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ABSTRACT 

Application of Lidar to 3D Structural Mapping 

Bertrand Gaschot 

The rugged, densely forested terrain of the West Virginia Appalachian Valley and Ridge 
Province has made it difficult for field-based studies to agree on the structure of the highly 
deformed Silurian-Devonian cover strata. In this study, we demonstrate a 3D approach to 
geologic mapping utilizing the structural information revealed in a “bare-earth” 1-m Lidar DEM 
of the Smoke Hole Canyon. The completed 3D map was integrated with kinematic forward 
modeling carried out in MOVETM to provide information on the parameters required to form the 
major structures observed. Additionally, land surface attributes generated using 
geomorphometric analysis of the Lidar allowed for better mapping of smaller scale structures 
and specific outcrops. 

Our kinematic reconstructions and 3D models show that the Cave Mountain Anticline can be 
produced with Trishear-style deformation for fault-propagation folds. Also, the depth to 
detachment of the Cave Mountain thrust shallows along strike to the north and south, indicating 
that lateral ramps are required from the Martinsburg to the Juniata Formation. Additionally, 
steeper backlimb dips indicate that the thrust ramp angle increases from 30° to 45° moving 
southward. To the north, the Cave Mountain Anticline splits in to two, indicating that the main 
thrust plane is branching at depth, resulting in an imbricated-thrust geometry. Kinematic 
reconstructions of the shorter wavelength folds west of Cave Mountain show that they can be 
modeled using detachment folding algorithms, however they must form above a shallower 
detachment than previously interpreted, within the shales of the Silurian Rose Hill Formation.  
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INTRODUCTION 

Airborne Lidar (light detection and ranging) derived digital elevation models can provide excellent 

3D renditions of both natural and man-made objects (Zhang, 2006). In the earth sciences, Lidar 

technology is primarily used in geomorphological studies to map surficial features such as 

landslides or coastal changes (Ardizzone et al., 2007; Wozencraft et al., 2006). Lidar use for 

structural analysis is usually limited to terrestrial systems for scanning a single outcrop-scale 

feature (Bellian, 2005; Buckley et al., 2008), aerial systems for detecting recent faults 

(Arrowsmith, 2009), or to help constrain mapping in the same way that aerial photos were used in 

the past. Pavlis et al. (2011), first noted that bedrock bedding traces were visible in a 1-m 

resolution, bare-earth Lidar DEM and used them to map surface ruptures in Southern Alaska. 

Utilizing MOVE, they used the Lidar DEM to map the bedrock structure in an area of poor 

exposure and developed a structural processing workflow for the use of airborne Lidar in structural 

analysis. 

Although the work by Pavlis et al. (2011) helped to establish a new application for airborne Lidar 

in the field of structural geology, the study area was located in a poorly vegetated artic region. We 

believe that in regions with heavy forest cover, high relief, and complexly deformed strata such as 

the Central Appalachian fold-and-thrust belt, the Lidar can be leveraged to provide a level of 

structural insight that is not possible to achieve by traditional methods. In this study, we describe 

how a 1-m resolution Lidar DEM was used, in combination with fieldwork and modern kinematic 

modeling and mapping software, to extract structural information and enhance understanding of 

bedrock structure in an area where field studies are notoriously difficult and contradictory. 

Furthermore, we utilize the forward modeling modules and 3D capabilities of MOVE to build 
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balanced cross sections and a 3D structural model, providing a way to learn about how structures 

into the subsurface.  
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GEOLOGIC BACKGROUND 

The Smoke Hole Canyon consists of a 10 mile-long northeast-trending gorge located within the 

Central Appalachian Valley and Ridge Province of Grant and Pendleton counties, eastern West 

Virginia (Fig 1). The is dissected by the South Branch River, creating spectacular exposures of the 

complexly deformed cover sequence of the West Virginia Valley and Ridge Province. The rocks 

exposed here overlie the eastern flank of the Wills Mountain anticline, located just east of the 

Allegheny structural front. This Silurian-Devonian package is composed of thin-bedded 

alternating clastic and carbonate rocks, deposited in response to tectonic loading events along the 

mid-Paleozoic Appalachian active margin coupled with sea level changes. In general, the cover is 

dominated by thrust faults and folds with wavelengths on the order of 1-5 km. These structures 

have been the source of controversy as both fold and fault dominated geometries have been 

proposed by different authors (Sites, 1971; Kulander and Dean, 1986; Mitra, 1986; Ferrill, 1986; 

Gerritsen, 1988).  

The local structure of the Smoke Hole canyon can be separated in to two structural domains. The 

eastern margin is dominated by the Cave Mountain Anticline (Fig 2), a NE-SW trending, doubly-

plunging fold with a vertical to overturned forelimb and gently dipping backlimb (25-45° SE). 

This large fold spans the entire length of the canyon and continues on to the south for several miles. 

In the center of the study area the core of the anticline is exposed with the resistant Tuscarora 

Sandstone making up Big Bend, a popular camping and fishing location. On the southern end of 

the field area the fold is particularly well exposed, and a resistant portion of the steep forelimb 

made up of Oriskany Sandstone creates the spectacular cliffs of Eagle Rock (Fig 2). The western 

portion of the study area is dominated by many upright, symmetrical, 100-500 m wavelength folds, 

the largest of which is the Peacock Cave Anticline (Fig 2). There are also a couple relatively low-
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displacement thrusts exposed at the surface in the southern half of the canyon between Big Bend 

and Eagle Rock. North Fork Mountain makes up the western boundary of the study area and is 

part of the gently SE dipping backlimb of the Wills Mountain Anticline, which marks the location 

of the Allegheny Structural Front. The cliffs at the crest of North Fork Mountain are held up by 

the highly resistant Tuscarora Sandstone. 

