reversal 

frequency in BSK II media with one percent methylcellulose were determined for 

the individual mutants and compared to the wild-type (91).  The velocity of the 

wild type was found to be approximately the same as that of LC-A1 and LC-A2 

(Table 2.2).  

Table 2.2 Reversal Frequency and Translational Velocity.  
for wild type, LC-A1, LC-A2, and LC-A1A2.  Results suggest that LC-A1 retained 
a wild-type phenotype while mutants in cheA2 were not able to reverse.  None of 
the cheA mutations affected swimming velocity. 
 

These results indicate that mutations in cheA1 or cheA2 did not alter cell velocity. 

The reversal frequencies of the wild type and cheA1 mutant (LC-A1) cells were 

similar (18-21 reversals/min), but mutants in cheA2 (LC-A2 and LC-A1A2) swam 

in only one direction and failed to reverse.  These mutants swam continuously 

with no stopping or flexing when tracked for as long as 5 minutes.  These results 

indicate that inactivation of cheA2 markedly altered the reversal frequency, giving 

a similar phenotype as found in cheA mutants of externally flagellated bacterial 

species.  
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Two different assays were used to test for chemotaxis in the wild-type and cheA 

mutants (1, 2, 4, 76).  Rabbit serum, a required BSK II media component, was 

previously shown to be an attractant for B. burgdorferi (76).  Using the capillary 

tube assay, wild type and LC-A1 had a strong chemotactic response to 0.5 % 

rabbit serum (Figure 2.6a).  In contrast, LC-A2 failed to have a response using 

this assay.  Using the swarm plate assay, wild type and LC-A1 cells swarmed on 

soft agar plates in a ring-formation with BSK-II medium diluted 1:5 (Figure 2.6b). 

Swarms on undiluted medium were considerably smaller than those shown in 

Figure 2.6b.  This observation suggests a steeper gradient of attractant formed in 

diluted medium during plate incubation.  Because chemotaxis requires a gradient 

of attractant this finding is expected.  The non-motile aflagellate flaB::kan mutant 

(MC-1) did not swarm.  

 

 
Figure 2.6: (a) Capillary tube 
(b), and swarm plate assays 
for chemotaxis of wild-type 
and mutants. 
Capillary tubes contained 
0.5% rabbit serum, and swarm 
plate had BSK-II 
diluted 1:5.    

 
LC-A1=cheA1::kan, LC-A2 = 
cheA2::kan, LC-
A1A2=cheA1::kan 
cheA2::ermC, MC-1=flaB::kan.  
 
Results indicate chemotactic 
ability follows: WT ~ LC-A1 > 
LC-A2 ~ LC-A1A2 > MC-1  
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These results indicate swarm formation is motility dependent, and that the cells 

are chemotactic to components of the BSK-II medium.  The LC-A2 mutant swarm 

is markedly smaller than the wild type.  Results from both the capillary tube and 

swarm plate assays indicate that mutations in cheA2 but not cheA1 resulted in an 

inhibition of chemotaxis.    

     

Construction and analysis of a cheA1cheA2 double mutant. We were 

intrigued that mutant LC-A2 swam only in one direction and failed to reverse. 

Mutations of cheA in other bacterial species result in the flagella rotating only in 

one direction.  We would expect that analogous mutants of B. burgdorferi would 

result in cells constantly flexing rather than running (Figure 2.1).  Because CheA1 

was evident in LC-A2 (Figure 2.4b), its presence could conceivably influence 

flagellar rotation in the absence of CheA2.  Accordingly, we constructed the 

double mutant cheA1cheA2 (LC-A1A2).  Essentially the 1.3 kb kan cassette in 

pGA2kan was replaced by a 1.1 kb ermC cassette (221). After electroporation 

and selection with both wild type and LC-A1 as recipients, the resultant LC-A2e 

(cheA2::ermC) and LC-A1A2 mutants were characterized. As expected, LC-A2e 

was similar to LC-A2 as it failed to reverse (not shown). Western blot analysis 

verified that both CheA1 and CheA2 synthesis were inhibited in the LC-A1A2 

mutant (Figure 2.4a,b). We tested for downstream effects of the erythromycin 

cassette in both LC-A2e and LC-A1A2.  The expression of CheY3 was 

approximately one half that of the wild type in LC-A1A2 (Figure 2.4c) indicating 

that there was some downstream effect (Figure 2.2).  

 

The swimming behavior of LC-A1A2 was compared to that of the wild type and 

the single mutants. This double mutant had a similar velocity to that of the wild 

type and single mutants, and it was identical to LC-A2 in its inability to reverse 
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(Table 2.1).  In addition, it was deficient in chemotaxis using both the capillary 

tube and swarm plate assays (Figure 2.6 a, b).  These results indicate that LC-

A1A2 resembles LC-A2 with respect to chemotaxis and cell reversal frequency.  

It also suggests that cells completely deficient in CheA swim in only one 

direction.  

 

LC-A2 and LC-A1A2 periplasmic flagella analysis. Two possible explanations 

could account for the failure of LC-A2 and LC-A1A2 to reverse directions. One 

possibility is that both bundles of PFs constantly rotate but in opposite directions. 

Alternatively, the results could be explained by one bundle rotating in one 

direction with the other bundle non-existent or present but inactive. We tested for 

the presence of PFs at both cell ends. Electron microscopy revealed that bundles 

of PFs at both ends were present in LC-A2 and LC-A1A2 (not shown). In 

addition, Western analysis indicated that the quantity of flagellar proteins FlaA 

and FlaB in both mutants were approximately the same as the wild-type (Figure 

2.4d). These results indicate that LC-A2 and LC-A1A2 have periplasmic flagella 

with similar protein content as the wild type.  

 

Periplasmic flagella rotation was examined to determine if sets at both poles 

functioned.   In other spirochete species, notably in those species with short 

periplasmic flagella that do not overlap, rotating periplasmic flagella influence the 

shape of the cell in the area where they reside.  In addition, both ends 

simultaneously generate independent gyrational motion (46, 49, 90).  Because B. 

burgdorferi flagella overlap, independent motion of flagellar bundles is not as 

easily observed.  The approach with B. burgdorferi was to analyze cells stuck to 

a glass surface near the center of the cell and video-record their motions (91).  

We analyzed these tethered cells that gyrated at the cell poles with little motion in 
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the body of the cell.  We found that in wild-type cells, changes in gyrational 

direction (i.e. CW, CCW) of one end relative to the other were readily apparent 

(not shown). Occasionally, the ends would alternate with one end stopping, and 

the other starting (Figure 2.7).  
Figure 2.7: Sequential video 
frames of wild-type and LC-A1A2 
mutant taken every 0.33 seconds. 
 
 
Arrows points to the cell end having 
a change in position relative to the 
above frame.  Data indicates that by 
frame 3 or 4, both ends were able to 
change position independently of 
each other.   
 
 
 
 
 
Beat frequencies (gyrations or 
beats/sec) of ends arbitrarily 
designated X and Y of WILD TYPE 
and the LC-A1A2 mutant are 
shown. The mean beat frequency 
was determined for each one 
second interval. 

 

 

 

These results, and those previously described with respect to non-translating-

flexing cells (91), suggest that the PFs at both cell poles are capable of rotation. 

Additionally, in cells with both ends simultaneously gyrating, the beat frequency 

at one end was occasionally seen to vary with that of the other end (Figure 2.7). 

Thus, in wild-type cells, our results indicate that both bundles of periplasmic 

flagella actively participate in cell motion. In analyzing mutants LC-A2 and LC-
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A1A2, we found that the cells did not change the direction of gyration of the ends 

as seen in the wild type.  These results are consistent with the lack of reversal 

seen with free-swimming cells.  As with the wild type, cells would occasionally 

alternate the gyration of their cell ends (Figure 2.7).  In addition, the beat 

frequency at one end would sometimes vary with respect to the other end (Figure 

2.7).  These results indicate that both bundles of PFs in LC-A2 and LC-A1A2  

participate in generating gyrational motion and can simultaneously rotate.  

     
Discussion 

In this communication we identified a fifth motility-associated promoter upstream 

of cheW2. Other characterized promoter sequences involved in motility include 

that of the flaB, flaA, flgB, and flgK operons. All of these motility gene clusters are 

initiated by σ70 promoters (79, 80); no motility gene specific promoters or sigma 

factors have yet to be identified in this species (76).  To our knowledge, B. 

burgdorferi is the only bacterial species that lacks transcriptional cascade control 

of motility gene expression by alternative sigma factors. Note that the spirochetes 

S. aurantia, T. pallidum, T. denticola, Treponema phagedenis, and Brachyspira 

hyodysenteriae all have σ28 specific motility promoters (50, 146).  Several 

possible hypotheses could account for B. burgdorferi being unique.  One 

possibility is that motility and chemotaxis are so vital for the survival of the 

spirochetes in both the tick and mammalian hosts that the genes involved are 

constitutively expressed (79, 146).  In support of this hypothesis, B. burgdorferi 

expresses flaB message and produces PFs in both the tick and the mammalian 

host (60, 88).  Alternatively, perhaps B. burgdorferi primarily relies on a 

translational control system recently described in other bacterial species (5, 77, 

120).  Preliminary results with insertion mutants in flaA, flaB, flgE, and fliF 

support this possibility (M. Motaleb, M. Sal, and N. Charon, in press). For 
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example, mutants in the hook gene flgE still synthesize flaB message but fail to 

synthesize detectable amounts of FlaB protein. These results differ from those of 

other bacteria, as mutations in flgE result in the inhibition of flagellin (FliC) mRNA 

and protein synthesis (52).  

