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1. ABSTRACT 

 

Involvement of CypP4504a in Adenosine A1 receptor mediated regulation of 

vascular tone 

 

Swati S Kunduri 

 
Cardiovascular diseases are one of the leading causes of morbidity and mortality 
worldwide. The regulation of vascular tone plays an important role in normal 
cardiovascular function. Adenosine, an autacoid has several physiological and 
pathophysiological roles, apart from the regulation of vascular tone. Adenosine receptor 
(AR) contracts and relaxes blood vessels through all four subtypes (A1, A2A, A2B, and A3) 
linked to different signaling mechanisms. Deciphering complex tissue responses remains 
difficult because relationships of individual receptor subtypes and various end-effectors 
(e.g., ion channels) are yet to be identified. Apart from adenosine, 20-HETE, a 
cytochrome P4504a (Cyp4a) metabolite of arachidonic acid (AA) is a potent 
vasoconstrictor.  
 
We hypothesized that A1AR induced contraction of the smooth muscle involves Cyp4a, 
with Protein Kinase C (PKC)-α, extracellular regulated kinase (ERK) 1/2 contributing to 
the downstream signaling events. Another key question we addressed were the ion 
channel(s) contributing to smooth muscle contraction. Experiments included isometric 
tension recordings of aortic contraction and western blots. In addition, patch clamp 
experiments were done with freshly isolated smooth muscle cells from wild type (WT) 
and A1 knockout (A1KO) mice aortae. We found that inhibition of Cyp4a led to lesser 
contraction in the adenosine agonists’ mediated responses. 20-HETE induced contraction 
in both WT and A1KO, but this response was lower in A1KO.  Inhibition of PKC-α and 
ERK1/2 attenuated the 20-HETE-induced contraction in both WT and A1KO. These 
findings suggest that A1AR couples with 20-HETE and negatively modulates vascular 
tone through PKC- α and ERK1/2. Furthermore, electrophysiological experiments 
revealed that non-selective adenosine agonist increased the BK current in A1KO as 
compared to the WT. This suggests A1 receptors have a negative regulatory effect on BK 
current. On the other hand, A1 selective agonist decreased the BK current in WT, with no 
effect on A1KO.  PKC-α inhibitor abolished the effect of the A1 selective agonist on BK 
current. These findings suggest that A1AR regulates contraction of the aortic smooth 
muscle through inhibition of BK channels in a PKC-α dependent manner. From these 
data, we conclude that A1AR negatively couples with 20-HETE and by inhibiting BK 
channels mediates smooth muscle contraction via PKC- α. 
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1. CHAPTER ONE: INTRODUCTION 

 
Adenosine, the breakdown product of the energy molecule adenosine triphosphate 

(ATP), is a ubiquitous nucleoside. In mammalian cells it plays a key role in a number of 

physiological and pathophysiological conditions. Figure 1.1 shows the chemical structure 

of Adenosine.  Under physiological conditions, some of its regulatory activities include 

decreasing the glomerular filtration, neuro-modulation during the sleep-wake cycle, anti-

inflammatory action, effects on the heart including chronotropy, ionotropy and the 

regulation of the vascular tone (Fredholm, 2007). 

Generation of adenosine and its metabolism 

Adenosine is released when the cells are metabolically stressed either through an 

equilibrative transporter on the cell or as a result of cell damage (Abbracchio et al., 2003). 

At intracellular and extracellular sites, adenosine can be formed by enzymatic hydrolysis 

from two different substrates. The first pathway, 5’ nucleotidase hydrolyzes adenosine 

monophosphate (AMP) to adenosine (Frick and Lowenstein, 1976; Newby et al., 1985). 

Adenosine can also be synthesized by the action of S-adenosylhomocysteine hydrolase 

(SAH) on S-adenosylhomocysteine (Schutz et al., 1981).  SAH is tightly bound to 

adenosine and prevents its breakdown by adenosine deaminase (ADA) to inosine and the 

latter is finally broken down to uric acid and excreted in the urine (Lloyd and Fredholm, 

1995). In another pathway, adenosine is re-converted to AMP by adenosine kinase (AK).  

In addition to being metabolized, adenosine uptake into cells occurs by either a carrier 

system or a sodium-ribonucleside co-transport system. Once adenosine enters the cell, it 

binds to its receptors and exerts various physiological effects.  
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 Figure 1.1: Structure of Adenosine 

Figure 1.2: Metabolism of Adenosine (Vallon et al., 2006) 
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Vascular tone 

The contractile state of the smooth muscle cell is defined as the vascular tone. The 

smooth muscle of the blood vessel exists in a partial contracted state; this tone increases 

as the diameter of the vessel decreases. This tone is independent of any hormonal or 

neural influences as there are sufficient calcium (Ca2+) channels on the membrane to 

maintain the partial contracted state. In addition, the norepinephrine (NE) released from 

sympathetic fibers further augments the vascular tone (Sherwood Lauralee, Human 

Physiology Cells to Systems, 7e;(Jackson, 2000).  

However, the vascular tone can be regulated by a complex interplay of 

contracting and relaxing factors, hormones, neurotransmitters, and endothelium -derived 

hyperpolarizing factors (EDHF). The contraction and relaxation of the smooth muscle is 

determined by the movement of ions through the ion channels on the plasma membrane.   

The role of various contracting and dilating factors and ion channels with focus 

on adenosine and large conductance potassium (BK) channels in the regulation of 

vascular tone has been discussed in subsequent sections. 

Adenosine Receptors 

Adenosine exerts its physiological effects by binding to one of its four G-protein 

coupled receptors: A1, A2A, A2B and A3. These glycoproteins have in common a central 

core of seven transmembrane spanning domains, and each transmembrane is composed of 

20-27 amino acids and with 3 extracellular and intracellular loops (Fredholm, 2007). The 

intracellular loops, extracellular amino (NH2) and the intracellular carboxy (COOH) 

termini differ in their length, function and sequence variation and are responsible for the 

specific properties of these receptor proteins. Apart from A2AR, all other receptors have 

cysteine residue in the COOH terminus for receptor palmitoylation. All the ARs are 
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glycosylated on their second extracellular loop (Moro et al., 2006). Each of these 

receptors has their own pharmacological profile, affinity to adenosine, tissue distribution 

and effector coupling. The receptors derive their name due to their affinity to adenosine, 

which acts as a full agonist at all the four receptors (Fredholm et al., 2001). Adenosine 

receptors are classified based on their ability to activate or inhibit adenylyl cyclase (AC) 

and regulation of the cyclic adenosine monophosphate (cAMP) levels.  

A1 adenosine receptor (A1AR): It inhibits AC through inhibition of pertussis toxin 

sensitive Gi proteins and decreases the cAMP levels and results in an increased activity of 

phospholipase C (PLC) activity (Rogel et al., 2005; Tawfik et al., 2005). In cardiac 

muscle and neurons, A1 receptor can activate potassium channels (K+) and inhibits Q-, P- 

and N-type Ca2+ channels (Fredholm et al., 2001). A1 couples with K+ channels and is 

responsible for the bradycardiac effect of adenosine on heart function. 

A2 adenosine receptor (A2AR and A2BR): It stimulates the AC and increases the cAMP 

levels through the cholera toxin sensitive GS protein in the peripheral system and in the 

striatal system A2AR mediates effects through Golf.  It has anti-inflammatory and 

vasodilatory role through the activation of PLC.  The A2B receptor signals through Gs/q 

and its activation can either result in increased cAMP or inositol,1,4,5- triphosphate (IP3)/ 

diacylglycerol (DAG) and Ca2+ levels.  Our lab has   shown previously that A2B mediates 

relaxation in mouse aorta through nitric oxide (NO) in the endothelium (Ansari et al., 

2007a)  

A3 adenosine receptor: A3 receptors are negatively coupled to AC and decrease cAMP 

levels. They also stimulate PLC pathway and aid in mobilizing Ca2+ (Jacobson and Gao, 

2006).  In cardiac cells, they provide protection through ATP sensitive K+ (KATP) channel 

activation (Tracey et al., 1998). A3 mediates vasoconstriction through the endothelial 
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dependent cyclooxygenase (COX) pathway and involves nicotinamide adenosine 

dinucleotide phosphate (NADPH) oxidase (Nox-2) (Ansari et al., 2007b; El-Awady et al., 

2011).   

The current thesis focuses on the role of A1AR in vascular tone regulation. 

Role of A1 AR in regulation of vascular tone 

A1AR is a 36 kDa protein found in highest density in the kidney, atria and in lower 

density in ventricles, lung, pancreas, liver and gastrointestinal tract (GI).  The third 

intracellular loop and the COOH terminus of the receptor influence the coupling of A1AR 

to Gi (Tucker et al., 2000). Furthermore, the coupling of the A1AR is affected by the 

composition, prenylation state and phosphorylation state of G protein γ subunits (Yasuda 

et al., 1996; Yasuda et al., 1998). The cytoplasmic domain of the receptor has several 

serine and threonine residues, which are potential sites for protein kinase A (PKA), 

protein kinase C (PKC) and β-adrenoreceptor kinase-mediated phosphorylation and may 

play a role in receptor desensitization (Nell and Albrecht-Kupper, 2009). It is well 

accepted that adenosine mediates contraction of the smooth muscle in several vascular 

beds. Activation of adenosine A1 receptors induces contraction through a COX dependent 

pathway in pulmonary artery (Biaggioni et al., 1989). Similar results were seen in guinea 

pig and feline pulmonary vasculature (Szentmiklosi et al., 1995; Cheng et al., 1996).  

A1AR activation leads to IP3 in rabbit airway smooth muscle and negatively modulates 

the vascular tone (Abebe and Mustafa, 1998). Adenosine at low concentrations contracts 

the afferent arterioles through A1AR activation. However at higher concentrations, 

adenosine has been shown to mediate vasodilation of the afferent arterioles through A2A, 

which is coupled to KATP channel (Tabrizchi and Bedi, 2001).   
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:  Figure 1.1: Structure of adenosine A1 receptor (Nell and Albrecht-Kupper, 2009) 
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Our lab provided the first evidence that A1AR negatively modulates the effect of 

adenosine on vascular tone in mouse aorta and coronary flow regulations (Tawfik et al., 

2005) resulting from activation of PLC pathway and Ca2+ mobilization (Tawfik et al., 

2005). Others have showed similar results in different vascular beds like human cultured 

prostatic stromal cells (Preston et al., 2004), cat esophageal smooth muscle cells (Shim et 

al., 2002), guinea pig aorta (Ford and Broadley, 1999) and mouse coronary artery cells, 

heart, aorta and carotid artery (Prentice et al., 2002; Talukder et al., 2002; Ansari et al., 

2009).  Though A1 is primarily known to mediate contraction, there are a few reports 

suggesting that A1 mediates vasodilation through KATP channel in the rat aortic 

endothelium (Ray and Marshall, 2006), in rat diaphragmatic arterioles (Danialou et al., 

1997), in the rat skeletal muscle (Bryan and Marshall, 1999), in pig coronary artery 

smooth muscle cells (Dart and Standen, 1993).  

Arachidonic acid metabolites 

A major component of the cell membrane phospholipid pool is the arachidonic 

acid (AA). This 20-carbon fatty acid when released from the membrane is catalyzed by 

several enzymes to numerous biological metabolites called eicosanoids. Apart from 

adenosine, AA metabolites can also regulate the vascular tone. It has long been known 

that AA can be metabolized by COX and lipoxygenases (LOX) to prostaglandins (PG), 

thromoboxane (TP), leukotrienes (LT), 5-, 12- and 15- hydroxyeicosatetraenoic acid 

(HETE). These metabolites play a significant role in pulmonary and renal function, 

vascular tone, and inflammation (Roman, 2002; Miyata and Roman, 2005). Cytochrome 

P450 enzymes  metabolize AA,  it was discovered thirty years ago (Chacos et al., 1982) 

and consists of two families: a) Cytochrome P-450-epoxygenases (Cyp epoxygenases) 

and b) ω-hydroxylases. Cyp epoxygenases catalyzes AA to epoxyeicosatrienoic acids 
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(EETs) and dihydroxyeicosatrienoic acids (diHETEs), while ω-hydroxylases metabolizes 

them to 19- and 20- HETEs and 7-, 10-, 12-, 13-, 15-, 16-, 17- and 18-HETEs from AA. 

These metabolites play a pivotal role as second messengers and paracrine factors in liver, 

kidney, blood vessels, lung, intestines, heart, pancreas and white blood cells and regulate 

pulmonary, renal, cardiac and vascular function and modulate inflammatory and growth 

responses (Capdevila et al., 1982; Randriamboavonjy et al., 2005).  
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 Figure 1.2: The enzymatic pathway of AA producing EETs and HETEs 
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EETs in the regulation of vascular tone 

Cyp epoxygenases produce EETs and belong to a conserved super-family of 

genes with a common evolutionary origin. Epoxygenase enzymes are present in the 

endothelial and vascular smooth muscle cells. Cyp2C and Cyp2J belonging to the Cyp 

epoxygenases family convert AA to 5,6-EET; 8,9-EET; 11,12- EET and 14,15-EET. The 

major CYP epoxygenases in humans are Cyp2C8, Cyp2C9 and Cyp2J2; in rats are 

Cyp2C11, Cyp2C23 and Cyp2J3; in mice are Cyp2C40, Cyp2C44, Cyp2C29, Cyp2J5 

(Fleming, 2001; Michaelis and Fleming, 2006).  

Studies in coronary, renal and cerebral vascular beds have shown that EETs 

increase the organ blood flow or cause vasodilation. Rodents, rabbits, canine and bovine 

blood vessels have also shown EET vasodilation (Imig et al., 2000; Fleming, 2001; 

Sudhahar et al., 2010). However, there are also studies showing where 5,6 EET and 8,9-

EET mediate vasoconstriction as these metabolites are also substrates for COX enzymes 

and bind to the TP receptors, activating it (Fulton et al., 1996; Imig and Navar, 1996).  

The main catabolic pathway for EETs is the conversion to diHETEs by soluble epoxide 

hyrdolase (sEH) enzyme. They can also be metabolized by ω-oxidation, β-oxidation and 

chain elongation; the latter two being more prominent when sEH activity is low or 

inhibited in the tissue (Carroll et al., 2006; Fleming, 2010). EETs are known to activate 

the BK channels in the smooth muscle resulting in cell membrane hyperpolarization and 

causing vasodilation. There is accumulating evidence that EETs activation of the BK 

channels in the smooth muscle requires Gαs and cAMP/ PKA (Li and Campbell, 1997; Li 

et al., 2002; Krotz et al., 2004; Fleming, 2010). However, studies in smooth muscle cells 

from rat cerebral arteries and mice mesenteric arteries suggest that EETs increase 

endothelial Ca2+ levels through activation of vanilloid type 4 transient receptor potential 
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(TRPV4) channels.  There are also reports that KATP channel contributes to EET mediated 

vasorelaxation (Imig, 2012; Ponnoth et al., 2012a). 