Sites (1971, 1973) carried out the first detailed mapping and structural analysis study of the cover 

sequence within the Smoke Holes. Sites’ interpreted numerous thrust faults in the cover sequence, 

with 500 to 1000 m spacing, displacements of 100 to 600 m, stemming from a detachment in the 

Ordovician Martinsburg Formation. Cross sections by Sites show deformation in the cover 

sequence dominated by imbricated thrust faults dipping steeply (50-55°) to the southeast with 

several asymmetrical hanging wall anticlines formed by footwall drag. Sites’ interpretation also 

includes one major back-thrust near Big Bend campground (Fig 3), as well as a set of younger E-

W trending sinistral strike-slip faults which offset thrusts. Most importantly, when the idea of fault-

dominated cover deformation converged in the 1980’s (Dean, 1986; Mitra, 1986), Sites’ (1971) 

work at the Smoke Holes provided data to support the hypothesis. 
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Gerritsen (1988) originally intended to investigate finite strain in the heavily faulted cover 

sequence in West Virginia using the map of the Smoke Hole area produced by Sites (1971, 1973). 

However, in November of 1985 a catastrophic flood greatly reshaped the South Branch of the 

Potomac River in the Smoke Holes, exposing bed rock in both channel floors and cut banks. 

Consequently, Gerritsen (1988) found many exposed syncline hinges which had previously been 

mapped as thrust faults, and interpreted a structural style dominated by folds that were not cut by 

faults at the surface.  

 

Figure 1: Location map of the study area. The Smoke Hole Canyon lies on the border between 
Grant and Pendleton counties, just east of the Allegheny Structural Front (Modified from West 
Virginia Geological and Economic Survey). 



6 
 

 

 

Geologic Map of the Smoke Hole Canyon 

Figure 2: Simplified geologic map of the Smoke Hole Canyon. (CMA: Cave Mountain Anticline; 
PCA: Peacock Cave Anticline) 
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Points (A), (B), and (C) in Figure 4 represent locations along geographically similar cross 

sections where Sites’ (1971) and Gerritsen (1988) came to different structural interpretations, 

both at the surface and in the subsurface. At point (A) Sites’ (1971) observed a repeat of the 

Oriskany and Helderburg at the surface and interpreted three high-angle thrusts spaced about 500 

m apart with 300 m of displacement. Gerritsen (1988), observed no repeat of Oriskany across 

strike and interpreted a syncline with a single thrust which thickens the Tonoloway formation. At 

point (B) Sites’ (1971) interpreted two high angle thrusts with 500 m spacing, as well as a back 

thrust offsetting and raising the Tuscarora sandstone in the subsurface. In contrast, Gerritsen 

(1988) interpreted a folded anticline-syncline pair. At point (C) Sites’ (1971) interpreted a thrust 

causing the duplication of the Helderburg and Tonoloway formations. Gerritsen (1988) observed 

no duplication and interpreted the normal stratigraphic sequence dipping gently south-east, 

making up the gentle back-limb of the Cave Mountain anticline. 

Several other structural styles have been proposed by other authors in more regional 

interpretations of the Appalachian Valley and Ridge. Mitra (1986) proposed a linked duplex 

system in which thrust faults have fairly uniform displacements, and the roof and floor 

detachment are parallel. Folds of various sizes form due to mechanical differences of the various 

lithologies in the cover.  

Kulander and Dean (1986) suggested a cover geometry dominated by short-wavelength, 

asymmetrical, and overturned folds, coupled with forelimb and backlimb thrust faults. In contrast 

to Mitra (1986), they did not classify the Devonian shales as a major detachment horizon, instead 

interpreting various incompetent units within the cover as possible detachment zones for both 

linked and isolated thrusts. Fold style in the cover was also linked to mechanical differences of 

the various lithologies. 
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Ferrill (1987) conducted a study in an area only 8 km from a cross section produced by Kulander 

and Dean (1986), using gravity data to model the structure of the deep Cambrian-Ordovician 

duplexes. Ferrill’s interpretation of the cover sequence consisted of a combination of fault-bend 

and fault-propagation folds with a cover geometry made up of kink and lift-off folds. In that 

study, no map-scale faults were observed. 
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Stratigraphy  

The stratigraphy exposed at the Smoke Holes is made up of an approximately 655 meters (Fig 5) 

sequence of interlayered Silurian and Devonian carbonate and siliciclastic rocks. Mechanical 

differences between the various lithologies play an important role in the scale and style of folding 

that occurs during deformation.  The sequence is bounded by two resistant sandstones, the Silurian 

Tuscarora and Devonian Oriskany formations which form steep NE-SW-trending ridges. Other 

notable formations include the Helderberg Group and Rose Hill formations, which contain 

mechanically weaker shaley units and serve as detachment horizons for thrust faults in some 

interpretations (Gerritsen, 1988). 
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Figure 5: Stratigraphy exposed at the Smoke Hole Canyon, modified from Gerritsen (1988). 
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Figure 6: General stratigraphy of the Waynesboro and Martinsburg sheets in the Central Appalachian 
Valley and Ridge Province, modified from Kulander and Dean, 1986 
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Recent Developments: Airborne Lidar  

In the winter of 2015, new high resolution topographic data on the Smoke Hole area was collected 

using an airborne Lidar system. The collection flight was flown during the leaf-off season at 

approximately 4,000-ft above ground level with Pulse Rate Frequency (PRF) of 70,000Hz; Scan 

Frequency of 35Hz; Scan Angle of 18-degrees half-angle (36-degree full field of view). The West 

Virginia University Natural Resource Analysis Center (WVU NRAC) post-processed the raw 

point cloud data, removing the non-ground returns and  generating a 1-meter “bare-earth” digital 

elevation model (Zhang et al., 2003; Sithoe et al., 2004). Opening the DEM in MOVE allows for 

a spectacular 3D rendition of the canyon, which can be enhanced by utilizing surface analysis 

tools. The effectiveness of the Lidar DEM in revealing bedrock structure is illustrated below 

(figure) though a dip distribution color overlay. 
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METHODS 

3D Geological Mapping with Lidar 

Given the right set of geological and environmental conditions, 1-m resolution Lidar DEM’s can 

capture bedrock features such as bedding planes and geologic structures in 3D (Pavlis et al., 2011). 