 

The two-cheA genes map in widely separated operons.  Phylogenetic analysis 

indicates that cheA1, which is part of the cheW2 operon, likely evolved from the 

proteobacterial group. On the other hand, cheA2, which is part of the flaA 

operon, is most similar to cheA from other spirochetes. A similar conclusion was 

reached in analyzing the cheY2 and cheY3 genes (I. Zhulin, personal 

communication).  In the other analyzed spirochete species, T. pallidum, T. 

denticola, only one cheA gene is present (77, 211, 231).  The cheW2 cluster 

could be a recent addition to the B. burgdorferi genome.  Of the spirochete 

genomes sequenced, only B. burgdorferi resides in both arthropods and 

mammals, whereas T. pallidum, T. denticola dwell only in mammals.  Perhaps 

the cheW2 cluster primarily functions within the tick, whereas the flaA gene 

cluster is most active within the mammalian hosts.  The facultatively parasitic L. 

interrogans that infects amphibians, reptiles, and mammals has two cheA genes 

but expression of these genes awaits characterization (211).   

 

LC-A2 and LC-A1A2 were found to be deficient in chemotaxis using both the 

capillary tube and swarm plate assays. These mutants swam only in one 

direction, and analysis of tethered cells indicated that both bundles of the PFs 

participate in translational motility; thus, the failure of these mutants to reverse is 

not the result of only one polar bundle of PFs being active.  LC-A2 and LC-A1A2 

mutants are similar to cheA mutants found in externally flagellated bacteria, in 

that they constantly run and do not reverse or tumble.  However, in these other 
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species, cheA mutants constantly rotate their flagella in one direction (4, 10, 32, 

194, 264). In contrast, the bundles of PFs in B. burgdorferi would necessarily 

rotate in opposite directions for translation to occur (Figure 2.1). Thus, in the 

absence of CheA, i.e. the default state, one bundle of PFs rotates CCW, and the 

other bundle rotates CW. These results imply asymmetry and thus structural 

differences with respect to the PFs at the opposite ends of the cell.  Such 

flagellar asymmetry is not noted in other bacterial species.  Similar results have 

been noted in cheA mutants of T. denticola consequently, it is likely that other 

spirochetes have asymmetrical rotation of the periplasmic flagella at opposite 

ends of the cells in the absence of CheA (156).  

 

Asymmetrical location of cellular structures is described for several bacterial 

species (158, 232). For example, the stalk structure localizes at one end of the 

cell in Caulobacter crescentus at a site previously occupied by the flagellum. The 

ActA protein of Listeria monocytogenes, and the IcsA protein of Shigella flexneri 

localize at one of the cell poles in each of these species. Localization of these 

proteins targets the old cell pole, but their mechanisms of localization are 

different.  In S. flexneri, localization of IcsA is dependent on direct targeting to 

that specific pole, whereas ActA seems to be excluded from the newly 

synthesized cell pole.  Perhaps in B. burgdorferi, there is association with an 

unknown factor associated with the flagellar switch complexes at one cell pole. 

This association could result in the periplasmic flagella at that end rotating CW 

rather than CCW in the default state.  Now that the genetic tools are available for 

B. burgdorferi, the major factors for this asymmetrical rotation in spirochetes can 

begin to be deciphered.  
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Abstract 
 
Measuring the chemotactic response in Borrelia burgdorferi, the Lyme disease 

spirochete, was previously difficult because chemotaxis assays were sub-

optimal, no defined attractants were known, and enumeration was slow, 

laborious, and ineffectual at low cell concentrations.  We overcame these 

limitations by developing a protocol for enumerating cells by flow cytometry.  

Once this enumeration method was validated with direct comparisons to Petroff-

Hausser counting data, we were able to screen for attractants using a modified 

capillary tube assay.   N-acetyl-glucosamine and chitosan dimers were found to 

be chemoattractants.  Using flow cytometric enumeration and N-acetyl-

glucosamine, the capillary tube assay was optimized with respect to cell 

concentration, incubation time, chamber size, viscosity, motility buffer 

preparation, culture density, and cell starvation.  The optimized assay was then 

used to test the hypothesis that compounds that are known nutritional 

requirements, or have putative transporters encoded in the genome, will act as 

chemoattractants.  The screen for chemoattractants, to date, have included 

serine, glycine, N-n-diacetyl-chitobiose, glucose, glutamate, putricine, 

spermidine, and glucosamine, the latter four yielding a positive chemotactic 

response.  Previously, rabbit serum and tick saliva were shown to be 

chemoattractants.  However, these are complex biological mixtures with 

unknown and likely variable contents limiting their utility for the study of 

chemotaxis.  Chemoattractants yield no response from cheA2 mutants while the 

complemented form behaved similarly to wild type.  In sum, this is the first report 

of defined chemoattractants for B. burgdorferi and enumeration of a spirochete 

species by flow cytometry.  Protocols developed for this work will hopefully 

facilitate measuring the chemotactic response in other slow growing prokaryotic 

species. 
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Introduction 
 
Chemotaxis and motility are putative spirochete virulence factors (47, 154).  B. 

burgdorferi, the causative agent of Lyme disease, uses a flat wave swimming 

modality that allows these bacteria to translate in viscous gel-like media that slow 

or stop most externally flagellated bacteria (47).  Several observations suggest 

motility and chemotaxis are vital to Borrelia burgdorferi cell ecology.   As 

discussed in Introduction Section E, the B. burgdorferi life cycle involves 

transmission from an arthropod vector to a mammal and back to the arthropod 

over the course of several seasons (249).  When an infected Ixodes tick feeds on 

a mammal, B. burgdorferi in the tick translocate from the gut, to the salivary 

glands and then into the host (193).  A season later, when the next generation of 

Ixodes nymphs feed and become infected, B. burgdorferi likely using chemotaxis 

and motility concentrate at the site of feeding and is pulled back into the 

arthropod with the blood meal (143, 204, 289).  Further evidence for the role of 

chemotaxis and motility in pathogenesis comes from clinical experience.  The 

clinical course of Lyme disease includes spreading annular erythematous 

lesions, thought to be the result of bacterial movement through the dermis away 

from the site of the arthropod bite (179, 249, 251).  Bacteria from these lesions 

then spread hematogenously and across facial planes to infect other organs.  In 

sum, the clinical course and movements in nature likely require a robust 

chemotaxis and motility system.  

 

There is no direct evidence that chemotaxis and/or motility play a role in B. 

burgdorferi pathogenesis.   An undefined flagellar-less mutant demonstrated 

diminished capacity to invade endothelial cells.  It also was non-infectious, 

surviving only 24 hours post intradermal inoculation (219).  The mutation in this 

strain remains undefined and its plasmid content was never characterized.  The 

latter point is significant because plasmid loss occurs readily during laboratory 

passage and correlates to a dramatic loss of virulence (135).  This gap in the 
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literature promises to be filled by genetic advances that allow manipulation of 

pathogenic strains.  Thus data, while not conclusive, do infer that chemotaxis and 

motility are intrinsic to the pathogenesis of B. burgdorferi.  

 
Chemotaxis and motility are best understood in the peritrichous enteric species 

Escherichia coli and Salmonella enterica serovar Typhimurium (hereafter 

referred to as S. enterica) (10).  Bacterial chemotaxis, as described in E. coli and 

S. enterica, involves a sensory transduction system that enables cells to respond 

to environmental stimuli whereby cells swim toward a favorable medium, or away 

from one that is less favorable.  A two-component regulatory system involving a 

histidine kinase and response regulator play an essential role in this response.  

Methyl accepting chemotaxis proteins (Mcps) bind attractant molecules in the 

periplasmic space leading to CheR mediated methylation.  Methylation occurs 

concomitantly with a reduction in autophosphorylation of the associated histidine 

kinase CheA.  Activated CheA phosphorylates the response regulator CheY.  

Phosphorylated CheY (CheY-P) then interacts with the switch complex at the 

flagellar motor to change direction of flagellar rotation from the default counter-

clockwise (CCW) to clockwise (CW) as viewed along the flagellum toward the 

motor insertion.  These modes of rotation correlate with running or tumbling, 

respectively.  Mutants in CheA or CheY exhibit a constantly running phenotype.  

