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Abstract 

Development and Testing of a Fractal Analysis Algorithm for Face Recognition 

Nicholas J. Hansford 

 

Following an earlier development for fingerprints by Deal (1) and Stoffa (2), it was 

suggested that this algorithm may work on faces (or more precisely, face images).  First, this 

work transformed a 2-D electronic image file of a human face into a numeric system via a 

similar random walk process by Deal and Stoffa.  Second, the numeric system was analyzed, and 

the numeric system may then be tested against a database of similarly converted images.  The 

testing determined whether the subject of the image is part of the database.  Finally, the 

efficiency, quickness, and accuracy of such an algorithm were tested and conclusions about the 

general effectiveness were made.   

The algorithm employed a Random Walk analysis of digital photographs of human faces 

for a fixed number of binary images which were generated from the source photograph using a 

Boolean conversion scheme.  The Random Walk generated a series of transition probabilities for 

a particular scale.  In short, the numeric system used to describe the face will consisted of two 

dimensions of data—scale and binary image.  The numeric system for a particular source 

photograph was tested against a database of similarly constructed systems to determine whether 

the subject of the source photograph was in the database. 

For the purpose of this work, a database of 400 images was constructed from 167 

individual subjects using the FERET database.  The 400 images where then analyzed, and tested 

against the database to determine whether the algorithm could “find” the subjects in the database.  

The algorithm was able, in its best configuration, to identify correctly the subjects of 168 of the 



 

 

400 photographs.  However, the total time to run an image (after capture by a digital camera) to 

database comparison was only 62 seconds, which represents a substantial improvement over 

previous systems.
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1. Introduction 

 This section will introduce the problem which has been studied and documented in this 

dissertation.    The basic goals of the research will be formally stated, and the history of the 

problem will be discussed.  Finally, the overall organization and structure of the document itself 

will be addressed.   

1.1.  Problem Statement 

Following an earlier development for fingerprints (1) by Deal and an unsuccessful 

attempt to prove the Random Walk algorithm's effectiveness for the characterization and 

indentification of fingerprints (2) (Stoffa), it was suggested that the algorithm may work on faces 

(or more precisely, face images).  First, this work transformed a 2-D electronic image file of a 

human face into a numeric system via a similar random walk process to Deal and Stoffa.  

Second, the numeric system was analyzed, and then be tested against a database of similarly 

converted images.  The testing (ideally) determined whether the subject of the image is part of 

the database.  Finally, the effectiveness, quickness, and accuracy of such an algorithm was tested 

so conclusions about the general effectiveness can be made.  In parallel to this effort was the 

development of a Graphical User Interface (GUI) for minimally-trained users. 

1.2.  Research Goals 

 There are five specific goals of this work.  They are enumerated below: 

1. Adapt the fingerprint Random Walk algorithm (1) for digital photographs of 

faces.  (While this work is specific to faces, the resulting approach can be applied 

to any color digital photograph such as pictures of deformed bodies, quality 

control checkpoints, crack detection or propagation, or fluid flow analysis.)  It 
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was hypothesized that this can be done by creating fractal images of a series of 

binary images. 

2. Develop a means of normalizing the data presented from Goal 1 so that any face 

can be compared to another face without the interference of differing numbers of 

black and white pixels. 

3. Develop a rigorous method to explain the patterns that are produced as a result of 

the random walk analysis. 

4. Quantify the algorithm's effectiveness in comparing faces to a database of faces in 

both accuracy and quickness following a parametric study to determine the 

optimal configuration of the algorithm. 

5. Finally, the algorithm was adapted to GUI to simplify use.  

a. As part of GUI development, as much of the algorithm should be 

automated and run-time parameters fixed or locked from user input.   

b. The acceptable level of user input are file (face) selection and eye location 

as these could easily be performed by a user with minimal training. 

 The first goal of this work was to modify the Random Walk method for fingerprint binary 

images (Deal) as required, so that it can be applied to face images.  Fingerprints are very simple 

to capture digitally because they are comprised of either digital photographs of fingerprints or 

infrared scans.  Generally as captured, fingerprint images are not binary (a requirement of Deal's 

algorithm); however binary conversion of fingerprint images is quite easy (2) as fingerprints 

essentially are binary (ridges or valleys).  Face images are much more difficult to convert to 

binary images.  While it is possible to apply the binary conversion scheme as used by Stoffa, it 

removes too much of the facial curvature and detail, preventing a valid analysis for comparison. 



3 

 

A new method of binary conversion, which does not remove facial curvature, was 

developed.  This method is global, not local, and operates on a single color band (be it red, green, 

blue, or gray-scale) and uses the average pixel value and standard deviation to develop a series of 

binary images instead of a single binary image.  From this series of images, the Random Walk 

method was applied to create a system with an additional independent variable which results 

from the series of binary images.  

 The second goal of this work was to develop a normalization scheme or parameter to 

remove the effects of differing numbers of black and white pixels in a binary image.  Because 

there was no control placed on the number of black or white pixels in the binary conversion, the 

resulting number of either may vary from one image to another.  This resulting difference 

skewed the scale spectra by lowering the probability of either white-white or black-black 

matches and increasing the probability of the other.  So, a normalization scheme which removed 

this effect was required.  The scheme also allowed for the resulting scale-spectrum to be valued 

between 1 and 0. 

 The third goal was to develop a rigorous mathematical explanation of the curve features 

and fractal pattern creations.  In doing so, the curves used during the resulting analysis were 

further be explained.  Finally the rigorous solution also demonstrated why it was possible to add 

or subtract an “average” face from a particular dataset (and the advantages ).   

 The fourth goal of the research was to quantify the resulting algorithm's speed and 

accuracy using a standardized, repeatable test.  There have been numerous attempts to 

standardize and quantify bio-metric algorithms for faces starting with the creation of the Facial 

Recognition Technology (FERET) Database in 1993 (3) and the following early facial 

recognition tests (4).  One example is the series of tests conducted for the Facial Recognition 
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Vendor Tests (FRVT) which began in 2000.  These tests are very in-depth and have used 

proprietary databases of high resolution photographs as recently as 2006 (5).   

For the purpose of this work, a much simpler scheme based on the readily available 

Facial Recognition Technology (FERET) database was proposed.  A database of approximately 

400 face images of various subjects of varying ethnicities was constructed from the FERET 

database.  These images were full-frontal shots only, had a reasonable pixel resolution to prevent 

blurriness, and were free from artificial defects such as smudges and adverse lighting effects.  In 

this database each subject was represented at least twice.   For the test, the same 400 images were 

read in and compared to images in the database.  Since the number of instances of a given 

subject was known, the accuracy could then be calculated.  Finally, the duration of time required 

for read-in and comparison was tracked.   

 The fifth goal of this work was to develop a Graphical User Interface (GUI) such that any 

reasonably trained person could make use of the system.  In doing so, a large portion of the 

algorithm was automated.  While this goal was not strictly related to the research portion, it did 

anecdotally make a statement about the simplicity of the algorithm.   

1.3.  Document Structure 

The remainder of the document will be devoted to several sections.  The first section will 

document the background of facial recognition.  This background will cover a brief history of 

facial recognition and other two-dimensional methods which specifically utilize digital 

photographs.  The short-comings of these other methods will be addressed.  The background 

section will conclude with a statement of need for the work documented herein.  The primary 

need results from both the high computational time required by other methods and several public 

failures of the other existing facial recognition technologies.  The background will also include a 
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brief summary of the database of digital photographs to be used for this work and an introduction 

to digital photographs. 

Following the background section, a section covering the development of the basic 

algorithm as it was initially applied to fingerprints will be given.  Then the algorithm was 

modified to be applicatable to human faces, which are much more complex.  During the 

development of the algorithm, specific components will be documented in detail.  Several 

assessments of the algorithm’s accuracy will then be discussed and documented. 

Once the algorithm had been configured with the optimal settings, it was stream-lined 

into a working GUI.  The GUI use will be documented after all of the experimental results have 

been discussed.  Finally, the document will conclude with recommendations for future work and 

any problems encountered during the experimental work. 

2. Background 

 It's a simple question really: how does one person visually indentify another?  

Unfortunately, there is no clear answer to this question.  While researchers are studying the 

question, both metaphysically and physically-this work focused on specifically developing a 

computer program which used only images of the human face for peronsal identification.  While 

biometric identification techniques have employed many different featuresn the most popular 

technologies focus on faces, fingerprints, irises, and DNA (6). 

 This chapter will open with a discussion of how facial recognition works on the 

algorithmic level and why a new software system is needed.  It will also discuss why facial 

recognition algorithms for computers are important.  It will end with background information on 

various competing algorithms.  These algorithms will be shown to be impractical (either because 
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they are computationally inefficient or because of the skill level required from the user) for the 

work which will be performed.  As such, a new method was developed which poses to be 

quicker and more accurate.      

2.1.  Human Face 

 The human face is generally considered to be the area at the front of the head which 

includes the nose, eyes, cheeks, mouth, lips, and curved region towards the temple.  A typical 

face is shown in Figure 2-1.   This image also shows the "face" as defined by this work.  The 

image used was trimmed with an ellipse to eliminate the background.  Obviously, the face is not 

a perfect ellipse, but the elliptical shape is a close match for most faces. 

 

Figure 2-1: Example Human Face 

 Using the face as the metric for identification of individuals presents a more intuitive 

approach than a fingerprint, iris, or DNA since people generally do not look at other's 

fingerprints before deciding who someone is.  But more to the point, fingerprints, iris scans, and 

DNA examination require a cooperative subject.  Conversely, to take a picture is quite trivial, 

even if the subject is uncooperative, a series of frames (a movie) would eventually lead to a 
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useable picture in a matter of seconds.  Facial recognition has the added benefit of source image 

collection in that video surveillance is nearly ubiquitous, whereas systems to collect fingerprints 

DNA, or iris scans are not.   

2.2.  Face Recognition 

 For the purpose of this work, face recognition is the attempt to sample, analyze, and 

compare one digital photograph of a face to another facial photograph.  These photographs may 

be taken from a digital camera, surveillance system, or some pre-existing database such as the 

FERET database.  In its simplest form, the facial recognition algorithm (even among humans) 

consists of 4 to 5 steps.   

1. Acquire an image of a face (or any biometric feature)-be it electronic, film, 

movie, or through the eye. 

2. Isolate the region or unique features of interest. 

3. Using the information from the isolated region, compare the captured image to 

previously captured images in a database which may be digital, analogue, or 

inside the human brain. 

4. Determine whether the captured image belongs to the database and if so, who it 

is. 

5. (Optional) Verify whether the result is correct.  For instance, a person may 

forget an old friend's face, or a computer system may incorrectly reject someone 

who has recently begun to wear glasses. 

The basic approach is demonstrated graphically (without step 5) in Figure 2-2. 
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2.3.  Importance of Face Recognition 

 Many different applications of face recognition technology already exist or are being 

developed.  Developers of security systems have begun to implement face recognition codes to 

help detect wanted criminals at large events, like professional sports games.  Additionally, some 

countries (such as the United Kingdom) have begun to record countless hours of video footage 

where persons go about their normal lives (7).  With this ever-increasing database of source 

images, the need to quickly and accurately determine where wrongdoers and wanted persons are 

becomes evident.   

 Facial Recognition Technology (FRT) is not limited to analyzing continuous video 

streams for specific persons.  FRT can also be used on much smaller scales.  For instance, web 

Figure 2-2: Simple Face Recognition Algorithm 
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cameras (small video cameras) and fingerprint scanners have become mainstream laptop 

computer components.  These laptops can be configured to require a user's fingerprint to be 

correctly matched to a stored profile before logging on; thus preventing a thief or mischievous 

person from accessing the computer--even with a password.  Conversely, it would be just as 

simple to use the computer’s on-board camera and FRT to accomplish the same goal or provide a 

redundant system. 

 The most useful implementation of would likely be airport (or other heavily trafficked 

areas) security systems.  Current technologies require would-be passengers to go through 

magnetic scanners which detect large metal objects, provide an acceptable identification card, 

and submit to either a full-body pat-down or scan (8).  These highly invasive technologies have 

met sharp criticism from both the general public and airline employees.  Concerns include over-

exposure to radiation, reduction in personal privacy, and infringement of civil liberties (9).  

However, facial recognition may alter the situation.  Instead, passangers could submit to a facial 

test for known suspects. 

 Currently implemented Facial Recognition Technologies have not been without its critics 

or public failures.  In the case of London England, where video camera systems have been 

combined with FRT to aid in catching terrorists, no arrests were made between the system's 

implementation in the early 1990s and 2002, when the system was shut down.  The city of 

Tampa, Florida also dabbled with a similar system to London starting in July 2001 then had the 

surveillance system removed from service less than a year later.  One critic even went so far as to 

call FRT "high-tech snake oil" (10).  However, a reliable, accurate, and quick method for 

identifying an individual in some form of electronic database of facial images remains extremely 

useful if a method that is both accurate and fast can be found. 
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 While the algorithm documented here was developed specifically for faces, it is not 

limited to face recognition.  The methodology could be used to develop a signature (scale 

spectrum) for any digital image, be it an image of a crack in a beam, widget in a factory, etc.  For 

example, by knowing the signature of a “good” widget, any widget can be checked for quality 

control.  Similarly, a strain gage could be developed which relies on deformation of a known 

pattern attached to a deformable body.  Another application would be camouflage detection.  

Again, by knowing a scale spectrum for a region which did not contain anything, a region of 

interest could be compared.  Any differences may indicate the presence of a camouflaged object.        

2.4. Other Facial Recognition Algorithms 

 The following section provides a detailed look at four of the popular facial recognition 

algorithms in use today.  These algorithms are the primary choices for facial recognition starting 

with an electronic image as the source--the means by which the research documented herein will 

also sample faces.  However, there are other systems in development which do not use an 

electronic image.  Methods which exclude electronic images have been purposefully omitted 

from this document.   

 This section will open with a note about what constitutes an electronic image and a 

description of the database selected for this research.  It then will proceed with a detailed 

discussion of projection methods which are based on first, second, and higher order statistical 

methods.  These projection methods will constitute the bulk of the section, but are not the only 

methods documented.  The final method documented instead makes use of a wavelet 

transformation of specific points in a grey-scale image.   
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2.4.1. Electronic Images 

 Because modern computer facial recognition algorithms (FRA) make heavy use of 

electronic images, a brief introduction to electronic images is presented.  While different file 

formats vary, at the basic level, an electronic image is nothing but a 2-D array, whether the 

image has been stored on a hard disk or is in RAM.  This 2-D array contains a finite number of 

pixels, the smallest addressable elements in a digital image (11).  Generally, a pixel is considered 

to be a rectangle, although the pixel may be given any geometric shape in the context of a 

specialized case.   

 In the case of a binary image, the pixels are fixed at either black (0) or white (1).  

However, most electronic images are not binary; most images today are color or grey-scale.  In 

the case of a grey-scale image, each pixel has an integer value which corresponds to a specific 

grey-scale level.  The number of integer levels is controlled by the number of bits used to track 

the pixel value.  For instance, a typical 8-bit image would have 256 discrete pixel values ranging 

from 0-pure black-to 255-pure white (12).    

 Color images follow a similar construct to grey-scale images.  Typically, three color 

channels are isolated and treated the same way as the grey-scale.  These colors are normally red, 

green, and blue (hence the RGB spectrum).  Color images then have three 2-D arrays of integer 

values that are stored independently.  When called to the computer screen, the three separate 

color channel arrays must be interlaced in some fashion in order for the "true" color to be 

perceived by the human eye (12).   

 The differences in various file formats (ex. jpeg, tiff, bmp) arise primarily from the 

method of compression.  In order to save computer physical memory, image files are not stored 

directly as the 2-D array form (except for tagged image file format (tiff)).  These various formats 
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also contain different header information or meta-data (e.g. location, photograph date, 

photographer). 

2.4.2. The Facial Recognition Technology (FERET) Database 

The Facial Recognition Technology (FERET) database (3) is a database of facial image 

files.  It contains approximately 14,000 tiff image files and is distributed on PC DVD-ROM discs 

(and may be requested from <http://face.nist.gov/colorferet/>).  The database was created by the 

DOD’s Counter Drug Technology Program, conducted at DARPA for the purpose of providing a 

standard database for development of facial recognition programs and algorithms (3).  The 

FERET database is available for free and many other facial recognition algorithms have been 

tested using the FERET database for verification and validation.  Several major competitions 

have also used this database (13), (14), and (5), making the FERET database the ideal choice to 

test the new algorithm presented herein. 

The FERET database contains multiple images of the same individual face.  Some are 

taken at different angles; see below (Figure 2-3).  There are also images of the same individual in 

different lightings, with different facial expressions (shown below in Figure 2-4), and some 

subjects are in both color and black-white images.   
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Figure 2-3: Sample poses from the FERET database 

 

     

Figure 2-4: Sample expressions from the FERET Database 

Each image file is given a unique name that generally takes the form of 

XXXXX_YYYYYY_ZZ_a, where the “_a” is not always present and is used to denote a subset or 

replication of conditions.  The first 5 digits XXXXX are used for an integer that is unique to each 

subject in the database.  There are approximately 1,000 subjects in the database.  The next 6 

digits YYYYYY are used to store the date the image was taken in the form 2-digit year, month, 

and day.  The last two digits ZZ are used to describe the conditions of the image.  Table 2-1 

gives a brief summary of these conditions (3). 
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Table 2-1: Pose Code Letters Overview 

Code (ZZ) Meaning 

fa Primary frontal image of the subject 

fb 

Alternate facial expression, same pose and lighting as 

fa 

ba 

Secondary frontal image, no change in facial 

expression 

bj 

Alternate facial expression, same pose and lighting as 

ba 

bk Different illumination of ba 

bb Subject is faced 60° to the photographer’s right 

bc Subject is faced 40° to the photographer’s right 

bd Subject is faced 25° to the photographer’s right 

be Subject is faced 15° to the photographer’s right 

bf Subject is faced 60° to the photographer’s left 

bg Subject is faced 40° to the photographer’s left 

bh Subject is faced 25° to the photographer’s left 

bi Subject is faced 15° to the photographer’s left 

ql Quarter turn left 

qr Quarter turn right 

hl Half turn left 

hr Half turn right 

pl Profile (full) turn left 

pr Profile (full) turn right 

ra 

Random images at various angles 

rb 

rc 

rd 

re 
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2.4.3. An Overview of 2-Dimensional Computer Algorithms for Face 

Recognition 

 Computer or algorithm-based facial recognition has existed conceptually for some time 

(15).  An early attempt at facial recognition used polls of actual people to determine which facial 

features were important in identifying a person.  Researchers combined this information with 

graph theory to predict correlations required for face identification.  Algorithms then made 

comparisons between photographs in the rather obvious manner of checking these identified 

features for concurrence.  Somewhat ironically, almost 30 years later, the research and 

development documented herein will return to a similar scheme.  However, it is important first to 

discuss some of the more recent advancements of facial recognition algorithms.     

 Due largely to the ever-growing size of electronic photographs, storing and working with 

an entire 2-D electronic face image is overwhelming and computationally difficult (16).  During 

the rapid development of computers in the 1980s, many different schemes for facial recognition 

were proposed and tested.  The majority of these early schemes focused on object extraction such 

as the physical location of the nose or eyes, rather than a global approach using the entire face 

(17).  By the end of the 1980s, facial recognition algorithms had been confined to simple 

appearance based statistical methods which further developed into the projection methods used 

today, most notably with the work of Kirby and Sirovich (17), (18).   

2.4.4.  Principle Component Analysis 

 One popular scheme is principle component analysis (PCA) (17).  In PCA, a face image 

(or rather any electronic image) is reduced from its 2D form to an image subspace.  In order to 

perform PCA, a group of "training" images is required.  These training images must be 
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representative of images used in comparison to the database of images.  If one starts with a 

dataset of p images which are said to belong to a training set G, for PCA to work, each image in 

G must have both the same number of pixels and dimensionality, which will be specified by the 

number of rows and number of pixels per row (�� × �
).  This implies that the total number of 

pixels which comprise a particular image is simply � = � ∗ 
.     

First, a digital image is reduced to a vector by concatenating either the rows or columns 

(usually columns).  This results in �� = ����, ���, ���, …�, ����.  Once image concatenations have 

been computed for all images which will comprise G, the mathematic average image vector (the 

so-called training image, Equation 2.1), �� is found and subtracted (Equation 2.2) from all image 

vectors in the database leaving a data set of arrays which represent the difference between that 

particular image and the average of all images.      

N

X

X

N

i

i∑
== 1  

Equation 2.1 

��� = �� �− �� Equation 2.2 

 

 These ���  are then placed as the columns in a large matrix of all images in the data set, G.  

This is commonly referred to as the image space.  Once G is formed, the covariance matrix ��� 

is formed and the principle components of the covariance matrix are found using Equation 2.3.  

(Note that � is the diagonal matrix of eigenvalues and R is a rotation matrix.)  The original 2-D 

image coordinate system (typically a Cartesian system) is thus transformed through R into the 

subspace defined by selecting a series of the available eigenvalues - usually by choosing from 

the decreasing order of principle component of the eigenvalues until the desired number have 
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been selected.  The eigenvectors associated with the chosen eigenvalues then define the 

orthogonal axes of the subspace coordinate system (18), (19).  In Figure 2-5 there is an example 

of an average image and several "Eigenfaces" which are the subspace projections from a series of 

eigenvalues / vectors. 

��(����)� = �� Equation 2.3 

   

 

Figure 2-5: Eigenfaces (projections from the Eigenvectors produced solutions of Equation 2.3) and Average Image 

(top left) from PCA (17) 
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 The problems with this approach arise primarily out of its relative simplicity.  An image 

space has large dimensionality if either the data set is big or the number of pixels is high (a high 

resolution photo).  While image space will eventually be reduced to a subset of eigenvalues and 

vectors, for a new image to be compared to the dataset, this computationally expensive process 

(Equation 2.1 to Equation 2.3) must be repeated (whether or not the trained average image is 

altered).  Essentially, for every new test image, the eigenvalues must be found again.  However, 

once complete, the comparison of one image to another is straightforward because the strength of 

the correlation between two images is inversely proportional to the Euclidean distance between 

them (18). 

 Since the projections into the subspace are dependent upon the original Cartesian image, 

any changes in rotation of the subject face relative to the observer (camera) would drastically 

affect the transformation into the subspace.  Because each image in G must have exactly the 

same dimensionality, an additional pre-processing step is required to scale any non-conforming 

image.  For instance, if the number of horizontal pixels of a test image were twice the dataset 

standard, some additional step would be required to remove pixels.  Removing pixels could be 

extremely detrimental to an image and great care must be taken to do this properly.   Changes in 

lighting and reflectivity (among others) can also cause PCA to fail (17). 

2.4.5. Independent Component Analysis 

 Because PCA relies on a Euclidean distance to describe the correlation between two 

images, PCA only minimizes the mean-squared errors (18).  Therefore, one of the logical 

extensions of PCA minimizes both the second-order (mean-square) and higher order errors.  

Independent Component Analysis (ICA) uses such higher order statistics to match faces (20).  

Essentially, the goal of ICA is to find a basis where the data are statistically independent in 
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higher orders.  In doing so, it creates a linear, non-orthogonal coordinate system.  However, ICA 

retains the linearity of PCA.    

 In this formulation, s is an unknown vector, A is an unknown mixing matrix, and x is a 

known source which results from the mixing as given in Equation 2.4.  The goal of ICA is to 

decouple this mixing by finding another matrix, W (Equation 2.5), such that a reasonable 

estimation, u, of the original unknown s can be found. 

�� = � ! Equation 2.4 

"� = �#�� = �# ! Equation 2.5 

 

 In order to increase this formulation to higher than 2
nd

 order (PCA), the signals must be 

statistically independent.  The signals are said to be statistically independent when they satisfy 

Equation 2.6, where fu is a probability density function in u (18). 

$%(") �= �& $%'("�� ) Equation 2.6 

    

 In practice it can be very difficult to analytically solve for a W which satisfies Equation 

2.6.  The primary differences in ICA arise then from the various iterative approximations which 

are subsequently used.  Three basic approximations are InfoMax (entropy-based) (21), JADE 

(kurtosis-based) (18), and FastICA a general and robust algorithm (22).  These three algorithms 

will be covered briefly below.   

 For the InfoMax formulation, the entropy H(u) (Equation 2.7) is maximized , which in 

turn, maximizes the signal independence.  InfoMax uses the gradient ascent of W to accomplish 

the maximization of entropy (21).  Conversely JADE relies on the kurtosis (or simply how 
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sharply peaked the distribution curve fu is).  In minimizing kurtosis of fu by a joint 

diagonalization of the fourth order cumulants, JADE also maximizes the independence (18).   

((") ≝ �−�*$%(") log $%(")." Equation 2.7 

 

 Finally, FastICA minimizes Equation 2.8 where G is some general non-quadratic 

function, ν is a Gaussian random variable (Gaussian random variables are normally distributed 

over a fixed interval), c is a positive constant, and E is any function of interest.  Bartlett et. al. 

have shown that in maximizing Equation 2.8, the statistical independence is also maximized 

(22).  For specific information on algorithm implementations, the reader is referred to several 

examples which can be found in Bell and Sejnowski (21), Chichocki, Unbehauen, and Rummert 

(23), and Comon (24). 

/(0) ≈ 2�34�(0)5 − �34�(6)5�� Equation 2.8 

 

  ICA methods, as applied to facial recognition, generally fall into two categories, referred 

to as “Architecture I” and “Architecture II” (20).  The difference between these two approaches 

is essentially the frame of reference.  In Architecture I, the database is arranged into a matrix 

where each row is an image (similar to PCA).  Each pixel can be chosen and compared to 

another.  For instance, two images are independent of each other if the pixels from one image 

cannot be used to successfully predict the pixels from the other.  Similarly, Architecture II places 

the images in columns of the matrix (exactly like PCA).  Images are tested, instead; for example 

two pixels are independent of each other if it is not possible to predict the value of one pixel 

from another in the same image.  Figure 2-6 shows this method pictorially. 
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Figure 2-6: Two architectures for ICA (a) and (b) are examples of Architecture I.  (c) and (d) are examples of 

Architecture II (20). 

 ICA suffers from a similar set of problems as PCA.  Again, it is computationally 

intensive and sensitive to the rotation of the subject.  The iterative processes used to solve for W 

are usually chosen based on a specific goal or feature of the database.  While these processes are 

similar, they may produce different results under different circumstances.  However, as with any 

iterated process, the computational time required may be quite great, especially when applied to 

a database containing a large number of digital images. 

2.4.6. Linear Discriminant Analysis 

 Linear Discriminant Analysis (LDA) is another extension of PCA, however much more 

abstract.  LDA attempts to find the projection axes that maximize the distances of the different 

classes, which are a set of delineating features chosen from the images.  In general these classes 

might be the location of the subject's eyes, or the curvature of the cheeks, or any "feature" the 
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researcher finds useful.  In application though, the classes are restricted to the projection axes 

resulting from the eignenvalue approach of PCA.   In other words, LDA locates vectors which 

best differentiate between images (25), instead of simply choosing from the maximum to the 

minimum eignenvalues as PCA does.  To accomplish this, LDA maximizes the Fisher 

Discriminant Criterion (FDC), which is why LDA may also be referred to as Fisher’s Linear 

Discriminant (FLD) (19).  It should be noted that FLD is basically a ratio of signal to noise 

(Equation 2.9). 

 For solution of a system involving only one class, the FLD is defined through a series of 

successive projection axes (similar to PCA) and a solution parameter to be maximized, γ.  Note 

that u here is a unit vector in the direction of projection.  Recall that in PCA these projection axes 

are derived from the eigenvalues and vectors.  LDA makes use of the same projections.  

Equation 2.9 gives the definition of γ as a ratio of the so-called scatter matrices (Equation 2.10 

and Equation 2.11).  Note that B is the desired number of classes (projection axes); P is a 

probability associated with a certain class, C; 7� is an average vector over all C; and x is a vector 

specific to class C (25).  

8(") = � !9(")!:(") Equation 2.9 

!9(") = �;<(=�)>?7� − 7�@"A�B
�C�  Equation 2.10 

!:(") = �;<(=�)3�4(�� − 7�)"5��B
�C�  Equation 2.11 
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 In practice the scatter matrices are defined differently (Equation 2.12 and Equation 2.13) 

to simplify the algebra and allow an alternate representation of γ (Equation 2.14).  Note that T is 

the usual transpose operator.   

D9 =�;<(=�)?7� −�7�@?7� −�7�@��
�C�  Equation 2.12 

D:(") = �;<(=�)3�(�� − 7�)(�� − 7�)���
�C�  Equation 2.13 

8(") = � "�D9""�D:" Equation 2.14 

 

 Finally, the solution to the system is presented in Equation 2.15.  Here, the w are the 

various vector solutions from the eigenvalues and vectors; commonly referred to as eigenfaces.  

The λ are any successive parameter being used to classify (or differentiate) an image and the k 

are simply used to denote a large system counting a particular k image (25). 

D9EF = GFD:EF Equation 2.15 

 

 As with ICA solutions the selection of classes may vary among research groups and 

application.  For instance, Navarrete and Ruiz-del-Solar choose for the case of B classes B-1 

independent values of λ (number of projected spaces) (25), as do Delac, Grgic and Liatsis (19).  

Delac, et. al. go on to note that "...this approach [LDA] can produce some problems."  They list 

said problems as: 
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1. This eigensystem does not have orthogonal eigenvectors (recall that is 

advantageous to PCA for differentiation among images) because D:H�D9 is, in 

general, not symmetric. 

2. Matrics Sb and Sw are usually too big to be computationally tractable. 

3. Sw may be singular and therefore non-invertible (19). 

 As a means of working around these problems, LDA often falls back to PCA to 

decompose the large image space matrix to the eigenvalues (26), (19).  The problems of LDA are 

then essentially the same as PCA.  

2.4.7. Elastic Bunch Graph Matching 

 Computational face recognition is not limited to the subspace projections used by PCA, 

ICA, and LDA.  Another popular method is called Elastic Bunch Graph Matching (EBGM).  In 

EBGM, an image is selected for analysis (either to be stored to a database or analyzed 

individually) and features of interest are isolated.  These features may be specific locations of 

eyes or nose, or any distinguishing physical feature of the face.  The (x, y) locations of each 

feature are recorded to be used later during transformation.    

 Once all locations of interest have been mapped for a particular image, a Jet (a simple 

convolution based on a wavelet transformation, symbol J) is calculated according to Equation 

2.16 for each location and desired number of rotations.  Note that I refers to a specific grey-scale 

image, x refers to a specific location and t is a dummy variable for integration.  The domain of t 

should include the location (pixel) of interest.  For this derivation, a variable which appears with 

an arrow is a 2-D Cartesian vector, but when appearing without the arrow is the magnitude of the 

vector (27).  k is just a book-keeping integer used to track a particular Jet in a series of Jets which 

will be developed for a particular location.   
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/F(�I) = �* J?KI@LF?�I − K�MMI@.KI Equation 2.16 

LF(�I) = �NF�O� exp S−NF����2�O� U Vexp?W�NFMMMMMI��I@ − exp S−�O�2 UX Equation 2.17 

  

 The LF �are the vectors which describe the shape of a plane wave.  They are given in 

Equation 2.18.  It should be noted that the j are the integer values for each of the desired 

frequencies (assume there are M frequencies selected), the i are the integer values between 0 and 

N-1 where N is the number of desired rotations for a desired frequency (27).  σ is used as a phase 

shift during the transformation and taken to be 2π; σ will be ignored later. 

NFMMMMMI �= �SNFYNFZU �= �2H�[\�� ]cos W �̀sin W �̀c ` Equation 2.18 

 

 This process must be completed for each of the chosen locations of interest and desired 

number of images in the database.  If one had 15 images and 10 locations, there would be 150 

iterations of this algorithm.  However, each iteration of the algorithm has M*N calculations.  In 

Wiskott, et. al. (27), the researchers chose 5 frequencies and 8 orientations resulting in 40 

coefficients for each location of each image.  So, using 15 images, and 10 locations, and the 40 

coefficients, there would be 6,000 numbers to describe the faces in the dataset.  This number is 

completely scalable and generally left to the researcher. 

 Wiskott et. al. (27) also developed a method for comparing Jets among face images.  

First, the notation of Equation 2.18 is simplified to Equation 2.19.  In this compact form the ak 
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are the coefficients developed from Equation 2.17 and the constant valued term (σ) has been 

removed. 

/F = dF exp(W�NF) Equation 2.19 

 

 Wiskott et. al. then use a similarity function to calculate one number, S, which describes 

the difference in two images for one specific feature (Equation 2.20).  It should be noted that 

Equation 2.20 ignores the effect of phase and assumes the two jets are directly correlated 

spatially (i.e. two features of different images which are at the same relative point).  However, 

Wiskott et. al. have also developed a means of correcting for a small distance error (the subject's 

face may not be in exactly the same location in image-space in different photographs).  The 

interested reader is referred to source (27) for more information on this distance compensation.  

D(/, /e) = � f d[d[′Fhf dF� �f (dF′)�FF  Equation 2.20 

 

 EBGM does not suffer the same problems of large matrix manipulation as the projection 

methods do; however, the locations of interest in the image must be identified by hand.  The pre-

processing step inherent therein makes the method unsuitable for person of low-training. The 

success and accuracy of EBGM depend upon experienced selections ranging from the locations 

of interest to the desired number of rotations to use during analysis.  Finally the integral of 

Equation 2.16 may not have an analytic solution.  Consequently, some form of quadrature would 

be required, which may be computationally expensive--offsetting any gains of its compact 

notation. 