20-HETE in the regulation of vascular tone 

ω- hydroxylases consists of Cyp4a and Cyp4f families metabolize AA to 20-

HETE in the liver, kidney, heart, lung, brain and vasculature. There are several different 

isoforms encoded by cDNA in various species. In humans these are the Cyp4a11, Cyp4f2 

and Cyp4f3; in rats there are 4 of Cyp4a: Cyp4a1, Cyp4a2, Cyp4a3, Cyp4a8 and 4 Cyp4f 

isoforms: Cyp4f1, Cyp4f4, Cyp4f5 and Cyp4f6, and in mice Cyp4a10, Cyp4a12, and 

Cyp4a14 are expressed. Fibrates are known to induce Cyp4a1 and Cyp4a3 in the liver 

and kidney, but not in the blood vessels as they do not express peroxisome proliferator 

activated receptor (PPAR)-α  (Sundseth et al., 1992; Zhou et al., 2006).  The main 

pathway for their breakdown is by β-oxidation to less active shorter chain length products.  

The other pathways are metabolism by COX enzymes to form vasoconstrictor 

endoperoxides and vasodilator prostanoids (Schwartzman et al., 1989; Carroll et al., 

1992; Roman, 2002). 

 20-HETE is a potent vasoconstrictor of renal, cerebral, mesenteric and cardiac 

vascular beds (EC50<10-8M) (Ma et al., 1993; Imig et al., 1996; Zou et al., 1996). 

Angiotensin II (AngII), endothelin and serotonin (5-HT) stimulate the formation of 20-

HETE. Vasoconstrictor responses to these agonists are attenuated on inhibiting the 20-

HETE formation (Carroll et al., 1996; Oyekan et al., 1997; Alonso-Galicia et al., 1998; 

Alonso-Galicia et al., 1999; Croft et al., 2000). The production of 20-HETE is inhibited 

by NO, carbon monoxide and superoxide radicals (Roman, 2002). PKC, mitogen 

activated protein kinase (MAPK), src-type tyrosine kinase and rho kinase pathways are 

activated by 20-HETE and all play role in the regulation of vascular tone. Furthermore, 
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20-HETE increases the conductance of L-type Ca2+ channel and inhibits BK channels 

through PKC activation. This allows for sustained depolarization of vascular smooth 

muscle and Ca2+ entry through L-type Ca2+ channel and causes contraction of the smooth 

muscle (Zou et al., 1996; Lange et al., 1997; Sun et al., 1998; Sun et al., 1999; 

Gebremedhin et al., 2000). Recent studies have implicated that 20-HETE augments the 

activation of inward non-selective cation currents through transient receptor potential 

canonical 6 channels involved in myogenic response (Basora et al., 2003; Brayden et al., 

2008). 

Adenosine and Cyp450 metabolites in the regulation of vascular tone 

The interplay between adenosine and Cyp450 metabolites has come into light in 

past few years. Studies have shown a relationship between A2AAR and EETs.  In rat 

preglomerular vessels, A2AAR have shown to mediate vasodilation through EETs via 

cAMP-PKA pathway activating BK channels (Carroll et al., 2006). Inhibition of the 

EETs pathway with 14,15-EEZE (EETs antagonist) decreased the NECA-induced 

relaxation and showed contraction at higher doses in the A2AWT mice aortae as compared 

to the untreated control (Nayeem et al., 2008).  In addition, A1AR and Cyp4a protein has 

been shown to be up-regulated in A2AKO mice, suggesting a relationship between them 

(Ponnoth et al., 2012a). These findings have been discussed in the subsequent chapters.  

Potassium (K
+
) channels in the regulation of vascular tone 

There are several ion channels on the vascular smooth muscle cell surface. There 

are more than 4 types of K+ channels (Nelson et al., 1990; Nelson and Quayle, 1995; 

Jackson, 2000), 4 types  of voltage gated Ca2+channels, more than 2 types of Cl- channels, 

store-operated Ca2+ channels and stretch activated cation channels (Nelson et al., 1990; 

Jackson, 2000).  
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The most dominant ion channels are K+ channels and their activity plays a pivotal 

role in determining and regulating the membrane potential, thereby the vascular tone. 

There are 4 different types of K+ channels: voltage gated K+ (KV) channels, inward 

rectifier K+ (KIR) channels, KATP channels, and BK channels. This dissertation thesis 

focuses on role of BK channels in the regulation of vascular tone.  

a) KV channels: They are also known as delayed rectifier channels and are expressed 

on the smooth muscle. They are activated by membrane depolarization with 

threshold potentials of approximately 30mV for substantial activation. 

Vasoconstrictors have a tendency to close KV channels through PKC and 

intracellular Ca2+ and vasodilators open KV via cAMP signaling cascade (Nelson 

and Quayle, 1995). 

b) KIR channels:  These are found in both excitable and non-excitable cells.  The 

inward K+ current pass through these channels much more readily than the 

outward current with physiological ion gradients and with increase in extracellular 

K+ concentration increases the channel conductance. They are known to mediate 

vasodilation in cerebral, coronary, skeletal muscle vascular beds through elevated 

extracellular K+ resulting in hyperpolarization of vascular smooth muscle 

membrane and thereby dilation (Quayle et al., 1993). 

c) BK channels: These are found in vascular smooth muscle cells. As they allow the 

K+ channels to pass readily through them, they are also known as maxi-K 

channels or big K channels.  They have a conductance of 250pS and are activated 

by elevations in intracellular Ca2+ and membrane depolarization (Nelson, 1993). 

d)  KATP channels: These channels derive their name due to their sensitivity to 

intracellular ATP concentrations. They close as the ATP concentration increases. 



14 

 

Apart from smooth muscle; they are found in cardiac muscle, skeletal muscle, 

pancreatic β- cells and certain types of neurons (Nelson et al., 1990; Nelson, 

1993). 

BK channels in the regulation of vascular tone 

They are known as Slo 1 as they had been cloned from the drosophila slowpoke 

locus (Atkinson NS, Robertson GA and Gantetzky B; Science Wash. DC 253:551-555, 

1991).  BK channels are composed of 4 α subunits and 1-4 β-subunits (β1-β4). The pore 

forming α subunit is composed of 11 hyrdophobic domains (S0-S10), of which 

membrane spanning S0-S6 domains constitute the core region with an NH2 terminus and 

the remaining four domains (S7-S10) are located in cytoplasm and form the COOH 

terminus of the protein. The voltage sensor property of the channel is located on the S4 

domain and the pore forming region on the S5-S6 linker (Toro L, Taanaka Y News 

Physiol Sci 13:112-117, 1998).  The α subunit also contains the Ca2+ bowl in the tail 

region of the protein conferring the intrinsic sensitivity to Ca2+ to the protein. However, 

the regulator of conductance for K+ (RCK) domain present between the core and the tail 

region of the protein is also associated to Ca2+ sensitivity by some (Xia et al., 2002; 

Krishnamoorthy et al., 2005). The α subunit is encoded by Slo gene only, but has several 

subunits which confer different properties to the channels in various tissues like voltage 

sensitivity, phosphorylation by cAMP dependent PKA or PKG. The four-β subunits 

further add on to the variability as there are 4 subunit genes and 8 subunit proteins have 

been discovered with different pharmacological, modulatory effects and the activation 

gating of the channel.  The β subunit is composed of two transmembrane domains with 

an extracellular domain and cytoplasmic NH2 and COOH terminals.  It enhances the 

voltage and the calcium sensitivity of the channel by interacting with the S0 subunit and 
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NH2 terminus of the α-subunit. In vascular smooth muscle cells (VSMC) β1 is the 

prominent one. 
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Figure 1.3: Structure of BK channel (Ledoux et al., 2006) 

  

  

 

Figure 1.4: The native BK channel composed of 4-α and 4-β subunits (Ledoux et al., 2006) 
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Intracellular Ca2+ can cause dilation or constriction of the smooth muscle. A global 

increase in the cytoplasm Ca2+ concentration results in activation of the myosin light 

chain kinase (MLCK) and causes contraction of the smooth muscle. This global increase 

in calcium occurs through open state probability of the L-type voltage dependent calcium 

channel (L-VDCC) and regulated by the membrane potential and results in 

vasoconstriction. The Ca2+ increase from the ryanodine receptors (RyR)/ IP3 receptors, 

known as Ca2+ sparks, generates a highly localized elevation in the Ca2+ levels but the 

global Ca2+ level is raised minimally.  The IP3/ RyR receptors are located in close 

proximity to the BK channels and the Ca2+ sparks activates the BK channel (Perez et al., 

1999). Opening of the BK channels hyperpolarizes the membrane and promotes the 

closure of the L-VDCC and thus causing dilation.  Thus, the Ca2+ sparks opposes the 

vasoconstriction. 

BK channels play an important role in myogenic tone and contribute to the 

peripheral resistance. Several studies in rat cerebral, coronary and saphenous arteries 

have shown that increase in intracellular Ca2+ caused by pressure induced membrane 

depolarization and results in activation of BK (Brayden et al., 1991; Berczi et al., 1992).  

Adenosine and BK channels 

Adenosine relaxes vascular smooth muscle through several mechanisms, 

including the activation of K+ channels (Dart and Standen, 1993). Reports regarding the 

role of BK channels in adenosine-induced smooth muscle relaxation vary widely. In 

canine coronary arterioles, vasodilation in response to adenosine is inhibited by 

iberiotoxin (Cabell et al., 1994). Blocking BK channels inhibits vasodilation to 2-chloro-

adenosine in pig coronary arterioles (Borbouse et al., 2009); however, the role of BK 

channels in this response is abolished in pigs with metabolic syndrome (Borbouse et al., 
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2009). Thus, it could be pathology that explains why BK channels play no role in 

adenosine-induced vasodilation in human coronary arterioles (Sato et al., 2005), as they 

are typically collected from patients with heart disease. Conversely, it may be that BK 

channels play little, if any role, in adenosine-induced vasodilation, as this has been 

reported in the majority of studies from pig coronary arterioles (Hein and Kuo, 1999; 

Hein et al., 2001; Heaps and Bowles, 2002). However, it cannot be ignored that BK 

channels are reported to contribute to adenosine-induced relaxation/vasodilation of rat 

cerebral arterioles (Paterno et al., 1996), rabbit renal arteries (Rump et al., 1999); rat 

aortas (Ray and Marshall, 2006); and rat pre-glomerular microvessels (Carroll et al., 

2006). Further, adenosine increases a Ca2+-dependent K+ current in smooth muscle cells 

from the rat mesenteric artery that may be mediated by BK channels (Li and Cheung, 

2000). At present, there is little consensus regarding the role of BK channels in 

adenosine-induced smooth muscle relaxation and very little data directly addressing 

whether adenosine increases BK current in smooth muscle cells isolated from those same 

arteries or arterioles.  
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Specific Aims 

Adenosine plays an important role in the regulation of vascular tone in both 

physiological and patho-physiological conditions, where AR expression is altered.Apart 

from adenosine, the Cyp450 metabolites have also been shown to have pivotal role in 

the regulating the tone of the blood vessels.  Although the work  cited above provides 

evidence that A2A AR  and Cyp-epoxygenases-derived  metabolites (EETs) do interact, 

but the precise mechanism by which A1AR interacts with Cyp4a and regulate the 

vascular tone is completely unknown.  

Given the traits of A1AR and Cyp4a derived metabolite of AA (20-HETE), a 

relationship between the two is highly plausible.  Both A1AR and 20-HETE are 

altered in several pathophysiological conditions. Thus, understanding the 

relationship between the two will help to better develop therapeutic targets. Thus, 

the purpose of this dissertation is to identify the relationship between A1AR and 

Cyp4a and elucidate the signaling pathways in the regulation of vascular tone. 

With this in mind, the following aims were developed: 

Specific Aim1: To determine  elucidate the relationship between A1AR 

and Cyp4504a and in the A1AR mediated contraction of smooth muscle 

Working Hypothesis: Adenosine A1 receptor induced -vascular contraction is 

mediated through Cyp4504a metabolite, 20-HETE 

Specific Aim 2: To delineate the signaling pathways through which A1AR mediates 

vasoconstriction via 20-HETE 

Sub specific aim 2.1: To identify the signaling mechanisms of A1AR mediated smooth 

muscle contraction.  
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Working hypothesis: A1AR-20HETE mediates vasoconstriction through activation of 

PKC-α and p-ERK1/2 pathway. 