This system allows organisms to swim up a gradient attractant or away from a 

toxic environment in a manner known as a biased random walk.  The 

suppression of CheA autophosphorylation activity is transient.  As the 

methylation sites on the Mcps become full, the suppression of CheA 

autophosphorylation activity ceases.  This process is known as adaptation, and 

allows for taxis to additional attractants on the background of a first attractant  

(10, 32). 

 

B. burgdorferi motility differs from the E. coli – S. enterica model structurally and 

genetically.  Structurally, spirochete flagella bundles are sandwiched between the 

cell cylinder and outer membrane sheath with motor clusters positioned 
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subterminally at each pole, earning them the name periplasmic flagella (PFs).  

This structure contrasts with most motile bacteria species, which are externally 

flagellated.  The mechanism of rotation appears to be largely homologous 

between internally and externally flagellated bacteria.  As mentioned, CCW 

rotation in externally flagellated bacteria leads to smooth translation.  In contrast, 

spirochetes must have their polar flagella rotate in opposite directions, as 

observed from the center of the cell, for smooth translation to occur (47, 91).  

 

Genetic analysis indicates B. burgdorferi differs from the E. coli – S. enterica 

paradigm and suggests the importance of chemotaxis and motility to the 

organism’s ecology.  B. burgdorferi has a genome a quarter the size of E. coli, 

but carries not only the full complement, but also multiple copies of several 

chemotaxis and motility genes.  These motility and chemotaxis genes constitute 

approximately 5% of B. burgdorferi’s genetic capacity.  Additionally, these 

putative chemotaxis and motility genes are expressed in the absence of the 

sigma factor dependant cascade control used in the E. coli-S. enterica model and 

are constitutively expressed in the arthropod and mammalian hosts (6, 45, 76, 

79, 82).  These differences, and the large percentage of the B. burgdorferi 

genome dedicated to these functions, highlight the importance of motility and 

chemotaxis to the B. burgdorferi life cycle (251).  

 

Measuring bacterial chemotaxis with the capillary tube assay is well documented 

in the literature (2, 4, 95, 126, 177, 189).  The standard assay is to place a 

putative attractant in a capillary tube that is then incubated with one orifice 

submerged in a cell suspension.  Cells entering the tube during incubation are 

then enumerated by viable counts.  Several optimization steps were performed to 

adapt this assay to B. burgdorferi.  The slow growing nature of B. burgdorferi 

makes measuring the chemotactic response with viable counts impractical 

because colony formation requires approximately 20 days.  Initially, assaying 

chemotaxis in B. burgdorferi required enumeration using a Petroff-Hausser 

counting chamber.  This technique requires high cell densities and is labor 
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intensive.  Here we overcame these limitations by using flow cytometry for 

enumeration. 

 

Characterizing defined attractants is critical to describing the role of chemotaxis 

signal transduction components.  Previously documented B. burgdorferi 

attractants, rabbit serum and tick saliva, are complex biological mixtures making 

it difficult to determine which compounds have biological activity and which are 

inert (234, 236).  In other bacterial species, attractants are often used for nutrition 

(3, 29, 128, 136, 155).  With the availability of the B. burgdorferi genome, several 

putative transporters were identified (45, 76).  This knowledge of transporters has 

lead to the characterization of the transport mechanism for the known nutrient 

and chemoattractant N-acetyl-glucosamine (273).  Our hypothesis states 

selected compounds with transporters encoded in the B. burgdorferi genome, as 

well as known nutrients, will act as chemoattractants.  Accordingly, several of 

these compounds were assayed using the capillary tube methodology. 

 

Materials and Methods 
 

Bacterial strains and growth conditions. A single clone of high-passage B. 

burgdorferi B31 strain and its cheA2 null mutant cheA2::kan (referred to as B31A 

and LC-A2, respectively) were grown at 34°C in liquid BSK-II medium 

supplemented with 5% rabbit sera (17, 70, 144).  Kanamycin (100-350 µg/ml) 

and streptomycin (80µg/ml) were used for selection as needed (144).  The 

preparation of B. burgdorferi competent cells and the electro-transformation and 

selection procedures were previously described (176, 220). 

 
Capillary Tube Chemotaxis Assay.  The capillary tube assay as developed by 

Pfeiffer and described by Adler was optimized to measure B. burgdorferi 

chemotaxis (1).  B. burgdorferi were grown to late log phase (~7.5 x 107 cells/ml) 

from an initial incoulum of 2 x 105 cells/ml and centrifuged at room temperature 

for 8 min at 1800 x g and re-suspended in motility buffer.  Motility buffer 
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consisted of phosphate buffered saline (PBS, KCl 2.68 mM; KH2PO4 1.47 mM; 

NaCl 136.9 mM; and Na2HPO4 8.10 mM) at pH 7.4 supplemented with 2% re-

crystallized bovine serum albumin (BSA) (Sigma-Aldrich Co, St. Louis, MO USA) 

and 1 x 10-4 M ethylenediamine-tetraacetic acid (EDTA) (233).  Chemotaxis 

chambers consisted of a 2 ml microfuge tube with a Parafilm sheet closed under 

a perforated cap.  After gentle re-suspension in motility buffer, the cells were 

enumerated by flow cytometry, diluted to 1x107 cells/ml in equal parts motility 

buffer and 2% methylcellulose (400Cpi Sigma-Aldrich Co., St. Louis, MO, USA) 

in PBS and 300 µl pipetted into the microfuge tubes.  Attractant filled 70 µl 

capillary tubes (cat # 22-362-574 Fisher Scientific, Pittsburgh, PA, USA), plugged 

with silicone grease, were inserted into the chambers.  Attractant solutions had 

the same methylcellulose and BSA concentrations as the cell pools.  Assay 

viscosity was measured with a number 100 Cannon-Fenske routine viscometer 

and was determined to be 224 Cpi at 33°C.  The chambers were then incubated 

horizontally at 33°C in 3% CO2 for 120 minutes.  After incubation, the capillary 

tubes were removed, wiped with a paper towel, and the contents collected by 

centrifugation at 1000 x g for less than 5 seconds.  Flow cytometry was then 

used to enumerate the spirochetes.  Optimization experiments are presented in 

the Results section. 

 

Three controls were used to test that chemotaxis was measured in our system.  

First, to assay background migration, buffer filled (no attractant) tubes tested 

random accumulation of cells in capillary tubes (1).  Second, the non-chemotactic 

cheA2 mutant (LC-A2) that was previously shown by swarm plate and capillary 

tube assay not to respond to rabbit serum was used as a negative control (144).   

Finally, assays with no gradient of attractant were tested.  This control consisted 

of an attractant solution placed in the cell pool as well as in the capillary tube.  In 

the no gradient situation, cells should not demonstrate enhanced migration into 

the capillary tube compared to the buffer control (10 and references within).  The 

chemotactic response was expressed as factor increase over buffer control.  A 

http://www.sigma/
http://www.sigma/
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response greater than 2 times the buffer control was considered significant (59, 

124, 126, 168, 177).   The response was determined by: 

(1) Calculating the mean number cells (~1 x 105→1 x 106 cells/ml) in buffer 

filled tubes (n=5); 

(2) Dividing number of cells in an experimental capillary tube (n=5) by the 

average number in buffer filled tubes (n=5); 

(3) Calculate the mean and standard deviation (SD) of the values arrived at in 

(2).  Results are reported as mean ± SD. 

All chemicals were obtained from Sigma-Aldrich Chemical Co. St. Louis, MO, 

USA, with the exception of chitosan dimers (glucosamine dimers) (USBiologcial 

Co., Swampscott, MA, USA) and N-n-diacetyl-chitobiose (Cape Cod Associates 

Inc., East Falmouth, MA, USA) 

 

Flow Cytometric Enumeration of B. burgdorferi.  Samples were prepared by 

diluting cell suspensions in 0.01M HEPES, 0.15M NaCl, pH 7.4, containing 10 

ηM fresh Syto61 (Molecular Probes Inc., Eugene, OR, USA) and 3→5 x 103  6 

µm-diameter quantitative polystyrene beads/ml (catalog # 4k-06 Duke Scientific 

Co., Palo Alto, CA, USA).  All media and solutions were 0.1 µm filtered before 

use.  Syto61 is a membrane permeable nucleic acid dye giving a fluorescent 

signal readable on channel FL4 (139).  Bead enumeration acted as an internal 

control to insure the volume enumerated was consistent for each sample.  

Samples were run at a rate of 12 or 16 µl / minute for 60 or 120 seconds.  This 

run time yielded an event count of at least 300 in the R2 region where cells 

sorted.  A Becton-Dickinson FACScalibur with 15mW air-cooled argon and red 

diode lasers operating at 488 ηM and 635 ηM, respectively was used for all 

counting procedures.  No compensation for spectral overlap was necessary, as 

there was no spectral overlap between detectors (42).  Representative machine 

settings can be found in Table 3.1.  All data acquisition and analysis were done 

with CellQuestPro (Becton-Dickinson&Co., San Jose, CA, USA) and MSExcel 

(Microsoft Co., Redman, WA, USA). 
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Table 3.1 Representative FACScalibur Machine Settings. 
Slight adjustments were made based on variations in experimental conditions.  
No compensation was necessary. 
 