27 

 

 The simplicity of a single number (similarity) for comparing two images (faces) does 

provide a much simpler form than calculating the Euclidean differences in large eigenvector 

matrices. 

2.5.  Summary 

As has been shown in this Chapter, the currently available algorithms are very 

computationally intensive or difficult to use for minimally trained users.  Any time a new image 

is added to a dataset, the algorithms must recalculate large matrix systems or solve imposing 

integrals.  The next chapter will detail a new algorithm, which had both high accuracy potential 

and eliminated many of the computational requirements of algorithms documented in this 

chapter.  

3. Algorithm Development 

This chapter will discuss the development of the facial recognition algorithm used, as 

enumerated in Goal 1.  It opens with a brief discussion of fractals, which are the focus of the 

identification process, and develops the algorithm in successive steps by modifying the random 

walk to create a fractal.  Fractals are used to estimate the transition probabilities (the result of 

creating fractals with the Random Walk).  Finally, the transition probabilities are normalized and 

plotted.  The resulting normalization was used to compare one image to another. 

The core of this algorithm was developed and documented by Deal (1) specifically for 

fingerprints.  Following Deal’s development, Stoffa validated the algorithm for the specific case 

of parallel lines with uniform spacing with Buffon’s Needle problem (2), and Stoffa attempted to 

verify the fingerprint application by comparing the algorithm to a standardized fingerprint testing 

sequence.  He found that the algorithm was ill-suited, performing near the bottom in his tests 
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compared to other fingerprint algorithms.  However, Stoffa neglected to normalize the transition 

probabilities; which would have removed the effects of differing numbers of white or black 

pixels between fingerpint image files.  

3.1.  Fractals 

For the purpose of this work, the word fractal will be somewhat limited compared its 

normal definition and scope.  Here, a fractal will be a regular geometric pattern which is self-

similar and has a repeated motif (28).  To be self-similar, the pattern must be repeated within 

itself at a scale ratio, e.g. the process of dividing an equilateral triangle into 4 smaller equilateral 

triangles which are exactly 25% of the original area.  If the triangle dividing process were 

repeated, there would be 16 total triangles with 6.25% of the original area, each.  A repeated 

motif is a grouping of these self-similar patterns into a form or object which is scaled throughout 

the fractal.  In this example, the motif could either be the triangles themselves or the ratio of 

areas.   

The Sierpinski Triangle is a classic example of one of the simplest fractal patterns.  The 

process is as follows and is demonstrated graphically in Figure 3-1 (28).  With each repetition, 

the number of triangles increases; however, the number which can be displayed in a digital 

image is limited by the number of pixels. 

1. Create a triangle (a) and then create three copies which are exactly 50% in width 

and height of the original triangle. 

2. Arrange the copies so that they meet point-to-point (b).  Notice that these 

triangles can only cover 75% of the area of the original triangle. 

3. Repeat steps 1 and 2 for each series of scaled triangles (c-e) 

 



 

Figure 3-1: Sierpinski Triangle

Each step of the fractal generation (i.e. going from b to c) is known as a “pre

progression of pre-fractals (as shown in 

noting that as the fractal curve reaches infinity (or the number of pre

the area of the black triangle sub-

sections becomes infinite.  The effect

pre-fractal to another (i.e. advancing one iteration) is known as the fractal dimension.

general formulation for fractal dimension

3.1.  Here, r is the ratio of the scale factor of the fractal (i

widths, or ½), and M is the number of repeated parts (or sections) of the original shape (in this 

example 3) (28).   

. = �−�lniln
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: Sierpinski Triangle fractal curve (progression is from a to e) 

Each step of the fractal generation (i.e. going from b to c) is known as a “pre

fractals (as shown in Figure 3-1) is known as a fractal curve.  It is worth 

noting that as the fractal curve reaches infinity (or the number of pre-fractals becomes infinite), 

-sections becomes zero and the perimeter of the white sub

effects (scaling, multiplicity) associated with moving from one 

fractal to another (i.e. advancing one iteration) is known as the fractal dimension.

r fractal dimension, d, (for self-similar pre-fractals) is given in 

ratio of the scale factor of the fractal (in this example the ratio 

is the number of repeated parts (or sections) of the original shape (in this 

iln j = �−�ln kln l2 = lmno… 

 

Each step of the fractal generation (i.e. going from b to c) is known as a “pre-fractal.”  A 

) is known as a fractal curve.  It is worth 

fractals becomes infinite), 

of the white sub-

with moving from one 

fractal to another (i.e. advancing one iteration) is known as the fractal dimension.  The 

fractals) is given in Equation 

the ratio of triangle 

is the number of repeated parts (or sections) of the original shape (in this 

Equation 3.1 



 

However, a fractal pattern

Walk process.  A random walk is an iterated process in which an object travels a fixed distan

stops, arbitrarily selects a new trajectory, and repeats

A common freshmen engineering assignment at WVU is the creation of the Sierpinski 

Triangle through the random walk.  To create the Sierpinski Triangle from the random walk, 

start with an empty triangle with known 

consider a triangle 1,000 pixels wide by 1,000 pixels in height

Figure 

To start, one point in the triangle 

randomly from the triangle; however this has no effect on the r

triangle is commonly used as the first point.  From 

three and move half of the distance from the current point to

point (or new point).  The selection of moving half
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However, a fractal pattern (one pre-fractal) can also be generated by invoking

ndom walk is an iterated process in which an object travels a fixed distan

s a new trajectory, and repeats the entire sequence (29).   

A common freshmen engineering assignment at WVU is the creation of the Sierpinski 

the random walk.  To create the Sierpinski Triangle from the random walk, 

start with an empty triangle with known coordinates of each corner (vertex).  For this example, 

a triangle 1,000 pixels wide by 1,000 pixels in height (Figure 3-2).   

Figure 3-2: Seirpenski Triangle Domain Example 

ne point in the triangle must be selected. The starting point may

; however this has no effect on the resulting fractal.  The middle of the 

the first point.  From there, select one corner randomly from the 

three and move half of the distance from the current point toward the corner.  This is the second 

The selection of moving half the distance to the randomly chosen corner is 

invoking a Random 

ndom walk is an iterated process in which an object travels a fixed distance, 

A common freshmen engineering assignment at WVU is the creation of the Sierpinski 

the random walk.  To create the Sierpinski Triangle from the random walk, 

For this example, 

 

must be selected. The starting point may be selected 

esulting fractal.  The middle of the 

here, select one corner randomly from the 

This is the second 

to the randomly chosen corner is 
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a rule known as the Chaos Game.  For visualization, the new point should then be marked by 

changing the pixel value associated with it.  Once the new point is marked, the process is 

restarted by selecteing a new corner randomly and repeated until the desired approximation of 

the fractal is complete (Figure 3-3).   

 

Figure 3-3: Sierpinski Triangle (Blown Up View, performed by hand) 

In other words, the fractal is simplified to a finite list of random numbers (corner 

selections, say 1, 2, or 3) and Cartesian coordinates.  This list is a dataset, which when plotted in 

a digital image, represents the one pre-fractal in the fractal curve.  To move along the fractal 

curve, the resolution (number of pixels) must be altered (increased or decreased). 

The number of iterations required will be dependent on the number of pixels in the image 

and the desired clarity (or resolution) of the fractal.  For this example there were 1,000 x 1,000 

pixels, (1,000,000) in the entire image.  Since the pixel is the smallest addressable screen 

element, there is a limit to the resolution which can be achieved.  For this example 1,000,000 

iterations were used to ensure adequate resolution of the approximated fractal (Figure 3-4); 



32 

 

however, there appears to be little qualitative difference between 100,000 iterations and 

1,000,000 iterations images (Figure 3-4 c and d, respectively).  Note: the borders of the triangle 

have been included for clarity.   

  



 

Figure 3-4: Approximated Sierpinski Triangle after a) 1,000 iterations, b) 10,000 iterations, c) 100,000 iterations, d) 

1,000,000 iterations.  Note: the image quality was reduced to insert

This foundation of creating a fractal from a random walk 

image can be used to dictate the fractal creation instead of choosing corners randomly from the 

fractal (1).   

33 

: Approximated Sierpinski Triangle after a) 1,000 iterations, b) 10,000 iterations, c) 100,000 iterations, d) 

.  Note: the image quality was reduced to insert into this document.  

This foundation of creating a fractal from a random walk was modified so that a binary 

image can be used to dictate the fractal creation instead of choosing corners randomly from the 

 

: Approximated Sierpinski Triangle after a) 1,000 iterations, b) 10,000 iterations, c) 100,000 iterations, d) 

this document.   

modified so that a binary 

image can be used to dictate the fractal creation instead of choosing corners randomly from the 



 

3.2.  Obtaining the Dataset f

Consider an electronic image of some shape whi

define it as an Image Space with domain

finite dimension, (����
) contianing only

example of such an ΩI; note that the pi

added for clarity. 

Figure 3-5: Example Image Space

3.2.1. Generating a Fractal from a Modified Random Walk

First, a pixel (xi , yj) from 

corners from the triangle in the random walk.

length l, which is known and fixed prior to the modified random walk

segment is also called “scale”.  N

34 

ataset for Binary Images 

Consider an electronic image of some shape which can be represented in binary, and 

with domain�pq(�, 0).  ΩI then is a discrete 2-D Cartesian 

contianing only Boolean values (0 or 1).  Figure 3-5 gives a small 

that the pixels do not in reality posses border lines, which ha

: Example Image Space (red has been used to denote black because of pixel border lines)

Generating a Fractal from a Modified Random Walk 

from ΩI  is selected randomly (blue pixel in Figure 3

corners from the triangle in the random walk.  This pixel is the mid-point of a line segment of 

which is known and fixed prior to the modified random walk.  The length of the line

Next, an angle of rotation for that line segment Θ

ch can be represented in binary, and 

D Cartesian region of a 

gives a small 

, which have been 

 

(red has been used to denote black because of pixel border lines) 

3-6) just like the 

point of a line segment of 

The length of the line-

Θ is also selected 



 

randomly from r s �t�, `��.  This second random selection is different fro

triangle.  The line segment is then rotated by 

values (0 or 1, black or white) of the pixels at the endpoints of the line segment are noted.  In 

Figure 3-6, these endpoint pixels are marked in green.  The coordinates of the pixels are found 

from Equation 3.2.   

(���, 0�) = u��
(���, 0�) = u��

Figure 3-6: Sample Image Space with selected pixel (blue), rotation, and end

Note: the local coordinate axis has been provided at the randomly chosen (blue) pixel to graphically demonstrate the 
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This second random selection is different from the Sierpinski 

triangle.  The line segment is then rotated by Θ as shown pictorially in Figure 3-6

values (0 or 1, black or white) of the pixels at the endpoints of the line segment are noted.  In 

, these endpoint pixels are marked in green.  The coordinates of the pixels are found 

u v� w2 cos�r�, �0[ v� w2 sin rx 

u −� w2 cos�r�, �0[ −� w2 sinrx 

 

: Sample Image Space with selected pixel (blue), rotation, and end-points 

the local coordinate axis has been provided at the randomly chosen (blue) pixel to graphically demonstrate the 

angle of ration. 

m the Sierpinski 

6.  Finally, the 

values (0 or 1, black or white) of the pixels at the endpoints of the line segment are noted.  In 

, these endpoint pixels are marked in green.  The coordinates of the pixels are found 

Equation 3.2 

 

 (green).   

the local coordinate axis has been provided at the randomly chosen (blue) pixel to graphically demonstrate the 
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Because ΩI was chosen to be Boolean Image Space, there are only two possible values 

for the end-points of the line segment: black (0) or white (1).  The four possible combinations of 

the end point values then are white-black (WB), white-white (WW), black-white, and black-

black (BB).  It is these combinations which are used to create the fractal (as opposed to randomly 

selecting one corner of the triangle).  Because there are four combinations, the fractal will be 

extended to a rectangle from the triangle.  Figure 3-7 gives a representative fractal-space where 

the corners are labed based on the aforementioned combinations. 

 

Figure 3-7: Sample Fractal Space 

Now, the fractal will be created in a separate space from the image.  This new space will 

be generically referred to as fractal-space with domain ΩF.  Just as with the Sierpinski triangle, 

the fractal-space is discrete (repsented by pixels).  For the examples which follow, fractal-space 
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was chosen as a rectangle with 1,000 pixels per side.  And as with the triangle, the resolution of 

the fractal-space will dictate the clarity of the resulting pre-fractal image. 

Just as with the triangle, once a pixel combination has been selected from image-space 

(BB, BW, WW, or WB), half the distance to the corresponding corner in fractal-space is traveled 

and the new point (pixel) is marked.  Once the point is marked in fractal space, a new point and 

angle are selected randomly in ΩI, a new pixel combination is found, and the next point in 

fractal-space is marked by traveling half the distance the corresponding corner.  This process is 

repeated for a fixed number if iterations.  In a similar manner to the Sierpinski triangle example 

presented, the fractal pattern may be thought of as a list of selected pixel value combinations and 

marked points. 

When a pixel is selected in ΩI near the boundary, the possibility of crossing the boundary 

with the line segment exists.  Line segment endpoints beyond the boundary are not physical (the 

electronic image does not exist there and as such is not valued there).  To avoid excessive 

computational time to determine the exact distance from the boundary a particular angle may 

permint without the line segment endpoints crossing the boundary, the limiting case of Θ = 0 is 

chosen, implying that all randomly selected pixels must be selected at least l / 2 pixels from the 

boundary of ΩI.   

3.2.2. Example Fractal from Vertical Bar Pattern at a Fixed Scale 

For example, consider a square image space of 1,000 pixels across with a repeated pattern 

of vertical lines.  The first vertical portion will be 5 pixels wide and black.  The second portion 

will be 10 pixels wide and white.  This pattern will then repeat across ΩI from left to right 

(Figure 3-8).  For the analysis, a scale value of 7 pixels will be used because 7 is approximately 

half-way between the bands of 5 black and 10 white pixels.  Figure 3-9 gives the progression of 
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the fractal in a similar manner to the Sierpinski example.  Here, the fractal image is the same size 

as ΩI.   

 

Figure 3-8: Sample ΩI 



 

Figure 3-9: Fractal generated from the pattern above after a) 1,000 iterations, b) 10,000 iterations, c) 100,000 

iterations, and d) 1,000,000 iterations

Recall that the top-left corner of fractal space is the black

is black-white, bottom-left is white

particular combination is found in i
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: Fractal generated from the pattern above after a) 1,000 iterations, b) 10,000 iterations, c) 100,000 

iterations, and d) 1,000,000 iterations.  Note that the borders have been artificially added for clarity.

left corner of fractal space is the black-black pairing, top

left is white-black, and bottom-right is white-white and each time a 

particular combination is found in image space during the random walk analys, a pixel is 

 

: Fractal generated from the pattern above after a) 1,000 iterations, b) 10,000 iterations, c) 100,000 

artificially added for clarity.   

black pairing, top-right corner 

white and each time a 

mage space during the random walk analys, a pixel is 
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changed from white ot black in the corresponding corner in the fractal.  As shown in Figure 3-9 

d) there are substantially more pairings of white-white than black-black (count the number of 

blackened pixels in those quadrants).  This makes sense physically, as image space had twice as 

many white pixels as black pixels; thereby increasing the odds of selecting a white-white over 

black-black combination at a particular scale (41% versus 8%, respectively).   

Further, the white-black and black-white quadrants appear to have similar counts.  The 

ends of the line segment which are used to generate the color combinations are calculated by 

rotating through the random angle (Equation 3.2) which is chosen to be measured relative to 

some local horizontal axis.  However, this choice is entirely arbtrarly and imposes a “left” and 

“right” side of the line segment.  It should not (and does not) matter whether the black pixel is on 

the left or right of the line segment.  Logically then, the mixed quadrants (black-white and white-

black) will always have the same patterns in the fractal.   

3.2.3. Effects of Scale 

A natural extension of creating a fractal using the Random walk methodology then is to 

vary the scale length (l).  When the scale is changed, the fractal will also change because the 

frequency of the end-point black and white pairings of the line segment will also change.  

Consider a geometric example using the same simple, zoomed ΩI from Figure 3-5.  Randomly 

select a pixel (marked blue) and choose two different scales (5 pixels and 9 pixels) for the same 

point and angle (marked in green).  By observation, for l = 5, the combination is white-black, but 

for l = 9, the combination is white-white (demonstrated in Figure 3-10).  By extension from this 

simple pictorial example, different scales will produce different fractals since the change in scale 

alters the frequency of the combinations.  To demonstrate this scale dependence, fractal images 

for various scales for the vertical bar pattern Figure 3-8 are shown in Figure 3-11. 



 

Figure 3-10: Image space with different scales marked
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: Image space with different scales marked for a random pixel for the same angle of ration

 

for a random pixel for the same angle of ration 



 

Figure 3-11: Fractal images of vertical b

pixels, g) 15 pixels, h) 25 pix

 Figure 3-11 a) is particularly important.  In it, there is only a line instead of the square 

motif of the other examples in Figure 
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Fractal images of vertical bar for scales: a) 0 pixels, b) 1 pixel, c) 2 pixels, d) 3 pixels, e) 5 pixels, f) 10 

pixels, g) 15 pixels, h) 25 pixels, and i) 50 pixels 

a) is particularly important.  In it, there is only a line instead of the square 

Figure 3-11.  Because the fractal was started in exactly the middle 

 

a) 0 pixels, b) 1 pixel, c) 2 pixels, d) 3 pixels, e) 5 pixels, f) 10 

a) is particularly important.  In it, there is only a line instead of the square 

.  Because the fractal was started in exactly the middle 
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of the fractal-space domain, and because the scale was exactly 0 pixels, a) represents a count of 

black and white pixels in the image-space.  The zero scale means that no line can be constructed 

which is able to leave the pixel which was randomly selected.  This in turn means the ends of the 

line segment are also inside of the selected pixel.  Since the end points have never left the 

selected pixel, the combinations can only be black-black or white-white for a black or white 

pixel respectively.  The pertentange of pixels in image space which are black (or white) in a 

particular image then dictates the odds of choosing a black (or white) pixel at zero scale.  For 

example, if 25% of image space were black pixels, then the odds of ranomdly choosing one 

black pixel would be 25%.  Conversly, if during the random walk analysis 25% of the zero-scale 

combinations were black-black (black pixels), that would imply that 25% of image space were 

black pixels.  Effectively, zero scale provides an estimate of the black and white pixel counts.  

 Notice also the trend of Figure 3-11 from small to large scale.  The fractal images begin a 

transition from light areas in the mixed combination quadrants (top right and bottom left or 

black-white and white-black) to a uniform darkness throughout the fractal.  This tendency results 

from the frequency of the various combinations.  At small scale, the chance of selecting a mixed 

combination is small compared to a pure combination because the line segment tends to stay 

within a pixel or vertical bar.  As the scale is increased, the line segment may overlap multiple 

vertical bands—in effect making the possibility of selecting a mixed combination higher.  As 

scale becomes very large (on the order of the image), the possibility of selecting any of the four 

corners becomes equal.  

3.2.4. Transition Probabilities 

Stoffa demonstrated this modified random walk method for creating a fractal image is a 

Markov Chain process (2).  A Markov Chain is simply an iterated process in which a future state 
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(location of the next point to be marked in the fractal) can be predicted from the current state 

(location of the current point) with a group of known transition probabilities (in this case, the 

corner which is chosen randomly) which describe all possible future states (30).  In the example 

of the Sierpinski triangle, each of the three corners are equally probable (assuming the random 

numbers are uniformly distributed); so the transition probabilities or the corners are 33.3% each.  

However, the four corners of the feature-driven fractal from the random walk are in fact not 

equally probable.   If each corner were equally probable, the resulting fractal would be 

completely filled in with black pixels or become grey space. 

Difficulty arises in establishing values for transition probabilities in any fractal 

application.  In order to establish values which have no inherent error, the modified random walk 

would have to be performed indefinitely or a closed-form solution must be determined.  Stoffa 

was able to determine a closed-form solution for the particular case of vertical lines (Figure 3-8) 

by modifying Buffon’s Needle, which is a classic statistics problem which strives to determine 

the probability of dropping a needle onto a crack in a wooden floor (31).  However, the stringent 

requirements of Stoffa’s solution are not practical for any other pattern, and large scales on the 

vertical bar pattern (specifically, Stoffa required the scale to be less than the width of the 

smallest band of black or white pixels). 

 Stoffa also demonstrated that the abbreviated (fixed number of iterations) process which 

is used to create the fractal from image-space, can also be used to predict the transition 

probabilities for a given scale according to the properties of a Monte Carlo integration (2).  A 

Monte Carlo integration demonstrates that a series of random samples (in this case selecting the 

pixels from image space randomly) can be used to approximate the actual transition probabilities 
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or fractal image, with a predictable error (32).  The order of the error for such a process is 

dictated by Equation 3.3 (informally known as the Law of Large Numbers). 

3jjyj ≈ lhDd�zw{�DW|{ Equation 3.3 

  

 Intuitively from Figure 3-9 such a formulation of error makes sense.  As the sample size 

increases, the fractal pattern becomes moredefined.  By inspection, the cases for an interation 

count of 10
5
 and 10

6
 are qualitatively quite similar.  This similarity is described by the error 

(Equation 3.3) associated with each: 0.00316 and 0.001, respectively.  The small difference 

between these errors quantitatively explains what is qualitatively observed. 

 Essentially then, the transition probabilities for each quadrant of a fractal can be 

estimated with a finite number of iterations for a fixed scale with predictable error.  Once the 

transition probabilities are estimated for a series of scales (in effect a series of fractal images 

such as Figure 3-11), the probabilities can be plotted as a function of scale.  This ability to 

characterize a series of fractal images produced from binary image space with plots of four (BW, 

WW, WB, and BB) approximations of probabilities is important.  

 As shown in Equation 3.4, these probabilities (αi) can be estimated by counting the 

number of instances a particular corner is selected during analysis, Φi, and dividing this number 

by the total number of iterations (f Φ[~[C� ) for a particular scale.  This counting method is only a 

first-order approximation of the true probabilities (2).   

�� = � Φ�f Φ[~[C� ��W = l, 2, k, 4 Equation 3.4 
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3.2.5. Scale Spectrum 

 A plot of the four transition probabilities as a function of the scale at which the 

probability was sampled is the scale spectrum for a given image-space.  As already mentioned, 

Stoffa has provided a means of estimating these probabilities for individual scales.  Returning to 

the example image-space of vertical bars (Figure 3-8), selecting 501 values for w s �t�, nt� 
pixels, and using 10

6
 iterations per scale, the resulting scale spectrum is presented in Figure 3-12.  

Note that i from Equation 3.4 has been replaced with letters which correspond to the 4 

combination possibilities (ww, wb, bw, bb).  In Figure 3-12 the probability curves of white-black 

and black-white lie on top of each other.  As already noted in 3.2.2, the count of WB and BW are 

equal for a particular scale; meaning that the transition probabilities (which are calculated from 

those counts) are also equal.  It should be noted that at scale = 0, the mixed probabilities are zero 

as predicted by the pre-fractal in Figure 3-11 a.  Additionally, the transition probabilities at zero 

scale add up to 1 (αww = 2/3 and αbb = 1/3). 
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Figure 3-12: Sample scale spectrum generated from the vertical line pattern 

These probability curves have an interesting shape.  First, they appear to imitate a 

sinusoid and have comparitively the same periodicity.  Likewise, as scale becomes large, a 

damping effect drives the amplitude of the curves to zero.  The mixed probability (black/white 

and white/black) curves and pure probability curves are inverse (or possibly exactly out of phase 

such as cosine and sine) to each other.  The BB curve has a local maximum while the BW curve 

is at a local minimum.  

Since the mixed terms have equal probability, the notation is simplified as αww (white-

white transition probability), αbb (black-black), and β (either black-white or white-black).  For 

convenience, the four transition probabilities can be arranged in a 2x2 matrix, P (Equation 3.5) 
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as a function of scale, l.  Because Stoffa found that the determinant of P and the second 

eigenvalue of P are both equally effective at delineating one image-space from another, the trace 

and first eigenvalue, which were very poor delineators, will be ignored (2).  The calculation of 

the second eigenvalue is directly related to the determinant, only the determinant (Equation 3.6) 

will be considered for delineation of one image-space from another to conserve computational 

time. 

<(w) = � ��::(w) �(w)�(w) �99(w)� Equation 3.5 

�?<(w)@ = �{K(<) = �:: ∗ �99 −��� Equation 3.6 

 

 In a desire to use fratal analysis of binary images to compare similar subjects, the 

determinant alone is not sufficient to delineate among image spaces.  Two separate binary 

image-spaces of similar subjects may have differing numbers of black (or white) pixels.  Any 

such difference may skew respective scale spectra.  This discrepancy in black pixels is not 

necessarily indicative of different subjects which are presented in the image spaces.  For 

instance, the vertical bar pattern already presented makes use of alternating bands of 10 white 

pixels and 5 black pixels, which effectively means that 33.3% of the image space area is black 

and the remainder white.  To effectively compare this pattern to another pattern which may have 

equal areas of black and white, the determinant is normalized by these area percentages.  In 

practice, the l = 0 probabilities are used because they are representative samples of the number of 

black and white pixels in the image-space. 

 One simple normalization scheme is dividing the determinant by the product of the black 

and white image areas (Equation 3.7).  Because β is zero when the scale is zero, the 
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normalization then starts at unity.  Drawing from the qualitative argument presented in section 

3.2.3, as scale becomes large, all probabilities become equal, likewise, as scale becomes large, 

the normalized determinant becomes 0.  A sample normalized determinant N is shown in Figure 

3-13 for the alternating vertical bar pattern.  Notice that N tends toward 0 as scale becomes large.  

Figure 3-13 has similar features to Figure 3-12 whereby the curve maintains decaying sinusoidal 

behavior and similar periodicity.   

�(w) = ��::(w) ∗ �99(w) −��(w)��::(t) ∗ �99(t)  Equation 3.7 

 

 

Figure 3-13: Sample normalized determinant 
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This analysis reduces 4 unique probability curves to a single normalized determinant 

curve.      

3.2.6. Non-binary Images  

All development of the modified random walk has been specifically for a binary image 

space.  Binary images represent a significant reduction in the available information compared to 

a grey-scale or color image space.  Ostensibly one way to rectify the modified random walk 

would be to directly include other transition probabilities.  For example, consider the extension 

to an image space which has p possible values: �2�, 2�, 2�, … , 2��.  The fractal-space domain 

would have p
2
 corners to represent all of the two-value combination possible pairings of the line 

segment endpoints.  Finally, all of the transition probabilities could again by a first order 

approximation through the modified random walk.  These combinations are presented in a 

probability matrix as shown in Equation 3.8.  Here αi j is the transition probability for a ci to cj 

combination.   

<(w) = � ���� ��� … ������ ��� … ���⋮ ⋱ ⋮��� ��� … ���� Equation 3.8 

 

 There are two main problems with extending binary images to color images in this 

manner.  Older 8-bit images (such as the ones from the older FERET database) have at most 256 

pixel values (2�) and transitition probabilities. A probability matrix method is tractable because at 

most 256 pixel values (ci) could be selected for analysis.  However, modern electronic images 

often have 24 million distinct pixel values, meaning a probability matrix might have a total of 
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576x10
12

 elements.  Because the proposed algorithm must be quick, such extremely large 

matrices are computationally intractable at this time.    

The second problem arises from the normalization scheme already presented (Equation 

3.7).  Without spartsity, the determinant of a large matrix is difficult to compute.  Even if a 

determinant could be found, there is no obvious extension of the normalization.  

Instead of considering all of the possible pixel value combinations, one could reduce a 

multi-valued electronic image to a binary space through some form of preprocessing.  Stoffa and 

Deal determined the binary value of a particular pixel by calculating the average of that pixel’s 

neighbors in the source image (usually a band of about 9 pixels by 9 pixels).  Then, if the pixel of 

interest was below the average, it was rounded to 0 and similarly to 1 if it was greater than the 

average (1), (2).  This method resulted in only one binary image space per electronic image file.  

For a subject like a fingerprint, only one binary image space per subject is logical.  Fingerprints 

are deternied by a ridge or valley construct in real practice.   

However, subjects such as faces are very complex geometrically.  It was difficult to 

isolate a geometric feature of face which could be represented in binary.  Ideally then, an image-

space representation of a face would account for this complexity.  Instead, a series of binary 

image spaces were associated with a singular electronic image.  This series of binary images was 

generated by selecting a vector of pixel values which are referred to as contrast values: 

�2��, 2��, 2��, …�, 2���where p is the desired number of contrast values.  These ck need not be 

uniformly distributed between c1 and cp, but p should not exceed the number of possible pixel 

values for the original electronic image.  To create a particular binary image space pqF� for a 

particular grey-scale electronic image Ω, all of the pixels in the original image were compared to 

ck.  All pixels greater than ck in the original image were set to the value of 1 in the corresponding 
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pixel location in the binary image.  Conversely, values below ck  became 0.  This process is 

demonstrated by the pseudo-code in Figure 3-14. 

 

 

 Figure 2-1 shows an original electronic image already in grey-scale, and Figure 3-15 

shows a series of binary image spaces created using the method described on the original image.  

While this derivation has been limited to source images in grey-scale, it can be extended directly 

to any group of color bands (RGB).  Each of the separate color channels could be used to 

produce a series of binary image spaces.  Finally then, the modified random walk can be used on 

each binary image space in series to create a normalized determinant which is a function of both 

scale and contrast level.   

for i  = 1, 2, 3, �, m 
    for j = 1, 2, 3, �, n 
        if Ω(i , j) >= c 
 ΩI(i , j) = 1 
        else 
  ΩI(i , j) = 0 
        endif 
    endfor 
endfor 

         
Figure 3-14: Pseudo-code to create a binary image space from a grey-scale source image 
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3.2.7. Summary 

The previous three chapters of this document presented a basic introduction to facial 

recognition algorithms (or technologies), a background survey of other methods, and concluded 

with a detailed explanation of the algorithm proposed.  In the background section, each method 

documented was found to be inadequate for computational speed requirements and/or ease of 

use.  The new method is computationally quick to enroll a new face image into a database.  

However, no mention of how one face is compared to another is made. 

This chapter presented the development of an algorithm and a normalization scheme, 

full-filling goals one and two set forth for this dissertation.  The next chapter will explain the 

mathematical solution and outline the specific features of the scale spectrum curves. 

4. Arc-Fraction of a Circle (AFC) 

One goal of this work was the development of a rigorous procedure, which did not rely 

on the random walk, to explain the scale spectrum so that all features of the curves could be 

understood.  Consider what it means to allow the random walk to repeat for an infinite number of 

iterations for one scale (aside from the basic problem that non-terminating instruction sets are by 

definition not algorithms).  Essentially, every pixel would be selected and every value of Θ 

between 0 and π would eventually be selected for each pixel.  Instead of a line segment of length 

l at one angle, picture a circle of diameter l centered at a particular pixel in the image (the net 

effect of choosing all the possible angles sweeps out a circle).  The circumference of this circle 

then contains all of the endpoints of the line segment which would normally have been selected 

one-at-a-time.  The eventuality of selecting all pixels in image space requires that such circles be 

created for each pixel in image space.  



 

4.1.   Implementation  

From the circle being created at each point in 

can be calculated exactly.  In Figure 

which is a vertical bar pattern of alternating 

center (origin of the red coordinate

the random walk (but remember that AFC will eventually select all points in image space).  

Figure 4-1: Circle overlaid on pattern

 The transition probabilities can be calculated exactly by marching around the 

circumference of the circle and checking each possible combination of endpoint

starting on the “x” axis in Figure 

marking all end-point combinations with each step.) 

probability by determining the portion of the entire circle’s circumference a particular paring 

occupies.  The portion is a fractaion of the circle’s arc (hence the name).

is given in Figure 4-2.  Here some of the various bands have been marked and numbered.     
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From the circle being created at each point in ΩI, the transition probabilities at that point 

Figure 4-1 a circle has been drawn over a local portion of some 

which is a vertical bar pattern of alternating 10 white pixels and 10 black pixels.  

center (origin of the red coordinate axes) can be thought of as the randomly selected point from 

the random walk (but remember that AFC will eventually select all points in image space).  

: Circle overlaid on pattern (note: the red lines representing a local coordinate system to this selected point 

have been added for clarity) 

he transition probabilities can be calculated exactly by marching around the 

circumference of the circle and checking each possible combination of endpoints.

Figure 4-1 and walking around the circle’s circumference while 

point combinations with each step.)   It is easier to calculate each transition 

probability by determining the portion of the entire circle’s circumference a particular paring 

occupies.  The portion is a fractaion of the circle’s arc (hence the name).  A pictorial explanation 

.  Here some of the various bands have been marked and numbered.     

, the transition probabilities at that point 

a circle has been drawn over a local portion of some ΩI, 

  The circle’s 

axes) can be thought of as the randomly selected point from 

the random walk (but remember that AFC will eventually select all points in image space).    

 

d lines representing a local coordinate system to this selected point 

he transition probabilities can be calculated exactly by marching around the 

s.  (Imagine 

and walking around the circle’s circumference while 

ier to calculate each transition 

probability by determining the portion of the entire circle’s circumference a particular paring 

A pictorial explanation 

.  Here some of the various bands have been marked and numbered.      