Sub-specific aim 2.2: To identify the ion channels involved in A1AR mediated 

contraction through 20-HETE 

Working hypothesis: In the presence of A1AR, 20-HETE modulates vascular response 

through BK channels in the aortic smooth muscle. 
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2. CHAPTER TWO: ADENOSINE A1 RECEPTORS LINK TO SMOOTH 

MUSCLE CONTRACTION VIA CYP4a, PKC-α AND ERK1/2 

 
 

Abstract 

Adenosine induces contraction of smooth muscle through A1 adenosine receptor 

(A1AR), possibly via generation of arachidonic acid-derived metabolite (20-HETE) 

by Cyp4a. 20-HETE is important in regulation of vascular tone. We tested the 

hypothesis that A1AR contraction of smooth muscle depends on Cyp4a through PKC-α- 

ERK 1/2 pathway. Experiments included isometric tension recordings of aortic 

contraction and Western blots of signaling molecules in wild type (WT) and A1AR 

knockout (A1KO) mice. Vascular responses for adenosine agonists and 20-HETE 

were obtained in both WT and A1KO mice aortae and mesenteric arteries. 20-HETE 

formation was evaluated in-vitro from WT and A1KO mice aortae.  In addition, 

vascular responses to adenosine agonists with Cyp4a inhibitor and to 20-HETE with 

PKC-α and ERK1/2 inhibitors were studied in mice aortae.  Immunoblots revealed 

higher Cyp4a levels in WT than A1KO.  HET0016 (Cyp4a inhibitor, 10-5M) 

dramatically reduced 5’-N-ethylcarboxamide adenosine (NECA, adenosine analog)-

induced contraction in WT (-4.02 ± 1.2% to 3.9 ± 0.7% at 10-6M, p<0.05), and 

enhanced relaxation in A1KO (16.1 ± 3.5% to 28.9 ± 6.6% at 10-6M, p<0.05).  Also, 2-

chloro-N6-cyclopentyladenosine (CCPA, an A1AR agonist)-elicited contraction was 

significantly blunted with HET0016 in WT (-36.1± 1.9% to -9.4 ± 2.9% at 10-6M, 

p<0.05) with no effect in A1KO.  20-HETE (10-7M) induced contraction was higher in 

WT than A1KO in aortae (33.4 ± 2.9% vs. 23.9 ± 2.4%) as well as mesenteric arteries 

(10.5 ± 1.52% vs. 0.3 ± 1.6%). This contraction was abated in WT and A1KO by 
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Gö6976 (PKC-α inhibitor) and PD98059 (ERK1/2 inhibitor). PKC-α, p-ERK1/2 and 

total ERK1/2 protein levels were higher in WT than A1KO (p<0.05), and Cyp2c29 

was upregulated in A1KO. Our data indicate that A1AR mediates smooth muscle 

contraction via CYP4a and a PKC-α-ERK1/2 pathway. These data suggest a 

relationship between A1AR and Cyp4a, and may have important implications in 

cardiovascular disorders. 
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Introduction 

Adenosine is an extracellular signaling molecule that affects heart rate, coronary 

blood flow, and blood pressure (Drury and Szent-Gyorgyi, 1929). Adenosine alters 

vascular tone by binding to one of the four G-protein coupled receptors: A1, A2A, A2B and 

A3. Activation of A1 and A3 receptors contracts vascular smooth muscle, in part, by 

inhibiting adenylyl cyclase through pertussis toxin-sensitive Gi protein (Abbracchio et al., 

1995; Tawfik et al., 2005; Jacobson and Gao, 2006). In contrast, activation of A2A and 

A2B receptors relaxes smooth muscle, in part, by stimulating adenylyl cyclase 

(Abbracchio et al., 1995). In the case of A2A, receptors, this process occurs through Gs and 

Golf proteins, whereas A2B receptors utilize Gs and Gq proteins (Abbracchio et al., 1995). 

In addition to G protein signaling, activation of adenosine receptors also leads to the 

metabolism of arachidonic acid and the production of myriad signaling molecules (Cheng 

et al., 2004). 

Metabolites of arachidonic acid regulate smooth muscle tone, including 

prostaglandins, thromoboxanes, leukotrienes, and hydroxyeicosatetraenoic acids 

(HETEs) (Hoagland et al., 2001; Roman, 2002; Miyata and Roman, 2005). Two 

subfamilies of cytochrome P450 (CYP) enzymes metabolize arachidonic acid: CYP-

epoxygenases and ω-hydroxylases (Miyata and Roman, 2005). The CYP-epoxygenases 

produce epoxyeicosatrienoic acids (EETs), which relax smooth muscle. In contrast, the 

ω-hydroxylases such as CYP4a and CYP4f produce 20-HETE, which contracts smooth 

muscle (Harder et al., 1994; Zou et al., 1996; Lange et al., 1997; Nayeem et al., 2008; 

Ponnoth et al., 2012a). The mechanisms linking CYP4a to smooth muscle contraction, 

however, are not entirely clear, especially in regard to adenosine A1 receptor activation. 
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20-HETE-induced contraction of smooth muscle appears to involve protein kinase 

C (PKC), Src-type tyrosine kinase, rho kinase and mitogen activated protein kinase 

(MAPK) pathways (Lange et al., 1997; Sun et al., 1999; Obara et al., 2002; Williams et 

al., 2010). We have demonstrated previously that A1 receptor stimulation is linked to 

PKC-α and ERK1/2 activation in coronary artery smooth muscle (Ansari et al., 2009). 

Gaps in our knowledge remain to be addressed, the most important of which pertain to 

whether A1 -dependent activation of PKC-α and ERK1/2 results in smooth muscle 

contraction. Thus, the aim of the present study was to delineate mechanisms downstream 

of A1 receptor activation that lead to smooth muscle contraction. We tested the 

hypothesis that adenosine A1 receptors contract smooth muscle through a pathway 

involving CYP4a, PKC-α, and ERK1/2. 
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Methods 

Animals: Some of the A1KO mice were obtained from Dr. Jurgen Schnermann 

(NIDDK, NIH) on C57BL/6 background. C57BL/6 (WT) mice were purchased from The 

Jackson Laboratory (Bar Harbor, ME). Equal number of males and females of 14-18 

weeks of age were used in our studies, as no gender differences were observed in the 

responses to the pharmacological agents used. The Institutional Animal Care and Use 

Committee of West Virginia University approved this study.  

Isometric tension: Following anesthesia with pentobarbital sodium (100 mg/kg, 

i.p.), the aorta was removed and cut into 3-4 mm rings. Rings were mounted on stainless 

steel wires and suspended in 10 ml organ baths filled with Krebs-Henseleit buffer 

containing (in mM): 118 NaCl, 4.8 KCl, 1.2 MgSO4, 1.2 KH2PO4, 25 NaHCO3, 11 

glucose and 2.5 CaCl2. Baths were maintained at 37°C and bubbled with 95% O2 and 5% 

CO2 (pH 7.4). Rings were equilibrated for 90 min under a resting tension of 1 g. Rings 

were contracted with 50 mM KCl twice to check viability. Rings were then treated with 

submaximal phenylephrine (PE; 1 µM) to obtain a stable contraction and integrity of the 

vascular endothelium was confirmed by relaxation to acetylcholine (1 µM). Tension was 

monitored continuously with a digital acquisition system and analyzed using 

Acknowledge 3.5.7 software (BIOPAC). Our laboratory previously validated all methods 

(Tawfik et al., 2005; Ansari et al., 2007a; Ponnoth et al., 2008; Ansari et al., 2009).  

Concentration-response curves for 5'-N-ethylcarboxamido adenosine (NECA; 10-

11-10-5M), 2-chloro-N (6) cyclo-pentyl-adenosine (CCPA; 10 pM to 10 µM) were run in 

parallel in aortic rings from WT and A1KO mice. In all experiments, drugs were 

administered to yield the next higher concentration only when the previous response 

reached steady state. 20-HETE (Cayman Chemical; Ann Arbor, MI) concentration-
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response curves were constructed, but in some experiments a single concentration (100 

nM) was used as described previously (Alonso-Galicia et al., 1998; Obara et al., 2002; 

Wu and Schwartzman, 2011; Singh et al., 2012). Inhibitors of CYP4a (HET0016; 

Cayman Chemical), PKC-α, (Gö6976; Calbiochem; La Jolla, CA), and ERK1/2 

(PD98059; Calbiochem) were added 30 min prior to contraction with PE (10-6M) and 

present throughout the experiments. Inhibitor concentrations were determined by others 

and us (Loufrani et al., 1999; Ansari et al., 2001; Cogolludo et al., 2003; Ding et al., 

2004; Sakwe et al., 2005; Nayeem et al., 2008; Ansari et al., 2009; Chang et al., 2009; 

Matsumoto et al., 2011; Ponnoth et al., 2012a). Acetylcholine and PE were dissolved in 

distilled water, while NECA, CCPA, HET0016, Gö6976, and PD98059 were dissolved in 

DMSO. We have shown that previously these vehicles have no effect on smooth muscle 

contraction (Ansari et al., 2007a). 20-HETE was dissolved in ethanol and had no effect 

on the vasoconstrictive properties of the drug. Percentage of contraction was determined 

as a percent change from the maximum phenylephrine (PE) response. If A = maximum 

total tension in the presence of PE; B = maximum total tension when a drug is added after 

PE; C = minimum passive tension determined after the experiment, after a final wash; D 

= PE-induced active tension = A minus C. Thus, % contraction = [(B – A) / D] X 100% 

Immunoblots:  Aortae from WT and A1KO mice were homogenized with 150 µL 

RIPA, (Cell Signaling Technology); 20 mM Tris-HCl (pH 7.5),(150 mM NaCl, 1 mM 

Na2EDTA, 1 mM EGTA, 1% NP-40, 1% sodium deoxycholate, 2.5 mM sodium 

pyrophosphate, 1 mM beta-glycerophosphate, 1 mM Na3VO4, 1 µg/ml leupeptin), 

vortexed, and centrifuged for 10 min at 13,800 g at 4°C. Supernatants were stored at -

80°C. Protein was measured using the Bradford dye procedure with bovine serum 

albumin (BSA) as a standard (Bio-Rad Laboratories; Hercules, CA). The protein extract 
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was divided into aliquots and stored at -80°C. Samples (25 µg of total protein) were 

loaded on slab gels (10% acrylamide; 1 mm thick), separated by SDS-PAGE, and 

transferred to nitrocellulose membranes (Hybond-ECL). Protein transfer was confirmed 

by visualization of prestained molecular weight markers (Bio-Rad). Membranes were 

blocked with 5% nonfat dry milk and incubated with primary antibody. 1:1000 dilutions 

were used for CYP4a (Abcam; Cambridge MA) and PKC-α (BD Transduction Labs; San 

Diego, CA) antibodies, while 1:500 dilutions were used for total ERK1/2 and p-ERK1/2 

(both from Santa Cruz Biotechnology; Santa Cruz, CA) and 1:5000 for Cyp2c29 (Dr. 

Darryl C. Zeldin(NIH/NIEHS)). The phospho-ERK1/2 blots were stripped at room 

temperature for 15 minutes and re-probed for total-ERK1/2. All membranes were 

stripped and probed for β-actin (Santa Cruz); this served as an internal control to 

normalize protein expression in each lane. Secondary antibodies were horseradish 

peroxidase-conjugated. Membranes were developed using enhanced chemiluminescence 

(AmershamBioSciences) and X-ray film. 

Measurement and analysis of 20-HETE formation rates 

 
Equal numbers of male and female aortae were isolated on ice from WT and 

A1KO mice. Microsomes were prepared by pooling the aortae and homogenizing in 

50mM/L Tris buffer (pH7.4) containing 150mM KCl, 0.1mM DTT, 1mM EDTA and 

20% glycerol. Each sample consisted of six aortae (n=1). Microsomal fractions were 

isolated by differential centrifugation as previously described by us (Nayeem et al., 2008) 

and Dr. Poloyac’s group (Poloyac et al., 2006; Miller et al., 2009) .  Microsomal fractions 

containing 100µg total protein and 25µM AA were incubated in 1ml of 0.12M KH2PO4 

buffer containing 5mM MgCl2. Reactions were initiated by addition of 1mM NADPH at 

37°C for an hour and were terminated by placing the reaction tubes on ice. 0.75ng of 20-
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HETE d6 was added as an internal standard to each sample. HETE metabolites were 

separated along with others via reverse phase ultra-performance  liquid chromatography 

(UPLC; Milford,MA) with an Acquity UPLC BEH C18 1.7µM, 2/1x100 mm column as 

previously described (Miller et al., 2009).  Analysis was carried out on the TSQ operated 

in negative electrospray ionization-selected reaction monitoring mode with unit 

resolutions at both Q1 and Q3 set at 0.70 full width at half maximum. The selected 

reaction monitoring transitions that were monitored were as follows: 20-HETE mass-to-

charge ratio (m/z) 319.3 → 245.0; and 20-HETE-d6 (internal standard) m/z 325.3 → 

251.0. Collision energy was optimized for each transition and  ranged from 11 to 25eV 

with a total scan time of 0.01 s. Parameters were optimized to obtain the highest [M-H]+ 

ion abundance and were as follows: capillary temperature 270°C, spray voltage 3,800 kV, 

and source collision-induced dissociation set at 1 V. Sheath gas, auxiliary gas, and ion 

sweep gas pressures were set to 60, 50, and 0 psi, respectively. Collision gas pressure was 

set to 1.2 mTorr.  The data from two separate experiments have been combined for a 

significant ‘n’. 

Real Time PCR 

The aortic tissues from WT and A1KO were processed for total RNA isolation 

using the TRI reagent (MRC, Cincinnati, OH) followed by purification of the RNA in 

aqueous phase and removal of genomic DNA by an RNeasy Plus Micro Kit (QIAGEN, 

Hilden, Germany).This was followed by conversion of 0.5 g of total RNA into cDNA 

using High Capacity cDNA archive kit (Applied Biosystems, Foster City, CA) in a total 

volume of 20 µl. Real-time PCR was performed using an ABI PRISM 7300 Detection 

System (Applied Biosystems) using Taqman Universal Mastermix (Applied Biosystems, 

Branchburg, NJ) according to the instructions of the manufacturer. The reaction volume 
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(20 µl) consisted of 10 µl of 2X Taqman Universal Mastermix, 4 µl of cDNA, and 1 µl of 

20X FAM-labeled Taqman gene expression assay. For the real-time PCR of the 

concerned genes (Cyp4a10, A1AR, A2AAR,A2BAR and A3AR ), the Taqman inventoried 

assays on-demand gene expression products  were purchased from Applied Biosystems 

(Foster City, CA). 18S rRNA (ribosomal RNA) was used as an endogenous control. The 

fold difference in expression of target cDNA was determined using the comparative cycle 

threshold (Ct) method as described earlier(Livak and Schmittgen, 2001). 

Statistical Analysis: Data are expressed as mean ± SEM from n number of mice. 

Concentration-response curves and 20-HETE/inhibitor experiments were analyzed by 2-

way analysis of variance (ANOVA). Comparisons of two densitometry values were made 

with unpaired t-tests. P < 0.05 was considered significant in all tests. 
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Results 

Cyp4a protein levels in WT and A1KO mice: 

Immunoblot analysis showed a ~25% decrease in Cyp4a protein levels in A1KO as 

compared to WT (74.5 ± 3.7% vs. 100 ± 10.61%, Fig. 2.1A). However, there was no 

difference in Cyp4a10 mRNA levels (Fig 2.1B) 

 

Effect of Cyp4a inhibitor (HET0016) on NECA and CCPA induced vascular 

responses in aorta: 

To verify if Cyp4a plays a role in A1AR mediated vasoconstriction, we investigated the 

effect of Cyp4a inhibitor, HET0016 on NECA (a non-selective adenosine agonist) and 

CCPA (an A1AR agonist)-induced vascular responses. We found that NECA-elicited 

contraction in WT (-4.02 ± 1.2%; 10-6M; Fig. 2.1A; closed squares) was changed to 

significant relaxation in the A1KO mice (16.1 ± 3.5%; 10-6M; Fig 2.1A; closed circles). 