Motion Analysis and Swarm Plates.  Two methods were used to track 

swimming cells.  First, the Hobson BacTracker was used to track the motion of 

an individual B. burgdorferi cell to determine its reversal frequency and velocity 

as described before (144).  Second, a software package marketed as Volocity 

(Improvision Inc, Coventry, UK ) proved able to track B. burgdorferi more 

proficiently.  Film of swimming cells was captured with iMovie on a PowerMac 

Dual G4 (Apple Computer Inc., Cupertino, CA, USA) using a Scion LG-5 (Scion 

Inc, Fredrick, MD, USA) frame grabber card and a Dage MTI (Dage-MTI Inc. 

Michigan City, IN, USA) black and white video camera.  This video was exported 

as a QuickTime (Apple Computer Inc. Cupertino, CA, USA) movie, and imported 

into OpenLab (Improvision Inc, Coventry, UK) where the frames were cropped, 

calibrated using a stage micrometer, and saved as a .LIFF file.  Volocity was then 

used to analyze video sequences on a PowerMac Dual G5 (Apple Computer Inc., 

Cupertino, CA, USA).  Cells were prepared as if they were to be used in a 

chemotaxis assay, centrifuged, resuspended in motility buffer and 

methylcellulose, and then visualized at 200 x magnification at 35°C with a heated 

stage (Physitemp Inc, Clifton, NJ, USA) equipped Zeiss Axioskop 2 (Carl Zeiss 

Inc. Jena, Germany).  Swarm plate assays were performed as previously 

described (144). 

 

 

 
 

Parameter Detector Voltage AmpGain Mode Use 

P1 FSC E01 1.00 Log  

P2 SSC 334 1.00 Log  

P3 FL1 487 1.00 Log GFP 

P7 FL4 640 1.00 Log Syto-61 
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Results 
 
Use and optimization of flow cytometry to enumerate cells from the 
capillary tube assay.  Previously, Petroff-Hausser counting was used to 

enumerate B. burgdorferi in chemotaxis assays (144, 233).  This procedure is 

cumbersome, requires high cell densities making interpretation difficult, and is 

labor intensive.  Therefore, a flow cytometry protocol was developed to 

enumerate B. burgdorferi.   Flow cytometry allows for visualization of a cell 

population based on scattered and transmitted laser light.  The simplest form 

shows particles on an XY axis, with the signal from scattered light (side scatter) 

plotted the Y-axis, and transmitted light (forward scatter) on the X-axis.  By using 

side scatter detectors that sense specific wavelengths of light, the presence of a 

fluorescent dye is readily visualized.  We used this capability to read signal from 

Syto-61, which is a membrane permeable nucleic acid dye.  By staining with 

Syto-61, we were able to differentiate which particles have nucleic acids from 

those that do not.  As expected, nucleic acid containing particles were cells that 

are then easily counted, or in the parlance of flow cytometry, “gated on” (61).   

 

Figure 3.1 shows four representative flow cytometric analysis dot plots with 

identical gating.  Forward scatter is represented on the X-axis and correlates with 

particle size.  Side scatter is represented on the Y-axis and correlates with 

cellular complexity (Plot A) or fluorescence (Plots B, C, and D).  Plots A and B 

demonstrate the presence of B. burgdorferi in an  
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Figure 3.1  Four representative dot plots with identical gating.  
Forward scatter is represented on the X axis for all plots and side scatter (cellular 
complexity) (Plot A) or intensity of Syto61 staining (Plots B, C, D) are shown on 
the Y-axis.  Plots A and B show unstained wild type B31 cells with side scatter or 
emissions read on FLH-4 (Syto61), respectively.  As expected, unstained cells 
are not visualized with the detector for Syto61 (plot B).  Plots C and D show 
populations of stained B31 and cheA2 mutants in Region 2 (R2). Beads (R3) can 
also be seen forming a distinct population.  
 
unstained sample.  Plot A depicts the physical complexity of a cell population by 

graphing non-fluorescent events.   Results indicate, as expected, particles (cells) 

cluster based on size (forward scatter plots A,C, and D Figure 3.1).  Plot B 

illustrates that unstained cells give no signal when measured with a fluorescence 

detector, showing there is no cellular autofluorescence to skew cell counts.  Plots 
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C and D illustrate that the addition of dye allows for segregation of cells and 

debris.  Plots C and D show that populations of stained B31 and LC-A2 fell into 

the region (gate) 2 and the 6 µM diameter polystyrene beads into region (gate) 3 

(R3).  These parameters allowed for the delineation of B. burgdorferi from beads, 

background debris, and machine noise based on size difference and staining 

characteristics, leaving little concern that non-staining particulate debris lead to 

skewed cell counts. 

 

Flow cytometry provided the tools to overcome the limitations to the capillary 

tube chemotaxis assay as outlined in the Introduction.  Flow cytometry can 

enumerate other bacterial species, but this is the first report of enumeration of a 

spirochete (42, 98, 139, 243, 270).  

 
Figure 3.2:  Flow cytometry (FACS) vs. Petroff Hausser Counting. 
Across a range of dilutions both counting methods gave similar results with 
correlation coefficients of > 0.95.  The equations of the linear regression lines are 
noted as well.  Cells were centrifuged, suspended in motility buffer and then 
diluted as needed in PBS for enumeration by Petroff-Hausser (P-H) counting 
(300 to 600 cells / field) (squares).  Alternatively the same samples counted by 
PH were diluted 1:500 in HEPES + Syto61 dye and counted by flow cytometry 
(circles).  
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The validity of the flow cytometric approach is demonstrated in Figure 3.2, which 

directly compares B. burgdorferi cultures counted with flow cytometry (FACS) or 

a Petroff-Hausser counting chamber.  Results from either counting technique 

were statistically identical, and both had correlation coefficients of > 0.95.  The 

equations of linear regression lines are provided.  Because results derived using 

flow cytometry greatly increased the productivity of the capillary tube assay, it 

was adopted as the primary counting method.  Additionally, it allowed for 

enumeration of lower densities of cells.  This capability led us to use 1x107 cells 

per ml in an assay instead of the approximately 1x109 cells per ml used 

previously (144).  Using lower densities of cells decreases the possibility taxis 

toward a metabolite generated during incubation occurs and minimizes cell 

clumping. 

 

Optimization of parameters for the capillary tube assay.   Once the flow 

cytometry protocol was generating data, we used the high throughput of this 

system to optimize the classic capillary tube assay for B. burgdorferi.  The 

capillary tube assay is predicated on bacteria swimming up an attractant gradient 

generated around the mouth of a capillary tube.  To optimize this assay, seven 

variables were adapted.  These included: cell concentration, assay incubation 

time, assay chamber, viscosity of the assay media, bovine serum albumin 

preparation used in the motility buffer, phase of culture growth, and starvation of 

cells in motility buffer before exposure to the attractant.   

 

a) Cell concentration assays using different concentrations of cells in the 

cell pool indicated that low concentrations of cells (1 x 105 cells/ml) gave a 

stronger response to lower concentrations of attractants (0.01M NaG) 

while high concentrations of cells (1 x 1010 cells/ml) responded better to 

high concentrations of attractant (0.1M NaG).   At high cell densities low 

concentrations of attractant were perhaps quickly metabolized, so less 

attractant would be available to trigger a chemotactic response.  All 

subsequent experimental assays used 1 x 107 cells/ml.  This concentration 
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gave sufficient cell numbers for reliable enumeration, were consistent with 

prior work, and limited the possibility that a metabolite could be acting as 

an attractant (Figure 3.3) (1, 59, 177).   

 
 

Figure 3.3 The chemotactic response as a function of the number of 
cells in  the cell pool. 
The thin line illustrates the response to 0.01 M while the heavy line illustrates 
the response to 0.1M  N-acetyl-glucosamine, respectively.  

 
b) Incubation time was determined by counting cells entering attractant 

filled tubes at 30-minute intervals for a 4-hour period.  Cell numbers 

increased for 90 to 120 minutes (Figure 3.4).   The chemotactic response 

likely fell after this point due to nutrient limitation.  Therefore, 120 minutes 

was used as the optimal assay time. 
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Figure 3.4: Chemotactic response per assay time. 
These experiments were done as 5 separate assays from the same cell culture.  
In these experiments, assays were ended every 30 minutes to measure the 
chemotactic response over time to 0.01 M N-acetyl-glucosamine.  Based on 
experience and results similar to those shown we chose 120 minutes as the 
standard assay time. 
 

c) A new assay chamber was sought because glass U tubes were 

cumbersome for performing multiple assays.  A 2 mL centrifuge tube was 

used in place of Adler’s U-tube-on-a-plate design to create the chambers.  