Furthermore, regions with wet climates, dense forest cover, and steep terrain which make field 

studies difficult can maximize the information gained from the “bare-earth” DEM by acquiring the 

Lidar during the leaf-off season. Utilizing the existing geologic maps draped over the Lidar DEM 

and field work we set out to create a 3D geological map in MOVE, modified from the work of 

Gerritsen (1988). The Smoke Hole area is particularly well suited for this approach because the 

topography is strongly controlled by the morphology of resistant beds. Many of the mountain 

slopes are the dip slope of bedding planes. 

3DMOVE™ is a high-end structural modeling software developed by Midland Valley Corporation 

and Petroleum Experts. Although it was primarily designed for the oil and gas industry, MOVE 

has applications in many fields, including mining, geothermal, geotechnical engineering, and 

radioactive waste management, thanks to the wide range of datatypes which can be incorporated. 

Additionally, it is particularly powerful for 3D mapping as it contains utilities well suited for 

working with surficial geologic data. The 3D viewer (Fig 7) provides a huge advantage compared 

to the traditional 2D viewer of ESRI’s ArcMap and GIS software, and allows the user to 

manipulate natural attributes such as sun azimuth, helping reveal features such as bedding planes 

or folds which may be hidden or faint due to shade direction. MOVE also allows the user to work 

directly with, and on the DEM. This includes bed tracing, strike and dip measurements, cross 

section construction, and surface construction for 3D models. Once completed, we utilize the 3D 
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map as a base for the kinematic models. In general, we followed a workflow (Fig 8) outlined in 

Pavlis (2011). 
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Figure 8: Generalized workflow for the use of Lidar bare-earth DEM’s for 3D geological mapping and 
construction of 3D structural models, modified from Pavlis (2011). 
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Lidar derivatives - Geomorphometry  

Figure 7 shows the effectiveness of conducting secondary analysis on the Lidar DEM. In a few 

short moments, we were able to highlight bedrock bedding planes and outcrop exposures by using 

the surface geometry utility in MOVE. As the primary goal of this study was to extract the 

maximum amount of structural information from the Lidar, we also tested using statistical methods 

in ArcMap. Many Lidar-based studies have utilized quantitative terrain analyses such as DEM-

based Geomorphometry for mapping large-scale structural features (Ganas et al., 2005) and 

landslide analysis (Gritzner et al., 2001). Geomorphometry is the science of topographic 

quantification (Pike, 2009), and through statistical packages provided by the Geomorphometry and 

Gradient Metrics Toolbox extension in ArcMap (Evans et al., 2014), several “land surface 

parameters” can be extracted from the Lidar DEM. The textures derived from the Lidar DEM 

include Surface Relief Ratio (Pike, 1971), Slope Position or Landform (Berry, 2002), and Surface 

roughness (Riley et al., 1999; Blaszczynski, 1997). Each of these textures was evaluated on how 

well they emphasized geological structural features such as joints, folds, and bedding planes. 
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Cross Section Generation: 2D Kinematic Modeling  

Using the structural information revealed by fieldwork and Lidar DEM, we tested the existing 

structural cross sections (Sites, 1971; Gerritsen, 1988) and came up with original interpretations 

on fold kinematics for the Cave Mountain Anticline and Peacock Cave Anticline through the 

forward modeling tools provided in MOVE. As most of the Cave Mountain Anticline has been 

eroded and there is no seismic data at a useful resolution, we utilized the kinematic modeling 

modules to test different interpretations, to generate the fold shape for our cross sections and to 

build our intuition on how structures extend into the subsurface. The structures we generated were 

then evaluated based on how well they fit the 3D map as well as the how they compared to the 

geometry of the folds revealed in Lidar DEM. After the balanced cross sections were complete we 

linked the sections in order to generate a 3D visualization of the Cave Mountain Anticline, adjacent 

folds, and fault geometry of the Cave Mountain thrust along strike and at depth. 

The forward modeling modules in MOVE allows for user-control on the placement, initial 

geometry, and amount movement during fault and fold development. Deformation of strata is then 

predicted through folding algorithms. The primary fold forward modeling algorithms used include 

(1) Trishear- developed by Erslev (1991) and Allmendinger (1998), and (2) Detachment folding- 

based on the work of Poblet and McClay (1996). Initial model geometry were kept simplistic, 

assuming a flat-lying package of strata overlying a detachment in the Ordovician Martinsburg 

formation.  
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Trishear  

The Trishear algorithm (Erslev, 1991), is a graphical method which provides an alternative to kink-

band models, producing fault-propagation folds with curved geometries and forelimbs with 

thinned and overturned bedding. In general, the Trishear model deforms beds within a triangular 

zone of shear, emanating from the tip of a propagating fault. Section area is kept constant, allowing 

for non-uniform dip and inhomogeneous strain across bedding. Displacement within the trishear 

zone can be approximated using tie lines (Fig 9A), defined as fault-perpendicular lines which 

connect the sides of triangular zone (Erslev, 1991). Each tie line creates a polygon with the margins 

of the trishear zone and adjacent tie lines. Volume comparison of the of the tie line polygons pre- 

and post-deformation proves conservation of volume with in the Trishear zone (Erslev, 1991).   

The shape of the resulting fold is largely controlled through user-defined parameters, including 

fault angle, propagation-to-slip ratio (P/S), Trishear apex orientation relative to the fault, and 

Trishear angle. The effects of varying P/S ratios on b the resulting fold geometry are shown in 

figure 9B.  

Heterogenous Trishear 

Erslev (1991) defined two distinct Trishear kinematic models, termed homogenous and 

heterogenous Trishear (Fig 10). In homogenous Trishear, the Trishear parameters are kept constant 

throughout deformation, uniformly rotating each tie line, resulting in a single inclined tie line. In 

constrast, heterogenous Trishear rotates tie line segments in the center of triangular shear zone 

more than those on the margins (Johnson, 2002). 
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Figure 9: (A) Depiction of tie lines within the Trishear zone (modified from Erlsev, 1991). (B) Diagram 
of the effects of varying P/S ratio on fold geometry (Allmendinger, 1998). 