Relative to the WT mice, HET0016 alleviated the NECA-induced contraction (3.97 ± 

0.7%; 10-6M; Fig 2.1A; open squares). Similarly, in A1KO mice, Cyp4a inhibition 

enhanced the relaxation from 16.05 ± 3.5% to 28.96 ± 6.6% (fig2.1A; open circles) 

compared to the litter-matched controls at 10-6M NECA (Fig 2.1A). There was a 

significant difference between the treated WT and A1KO with HET0016 (3.97 ± 0.7% vs. 

28.96 ± 6.6%; 10-6M NECA; Fig 2.1A). CCPA-evoked contraction in the WT (-36.1 ± 

1.9%; 10-6M; Fig 2.2B; open circles) was significantly changed to relaxation in the A1KO 

(11.4 ± 8.5%; 10-6M; closed circles). Pharmacological inhibition of Cyp4a (HET0016) 

blunted the CCPA induced contraction by 26.7% from -36.1 ± 1.9% to -9.4± 2.9% 

(p<0.05) at 10-6M in WT mice (Fig 2.2B; open squares). CCPA induced vascular 

responses were unaltered in both the treated and untreated A1KO littermates as shown in 
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Fig 2.2B (closed squares). However, on treatment with the Cyp4a inhibitor, the CCPA 

response showed higher relaxation in A1KO (11.3 ± 8.5%; 10-6M) as compared to WT (-

9.4 ± 2.9%; 10-6M). ACh-induced response in WT (47 ± 2%) was not significantly 

different from A1KO (51 ± 3%, p>0.05) (Fig 2.2C). These results are consistent with 

those demonstrated by Wang Y et al (Wang et al., 2010)in mouse aorta 

 

Effect of 20-HETE on vascular responses, and 20-HETE formation rates in A1KO 

and WT animals: 

We further investigated the effect of 20-HETE on vascular responses in both WT and 

A1KO mice aortae and mesenteric arteries, and determined the in vitro 20-HETE 

formation rate in WT and A1KO aortic microsomes. As shown in Fig 2.3E., 20-HETE 

elicited vasoconstriction in the WT, showed similar trend of being significantly higher in 

both the aortae (59.18±6.09% vs. 41.32±4.49%) and the mesenteric arteries (10.2±1.52% 

vs. 0.3±1.6%), compared to A1KO mice. We observed an unexpected increase in the 

contraction on addition of lowest concentration of 10-11M 20-HETE in both WT and 

A1KO (Fig. 2.3D) mice aortae. Furthermore, 20-HETE formation rate was observed to be 

significantly higher in aortic microsomes from WT (0.31±0.012 pg/mol/min) than the 

A1KO (0.23±0.018 pg/mol/min; Fig 2.4). 

 

Cyp2c29protein levels in WT and A1KO mice: 

Measurement of Cyp2c29 showed an up-regulation of the protein by 73% in A1KO mice 

aortae, relative to its WT counterpart (172.7 ± 12.1%vs. 100 ± 23.04%, Fig 2.5A). 

Subsequently, we determined the effect of Cyp-epoxygenases inhibition on CCPA 

induced aortic response. In the WT littermates, MSPPOH (Cyp-epoxygenases  inhibitor; 
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10-5M), increased  the CCPA-induced contraction by 15.3% from -32.5 ± 1.7% to  -47.8.4 

± 6% at 10-7 M (Fig. 4). Likewise, in A1KO mice, MSPPOH treatment increased the 

vascular response by 19.3% from 5.8 ± 4 % to -13.5 ± 7.4% at 10-7M (Fig. 2.5B).  

Role of PKC-α in 20-HETE-induced contraction 

20-HETE (100 nM), a CYP4a product, contracted aortae from WT and A1KO mice (Fig. 

2.6B); however, the contractile response was less in aortic rings from A1KO mice. 

Inhibition of PKC-α (100 nM Gö6976) reduced 20-HETE-induced contraction in aortic 

rings from both WT (by 37%) and A1KO (by 29%) mice (Fig. 2.6B). The relative 

inhibitory effect of Gö6976 was the same in aortic rings from WT and A1KO mice (Fig. 

2.6C). PKC-α protein was expressed in aortae from WT and A1KO mice (Fig. 2.6A); 

however, the expression of PKC-α was lower (by 47%) in A1KO mice (p<0.05). 

Role of ERK1/2 kinase in 20-HETE-induced contraction 

The CYP4a product 20-HETE (100 nM) contracted aortic rings from both WT and A1KO 

mice (Fig. 2.7B); however, the contractile response was less in aortae from A1KO mice. 

Inhibition of ERK1/2 (1 µM PD98059) reduced 20-HETE-induced contraction in aortae 

from WT (by 48%) and A1KO (by 36%) mice (Fig. 2.7B). The relative inhibitory effect 

of PD98059 was similar in aortic rings from WT and A1KO mice (Fig. 2.7C). ERK1/2 

protein was expressed in aortae from WT and A1KO mice (Fig. 2.7A); however, the 

expression of total ERK (by 35%) and phospho-ERK (by 15%) were lower in A1KO mice  

(p<0.05). 

 

  



50 

 

  

Figure 2.1: Cyp4a protein and mRNA levels in WT and A1KO. 

Western blots for CYP4a expression in the aorta (A). Mouse isoform Cyp4a10 levels in 
WT and A1KO mice aortae (B). Data are expressed as mean ± SEM; n=6-8mRNA level. 
*p < 0.05 between WT and A1KO 
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Figure 2.2: Effect of Adenosine Receptor agonists’ and acetylcholine -induced 

responses in WT and A1 KO aortae and mesenteric arteries 

 
(A) Non selective adenosine agonist NECA mediated responses with Cyp4a inhibitor (10 
µM HET0016); +p<0.05 between A1KO and WT; *p<0.05 between WT +HET0016 and 
WT; #p<0.05 between A1KO + HET0016 and WT + HET0016; $p<0.05 between A1KO + 
HET0016 and A1KO. Data are expressed as mean ± SEM (n=6-12); (B) The A1-selective 
agonist CCPA-mediated contractions with CYP4a inhibitor (10 µM HET0016), *p < 0.05 
between WT and A1KO and †p < 0.05 between WT and WT + HET0016 (n=4-12). (C) 
Acetylcholine (ACh) responses in WT and A1KO mice aortae and mesenteric arteries 
responses. *p < 0.05 between WT and A1KO (n=6-12). 
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Figure 2.3: Effect of the CYP4a product, 20-HETE on smooth muscle contraction 

from WT and A1KO mice. 

 

(A) Representative traces for concentration response curve for solvent (ethanol) in WT 
mice aortae (n=4). (B) Representative traces for concentration response curve for 20-
HETE in WT mice aortae. (C) Representative traces for concentration response curve for 
20-HETE in A1KO mice aortae. (D) Exogenous 20-HETE contracts aortic smooth muscle 
in a concentration-dependent manner. *p < 0.05 between WT and A1KO mice (n=8-12) 
(E) Exogenous 20-HETE responses in aortae and mesenteric arteries. Data are expressed 
as mean ± SEM (n=8). *p<0.05 compared to the WT in the respective tissue 
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Figure 2.4: 20-HETE formation rate in microsomes from WT and A1KO mice 

aortae (n=6-8) 

Data are expressed as mean ± SEM. 
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Figure 2.5: Role of Cyp2c29 in WT and A1KO  

(A) Cyp2c29 protein levels in aortae from WT and A1KO. Data are expressed as mean 
±SEM and are presented as representative blot from 6 individual samples, *p<0.05 as 
compared to WT (B) Effect of Cyp–epoxygenase inhibitor (MSPPOH; 10-5M) on CCPA 
induced vascular response: Data are expressed as mean ± SEM (n=10). * p<0.05 
compared to the WT, #p<0.05 compared to WT + MSPPOH, $p<0.05 compared to A1KO. 
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Figure 2.6: Effect of on PKC-α on WT and A1KO contractile responses to 20-HETE.  
 

(A) Western blots for PKC-α protein and β-actin; (B) Aortic smooth muscle contractions in 

response to 100 nM 20-HETE are shown for WT and A1KO mice with or without inhibition 

of PKC-α (100 nM Gö6976); (C) The inhibitory effect of Gö6976 on 20-HETE-induced 

contractions is equivalent in WT and A1KO mice, suggesting that the relative importance of 

PKC-α is unchanged. Data are expressed as mean ± SEM; n = 6-16 mice; *p< 0.05 between 

WT and A1KO; †p < 0.05, WT, A1KO vs. WT + Gö6976 & A1KO+ Gö6976. 
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Figure 2.7 Effect of ERK 1/2 on WT and A1KO mice aortae contractile responses  

(A) Western blots for total ERK1/2, phosphor-ERK1/2 and β-actin expression in the 
aorta; (B) Aortic contractile responses to 100 nM 20-HETE are shown for WT and A1KO 
mice with or without inhibition of ERK1/2 (1 µM PD98059); (C) The inhibitory effect of 
PD98059 on 20-HETE-induced contractions.  n=8-16*p < 0.05 between WT and A1KO; 
‡p < 0.05, WT, A1KO vs. WT + PD98059 & A1KO+ PD98059, respectively.  
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Figure 2.8 Adenosine A1 receptors link to smooth muscle contraction via CYP4a, 

PKC-α, and ERK1/2.  

This figure illustrates our understanding of signaling from the A1 receptor to smooth 
muscle contraction. Adenosine A1 receptors (A1R) are sensitive to CCPA and coupled to 
phospholipase C (PLCX) by G-proteins (GX). Candidates for PLCX include PLCβ1, 
PLCβ3, and PLCγ1, while candidates for GX include Gi, Go, Gq, G11 as well as G-βγ 
subunits (Jacobson and Gao, 2006; Ansari et al., 2009). PLCX produces two second 
messengers from phosphatidylinositol 4,5 bisphosphate: diacylglycerol (DAG) and 
inositol 1,4,5-trisphosphate (IP3, which releases Ca2+ from the sarcoplasmic reticulum; 
SR). DAG can be metabolized by di- and monoacylglycerol lipases to produce 
arachidonic acid (AA). CYP4a metabolizes AA into 20-HETE, which activates PKC-α 
(DAG is also an activator; PKC- β and γ isoforms are also expressed (Ansari et al., 2009). 
The ERK1/2 pathway is activated downstream of PKC-α. The culmination of this 
signaling is to contract smooth muscle through effects on, e.g., myosin light chain kinase 
(MLCK), myosin light chain phosphatase (MLCP), and thin filament regulatory proteins. 
Inhibiting CYP4a with HET0016 blocks CCPA-induced smooth muscle contraction (Fig. 
2.1 and 2.2). Gö6976 and PD98095, which inhibit PKC-α and ERK1/2, inhibit smooth 
muscle contraction in response to 20-HETE (Fig. 2.6 and Fig 2.8)  
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Discussion 

It is well documented that A1AR on activation mediates vasoconstriction 

through Gi and Go proteins(Jacobson and Gao, 2006). Our data show that NECA -

evoked contraction in WT was lower in the A1KO mice aortae (Fig. 2a). We also 

observed in the aortic tissue that CCPA-induced contraction was completely 

abolished in A1KO (Fig. 2b). Our results are consistent with previous findings from 

our laboratory and others (Tawfik et al., 2005; Wang et al., 2010) . We have found 

that NECA and CCPA induced responses in the mesenteric arteries are similar to 

those found in the aortae as reported earlier from our laboratory (Teng et al., 

2011).The contractile responses elicited by these adenosine agonists are similar to 

those found in a wide variety of systems like mouse afferent arterioles (Hansen et al., 

2003), human cultured prostatic stromal cells (Preston et al., 2004), cat esophageal 

smooth muscle cells (Shim et al., 2002), guinea pig aorta (Ford and Broadley, 1999)  

and mouse coronary artery cells, heart, aorta and carotid artery (Prentice et al., 

2002; Talukder et al., 2002; Ansari et al., 2009) 

The first evidence of an interaction between A1AR and Cyp4a is the 

significantly lower levels of Cyp4a protein expression in the A1KO mice as compared 

to the WT (Fig.1). To further examine, the functional interplay between Cyp4a and 

A1AR, we studied the effect of Cyp4a inhibition on adenosine agonists’ elicited 

contractile responses in WT and A1KO mice aortae. Due to the similar responses to 

adenosine agonists in the mice mesenteric arteries and aortae, we used aortae for 

these studies. HET0016 dramatically reduced the contraction responses induced by 

NECA, in both the WT and the A1KO mice aortae (Fig. 2a). Moreover, there was a 
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significantly higher relaxation observed in NECA-induced aortic responses in A1KO 

with the pharmacological inhibition of Cyp4a (Fig. 2a).This suggested that Cyp4a 

may play a part in the A1AR mediated vasoconstriction. The above findings were 

confirmed when Cyp4a inhibitor, HET0016 attenuated the vasoconstriction evoked 

by the A1 agonist, CCPA in the WT with no significant difference in the treated 

(HET0016) and untreated A1KO tissues (Fig. 2b). However, we observed a 

significant difference in both the NECA and CCPA induced vascular responses in the 

HET0016 treated WT and A1KO tissues (Fig 2). These results clearly implicate a role 

for Cyp4a in A1AR mediated vasoconstriction. These findings are congruent with 

previous studies in our lab (Nayeem et al., 2009) and others as well, which have 

shown an inhibition of Cyp4a with HET0016 in renal interlobar arteries from 

Sprague Dawley rats (Sodhi et al., 2010) and human and rat cerebral arteries(Toth 

et al., 2011). 

20-HETE is a potent vasoconstrictor of renal, mesenteric, skeletal and 

cerebral arterioles across several species (Roman, 2002). Several investigators have 

shown that in both circulatory and pulmonary vascular beds, 20-HETE mediates 

vasoconstriction by uncoupling of nitric oxide synthase, resulting in reduction of 

endothelial dependent relaxation (Frisbee et al., 2000; Singh et al., 2007; Cheng et al., 

2008). Our data show that 20-HETE vascular responses in aortae and mesenteric 

arteries are lower in A1KO as compared to the WT (Fig.3a). Moreover, the Cyp4a 

functional activity evaluated by the 20-HETE formation rates in the aortic 

microsomes were found to be lower in the A1KO (Fig 3b) as compared to the WT 

mice. This further underscores the role of Cyp4a in A1AR mediated vasoconstriction. 
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There is a dynamic interplay between the metabolites of the two pathways of 

Cyp450 enzymes, EETs and 20-HETEs, in the modulation of vascular homeostasis. EETs 

are considered to be endothelium-derived hyperpolarizing factors that induce 

hyperpolarization of the endothelial cells and vascular smooth muscle cells resulting in 

vasodilation. 20-HETE in vascular smooth muscle causes vasoconstriction by 

depolarization of vascular smooth muscle cell (Miyata and Roman, 2005)(Miyata and 

Roman, 2005)(Miyata and Roman, 2005). As Cyp4a and Cyp2c products have 

functionally antagonistic effects, we investigated if Cyp2c29 has any relationship to the 

A1AR mediated vascular responses. We observed that Cyp2c29 protein levels were 

significantly up- regulated in A1KO mice as compared to the WT (Fig S.3.5). Since we 

have seen an up-regulation of Cyp2c29 in A1KO compared to WT mice, it is quite 

possible that relaxation observed in A1KO mice by Cyp4a inhibition is due to Cyp2c29 

product EETs and due to the inhibition of Cyp4a that limits the production of 20-HETE. 