The centrifuge tube has the advantages of being stackable, creating a 

uniform pool size, and limiting investigator exposure to B. burgdorferi 

contaminated glass.  The latter is an important consideration if the 

chemotactic response of pathogenic strains are to be assayed.  Attractant-

filled 70 µl micro-hematocrit capillary tubes provide the volume necessary 

for flow cytometric analysis.  Consistently, the centrifuge tubes were more 

proficient and economical than the U tubes (Figure 3.5). 
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Figure 3.5: U Tube vs. 2 ml microfuge tube assay for measuring 
chemotaxis. 
 N-acetyl-glucosamine (NaG) was used as the attractant in 0.01 M or 0.1 M 
solutions.  The 2 ml microfuge tubes consistently gave more accurate and 
economical results.  
 

d) Macroscopic viscosity is known to increase the translational velocity of 

spirochetes (90, 96, 131, 218).  Increasing viscosity facilitates the entry of 

spirochetes into attractant filled tubes while slowing non-specific entry of 

cells into buffer filled tubes.  We found the added methylcellulose reduced 

variability between tubes and was adopted as standard procedure (Figure 

3.6).  The addition of methylcellulose in the assay media is a well 

documented method to increase the macroscopic viscosity (25).  
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Figure 3.6: Effect of increasing assay viscosity. 
In this assay the chemotactic response of 1x107 cells / ml to 0.01M N-acetyl-
glucosamine (NaG) was measured in the presence and absence of 1% 400 
mesh methylcellulose.  This solution had a viscosity of 224 Cpi at 34°C.  The 
marked improvement in the chemotactic response suggests the methylcellulose 
facilitated chemotaxis. 
 

e) We found the type of preparation of bovine serum albumin (BSA) in the 

motility buffer influenced chemotactic response.  Maintaining motility 

throughout the assay is vital to measuring the chemotactic response.  We 

found motility was better preserved in buffer made with re-crystallized 

bovine serum albumin (BSA) (Fraction IV), than the BSA (Fraction V) that 

is used to make BSK II media.  Fatty acid free BSA preparations seemed 

to shorten the period of time cells remained mobile.  Because crystallized 

BSA greatly improved the chemotactic response, it is used to make 

motility buffer  (Figure 3.7) (53). 
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Figure 3.7: The chemotactic response of cells in preparations of motility 
buffer made with different BSA formulations. 
MB = fraction V BSA, FA = Fatty acid free, and RC = Fraction IV (recrystallized) 
BSA.  CheA2- indicates the response to the non-chemotactic cheA2 mutant.  
Recrystallized BSA increased the chemotactic response of cells in the assay. 
 
 

f) To determine when in the growth curve B. burgdorferi would 
demonstrate the most rigorous chemotactic response, daily 

chemotaxis assays were performed from a single large culture (Figure 

3.8).  Data indicated that cells in late log phase were the most chemotactic 

when they were dividing every 9.33 hours.  Cells grown from a stationary 

phase incoulum of 2 µl / ml in fresh media took 72 hours to reach this 

density. 
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Figure 3.8: The chemotactic response as a function of culture age. 
Every 24 hours the chemotactic response was measured to 0.01 and 0.1 M 
N-acetyl-glucosamine (NaG).  The chemotactic response is illustrated on the 
left hand Y axis.  Light grey and dark grey bars correlate to the chemotactic 
response to 0.01 and 0.1 M N-acetyl-glucosamine (NaG), respectively. The 
thin black line is the growth curve, plotted on the right hand Y axis.  These 
results indicate that cells in late log phase (arrow) are the most chemotactic in 
this assay.  The average division time during log phase was 9.33 hours.   

 
g) The final optimization was “starving” the cells in motility buffer before 

running the assay (Figure 3.9).  The hypothesis being, if the cells were in 

acute need of nutrients, they perhaps would be more chemotactic.   We 

noted only a decline in the sensitivity of the assay by starving the cells up 

to 150 minutes before starting the assay. These experiments optimized 

the capillary tube assay to B. burgdorferi, and will facilitate measurement 

of chemotaxis in other fastidious slow growing bacterial species. 
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Figure 3.9:  The chemotactic response of cells starved in motility buffer 
before beginning the assay. 
The chemotactic response to 0.1M N-acetyl-glucosamine was measured in 
cells that were starved for 45, 75, 90, 120, or 150 minutes.  The chemotactic 
ability of B. burgdorferi declines with starvation. 

 

The B. burgdorferi mutant LC-A2 served as a non-chemotactic control.  A 

mutation in cheA interrupts the chemotaxis signal transduction cascade (32).  

The cheA2::kan mutant of B. burgdorferi is non-chemotactic as measured by 

swarm plate and capillary tube assay (144).  Recently, LC-A2 was 

complemented in trans (Bakker, Li, Miller, Cunningham, and Charon, in 

preparation).  To determine if cheA2 complementation restores chemotaxis, two 

different assays were used.  The swarm plate assay indicated that wild type and 

the cheA2 complemented strain formed 17 to 18 mm diameter swarms, 

compared to the 3-5 mm diameter swarms for the LC-A2 strain.  The capillary 

tube assays gave congruent results as shown in Figure 3.10.  
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Defined attractants for B. burgdorferi.   We tested several compounds for 

chemoattractant activity.  Compounds were chosen based on known nutritional 

requirements and/or the presence of a putative transporter in the genome.  N-

acetyl-glucosamine, glucosamine, and chitosan dimers (glucosamine dimers) 

were found to be attractants.  Neither glucose (234) nor N-n-diacetyl-chitobiose 

acted as an attractants although they are transported into the cell (45, 76, 273).   

These are the first defined attractants for B. burgdorferi and they were used to 

measure the chemotactic response of the wild type and LC-A2.  The cheA2-

complemented strain was tested with N-acetyl-glucosamine.  Data indicate that 

LC-A2 was non-chemotactic to all tested compounds.  Complementation of LC-

A2 with the wild type gene restored chemotactic activity to N-acetyl-glucosamine 

showing restoration of the phenotype (Figure 3.10) (Table 3.2). 

 

Attractant / Concentration Average Response N 

N-acetyl-glucosamine 0.01 M 2.27 ± 1.31 48 

N-acetyl-glucosamine 0.1 M 3.16 ± 1.08 156 

Chitosan dimers 0.01M 3.15 ± 1.42 76 

Chitosan dimers 0.1M 4.96 ± 2.22 10 

N-n-diacetyl-chitobiose 0.01M 1.13 ± 0.55 64 

Glucosamine 0.1M 4.23 ± 1.69 93 

Glucose 0.1M 1.78 ± 0.79 18 

 
Table 3.2: Average response of B. burgdorferi strain B31A to different 
chemoattractants 
and concentrations over a period of 24 months.  Average Response is listed as 
factor increase over buffer control ± one standard deviation.   N is the total 
number of experiments performed with each attractant. 
 
Several other compounds have been tested with negative or mixed results (Table 

3.3).  The amino acids serine and glycine are notable examples.  Additionally, a 

dilute solution of ethanol (0.5%) acted as an attractant.  Not only was ethanol an 

attractant by itself, it also acted synergistically with other attractants, notably 

chitosan dimers and rabbit serum.   The tri-peptide His-Pro-Leu was tested for 
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attractant activity due the presence of an oligopeptide transporter in the genome 

and reports of attractant activity to these compounds in other bacterial species 

(76, 151, 161).  However, His-Pro-Leu did not act as an attractant at tested 

conditions.   While intriguing, results with ethanol were not followed up due to 

complexities that arise when looking at attractant mixtures.  