 

Consider band 1: all of the line segments which can be created in it would have end 

pairings of white –white.  Similarly, in band 2 all of the line segments would have end pairings 

of black-white.  In band 3, all pairings would be black

This indicates, the probability for a certain pairing, 

�
where θij are the angles which sweep out the 

Essentially, the transition probabilities for a particular point (center point of the circle) in 

image space can be found exactly.  This is

estimate of a set of transition probabilities for an entire image space.  Now one must consider the 

limitations of this particular example.   The vertical bars are only 
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Figure 4-2: Circle with bands marked 

all of the line segments which can be created in it would have end 

white.  Similarly, in band 2 all of the line segments would have end pairings 

white.  In band 3, all pairings would be black-black, and finally in band 4, wh

, the probability for a certain pairing, i, can be calculated by:  

�� =�f ��[�[2`  

are the angles which sweep out the m bands which correspond to end

Essentially, the transition probabilities for a particular point (center point of the circle) in 

mage space can be found exactly.  This is unlike the Random Walk method which yields an 

ion probabilities for an entire image space.  Now one must consider the 

of this particular example.   The vertical bars are only 10 pixels wide, which means 

 

all of the line segments which can be created in it would have end 

white.  Similarly, in band 2 all of the line segments would have end pairings 

black, and finally in band 4, white-black.  

Equation 4.1 

bands which correspond to end-pairing i. 

Essentially, the transition probabilities for a particular point (center point of the circle) in 

unlike the Random Walk method which yields an 

ion probabilities for an entire image space.  Now one must consider the 

pixels wide, which means 
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that the combination of one black and one white bar is 20 pixels.  This means that only 20 unique 

circles (per scale) can be created in the image because the image is invariant vertically and 

repeated horizontally.  There are a small number of unique sets of transition probabilities per 

scale for this contrived image space, but the number of unique sets of transition probabilities 

(circles) may number as high as quantity of pixels in image space provided a pattern in image 

space possess no repeated features.   

To return to the global nature of the scale spectrum generated through Random Walk, the 

sets of transition probabilities for an entire binary image are averaged together for all of the 

points (or the sub-set of points required to completely describe the image space).  For example, if 

an image was 100 x 100 pixels in size, the total number of individual pixels (and arc-fraction 

based transition probabilities to be averaged) would be 10
4
 per scale.  Obviously, this becomes 

computationally expensive quickly for image spaces which cannot be simplified like the vertical 

bar patterns. 

Finally, to create a scale spectrum, the scale (diameter) of the circle is allowed to vary.  

Similar to the Random Walk method, at zero scale the AFC produces a count of black and white 

pixels because a circle with no diameter is a point.  The pre-fractal also tends towards grey-space 

as the scale becomes large.  A rigorous examination through AFC can further explain this 

behavior. 

A given image feature (say the repeated vertical bars) has a certain “size” associated with 

it—as already stated, 10 pixels (Figure 4-1).  As the diameter of the circle becomes large with 

respect the size of the image feature, the number of repetitions of the feature incased in the circle 

increases, and the circumference of the circle is less likely to intersect a particular feature as the 

center point of the circle moves throughout image space. Imagine if the green circle in Figure 4-2 



 

grew much larger while allowing the v

black/white bars the circle intersects would increase.  At some scale, the circle becomes so large 

the each individual vertical bar (or image featur

circumference of the circle.  At that point, t

circumference of the circle become close to equal (

Figure 4-3: Large circle on vertical bar pattern (note that the circle has been bolded so it is easy to see)

58 

grew much larger while allowing the vertical bars to remain constant.  The number of 

black/white bars the circle intersects would increase.  At some scale, the circle becomes so large 

the each individual vertical bar (or image feature) intersects only a small fraction of the 

At that point, the numbers of black and white pixels on the 

circumference of the circle become close to equal (Figure 4-3).   

: Large circle on vertical bar pattern (note that the circle has been bolded so it is easy to see)

he number of 

black/white bars the circle intersects would increase.  At some scale, the circle becomes so large 

e) intersects only a small fraction of the 

he numbers of black and white pixels on the 

 

: Large circle on vertical bar pattern (note that the circle has been bolded so it is easy to see) 
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When this occurs, no transition probability is any more or less dominant.  In short, all 

probabilities become equal. Think back to the way in which the fractal was created with the 

Random Walk.  Each corner was chosen based on a particular pairing of black and/or white.  If 

all corners where equally probable, the number of points selected in that quadrant becomes the 

same as any other quadrant.  In doing so, the fractal looses definition and turns to grey space.     

As a means of comparison (and validation of the random walk), the AFC analysis of the 

vertical bar pattern (from Figure 3-8, not the 5-5 pattern being using in the present narrative) is 

presented in Figure 4-4 for the entire scale spectrum.  The AFC was run with 25 scale values 

between 2 and 50 because of the massive computational requirements.  Figure 4-5 shows the 

normalized determinant for both the AFC and the random walk.  The slight variations between 

the two normalized determinants can be easily be explained by the rounding errors associated 

with working in discrete space.  In the case of AFC, a discrete circle can be difficult to create at 

small scale. 
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Figure 4-4: AFC generated scale spectrum 
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Figure 4-5: AFC and Random Walk Determinants 

 From Figure 4-5, the Random Walk solution and AFC normalized determinants lie very 

close to each other.  Because the AFC curve was developed through a rigorous mathematical 

explanation, it validates the random walk curve.  AFC has much greater computational 

requirements compared to the random walk; as such AFC will not be used directly to compare 

faces.  However, it does present a rigorous means of validating any source code developments 

for the random walk and explaining why the normalized determinants (and scale spectra) take the 

shape they do for a particular pattern. 
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4.2.   Analytic Solution 

This simple 5-5 pattern used in 4.1 allows for a rigorous explanation of the shapes of the 

scale spectra curves.  Figure 4-6 gives the scale spectra for the 5 pixel vertical bar pattern (Figure 

4-3).  In the example, the repeating bars were 5 pixels wide.  This distance will be referred to as 

the motif width, U.  The distance of the center point of the circle from the bar interface left of the 

center will be referred to as the offset, d (Figure 4-7).  The number of possible values of d is 2U  

because 2U gives the number of bars required for the pattern to repeat horizontally.  In the 

example used, the width of each bar was 5 pixels, which means the number of unique circles 

(values of d) was 10, as already mentioned.  Finally, the diameter of the circle (scale) continues 

to be l.    

 

Figure 4-6: Scale Spectra of 5-5 pattern 
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Figure 4-7: Example of circle with labeling 

The horizontal axis of symmetry of the circle and bar pattern allows the rigorous model 

to be constrained to the first and third quadrants of the circle.  In Figure 4-7, the offset from the 

bar interface must be less than one-half U.  Once this distance has been specified, the remaining 

distances from the end-points of the arcs to the horizontal axis of the circle can be mapped in the 

following manner: 

1. Reflect d about the vertical axis using symmetry properties of pattern and circle 

(Figure 4-7) 

2. Remaining distance on initial vertical bar must be U – 2d (Figure 4-8 a) 

3. The distance from the center of the circle to the right-hand side of the first bar 

must be U-d.  Using the same symmetry as step 1, the distance to the next left-

hand point on the horizontal axis must be a total of U-d.  Since d units have 

already been removed offsetting the circle from the bar interface, the distance 

from the next intersection point must be U-2d between the interface and the point 



64 

 

on the horizontal axis (Figure 4-8 b, with a rectangle added to illustrate the 

symmetry being used). 

4. Remaining distance on current bar must be U-(U-2d) or 2d.   

5. Reflect 2d distance to right hand bar using the same logic as step 3. 

6. Continue repeating steps 3, 4, and 5 until the circle is completely broken into all 

unique arc fractions (Figure 4-8 c). 

7. The final section will be the difference between l / 2 and the sections already 

broken.  In this example, l / 2 is a multiple of U, so the remaining section is d 

wide. 



65 

 

 

Figure 4-8: AFC mapping of circle to vertical pattern 

Once the circle has been completely broken into arc fractions, a table of the horizontal 

distances and end-pairings was created.  Using this table, the various probabilities for a certain 

location and diameter can be calculated directly.  Table 4-1 starts with the center of the circle and 

works outwards.  Note, this table is only valid for d which are less than ½ U and the “distances” 

are measured as the addition from the previous entry.  Table 4-1 gives a general example and 

shows the repetition of the pattern.  For a particular scale, the arc fractions will be completely 

mapped when the sum of distances becomes l / 2.  Essentially, rows may be added or subtracted 

in order to map circles of varying diameter.  Reading Table 4-1 from left to right yields the end-
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pairing of a particular arc fraction.  Table 4-2 gives an example of this application for d = 2, U = 

5, and l = 26.  Note that the Cumulative Sum adds up to l / 2 as expected.      

Table 4-1: Demonstration Pattern for AFC for d < ½ U 

Right-Hand Color Left-Hand Color Right-Hand Distance Left-Hand Distance 

B B d d 

B W U-2d U-2d 

W W 2d 2d 

W B U-2d U-2d 

B B 2d 2d 

B W U-2d U-2d 

W W 2d 2d 

W B U-2d U-2d 

B B 2d 2d 

B W U-2d U-2d 

W W 2d 2d 

W B l / 2 - sum of column l / 2 - sum of column 

 

Table 4-2: Example application (Note that table has been shortened to applicable scale) 

Right-Hand 

Color 

Left-Hand 

Color 

Right-Hand 

Distance 

Left-Hand 

Distance 

Cum. 

Sum. 

B B 2 2 2 

B W 1 1 3 

W W 4 4 7 

W B 1 1 8 

B B 4 4 12 

B W 1 1 13 

 

Using basic trigonometry, the angles which sweep out the individual sections were found 

starting with the first quadrant, horizontal axis, then moving around the circle.  Table 4-3 gives 

the arc angles for the same configuration as Table 4-2.  Finally, the probabilities can be found 

using Equation 4.1 by substituting π for 2π as only one-half of the circle is needed in this 

example. 
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Table 4-3: Angles of Arc Sections 

Section Number Combination Angle Swept by Section 

1 B-W 34.571 

2 B-B 12.214 

3 W-B 2.403 

4 W-W 6.589 

5 B-W 0.842 

6 B-B 33.381 

 

In the case where d > U / 2 (Figure 4-9), the offset distance is switched so that it is 

measured from the right-hand interface.  In this case the color values of Table 4-1 simply switch 

order and the pattern may be used in the same way (as shown in Table 4-4).  The arc angles may 

be calculated in the same way.   Note that the only major change is the ordering of the black and 

white end colors. 

 

Figure 4-9: Offset greater than U/ 2 
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Table 4-4: Modified table for d > U / 2 

Right-Hand Color Left-Hand Color Right-Hand Distance Left-Hand Distance 

B B d D 

W B U-2d U-2d 

W W 2d 2d 

B W U-2d U-2d 

B B 2d 2d 

W B U-2d U-2d 

W W 2d 2d 

B W U-2d U-2d 

B B 2d 2d 

W B U-2d U-2d 

W W 2d 2d 

B W l / 2 - sum of column l / 2 - sum of column 

 

4.3.   AFC and the Scale Spectra 

Using the analytic solution developed, the scale spectra of the white-white probabilities 

were plotted for each of the 10 unique points along the vertical bar pattern.  For this study, point 

1 was immediately right of the black to white interface.  The points were numbered sequentially 

across the horizontal to 10, which was the point directly left of the next black to white interface.  

Figure 4-10 gives a plot of the white-white scale spectra for scales ranging from 0 to 50.  The 

“average” curve is the average of all 10 curves. 
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Figure 4-10: Ten point probabilities for white-white combination 

Curves 1 and 6 were nearly zero across all scales because they were circles near the 

boundaries of black and white vertical bars.  In these regions, the mixed probabilities were much 

higher.  From there, curves 1 and 6 were treated as zero, and curves 3, 4, 8, and 9 (which have 

been reproduced in Figure 4-11) were considered.  In Figure 4-11, it is easier to see that curves 3 

and 4 lie directly on top of each other, as do 8 and 9.  Curves 8 and 9 are almost exactly out of 

phase with 3 and 4.  So when the average of all 10 curves was found, 8 and 9 and 3 and 4 nearly 

canceled each other out to a horizontal line.  Figure 4-12 gives the resulting pairs which 

influence the resulting white-white scale spectra.  It also has the average plot reproduced. 
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Figure 4-11: Curves 3, 4, 8, and 9 for white-white 

 

Figure 4-12: Remaining curves and average 
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When the orange or purple line pairs peak, the average curve peaks and when neither line 

pairs are peaking, a minimum occurs.  The distance from one orange maximum to the next is 10 

scales (the width of the repeating pattern).  The same is true from purple maxima to the next 

purple maxima.  The offsetting of the maxima for each line pair explains why the area under the 

scale spectra is 2.5 per wavelength instead of 5 (the bar width).  Each individual line pairs would 

have a period twice as long as the average, due to the offset of the curves.   This also holds true 

for the black-white curves and the black-black curves. 

4.4.   Combined Patterns 

Until now, the patterns used have been contrived to only contain one motif.  The new 

pattern is a combination of 5-5 vertical bars and 10-10 vertical bars (with equal areas for each 

pattern).  The pattern is given in Figure 4-13.  The resulting scale spectrum is given in Figure 

4-14.  The spectra is quite different than the previous vertical bar pattern spectra.   
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Figure 4-13: Combined pattern 



73 

 

 

Figure 4-14: Combined pattern scale-spectrum 

Unlike Figure 4-6, which shows a pseudo-sinusoid, Figure 4-14 shows the same peaking 

behavior at 20 pixels, but flattens out for 10 pixels in between.  There also appears to be an 

inflection before the large peaks (present in both the white-white, black-black and mixed 

probability curves).  Again, the mixed probability curves are direct inflections on the white-

white, black-black curves.   

 Consider the vertical bar pattern generated from the combined scale spectrum 

(reproduced and zoomed in Figure 4-15).  Far away from the interface of the two vertical 

patterns (Region II) in regions I and III, the scale spectra can be calculated using the analytic 

solution already presented.  Any circle which includes a portion of region II cannot be predicted 



 

using the analytic solution.  As already presented, the resulting scale

image space is the average of all individual arc

space.  This means that a large portion of the scale spectrum for the combined image can be 

predicted with the analytic solution for regions I and III.  

   

Region II has no simple analytic solution (although one could be developed).  But the 

width of this region is limited by the scale of the circle.  Imagine sitting firmly in Region I, 

constructing circles at a fixed scale.  As the circles move closer (say marching horizontally pix

by-pixel), they will eventually touch the interface between the two patterns (exact center of 

region II).  The same can be mirrored in region III.

be limited to two times the scale.  
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using the analytic solution.  As already presented, the resulting scale-spectrum for an entire 

image space is the average of all individual arc-fraction scale spectra from each point in image 

This means that a large portion of the scale spectrum for the combined image can be 

predicted with the analytic solution for regions I and III.   

Figure 4-15: Combined pattern 

analytic solution (although one could be developed).  But the 

width of this region is limited by the scale of the circle.  Imagine sitting firmly in Region I, 

constructing circles at a fixed scale.  As the circles move closer (say marching horizontally pix

pixel), they will eventually touch the interface between the two patterns (exact center of 

region II).  The same can be mirrored in region III.  Effectively, then the width of region II can 

be limited to two times the scale.  Figure 4-16 gives a pictorial example.  The green and yellow 

spectrum for an entire 

fraction scale spectra from each point in image 

This means that a large portion of the scale spectrum for the combined image can be 

 

analytic solution (although one could be developed).  But the 

width of this region is limited by the scale of the circle.  Imagine sitting firmly in Region I, 

constructing circles at a fixed scale.  As the circles move closer (say marching horizontally pixel-

pixel), they will eventually touch the interface between the two patterns (exact center of 

Effectively, then the width of region II can 

gives a pictorial example.  The green and yellow 



 

circles have the same diameter and are the result of approaching the interface between the two 

patterns.   

Figure 4-

For small scales (diameters) region II will also be small. Finally, the scale

the combined pattern can be estimated by averaging (weighting by area) th

and III and ignoring the effects of

The white-white probabilities for the 5

Figure 4-17.  As expected from the analytic solution, the 10

period of the 5-5.  In Figure 4-18

over-laid with the average of the two curves from 
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circles have the same diameter and are the result of approaching the interface between the two 

-16: Sample domain with circles marked in Region II 

For small scales (diameters) region II will also be small. Finally, the scale

the combined pattern can be estimated by averaging (weighting by area) the spectra for regions I 

of region II, but only for small scales. 

white probabilities for the 5-5 pattern and 10-10 pattern are reproduced in

.  As expected from the analytic solution, the 10-10 pattern has exactly twice the 

18 the white-white probability from the combined pattern has been 

laid with the average of the two curves from Figure 4-14.   

circles have the same diameter and are the result of approaching the interface between the two 

 

For small scales (diameters) region II will also be small. Finally, the scale-spectrum for 

ctra for regions I 

10 pattern are reproduced in 

10 pattern has exactly twice the 

white probability from the combined pattern has been 
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Figure 4-17: Reproduced white-white probability curves from 5-5 and 10-10 patterns 
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Figure 4-18: White-white average curve and curve directly from combined pattern image space 

As expected, the two curves lie directly on top of each other (with a slight variance 

resulting from the interface).  This means that any complicated pattern can be thought of as a 

collection (grouping) of smaller, simpler patterns (such as the vertical bar pattern).  Also, the 

scale spectrum from any complicated pattern can be thought of as an average of all the scale 

spectra from the pattern’s components.  By knowing the scale spectrum of a particular image 

feature (say a human nose), the effects of that feature on the resulting over-all scale spectra can 

be removed from the spectrum. 

This process of using the weighted averages can be used on any single probability curve 

of the scale spectrum or the normalized determinants.  The normalized determinants for the 5-5 

and 10-10 patterns are given in Figure 4-19.  Again, the average of the two along with the 

normalized determinant from the combined pattern has been given in Figure 4-20.   
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Figure 4-19: Normalized determinants for the 5-5 and 10-10 patterns 
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Figure 4-20: Normalized Determinant average curve and curve directly from combined pattern image space 

An alternative use is removing the image space regions which have a negative impact on 

the analysis (say features common among a set of images where delineation is important).  

Essentially, if the scale spectrum for a region in image space was known prior to random walk 

analysis, it could be “subtracted” from the resulting scale spectra.  The remaining spectra would 

then be comparable to an image space which didn’t contain the particular feature.   

In the case of human faces this is particularly useful because all human faces have 

approximately the same shape.  The resulting scale spectrum (and consequently normalized 

determinant) contains information derived from the specific facial features (ex. the exact 

curvature of the nose bridge) and information from the basic face makeup of all humans (say the 
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approximate location of the mouth).  In short, by computing the scale spectrum of an “average 

face,” the features which are common among all humans can be removed from the scale 

spectrum for a particular face.  This, in turn, aids in delineation among a database of scale 

spectra. 

4.5.  Summary 

This chapter has shown the development of a completely rigorous method, the Arc 

Fraction Circle method for generating the scale spectra.  Through this method, many of the 

features of the spectra curves have been explained.  For the simplified case of the uniform 

vertical bar pattern, the scale spectra becomes tractable for hand calculations and simple 

algebraic formulations were presented for creating a scale spectra.   

Image spaces are now understood to be simple (area-based) linear combinations of a 

series of scale spectra from smaller (simpler) image spaces.  The extension of this logic is 

important for face comparisons.  It allows for faces to be thought of as a data set of features 

unique to a particular subject (human being) and a dataset of features which are common to all 

humans.  As such, the commonalities can be removed from the scale spectra (normalized 

determinant) to heighten delineation.     

5. Experimental Parameterization 

In this chapter, the explanation of how the algorithm will be specifically applied to faces 

will be detailed along with a parameterization study (goal 4) of the specifics of face comparison.  

These parameters fall into several possible configurations, all of which will be explored to find 

the most accurate method.   The chapter will conclude with a setup of the computational 

experiments which will be used to determine the optimum configuration of the resulting GUI. 
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5.1.  Database Construction 

Before any analysis can begin, a database of digital photographs was selected for uniform 

comparison among different versions of the algorithm.  As already mentioned, a sub-set of the 

FERET database was used.  Specifically, 400 photographs containing only full-frontal views (no 

side-ways facing subjects) with limited facial expression change between subjects were selected 

from the FERET database.  Each subject was represented by at least two different photographs in 

the database for comparison, though greater multiples were included (167 unique subjects).  The 

full list of images selected from the FERET database is provided in Appendix A.      

5.2.  Pre-processing 

As mentioned previously, the photographs in the FERET database contain much more 

than just a face—usually great amounts of background, torso, and other extraneous items (Figure 

2-4).  The first step of the pre-processing algorithm was selecting a face from a digital 

photograph.   

In order to avoid the complicated issues regarding the boundary of the domain of the face 

in the digital photograph, the portion of the digital photograph to be used was arbitrarily limited 

to a definable portion of the image.  In other words, the region of the face to be considered for 

random walk was easily definable in simple geometric terms.  The portion selected included 

enough information such that one face photograph could be distinguished from another. 

The portion used was ideally be independent of facial expression (like smiling) and 

changes in hairline.  Since a human face is similar from side to side, only one half of the face 

was sufficient for identification.  The region of the face which surrounds the eye is the area 

where the greatest of change in curvature of the occurs (Figure 5-1).  As can be seen in Figure 



 

5-1, there still are sections of the 

nostril(s), hairline, and photograph background

final “shape” of the domain was chosen as an

In order to construct such an ellipse the location of the subject’s left eye must be known.  

As established by the third goal, the user 

preprocessing.  Knowing the Cartesian coordinates of both eyes

for several things.  First, the angle of rotation

space was calculated by the slope of a line connecting the eyes

denote the left and right pupils and 

While the random walk is irrespective of face rotation

creating a circle), the selection of the facial region for analysis 

(i.e. the ellipse was tilted to match the tilt of the subject’s head).

� =
 

Second, the locations of the eyes also define

distance, dp) in pixels which was relative to a particular image 
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, there still are sections of the face which vary little from person to person (mostly the 

(s), hairline, and photograph background) and as such are pointless to include.  So, the 

was chosen as an ellipse centered on the subject’s left eye

 

Figure 5-1: Portion of the face to be used 

In order to construct such an ellipse the location of the subject’s left eye must be known.  

goal, the user selected both of the subject’s pupils during the 

preprocessing.  Knowing the Cartesian coordinates of both eyes (pupils) in image space allow

for several things.  First, the angle of rotation (θ) of the face relative to the horizontal of image 

calculated by the slope of a line connecting the eyes (Equation 5.1, where 

denote the left and right pupils and x and y are the coordinates of the eyes in image space)

s irrespective of face rotation (because the random walk i

, the selection of the facial region for analysis was dependent on face rotation 

tilted to match the tilt of the subject’s head).  

= ���n 0� −�0��� −��� 

Second, the locations of the eyes also defined a distance (specifically, the inter

s relative to a particular image (Equation 5.2).  This distance 

which vary little from person to person (mostly the 

) and as such are pointless to include.  So, the 

centered on the subject’s left eye.   

In order to construct such an ellipse the location of the subject’s left eye must be known.  

during the 

in image space allowed 

of the face relative to the horizontal of image 

where L and R 

are the coordinates of the eyes in image space).  

because the random walk is modeled by 

dependent on face rotation 

Equation 5.1 

a distance (specifically, the inter-pupil 

This distance was 
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used in both creating the ellipse (ensuring the ellipse only contains the relevant pieces of the 

face) and defining the series of scale (l) used during the random walk. 

.� = h(0� −�0�)� v (�� −���)� Equation 5.2 

 

Finally, by knowing the inter-pupil distance and the angle of rotation, the equation of the 

ellipse which encompass the left eye was found from the general form (Equation 5.3), which did 

not account for any tilt of the subject’s head.  In Equation 5.3, the semi-major axis was oriented 

vertically (denominator of y term is larger than x term) and both the semi-major and minor axes 

were dependent on the inter-pupil distance.  The axes were calculated based on percentages of 

tne inter-pupil distance (75% and 50%) to force the ellipse to “land” on the bridge of the nose 

and encompass portions of the forehead and cheek.    

(0 − 0�)��k4.��� v�(� − ��)��l2 .��� = l Equation 5.3 

 

To account for the rotation of the subject’s head, the standard rotation matrix (Equation 

5.4) was used by shifting the ellipse to the origin, multiplying by the rotation matrix, and then 

shifting back to the original location (Equation 5.5).  This results in the coordinates of an ellipse 

which was rotated to match the rotation of the subject’s face.  These coordinates then were 

treated as the boundary of the region around the eye to be kept; any points outside of this region 

were removed from analysis (masked by pure green because no portion of a human face is likely 

to be pure green).  Figure 5-2 gives a sample of a masked and trimmed image space for the same 

subject as Figure 5-1.  Note the subtle rotation of the ellipse as well. 



 

� =�
��′0′� = �cos �sin �

 

Figure 5-2: Sample 

The next step in the pre-processing then 

series of binary images suitable for random walk analysis

handled directly by the MATLAB Image Processing Toolbox 

is the influence of red color band, 

conversion for the same image from above.

subsection of the entire image space (

(S for subject’s face), and any binary image which results from 

which is similar to the notation used in the 

k has been added to denote that Ω
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: Sample masked and trimmed face ready for grey-scale conversion

processing then was to convert the image to grey

series of binary images suitable for random walk analysis).  The conversion to grey

the MATLAB Image Processing Toolbox according to Equation 

is the influence of red color band, B, blue, G, green (33).  Figure 5-3 gives a sample grey

conversion for the same image from above.  Because the actual region of interest 

subsection of the entire image space (Figure 5-2), the portion of interest will be referred to as 

), and any binary image which results from ΩS will be referred to as 

which is similar to the notation used in the Algorithm Development chapter, except a superscript 

ΩI
k
 belongs to a series of images. 

Equation 5.4 

Equation 5.5 

scale conversion 

s to convert the image to grey-scale (and the 

The conversion to grey-scale was 

Equation 5.6 where R 

gives a sample grey-scale 

Because the actual region of interest was only a 

), the portion of interest will be referred to as ΩS 

will be referred to as ΩI
k
 , 

chapter, except a superscript 



 

Ω�(�, 0) = �tm2�o���(�, 0)

Figure 5-3: Sample grey

Finally, the ΩS region was

were created as described before by selecting 

pixel value of ΩS (Equation 5.7) minus two standard deviations

standard deviations.  Equation 5.9

is the number of pixels which are inside of 

particular pixel in ΩS.  The reader is referred to 

Figure 3-15 was created in exactly this manner

becomes larger, the resulting analysis also becomes better; however, the analysis for a particular 

image will take longer (more p, more iterations).  The effects of 

the research to determine an optimal v

85 

( ) v �tmno�t��(�, 0) �v �tmll4t��(�, 0) 

 

: Sample grey-scale conversion with masked background 

was converted to the series of binary images.  The series of images 

re created as described before by selecting p contrast values uniformly between the average 

minus two standard deviations (Equation 5.8) and plus two 

9 below gives the exact formulation for a particular 

is the number of pixels which are inside of ΩS and i denotes a particular grey-scale value of a 

he reader is referred to Figure 3-15 for a pictorial example because 

was created in exactly this manner, except using an entire facial image

becomes larger, the resulting analysis also becomes better; however, the analysis for a particular 

, more iterations).  The effects of varying p were measured during 

the research to determine an optimal value.   

Equation 5.6 

converted to the series of binary images.  The series of images 

contrast values uniformly between the average 

and plus two 

for a particular ck.  Here, N 

scale value of a 

for a pictorial example because 

e facial image.  As p 

becomes larger, the resulting analysis also becomes better; however, the analysis for a particular 

measured during 
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Ω����� = f Ω�(W)��C��  
Equation 5.7 

O = �l�;(Ω�(W) − Ω�����)��
�C�  

Equation 5.8 

2F = Ω������ v �2O u7 − lz − l − �lx ��7 = l, 2, k, … , z Equation 5.9 

 

The preprocessing of an image was now complete.  The image had been transformed 

from a multicolor electronic image file containing much extraneous information to a series of 

binary images containing mostly the facial region of interest which were suitable for random 

walk analysis (or processing).  The images now contained a masked region which was to be 

ignored during processing.  The next section will cover the specifics of the random walk 

implementation not yet covered by the generic discussions previously. 

5.3.  Processing (Random Walk) 

The random walk portion of analysis was conducted as described in Algorithm 

Development, however, the specific values of scale have, thus far, been described in terms of 

pixel values only.  In a similar manner to preprocessing, the maximum scale was defined by the 

inter-pupil distance to remove the effects of differeing numbers of pixels between the subjects’ 

eyes.  Here, the number of scales is m and all lj will be defined by Equation 5.10.  Effectively 

then, the scale values were evenly distributed between zero and 25% of the distance between the 

eyes.  The maximum scale value was selected to provide adequate coverage of the random walk 

without creating circles which were larger than facial features (remember that the ellipse masked 
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region was only as wide as the inter-pupil distance).  Again, (as with the number of binary 

images), the optimal number of scales was determined by an experiment.  

w[ =� � − l4�(� − l) ?.�@���� = l, 2, k, … ,� Equation 5.10 

 

Once the image space was converted into the series of binary images, with p binary 

images and the scale was defined by an array of m values, the resulting normalized determinant 

was a function of both scale and binary image, or simply a function of two variables, �(w, 2).    
Creating N for all scales and binary images completed the analysis (processing) phase of facial 

recognition.  The next section will detail the options tested for post-processing (or preparing the 

N for comparison to a different face). 

5.4.  Post-Processing 

For a particular N , several options existed for post-processing to expedite comparison.  

The first was to fit an n
th

 order polynomial to the curve generated by varying scale for each 

binary image (essentially, treating N as only a function of scale).  The second option was to 

calculate the slope in the scale and binary image directions for each point in N.  The final option 

was to do nothing to N, and compare it directly to another.  

The case of polynomial fitting was handled directly by MATLAB, which uses a least 

squares method (33).  In least squares, a polynomial, P, of degree, b, is defined by Equation 5.11.  

The number of x-y paired data points (n) to which the curve will be fit must be at least one more 

than m.  Using the fixed number of discrete points, a curve can be approximated by minimizing 

the squared difference (hence the name Least Squares) between the actual data points (y) and the 

approximated polynomial (P), (Equation 5.12).    
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<(�) = 2� v�2�� v 2��� v�2��� v�…v 29�9 Equation 5.11 

� =;?0� − �<(��)@��
�C�  Equation 5.12 

To minimize the difference, the partial derivatives of q with respect to each of the 

coefficients of P are equated to 0 (Equation 5.13).  Once the derivatives are rearranged, they 

form a system of equations (Equation 5.14) which must be simultaneously solved to determine 

the optimal coefficients which represent the least amount of residual error between the actual 

data points and the fit polynomial (34).  The resulting coefficients for each contrast level were 

stored to data files and recalled during comparison.  

���2� = t,��� ���2� = t,…�, ���29 = t Equation 5.13 

2�
 v 2�;���
�C� v�2�;����

�C� v�…v 29;��9�
�C� =�;0��

�C�2�;���
�C� v 2�;����

�C� v�2�;����
�C� v�…v 29 �;��9\��

�C� =�;��0���
�C� �

2�;����
�C� v 2�;����

�C� v�2�;��~�
�C� v�…v 29 �;��9\��

�C� =�;���0���
�C�⋮2�;��9�

�C� v 2�;��9\��
�C� v�2�;��9\��

�C� v�…v 29 �;��9\9�
�C� =�;��90���

�C�

 Equation 5.14 

The second option for post-processing was to compute areas of positive and negative 

slope.  The slopes were then compared quickly to other curves through Boolean operations.  

However, faces have many close similarities, meaning the resulting normalized determinants 

were also similar.  To remove the effects of commonality, the average normalized determinant 

for all 400 images in the database was found.  Once the average had been found, it was 
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subtracted from all normalized determinant surfaces.  The resulting surface was still a discrete 

function of two variables.   

 The slopes were found using a simple second order central difference using 2 points.  

For a square of points (x and y), two slopes were found. The equations of the slopes used are 

given in Equation 5.15.  Shown pictorially in Figure 5-4 is the assumed grid of normalized 

determinant used in Equation 5.15.  The two sets of slopes (l and c) were stored independently as 

either +1 or 0 by truncating the result of Equation 5.15 for slopes greater than 0 or less or equal 

to 0, respectively.  The effect of determining the slopes in this manner was that no slope could be 

found on the perimeter of N.  To calculate slopes on the border of N, the i-1 (or i+1 for the 

opposed border) terms in Equation 5.15 were replaced by i and likewise for j.  The substitution 

of i for i±1 resulted in a first order forward (or rearward) difference (35), (36).   

!�,[  = �?w�\��, 2[@ − ��?w�H��, 2[@w�\� −�w�H�  

!�,[¡ = �?w��, 2[\�@ − ��?w��, 2[H�@2�\� −�2�H�  

 

Equation 5.15 

 



 

Figure 

The final case was simply doing nothing at all.  The normalized determinant 

directly to a data file which was called up during comparison.

processing, and post-processing we

database of coefficients which describe

how faces are compared in the database.

5.5.  Comparison of Faces

There were two cases of comparison which must be addressed.  The first case results 

from the coefficient fitting and direct storing methods of post

slope calculation.  The slope calculation is easier to address, and will be done second.

convention of this section, the test case (image which is being tested against the database) will be 

treated as an array of coefficients (or slopes)

columns represent the individual arrays of coefficients for each image in the database, 
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Figure 5-4: Normalized Determinant grid 

s simply doing nothing at all.  The normalized determinant 

called up during comparison.  Once the pre-processing, 

were complete for each of the 400 electronic face images, the 

database of coefficients which described each face was complete.  The next section will describe 

how faces are compared in the database.  