This observation was confirmed by the enhanced CCPA mediated vasoconstriction in the 

presence of the Cyp-epoxygenase inhibitor, MSPPOH (Fig.S.3.6). We have shown earlier 

that Cyp4a protein levels are up regulated with MSPPOH treatment (Nayeem et al., 2008). 

In the WT, although Cyp-epoxygenases were inhibited, a higher contraction observed 

with MSPPOH treatment is due to higher levels of Cyp4a and in the A1KO, the higher 

vascular response is due to inhibition of the Cyp-epoxygenases. Thus, the down-

regulation of Cyp4a and an up-regulation of Cyp2c29 protein levels promote the 

relaxation observed in the A1KO littermates. This inverse relationship between Cyp4a 

and Cyp2c is consistent with findings from other investigators in rat afferent arterioles 

and preglomerular arterioles (Hercule and Oyekan, 2000; Imig et al., 2000). 
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Several studies have reported that 20-HETE promotes constrictor responses 

by activating PKC, Src type tyrosine kinase, rho kinase and the MAPK pathways 

(Lange et al., 1997; Sun et al., 1999; Obara et al., 2002; Williams et al., 2010). 

Moreover, adenosine subsequent to binding to its receptors induces signaling 

cascades by activating MAPK through G-protein coupled mechanism. In addition, 

our laboratory has shown that in mouse coronary artery smooth muscle cells, A1AR 

mediates vasoconstriction through PKC-α, leading to phosphorylation of p42/44 

mitogen activated protein kinase (MAPK) via PLC β-III (Ansari et al., 2009). Given 

this evidence, we investigated the effect of PKC-α and ERK1/2 inhibition on 20-

HETE induced contraction in both WT and A1KO mice. The basal protein levels of 

PKC-α, p-ERK1/2 and total ERK1/2 are higher in the WT as compared to the 

knockout littermates (Figs. 5 and 7). The lower PKC-α and p-ERK1/2 protein levels 

in the A1KO mice are consistent with our previous findings in the A1KO mouse 

coronary artery smooth muscle cells (Ansari et al., 2009). Exogenous administration 

of 20-HETE produced similar higher contraction response in WT than the A1KO, 

both in the mice aortae and mesenteric arteries (Fig 3), thus, suggesting that the 

signaling proteins downstream of 20-HETE are essential in Cyp4a modulation of 

A1AR mediated vasoconstriction. The use of a specific PKC-α blocker, Gö6976, 

attenuated the 20-HETE mediated vasoconstrictor response in WT and A1KO mice 

aortae (Fig. 6). Similarly, pharmacological inhibition of ERK1/2 with PD98059 

decreased the 20-HETE-elicited contraction in the WT and almost abolished the 

contractile tone in the A1KO (Fig. 8). However, the greater blockade of the 

vasoconstrictor responses with ERK inhibitor than with the PKC-α inhibitor implies 
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that MAPK pathway activation may involve several kinases like PKA, PKC, rho 

kinases or Ras activation or a cross talk between the different tyrosine kinase 

receptors. These data substantiate the role of PKC-α and ERK1/2 in A1AR mediated 

vasoconstriction through 20-HETE. 

Our current understanding of signaling for A1 � CYP4a � PKC-α � ERK 

pathway is summarized in Fig. 4. A1 receptor activation with, e.g., CCPA, activates 

CYP4a which metabolizes AA into 20-HETE. CCPA-induced contractions are almost 

entirely dependent upon signaling through CPY4a, as inhibition with HET0016 abrogates 

contraction (Fig. 3.1A). 20-HETE activates PKC-α and this is integral to contraction, as 

Gö6976 blocks the response (Fig. 3.3). The ERK1/2 pathway is activated downstream of 

PKC-α, as Gö6976 blocks ERK activation (Ansari et al., 2009) and PD98059 blocks the 

contraction (Fig. 3.3). ERK1/2 integrates the signaling for contraction and transduces it to, 

e.g., myosin light chain kinase (MLCK), myosin light chain phosphatase (MLCP), and 

thin filament regulatory proteins.  

In summary, we have shown that A1 receptor activation leads to smooth muscle 

contraction via CYP4a, PKC-α, and ERK 1/2. Because A1 receptors and 20-HETE are 

implicated in a variety of cardiovascular disorders, a better understanding of this pathway 

will be important for identifying therapeutic targets and treatment opportunities.  
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3. CHAPTER THREE: ADENOSINE A1 RECEPTORS INHIBIT BK CHANNELS 

THROUGH PKC-α DEPENDENT MECHANISM IN MOUSE AORTIC SMOOTH 

MUSCLE CONTRACTION 

 
Abstract 

Adenosine receptors (AR; A1, A2A, A2B, and A3) contract and relax smooth muscle 

through different signaling mechanisms. Deciphering these complex responses remains 

difficult because relationships between AR subtypes and various end-effectors (e.g., 

enzymes and ion channels) remain to be identified. A1AR stimulation is associated with 

the production of 20-hydroxyeicosatetraenoic acid (20-HETE) and activation of protein 

kinase C (PKC). 20-HETE and PKC can inhibit large conductance Ca2+/voltage-sensitive 

K+ (BK) channels that regulate smooth muscle contraction. We tested the hypothesis that 

activation of A1AR inhibits BK channels via a PKC-dependent mechanism. Patch clamp 

recordings and Western blots were performed using aortae of wild type (WT) and A1AR 

knockout (A1KO) mice. There were no differences in whole-cell K+ current or α and β1 

subunits expression between WT and A1KO. 20-HETE (100 nM) inhibited BK current 

similarly in WT and A1KO mice. NECA (5'-N-ethylcarboxamidoadenosine; 10 µM), a 

non-selective AR agonist, increased BK current in myocytes from both WT and A1KO 

mice, but the increase was greater in A1KO (52±15 vs. 17±3%; p<0.05). This suggests 

that A1AR signaling negatively regulates BK channel activity. Accordingly, CCPA 

(2-chloro-N(6)-cyclopentyladenosine; 100 nM), an A1AR-selective agonist, inhibited BK 

current in myocytes from WT but not A1KO mice (81±4 vs. 100±7% of control; p<0.05). 

Gö6976 (100 nM), a PKCα inhibitor, abolished the effect of CCPA to inhibit BK current 

(99±3% of control). These data lead us to conclude that, in aortic smooth muscle, A1AR 

inhibits BK channel activity and that this occurs via a mechanism involving PKCα. 
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Introduction 

Adenosine exerts its effects through four G-protein coupled receptors: the known 

adenosine receptor (AR) subtypes are A1, A2A, A2B and A3. These AR subtypes play 

important roles in vascular reactivity, as A1AR and A3AR contract smooth muscle, 

whereas A2AAR and A2BAR relax smooth muscle (Fredholm et al., 2001; Tawfik et al., 

2005; Jacobson and Gao, 2006; Ansari et al., 2007b; Ponnoth et al., 2009). It is well 

accepted that metabolites of arachidonic acid (AA) regulate vascular tone; however, only 

recently have these pathways been recognized to function downstream of A1AR and 

A2AAR (Harder et al., 1997; Cheng et al., 2004; Nayeem et al., 2008; Ponnoth et al., 

2012a). Epoxyeicosatrienoic acids (EETs) and 20-hydroxyeicosatetraenoic acid (20-

HETE) are produced from arachidonate by epoxygenases and ω-hydroxylases, 

respectively. EETs are considered to be endothelium-derived hyperpolarizing factors that 

activate Ca2+-dependent K+ channels and Na+-K+-ATPase (Roman et al., 2000). 20-

HETE in vascular smooth muscle functions as a second messenger to promote 

depolarization, Ca2+ influx, and contraction of vascular smooth muscle that acts, in part, 

through protein kinase C (PKC) (Miyata and Roman, 2005; Williams et al., 2010). 

Ion channels are important determinants of vascular tone, as they control 

membrane potential and the intracellular Ca2+ concentration. Large conductance, 

Ca2+/voltage-sensitive K+ (BK) channels participate in this electromechanical coupling 

(Nelson et al., 1995; Brenner et al., 2000).  BK channels are activated by membrane 

depolarization and increases in intracellular Ca2+. 20-HETE has been shown to inhibit 

BK channels in canine basilar artery (Obara et al., 2002) and rat renal arterioles (Zou et 

al., 1996). BK channels can also be regulated by phosphorylation and are targets of PKC, 

which reduces open probability (Zhou et al., 2009). 
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We have shown previously that activation of A1AR couples with the Cyp4a 

metabolite, 20-HETE and mediates contraction of the aortic smooth muscle through a 

pathway involving PKCα and/or p-ERK1/2.  However, genetic ablation of the A1AR 

reduced the contractions in response to 20-HETE, in part, by reducing the expression of 

downstream signaling molecules (PKCα and p-ERK1/2) (Kunduri et al., 2013). To 

further understand the signaling transduction of A1AR and 20-HETE, we performed 

studies designed to test the hypothesis that activation of A1AR inhibits BK channels via a 

PKC-dependent mechanism.  
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Materials and Methods 

Animals 

A1KO mice (originally obtained from Dr. Jurgen Schnermann, NIDDK, NIH) were on 

C57BL/6 background. A1KO mice were backcrossed 4 generations with C57BL/6 (WT); 

genotypes were confirmed by polymerase chain reaction. C57BL/6 (WT) mice (originally 

purchased from The Jackson Laboratory, Bar Harbor, ME) were bred in-house. Equal 

number of males and females of 14-18 weeks of age were used in our studies, as no 

gender differences were observed. The Institutional Animal Care and Use Committee of 

West Virginia University provided regulatory oversight and protocols followed 

guidelines set forth in The Guide for the Care and Use of Laboratory Animals (National 

Research Council, 2011). Mice had free access to food and water and were housed on a 

12:12 hr light-dark cycle. Mice were killed with an overdose of sodium pentobarbital 

(150 mg/kg ip) and aortae were quickly harvested into ice-cold physiological saline 

solution. Adipose and connective tissue were removed under the magnification of a 

dissecting microscope. 

Isometric tension: Isometric tension experiments were conducted with small 

segments of WT and A1KO mice aortae as described previously in (Kunduri SS et al, 

2012). After equilibration, the responsiveness and stability of individual rings were 

checked by administration of PE (10-6 M) (Ansari et al., 2007b; Ponnoth et al., 2008; 

Ansari et al., 2009). The integrity of the vascular endothelium was assessed 

pharmacologically by acetylcholine (ACh, 10-6 M) (Ansari et al., 2007a; Ansari et al., 

2009) to produce relaxation of PE pre-contracted rings. The rings were washed several 

times with Krebs-Henseleit solution and allowed to equilibrate for 60 min before the 

experimental protocol began. The concentration-response curves (CRC) for 5'-N-
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ethylcarboxamido adenosine (NECA; 10-11-10-5M) and 2-chloro-N (6) 

cyclopentyladenosine (CCPA; 10-11-10-5M) were run in parallel in aortic rings from WT 

and A1KO mice. In all cases, drugs were administered to yield the next higher 

concentration only when the response to the earlier dose reached a steady state. A single 

concentration of 20-HETE (10-7M) was used for all the 20-HETE experiments (Ponnoth 

et al., 2012a). In all cases, 20-HETE was administered only when the PE response 

reached a steady state. In experiments where the effect of the antagonist was studied, the 

drug was added 30 min prior to the contraction of the tissue with PE and was present 

throughout the experiments. In all CRC figures, contraction (represented as positive (+) 

values) and relaxation (represented as negative (-) values) responses were expressed as a 

percentage of increase/decrease in the contraction with respect to PE (alone) in response 

to each concentration of agonist used. The concentration used for Penitrem A (Pen A) 

was 10-6M (Borbouse et al., 2009; Asano et al., 2012). For the rest of the drugs, CRCs 

were made (NS1619, KCl, PE, ACh, SNP and adenosine agonists) and the sub-maximal 

concentrations were chosen. 

Immunoblot analysis  

Aortae from WT and A1KO mice were homogenized with 150 µL radio-immuno 

precipitation assay buffer containing (mM) 20 Tris-HCl, 150 NaCl, 1 Na2EDTA, 1 

EGTA, 2.5 sodium pyrophosphate,1 beta-glycerophosphate, and 1 Na3VO4; plus 1% NP-

40, 1% sodium deoxycholate, and 1 µg/ml leupeptin. Samples were vortexed and then 

centrifuged for 10 min at 13,800 g at 4°C. Protein was measured using the Bradford dye 

procedure with bovine serum albumin as a standard (Bio-Rad Laboratories; Hercules, 

CA). The protein extract was divided into aliquots and stored at -80°C. Samples (25 µg of 

total protein) were loaded on slab gels (10% acrylamide; 1 mm thick), separated by SDS-
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PAGE, and transferred to nitrocellulose membranes (Hybond-ECL). Protein transfer was 

confirmed by visualization of prestained molecular weight markers (Bio-Rad). 

Membranes were blocked with 5% nonfat dry milk and incubated with primary antibody. 

A 1:5,000 primary antibody dilution used for BK α and β1 subunits (Alomone 

labortatories, Israel), while 1:10,000 dilutions were used for secondary antibody and β-

actin.  

Electrophysiology 

WT and A1KO mice aortae were digested in a physiological saline solution containing 

(mg/ml) 2 collagenase type-II, 1 soybean trypsin inhibitor, 1 bovine serum albumin, and 

1 elastase for 30 minutes at 37°C. Single cells were liberated by passing the tissue 

through the tip of a fire-polished Pasteur pipette. The suspension was passed through a 

100 µm nylon mesh and spun for 10 minutes at 10,000g. The pellet was resuspended in 

low Ca2+ physiological saline solution and cells were stored on ice for use within 8 hr. 