 

Attractant  Relative 
Response 

Attractant  Relative 
Response 

Serine - N-acetyl-glucosamine ++ 
Glycine - 0.5% Rabbit Serum + 
β-Alanine -   Chitosan Dimers ++++ 
Ethanol 0.5% ++ Histidine-Proline-

Leucine 
- 

Glutamate ++ N-n-diacetyl-chitobiose - 
Putricine + Glucose - 
Spermidine + Glucosamine +++ 
 
Table 3.3: Relative Response to screened chemoattractants in the capillary 
tube assay. 
 +’s indicate a stronger positive chemotactic response of wild type B31 cells, 
whereas –‘s indicate no significant response.  A positive chemotactic response 
was considered an average response greater than 2 times the buffer control.  
Unless otherwise noted all attractants were tested at 0.1 M. (M. Miller and R. 
Bakker unpublished) 
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Figure 3. 10: The Response Profile of Wild-type (B31), LC-A2 and cheA2 
complemented 
strains to N-Acetyl-glucosamine, chitosan dimers, N-n-diacetyl-Chitobiose, 
glucose and glucosamine.  For each of these compounds, a dose response, a no 
gradient control, and a non-chemotactic control were done.  Cell strain and 
concentration, or no gradient of attractant is noted on the X-axis while the Y-axis 
is expressed in terms of factor increase over buffer control. The no gradient 
control was performed with the highest concentration of chemoattractant tested.  
WT = wild type, A2 = cheA2::kan, A2+ = cheA2::kan in trans complemented. 
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Translational velocity.  We were concerned that the tactic response measured 

was unrelated to chemotaxis.  While results with LC-A2 (cheA2 mutants) and no 

gradient controls suggest this is unlikely, the measured response could be due to 

a simple increase in swimming speed in the presence of a nutrient.  To test for 

this possibility, cells in motility buffer, 0.1M N-acetyl-glucosamine, and 0.1M 

glucosamine were tracked at time zero and 120 minutes later.  There was no 

statistically significant difference in the swimming speeds of these groups.  All 

were in the range of 2 to 4 µM per second range (N = 8 to 10 cells), consistent 

with previously reported results (Table 3.4)  

 

 0 minutes 120 minutes 
Buffer 2.39±1.03 µm/sec 2.45±1.14 µm/sec 
0.1M N-acetyl-glucosamine 2.88±0.86 µm/sec 1.51±0.37 µm/sec 
0.1M Glucosamine 2.67±0.88 µm/sec 3.36±2.05 µm/sec 
 
Table 3.4: Translational velocities � one standard deviation 
of B. burgdorferi B31 in a 224Cpi solution of methylcellulose and motility buffer 
with and without the attractants N-acetyl-glucosamine and glucosamine at times 
0 and 120 minutes. N = 8 to 10 cells for each average. 

 
Discussion 
 
These studies define the capillary tube chemotaxis assay for B. burgdorferi and 

introduce the Volocity tracking system to prokaryotic motion analysis.  In addition, 

we identified the first defined attractants for B. burgdorferi.  Using the capillary 

tube as well as cell tracking assays we show that B. burgdorferi’s ability to 

reverse is related to chemotaxis, as the cheA2 mutant is non-chemotactic and 

unable to reverse.  In this discussion I will present the significance of known 

chemoattractants, justify how we arrived at the compounds and concentrations 

used, and outline future work that is now possible in light of these findings. 

 

Previously, chemotaxis in B. burgdorferi was commonly assayed with swarm 

plate assays.  The more rapid capillary tube assay was labor intensive due to 

enumeration by Petroff-Hausser counting, thus limiting the number of assays that 
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could be performed.  Enumerating spirochetes from these assays by flow 

cytometry offered many advantages.  By using flow cytometric enumeration, five 

to ten times as many assays can be easily completed in a day.  These assays 

are less labor intensive and less subject to experimental error than capillary tube 

assays enumerated by Petroff-Hausser counting.  We expect that the 

optimization of this assay will be helpful in enumerating not only B. burgdorferi 

but also other spirochete and slow growing bacterial species.    

 

This work found the first defined attractants for B. burgdorferi.  These include N-

acetyl-glucosamine, glucosamine, and chitosan dimers.  N-acetyl-glucosamine is 

an essential nutrient for Borrelia species, metabolized for energy, and mobilized 

for cell wall synthesis (18, 76, 180, 273).  Hyaluronates found in mammalian 

connective tissue are 50% N-acetyl-glucosamine.  This suggests that N-acetyl-

glucosamine could be available as breakdown product in joint tissues (273 and 

references within, 287).  These observations are perhaps of clinical significance, 

as Lyme disease was first described as a rheumatoid arthritis like disease (253, 

255, 256).  It was these characteristics that led to our hypothesis that N-acetyl-

glucosamine would act as a chemoattractant.     

 

Defining significant chemotaxis.   The chemotactic response measured by the 

capillary tube assay is read relative to the buffer control.  The number of cells 

entering buffer filled tubes is compared to the number of cells entering tubes 

containing putative chemoattractants.  Therefore, a significant response was 

expressed as a ratio of the number of cells in the attractant filled tubes as 

compared to the buffer filled tubes.   Adler et. al. defined the “threshold” of a 

positive chemotactic response to be two standard deviations above the buffer 

controls in experimental tubes (172).  Other workers used a simple factor of twice 

the buffer control to determine a significant chemotactic response (124, 126, 

177).   The higher threshold of twice the number of cells in the attractant filled 

tubes as the buffer filled tubes was chosen as the level of significance.  E. coli or 

Pseudomonas aeruginosa show responses of 10 to 90 times increase over buffer 
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control (1, 124, 171, 172).  Spirochetes, as compared to other bacteria, have not 

shown as strong a chemotactic response.  Spirochaeta aurantia show 6 to 10 

fold increases over buffer control, while Brachyspira hyodysenteriae show 

responses of 2 to 16 times (95, 126).  Data indicate that B. burgdorferi has 

responses in the range of 2 to 5 times the buffer control.  Due to this lower 

overall gain, the more rigorous standard was chosen to ensure a true 

chemotactic response was measured (Table 3.2). 

 

Because relatively high concentrations of attractants were used in the 
capillary tube assay, we were concerned that the attractant gradient 

dissipated quickly.  Additionally, our assay used a 70 µl capillary tube with an 

aperture 7.6 times the area of a 1µl capillary tube making early dissipation of the 

gradient a concern (1).  A dissipated attractant gradient would lead to no 

chemotaxis occurring as was seen in no gradient controls.  Concentration at 

several points were estimated using (182): 

 
c = (C) (a / r) erfc {(r-a) / [2 √(Dt)]} 

 

where c is concentration at any time t and distance a away from mouth of tube. 

Time t is measured in seconds after diffusion begins, a is radius of the capillary 

tube aperture, r is distance to the aperture, C is concentration of attractant in the 

capillary tube, D is the diffusion constant 1x10-3mm2/s, and erfc is the error 

function as calculated by MSExcel.    

 

ERFC(x) =  2/√pi  ∫ e-t^2 dt = 1-ERFC(x)     ∫ from x to ∞ 

                             

Given the microfuge tubes are 9 mm in diameter and the 70 µl capillary tube has 

an interior diameter of 1.1 mm, a maximal diffusion distance of 4.5 mm and an a 

value of 0.055 mm were used.  The diffusion coefficient was estimated from the 

rate of diffusion of a small molecule in water.  Using this equation, assuming that 

the concentration in the capillary tube remains the same, and the diffusion 
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coefficient applies at 33°C, concentration curves were calculated at 6 time points 

as shown in Figure 3.11.   

 
 
Figure 3.11: Estimation of the Attractant Gradient. 
Estimated concentration of the attractant (y axis) at a distance (x axis) and time 
(z axis) in the chemotaxis assay.  Concentration is moles, distance is in mm and 
time is in seconds.  At 2 hours (7200 seconds) a gradient of attractant is 
maintained.  
 

These calculations indicate that at 2 hours an attractant gradient is maintained in 

the capillary tube. 

 

High concentrations of chemoattractants are often necessary to elicit a 
measurable response.  Concentrations of 0.1 M are not inconsistent with what 

is required for an attractant response in other bacterial species.  Maximal 

responses to alanine, asparagine, glycine, and methionine are not reached until 
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concentrations of 0.1 M are used in E. coli (171).  Spirochaeta aurantia and 

Brachyspira hyodysenteriae require 0.1 M for a maximal response to 12 of 21 or 

3 of 9 defined chemoattractants tested, respectively (95, 126).  These examples 

demonstrate that use of high concentrations of chemoattractants would not be 

unexpected for B. burgdorferi. 

 

The significance of having defined attractants for B. burgdorferi lies in what 

experiments are now possible.  Having defined attractants facilitates the search 

for other attractants.  Additionally, it allows for precise characterization of the 

chemotactic response to individual cells to a specific attractant.  This is important 

for characterizing how the cells coordinate flagellar motors to translate in the 

direction of an attractant.  Micro diffusion of attractants near one cell pole using 

iontophoresis will allow characterization of how the distant cell pole responds to 

the presence of an attractant at the other cell pole (47, 228).  Data generated 

hold the intriguing possibility that B. burgdorferi could sense attractants spatially 

as well as, or instead of, temporally as discussed in the Introduction (65, 269).  

The experiments, which are now possible with defined attractants, in combination 

with mutants generated in chemotaxis genes, will greatly advance the 

understanding of how B. burgdorferi sense and respond to their environment. 

 

In sum, the chemotactic ability of three B. burgdorferi strains, the wild-type (B31), 

LC-A2, and the complemented cheA2 mutants were studied.  Because the 

complemented strains behaved like the wild-type in chemotaxis assays while the 

cheA2 mutant is non-chemotactic, the mutant phenotype in LC-A2 (cheA2) is due 

to cheA2 inactivation and not polar effects on gene expression.  Furthermore, the 

responses to the attractants N-acetyl-glucosamine, glucosamine, and chitosan 

dimers were CheA2 dependant, showed a dose response, and required an 

attractant gradient indicating chemotaxis was measured.  Through these studies, 

we showed that spirochete enumeration by flow cytometry is a viable alternative 

to Petroff Hausser counting, and describe the first defined attractants for B. 

burgdorferi, the causative agent of Lyme disease. 
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Discussion 
 

In this section the significance of my results to the B. burgdorferi literature will be 

explored.  The discussion will follow the chapter chronology.  These sections will 

focus on techniques developed, the significance of the data generated, and 

possible future experiments.  The discussion begins with characterization of the 

cheA mutants with the Hobson BacTracker, and concludes with chemotaxis 

assays enumerated with flow cytometry and validated using the Volocity tracking 

software package.   