Comparison of Faces 

re two cases of comparison which must be addressed.  The first case results 

from the coefficient fitting and direct storing methods of post-processing.  The second case is the 

slope calculation.  The slope calculation is easier to address, and will be done second.

tion of this section, the test case (image which is being tested against the database) will be 

icients (or slopes), a.  The database will be treated as a matrix whose 

columns represent the individual arrays of coefficients for each image in the database, 
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processing, 

re complete for each of the 400 electronic face images, the 

complete.  The next section will describe 

re two cases of comparison which must be addressed.  The first case results 

cessing.  The second case is the 

slope calculation.  The slope calculation is easier to address, and will be done second.  For 

tion of this section, the test case (image which is being tested against the database) will be 

.  The database will be treated as a matrix whose 

columns represent the individual arrays of coefficients for each image in the database, D.  In 
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reality, the arrays of image data in the database were loaded and checked individually rather than 

in one large matrix to save on computational resources. 

For the first case (not slopes), the comparison made use of two “tolerance” values which 

were experimentally optimized.  The first tolerance value was the maximum allowable difference 

between individual coefficients, µ.  The second tolerance value was the minimum number of 

coefficient matches, ν, required to match one image (face) to another image in the database.  For 

instance, consider a and one column of D, D
i
.  The first problem was to determine all of the 

percent differences (Equation 5.16) between the coefficients of a and D
i
.  The PDj was 

considered successful if it wa less than the pre-established µ.   

<�[ = d(�) −���(�)d(�) ��� = l, 2, k, … ,i Equation 5.16 

Once all of the percent differences between the coefficients of the test image and any 

image in the database were found, the ratio of successful (less than µ) differences to the total 

number (M) was calculated.  If this ratio was greater than the pre-determined value ν the test 

image and the image from the database were predicted to match (i.e. have the same subject).  The 

pseudo-code is presented in Figure 5-5 to clarify what is being done during this type of 

comparison.  The only remaining step was to check the test image against the remainder of the 

database and record all predicted matches. 
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For the case of the slopes, which only had two possible values (+1, -1), the only match 

criterion was similar to the second (the ratio) from the previous case.  Here, ν became the 

minimum count of direct matches (+1 to +1 and similar). If the number of matches was greater 

than ν, the test image and image from the database were predicted to match.  

5.6.  Experimental Design 

There are quite a few parameters which were investigated experimentally.  However, 

there are few which have previously been held fixed in the present analysis.  The main fixed 

quantity was the location of the subject’s pupils.  If this work were to be extended to another 

“subject” (i.e. something other than faces), the inter-pupil distance could no longer be used to 

non-dimensionalize the scale values.  However, it is expected that in almost any specific 

application, some representative macro scale should be easily definable.   

The other subject to consider (during pre-processing) was the shape of the region around 

the eye to be considered during analysis.  The ellipse was chosen by the researcher simply 

through observation.  Various shapes were tried, and ellipse provided the best qualitative look.  

success count = 0 

for j = 1,2,3,�,M 

   diff = (a(j) – D
i
(j)) / a(j) 

   if diff < µ 

      success count = success count + 1 

   endif 

endfor 

 

if (success count / M) > ν 

   Match predicted between test image and image i from database 

else 

   match is not predicted 

endif 

 

Figure 5-5: Pseudo-code for the comparison algorithm 
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However, a rectangle mask may also work (though it will include more of the background).  To 

prove the effectiveness of the ellipse assumption, 10 images were selected randomly from the 

dataset and masked both ways.  The resulting normalized determinates (once the optimal number 

of scales and binary images was found using the methodology described later in this section) for 

each masking were found and plotted.  

The number of iterations per scale (and binary image) were fixed at 10
4
.  As shown 

previously, the error associated with the random walk (Monte Carlo) for a large sample size such 

as 10
4
 is 0.32%.  An error rate of less than 1% seems acceptably low.  All of the numerical 

experiments were carried out on a computer with the following specifications: 

Table 5-1: Computer Configuration 

CPU AMD Phenom X4 920 

Memory 4.0 Gb. DDR2 1066 

Operating System Fedora Core 14 (64 bit)  

Compiler / Language MATLAB R2009b 

 

5.6.1. Optimal Number of Scales and Contrast Values 

There were still several parameters which could be manipulated.  First, was the number 

of scale values m (in the scale array).  The second parameter which needed optimized during pre-

processing was the number of binary images p to create.  The first experiment attempted to 

determine the optimal number of each by choosing to perform no post-processing (i.e. writing 

the normalized determinant curves out directly) and fixing the values of µ = 0.25 and ν = 0.75.  

That is, the maximum allowable percent difference between coefficients was 25% and the 

minimum coefficient match ratio was 75% for predicting a match.   

The entire random walk analysis was performed twice for each image (i.e. two separate 

databases were created).  The first database created was considered the actual database.  The 
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second database was used to test each image against the database.  In other words, each of the 

400 images selected from the FERET database were completely processed into a database of 400 

normalized determinant surfaces.  Then the 400 images were ran through the analysis again, and 

tested against the database.  The number of instances of a particular subject in the database was 

predetermined.  Therefore, the number of correct matches (and incorrect matches) for a 

particular image could be found; and this process was repeated for each image. 

For instance, consider that a database has already been created and now image g is being 

tested against the database.  Image g contains subject 5.  When image g is compared to each 

image (normalized determinant) in the database, the predicted matches should only be the images 

which contain subject 5.  However, the predicted matches may include other subjects and may 

not even include subject 5.  In order for the comparison of image g to the database to be 

considered successful (for a particular set of parameters), the predicted matches may only 

contain subject 5.  In addition, all of the instances of subject 5 must also be returned for the 

comparison to be considered successful.    

Because the number of scales and contrast values both directly influence the accuracy of 

the normalized determinant (by providing more data points for a comparison), they cannot be 

varied independently.  Indeed it is likely that a smaller number of scales may be compensated by 

a larger number of contrast values.  As such, a total of 16 configurations were selected and are 

presented in Table 5-2.  From this list, each configuration was used as described above and the 

percentage of images which were successfully compared to the database were recorded.  In order 

to determine the best possible configuration, the test values were honed in sections of interest.  

The configuration which provided the highest success rate was used going forward for 

subsequent experiments.   
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Table 5-2: Variation of number of scales and number of contrast values 

Case 

Number of 

Scales 

Number of 

Binary Images 

1 5 5 

2 10 5 

3 20 5 

4 40 5 

5 50 5 

6 10 3 

7 10 5 

8 10 10 

9 10 15 

10 10 20 

11 10 30 

12 20 20 

13 20 30 

14 40 20 

15 40 30 

16 50 30 

17 40 10 

18 50 10 

19 40 15 

20 50 15 

21 60 5 

22 60 10 

23 60 15 

 

In test case 1, only 25 points made up the normalized determinant.  It seemed unwise to 

use fewer than 25 points to delineate among a dataset of 400 individuals.  Conversely, case 16 

created a normalized determinant of 1,500 floating point numbers.  That made an array 

containing roughly 4 times the number of elements to images in the database in floating point 

numbers.  Cases 17 through 23 were included for completeness to deremine whether the added 

number of scales affected the accuracy. 

It should be noted that increasing the number of scales only affects the run-time of the 

random walk.  That is for every new scale value, another 10
4
 iterations of the random walk are 

performed.  However, increasing the number of contrast values increases the number of binary 
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images.  Increasing the number of binary images increases both the processing (more random 

walks) and the pre-processing time.  Now, additional loops with costly conditional statements 

must be evaluated to create the additional binary image(s).  That is why the maximum number of 

contrast values selected was generally lower than the maximum number of scales. 

5.6.2. Comparison of Ellipse and Rectangle Masking 

Until now, this document has assumed that the ellipse masking as documented in the 

previous chapter was equivalent to fitting a rectangle with the same width and height as the 

ellipse’s semi-major and minor axes. Using the optimal configuration of scales and contrast 

values from the previous experiment, ten images (selected randomly from the database of 400) 

were masked using the rectangle and difference between the normalized determinant derived 

from the rectangle masking and ellipse masking was noted.   

5.6.3. Optimal Value of ν for Slope-based Comparison 

Once the optimal number of scales and binary images was determined, the optimal 

configuration of two different comparison methods was determined for each of the post-

processing routines.  Concentrating first on the slope post-processing routine, there was only one 

parameter to consider, the required percentage, ν, of slope (coefficient) matches to predict an 

image to image match.  Recall that the normalized determinant was converted to a series of zeros 

and ones relating to the slope at a given point.   

The logical experiment was to vary ν between 0 and 1 according to Table 5-3.  

Obviously, when v is 0, the algorithm will fail completely as every image would be predicted to 

match every image.  However, Case 1 was included for completeness.  As before, the cases were 

honed to determine the best possible match rate.  To improve the accuracy of this method, the 
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average normalized determinant was computed for the entire database of 400 images.  This 

average was then subtracted from each normalized determinant (test and database alike).  The 

experiment was re-run by varying ν between 70 and 100 to determine the effects of this 

modification. 

Table 5-3: Variation of ν for slope matching 

Case ν (%) 

1 0 

2 10 

3 20 

4 30 

5 40 

6 50 

7 60 

8 70 

9 80 

10 90 

11 91 

12 92 

13 93 

14 94 

15 95 

16 96 

17 97 

18 98 

19 99 

20 100 

    

5.6.4. Number of Coefficients in Curve Fit. 

For the curve fitting post-processing method, the optimal order of the polynomial was 

established before comparisons.  As previously mentioned, MATLAB was used to fit the 

polynomials by invoking built-in functions which have a maximum order of 9.  Using lower 

orders than 5 would likely not accurately describe the shape of the curves.  However, it was 

possible that 9 would be too high an order.  The third experiment used the cases presented in 
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Table 5-4 to determine the best polynomial order.  Again, the case which provided the highest 

percentage of successful matches to the database was noted to deremine which post-processing 

method produced the highest match rate.  

Table 5-4: Possible polynomial orders 

Case Order 

1 5 

2 6 

3 7 

4 8 

5 9 

  

The experiment was performed using the number of scales and binary images already 

established.  In a similar manner to the first experiment, the values of µ and ν were fixed to 0.25 

and 0.75, respectively.  Once the optimal number of coefficients in the curve fit had been found, 

the final experiment determined the optimal configuration of µ and ν for the post-processing 

schemes. 

5.6.5. Optimal Values of µ and ν 

Using the number of scales and binary images found previously, the optimal values of the 

coefficient percent difference tolerance µ and required match rate of coefficients ν between two 

normalized determinant (or polynomial) coefficients was experimentally determined.  Here, the 

values of µ and ν were varied independently until the highest percentage of successful 

comparisons was found.  During the testing of ν, µ was fixed to 0.25 and during the testing of µ, 

ν was fixed to the optimal value (ν will be tested first).  This experiment was performed twice.  

Once for the curve-based post-processing, and once for using the raw normalized determinant 

data as both post-processing schemes required two variables to be fixed for comparison. 
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For the direct utilization of the normalized determinant, ν was varied between 0.75 and 1; 

0.65 and 1 for the polynomial fit.  For both types of comparison, µ was varied between 0.1 and 

0.35. 

5.6.6. Final Algorithm Selection 

Once all of the parameters associated with each post-processing and comparison method 

were established, the method which produced the highest percentage of successful matches to the 

database was selected for GUI development.  The GUI allows a user then to select the locations 

of the pupils by hand.  The automation takes over and the remainder of the algorithm steps are 

performed automatically.  The user then has the option to add the results to a pre-existing 

database (or create a new one).  The user is able to compare the selected image to an existing 

database to determine whether the selected image contains a subject already stored in the 

database. 

5.7.  Summary 

This section has shown the process by which the algorithm was parameterized.  The next 

section will document the results of the various experiments documented in this section. 

6. Results and Discussion 

All source codes developed for this section are available in Appendix B and Appendix C. 

6.1.   Determining the Optional Number of Scales and Binary Images 

After all 400 images had been run against the database, the percentage which were 

successful was recorded (recall that an image to database match is only successful when then 

correct image subject is returned with no extra subjects listed).  The results are presented in 

Table 6-1, which includes the updated case configuration and the success rate results.  Case 18 
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presented the optimal configuration of 50 scales and 10 binary images, which had the greatest 

success rate of 13.25% (or 53 or 400 images where successfully matched). 

Table 6-1: Results of Experiment 1 

Case 

Number of 

Scales 

Number of 

Binary Images 

Percent 

Successful 

1 5 5 6.250% 

2 10 5 8.651% 

3 20 5 11.500% 

4 40 5 12.500% 

5 50 5 12.500% 

6 10 3 5.000% 

7 10 5 9.250% 

8 10 10 8.750% 

9 10 15 9.000% 

10 10 20 9.250% 

11 10 30 8.750% 

12 20 20 10.500% 

13 20 30 11.250% 

14 40 20 11.500% 

15 40 30 12.000% 

16 50 30 12.000% 

17 40 10 12.750% 

18 50 10 13.250% 

19 40 15 12.000% 

20 50 15 12.250% 

21 60 5 11.750% 

22 60 10 12.750% 

23 60 15 12.250% 

 

One might think that the best success rate of 13.25% might be unacceptably low.  

However, several critical components of the analysis algorithm have yet to be “calibrated.”  For 

instance, the values of the matching criteria were chosen artificially and no attempt has yet been 

made to distinguish or quantify the effectiveness of any of the comparison techniques.   

It is also interesting to note that increasing neither the quantity of scales nor binary 

images (beyond the optimal number) increased the performance of the analysis (i.e. the accuracy 

of the algorithm cannot be increased indefinitely by adding more scales or binary images).  The 
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cause of this phenomenon is readily explainable.  The scales and contrast values were selected 

(uniformly) between a minimum and maximum (say, a and b, respectively).  On the real number 

line between a and b, infinitely many fractional numbers exist.  However, the number of integers 

is finite.  Since image space is discrete, a limit to the number of unique scales and binary images 

which can be created exists.   

Indeed, it should be noted that the images selected for the dataset of 400 had an average 

inter-pupil distance of 127.71 pixels.  The scales were varied to a maximum of 25% inter-pupil 

distance, or an average of 31.92 pixels.  This means that the 60 unique scales were uniformly  

spaced at approximately 0.5 pixel intervals.  One-half pixel intervals make little sense because a 

pixel is, by definition, the smallest addressable element.  There was a fundamental limit to the 

number of unique scales which could be created for this dataset and this limit was reached a 60 

scales.  This explains why the percentage successful became lower as the number of scales was 

increased.  

Case 18 represented 500 discrete points in the Normalized Determinant curve which are 

then use to compare images.  The images themselves had approximately 10,000 to 15,000 pixels 

which have not been masked.  The Normalized Determinant then represented a compression of 

approximately 95% from the source image—a substantial decrease in required memory (both 

long and short term) and computational requirement for comparisons among datasets.  Also, the 

average time to create the normalized determinant data for one image was 62 seconds on the 

experimental computer.  This time does not include the user-selection of the two pupil locations 

as the locations of the pupils were pre-selected and stored in an accessible data file for 

simplicity.   
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6.2.  Comparison of Ellipse and Rectangle Masking 

10 images were selected randomly from the database of 400 and masked with both 

ellipses and rectangles and have been rotated to match any tilt in the subject’s head.  Table 6-2 

gives the list of images which were selected.   

Table 6-2: Images Selected 

Case Image Name 

1  00244_940128_fa.tif 

2  00200_940128_fa.tif 

3  00324_940422_fb.tif 

4  00561_940519_fa.tif 

5  00595_940928_fb.tif 

6  00529_940519_fb.tif 

7  00472_960627_fb.tif 

8  00519_940519_fa.tif 

9  00020_930831_fb.tif 

10  00579_941031_fa.tif 

 

Figure 6-1 through Figure 6-10 are surface plots of the normalized determinants for each 

of the 10 images.  On the left in each image is the determinant for the ellipse mask, and on the 

right is the rectangle mask.  In most of the images, by qualitative inspection, it does appear that 

each of the determinants is at least similar while the plots for different images differ mch more 

dramatically.  This confirms the assumption that rectangle and ellipse cutouts were comparable.  

Because the ellipse region requires less memory to store (and use), the algorithm continued with 

ellipse masking. 



 

Figure 

Figure 

Figure 
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Figure 6-1: Normalized Determinants for Image 1 

Figure 6-2: Normalized Determinants for Image 2 

Figure 6-3: Normalized Determinants for Image 3 
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Figure 6-4: Normalized Determinants for Image 4 

Figure 6-5: Normalized Determinants for Image 5 

Figure 6-6: Normalized Determinants for Image 6 
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Figure 6-7: Normalized Determinants for Image 7 

Figure 6-8: Normalized Determinants for Image 8 

Figure 6-9: Normalized Determinants for Image 9 

 

 

 



 

Figure 

 

6.3.   Slope Based Comparisons

As described in section 5.6.3

calculated for both the “scale” and “binary image” direc

1s for each of the 500 discrete points in the normalized determinant, or 1,000 binary numbers for 

each face image.  To determine if a particular direction w

was run independently first.  The results 
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Figure 6-10: Normalized Determinants for Image 10 

Based Comparisons 

5.6.3 the slopes of each of the 400 normalized determinants were 

calculated for both the “scale” and “binary image” direction.  This resulted in two sets of 0s and 

1s for each of the 500 discrete points in the normalized determinant, or 1,000 binary numbers for 

each face image.  To determine if a particular direction was detrimental to the comparison, each 

tly first.  The results were quite poor, but are listed in Table 6

 

the slopes of each of the 400 normalized determinants were 

in two sets of 0s and 

1s for each of the 500 discrete points in the normalized determinant, or 1,000 binary numbers for 

detrimental to the comparison, each 

6-3.   
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Table 6-3: Results of ν for each set of slopes 

Case ν (%) 

Contrast Percent 

Successful 

Scale Percent 

Successful 

1 0 0.000% 0.000% 

2 10 0.000% 0.000% 

3 20 0.000% 0.000% 

4 30 0.000% 0.000% 

5 40 0.000% 0.000% 

6 50 0.000% 0.000% 

7 60 0.000% 0.000% 

8 70 0.250% 0.000% 

9 80 1.750% 0.000% 

10 90 17.750% 0.500% 

11 91 22.250% 0.250% 

12 92 26.750% 0.250% 

13 93 28.750% 0.750% 

14 94 27.500% 2.500% 

15 95 22.750% 2.250% 

16 96 12.000% 2.750% 

17 97 7.000% 3.000% 

18 98 2.000% 0.750% 

19 99 0.500% 0.250% 

20 100 0.000% 0.000% 

 

As can be seen in Table 6-3, case 14 held the most promise for a high success rate when 

the slopes from contrast (binary image) and scale were combined.  Table 6-4 gives the results of 

combing both sets of slope data, including the average time per image to run that image against 

the entire database.  This time does not include the enrollment (pre-processing and processing); it 

was only the time required to check a particular image against the 400 sets of slopes for a 

particular value of ν.  It is interesting to note that simply adding the values of case 14 (27.5% and 

2.5%) linearly results in 30%; however, when running with both sets of slopes combined, case 14 

yielded 35.5%.  There may have been some higher order coupling. 
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Table 6-4: Combined Slopes Results 

Case ν (%) 

Combination Percent 

Successful 

Average Run 

Time (s) 

1 0 0.000% 0.019 

2 10 0.000% 0.019 

3 20 0.000% 0.019 

4 30 0.000% 0.019 

5 40 0.000% 0.019 

6 50 0.000% 0.019 

7 60 0.000% 0.019 

8 70 0.000% 0.019 

9 80 0.500% 0.019 

10 90 9.250% 0.018 

11 91 14.500% 0.018 

12 92 21.000% 0.018 

13 93 27.750% 0.018 

14 94 35.500% 0.018 

15 95 26.000% 0.018 

16 96 19.000% 0.018 

17 97 5.500% 0.018 

18 98 1.500% 0.018 

19 99 0.000% 0.018 

20 100 0.000% 0.018 

 

During the creation of the average normalized determinant, the average determinant was 

plotted after each time 50 more face images had been added and averaged.  Figure 6-11 through 

Figure 6-15 show the progression (with repeated images left out).  After the first 200 images 

have been averaged together (Figure 6-14), little appreciable change occurs while averaging in 

the remaining 200.  Images were used in the order presented in Appendix A. 
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Figure 6-11: Average of first 50 images 

 

Figure 6-12: Average of first 100 images 



110 

 

 

Figure 6-13: Average of first 150 images 

 

Figure 6-14: Average of first 200 images 
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Figure 6-15: Average after all 400 images 

After the average normalized determinant was subtracted for each of the 400 in both 

datasets, the experiment was re-run to determine a new optimal ν.  Again, each slope direction 

was tested independently, before using both simultaneously. 

The results have been tabulated in Table 6-5.  Here, case 9 yielded the highest success 

rate of 54.75%.  However, case 15 predicted a combination success rate of 49% + 18.75%, or 

67.75%.  Such a high match rate did not occur though.  While 54.75% seems low, the best result 

of experiment 1 was only 13.25%.  This represents a substantial improvement.  Now, 219 images 

out of 400 have been successfully matched (returned image subject only from database).     
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Table 6-5: Results of slope-based matching for modified determinants 

Case 

ν 

(%) 

Contrast Percent 

Successful 

Scale Percent 

Successful 

Combination Percent 

Successful 

1 70 0.250% 0.250% 9.000% 

2 71 0.750% 0.750% 11.750% 

3 72 1.500% 1.500% 18.000% 

4 73 2.250% 2.250% 26.000% 

5 74 4.250% 4.250% 31.750% 

6 75 7.000% 7.000% 39.500% 

7 76 10.750% 10.750% 43.500% 

8 77 13.000% 13.000% 49.500% 

9 78 17.500% 17.500% 54.750% 

10 79 22.250% 22.250% 53.500% 

11 80 28.000% 28.000% 54.000% 

12 81 34.500% 21.000% 51.250% 

13 82 39.250% 16.000% 46.750% 

14 83 43.750% 20.500% 44.000% 

15 84 49.000% 18.750% 38.750% 

16 85 47.000% 15.250% 33.250% 

17 86 48.000% 12.750% 27.750% 

18 87 46.000% 10.000% 21.500% 

19 88 39.500% 7.000% 16.000% 

20 89 35.250% 4.000% 9.500% 

21 90 29.000% 1.500% 5.000% 

22 91 24.750% 0.000% 3.500% 

23 92 17.250% 0.000% 2.500% 

24 93 11.750% 0.000% 1.000% 

25 94 9.500% 0.000% 0.000% 

26 95 5.250% 0.000% 0.000% 

27 96 2.500% 0.000% 0.000% 

28 97 1.000% 0.000% 0.000% 

29 98 0.500% 0.000% 0.000% 

30 99 0.000% 0.000% 0.000% 

31 100 0.000% 0.000% 0.000% 

 

While the results of the accuracy of this experiment have been less than stellar, the 

computational requirements do provide some opportunity in computational time reduction.  The 

time required on the experimental machine to create two sets of slope data for one image was 

0.0954 seconds, on average.  As this section has already shown, the time required to run one 
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image against a database of 400 images was less than 0.02 seconds per image. The average time 

to create the normalized determinant was 62 seconds per image, which remains the majority of 

computation time for start to finish analysis.   

6.4. Optimal Order of Polynomial Fit 

The order of the polynomial fit which produced the highest accuracy in the comparisons 

was 7, as is shown in Table 6-6.  The polynomials were fit by removing a “slice” of the 

normalized determinant along the scale axis.  So, each polynomial was a function of scale and 10 

polynomials (because there were 10 binary images) described the face.  To allow for comparison 

from one image to the next (to “non-dimensionalize?”), scale was set to an integer array from 1 

to 50 (there were 50 scales) instead of the pixel based values were which found during the 

random walk analysis.  This means that the x spacing used in Equation 5.11 was uniform from 

one normalized determinant to the next.   

Also note that Table 6-6 gives the average time (in seconds) to fit a curve of a particular 

order to a given normalized determinant.  For order 7, the time required, per image, was 

approximately 0.167 seconds.  Compared to the 0.1 seconds for generating the slopes, the curve 

fitting method presented similar computational time requirements.  Remember that the time 

required to generate a normalized determine was over 60 seconds per image.  So, generating the 

polynomial fit data also presents no significant increase to run-time.   

Table 6-6: Results of differing orders of polynomial curve fit 

Case 

Poly 

Order 

Curve Fit Time per 

Image (s) 

Percent 

Successful 

1 5 0.053 22.25% 

2 6 0.160 18.00% 

3 7 0.167 24.75% 

4 8 0.174 14.50% 

5 9 0.181 12.00% 
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6.5.  Optimal Values of µ and ν 

Finally, the optimal values of ν and µ were determined for both the curve-fitting method and 

for working with the normalized determinant directly.   

Table 6-7 and Table 6-8 give the results for the direct utilization of the normalized 

determinant.  Recall that once an optimal value of ν was found, it was used to determine µ.  

Using the normalized determinant directly resulted in a best case of 42.25% of the 400 images 

being matched correctly (only proper subjects returned from database).   

Table 6-7: Determining ν for directly using the normalized determinant 

Case ν Percent Successful 

1 0.75 37.75% 

2 0.76 38.25% 

3 0.77 39.25% 

4 0.78 39.50% 

5 0.79 41.50% 

6 0.8 42.25% 

7 0.81 39.75% 

8 0.82 38.00% 

9 0.83 36.00% 

10 0.84 33.00% 

11 0.85 28.75% 

12 0.9 11.75% 

13 0.95 1.00% 

14 1 0.00% 
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Table 6-8: Using ν = 0.80, and determining µ 

Case µ Percent Successful 

1 0.1 4.00% 

2 0.15 15.00% 

3 0.2 33.50% 

4 0.21 37.25% 

5 0.22 39.25% 

6 0.23 39.25% 

7 0.24 39.25% 

8 0.25 42.25% 

9 0.26 41.75% 

10 0.27 40.25% 

11 0.28 39.50% 

12 0.29 40.25% 

13 0.3 39.00% 

14 0.35 36.25% 

 

Table 6-9 and Table 6-10 give the results for the fitted curve coefficient matching.  As 

can be seen, using the normalized determinant directly was more accurate than the curve fitting.  

With all of the curve fitting parameters honed, the best success rate achieved was only 25.75% 

(or 103 of the 400 images).   
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Table 6-9: Determining ν for the curve coefficients 

Case ν Percent Successful 

1 0.65 17.00% 

2 0.7 18.25% 

3 0.71 19.00% 

4 0.72 21.00% 

5 0.73 22.00% 

6 0.74 22.00% 

7 0.75 24.75% 

8 0.76 23.25% 

9 0.77 23.25% 

10 0.78 23.25% 

11 0.79 22.50% 

12 0.8 23.75% 

13 0.85 19.50% 

14 0.9 19.00% 

15 0.95 11.00% 

16 1 6.00% 

 

Table 6-10: Using ν = 0.75, and determining µ 

Case µ Percent Successful 

1 0.1 2.25% 

2 0.15 12.50% 

3 0.2 24.25% 

4 0.21 24.50% 

5 0.22 24.50% 

6 0.23 24.75% 

7 0.24 25.75% 

8 0.25 24.75% 

9 0.26 21.75% 

10 0.27 19.50% 

11 0.28 19.50% 

12 0.29 18.00% 

13 0.3 17.75% 

14 0.35 12.25% 

 

Because the curve fitting reduced the accuracy substantially (25.75% vs. 42.25%), the 

final GUI will not use curve fitting for post-processing.  Directly using the normalized 

determinant and creating the slopes were not comparable in accuracy, so the GUI uses the slope 
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method after subtracting the average normalized determinant.    The time required to compare 

one test image to the database of 400 for the direct utilization was approximately 0.014 seconds.  

Again, the comparison time was much smaller than the time to create the normalized 

determinant. The computational time required for a start to finish (pre-processing/enrollment to 

test against an established database) was almost entirely controlled by the time required to create 

a normalized determinant.    

7. Conclusions 

• The fingerprint algorithm has been adapted to face recognition.  The adaptation did 

employ a series of binary images to compensate for the third dimension.   

• The resulting scale spectra were normalized to remove the effects of differing numbers of 

black and white pixels.   

• The Arc-Fraction Circle method explained several of the assumptions regarding the use 

of the random walk method.  The features of the scale spectra were understood (and 

quantitatively predicted) by the AFC method.   

• The resulting normalized determinants where then further studied to determine the best 

way to compare a new “image” to a database of established images.  These parameters 

were studied in detail and refined through a parameterization study.  An optimal 

configuration was found for the resulting GUI. 

• As stated above, the run-time was greatly dominated by the computational time required 

to generate the normalized determinant from the random walk process.  The enrollment 

times used in recent commercial studies were suggested to be less than 5 minutes (5).  

The algorithm developed here had a demonstrated run-time of approximately 62 seconds.  
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This means, while the algorithm needs strong accuracy improvements, it was very quick.  

However, it should be noted that the computer used for development and testing 

surpassed the equipment which existed in 2006 when the 5 minute benchmark was set. 

• Ultimately, the GUI uses the slope matching for two reasons.   

o First, the slope matching was about 10 percentage points more accurate on the 

database than direct utilization (and has obvious methods of improvements which 

will not dramatically increase computational time or file size).   

o Second, the file size of the stored data for the slope matching scheme is much 

smaller because the slopes are stored as integer instead of the floating point 

numbers of the normalized determinants. 

o For example a typical slope data set is 2,020 bytes; whereas a typical normalized 

determinant data set is 4,560 bytes.  The slope data represents a large reduction in 

disc and memory requirements for similarly sized (quantity of images) databases. 

7.1.   Contributions to the Field 

• A novel, quick algorithm for analysis of non-binary electronic images to create a 

fractal image (specifically for face images) was developed. 

• Scale-based fractal from source image was converted to a series of probilities which 

describe the image (instead of directly using the fractal) for faces. 

• A normalization technique which accounts for differeing quantities of black/white 

pixels in binary images was implanted and tested. 

• A fully analytic solution was demonstrated for a control source image (vertical bars), 

and a rigorous solution for all source images was found. 



119 

 

 

In summary, a new method for facial recognition has been developed.  It was much 

quicker than currently available systems.  While the accuracy demonstrated to date was low, it is 

expected that the accuracy can be improved with additional work.  The algorithm was simple 

enough to be reduced to a GUI which any lay-person should be able to use with little training.  

The methods developed for fingerprint recognition have been modified to account for the unique 

complexities of the human face.  The methodology used to drive the algorithm has been 

explained by a rigorous example.  And, the 2-D scale spectrum curve features have been 

explained through the rigorous solution. 

8. GUI Implementation 

A GUI has been compiled based on the source codes developed for the first and third 

experiments.  The GUI allows for the user to select a digital photograph (presumably of a face) 

and create a set of slope data.  Then the user can compare the newly created slope data to a 

directory which contains a dataset of pre-created slope data.  Any predicted matches are 

displayed to the user for visual confirmation.   

The user is required to select the locations of the pupils of both eyes, which have been 

labeled in reverse in the GUI intentionally to create a logical flow and prevent the user from 

improperly selecting the pupils.  The values for the number of binary images and slopes are pre-

programmed directly into the source codes.  However, the required percentage of slope point 

matches is not hard coded.  It was left variable (although the default has been set to 80% as 

required) to the user in case the user would like the program to generate false positive matches or 

confirm whether it is matching correctly. 



 

Figure 8-1 gives the Main Menu screen, which greets the user whe

executed.  Here, the user can select a digital photograph, save an existing pre

and directly load a set of slope data for comparison.  Most of the control buttons are unavailable 

until the user has either loaded an image o

In Figure 8-2, an image has been loaded into the main menu.

Figure 8
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gives the Main Menu screen, which greets the user when the program is 

executed.  Here, the user can select a digital photograph, save an existing pre-processed image, 

and directly load a set of slope data for comparison.  Most of the control buttons are unavailable 

until the user has either loaded an image or dataset to prevent improper execution of sub

, an image has been loaded into the main menu. 

8-1: Main Menu after the program has been executed 

n the program is 

processed image, 

and directly load a set of slope data for comparison.  Most of the control buttons are unavailable 

r dataset to prevent improper execution of sub-steps.  

 



 

Figure 8-2: Main Menu after a digital photograph has been loaded

Once the digital photograph has successfully been loaded, the user must pre

image by selected the locations of the centers of the eyes, which is done in the pre

window.  The pre-processing window is shown in 

and panning the image.  The user must first select the “left eye,” which is the eye which appears 

on the left-side of the image.  Then, the user mu

(though it is not required) preview the masking 

the pupils have been selected and the image is ready for masking.   The right eye is still marked 

from selection and the image remains zoomed in.

after the Pre-Processing window has handed back the masked image.
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: Main Menu after a digital photograph has been loaded 

Once the digital photograph has successfully been loaded, the user must pre

image by selected the locations of the centers of the eyes, which is done in the pre

processing window is shown in Figure 8-3.  It includes buttons for zooming 

and panning the image.  The user must first select the “left eye,” which is the eye which appears 

side of the image.  Then, the user must select the “right eye.”  Finally, the user may 

(though it is not required) preview the masking that will occur.  In Figure 8-4, the locations of 

n selected and the image is ready for masking.   The right eye is still marked 

from selection and the image remains zoomed in.  Figure 8-5 shows the Main Menu screen 

Processing window has handed back the masked image. 