Cells were allowed to attach to glass coverslip, which was then transferred to the 

recording chamber.  Solutions flowed into the recording chamber by gravity at a rate of 

2-3 ml/min and the chamber had a volume of 0.2-0.3 ml. BK channel currents were 

recorded at room temperature from whole-cell patches as described previously (Asano et 

al., 2010). Bath solution contained (mM) 135 NaCl, 5 KCl, 2 CaCl2, 1 MgCl2, 10 glucose, 

10 HEPES free acid and 5 Tris base; pH 7.4. Pipette solution contained (mM) 140 KCl, 1 

MgCl2, 1 EGTA and 0.281 CaCl2 (pCa 7), 10 HEPES, 1 Mg-ATP, 0.1 Na-GTP, and 5 

Tris; pH 7.1. pClamp software and an Axopatch 200B amplifier were used (Molecular 

Devices; Sunnyvale, CA). Currents were low pass filtered at 1 kHz and digitized at 5 kHz. 
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Real Time PCR 

The aortic tissues from WT and A1KO were processed for total RNA isolation 

using the TRI reagent (MRC, Cincinnati, OH) followed by purification of the RNA in 

aqueous phase and removal of genomic DNA by an RNeasy Plus Micro Kit (QIAGEN, 

Hilden, Germany).This was followed by conversion of 0.5 g of total RNA into cDNA 

using High Capacity cDNA archive kit (Applied Biosystems, Foster City, CA) in a total 

volume of 20 µl. Real-time PCR was performed using an ABI PRISM 7300 Detection 

System (Applied Biosystems) using Taqman Universal Mastermix (Applied Biosystems, 

Branchburg, NJ) according to the instructions of the manufacturer. The reaction volume 

(20 µl) consisted of 10 µl of 2X Taqman Universal Mastermix, 4 µl of cDNA, and 1 µl of 

20X FAM-labeled Taqman gene expression assay. For the real-time PCR of the 

concerned genes (Cyp4a10, A1AR, A2AAR,A2BAR and A3AR ), the Taqman inventoried 

assays on-demand gene expression products  were purchased from Applied Biosystems 

(Foster City, CA). 18S rRNA (ribosomal RNA) was used as an endogenous control. The 

fold difference in expression of target cDNA was determined using the comparative cycle 

threshold (Ct) method as described earlier(Livak and Schmittgen, 2001). 

 

Statistics 

Data are expressed as mean ± SEM from n number of mice, because the treatment level 

(i.e., genotype) is on a per mouse basis. For patch clamp experiments, that means results 

from all cells from a single mouse aorta were averaged to represent n = 1. Current-

voltage relationships were analyzed by two-way repeated measures analysis of variance 

(ANOVA). This was followed with Bonferroni post hoc test to determine where 
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differences existed. When only two values were compared (e.g., BK subunit expression) 

an unpaired t-test was used. P < 0.05 was considered significant in all tests. 
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Results 

Total BK current and BK subunit expression in WT and A1KO mice aortic myocytes 

We performed whole-cell patch recordings on aortic smooth muscle cells from WT (Fig. 

3.1A) and A1KO (Fig. 3.1B) mice; we observed no difference in BK current. That is, 

whole-cell K+ current in smooth muscle cells was indistinguishable between WT and 

A1KO mice. Currents were normalized to cell capacitance (i.e., current density). The 

group data are shown in Fig.3.1C. BK α and β1 proteins were expressed in aortae from 

both WT and A1KO mice. BK α and β1 subunit proteins migrated at 100 and 25 kDa, 

respectively. There were no differences observed in the two protein levels between 

genotypes (Figs.3.1D and 3.1E). Thus, the molecular (protein) and functional (current) 

expression of BK channels was similar in smooth muscle cells from WT and A1KO mice. 

Effect of 20-HETE on BK current in WT and A1KO mice aortic myocytes 

To assess the reported inhibitory effect of 20-HETE on BK channels (Zou et al., 1996; 

Lange et al., 1997), whole-cell recordings were performed on WT and A1KO myocytes. 

We observed a decrease in the BK current in both WT (Fig.3.2A and 3.2B) and A1KO 

(Fig. 3.2D and 3.2E) smooth muscle cells. Mean current density at +100 mV in WT 

under control conditions was 76.4 ± 12.5 pA/pF (n=4); this was decreased to 51.6 ± 10.3 

pA/pF by 20-HETE (Fig. 3.2C). In smooth muscle cells from WT mice, 20-HETE 

decreased current density 33 ± 7%. Similarly in smooth muscle cells from A1KO mice, 

mean current density was 55.6 ± 10.3 pA/pF (n=4) and this was decreased to 41.4 ± 7 

pA/pF by 20-HETE (Fig. 3.2F). Thus, in myocytes from A1KO mice, 20-HETE 

decreased current density 24 ± 11%. 

  



78 

 

Effect of NECA on BK current in WT and A1KO mice aortic myocytes 

Whole-cell patch recordings were made in WT and A1KO aortic myocytes to determine 

the effect of NECA on BK current. NECA is a nonselective adenosine receptor agonist 

and can activate multiple AR subtypes simultaneously. Whole-cell recordings showed 

prominent BK current in smooth muscle cells from WT and A1KO mice. Caffeine (5 

mM) was used as a positive control to release Ca2+ and increase BK current in both WT 

and A1KO aortic smooth muscle cells (Figs. 3.3E and 3.3F). There was very little change 

in the BK current in the WT aortic myocytes when stimulated with 10 µM NECA (Fig. 

3.3E). In contrast, the BK current in A1KO aortic myocytes was significantly increased 

by 10 µM NECA (Fig.3.3F). The time-dependent increase in BK current with 10 µM 

NECA in A1KO smooth muscle cells was 52 ± 15% (n=7); this was significantly higher 

than the response to NECA in smooth muscle cells from WT mice (17 ± 3%; n=9; Fig. 

3.3G). The disparate responses to NECA in smooth muscle cells from WT and A1KO 

mice suggest that multiple AR subtypes are simultaneously regulating BK channels. Thus, 

the next experiment was to determine the effect of an A1AR-specific agonist on BK 

channels in smooth muscle cells from WT and A1KO mice. 

Effect of CCPA on BK current in WT and A1KO mice aortic myocytes 

CCPA (100 nM), an A1-selective agonist, decreased BK current in aortic smooth muscle 

cells from WT mice (Figs. 3.4A and 3.4B). The mean current density at +100 mV in WT 

was 52.1 ± 5.0 pA/pF (n=4) and decreased with the application of CCPA to 42.8 ± 6.2 

pA/pF (Fig. 3.4C). That is, CCPA decreased current density 19 ± 4% in smooth cells 

from WT mice. In contrast, CCPA had no effect on BK current in smooth muscle cells 

from A1KO mice (Figs. 3.4D and 3.4E). The mean current density at +100 mV in smooth 

muscle cells from A1KO mice was 55.2 ± 7.7 and 54.1 ± 3.9 pA/pF (n=4) in the absence 
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or presence of 100 nM CCPA, respectively (Fig. 3.4F). That is, current density in the 

presence of CCPA was 98 ± 7% of control in smooth muscle cells from A1KO mice. 

Effect of PKCα inhibition on BK current in WT and A1KO mice aortic myocytes 

As shown previously (Ponnoth et al., 2012a; Kunduri et al., 2013), PKCα is downstream 

of A1AR activation, 20-HETE production, and mediates contraction of smooth muscle. 

We determined if inhibition of PKCα affected regulation of BK current by A1AR 

activation in smooth muscle cells from WT and A1KO mice. When PKCα was inhibited 

with Gö6976 (100 nM) in WT smooth muscle cells, subsequent addition of CCPA (100 

nM) was no longer able to inhibit current (Figs. 3.5A and 3.5B; compare to Fig. 3.4A-C). 

In smooth muscle cells from WT mice, mean current density at +100 mV for Gö6976 was 

65.9 ± 18.6 pA/pF vs. 64.2 ± 16.6 pA/pF for CCPA + Gö6976 (Fig. 3.5C). That is, 

current density in the presence of CCPA was 99 ± 3% of control in smooth muscle cells 

from WT mice treated with Gö6976. There was no effect of CCPA on BK current in 

A1KO smooth muscle cells whether Gö6976 was present or not (Fig 4.5D-F; note that 

this is a result similar to that shown in Fig. 3.4D-F). The mean current density at +100 

mV in cells from A1KO mice for Gö6976 was 68.5 ± 13.6 pA/pF vs. 66.6 ± 13.2 pA/pF 

for CCPA + Gö6976 (Fig. 3.5F). That is, current density in the presence of CCPA was 97 

± 1% of control in Gö6976-treated smooth muscle cells from A1KO mice. 

Effect of NS1619 and Penitrem A on adenosine agonists’ induced response:  BK 

channel opener NS1619 had significantly increased relaxation in A1KO, but had no effect 

in the WT. We observed that the BK channel inhibitor Pen A had no effect on NECA 

induced responses in both the WT and A1KO (Fig. 3.5A). However, Pen A increased 

NECA induced contraction in WT (14.5±1.9%; 10-7M) as compared to the A1KO 

(3.7±4.5%; 10-7M). On using the A1 selective agonist, CCPA, we observed no difference 
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in contraction with the use of Pen A in WT, except at 10-5M, where higher relaxation was 

observed with Pen A treatment (-6.6 ± 2.8% vs.17 ± 1.2%; Fig. 3.5B).  

Effect of NS1619 and Penitrem A on 20-HETE induced contraction:  20-HETE 

induced contraction in both the WT and A1KO, however it was lower in A1KO. The BK 

channel opener, NS1619 (10µM) decreased the contraction in both the WT (17.3 ± 1.2% 

vs 33.4 ± 2.9%.)  and A1KO (5.7 ± 4.2%). NS1619 had further significantly decreased the 

contraction in the A1KO (5.7 ± 4.2%) as compared to WT (17.3 ± 1.2%). However, on 

using Pen A the contraction was restored to the control levels in both WT (26.1 ± 2.5%) 

and A1KO (16.3 ± 2.9%) (Fig. 3.6).  

mRNA expression of adenosine receptors in WT and A1KO mice:  As expected, A1 

receptor expression was observed in WT and not in A!KO. A2AAR, A2BAR and A3AR 

were expressed in both WT and A1KO. However, A2AAR was the highest in A1KO mice 

(Fig 3.7). 
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Figure 3.1: Whole-cell K
+
 current and BK channel subunit expression is similar in 

smooth muscle from WT and A1KO mice.  

Representative traces of whole-cell K+ current in aortic smooth muscle cells from WT 
(A) and A1KO mice (B). The voltage template used to elicit the currents in this and 
subsequent figures is shown below the trace in A; cells were held at -80 mV and stepped 
from -100 to +100 mV in 20 mV increments. (C) Group data representing whole-cell K+ 
current in aortic smooth muscle cells from WT (n = 13) and A1KO (n = 20) mice. (D) 
Representative Western blots from mouse aortae for BK channel subunit expression 
relative to β-actin (α = 100 kDa; β1 = 25 kDa; β-actin = 42 kDa). (E) Group data for BK 
α and β1 subunit expression in the aortae of WT (n = 6) and A1KO (n = 6) mice.  
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Figure3.2: Effect of 20-HETE on BK current in WT and A1KO aortic myocytes:  

Representative current traces are shown under control conditions (A) and with 0.1 µM 
20-HETE (B) in a smooth muscle cell from a WT mouse. The voltage template was the 
same as Fig. 4.1. (C) Group data (n = 5) show the decrease in the BK current by 20-
HETE in smooth muscle cells from WT mice. Representative traces are shown under 
control conditions (D) and with 0.1 µM 20-HETE (E) for a smooth muscle cell from an 
A1KO mouse. (F) Group data (n = 5) show the decrease in BK current by 0.1 µM 20-
HETE in smooth muscle cells from A1KO mice. *p<0.05 compared to the respective 
control. 
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Figure3.3: Effect of NECA on BK current in WT and A1KO aortic myocytes  

Representative currents under control conditions (A) and with 10 µM NECA (B) in WT. 
The voltage template was the same as Fig.4.1. Representative currents under control 
conditions (C) and with 10 µM NECA (D) in smooth muscle cells from A1KO mice. Data 
showing currents vs. time for 10 µM NECA and 5 mM caffeine in smooth muscle cells 
from WT (E) and in A1KO (F) mice (blank areas in the time course represent where the 
protocol was stopped to perform voltage steps) (G) Group data show that NECA 
increases the BK current more in smooth muscle cells from A1KO mice compared to WT 
mice. *p < 0.05 for WT vs. A1KO; n=7-9. 
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Figure 3.4: Effect of CCPA on BK current in WT and A1KO aortic myocytes  

Representative traces under control conditions (A) and with 0.1 µM CCPA (B) in a 
smooth muscle cell from a WT mouse. The voltage template was the same as Fig.4.1. (C) 
Group data representing the decrease in the BK current by CCPA in the WT mice (n = 4). 
Representative traces show current under control conditions (D) and with 0.1 µM CCPA 
(E) in a smooth muscle cell from an A1KO mouse. (F) Group data illustrate that there is 
no effect of CCPA on BK current in smooth muscle cells from A1KO mice. *p<0.05 
compared to untreated WT (n=4). 

  



85 

 

Figure 3.5: Effect of PKCα inhibitor, Gö6976 on BK current in WT and A1KO 

aortic myocytes 

Representative traces with 0.1 µM Gö6976 (A) and with 0.1 µM Gö6976 + 0.1 µM 
CCPA (B) in a smooth muscle cell from a WT mouse. The voltage template was the same 
as Fig.4.1.  (C) Group data demonstrate the effect of Gö6976 to prevent CCPA-induced 
inhibition of BK current in smooth muscle cells from WT mice (n =4). Representative 
traces with 0.1 µM Gö6976 (D) and with 0.1 µM Gö6976 + 0.1 µM CCPA (E) in a 
smooth muscle cell from an A1KO mouse. (F) Group data representing BK current in 
Gö6976-treated smooth muscle cells from A1KO mice (n = 4). 
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Figure 3.6 Effect of NS1619 on NECA induced relaxation.  

Data are expressed as mean ± SEM; **p<0.05 between WT+NS1619 and 
A1KO+NS1619 and *p<0.05 as compared to A1KO and A1KO +NS1619. 
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Figure 3.7 Effect of Penitrem A (Pen A) on adenosine agonists’ induced responses: 

(A)Effect of Penitrem A on NECA induced vascular response 

 Data are expressed as Mean ±SEM; *p<0.05 as between WT+Pen A and A1KO + Pen A; 
n=6-12; (B) Effect of CCPA on Penitrem A induced contraction: Data are expressed as 
Mean ± SEM; *p<0.05 as between WT+ Pen A and A1KO + Pen A; *p<0.05 as between 
WT and WT + Pen A; n=8-12 
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Figure 3.8 Effect of Penitrem A (BK channel inhbitor; Pen A) and NS1619 (BK 

channel opener;NS) on CCPA induced contraction.   