 
Asymmetrical flagellar rotation in Borrelia burgdorferi cheA mutants. 

 

My major contribution to the work in Chapter 2 was developing the motion 

analysis procedure using the Hobson BacTracker.   I then used this system to 

characterize the cheA2 mutant.  The capabilities and use of this hardware / 

software chimera are outlined in the Introduction.  Automated functions of this 

package, designed for E. coli, did not work for B. burgdorferi due to the cells 

elongated morphology and slow speed.  Therefore, a secondary software 

package from Hobson tracking systems known as XY tracker was utilized for 

tracking cells.  This package gave the XY coordinates of the centroid every 1/60th 

of a second.  The centroid is the geographic center of the cell found by 

integrating over the surface.  The surface was defined as a group of adjacent 

pixels of similar brightness intensity.  The intensity threshold can be adjusted so 

a given cell is recognized as a single object and not a series of objects.  This 

paradigm is the basis for tracking with the Hobson BacTracker as well as the new 

software package Volocity.  Difficulty arises in using the BacTracker given the 

fixed field size, cell brightness requirements, antiquated data input/output 

capabilities, and data sorting requirements.  Every object in the field is tracked 

generating a great deal of superfluous data.  To determine what data are 

significant, one must graph all tracks to see if the pattern matches the motion of 

the cell.  Once the track is found distances and velocities are calculated using the 
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Pythagorean theorem (a2+b2 = c2, where a and b represent the length of sides of 

a triangle and c represents the length of its hypotenuse).  These limitations 

require that the cell be the only object moving in a darkfield image, thus limiting 

the population of cells suitable for tracking.  Finally the system requires that all 

image sequences be shot at 60 interlaced 320 x 760 pixel frames per second 

precluding digital image capture or analysis of compressed sequences.  These 

limitations make tracking with the Hobson system labor intensive.  They also 

introduce selection bias into what cells can be tracked.  These difficulties led to 

further interest in more adaptable tracking systems. 

 

The significance of our findings in Chapter 2 is that asymmetrical flagellar 

rotation is not dependant upon the chemotaxis system.  Specifically, the data do 

not support the hypothesis that a gradient of CheY-P is the basis for 

asymmetrical flagellar rotation.  As mentioned in the Introduction and Chapter 2, 

in order for spirochetes to translate, the sub-polar flagellar motors must rotate in 

opposite directions as observed from the center of the cell.  The gradient 

hypothesis states that this asymmetry is due to a higher concentration of 

phosphorylated CheY (CheY-P) at one cell pole relative to the other.  Thus, the 

bundle of periplasmic flagella at the cell pole with the low CheY-P would rotate 

CCW, and the other with the higher concentration would rotate CW (47, 89, 144).  

 

Our findings do not support the gradient hypothesis. Cells with a cheA2 (LC-A2), 

and both cheA1 and cheA2 (LC-A1A2) inactivated, constantly run. Mutants in 

cheA, especially LC-A1A2, likely cannot generate CheY-P.  With no CheY-P 

generated, no internal CheY-P gradient could form. These results indicate that 

asymmetrical flagellar rotation is unrelated to CheY-P concentration.  As 

discussed in Chapter 2, we proposed that asymmetry is related to differences in 

the motors at each end of the cell.  

 

Examination of the two B. burgdorferi cheA genes reveals that they are likely of 

different phylogenetic origin.  cheA1 has the highest similarity to cheA2 and 
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cheA1 of Rhodobacter sphaeroides (35% identity) and Vibrio cholerae (35% 

identity), respectively, inferring it is a more recent acquisition from the 

proteobacteria.  The B. burgdorferi cheA2 gene had the highest similarity to the 

cheA genes of the spirochete genus Treponema (144).  Additionally, cheA 

mutants in Treponema denticola exhibit a non-chemotactic phenotype (156).  

These bioinformatic and genetic findings parallel empiric observations.  

Specifically, the single cheA1 mutant was phenotypically wild type.  The function 

of CheA1 is unknown, however, Western blot analysis indicates it is expressed 

(144).  Several bacterial species have multiple cheA genes, notably Vibrio 

cholera, Rhodobacter sphaeroides, Pseudomonas aeruginosa, and 

Chromobacterium violaceum (73, 92, 163, 198, 207, 278).   While many await 

characterization, it is known that mutants in some, not all, cheA species in V. 

cholera, R. sphaeroides, and P. aeruginosa are attenuated with respect to 

chemotaxis (73, 92, 163, 207, 278).  In contrast, LC-A1 (cheA2) and LC-A1A2 

double mutants (cheA1A2) were unable to reverse and were non-chemotactic.  

These results suggest the well-conserved operon containing cheA2 is central to 

B. burgdorferi chemotaxis. 

 

Because the cheA double mutants exhibited polar effects, the possibility that the 

phenotype of cheA2 mutants was not due solely to cheA2 inactivation was 

explored.  Specifically, the motility apparatuses must be intact to measure the 

chemosensory response.  To test if motility structures were intact, cells or cell 

lysates of wild type, LC-A2, and LC-A1A2 were examined with electron 

microscopy, Western blot, and phase contrast microscopy (144).  First, electron 

microscopy indicated cheA2 mutants had periplasmic flagella at both poles.  

Furthermore, Western blot showed cheA single mutants produced the same 

quantity of flagellar proteins (FlaA and FlaB) as the wild type.  Finally, to examine 

if both polar bundles of flagella were functional, phase contrast microscopy was 

used to examine cells adhered to the glass in the center of the cell.  Examining 

the rotation of these cells frame-by-frame shows that both cell poles are able to 

rotate independently of one another.  In sum, these results suggest that the 
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cheA2 mutants had no noticeably altered phenotype with respect to motility 

function.  Complementation of the cheA2 mutant, as illustrated in Chapter 3, 

again suggested the non-chemotactic phenotype of cheA2 mutants is due to the 

loss of chemosensory ability and not changes in the motility organelles. 

 

The chemotactic ability of these organisms was tested using swarm plate as well 

as capillary tube assays.  The swarm plate assay is a soft agar plate where 

organisms are deposited on the agar and as the bacteria consume attractants in 

the immediate area they swim out to higher concentrations of attractant, provided 

the cells can sense and respond to the attractant.  Mutants without CheA2 were 

non-chemotactic using this assay.  It is important to note that the capillary tube 

assays performed in Chapter 2 utilized a different protocol.  Assays in Chapter 2 

were performed before data from optimization protocols in Chapter 3 were 

available.  We do not believe this protocol change affected the final results as 

cheA2 mutants remained non-chemotactic throughout a large number of assays 

with different attractants using both protocols. 

 

In sum, by careful analysis of wild type and cheA mutants, LC-A1, LC-A2, and 

LC-A1A2, data shows CheA2 is intimately involved in chemotaxis.  Using the 

Hobson BacTracker, B. burgdorferi demonstrated an intrinsic polarity to flagellar 

bundle rotation.  Mutants in cheA2 translated in one only direction, indicating 

motors at the poles rotate counter-directionally to one another. While most 

studied bacterial species have flagellar motors that rotate in a default CCW 

manner, the data indicate B. burgdorferi have one pole of motors rotating in a 

default CCW and the other CW.  Furthermore, this is the first direct evidence to 

address and negate the hypothesis that a gradient of CheY-P generated by the 

chemotaxis apparatus was responsible for the counter directional rotation of 

spirochete flagellar motors.  
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Identification of specific chemoattractants for Borrelia burgdorferi: A flow 
cytometric based chemotaxis assay. 
 

We developed the flow cytometric based enumeration protocol as an alternative 

to direct Petroff Hausser (PH) counting.  PH counting is labor intensive, 

statistically ineffective for cell populations less than 1x106 cells / ml, and has a 

very low daily throughput of 9 to 12 capillary tubes per day.  Using flow cytometry 

for enumeration, counting of dilute solutions was performed and throughputs of 

60 to 100 tubes a day were routinely achieved.  The high throughput of the flow 

cytometric protocol allowed for optimization, as discussed in Chapter 3, of 

several variables of the capillary tube assay to B. burgdorferi. Therefore the 

capillary tube data presented in Chapter 2 was collected with a different protocol 

than in Chapter 3.   

 

In order to track cells more effectively, we consulted with the software engineers 

at Improvision who tweaked the design of the Volocity software package to track 

B. burgdorferi.  Volocity, as presented in the Introduction, has a very user-friendly 

interface and allows for much more rapid tracking of cells.  Additionally, this 

interface has allowed several members of the laboratory to track swimming cells.  