A 

B
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Figure 10: Homogenous versus Heterogeneous Trishear (modified from Johnson, 2002). Changing Trishear 
parameters with time results in more strongly rotated bedding horizons. 
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Detachment Folding  

Deformation west of the Cave Mountain Anticline is dominated by 100 – 1000m wavelength 

detachment folding. Detachment folds commonly form in sedimentary packages with large 

differences in mechanical strength above a bedding-parallel detachment (Mitra, 2003; Dahlstrom 

(1990); Jamison, 1987; Mitra and Namson, 1989; Mitra, 1992; Homza and Wallace, 1995; Poblet 

and McClay, 1996). Detachment folds (Figure 11) can exhibit a wide variety of geometries, 

depending on amount of shortening, presence of faults, and multiple detachments (Mitra, 1996). 

In MOVE, the detachment fold module (Poblet and McCLay, 1996) allows the user to generate 

folds with different geometries based on whether the fold is modeled with constant limb dip, 

length, or equal area (limb rotation and lengthening).       



25 
 

 

 

Symmetric Faulted Asymmetric 

Sh
or

te
ni

ng
 

Figure 11: Diagram illustrating the variation in detachment fold geometries based on amount of shortening, symmetry, 
multiple detachments and presence of faults (Modified from Mitra, 2002). 
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RESULTS 

3D Geological Mapping with Lidar 

Prior to visiting the field, we began by examining the Lidar DEM as a whole and draping the 

existing maps (Sites, 1971; Gerritsen, 1988) over the DEM using the control points along the south 

branch river (Fig 12A, 12B). Our objectives were to compare and contrast the two maps and 

identify any patterns or trends in the DEM that may be a response to a certain rock unit or lithology.  

Closer examination of the draped maps (Fig 12A, 12B) reveals the contacts incorrectly cross over 

bedding planes in the steep parts of the Cave Mountain anticline. This issue reveals the errors 

inherently produced when draping any 2D image or map over a DEM in high-relief zones. While 

this approach can be effective in regions with modest relief, introduction of steeper slopes (>45°) 

results in spatial errors which cause 3D visualization errors such as pixel smear and distortions 

(Pavlis, 2017). This effect is also apparent in digital globes such as Google Earth, which use 

orthocorrected aerial imagery draped over a DEM. In the case of geologic maps, the spatial issues 

result in incorrect contact positions in steep terrain such as cliffs and ridges. This is a particularly 

ironic problem as these locations usually provide the most structural information in the field. 

Furthermore, as many older maps lack geographic coordinates, even more error is introduced in 

the drape. This effect is visible in the drape of the Sites’ (1971) map (Fig 12 B) in which almost 

all contacts cross bedding planes. 
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The next step was to take orientation data on well exposed bedding planes (Fig 12C) in the DEM 

using Move. These measurements were compared to existing strike/dip data from the two maps. 

We then conducted fieldwork to determine; (a) which of the two existing maps was more accurate, 

(b) collect orientation and lithological data, and (c) verify the structural data and structures 

observed in the Lidar DEM. Fieldwork utilized 3D Lidar images of several points of interest within 

the field area, as well as enlarged versions of the two geologic maps.  

Although the southern half of the canyon has advantages in terms of accessibility, the northern 

portion has more dramatic and complete exposures of folded strata. Due to large amounts of private 

land and steep terrain, much of northern half of the area is only accessible via rafting and camping 

along the South Branch river. Beginning at Big Bend campground, we conducted an overnight 

rafting trip, collecting structural and lithological data at exposures along the river.  
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Figure 12: Pre-fieldwork look at the Lidar DEM at Eagle Rock (Fig 2). (A) Initial strike and dip 
measurements, (B) Gerritsen (1988) map drape, (C) Sites (1971) map drape. 

A 

C 

B 
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Following the field reconnaissance check of existing geologic maps by Sites (1971) and Gerritsen 

(1988) in the field, we decided the map drafted by Gerritsen (1988) was far more accurate. Many 

of the thrusts mapped by Sites (1971) are non-existent or do not reach the surface as indicated in 

his cross sections. Additionally, there were multiple large outcrops assigned to the incorrect 

formation. With this in mind, we decided to use the geologic map drafted by Gerritsen (1988), 

draped over the Lidar DEM as our template during 3D mapping. After draping the map, we located 

control points, primarily along the South Branch River, where contacts between mapping units are 

well exposed and we were confident in the accuracy of the DEM-map drape. Starting at the control 

point, we drew contact lines directly on the DEM following along prominent bedding planes 

revealed by the bare-earth DEM. Due to inaccuracies produced from draping a 2D map over a 3D, 

many contacts had to be adjusted to match the bedding traces in the Lidar. With the ability to alter 

the sunlight azimuth and angle, we were able to follow thin beds which had not previously been 

visible. In order to keep the amount of DEM line work to a minimum, we only use solid contact 

lines, however dashed contacts are also possible with utilities in MOVE. The final 3D geologic 

map presented was exported in via 3D pdf and as a KMZ file. The 3D pdf which allows for rotation 

and zoom within adobe acrobat. The KMZ format seems to be the most useful export method as 

the 3D map can be used as an overlay in Google Earth (Fig 13). This allows for the map to be 

shared and opened by anyone without the need for the MOVE software, while also allowing for 

an interactive 3D view of formation contacts, faults, and folds. 