Values are mean ± SEM; n=6-12; *p<0.05 as compared to WT; #p<0.05 as compared to 
A1KO; $p<0.05 as compared to WT+NS; **p<0.05 as compared to WT + Pen A 
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Figure 3.9 Adenosine receptor expression in WT and A1KO mice aortae  

 Data are expressed as mean ± SEM (n=10). * p<0.05 compared to the WT 
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Figure 3.10: Adenosine A1 receptors regulate aortic smooth muscle contraction by 

inhibiting BK channels via PKC-α dependent mechanism.  

As shown previously in Fig 3.4, activation of A1AR by CCPA couples with PLCX via Gx.  
IP3, a metabolites of PLC action on phosphatidylinositol 4,5-bisphosphate, releases Ca2+ 
from the sarcoplasmic reticulum (SR) and activates BK channels. AA released by the 
DAG lipases is metabolized to 20-HETE by Cyp4a, which activates PKC-α. The latter 
apart from activating ERK1/2, inhibits the BK channels and results in the contraction of 
the aortic smooth muscle. Activation of BK channels results in hyperpolarization of the 
smooth muscle membrane which promotes a closure of L-type voltage dependent Ca2+ 
channels that are major players of smooth muscle contraction.   
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Discussion 

We tested the hypothesis that activation of A1AR inhibits BK channels in aortic smooth 

muscle via a PKC-dependent mechanism. This hypothesis was based on previous studies 

indicating: 1) that A1AR stimulation is associated with 20-HETE production and 

activation of PKC (Ponnoth et al., 2012a; Kunduri et al., 2013) and 2) 20-HETE and PKC 

can inhibit BK channels (Zou et al., 1996; Nowicki et al., 1997; Schubert et al., 1999; 

Zhou et al., 2009). We performed whole-cell patch clamp and Western blot studies using 

aortic smooth muscle cells and aortae of WT and A1KO mice. Our major findings 

included: 1) There were no differences in whole-cell K+ current in aortic smooth muscle 

cells from WT and A1KO mice, nor were there any differences in the expression of pore-

forming α or regulatory β1 subunit proteins. 2) Inhibition of BK current by 20-HETE was 

similar in aortic smooth muscle cells from WT and A1KO mice. 3) NECA, a non-

selective AR agonist increased BK current in aortic smooth muscle cells from both WT 

and A1KO mice, but the increase was greater in smooth muscle cells from mice lacking 

the A1AR. 4) CCPA, an A1AR-selective agonist, inhibited BK current in smooth muscle 

cells from WT, but not A1KO, mice. 5) Inhibition of PKCα with Gö6976 abolished the 

effect of CCPA to inhibit BK current in smooth muscle cells from WT mice. Together, 

these data lead us to conclude that, in aortic smooth muscle, A1AR stimulation inhibits 

BK channel activity and that this occurs via a mechanism involving PKCα. 

BK channels are ubiquitously expressed on the sarcolemma of vascular smooth 

muscles. BK channels are composed of pore-forming α subunits with or without 

regulatory β subunits. The β1 subunit, however, is commonly found in vascular smooth 

muscles  (Nelson and Quayle, 1995; Ledoux et al., 2006; Asano et al., 2010). The α 
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subunit is the voltage- and Ca2+-sensitive pore, while β subunits can modify many 

characteristics including pharmacology and Ca2+-sensitivity. We observed no difference 

in the expression of α or β1 BK subunits (Fig.3.1), suggesting that the channels are 

equally expressed in aortic smooth muscle cells from WT and A1KO mice. Further, there 

were no differences in BK current magnitude between WT and A1KO mice (Fig.3.1). We 

have previously shown that A1AR mediates contraction of smooth muscle via the 

arachidonic acid metabolite 20-HETE (Ponnoth et al., 2012a; Kunduri et al., 2013). 20-

HETE has been shown to inhibit BK channels in rat renal arteriolar smooth muscle cells 

(Zou et al., 1996; Sun et al., 1999). We have observed similar results in whole-cell patch 

recordings (Fig. 3.2). That is, 20-HETE decreased BK current similarly in smooth muscle 

cells from both WT and A1KO mice (Fig. 3.2). 20-HETE is a potent vasoconstrictor as 

shown previously by significant contractions in the aortae of both WT and A1KO mice 

(Ponnoth et al., 2012a; Kunduri et al., 2013). The BK channel opener NS1619 decreased 

this contraction with significantly higher reduction in the A1KO, implying the role of BK 

channels in the A1AR-20-HETE mediated signaling in the vascular response. On using 

Pen A in WT and A1KO, the contraction is restored to their respective control levels. This 

further underscores that A1AR via 20-HETE inhibits BK channel and attenuates 

relaxation of the smooth muscle cell 20-HETE activates PKC (Lange et al., 1997; 

Nowicki et al., 1997; Ponnoth et al., 2012a; Kunduri et al., 2013) and PKC may mediate 

contraction by inhibiting BK channel activity in rat cerebral arteries (Bonev and Nelson, 

1996), rabbit portal vein (Kitamura et al., 1992), canine basilar artery(Obara et al., 2002) 

and rat tail artery (Schubert et al., 1999). This inhibition depends on the sequential 

phosphorylation of two serines in the C-terminus of the BK α subunit (Zhou et al., 2009).  

In the present study, when PKCα was antagonized with Gö6976, CCPA could no longer 
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inhibit BK channel current (compare Figs. 3.4 and 3.5). This suggests that A1AR 

signaling through PKCα is negatively coupled to BK channels, perhaps by 20-HETE. 

The non-selective adenosine agonist NECA relaxes smooth muscle by acting on 

A2AR (Rump et al., 1999; Tawfik et al., 2005; Ponnoth et al., 2009), whereas the A1AR-

selective agonist CCPA contracts smooth muscle (Ponnoth et al., 2012a; Kunduri et al., 

2013). Activation of BK channels by A2AR could lead to membrane potential 

hyperpolarization and contribute to the relaxation of smooth muscle, whereas inhibition 

of BK channels by A1AR could cause depolarization and contribute to contraction. We 

observed that NECA increased BK current significantly in A1KO as compared to the WT 

(Fig. 3.3). This suggests that the increase in the BK current could be due to the absence of 

A1 and the non-selective action of NECA on other adenosine receptors (e.g. A2AR) in the 

A1KO. We have shown that the A2A receptor expression is upregulated in A1KO mice and 

this might also be a factor in the larger responses to NECA. There is evidence showing 

that A2AAR, through EETs, activate BK channels (Carroll et al., 2006; Ray and Marshall, 

2006). Furthermore, by using the A1 selective agonist CCPA we demonstrated a decrease 

in BK current in smooth muscle cells from WT mice, but no effect in smooth muscle 

cells from the A1KO mice. This is the first evidence in the literature showing that A1AR 

activation inhibits BK current. As the A1AR is known to mediate contraction (Tawfik et 

al., 2005; Wang et al., 2010; Kunduri et al., 2013), we suggest this may be mediated by 

inhibition of BK channels. It should be noted, however, that there are reports of A1 

activating KATP channels (Dart and Standen, 1993) and linking to nitric oxide-dependent 

smooth muscle relaxation (Ray and Marshall, 2006). The reasons for such differences are 

not readily apparent, but may perhaps be attributed to the vascular beds and species. 
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However, it was surprising to observe in vascular reactivity experiments that the 

use of BK channel inhibitor, Pen A did not alter the contraction in NECA induced or 

CCPA induced concentration responses (Fig.3.7A and Fig.3.7B). Previous studies using 

adenosine or A2A receptor agonist in other vessels have produced differing results 

depending on the tissue and species used. In renal arteries, combination of calcium 

dependent potassium channel inhibitors, apamin and charybdotoxin didnot have any 

effect on the A2A agonist dilation, but Ibtx at 0.1µmol/L had very little effect (Rump et al., 

1999). Similar results were obtain ned by Carroll MA et al (Carroll et al., 2006) in renal 

preglomerular vessels. In their study, adenosine mediated dilation via A2A through EETs 

of renal preglomerular vessels was inhibited by 100nM Ibtx. However, there has been no 

study showing the interaction of adenosine-mediated response via A1 and BK channels. 

Though A1 is primarily know to mediate contraction, there is evidence showing that A1 

mediates vasodilation through KATP channel in the rat aortic endothelium (Ray and 

Marshall, 2006), in rat diaphragmatic arterioles(Danialou et al., 1997), in the rat skeletal 

muscle (Bryan and Marshall, 1999). Thus, it is quite possible in the present study that the 

adenosine in the whole tissue consisting of endothelium and the smooth muscle might 

cause contraction through the A1 receptors via inhibition of KATP channels or other K+ 

channels. This suggests that there could be another pathway in the whole tissue via which 

A1AR mediates contraction. 

Adenosine, via multiple receptor subtypes, contracts and relaxes vascular smooth 

muscle through several mechanisms, including the regulation of K+ channels (Dart and 

Standen, 1993). While adenosine-mediated increases in KATP channel activity are 

generally well accepted (Sharifi Sanjani et al., 2013), reports regarding the role of BK 

channels in adenosine-induced smooth muscle relaxation vary widely. In canine coronary 
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arterioles, vasodilation in response to adenosine is inhibited by iberiotoxin (a very 

selective BK channel antagonist) (Cabell et al., 1994). Blocking BK channels inhibits 

vasodilation to 2-chloroadenosine in pig coronary arterioles (Borbouse et al., 2009); 

however, the role of BK channels in this response is abolished in pigs with metabolic 

syndrome (Borbouse et al., 2009). Thus, it could be pathology that explains why BK 

channels play no role in adenosine-induced vasodilation human coronary arterioles (Sato 

et al., 2005), as they are typically collected from patients with heart disease. Conversely, 

it may be that BK channels play little, if any role, in adenosine-induced vasodilation, as 

this has been reported in the majority of studies from pig coronary arterioles (Hein and 

Kuo, 1999; Hein et al., 2001; Heaps and Bowles, 2002). However, it cannot be ignored 

that BK channels are reported to contribute to adenosine-induced relaxation or 

vasodilation of rat cerebral arterioles (Paterno et al., 1996), rabbit renal arteries (Rump et 

al., 1999), rat aortas (Ray and Marshall, 2006), and rat preglomerular microvessels 

(Carroll et al., 2006). Further, adenosine increases a Ca2+-dependent K+ current in smooth 

muscle cells from the rat mesenteric artery that may be mediated by BK channels (Li and 

Cheung, 2000). At present, there is little consensus regarding the role of BK channels in 

adenosine-induced smooth muscle relaxation and very little data directly addressing 

whether adenosine increases BK current in smooth muscle cells isolated from those same 

arteries or arterioles. Thus, from our data, we conclude that A1AR signaling inhibits BK 

channels via 20-HETE and PKCα. However, in the whole tissue consisting of the 

endothelium and smooth muscle, there could be other potassium channels or ion channels 

playing role in mediating contraction through A1AR and this needs to be further explored 

to have a complete understanding of the signaling mechanism involved in A1AR 

mediated contraction. 
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4. CHAPTER FOUR: CONCLUSIONS 

 
The work presented in this dissertation establishes a relationship between A1AR 

and Cyp4a.We have shown that A1AR mediated contraction of the smooth muscle 

involves Cyp4a product, 20-HETE via PKC-α and ERK 1/2 dependent pathway. 

Furthermore, this effect on the smooth muscle occurs by the inhibition of BK channel in a 

PKC-α dependent manner. 

  The first evidence for an interaction between A1AR and Cyp4a is the effect of the 

Cyp4a inhibitor (HET0016) on adenosine agonists’ (NECA and CCPA) elicited vascular 

responses in WT and A1KO mice aortae. Due to the similar responses to adenosine 

agonists in the mice mesenteric arteries and aortae, we used aortae for these studies(Teng 

et al., 2011). Pharmacological inhibition of Cyp4a dramatically reduced the contraction 

responses induced by NECA, in both the WT and the A1KO mice aortae and a 

significantly higher relaxation was observed in NECA-induced aortic responses in A1KO 

(Fig. 2.2A).  

These findings were further confirmed when Cyp4a inhibitor (HET0016) 

attenuated the vasoconstriction evoked by the A1 agonist, CCPA in the WT with no 

significant difference in the treated and untreated A1KO tissues (Fig.2.2B). This coupled 

with lower Cyp4a protein levels in A1KO mice aortae (Fig. 2.1A) as compared to WT 

suggest a role for Cyp4a in adenosine-elicited contraction of the smooth muscle through 

the A1AR.  

20-HETE is known to be a potent vasoconstrictor in several vascular beds. When 

administered exogenously in our experiments, it elicited contraction responses in both 

WT and A1KO at very low concentrations of 10-11M (Fig 2.3A-D). Our data show that 
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20-HETE vascular responses in aortae and mesenteric arteries are lower in A1KO 

compared to the WT (Fig.2.3E). Moreover, the Cyp4a functional activity evaluated by the 

20-HETE formation rates in the aortic microsomes was found to be lower in the A1KO as 

compared to the WT mice (Fig 2.4). This further underscores the role of Cyp4a in A1AR 

mediated vasoconstriction. 

There is a dynamic interplay between the metabolites of the two pathways of 

Cyp450 enzymes, EETs and 20-HETEs, in the modulation of vascular homeostasis. As 

Cyp4a and Cyp2c products have functionally antagonistic effects, we investigated if 

Cyp2c29 has any relationship to the A1AR mediated vascular responses. We observed 

that Cyp2c29 protein levels were significantly up- regulated in A1KO mice as compared 

to the WT (Fig 2.5A). Since we have seen an up-regulation of Cyp2c29 in A1KO 

compared to WT mice, it is quite possible that relaxation observed in A1KO mice by 

Cyp4a inhibition is due to Cyp2c29 product EETs and due to the inhibition of Cyp4a that 

limits the production of 20-HETE. This observation was confirmed by the enhanced 

CCPA mediated vasoconstriction in the presence of the Cyp-epoxygenase inhibitor, 

MSPPOH (Fig.2.5B). We have shown earlier that Cyp4a protein levels are up regulated 

with MSPPOH treatment (Nayeem et al., 2008). In the WT, although Cyp-epoxygenases 

were inhibited, a higher contraction observed with MSPPOH treatment is due to higher 

levels of Cyp4a and in the A1KO, the higher vascular response is due to inhibition of the 

Cyp-epoxygenases. Thus, the down-regulation of Cyp4a and an up-regulation of Cyp2c29 

protein levels promote the relaxation observed in the A1KO littermates. This inverse 

relationship between Cyp4a and Cyp2c is consistent with findings from other 

investigators in rat afferent arterioles and preglomerular arterioles (Hercule and Oyekan, 

2000; Imig et al., 2000). 
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The next aim was to determine the signaling mechanism by which adenosine A1 

receptor-20-HETE pathway mediates contraction of the smooth muscle downstream. 