 

Once the digital photograph has successfully been loaded, the user must pre-process the 

image by selected the locations of the centers of the eyes, which is done in the pre-processing 

.  It includes buttons for zooming 

and panning the image.  The user must first select the “left eye,” which is the eye which appears 

st select the “right eye.”  Finally, the user may 

, the locations of 

n selected and the image is ready for masking.   The right eye is still marked 

shows the Main Menu screen again 



 

Figure 

Figure 8-4: Pre-Processing window 

The image part with relationship ID rId81 was not found in the file.
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Figure 8-3: Pre-Processing window after execution 

Processing window after both eye locations have been selected

 

 

after both eye locations have been selected 



 

Figure 

From here, the processing window can now be executed.  It is shown in 

analysis is completed.  The plot of normalized determinant is provided to the user for inspection 

prior to saving the slope dataset.  This is so that an experienced user might quickly ide

characteristics of a certain individual.  This plot has not been subtracted from the average, which 

is done during the creation of the slope data.  The slope data, however, 

should the user desire. 
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Figure 8-5: Main Menu after pre-processing is complete 

From here, the processing window can now be executed.  It is shown in Figure 

analysis is completed.  The plot of normalized determinant is provided to the user for inspection 

prior to saving the slope dataset.  This is so that an experienced user might quickly ide

characteristics of a certain individual.  This plot has not been subtracted from the average, which 

is done during the creation of the slope data.  The slope data, however, may be stored to the file 

 

Figure 8-6 after 

analysis is completed.  The plot of normalized determinant is provided to the user for inspection 

prior to saving the slope dataset.  This is so that an experienced user might quickly identify 

characteristics of a certain individual.  This plot has not been subtracted from the average, which 

stored to the file 



 

Once Processing is completed, the user is returned to the Main Window for the final time.  

The user may now open the comparison window (

processed image to any dataset.  Figure 

dataset has been loaded.  Note that the list on the left is now populated so that the user may scroll 

through the list of images.  After the com

matches populate the list on the right

match and click on the “preview” button to see a side

image.  (Note, this assumes that locations of each image are known and the images still are 

named correctly, otherwise an error message is displayed.)
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Figure 8-6: Processing complete 

Once Processing is completed, the user is returned to the Main Window for the final time.  

The user may now open the comparison window (Figure 8-3).  Here the user can compare the 

Figure 8-4 shows the comparison window after a particular 

dataset has been loaded.  Note that the list on the left is now populated so that the user may scroll 

list of images.  After the comparison has been made to the database, any predicted 

matches populate the list on the right-hand side (Figure 8-5).  The user may select any predicted 

on the “preview” button to see a side-by-side visual of each original electronic 

image.  (Note, this assumes that locations of each image are known and the images still are 

named correctly, otherwise an error message is displayed.) 

 

Once Processing is completed, the user is returned to the Main Window for the final time.  

user can compare the 

shows the comparison window after a particular 

dataset has been loaded.  Note that the list on the left is now populated so that the user may scroll 

parison has been made to the database, any predicted 

).  The user may select any predicted 

side visual of each original electronic 

image.  (Note, this assumes that locations of each image are known and the images still are 



 

Figure 

Figure 8-8
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Figure 8-7: Comparison window after execution 

8: Comparison window after data set has been loaded 

 

 



 

Figure 8-9: Comparison window after comparison has been made to database (note the tolerance was reduced to 

display a large list of predicted matches)

Once the comparison is complete, the user can return to the Main Menu and start the 

process over.  The GUI has been 

various methods attempted.  The entire algorithm in simple enough to be implemented in a fairly 

compact program which is in turn implemented in the GUI documented above.

9. Suggestions for Further Work

Of primary concern is the relatively low accuracy of the method selected.  Ideally, any 

method would be at least 99% accurate on such a small database.  The numbers of scales and 

binary images used created a normalized determinant consisting of 500 points

1,000 slope points which were used for comparison.  The database in question consisted of 400 

images.  The number of markers (slopes) used to describe the database is quite similar to the 

database.  The number of unique binary images and 
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: Comparison window after comparison has been made to database (note the tolerance was reduced to 

display a large list of predicted matches) 

Once the comparison is complete, the user can return to the Main Menu and start the 

 completed using the best configuration possible from the 

various methods attempted.  The entire algorithm in simple enough to be implemented in a fairly 

compact program which is in turn implemented in the GUI documented above. 

Suggestions for Further Work 

Of primary concern is the relatively low accuracy of the method selected.  Ideally, any 

method would be at least 99% accurate on such a small database.  The numbers of scales and 

binary images used created a normalized determinant consisting of 500 points.  This generated 

1,000 slope points which were used for comparison.  The database in question consisted of 400 

images.  The number of markers (slopes) used to describe the database is quite similar to the 

database.  The number of unique binary images and scales must be increased then.

 

: Comparison window after comparison has been made to database (note the tolerance was reduced to 

Once the comparison is complete, the user can return to the Main Menu and start the 

completed using the best configuration possible from the 

various methods attempted.  The entire algorithm in simple enough to be implemented in a fairly 

Of primary concern is the relatively low accuracy of the method selected.  Ideally, any 

method would be at least 99% accurate on such a small database.  The numbers of scales and 

.  This generated 

1,000 slope points which were used for comparison.  The database in question consisted of 400 

images.  The number of markers (slopes) used to describe the database is quite similar to the 

scales must be increased then. 
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It seems obvious that a high resolution image will increase the accuracy of the method.  

As previously stated, the FERET database was collected using first generation digital camera 

equipment in the early 90s.  This only provided, on average, 127 pixels between the pupils.  The 

digital camera technologies have gone from the sub-megapixel images in the FERET database to 

10+ megapixel cameras which are readily available.   

The greater number of pixels would mean that greater numbers of scales and binary 

images can be used without the overlapping experienced in the FERET Database images.  

Second, the number of pixels (discrete points) describing a particular feature in the image would 

also increase, which allows for more information to be conveyed through the normalized 

determinant curve.   

Another way to improve the source images is to move from the 8 bit images (256 unique 

pixel values) stored in the FERET database to a modern digital image of 16 or 24 million unique 

pixel values.  The substantial gain in the discrete number of possible pixel values would 

obviously increase the number of binary images which can be created without over lapping.   

The other problem with the source images is the collection technique.  The variance 

among the area of pixels associated with the subject’s head and the remainder of the image is 

great for the FERET.  If a database with a much stronger control on this variable were created, 

the quantity of pixels selected for analysis would be less deviant among images. While the 

algorithm used here does “non-dimensionalize” the effects of varying pixel distances between 

eyes, the fact remains that some images used have very low resolution faces.  In other words, 

some digital images have a higher numbers of pixels in the face region than others. 

The generation of the slope data and polling of the database for a match represent almost 

no increase in computational time to “test” an image after the normalized determinant has been 
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found.   This very quick comparison scheme, then, warrants further study in more depth to refine 

the operating parameters.  The number of scales and binary images was fixed prior to this 

experiment through a means which may have detracted from the full possibility of slope 

matching.  Knowing now that slope matching presents the most probable means of greater 

matching ability, the parameter study could be adjusted to better determine the number of scales 

and binary images.  

The number of possible slope values was chosen to be 2 (0 and 1).  However, this number 

could easily be increased to 3 or 4 or more.   The comparison methods which result from the 

slope data set would be virtually unaltered.  Further, the number of random points per scale-

binary image was selected to be 500,000 because of the work of Stoffa.  It is quite possible this 

number can be reduced without great impact on the accuracy of the resulting data.  Any 

reduction in the number of random points selected would reduce the over-all run time. 
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Number Image Name 

1 00002_940128_fa.tif 

2 00002_940128_fb.tif 

3 00002_940422_fa.tif 

4 00002_940422_fb.tif 

5 00002_940928_fa.tif 

6 00002_940928_fb.tif 

7 00003_941121_fa.tif 

8 00003_941121_fb.tif 

9 00004_930831_fa.tif 

10 00004_930831_fb.tif 

11 00005_941121_fa.tif 

12 00005_941121_fb.tif 

13 00010_930831_fa.tif 

14 00010_930831_fb.tif 

15 00012_930831_fa.tif 

16 00012_930831_fb.tif 

17 00013_930831_fa.tif 

18 00013_930831_fb.tif 

19 00014_930831_fa.tif 

20 00014_930831_fb.tif 

21 00015_930831_fa.tif 

22 00015_930831_fb.tif 

23 00016_930831_fa.tif 

24 00016_930831_fb.tif 

25 00019_930831_fa.tif 

26 00019_930831_fb.tif 

27 00019_940128_fa.tif 

28 00019_940128_fb.tif 

29 00019_940307_fa.tif 

30 00019_940307_fb.tif 

31 00020_930831_fa.tif 

32 00020_930831_fb.tif 

33 00023_930831_fa.tif 

34 00023_930831_fb.tif 

35 00026_930831_fa.tif 

36 00026_930831_fb.tif 

37 00028_940128_fa.tif 

38 00028_940128_fb.tif 

39 00029_930831_fa.tif 

40 00029_930831_fb.tif 

41 00029_940422_fa.tif 

42 00029_940422_fb.tif 

43 00029_940928_fa.tif 

44 00029_940928_fb.tif 

45 00029_941031_fa.tif 

46 00029_941031_fb.tif 

47 00029_960627_fa.tif 

48 00029_960627_fb.tif 

49 00038_930831_fa.tif 

50 00038_930831_fb.tif 

51 00038_940128_fa.tif 

52 00038_940128_fb.tif 

53 00039_930831_fa.tif 

54 00039_930831_fb.tif 

55 00040_930831_fa.tif 

56 00040_930831_fb.tif 

57 00042_930831_fa.tif 

58 00042_930831_fb.tif 

59 00047_931230_fa.tif 

60 00047_931230_fb.tif 

61 00050_931230_fa.tif 

62 00050_931230_fb.tif 

63 00093_941121_fa.tif 

64 00093_941121_fb.tif 

65 00095_940128_fa.tif 

66 00095_940128_fb.tif 

67 00107_941121_fa.tif 

68 00107_941121_fb.tif 

69 00108_941031_fa.tif 

70 00108_941031_fb.tif 

71 00140_941121_fa.tif 

72 00140_941121_fb.tif 

73 00146_941201_fa.tif 

74 00146_941201_fb.tif 

75 00146_960620_fa.tif 

76 00146_960620_fb.tif 

77 00157_940928_fa.tif 

78 00157_940928_fb.tif 

79 00162_940128_fa.tif 

80 00162_940128_fb.tif 

81 00166_931230_fa.tif 

82 00166_931230_fb.tif 

83 00183_940128_fa.tif 

84 00183_940128_fb.tif 

85 00184_940128_fa.tif 

86 00184_940128_fb.tif 

87 00188_940307_fa.tif 

88 00188_940307_fb.tif 

89 00191_940128_fa.tif 

90 00191_940128_fb.tif 

91 00193_940928_fa.tif 

92 00193_940928_fb.tif 

93 00195_940128_fa.tif 
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94 00195_940128_fb.tif 

95 00196_940128_fa.tif 

96 00196_940128_fb.tif 

97 00199_940128_fa.tif 

98 00199_940128_fb.tif 

99 00200_940128_fa.tif 

100 00200_940128_fb.tif 

101 00203_940128_fa.tif 

102 00203_940128_fb.tif 

103 00214_940128_fa.tif 

104 00214_940128_fb.tif 

105 00218_940128_fa.tif 

106 00218_940128_fb.tif 

107 00220_940128_fa.tif 

108 00220_940128_fb.tif 

109 00221_940128_fa.tif 

110 00221_940128_fb.tif 

111 00223_940128_fa.tif 

112 00223_940128_fb.tif 

113 00229_940128_fa.tif 

114 00229_940128_fb.tif 

115 00234_940128_fa.tif 

116 00234_940128_fb.tif 

117 00237_940128_fa.tif 

118 00237_940128_fb.tif 

119 00238_940128_fa.tif 

120 00238_940128_fb.tif 

121 00242_940128_fa.tif 

122 00242_940128_fb.tif 

123 00244_940128_fa.tif 

124 00244_940128_fb.tif 

125 00246_940128_fa.tif 

126 00246_940128_fb.tif 

127 00247_941121_fa.tif 

128 00247_941121_fb.tif 

129 00250_940128_fa.tif 

130 00250_940128_fb.tif 

131 00253_940128_fa.tif 

132 00253_940128_fb.tif 

133 00254_940128_fa.tif 

134 00254_940128_fb.tif 

135 00256_940928_fa.tif 

136 00256_940928_fb.tif 

137 00258_940128_fa.tif 

138 00258_940128_fb.tif 

139 00259_940128_fa.tif 

140 00259_940128_fb.tif 

141 00264_940128_fa.tif 

142 00264_940128_fb.tif 

143 00268_940307_fa.tif 

144 00268_940307_fb.tif 

145 00268_960530_fa.tif 

146 00268_960530_fb.tif 

147 00272_940422_fa.tif 

148 00272_940422_fb.tif 

149 00278_940422_fa.tif 

150 00278_940422_fb.tif 

151 00279_940422_fa.tif 

152 00279_940422_fb.tif 

153 00282_940422_fa.tif 

154 00282_940422_fb.tif 

155 00285_940422_fa.tif 

156 00285_940422_fb.tif 

157 00291_940422_fa.tif 

158 00291_940422_fb.tif 

159 00297_940422_fa.tif 

160 00297_940422_fb.tif 

161 00299_940422_fa.tif 

162 00299_940422_fb.tif 

163 00301_940422_fa.tif 

164 00301_940422_fb.tif 

165 00304_940422_fa.tif 

166 00304_940422_fb.tif 

167 00313_940422_fa.tif 

168 00313_940422_fb.tif 

169 00320_940422_fa.tif 

170 00320_940422_fb.tif 

171 00321_940422_fa.tif 

172 00321_940422_fb.tif 

173 00324_940422_fa.tif 

174 00324_940422_fb.tif 

175 00327_940422_fa.tif 

176 00327_940422_fb.tif 

177 00334_940422_fa.tif 

178 00334_940422_fb.tif 

179 00336_940422_fa.tif 

180 00336_940422_fb.tif 

181 00337_940422_fa.tif 

182 00337_940422_fb.tif 

183 00346_940422_fa.tif 

184 00346_940422_fb.tif 

185 00347_940422_fa.tif 

186 00347_940422_fb.tif 

187 00348_940422_fa.tif 
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188 00348_940422_fb.tif 

189 00350_940422_fa.tif 

190 00350_940422_fb.tif 

191 00351_940422_fa.tif 

192 00351_940422_fb.tif 

193 00361_940422_fa.tif 

194 00361_940422_fb.tif 

195 00362_940422_fa.tif 

196 00362_940422_fb.tif 

197 00365_940422_fa.tif 

198 00365_940422_fb.tif 

199 00381_940422_fa.tif 

200 00381_940422_fb.tif 

201 00383_940928_fa.tif 

202 00383_940928_fb.tif 

203 00388_940422_fa.tif 

204 00388_940422_fb.tif 

205 00398_940422_fa.tif 

206 00398_940422_fb.tif 

207 00400_940422_fa.tif 

208 00400_940422_fb.tif 

209 00408_940422_fa.tif 

210 00408_940422_fb.tif 

211 00430_940422_fa.tif 

212 00430_940422_fb.tif 

213 00432_940422_fa.tif 

214 00432_940422_fb.tif 

215 00436_940422_fa.tif 

216 00436_940422_fb.tif 

217 00443_940422_fa.tif 

218 00443_940422_fb.tif 

219 00445_940422_fa.tif 

220 00445_940422_fb.tif 

221 00454_940422_fa.tif 

222 00454_940422_fb.tif 

223 00467_940519_fa.tif 

224 00467_940519_fb.tif 

225 00468_940519_fa.tif 

226 00468_940519_fb.tif 

227 00468_941201_fa.tif 

228 00468_941201_fb.tif 

229 00468_960530_fa.tif 

230 00468_960530_fb.tif 

231 00468_960620_fa.tif 

232 00468_960620_fb.tif 

233 00469_940519_fa.tif 

234 00469_940519_fb.tif 

235 00469_941201_fa.tif 

236 00469_941201_fb.tif 

237 00469_960530_fa.tif 

238 00469_960530_fb.tif 

239 00469_960620_fa.tif 

240 00469_960620_fb.tif 

241 00470_940519_fa.tif 

242 00470_940519_fb.tif 

243 00472_960627_fa.tif 

244 00472_960627_fb.tif 

245 00474_940519_fa.tif 

246 00474_940519_fb.tif 

247 00478_940519_fa.tif 

248 00478_940519_fb.tif 

249 00479_940519_fa.tif 

250 00479_940519_fb.tif 

251 00483_940519_fa.tif 

252 00483_940519_fb.tif 

253 00490_940519_fa.tif 

254 00490_940519_fb.tif 

255 00493_940519_fa.tif 

256 00493_940519_fb.tif 

257 00494_940519_fa.tif 

258 00494_940519_fb.tif 

259 00496_940519_fa.tif 

260 00496_940519_fb.tif 

261 00499_940519_fa.tif 

262 00499_940519_fb.tif 

263 00500_940519_fa.tif 

264 00500_940519_fb.tif 

265 00500_960627_fa.tif 

266 00500_960627_fb.tif 

267 00501_940519_fa.tif 

268 00501_940519_fb.tif 

269 00505_940519_fa.tif 

270 00505_940519_fb.tif 

271 00508_960627_fa.tif 

272 00508_960627_fb.tif 

273 00510_940519_fa.tif 

274 00510_940519_fb.tif 

275 00511_940519_fa.tif 

276 00511_940519_fb.tif 

277 00515_940519_fa.tif 

278 00515_940519_fb.tif 

279 00518_940519_fa.tif 

280 00518_940519_fb.tif 

281 00519_940519_fa.tif 
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282 00519_940519_fb.tif 

283 00520_940519_fa.tif 

284 00520_940519_fb.tif 

285 00521_940519_fa.tif 

286 00521_940519_fb.tif 

287 00523_940519_fa.tif 

288 00523_940519_fb.tif 

289 00526_940519_fa.tif 

290 00526_940519_fb.tif 

291 00527_940519_fa.tif 

292 00527_940519_fb.tif 

293 00529_940519_fa.tif 

294 00529_940519_fb.tif 

295 00530_940519_fa.tif 

296 00530_940519_fb.tif 

297 00531_960627_fa.tif 

298 00531_960627_fb.tif 

299 00532_940519_fa.tif 

300 00532_940519_fb.tif 

301 00533_940519_fa.tif 

302 00533_940519_fb.tif 

303 00536_940519_fa.tif 

304 00536_940519_fb.tif 

305 00538_940519_fa.tif 

306 00538_940519_fb.tif 

307 00542_940519_fa.tif 

308 00542_940519_fb.tif 

309 00543_940519_fa.tif 

310 00543_940519_fb.tif 

311 00543_960627_fa.tif 

312 00543_960627_fb.tif 

313 00545_940519_fa.tif 

314 00545_940519_fb.tif 

315 00546_940519_fa.tif 

316 00546_940519_fb.tif 

317 00547_940519_fa.tif 

318 00547_940519_fb.tif 

319 00548_940519_fa.tif 

320 00548_940519_fb.tif 

321 00549_940519_fa.tif 

322 00549_940519_fb.tif 

323 00554_940519_fa.tif 

324 00554_940519_fb.tif 

325 00556_940519_fa.tif 

326 00556_940519_fb.tif 

327 00557_940519_fa.tif 

328 00557_940519_fb.tif 

329 00558_940519_fa.tif 

330 00558_940519_fb.tif 

331 00560_940519_fa.tif 

332 00560_940519_fb.tif 

333 00561_940519_fa.tif 

334 00561_940519_fb.tif 

335 00565_940307_fa.tif 

336 00565_940307_fb.tif 

337 00565_940928_fa.tif 

338 00565_940928_fb.tif 

339 00565_941121_fa.tif 

340 00565_941121_fb.tif 

341 00566_940928_fa.tif 

342 00566_940928_fb.tif 

343 00566_941121_fa.tif 

344 00566_941121_fb.tif 

345 00567_940928_fa.tif 

346 00567_940928_fb.tif 

347 00568_940928_fa.tif 

348 00568_940928_fb.tif 

349 00568_941031_fa.tif 

350 00568_941031_fb.tif 

351 00569_940928_fa.tif 

352 00569_940928_fb.tif 

353 00570_940928_fa.tif 

354 00570_940928_fb.tif 

355 00571_940928_fa.tif 

356 00571_940928_fb.tif 

357 00577_940928_fa.tif 

358 00577_940928_fb.tif 

359 00578_940928_fa.tif 

360 00578_940928_fb.tif 

361 00579_941031_fa.tif 

362 00579_941031_fb.tif 

363 00581_940928_fa.tif 

364 00581_940928_fb.tif 

365 00582_940928_fa.tif 

366 00582_940928_fb.tif 

367 00583_940928_fa.tif 

368 00583_940928_fb.tif 

369 00584_940928_fa.tif 

370 00584_940928_fb.tif 

371 00585_940928_fa.tif 

372 00585_940928_fb.tif 

373 00586_940928_fa.tif 

374 00586_940928_fb.tif 

375 00587_940928_fa.tif 
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376 00587_940928_fb.tif 

377 00588_940928_fa.tif 

378 00588_940928_fb.tif 

379 00588_941031_fa.tif 

380 00588_941031_fb.tif 

381 00588_941121_fa.tif 

382 00588_941121_fb.tif 

383 00590_940928_fa.tif 

384 00590_940928_fb.tif 

385 00592_940928_fa.tif 

386 00592_940928_fb.tif 

387 00593_941031_fa.tif 

388 00593_941031_fb.tif 

389 00594_940928_fa.tif 

390 00594_940928_fb.tif 

391 00594_941031_fa.tif 

392 00594_941031_fb.tif 

393 00594_941121_fa.tif 

394 00594_941121_fb.tif 

395 00595_940928_fa.tif 

396 00595_940928_fb.tif 

397 00596_940928_fa.tif 

398 00596_940928_fb.tif 

399 00596_941121_fa.tif 

400 00596_941121_fb.tif 
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Appendix B: Source Codes (Batch Codes) Used for the Experiments in 

Section 5 
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Image Read-in and Cropping Algorithm  

(makes use of GUI windows shown later in Appendix D) 

% Batch Mode based on Version 2.0 
clear 
clc 
 
tic; 
preProcess=input('Do you need to pre process images (1 = yes, 0 = no): '); 
 
if preProcess == 1 
    [file_list path, index] = uigetfile({'*.jpg;*.tif;*.png;*.gif','All Image 

Files';'*.*',... 
        'All Files' },'Please Select a File','MultiSelect','On'); 
 
    %fix the fact that matlab seems to think that a single file doens't 
    %need to be pulled in as a cell.  Hopefully they'll fix this in figure 
    %versions. 
    if ischar(file_list) == 1 
        file_list = {file_list}; 
    end 
 
    %find out how many elements there are 
    [nil, num_files] = size(file_list); 
 
    %iniatlize the cell array for the global file names 
    full_name = cell(1,num_files); 
 
    %loop over images 
    for i = 1:num_files 
        %pull in the image 
        full_name(i) = strcat(path,file_list(i)); 
        image_io = imread(cell2mat(full_name(i))); 
 
        %pass the image to the Pre-Process window and capture the output 
        [image{i}, distance{i}] = Pre_Process(image_io); 
 
        %clear the temp variable to avoid loop over conflicts. 
        %clear image_io 
    end 
 
    % I'm going to save the image files according to the following 
    % convention: file_name_XXX_YYYY.ext, where file_name is the 
    % orriginal name of the file, ext is the three letter file 
    % extension, XXX is the three whole digits of the eye center distance 
    % and YYYY are the first four digits of the decimal of the ECD 
 
    fprintf('Please select a directory to store the images in:\n'); 
    kbd = input('Paused, Press Enter to continue '); 
    output_dir = uigetdir('./','Please select an output directory'); 
 
    output_global = cell(1,num_files); 
     
    %write the results: 
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    for i = 1:num_files 
         
        fprintf('Writing file %d of %d files\n', i, num_files); 
        drawnow 
        file = cell2mat(file_list(i)); 
 
        %strip out the file extensions 
        j = 1; 
        while strcmp(file(j),'.') ~= 1 
            j = j+1; 
        end 
%  
        %keep the period 
        ext = file(j:end); 
        file = file(1:j-1); 
%  
%         %get the ECD (eye center distance) 
        ECD = cell2mat(distance(i)); 
        %-----New Way-----% 
        % File Information regarding original image 
        output_global{i} = strcat(output_dir,'/',file,'.txt'); 
        file = fopen(cell2mat(output_global(i)),'w'); 
        fprintf(file,'distance = %f\n', ECD); 
                 
        %--Store PreProcessed Image--% 
         
        imDummy = cell2mat(image(i)); 
        [Y,X,RGB] = size(imDummy); 
         
        Red = imDummy(:,:,1); 
        Green = imDummy(:,:,2); 
        Blue = imDummy(:,:,3); 
         
         
        fprintf(file,'Y_size = %d, X_size = %d\n', Y, X); 
         
        %--Red--% 
        for j = 1:Y 
            for k = 1:X 
                fprintf(file,'%d,',Red(j,k)); 
            end 
            fprintf(file,'\n'); 
        end 
         
        %--Green--% 
        for j = 1:Y 
            for k = 1:X 
                fprintf(file,'%d,',Green(j,k)); 
            end 
            fprintf(file,'\n'); 
        end 
         
        %--Blue--% 
        for j = 1:Y 
            for k = 1:X 
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                fprintf(file,'%d,',Blue(j,k)); 
            end 
            fprintf(file,'\n'); 
        end 
 
        fprintf(file,'Image Global = %s\n',cell2mat(full_name(i))); 
        fclose(file); 
         
 
        %cleanup for loopback 
        clear file ext ECD ECD_whole ECD_4dec XXX YYYY 
    end 
 
end
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Normalized Determinant Dataset Source Code  

      (Used in experiment 1 and subsequent experiments) 
 
clc; 
clear 
 
tic; 
 
time_old = 0; 
iter = 0; 
 
input_dir = '/media/EXT_60GB/PreProcess_4_0/'; 
%input_dir = './Raw_Data/'; 
%output_dir = '/media/EXT_60GB/Process_4_0_b/'; 
 
%assume this is  linux, I can fix later 
[contents, num_images] = linux_list(input_dir); 
 
num_scale = [5 10 20 40 50 10 10 10 10 10 10 20 20 40 40 50 40 50 40 50 60 60 60 ]; 
num_contrast = [5 5 5 5 5 3 5 10 15 20 30 20 30 20 30 30 10 10 15 15 5 10 15]; 
 
for k = 1:num_images 
    try 
        dummy = fopen(strcat(input_dir,'/',contents(k,:)),'r'); 
        fclose(dummy); 
        clear dummy 
    catch 
        %remove bad file 
        contents(k,:) = []; 
    end 
end 
 
[num_images, nil] = size(contents); 
total = num_images*50*11; 
 
imGlobal = cell(1,num_images); 
 
% for i = 1:numlabs 
%     file_lab(i) = fopen(strcat('./Parallel_Run_Logs/lab_',num2str(labindex)... 
%         ,'.txt'),'w'); 
% end 
 
%create outter loop for managing the different cases 
 
for count = 21:23 
    %create the name of output directory 
    output_dir = strcat('./Experiment 1/Case_',num2str(count),'_a/'); 
    mkdir(output_dir); 
     
    time_old = toc; 
    time_new = 0; 
    dtime = 0; 
    for k = 1:num_images 
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        %new way to read in image: 
        file = fopen(strcat(input_dir,'/',contents(k,:)),'r'); 
        trash = fscanf(file,'%s',[1,2]); 
        handles.distance = str2double(fscanf(file,'%s',[1,1])); 
        trash = fscanf(file,'%s',[1,2]); 
        Y_stop = str2double(fscanf(file,'%s',[1,1])); 
        trash = fscanf(file,'%s',[1,2]); 
        X_stop = str2double(fscanf(file,'%s',[1,1])); 
         
        %Get the Red,Green, and Blue values out of file: 
        R = zeros(Y_stop,X_stop); 
        for i = 1:Y_stop 
            for j = 1:X_stop 
                R(i,j) = fscanf(file,'%d,',[1,1]); 
            end 
        end 
         
        R = uint8(R); 
         
        G = zeros(Y_stop,X_stop); 
        for i = 1:Y_stop 
            for j = 1:X_stop 
                G(i,j) = fscanf(file,'%d,',[1,1]); 
            end 
        end 
         
        G = uint8(G); 
         
        B = zeros(Y_stop,X_stop); 
        for i = 1:Y_stop 
            for j = 1:X_stop 
                B(i,j) = fscanf(file,'%d,',[1,1]); 
            end 
        end 
         
        B = uint8(B); 
         
        %store the image: 
        handles.image = uint8(zeros(Y_stop,X_stop,3)); 
        handles.image(:,:,1) = R; 
        handles.image(:,:,2) = G; 
        handles.image(:,:,3) = B; 
         
        %and finally get the image global reference: 
        trash = fscanf(file,'%s',[1,3]); 
         
        imTemp = fscanf(file,'%c'); 
        %remove the garbage at the front: 
        imTemp(1) = []; 
        imGlobal(k) = {imTemp}; 
         
        % close out the file now that we're done reading 
        fclose(file); 
         
        num_pixels = 0; 
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        pixel_total = 0; 
        for i =1:Y_stop 
            for j = 1:X_stop 
                if handles.image(i,j,2) == 255 && handles.image(i,j,1) == 0 && ... 
                        handles.image(i,j,3) == 0 
                    %don't want to do anything this is a green pixel 
                else 
                    num_pixels = num_pixels + 1; 
                    pixel_total = pixel_total + double(rgb2gray(handles.image(i,j,:))); 
                end 
            end 
        end 
         
        average = pixel_total / num_pixels; 
         
        %calulate the standard deviation 
        stand_dev = 0; 
        for i =1:Y_stop 
            for j = 1:X_stop 
                if handles.image(i,j,2) == 255 && handles.image(i,j,1) == 0 && ... 
                        handles.image(i,j,3) == 0 
                    %don't want to do anything this is a green pixel 
                else 
                    stand_dev = stand_dev+(double(rgb2gray(handles.image(i,j,:))... 
                        -average))^2; 
                end 
            end 
        end 
         
        stand_dev = sqrt(1/num_pixels*stand_dev); 
         
        %numbers = [-2.0 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2.0]; 
         
        %now 31 numbers 
        numbers = linspace(-2.0,2.0,num_contrast(count)); 
        for i = 1:length(numbers) 
            contrast(i) = average + numbers(i)*stand_dev; 
        end 
         
         
        for i = 1:length(contrast) 
            if contrast(i) < 0 
                contrast(i) = 0; 
            elseif contrast(i) > 255 
                contrast(i) = 255; 
            end 
        end 
        %ok, need to non-dimen this: 
         
        %display(handles.distance); 
        scale = linspace(0,(handles.distance/4),num_scale(count)); 
         
        %display(scale) 
         
        %num_contrast = length(contrast); 
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        %num_scale = length(scale); 
        alpha_1 = zeros(num_contrast(count), num_scale(count)); 
        alpha_2 = alpha_1; 
        beta = alpha_1; 
        scale_actual = alpha_1; 
        norm_det = alpha_1; 
        progress_percent = 0; 
         
        for i = 1:num_contrast(count) 
             
            %open level out the image: 
            image_temp = Contrast_Level(handles.image, contrast(i)); 
            for j = 1:num_scale(count) 
                iter = iter + 1; 
                %invoke the solver: 
                [alpha_1(i,j), alpha_2(i,j), beta(i,j), scale_actual(i,j)] = ... 
                    outlined_RW(image_temp, scale(j)); 
                 
                %find the normalized determinant 
                norm_det(i,j) = (alpha_1(i,j)*alpha_2(i,j) - 0.25*beta(i,j)^2) / ... 
                    (alpha_1(i,1)*alpha_2(i,1)); 
                 
            end 
        end 
        %     clear alpha_1 alpha_2 beta scale num_contrast numbers X_stop Y_stop 
        %     clear num_scale contrast average stand_dev handles.image pixel_total 
        %     clear num_pixels XXX YYYY 
         
        %fit some nice equations: 
        scale = (scale_actual) / (handles.distance/4); 
        %[num_contrast, num_scale] = size(norm_det); 
         
        for i = 1:num_contrast(count) 
            for j = 1:num_scale(count) 
                if isnan(norm_det(i,j)) == 1 || isinf(norm_det(i,j)) == 1 
                    norm_det(i,j) = 0; 
                end 
            end 
        end 
         
        temp = cell2mat(imGlobal(k)); 
        for i = length(temp):-1:1 
            if strcmp(temp(i),'/') == 1 || strcmp(temp(i),'\') == 1 
                break 
            end 
        end 
        handles.base_image.path = temp(1:i); 
        handles.base_image.name = temp(i+1:end); 
         
        %and now the output directory stuff: 
        pathname = output_dir; 
        %concotenate the file name 
        %find the distance: 
        j = 1; 
        while strcmp(contents(k,j),'.') ~= 1 
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            j = j + 1; 
        end 
         
        filename = contents(k,:); 
        %     %         %save the findings 
        %    data = [P1',P2',P3',P4',P5',P6',P7',P8',P9',r_square']; 
        %   data = [alpha_1, alpha_2, beta, norm_det]; 
        data = norm_det; 
        test = Faces_Write(data,handles.base_image.path,handles.base_image.name,... 
            pathname,filename); 
         
        %  Use this option to dump all raw data 
        %    test = 
Faces_Write_Process([],handles.base_image.path,handles.base_image.name,... 
        %        pathname,filename,alpha_1,alpha_2,beta,norm_det, scale_actual); 
         
        time_new = toc; 
        dtime = time_new - time_old; 
         
        fprintf('Case = %d image %d / %d complete with estimated %.2f hours remaining for 
Case\n',count, k,... 
            num_images,(num_images - k)*dtime/3600); 
         
        time_old = time_new; 
         
    end 
     
end 
% for i = 1:numlabs 
%     fclose(file_lab(i)); 
% end 
 
 
toc; 
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Experiment 2 Source Codes 

      (verifying ellipse and rectangle masking) 

clear; 
close all; 
clc; 
 
%results of experiment #1 
num_scale = 50; 
num_contrast = 10; 
 
%previous generated list of images: 
file_names = ['00244_940128_fa.tif' 
    '00200_940128_fa.tif' 
    '00324_940422_fb.tif' 
    '00561_940519_fa.tif' 
    '00595_940928_fb.tif' 
    '00529_940519_fb.tif' 
    '00472_960627_fb.tif' 
    '00519_940519_fa.tif' 
    '00020_930831_fb.tif' 
    '00579_941031_fa.tif']; 
 
num_files = 10; 
 
out_dir = './Experiment 2'; 
 
%in this experiment, we will generate the normalized determinant surface 
%for each fo the 10 images for both teh ellipse cutout ("standard") and 
%square cutout, prooving there is little difference between the two. 
 