As we mapped we also noted that some of the mapping units displayed a characteristic expression 

in the Lidar DEM. The best example is the Silurian Tonoloway formation (Fig 14), which is 

composed of primarily thin bedded, grey to black platy limestone. In the upper portion of the 

formation there are groups of closely spaced, resistant beds which were picked up by the Lidar 
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scan and create a distinct pattern in the DEM. This proved useful for identifying the Tonoloway 

using the Lidar, as well as for verifying the accuracy of the 2D map drape. The other resistant 

formations in the mapping area include the Silurian Tuscarora formation and the Devonian 

Oriskany and Helderberg formations.  Although these units are well exposed thanks to erosion and 

differences in mechanical strength, they did not display a characteristic expression in the Lidar to 

allow us to map them confidently without the map or fieldwork.  This limitation shows that despite 

the usefulness of the Lidar DEM, it not a replacement for good traditional “boots on the ground” 

mapping and should always be verified for accuracy in the field. 
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Figure 13: Snapshot of the 3D geologic map exported to Google Earth. Points (A) and (B) mark 
Tonoloway exposures illustrated in figure 14. 
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Figure 14: Characteristic expression of the Tonoloway formation in the Lidar DEM. (A) Tonoloway exposure 
on SE-dipping backlimb of the Cave Mountain Anticline, (B) Folded Tonoloway exposure along the South 
Branch River. Locations shown in figure 13. 
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Results: Geomorphometry  

Figure 15 shows a comparison the primary results of the statistical analysis provided by 

geomorphometry package in ArcMap. Each land-surface parameter was evaluated based on how 

well it emphasized structural features picked up by the Lidar scan. The structural features we 

focused on (Figure 15) were; (A) large saw-tooth features which resemble joints in map-view, (B) 

a fault propagation fold that was previously hidden by vegetation and/or inaccessible, and (C) 

bedding planes. From left to right, the land-surface parameter we tested are: shaded relief ratio 

(Pike, 1971), landform or slope Position (Berry, 2002), and surface roughness (Riley et al., 1999; 

Blaszczynski, 1997). 

The 100 m long, NE-SW trending saw-tooth features (Fig 15A) are located on SE-dipping cliffs 

made up of Tuscarora sandstone, and were only noted once we generated the landform terrain 

surface texture. Although our initial thoughts were that these were joints, a visit to the location in 

the field revealed that the linear features actually represent very slight topographic depressions not 

visible at the surface. These linear depressions are connected by rounded, north-south trending 

elevated “mounds” of loose outcrop and brush. This indicates that although the Landform surface 

texture may have helped us identify the feature, it exaggerated the amount of relief actually present. 

After much discussion, we believe these features may represent the margins of a thin “slab-slide”, 

a common landslide feature found in the Central Appalachian Valley and Ridge province.  

Just north of Big Bend near the center of the study area there is a fault-propagation fold created by 

a small back thrust (Fig 15B). Although this fold has been identified by previous authors, it is 

inaccessible on foot and its geometry was not clearly visible until we generated the surface 

roughness and landform terrain surface textures. surface roughness, a terrain ruggedness index 

which quantifies topography heterogeneity (Riley et al., 1992), allowed us to quickly notice the 
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fold by emphasizing the resistant Tuscarora outcrops from the surrounding ridge-side. We were 

then able to further distinguish specific bedding orientations and fold geometry through the 

landform surface texture, which did an excellent job of delineating bedding planes at a well-

exposed outcrop.  

Lastly, we tested which land surface texture was most useful for identifying bedding plane traces 

(Fig 15C), in order to help us determine structural trends at a larger scale in areas with less 

exposure. Although bedding was visible in all three land surface textures, surface relief ratio (left) 

and surface roughness (right) proved to be the most useful in visualizing bedding planes at a 

broader scale.  

Although these land surface textures each have their own individual strengths in emphasizing 

geological features, it is apparent from the results of the geomorphometry analysis that they should 

be used in combination. Use of any of these surface textures without comparison with another can 

result in error of interpretation, as was the case with the linear features in row (A). Overall, the 

geomorphometry analysis proved to be helpful in delineating bedrock features and can be done 

relatively quickly through the ArcGIS Geomorphometry and Gradient metric toolbox.  
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Big Bend Big Bend Big Bend 

Figure 15: Comparison of the geomorphometry analysis results, including (left to right) shaded relief, slope 
position (landform), and surface roughness. Row (a): 100 m long joints on North Fork Mountain within the 
Tuscarora formation. Row (b): SE-verging meso-scale fold within the Tuscarora Formation at Big Bend. Row (c): 
bedding planes on the anti-dip slope of the CMA near Big Bend.  
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Results: Interpretations from Kinematic Modeling 

Cave Mountain Anticline 

We began by comparing the interpretation by Gerritsen (1988) to the fold geometry mapped at Big 

Bend, where the core of the Cave Mountain anticline is exposed. Gerritsen (1988), interpreted the 

Cave Mountain anticline as a box fold above a detachment approximately 90 m below the top of 

the Martinsburg formation. Early on, we noted that the anticline generated by the kinematic model 

using Gerritsen’s detachment horizon would produce a fold which is too small and did not fit the 

geologic map or dip distribution observed in the DEM, indicating the detachment is deeper than 

previously interpreted (Fig 16). Additionally, reproducing the overturned, and often thinned 

forelimb also proved to be difficult using the detachment fold model. The detachment folds we 

were able to model with overturned forelimbs displayed homogenous forelimb dip, a feature not 

observed in field. As a result, we decided to test a thrust-fault interpretation utilizing the Trishear 

fault-propagation folding algorithm in MOVE.  

Multiple iterations were performed using different Trishear parameters. All models used a 30° 

thrust propagating from a detachment in the Martinsburg formation. Although some of the models 

came close, none fit the dip distribution and forelimb thinning seen in the field and Lidar DEM. 

For this reason, we decided that Trishear deformation was the appropriate module, however some 

of the Trishear parameters must change over time. 

In heterogeneous Trishear deformation (Allmendinger, 1998), one or more of the parameters (P/S 

ratio, apex angle, angle offset) are altered during the forward modeling process (table 1). Although 

most studies use constant Trishear parameters, geologists have learned that the Trishear parameters 

often change during deformation (Pei et al., 2017), especially in packages of strata with large 
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contrasts in mechanical properties. In general, high competency rocks usually present higher P/S 

ratios and narrower apical angle than rocks with low competency (e.g., Allmendinger, 1998; Hardy 

and Ford, 1997; Pei et al., 2014). With the exception of the Tuscarora sandstones, the stratigraphy 

of the smoke holes progressively increases in mechanical strength moving upwards. With this in 

mind, we decided to decrease the Trishear angle throughout the forward modeling process until 

the final geometry displayed the bedding orientations and thickness changes noted in the field and 

Lidar DEM. 