Exogenous administration of 20-HETE produced similar higher contraction response in 

WT than the A1KO, both in the mice aortae and mesenteric arteries (Fig.2.3), thus, 

suggesting that the signaling proteins downstream of 20-HETE are essential in Cyp4a 

modulation of A1AR mediated vasoconstriction. The use of a specific PKC-α blocker 

attenuated the 20-HETE mediated vasoconstrictor response in WT and A1KO mice aortae 

(Fig.2.6A-C). Similarly, pharmacological inhibition of ERK1/2 with PD98059 decreased 

the 20-HETE-elicited contraction in the WT and almost abolished the contractile tone in 

the A1KO (Fig2.7A-C). However, the greater blockade of the vasoconstrictor responses 

with ERK inhibitor than with the PKC-α inhibitor implies that MAPK pathway activation 

may involve several kinases like PKA, PKC, rho kinases or Ras activation or a cross talk 

between the different tyrosine kinase receptors. These data substantiate the role of PKC-α 

and ERK1/2 in A1AR mediated vasoconstriction through 20-HETE (Fig. 2.6 and 2.7). 

 Electrophysiological studies have revealed that BK channels negatively 

regulate the A1AR–20-HETE mediated aortic smooth muscle contraction.  Our data 

showed that the total BK current and BK protein expression was unchanged in both WT 

and A1KO aortic smooth muscle cells (Fig.3.1). 20-HETE decreased the BK current in 

our studies as reported by several groups in different vascular beds and species (Fig.3.2). 

20-HETE is a potent vasoconstrictor as shown by the significant contraction in WT and 

A1KO (Ponnoth et al., 2012a; Kunduri et al., 2013). The BK channel opener NS1619 

decreased this contraction with significantly higher reduction in the A1KO, implying the 

role of BK channels in the A1AR-20-HETE mediated signaling in the vascular response. 

On using Pen A in WT and A1KO, the contraction is restored to their respective control 
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levels. This further underscores that A1AR via 20-HETE inhibits BK channel and 

attenuates relaxation of the smooth muscle cell (Fig 3.8) 

  Adenosine receptor stimulation with NECA increased the BK current in A1KO 

and not in WT (Fig.3.3).  This suggests that A1AR negatively regulates the BK channel 

and the lack of it removes the inhibition. As cited previously, A2AR is known to couple 

with EETs and BK channels in mediating relaxation. We have shown in this dissertation 

that A2AR is up-regulated in A1KO mice aortae (Fig.3.9). It is quite plausible that the 

increase in BK current could also be contributed byA2AR receptors via EETs. Use of the 

A1 selective agonist CCPA decreased the BK current in WT with no effect on the A1KO 

aortic smooth muscle cells (Fig.3.4).   

However, it was surprising to observe in vascular reactivity experiments that the 

use of BK channel inhibitor, Pen A did not alter the contraction in NECA induced or 

CCPA induced concentration responses (Fig.3.7). Previous studies using adenosine or 

A2A receptor agonist in other vessels have produced differing results depending on the 

tissue and species used. In renal arteries, combination of calcium dependent potassium 

channel inhibitors, apamin and charybdotoxin didnot have any effect on the A2A agonist 

dilation, but Ibtx at 0.1µmol/L had very little effect (Rump et al., 1999). Similar results 

were obtain ned by Carroll MA et al (Carroll et al., 2006) in renal preglomerular vessels. 

In their study, adenosine mediated dilation via A2A through EETs of renal preglomerular 

vessels was inhibited by 100nM Ibtx. However, there has been no study showing the 

interaction of adenosine-mediated response via A1 and BK channels. Though A1 is 

primarily know to mediate contraction, there is evidence showing that A1 mediates 

vasodilation through KATP channel in the rat aortic endothelium (Ray and Marshall, 2006), 

in rat diaphragmatic arterioles(Danialou et al., 1997), in the rat skeletal muscle (Bryan 
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and Marshall, 1999). Thus, it is quite possible in the present study that the adenosine in 

the whole tissue consisting of endothelium and the smooth muscle might cause 

contraction through the A1 receptors via inhibition of KATP channels or other K+ channels. 

This suggests that there could be another pathway in the whole tissue via which A1AR 

mediates contraction. 

Thus, in summary we conclude that adenosine A1 receptor by coupling with 20-

HETE and PKC-α limits adenosine-mediated relaxation in the aortic smooth muscle cells 

by inhibiting BK channels. However, in the whole tissue consisting of the endothelium 

and smooth muscle, there could be other potassium channels or ion channels playing role 

in mediating contraction through A1AR and this needs to be further explored to have a 

complete understanding of the signaling mechanism involved in A1AR mediated 

contraction. 
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Figure 4.1: Schematic showing the events leading from activation of A1AR coupled 

to Cyp4a product, 20-HETE and mediating contraction through PKC-α and p-

ERK1/2 and BK channels 
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Figure 4.2: Schematic showing the events in the absence of A1AR. NECA possibly 

activates A2AR, leading to activation of Cyp-epoxygenases , which produce EETs 

and actiavte KATP channels 

 (Nayeem et al., 2008; Ponnoth et al., 2012a; Ponnoth et al., 2012b); EETs diffuse out of 
the endothelial cell and are also known to activate BK channels in the smooth muscle. 
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Figure 4.3: Effect of Glibenclamide(Glib; 10µM) on CCPA induced contraction.  

Data are expressed Mean ± SEM; *p<0.05 between WT and WT+Glib and **p<0.05 
between A1KO and A1KO+Glib; n=6  
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Future Directions 

The next step for this project would be to determine the ion channels in the 

endothelium that could be involved in the regulation of the vascular tone by A1AR and 

Cyp450 metabolites. Our preliminary vascular reactivity experiments showed that KATP 

inhibitor, Glibenclamide (Glib) significantly increased the CCPA induced contraction in 

WT as well as A1KO (Fig.4.3). This suggests that Glib- sensitive KATP channels 

contribute to adenosine-mediated relaxation and inhibition of these channels contribute to 

the A1mediated contraction.  

KATP channels are octameric complexes composed of four SUR and four Kir 

subunits. They are found in the vascular smooth muscle of both resistance and conduit 

arteries (Quayle et al., 1997). Several studies have shown that A1AR mimics adenosine 

effects by coupling with KATP in the rat aortic endothelium and causing release of nitric 

oxide (NO) (Ray and Marshall, 2006) in pig coronary arterioles smooth muscle cells 

(Dart and Standen, 1993), rat diaphragmatic arterioles (Danialou et al., 1997) and in the 

rat skeletal muscle (Bryan and Marshall, 1999). Our lab has shown previously that A1AR 

is up-regulated in A2AKO mice aortae (Ponnoth et al., 2012b) and Glib causes higher 

contraction to NECA in A2AKO (Ponnoth et al., 2012b). This meshes well with our 

preliminary data suggesting that inhibition of the KATP channel is involved in the A1AR 

regulation of vascular tone. Furthermore, our lab has shown that the endothelial KATP 

channels are activated by the A2AAR-Cyp-epoxygenases pathway in the mouse aorta 

(Ponnoth et al., 2012a). Given this evidence, we speculate that in the endothelium, the 

activation of A1AR causes inhibition of KATP channels and this signal is transduced to 

smooth muscle resulting in its contraction.  
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However, more experiments such as vascular reactivity studies to confirm the 

involvement of endothelial KATP channels in A1AR mediated responses are needed. 

Electrophysiological experiments can be done to further confirm the findings using the 

A1KO and WT aortic endothelial cells. However, the signaling and the role of Cyp450 

metabolites pathway in mediating this vascular function is unknown and needs to be 

studied. Since both the Cyp450 metabolites and adenosine play a role in the preservation 

of a normal endothelial functioning, understanding the relationship between them will 

provide a deeper insight of the factors underlying endothelial dysfunction, a major 

contributor to several cardiovascular diseases. 

The role of Cyp4a metabolite, 20-HETE in blood pressure regulation is well 

documented, and 20-HETE functions as a pro-hypertensive or as an antihypertensive 

eicosanoid depending on its expression site. In the renal tubules, it functions as an anti-

hypertensive by inhibiting the Na+ transport and increasing Na+ loss. In contrast, in the 

peripheral vessels it functions as a pro-hypertensive, by increasing the vascular tone, 

thereby increasing the peripheral vascular resistance and the arterial pressure (Williams et 

al., 2010) . There is overwhelming evidence that mutations in Cyp4a11 and Cyp4f2 lead 

to the development of hypertension in human population studies. Moreover, prolonged 

hypertension is a harbinger for atrial fibrillation, left ventricular hypertrophy, myocardial 

infarction, congestive heart failure leading to end stage renal disease and stroke (Kraja et 

al.; Dobbelsteyn et al., 2001).  

There are conflicting reports of involvement of A1AR in blood pressure regulation. 

Brown et al, 2001 and Wang et al, 2010 (Brown et al., 2001; Wang et al., 2010) have 

shown that blood pressure levels are elevated in A1KO mice, whereas, Sun et al, 2001 

and Schweda et al, 2005 (Sun et al., 2001; Schweda et al., 2005) have shown no 
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difference in blood pressure between the WT and A1KO mice. Although the role of 

A1AR in regulation of heart rate and cardio-protective action after an ischemic insult is 

well-documented (Jacobson and Gao, 2006), its role in blood pressure regulation remains 

ambiguous. 

Thus, the findings of this dissertation, which shed some light on the relationship 

between A1AR and 20-HETE, can serve as the basis for further exploration of the role of 

A1AR in blood pressure.   
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6. APPENDIX A 

 
This section provides preliminary data to determine the effect of adenosine agonists in 

WT and A1KO mice aortae 

Fig. A.1.Preliminary experiments were carried out to determine the effect of NECA in 

WT (C-57/BL6) and A1KO mice. NECA induced relaxation in both WT and A1KO. 

However, NECA induced relaxation was significantly higher in A1KO mice due to 

ablation of A1AR gene (n=8-12). Data are expressed as Mean± SEM, *p<0.05 as 

compared to WT; (n=8-12). 

 
 

NECA CONCENTRATION RESPONSE CURVE IN WT AND A1KO MICE 
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Fig.A.2.Preliminary experiments were carried out to determine the effect of CCPA in WT 

(C-57/BL6) and A1KO mice. CCPA induced contraction in WT and the lack of A1AR 

gene results in relaxation in A1KO. Data are expressed as Mean± SEM, *p<0.05 as 

compared to WT; (n=8-12). 

  
 

CCPA INDUCED CONCENTRATION RESPONSE CURVE 
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Fig.A.3.Ach induced relaxation in WT and A1KO mice aortae and mesenteric arteries. 

There was no difference in the acetylcholine induced responses in WT and A1KO mice in 

both aortae and mesenteric arteries. Data are expressed as Mean± SEM, *p<0.05 as 

compared to WT; (n=6-12). 

 
 

 ACETYLCHOLINE INDUCED RELAXATION 
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APPENDIX B 

 
This section provides preliminary data to determine the involvement of L-type 

Ca2+channels in the A1AR and 20-HETE mediated contraction using WT and A1KO mice 

aortae. Also, the effect of Iberiotoxin on CCPA induced contraction. The results observed 

were similar to the effect of Penitrem A. 
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Fig.B.1.To determine the involvement of L-VDCC in A1AR mediated contraction, we 

assessed the effect of Nifedipine on CCPA induced contraction. Nifedipine (Nif) 

inhibited CCPA-induced contraction and resulted in relaxation similar to control A1KO. 

Nif did not effect CCPA induced contraction in A1KO mice aortae. Data are expressed as 

Mean± SEM, *p<0.05 as compared to WT; (n=8-12) 

 
EFFECT OF NIFEDIPINE (Nif) ON CCPA- INDUCED CONTRACTION 
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Fig.B.2.To determine the involvement of L-VDCC in 20-HETE mediated contraction, we 

assessed the effect of Nifedipine on 20-HETE induced contraction. Nifedipine (Nif) 

attenuated 20-HETE-induced contraction in both WT and A1KO. However, the decrease 

in contraction was higher in A1KO by Nif. *p<0.05 as compared to WT and #p<0.05 as 

compared to A1KO. 

 
 

EFFECT OF NIFEDIPINE ON 20-HETE INDUCED CONTRACTION 
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Fig.B.3.Iberiotoxin (Ibtx; BK channel inhibitor) had no effect on CCPA induced 

contraction in WT. Data are expressed as Mean ± SEM; n=6 

 

EFFECT OF IBERIOTOXIN ON CCPA INDUCED CONTRACTION 
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APPENDIX C 

 
This section provides preliminary data to determine the effect of adenosine agonists in 

WT and Cyp2c29KO mice aortae. It also shows ACh response of WT and Cyp2c29KO 

mice aortae and mesenteric arteries. These mice were obtained from NIEHS to further 

explore the role of adenosine receptors and CYP metabolites. However, the results 

weren’t promising. 
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 Fig.C.1.NECA induced concentration response in WT and Cyp2c29KO. Data are 

expressed as Mean ± SEM, n=6  

 

NECA CONCENTRACTION RESPONSE IN Cyp2c29KO MICE 
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Fig.C.2.CCPA induced concentration response in WT and Cyp2c29KO. Data are 

expressed as Mean ± SEM, n=6.  

 

 

CCPA CONCENTRATION RESPONSE CURVE IN Cyp2c29KO MICE 
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Fig.C.3.CGS induced concentration response in WT and Cyp2c29KO. Data are expressed 

as Mean ± SEM, n=6.  

 
 

CGS CONCENTRATION CURVE IN Cyp2c29KO MICE 
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Fig.C.4.ACh induced relaxation was no different in WT and Cyp2c29Ko mice. Data are 

expressed as mean ± SEM; n=8-10 

 

 
ACETYLCHOLINE INDUCED RELAXATION IN Cyp2c29KO MICE 
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