%loop goes here 
for k = 1:10 
     
    %this will only work on my machine! 
     
    %pre-done masked images: 
    in_dir_a = '/media/EXT_60GB/PreProcess_4_0/'; %ellipse 
    in_dir_b = '/media/EXT_60GB/PreProcess_3_0/'; %square 
     
    out_file_a = strcat(file_names(k,1:end-4),'_ellipse.txt'); 
    out_file_b = strcat(file_names(k,1:end-4),'_square.txt'); 
     
    %read in the image data for the ellipse: 
    fprintf('Analyzing image %d for ellipse\n', k); 
    filename = strcat(in_dir_a,file_names(k,1:end-4),'.txt'); 
    file = fopen(filename,'r'); 
     
    %from experiment 1 
    trash = fscanf(file,'%s',[1,2]); 
    handles.distance = str2double(fscanf(file,'%s',[1,1])); 
    trash = fscanf(file,'%s',[1,2]); 
    Y_stop = str2double(fscanf(file,'%s',[1,1])); 
    trash = fscanf(file,'%s',[1,2]); 
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    X_stop = str2double(fscanf(file,'%s',[1,1])); 
     
    %Get the Red,Green, and Blue values out of file: 
    R = zeros(Y_stop,X_stop); 
    for i = 1:Y_stop 
        for j = 1:X_stop 
            R(i,j) = fscanf(file,'%d,',[1,1]); 
        end 
    end 
     
    R = uint8(R); 
     
    G = zeros(Y_stop,X_stop); 
    for i = 1:Y_stop 
        for j = 1:X_stop 
            G(i,j) = fscanf(file,'%d,',[1,1]); 
        end 
    end 
     
    G = uint8(G); 
     
    B = zeros(Y_stop,X_stop); 
    for i = 1:Y_stop 
        for j = 1:X_stop 
            B(i,j) = fscanf(file,'%d,',[1,1]); 
        end 
    end 
     
    B = uint8(B); 
     
    %store the image: 
    handles.image = uint8(zeros(Y_stop,X_stop,3)); 
    handles.image(:,:,1) = R; 
    handles.image(:,:,2) = G; 
    handles.image(:,:,3) = B; 
     
    %and finally get the image global reference: 
    trash = fscanf(file,'%s',[1,3]); 
     
    imTemp = fscanf(file,'%c'); 
    %remove the garbage at the front: 
    imTemp(1) = []; 
    imGlobal(k) = {imTemp}; 
     
    % close out the file now that we're done reading 
    fclose(file); 
     
    num_pixels = 0; 
    pixel_total = 0; 
    for i =1:Y_stop 
        for j = 1:X_stop 
            if handles.image(i,j,2) == 255 && handles.image(i,j,1) == 0 && ... 
                    handles.image(i,j,3) == 0 
                %don't want to do anything this is a green pixel 
            else 
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                num_pixels = num_pixels + 1; 
                pixel_total = pixel_total + double(rgb2gray(handles.image(i,j,:))); 
            end 
        end 
    end 
     
    average = pixel_total / num_pixels; 
     
    %calulate the standard deviation 
    stand_dev = 0; 
    for i =1:Y_stop 
        for j = 1:X_stop 
            if handles.image(i,j,2) == 255 && handles.image(i,j,1) == 0 && ... 
                    handles.image(i,j,3) == 0 
                %don't want to do anything this is a green pixel 
            else 
                stand_dev = stand_dev+(double(rgb2gray(handles.image(i,j,:))... 
                    -average))^2; 
            end 
        end 
    end 
     
    stand_dev = sqrt(1/num_pixels*stand_dev); 
     
    numbers = linspace(-2.0,2.0,num_contrast); 
    for i = 1:length(numbers) 
        contrast(i) = average + numbers(i)*stand_dev; 
    end 
     
    for i = 1:length(contrast) 
        if contrast(i) < 0 
            contrast(i) = 0; 
        elseif contrast(i) > 255 
            contrast(i) = 255; 
        end 
    end 
     
    scale = linspace(0,(handles.distance/4),num_scale); 
     
    alpha_1 = zeros(num_contrast, num_scale); 
    alpha_2 = alpha_1; 
    beta = alpha_1; 
    scale_actual = alpha_1; 
    norm_det = alpha_1; 
    progress_percent = 0; 
     
    for i = 1:num_contrast 
         
        %open level out the image: 
        image_temp = Contrast_Level(handles.image, contrast(i)); 
        for j = 1:num_scale 
            %        iter = iter + 1; 
            %invoke the solver: 
            [alpha_1(i,j), alpha_2(i,j), beta(i,j), scale_actual(i,j)] = ... 
                outlined_RW(image_temp, scale(j)); 
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            %find the normalized determinant 
            norm_det(i,j) = (alpha_1(i,j)*alpha_2(i,j) - 0.25*beta(i,j)^2) / ... 
                (alpha_1(i,1)*alpha_2(i,1)); 
             
        end 
    end 
     
    for i = 1:num_contrast 
        for j = 1:num_scale 
            if isnan(norm_det(i,j)) == 1 || isinf(norm_det(i,j)) == 1 
                norm_det(i,j) = 0; 
            end 
        end 
    end 
     
    %store the data for the ellipse 
    success = Faces_Write(norm_det,'','',out_dir,out_file_a); 
     
    %save the data to make a figure window 
    ellipse = norm_det; 
     
    %and repeat for the square cutouts... 
     
     
     
     
     
     
    %read in the image data for the square: 
    fprintf('Analyzing image %d for square\n', k); 
    filename = strcat(in_dir_b,file_names(k,1:end-4),'.txt'); 
    file = fopen(filename,'r'); 
     
    %from experiment 1 
    trash = fscanf(file,'%s',[1,2]); 
    handles.distance = str2double(fscanf(file,'%s',[1,1])); 
    trash = fscanf(file,'%s',[1,2]); 
    Y_stop = str2double(fscanf(file,'%s',[1,1])); 
    trash = fscanf(file,'%s',[1,2]); 
    X_stop = str2double(fscanf(file,'%s',[1,1])); 
     
    %Get the Red,Green, and Blue values out of file: 
    R = zeros(Y_stop,X_stop); 
    for i = 1:Y_stop 
        for j = 1:X_stop 
            R(i,j) = fscanf(file,'%d,',[1,1]); 
        end 
    end 
     
    R = uint8(R); 
     
    G = zeros(Y_stop,X_stop); 
    for i = 1:Y_stop 
        for j = 1:X_stop 



153 

 

            G(i,j) = fscanf(file,'%d,',[1,1]); 
        end 
    end 
     
    G = uint8(G); 
     
    B = zeros(Y_stop,X_stop); 
    for i = 1:Y_stop 
        for j = 1:X_stop 
            B(i,j) = fscanf(file,'%d,',[1,1]); 
        end 
    end 
     
    B = uint8(B); 
     
    %store the image: 
    handles.image = uint8(zeros(Y_stop,X_stop,3)); 
    handles.image(:,:,1) = R; 
    handles.image(:,:,2) = G; 
    handles.image(:,:,3) = B; 
     
    %and finally get the image global reference: 
    trash = fscanf(file,'%s',[1,3]); 
     
    imTemp = fscanf(file,'%c'); 
    %remove the garbage at the front: 
    imTemp(1) = []; 
    imGlobal(k) = {imTemp}; 
     
    % close out the file now that we're done reading 
    fclose(file); 
     
    num_pixels = 0; 
    pixel_total = 0; 
    for i =1:Y_stop 
        for j = 1:X_stop 
            if handles.image(i,j,2) == 255 && handles.image(i,j,1) == 0 && ... 
                    handles.image(i,j,3) == 0 
                %don't want to do anything this is a green pixel 
            else 
                num_pixels = num_pixels + 1; 
                pixel_total = pixel_total + double(rgb2gray(handles.image(i,j,:))); 
            end 
        end 
    end 
     
    average = pixel_total / num_pixels; 
     
    %calulate the standard deviation 
    stand_dev = 0; 
    for i =1:Y_stop 
        for j = 1:X_stop 
            if handles.image(i,j,2) == 255 && handles.image(i,j,1) == 0 && ... 
                    handles.image(i,j,3) == 0 
                %don't want to do anything this is a green pixel 
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            else 
                stand_dev = stand_dev+(double(rgb2gray(handles.image(i,j,:))... 
                    -average))^2; 
            end 
        end 
    end 
     
    stand_dev = sqrt(1/num_pixels*stand_dev); 
     
    numbers = linspace(-2.0,2.0,num_contrast); 
    for i = 1:length(numbers) 
        contrast(i) = average + numbers(i)*stand_dev; 
    end 
     
    for i = 1:length(contrast) 
        if contrast(i) < 0 
            contrast(i) = 0; 
        elseif contrast(i) > 255 
            contrast(i) = 255; 
        end 
    end 
     
    scale = linspace(0,(handles.distance/4),num_scale); 
     
    alpha_1 = zeros(num_contrast, num_scale); 
    alpha_2 = alpha_1; 
    beta = alpha_1; 
    scale_actual = alpha_1; 
    norm_det = alpha_1; 
    progress_percent = 0; 
     
    for i = 1:num_contrast 
         
        %open level out the image: 
        image_temp = Contrast_Level(handles.image, contrast(i)); 
        for j = 1:num_scale 
            %        iter = iter + 1; 
            %invoke the solver: 
            [alpha_1(i,j), alpha_2(i,j), beta(i,j), scale_actual(i,j)] = ... 
                outlined_RW(image_temp, scale(j)); 
             
            %find the normalized determinant 
            norm_det(i,j) = (alpha_1(i,j)*alpha_2(i,j) - 0.25*beta(i,j)^2) / ... 
                (alpha_1(i,1)*alpha_2(i,1)); 
             
        end 
    end 
     
    for i = 1:num_contrast 
        for j = 1:num_scale 
            if isnan(norm_det(i,j)) == 1 || isinf(norm_det(i,j)) == 1 
                norm_det(i,j) = 0; 
            end 
        end 
    end 
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    %store the data for the ellipse 
    success = Faces_Write(norm_det,'','',out_dir,out_file_b); 
     
    %save the data to make a figure window 
    square = norm_det;  
     
     
    %make some pretty figure windows 
    figure 
    %set the size ahead of time: 
    h = gcf; 
    set(h,'position',[522,716,946,382]); 
    subplot(1,2,1) 
    [X,Y]=meshgrid(scale,contrast); 
    surf(ellipse); 
    xlabel('scales'); ylabel('contrasts'); 
    view([132,12]); 
    subplot(1,2,2); 
    surf(square); 
    view([132,12]); 
    xlabel('scales'); ylabel('contrasts'); 
end 
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Experiment 3 Source Codes 

(calculating slopes and finding the optimal value of percent match among coefficients) 

 
%program to calculate the average normalized det. 
 
clear  
close all 
clc 
 
in_dir = './Raw Norm Det/Process_a/'; 
 
%get the list of file names: 
[file_names, num_images] = linux_list(in_dir); 
 
%from experiment 1 
num_contrast = 10; 
num_scale = 50; 
 
avg_norm_det = zeros(num_contrast,num_scale); 
 
for k=1:num_images 
     
    %load the dataset 
    data = load([in_dir,file_names(k,:)]); 
     
    avg_norm_det = avg_norm_det + data; 
     
    %let's see the surface every 50 images 
    if rem(k,50) == 0 
        figure 
        surf(avg_norm_det ./ k); 
        view([132,12]); 
        ylabel('Contrast'); xlabel('Scale'); 
    end 
     
    fprintf('finished scanning %d of %d\n', k, num_images); 
end 
 
avg_norm_det = avg_norm_det ./ num_images; 
     
%save './Raw Norm Det/avg_norm_det.mat' avg_norm_det; 
file = './Raw Norm Det/avg_norm_det.csv'; 
output = fopen(file,'w'); 
for i = 1:num_contrast 
    for j = 1:num_scale 
        fprintf(output,'%f,', avg_norm_det(i,j)); 
    end 
    fprintf(output,'\n'); 
end 
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%Dissertation Experiment 3, loads raw data from norm. det. and creates the 
%slopes afte subtracting the average data. 
 
tic; 
 
clear; 
close all; 
clc; 
 
%get the average data 
avg_norm_det = load('./Raw Norm Det/avg_norm_det.csv'); 
 
%list all of the files from both perivously created data sets; 
in_dir_a = './Raw Norm Det/Process_a/'; 
in_dir_b = './Raw Norm Det/Process_b/'; 
 
out_dir_a = './Experiment 3/slopes_a/'; 
out_dir_b = './Experiment 3/slopes_b/'; 
 
%get the lists 
[file_names_a, num_images] = linux_list(in_dir_a); 
[file_names_b, num_images] = linux_list(in_dir_b); 
 
%from experiment1 
num_contrast = 10; 
num_scale = 50; 
 
for k=1:num_images 
    %start with set a 
    norm_det = load([in_dir_a,file_names_a(k,:)]); 
     
    %subtract the average 
    norm_det = norm_det - avg_norm_det; 
     
    %create the slopes using sam algorithm as first experiment 3 
     
    out_file_a = strcat(out_dir_a,'cons/',file_names_a(k,1:end-4),'_con.csv'); 
    out_file_b = strcat(out_dir_a,'scales/',file_names_a(k,1:end-4),'_scale.csv'); 
     
    %determine the sloped data for normalized determinant: 
    s_con = zeros(size(norm_det)); 
    s_scale = zeros(size(norm_det)); 
     
    %create "fake" boundary conditions so that conditionals aren't 
    %necessary 
     
    norm_use = zeros(num_contrast+2, num_scale+2); 
    norm_use(2:end-1, 2:end-1) = norm_det; 
     
    %and duplicate the boundary condition so 
    %left hand side 
    norm_use(2:end-1,1) = norm_det(:,1); 
     
    %right hand side 
    norm_use(2:end-1,end) = norm_det(:,end); 
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    %top 
    norm_use(1,2:end-1) = norm_det(1,:); 
     
    %bottom 
    norm_use(end,2:end-1) = norm_det(end,:); 
     
    %denominators are constant due to setup 
    %it doesn't matter what these are.  We're only concerned with the sign 
    %and these are inherently always positive.  The reason this crops up is 
    %pre-processing the normalized determinants removes this information 
    %from this program.   
    %del_con = contrast(3) - contrast(1); 
    %del_scale = scale(4) - scale(2); 
     
    temp = 0.; 
     
    for i = 2:num_contrast+1 
        for j = 2:num_scale+1 
            temp = (norm_use(i+1,j)-norm_use(i-1,j)); 
            if temp > 0 
                s_con(i-1,j-1) = 1; 
            else 
                s_con(i-1,j-1) = 0; 
            end 
             
            temp = (norm_use(i,j+1) - norm_use(i,j-1)); 
            if temp > 0 
                s_scale(i-1,j-1) = 1; 
            else 
                s_scale(i-1,j-1) = 0; 
            end 
        end 
    end 
     
    %write out the slope data 
    %open the contrast file for writing 
    file = fopen(out_file_a,'w'); 
    for i = 1:num_contrast 
        for j = 1:num_scale 
            fprintf(file,'%d,', s_con(i,j)); 
        end 
        fprintf(file,'\n'); 
    end 
    fclose(file); 
     
    file = fopen(out_file_b,'w'); 
    for i = 1:num_contrast 
        for j = 1:num_scale 
            fprintf(file,'%d,', s_scale(i,j)); 
        end 
        fprintf(file,'\n'); 
    end 
    fclose(file); 
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    %repeat with set b 
    norm_det = load([in_dir_a,file_names_b(k,:)]); 
     
    %subtract the average 
    norm_det = norm_det - avg_norm_det; 
     
    %create the slopes using sam algorithm as first experiment 3 
     
    out_file_a = strcat(out_dir_b,'cons/',file_names_b(k,1:end-4),'_con.csv'); 
    out_file_b = strcat(out_dir_b,'scales/',file_names_b(k,1:end-4),'_scale.csv'); 
     
    %determine the sloped data for normalized determinant: 
    s_con = zeros(size(norm_det)); 
    s_scale = zeros(size(norm_det)); 
     
    %create "fake" boundary conditions so that conditionals aren't 
    %necessary 
     
    norm_use = zeros(num_contrast+2, num_scale+2); 
    norm_use(2:end-1, 2:end-1) = norm_det; 
     
    %and duplicate the boundary condition so 
    %left hand side 
    norm_use(2:end-1,1) = norm_det(:,1); 
     
    %right hand side 
    norm_use(2:end-1,end) = norm_det(:,end); 
     
    %top 
    norm_use(1,2:end-1) = norm_det(1,:); 
     
    %bottom 
    norm_use(end,2:end-1) = norm_det(end,:); 
     
    %denominators are constant due to setup 
    %it doesn't matter what these are.  We're only concerned with the sign 
    %and these are inherently always positive.  The reason this crops up is 
    %pre-processing the normalized determinants removes this information 
    %from this program.   
    %del_con = contrast(3) - contrast(1); 
    %del_scale = scale(4) - scale(2); 
     
    temp = 0.; 
     
    for i = 2:num_contrast+1 
        for j = 2:num_scale+1 
            temp = (norm_use(i+1,j)-norm_use(i-1,j)); 
            if temp > 0 
                s_con(i-1,j-1) = 1; 
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            else 
                s_con(i-1,j-1) = 0; 
            end 
             
            temp = (norm_use(i,j+1) - norm_use(i,j-1)); 
            if temp > 0 
                s_scale(i-1,j-1) = 1; 
            else 
                s_scale(i-1,j-1) = 0; 
            end 
        end 
    end 
     
    %write out the slope data 
    %open the contrast file for writing 
    file = fopen(out_file_a,'w'); 
    for i = 1:num_contrast 
        for j = 1:num_scale 
            fprintf(file,'%d,', s_con(i,j)); 
        end 
        fprintf(file,'\n'); 
    end 
    fclose(file); 
     
    file = fopen(out_file_b,'w'); 
    for i = 1:num_contrast 
        for j = 1:num_scale 
            fprintf(file,'%d,', s_scale(i,j)); 
        end 
        fprintf(file,'\n'); 
    end 
    fclose(file); 
     
    fprintf('Finished %d / %d\n', k, num_images); 
end 
 
toc; 

 

 

%Dissertation experiment #3, optimal value of nu for slope matching. 
 
clear; 
close all; 
clc; 
 
%start the runtime clock 
tic; 
 
%setup the list of thresholds 
thresh = [70:100] ./ 100; 
 
max_count = length(thresh); 
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%recall from exp. 1 
num_scale = 50; 
num_contrast = 10; 
 
 
%setup the directories: 
 
%remember the slopes of scale and contrast were seperated.  I did that so I 
%could test each individually (through the process) and then combine them 
%for a third run through the list of possible values 
in_dir_a_con = './Experiment 3/slopes_a/cons/'; 
in_dir_a_scale = './Experiment 3/slopes_a/scales/'; 
 
 
%pop the lists of each directory: 
[file_names_a_con, num_images_a_con] = linux_list(in_dir_a_con); 
[file_names_a_scale, num_images_a_scale] = linux_list(in_dir_a_scale); 
 
%make sure they are the same 
if num_images_a_con ~= num_images_a_scale 
    fprintf('Errory, group a directories not compatible\n'); 
end 
 
in_dir_b_con = './Experiment 3/slopes_b/cons/'; 
in_dir_b_scale = './Experiment 3/slopes_b/scales/'; 
 
 
%pop the lists of each directory: 
[file_names_b_con, num_images_b_con] = linux_list(in_dir_b_con); 
[file_names_b_scale, num_images_b_scale] = linux_list(in_dir_b_scale); 
 
%make sure they are the same 
if num_images_b_con ~= num_images_b_scale 
    fprintf('Errory, group b directories not compatible\n'); 
end 
 
num_images_a = num_images_a_con; 
num_images_b = num_images_b_con; 
 
if num_images_a ~= num_images_b 
   fprintf('Errory, directories not compatible\n'); 
end 
 
num_images = num_images_a; 
 
data_a_con = zeros(num_images,num_contrast,num_scale); 
data_a_scale = data_a_con; 
data_b_con = data_a_con; 
data_b_scale = data_a_con; 
 
%read in all of the data ahead of time: 
for i=1:num_images 
    data_a_con(i,:,:) = load([in_dir_a_con,file_names_a_con(i,:)]); 
    data_a_scale(i,:,:) = load([in_dir_a_scale,file_names_a_scale(i,:)]); 
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    data_b_con(i,:,:) = load([in_dir_b_con,file_names_b_con(i,:)]); 
    data_b_scale(i,:,:) = load([in_dir_b_scale,file_names_b_scale(i,:)]); 
 
end 
 
%start wiht the slopes from the contrasts first: 
for count = 1:max_count 
    time_a = toc; 
    fprintf('Beginning comparison for contrast case %d\n', count); 
     
    logfile = ['./Experiment 3/outputs/case_',num2str(count),'_contrast.csv']; 
    file = fopen(logfile,'w'); 
     
    %prep the output file 
    fprintf(file,'File_name,success\n'); 
 
    %now we compare them: 
    tol = thresh(count)*num_scale*num_contrast; 
     
    %perform the comparisons 
    for i = 1:num_images %running over all "test" images (group a) 
         
        %keep track of the number of possible matches 
        num_match = 0; 
         
        for j = 1:num_images %running over all "database" images (group b) 
             
            %matlab allows us to test equality (boolean operations) through 
            %entire arrays, so we just select the data which corresponds to 
            %the test or database image.  If the match is true (1 to 1 or 0 
            %to 0) it returns 1, 0 otherwise.  So then we just add up all 
            %the ones (twice because of the matrix structure). 
            matches = sum(sum(data_a_con(i,:,:) == data_b_con(j,:,:))); 
             
            if matches >= tol %image i is predicted to match images j 
                num_match = num_match + 1; 
                %build the list of possible matches, strip out the fa and 
                %fb 
                check_names(num_match,:) = file_names_b_con(j,1:12); 
            end 
             
        end 
         
        %now how many matches do we expect?  Only two for success, same as 
        %before 
        test_image = file_names_a_con(i,1:12); 
         
        if num_match == 2             
            %check to make sure we've only the same family  
            if ( (strcmp(test_image,check_names(1,:)) == 1)... 
                    && (strcmp(test_image,check_names(2,:)) == 1) ) 
                %success 
                fprintf(file,'%s,%d\n',file_names_a_con(i,1:15),1); 
            else %must have had erroneous matches 
                fprintf(file,'%s,%d\n',file_names_a_con(i,1:15),0); 
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            end 
 
        else %it failed 
            fprintf(file,'%s,%d\n',file_names_a_con(i,1:15),0); 
        end  
    end    
     
     
    %close the output file 
    fclose(file); 
    time_b = toc; 
    fprintf('Case for Contrast completed in %.2f seconds\n',... 
        time_b - time_a); 
end 
 
 
 
 
%move onto the scales 
for count = 1:max_count 
    time_a = toc; 
    fprintf('Beginning comparison for slope case %d\n', count); 
     
    logfile = ['./Experiment 3/outputs/case_',num2str(count),'_slope.csv']; 
    file = fopen(logfile,'w'); 
     
    %prep the output file 
    fprintf(file,'File_name,success\n'); 
 
    %now we compare them: 
    tol = thresh(count)*num_scale*num_contrast; 
     
    %perform the comparisons 
    for i = 1:num_images %running over all "test" images (group a) 
         
        %keep track of the number of possible matches 
        num_match = 0; 
         
        for j = 1:num_images %running over all "database" images (group b) 
             
            %matlab allows us to test equality (boolean operations) through 
            %entire arrays, so we just select the data which corresponds to 
            %the test or database image.  If the match is true (1 to 1 or 0 
            %to 0) it returns 1, 0 otherwise.  So then we just add up all 
            %the ones (twice because of the matrix structure). 
            matches = sum(sum(data_a_scale(i,:,:) == data_b_scale(j,:,:))); 
             
            if matches >= tol %image i is predicted to match images j 
                num_match = num_match + 1; 
                %build the list of possible matches, strip out the fa and 
                %fb 
                check_names(num_match,:) = file_names_b_scale(j,1:12); 
            end 
             
        end 
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        %now how many matches do we expect?  Only two for success, same as 
        %before 
        test_image = file_names_a_scale(i,1:12); 
         
        if num_match == 2             
            %check to make sure we've only the same family  
            if ( (strcmp(test_image,check_names(1,:)) == 1)... 
                    && (strcmp(test_image,check_names(2,:)) == 1) ) 
                %success 
                fprintf(file,'%s,%d\n',file_names_a_scale(i,1:15),1); 
            else %must have had erroneous matches 
                fprintf(file,'%s,%d\n',file_names_a_scale(i,1:15),0); 
            end 
 
        else %it failed 
            fprintf(file,'%s,%d\n',file_names_a_scale(i,1:15),0); 
        end  
    end    
     
     
    %close the output file 
    fclose(file); 
    time_b = toc; 
    fprintf('Case_1 for Scale completed in %.2f seconds\n',... 
        time_b - time_a); 
end 
 
 
 
 
%finish with the combniations 
for count = 1:max_count 
    time_a = toc; 
    fprintf('Beginning comparison for combniation case %d\n', count); 
     
    logfile = ['./Experiment 3/outputs/case_',num2str(count),'_combo.csv']; 
    file = fopen(logfile,'w'); 
     
    %prep the output file 
    fprintf(file,'File_name,success\n'); 
 
    %now we compare them: 
    tol = thresh(count)*num_scale*num_contrast*2; 
     
    %perform the comparisons 
    for i = 1:num_images %running over all "test" images (group a) 
         
        %keep track of the number of possible matches 
        num_match = 0; 
         
        for j = 1:num_images %running over all "database" images (group b) 
             
            %matlab allows us to test equality (boolean operations) through 
            %entire arrays, so we just select the data which corresponds to 
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            %the test or database image.  If the match is true (1 to 1 or 0 
            %to 0) it returns 1, 0 otherwise.  So then we just add up all 
            %the ones (twice because of the matrix structure). 
            matches = sum(sum(data_a_scale(i,:,:) == data_b_scale(j,:,:))); 
            matches = matches + ... 
                sum(sum(data_a_con(i,:,:) == data_b_con(j,:,:))); 
             
            if matches >= tol %image i is predicted to match images j 
                num_match = num_match + 1; 
                %build the list of possible matches, strip out the fa and 
                %fb 
                check_names(num_match,:) = file_names_b_scale(j,1:12); 
            end 
             
        end 
         
        %now how many matches do we expect?  Only two for success, same as 
        %before 
        test_image = file_names_a_scale(i,1:12); 
         
        if num_match == 2             
            %check to make sure we've only the same family  
            if ( (strcmp(test_image,check_names(1,:)) == 1)... 
                    && (strcmp(test_image,check_names(2,:)) == 1) ) 
                %success 
                fprintf(file,'%s,%d\n',file_names_a_scale(i,1:15),1); 
            else %must have had erroneous matches 
                fprintf(file,'%s,%d\n',file_names_a_scale(i,1:15),0); 
            end 
 
        else %it failed 
            fprintf(file,'%s,%d\n',file_names_a_scale(i,1:15),0); 
        end  
    end    
     
     
    %close the output file 
    fclose(file); 
    time_b = toc; 
    fprintf('Case_1 for Combination completed in %.2f seconds\n',... 
        time_b - time_a); 

end 
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Experiment 4 Source Codes  

      (optimal polynomial order) 

%Dissertation Experiment 4, create a set of data which has been fit with 
%increasing orders of polynomials from 5 to 9. 
 
tic; 
 
clear; 
close all; 
clc; 
 
%list all of the files from both perivously created data sets; 
in_dir = './Raw Norm Det/Process_a/'; 
%in_dir_b = './Raw Norm Det/Process_b/'; 
 
%get the lists 
[file_names_a, num_images] = linux_list(in_dir); 
%[file_names_b, num_images] = linux_list(in_dir_b); 
 
%from experiment1 
num_contrast = 10; 
num_scale = 50; 
 
%note, how do we "plot" normalized determinant?  Are we plotting with the 
%raw arrays of contrast and scale or the iterated ones?  In order for these 
%coefficients to "non-dimensional," we should only plot with iterated value 
%so that the space between discrete points in the norm det curve are 
%equidistant in computational space. 
 