The variable Trishear model was composed of 3 different stages, each with 4 deformation “steps” 

of 150m of displacement. A P/S ratio of 1.25 and angle offset of 0.6 were kept constant through 

all stages. The Trishear apex angle however, was initially set to 65° and then progressively 

decreased by 5° in each stage. We experimented with increasing the P/S ratio but found that it 

resulted in the exposure of the Cave Mountain Thrust at the surface, as well as fold geometries 

which did not fit the bedding orientations observed in the Lidar. 

Heterogeneous Trishear with a decreasing apical angle using a blind thrust stemming from a 

detachment in the Martinsburg formation successfully reproduced the Cave Mountain Anticline at 

Big Bend. Forelimb thinning resulting from the Trishear algorithm during fault propagation is able 

to replicate the thinned units observed to the west of Big Bend.  Furthermore, the dip distribution 

of the final forward model is a good match with the strike and dip measurements taken from the 

Lidar and field measurements. 

As noted by previous workers (Sites, 1971; Gerritsen, 1988), the geometry of the Cave Mountain 

anticline changes as it plunges to the North and South from its culmination at Big Bend. To the 

south, the backlimb of the fold steepens, while overall fold size decreases. To the north, the fold 

splits in to two separate folds, and shows a forelimb with a kinked fold. Although our Cave 
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Mountain anticline model was a good fit at Big Bend, different Trishear and fault parameters were 

required as we modeled the Cave Mountain anticline along strike.  
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Cave Mountain Anticline: Eagle Rock 

Another great exposure of the Cave Mountain anticline is at Eagle Rock near the southern end of 

the canyon (Fig 17). Here, the anticline has been dissected perpendicular to strike, allowing the 

Lidar DEM to provide strong control on the size and shape of the fold. Furthermore, Eagle Rock 

allows for direct measurement of strike and dip of the overturned forelimb. In comparison to Big 

Bend, several differences in fold geometry are evident, including the size of the anticline as well 

as a more steeply dipping backlimb (45-55° SE).  

Through kinematic forward modeling we found that we could not reproduce the southern portion 

of the Cave Mountain Anticline using the same depth to detachment and Trishear parameters as in 

the Big Bend cross sections. A detachment in the Martinsburg formation (1100-1200 m) for the 

Cave Mountain thrust results in a hanging wall anticline which is much broader than Cave 

Mountain Anticline at the southern end of the canyon (Fig 17). To account for the observed 

changes in geometry we first increased the dip of the thrust to 45° to produce a steeper backlimb. 

We then decreased the depth to detachment until the resulting anticline was the same wavelength 

as observed in the Lidar DEM. Dip distribution here is much more uniform as only the top units 

in the section are exposed (Oriskany, Helderberg, and Tonoloway), so heterogeneous Trishear was 

not required to model the fold. As the detachment depth is shallower, less displacement was 

required, with approximately 1000 m of displacement estimated by the kinematic models. 

Therefore, a lateral ramp is necessary between Eagle Rock and Big Bend (Fig 19).  
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Cave Mountain Anticline: North 

To the North, the structural complexity of the anticline increases as it splits in to two separate 

folds. Additionally, there are low wavelength (100-300 m), symmetrical folds with kinked 

geometry located directly along strike from the forelimb to the south (Fig 18). Due to complexity 

limitations of the Trishear algorithm, we chose to use the traditional kink-band fault-propagation 

algorithm for this section of the Cave Mountain Anticline.  

We modeled the splitting of the Cave Mountain Anticline by interpreting that the main thrust 

branches in to two separate thrusts moving northward, resulting in an imbricate thrust geometry 

(Fig 22). According to the kinematic modeling, depth to detachment is also decreasing to the north, 

with a detachment in the upper Martinsburg (600 m). Displacement on the fault is redistributed 

between the two thrusts, with an estimated 500 m of displacement on the eastern thrust and 580 m 

on the western (main) branch. According to the kinematic model, depth to detachment here is also 

shallower (Upper Martinsburg), requiring another lateral ramp extending north from Big Bend 

(Fig 19). 

The forelimb folds are symmetrical with kinked hinges and wavelengths on the order of 100-300 

m. Structurally, they are located directly along strike from the forelimb exposed to the south at Big 

Bend. In order to generate the Cave Mountain anticline with a kinked forelimb fold, we found that 

a pre-existing detachment fold above a shallow detachment would need to be present above the 

propagating Cave Mountain Thrust block. The modeling required the initial fold to have box 

geometry, broader wavelength and lower amplitude, before being subsequently tightened and 

amplified during the emplacement of the Cave Mountain Anticline. Models of the pre-existing 

detachment fold estimate 200 m of displacement. The result (figure 16) is fault propagation fold 

with a kinked forelimb which matches the fold geometry revealed in the Lidar DEM. 
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Figure 18: Lidar comparison with the kinematic model of a propagation fold with a kinked forelimb. 

Oriskany 
Helderburg 
Tonoloway 
Mifflintown 

Rose Hill 
Tuscarora 

Martinsburg 
Juniata 



44 
 

 Figure 19: 3D
 view

 of the C
ave M

ountain Thrust facing w
est. C

hanges in depth to detachm
ent to the north and south require lateral ram

ps 
extending upw

ards from
 B

ig B
end.    



45 
 

Detachment folding 

The area surrounding the Cave Mountain anticline is also deformed by much shorter wavelength 

folds. Based on the geometries revealed by the Lidar DEM we determined that the folds were 100- 

1000 m wavelength detachment folds. Anticlines tend to be symmetric and display lift-off to box 

shaped geometries (PCA; Fig 17), while synclines are tight and symmetrical to asymmetrical. 