Finally, the Volocity package provided an important and easier means to 

determine the translational velocity of swimming cells. 

 

Once the capillary tube assay was optimized, we began to screen compounds 

hypothesized to be attractants.  These compounds included known nutritional 

requirements and transported molecules.  Early in the process, we discovered 

that chitosan dimers and N-acetyl-glucosamine acted as attractants.  These were 

the first defined attractants for B. burgdorferi.  N-acetyl-glucosamine, while not as 

effective an attractant as chitosan dimers, was used due its availability and 

economy.  Once the optimizations were completed, screening other compounds 

that are known nutrients, had putative transporters encoded in the B. burgdorferi 

genome, or were similar in structure to known attractants was begun.  Glucose, 
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N-n-diacetyl chiotobiose, serine, glycine, and beta-alanine were not attractants.  

Glucosamine, chitosan dimers, glutamate, and N-acetyl-glucosamine are 

stronger attractants.  Putricine and spermidine have transporters encoded in the 

genome, but do not produce very robust chemotactic responses (45, 76).  This 

screen for attractants is ongoing.  Knowledge of a range of attractants is 

important to deduce the function of chemotaxis components, especially the 

methyl accepting chemotaxis proteins.   

 

There is some suggestion that attractants could provide insight into clinical 

disease.  The connective tissue components glycosaminoglycans are abundant, 

especially in joint tissue (287).  Two important forms are hyaluronates are made 

up of D-glucuronate and N-acetyl glucosamine with a β(1, 3) linkage and keratan 

sulfate made up of galactose and N-acetyl-glucosamine-6-sulfate with a β(1, 4) 

linkage.  N-acetyl-glucosamine polymers with a β(1, 4) linkage make up chitin, 

the substance of tick exoskeletons (132).  The molecular similarity of these 

molecules and the natural history of the infection suggest that chemotaxis toward 

breakdown products or intermediates of these connective tissue components 

could play a role in disease transmission and clinical manifestations.  

 

To ensure that chemotaxis was being measured, we used the cheA2 mutant (LC-

A2), a no gradient control, individual cell tracking, and calculated the gradient 

concentration during the assay.  Mutants in cheA2 were shown in Chapter 2 not 

to reverse, be non-chemotactic by capillary tube and swarm plate assay, and 

exhibit a constantly running phenotype similar to that of E. coli cheA mutants.  

Based on these observations, we propose that CheA2 plays a similar role in B. 

burgdorferi as does CheA in E. coli linking the activities of the chemosensory and 

motility structures.  Therefore, non-chemotactic cheA2 mutants should not and 

did not exhibit a chemotactic response in the presence of attractants.  Because 

chemotaxis occurs only in a concentration gradient, placing the attractant in the 

cell pool as well as in the capillary tube quashes any attractant gradient.  In this 

experimental setup known as a no gradient control, no chemotaxis took place as 
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expected.  It was possible that B. burgdorferi responded to attractants by simply 

increasing translational velocity.  To control for this scenario, cells in attractant 

and buffer were filmed and tracked at time points corresponding to the beginning 

and end of an assay.  There was no significant difference in translational 

velocities between wild-type cells in buffer versus those in attractant solutions.  

These results suggest that chemotaxis was measured and that the reported 

results are not artifactual.   

 

The significance of having defined attractants for B. burgdorferi lies in what 

experiments are now possible.  Having defined attractants gives good positive 

controls for other chemotaxis assays, which facilitates the search for other 

attractants.  Additionally, it allows for precise characterization of the translational 

response to attractants.  This is important to characterizing how the cells 

coordinate these motors to translate in the direction of an attractant.  Micro-

diffusion of attractants near one cell pole will allow characterization of how the 

distant cell pole responds to the presence of an attractant at the other cell pole 

(228).  These data hold the intriguing possibility that B. burgdorferi could sense 

attractants spatially as well as, or instead of, temporally as discussed in the 

Introduction (65, 269). 

 

The protocols developed for this work are now standard laboratory protocols.  

The primary use for flow cytometry in the Charon laboratory is enumeration of 

cells from capillary tube assays.  However, enumeration is finding broader 

application.  For example, flow cytometry is used to generate growth curves to 

ensure that different media preparations do not affect growth rate.  Enumeration 

is now an important step before cell lysates are prepared for several molecular 

techniques.  This technique insures that a similar number of cells go into a given 

protein or nucleic acid preparation facilitating standardization.  Using a different 

fluorescent detector, I have screened cultures for green fluorescent protein 

(GFP) expression.  If the gene for GFP is fused to a gene to be expressed, flow 

cytometry provides a fast and reliable means of screening for expression of the 
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fusion protein (44).  These are examples of flow cytometry applications currently 

used in the laboratory, but the list will likely grow with experience. 

 

Tracking the movement of bacterial cells has proved a challenge for many 

laboratories, as discussed in the Introduction.  By facilitating the tracking of B. 

burgdorferi, the Volocity software package designed to track motion of and within 

eukaryotic cells, expands its capabilities to prokaryotes.  Data from the Hobson 

BacTracker, Volocity, or hand counting indicate that translational velocity remains 

in the range of 3 to 6 µm per second at 33 to 37°C in macroscopically viscous 

solutions of approximately 220 Cpi.  There are reports of B. burgdorferi 

translating faster, however these reports used different temperatures and 

viscosities (91, 131).  Additionally, because temperature, viscosity, type of 

viscosity, and cell selection dramatically affect the translational speed of cells, 

one should be cautious in comparing data from different sources.  In sum, 

analysis of individual cell motion provides an important control for responses 

measured in a population. 

  

Future work 
 

The understanding of chemotaxis and motility will be advanced on four fronts.  

First, protocols and procedures in my work in part lay the groundwork for future 

experiments defining the role of chemotaxis and motility in B. burgdorferi 

virulence and how this translational activity occurs. Screening for additional 

attractants, micro-diffusion techniques and photo-released attractant compounds 

will better describe the dynamics of attractant sensing (112, 113, 129, 228, 263).  

For example, micro-diffusion techniques will allow for examination of the 

response to an attractant at one cell pole.  This will lend insight into coordination 

between the poles and therefore the swimming mechanism.  Photo-released 

attractant compounds will allow for analysis of the immediate response to 

attractant release.  These tools provide mechanisms to study translation in wild 

type and specific mutants.  These studies promise to lend insight into the 
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coordination mechanism between the cell poles.  The whole of this work could 

suggest a model where attractants are sensed spatially and not temporally, a first 

in a genetically described, culturable organism.   While suggestions of this 

possibility are in the literature, definitive data would be seminal in bacteriology. 

 

Secondly, functional assays will examine how B. burgdorferi interacts with its 

environment.  The effect of environmental cues, such as the presence of host 

proteins or quorum sensing molecules could influence what compounds act as 

attractants (21, 225, 246, 258, 259).  Data generated in the course of capillary 

tube assay optimization as well as the natural history of a B. burgdorferi infection 

leads me to suspect that chemotaxis and motility will be affected by quorum 

sensing. The study of transporter proteins will lend insight into how B. burgdorferi 

bring nutrients into the cell.  Perhaps, as with the phosphotransferase systems in 

E. coli, the transport of compounds will be integrated into to the chemotactic 

response (152, 155).  The invasive behavior of strains with different genomic 

backgrounds will likely be measured with in vitro tissue penetration assays, as 

well as animal studies (56, 57, 83, 153, 156, 200).  These studies will give insight 

into what signals B. burgdorferi senses from its environment. 

 

Finally, further genetic characterization and proteome analysis of B. burgdorferi 

will provide insight into the pathogenesis of this organism as it relates to 

chemotaxis and motility.  Traditional mutation and complementation will continue 

to provide data on the function of specific genes.  Interesting mutant phenotypes 

will be analyzed with respect to protein expression, micro arrays, and reverse 

transcriptase polymerase chain reaction (RT-PCR) techniques.  Finally, gene 

expression studies comparing the proteome of cells grown in different conditions 

can be explored.  The recent development of a transposon mutational system will 

provide a broad range of mutants quickly and in pathogenic strains (Stewart, P  

et. al.  submitted).  These mutants will greatly facilitate the study of pathogenesis 

as related to chemotaxis and motility in animal models. 
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Conclusion. 
 

In conclusion, the significance of my work includes: 

a. Developing tools that will aid in further understanding chemotaxis and 

motility of B. burgdorferi specifically and spirochetes generally. 

b. Identifying the first specific chemoattractants of B. burgdorferi. 

c. In part helping to identify that CheA2 is involved in the chemotaxis of B. 

burgdorferi. 

d. In part, finding that asymmetrical rotation of the bundles of periplasmic 

flagella in B. burgdorferi is not due to a gradient of CheY-P, and cheA2 

mutants continuously ran in one direction. 
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