%second note, we are ignoring the constant because it is forced to be 
%almost one everytime.  So the order+1 constant is this constant. 
%in order words if the order were 5, the actual form matlab produces is: 
%c_1 x^5 + c_2 x^4 + c_3 x^3 + c_4 x^2 + c_5 x + x_6 
 
scale = 1:1:num_scale; 
contrast = 1:1:num_contrast; 
 
%set a 
 
%fit polys 
for i = 5:9 
    a = toc; 
    %create the output directory 
    out_dir = ['./Experiment 4/Poly_',num2str(i),'/set_a/']; 
     
    for k = 1:num_images 
        norm_det = load([in_dir,file_names_a(k,:)]); 
               
        %poly nomical coefficients 
        p = make_fit(scale,norm_det,i,num_contrast); 
         
        %now we need to write them to file: 
        output = fopen([out_dir,file_names_a(k,1:end-4),'.csv'],'w'); 
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        for n = 1:i 
            for m = 1:num_contrast 
                fprintf(output,'%e,',p(n,m)); 
            end 
            fprintf(output,'\n'); 
        end 
        fclose(output); 
    end 
     
     
    b = toc; 
    fprintf('Finished fitting all %d images for order %d in %f seconds\n'... 
        ,num_images,i,b-a); 
end %outter polyfit loop 
 
fprintf('Finished set a\n'); 
 
%set b 
in_dir = './Raw Norm Det/Process_b/'; 
for i = 5:9 
    a = toc; 
    %create the output directory 
    out_dir = ['./Experiment 4/Poly_',num2str(i),'/set_b/']; 
     
    for k = 1:num_images 
        norm_det = load([in_dir,file_names_a(k,:)]); 
               
        %poly nomical coefficients 
        p = make_fit(scale,norm_det,i,num_contrast); 
         
        %now we need to write them to file: 
        output = fopen([out_dir,file_names_a(k,1:end-4),'.csv'],'w'); 
        for n = 1:i 
            for m = 1:num_contrast 
                fprintf(output,'%e,',p(n,m)); 
            end 
            fprintf(output,'\n'); 
        end 
        fclose(output); 
    end 
     
     
    b = toc; 
    fprintf('Finished fitting all %d images for order %d in %f seconds\n'... 
        ,num_images,i,b-a); 
end %outter polyfit loop 
fprintf('Finished set b\n'); 

toc; 

 

%Dissertation Experiment 4, this half of the program will analyze the data 
%sets by performing the standard comparisons with the data values preset in 
%the disseration.  The order which provides the highest order will then be 
%selected. 
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tic; 
 
clear; 
close all; 
clc; 
 
%from experiment1 
num_contrast = 10; 
num_scale = 50; 
 
nu = 0.75; 
tol = 0.25; 
 
for i = 5:9 
    a = toc; 
    %create the output directory 
    in_dir_a = ['./Experiment 4/Poly_',num2str(i),'/set_a/']; 
    in_dir_b = ['./Experiment 4/Poly_',num2str(i),'/set_b/']; 
     
    %get the file list: 
    [file_names_a, num_images] = linux_list(in_dir_a); 
    [file_names_b, num_images] = linux_list(in_dir_b); 
     
    %setup the output file 
    outfile = ['./Experiment 4/Poly_',num2str(i),'_Results.csv']; 
     
    %preload the database: 
    for k = 1:num_images 
        data_b(k,:,:) = load([in_dir_a,file_names_a(k,:)]); 
    end 
     
    %open the output file for writing 
    file = fopen(outfile,'w'); 
    for k = 1:num_images 
        %load the coefficient data: 
        data_a = load([in_dir_a,file_names_a(k,:)]); 
         
        %as always, b is the "database" and a's are the test images. 
        %let the comparisons begin 
         
        num_matches = 0; 
        [M N] = size (data_a); %I could predict it knowing the value of i 
        for j = 1:num_images %run a against all b 
            match_count = 0; 
            for m = 1:M 
                for n = 1:N 
                    temp = abs((data_a(m,n) - data_b(j,m,n)) / data_a(m,n)); 
                    if temp <= tol 
                        match_count = match_count + 1; 
                    end 
                end 
            end 
             
            %is image b(k) predicted to match the test image, a? 
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            if match_count >= nu*M*N %yes 
                %increment the counter of possible matches 
                num_matches = num_matches + 1; 
                %add the name to the list of possible match file names 
                file_list_2(num_matches,:) = file_names_b(k,1:12); 
            end 
             
        end %loop to run a image against database 
         
        %do we only have 2 predicted matches, and are they correct? 
        %write out the result 
         
        test_image = file_names_a(k,1:12); 
        if num_matches == 2 %possible correct match 
            %check to make sure it's only matched to itself 
              if ( (strcmp(test_image,file_list_2(1,:)) == 1)... 
                    && (strcmp(test_image,file_list_2(2,:)) == 1) ) 
                %success 
                fprintf(file,'%s,%d\n',file_names_a(k,1:15),1); 
              else 
                  fprintf(file,'%s,%d\n',file_names_a(k,1:15),0); 
              end 
             
        else %total failure 
            fprintf(file,'%s,%d\n',file_names_a(k,1:15),0); 
        end 
         
    end %loop over all a images 
     
    %close this output file and prep for the next order of polynomial 
    fclose(file); 
    clear data_b; 
end %outter loop 
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Experiment 5 Source Codes 

      (Optimal values of coefficient match rate and allowable percent difference for direct normalized determinant, 

and curve fitting methods)  

 

%Dissertation Experiment 5., this half of the program will be used with the 
%raw normalized determinant data.  The second half will be used with teh 
%curve fit data.  Note that the second half will be almost a direct copy of 
%the source used during experiment 4. 
 
tic; 
 
clear; 
close all; 
clc; 
 
%from experiment1 
num_contrast = 10; 
num_scale = 50; 
 
%nu_array = [0.75:0.01:0.85 .90 .95 1]; 
%i_max = length(nu_array); 
mu_array = [0.1 0.15 0.2:0.01:0.3 0.35]; 
i_max = length(mu_array); 
%tol = 0.25; 
 
%create the output directory 
in_dir_a = './Raw Norm Det/Process_a/'; 
in_dir_b = './Raw Norm Det/Process_b/'; 
 
%get the file list: 
[file_names_a, num_images] = linux_list(in_dir_a); 
[file_names_b, num_images] = linux_list(in_dir_b); 
 
%preload the database: 
for k = 1:num_images 
    data_b(k,:,:) = load([in_dir_a,file_names_a(k,:)]); 
end 
 
%note this program can be used to find both NU and MU.  Simply swap the 
%comments around as needed. 
 
for i = 1:i_max 
    a = toc; 
    %nu = nu_array(i); 
     
    %from first part of experiment, mu = 0.8 is best 
    nu = 0.8; 
    tol = mu_array(i); 
     
    %setup the output file 
    %done fine mu 
    %outfile = ['./Experiment 5/No_Pre/Find_NU_Case_',num2str(i),'.csv']; 
    outfile = ['./Experiment 5/No_Pre/Find_MU_Case_',num2str(i),'.csv']; 
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    %open the output file for writing 
    file = fopen(outfile,'w'); 
    for k = 1:num_images 
        %load the coefficient data: 
        data_a = load([in_dir_a,file_names_a(k,:)]); 
         
        %as always, b is the "database" and a's are the test images. 
        %let the comparisons begin 
         
        num_matches = 0; 
        [M N] = size (data_a); %I could predict it knowing the value of i 
        for j = 1:num_images %run a against all b 
            match_count = 0; 
            for m = 1:M 
                for n = 1:N 
                    temp = abs((data_a(m,n) - data_b(j,m,n)) / data_a(m,n)); 
                    if temp <= tol 
                        match_count = match_count + 1; 
                    end 
                end 
            end 
             
            %is image b(k) predicted to match the test image, a? 
            if match_count >= nu*M*N %yes 
                %increment the counter of possible matches 
                num_matches = num_matches + 1; 
                %add the name to the list of possible match file names 
                file_list_2(num_matches,:) = file_names_b(k,1:12); 
            end 
             
        end %loop to run a image against database 
         
        %do we only have 2 predicted matches, and are they correct? 
        %write out the result 
         
        test_image = file_names_a(k,1:12); 
        if num_matches == 2 %possible correct match 
            %check to make sure it's only matched to itself 
            if ( (strcmp(test_image,file_list_2(1,:)) == 1)... 
                    && (strcmp(test_image,file_list_2(2,:)) == 1) ) 
                %success 
                fprintf(file,'%s,%d\n',file_names_a(k,1:15),1); 
            else 
                fprintf(file,'%s,%d\n',file_names_a(k,1:15),0); 
            end 
             
        else %total failure 
            fprintf(file,'%s,%d\n',file_names_a(k,1:15),0); 
        end 
         
    end %loop over all a images 
     
    %close this output file and prep for the next order of polynomial 



172 

 

    fclose(file); 
    %clear data_b; 
    b = toc; 
    fprintf('Finished all %d images for case %d in %f seconds\n',... 
        num_images, i, b-a); 
end %outter loop 

 

%Dissertation Experiment 5., this half of the program will be used with the 
%curve fit data from exp. 4.   
 
tic; 
 
clear; 
close all; 
clc; 
 
%from experiment1 
num_contrast = 10; 
num_scale = 50; 
 
%nu_array = [0.65 0.7:0.01:0.8 0.85 .90 .95 1]; 
%i_max = length(nu_array); 
mu_array = [0.1 0.15 0.2:0.01:0.3 0.35]; 
i_max = length(mu_array); 
%tol = 0.25; 
 
%create the output directory 
in_dir_a = './Experiment 4/Poly_7/set_a/'; 
in_dir_b = './Experiment 4/Poly_7/set_b/'; 
 
%get the file list: 
[file_names_a, num_images] = linux_list(in_dir_a); 
[file_names_b, num_images] = linux_list(in_dir_b); 
 
%preload the database: 
for k = 1:num_images 
    data_b(k,:,:) = load([in_dir_a,file_names_a(k,:)]); 
end 
 
%note this program can be used to find both NU and MU.  Simply swap the 
%comments around as needed. 
 
for i = 1:i_max 
    a = toc; 
    %nu = nu_array(i); 
     
    %from first part of experiment, nu = 0.75 is best 
    nu = 0.75; 
    tol = mu_array(i); 
     
    %setup the output file 
    %done fine mu 
    %outfile = ['./Experiment 5/Curves/Find_NU_Case_',num2str(i),'.csv']; 
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    outfile = ['./Experiment 5/Curves/Find_MU_Case_',num2str(i),'.csv']; 
     
    
    %open the output file for writing 
    file = fopen(outfile,'w'); 
    for k = 1:num_images 
        %load the coefficient data: 
        data_a = load([in_dir_a,file_names_a(k,:)]); 
         
        %as always, b is the "database" and a's are the test images. 
        %let the comparisons begin 
         
        num_matches = 0; 
        [M N] = size (data_a); %I could predict it knowing the value of i 
        for j = 1:num_images %run a against all b 
            match_count = 0; 
            for m = 1:M 
                for n = 1:N 
                    temp = abs((data_a(m,n) - data_b(j,m,n)) / data_a(m,n)); 
                    if temp <= tol 
                        match_count = match_count + 1; 
                    end 
                end 
            end 
             
            %is image b(k) predicted to match the test image, a? 
            if match_count >= nu*M*N %yes 
                %increment the counter of possible matches 
                num_matches = num_matches + 1; 
                %add the name to the list of possible match file names 
                file_list_2(num_matches,:) = file_names_b(k,1:12); 
            end 
             
        end %loop to run a image against database 
         
        %do we only have 2 predicted matches, and are they correct? 
        %write out the result 
         
        test_image = file_names_a(k,1:12); 
        if num_matches == 2 %possible correct match 
            %check to make sure it's only matched to itself 
            if ( (strcmp(test_image,file_list_2(1,:)) == 1)... 
                    && (strcmp(test_image,file_list_2(2,:)) == 1) ) 
                %success 
                fprintf(file,'%s,%d\n',file_names_a(k,1:15),1); 
            else 
                fprintf(file,'%s,%d\n',file_names_a(k,1:15),0); 
            end 
             
        else %total failure 
            fprintf(file,'%s,%d\n',file_names_a(k,1:15),0); 
        end 
         
    end %loop over all a images 
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    %close this output file and prep for the next order of polynomial 
    fclose(file); 
    %clear data_b; 
    b = toc; 
    fprintf('Finished all %d images for case %d in %f seconds\n',... 
        num_images, i, b-a); 
end %outter loop
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Appendix C: Ancillary and Support Function Source Codes 
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Random Walk Function  
 

function [alpha_1, alpha_2, beta, scale] = outlined_RW(image, scale) 
 
 
%clc 
%Here, alpha_ww, alpha_bb, and beta are the probability counters created 
%during the random walk proces.  The image is assumed to be an actual 
%image. 
 
num_iter = 100000; 
%j = 1; 
 
%--been screwing around with this: 6/17/2008 NJH 
%scale = 0:.25:20; 
alpha_1 = 0; 
alpha_2 = 0; 
beta = 0; 
 
%home_dir = pwd(); 
%work_dir = 'C:\Documents and Settings\Nick\My Documents\Nick''s\Stiller\Shape 

Experiments\Opposed Cosine'; 
%cd(work_dir); 
 
%image = imread('image_3.tiff'); 
% 
% try 
% image = rgb2gray(image); 
%figure 
%imshow(image) 
% catch 
%     fprintf('Image already grayscale \n'); 
% end 
image = double(image)./255; 
%  
% %--------remove this code once we get a good preprocessor--------------- 
% image = round(image);  %incidentally, this completely defeats the outlining 
 
 
%imshow(image) 
%pause() 
[y_stop x_stop] = size(image); 
 
%Q = scale; 
 
if scale > (y_stop)/2 || scale > (x_stop/2) 
    fprintf('Warning, largest scale greater than image allows, resetting\n'); 
    scale = max([y_stop,x_stop])/2; 
end 
 
 
%now we find the probabilities 
 
% for i=1:length(scale) 
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j = 1; 
while (j < num_iter+1) 
    center_y = rand()*(y_stop-1)+1; %pick our center, now a floating point 
    center_x = rand()*(x_stop-1)+1; %pick our center, now a floating point 
    theta = rand()*pi; %pick our angle 
    x_fore = round(scale*cos(theta) + center_x); %has to become interger now I guess, 

doesn't make sense otherwise 
    x_back = round(center_x - scale*cos(theta)); 
 
    y_fore = round(scale*sin(theta) + center_y); 
    y_back = round(center_y - scale*sin(theta)); 
 
    %check to makre sure the chosen points are valid 
    if (x_fore > x_stop) || (y_fore > y_stop) || (x_back < 1) || (y_back < 1) 
        %ignore this step and repeat it: 
        j = j-1; 
    elseif (x_back > x_stop) || (y_back > y_stop) || (x_fore < 1) || (y_fore < 1) 
        %ignore this step and repeat it: 
        j = j-1; 
    else 
        point_1 = image(y_fore,x_fore); 
        point_2 = image(y_back,x_back); 
 
        if point_1 == 0 && point_2 == 0 
            alpha_1 = alpha_1+1; 
        elseif point_1 == 1 && point_2 == 1 
            alpha_2 = alpha_2+1; 
        elseif (point_1 == 1 && point_2 == 0) || (point_2 == 1 && point_1 == 0) 
            beta = beta+1; 
        else 
            %ignore this step because we picked up the gray area 
            j = j-1; 
        end 
    end 
 
    j = j+1; 
end 
%end 
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Faces Read and Write Utility Functions 

 

function varargout = Faces_Read(varargin) 
 
%------------------------------------------------------------------------- 
%Faces Analysis Program File Read Function                                 
%Nicholas Hansford 11-10-2008                                              
%           Inputs  (Listed in order)                                      
%           filePath   Path to output the file in                          
%           fileName   Name of output file                                 
%           Ouputs                                                         
%           data       data table to read from file                  
%           imGlobal   image path (global reference on creation computer)  
%           success    0 for sucess, 1 for failure                         
%------------------------------------------------------------------------- 
% 
% 
%     Function Protoype: 
%     [data imGlobal success] = Faces_Read(filePath, fileName) 
 
% initialize success: 
success = 0; %assume it worked, change for failure 
data = -1; 
imGlobal = []; 
if nargin ~= 2 
    fprintf('Error: invalid function call\n'); 
    success = 1; 
    varargout{1} = data; 
    varargout{2} = imGlobal; 
    varargout{3} = success; 
    return; 
else 
    filePath = varargin{1}; 
    fileName = varargin{2}; 
end 
fileGlobal = [filePath,'/',fileName]; 
 
file = fopen(fileGlobal,'r'); 
if file < 0 
    fprintf('Error opening file\n'); 
    success = 1; 
    varargout{1} = data; 
    varargout{2} = imGlobal; 
    varargout{3} = success; 
    return; 
end 
trash = fscanf(file,'%s',[1,3]); 
num_contrast = str2double(fscanf(file,'%s',[1,1])); 
trash = fscanf(file,'%s',[1,3]); 
num_scale = str2double(fscanf(file,'%s',[1,1])); 
 
data = zeros(num_contrast,num_scale); 
for i = 1:num_contrast 
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    for j = 1:num_scale 
        data(i,j) = str2double(fscanf(file,'%s',[1,1])); 
    end 
end 
 
trash = fscanf(file,'%s',[1,2]); 
imGlobal = fscanf(file,'%c'); 
imGlobal(1:2) = [];%had some file trash in 1 and 2 
fclose(file); 
varargout{1} = data; 
varargout{2} = imGlobal; %strange extra character at end??? (sometimes keep an eye on this) 
varargout{3} = success; 

 

 

 

function success = Faces_Write(varargin) 
 
%------------------------------------------------------------------------- 
%Faces Analysis Program File Write Function                                
%Nicholas Hansford 06-06-2009                                              
%           Inputs  (Listed in order)                                      
%           data       data table to write to file                         
%           imPath     image path (global reference on creation computer)  
%           imName     image name on creation computer                     
%           filePath   Path to output the file in                          
%           fileName   Name of output file                                 
%           Ouput                                                          
%           success    0 for sucess, 1 for failure                         
%------------------------------------------------------------------------- 
% 
% 
%     Function Protoype: 
%     success = Faces_Write(data, imPath, imName, filePath, fileName) 
 
 
% initialize success: 
success = 0; %assume it worked, change for failure 
 
if nargin ~= 5 
    fprintf('Error: data call to function wrong\n'); 
    success = 1; 
     
    %terminate 
    return; 
else 
 
    % parse out the inputs 
    data = varargin{1}; 
    imPath = varargin{2}; 
    imName = varargin{3}; 
    filePath = varargin{4}; 
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    fileName = varargin{5}; 
end 
 
[num_con,num_scale]=size(data); 
 
%gather the file information together 
fileGlobal = [filePath,'/',fileName]; 
file = fopen(fileGlobal,'w'); 
if file < 0 
    fprintf('Invalide file name or error opening file\n'); 
    success = 1; 
    return; 
end 
 
fprintf(file,'Number Contrast = %d\n',num_con); 
fprintf(file,'Number Scale = %d\n', num_scale); 
 
for i = 1:num_con 
    for j = 1:num_scale 
        fprintf(file,'%f\t', data(i,j)); 
    end 
    fprintf(file,'\n'); 
end 
 
imGlobal = [imPath,'/',imName]; 
fprintf(file,'Path = \n'); 
fprintf(file,'%s',imGlobal); 
fclose(file); 
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Linux Listing Utility and Curve Fitting Functions 

 

function [file_list, num_file] = linux_list(Directory) 
 
%the input is a Directory contianing the files to be listed in the same 
%format that a Windows list produces.  The outputs at the list of files and 
%the number of files in the directory  
%Syntax: 
%    [file_list, num_file] = linux_list(Directory) 
 
 
 
file_list = ls(Directory, '-m'); 
 
%let's test this to get ride of that damned space: 
file_list = file_list(1:length(file_list)-1); 
 
%initializing this messes with strings later: 
%file_list_2 = []; 
flag_back = 1; 
flag_forward = 1; 
num_file_2 = 0; 
for i = 1:length(file_list) 
    if file_list(i) == ',' 
        num_file_2 = num_file_2 + 1; 
        flag_forward = i; 
        file_list_2(num_file_2,1:(flag_forward-flag_back)) = 
file_list(flag_back:flag_forward-1); 
        flag_back = flag_forward+2; 
    end 
end 
%now we need to catch the end of the string 
%file_list(flag_back:length(file_list)) 
num_file_2 = num_file_2 + 1; 
file_list_2(num_file_2,1:(length(file_list)-flag_back+1)) =... 
    file_list(flag_back:length(file_list)); 
 
%there now we finally got our shit straight for linux, grrr 
[num_file, max_length] = size(file_list_2); 
 
%test to make sure the prase didn't screw something up: 
if (num_file ~= num_file_2) 
    %opps 
    fprintf('ERROR, file parse mistake\n'); 
end 
 
%dump the old file_list 
clear file_list 
 
%create the correct one 
file_list = file_list_2; 
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function p = make_fit(X, norm_det, order, num_contrast) 
%this function will be used during experiment 4 to clean up the body of 
%code and allow the curve fitting order to be in a loop.  Here a library of 
%pre-defined conditions will exist.  Order must be between 5 and 9 for this 
%work and we'll continue to ignore the constant term since it always near 
%one. 
 
p = zeros(order,num_contrast); 
 
if order == 5 
    for i = 1:num_contrast 
        Y = norm_det(i,:); 
        [curve, goodness] = fit(X',Y','poly5'); 
        p(1,i) = curve.p1; 
        p(2,i) = curve.p2; 
        p(3,i) = curve.p3; 
        p(4,i) = curve.p4; 
        p(5,i) = curve.p5; 
    end 
elseif order == 6 
    for i = 1:num_contrast 
        Y = norm_det(i,:); 
        [curve, goodness] = fit(X',Y','poly6'); 
        p(1,i) = curve.p1; 
        p(2,i) = curve.p2; 
        p(3,i) = curve.p3; 
        p(4,i) = curve.p4; 
        p(5,i) = curve.p5; 
        p(6,i) = curve.p6; 
    end 
elseif order == 7 
    for i = 1:num_contrast 
        Y = norm_det(i,:); 
        [curve, goodness] = fit(X',Y','poly7'); 
        p(1,i) = curve.p1; 
        p(2,i) = curve.p2; 
        p(3,i) = curve.p3; 
        p(4,i) = curve.p4; 
        p(5,i) = curve.p5; 
        p(6,i) = curve.p6; 
        p(7,i) = curve.p7; 
    end 
elseif order == 8 
    for i = 1:num_contrast 
        Y = norm_det(i,:); 
        [curve, goodness] = fit(X',Y','poly8'); 
        p(1,i) = curve.p1; 
        p(2,i) = curve.p2; 
        p(3,i) = curve.p3; 
        p(4,i) = curve.p4; 
        p(5,i) = curve.p5; 
        p(6,i) = curve.p6; 
        p(7,i) = curve.p7; 
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        p(8,i) = curve.p8; 
    end 
elseif order == 9 
    for i = 1:num_contrast 
        Y = norm_det(i,:); 
        [curve, goodness] = fit(X',Y','poly9'); 
        p(1,i) = curve.p1; 
        p(2,i) = curve.p2; 
        p(3,i) = curve.p3; 
        p(4,i) = curve.p4; 
        p(5,i) = curve.p5; 
        p(6,i) = curve.p6; 
        p(7,i) = curve.p7; 
        p(8,i) = curve.p8; 
        p(9,i) = curve.p9; 
    end 
     
end



184 

 

 

 

 

 

 

 

 

 

Appendix D: GUI Source Codes  

Note: GUI support functions are not replicated and are available in Appendix C. 
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Main Menu Window 

 

function varargout = Main_Menu(varargin) 
% MAIN_MENU M-file for Main_Menu.fig 
%      MAIN_MENU, by itself, creates a new MAIN_MENU or raises the existing 
%      singleton*. 
% 
%      H = MAIN_MENU returns the handle to a new MAIN_MENU or the handle to 
%      the existing singleton*. 
% 
%      MAIN_MENU('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in MAIN_MENU.M with the given input arguments. 
% 
%      MAIN_MENU('Property','Value',...) creates a new MAIN_MENU or raises the 
%      existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before Main_Menu_OpeningFunction gets called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to Main_Menu_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
 
% Edit the above text to modify the response to help Main_Menu 
 
% Last Modified by GUIDE v2.5 15-Nov-2008 12:58:05 
 
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @Main_Menu_OpeningFcn, ... 
                   'gui_OutputFcn',  @Main_Menu_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
 
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
 
 
% --- Executes just before Main_Menu is made visible. 
function Main_Menu_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to Main_Menu (see VARARGIN) 
 
% Choose default command line output for Main_Menu 
handles.output = hObject; 
 
clc; 
%set up the initial axes 
 
%----------Variable Stucture----------------------------------------------% 
%    base_image                     original image                        % 
%    base_image.path                global path for real image            % 
%                                   local path for start up defaults      % 
%   base_image.name                 name of image in .path                % 
%   base_image.data                 RGB or grayscale values of base image % 
%   image_use.data                  RGB values of the cropped image       % 
%   image_use.distance              1/2 the distance between the eyers    % 
%   data.alpha_1                    alpha1 counter                        % 
%   data.alpha_2                    alpha2 counter                        % 
%   data.beta                       beta counter                          % 
%   data.scale                      scale matrix                          % 
%   data.norm_det                   normalized determinant                % 
 
handles.base_image.path = './Images/'; 
handles.base_image.name = 'default_image.jpg'; 
handles.base_image.data = imread([handles.base_image.path...  
    handles.base_image.name]); 
 
axes(handles.axes1); 
imshow(handles.base_image.data); 
 
axes(handles.axes2); 
imshow(handles.base_image.data); 
 
handles.distance = 0; 
% Update handles structure 
guidata(hObject, handles); 
 
% UIWAIT makes Main_Menu wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
 
 
% --- Outputs from this function are returned to the command line. 
function varargout = Main_Menu_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Get default command line output from handles structure 
varargout{1} = handles.output; 
 
 
 
function edit1_Callback(hObject, eventdata, handles) 
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% hObject    handle to edit1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of edit1 as text 
%        str2double(get(hObject,'String')) returns contents of edit1 as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function edit1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
 
 
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
[filename,pathname,index]=uigetfile({'*.jpg;*.tif;*.png;*.gif','All Image Files';'*.*',... 
    'All Files' },'Please Select a File','MultiSelect','Off'); 
 
if index == 0 
    set(handles.edit1,'string','Error, try again'); 
else 
    location = [pathname, filename]; 
    try image = imread(location); 
        axes(handles.axes1) 
        image = imread(location); 
        imshow(image); %update the figure 
        %handles.valid_image = 0; 
        set(handles.edit1,'string',filename); 
    catch 
        %error opening the image 
        axes(handles.axes1) 
        pathname = 'Images/'; 
        filename = 'error_image.jpg'; 
        location = [pathname, filename]; 
        image = imread(location); 
        imshow(image); 
        handles.valid_image = 1; 
    end 
     
    handles.base_image.path = pathname; 
    handles.base_image.name = filename; 
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    handles.base_image.data = image; 
    % update the GUI data handle 
    guidata(hObject, handles); 
end 
 
 
guidata(hObject, handles); 
 
 
 
% --- Executes on button press in pushbutton2. 
function pushbutton2_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
axes(handles.axes1); 
zoom; 
 
 
% --- Executes on button press in pushbutton3. 
function pushbutton3_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
axes(handles.axes1); 
pan; 
 
 
 
 
% --- Executes on button press in pushbutton4. 
function pushbutton4_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
[handles.image_use.data, handles.image_use.distance] = ... 
    Pre_Process(handles.base_image.data); 
 
%display(handles.distance) 
%upon assumed successful completion, turn on the save image button 
set(handles.pushbutton6,'Enable','on'); 
set(handles.pushbutton7,'Enable','on'); 
 
axes(handles.axes2) 
imshow(handles.image_use.data); 
guidata(hObject, handles); 
 
 
 
 
% --- Executes on button press in pushbutton6. 
function pushbutton6_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton6 (see GCBO) 
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% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
try handles.image_use(1,1); 
    %ok, it actually exists: 
    [filename,pathname]=uiputfile({'*.tiff','TIFF Image File'}); 
    filename = [pathname,filename]; %,'.tiff'] 
     
    try  
        %imshow (handles.image_use 
        imwrite(handles.image_use.data, filename); 
        %disp(handles.image_use.data); 
    catch 
        fprintf('Error occured during image write, try again\n'); 
    end 
catch 
    fprintf('Error, please pre-process an image first.\n'); 
end 
 
 
 
 
% --- Executes on button press in pushbutton7. 
function pushbutton7_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton7 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
%and call the Process menu, I don't know what the outputs will be just yet: 
[alpha_1, alpha_2, beta, scale, norm_det]=... 
    Process(handles.image_use.data, handles.image_use.distance,... 
    handles.base_image); 
handles.data.alpha_1 = alpha_1; 
handles.data.alpha_2 = alpha_2; 
handles.data.beta = beta; 
handles.data.scale = scale; 
handles.data.norm_det = norm_det; 
handles.base_image.imGlobal = [handles.base_image.path,... 
    handles.base_image.name]; 
 
set(handles.pushbutton11,'Enable','on'); 
guidata(hObject, handles); 
 
 
 
% --- Executes on button press in pushbutton10. 
function pushbutton10_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton10 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
[filename,pathname,index]=uigetfile({'*.txt',... 
    'Face Analysis Data Files';'*.*',... 
    'All Files' },'Please Select a File','MultiSelect','Off'); 
 
try 
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%      
    [data imGlobal test] = Faces_Read(pathname,filename); 
    handles.data.norm_det = data; 
    handles.base_image.imGlobal = imGlobal; 
     
    set(handles.pushbutton11,'Enable','on'); 
         
     
catch 
    fprintf('Error opening file, setting all values to NULL'); 
    contrast_temp = -1; 
    scale_temp = -1; 
    alpha_1_temp = -1; 
    alpha_2_temp = -1; 
    beta_temp = -1; 
    norm_det = -1; 
end 
     
guidata(hObject, handles); 
 
% --- Executes on button press in pushbutton11. 
function pushbutton11_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton11 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
data = handles.data.norm_det; 
try 
    base_image.data = imread(handles.base_image.imGlobal); 
catch 
    base_image.data = imread('./Images/error_image.jpg'); 
end 
Comparison(data,base_image); 
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Pre-processing Window 

 

function varargout = Pre_Process(varargin) 
% PRE_PROCESS M-file for Pre_Process.fig 
%      PRE_PROCESS, by itself, creates a new PRE_PROCESS or raises the existing 
%      singleton*. 
% 
%      H = PRE_PROCESS returns the handle to a new PRE_PROCESS or the handle to 
%      the existing singleton*. 
% 
%      PRE_PROCESS('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in PRE_PROCESS.M with the given input arguments. 
% 
%      PRE_PROCESS('Property','Value',...) creates a new PRE_PROCESS or raises the 
%      existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before Pre_Process_OpeningFunction gets called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to Pre_Process_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
 
% Edit the above text to modify the response to help Pre_Process 
 
% Last Modified by GUIDE v2.5 24-Jun-2008 22:00:35 
 
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @Pre_Process_OpeningFcn, ... 
                   'gui_OutputFcn',  @Pre_Process_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
 
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
 
 
% --- Executes just before Pre_Process is made visible. 
function Pre_Process_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to Pre_Process (see VARARGIN) 
 
% Choose default command line output for Pre_Process 
handles.output = hObject; 
 
%gather the inputs: 
%varargin{1}; 
axes(handles.axes1); 
imshow(varargin{1}); 
 
handles.image = varargin{1}; 
handles.distance = 0; 
% disp(handles.image); 
 
handles.propper_select = 0; 
 
% Update handles structure 
guidata(hObject, handles); 
 
% UIWAIT makes Pre_Process wait for user response (see UIRESUME) 
%turn this on so it doesn't output immediately the outputs 
uiwait(handles.figure1); 
 
 
% --- Outputs from this function are returned to the command line. 
function varargout = Pre_Process_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Get default command line output from handles structure 
varargout{1} = handles.image_out; 
varargout{2} = handles.distance; 
%this is where the outputs go: 
 
delete(hObject); 
 
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
axes(handles.axes1); 
zoom; 
 
% --- Executes on button press in pushbutton2. 
function pushbutton2_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
axes(handles.axes1); 
pan 
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% --- Executes on button press in pushbutton3. 
function pushbutton3_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
axes(handles.axes1); 
datacursormode on; 
 
% if handles.propper_select > 0 
%     handles.propper_select = handles.propper_select-1; 
% end %already not set: 
 
% Update handles structure 
guidata(hObject, handles); 
 
% --- Executes on button press in pushbutton4. 
function pushbutton4_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
 
function edit1_Callback(hObject, eventdata, handles) 
% hObject    handle to edit1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of edit1 as text 
%        str2double(get(hObject,'String')) returns contents of edit1 as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function edit1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
 
function edit2_Callback(hObject, eventdata, handles) 
% hObject    handle to edit2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of edit2 as text 
%        str2double(get(hObject,'String')) returns contents of edit2 as a double 
 
 



194 

 

% --- Executes during object creation, after setting all properties. 
function edit2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
 
function edit3_Callback(hObject, eventdata, handles) 
% hObject    handle to edit3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of edit3 as text 
%        str2double(get(hObject,'String')) returns contents of edit3 as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function edit3_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
 
function edit4_Callback(hObject, eventdata, handles) 
% hObject    handle to edit4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of edit4 as text 
%        str2double(get(hObject,'String')) returns contents of edit4 as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function edit4_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
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    set(hObject,'BackgroundColor','white'); 
end 
 
 
 
 
% --- Executes on button press in pushbutton5. 
function pushbutton5_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton5 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
close; 
 
 
% --- Executes when user attempts to close figure1. 
function figure1_CloseRequestFcn(hObject, eventdata, handles) 
% hObject    handle to figure1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
handles.image_out = handles.image; 
guidata(hObject, handles); 
uiresume; 
% Hint: delete(hObject) closes the figure 
%delete(hObject); 
 
 
 
 
% --- Executes on button press in pushbutton6. 
function pushbutton6_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton6 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
%figure_handle = get(handles.axes1) 
axes(handles.axes1); 
dummy = gcf; 
dcm_object = datacursormode(dummy); 
dcm_data = getCursorInfo(dcm_object); 
 
%[Top_Left_X, Top_Left_Y] = dcm_data.Position 
Top_Left_X = dcm_data.Position(1); 
Top_Left_Y = dcm_data.Position(2); 
 
set(handles.edit3,'String',num2str(Top_Left_X)); 
set(handles.edit4,'String',num2str(Top_Left_Y)); 
 
handles.Top_Left_X=Top_Left_X; 
handles.Top_Left_Y=Top_Left_Y; 
%handles.axes1.datacursormode 
%pos = get(handles.axes1.datacursormode,'Position') 
datacursormode off; 
 
% if handles.propper_select > 0 && handles.propper_select < 2 
%     handles.proper_select = handles.propper_select + 1; 
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% end 
%and finally, update the guidata 
guidata(hObject, handles); 
 
 
% --- Executes on button press in pushbutton7. 
function pushbutton7_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton7 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
axes(handles.axes1); 
datacursormode on; 
%  
% if handles.propper_select >= 0 
%     handles.propper_select = handles.propper_select-1; 
% end %already not set: 
 
% Update handles structure 
guidata(hObject, handles); 
% --- Executes on button press in pushbutton8. 
function pushbutton8_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton8 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
axes(handles.axes1); 
dummy = gcf; 
dcm_object = datacursormode(dummy); 
dcm_data = getCursorInfo(dcm_object); 
 
%[Top_Left_X, Top_Left_Y] = dcm_data.Position 
Bot_Right_X = dcm_data.Position(1); 
Bot_Right_Y = dcm_data.Position(2); 
 
set(handles.edit1,'String',num2str(Bot_Right_X)); 
set(handles.edit2,'String',num2str(Bot_Right_Y)); 
 
handles.Bot_Right_X=Bot_Right_X; 
handles.Bot_Right_Y=Bot_Right_Y; 
%handles.axes1.datacursormode 
%pos = get(handles.axes1.datacursormode,'Position') 
datacursormode off; 
 
%let's see if we can User proof this a little 
% if handles.propper_select >= 0 && handles.propper_select < 2 
%     handles.proper_select = handles.propper_select + 1; 
% end 
%and finally, update the guidata 
guidata(hObject, handles); 
 
 
 
 
% --- Executes on button press in pushbutton9. 
function pushbutton9_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton9 (see GCBO) 
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% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
%preview button 
 
handles.propper_select = 0; 
warn = 0; 
 
try X1 = handles.Top_Left_X; 
    handles.propper_select = handles.propper_select+1; 
catch 
    warn = 1; 
end 
 
try X2 = handles.Bot_Right_X; 
    handles.propper_select = handles.propper_select+1; 
catch 
    warn = 1; 
end     
if handles.propper_select == 2 %ok to open 
    X1 = handles.Top_Left_X; 
    X2 = handles.Bot_Right_X; 
    Y1 = handles.Top_Left_Y; 
    Y2 = handles.Bot_Right_Y; 
     
    image_temp = elipse_creator(X1, X2,Y1, Y2, handles.image); 
%     %axes(handles.axes2); 
    Image_Preview(image_temp); 
    % do what is neccessary to invoke the elipse_creator.m 
 
end 
 
guidata(hObject, handles); 
 
 
% --- Executes on button press in pushbutton10. 
function pushbutton10_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton10 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
%save and close button 
 
handles.propper_select = 0; 
warn = 0; 
 
try X1 = handles.Top_Left_X; 
    handles.propper_select = handles.propper_select+1; 
catch 
    warn = 1; 
end 
 
try X2 = handles.Bot_Right_X; 
    handles.propper_select = handles.propper_select+1; 
catch 
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    warn = 1; 
end     
if handles.propper_select == 2 %ok to open 
    X1 = handles.Top_Left_X; 
    X2 = handles.Bot_Right_X; 
    Y1 = handles.Top_Left_Y; 
    Y2 = handles.Bot_Right_Y; 
     
    %calculate the distance between eyes for scale scaling... 
    distance = sqrt( (X2-X1)^2 + (Y2-Y1)^2 ); 
    handles.distance = distance; 
    image_temp = elipse_creator(X1, X2,Y1, Y2, handles.image); 
    handles.image_out = image_temp; 
else 
    disp('Improper Data Selection') 
    %I don't really know if this is necessary: 
    handles.image_out = imread('./Images/error_return.jpg'); 
end 
 
guidata(hObject, handles); 
uiresume; 
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Pre-processing Window Support Functions 

     (ellipse creator and image preview window) 

function image_use_small_save = elipse_creator(X1,X2,Y1,Y2,image) 
 
% function to create an elipse in an image file at the using the x,y pairs 
% corrisponding to the center of the two eyes. 
 