Forward modeling of cover sequence lift-off folds using a detachment horizon in the Martinsburg 

formation could not reproduce the folds observed in field and the Lidar DEM. A deep detachment 

in the Martinsburg as interpreted by Gerritsen (1988), produces folds with much broader 

wavelengths or requires a very large “ductile thickness” value (>700m), defined in MOVE as the 

thickness of the zone across which deformation is accommodated by fault-parallel shear. Based on 

the size distribution and geometry of the detachment folds revealed in the Lidar DEM, we 

determined that the high ductile thickness value was unreasonable, indicating that multiple 

shallower detachment horizons were required.  

For the larger detachment folds such as the Peacock Cave Anticline (>500 m wavelength) we select 

the shales of the Rose Hill Formation as the new detachment horizon. With the exception of the 

Cacapon Sandstone near the base, this unit contains over 100 m of shale overlain by several more 

mechanically weak units, including the shales of the Mifflintown Group and Wills Creek 

Formation. Furthermore, regional seismic surveys describe this part of the section as mechanically 

weak relative to the bounding formations (Wilson and Shumaker, 1992). Previous work also 

estimates that existing thrusts in the area are thought to ramp out of the shale-dominated units of 

the Rose Hill, Wills Creek or Big Mountain Shales (Gerritsen, 1988).  
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Deformational Sequence 

Based on the results of the kinematic forward models, we proposed a 2-phase deformational 

sequence: (1) 100 m to 500 m wavelength detachment folding and localized 50 to 150 m 

displacement thrust faulting occurred above multiple layer-parallel detachments, with the main 

detachment horizon located in the shales of the Rose Hill Formation. (2) Initial folding was later 

tightened and amplified during the emplacement of the Cave Mountain thrust block. In the northern 

portion of the field area, the developing Cave Mountain fault-propagation fold intersected with a 

detachment fold that had developed either before or coevally with the Cave Mountain thrust, 

resulting in a kinked forelimb. To the north, the main thrust plane branched in two, resulting in the 

apparent splitting of the Cave Mountain anticline at the surface and creating an imbricated thrust 

fault geometry at depth. 
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CROSS SECTIONS 

D-D’ (Big Bend) 

 

 

 

 

 

 

CMA 
PCA 

Figure 20: Kinematic forward modelled cross section through the core of the Cave Mountain Anticline at Big 
Bend. A pre-existing detachment horizon is entrained in the hanging wall anticline of the Cave Mountain 
thrust, illustrating the out of sequence deformation interpretation. 
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I-I’ (Eagle Rock) 

 

 

 

 

 

 

 

Figure 21: Cross section through the southern end of the study area, illustrating the shallowing depth to detachment 
of the Cave Mountain Thrust. There are also pre-existing, low displacement forethrusting structures above a 
shallow detachment in the Tonoloway Fm. (ER: Eagle Rock; CMA: Cave Mountain Anticline. 
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B-B’ (North) 

 

 

 

 

 

 

 

 

PCA 

CMA 

Figure 22: Cross section through the northern part of the study area, showing imbricated thrust geometry and 
kinked forelimb of the Cave Mountain Anticline (PCA- Peacock Cave Anticline; CMA- Cave Mountain Anticline).  
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FINAL 3D MODEL 

Thanks to interpretations from the kinematic models and several changes along strike, it is clear 

that a 3D model would be a useful tool to visualize the 3D geometry of the Cave Mountain thrust 

and related fold. The 3D model was generated by linking formation and thrust fault horizons across 

adjacent cross sections. To maintain a simple, clear image of the fold, we connected the tops of 

the Oriskany, Tonoloway, and Tuscarora Formations, along with Cave Mountain Thrust. The 3D 

model can then be exported either as interactive 3D pdf, MOVE file, or several other file types 

(Fig 23).  
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Figure 23: Screenshots of the 3D structural model PDF exports. (A) Cave Mountain Anticline looking north, (B) Cave 
Mountain Anticline looking south, (C) Cave Mountain Thrust looking north. Red: thrust surface; Yellow: Tuscarora 
surface; Blue: Tonoloway surface; Orange: Oriskany surface. 
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Conclusions 

Advantages of 3D mapping with Lidar 

Traditional 2D geological mapping will always be hindered by the fact that geological structures 

are inherently 3D. With increases in publicly available Lidar data paired with modern structural 

mapping software (3DMOVE), Lidar DEM’s have the potential to revolutionize the world of 

geologic mapping. The most obvious improvement of a 3D map versus the traditional 2D map is 

the dramatic advantage of the 3D viewer. 3D visualization of the aerial Lidar data increased our 

confidence in structural measurements and observations, map accuracy, and geometric 

interpretation. The ability to see and map the 3D geometry of a broad, largely inaccessible and 

tree-covered structure such as the Cave Mountain anticline, meant we could be confident that the 

geometric basis for our interpretations was real and not affected by errors in field mapping 

(inaccurate sketches, inferred contacts in covered or inaccessible areas). Additionally, by 

following bedding traces when mapping contacts, line work represents actual contact geometry. 

At the Smoke Holes, this was evident for contacts on the anti-dip slope of Cave Mountain, which 

were originally drawn with curved lines when in fact many of them have sharp edges and corners. 

Another advantage is the information gained in high-relief areas. In a 2D map view, a structural 

feature at the base of a cliff will be foreshortened or may be hidden amongst a cluster of contact 

and contour lines. The map by Gerritsen (1988) for example, uses 400 ft contours to minimize the 

amount of clutter in map view. Furthermore, Gerritsen (1988) chose to ignore small but significant 

structural features in order to minimize line work, such as the back-thrust present at Big Bend 

Campground in figure 24.  Even draping a 2-D map over the DEM (2.5-D) presents its own issues, 

such as pixel smear on steep landscapes. Through 3D mapping, we were able to limit or eliminate 

the loss of structural information in these high relief areas. 
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Lastly, as many geologists have already realized, the logistics and costs of fieldwork can be 

expensive, and remote field areas require that key structural features be recognized and mapped 

on the first field excursion. Lidar DEMs allow the geologist to revisit any geologic feature 

numerous times, from several angles, illuminated with a lighting of their choosing.  