% start by copying the input image to the useput image: 
 
%first check to make sure that iamge is RGB, if not, convert back 
 
%-----used during beta----- 
% clear all; 
% close all; 
% clc; 
% image = imread('Images/image0019.tif'); 
% X1 = 178; 
% Y1 = 360; 
% X2 = 305; 
% Y2 = 362; 
 
Q = length(size(image)); 
 
dimensions = size(image); 
 
image_use = uint8(255*ones(dimensions(1),dimensions(2),3)); 
 
if Q == 3 %rgb image, nothing is neccessary 
    image_use = image; 
else %assume it is actually an image file... 
    image_use(:,:,1) = image; 
    image_use(:,:,2) = image; 
    image_use(:,:,3) = image; 
end 
 
%imshow(image_use) 
%ok, now to place the line 
%slope  
m = (Y2 - Y1) / (X2 - X1); 
 
%and the intercept: 
intcpt = -m*X1 + Y1;  
 
 
%now lets get the line in the image 
 
% for i = X1:X2 
%     x = i; 
%     y = round(m*x + intcpt); 
%      
%     image_use(y,x,1) = 0; 
%     image_use(y,x,2) = 255; 
%     image_use(y,x,3) = 0; 



200 

 

% end 
 
%and find the half_length of the line 
 
pupil_bridge = 0.5*sqrt( (Y2 - Y1)^2 + (X2 - X1)^2 ); 
 
%find the center of the ellipse (h,k) 
theta = asin( ( Y2 - Y1) / pupil_bridge); 
 
delta = pupil_bridge * cos(theta); 
nu = pupil_bridge * sin(theta); 
 
%-----Place the Eye as the center and work from that-----% 
% h = round(X2 - nu); 
% k = round(Y2 + delta); 
h = round(X2); 
k = round(Y2); 
 
% image_use(k,h,1) = 0; 
% image_use(k,h,2) = 255; 
% image_use(k,h,3) = 0; 
 
%gather all the X-based X,Y pairs 
 
%gather and sort all integers including X2 and h 
 
% figure 
% imshow(image_use) 
 
%semi_Major  
semi_Major = 1.5 * pupil_bridge; 
%semi_Minor take from using the bridge-eye distance as the semi-latus rectum  
%semi_Minor = sqrt( 2*pupil_bridge^2); 
semi_Minor = pupil_bridge; 
%mark a box around the ellipse area 
%I'll use a rotation matrix later to rotate the ellipse by theta, lets just 
%get the thing in there first! 
 
a = semi_Major; 
b = semi_Minor; 
%------First Quadrant-------% 
%note that these values have not been adjusted for the rotation yet, I 
%intend to that last 
x = h:1:round(h+b); 
y_up = (k + sqrt(a^2*(1 - (x - h).^2 / b^2))); 
 
y = k:1:round(k+a); 
x_up = (h + sqrt(b^2*(1 - (y - k).^2 / a^2))); 
 
x_use_first_quad = sort([x x_up]); 
y_use_first_quad = sort([y y_up], 'descend'); 
 
%------Second Quadrant-------% 
%note that these values have not been adjusted for the rotation yet, I 
%intend to that last 
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y_use_sec_quad = y_use_first_quad; 
x_use_sec_quad = 2*h - x_use_first_quad; 
 
%------Third Quadrant-------% 
%note that these values have not been adjusted for the rotation yet, I 
%intend to that last 
y_use_third_quad = 2*k - y_use_first_quad; 
x_use_third_quad = 2*h - x_use_first_quad; 
 
%------Fourth Quadrant-------% 
%note that these values have not been adjusted for the rotation yet, I 
%intend to that last 
y_use_fourth_quad = 2*k - y_use_first_quad; 
x_use_fourth_quad = x_use_first_quad; 
 
%just as a proof of concept for the ellipse 
% figure 
% plot(x_use_sec_quad,y_use_sec_quad,x_use_first_quad,y_use_first_quad,... 
%     x_use_third_quad,y_use_third_quad,x_use_fourth_quad,y_use_fourth_quad) 
 
%------now put it all back togeter-------% 
clear x y; 
x = [x_use_first_quad x_use_sec_quad x_use_third_quad x_use_fourth_quad]; 
y = [y_use_first_quad y_use_sec_quad y_use_third_quad y_use_fourth_quad]; 
 
 
%Perform the rotations here... 
%ok first move the center of the elipse to the origin or rotation 
x = x - h; 
y = y - k; 
 
%and rotate that stuff: 
x_use_temp = cos(theta)*x - sin(theta)*y; 
y_use_temp = sin(theta)*x + cos(theta)*y; 
 
x = x_use_temp+ h; 
y = y_use_temp + k; 
 
x_int = round(real(x)); 
y_int = round(real(y)); 
 
x_mod_up = []; %might be used to add to the x arrary 
y_mod_up = []; %might be used to add to the y array 
x_mod_dn = []; 
y_mod_dn = []; 
num_mod = 0; %number of additional pixels to be masked out 
 
%-----Check to make sure it is continuous-----% 
for i = 1:length(y_int)-1 
    %see which one changed: 
    diff = abs(y_int(i) -  y_int(i+1)); 
    if diff > 1 && diff < 10  
        %y grew by more than, meaning it opened up a hole         
        %fill in that number of ys 
        for j = 1:diff 
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            num_mod = num_mod + 1; 
            %average the x pixels together neeed here 
            x_mod_up(num_mod) = (x_int(i) + x_int(i+1)) / 2; 
            y_mod_up(num_mod) = y_int(i) + j; 
             
            x_mod_dn(num_mod) = (x_int(i) + x_int(i+1)) / 2; 
            y_mod_dn(num_mod) = y_int(i) - j; 
        end 
    end 
end 
 
x = [x x_mod_up x_mod_dn]; %add in the new pixels 
y = [y y_mod_up y_mod_dn]; 
 
x_int = round(real(x)); 
y_int = round(real(y)); 
%-----mark the ellipse in the image for beta testing-----% 
for i = 1:length(x) % they're all the same anyway 
     
    %let's make some color 
    image_use(y_int(i),x_int(i),1) = 0; 
    image_use(y_int(i),x_int(i),2) = 255; 
    image_use(y_int(i),x_int(i),3) = 0; 
     
end 
 
 
% figure 
% imshow(image_use) 
 
%and now strip the ellipse out of the image: 
 
X_min = round(min(x));% - 10; %just to be safe: 
X_max = round(max(x));% + 10; 
Y_min = round(min(y));% - 10; 
Y_max = round(max(y));% + 10; 
 
image_use_small = image_use(Y_min:Y_max, X_min:X_max,:); 
image_use_small_save = image_use(Y_min:Y_max, X_min:X_max,:); 
 
%-----March around image and make sure we have a complete ellipse-----% 
 
% y_start = round(y(1)); 
% x_start = round(x(1)); 
%  
% is_green = 0; %assume the pixel is green 
% stop = 0; %finishes when all pixels have been checked: 
%  
% while stop == 0 
     
 
%----Mask out what I don't want to use:-----% 
 
%left side 
stop = 0; 
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small_dimensions = size(image_use_small); 
for i = 1:small_dimensions(1) %march over all Ys 
     
    stop = 0; 
    j = 1; 
    while stop == 0 
        if (image_use_small(i,j,1) == 0 && image_use_small(i,j,3) == 0 ... 
                && image_use_small(i,j,2) == 255) %found a grean pixel 
            stop = 1; %break the loop 
        else 
            %mask the pixel 
            image_use_small_save(i,j,1) = 0; 
            image_use_small_save(i,j,2) = 255; 
            image_use_small_save(i,j,3) = 0; 
            j = j + 1; 
        end 
    end 
end 
 
%right side 
stop = 0; 
small_dimensions = size(image_use_small); 
for i = 1:small_dimensions(1) %march over all Ys 
     
    stop = 0; 
    j = small_dimensions(2); 
    while stop == 0 
        if (image_use_small(i,j,1) == 0 && image_use_small(i,j,3) == 0 ... 
                && image_use_small(i,j,2) == 255) %found a grean pixel 
            stop = 1; %break the loop 
        else 
            %mask the pixel 
            image_use_small_save(i,j,1) = 0; 
            image_use_small_save(i,j,2) = 255; 
            image_use_small_save(i,j,3) = 0; 
            j = j - 1; 
        end 
    end 
end 

 

 

function varargout = Image_Preview(varargin) 
% IMAGE_PREVIEW M-file for Image_Preview.fig 
%      IMAGE_PREVIEW, by itself, creates a new IMAGE_PREVIEW or raises the existing 
%      singleton*. 
% 
%      H = IMAGE_PREVIEW returns the handle to a new IMAGE_PREVIEW or the handle to 
%      the existing singleton*. 
% 
%      IMAGE_PREVIEW('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in IMAGE_PREVIEW.M with the given input arguments. 
% 
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%      IMAGE_PREVIEW('Property','Value',...) creates a new IMAGE_PREVIEW or raises the 
%      existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before Image_Preview_OpeningFunction gets called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to Image_Preview_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
 
% Edit the above text to modify the response to help Image_Preview 
 
% Last Modified by GUIDE v2.5 24-Jun-2008 21:50:22 
 
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @Image_Preview_OpeningFcn, ... 
                   'gui_OutputFcn',  @Image_Preview_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
 
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
 
 
% --- Executes just before Image_Preview is made visible. 
function Image_Preview_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to Image_Preview (see VARARGIN) 
% Choose default command line output for Pre_Process 
handles.output = hObject; 
 
%gather the inputs: 
varargin{1}; 
axes(handles.axes1); 
imshow(varargin{1}); 
 
handles.image = varargin{1}; 
% disp(handles.image); 
 
handles.propper_select = 0; 
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% Update handles structure 
guidata(hObject, handles); 
 
% UIWAIT makes Image_Preview wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
 
 
% --- Outputs from this function are returned to the command line. 
function varargout = Image_Preview_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Get default command line output from handles structure 
varargout{1} = handles.output; 
 
 
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
close 
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Processing Window 

 

function varargout = Process(varargin) 
% PROCESS M-file for Process.fig 
%      PROCESS, by itself, creates a new PROCESS or raises the existing 
%      singleton*. 
% 
%      H = PROCESS returns the handle to a new PROCESS or the handle to 
%      the existing singleton*. 
% 
%      PROCESS('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in PROCESS.M with the given input arguments. 
% 
%      PROCESS('Property','Value',...) creates a new PROCESS or raises the 
%      existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before Process_OpeningFunction gets called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to Process_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
 
% Edit the above text to modify the response to help Process 
 
% Last Modified by GUIDE v2.5 13-Sep-2008 11:12:18 
 
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @Process_OpeningFcn, ... 
                   'gui_OutputFcn',  @Process_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
 
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
 
 
% --- Executes just before Process is made visible. 
function Process_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to Process (see VARARGIN) 
 
% Choose default command line output for Process 
handles.output = hObject; 
 
%gather the inputs: 
varargin{1}; 
axes(handles.axes1); 
imshow(varargin{1}); 
 
handles.alpha_1 = -1; 
handles.alpha_2 = -1; 
handles.beta = -1; 
handles.scale = -1; 
handles.norm_det = -1; 
 
handles.image = varargin{1}; 
handles.distance = varargin{2}; 
handles.base_image = varargin{3}; 
 
%disp(handles.base_image) 
% Update handles structure 
guidata(hObject, handles); 
 
% UIWAIT makes Process wait for user response (see UIRESUME) 
uiwait(handles.figure1); 
 
 
% --- Outputs from this function are returned to the command line. 
function varargout = Process_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Get default command line output from handles structure 
%varargout{1} = handles.output; 
varargout{1} = handles.alpha_1; 
varargout{2} = handles.alpha_2; 
varargout{3} = handles.beta; 
varargout{4} = handles.scale; 
varargout{5} = handles.norm_det; 
 
delete(hObject); 
 
 
% --- Executes when user attempts to close figure1. 
function figure1_CloseRequestFcn(hObject, eventdata, handles) 
% hObject    handle to figure1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: delete(hObject) closes the figure 
uiresume; 
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%delete(hObject); 
 
 
 
 
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
%set up the "progress bar" 
 
%for now, let's just define a series of contrasts, we may have to relate 
%these to image properties later: 
 
%-----Predefined contrast levels and scale series-----% 
% Note: scale may change if it over steps the maximum values tolerated by 
% image so a second array will be kept to track these changes 
% contrast = [50 60 70 80 90 100 110 120 127.5 135 145 155 165 175 185 195 205]; 
%let's see if I can come up with a better sceme. 
 
 
%calculate the average 
[Y_stop, X_stop,RGB]=size(handles.image); 
num_pixels = 0; 
pixel_total = 0; 
for i =1:Y_stop 
    for j = 1:X_stop 
        if handles.image(i,j,2) == 255 && handles.image(i,j,1) == 0 && ... 
                handles.image(i,j,3) == 0 
            %don't want to do anything this is a green pixel 
        else 
            num_pixels = num_pixels + 1; 
            pixel_total = pixel_total + double(rgb2gray(handles.image(i,j,:))); 
        end 
    end 
end 
 
average = pixel_total / num_pixels; 
 
%calulate the standard deviation 
stand_dev = 0; 
for i =1:Y_stop 
    for j = 1:X_stop 
        if handles.image(i,j,2) == 255 && handles.image(i,j,1) == 0 && ... 
                handles.image(i,j,3) == 0 
            %don't want to do anything this is a green pixel 
        else 
            stand_dev = stand_dev+(double(rgb2gray(handles.image(i,j,:))... 
                -average))^2; 
        end 
    end 
end 
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stand_dev = sqrt(1/num_pixels*stand_dev); 
 
 
%numbers = [-2.0 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2.0]; 
 
%now 10 numbers from experiment 1 
numbers = linspace(-2.0,2.0,10); 
for i = 1:length(numbers) 
    contrast(i) = average + numbers(i)*stand_dev; 
end 
 
 
for i = 1:length(contrast) 
    if contrast(i) < 0 
        contrast(i) = 0; 
    elseif contrast(i) > 255 
        contrast(i) = 255; 
    end 
end 
%ok, need to non-dimen this: 
 
%display(handles.distance); 
 
%50 scales from experiment 1 
scale = linspace(0,(handles.distance/4),50);  
 
%display(scale) 
 
num_contrast = length(contrast); 
num_scale = length(scale); 
alpha_1 = zeros(num_contrast, num_scale); 
alpha_2 = alpha_1; 
beta = alpha_1; 
scale_actual = alpha_1; 
norm_det = alpha_1; 
progress_percent = 0; 
 
for i = 1:num_contrast 
     
    %open level out the image: 
    image_temp = Contrast_Level(handles.image, contrast(i)); 
    for j = 1:num_scale 
         
        %invoke the solver:         
        [alpha_1(i,j), alpha_2(i,j), beta(i,j), scale_actual(i,j)] = ... 
            outlined_RW(image_temp, scale(j)); 
         
        %find the normalized determinant 
        norm_det(i,j) = (alpha_1(i,j)*alpha_2(i,j) - 0.25*beta(i,j)^2) / ... 
            (alpha_1(i,1)*alpha_2(i,1)); 
                  
        %update the progress bar: 
        progress_percent = ((i-1)*num_scale + j)/(num_contrast*num_scale); 
        set(Progress_Update(progress_percent, handles),... 
            'BackgroundColor',[23/255 1/255 126/255]); 
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        drawnow; 
         
        %debuggin purposes only: 
        % fprintf('Contrast = %5.2f and Scale = %5.2f\n', contrast(i), scale(j)); 
    end 
end 
 
%and finally create the plot: 
axes(handles.axes3) 
 
[X,Y] = meshgrid(contrast , scale); %didn't pick up the actual scale, will do that later 
 
% disp(size(X)) 
% disp(size(Y)) 
% disp(size(norm_det)) 
surf(X,Y,norm_det'); 
xlabel('Contrast Level (Pixels)'); 
ylabel('Scale (Pixels)'); 
 
% Used during debug 
% save 'test.mat' X Y norm_det 
view([90 90 90]); 
 
handles.alpha_1 = alpha_1; 
handles.alpha_2 = alpha_2; 
handles.beta = beta; 
handles.scale = scale_actual; 
%handles.norm_det = norm_det; not needed anymore, going to use slopes 
%instead 
handles.contrast = contrast; 
 
%update this block of code to create the slopes...and the slopes need to go 
%back out of the program. 
 
%link to datafile containing the average slopes is hardwired in! 
avg_norm_det = load('./Images/avg_norm_det.csv'); 
 
%----taken directly from exp 3 source codes----% 
 
%determine the sloped data for normalized determinant: 
s_con = zeros(size(norm_det)); 
s_scale = zeros(size(norm_det)); 
 
%create "fake" boundary conditions so that conditionals aren't 
%necessary 
 
norm_use = zeros(num_contrast+2, num_scale+2); 
norm_use(2:end-1, 2:end-1) = norm_det; 
 
 
%and duplicate the boundary condition so 
%left hand side 
norm_use(2:end-1,1) = norm_det(:,1); 
 
%right hand side 
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norm_use(2:end-1,end) = norm_det(:,end); 
 
%top 
norm_use(1,2:end-1) = norm_det(1,:); 
 
%bottom 
norm_use(end,2:end-1) = norm_det(end,:); 
 
%denominators are constant due to setup 
%it doesn't matter what these are.  We're only concerned with the sign 
%and these are inherently always positive.   
 
temp = 0.; 
 
for i = 2:num_contrast+1 
    for j = 2:num_scale+1 
        temp = (norm_use(i+1,j)-norm_use(i-1,j)); 
        if temp > 0 
            s_con(i-1,j-1) = 1; 
        else 
            s_con(i-1,j-1) = 0; 
        end 
         
        temp = (norm_use(i,j+1) - norm_use(i,j-1)); 
        if temp > 0 
            s_scale(i-1,j-1) = 1; 
        else 
            s_scale(i-1,j-1) = 0; 
        end 
    end 
end 
 
%concatenate into one variable because we need both for comparisons 
%now, the actual version of the norm_det we wish to send out is this data 
handles.norm_det = [s_con; s_scale]; 
 
set(handles.pushbutton3,'Enable', 'on'); 
 
%set(handles.pushbutton4,'Enable', 'on'); 
guidata(hObject, handles); 
 
%-----Used for debugging only-----% 
%save Data.mat scale_actual norm_det 
 
%disp(handles) 
 
 
% --- Executes on button press in pushbutton2. 
function pushbutton2_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
close; 
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% --- Executes on button press in pushbutton3. 
function pushbutton3_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% [filename,pathname]=uiputfile({'*csv','Analysis Data File'}); 
% filename = [pathname,filename,'.csv']; 
%  
 
[filename,pathname]=uiputfile({'*txt','Face Analysis Data File'}); 
 
%check to make sure extension isn't already there: 
 
Q = length(filename); 
if (strcmp(filename(Q-3:Q) , '.txt') == 1) %already there 
    filename = [filename]; 
else 
    filename = [filename,'.txt']; 
end 
 
test = Faces_Write(handles.norm_det,handles.base_image.path,... 
    handles.base_image.name,pathname,filename); 
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Progress Bar Update Function 

 

function output = Progress_Update(input, handles) 
 
% input ranges between 0 and 1 
 
choice = round(input * 100); 
 
if choice < 100 / 26 
    output = handles.text5; 
elseif choice < 100 / 26 * 2 
    output = handles.text6; 
elseif choice < 100 / 26 * 3 
    output = handles.text7; 
elseif choice < 100 / 26 * 4 
    output = handles.text8; 
elseif choice < 100 / 26 * 5 
    output = handles.text9; 
elseif choice < 100 / 26 * 6 
    output = handles.text10; 
elseif choice < 100 / 26 * 7 
    output = handles.text11; 
elseif choice < 100 / 26 * 8 
    output = handles.text12; 
elseif choice < 100 / 26 * 9 
    output = handles.text13; 
elseif choice < 100 / 26 * 10 
    output = handles.text14; 
elseif choice < 100 / 26 * 11 
    output = handles.text15; 
elseif choice < 100 / 26 * 12 
    output = handles.text16; 
elseif choice < 100 / 26 * 13 
    output = handles.text17; 
elseif choice < 100 / 26 * 14 
    output = handles.text18; 
elseif choice < 100 / 26 * 15 
    output = handles.text19; 
elseif choice < 100 / 26 * 16 
    output = handles.text20; 
elseif choice < 100 / 26 * 17 
    output = handles.text21; 
elseif choice < 100 / 26 * 18 
    output = handles.text22; 
elseif choice < 100 / 26 * 19 
    output = handles.text23; 
elseif choice < 100 / 26 * 20 
    output = handles.text24; 
elseif choice < 100 / 26 * 21 
    output = handles.text25; 
elseif choice < 100 / 26 * 22 
    output = handles.text26; 
elseif choice < 100 / 26 * 23 
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    output = handles.text27; 
elseif choice < 100 / 26 * 24 
    output = handles.text28; 
elseif choice < 100 / 26 * 25 
    output = handles.text29; 
else 
    output = handles.text30; 
end 
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Comparison Toolbox Window 

 

function varargout = Comparison(varargin) 
% COMPARISON M-file for Comparison.fig 
%      COMPARISON, by itself, creates a new COMPARISON or raises the existing 
%      singleton*. 
% 
%      H = COMPARISON returns the handle to a new COMPARISON or the handle to 
%      the existing singleton*. 
% 
%      COMPARISON('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in COMPARISON.M with the given input arguments. 
% 
%      COMPARISON('Property','Value',...) creates a new COMPARISON or raises the 
%      existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before Comparison_OpeningFunction gets called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to Comparison_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
 
% Edit the above text to modify the response to help Comparison 
 
% Last Modified by GUIDE v2.5 10-Nov-2008 22:28:50 
 
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @Comparison_OpeningFcn, ... 
                   'gui_OutputFcn',  @Comparison_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
 
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
 
 
% --- Executes just before Comparison is made visible. 
function Comparison_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figureCopy_of_Version 2.0 
% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to Comparison (see VARARGIN) 
 
% Choose default command line output for Comparison 
handles.output = hObject; 
 
handles.good_data = varargin{1}; 
handles.base_image = varargin{2}; %to pop up a window for visual que 
%disp(handles.good_data) 
 
% Update handles structure 
guidata(hObject, handles); 
 
% UIWAIT makes Comparison wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
 
 
% --- Outputs from this function are returned to the command line. 
function varargout = Comparison_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Get default command line output from handles structure 
varargout{1} = handles.output; 
 
 
 
function edit1_Callback(hObject, eventdata, handles) 
% hObject    handle to edit1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of edit1 as text 
%        str2double(get(hObject,'String')) returns contents of edit1 as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function edit1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    structure with handles and user data (see GUIDATA) 
Directory = uigetdir('./','Please Select a Database Directory'); 
 
%update the display 
Q = length(Directory); 
if (Q > 60) 
    set(handles.edit1,'String',strcat('...',Directory(Q - 60:Q))); 
else 
    set(handles.edit1,'String',Directory); 
end 
 
%is this a linux or windows 
os_type = isunix; %returns 1 for linux, 0 for other (assumed as windows) 
%get the file list: 
if (os_type == 1) 
    file_list = ls(Directory, '-m'); 
     
    %let's test this to get ride of that damned space: 
    file_list = file_list(1:length(file_list)-1); 
     
    %initializing this messes with strings later: 
    %file_list_2 = []; 
    flag_back = 1; 
    flag_forward = 1; 
    num_file_2 = 0; 
    for i = 1:length(file_list) 
        if file_list(i) == ',' 
            num_file_2 = num_file_2 + 1; 
            flag_forward = i; 
            file_list_2(num_file_2,1:(flag_forward-flag_back)) = 
file_list(flag_back:flag_forward-1); 
            flag_back = flag_forward+2; 
        end 
    end 
    %now we need to catch the end of the string 
    %file_list(flag_back:length(file_list)) 
    num_file_2 = num_file_2 + 1; 
    file_list_2(num_file_2,1:(length(file_list)-flag_back+1)) =... 
        file_list(flag_back:length(file_list)); 
 
    %there now we finally got our shit straight for linux, grrr 
    [num_file, max_length] = size(file_list_2); 
 
    %test to make sure the prase didn't screw something up: 
    if (num_file ~= num_file_2) 
        %opps 
        fprintf('ERROR, file parse mistake\n'); 
    end 
 
    %dump the old file_list 
    clear file_list 
 
    %create the correct one 
    file_list = file_list_2; 
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    %clear the temporary one 
    clear file_list_2 
     
 
else 
    %let's get the list 
    file_list = ls(Directory); 
    %note that matlab in linux doesn't do this: 
    %and remove the directory locate 
    file_list(1:2,:) = []; 
    [num_file, max_length] = size(file_list); 
end 
 
%and check for only .txt files: 
num_file_2 = 0; 
for i = 1:num_file 
    for j = 1:max_length-3 
        if (strcmp(file_list(i,j:j+3),'.txt') == 1)  %bad file: 
            num_file_2 = num_file_2 + 1; 
            file_list_2(num_file_2,:) = file_list(i,:); 
            break 
        end 
    end     
end 
 
num_file = num_file_2; 
file_list = file_list_2; 
 
%add extra entry to file list 
%file_list(num_file+1,:) = file_list(num_file,:); 
 
% disp(file_list) 
% disp(num_file) 
% disp(file_list) 
set(handles.listbox1,'String',file_list); 
%ok now that we've idiot proofed it a little: 
 
set(handles.pushbutton2,'Enable','on'); 
 
%and update the handles 
handles.file_list = file_list; 
handles.num_file = num_file; 
handles.directory = Directory; 
% Update handles structure 
guidata(hObject, handles); 
 
% --- Executes on selection change in listbox1. 
function listbox1_Callback(hObject, eventdata, handles) 
% hObject    handle to listbox1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: contents = get(hObject,'String') returns listbox1 contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from listbox1 
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% selection = get(handles.listbox1,'Value'); 
%  
% set(handles.edit2,'String',mat2str(handles.result_error(selection))); 
 
 
% --- Executes during object creation, after setting all properties. 
function listbox1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to listbox1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: listbox controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
 
 
% --- Executes on button press in pushbutton2. 
function pushbutton2_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
num_file = handles.num_file; 
file_list = handles.file_list; 
Directory = handles.directory; 
good_data = handles.good_data; 
 
dummy1 = get(handles.edit3,'String'); 
tolerance = str2double(dummy1)/100; 
 
% dummy2 = get(handles.edit4,'String'); 
% counter_goal = str2double(dummy2)/100; 
 
%get the first one to determine size: 
test_data = Faces_Read(Directory,file_list(1,:)); 
[num_contrast num_scale] = size(test_data); 
data = zeros(num_file,num_contrast,num_scale); 
handles.imGlobal = cell(1,num_file); %setup to store all of the image names 
diff = 0; 
 
% for i = 1:num_file  
%     [data(i,:,:),dummy] = Faces_Read(Directory,file_list(i,:)) 
%     handles.imGlobal(i)={dummy}; 
% end 
 
counter = zeros(1,num_file); 
 
 
iter = 1; 
tol = tolerance*num_contrast*num_scale; 
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for k = 1:num_file %march over all the files 
     
    [data,dummy] = Faces_Read(Directory,file_list(k,:)); 
    handles.imGlobal(k)={dummy}; 
     
    %matlab allows us to test equality (boolean operations) through 
    %entire arrays, so we just select the data which corresponds to 
    %the test or database image.  If the match is true (1 to 1 or 0 
    %to 0) it returns 1, 0 otherwise.  So then we just add up all 
    %the ones (twice because of the matrix structure). 
    matches = sum(sum(good_data == data)); 
     
    %is that enough of the total 
    if matches >= tol 
        %success! 
        file_list_2(iter,:) = file_list(k,1:15); 
        handles.imGlobal_short(iter) = handles.imGlobal(k); 
         
        %increment iter 
        iter = iter + 1; 
    end 
end 
     
 
if iter == 1 
    file_list_2  = ''; 
    handles.imGlobal_short = cell(1,1); 
end 
     
%file_list_2 = file_list(rank_diff); 
%disp(file_list_2) 
%turn on the selection box: 
set(handles.listbox1,'Enable','on'); 
 
set(handles.listbox2,'String',file_list_2); 
 
%turn on the selection box: 
set(handles.listbox2,'Enable','on'); 
 
%turn on the preview box: 
set(handles.pushbutton3,'Enable','on'); 
%save the errors: 
% handles.result_error = diff; 
% handles.rank_diff = rank_diff; 
% Update handles structure 
guidata(hObject, handles); 
 
 
 
 
 
function edit2_Callback(hObject, eventdata, handles) 
% hObject    handle to edit2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
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% Hints: get(hObject,'String') returns contents of edit2 as text 
%        str2double(get(hObject,'String')) returns contents of edit2 as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function edit2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
 
 
% --- Executes on selection change in listbox2. 
function listbox2_Callback(hObject, eventdata, handles) 
% hObject    handle to listbox2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: contents = get(hObject,'String') returns listbox2 contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from listbox2 
% selection = get(handles.listbox2,'Value'); 
%  
% set(handles.edit2,'String',mat2str(handles.result_error(... 
%     handles.rank_diff(selection)))); 
 
% --- Executes during object creation, after setting all properties. 
function listbox2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to listbox2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: listbox controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
 
 
 
function edit3_Callback(hObject, eventdata, handles) 
% hObject    handle to edit3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of edit3 as text 
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%        str2double(get(hObject,'String')) returns contents of edit3 as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function edit3_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
% --- Executes on button press in togglebutton1. 
function togglebutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to togglebutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of togglebutton1 
 
 
 
function edit4_Callback(hObject, eventdata, handles) 
% hObject    handle to edit4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of edit4 as text 
%        str2double(get(hObject,'String')) returns contents of edit4 as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function edit4_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
 
 
% --- Executes on button press in pushbutton3. 
function pushbutton3_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
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im_num = get(handles.listbox2,'Value'); 
image_dir = cell2mat(handles.imGlobal_short(im_num)); 
 
try 
    image = imread(image_dir); 
catch 
    image = imread('./Images/error_image.jpg'); 
end 
Image_Preview_2(handles.base_image.data,image); 
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Image Preview Window 

 

function varargout = Image_Preview_2(varargin) 
% IMAGE_PREVIEW_2 M-file for Image_Preview_2.fig 
%      IMAGE_PREVIEW_2, by itself, creates a new IMAGE_PREVIEW_2 or raises the existing 
%      singleton*. 
% 
%      H = IMAGE_PREVIEW_2 returns the handle to a new IMAGE_PREVIEW_2 or the handle to 
%      the existing singleton*. 
% 
%      IMAGE_PREVIEW_2('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in IMAGE_PREVIEW_2.M with the given input arguments. 
% 
%      IMAGE_PREVIEW_2('Property','Value',...) creates a new IMAGE_PREVIEW_2 or raises the 
%      existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before Image_Preview_2_OpeningFunction gets called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to Image_Preview_2_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
 
% Edit the above text to modify the response to help Image_Preview_2 
 
% Last Modified by GUIDE v2.5 10-Nov-2008 23:15:14 
 
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @Image_Preview_2_OpeningFcn, ... 
                   'gui_OutputFcn',  @Image_Preview_2_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
 
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
 
 
% --- Executes just before Image_Preview_2 is made visible. 
function Image_Preview_2_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to Image_Preview_2 (see VARARGIN) 
 
% Choose default command line output for Image_Preview_2 
handles.output = hObject; 
 
axes(handles.axes2); 
imshow(varargin{2}); 
 
axes(handles.axes1); 
imshow(varargin{1}); 
 
% Update handles structure 
guidata(hObject, handles); 
 
% UIWAIT makes Image_Preview_2 wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
 
 
% --- Outputs from this function are returned to the command line. 
function varargout = Image_Preview_2_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Get default command line output from handles structure 
varargout{1} = handles.output; 
 
 
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
close; 
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