Until recently, the largest obstacle for widespread use of Lidar DEMs has been the costs associated 

with data collection and the often rigorous post-collection processing required to remove the forest 

canopy and other non-ground returns. However, thanks to programs such as the USGS 3D 

Elevation Program (3DEP) which have been developed to respond the growing need for high-

quality topographic data, nation-wide Lidar coverage at 1-m resolution will soon be available to 

the public. By combining these publicly available DEMs with modern structural modeling toolkits 

like MOVE, large amounts of structural data may be rapidly gathered on bed rock structure. 

Extracted bedding orientation data and exposed formation contacts can be used to verify older 

maps, test existing interpretations, and create new high-resolution 3D maps. In the long term we 

predict a national database of 3D geological maps, which can be readily shared and viewed in 3D 

with free interactive platforms such as Google Earth. 
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Insights gained from the 3D Structural Model of the Smoke Hole 

The combination of the 3D model with the Lidar DEM allows for an interesting comparison 

between the actual locations of outcrop exposures and the ones predicted by the model. The best 

example is the Tuscarora formation, which has only been mapped along the river at Big Bend 

and nearby cut banks. By overlaying the 3D Tuscarora surface generated from our cross sections 

over the DEM (figure 25) we could accurately predict where the Tuscarora should be present in 

outcrop. Comparison of the outcrop prediction to the 2D map and 3D map allowed us to confirm 

that the formation had been mapped accurately and provided some verification for the accuracy 

of the model. In other contexts, we predict that the 3D model could be used to correct errors in 

geologic maps by quickly illustrating where specific formations should intersect with the surface. 

 

Figure 25: Outcrop prediction utilizing the 3D model with high-resolution Lidar. (Yellow: 
Tuscarora surface generated from 2D Kinematic models. 
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However, although we were able to generate this 3D visualization of the Cave Mountain 

Anticline though linked cross sections, it is important to recognize that the model is still a 

simplification of nature and there were structural components we were not able to account for. 

As we lacked any subsurface data, using the kinematic models to develop our cross sections was 

essential for learning about how deformation extends in to the subsurface, and for making 

specific interpretations and estimates on fault geometry, amount of slip, and depth to detachment.  

Because the model is built on these linked kinematically modeled cross sections which use 

simple, straight and curved lines to create balanced structures, it was unable to perfectly match 

the 3D geometry of some of the structures revealed by the Lidar. For example, small and 

laterally discontinuous structures, such as the back thrust at Big Bend (Fig 24), were impossible 

to implement with the Trishear algorithm. This apparent component of backshear, along with the 

simplifications of the kinematic modules, creates small mismatches between the model and 

reality, and shows that the Trishear algorithm does not work for a certain level of structural 

complexity. For this reason, we place an emphasis on the fact that the 3D structural model should 

be viewed as a learning tool and a way to visualize the shape of the fold and fault in 3D, rather 

than taken as an exact replica of the structure.  

Another implication of this study is that, when combined with structural modeling software such 

as MOVE, Lidar DEM’s have enormous potential as a teaching and learning tool. In structural 

courses, understanding and visualizing the 3D nature of bedding planes, folds, and faults, is often 

a source of confusion among students. Students may have further trouble understanding 

important concepts such as the rule of V’s (Fig 26) and 3D geometry of folds and faults when 

they are taught using 2D maps or simplified block models. Although these techniques may 

effective for the more adept students, many students often struggle when it comes time to 



57 
 

transfer these concepts to actual field mapping. By pairing high resolution Lidar DEM’s with 

structural software such as MOVE, students can practice common field mapping techniques in a 

lab setting. These lab sessions can then be supplemented with field excursions, allowing students 

to compare their DEM line work with true fieldwork. Furthermore, the Lidar DEM can provide 

an alternative for institutions that are located far from adequate field areas. In the future, we 

predict that 3D techniques will become more commonplace through improvements and increases 

in the availability of these high-resolution Lidar DEM’s. 
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Figure 26: 3D model illustrating the rule of V’s on the backlimb of the Cave Mountain 
anticline. (Orange: top Oriskany horizon; dark blue: top of Helderburg; light blue: top of 
Tonoloway) 
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Appendix 

Fold Parameters: 

Cave Mountain Anticline Parameters 

 

 CMA - Big Bend  
Heterogeneous Trishear Parameters 

Stage Movement P/S Ratio Trishear Angle Angle 
offset 

1 600 m 1.25 65 0.6 
2 600 m 1.25 60 0.6 
3 600 m 1.25 55 0.6 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CMA – F-F’ 
Apical angle 60 
Angle offset 0.6 

P/S ratio 1.25 
Ramp angle 30 
Movement 1300 m 

CMA – G-G’ 

Apical angle 65 
Angle offset 0.6 

P/S ratio 1.25 
Ramp angle 30 
Movement 1100 m 

CMA  - H-H’ 
Apical angle 65 
Angle offset 0.5 

P/S ratio 1.25 
Ramp angle 45 
Movement 900 m 
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CMA - North 

  
Western Thrust (main)  

Movement 580 m  
Ramp angle 30 

  
Eastern Thrust 

Movement 500 m 
Ramp angle 30 

 Detachment Fold Parameters  
     

Big Bend 2  Big Bend 1 
PCA  PCA 

Movement 200 m  Movement 300 m  
Forelimb ratio 0.6  Forelimb ratio 0.8 

Mode Constant Area  Mode Constant Area 
Ductile 

Thickness 200 m  Ductile Thickness 200 m 

Eagle Rock Thrust 
P/S ratio 1.5 

Apical angle 50 
angle offset 0.5 
Movement 120 m 

Mapledale Thrust 
Ramp angle 30 
Movement 60 m 

Thrust faults
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Additional Cross Sections 

A-A’ 

 

C-C’ 

 

 

NW 
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E-E’ 

 

F-F’ 
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G-G’ 

 

H-H’ 
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